

Lecture Notes in Computer Science 3653
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martín Abadi Luca de Alfaro (Eds.)

CONCUR 2005 –
Concurrency Theory

16th International Conference, CONCUR 2005
San Francisco, CA, USA, August 23-26, 2005
Proceedings

13

Volume Editors

Martín Abadi
Luca de Alfaro
University of California at Santa Cruz
School of Engineering
Santa Cruz, CA 95064, USA
E-mail: {abadi, luca}@soe.ucsc.edu

Library of Congress Control Number: 2005930640

CR Subject Classification (1998): F.3, F.1, D.3, D.1, C.2

ISSN 0302-9743
ISBN-10 3-540-28309-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28309-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11539452 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at CONCUR 2005, the 16th In-
ternational Conference on Concurrency Theory. The purpose of the CONCUR
series of conferences is to bring together researchers, developers, and students in
order to advance the theory of concurrency and to promote its applications.
This year’s conference was in San Francisco, California, from August 23 to
August 26.

We received 100 submissions in response to a call for papers. Each submis-
sion was assigned to at least three members of the Program Committee; in many
cases, reviews were solicited from outside experts. The Program Committee dis-
cussed the submissions electronically, judging them on their perceived impor-
tance, originality, clarity, and appropriateness to the expected audience. The
Program Committee selected 38 papers for presentation. Because of the format
of the conference and the high number of submissions, many good papers could
not be included. Although submissions were read and evaluated, the papers that
appear in this volume may differ in form and contents from the corresponding
submissions. It is expected that many of the papers will be further revised and
submitted to refereed archival journals for publication.

Complementing the contributed papers, the program of CONCUR 2005 in-
cluded invited lectures by Rajeev Alur, Luca Cardelli, Dawson Engler, and Chris-
tos Papadimitriou. Rajeev Alur’s and Dawson Engler’s lectures were jointly for
CONCUR 2005 and SPIN 2005, one of 11 affiliated workshops that enhanced
the program:

– BioCONCUR: Concurrent Models in Molecular Biology
– DisCoVeri: Distributed Algorithms Meet Concurrency Theory
– EXPRESS: Expressivity in Concurrency
– FIT: Foundations of Interface Technology
– FOCLASA: Coordination Languages and Software Architectures
– GETCO: Geometric and Topological Methods in Concurrency
– GT-VC: Graph Transformation for Verification and Concurrency
– INFINITY: Verification of Infinite-State Systems
– MoChArt: Model Checking and Artificial Intelligence
– SecCo: Security Issues in Concurrency
– SPIN: Model Checking of Software

We would like to thank the members of the Program Committee for their
hard and expert work. We would also like to thank the CONCUR Steering
Committee, the workshop organizers, the external reviewers, the authors, and the
local organizers for their contributions to the success of the conference. Finally,
we gratefully acknowledge the generous support received from Cisco Systems
and from Microsoft Research.

Mart́ın Abadi and Luca de Alfaro

CONCUR Steering Committee

Roberto Amadio (Université de Provence)
Jos Baeten (Eindhoven University of Technology)
Eike Best (Oldenburg University)
Kim Larsen (Aalborg University)
Ugo Montanari (Università di Pisa)
Scott Smolka (SUNY Stony Brook)

CONCUR 2005 Organization

General Chair

Luca de Alfaro (University of California, Santa Cruz)

Program Committee Chairs

Mart́ın Abadi (University of California, Santa Cruz)
Luca de Alfaro (University of California, Santa Cruz)

Program Committee

Christel Baier (Universität Bonn)
Jos Baeten (Eindhoven University of Technology)
Albert Benveniste (IRISA/INRIA)
Luis Caires (Universidade Nova de Lisboa)
Giuseppe Castagna (CNRS/École Normale Supérieure)
Marsha Chechik (University of Toronto)
Vincent Danos (CNRS/Université Paris VII)
Javier Esparza (University of Stuttgart)
Cédric Fournet (Microsoft Research, Cambridge)
Dimitra Giannakopoulou (NASA Ames Research Center)
Anna Ingólfsdóttir (Aalborg University)
Radha Jagadeesan (DePaul University)
Bengt Jonsson (Uppsala University)
Antonin Kucera (Masaryk University)
Orna Kupferman (Hebrew University)
Cosimo Laneve (Università di Bologna)
Kim Larsen (Aalborg University)
John Mitchell (Stanford University)
Ugo Montanari (Università di Pisa)
Catuscia Palamidessi (INRIA Futurs and LIX)
Prakash Panangaden (McGill University)
Shaz Qadeer (Microsoft Research, Redmond)
Vijay Saraswat (IBM T.J. Watson Research Center)
Vladimiro Sassone (University of Sussex)
Philippe Schnoebelen (CNRS/École Normale Supérieure de Cachan)
Frits Vaandrager (Radboud University Nijmegen)
Mahesh Viswanathan (University of Illinois at Urbana-Champaign)
Igor Walukiewicz (Université Bordeaux)
Glynn Winskel (University of Cambridge)

VIII

External Reviewers

Samy Abbes, Parosh Abdulla, Luca Aceto, Karine Altisen, Rajeev Alur, Paul
Camille Attie, Eric Badouel, Michael Baldamus, Paolo Baldan, Emmanuel Bef-
fara, Nick Benton, Bernard Berthomieu, Karthik Bhargavan, Stefano Bistarelli,
Bruno Blanchet, Bernard Boigelot, Mikolaj Bojanczyk, Marcello Bonsangue,
Michele Boreale, Ahmed Bouajjani, Gérard Boudol, Patricia Bouyer, Claus Bra-
brand, Tomáš Brázdil, Roberto Bruni, Peter Buchholz, Nadia Busi, Thierry
Cachat, Marco Carbone, Rohit Chadha, Thomas Colcombet, Giovanni Conforti,
Ricardo Corin, Flavio Corradini, Scott Cotton, Jean-Michel Couvreur, Silvia
Crafa, Cas Cremers, Philippe Darondeau, Johan de Kleer, Yannick Delbecque,
Yuxin Deng, Rocco De Nicola, Ewen Denney, Josée Desharnais, Erik de Vink, El-
lie D’Hondt, Maria Rita di Berardini, Eric Fabre, Ulrich Fahrenberg, Alessandro
Fantechi, Harald Fecher, Jérôme Feret, Marcelo Fiore, Emmanuel Fleury, Ric-
cardo Focardi, Wan Fokkink, Pierre Ganty, Simon Gay, Blaise Genest, Mihaela
Gheorghiu, Hugo Gimbert, Patrice Godefroid, Jens Chr. Godskesen, Georges
Gonthier, Valentin Goranko, Andy Gordon, Daniele Gorla, Roberto Gorrieri,
Vineet Gupta, Arie Gurfinkel, Stefan Haar, Frédéric Herbreteau, Thomas Hilde-
brandt, Dan Hirsch, Löıc Hélouët, Hans Hüttel, Bertrand Jeannet, Ole Jensen,
Ken Kahn, Apu Kapadia, Christos Karamanolis, Yannis Kassios, Joost-Pieter
Katoen, Lionel Khalil, Josva Kleist, Bartek Klin, Pavel Krčál, Steve Kremer,
Jean Krivine, Karl Krukow, Viraj Kumar, Celine Kuttler, Barbara König, Anna
Labella, Albert Lai, Yassine Lakhnech, Leslie Lamport, Ivan Lanese, François
Laroussinie, S�lawomir Lasota, Olivier Laurent, François Laviolette, Jamey Leifer,
Didier Lime, Markus Lohrey, Etienne Lozes, Michael Luttenberger, Bas Luttik,
Parthasarathy Madhusudan, Matteo Maffei, Andrea Maggiolo Schettini, Pritha
Mahata, Ka Lok Man, Richard Mayr, Hernan Melgratti, Paul-André Melliès,
José Meseguer, Marius Mikucionis, Michael Mislove, MohammadReza Mousavi,
Venkatesh Mysore, Shiva Nejati, Uwe Nestmann, Mogens Nielsen, Marcus Nils-
son, Dirk Nowotka, Luke Ong, Simona Orzan, Joel Ouaknine, Joachim Par-
row, Corina Pasareanu, Dusko Pavlovic, Radek Pelánek, Paul Pettersson, Hen-
rik Pilegaard, Michele Pinna, Damien Pous, Vinayak Prabhu, Rosario Pugliese,
Sriram Rajamani, Julian Rathke, Martin Raussen, Antonio Ravara, Laurent
Regnier, Michel Reniers, Arend Rensink, Shamim Ripon, Bill Rounds, Vojtěch
Řehák, Mayank Saksena, Simonas Saltenis, Davide Sangiorgi, Zdeněk Sawa, Alan
Schmitt, Johann Schumann, Stefan Schwoon, Koushik Sen, Pawel Sobocinski,
Ana Sokolova, Jǐŕı Srba, Sam Staton, Alin Stefanescu, Marielle Stoelinga, Oldřich
Stražovský, Jan Strejček, Grégoire Sutre, Dejvuth Suwimonteerabuth, David
Teller, P.S. Thiagarajan, Simone Tini, Tayssir Touili, Nikola Trčka, Stavros Tri-
pakis, Bruno Tuffin, Emilio Tuosto, Franck van Breugel, Rob van Glabbeek,
Michiel van Osch, Daniele Varacca, Abhay Vardhan, Moshe Y. Vardi, Björn Vic-
tor, Aymeric Vincent, Ramesh Viswanathan, Hagen Völzer, Tomáš Vojnar, Marc
Voorhoeve, Sergei Vorobyov, Ou Wei, Lucian Wischik, Kidane Yemane, Wang Yi,
Mingsheng Ying, Francesco Zappa Nardelli, Gianluigi Zavattaro,
Axelle Ziegler, W.M. Zuberek

Organization

IX

Local Organizers

Bo Adler, Leandro Dias Da Silva, Marco Faella, Jessica Gronski, Teresa La
Femina, Axel Legay

Organization

Table of Contents

Invited Lectures

Static Analysis Versus Model Checking for Bug Finding
Dawson Engler . 1

The Benefits of Exposing Calls and Returns
Rajeev Alur . 2

A Compositional Approach to the Stochastic Dynamics of Gene
Networks

Luca Cardelli . 4

Contributed Papers

Games Other People Play
Christos H. Papadimitriou . 5

Type-Directed Concurrency
Deepak Garg, Frank Pfenning . 6

Multiport Interaction Nets and Concurrency
Damiano Mazza . 21

Model Checking for π-Calculus Using Proof Search
Alwen Tiu . 36

A Game Semantics of the Asynchronous π-Calculus
Jim Laird . 51

Efficient On-the-Fly Algorithms for the Analysis of Timed Games
Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen,
Didier Lime . 66

Modal Logics for Timed Control
Patricia Bouyer, Franck Cassez, François Laroussinie 81

Timed Shuffle Expressions
Cătălin Dima . 95

XII Table of Contents

A New Modality for Almost Everywhere Properties in Timed
Automata

Houda Bel Mokadem, Béatrice Bérard, Patricia Bouyer,
François Laroussinie . 110

The Coarsest Congruence for Timed Automata with Deadlines
Contained in Bisimulation

Pedro R. D’Argenio, Biniam Gebremichael . 125

A Behavioural Pseudometric for Metric Labelled Transition Systems
Franck van Breugel . 141

On Probabilistic Program Equivalence and Refinement
Andrzej S. Murawski, Joël Ouaknine . 156

Probabilistic Anonymity
Mohit Bhargava, Catuscia Palamidessi . 171

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus
Andrew D. Gordon, Alan Jeffrey . 186

Timed Spi-Calculus with Types for Secrecy and Authenticity
Christian Haack, Alan Jeffrey . 202

Selecting Theories and Recursive Protocols
Tomasz Truderung . 217

Constraint Solving for Contract-Signing Protocols
Detlef Kähler, Ralf Küsters . 233

A Ground-Complete Axiomatization of Finite State Processes in
Process Algebra

Jos C.M. Baeten, Mario Bravetti . 248

Decomposition and Complexity of Hereditary History Preserving
Bisimulation on BPP

Sibylle Fröschle, S�lawomir Lasota . 263

Bisimulations Up-to for the Linear Time Branching Time Spectrum
David de Frutos Escrig, Carlos Gregorio Rodŕıguez 278

Deriving Weak Bisimulation Congruences from Reduction Systems
Roberto Bruni, Fabio Gadducci, Ugo Montanari,
Pawe�l Sobociński . 293

Table of Contents XIII

SOS for Higher Order Processess
MohammadReza Mousavi, Murdoch J. Gabbay,
Michel A. Reniers . 308

The Individual and Collective Token Interpretations of Petri Nets
Robert Jan van Glabbeek . 323

Merged Processes — A New Condensed Representation of Petri Net
Behaviour

Victor Khomenko, Alex Kondratyev, Maciej Koutny,
Walter Vogler . 338

Concurrent Clustered Programming
Vijay Saraswat, Radha Jagadeesan . 353

A Theory of System Behaviour in the Presence of Node and Link Failures
Adrian Francalanza, Matthew Hennessy . 368

Comparing Two Approaches to Compensable Flow Composition
Roberto Bruni, Michael Butler, Carla Ferreira, Tony Hoare,
Hernán Melgratti, Ugo Montanari . 383

Transactions in RCCS
Vincent Danos, Jean Krivine . 398

Two-Player Nonzero-Sum ω-Regular Games
Krishnendu Chatterjee . 413

Games Where You Can Play Optimally Without Any Memory
Hugo Gimbert, Wies�law Zielonka . 428

On Implementation of Global Concurrent Systems with Local
Asynchronous Controllers

Blaise Genest . 443

Defining Fairness
Hagen Völzer, Daniele Varacca, Ekkart Kindler . 458

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems
Ahmed Bouajjani, Markus Müller-Olm, Tayssir Touili 473

Termination Analysis of Integer Linear Loops
Aaron R. Bradley, Zohar Manna, Henny B. Sipma 488

XIV Table of Contents

A Practical Application of Geometric Semantics to Static Analysis of
Concurrent Programs

Eric Goubault, Emmanuel Haucourt . 503

Verification of Qualitative Z Constraints
Stéphane Demri, Régis Gascon . 518

Uniform Satisfiability Problem for Local Temporal Logics over
Mazurkiewicz Traces

Paul Gastin, Dietrich Kuske . 533

Taming Interface Specifications
Tiziana Margaria, A. Prasad Sistla, Bernhard Steffen,
Lenore D. Zuck . 548

Synthesis of Distributed Systems from Knowledge-Based Specifications
Ron van der Meyden, Thomas Wilke . 562

Author Index . 577

Static Analysis Versus Model Checking

for Bug Finding

Dawson Engler

Computer Systems Laboratory,
Stanford University,

Stanford, CA 94305, U.S.A

Abstract. This talk tries to distill several years of experience using
both model checking and static analysis to find errors in large software
systems. We initially thought that the tradeoffs between the two was
clear: static analysis was easy but would mainly find shallow bugs, while
model checking would require more work but would be strictly better —
it would find more errors, the errors would be deeper and the approach
would be more powerful. These expectations were often wrong. This talk
will describe some of the sharper tradeoffs between the two, as well as a
detailed discussion of one domain — finding errors in file systems code
— where model checking seems to work very well.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Benefits of Exposing Calls and Returns

Rajeev Alur

University of Pennsylvania

Regular languages have robust theoretical foundations leading to numerous ap-
plications including model checking. Context-free languages and pushdown au-
tomata have been indispensable in program analysis due to their ability to model
control flow in procedural languages, but the corresponding theory is fragile. In
particular, non-closure under intersection and undecidability of the language
inclusion problem disallows context-free specifications in model checking appli-
cations.

In the recently proposed definition of visibly pushdown languages, the set of
input symbols is partitioned into calls, returns, and local symbols, and the type
of the input symbol determines when the pushdown automaton can push or
pop or swap. Exposing the matching structure of calls and returns is natural in
associating a language with a sequential block-structured program or a document
format with nested tags. When calls and returns are exposed in this manner,
the language can be defined by a (stackless) finite-state alternating automaton
that can jump from a call to the matching return. The resulting class of VPLs
has many appealing theoretical properties:

Closure Properties: it is closed under a variety of operations such as union,
intersection, complementation, renaming, concatenation, and Kleene-∗;

Robustness: it has multiple equivalent characterizations using context-free
grammars, using the monadic second order (MSO) theory over words aug-
mented with a binary matching predicate, and using Myhill-Nerode-like char-
acterization by syntactic congruences;

Decidability: problems such as language inclusion and equivalence are decid-
able for visibly pushdown automata (VPA);

Determinization: nondeterministic VPAs can be determinized;
Minimization: under some restrictions, deterministic VPAs can be minimized

yielding a canonical VPA; and
ω-VPLs: most of the results generalize to the class of languages over infinite

words defined by visibly pushdown automata with Büchi acceptance condi-
tion.

After reviewing the theory of VPLs, we show how it allows enhancing the ex-
pressiveness of specification languages used in software model checking. The tem-
poral logic of calls and returns (CaRet) integrates Pnueli-style temporal modal-
ities with Hoare-style reasoning by pre/post conditions, in a single algorithmic
framework. Besides the standard global temporal modalities, CaRet admits the
local-next operator that allows a path to jump from a call to the matching return.
This operator can be used to specify a variety of non-regular properties such as

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 2–3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Benefits of Exposing Calls and Returns 3

partial and total correctness of program blocks with respect to pre and post con-
ditions. The abstract versions of the other temporal modalities can be used to
specify regular properties of local paths within a procedure that skip over calls
to other procedures. CaRet also admits the last-caller modality that jumps to
the most recent pending call, and such caller modalities allow specification of a
variety of security properties that involve inspection of the call-stack. The set of
models of a CaRet formula can be interpreted as a visibly pushdown ω-language,
and generalization of the classical tableau construction allows model checking
CaRet formulas against a pushdown model. The complexity of model checking
CaRet formulas is the same as checking LTL formulas, namely, polynomial in
the model and singly exponential in the size of the specification.

We conclude by discussing ongoing research on a fixpoint calculus that can
specify local and global properties of program flows, and some open problems.

Acknowledgements

This talk is based on joint work with S. Chaudhuri, K. Etessami, V. Kumar,
P. Madhusudan, and M. Viswanathan reported in the publications [AM04],
[AEM04], [AKMV05], and [ACM05], and on research supported by NSF award
CCR-0306382 and ARO URI award DAAD19-01-1-0473.

References

[ACM05] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local
and global program flows. Under submission, 2005.

[AEM04] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls
and returns. In TACAS’04: Tenth International Conference on Tools and
Algorithms for the Construction and Analysis of Software, LNCS 2988,
pages 467–481. Springer, 2004.

[AKMV05] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences
for visibly pushdown languages. In Automata, Languages and Program-
ming: Proceedings of the 32nd ICALP, 2005.

[AM04] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings
of the 36th ACM Symposium on Theory of Computing, pages 202–211,
2004.

A Compositional Approach to the Stochastic

Dynamics of Gene Networks

Luca Cardelli

Microsoft Research, CB3 0FB Cambridge, United Kingdom

We propose a compositional approach to the dynamics of gene regulatory net-
works based on the stochastic π-calculus, and develop a representation of gene
network elements which can be used to build complex circuits in a transparent
and efficient way. To demonstrate the power of the approach we apply it to sev-
eral artificial networks, such as the repressilator and combinatorial gene circuits
first studied in Combinatorial Synthesis of Genetic Networks [GEHL2002]. For
two examples of the latter systems, we point out how the topology of the cir-
cuits and the interplay of the stochastic gate interactions influence the circuit
behavior. Our approach may be useful for the testing of biological mechanisms
proposed to explain the experimentally observed circuit dynamics.

Joint work with Ralf Blossey and Andrew Phillips.

References

[GEHL2002] Călin C. Guet, Michael B. Elowitz, Weihong Hsing, Stanislas Leibler.
Combinatorial Synthesis of Genetic Networks. Science, Vol 296, Issue
5572, 1466-1470 , 24 May 2002

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, p. 4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Games Other People Play�

University of California, Berkeley

Games were used by Wittgenstein as an example in the philosophy of language of
a concept that can have many and dramatically divergent meanings in different
contexts.

Case in point: Games are familiar in the Concurrency community as mod-
els of dynamic, multi-staged threats to correctness. In Economics, on the other
hand, games refer to a family of mathematical models (including, strictly speak-
ing, the games alluded to above) whose intention is to model the behavior of
rational, selfish agents in the face of situations that are to varying degrees com-
petitive and cooperative. In recent years there has been an increasingly active
interface, motivated by the advent of the Internet, between the theory of games
on the one hand, and the theory of algorithms and complexity on the other, and
both with networking. This corpus of research problems and reults is already
quite extensive, rich, and diverse; however, one can identify in it at least three
salient themes: First, there is the endeavor of developing efficient algorithms for
the fundamental computational problems associated with games, such as finding
Nash and other equilibria; this quest is more than the predictable reflex of our
research community, but it is arguably of fundamental value to Game Theory
at large. There is also the field of algorithmic mechanism design, striving to de-
vise computationally efficient methods for designing games whose equilibria are
precisely the socially desirable outcomes (for example, that the person who has
the highest personal appreciation for the item being auctioned actually wins the
auction). And finally we have an ever-expanding family of problems collectively
given the playful name ”the price of anarchy,” studying how much worse a sys-
tem emerging from the spontaneous interaction of a group of selfish agents can
be when compared with the ideal optimum design.

This talk will review recent results and open problems in these areas.

� Research supported by NSF ITR grant CCR-0121555 and a grant from Microsoft
Research.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, p. 5, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Christos H. Papadimitriou

Type-Directed Concurrency

Deepak Garg and Frank Pfenning�

Carnegie Mellon University
{dg, fp}@cs.cmu.edu

Abstract. We introduce a novel way to integrate functional and con-
current programming based on intuitionistic linear logic. The functional
core arises from interpreting proof reduction as computation. The concur-
rent core arises from interpreting proof search as computation. The two
are tightly integrated via a monad that permits both sides to share the
same logical meaning for the linear connectives while preserving their dif-
ferent computational paradigms. For example, concurrent computation
synthesizes proofs which can be evaluated as functional programs. We
illustrate our design with some small examples, including an encoding of
the pi-calculus.

1 Introduction

At the core of functional programming lies the beautiful Curry-Howard isomor-
phism which identifies intuitionistic proofs with functional programs and propo-
sitions with types. In this paradigm, computation arises from proof reduction.
One of the most striking consequences is that we can write functions and reason
logically about their behavior in an integrated manner.

Concurrent computation has resisted a similarly deep, elegant, and practical
analysis with logical tools, despite several explorations in this direction (see, for
example, [4,15]). We believe the lack of a satisfactory Curry-Howard isomorphism
is due to the limits inherent in complete proofs: they provide an analysis of
constructive truth but not of the dynamics of interaction.

An alternative logical foundation for concurrency is to view computation
as proof search [6]. In this paper we show that the two views of computation,
via proof reduction and via proof search, are not inherently incompatible, but
can coexist harmoniously in a language that combines functional and concur-
rent computation. We retain the strong guarantees for functional computation
without unduly restricting the dynamism of concurrent computation.

In order to achieve this synthesis, we employ several advanced building
blocks. The first is linearity: as has been observed [12], the evolution and commu-
nication of processes maps naturally to the single-use semantics of assumptions
in linear logic. The second is dependency: we use dependent types to model com-
munication channels and also to retain the precision of functional specifications
for transmitted values. The third is monads: we use monadic types to encapsu-
late concurrent computation, so that the linear connectives can retain the same
� This work has been partially supported by NSF Grant CCR-0306313 Efficient Logical

Frameworks.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 6–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Type-Directed Concurrency 7

logical meaning on the functional and concurrent side without interference. The
fourth is focusing [5]: we use it to enforce the atomicity of concurrent interactions
during proof search.

The result is a tightly integrated language in which functional computation
proceeds by reduction and concurrent computation proceeds by proof search.
Concurrent computation thereby synthesizes proofs which can be evaluated as
functional programs. We illustrate the design with some small examples, includ-
ing an encoding of the π-calculus to help gauge its expressive power.

There has been significant prior work in combining functional and concur-
rent programming. One class of languages, including Facile [11], Concurrent
ML [18,19], JOCaml [9], and Concurrent Haskell [13], adds concurrency primi-
tives to a language with functional abstractions. While we share some ideas (such
as the use of monadic encapsulation in Concurrent Haskell), the concurrent fea-
tures in these languages are motivated operationally rather than logically and
are only faintly reflected in the type system. Another class of languages start
from a rich concurrent formalism such as the π-calculus and either add or encode
some features of functional languages [17]. While operationally adequate, these
encodings generally do not have a strong logical component. An interesting inter-
mediate point is the applied π-calculus [2] where algebraic equations are added to
the π-calculus. However, it is intended for reasoning about specifications rather
than as a programming language.

Perhaps most closely related to our work is CLF [21] and the logic program-
ming language LolliMon [14] based on its first-order fragment. Our type system
is based on the common logic underlying both these systems. However, these
systems are intended as a logical framework and concurrent logic programming
language respectively and differ significantly from our language in the opera-
tional semantics. Another closely related line of work is Abramsky’s computa-
tional interpretations of linear logic [3], but the discussion of concurrency there
is based on classical rather than intuitionistic linear logic and lacks functional
features.

The principal contributions of this paper are conceptual and foundational,
although a simple prototype [1] indicates that there is at least some practical
merit to the work. Owing to space constraints we omit the linear type construc-
tors & and ⊕, recursive types and all proofs from this paper. These details can
be found in the companion technical report [10].

In the remainder of the paper we present our language (called CLL) in three
steps. First, we present the functional core (f CLL) which integrates linearity and
a monad. Second, we present the concurrent core (lCLL), which is based on proof
search, and which can call upon functional computation. Third, we complete the
integration with one additional construct to allow functional computation to
call upon concurrent computation. We call the complete language full-CLL. We
conclude with some remarks about the limitations of our work.

Our main technical results are as follows. For the functional core f CLL, we
prove type soundness by proving preservation and progress. For the concurrent
core lCLL, we only formulate and prove a suitable notion of preservation. For
full-CLL, we prove both preservation and progress, but the progress theorem is

8 D. Garg and F. Pfenning

Sorts γ ::= chan | . . .
Index terms s, t ::= i | f(t1, . . . , tn)
Index variable contexts Σ ::= · | Σ, i : γ
Sorting judgment Σ � t ∈ γ

Kinds K ::= Type | γ → K
Types T ::= A | S
Asynchronous types A, B ::= C t1 . . . tn | A → B | A � B | ∀i : γ.A(i) | {S}
Synchronous types S ::= A | S1 ⊗ S2 | 1 | !A | ∃i : γ.S(i)

Programs P ::= N | M | E

Terms N ::= x | λx : A.N | N1 N2 | λ̂x : A.N | N1 ˆ N2

| Λi : γ.N | N [t] | {E}
Monadic-terms M ::= N | M1 ⊗M2 | � | !N | [t, M]
Patterns p ::= x | � | p1 ⊗ p2 | !x | [i, p]
Expressions E ::= M | let {p : S} = N in E

Fig. 1. f CLL syntax

weaker than that of f CLL. This is because in full-CLL concurrent computations
started during functional computation can deadlock.

2 f CLL: Functional Core of CLL

Syntax. The functional core of CLL is a first-order dependently typed linear
functional language called f CLL. It is an extension of a linear lambda calculus
with first-order dependent types from DML [22] and a monad. Its type and term
syntax is based largely on that of CLF [21]. The syntax of f CLL is summarized
in figure 1. Types in f CLL can depend on index terms (denoted by s, t) that are
divided into a number of disjoint sorts (γ). Index terms contain index variables
(i, j, k, . . .) and uninterpreted function symbols (f, g, h, . . .). We assume the ex-
istence of a sorting judgment Σ � t ∈ γ, where Σ is a context that mentions
the sorts of all free index variables in t.

Type constructors (denoted by C) are classified into kinds. For every f CLL
program we assume the existence of an implicit signature that mentions the
kinds of all type constructors used in the program. An atomic type is formed
by applying a type constructor C to index terms t1, . . . , tn. If C has kind γ1 →
. . .→ γn → Type, we say that the atomic type C t1 . . . tn is well-formed in the
index variable context Σ iff for 1 ≤ i ≤ n, Σ � ti ∈ γi. In the following we
assume that all atomic types in f CLL programs are well-formed.

Following CLF, types in f CLL are divided into two classes - asynchronous
(A,B) and synchronous (S). Asynchronous types can be freely used as syn-
chronous types. However, synchronous types must be coerced explicitly into
asynchronous types using a monad {. . .}, which is presented in a judgmental
style [16].

Programs (P) are divided into three syntactic classes – terms (N), monadic-
terms (M) and expressions (E). This classification is reminiscent of a similar

Type-Directed Concurrency 9

Σ ::= · | Σ, i : γ

Γ ::= · | Γ, x : A

Δ ::= · | Δ, x : A

Ψ ::= · | Ψ, p : S

Σ;Γ;Δ � N : A

Hyp1

Σ;Γ ;x : A � x : A
Hyp2

Σ;Γ, x : A; · � x : A

Σ;Γ, x : A;Δ � N : B
→I

Σ;Γ ;Δ � λx : A.N : A → B

Σ;Γ ;Δ, x : A � N : B
�I

Σ;Γ ;Δ � λ̂x : A.N : A � B

Σ, i : γ; Γ ;Δ � N : A
∀I

Σ;Γ ;Δ � Λi : γ.N : ∀i : γ.A

Σ;Γ ;Δ � E ÷ S
{}I

Σ;Γ ;Δ � {E} : {S}
Σ;Γ;Δ � M � S

Σ;Γ ; · � N : A
!R

Σ;Γ ; · � !N �!A

Σ;Γ ;Δ � M � S(t) Σ � t ∈ γ
∃R

Σ;Γ ;Δ � [t, M] � ∃i : γ.S(i)

Σ;Γ ;Δ1 � M1 � S1 Σ;Γ ;Δ2 � M2 � S2 ⊗R

Σ;Γ ;Δ1, Δ2 � M1 ⊗ M2 � S1 ⊗ S2

Σ;Γ;Δ � E ÷ S

Σ;Γ ;Δ1 � N : {S} Σ;Γ ;Δ2; p : S � E ÷ S′
{}E

Σ;Γ ;Δ1, Δ2 � let {p : S} = N in E ÷ S′

Σ;Γ;Δ;Ψ � E ÷ S

Σ;Γ ;Δ � E ÷ S
÷÷

Σ;Γ ;Δ; · � E ÷ S

Σ;Γ, x : A;Δ;Ψ � E ÷ S
!L

Σ;Γ ;Δ; !x :!A, Ψ � E ÷ S

Σ;Γ ;Δ;Ψ � E ÷ S
1L

Σ;Γ ; Δ; 	 : 1, Ψ � E ÷ S

Σ;Γ ;Δ; p1 : S1, p2 : S2, Ψ � E ÷ S
⊗L

Σ;Γ ;Δ; p1 ⊗ p2 : S1 ⊗ S2, Ψ � E ÷ S

Σ, i : γ;Γ ;Δ; p : S′, Ψ � E ÷ S
∃L (i fresh)

Σ;Γ ;Δ; [i, p] : ∃i : γ.S′, Ψ � E ÷ S

Fig. 2. f CLL type system (selected rules)

classification in CLF’s objects. Under the Curry-Howard isomorphism, terms
are proofs of asynchronous types whereas monadic-terms and expressions are
proofs of synchronous types that end with introduction rules and elimination
rules respectively. A f CLL program is called closed if it does not contain any
free term variables. Closed programs may contain free index variables.

Typing. Programs in f CLL are type-checked using four contexts – a context
of index variables Σ, a context of linear variables Δ, a context of unrestricted
variables Γ and a context of patterns Ψ . Only the last of these contexts is
ordered. There are four typing judgments in the type system. We use the notation
N : A, M � S and E ÷S for typing relations. Some interesting rules from these
judgments are shown in figure 2. Type-checking for f CLL is decidable.

Operational Semantics. We use a call-by-value reduction semantics for f CLL.
Figure 3 shows the definition of values in f CLL and some interesting reduction
rules. The substitution relation P [MV /p] substitutes the monadic-value MV for
a pattern p in the program P . It is defined by induction on the pattern p.
P [V/x] and P [t/i] are the usual capture avoiding substitutions for term and
index variables respectively. In f CLL, the monad {E} is a value because after
we extend the language in section 4, expressions have effects. Reduction of the

10 D. Garg and F. Pfenning

Term values V ::= λx : A.N | λ̂x : A.N | {E} | Λi : γ.N
Monadic values MV ::= V | MV1 ⊗MV2 | � | !V | [t, MV]
Expression values EV ::= MV

P[MV/p]

P [�/�] = P P [[t, MV]/[i, p]] = (P [t/i])[MV /p]
P [!V/!x] = P [V/x] P [MV1 ⊗MV2/p1 ⊗ p2] = (P [MV1/p1])[MV2/p2]

N � N′

� Λ

(Λi : γ.N) [t] � N [t/i]
� λ

(λx : A.N) V � N [V/x]

� λ̂

(λ̂x : A.N) ˆ V � N [V/x]

M �→ M′

N � N ′
� �→

N �→ N ′
N � N ′

�→!
!N �→ !N ′

M �→ M ′
�→ ∃

[t, M] �→ [t, M ′]

M1 �→ M ′
1 �→ ⊗1

M1 ⊗M2 �→ M ′
1 ⊗M2

M2 �→ M ′
2 �→ ⊗2

M1 ⊗M2 �→ M1 ⊗M ′
2

Σ;E ↪→ Σ;E′

M �→ M ′
�→↪→

Σ; M ↪→ Σ; M ′
↪→ LET RED

Σ; let {p : S} = {MV } in E ↪→ Σ; E[MV /p]

N � N ′
↪→ LET1

Σ; let {p : S} = N in E ↪→ Σ; let {p : S} = N ′ in E

Σ; E ↪→ Σ; E′
↪→ LET2

Σ; let {p : S} = {E} in E1 ↪→ let Σ; {p : S} = {E′} in E1

Fig. 3. f CLL operational semantics (selected rules)

two components of a ⊗ can be interleaved arbitrarily, or it may performed in
parallel.

Expressions are reduced in a context of index variables Σ. This context plays
no role in f CLL, but when we extend f CLL to full-CLL in section 4, the con-
text Σ becomes computationally significant. We state preservation and progress
theorems for f CLL below.

Theorem 1 (Preservation for f CLL).
1. If Σ;Γ ;Δ � N : A and N � N ′, then Σ;Γ ;Δ � N ′ : A.
2. If Σ;Γ ;Δ � M � S and M � M ′, then Σ;Γ ;Δ � M ′ : S.
3. If Σ;Γ ;Δ � E ÷ S and Σ;E ↪→ Σ;E′, then Σ;Γ ;Δ � E′ ÷ S.

Theorem 2 (Progress for f CLL).
1. If Σ; ·; · � N : A then either N = V or N � N ′ for some N ′.
2. If Σ; ·; · � M � S then either M = MV or M 	→M ′ for some M ′.
3. If Σ; ·; · � E ÷ S then either E = EV or Σ;E ↪→ Σ;E′ for some E′.

Example 1 (Fibonacci numbers). As a simple example of programming in
f CLL, we describe a function for computing Fibonacci numbers. These numbers
are defined inductively as follows.

Type-Directed Concurrency 11

fib: int→ {!int} = λn : int.
if (n = 0 or n = 1) then {!1}
else

{
let {!n1} = fib (n− 1) in

let {!n2} = fib (n− 2) in

!(n1 + n2)
}

Fig. 4. The function fib in f CLL

fib(0) = fib(1) = 1 fib(n) = fib(n− 1) + fib(n− 2)
For implementing this definition as a function in f CLL, we assume that f CLL
terms have been extended with integers having type int, named recursive func-
tions and a conditional if-then-else construct. These can be added to f CLL in
a straightforward manner. Figure 4 shows the f CLL function fib that computes
the nth Fibonacci number. It has the type int→ {!int}. It is possible to write
this function in a manner simpler than the one presented here, but we write it
this way to highlight specific features of f CLL.

The most interesting computation in fib, including recursive calls, occurs
inside the monad. Since the monad is evaluated lazily in f CLL, computation in
fib will actually occur only when the caller of fib eliminates the monad from
the returned value of type {!int}. Syntactically, elimination of the monadic con-
structor can occur only in expressions at the let construct. Hence the program
that calls fib must be an expression. Here is an example of such a top level
program that prints the 5th Fibonacci number: let {!x} = fib 5 in print(x).

3 lCLL: Concurrent Core of CLL

The concurrent core of CLL is called lCLL. It embeds the functional language
f CLL directly. In the structure of concurrent computations lCLL is similar to
the π-calculus. However it is different in other respects. First, it allows a direct
representation of functional computation inside concurrent ones, as opposed to
the use of complex encodings for doing the same in the π-calculus [20]. Second,
the semantics of lCLL are directed by types, not terms. This, we believe, is a
new idea that has not been explored before.

Syntax. We present lCLL as a chemical abstract machine (CHAM) [7]. lCLL
programs are called configurations, denoted by C. Figure 5 shows the syntax
of lCLL configurations. Each configuration is made of four components, written
Σ; σ̂�Γ̂ ||| Δ̂. Σ is a context of index variables, as defined in section 2. σ̂ is a sorted
substitution mapping index variables to index terms. Γ̂ is a set of closed f CLL
term values along with their types. Δ̂ is a multiset of closed f CLL programs
together with their types. We require that whenever N : A ∈ Δ̂, N have the
type A[σ̂], where A[σ̂] is the result of applying the substitution σ̂ to the type A.
Similar conditions hold for monadic-terms and expressions in Δ̂ and term values
in Γ̂ . Formally, a configuration Σ; σ̂ � Γ̂ ||| Δ̂ is said to be well-formed if it satisfies
the following conditions.

12 D. Garg and F. Pfenning

Configurations C ::= Σ; σ̂ 	 Γ̂ ||| Δ̂
Global index names Σ ::= · | Σ, i : γ
Local name substitutions σ̂ ::= · | σ̂, t/i : γ

Unrestricted solutions Γ̂ ::= · | Γ̂ , V : A

Linear solutions Δ̂ ::= · | Δ̂, N : A | Δ̂, M � S | Δ̂, E ÷ S

Fig. 5. lCLL syntax

1. If (t/i : γ) ∈ σ̂, then i
∈ dom(Σ) and Σ � t ∈ γ.
2. If P is a program in Γ̂ or Δ̂, then fv(P) ∩ dom(σ̂) = φ.
3. If V : A ∈ Γ̂ , then Σ; ·; · � V : A[σ̂].
4. If N : A ∈ Δ̂, then Σ; ·; · � N : A[σ̂].
5. If M � S ∈ Δ̂, then Σ; ·; · � M � S[σ̂].
6. If E ÷ S ∈ Δ̂, then Σ; ·; · � E ÷ S[σ̂].

We assume that all our configurations are well-formed. Programs in Δ̂ and
values in Γ̂ are collectively called processes. Intuitively, we view programs in Δ̂
as concurrent processes that are executing simultaneously. Δ̂ is called a linear
solution because these processes are single-use in the sense that they can neither
be replicated, nor destroyed. Term values in Γ̂ are viewed as irreducible processes
(like functional abstractions) that are replicable. For this reason Γ̂ is also called
an unrestricted solution. The context Σ can be viewed as a set of global index
names, that are known to have specific sorts. The domain of the substitution σ̂
can be viewed as a set of local (private) index names that are created during
the evaluation of the configuration. The substitution σ̂ maps these local index
names to index terms that depend only on the global names (see condition (1)
for well-formedness above).

3.1 Semantics of lCLL

The semantics of lCLL are rewrite rules that allow a configuration to step to
other configuration(s). The specific rules that apply to a particular configuration
are determined by the types of processes in that configuration. In this sense, these
rules are type-directed. We classify rewrite rules into three classes – functional,
structural and synchronization.

Functional rules. Functional rules allow reduction of programs in the linear
solution Δ̂. We denote them using the arrow �. Figure 6 shows the functional
rewrite rules for lCLL configurations. There are three rules, one for reducing
programs in each of the three syntactic classes of f CLL. Reductions of differ-
ent programs in Δ̂ can be performed in parallel. This supports the idea that
programs in Δ̂ can be viewed as processes executing simultaneously.

Structural rules. Structural rules apply to those irreducible programs in Δ̂
that have synchronous types. These are exactly the monadic values MV . A struc-
tural rule decomposes a monadic value into smaller monadic values. We denote
structural rules with the arrow ⇀. All structural rules for rewriting lCLL con-
figurations are shown in figure 7. Unlike most CHAMs, our structural rules are
not reversible.

Type-Directed Concurrency 13

N � N ′
��

Σ; σ̂ 	 Γ̂ ||| Δ̂, N : A � Σ; σ̂ 	 Γ̂ ||| Δ̂, N ′ : A

M �→ M ′
� �→

Σ; σ̂ 	 Γ̂ ||| Δ̂, M � S � Σ; σ̂ 	 Γ̂ ||| Δ̂, M ′ � S

Σ; E ↪→ Σ; E′
�↪→

Σ; σ̂ 	 Γ̂ ||| Δ̂, E ÷ S � Σ; σ̂ 	 Γ̂ ||| Δ̂, E′ ÷ S

Fig. 6. Functional rewrite rules for lCLL configurations

Σ; σ̂ 	 Γ̂ ||| Δ̂, (MV1 ⊗MV2) � (S1 ⊗ S2) ⇀ Σ; σ̂ 	 Γ̂ ||| Δ̂, MV1 � S1, MV2 � S2 (⇀ ⊗)

Σ; σ̂ 	 Γ̂ ||| Δ̂, � � 1 ⇀ Σ; σ̂ 	 Γ̂ ||| Δ̂ (⇀ 1)

Σ; σ̂ 	 Γ̂ ||| Δ̂, [t, MV] � ∃i : γ.S(i) ⇀ Σ; σ̂, t/i : γ 	 Γ̂ ||| Δ̂, MV � S(i) (⇀ ∃)
(i fresh)

Σ; σ̂ 	 Γ̂ ||| Δ̂, !V �!A ⇀ Σ; σ̂ 	 Γ̂ , V : A ||| Δ̂ (⇀!)

Σ; σ̂ 	 Γ̂ ||| Δ̂, V � A ⇀ Σ; σ̂ 	 Γ̂ ||| Δ̂, V : A (⇀�)

Σ; σ̂ 	 Γ̂ ||| Δ̂, MV ÷ S ⇀ Σ; σ̂ 	 Γ̂ ||| Δ̂, MV � S (⇀ ÷)

Fig. 7. Structural rewrite rules for lCLL configurations

The rule ⇀ ⊗ splits the monadic value MV1 ⊗MV2 of type S1 ⊗ S2 into two
monadic values MV1 and MV2 of types S1 and S2 respectively. Intuitively, we
can view MV1 ⊗MV2 as a parallel composition of the processes MV1 and MV2 .
The rule ⇀ ⊗ splits this parallel composition into its components, allowing each
component to rewrite separately.

In the rule ⇀ ∃, there is a side condition that i must be fresh i.e. it must not
occur anywhere except in S(i). Some α-renaming may have to be performed to
enforce this. In lCLL, the ∃ type acts as a local index name creator. The rule
⇀ ∃ creates the new index name i and records the fact that i is actually bound
to the index term t in the substitution σ̂.

The rule ⇀! moves a program of type !A to the unrestricted solution, thus
allowing multiple uses of this program. For this reason, the type !A serves as a
replication construct in lCLL. The rules ⇀� and ⇀ ÷ change the type ascription
for programs that have been coerced from one syntactic class to another.

Synchronization Rules. Synchronization rules act on values in Γ̂ and Δ̂ having
asynchronous types. These are exactly the term values V . Synchronization rules
are denoted by the arrow −→. Figure 8 shows the two synchronization rules.
The rule −→ {} eliminates the monadic constructor {} from values {E} of
asynchronous type {S}.

The second rule −→=⇒ performs synchronization of several term values at
the same time. It uses an auxiliary judgment Σ; σ̂ � Γ̂ ||| Δ̂ =⇒ N : A, which we
call the sync judgment. The rules of this judgment are also shown in figure 8.
The sync judgment links values in Γ̂ and Δ̂ to form a more complex program N .

14 D. Garg and F. Pfenning

Synchronization rules, Σ; σ̂ 	 Γ̂ ||| Δ̂ −→ Σ; σ̂ 	 Γ̂ ||| Δ̂′

−→ {}
Σ; σ̂ 	 Γ̂ ||| Δ̂, {E} : {S} −→ Σ; σ̂ 	 Γ̂ ||| Δ̂, E ÷ S

Σ; σ̂ 	 Γ̂ ||| Δ̂ =⇒ N : {S}
−→=⇒

Σ; σ̂ 	 Γ̂ ||| Δ̂, Δ̂′ −→ Σ; σ̂ 	 Γ̂ ||| N : {S}, Δ̂′

Sync judgment, Σ; σ̂ 	 Γ̂ ||| Δ̂ =⇒ N : A

=⇒ HY P1

Σ; σ̂ 	 Γ̂ ||| V : A =⇒ V : A
=⇒ HY P2

Σ; σ̂ 	 Γ̂ , V : A ||| · =⇒ V : A

Σ ∪ dom(σ̂) � t ∈ γ Σ; σ̂ 	 Γ̂ ||| Δ̂ =⇒ N : ∀i : γ.A(i)
=⇒ ∀

Σ; σ̂ 	 Γ̂ ||| Δ̂ =⇒ N [t[σ̂]] : A(t)

Σ; σ̂ 	 Γ̂ ||| Δ̂1 =⇒ N1 : A Σ; σ̂ 	 Γ̂ ||| Δ̂2 =⇒ N2 : A � B
=⇒�

Σ; σ̂ 	 Γ̂ ||| Δ̂1, Δ̂2 =⇒ N2 ˆ N1 : B

Σ; σ̂ 	 Γ̂ ||| · =⇒ N1 : A Σ; σ̂ 	 Γ̂ ||| Δ̂ =⇒ N2 : A → B
=⇒→

Σ; σ̂ 	 Γ̂ ||| Δ̂ =⇒ N2 N1 : B

Fig. 8. Synchronization rewrite rules for lCLL configurations

We call this process synchronization. Synchronization uses values in Δ̂ exactly
once, while those in Γ̂ may be used zero or more times.

In the rule −→=⇒ shown in figure 8, Δ̂ denotes a subset of the linear solution
that participates in the synchronization. The remaining solution Δ̂′ is kept as
is. Some backward reasoning is performed in the judgment =⇒ to produce the
linked program N of type {S}. This is the essential point here – the result of a
synchronization must be of type {S}.

The semantic rewriting relation for lCLL is defined as ⇒ = � ∪ ⇀ ∪ −→.
It satisfies the following type preservation theorem.

Theorem 3 (Preservation for lCLL). If C is a well-formed configuration and
C ⇒ C′, then C′ is also well-formed.

Concurrent computation as proof search. Given a lCLL configuration C =
Σ; σ̂ � Γ̂ ||| Δ̂, types in Δ̂[σ̂] and Γ̂ [σ̂] can be viewed as propositions that are
simultaneously true, in a linear and unrestricted sense respectively. Using the
Curry-Howard isomorphism, the corresponding programs in Δ̂[σ̂] and Γ̂ [σ̂] can
be seen as specific proofs of these propositions. The sync judgment (figure 8) is
actually a linear entailment judgment – if Σ; σ̂ � Γ̂ ||| Δ̂ =⇒ N : A, then from
the unrestricted assumptions in Γ̂ [σ̂] and linear assumptions in Δ̂[σ̂], A[σ̂] can
be proved in linear logic. The term N synthesized by this judgment is a proof of
the proposition A[σ̂]. As a result, each use of the synchronization rule −→=⇒
can be viewed as a step of proof search in linear logic that uses several known
facts to conclude a new fact, together with its proof term. By the Curry-Howard
isomorphism, the proof term is a well-typed program that can be functionally
reduced again.

Type-Directed Concurrency 15

More specifically, each use of −→=⇒ corresponds to a single focusing step
for eliminating asynchronous constructors from a proposition that has {S} in
the head position. For a detailed description of this see [10].

Example 2 (Client-Server Communication). We illustrate concurrent pro-
gramming in lCLL with an example of a client-server interaction. The server
described here listens to client requests to compute Fibonacci numbers. Each
request contains an integer n. Given a request, the server computes the nth
Fibonacci number and returns this value to the client.

We model communication through asynchronous message passing. Assume
that all clients and the server have unique identities, which are index names
from a special sort called procid. The identity of the server is serv. A mes-
sage from one process to another contains three parts – the identity of the
sender, the identity of the recipient and an integer, which is the content of the
message. Messages are modeled using a type constructor mess and a term con-
structor message having the kind and type shown in figure 9. For every pair
of index terms i and j of sort procid and every integer n, we view the value
(message [i] [j] n) of type (mess i j) as a message having content n from the
process with identity i to the process with identity j. In order to extract the
integer content of a message, we use the destructor fetchmessage that has the
reduction rule fetchmessage [i] [j] ˆ (message [i] [j] n) � {!n}.

The server program called fibserver is shown in figure 9. It waits for a
message m from any client i. Then it extracts the content n from the message,
computes the nth Fibonacci number using the function fib defined in example 1
and returns this computed value to the client i as a message. fibserver has the
type fibservtype = ∀i : procid. mess i serv � {mess serv i}.

A sequence of rewrite steps in lCLL using fibserver is shown in figure 9.
The initial configuration contains fibserver and a message to fibserver con-
taining the integer 6 from a client having identity k. For brevity, we omit the
client process. The crucial rewrite in this sequence is the first one, where the
synchronization rule −→=⇒ is used to link the fibserver program with the
message for it. Rewriting ends with a message containing the value of the 6th
Fibonacci number (namely 13) from fibserver to the requesting client k.

3.2 An Encoding of the π-Calculus in lCLL

We describe a translation of a variant of the asynchronous π-calculus [8] to lCLL.
The syntax and semantics of this variant are shown in figure 10. It extends
the asynchronous π-calculus with a nil process 0. The replication operator ! is
restricted to actions only.

Two translations �·� and ��·�� are shown in figure 11. They map π-calculus
entities to programs and types of fCLL respectively. We model channels as
index terms of a specific sort chan. In order to translate x̄y, which is an output
message, we introduce a type constructor out and a related term constructor
output, whose kind and type are shown in figure 11. The translations of x̄y to
terms and types are output [x] [y] and out x y respectively.

16 D. Garg and F. Pfenning

Additional Signature

procid: sort
serv : procid
mess: procid→ procid→ Type

message: ∀i : procid. ∀j : procid. int→ mess i j
fetchmessage: ∀i : procid. ∀j : procid. mess i j � {!int}
fetchmessage [i] [j] ˆ (message [i] [j] n) � {!n}

Fibonacci Server

fibservtype = ∀i : procid. mess i serv � {mess serv i}
fibserver: fibservtype = Λi : procid. λ̂m : mess i serv.
{

let {!n} = fetchmessage [i] [serv] ˆ m in

let {!v} = fib (n) in

(message [serv] [i] v)
}

Sample Execution (Σ = serv : procid, k : procid)

Σ; · 	 · ||| fibserver : fibservtype, (message [k] [serv] 6) : mess k serv
−→ Σ; · 	 · ||| fibserver [k] ˆ (message [k] [serv] 6) : {mess serv k}

�∗ Σ; · 	 · |||

⎛⎝ { let {!n} = fetchmessage [k] [serv] ˆ (message [k] [serv] 6) in

let {!v} = fib (n) in (message [serv] [k] v)
} : {mess serv k}

⎞⎠
−→ Σ; · 	 · |||

⎛⎝ (let {!n} = fetchmessage [k] [serv] ˆ (message [k] [serv] 6) in

let {!v} = fib (n) in (message [serv] [k] v)
) ÷ mess serv k

⎞⎠
�∗ Σ; · 	 · ||| (let {!v} = fib (6) in (message [serv] [k] v))÷ mess serv k
�∗ Σ; · 	 · ||| (message [serv] [k] 13)÷ mess serv k
⇀2 Σ; · 	 · ||| (message [serv] [k] 13) : mess serv k

Fig. 9. Server for computing Fibonacci numbers in lCLL

Syntax

Actions A ::= x̄y | x(y).P
Processes P, Q ::= A | !A | P |P | νx.P | 0
Molecules m ::= P | νx.S
Solutions S ::= φ | S � {m}

Equations on terms and solutions

νx.P = νy.P [y/x] (y �∈ P) νx.S = νy.S[y/x] (y �∈ S)

CHAM semantics
P1|P2 	 P1, P2

0 	
!A 	 !A, A

x(y).P , x̄z → P [z/y]
νx.P 	 νx.{P}

(νx.P)|Q 	 νx.(P |Q) (x �∈ Q)

Reduction semantics

P ≡ P ′ ⇔ P 	∗ P ′ P → P ′ ⇔ P 	∗→	∗ P ′

Fig. 10. A variant of the asynchronous π-calculus

To translate x(y).P , we introduce a term destructor destroyout correspond-
ing to the constructor output. Its type and reduction rule are shown in figure 11.
The translation �x(y).P� waits for two inputs – the channel name y and a mes-

Type-Directed Concurrency 17

Additional Signature

chan: sort
out: chan→ chan→ Type

output: ∀x : chan. ∀y : chan. out x y
destroyout: ∀x : chan. ∀y : chan. out x y � {1}
destroyout [x] [y] ˆ (output [x] [y]) � {�}
cchan : chan

A/P f CLL Type, ��A/P�� f CLL Program, �A/P�
x̄y out x y output [x] [y]

x(y).P ∀y : chan. out x y � {��P��} Λy : chan. λ̂m : out x y.
{

let {�} = destroyout [x] [y] ˆ m
in �P�

}
0 1 �
!A ! ��A�� ! �A�

P1|P2 ��P1�� ⊗ ��P2�� �P1� ⊗ �P2�
νx.P ∃x : chan.��P�� [cchan , (�P�[cchan/x])]

Fig. 11. Translation of the π-calculus

sage m that corresponds to the translation of x̄y. It then discards the message
m and starts the process P .

Translations of !A, P1|P2 and 0 are straightforward. We translate νx.P to
the type ∃x : chan.��P��. To translate νx.P to a program, we assume that
there is an index constant cchan of sort chan. Then we translate νx.P to
[cchan, (�P�[cchan/x])], which has the type ∃x : chan.��P��.

For any π-calculus process P , fn(P) : chan; ·; · � �P� � ��P��. The
translation of a π-calculus process P to lCLL is defined as the configuration
〈P 〉 = fn(P) : chan; · � · ||| �P� � ��P��. Although we have not formally proved
it, we believe that the following correctness result holds for this translation:
P →∗ P ′ iff there is a lCLL configuration C such that 〈P 〉⇒∗ C and 〈P ′〉⇀∗ C.

4 Full-CLL: The Complete Language

Full-CLL is an extension of f CLL that allows lCLL’s concurrent computations
inside functional ones. This is done by extending f CLL expressions by a single
construct – link E ÷ S to G. G ∈ {A, !A,1} is called a goal type. Additional
syntax and semantics for this construct are shown in figure 12. Other than
the link construct, full-CLL inherits all of f CLL’s syntax, typing rules and
semantics.

link E ÷ S to G is evaluated in a context of index variables Σ as follows.
First, the lCLL configuration C = Σ; · � · ||| E ÷ S is created and allowed to
rewrite according to the relation ⇒ till it reaches a quiescent configuration C′.
By quiescent we mean that no rewrite rule applies to C′ i.e. C′ is in ⇒-normal
form. After C′ is obtained, the result of evaluating link E÷S to G depends on
the goal type G.

18 D. Garg and F. Pfenning

Syntax

Expressions E ::= . . . | link E ÷ S to G
Goal Types G ::= A | !A | 1

Typing rules
Σ; Γ ; Δ � E ÷ S

LINK

Σ; Γ ; Δ � (link E ÷ S to G) ÷G
Operational Semantics

Σ; ·
 · ||| E ÷ S ⇒∗ Σ; σ̂
 Γ̂ ||| V : A
↪→ 1

Σ;link E ÷ S to A ↪→ Σ;V

Σ; ·
 · ||| E ÷ S ⇒∗ Σ; σ̂
 Γ̂ , V : A ||| ·
↪→ 2

Σ; link E ÷ S to A ↪→ Σ;V

Σ; ·
 · ||| E ÷ S ⇒∗ Σ; σ̂
 Γ̂ , V : A ||| ·
↪→ 3

Σ; link E ÷ S to !A ↪→ Σ; !V

Σ; ·
 · ||| E ÷ S ⇒∗ Σ; σ̂
 Γ̂ ||| ·
↪→ 4

Σ; link E ÷ S to 1 ↪→ Σ;	

Fig. 12. Full-CLL syntax and semantics

1. If G = A and C′ = Σ; σ̂ � Γ̂ ||| V : A or C′ = Σ; σ̂ � Γ̂ , V : A ||| ·, then
link E ÷ S to G evaluates to V .

2. If G =!A and C′ = Σ; σ̂ � Γ̂ , V : A ||| ·, then link E÷S to G evaluates to !V .
3. If G = 1 and C′ = Σ; σ̂ � Γ̂ ||| ·, then link E ÷ S to G evaluates to �.

All these conditions are summarized in figure 12. If none of these conditions
hold, evaluation of the link construct fails and computation deadlocks. We call
this condition link failure. Since expressions are coerced into terms through a
monad, link failure never occurs during evaluation of terms and monadic-terms.
As a result, full-CLL has the following progress theorem.

Theorem 4 (Progress for full-CLL).
1. If Σ; ·; · � N : A then either N = V or N � N ′ for some N ′.
2. If Σ; ·; · � M � S then either M = MV or M 	→M ′ for some M ′.
3. If Σ; ·; · � E ÷ S then either E = EV or Σ;E ↪→ Σ;E′ for some E′ or

reduction of Σ;E deadlocks due to link failure.

Link failure is easy to detect at runtime and can be handled, for example, by
throwing an exception. For all practical problems that we encountered, we found
it possible to write programs in which link failure never occurs. f CLL’s preser-
vation theorem (theorem 1) holds for full-CLL also.

Example 3 (Fibonacci numbers in full-CLL). Figure 13 shows a concurrent
implementation of Fibonacci numbers in full-CLL. The function fibc uses the
additional signature from example 2 and assumes that the sort procid contains
at least three constants k1, k2 and k. fibc has the type int → {!int}. Given
an input integer n ≥ 2, fibc computes the nth Fibonacci number using a link
construct that starts concurrent computation with a tensor of three processes
having identities k1, k2 and k respectively. The first two processes recursively
compute fib(n − 1) and fib(n − 2) and send these values as messages to the
third process. The third process waits for these messages (m1 and m2), extracts
their integer contents and adds them together to obtain fib(n). This becomes
the result of evaluation of the link construct.

During the evaluation of fibc, each of the two recursive calls can encounter a
link construct and create a nested lCLL concurrent computation. Since the two

Type-Directed Concurrency 19

fibc = λn : int.
if (n = 0 or n = 1) then {!1}
else

{ link

(
{let {!n1} = fibc (n− 1) in (message [k1] [k] n1)}

⊗ {let {!n2} = fibc (n− 2) in (message [k2] [k] n2)}
⊗ λ̂m1 : mess k1 k. λ̂m2 : mess k2 k.
{

let {!x} = fetchmessage [k1] [k] ˆ m1 in

let {!y} = fetchmessage [k2] [k] ˆ m2 in

!(x + y)
}

) ÷ {mess k1 k} ⊗ {mess k2 k} ⊗ (mess k1 k � mess k2 k � {!int})
to !int

}
Fig. 13. The function fibc in full-CLL

recursive calls can be executed simultaneously, there may actually be more than
one nested lCLL configuration at the same time. However, these configurations
are distinct – processes in one configuration cannot synchronize with those in
another. In general, full-CLL programs can spawn several nested concurrent
computations that are completely disjoint from each other.

5 Conclusion

We have presented a language that combines functional and concurrent compu-
tation in a logically motivated manner. It requires linearity, a restricted form of
dependent types, a monad, and focusing, in order to retain the desirable prop-
erties of each paradigm in their combination.

Perhaps the biggest limitation of our work is that the logic underlying the
type system is not strong enough to express many useful properties of concurrent
programs like deadlock freedom. This is clearly visible in the fact that full-CLL
does not have a progress theorem as strong as that of its functional core f CLL.
Our types represent only basic structural properties of concurrent processes. At
the same time, due to the presence of dependent and linear types, the type
system can be used to express very strong functional guarantees about various
components of a concurrent program. Finding a logic that can express useful
properties of both functional and concurrent computation and converting it to
a programming language using the Curry-Howard isomorphism is a challenge
at present. Another challenge is to build a realistic implementation of CLL,
including a more complete functional language and type reconstruction to see if
our ideas scale in practice. Since concurrency in CLL is somewhat low-level, it
will be important to build up libraries of common idioms in order to write large
programs conveniently.

20 D. Garg and F. Pfenning

References

1. CLL implementation. Available electronically from http://www.cs.cmu.edu/˜dg.
2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.

In Proc. of POPL’01, pages 104–115, 2001.
3. S. Abramsky. Computational interpretations of linear logic. Theoretical Computer

Science, 111(1–2):3–57, 1993.
4. S. Abramsky, S. Gay, and R. Nagarajan. Specification structures and propositions-

as-types for concurrency. In Logics for Concurrency: Structure vs. Automata—
Proc. of the VIIIth Banff Higher Order Workshop, volume 1043 of Lecture Notes
in Computer Science. Springer-Verlag, 1996.

5. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

6. J.-M. Andreoli and R. Pareschi. Communication as fair distribution of knowl-
edge. Technical Report ECRC-91-12, European Computer-Industry Research Cen-
tre, 1991.

7. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

8. G. Boudol. Asynchrony and the pi-calculus. Technical Report RR-1702, INRIA
SofiaAntipolis, 1992.

9. S. Conchon and F. L. Fessant. Jocaml: Mobile agents for objective-caml. In Proc.
of ASAMA’99. IEEE Computer Society, 1999.

10. D. Garg. CLL: A concurrent language built from logical principles. Technical Re-
port CMU-CS-05-104, Computer Science Department, Carnegie Mellon University,
January 2005.

11. A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concur-
rent and functional programming. International Journal of Parallel Programming,
18(2):121–160, 1989.

12. J.-Y. Girard. Linear logic. In Theoretical Computer Science, volume 5, 1987.
13. S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. of POPL’96,

1996.
14. P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic concurrent linear

logic programming. In Proc. of PPDP’05, 2005. To appear.
15. M. Nygaard and G. Winskel. Domain theory for concurrency. Theor. Comput. Sc.,

316(1-3), 2004.
16. F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Math.

Struc. in Comp. Sci., 11(4):511–540, 2001.
17. B. C. Pierce and D. N. Turner. Pict: a programming language based on the pi-

calculus. In Proof, language, and interaction: essays in honour of Robin Milner,
pages 455–494. MIT Press, 2000.

18. J. H. Reppy. CML: A higher-order concurrent language. In Proc. of PLDI’91,
1991.

19. J. H. Reppy. Concurrent programming in ML. Cambridge University Press, 1999.
20. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cam-

bridge University Press, 2001. Chapters 15–17.
21. K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical frame-

work I: Judgements and properties. Technical Report CMU-CS-02-101, Computer
Science Department, Carnegie Mellon University, May 2003.

22. H. Xi and F. Pfenning. Dependent types in practical programming. In Proc. of
POPL’99, 1999.

Multiport Interaction Nets and Concurrency

(Extended Abstract)

Damiano Mazza

Institut de Mathématiques de Luminy
mazza@iml.univ-mrs.fr

http://iml.univ-mrs.fr/~mazza

Abstract. We consider an extension of Lafont’s Interaction Nets, called
Multiport Interaction Nets, and show that they are a model of concurrent
computation by encoding the full π-calculus in them. We thus obtain a
faithful graphical representation of the π-calculus in which every reduc-
tion step is decomposed in fully local graph-rewriting rules.

1 Introduction

Lafont’s Interaction Nets [1] are a model of sequential computation inspired
by proof-nets for Multiplicative Linear Logic that can be seen as distributed
Turing machines: as in these latter, transitions are local, but may be performed
in parallel. They have been explicitly designed to be strongly deterministic, so
no truly concurrent behavior can be expressed within them.

In this paper, we consider a non-deterministic extension1 of Interaction Nets,
called Multiport Interaction Nets, and show that they are an expressive model
of concurrent computation by encoding the full π-calculus in them.

A considerable number of graphical representations of the π-calculus (or other
process calculi) can be found in the existing literature. Let us mention for ex-
ample Milner’s π-nets [2], Parrow’s Interaction Diagrams [3], and Fu’s Reaction
Graphs [4]. All these approaches succeed in describing concurrent dynamics as
graph rewriting, but the treatment of prefixing is not very natural (in π-nets and
Reaction Graphs, some form of “guarded box” is used, while Interaction Dia-
grams use polyadicity to encode causal dependency), and they all need boxes to
represent replication, so that duplication is seen as a synchronous, global opera-
tion. It must also be observed that none of the existing graphical representations
is ever shown to cover the π-calculus in all of its features, including sums and
match prefix.

More recently, Laneve et al. proposed Solo Diagrams [5] as a graphical pre-
sentation of the solos calculus [6]. They too use replication boxes, but show
that these can be limited to certain configurations which ensure constant-time
reductions, and thus locality.

1 It would actually be fairer to put it the other way around: Lafont intentionally
restricted to one principal port because this yields systems with very nice properties.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 21–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

22 D. Mazza

Much closer to the spirit of Interaction Nets, a nice graphical representation
of (an extension of) the fusion calculus has been given by Beffara and Maurel [7],
in which nevertheless replication must be accommodated using boxes. In view
of our results, it does not seem unlikely that Multiport Interaction Nets can
provide both an alternative, “box-less” graphical encoding for the solos calculus
and a purely local version of Beffara and Maurel’s Concurrent Nets.

It is worth mentioning the comparison between Interaction Nets and concur-
rent systems done by Yoshida [8], who found that, when seen from the point of
view of Interaction Nets, the graphical representation for her concurrent com-
binators amounts more or less to allow hyperwires connecting cells, i.e., wires
that link together more than two ports. This is also explicitly seen in Beffara and
Maurel’s Concurrent Nets. As a matter of fact, our approach “internalizes” these
hyperconnections, extending Lafont’s systems not with respect to the topology
of the connections between cells but to the nature of the cells themselves.

Multiport Interaction Nets have already been considered by Vladimir Alexiev
in his Ph.D. thesis [9] as one of several possible non-deterministic extensions of
Interaction Nets; they are obtained from these latter by allowing cells to have
more than one principal port.2 Alexiev proved that this extension is as expressive
as the “hyperwire” extension mentioned above, and defined in it a graphical
encoding of the finite π-calculus, leaving open the problem of extending it to
replication. These systems have also been the object of Lionel Khalil’s Ph.D.
thesis [10], in which he proved that it is actually sufficient to add to Lafont’s
Interaction Nets a single cell with two principal ports and two auxiliary ports,
called amb, to obtain the full power of Multiport Interaction Nets. In spite of
Khalil’s result, it is still useful from the point of view of conciseness to consider
cells with an arbitrary number of principal ports, as we shall do in this paper.

Our encoding (quite different from Alexiev’s one, even in the finite case)
covers every single feature of the π-calculus, in particular replication, which is
crucial in terms of expressiveness. Compared to the aforementioned graphical
formalisms, ours has an exceptional advantage: no “box” or other global notion
is needed, i.e., the dynamics is fully local. In other words, our encoding may be
seen as the equivalent of sharing graphs for the λ-calculus. In perspective, this
opens the possibility for a new semantical study of concurrency, as the algebraic
semantics enjoyed by Lafont’s original systems (the Geometry of Interaction [11])
might be extended to Multiport Interaction Nets (this is not developed in the
paper though).

We also stress the fact that, unlike virtually any other graphical system
proposed for concurrency, Multiport Interaction Nets are not built around the
π-calculus, or any other process calculus. On the contrary, they must be seen
as an independent, alternative model of concurrency, which is shown here to be
equivalent to the π-calculus; our result ought to be read more in this sense than
as “yet-another-graphical-representation-of-π”.

2 Alexiev calls them INMPP, Interaction Nets with Multiple Principal Ports.

Multiport Interaction Nets and Concurrency 23

Another advantage of Multiport Interaction Nets lies in their logical roots: as
extensions of multiplicative proof-nets, they can be endowed with a very natural
type discipline, which makes programming much easier and more robust.

2 Multiport Interaction Net Systems

Cells. The basic elements of (multiport) interaction nets are cells. A cell has
a distinct symbol identifying it (usually ranged over by α,β, . . .), and a finite
number of ports, partitioned into auxiliary ports, the number of which is called
the arity of the cell, and principal ports, the number of which is called the co-arity
of the cell. Cells whose co-arity is 1 will be called monocells ; cells with greater
co-arities will instead be called multicells. Here is how we usually represent cells:

α
. . .

. . .

1 n

α1 αm

auxiliary ports

principal ports

β

multicell with
2 principal ports

and 1 auxiliary port

γ

monocell with
2 auxiliary ports

monocell with
no auxiliary port

ε

Nets. Given several occurrences3 of cells, we use wires to connect their ports,
and build a net. For example, here is a net that uses the three cells drawn above:

γ
β γ

γ
ε

γ γ

ε

ε

Nets are usually ranged over by μ, ν, . . . Notice that wires may be left “dangling”,
with one or both of their extremities not connected to any cell. In particular, a
single wire is itself a net. These dangling wires are called free ports of the net.
A free port can be principal or auxiliary, or neither, as in the case of an isolated
wire. For example, the net above has 5 free ports, 2 of which are principal and
1 auxiliary. The free ports of a net form what is said to be its interface, since
each of them is a “branching point” that can be used to connect the net to other
nets, in a compositional/modular way.

Interaction. Nets become computational objects through graph rewriting. The
fundamental interaction principle is that rewriting can occur only when two prin-
cipal ports of two distinct occurrences of cells are connected; such a connection
is called a cut. As a consequence, all rewriting rules will be of the form

3 This is one of the very few times we will be pedantic about the distinction be-
tween cells and their occurrences; unless when strictly needed, we will usually make
systematic confusion between the two concepts.

24 D. Mazza

α

ωi

β

ωj

. . .

.

. . .

.
−→

. . .

.

. . .

αi �� βj

where, for graphical convenience, we have used two permutations ωi and ωj that
“isolate” resp. the i-th principal port of α and the j-th principal port of β, i.e.

= =

i j

ωi ωj

.

.

.

.

.

.

i j

The left member is an active pair, and the right member its reduct. The reduct
must be a net respecting the interface of the active pair, i.e., there must be a
bijection between the free ports of the right and left members of each rule; this
bijection will always be clear from the graphical representation.

The interface being respected, the active pair can be “disconnected” from
the net and be replaced by its reduct. This is the basic rewriting step, and it
is written μ → μ′ (net μ reduces to μ′). We denote by →∗ the reflexive and
transitive closure of →, and if μ →∗ μ′, we say that μ′ is a reduct of μ. Notice
that a multicell can in general be involved in several active pairs; the choice of
which one is reduced is non-deterministic.

There are some additional constraints on interaction rules: first of all,
there may be at most one rule for each pair of principal ports; allowing non-
deterministic rules only complicates the definition without adding expressive
power. We also observe that active pairs intrinsically lack an orientation, so the
reduct βj �� αi must be essentially the same as αi �� βj , just “flipped over”; we
write this as βj �� αi = αi �� βj . Moreover, reducts cannot contain active pairs
(this does not prevent the possibility of infinite reductions).4

The Formal Definition. We are now ready to introduce the formal definition of
a multiport Interaction Net System (mINS):

Definition 1 (Multiport Interaction Net System (mINS)). A multiport
Interaction Net System S is a couple (Σ, ��), where:

– Σ is a (possibly denumerably infinite) set of cells, called the alphabet of S;
– �� is a (partial) function taking an active pair and yielding a cut-free net with

the same interface, such that, if αi �� βj is defined, then βj �� αi = αi �� βj;

A mINS is said to be finite or infinite according to the cardinality of its alphabet.

Since interaction is local, any rule of a finite mINS can be performed in constant
time. However, in the rest of the paper we shall use only infinite systems, which
make the presentation more readable. Nevertheless, everything we do can be
done in finite mINS’s; this will be detailed in the full version of the paper.
4 Actually, reducts should be reduced nets, i.e., cut-free and vicious-circle-free. The

definition of vicious circle is irrelevant for our present purposes, so we shall content
ourselves with cut-free reducts.

Multiport Interaction Nets and Concurrency 25

Types. mINS’s can be provided with a type discipline: given a system S, we
consider a set of constant types, ranged over by T , and to each port of the cells
of S we assign an input type (T−) or an output type (T+). We say that a net
is well typed if inputs are connected to outputs of the same type; a rule is well
typed if both its left and right members are well typed, and the typing of the
interface is preserved. If all rules of S are well typed, and if every well typed cut
has a corresponding rule, we say that S is a typed mINS.

In a typed mINS, it is sometimes useful to have overloaded cells, i.e., cells
which admit more than one typing for their ports; the typical example is a du-
plicator cell, which can duplicate no matter what and must therefore be capable
of interacting with any cell of any type (see Fig. 3 and 4 below).

The type discipline can be useful to guarantee certain correctness properties
of the system, mainly that “unreasonable” cuts never arise through reduction,
like, say, that a cell representing integer addition never interacts with a string
constructor.

3 mINS’s and the π-Calculus

3.1 The Finite π-Calculus

Our first step will be to find a mINS which implements the finite π-calculus, or
Fπ. By finite π-calculus we mean the simplest subcalculus of π, modeling only
name-passing and name-restriction, without any other construct (in particular
without either replication or recursion). The prefixes and processes of Fπ are
resp. generated by the following grammars:

π ::= xy
∣∣ x(z)

P,Q ::= 0
∣∣ π.P

∣∣ P | Q
∣∣ ν(z)P .

The basic Fπ reduction rule is

xy.P | x(z).Q −→ P | Q{y/z} .

The set of free names of a process P is denoted fn(P). Structural congruence is de-
fined, as usual, by the axioms making the set of processes a commutative monoid
with respect to parallel composition (the neutral element being 0), plus the
three standard axioms concerning name restriction: ν(z)ν(w)P ≡ ν(w)ν(z)P ,
ν(z)0 ≡ 0, and, if z /∈ fn(P1), z(P1 | P2) ≡ P1 | ν(z)P2. The observability pred-
icate is written ↓μ, where μ is either a name x (input action), or a co-name x

(output action); the invisible transition relation is written τ→, and its reflexive
and transitive closure ⇒.

Now consider the infinite typed mINS F∞ whose alphabet and rules are given
resp. in Fig. 1 and Fig. 2. Types have been omitted in the rules, but the reader
can check that they are all well typed. The first rule of Fig. 2 is an example
of “template rule”: for a fixed m ≥ 0, it actually condenses 2(m + 1) rules.
Template rules, the fact that ε ranges over {+,−}, and the permutations σε will
be notational conventions constantly adopted throughout the rest of the paper.

26 D. Mazza

π+

C−

N+

N+ N− N−
. . .

Bn

N+

Q+

Xm

N− N−

Q−

. . .

N+ N− N+ N−

C+

Λ+
n

C− N+ Q−

Q+

ρ+ ρ−

Q−

Q+ N− C+

π−

N−

N+

C+

N+ N− N+ N−

C−

Λ−
n

.

Fig. 1. The alphabet of F∞

– Types N, C, and Q represent resp. names, continuations, and queues.
– π+ and π− cells will implement resp. output and input prefixes; each of them

is ready to make a request on a name, and bears a continuation and another
name (either the name being sent or the place-holder for substitution).

– Bn is a monocell with n auxiliary ports, with n ≥ 0; this family of cells will
be needed to bind the occurrences of the name used by an input prefix.

– Xm is a cell with m principal ports (m ≥ 1) and 2 auxiliary ports. We
stipulate that X0 is just a wire of type Q. The cells belonging to this family
will implement names: they are capable of concurrently handling several
requests coming from π+ and π− cells, and they have two FIFO queues (one
for inputs, the other for outputs) that will be used to store prefixes waiting
for interaction. They also handle requests from Bn cells; the interaction with
these cells models name-passing and the associated substitution.

– Λ+
n and Λ−n are monocells of arity 2n, n ≥ 0. These two families will im-

plement the blocking function of prefixes: they “suspend” a connection until
they interact.

– ρ+ and ρ− cells will be needed to represent resp. output and input queues
on channels; they bear the same information as πε cells, plus a pointer to
the rest of the queue. Their interaction synchronizes two prefixes: the name
being sent is connected to the place-holder for substitution, and their two
continuations are connected, so that they can be unblocked.

We shall now define a translation 〈·〉 of Fπ processes into F∞ nets. This en-
coding enjoys a clear correspondence with the interactive structure of processes,
but accounts only for certain kinds of transitions. The free ports of 〈P 〉 will be
labelled with names: there will be one free port labelled x for each free occur-
rence of x in P . In particular, the presence of a free principal port labelled by x
will mean that x is the subject of a prefix, i.e., P ↓x or P ↓x. In our graphical
representations, we will always collect principal and auxiliary free ports resp. to
the bottom and to the top of the net, so if P is a process with k observables,
〈P 〉 will be pictured as a net with k free ports on the bottom.
〈P 〉 might as well contain cuts; if we need to translate π.P , we must “inhibit”

such cuts to correctly represent prefixing. So we introduce the nets .P ε as follows:

Multiport Interaction Nets and Concurrency 27

. . .

Xm

σε

−→.

. . .

πε

ωi

Xm+1 ρε

σε

σε

σε

=

=σ+

σ−

ε ∈ {+,−}

Bn

−→

.

.

. . .
ωi

Xm+1 Xm+n

.

2n−1 2n

Λ+
k Λ−

n

−→

.
21 1 22k−1 2k 2n−1 2n212k2k−121

−→
ρ−ρ+

Fig. 2. The rules of F∞

. . .

μ

.
x1 xk

c cuts contained
in 〈P 〉

〈P 〉 =

. . .x1 xk

μ

. . .

. . .

. . .

Λε
k+c

.P ε ==⇒

An important case is .0ε, which is just a single 0-ary Λε
0 cell.

Definition 2 (Translation 〈·〉 for Fπ). We define 〈P 〉 by induction on P :

– 〈0〉 is the empty net.
– 〈π.P 〉 is the following net, depending on the nature of π:

28 D. Mazza

x

π+

.P+

〈xy.P 〉 =

. . . y
.

Bn .P−

π−

x

〈x(z).P 〉 =

. . .

In the encoding of the input prefix, the n free ports of .P− labelled by z are
connected to the Bn cell.

– 〈P | Q〉 is the net obtained by juxtaposing 〈P 〉 and 〈Q〉.
– If 〈P 〉 has m free ports labelled by z, then 〈ν(z)P 〉 is the net obtained from
〈P 〉 by connecting all such free ports to the free ports of the following net:

. . .

Xm

Notice that this is the only case in which cuts may be introduced.

If 〈P 〉 has a free port labelled by x which is the principal port of a π+ (resp. π−)
cell, we write 〈P 〉 ↓x (resp. 〈P 〉 ↓x).

We have not mentioned types, but the reader can check that all the nets of
Definition 2 are well typed. Also, the encoding is defined modulo the ordering
of the connections to the ports of Bn, Λε

n, and Xm cells, which is irrelevant.
The translation 〈·〉 has already some interesting properties:

Proposition 1. If P ≡ Q, then 〈P 〉 = 〈Q〉.

Definition 3 (Fully invisible actions). We say that a process P is capable of
evolving to Q through a fully invisible action, P

τ̃→ Q, if P
τ→ Q and the subject

name used in the transition is under the scope of a restriction.

Theorem 1 (Weak completeness of the encoding). Let P be a process.

1. If P ↓μ, then 〈P 〉 ↓μ.
2. If P

τ̃→ Q, then 〈P 〉→∗ 〈Q〉.

Notice that the converse of Proposition 1 is false; in fact, whenever z does not
appear in the prefix π, 〈ν(z)π.P 〉 = 〈π.ν(z)P 〉, but the two processes are not
structurally congruent (they are strong full bisimilar though).

To prove part 2 of Theorem 1 (part 1 is trivial), one just observes that P
τ̃→ Q

means that P ≡ ν(z, w̃)(zx.R1 | z(y).R2 | S) and Q ≡ ν(z, w̃)(R1 | R2{x/y} | S)
(this is the Harmony Lemma [12]), so, using Proposition 1, 〈P 〉 contains a π+

and a π− cell cut to the same Xm cell; knowing this, one easily finds a chain of
5 reductions leading to 〈Q〉.

Another translation, noted [·], is needed if we want to account for τ tran-
sitions which are not fully invisible, i.e., which are due to synchronization on

Multiport Interaction Nets and Concurrency 29

free channels. Basically, [P] is a sort of “closure” of 〈P 〉, i.e., [P] is practically
identical to 〈ν(x̃)P 〉, where x̃ are the free names of P , the only difference being
that we want to remember the names we artificially bound:

Definition 4 (Translation [·] for Fπ). Let x range over fn(P); if in 〈P 〉 there
arem free ports labelled byx, we define [P] as the net obtained from 〈P 〉 by connecting
all such ports to a Xm+1 cell, which will be left with one free port labelled by x:

Xm+1

. . .
x

Hence, in general, [P] has as many free ports as the number of free names in P .
Notice that Proposition 1 transfers to [·] without any problem.

Now, free ports are stable under reduction, while free names are not (some
might disappear); therefore, a statement like

if P
τ→ Q, then [P] →∗ [Q]

might fail for trivial reasons. In order to cope with this, and because it will be
useful in other circumstances, we introduce the notion of readback.

Definition 5 (Bureaucratic cuts). Cuts between Bn and Xm cells and be-
tween Λε

n cells are called bureaucratic, and so are their respective reductions
(which are resp. the second and third from the top in Fig. 2). We call bureau-
free a net which contains no bureaucratic cut.

The following is immediate:

Lemma 1. Bureaucratic reduction is (strongly) confluent; hence, any net μ has
a unique associated bureau-free form μb.

Definition 6 (Readback). Let μ be any reduct of a net of the form [P] for
some process P . The readback of μ, noted μ̂, is the net obtained by taking μb

and applying, until no longer possible, the following replacements:

. . .

Q−
n

. . .

Xm

Q+
p

. . .
�

Xm+n+p

π+π− π− π+

.

Xm+1

. . .
x

�

m m

x x

30 D. Mazza

where Qε
k, for k ≥ 1, is a tree of k ρε cells (built in the only possible way induced

by the typing). Notice that, in the second substitution, we start with 1 free port
labelled by x and we end up with m free ports all labelled by x as well; as in
Definition 4, x ranges over fn(P).

Basically, the readback procedure “undoes” the choices made in queuing up pre-
fixes and removes the artificial closure of free names. It is evident from Defini-
tion 6 that [̂P] = 〈P 〉. Now we can state the following, which follows immediately
from Theorem 1 and the definition of readback:

Theorem 2 (Completeness of the encoding). If P
τ→ Q, then [P] →∗ ν

such that ν̂ = 〈Q〉.
The converse also holds:

Theorem 3 (Soundness of the encoding). Let P be a process.

1. If 〈P 〉 ↓μ, then P ↓μ.
2. If [P] →∗ ν, then P ⇒ Q such that 〈Q〉 = ν̂.

While part 1 is trivial, part 2 requires some work. We can reason by induction on
the number s of reduction steps applied to get from [P] to ν. If s = 0, then the
statement follows from the above remark that [̂P] = 〈P 〉. If s > 0, we call μ the
reduct of [P] after s− 1 steps, and we analyze the reduction μ → ν. If this last
transition results from applying a bureaucratic rule, then μ is not bureau-free,
and (by Lemma 1) νb = μb, hence ν̂ = μ̂ and we conclude using the induction
hypothesis. If the last step is a πε/Xm rule (top of Fig. 2), the readback “undoes”
the reduction and we have again ν̂ = μ̂. The only case where something really
happens, i.e., ν̂
= μ̂, is when the last step is a ρε rule (bottom of Fig. 2). We
need here the following lemmas, the (not difficult) proofs of which are omitted:

Lemma 2. Let P be a process, and μ a reduct of [P]. If μ contains a cut between
a ρ+ and a ρ− cell, then the corresponding π+ and π− cells in μ̂ are either cut
to the same Xm multicell, or have their principal ports free and labelled with the
same name.

Lemma 3. The reduction relation consisting of bureaucratic reductions and the
ρε reduction is (strongly) confluent.

By the induction hypothesis, we know that μ̂ = 〈Q〉 for some Q such that
P ⇒ Q; by Lemma 2, we also know that this Q contains an output and an
input prefix acting on the same channel, i.e., Q ≡ ν(w̃)(xy.R1 | x(z).R2 | S).
The ρε reduction leading to ν introduces (at most) two bureaucratic cuts; by
Lemma 3, we can assume these to be the only bureaucratic cuts in ν, for if μ
was not bureau-free, reducing its cuts before or after the application of the ρε

rule has no effect on νb (and thus on ν̂). It is then just a matter of applying
a few rewriting rules to check that ν̂ = 〈ν(w̃)(R1 | R2{y/z} | S)〉, as needed to
prove our statement. The typing discipline followed by F∞ assures us that no
cut other than those considered can arise through reduction, so we are done.

Of course the Soundness Theorem has a weaker version, stating that if
〈P 〉 →∗ ν, then there are a process Q such that 〈Q〉 = ν̂ and a number of
fully invisible transitions (including zero) leading from P to Q.

Multiport Interaction Nets and Concurrency 31

3.2 Adding Replication

The fact that mINS’s are able to faithfully encode Fπ is already meaningful from
the point of view of concurrent computation, but is extremely poor in terms of
expressive power. In this section we shall give a stronger result by showing that
the mINS F∞ can be extended into a mINS C∞ that encodes a fragment of the
π-calculus, called here the “core” π-calculus, or Cπ, which adds the replication
operator to Fπ. One could see Cπ basically as a synchronous and extended
version of the Pict language [13].

A well known fact is that the replication operator is not needed everywhere
in the definition of processes: replicated prefixes suffice to give universal compu-
tational power to the π-calculus. This is why we introduce extended prefixes

κ ::= x(z)
∣∣ π (where π is a prefix of Fπ) ,

which add the bound-output prefix to the “standard” prefixes of Fπ, and we
define the processes of Cπ to be those generated by the following grammar:

P,Q ::= 0
∣∣ π.P ∣∣ P | Q

∣∣ ν(z)P
∣∣ κ
 P .

In the traditional syntax, if π is an Fπ prefix, we would write π
 P as !π.P ,
while x(z)
 P would be written as !ν(z)xz.P . Here, we choose this alternative
syntax since we do not consider the standard axiom for structural congruence
!P ≡ P | !P ; structural congruence on Cπ processes is thus the same relation
we defined on Fπ (see page 25). To recover the adequate notion of transition
relation, we add the following rules:

xy
 P
xy→ xy
 P | P x(z)
 P

xy→ x(z)
 P | P{y/z} x(z)
 P
x(z)→ x(z)
 P | P

The reduction relation is defined in the same way; so, for example, we have

xy.P | x(z)
 Q −→ P | Q{y/z} | x(z)
 Q .

The alphabet of the (infinite) typed mINS C∞ is defined by adding to the
alphabet of F∞ the cells of Fig. 3, whose interactions are given by the rules of
Fig. 4:

– There is an additional type, R, which represents name restrictions.
– !πε and !ρε cells play the same role resp. as πε and ρε cells: the first represent

replicated prefixes, the second enqueued replicated prefixes. They carry two
additional pieces of information: another name, and a restriction. The first
is a potential occurrence of the subject of the prefix, which is needed since a
replicated prefix whose subject is x potentially generates a new occurrence
of x after replication. The second is a sort of pointer to the restricted names
which are under the scope of the replication; these names are not usable
until replication takes place.

32 D. Mazza

T+ T+

T−

δ−

T− T−

T+

δ+!ρ+

Q+

R+N+ C− N+ Q− N− C+Q+ R+ N+

Q−

!ρ−

N+ N+C−R+

N+

!π+

R+

ϕ

N−

!π−

N+

C+ R+ N+

. . .
R+

Nn

R−

R+N−N−
. . .

R−

!Xm

Fig. 3. Additional cells for C∞

– A cell belonging to the !Xm family (m auxiliary ports, m ≥ 1) represents a
restricted name with m occurrences blocked under a replicated prefix.

– Cells belonging to the Nn family (n auxiliary ports, n ≥ 0) “collect” !Xm

cells and pass them to !πε cells.
– The ϕ cell “unblocks” restricted names whenever a copy of a replicated

process is activated.
– δε cells are duplicators : they implement (local) replication of processes. They

are overloaded cells, i.e., their ports can be typed with any type T , provided
the typing respects the input/output specifications of Fig. 3.

Definition 7 (Translations 〈·〉 and [·] for Cπ). We extend the translation
〈·〉 of Definition 2 to Cπ processes in the following way. Suppose that .P ε (as
always, ε ∈ {+,−}) is a net containing n X-cells and (among others) k free ports
labelled with the name z:

. . .
z z

. . .

Xm1

. . .

Xmn

.P ε = μ

.

Then, we define
P ε and
P z as follows:

. . .
z z

μ

.
!Xm1

!Xk+1

μ

. . .

σε

. . .

Nn

.
!Xmn!Xm1

Nn+1

.

!Xmn . . .

P ε
P z

Multiport Interaction Nets and Concurrency 33

σε

σε

σε

σε

. . .

Xm

σε

−→.

. . .
ωi

Xm+1

=

=σ+

σ−

ε ∈ {+,−}

σε

!ρε

!πε

!ρ+ !ρ−

−→
ϕ

δ+ δ+ δ− δ+

ϕ

δ+δ+δ+δ−

!π+ !π−

!ρε ρ−ε

s.t. ∀i ∈ {1, . . . , n}
∀n, ι+n , ι−n are permutations

ι−n (i) = i
ι+n (i) = n− i + 1

ιε2

ιε5

ιε4

ϕ

δε δ−ε δ+ δ+

!πε
−→

ιε3ιε2 ιε2 ιε2

−→

ϕ

Nn

.

ϕ ϕ

ωi

Xm+1

. −→

Xm+2

. . .
. . .

δ+

. . .

Xm

. . .

ϕ

−→
!Xm

−→ δεnδε1 α αα δε

.

.
δ+ δ−

−→

α is any cell except
Xm and δ−ε

Fig. 4. Rules for the additional cells of C∞

where, as usual, σ− is the identity permutation and σ+ is the “twist” permuta-
tion. We can now define 〈κ
 P 〉:

34 D. Mazza

!π+

x

x y

P+

. . .

Bn

.

P−

x

!π−

x

. . .
x

P z

x

!π+

〈x(z)
 P 〉 〈x(z)
 P 〉〈xy
 P 〉

If 〈P 〉 has a free port labelled by x which is the principal port of a π+ or !π+

(resp. π− or !π−) cell, we write 〈P 〉 ↓x (resp. 〈P 〉 ↓x).
The translation [P] is obtained from 〈P 〉 exactly as in Definition 4.

Notice that it is no longer the case that each free occurrence of x in P corresponds
to a free port labelled by x in 〈P 〉; here, a free occurrence of x as subject of a
replicated prefix generates two free ports. It is still the case though that the
free principal ports of 〈P 〉 are in bijection with the observables of P . We also
remark that Proposition 1 holds trivially for both of the extended translations;
this would of course be impossible if we admitted that !P ≡ P | !P .

Definition 5 can be extended to C∞ by considering as bureaucratic the last 5
cuts of Fig. 4, i.e., all cuts involving ϕ and δε cells; it is immediate to verify that
Lemma 1 still holds. We can then define the readback μ̂ of a C∞ net μ which
is the reduct of a net [P]: simply take its bureau-free form μb, and apply the
substitutions of Definition 6, where this time the queues might contain !ρε cells,
which need to be replaced by the corresponding !πε cells.

With all the definitions extended to C∞, it is not hard to prove the following:

Theorem 4 (Faithfullness of the encoding of Cπ). Let P be a Cπ process.

1. P ↓μ iff 〈P 〉 ↓μ.
2. If P

τ→ Q, then [P] →∗ ν and ν̂ = 〈Q〉.
3. If [P] →∗ ν, then P ⇒ Q and 〈Q〉 = ν̂.

The proof follows a similar argument to that given for Theorem 2 and Theorem 3.
The fundamental issue concerning replication is that neither cuts, nor Xm or δε

cells can be duplicated by δε cells. This is why
P ε and
P z are introduced:
such nets are cut-free, and do not contain either Xm or δε cells, so they can be
safely duplicated. Then, ϕ cells extract P from
P ε or
P z. We also observe
that, thanks to the encoding, nested replication poses no problem. The other
two important points are that duplication is completely bureaucratic (therefore
strongly confluent), and that it stops on free channels; this assures us that the
replication process does not interfere with prefix synchronization.

4 Conclusions

We have seen how one can find an infinite typed mINS C∞ which is able to
faithfully encode a quite expressive fragment of the π-calculus, equivalent to a

Multiport Interaction Nets and Concurrency 35

synchronous and extended version of the Pict language. As a matter of fact,
much more can be done: one can enrich C∞ in order to represent any other
feature of the π-calculus, in particular guarded choice and match prefix. This
will be shown in the full version of the paper.

We also remark that the systems introduced in Sect. 3 can easily be adapted
to encode any kind of typed π-calculus. To see this, just notice, for example,
that Xm cells can be overloaded by uniformly instantiating the type N into any
type V belonging to the grammar V ::= B | �V , where B ranges over some set
of basic types. We can then proceed to overload πε cells so that if their two
auxiliary ports have types V ε and C−ε, then the principal port has type �V +.
If we apply similar changes to !πε, ρε and !ρε cells, we obtain a mINS for the
simply typed π-calculus [12]. Of course, the original system C∞ is retrievable by
typing everything with a fixpoint type N such that N = �N.

Acknowledgments. We would like to thank Laurent Regnier and the anony-
mous referees for their useful comments and suggestions.

References

1. Lafont, Y.: Interaction Nets. In: Conference Record of POPL’90, ACM Press
(1990) 95–108

2. Milner, R.: Pi-nets: A graphical form of π-calculus. In: Proceedings of ESOP’94.
Volume 788 of Lecture Notes in Computer Science., Springer (1994) 26–42

3. Parrow, J.: Interaction diagrams. Nordic Journal of Computing 2 (1995) 407–443
A previous version appeared in Proceedings of A Decade in Concurrency, LNCS
803: 477–508, 1993.

4. Fu, Y.: Reaction Graph. Journal of Computer Science and Technology 13 (1998)
510–530

5. Laneve, C., Parrow, J., Victor, B.: Solo Diagrams. In: Proceedings of TACS’01.
Volume 2215 of Lecture Notes in Computer Science., Springer-Verlag (2001) 127–
144

6. Laneve, C., Victor, B.: Solos in Concert. In: Proceedings of ICALP’99. Volume
1644 of LNCS., Springer-Verlag (1999) 513–523

7. Beffara, E., Maurel, F.: Concurrent nets: a study of prefixing in process calculi.
In: Proceedings of EXPRESS 2004. Volume 128 of ENTCS., Elsevier (2005) 67–86

8. Yoshida, N.: Graph Notation for Concurrent Combinators. In: Proceedings of
TPPP’99. Volume 907 of LNCS., Springer (1995) 393–412

9. Alexiev, V.: Non-deterministic Interaction Nets. Ph.D. Thesis, University of Al-
berta (1999)

10. Khalil, L.: Généralisation des Réseaux d’Interaction avec amb, l’agent de Mc-
Carthy: propriétés et applications. Ph.D. Thesis, École Normale Supérieure de
Paris (2003)

11. Lafont, Y.: Interaction combinators. Information and Computation 137 (1997)
69–101

12. Sangiorgi, D., Walker, D.: The π-calculus — A Theory of Mobile Processes. Cam-
bridge University Press (2001)

13. Pierce, B., Turner, D.: Pict: A Programming Language Based on the Pi-Calculus.
CSCI Technical Report 476, Indiana University (1997)

Model Checking for π-Calculus

Using Proof Search

Alwen Tiu

INRIA Lorraine, 615 rue du Jardin Botanique,
54602 Villers-lès-Nancy, France

Alwen.Tiu@loria.fr

Abstract. Model checking for transition systems specified in π-calculus
has been a difficult problem due to the infinite-branching nature of in-
put prefix, name-restriction and scope extrusion. We propose here an
approach to model checking for π-calculus by encoding it into a logic
which supports reasoning about bindings and fixed points. This logic,
called FOλΔ∇, is a conservative extension of Church’s Simple Theory of
Types with a “generic” quantifier. By encoding judgments about transi-
tions in pi-calculus into this logic, various conditions on the scoping of
names and restrictions on name instantiations are captured naturally by
the quantification theory of the logic. Moreover, standard implementa-
tion techniques for (higher-order) logic programming are applicable for
implementing proof search for this logic, as illustrated in a prototype
implementation discussed in this paper. The use of logic variables and
eigenvariables in the implementation allows for exploring the state space
of processes in a symbolic way. Compositionality of properties of the
transitions is a simple consequence of the meta theory of the logic (i.e.,
cut elimination). We illustrate the benefits of specifying systems in this
logic by studying several specifications of modal logics for pi-calculus.
These specifications are also executable directly in the prototype imple-
mentation of FOλΔ∇.

1 Introduction

The π-calculus [16] provides a simple yet powerful framework for specifying com-
munication systems with evolving communication structures. Its expressiveness
derives mainly from the possibility of passing communication channels (names),
restricting the scope of channels and scope extrusion. These are precisely the
features that make model checking for π-calculus difficult. Model checking has
traditionally been done with transitions which have finite state models. The
name passing feature alone (input prefix) in π-calculus would yield infinite-
branching transition systems, if implemented naively. Scope and scope extru-
sion add another significant layer of complexity, since in model checking the
transition systems one has to take into account the exact scope and identity of
various channel names. This is a problem which has been studied extensively,
of course, due to the importance of π-calculus. A non-exhaustive list of existing

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 36–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model Checking for π-Calculus Using Proof Search 37

works includes the work on history dependent automata [6] model of mobile pro-
cesses, specific programming logics and decision procedures for model checking
mobile processes [3,4], the spatial logic model checker [2] using Gabbay-Pitts
permutation techniques [7], and implementation using logic programming [27].

The approach to model checking π-caculus (or mobile processes in general)
taken in this paper is based on the proof theory of sequent calculus, by casting
the problem of reasoning about scoping and name-instantiation into the more
general setting of proof theory for quantifiers in formal logic. More specifically,
we encode judgments about transitions in π-calculus and several modal logics
for π-calculus [17] into a meta logic, and proof search is used to model the op-
erational semantics of these judgments. This meta logic, called FOλΔ∇ [15], is
an extension of Church’s Simple Theory of Types (but without quantification
over propositions, so the logic is essentially first-order) with a proof theoretical
notion of definitions [22] and a new “generic” quantifier, ∇. The quantifier ∇,
roughly summarized, facilitates reasoning about binders (more details will be
given later). We summarize our approach as follows.

λ-tree syntax. We use the λ-tree syntax [14] to encode syntax with bindings. It
is a variant of higher-order abstract syntax, where syntax of arbitrary system
is encoded as λ-terms and the λ-abstraction is used to encode bindings within
expressions. One of the advantages of adopting λ-tree syntax, or higher-order
abstract syntax in general, is that all the side conditions involving bindings such
as scoping of variables, α-conversion, etc., are handled uniformly at the level
of the abstract syntax, using the known notions in λ-calculus. Another one is
that efficient implementation techniques for manipulating this abstract syntax
are well-understood, e.g., algorithms for doing pattern-matching and unification
of simply typed λ-terms.

Definitional reflection. Proof search in traditional logics, e.g., variants of
Gentzen’s LJ or LK, is limited to model the may-behaviour of computation
system. Must-behaviour, eg., notions like bisimulations, or in the interest of this
paper, satisfiability of modal formulae, cannot be expressed directly in these
logics. To encode such notions, it is necessary to move to a richer logic. Recent
developments in the proof theory of definitions [10,11] have shown that must-
behaviour can indeed be captured in logics extended with this proof-theoretical
notion of definitions. In a logic with definitions, an atomic proposition may be
“defined” by another formula (which may contain the atomic proposition itself).
Thus, a definition can be seen as expressing a fixed point equation. Proof search
for a defined atomic formula is done by unfolding the definition of the formula. In
the logic with definitions used in this paper, a provable formula like ∀x.px ⊃ qx,
where p and q are some defined predicates, expresses the fact that for every term
t and for every proof (computation) of pt, there is a proof (computation) of qt. If
p and q are predicates encoding one-step transitions, then this formula expresses
one-step simulation. If q is an encoding of some assertion in modal logics, then
the formula expresses the fact that the modal assertion is true for all reachable
“next states” associated with the transition relation encoded by p.

38 A. Tiu

Eigenvariables and ∇. In proof search for a universal quantified formula, e.g.,
∀x.Bx, the quantified variable x is replaced by a new constant c, and proof search
is continued on Bc. Such constants are called eigenvariables, and in traditional
intuitionistic or classical logic, they play the role of scoped constants as they are
created dynamically as proof search progresses and are not instantiated during
the proof search. In the meta theory of the logic, eigenvariables play the role of
place holder for values, since from a proof for Bc where c is an eigenvariable, one
can obtain a proof of Bt for any term t by substituting t into c. In the proof theory
of definitions, these dual roles of eigenvariables are internalized in the proof rules
of the logic. In particular, in unfolding a definition in a negative context (left-
hand side of a sequent), eigenvariables are treated as variables, and in the positive
context they are treated as scoped constants. Computation (or transition) states
can be encoded using eigenvariables. This in conjunction with definitions allows
for exploring the state space of a transition system symbolically.

Since eigenvariables are not used here entirely as scoped constants, to ac-
count for scoped names we make use of the ∇-quantifier, first introduced in
the logic FOλΔ∇ [15], to help encode the notion of “generic judgment” that
occurs commonly when reasoning with λ-tree syntax. The ∇ quantifier is used
to introduce new elements into a type within a given scope. In particular, a
reading of the truth condition for ∇xγ .Bx is something like: if given a new el-
ement, say c, of type γ, then check the truth of Bc. The difference between
∇ and ∀ appears in their interaction with definition rules: the constants intro-
duced by ∇ are not subject to instantiation. Note that intended meaning of the
∇-quantifier is rather different from the “new” quantifier of Gabbay and Pitts
[7], although they both address the same issue from a pragmatic point of view.
In particular, in Gabbay-Pitts setting, an infinite number of names is assumed
to be given, and equality between two names are decidable. In our approach
here, no such assumptions are made concerning the type of names, not even
the assumption that it is non-empty. Instead, new names are generated dynam-
ically when needed, such as when inferring a transition involving extrusion of
scopes.

An implementation of proof search. Proof search for FOλΔ∇ can be imple-
mented quite straightforwardly, using only the standard tools and techniques
used in higher-order logic programming and theorem provers. An automated
proof search engine for a fragment of FOλΔ∇ has been implemented [24]. It was
essentially done by plugging together different existing implementation: higher-
order pattern unification [12,18], stream-based approach to back-tracking, and
parser for λ-terms. On top of this prototype implementation several specifica-
tions of process calculi and bisimulation have been implemented.1 In most cases,
the specifications are implemented almost without any modifications (except for
the type-setting of course). A specification of modal logics has also been imple-
mented in this prototype.

1 The prototype implementation along with the example specifications can be down-
loaded from the author’s website: http://www.loria.fr/∼tiu.

Model Checking for π-Calculus Using Proof Search 39

Outline of the papers. The rest of the paper is organized as follows. In Section 2,
an overview of the meta logic FOλΔ∇ is given. This is followed by the specifica-
tion of the operational semantics of the late π-calculus in Section 3. The materials
in these two sections have appeared in [15,26]; they are included here since the
main results of this paper are built on them. Section 4 presents the specification
of modal logics introduced in [17] along with the adequacy results. Section 5 gives
an overview of a prototype implementation of FOλΔ∇ in which the specification
of modal logics is implemented. These two sections constitute the main contri-
bution of this paper. Section 6 discusses related and future work. An extended
version of this paper containing detailed proofs is available on the web.

2 Overview of the Meta Logic

The logic FOλΔ∇ (pronounced“fold-nabla”) is presented using a sequent cal-
culus that is an extension of Gentzen’s system LJ for first-order intuitionistic
logic. A sequent is an expression of the form B1, . . . , Bn − B0 where B0, . . . , Bn

are formulas and the elongated turnstile − is the sequent arrow. To the left of
the turnstile is a multiset: thus repeated occurrences of a formula are allowed. If
the formulas B0, . . . , Bn contain free variables, they are considered universally
quantified outside the sequent, in the sense that if the above sequent is provable
than every instance of it is also provable. In proof theoretical terms, such free
variables are called eigenvariables.

A first attempt at using sequent calculus to capture judgments about the
π-calculus could be to use eigenvariables to encode names in π-calculus, but this
is certainly problematic. For example, if we have a proof for the sequent − Pxy,
where x and y are different eigenvariables, then logic dictates that the sequent
− P zz is also provable (given that the reading of eigenvariables is universal). If
the judgment P is about, say, bisimulation, then it is not likely that a statement
about bisimulation involving two different names x and y remains true if they
are identified to the same name z. To address this problem, the logic FOλΔ∇

extends sequents with a new notion of “local scope” for proof-level bound vari-
ables (originally motivated in [15] to encode “generic judgments”). In particular,
sequents in FOλΔ∇ are of the form

Σ ; σ1 � B1, . . . , σn � Bn − σ0 � B0

where Σ is a global signature, i.e., the set of eigenvariables whose scope is over
the whole sequent, and σi is a local signature, i.e., a list of variables scoped over
Bi. We shall consider sequents to be binding structures in the sense that the
signatures, both the global and local ones, are abstractions over their respective
scopes. The variables in Σ and σi will admit α-conversion by systematically
changing the names of variables in signatures as well as those in their scope,
following the usual convention of the λ-calculus. The meaning of eigenvariables
is as before, only that now instantiation of eigenvariables has to be capture-
avoiding, with respect to the local signatures. The variables in local signatures

40 A. Tiu

act as locally scoped generic constants, that is, they do not vary in proofs since
they will not be instantiated. The expression σ � B is called a generic judgment
or simply a judgment. We use script letters A, B, etc. to denote judgments. We
write simply B instead of σ �B if the signature σ is empty. We shall often write
the list σ as a string of variables, e.g., a judgment (x1, x2, x3)�B will be written
as x1x2x3�B. If the list x1, x2, x3 is known from context we shall also abbreviate
the judgment as x̄ � B.

The logical constants of FOλΔ∇ are ∀ (universal quantifier), ∃ (existential
quantifier), ∇, ∧ (conjunction), ∨ (disjunction), ⊃ (implication), � (true) and ⊥
(false). The inference rules for the quantifiers are given in Figure 1. The complete
set of inference rules can be found in [15]. Since we do not allow quantification
over predicates, this logic is proof-theoretically similar to first-order logic (hence,
the letters FO in FOλΔ∇).

Σ, σ � t : γ Σ ; σ 	 B[t/x], Γ − C
Σ ; σ 	 ∀γx.B,Γ − C ∀L

Σ, h ; Γ − σ 	 B[(h σ)/x]

Σ ; Γ − σ 	 ∀x.B
∀R

Σ, h ; σ 	 B[(h σ)/x], Γ − C
Σ ; σ 	 ∃x.B,Γ − C ∃L

Σ, σ � t : γ Σ ; Γ − σ 	 B[t/x]

Σ ; Γ − σ 	 ∃γx.B
∃R

Σ ; (σ, y) 	 B[y/x], Γ − C
Σ ; σ 	∇x B, Γ − C ∇L

Σ ; Γ − (σ, y) 	 B[y/x]

Σ ; Γ − σ 	∇x B
∇R

Fig. 1. The quantifier rules of FOλΔ∇.

During the search for proofs (reading rules bottom up), inference rules for
∀ and ∃ quantifier place new eigenvariables into the global signature while the
inference rules for ∇ place them into the local signature. In the ∀R and ∃L
rules, raising [13] is used when moving the bound variable x, which can range
over the variables in both the global signature and the local signature σ, with the
variable h that can only range over variables in the global signature: so as not
to miss substitution terms, the variable x is replaced by the term (hx1 . . . xn),
which we shall write simply as (hσ), where σ is the list x1, . . . , xn (h must not
be free in the lower sequent of these rules). In ∀L and ∃R, the term t can have
free variables from both Σ and σ. This is presented in the rule by the typing
judgment Σ, σ � t : τ . The ∇L and ∇R rules have the proviso that y is not free
in ∇x B.

The standard inference rules of logic express introduction rules for logical
constants. The full logic FOλΔ∇ additionally allows introduction of atomic
judgments, that is, judgments which do not contain any occurrences of logi-
cal constants. To each atomic judgment, A, we associate a defining judgment,
B, the definition of A. The introduction rule for the judgment A is in effect
done by replacing A with B during proof search. This notion of definitions is
an extension of work by Schroeder-Heister [22], Eriksson [5], Girard [8], Stärk
[23] and McDowell and Miller [10]. These inference rules for definitions allow for
modest reasoning about the fixed points of definitions.

Model Checking for π-Calculus Using Proof Search 41

Definition 1. A definition clause is written ∀x̄[p t̄
�
= B], where p is a predicate

constant, every free variable of the formula B is also free in at least one term
in the list t̄ of terms, and all variables free in p t̄ are contained in the list x̄ of
variables. The atomic formula p t̄ is called the head of the clause, and the formula
B is called the body. The symbol

�
= is used simply to indicate a definitional

clause: it is not a logical connective. The predicate p occurs strictly positively in
B, that is, it does not occur to the left of any ⊃ (implication).

Let ∀τ1x1 . . .∀τnxn.H
�
= B be a definition clause. Let y1, . . . , ym be a list of

variables of types α1, . . . , αm, respectively. The raised definition clause of H with
respect to the signature {y1 : α1, . . . , ym : αm} is defined as

∀h1 . . .∀hn.ȳ � Hθ
�
= ȳ � Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi, for every i ∈ {1, . . . ,
n}, is of type α1 → . . . → αm → τi. A definition is a set of definition clauses
together with their raised clauses.

The introduction rules for a defined judgment are as follow. When applying
the introduction rules, we shall omit the outer quantifiers in a definition clause
and assume implicitly that the free variables in the definition clause are distinct
from other variables in the sequent.

{Σθ ; Bθ, Γ θ − Cθ | θ ∈ CSU(A,H) for some clause H �
= B}

Σ ; A, Γ − C defL

Σ ; Γ − Bθ

Σ ; Γ − A def R, where H �
= B is a definition clause and Hθ = A

In the above rules, we apply substitution to judgments. The result of applying
a substitution θ to a generic judgment x1, . . . , xn � B, written as (x1, . . . , xn �
B)θ, is y1, . . . , yn � B′, if (λx1 . . .λxn.B)θ is equal (modulo λ-conversion) to
λy1 . . .λyn.B

′. If Γ is a multiset of generic judgments, then Γθ is the multiset
{Jθ | J ∈ Γ}. In the defL rule, we use the notion of complete set of unifiers (CSU)
[9]. We denote by CSU(A,H) the complete set of unifiers for the pair (A,H),
that is, for any substitution θ such that Aθ = Hθ, there is a substitution ρ ∈
CSU(A,H) such that θ = ρ ◦ θ′ for some substitution θ′. In all the applications
of defL in this paper, the set CSU(A,H) is either empty (the two judgments are
not unifiable) or contains a single substitution denoting the most general unifier.
The signature Σθ in defL denotes a signature obtained from Σ by removing the
variables in the domain of θ and adding the variables in the range of θ. In the
defL rule, reading the rule bottom-up, eigenvariables can be instantiated in the
premise, while in the def R rule, eigenvariables are not instantiated. The set that
is the premise of the defL rule means that that rule instance has a premise for
every member of that set: if that set is empty, then the premise is proved.

42 A. Tiu

3 Logical Specification of One-Step Transition

We consider the late transition system for the π-calculus in [16], but we shall
follow the operational semantics of π-calculus presented in [21]. The syntax of
processes is defined as follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|P | P + P | !P.

We use the notation P, Q, R, S and T to denote processes. Names are denoted by
lower case letters, e.g., a, b, c, d, x, y, z. The occurrence of y in the process x(y).P
and (y)P is a binding occurrence, with P as its scope. The set of free names in P
is denoted by fn(P), the set of bound names is denoted by bn(P). We write n(P)
for the set fn(P)∪bn(P). We consider processes to be syntactically equivalent up
to renaming of bound names.

One-step transition in the π-calculus is denoted by P
α
−−→ Q, where P and Q

are processes and α is an action. The kinds of actions are the silent action τ ,
the free input action xy, the free output action x̄y, the bound input action x(y)
and the bound output action x̄(y). The name y in x(y) and x̄(y) is a binding
occurrence. Just like we did with processes, we use fn(α), bn(α) and n(α) to
denote free names, bound names, and names in α. An action without binding
occurrences of names is a free action, otherwise it is a bound action.

We encode the syntax of process expressions using higher-order syntax as
follows. We shall require three primitive syntactic categories: n for names, p for
processes, and a for actions, and the constructors corresponding to the operators
in π-calculus. We do not assume any inhabitants of type n, therefore in our
encoding a free name is translated to a variable of type n, which can later be
either universally quantified or ∇-quantified, depending on whether we want to
treat a certain name as instantiable or not. In this paper, however, we consider
only ∇-quantified names. Universally quantified names are used in the encoding
of open bisimulation in [26]. Since the rest of this paper is about the π-calculus,
the ∇ quantifier will from now on only be used at type n. To encode actions,
we use τ : a (for the silent action), and the two constants ↓ and ↑, both of type
n→ n→ a for building input and output actions. The free output action x̄y, is
encoded as ↑ xy while the bound output action x̄(y) is encoded as λy (↑ xy) (or
the η-equivalent term ↑ x). The free input action xy, is encoded as ↓ xy while
the bound input action x(y) is encoded as λy (↓ xy) (or simply ↓ x). The process
constructors are encoded using the following constants:

0 : p τ : p → p out : n→ n→ p → p in : n → (n→ p) → p
+ : p → p→ p | : p→ p→ p ! : p→ p
match : n → n→ p→ p ν : (n→ p) → p

We use two predicates to encode the one-step transition semantics for the
π-calculus. The predicate ·

·
−−→ · of type p → a → p → o encodes transitions

involving free values and the predicate ·
·

−−⇀ · of type p → (n → a) → (n →
p) → o encodes transitions involving bound values. The precise translation of
π-calculus syntax into simply typed λ-terms is given in the following definition.

Model Checking for π-Calculus Using Proof Search 43

Definition 2. The following function [[.]] translates from process expressions to
βη-long normal terms of type p.

[[0]] = 0 [[P + Q]] = [[P]] + [[Q]] [[P|Q]] = [[P]] | [[Q]]
[[τ.P]] = τ [[P]] [[[x = y]P]] = match x y [[P]] [[x̄y.P]] = out x y [[P]]
[[x(y).P]] = in x λy.[[P]] [[(x)P]] = νλx.[[P]] [[!P]] =![[P]]

The one-step transition judgments are translated to atomic formulas as follows
(we overload the symbol [[.]]).

[[P
x̄y
−−→ Q]] = [[P]]

↑xy
−−→ [[Q]] [[P

x(y)
−−→ Q]] = [[P]]

↓x
−−⇀ λy.[[Q]]

[[P
τ
−−→ Q]] = [[P]]

τ
−−→ [[Q]] [[P

x̄(y)
−−→ Q]] = [[P]]

↑x
−−⇀ λy.[[Q]]

[[P
xy
−−→ Q]] = [[P]]

↓xy
−−→ [[Q]]

We abbreviate νλx.P as simply νx.P . Notice that when τ is written as a
prefix, it has type p→ p, and when it is written as an action, it has type a.

The operational semantics of the late transition system for π-calculus is given
as a definition, called Dπ, in Figure 2. In the figure, we omit the symmetric
cases for par, sum, close and com. In this specification, free variables are schema
variables that are assumed to be universally scoped over the definition clause in
which they appear. These schema variables have primitive types such as a, n,
and p as well as functional types such as n→ a and n→ p.

Notice that as a consequence of the use of HOAS in the encoding, the compli-
cated side conditions in the original specifications of π-calculus [16] are no longer
present. For example, the side condition that X
= y in the open rule is implicit,
since X is outside the scope of y and therefore cannot be instantiated with y.
The adequacy of our encoding is stated in the following lemma and proposition
(their proofs can be found in [25]).

Lemma 3. The function [[.]] is a bijection between α-equivalence classes of ex-
pressions.

Proposition 4. Let P and Q be processes and α an action. Let n̄ be a list of
free names containing the free names in P, Q, and α. The transition P

α
−−→ Q is

derivable in π-calculus if and only if . ; . − ∇n̄.[[P
α
−−→ Q]] in FOλΔ∇ with the

definition Dπ.

Note that since in the translation from π-calculus to FOλΔ∇ free names are
translated to ∇-quantified variables, to get the completeness of the encoding,
it is necessary to show that the transition in π-calculus is invariant under free-
name renaming. This has been shown in [16]. In fact, most of the properties of
interest in π-calculus, such as bisimulation and satisfiability of modal formulae,
are closed under free-name renaming [17].

4 Specification of Modal Logics

We now consider the modal logics for π-calculus introduced in [17]. In order
not to confuse meta-level (FOλΔ∇) formulas (or connectives) with the formulas

44 A. Tiu

tau: τ P
τ

−−→ P
�
= �

in: in X M
↓X
−−⇀ M

�
= �

out: out x y P
↑xy
−−→ P

�
= �

match: match x x P
A
−−→ Q

�
= P

A
−−→ Q

match x x P
A
−−⇀ Q

�
= P

A
−−⇀ Q

sum: P + Q
A
−−→ R

�
= P

A
−−→ R

P + Q
A
−−⇀ R

�
= P

A
−−⇀ R

par: P |Q
A
−−→ P ′ |Q �

= P
A
−−→ P ′

P |Q
A
−−⇀ λn(M n |Q)

�
= P

A
−−⇀ M

res: νn.Pn
A
−−→ νn.Qn

�
= ∇n(Pn

A
−−→ Qn)

νn.Pn
A
−−⇀ λm νn.P ′nm

�
= ∇n(Pn

A
−−⇀ P ′n)

open: νy.My
↑X
−−⇀ M ′ �

= ∇y(My
↑Xy
−−→M ′y)

close: P |Q
τ

−−→ νy.My |Ny
�
= ∃X.P

↓X

−−⇀ M ∧Q
↑X

−−⇀ N

com: P |Q
τ
−−→ MY |Q′ �

= ∃X.P
↓X
−−⇀ M ∧Q

↑XY
−−→ Q′

rep-act: !P
A
−−→ P ′|!P �

= P
A
−−→ P ′

!P
X
−−⇀ λy(My|!P)

�
= P

X
−−⇀ M

rep-com: !P
τ
−−→ (P ′ |M Y)|!P �

= ∃X.P
↑XY

−−→ P ′ ∧ P
↓X

−−⇀ M

rep-close: !P
τ
−−→ νz.(Mz |Nz)|!P �

= ∃X.P
↑X
−−⇀ M ∧ P

↓X
−−⇀ N

Fig. 2. Definition clauses for the late transition system.

(connectives) of modal logics under consideration, we shall refer to the latter
as object formulas (respectively, object connectives). We shall work only with
object formulas which are in negation normal form, i.e., negation appears only
at the level of atomic object formulas. As a consequence, we introduce explicitly
each dual pair of the object connectives. Note that since the only atomic object
formulas are either true or false, by de Morgan duality ¬true ≡ false and ¬false ≡
true. Therefore we are in effect working with positive formulas only. The syntax
of the object formulas is given by

A ::= true | false | A ∧ A | A ∨ A | [x = z]A | 〈x = z〉A
| 〈α〉A | [α]A | 〈x̄(y)〉A | [x̄(y)]A | 〈x(y)〉A | [x(y)]A
| 〈x(y)〉LA | [x(y)]LA | 〈x(y)〉EA | [x(y)]EA

In each of the formulas (and their dual ‘boxed’-formulas) 〈x̄(y)〉A, 〈x(y)〉A,
〈x(y)〉LA and 〈x(y)〉EA, the occurrence of y in parentheses is a binding occur-
rence whose scope is A. We use A, B, C, D, possibly with subscripts or primes, to
range over object formulas. Note that we consider only finite conjunction since
the transition system we are considering is finitely branching, and therefore
(as noted in [17]) infinite conjunction is not needed. Note also that we do not

Model Checking for π-Calculus Using Proof Search 45

(a) Propositional connectives and basic modality:

(true :) P |= true
�
= �.

(and :) P |= A&B
�
= P |= A ∧ P |= B.

(or :) P |= A∨̂B
�
= P |= A ∨ P |= B.

(match :) P |= 〈X=̇X〉A �
= P |= A.

(match :) P |= [X=̇Y]A
�
= (X = Y) ⊃ P |= A.

(free :) P |= 〈X〉A �
= ∃P ′(P

X
−−→ P ′ ∧ P ′ |= A).

(free :) P |= [X]A
�
= ∀P ′(P

X
−−→ P ′ ⊃ P ′ |= A).

(out :) P |= 〈↑X〉A �
= ∃P ′(P

↑X

−−⇀ P ′ ∧∇y.P ′y |= Ay).

(out :) P |= [↑X]A
�
= ∀P ′(P

↑X
−−⇀ P ′ ⊃ ∇y.P ′y |= Ay).

(in :) P |= 〈↓X〉A �
= ∃P ′(P

↓X

−−⇀ P ′ ∧ ∃y.P ′y |= Ay).

(in :) P |= [↓X]A
�
= ∀P ′(P

↓X
−−⇀ P ′ ⊃ ∀y.P ′y |= Ay).

(b) Late modality:
P |= 〈↓X〉lA �

= ∃P ′(P
↓X

−−⇀ P ′ ∧ ∀y.P ′y |= Ay).

P |= [↓X]lA
�
= ∀P ′(P

↓X
−−⇀ P ′ ⊃ ∃y.P ′y |= Ay).

(c) Early modality:
P |= 〈↓X〉eA �

= ∀y∃P ′(P
↓X
−−⇀ P ′ ∧ P ′y |= Ay).

P |= [↓X]eA
�
= ∃y∀P ′(P

↓X
−−⇀ P ′ ⊃ P ′y |= Ay).

Fig. 3. Modal logics for π-calculus in λ-tree syntax

consider free input modality 〈xy〉 since we restrict ourselves to late transition
system (but adding early transition rules and free input modality does not pose
any difficulty). We consider object formulas equivalent up to renaming of bound
variables.

We introduce the types o′ to denote object-level propositions, and the fol-
lowing constants for encoding the object connectives.

true : o′, false : o′, & : o′ → o′ → o′, ∨̂ : o′ → o′ → o′

〈·=̇·〉· : n→ n→ o′ → o′, [·=̇·]· : n→ n→ o′ → o′,
〈·〉· : a → o′ → o′, [·]· : a → o′ → o′,

〈↓ ·〉· : n→ (n→ o′)→ o′, [↓·]· : n→→ (n → o′)→ o′

〈↓ ·〉l· : n→ (n→ o′)→ o′, [↓·]l· : n→ (n → o′)→ o′

〈↓ ·〉e· : n→ (n→ o′)→ o′, [↓·]e· : n → (n→ o′)→ o′

The precise translation from object-level modal formulas to λ-tree syntax is given
in the following.

Definition 5. The following function [[.]] translates from object formulas to βη-
long normal terms of type o′.

46 A. Tiu

[[true]] = true [[false]] = false
[[A ∧ B]] = [[A]]&[[B]] [[A ∨ B]] = [[A]]∨̂[[B]]
[[[x = y]A]] = [x=̇y][[A]] [[〈x = y〉A]] = 〈x=̇y〉[[A]]
[[〈α〉A]] = 〈α〉[[A]] [[[α]A]] = [α][[A]]
[[〈x(y)〉A]] = 〈↓x〉(λy[[A]]) [[[x(y)]A]] = [↓x](λy[[A]])
[[〈x(y)〉LA]] = 〈↓x〉l(λy[[A]]) [[[x(y)]LA]] = [↓x]l(λy[[A]])
[[〈x(y)〉EA]] = 〈↓x〉e(λy[[A]]) [[[x(y)]EA]] = [↓x]e(λy[[A]])

The satisfaction relation |= between processes and formulas are encoded using
the same symbol, which is given the type p → o′ → o. The inference rules for
this satisfaction relation are given as definition clauses in Figure 3. Some of the
definition clauses make use of the syntactic equality predicate, which is defined
as the definition: X = X

�
= �. Note that the symbol = here is a predicate symbol

written in infix notation. The inequality x
= y is an abbreviation for x = y ⊃ ⊥.
We refer to the definition shown in Figure 3 as DA. This definition cor-

responds to the modal logic A defined in [17]. However, this definition is not
complete, in the sense that there are true assertion of modal logics which are
not provable using this definition alone. For instance, the modal judgment

x(y).x(z).0 |= 〈x(y)〉〈x(z)〉(〈x = z〉true ∨̂ [x = z]false)

is valid, but its encoding in FOλΔ∇ is not provable without additional assump-
tions. It turns out that the only assumption we need to get completeness is the
axiom of excluded middle on names:

∀x∀y.x = y ∨ x
= y.

Note that since we allow dynamic creation of scoped names (via ∇), we must
also state this axiom for arbitrary extension of local signatures. We therefore
define the following set of excluded middles on arbitrary finite extension of local
signatures

E = {∇n1 · · · ∇nk∀x∀y(x = y ∨ x
= y) | k ≥ 0}
We shall write X ⊆f E to indicate that X is a finite subset of E .

We shall now state the adequacy of the encoding of modal logics. The proof
of the adequacy result can be found in the extended version of this paper.

Proposition 6. Let P be a process, let A be an object formula. Then P |= A if
and only if for some list n̄ containing the free names of (P, A) and some X ⊆f E,
the sequent X − ∇n̄.([[P]] |= [[A]]) is provable in FOλΔ∇ with definition DA.

Note that we quantify free names in the process-formula pair in the above
proposition since, as we have mentioned previously, we do not assume any con-
stants of type n. Of course, such constants can be introduced without affecting
the provability of the satisfaction judgments, but for simplicity in the meta-
theory we consider the more uniform approach using ∇-quantified variables to
encode names in process and object formulas. Note that adequacy result stated
in Proposition 6 subsumes the adequacy for the specifications of the sublogics
of A.

Model Checking for π-Calculus Using Proof Search 47

P |=L 〈↑X〉A �
= ∃P ′(P

↑X
−−⇀ P ′ ∧∇y.P ′y |=y::L Ay).

P |=L [↑X]A
�
= ∀P ′(P

↑X
−−⇀ P ′ ⊃ ∇y.P ′y |=y::L Ay).

P |=L 〈↓X〉A �
= ∃P ′(P

↓X
−−⇀ P ′ ∧∇z∃y.y ∈ (z :: L) ∧ P ′y |=z::L Ay).

P |=L [↓X]A
�
= ∀P ′(P

↓X

−−⇀ P ′ ⊃ ∇z∀y.y ∈ (z :: L) ⊃ P ′y |=z::L Ay).

P |=L 〈↓X〉lA �
= ∃P ′(P

↓X
−−⇀ P ′ ∧∇z∀y.y ∈ (z :: L) ⊃ P ′y |=z::L Ay).

P |=L [↓X]lA
�
= ∀P ′(P

↓X

−−⇀ P ′ ⊃ ∇z∃y.y ∈ (z :: L) ∧ P ′y |=z::L Ay).

Fig. 4. A more concrete specification with explicit names representation.

5 Implementation of Proof Search

We now give an overview of a prototype implementation of a fragment of
FOλΔ∇, in which the specification of modal logics given in the previous sec-
tion is implemented. This implementation, called Level 0/1 prover [24], is based
on the duality of finite success and finite failure in proof search, or equally, the
duality of proof and refutation. In particular, the finite failure in proving a goal
∃x.G should give us a proof of ¬(∃x.G) and vice versa. We experiment with a
simple class of formulae which exhibits this duality. This class of formulae is
given by the following grammar:

Level 0: G := � | ⊥ | A | G ∧G | G ∨G | ∃x.G | ∇x.G
Level 1: D := � | ⊥ | A | D ∧D | D ∨D | G ⊃ D | ∃x.D | ∇x.D | ∀x.D
atomic: A := p t1 . . . tn

Notice that the level-0 formula is basically Horn-goal extended with ∇ to allow
dynamic creation of names. Level-0 formula is used to encode transition systems
(via definitions). Level-1 formula allows for reflecting on the provability of level-0
formulae, and hence exploring all the paths of the transition systems encoded at
level-0.

The proof search implementation for level-0 formula is the standard logic-
programming implementation. It is actually a subset of λProlog (with ∀ replacing
∇). That is, existentially quantified variables are replaced by logic variables, ∇-
quantified variables are replaced with (scoped) constants. The non-standard part
in Level 0/1 prover is the proof search for level-1 goals. Proof search for a level-1
goal G1 ⊃ G2 proceeds as follows:

1. Run the prover with the goal G1, treating eigenvariables as logic variables.
2. If Step 1 fails, then proof search for G1 ⊃ G2 succeeds. Otherwise, collect all

answer substitutions produced in Step 1, and for each answer susbtitution
θ, proceed with proving G2θ

There is some restriction on the occurrence of logic variables in Step 2, which
however does not affect the encoding of modal logics considered in this paper.
We refer the interested readers to [24] for more details.

48 A. Tiu

We now consider the problem of automating model-checking for a given pro-
cess P against a given assertion A of sublogics ofA. There are two main difficulties
in automating the model checking: when to use the excluded middle on names,
and guessing how many names to be provided in advance. There seems to be
two extremes in dealing with these problems: one in which excluded middles are
omitted and the set of names are fixed to the free names of the processes and
assertions involved, the other is to keep track of the set of free names explicitly
and to instantiate any universally quantified name with all the names in this
set. For the former, the implementation is straightforward: we simply use the
specification given in Figure 3. The problem is of course that it is incomplete,
although it may cover quite a number of interesting cases. We experiment here
on the second approach using explicit handling of names which is complete but
less efficient. The essential modifications to the specification in Figure 3 are
those concerning input modalities. We list some modified clauses in Figure 4,
the complete “implementation” can be found in an extended version of this pa-
per. We shall refer to this definition as DA′ The satisfiability relation |= now
takes an extra argument which is a list of names. The empty list is denoted with
nil and the list constructor with ::. Here we use an additional defined predicate
for list membership. It is defined in the standard way (writing the membership

predicate in infix notation): X ∈ (X :: L)
�
= � and X ∈ (Y :: L)

�
= X ∈ L.

Proposition 7. Let P be a process, let A be an object formula and let n̄ be a
list containing the free names of (P, A). Then P |= A if and only the formula
∇n̄.[[P]] |=n̄ [[A]] is provable in FOλΔ∇ with definition DA′. Moreover, proof
search in the Level 0/1 prover for the formula terminates.

6 Related and Future Work

Perhaps the closest to our approach is Mads Dam’s work on model checking
mobile processes [3,4]. However, our approach differs from his work in that the
proof system we introduce is modular; different transition systems can be incor-
porated via definitions, while in his system, specifications of transition systems
(π-calculus) are tightly integrated into the proof rules of the logic. Another
difference is that we use the labelled transitions to encode the operational se-
mantics which yields a simpler formalization (not having to deal with structural
congruence) while Dam uses commitment relation with structural congruence.
Another notable difference is that the use of relativised correctness assertions in
his work which make explicit various conditions on names. In our approach, the
conditions on names are partly taken care of implicitly by the meta logic (e.g.,
scoping, α-conversion, “newness”). However, Dam’s logic is certainly more ex-
pressive in the sense that it can handle modal μ-calculus as well, via some global
discharge conditions in proofs. We plan to investigate how to extend FOλΔ∇

with such global discharge conditions.
History dependent automata (see, e.g., [6]) is a rather general model theo-

retic approach to model checking mobile processes. Its basis in automata models

Model Checking for π-Calculus Using Proof Search 49

makes it closer to existing efficient implementation of model checkers. Our ap-
proach is certainly different from a conceptual view, so the sensible comparison
would be in terms of performance comparison. However, at the current stage
of our implementation, meaningful comparison cannot yet be made. A point to
note, however, is that in the approach using history dependent automata, the
whole state space of a process is constructed before checking the satisfiability
of an assertion. In our approach, states of processes are constructed only when
needed, that is, it is guided by the syntax of the process and the assertion it is
being checked against.

Model checkers for π-calculus have also been implemented in XSB tabled logic
programming [27]. The logic programming language used is a first-order one, and
consequently, they have to encode bindings, α-conversion, etc. using first-order
syntax. Such encodings make it hard to reason about the correctness of their
specification. Compared to this work, our approach here is more declarative and
meta theoretic analysis on the specification of the model checkers is available.
Model checking for a richer logic than the modal logics we consider has been done
in [2]. In this work, the issue concerning fresh names generation is dealt with
using the permutation techniques of Gabbay-Pitts [7]. As in Dam’s work, names
here are dealt with explicitly via some algorithms for computing fresh names,
while in our approach, the notion of freshness of names is captured implicitly by
their scoping. More in-depth comparison is left for future work.

We plan to improve our current implementation to use the tabling methods
in logic programming. Its use in implementing model checkers has been demon-
strated in XSB [27] and also in [20]. Implementation of tabled deduction for
higher-order logic programming has also been studied in [19], which can poten-
tially be used in the implementation of FOλΔ∇. We also plan to study other
process calculi and their related notions of equivalences and modal logics, in
particular the spi-calculus [1] and its related notions of bisimulation.

Acknowledgment. The author would like to thank the anonymous referees for
useful comments and suggestions. This work is based partly on a joint work with
Dale Miller (INRIA Futurs/École polytechnique).

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 99.

2. L. Caries. Behavioral and spatial observations in a logic for the pi-calculus. In
I. Walukiewicz, editor, Proc. of FoSSaCs 2004, 2004.

3. M. Dam. Model checking mobile processes. Inf. Comput., 129(1):35–51, 1996.
4. M. Dam. Proof systems for pi-calculus logics. Logic for concurrency and synchro-

nisation, pages 145–212, 2003.
5. L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions.

Vol. 596 of LNAI, pages 89–134. Springer-Verlag, 1991.
6. G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking veri-

fication environment for mobile processes. ACM Trans. Softw. Eng. Methodol.,
12(4):440–473, 2003.

50 A. Tiu

7. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2001.

8. J.-Y. Girard. A fixpoint theorem in linear logic. Email to the linear@cs.stanford.edu
mailing list, February 1992.

9. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

10. R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induc-
tion. Theoretical Computer Science, 232:91–119, 2000.

11. R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in se-
quent calculus. Theoretical Computer Science, 294(3):411–437, 2003.

12. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Vol. 475 of LNAI, pp. 253–281. Springer, 1991.

13. D. Miller. Unification under a mixed prefix. J. of Symboluc Computation,
14(4):321–358, 1992.

14. D. Miller and C. Palamidessi. Foundational aspects of syntax. ACM Comp. Surveys
Symp. on Theoretical Computer Science: A Perspective, vol. 31. ACM, 1999.

15. D. Miller and A. Tiu. A proof theory for generic judgments: An extended abstract.
In Proc. of LICS 2003, pages 118–127. IEEE, June 2003.

16. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part II.
Information and Computation, pages 41–77, 1992.

17. R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114(1):149–171, 1993.

18. T. Nipkow. Functional unification of higher-order patterns. In M. Vardi, editor,
Proc. of LICS’93, pages 64–74. IEEE, June 1993.

19. B. Pientka. Tabled Higher-Order Logic Programming. PhD thesis, Carnegie Mellon
University, December 2003.

20. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
In Proc. of CAV97, vol. 1254 of LNCS, pages 143–154, 1997.

21. D. Sangiorgi and D. Walker. π-Calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

22. P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Proc. of
LICS’93, pages 222–232. IEEE, June 1993.

23. R. F. Stärk. Cut-property and negation as failure. International Journal of Foun-
dations of Computer Science, 5(2):129–164, 1994.

24. A. Tiu. Level 0/1 Prover: A tutorial, September 2004. Available online.
25. A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD

thesis, Pennsylvania State University, May 2004.
26. A. Tiu and D. Miller. A proof search specification of the π-calculus. In 3rd

Workshop on the Foundations of Global Ubiquitous Computing, Sept. 2004.
27. P. Yang, C. Ramakrishnan, and S. Smolka. A logical encoding of the π-calculus:

model checking mobile processes using tabled resolution. International Journal on
Software Tools for Technology Transfer (STTT), 6(1):38–66, July 2004.

A Game Semantics of the Asynchronous

π-Calculus

J Laird�

Dept. of Informatics, University of Sussex, UK
jiml@sussex.ac.uk

Abstract. This paper studies the denotational semantics of the typed
asynchronous π-calculus. We describe a simple game semantics of this
language, placing it within a rich hierarchy of games models for program-
ming languages,

A key element of our account is the identification of suitable categor-
ical structures for describing the interpretation of types and terms at an
abstract level. It is based on the notion of closed Freyd category, estab-
lishing a connection between our semantics, and that of the λ-calculus.
This structure is also used to define a trace operator, with which name
binding is interpreted. We then show that our categorical characteriza-
tion is sufficient to prove a weak soundness result.

Another theme of the paper is the correspondence between justified
sequences, on which our model is based, and traces in a labelled transi-
tion system in which only bound names are passed. We show that the
denotations of processes are equivalent, via this correspondence, to their
sets of traces. These results are used to show that the games model is
fully abstract with respect to may-equivalence.

1 Introduction

The π-calculus [23] is an elegant and powerful formalism offering a flexible de-
scription of name mobility; it can be used to give detailed descriptions of con-
current systems, whilst its conceptual and formal simplicity suggest a route to
capturing an underlying “logical structure” of information flow. By investigating
the semantics of π-calculus at both abstract and more concrete levels, we aim
to develop a model of concurrent, mobile behaviour with both of these features.

In this paper, we describe approaches via category theory and denotational
(games) semantics. These complement each other well; the former yields an ab-
stract account of the structure of the π-calculus, whilst the latter gives more
concrete representations of processes, closely linked to games models of higher-
order programmming and logical systems, and also to other process models such
as labelled transition systems. Moreover, their rôles in this paper are interlinked
— we define the games model in terms of its categorical structure, whilst the

� Supported by EU FET-GC ‘MyThS: Models and Types for Security in Mobile Dis-
tributed Systems’ IST-2001-32617.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 51–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

im

52 J. Laird

existence of a concrete instance demonstrates the consistency and relevance of
the notion of categorical model.

Game semantics already contains a strong element of concurrency: programs
(or proofs) are interpreted as strategies, which are basically processes of a par-
ticular form, described via their traces. Moreover, π-calculus terms have already
been proposed as an elegant formalism for describing strategies in games models
of functional languages such as PCF [11,3]. One of the objectives of this paper
is to clarify and generalize this relationship between games and the π-calculus
(by showing that justified sequences of moves in the former correspond to traces
in a labelled transition system for the latter). This should enable the use of
the π-calculus to describe and reason about games models to be extended in a
methodical way — to imperative features such as state, for example.

On the other hand, given the connections between justifed sequences and
traces, what is the advantage of the former to model the π-calculus itself? If we
simply regard games as an abstract and mathematically precise representation of
trace semantics, this is already a useful development; for example, abstract inter-
pretation [21] and model-checking techniques [6,7] based on HO game semantics
are available. Moreover, since our games model is constructed in a purely com-
positional way, it can be generalized to more “truly concurrent” representations
of interaction — we sketch such a pomset model in Section 3.1.

A further important characteristic of game semantics is that it imposes a
higher-order, typed structure on the more chaotic world of processes, allowing
us to identify a deeper “logical structure” within it. It is this structure which we
aim to describe using categorical notions. In particular, our account is based on
closed Freyd categories [24] which are categorical models of the computational λ-
calculus, making a semantic connection between the π-calculus and higher-order
functional computation (which is implicit in existing translations of the latter
into the former). We also show that adding a simple distributivity condition
yields a natural definition of a trace operator, which we use to interpret new-
name binding, conforming to the intuition that this corresponds to a “plugging
in” of input and output. More generally, our account is part of an investigation
of the logical structure of higher-order imperative/concurrent computation [17].

1.1 Related Work

Hennessey [9], Stark [26] and Fiore, Moggi and Sangiorgi [20] have described
domain-theoretic models of the π-calculus, which are fully abstract with respect
to various notions of process equivalence. These works differ from the semantics
described here in aspects of the language and equivalence studied (synchronous
versus asynchronous, untyped versus typed, bisimulation versus may-testing).
One may also contrast the nature of the description of processes obtained: the do-
main theoretic models represent name-passing quite directly, whereas the games
model breaks it down into a smaller atoms. (Giving an equally natural charac-
terization of agent mobility.)

A closer parallel is with the data-flow semantics of the π-calculus given by
Jagadeesan and Jagadeesan [12], in which dynamic binding is described using

A Game Semantics of the Asynchronous π-Calculus 53

notions from the Geometry of Interaction, analogous to our use of the trace op-
erator. Viewed in the light of the correspondence between game semantics and
the labelled transition system described in Section 4, our work is also related
to Jeffrey and Rathke’s may-testing semantics of concurrent objects [14]. The
characterization of may-testing equivalence for the asynchronous π-calculus ob-
tained via interpretatation in the fully abstract model is essentially as described
(for a somewhat different LTS) by Boreale, de Nicola and Pugliese in [19].

Connections between Hyland-Ong games and the π-calculus were initially
investigated by Hyland and Ong themselves, who described a translation of
PCF into the π-calculus derived from the representation of innocent strategies
as π-calculus terms. This work was developed by Honda, Berger and Yoshida
[3,4], who developed a typing system for the π-calculus identifying sequential
processes, and showed that the translation of PCF into this fragment is fully
abstract. This research has many parallels with the work described here.

2 A Simply-Typed Asynchronous π-Calculus

We recall the polyadic asynchronous π-calculus [10,5], of which the key opera-
tions are the asynchronous output x〈y〉 of the tuple of names y on channel x,
and bound input x(y).P — reception of a tuple of names on channel x which are
then substituted for y in P . Our denotational semantics will be made clearer and
simpler by a small departure from the original syntax: instead of a single name
having distinct input and output capabilities, names will come in complemen-
tary pairs (x, x) of an input name and the corresponding output name x. New
name binding νx.P binds both x and x, but abstraction binds input and output
names separately.1 By convention, we write tuples of names as pairs (y, z) of
tuples of input names x and output names y. Clearly, we can represent a tuple
of names with both input and output capabilities as the pair (x, x). However,
there is no way to guarantee to the receiver of such a tuple that input and output
capabilities refer to the same channels. (The difficulties inherent in doing so, in
the denotational semantics, are similar to the “bad variable” problem for imper-
ative functional languages.) For related reasons we have neither matching nor
mismatching constructs (another point of difference with previous denotational
models). We adopt the convention of restricting replication to input-processes,
from which we may derive replication of general processes. So the terms of our
calculus are given by the grammar:

P,Q ::= 0 | x〈y, z〉 | x(y, z).P | !x(y, z).P | νx.P | P |Q

Our semantics will be given for a simply-typed version of the π-calculus.
Channel types take the form (S, T), being a pair of sequences of types (possibly
empty) representing the input and output capabilities of the channel (we write

1 So, in particular, any α-conversion which replaces an input name x with y must
replace x with y (and vice-versa) if x is bound by ν but need not if x is free or
bound in an abstraction.

54 J. Laird

Table 1. Typing Judgements for processes

Γ,x:T ,y:T�P ;Σ
Γ,z:T�P{z/x,z/y};Σ

Γ�P ;Σ,x:T ,y:T
Γ�P{z/x,z/y};Σ,z:T

Γ,x:S,y:T ,Γ ′�P ;Σ
Γ,y:T ,x:s,Γ ′�P ;Σ

Γ�P ;Σ,x:S,y:T ,Σ′

Γ�P ;Σ,y:T ,x:S,Σ′

Γ�0;Σ
Γ�P ;Σ Γ ′�Q;Σ′

Γ,Γ ′�P |Q;Σ,Σ′

Γ,y:S�x〈y,z〉;Σ,x:(S,T),z:T
Γ,y:S�P ;Σ,z:T

Γ,x:(S,T)�x(y,z).P ;Σ

Γ,y:S�P ;Σ,z:T
Γ,x:(S,T)�!x(y,z).P ;Σ

Γ,x:T�P ;Σ,x:T
Γ�νx.P ;Σ

() for the empty type (,)). Typing judgements take the form Γ � P ; Σ, where
Γ is a sequence of typed input names, and Σ is a sequence of typed output
names. Derivation rules are given in Table 1; we include explicit structural rules
as this simplifies the description of the categorical semantics.

We adopt a reduction semantics based on the standard rules for the π-
calculus, except that we require that communication only takes place over bound
channels. (Note that this is implied by the fact that α-equivalence allows us to
replace free input and output names separately: it is at the binding stage that
output is “plugged in” to input.) Thus the reduction rule for communication is
as follows:

νa.νx.(x(y, z).P 〉|x〈b, c〉|Q) −→ νa.νx.(P{b/y, c/z}|Q)

We define the reduction relation � to be the reflexive, transitive closure of (the
union of) one-step reduction and structural equivalence, where the latter is de-
fined (standardly) as the smallest congruence containing α-equivalence together
with the following rules:

P |Q ≡ Q|P 0|P ≡ P (P |Q)|R ≡ P |(Q|R)
νx.νy.P ≡ νy.νx.P (νx.P)|Q ≡ νx.(P |Q) (x
∈ FN(Q)) P ≡ P |!P
We will show that our semantics is fully abstract with respect to may-testing
equivalence. Although it is rather coarse, may-equivalence is useful in describing
safety properties, and in the study of deterministic programming languages via
translation.

We test processes in the π-calculus by observing whether they may produce
output on a distinguished channel. For a specified (output) name x : (), we write
P ↓ if P is structurally equivalent to a process of the form x〈〉|Q, and P ⇓ if
P � P ′ such that P ′ ↓.
Definition 1. Assuming that our testing channel x does not occur in P or Q,
we define P � Q if for all contexts C[·], C[P] ⇓ implies C[Q] ⇓, and P � Q if
P � Q and Q � P .

A Game Semantics of the Asynchronous π-Calculus 55

3 Game Semantics

An arena [11] is a forest in which the nodes or moves are labelled as belonging to
either Player or Opponent. Thus an arena A is specified as a triple (MA,λA,�A)
consisting of a set of moves, a labelling function λA : MA → {P, O} and a set
of directed edges �A⊆ MA×MA or enabling relation2. The root nodes of A are
called initial moves: an arena in which all initial moves are O-moves is said to
be negative. The dual A⊥ of the arena A is obtained by swapping Player and
Opponent moves: A⊥ = (MA,λ⊥A,�A), where λ⊥A(m) = P if λA(m) = O and
vice-versa.

A justified sequence s over an arena A is a sequence of moves of A, together
with a pointer from each non-initial move in s to some preceding move which
enables it. A justified sequence s may be represented as a sequence of moves s
together with a (partial) justification function js : N → N such that js(k) = i
if the kth move in s is justified by the ith move. We represent processes as sets
of justified sequences or strategies. We stipulate that strategies are closed un-
der a preorder , which allows us to give a sequential representation of parallel
processes by accounting for the fact that moves of the same polarity (input or
output actions) are independent events; their ordering is not (directly) observ-
able, whilst if a process responds to a sequence of actions by the environment
(O-moves), then it must make at least the same response to any sequence with
more or earlier O-moves. The preorder is based on that introduced in [16], but
similar relations are well-established in concurrency theory, in particular we note
their use in a LTS characterisation of may-equivalence for the π-calculus [19].

Definition 2. Let be the least preorder on justified sequences such that:

– If λ(a) = O then sabt sbat and if λOP (a) = P then sbat sabt.
– If λ(a) = O then sat st, and if λ(a) = P , then t sat.

In other words, s t if s can be obtained from t by removing P -moves or
migrating them forwards, and adding O-moves or migrating them backwards.
The label-inversion operation ()⊥ extends pointwise to justified sequences and
is antitone with respect to — s t if and only t⊥ s⊥.

Definition 3. A strategy σ : A is a non-empty subset of JA which is prefix-
closed — i.e. s ! t ∈ σ implies s ∈ σ — and -closed — i.e. s t and t ∈ σ
implies s ∈ σ.

Given any set S ⊆ JA, we may form a strategy Ŝ by taking the -closure of the
prefix-closure of S: Ŝ = {t ∈ JA | ∃s ∈ S, r ∈ JA.t ∈ S.t r ! s}.

We now define a category of processes P in which the objects are negative
arenas, and morphisms from A to B are strategies on the “function-space” A⊥"
B, where " is the disjoint union of forests:

A"B = 〈MA + MB, [λA,λB], [�A,�B]〉
2 Unlike games models of functional languages, we do not require that non-initial O

moves are enabled by P -moves and vice-versa.

56 J. Laird

Composition of σ : A → B and τ : B → C is by “parallel composition plus
hiding”[1]:

σ; τ = {s ∈ JA⊥�C | ∃t ∈ JA�B�C .t�A⊥, B ∈ σ ∧ t�B⊥, C ∈ τ ∧ t�A⊥, C = s}

(where t�A⊥, B means t restricted to moves from A and B, with the former
relabelled by swapping Player and Opponent labels). The identity strategy on A
is determined by its set of -maximal sequences, which are the sequences which
“copycat” between the two components:

idA = ̂{s ∈ JA⊥�A | ∀t !even .t�A⊥ = (t�A)⊥}

We show that P is a well-defined category following proofs for similar categories
of games [2,11,16].

We observe that " acts as a symmetric monoidal product3 on P with the
empty arena I as its identity element, and an action on functions taking σ : A →
C and τ : B → D to:

σ " τ = {s ∈ A⊥ "B⊥ " C "D | s�A⊥ " C ∈ σ ∧ s�B⊥ "D ∈ τ}

We also note that P is (pointed) cpo-enriched with the inclusion order on strate-
gies, the least element of each hom-set being the -closure of the set containing
only the empty sequence.

We will interpret each process x1 : S1, . . . , xm : Sm � P ; y1 : T1, . . . , yn : Tn

as a morphism from [[T1]] " . . . " [[Tn]] to [[S1]] " . . . " [[Sm]] in P . This may
seem counterintuitive: why not interpret P as a morphism from inputs to out-
puts in the dual of P? The reason is that we will interpret the type-structure
of the π-calculus using structure defined on P , rather than on its dual. We will
show that we can define a closed Freyd Category [24] based on (P , I,"). Closed
Freyd categories are models of Moggi’s computational λ-calculus (in a canonical
sense); thus we have the basis for a categorical analysis of the relationship be-
tween higher-order functional behaviour and name mobility. A Freyd category
is determined by a symmetric premonoidal category of “computations” (in this
case the SMC of processes P), a Cartesian category of “values”, and an identity-
on-objects, symmetric (pre)monoidal functor from the latter to the former. The
closure property operates via this functor.

We define a category of values or abstractions using the notion of well-opened
strategy, adapted from [22].

Definition 4. A legal sequence on a justified arena A is well-opened if it is
empty, or contains precisely one initial O-move, which is the first move.

In other words, the set WA of well-opened sequences of A consists of sequences
of the form as, where a is an O-move and s contains no initial O-moves. A
well-opened strategy σ is a non-empty and ! and -closed subset of WA.

3 For the sake of simplicity, we shall not henceforth mention associativity and unit
isomorphisms, as if in a strict monoidal category.

A Game Semantics of the Asynchronous π-Calculus 57

We may think of a well-opened strategy σ : A → B as a process which
receives a single input at B, and then produces multiple outputs at A. Thus to
define composition of σ with τ : B → C, we form the “parallel composition plus
hiding” of τ with the replication ad libitum of σ.

Definition 5. Let s|t denote the set of interleavings of the justified sequences s
and t. Given a set X of (justified) sequences, we may define the set !X consisting
of interleavings of elements of X — i.e. s ∈!X if there exists t1, . . . , tn ∈ σ such
that s ∈ t1| . . . |tn. Note that if σ is a strategy, then !σ is a strategy, and that !
is idempotent.

Composition of σ and τ is now defined:

σ; τ = {s ∈ WA⊥�C | ∃t ∈ WA�B�C .t�A⊥, B ∈!σ ∧ t�B⊥, C ∈ τ ∧ t�A⊥, C = s}

Thus we may form a category of abstractions,A in which the objects are negative
arenas, and the morphisms from A to B are well-opened strategies on A⊥ " B.
The well-opened identity on A is the well-opened subset of idPA — i.e. idAA :
A → A = idPA ∩WA⊥�A.

Lemma 1. A is a well-defined category, with finite products given by ".

Proof. We prove that !, idA have the following properties:

– If σ : A → B is well-opened, then !σ; idAB = σ,
– !idAA = idPA,
– If σ, τ are well-opened, then !σ; τ is well-opened, and !(!σ; τ) =!σ; !τ .

We also note that every well-opened strategy σ : A → B determines a unique
morphism from A to B in P as its -closure. In particular, we shall write the
 -closure of the well-opened identity as derA : A → A and use the fact that
derA ⊆ idA.

The proof of Lemma 1 also establishes that ! acts as a (identity-on-objects)
functor from A to P such that !(σ " τ) =!σ"!τ (and !I = I) and so !. The
Cartesian structure of A gives projection maps πl : A1 " A2 → A1 and πr :
A1 " A2 → A2, and a diagonal map ΔA : A → A " A. We use the fact that
each hom-set of A is a join semilattice with respect to the inclusion order to
define ∇A : A" A → A = πl ∪ πr. This has the defining properties !ΔA; !∇A =
!((Δ;πl) ∪ (Δ;πr)) =!idAA = idPA and idPA�A ⊆!∇A; !ΔA.

We have established that the SMC (P , I,"), the Cartesian category A, and
the functor ! form a Freyd Category in which the product is monoidal rather
than premonoidal. Moreoever, it is a closed Freyd Category — i.e. the functor
A"! : A → P has a right-adjoint A ⇀ . We define A ⇀ B to be ↑ (A⊥ " B),
where ↑ is the lifting operation which converts a forest to a tree by adding an
edge into each of its roots from a single, new (O-labelled) root.

↑ A = (MA + {∗}, [λA, {〈∗, O〉}], [�A, ∅] ∪ {〈∗, m〉 | �A m})

58 J. Laird

Proposition 1. For any arena B, B ⇀ is right-adjoint to ! "B : A→ P.

Proof. There is a simple bijection taking justified sequences in (A " B)⊥ " C
to well-opened sequences in A⊥" ↑ (B⊥ " C): prefix a single initial move in
↑ (B⊥, C), with justification pointers from the initial moves in (B⊥, C). This acts
on strategies to yield a natural isomorphism Λ : P(!A"B, C) → A(!A, B ⇀ C)

We use the following additional property of the adjunction: for any A, B,
(derA⇀B " idA); appA,B = appA,B, where appA,B : (A ⇀ B) " A → B is the
co-unit. (Since appA,B only makes the initial move in A ⇀ B once.)

We will interpret output as app, and input as the operation Λ, composed with
a natural transformation expressing a distributivity property for the exponential
over the tensor.

Definition 6. A Freyd category may be said to be distributive-closed if it is
closed, and there is a natural transformation: �A,B,C :!(A ⇀ (B " C)) →
B"!(A ⇀ C) satisfying the following properties:

– (�A,B,C ⊗ idA); (idB " appA,C) = appA,B�C ,
– �A,B,C⊗D; (idB ⊗ �A,C,D) = �A,B⊗C,D

In P , � is induced by the map from justified sequences on A ⇀ (B " C) to
justified sequences on (A ⇀ B) " C which relabels initial moves and removes
the justification pointers from the initial moves in C.

In any distributive-closed Freyd category, including P , we may define a trace
operator TrBA,C : P(A " B, C " B) → P(B, C) making P a traced monoidal
category [15]. This provides a natural notion of “feedback” connecting input
to output, with which we interpret new-name binding. We define the trace of
f : A"B → C "B:

TrBA,C(f) =!Λ(f ; θB,C); �B,B,C ; θB,B⇀C ; appB,C

Using naturality of the constituent operations, together with the axioms for �,
we prove the following lemma.

Lemma 2. Tr is a trace operator for P in the sense of [15].

We may now give the interpretation of the π-calculus in P . The type (S, T)
is interpreted as the negative arena [[T]] ⇀ [[S]] — i.e. ↑ ([[T1]]⊥ " . . . [[Tn]]⊥ "
[[S1]]". . ."[[Sm]]). Terms-in-context Γ � P ; Σ are interpreted as morphisms [[Γ �
P ; Σ]] : [[Σ]] → [[Γ]] using the structure of a symmetric monoidal, distributive-
closed Freyd category, according to the rules in Table 2. (More precisely, Table
2 gives rules for interpreting each typing-judgement derivation as a morphism;
we show that every derivation of the same term receives the same denotation.)

We will now use the categorical structure of our model to establish a weak
soundness result with respect to the reduction semantics: if M may reduce to N ,
then [[N]] is included in [[M]]. We first show soundness with respect to structural
equivalence.

A Game Semantics of the Asynchronous π-Calculus 59

Table 2. Interpretation of processes

[[Γ,y : T , x : S, Γ ′ � P ;Σ]] = [[Γ, x : S, y : T , Γ ′ � P ;Σ]]; (id[[Γ]] � θ[[T]],[[S]] � id[[Γ ′]])
[[Γ � P ;Σ, y : T , x : S, Σ′]] = (id[[Σ]] � θ[[S]],[[T]] � id[[Σ′]]); [[Γ � P ;Σ,x : S, y : T , Σ′]]

[[Γ, z : T � P{z/x, z/y}; Σ]] = [[Γ, x : T , y : T � P ;Σ]]; (id[[Γ]]�!Δ[[T]])

[[Γ � P{z/x, z/y};Σ, z : T]] = (id[[Σ]]�!∇[[T]]); [[Γ � P ;Σ, x : S, y : T]]

Γ � 0; Σ = ⊥Σ,Γ

[[Γ,Γ ′ � P |Q;Σ,Σ′]] = [[Γ � P, Σ]] � [[Γ ′ � Q;Σ′]]
[[Γ, x : (S, T) � x(y, z).P ;Σ]] =!Λ([[Γ,y : S � P ;Σ, z : T]]); �[[S]],[[Γ]],[[T]]; (der[[(S,T)]] � id[[Γ]])

[[Γ, x : (S, T) �!x(y, z).P ;Σ]] =!Λ([[Γ,y : S � P ;Σ, z : T]]); �[[S]],[[Γ]],[[T]]

[[Γ,y : S � x〈y, z〉; Σ, x : (S, T), z : T]] = ⊥Σ,Γ � app[[S]],[[T]]

[[Γ � νx.P ;Σ]] = Tr
[[T]]
[[Σ]],[[Γ]]

([[Γ, x : T � P ;Σ, x : T]])

Lemma 3. If M ≡ N , then [[M]] = [[N]].

Proof. The equivalences for parallel composition follow directly from the anal-
ogous properties of ". Those for new-name binding follow from its interpre-
tation as a trace operator — e.g. scope extrusion follows from “tightening”;
naturality of trX

A,B with respect to A, B. For replication, we use the fact that
!f =!Δ; ((!f ; der)"!f);πr ⊆!Δ; ((!f ; der)"!f); !∇ ⊆!Δ; (!f"!f); !∇.

Proposition 2. If M −→ N , then [[N]] ⊆ [[M]].

Proof. To show soundness of the reduction rule, we first observe that for any
process Γ, x : B, y : B � P ; Σ, x : B, y : B, [[νx.νy.P]] ⊆ [[νx.P{x/y, x/y}]]:

By sliding (naturality of the trace operator in B) we have [[νx.P{x/y, x/y}]]
= TrB[[Σ,Γ]]((id[[Σ]]"!ΔB); [[P]]; (id[[Γ]]"!∇B)) = TrB�B

[Σ]],[[Γ]]((id[[Σ]]" (!∇; !Δ)); [[P]]).

Since idB ⊆!∇B; !ΔB, we have [[νx.νy.P]] = TrB[[Σ]],[[Γ]](TrB[[Σ]]�B,[[Γ]]�B([[P]])) =
TrB�B

[[Σ]],[[Γ]]([[P]]) ⊆ [[νx.P{x/y, x/y}]] as required.
We then show that if c is not free in P,Q, then [[νc.(c〈a, b〉|c(y, z).P]] =

[[P{a/y, b/z}]], since [[νc.(c〈a, b〉|c(y, z).P]] = TrB[[Σ]],[[Γ]](app " (!Λ([[P]]); dist;
(der"id))); θ) = (!Λ([[P]])"id); dist; (id"id)(idΓ"app) = (!Λ([[P]])"id); app) =
[[P{a/y, b/z}]] (by the “generalized yanking” property for trace operators).

So [[νx.P{a/y, b/z}|Q]]=[[νx.(νc.c〈a, b〉|c(y, z).P)|Q]] ⊆ [[νx.x〈a, b〉|x(y, z).
P |Q]] as required.

3.1 More Categorical Models

Any semantics based on a distributive-closed Freyd category satisfying the prop-
erties used in the proof will also satisfy weak soundness: we have instances re-
flecting both finer and weaker notions of process equivalence.

Justified Pomsets. By moving to a representation of interaction in terms of
pomsets rather than sequences, we may define a finer “true-concurrency-style”
version of our games model. Its relationship to the pomset semantics of the
synchronous π-calculus in [12] is still under investigation.

A justified pomset over an arena A is a finite pomset p for which the labels
are elements of MA, and for each event e ∈ p with a non-initial label, a pointer

60 J. Laird

to an event e′ such that e′ < e and label(e′) � label(e). A pomset over A is
alternating, if whenever e′ is a maximal element of the set {d ∈ p | d <p e} then
λA(label(e)) = λ⊥A(label(e′)).

Note that each justified sequence s ∈ JA may be viewed as a (non-alternating),
justified total pomset: we may say that the justified sequence s is a sequential-
ization of the justified pomset p if there is a order, pointer and label-preserving
bijection from p to s. The sequentialization of a set X of pomsets is the set of
justified sequences which are the sequentialization of some p ∈ σ.

Let Op and Pp be the restrictions of P to Opponent and player moves, respec-
tively. We define the saturation order on justified, alternatin pomsets thus: p q
if there exist injective functions f : Oq → Op and g : Pp → Pq whicch preserve
and reflect order and labelling, and such that if f(a) justifies b, then a justifies
g(b), if a justifies f(b) then g(a) justifies b, and if f(a) < b then a < g(b).

Using the constructions ()⊥, " and ↑ (), we may construct a distributive-
closed Freyd category of arenas and pomset-strategies (sets of justified, alternat-
ing pomsets, closed under), and thus a semantics of the π-calculus. Denota-
tional equivalence in this model is strictly finer than the interleaving semantics:
the justified sequence denotation of any term is the sequentialization of its de-
notation in the justified pomset model.

Unjustified Sequences. On the other hand, we may construct models which
are coarser (not being adequate with respect to may-testing) but do have some-
what simpler structure and might therefore be used as abstract interpretations.
One example is obtained by simply forgetting the justification-pointers in the
games model. Given an arena A, an “unjustified sequence” over A is simply a se-
quence in M∗

A such that every non-initial move is preceded by at least one move
which enables it.We may define strategies and their composition exactly as for
the justified model, yielding a symmetric monoidal distributive-closed Freyd cat-
egory. With limited forms of recursion (iteration rather than general replication)
we may describe unjustified strategies as regular grammars [6].

We have further instances of “event-structure” like models in which mor-
phisms represent reachable positions, and compositional is wholly relational. In
this case we also lose some information about the sequential ordering of events.

4 Full Abstraction

We will now show that our game semantics is fully abstract with respect to
may-equivalence. The difficult part of the proof is to show that it is adequate:
any process � P ; x : () which has a non-empty denotation will produce a cor-
responding output on x. To show this we will relate our game semantics to a
labelled transition system for the asynchonous π-calculus. We show that traces in
our LTS are in bijective correspondence with justified sequences over the associ-
ated arenas, and that this extends to relate traces of terms to their denotations
as strategies. Rather than the standard LTS for the π-calculus, we use one in
which only bound names may be passed. This corresponds to labelled transition
systems for HOπ [25,13], in which messages are fresh names used as “triggers”.

A Game Semantics of the Asynchronous π-Calculus 61

Actions α are either silent (τ) or take the form x〈k, l〉 (input) or x〈k, l〉 (the
complementary output) where k, l are distinct names such that if x : (S, T),
then k : T and l : S. We refer to x (resp. x) as the channel of α, or κ(α), and
to k, l (resp. k, l) as the contents of α or ε(α). We require that the channel of
any action performed by P must occur free in P , and that its contents, and
their complements, must not occur free in P — i.e. the rules of Table 3 all
have as an implicit side condition that P

α−→ Q only if κ(α) ∈ FN(P) and
(ε(α) ∪ ε(α)) ∩ FN(P) = ∅. We write [x �→ y] for the “persistent forwarder”
!x(a, b).y〈a, b〉.

Table 3. LTS for bound name passing

x(y, z).P
x〈k,l〉−→ P{k/y, l/z} x〈y, z〉 x〈k,l〉−→ [y �→ k]|[l �→ z]

P
α−→P ′

P |Q α−→P ′|Q
P

α−→P ′

νx.P
α−→νx.P ′

P
α−→Q P≡P ′

P ′
α−→Q

P
x〈k,l〉−→ P ′ Q

x〈k,l〉−→ Q′

νx.(P |Q) τ−→νx.νk.νl.(P ′|Q′)

We write trace(P) for the set of traces of the process P , with the τ -actions
erased. If P is typable as Γ � P ; Σ, then every member of trace(P) is a (τ -free)
well-formed trace over (Γ, Σ) — a sequence of actions α such that:

– The channel of α either occurs as a free name in P — in which case we shall
say that α is initial — or in the contents of some unique previous action in
the trace, which we may call the justifier of α.

– The contents of α and their complements do not appear in Γ, Σ, or previously
in the trace.

We note also that the set of well-formed traces is closed under α-equivalence, and
that if M ≡α N , then ∀t ∈ trace(M).∃t′ ∈ N such that t ≡α t′, and vice-versa.

We may now observe that there is a simple correspondence between the
traces over (Γ, Σ) and the justified sequences on [[Σ]]⊥ " [[Γ]]: we replace each
output action with a Player move and each input action with an Opponent move,
and retain the justification structure. To determine which move replaces a given
action, we note that the justification history of each action determines a unique
path through the syntax forest of (Γ, Σ) (which is isomorphic to the forest of
moves [[Σ]]⊥" [[Γ]]), and this path determines a unique move in the arena. More
precisely, for each action α (with κ(α) : T) in a trace s over (Γ, Σ) we define a
map ψs,α from M[[T]] to M[[Σ]]⊥�[[Γ]]:

If α is initial then if κ(α) = xi : Si, then ψs,α(m) = (inl(ini(m)), and if κ(α) =
yi : Ti, then ψs,α(m) = inr(ini(m)).

If α is justified by β, then if κ(α) = xi : Si, then ψsα(m) = ψs,β(inl(ini(m)),
and if κ(α) = yi : Ti, then ψs,α(m) = ψs,β(inr(ini(m))).

62 J. Laird

Thus we may define a map φ from traces over (Γ, Σ) to justified sequences
over ([[Σ]]⊥ " [[Γ]]) by replacing each action α in s with ψs,α(∗), and defining a
justification function so that jφ(s)(k) = i if the kth action in s is the justifier of
the ith action.

It is easy to see that φ sends α-equivalent traces to the same justified se-
quence: the following lemma is then straightforward to prove.

Lemma 4. For any context (Γ, Σ), (α-equivalence classes of) traces over
(Γ, Σ), and justified sequences over the arena [[Γ]]⊥ " [[Σ]] are in bijective corre-
spondence.

What is the relationship between φ(trace(P)) and the denotation of P in the
games model? They are not equal in general; for example, the nil process has
no non-empty traces, but is not represented by the empty strategy. However, by
inductive characterization of trace(P) we may prove the following.

Proposition 3. For any process P , [[P]] = ̂φ(trace(P)).

We now use our weak soundness result, and the correspondence between traces
and justified sequences to prove that the denotational semantics is sound and
adequate with respect to may-testing in the the reduction semantics. To complete
the proof, we need to show that if a process may perform an input action in the
LTS, then it may perform the same action in the reduction semantics. First,
we prove the following equivalences by showing that the smallest precongruence
containing them is preserved by reduction.

Lemma 5. For any process Γ � P ; Σ, if k
∈ Γ then P{k/x} � νx.(P |[k �→ x]),
and if k
∈ Σ, then P{k/x} � νx.(P |[x �→ k]).

Lemma 6. For any process � P ; x : (), if P
τ∗
−→ P ′

x〈〉−→ Q then P ⇓.

Proof. By induction on the number of silent actions in P
τ∗
−→ P ′. If P = P ′,

then we show by induction on the derivation of P
x〈〉−→ Q that P ↓.

Otherwise, P
τ−→ P ′′

τ∗
−→ P ′

x〈〉−→ Q. We prove by induction on the derivation of
P

τ−→ P ′′ that there are terms R1,R2 such that P ≡νy.(yi〈c, d〉|yi(a, b).R1|R2),
and P ′′ ≡ νy.νk.νl.([c �→ k]|[l �→ d]|R1{k/a, l/b}|R2). Hence P reduces to
νy.(R1{c/a, d/b}|R2), and by Lemma 5, P ′′ � νy.(R1{c/a, d/b}|R2). By in-
duction hypothesis, P ′′ ⇓, and hence P ⇓ as required.

Proposition 4. For any process � P ; x : (), P ⇓ if and only if [[P]]
= ⊥.

Proof. From left-to-right, this follows from weak soundness by induction on
derivation length. From right-to left, this follows from Proposition 3 and Lemma
6: if [[P]]
= ⊥, then trace(P)
= ∅, and hence P ⇓ as required.

To prove full abstraction, we now show that for any terms with distinct de-
notations, we may define a distinguishing context. It is sufficient to show that

A Game Semantics of the Asynchronous π-Calculus 63

strategies which test for the existence of a given trace are definable, for which
we need to prove that for any sequence s ∈ [[Σ]]⊥ " [[Γ]], the strategy {̂s} is the
denotation of a term Γ � P ; Σ. In contrast to previous such “definability results”
for games models, this is straightforward to prove, since from any trace we may
extract a (“minimal”) term which generates it (following proofs of similar results
for the higher-order π-calculus [25]).

Proposition 5. For every justified sequence s ∈ [[Σ]]⊥ " [[Γ]], there exists a
process Γ � P ; Σ such that [[P]] = {̂s}.

Proof. By induction on the length of s. Suppose the first move in s is an Oppo-
nent move. We suppose without loss of generality that this move is the initial
move in the final conjunct of Γ = Γ ′, x : (S, T). By removing it, and relabelling
moves hereditarily justified by it as moves in [[S]] and [[T]]⊥, we may define a
justified sequence t on the arena [[Σ, S]]" [[Γ, T]]⊥. By induction hypothesis, the
strategy {̂t} is definable as a term Γ, y : S � P ; Σ, z : T and hence {̂s} is
definable as x(y, z).P .

If the first move is a Player move (initial in the final component of Σ = Σ′, x :
(S, T)), then by removing it and relabelling as above, we obtain a sequence t

such that {̂t} is definable as a process Γ, y : T � P ; Σ, z : T . Then {̂s} =
[[νy.νz.(P |x〈z, y〉)]].

Theorem 1. For any processes Γ � P,Q; Σ, P � Q if and only if [[P]] ⊆ [[Q]].

Proof. From right-to left (inequational soundness) this follows from soundness
and adequacy (Proposition 4). We prove the converse for processes P,Q with a
single (input) name y, which implies the general case as P (a, b) may be recovered
from y(a, b).P . So suppose [[y : T � P]]
⊆ [[y : T � Q]]. Then there exists
s ∈ [[T]] such that s ∈ [[P]] and s
∈ [[Q]]. By Proposition 5, the strategy {̂s⊥∗}
on [[T]]⊥ " (↑ I)⊥ (where ∗ is the unique move in ↑ I) is definable as a process
� R; y : T , x : (). Then [[νy.(P |R)]] = {∗} and hence by adequacy, νy.(P |R) ⇓.
But [[νy.(Q|R)]] = ⊥, since for all t∗ ∈ #s⊥∗$ we have t s⊥ and hence s t⊥

and so by assumption t⊥
∈ [[Q]]. Hence νy.(Q|R)
⇓, and P
� Q as required.

5 Conclusions and Further Directions

For the sake of simplicity, we have restricted our semantics to simple types, but
it is possible to extend it with recursive types, using the methodology developed
by McCusker for solving recursive domain equations in a functional setting [22].
In particular, we may construct a model of the standard, untyped π-calculus,
based on the type μX.(X,X).

Our semantics represents names implicitly, via information flow. So, for in-
stance, it does not provide a natural way to interpret matching and mismatching
constructs, or the association of input and output capabilities to a single name.
We could, however introduce the capacity to represent names explicitly into our

64 J. Laird

model using the techniques described in [18] based on a category of games acted
on by the group of natural number permutations.

The representation of processes via their traces, is probably suitable only for
characterizing testing equivalences. A natural extension of the current research
would be to construct a model of must-testing, by recording traces resulting in
divergence, as in [8,16] and deadlock. However, there are many technical compli-
cations. We have also sketched “true concurrency” and “abstract interpretation”
examples of our categorical semantics which require further investigation. Alter-
natively, we may use π-calculus terms themselves to represent strategies, in which
case we may ask which notions of equivalence yield a distributive-closed Freyd
category. We may also attempt to develop domain-theoretic instances of our cat-
egorical constructions and relate them to other such models of the π-calculus.

References

1. S. Abramsky, R. Jagadeesan. Games and full completeness for multiplicative linear
logic. Journal of Symbolic Logic, 59:543–574, 1994.

2. S. Abramsky, R. Jagadeesan and P. Malacaria. Full abstraction for PCF. Infor-
mation and Computation, 163:409–470, 2000.

3. M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. In Proceed-
ings of TLCA 2001, volume 2044 of Lecture Notes in Computer Science. Springer-
Verlag, 2001.

4. M. Berger, K. Honda, and N. Yoshida. Strong normalization in the π-calculus. In
Proceedings of LICS 2001. IEEE Press, 2001.

5. G. Boudol. Asynchrony in the pi-calculus. Technical Report 1702, INRIA, 1992.
6. D. Ghica and G. McCusker. The regular language semantics of second-order Ide-

alised Algol. Theoretical Computer Science (To appear), 2003.
7. D. Ghica and A. Murawski. Angelic semantics of fine-grained concurrency. In

Proceedings of FOSSACS ’04, number 2987 in LNCS, pages 211–225. Springer,
2004.

8. R. Harmer and G. McCusker. A fully abstract games semantics for finite non-
determinism. In Proceedings of the Fourteenth Annual Symposium on Logic in
Computer Science, LICS ’99. IEEE Computer Society Press, 1998.

9. M. Hennessy. A fully abstract denotational semantics for the π-calculus. Technical
Report 041996, University of Sussex (COGS), 2996.

10. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
Proceedings of ECOOP ’91, number 512 in LNCS, pages 133–147, 1991.

11. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.
Information and Computation, 163:285–408, 2000.

12. L. J. Jagadeesan and R. Jagadeesan. Causality and true concurrency: A data-flow
analysis of the pi-calculus. In Proceedings of AMAST ’95, 1995.

13. A. S. A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus
revisited. Technical Report 0402, University of Sussex (COGS), 2002.

14. A. S. A. Jeffrey and J. Rathke. A fully abstract may-testing semantics for concur-
rent objects. In Proceedings of LICS ’02, pages 101–112, 2002.

15. A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. Camb.
Phil. Soc., 119:447 – 468, 1996.

A Game Semantics of the Asynchronous π-Calculus 65

16. J. Laird. A game semantics of ICSP. In Proceedings of MFPS XVII, number 45
in Electronic notes in Theoretical Computer Science. Elsevier, 2001.

17. J. Laird. A categorical semantics of higher-order store. In Proceedings of CTCS
’02, number 69 in ENTCS. Elsevier, 2002.

18. J. Laird. A game semantics of local names and good variables. In Proceedings of
FOSSACS ’04, number 2987 in LNCS, pages 289–303. Springer, 2004.

19. R. de Nicola M. Boreale and R. Pugliese. Trace and testing equivalence on asyn-
chronous processes. Information and Computation, 172(2):139–164, 2002.

20. E. Moggi M. Fiore and D. Sangiorgi. A fully abstract model for the π-calculus. In
Proceedings of LICS ’96, 2996.

21. P. Malacaria and C. Hankin. Generalised flowcharts and games. In Proceedings
of the 25th International Colloquium on Automata, Langugages and Programming,
1998.

22. G. McCusker. Games and full abstraction for a functional metalanguage with re-
cursive types. PhD thesis, Imperial College London, 1996. Published by Cambridge
University Press.

23. R. Milner. Polyadic π-calculus: a tutorial. In Proceedings of the Marktoberdorf
Summer School on Logic and Algebra of Specification, 1992.

24. J. Power and H. Thielecke. Environments in Freyd categories and κ-categories. In
Proceedings of ICALP ’99, number 1644 in LNCS. Springer, 1999.

25. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh, 1993.

26. I. Stark. A fully abstract domain model for the π-calculus. In Proceedings of LICS
’96, 1996.

Efficient On-the-Fly Algorithms for the Analysis

of Timed Games

Franck Cassez1,�, Alexandre David2, Emmanuel Fleury2,
Kim G. Larsen2, and Didier Lime2

1 IRCCyN, UMR 6597, CNRS, France
Franck.Cassez@irccyn.ec-nantes.fr

2 Computer Science Department,
CISS (Center for Embedded Software Systems), Aalborg University, Denmark

{adavid, fleury, kgl, didier}@cs.aau.dk

Abstract. In this paper, we propose the first efficient on-the-fly algo-
rithm for solving games based on timed game automata with respect to
reachability and safety properties

The algorithm we propose is a symbolic extension of the on-the-fly al-
gorithm suggested by Liu & Smolka [15] for linear-time model-checking
of finite-state systems. Being on-the-fly, the symbolic algorithm may ter-
minate long before having explored the entire state-space. Also the in-
dividual steps of the algorithm are carried out efficiently by the use of
so-called zones as the underlying data structure.

Various optimizations of the basic symbolic algorithm are proposed as
well as methods for obtaining time-optimal winning strategies (for reach-
ability games). Extensive evaluation of an experimental implementation
of the algorithm yields very encouraging performance results.

1 Introduction

On-the-fly algorithms offer the benefit of settling properties of individual system
states (e.g. an initial state) in a local fashion and without necessarily having to
generate or examine the entire state-space of the given model. For finite-state
(untimed) systems the search for optimal (linear) on-the-fly or local algorithms
has been a very active research topic since the end of the 80’s [12,4,15] and is
one of the most important techniques applied in finite-state model-checkers using
enumerative or explicit state-space representation, as is the case with SPIN [10],
which performs on-the-fly model-checking of LTL properties.

Also for timed systems, on-the-fly algorithms have been absolutely crucial
to the success of model-checking tools such as Kronos [8] and Uppaal [13] in
their analysis of timed automata based models [2]. Both reachability, safety as
well as general liveness properties of such timed models may be decided using
on-the-fly algorithms exploring the reachable state-space in a (symbolic) forward
manner with the possibility of early termination. More recently, timed automata
technology has been successfully applied to optimal scheduling problems with
� Work supported by ACI Cortos, a program of the French government. Visits to

Aalborg supported by CISS, Aalborg University, Denmark.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 66–8 , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

0

Efficient On-the-Fly Algorithms for the Analysis of Timed Games 67

guiding and pruning heuristics being added to yield on-the-fly algorithms which
quickly lead to near-optimal (time- or cost-wise) schedules [5,3,11,18].

We consider timed game automata and how to

�1

�2

�3

�4

Goal

�5

x ≤ 1;c1

x > 1;u1

x < 1
u2

x := 0
x ≥ 2;c2

x < 1
u3

c3

x ≤ 1;c4

Fig. 1. A Timed Game Au-

tomaton

decide the existence of a winning strategy w.r.t.
reachability or safety. As an example, consider
the timed game automaton A of Fig. 1 consist-
ing of a timed automaton with one clock x and
two types of edges: controllable (ci) and uncon-
trollable (ui). The reachability game consists in
finding a strategy for a controller, i.e. when to
take the controllable transitions that will guaran-
tee that the system, regardless of when and if the
opponent chooses to take uncontrollable transi-
tions, will eventually end up in the location Goal.
Obviously, for all initial states of the form (1, x)
with x ≤ 1 there is such a winning strategy3.

Though such timed game automata for long
have been known to be decidable [16,6,9] there is still a lack of efficient and truly
on-the-fly algorithms for their analysis. Most of the suggested algorithms are
based on backwards fix-point computations of the set of winning states [16,6,9].
In contrast, the on-the-fly algorithms used for model-checking timed automata
models (w.r.t. reachability) make a forward symbolic state-space exploration
resulting in the so-called simulation graph. However, the simulation graph is
by itself too abstract to be used as the basis for an on-the-fly algorithm for
computing winning strategies. Fig. 2 (a) gives the simulation graph of the timed
game automata of Fig. 1, which incorrectly classifies the initial state as being
uncontrollable when viewed as a finite-state game.

As a remedy to this problem, the authors of [20,1] propose a partially on-
the-fly method for solving reachability games for a timed game automaton A.
However, this method involves an extremely expensive preprocessing step in
which the quotient graph of the dense time transition system SA w.r.t. time-
abstracted bisimulation4 needs to be built. Once obtained this quotient graph
may be used with any on-the-fly game-solving algorithm for untimed (finite-
state) systems. As an illustration, Fig. 2 (b) gives the time abstracted quotient
graph for the timed game automaton of Fig. 1. It should be easy for the reader
to see that the initial state will now (correctly) be classified as controllable.

In this paper, we propose an efficient, truly on-the-fly algorithm for the com-
putation of winning states for timed game automata. Our algorithm is a sym-
bolic extension of the on-the-fly algorithm suggested by Liu & Smolka [15] for

3 A winning strategy would consist in taking c1 immediately in all states (�1, x) with
x ≤ 1; taking c2 immediately in all states (�2, x) with x ≥ 2; taking c3 immediately
in all state (�3, x) and delaying in all states (�4, x) with x < 1 until the value of x is
1 at which point the edge c4 is taken.

4 A time-abstracted bisimulation is a binary relation on states preserving discrete
states and abstracted delay-transitions.

68 F. Cassez et al.

�1, x ≥ 0

�2, x ≥ 0

�3, x ≥ 0

�4, x ≥ 0

Goal, x ≥ 2

�5, x ≥ 1
c1

u1

u2

c2

u3

c3

c4

(a) Simulation Graph

1, x < 1 �1, x = 1 �1, x > 1

�2, x < 1 �2, x = 1 �2, x > 1

�3, x < 1 �3, x = 1 �3, x > 1

�4, x < 1 �4, x = 1 �4, x > 1

Goal, x ≥ 2

�5, x > 1

λ λ
u1

c1 c1

λ λ
λ, c2

u3

λ λ

c3 c3

λ λ

u2

c4 c4

(b) Time-abstracted Quotient Graph

Fig. 2. Simulation and time-abstracted quotient graph of Fig. 1 (λ is for time elapsing)

linear-time model-checking of finite-state systems. Being on-the-fly, the symbolic
algorithm may terminate before having explored the entire state-space, i.e. as
soon as a winning strategy has been identified. Also the individual steps of the al-
gorithm are carried out efficiently by the use of so-called zones as the underlying
data structure.

The rest of the paper is organized as follows. Section 2 provides definitions and
preliminaries about timed game automata and the classic backwards algorithm
for solving them. Section 3 presents our instantiation of the general on-the-fly al-
gorithm of Liu & Smolka [15] to untimed reachability games. Then, in Section
4, we present our symbolic extension of this algorithm, providing a first forward,
zone-based and fully on-the-fly algorithm for solving timed reachability games.
Section 5 discusses few optimizations of the basic algorithm and how to apply
the algorithm to determine time-optimal winning strategies. Section 6 presents
experimental evaluation of an efficient implementation of the algorithm to de-
termine (time-optimal) winning strategies. The performance results obtained are
very encouraging. Finally, Section 7 presents conclusion and future work.

2 Backward Algorithms for Solving Timed Games

Timed Game Automata [16] (TGA) were introduced for control problems on
timed systems. This section recalls basic results of controller synthesis for TGA.

Let X be a finite set of real-valued variables called clocks. We note C(X) the
set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ
where k ∈ Z, x, y ∈ X and ∼∈ {<,≤,=,>,≥}. B(X) is the subset of C(X) that
uses only rectangular constraints of the form x ∼ k. A valuation of the variables
in X is a mapping X 	→ R≥0 (thus RX

≥0). We write 0 for the valuation that
assigns 0 to each clock. For Y ⊆ X , we denote by v[Y] the valuation assigning
0 (resp. v(x)) for any x ∈ Y (resp. x ∈ X \ Y). We denote v + δ for δ ∈ R≥0

Efficient On-the-Fly Algorithms for the Analysis of Timed Games 69

the valuation s.t. for all x ∈ X , (v + δ)(x) = v(x) + δ. For g ∈ C(X) and
v ∈ RX

≥0, we write v |= g if v satisfies g and [[g]] denotes the set of valuations
{v ∈ RX

≥0 | v |= g}. A zone Z is a subset of RX
≥0 s.t. [[g]]= Z for some g ∈ C(X).

2.1 Timed Game Automata and Simulation Graph

Definition 1 (Timed Automaton [2]). A Timed Automaton (TA) is a tuple
A = (L, 0,Act,X, E, Inv) where L is a finite set of locations, 0 ∈ L is the
initial location, Act is the set of actions, X is a finite set of real-valued clocks,
E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions, Inv : L → B(X)
associates to each location its invariant.

A state of a TA is a pair (, v) ∈ L × RX
≥0 that consists of a discrete part

and a valuation of the clocks. From a state (, v) ∈ L × RX
≥0 s.t. v |= Inv(),

a TA can either let time progress or do a discrete transition and reach a new
state. This is defined by the transition relation −→ built as follows: for a ∈ Act,
(, v) a−−→ (′, v′) if there exists a transition

g,a,Y−−−−−→ ′ in E s.t. v |= g, v′ = v[Y]
and v′ |= Inv(′); for δ ≥ 0, (, v) δ−−→ (, v′) if v′ = v + δ and v, v′ ∈[[Inv()]].
Thus the semantics of a TA is the labeled transition system SA = (Q, q0,−→)
where Q = L × RX

≥0, q0 = (0,0) and the set of labels is Act ∪ R≥0. A run of
a timed automaton A is a sequence of alternating time and discrete transitions
in SA. We use Runs((, v), A) for the set of runs that start in (, v). We write
Runs(A) for Runs((0,0), A). If ρ is a finite run we denote last(ρ) the last state
of the run and Duration(ρ) the total elapsed time all along the run.

The analysis of TA is based on the exploration of a finite graph, the simulation
graph, where the nodes are symbolic states ; a symbolic state is a pair (, Z) where
 ∈ L and Z is a zone of RX

≥0. Let X ⊆ Q and a∈Act we define the a-successor of
X by Posta(X) = {(′, v′) | ∃(, v) ∈ X, (, v) a−−→ (′, v′)} and the a-predecessor
Preda(X) = {(, v) | ∃(′, v′) ∈ X, (, v) a−−→ (′, v′)}. The timed successors and
predecessors of X are respectively defined by X↗ = {(, v + d) | (, v) ∈ X∩
[[Inv()]], (, v + d) ∈[[Inv()]], d ∈ R≥0} and X↙ = {(, v − d) | (, v) ∈ X, d ∈
R≥0}. Let → be the relation defined on symbolic states by: (, Z) a−−→ (′, Z ′) if
(, g, a, Y, ′) ∈ E and Z ′ = ((Z∩ [[g]])[Y])↗. The simulation graph SG(A) of A
is defined as the transition system (Z(Q), S0,→), where Z(Q) is the set of zones
of Q, S0 = (({ 0,0}↗)∩ [[Inv(0)]] and → defined as above.

Definition 2 (Timed Game Automaton [16]). A Timed Game Automa-
ton (TGA) G is a timed automaton with its set of actions Act partitioned into
controllable (Actc) and uncontrollable (Actu) actions.

2.2 Safety and Reachability Games

Given a TGA G and a set of states K ⊆ L×RX
≥0 the reachability control problem

consists in finding a strategy f s.t. G supervised by f enforces K. The safety
control problem is the dual asking for the strategy to constantly avoid K. By

70 F. Cassez et al.

“a reachability game (G,K)” (resp. safety) we refer to the reachability (resp.
safety) control problem for G and K.

Let (G,K) be a reachability (resp. safety) game. A finite or infinite (ruling
out runs with an infinite number of consecutive time transitions of duration 0)
run ρ = (0, v0)

e0−→ (1, v1)
e1−→ · · · en−→ (n+1, vn+1) · · · in Runs(G) is winning if

there is some k ≥ 0 s.t. (k, vk) ∈ K (resp. for all k ≥ 0 s.t. (k, vk) ∈ K). The
set of winning runs in G from (, v) is denoted WinRuns((, v), G).

For reachability games we assume w.l.o.g. that the goal is a particular location
Goal. For safety games the goal is a set a locations to avoid.

The formal definition of the control problems is based on the definitions of
strategies and outcomes. A strategy [16] is a function that during the course
of the game constantly gives information as to what the controller should do
in order to win the game. In a given situation, the strategy could suggest the
controller to either i) “do a particular controllable action” or ii) “do nothing at
this point in time, just wait” which will be denoted by the special symbol λ.

Definition 3 (Strategy). Let G = (L, 0, Act,X, E, Inv) be a TGA. A strategy
f over G is a partial function from Runs(G) to Actc ∪ {λ} s.t. for every finite

run ρ, if f(ρ) ∈ Actc then last(ρ)
f(ρ)−−−→SG (′, v′) for some (′, v′).

We denote Strat(G) the set of strategies over G. A strategy f is state-based
whenever ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) = f(ρ′). State-
based strategies are also called memoryless strategies in game theory [9,19].

The restricted behavior of a TGA G controlled with some strategy f is defined
by the notion of outcome [9].

Definition 4 (Outcome). Let G = (L, 0, Act,X, E, Inv) be a TGA and f a
strategy over G. The outcome Outcome(q, f) of f from q in SG is the subset of
Runs(q,G) defined inductively by:

– q ∈ Outcome(q, f),
– if ρ ∈ Outcome(q, f) then ρ′ = ρ

e−−→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q,G)
and one of the following three conditions hold:

1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e,∃q′′ ∈ Q s.t. last(ρ) e′
−−→ q′′∧f(ρ e′

−−→ q′′) = λ.

– for an infinite run ρ, ρ ∈ Outcome(q, f) if all the finite prefixes of ρ are in
Outcome(q, f).

We assume that uncontrollable actions can only spoil the game and the con-
troller has to do some controllable action to win [6,16,11]. In other words, an un-
controllable action cannot be forced to happen in G. Thus, a run may end in a
state where only uncontrollable actions can be taken. Moreover we focus on reach-
ability games and assume K = {Goal}×RX

≥0. A maximal run ρ is either an infinite
run (supposing no infinite sequence of delay transitions of duration 0) or a finite
run ρ that satisfies either i) last(ρ) ∈ K or ii) if ρ

a−−→ then a ∈ Actu (i.e. the only
possible next discrete actions from last(ρ), if any, are uncontrollable actions).

Efficient On-the-Fly Algorithms for the Analysis of Timed Games 71

A strategy f is winning from q if all maximal runs in Outcome(q, f) are
in WinRuns(q,G). A state q in a TGA G is winning if there exists a winning
strategy f from q in G. We denote by W(G) the set of winning states in G and
WinStrat(q,G) the set of winning strategies from q over G.

2.3 Backwards Algorithms for Solving Timed Games

Let G = (L, 0, Act,X, E, Inv) be a TGA. For reachability games, the computa-
tion of the winning states is based on the definition of a controllable predecessor
operator [9,16]. The controllable and uncontrollable discrete predecessors of X
are defined by cPred(X) =

⋃
c∈Actc

Predc(X) and uPred(X) =
⋃

u∈Actu
Predu(X).

A notion of safe timed predecessors of a set X w.r.t. a set Y is also needed. Intu-
itively a state q is in Predt(X, Y) if from q we can reach q′ ∈ X by time elapsing
and along the path from q to q′ we avoid Y . Formally this is defined by:

Predt(X, Y)={q∈Q | ∃δ ∈ R≥0 s.t. q
δ−→ q′, q′ ∈ X and Post[0,δ](q) ⊆ Y } (1)

where Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] s.t. q
t−−→ q′} and Y = Q \ Y . The

controllable predecessors operator π is defined as follows5:

π(X) = Predt

(
X ∪ cPred(X), uPred(X)

)
(2)

Let (G,K) be a reachability game, if S is a finite union of symbolic states, then
π(S) is again a finite union of symbolic states. Moreover the iterative process
given by W 0 = K and Wn+1 = π(Wn) will converge after finitely many steps
for TGA [16] and the least fixed point obtained is W ∗. It is also proved in [16]
that W ∗ = W(G). Note also that W ∗ is the maximal set of winning states of G
i.e. a state is winning iff it is in W ∗. Thus there is a winning strategy in G iff
(0,0) ∈W ∗. Altogether this gives a symbolic algorithm for solving reachability
games. Extracting strategies can be done using the winning set of states W ∗.
For safety games (G,K), it suffices to swap the roles of the players leading to
a game G and solve a reachability game (G,K). If the winning set of states for
(G,K) is W then the winning set of states of (G,K) is W .

3 On-the-Fly Algorithm for Untimed Games

For finite-state systems, on-the-fly model-checking algorithms has been an ac-
tive and successful research area since the end of the 80’s, with the algorithm
proposed by Liu & Smolka [15] being particularly elegant (and optimal). We
present here our instantiation of this algorithm to untimed reachability games.

We consider untimed games as a restricted class of timed games with only
finitely many states Q and with only discrete actions, i.e. the set of labels is Act.
Hence (memoryless) strategies simplifies to a choice of controllable action given
the current state, i.e. f : Q −→ Actc. For (untimed) reachability games we assume
a designated set Goal of goal-states and the purpose of the analysis is to decide
the existence of a strategy f where all runs contains at least one state from Goal
5 Note that π is defined here such that uncontrollable actions cannot be used to win.

72 F. Cassez et al.

Initialization:
Passed← {q0};
Waiting ← {(q0, α, q′) |α ∈ Act q

α−→ q′};
Win[q0] ← (q0 ∈ Goal ? 1 : 0);
Depend[q0] ← ∅;

Main:
while ((Waiting �= ∅) ∧Win[q0] �= 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ �∈ Passed then

Passed← Passed∪ {q′};
Depend[q′] ← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting ← Waiting ∪ {(q′, α, q′′) | q′ α−→ q′′};
if Win[q′] then Waiting ← Waiting ∪ {e};

else (* reevaluate *)
Win∗ ←

∧
q

u−→u
Win[u] ∧

∨
q

c−→w
Win[w];

if Win∗ then
Waiting ← Waiting ∪Depend[q]; Win[q] ← 1;

if Win[q′] = 0 then Depend[q′] ← Depend[q′] ∪ {e};
endif

endwhile

Fig. 3. OTFUR: On-The-Fly Algorithm for Untimed Reachability Games

(once again, safety games are solved by swapping the roles of the controller and
the environment).

Now, our instantiation OTFUR of the local algorithm by Liu & Smolka
to untimed reachability games is given in Fig. 3. This algorithm is based on
a waiting-list, Waiting ⊆ E of edges waiting to be explored together with a
passed-list Passed ⊆ Q containing the states that have been encountered so far.
Information about the current winning status of a state is given by a function
W in : Passed → {0, 1}, where W in[q] is initialized to 0 and later potentially
upgraded to 1 when the winning status of successors to q change from 0 to 1.
To activate the reevaluation of the winning status of states, each state q has
an associated set of edges Depend[q] depending on it: at any stage Depend[q]
contains all edges (q′, α, q) that were encountered at a moment when W in[q] =
0 and where the winning status of the source state q′ must be scheduled for
reevaluation when W in[q] = 1 becomes true. We refer to [15] for the formal
proof of correctness of this algorithm summarized by the following theorem:

Theorem 1 ([15]). Upon termination of running the algorithm OTFUR on a
given untimed game G the following holds:

1. If q ∈ Passed and W in[q] = 1 then q ∈ W(G);
2. If Waiting = ∅ and W in[q] = 0 then q
∈ W(G).

In fact, the first property is an invariant of the while-statement holding
after each iteration. Also, the algorithm is optimal in that it has linear time

Efficient On-the-Fly Algorithms for the Analysis of Timed Games 73

complexity in the size of the underlying untimed game: it is easy to see that
each edge e = (q, α, q′) will be added to Waiting at most twice, the first time
q is encountered (and added to Passed) and the second time when W in[q′]
changes winning status from 0 to 16.

4 On-the-Fly Algorithm for Timed Games

Now let us turn our attention to the timed case and present our symbolic exten-
sion of the algorithm of Liu & Smolka providing a zone-based forward and on-
the-fly algorithm for solving timed reachability games. The algorithm, SOTFTR,
is given in Fig. 4 and may be viewed as an interleaved combination of forward
computation of the simulation graph of the timed game automaton together with
back-propagation of information of winning states. As in the untimed case the
algorithm is based on a waiting-list, Waiting, of edges in the simulation-graph
to be explored, and a passed-list, Passed, containing all the symbolic states of
the simulation-graph encountered so far by the algorithm.

The crucial point of our symbolic extension is that the winning status W in[q]
of an individual state q is replaced by a set W in[S] ⊆ S identifying the subset of
the symbolic state S which is currently known to be winning. The set Depend[S]
indicates the set of edges (or predecessors of S) which must be reevaluated
(i.e. added to Waiting) when new information about W in[S] is obtained (i.e.
when W in[S] � W in∗). Whenever an edge e = (S, α, S′) is considered with
S′ ∈ Passed, the edge e is added to the dependency set of S′ in order that
possible future information about additional winning states within S′ may also
be back-propagated to S. In Table 1, we illustrate the forward exploration and
backwards propagation steps of the algorithm.

The correctness of the symbolic on-the-fly algorithm SOTFTR is given by
the following lemma and theorem, the rigorous proofs of which can be found in
the appendix.

Lemma 1. The while-loop of algorithm SOTFTR has the following invariance
properties when running on a timed game automaton G:

1. For any S ∈ Passed if S
α−→ S′ then either (S, α, S′) ∈ Waiting or S′ ∈

Passed and (S, α, S′) ∈ Depend[S′]
2. If q ∈ W in[S] for some S ∈ Passed then q ∈ W(G)
3. If q ∈ S \W in[S] for some S ∈ Passed then either

– e ∈Waiting for some e = (S, α, S′) with S′ ∈ Passed,
or

– q
∈ Predt

[
W in[S] ∪

⋃
S

c−→T
Predc(W in[T]),

⋃
S

u−→T
Predu(T \W in[T])

]
.

6 To obtain an algorithm running in linear time in the size of G (i.e. |Q| + |E|) it is
important that the reevaluation of the winning status of a state q does not directly
involve (repeated and expensive) evaluation of the large boolean expression for Win∗.
In a practice, this may be avoided by adding a boolean bq and a counter cq recording
the existence of a winning, controllable successor of q, and the number of winning,
uncontrollable successor of q.

74 F. Cassez et al.

Initialization:

Passed← {S0} where S0 = {(�0,0)}↗;

Waiting ← {(S0, α, S′) |S′ = Postα(S0)
↗};

Win[S0] ← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;

Main:
while ((Waiting �= ∅) ∧ (s0 �∈Win[S0])) do

e = (S,α, S′) ← pop(Waiting);
if S′ �∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′] ← S′ ∩ ({Goal} × RX

≥0);

Waiting ← Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)↗};
if Win[S′] �= ∅ then Waiting ← Waiting ∪ {e};

else (* reevaluate *)a

Win∗ ← Predt(Win[S]∪
⋃

S
c−→T

Predc(Win[T]),⋃
S

u−→T
Predu(T \Win[T])) ∩ S;

if (Win[S] � Win∗) then
Waiting ← Waiting ∪Depend[S]; Win[S] ← Win∗;

Depend[S′]← Depend[S′] ∪ {e};
endif

endwhile

a When T �∈ Passed,Win[T] = ∅

Fig. 4. SOTFTR: Symbolic On-The-Fly Algorithm for Timed Reachability Games

Theorem 2. Upon termination of running the algorithm SOTFTR on a given
timed game automaton G the following holds:

1. If q ∈ W in[S] for some S ∈ Passed then q ∈ W(G);
2. If Waiting = ∅, q ∈ S \W in[S] for some S ∈ Passed then q
∈ W(G).

Termination of the algorithm SOTFTR is guaranteed by the finiteness of
symbolic states7 and the fact that each edge (S, α,T) will be present in the
Waiting-list at most 1 + |T | times, where |T | is the number of regions of T :
(S, α,T) will be in Waiting the first time that S is encountered and subse-
quently each time the value of W in[T] increases. Now, any given region may be
contained in several symbolic states of the simulation graph (due to overlap).
Thus the SOTFTR algorithm is not linear in the region-graph and hence not
theoretically optimal, as an algorithm with linear worst-case time-complexity
could be obtained by applying the untimed algorithm directly to the region-
graph. However, this is only a theoretical result and, as we shall see, the use of
7 Strictly speaking, this requires that we either transforms the given TGA into an

equivalent one in which all location-invariants insist on an upper bound on all clocks
or, alternatively, that we apply standard extrapolation w.r.t. maximal constant oc-
curring in the TGA (which is correct up to time-abstracted bisimulation).

Efficient On-the-Fly Algorithms for the Analysis of Timed Games 75

Table 1. Running SOTFTG

Steps Waiting Passed Depend Win
S S′

0 - - (S0, u1, S1), (S0, u2, S2), (S0, c1, S3) S0 - (S0, ∅)
1 S0 S3

(S0, u1, S1), (S0, u2, S2)
+ (S3, c2, S4), (S3, u3, S2)

S3 S3 �→ (S0, c1, S3) (S3, ∅)

2 S3 S4
(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S3, c2, S4)

S4 S4 �→ (S3, c2, S4) (S4, S4)

3 S3 S4
(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S0, c1, S3)

- - (S3, x ≥ 1)

4 S0 S3 (S0, u1, S1), (S0, u2, S2), (S3, u3, S2) S4 S3 �→ (S0, c1, S3) (S0, x = 1)

5 S3 S2
(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

S2 S2 �→ (S3, u3, S2) (S2, ∅)

6 S2 S5
(S0, u1, S1), (S0, u2, S2)
+ (S5, c4, S3)

S5 S5 �→ (S2, c3, S2) (S5, ∅)

7 S5 S3
(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

- S3 �→
(S2, c3, S2)
(S5, c4, S3)

(S5, x ≤ 1)

8 S2 S5
(S0, u1, S1), (S0, u2, S2)
+ (S3, u3, S2)

- S5 �→ (S2, c3, S2) (S2, x ≤ 1)

9 S3 S2
(S0, u1, S1), (S0, u2, S2)
+ (S0, c1, S3), (S5, c4, S3)

- - (S3, S3)

10 S0 S2 (S0, u1, S1), (S0, c1, S3), (S5, c4, S3) - S2 �→
(S3, u3, S2)
(S0, u2, S2)

(S0, x ≤ 1)

11 S5 S3 (S0, u1, S1), (S0, c1, S3) - - -
12 S0 S3 (S0, u1, S1) - - -
13 S0 S1 ∅ S1 S1 �→ (S0, u1, S1) (S1, ∅)
At step n, (S, α, S′) is the transition popped at step n + 1;
At step n, +(S, α, S′) the transition added to Waiting at step n;
Symbolic States: S0 = (�1, x ≥ 0),S1 = (�5, x > 1), S2 = (�3, x ≥ 0), S3 = (�2, x ≥ 0),
S4 = (Goal, x ≥ 2), S5 = (�4, x ≥ 0)

zones yields very encouraging performance results in practice, as is the case for
reachability analysis of timed automata.

5 Implementation, Optimizations and Extensions

5.1 Implementation of the Predt Operator with Zones

In order to be efficient, the algorithm SOTFTR manipulates zones. However,
while a forward step always gives a single zone as a result, the Predt operator
does not. So, given a symbolic state S, W in[S] is, in general, an union of zones
(and so is S \W in[S]). As a consequence, we now give two results, which allow
us to handle unions of zones (Theorem 3) and to define the computation of Predt

in terms of basic operations on zones (Theorem 4).

Theorem 3. The following distribution law holds:

Predt(
⋃
i

Gi,
⋃
j

Bj) =
⋃
i

⋂
j

Predt(Gi, Bj) (3)

Theorem 4. If B is a convex set, then the Predt operator defined in equation (1)
can be expressed as:

Predt(G,B) = (G↙ \B↙) ∪ ((G ∩B↙) \B)↙ (4)

76 F. Cassez et al.

5.2 Optimizations

Zone Inclusion. When we explore forward the automaton, we check if any
newly generated symbolic state S′ belongs to the passed list: S′ ∈ Passed. As
an optimization we may instead use the classical inclusion check: ∃S′′ ∈ Passed
s.t. S′ ⊆ S′′, in which case, S′ is discarded and we update the dependency graph
as well. Indeed, new information learned from the successors of S′′ can be new
information on S′ but not necessarily. This introduces an overhead in the sense
that we may back-propagate information for nothing.

On the other hand, back-propagating only the relevant information would be
unnecessarily complex and would void most of the memory gain introduced by
the use of inclusion. In practice, the reduction of the number of forward steps
obtained by the inclusion check pays off for large systems and is a little overhead
otherwise, as shown in our experiments.

Losing States. In the case of reachability, our games being determined, we can
sometimes decide at an early stage that a state q is losing (i.e. q
∈ W(SG)),
either because it is given as a part of the model in the same way as goal states,
or because it is deadlock state, which is not in the set of goal states.

The detection of such losing states has a two-fold benefit. First, we can stop
the forward exploration on these states, since we know that we have lost (in the
case of a user-defined non-deadlock losing state). Second, we can back-propagate
these losing states in the same way as we do for winning states and stop the
algorithm if we have the initial state s0 ∈ Lose[S0], where Lose[S] is the subset
of the symbolic state S currently known to be losing. In some cases, this can
bring a big benefit, illustrated by Fig. 1, if the guard x < 1 is changed to true
in the edge from 1 to 5.

Pruning. In the basic algorithm early termination takes place when the initial
state is known to be winning (i.e. s0 ∈ W in[S0]). However, we may extend
this principle to other parts of the algorithm. In particular, we can add the
condition that whenever an edge e = (S, α, S′) is selected and it turns out
that W in[S] = S then we may safely skip the rest of the while loop as we
know that no further knowledge on the winning states of S can be gained. In
doing so, we prune unnecessary continued forward exploration and/or expensive
reevaluation. When we back-propagate losing states as described previously, the
condition naturally extends to W in[S] ∪ Lose[S] = S.

5.3 Time Optimal Strategy Synthesis

Time-optimality for reachability games consists in computing the best (optimal)
time the controller can guarantee to reach the Goal location: if t∗ is the optimal-
time, the controller has a strategy that guarantees to reach location Goal within
t∗ time units whatever the opponent is doing, and moreover, the controller has
no strategy to guarantee this for any t < t∗.

First consider the following problem: decide whether the controller has a
strategy to reach location Goal within B time units. To solve this problem, we

Efficient On-the-Fly Algorithms for the Analysis of Timed Games 77

just add a fresh clock z to the TGA G and the in-z
5

3

x0 1

Fig. 5. Winning subset

of the initial zone of the

TGA of Fig. 1 with clock

z added

variant Inv() ≡ z ≤ B for all locations with z be-
ing unconstrained in the initial state. Then we com-
pute the set of winning states of this game and check
that (0,0, z = 0) is actually a winning state. If not,
try with some B′ > B. Otherwise we know that the
controller can guarantee to reach Goal within B time
units . . . but in addition we have the optimal-time to
reach Goal8. Indeed, when computing the winning set
of states W ∗ on the TGA G augmented with the z
clock (being initially unconstrained), we have the max-
imal set of winning states. This means that we obtain
some (0, Z0) ∈ W ∗ and (0,0, z = 0) ∈ (0, Z0). But
Z0∩{(0,0)} gives us for free the optimal-time to reach
Goal. Assume I = Z0 ∩ {(0,0)}, then 0 ∈ I and the

upper bound of I is less than B. This means that starting in (0,0) with z ∈ I
the controller can guarantee to reach Goal within B time units. And as W ∗ is
the maximal set of winning states, starting with z
∈ I cannot guarantee this any
more. Assume I = [0, b]. The optimal-time is then t∗ = B − b. If it turns out
that I is right open [0, b[, we even know more: that this optimal time t∗ cannot
be achieved by any strategy, but we can reach Goal in a time arbitrarily close
to t∗. On the example of Fig. 1, if we choose B = 5 we obtain a closed interval
I = [0, 3] giving the optimal time t∗ = 2 to reach Goal (Fig. 5). Moreover we
know that there is a strategy that guarantees this optimal.

6 Experiments

Several versions of the described timed game reachability algorithm have been
implemented: with or without inclusion checking between zones, with or with-
out back-propagation of the losing states, and with or without pruning. To
benchmark the implementations we used the Production Cell [14,17] case study
(Fig. 6). Unprocessed plates arrive on a feeding belt, are taken by a robot to a
press, are processed, and are taken away to a departure belt. The robot has two
arms (A and B) to take and release the plates and its actions are controllable,
except for the time needed to rotate. The arrival of the plates and the press are
uncontrollable.

We run experiments on a dual-Xeon 2.8GHz equipped with 3GB of RAM
running Linux 2.4.21. Table 2 shows the obtained results. The tests are done
with varying number of plates from 2 to 7, and with controllable (win) and
uncontrollable (lose) configurations. The models contain one clock for the con-
troller and one clock for each plate. An extra clock is added in the case of timed
optimal strategy.

8 To get an optimum, the condition of the while-loop must be Waiting �= ∅ alone in
the algorithm, disabling early termination.

78 F. Cassez et al.

AVAILABLE

PRESS

MIN_ROT..MAX_ROT

Arriving unprocessed plates

Leaving processed plates

MIN_INI..MAX_INI

ARRIVING

B

A

Fig. 6. The production cell

The inclusion checking of
zones is shown to be an impor-
tant optimization. Furthermore,
activating pruning, which really
exploits that the algorithm is on-
the-fly, is useful in practice: the
algorithm really terminates ear-
lier. The results for time optimal
reachability confirm that the al-
gorithm is exploring the whole
state-space and is comparable to
exploring without pruning. We
stress in the tables the best re-
sult obtained for every configu-
ration: it turns out that propagating back the losing states has a significant
overhead that pays off for large systems, i.e. it is clearly better from 6 plates.

The state-space grows exponentially with respect to the number of plates but
the algorithm keeps up linearly with it, which is shown on Fig. 7 that depicts
pre + post9. These results show that the algorithm based on zones behaves well
despite the fact that zones are (in theory) worse than Alur & Dill’s regions.

Table 2. Results for the different implementations: basic algorithm, then with inclusion

checking (inc), pruning (pruning), back propagation of losing states (backlose) and time

optimal strategy generation (topt, only for “win”, and pruning has little effect). For

each number of plates, the tests are done with a controllable (win) and an uncontrollable

(lose) configuration. Time (user process) is given in seconds (s) rounded to 0.1s and

memory in megabytes (M). ’-’ denotes a failed run (not enough memory). Results in

bold font are the best ones.

Plates Basic Basic Basic Basic +backlose Basic+backlose
+inc +inc +pruning +inc +pruning +inc +topt

time mem time mem time mem time mem time mem
win 0.0s 1M 0.0s 1M 0.0s 1M 0.0s 1M 0.04s 1M2
lose 0.0s 1M 0.0s 1M 0.0s 1M 0.0s 1M n/a n/a
win 0.5s 19M 0.0s 1M 0.0s 1M 0.1s 1M 0.27s 4M3
lose 1.1s 45M 0.1s 1M 0.0s 1M 0.2s 3M n/a n/a
win 33.9s 1395M 0.2s 8M 0.1s 6M 0.4s 5M 1.88s 13M4
lose - - 0.5s 11M 0.4s 10M 0.9s 9M n/a n/a
win - - 3.0s 31M 1.5s 22M 2.0s 16M 13.35s 59M5
lose - - 11.1s 61M 5.9s 46M 7.0s 41M n/a n/a
win - - 89.1s 179M 38.9s 121M 12.0s 63M 220.3s 369M6
lose - - 699s 480M 317s 346M 135.1s 273M n/a n/a
win - - 3256s 1183M 1181s 786M 124s 319M 6188s 2457M7
lose - - - - 16791s 2981M 4075s 2090M n/a n/a

9 pre + post represents the number of iterations of the algorithm and is therefore an
abstraction in both time and space of the implementation.

7 Conclusion and Future Work

In this paper we have introduced what we believe is the first completely on-the-
fly algorithm for solving timed games. For its efficient implementation we have

Efficient On-the-Fly Algorithms for the Analysis of Timed Games 79

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 3 4 5 6 7

Ite
ra

tio
ns

Plates

Scalability

Bad, winning
Good, winning

Bad, losing
Good, losing

Fig. 7. Scalability of the algorithm. The scale is logarithmic.

used zones as the main datastructure, and we have applied decisive optimiza-
tions to take full advantage of the on-the-fly nature of our algorithm and its
zone representation. Experiments have shown that an implementation based on
zones is feasible and with encouraging performances w.r.t. the complexity of the
problem. Finally, we have exhibited how to obtain the time optimal strategies
with minor additions to our algorithm (essentially book-keeping).

We are working on an improved version of the implementation to distribute
it and use the Uppaal GUI augmented with (un)controllable transitions. We are
investigating more aggressive abstractions for the underlying simulation graph
computed by our algorithm and efficient guiding of the search, in particular for
optimal strategies. Our algorithm is well suited for distributed implementation
by its use of unordered waiting-list and there are plans to pursue this directions as
has been done for Uppaal [7]. We are also investigating how to extract strategies
and represent them compactly with CDDs (Clock Decision Diagrams).

Acknowledgments. The authors want to thank Patricia Bouyer and Gerd
Behrmann for inspiring discussions on the topic of timed games.

References

1. K. Altisen and S. Tripakis. Tools for controller synthesis of timed systems. In
Proc. 2nd Work. on Real-Time Tools (RT-TOOLS’02), 2002. Proc. published as

Technical Report 2002-025, Uppsala University, Sweden.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

80 F. Cassez et al.

3. R. Alur, S. La Torre, and G. J. Pappas. Optimal Paths in Weighted Timed
Automata. In Proc. of 4th Work. Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of LNCS, pages 49–62. Springer, 2001.

4. Henrik R. Andersen. Model Checking and Boolean Graphs. Theoretical Computer
Science, 126(1):3–30, 1994.

5. E. Asarin and O. Maler. As Soon as Possible: Time Optimal Control for Timed Au-
tomata. In Proc. 2nd Work. Hybrid Systems: Computation & Control (HSCC’99),
volume 1569 of LNCS, pages 19–30. Springer, 1999.

6. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller Synthesis for Timed
Automata. In Proc. IFAC Symp. on System Structure & Control, pages 469–474.
Elsevier Science, 1998.

7. Gerd Behrmann. Distributed reachability analysis in timed automata. Journal of
Software Tools for Technology Transfer (STTT), 7(1):19–30, 2005.

8. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
Model-Checking Tool for Real-Time Systems. In Proc. 10th Conf. on Computer
Aided Verification (CAV’98), volume 1427 of LNCS, pages 546–550. Springer, 1998.

9. L. De Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic Algorithms for Infinite-
State Games. In Proc. 12th Conf. on Concurrency Theory (CONCUR’01), volume
2154 of LNCS, pages 536–550. Springer, 2001.

10. Gerard J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

11. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-Reachability and Control
for Acyclic Weighted Timed Automata. In Proc. 2nd IFIP Conf. on Theoretical
Computer Science (TCS 2002), volume 223, pages 485–497. Kluwer, 2002.

12. K. G. Larsen. Efficient Local Correctness Checking. In Proc. of Conf. of Computer
Assisted Verification (CAV’92), volume 663 of LNCS, pages 30–43. Springer, 1992.

13. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Journal of Software
Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

14. C. Lewerentz and T. Lindner. Production Cell: A Comparative Study in Formal
Specification and Verification. In Methods, Languages & Tools for Construction of
Correct Software, volume 1009 of LNCS, pages 388–416. Springer, 1995.

15. X. Liu and S. Smolka. Simple Linear-Time Algorithm for Minimal Fixed Points. In
Proc. 26th Conf. on Automata, Languages and Programming (ICALP’98), volume
1443 of LNCS, pages 53–66. Springer, 1998.

16. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In Proc. 12th Symp. on Theoretical Aspects of Computer Science
(STACS’95), volume 900, pages 229–242. Springer, 1995.

17. H. Melcher and K. Winkelmann. Controller Synthesis for the “Production Cell”
Case Study. In Proc. of 2nd Work. on Formal Methods in Software Practice, pages
24–36. ACM Press, 1998.

18. J. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal scheduling
using priced timed automata. In Proc. 10th Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’04), volume 2988 of LNCS, pages
220–235. Springer, 2004.

19. W. Thomas. On the Synthesis of Strategies in Infinite Games. In Proc. 12th Symp.
on Theoretical Aspects of Computer Science (STACS’95), volume 900, pages 1–13.
Springer, 1995. Invited talk.

20. S. Tripakis and K. Altisen. On-the-Fly Controller Synthesis for Discrete and Timed
Systems. In Proc. of World Congress on Formal Methods (FM’99), volume 1708
of LNCS, pages 233–252. Springer, 1999.

Modal Logics for Timed Control�

Patricia Bouyer1, Franck Cassez2, and François Laroussinie1

1 LSV, UMR 8643, CNRS & ENS de Cachan, France
{bouyer, fl}@lsv.ens-cachan.fr

2 IRCCyN, UMR 6597, CNRS, France
cassez@irccyn.ec-nantes.fr

Abstract. In this paper we use the timed modal logic Lν to specify
control objectives for timed plants. We show that the control problem
for a large class of objectives can be reduced to a model-checking problem
for an extension (Lcont

ν) of the logic Lν with a new modality.
More precisely we define a fragment of Lν , namely Ldet

ν , such that
any control objective of Ldet

ν can be translated into a Lcont
ν formula that

holds for the plant if and only if there is a controller that can enforce
the control objective.

We also show that the new modality of Lcont
ν strictly increases the ex-

pressive power of Lν while model-checking of Lcont
ν remains EXPTIME-

complete.

1 Introduction

Control Problem. The control problem (CP) for discrete event systems was
first studied by Ramadge & Wonham in [RW89]. The CP is the following: “Given
a finite-state model of a plant P (open system) with controllable and uncontrol-
lable discrete actions, a control objective Φ, does there exist a controller f such
that the plant supervised by f (closed system) satisfies Φ?” The dense-time ver-
sion of the CP with an untimed control objective has been investigated and
solved in [MPS95]. In this seminal paper, Maler et al. consider a plant P given
by a timed game automaton which is a standard timed automaton [AD94] with
its set of discrete actions partitioned into controllable and uncontrollable ac-
tions. They give an algorithm to decide whether a controller exists or not, and
show that if one such controller exists a witness can be effectively computed.
In [WT97] a semi-algorithm has been proposed to solve the CP when the plant
is defined by a hybrid (game) automaton.

Specification of Control Properties. In the aforementioned papers the con-
trol objective is either a safety or reachability property (or some simple Büchi
conditions). In [dAHM01] the authors give an algorithm to deal with general
ω-regular control objectives. It is to be noticed that those control objectives are
often called internal in the sense that they refer to the state properties (and
clocks) of the system to be controlled. In the case of timed systems they only
� Work supported by ACI Cortos, a program of the French government.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 81–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 P. Bouyer, F. Cassez, and F. Laroussinie

refer to the untimed sequences of states of the system and thus have a restrictive
expressiveness: it is possible to specify a property like “after p has been reached
q will be reached” but nothing like “after p has been reached, q will be reached
within less than d time units” (bounded liveness). Moreover, in the verification
methodology for closed systems, one usually models (and thinks of) the plant P
and the controller f as a closed system f(P), and specifies a property ϕ with a
suitable timed temporal logic and check whether the closed system f(P) satisfies
ϕ. It is then very natural to have similar logics in the game framework to specify
timed control objectives for open systems.

Our Contribution. The logic Lν [LL95] is a subset of the timed μ-calculus
that can be used for specifying timed safety properties of closed timed systems.
Modalities of Lν seem to be appropriate to specify timed control objectives as
well because we can use existential and universal quantifications over discrete
actions (as it is used in the untimed framework of [AVW03, RP03]), and also over
time delays. The control problem CP for a plant (specified as a timed automaton)
and a control objective in Lν expresses as folloes:

Given a timed automaton P , the plant, and a Lν formula ϕ, the
safety control objective, is there a controller f s.t. f(P) |= ϕ? (CP)

So far there is no constraint neither on the structure nor on the power of the
controller f we are looking for: it may even require unbounded memory or arbi-
trary small delays between two consecutive controllable actions. In this paper we
focus on controllability (CP) and not on the controller synthesis problem (i.e.
exhibit a witness controller).

The main result of the paper is that we can reduce CP for a plant P and an
Lν control objective ϕ, to a standard model-checking problem on the plant P
and a formula ϕc of a more expressive logic Lcont

ν , that extends Lν with a new
modality. More precisely we exhibit a deterministic fragment of Lν, namely Ldet

ν ,
s.t. for all ϕ ∈ Ldet

ν , the following reduction (RED) holds:(
There exists a controller f s.t. f(P) |= ϕ

)
⇐⇒ P |= ϕc (RED)

where ϕc is a formula of Lcont
ν . We also give an effective procedure to obtain ϕc

from ϕ.
Further on we study the logic Lcont

ν and prove that it is strictly more expres-
sive than Lν , which is a technically involved result on its own. We also show
that the new modality of Lcont

ν is not necessary when we restrict our attention
to sampling control (the controller can do an action every Δ time units) or to
Known Switch Conditions Dense-Time control (where time elapsing is uncontrol-
lable [CHR02]). A natural question following equation (RED) above is to study
the model-checking problem for timed automata against Lcont

ν specifications. In
the paper we prove that i) the model-checking of Lcont

ν over timed automata is
EXPTIME-complete; ii) Lcont

ν inherits the compositionality property of Lν .

Modal Logics for Timed Control 83

Related Work. In the discrete (untimed) case many logics used to specify
correctness properties of closed systems have been extended to specify control
objectives of open systems. ATL [AHK02] (resp. ATL∗) is the control version
of CTL (resp. CTL∗). More recently [AVW03, RP03] have considered a more
general framework in which properties of the controlled system are specified in
various extensions of the μ-calculus: loop μ-calculus for [AVW03] and quanti-
fied μ-calculus for [RP03]. In both cases the control problem is reduced to a
model-checking (or satisfiability) problem as in equation (RED). In the timed
framework, external specifications have been studied in [DM02]: properties of
the controlled system are specified with timed automata, and in [FLTM02], the
control objective is given as a formula of the logic TCTL.

Outline of the Paper. In section 2 we define basic notions used in the pa-
per: timed systems, logic Lν and variants and the control problem. In section 3
we prove that (RED) holds and also that ϕc is in Lν for two simpler control
problems. Section 4 is devoted to the study of the logic Lcont

ν (expressiveness,
decidability, and compositionality).

The proofs are omitted and can be found in [BCL05].

2 Timed Automata and the Timed Modal Logic Lν

We consider as time domain the set R≥0 of non-negative reals. Act is a finite
set of actions.1 We consider a finite set X of variables, called clocks. A clock
valuation over X is a mapping v : X → R≥0 that assigns to each clock a time
value. The set of all clock valuations over X is denoted RX

≥0. Let t ∈ R≥0, the
valuation v + t is defined by (v + t)(x) = v(x) + t for all x ∈ X . For Y ⊆ X , we
denote by v[Y ← 0] the valuation assigning 0 (resp. v(x)) for any x ∈ Y (resp.
x ∈ X \ Y).

We denote C(X) the set of clock constraints defined as the conjunctions of
atomic constraints of the form x �� c with x ∈ X , c ∈ ≥0 and ��∈ {<,≤, =,≥
,>}. For g ∈ C(X) and v ∈ RX

≥0, we write v |= g if v satisfies g and �g� denotes
the set {v ∈ RX

≥0 | v |= g}.

2.1 Timed Transition Systems and Timed Automata

Timed Transition Systems. A timed transition system (TTS) is a tuple S =
(Q, q0, Act, −→S) where Q is a set of states, q0 ∈ Q is the initial state, and
−→S⊆ Q × (Act ∪ ≥0) × Q is a set of transitions. If (q, e, q′) ∈−→S , we also
write q

e−−→S q′. The transitions labeled by a ∈ Act (resp. t ∈ R≥0) are called
action (resp. delay) transitions. We make the following common assumptions
about TTSs [Yi90]:

– 0-delay: q
0−−→S q′ if and only if q = q′,

– Additivity: if q
d−−→S q′ and q′

d′
−−→S q′′ with d, d′ ∈ R≥0, then q

d+d′
−−−−→S q′′,

1 We assume that Act and R≥0 are disjoint.

84 P. Bouyer, F. Cassez, and F. Laroussinie

– Continuity: if q
d−−→S q′, then for every d′ and d′′ in ≥0 such that d = d′+d′′,

there exists q′′ such that q
d′
−−→S q′′

d′′
−−−→S q′,

– Time-determinism: if q
e−−→S q′ and q

e−−→S q′′ with e ∈ R≥0, then q′ = q′′.

A run is a finite or infinite sequence ρ = s0
e1−−→S s1

e2−−→S · · ·
en−−−→ sn · · ·

We denote by first(ρ) = s0. If ρ is finite, last(ρ) denotes the last state of ρ.
Runs(q, S) is the set of runs in S starting from q and Runs(S) = Runs(q0, S). We
use q

e−−→S as a shorthand for “∃q′ s.t. q
e−−→S q′” and extend this notation to

finite runs ρ
e−−→S whenever last(ρ) e−−→S .

Timed Automata. A timed automaton (TA) [AD94] is a tuple A = (L, �0, Act,
X, inv,T) where L is a finite set of locations, �0 ∈ L is the initial location, X is a
finite set of clocks, inv : L → C(X) is a mapping that assigns an invariant to each
location, and T ⊆ L× [C(X)× Act× 2X]× L is a finite set of transitions2. The
semantics of a TA A = (L, �0, Act,X, inv,T) is a TTS SA = (L × X

≥0, (�0, v0),
Act,−→SA) where v0(x) = 0 for all x ∈ X and −→SA consists of: i) action

transition: (�, v) a−−→SA (�′, v′) if there exists a transition �
g,a,Y−−−−−→ �′ in T s.t.

v |= g, v′ = v[Y ← 0] and v′ |= inv(�′); ii) delay transitions: (�, v) t−−→SA (�, v′)
if t ∈ R≥0, v′ = v + t and v, v′ ∈ inv(�).

A TA is deterministic w.r.t. Σ ⊆ Act if for all a ∈ Σ, if (�, g1, a, Y1, �1) ∈ T
and (�, g2, a, Y2, �2) ∈ T then �g1� ∩ �g2� = ∅.

2.2 The Modal Logics Lν, Ldet

ν and Lcont
ν

The Modal Logic Lν [LL95, LL98]. The logic Lν over the finite set of
clocks K, the set of identifiers Id, and the set of actions Act is defined as the set
of formulae generated by the following grammar:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | x in ϕ | x �� c | [a] ϕ | 〈a〉 ϕ |
[δ] ϕ | 〈δ〉 ϕ | Z

where a ∈ Act, x ∈ K, ��∈ {<,≤, =,≥,>}, c ∈ ≥0, Z ∈ Id.
The meaning of the identifiers is specified by a declaration D assigning a Lν

formula to each identifier. When D is understood we write Z =ν ΨZ if D(Z) =

ΨZ . We define the following shorthands in Lν: r in ϕ
def
= x1 in x2 in · · · in xn in ϕ

if r = {x1, · · · , xn} ⊆ K.
Let S = (Q, q0, Act,−→S) be a TTS. Lν formulae are interpreted over ex-

tended states (q, v) where for q ∈ Q and v ∈ RK
≥0. We write “S, (q, v) |= ϕ” when

an extended state (q, v) satisfies ϕ in the TTS S. This satisfaction relation is
defined as the largest relation satisfying the implications in Table 1. The modal-
ities 〈e〉 with e ∈ Act ∪ {δ} correspond to existential quantification over action
or delay transitions, and [e] is the counterpart for universal quantification. An
extended state satisfies an identifier Z (denoted S, (q, v) |= Z) if it belongs to the

2 We often write �
g,a,Y−−−−−→ �′ instead of simply the tuple (�, g, a, Y, �′).

Modal Logics for Timed Control 85

maximal fixedpoint of the equation Z =ν ΨZ . Finally the formula clocks are used
to measure time elapsing in properties. We define �ϕ�S = {(q, v) | S, (q, v) |= ϕ}.
We write S |= ϕ for S, (q0, v0) |= ϕ where v0(x) = 0 for all x ∈ K. The logic Lν

allows us to express many behavioural properties of timed systems [LL98]. For
example the formula Z defined by ΨZ = (

∧
a∈Act[a] Z ∧ [δ] Z ∧ϕ) holds when all

reachable states satisfy ϕ. Other examples of formulae will be given later on in
the paper.

Table 1. Satisfaction implications for Lν

S, (q, v) |= α =⇒ α with α ∈ {tt, ff}
S, (q, v) |= x �� c =⇒ v(x) �� c
S, (q, v) |= Z =⇒ S, (q, v) |= ΨZ

S, (q, v) |= ϕ1 op ϕ2, =⇒ S, (q, v) |= ϕ1 op S, (q, v) |= ϕ2 with op ∈ {∧,∨}
S, (q, v) |= x in ϕ =⇒ S, (q, v[x ← 0]) |= ϕ

S, (q, v) |= [a] ϕ =⇒ for all q
a−−→S q′, S, (q′, v) |= ϕ

S, (q, v) |= 〈a〉 ϕ =⇒ there is some q
a−−→S q′, S, (q′, v) |= ϕ

S, (q, v) |= [δ] ϕ =⇒ for all t ∈ ≥0 s.t. q
t−−→S q′, S, (q′, v + t) |= ϕ

S, (q, v) |= 〈δ〉 ϕ =⇒ there is some t ∈ ≥0 s.t. q
t−−→S q′, S, (q′, v + t) |= ϕ

The Modal Logic Lcont
ν . As we will see later in the paper, the modal operators

of Lν are not sufficient to express dense-time control. Indeed we need to express
the persistence (w.r.t. time elapsing) of a property until a controllable action
is performed: we thus need to express that some property is true only for a
subset of the states of the plant which are reachable by time elapsing before
a controllable action leading to good states is possible. This kind of property
cannot be expressed using the [δ] and 〈δ〉 operators. This is why we define the new
modality [δ〉 , the semantics of which is defined over an extended configuration
(q, v) of a TTS S as follows:

S, (q, v) |= ϕ [δ〉 ψ ⇔ either ∀t ∈ R≥0, q
t−−→S q′ ⇒ S, (q′, v + t) |= ϕ

or ∃t ∈ R≥0 s.t. q
t−−→S q′ and S, (q′, v + t) |= ψ and

∀0 ≤ t′ < t, q
t′−−→S q′′ we have S, (q′′, v + t′) |= ϕ

(1)

Let Lcont
ν be the timed modal logic which extends Lν by adding the modality

[δ〉 . This operator is some kind of “Until” modality over delays. In [HNSY94]
the timed μ-calculus which is studied contains a modality � the semantics of
which is close to the semantics of [δ〉 (the main difference between � and [δ〉
is that � may include an action transition after the delay).

A Deterministic Fragment of Lν, Ldet
ν . In the following we will restrict

the possible control objectives to properties expressed in a subset Ldet
ν of Lν .

Indeed, we want to define a transformation such that equation (RED) given in
the introduction holds, the restriction is then motivated by the following remark:

86 P. Bouyer, F. Cassez, and F. Laroussinie

Remark 1. A control objective of Lν like ϕ1 ∧ ϕ2 intuitively requires to find
a controller that both ensures ϕ1 and ϕ2. In an inductive construction, this
amounts to build a controller that ensures ϕ1∧ϕ2 from two controllers: one that
ensures ϕ1 and an other that ensures ϕ2. This means that we must be able to
merge controllers in a suitable manner. The definition of Ldet

ν will syntactically
ensure that the conjunctions of Ldet

ν formulae can be merged safely, i.e. that they
are in some sense deterministic.

Indeed, any (first-level) subformula of a conjunction in Ldet
ν will be prefixed by

a modal operator with a particular action, and then the existence of a controller
for ϕ1 and another one for ϕ2 entails the existence of a controller for ϕ1 ∧ ϕ2.

In the untimed case, some kind of “deterministic” form is also used (the so-
called disjunctive normal form), but this is not a restriction as all formulae of
the μ-calculus can be rewritten in a disjunctive normal form [JW95]. One hope
could be to be able to transform any formula of Lν into an equivalent formula
of Ldet

ν , but we do not know yet if this is possible. Note that in the untimed
framework, transforming formulae of the μ-calculus into formulae in disjunctive
normal form is strongly related to the satisfiability problem, and in the timed
case, the satisfiability problem for Lν is still an open problem [LLW95].

We first define basic terms Bν by the following grammar:

α ::= tt | ff | x �� c | r in 〈a〉 ϕ | r in [a] ϕ

with x ∈ K, r ⊆ K, c ∈ and a ∈ Act ∪ {δ} and ϕ ∈ Ldet
ν (Ldet

ν is defined
hereafter). A set of basic terms A = {α1, α2, · · · , αn} is deterministic if for all
σ ∈ Act∪{δ} there is at most one i s.t. αi = r in 〈σ〉ϕ or αi = r in [σ]ϕ. We then
define Ldet

ν as the deterministic fragment of Lν inductively defined as follows:

Ldet
ν * ϕ,ψ ::= X | ϕ ∨ ψ |

∧
α∈A

α

with X ∈ Id and A a (finite) deterministic set of basic terms. With this restriction
on the conjunctions, if there are controllers fα for all α ∈ A, we can merge them
to obtain a controller for

∧
α∈A α (see remark 1 above).

Note that already many properties can be expressed in the fragment Ldet
ν , for

example safety and bounded liveness properties:

X1 = [Bad] ff ∧
∧

a �=Problem,Bad

[a] X1 ∧ [Problem] (z in X2) ∧ [δ] X1

X2 = z < dmax ∧ [Bad] ff ∧ [Alarm] X1 ∧
∧

a �=Alarm,Bad

[a] X2 ∧ [δ] X2

The above formula expresses that the system is always safe (represented by
property [Bad] ff), and that every Problem is followed in less than dmax time
units by the Alarm. The previous formula can also be specified using simpler
formalism (e.g. test automaton [ABBL03]) but this is not the case for every Ldet

ν

formula. The formula X = [δ]X ∧
∧

a∈Act[a]X ∧〈δ〉 〈b〉tt for some b ∈ Act, which
means that there is always some delay s.t. b is enabled cannot be expressed with
test automata.

Modal Logics for Timed Control 87

2.3 The Control Problem

Definition 1 (Live Plant). A live plant (plant in the sequel) P is a TA where
Act is partitionned into Actu and Actc and s.t. 1) it is deterministic w.r.t. every
a ∈ Actc; 2) in every state (�, v) the TA P can let time elapse or do an uncon-
trollable action.

A controller [MPS95] for a plant, is a function that during the evolution of
the system constantly gives information as to what should be done in order to
ensure a control objective Φ. In a given state the controller can either i) “enable
some particular controllable action” or ii) “do nothing at this point in time,
just wait” which will be denoted by the special symbol λ. Of course a controller
cannot prevent uncontrollable actions from occurring. Nevertheless, we assume
that the controller can disable a controllable action at any time, and this will
not block the plant because the plant is live.

Definition 2 (Controller). Let P = (L, �0, Act,X, inv,T) be a plant. A con-
troller3 f over P is a partial function from Runs(SP) to Actc ∪ {λ} s.t. for any
finite run ρ ∈ Runs(SP), if f(ρ) is defined 4 then f(ρ) ∈ {e | ρ e−→SP }.

The purpose of a controller f for a plant P is to restrict the set of behaviours
in SP in order to ensure that some property holds. Closing the plant P with f
produces a TTS (set of runs) corresponding to the controlled plant:

Definition 3 (Controlled plant). Let P = (L, �0, Act,X, inv,T) be a plant,
q ∈ SP and f a controller over P . The controlled plant f(SP , q) is the TTS
(Q, q, Act, −→f) defined inductively by:

– q ∈ Q,
– if ρ ∈ Runs(f(SP , q)), then last(ρ) e−−→f q′ and q′ ∈ Q, if last(ρ) e−−→SP q′

and one of the following three conditions hold:
1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e,∃last(ρ) e′
−−→SP q′′ s.t. λ = f(ρ e′

−−→SP q′′).

We note f(P) the controlled plant P by controller f from initial state of P .

The Δ-dense-time control problem amounts to finding a controller for a sys-
tem s.t. at least Δ ≥ 0 time units elapse between two consecutive control actions.
Such a controller is called a Δ-controller and can prevent time elapsing and force
a controllable action to happen at any point in time if the time elapsed since the
last controllable move is more than Δ. If Δ = 0 we admit controllers that can
do two consecutive actions separated by arbitrary small delays (even 0-delay),
i.e. controllers that have infinite speed. If Δ > 0, the Δ-controllers are forced to
be strongly non-zeno. We note ContrΔ(P) the set of Δ-controllers for plant P .
3 The notation f comes from the fact that a controller is specified as a function, as

strategies in game theory.
4 ρ

λ−→SP stands here for ∃t > 0 s.t. last(ρ)
t−→SP s′.

88 P. Bouyer, F. Cassez, and F. Laroussinie

Definition 4 (Δ-Dense-Time Control Problem). Let P = (L, �0, Act,X,
inv,T) be a plant, ϕ ∈ Ldet

ν , a (deterministic) safety control objective, and Δ ∈
≥0. The Δ-Dense-Time Control Problem (Δ-CP for short) asks the following:

Is there a controller f ∈ ContrΔ(P) such that f(P) |= ϕ? (Δ-CP)

Remark 2. In the above Δ-CP, we look for controllers which can do a controllable
action only if the time elapsed since the last controllable action is at least Δ.
We could specify many other classes of controllers: for example we could impose
the controller doing controllable actions exactly every Δ units of time (this is
called sampling control — see later), or to alternate controllable actions. Notice
that this fits very well in our framework as we will see in section 4 that Ldet

ν

is compositional : any reasonable constraint on the controller can be given as an
extra (timed) automaton and taken into account simply by synchronizing it with
the plant P . For example the Δ-controllers can be specified by an extra self-loop
automaton where the loop is constrained by a guard x ≥ Δ, any controllable
action can be done, and clock x is reset.

In the following we note PΔ the synchronized product of P with this self-
loop automaton (see [AD94] for the definition of the classical synchronisation
product).

3 From Control to Model Checking

In this section, we prove that for any control objective defined as a Ldet
ν formula

ϕ, we can build an Lcont
ν formula ϕ that holds for PΔ iff there exists a Δ-

controller which supervises plant P in order to satisfy ϕ. This corresponds to
equation (RED) we have settled in the introduction.

3.1 Dense-Time Control Problem

Let ϕ be a Ldet
ν formula and σ ∈ Actc ∪ {λ}, we define the formula ϕ σ by the

inductive translation of Fig. 1. Intuitively, formula ϕ ac will hold when there is
a controller which ensures ϕ and which starts by enforcing controllable action
ac whereas formula ϕ λ will hold when there is a controller which ensures ϕ
and which starts by delaying. We use the shortcut ϕ to express that nothing is
required for the strategy, which will correspond to

∨
σ∈Actc∪{λ} ϕ

σ.We also use
〈λ〉 tt as a shortcut for

∧
ac∈Actc

[ac] ff. Note that the new operator [δ〉 is used
in the formula [δ] ϕ

σ
. This translation rule introduces the superscript ac in the

disjunctive right argument of [δ〉 . This just means that we can actually prevent
time from elapsing at some point, if we perform a controllable action.

We can now state our main theorem about controllability:

Theorem 1. Given P a plant, ϕ ∈ Ldet
ν a control objective, Δ ∈ ≥0, we then

have: (
∃f ∈ ContrΔ(P) s.t. f(P) |= ϕ

)
⇐⇒ PΔ |= ϕ (2)

Modal Logics for Timed Control 89

∧
α∈A

α
σ

def
=

∧
α∈A

α σ
∨

α∈A

α
σ

def
=

∨
α∈A

α σ

〈a〉 ϕ
σ def

=

⎧⎨⎩
ff if σ, a ∈ Actc ∧ σ �= a
〈a〉 ϕ ∧ 〈σ〉 tt if a ∈ Actu

〈a〉 ϕ otherwise
x ∼ c σ def

= x ∼ c ∧ 〈σ〉 tt

〈δ〉 ϕ
σ def

=

{
〈δ〉 ϕ if σ = λ
ϕ σ if σ ∈ Actc

r in ϕ
σ def

= r in ϕ σ

[ac] ϕ
σ def

=

{
〈σ〉 tt if ac �= σ
〈ac〉 ϕ if ac = σ

[au] ϕ
σ def

= [au] ϕ ∧ 〈σ〉 tt

[δ] ϕ
σ def

=

⎧⎨⎩
ϕ σ if σ ∈ Actc

ϕ λ [δ〉
(∨
ac∈Actc

ϕ ac

)
otherwise X

σ def
= Xσ ∧ 〈σ〉 tt

Fig. 1. Definition of ϕ σ, ϕ ∈ Ldet
ν and σ ∈ Actc ∪ {λ}

The proof of Theorem 1 can be done by induction on the structure of the formula
and is given in [BCL05].

This theorem reduces the controllability problem for properties expressed in
Ldet

ν to some model-checking problem for properties expressed in Lcont
ν . Note

however that this theorem does not provide a method to synthesize controllers:
indeed Lν and Lcont

ν are compositional logics (see in the next section), controller
synthesis is thus equivalent to model synthesis. But, as already said, the satis-
fiability problem (or model synthesis) for Ldet

ν or Lν is still open (see [LLW95]
for partial results about this problem). Note also that as Lcont

ν is compositional
(see next section), verifying PΔ |= ϕ reduces to checking P |= ϕ /SΔ where SΔ

is the self-loop automaton mentioned before.

3.2 Known-Switch Condition Dense-Time Control

Known-switch condition (KSC) dense-time control [CHR02] corresponds to the
control of the time-abstract model of a game: intuitively this assumes that time
elapsing is not controllable. A controller can thus choose to do a controllable
action a ∈ Actc or to do nothing (λ), but in the latter case the controller does
not control the duration of the next continuous move.

To see that Lν is sufficient to express KSC dense-time control, we just need
to focus on formula of the type [δ] ϕ as this is the only formula that may need
the use of the [δ〉 operator when translated into a model-checking formula. More

precisely we only need to focus on the translation of [δ] ϕ
λ

as this is the only
case that can generate a [δ〉 formula. It is then clear that if the controller chooses
λ, and as it has no way of controlling time-elapsing in the time-abstract system,
it must ensure ϕ in all possible future positions in S. Thus [δ] ϕ

λ
simply reduces

to [δ] ϕ λ. Thus Lν is sufficient to express KSC dense-time control.

90 P. Bouyer, F. Cassez, and F. Laroussinie

3.3 Sampling Control

The sampling control problem is a version of the control problem where the
controller can perform a controllable action only at dates k.Δ for k ∈ N and
Δ ∈ . Δ is the sampling rate of the controller. Let P be a plant. As emphasized
earlier in this section for the Δ-dense-time control, we can build a plant PΔ

where all the controllable actions are required to happen at multiple values of
the sampling rate Δ. This can be done by defining a timed automaton BΔ with
one location �0, a fresh clock y, the invariant inv(�0) ≡ y ≤ Δ and a number of
loops on �0: for each ac ∈ Actc there is a loop (�0, y = Δ, ac, {y}, �0). Moreover
we want to leave the controller free to do nothing. To this end we add a new
controllable action reset and a loop (�0, y = Δ, reset, {y}, �0). As this action is
not in P , it is harmless to do it and when the controller does not want to do an
action, it can always choose to do reset.
Thus we can design an equivalent version of the sampling control where the
controller is bound to do a controllable action at each date k.Δ with k ∈ N.
As in the previous case of KSC dense-time control problem, we just modify the
definition of [δ] ϕ

λ
with:

[δ] ϕ
λ def

= [δ]
(
([reset] ff ∧ ϕ λ) ∨

∨
ac∈Actc

ϕ ac

)
which is equivalent to [δ]ϕ . Indeed the formula [reset]ff holds precisely when

no controllable action can be perfomed by the controller; and when 〈reset〉 tt
holds, a controllable move has to be performed.

4 The Timed Modal Logic Lcont
ν

In this section we focus on the logic Lcont
ν and prove several properties of this

logic, namely its expressive power, its decidability and compositionality.

Lcont
ν is More Expressive Than Lν. The modality “[δ〉” has been introduced

for expressing control properties of open systems. We now prove that this oper-
ator adds expressive power to Lν , i.e. it can not be expressed with Lν . As usual
we say that two formulae ϕ and ψ are equivalent for a class of systems S (we
then write ϕ ≡S ψ) if for all s ∈ S, s |= ϕ iff s |= ψ. A logic L is said to be as
expressive as L′ over S (denoted L +S L′) if for every ϕ ∈ L′, there exists ψ ∈ L
s.t. ϕ ≡S ψ. And L is said to be strictly more expressive than L′ if L +S L′ and
L′
+S L. We have the following result:

Theorem 2. The logic Lcont
ν is strictly more expressive than Lν over timed

automata.

The full proof is long and technical, we give it in [BCL05]. Here we just give
the techniques which we have used. Let ϕ be the Lcont

ν formula ([a] ff) [δ〉 (〈b〉 tt)
stating that no a-transition can be performed as long as (via delay transitions)
no b has been enabled. The core of the proof is based on the fact that there is
no Lν formula equivalent to ϕ.

Modal Logics for Timed Control 91

The difficult point is that it is not possible to find two TAs A and A′ such
that A |= ϕ, A′
|= ϕ and A |= ψ ⇔ A′ |= ψ for any ψ ∈ Lν . Indeed Lν allows
us to build a characteristic formula for a TA [LLW95] (i.e. a formula which
describes the behaviour of A w.r.t. strong timed bisimulation) and clearly the
two TAs A and A′ wouldn’t be bisimilar. This is a classical problem in temporal
logic [Eme91] where one shows that two temporal logics may have different
expressive power even if they have the same distinguishing power. This makes
the proof more difficult. Such expressiveness problems are not much considered
in the timed framework. Up to our knowledge this is one of the first proofs of
that type for timed logics.

To prove the result, we build two families of TAs (Ai)i≥1 and (A′i)i≥1 such
that for every integer i, Ai |= ϕ whereas A′i
|= ϕ. We then prove that if ϕ can
be expressed equivalently as formula Φ ∈ Lν (over timed automata), then there
must exist some integer i ≥ 1 such that A′i |= Φ, which will be a contradiction.
The behaviours of automata Ai and A′i can be represented by (and infered from)
the following picture.

A1

a

b

A′1
a

b

A2

a

b b

A′2
a

b b ...

Model-Checking Lcont
ν . Model-checking of Lν over TAs is an EXPTIME-

complete problem [AL02]. Adding the modality [δ〉 does not change this result,
we have:

Theorem 3. The model-checking of Lcont
ν over timed automata is EXPTIME-

complete.

Proof (Sketch). The EXPTIME-hardness comes from the EXPTIME-hardness
of the model-checking of Lν. For the EXPTIME-easyness, we just have to explain
how to handle the [δ〉 modality. Let A be a TA and Φ ∈ Lcont

ν . We consider
the region graph [AD94] RA associated with A and the set of formula clocks K.
Clearly the classical notion of region can be used for [δ〉 : two states in a region
r satisfy the same Lcont

ν formulae (the semantics of [δ〉 can be defined in term
of regions as well). Then we can define procedures to label RA states with the Φ
subformulae they satisfy. We can use the same algorithms as for Lν to label [δ]ϕ,
〈δ〉ϕ, 〈a〉ϕ, . . . and define a new procedure for the ϕ [δ〉ψ subformulae. This can
be done easily (as soon as ϕ and ψ have already been labeled) and it consists
in a classical “Until” over the delay transitions (see below a way of computing

92 P. Bouyer, F. Cassez, and F. Laroussinie

ϕ [δ〉 ψ with DBMs). The complexity of the algorithm will remain linear in the
size of RA and Φ, and finally exponential in the size of A and Φ [AL02]. ,-

Instead of considering region techniques, classical algorithms for timed model-
checking use zones (i.e. convex sets of valuations, defined as conjunctions of
x− y �� c constraints and implemented with DBMs [Dil90, Bou04]). This makes
verification more efficient in practice. In this approach �ϕ� is defined as sets of
pairs (q, z) where z is a zone and q is a control state of the TA. This approach is
also possible for Lcont

ν . Indeed we can define �ϕ[δ〉ψ� when �ϕ� and �ψ� are already
defined as sets of symbolic configurations (q, z). We use standard operations on
zones: ←−z (resp. −→z , zc) denotes the past (resp. future, complement) of z, and z+

represents the set z∪{v | ∃t > 0 s.t. v− t ∈ z and ∀0 ≤ t′ < t, v− t′ ∈ z} (if z is
represented by a DBM in normal form, z+ is computed by relaxing constraints
x < c to x ≤ c). It is then easy to prove that:

�ϕ [δ〉 ψ� =
(←−−�ϕ�c

)c

∪
[(←−−−−−−−−−(−→�ψ� ∪ �ϕ�

)c
)c

∩
(
�ψ� ∪

(
�ϕ� ∩

(←−−−−−−−�ϕ�+ ∩ �ψ�
)))]

Lcont
ν is Compositional. An important property of Lν is that it is composi-

tional [LL95, LL98] for timed automata. This is also the case for Lcont
ν .

A logic L is said to be compositional for a class S of models if, given an
instance (s1| · · · |sn) |= ϕ with si ∈ S and ϕ ∈ L, it is possible to build a formula
ϕ/s1 (called a quotient formula) s.t. (s1| · · · |sn) |= ϕ ⇔ (s2| · · · |sn) |= ϕ/s1.
This can be viewed as an encoding of the behaviour of s1 into the formula. Of
course this also depends on the synchronization function, but we will not enter
into the details here.

For ϕ ∈ Lν , A a TA, it is possible to define inductively a quotient formula
ϕ/A (we refer to [LL98] for a complete description of this technique). In order
to prove that Lcont

ν is compositional it is sufficient to define the quotient formula
for the new modality ϕ [δ〉 ψ. We define the quotient of ϕ1 [δ〉 ϕ2 for a location
� of a TA A in the following way:(

ϕ1 [δ〉 ϕ2

)
/�

def
=

(
inv(�) ⇒ (ϕ1/�)

)
[δ〉

(
inv(�) ∧ (ϕ2/�)

)
With such a quotient construction we get the following proposition:

Proposition 1. The logic Lcont
ν is compositional for the class of timed au-

tomata.

We have discussed a little bit in previous sections why the property is very
useful and important. In particular, the new modality of Lcont

ν has been added
to the model-checker CMC [LL98] which implements a compositional model-
checking algorithm: it first computes a quotient formula of the system and the
property and then check for the satisfiability of the formula. We have added to
CMC the quotient rule for the operator [δ〉 and thus we can use CMC for checking
controllability properties. We do not provide here our experimental results but
better refer to the web page of the tool: http://www.lsv.ens-cachan.fr/ fl/
cmcweb.html.

Modal Logics for Timed Control 93

5 Conclusion

In this paper we have used the logic Lν to specify control objectives on timed
plants. We have proved that a deterministic fragment of Lν allows us to reduce
control problems to a model-checking problem for an extension of Lν (denoted
Lcont

ν) with a new modality. We have also studied the properties of the extended
logic Lcont

ν and proved that i) Lcont
ν is strictly more expressive than Lν ; ii) the

model-checking of Lcont
ν over timed automata is EXPTIME-complete; iii) Lcont

ν

inherits the compositionality property of Lν .
Our current and future work is many-fold:

– extend our work to the synthesis of controllers. Note that this problem is
strongly related to the satisfiability problem for Ldet

ν and Lν which is still
open [LLW95].

– use the features of the logic Lν to express more general types of control
objectives e.g. to take into account dynamic changes of the set of controllable
events as in [AVW03].

References

[ABBL03] Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim G. Larsen. The
power of reachability testing for timed automata. Theoretical Computer
Science, 300(1–3):411–475, 2003.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-
time temporal logic. Journal of the ACM, 49:672–713, 2002.

[AL02] Luca Aceto and François Laroussinie. Is your model-checker on time ? on
the complexity of model-checking for timed modal logics. Journal of Logic
and Algebraic Programming (JLAP), 52–53:7–51, 2002.

[AVW03] André Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthe-
sis of controllers with partial observation. Theoretical Computer Science,
1(303):7–34, 2003.

[BCL05] Patricia Bouyer, Franck Cassez, and François Laroussinie. Modal logics
for timed control. Research Report LSV-05-04, Laboratoire Spécification
& Vérification, ENS de Cachan, France, 2005.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata. Formal
Methods in System Design, 24(3):281–320, 2004.

[CHR02] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A com-
parison of control problems for timed and hybrid systems. In Proc. 5th
International Workshop on Hybrid Systems: Computation and Control
(HSCC’02), volume 2289 of LNCS, pages 134–148. Springer, 2002.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic
algorithms for infinite-state games. In Proc. 12th International Conference
on Concurrency Theory (CONCUR’01), volume 2154 of Lecture Notes in
Computer Science, pages 536–550. Springer, 2001.

[Dil90] David Dill. Timing assumptions and verification of finite-state concurrent
systems. In Proc. of the Workshop on Automatic Verification Methods for
Finite State Systems (1989), volume 407 of Lecture Notes in Computer
Science, pages 197–212. Springer, 1990.

94 P. Bouyer, F. Cassez, and F. Laroussinie

[DM02] Deepak D’Souza and P. Madhusudan. Timed control synthesis for exter-
nal specifications. In Proc. 19th International Symposium on Theoretical
Aspects of Computer Science (STACS’02), volume 2285 of Lecture Notes
in Computer Science, pages 571–582. Springer, 2002.

[Eme91] E. Allen Emerson. Temporal and Modal Logic, volume B (Formal Models
and Semantics) of Handbook of Theoretical Computer Science, pages 995–
1072. MIT Press Cambridge, 1991.

[FLTM02] Marco Faella, Salvatore La Torre, and Aniello Murano. Dense real-time
games. In Proc. 17th Annual Symposium on Logic in Computer Science
(LICS’02), pages 167–176. IEEE Computer Society Press, 2002.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model-checking for real-time systems. Information and Compu-
tation, 111(2):193–244, 1994.

[JW95] David Janin and Igor Walukiewicz. Automata for the modal mu-calculus
and related results. In Proc. 20th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS’95), volume 969 of Lecture
Notes in Computer Science, pages 552–562. Springer, 1995.

[LL95] François Laroussinie and Kim G. Larsen. Compositional model-checking of
real-time systems. In Proc. 6th International Conference on Concurrency
Theory (CONCUR’95), volume 962 of Lecture Notes in Computer Science,
pages 27–41. Springer, 1995.

[LL98] François Laroussinie and Kim G. Larsen. CMC: A tool for compositional
model-checking of real-time systems. In Proc. IFIP Joint International
Conference on Formal Description Techniques & Protocol Specification,
Testing, and Verification (FORTE-PSTV’98), pages 439–456. Kluwer Aca-
demic, 1998.

[LLW95] François Laroussinie, Kim G. Larsen, and Carsten Weise. From timed
automata to logic – and back. In Proc. 20th International Symposium on
Mathematical Foundations of Computer Science (MFCS’95), volume 969
of Lecture Notes in Computer Science, pages 529–539. Springer, 1995.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete
controllers for timed systems. In Proc. 12th Annual Symposium on The-
oretical Aspects of Computer Science (STACS’95), volume 900 of Lecture
Notes in Computer Science, pages 229–242. Springer, 1995.

[RP03] Stéphane Riedweg and Sophie Pinchinat. Quantified mu-calculus for con-
trol synthesis. In Proc. 28th International Symposium on Mathematical
Foundations of Computer Science (MFCS’03), volume 2747 of Lecture
Notes in Computer Science, pages 642–651. Springer, 2003.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event sys-
tems. Proc. of the IEEE, 77(1):81–98, 1989.

[WT97] Howard Wong-Toi. The synthesis of controllers for linear hybrid automata.
In Proc. 36th IEEE Conference on Decision and Control, pages 4607–4612.
IEEE Computer Society Press, 1997.

[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. In Proc. 1st In-
ternational Conference on Theory of Concurrency (CONCUR’90), volume
458 of Lecture Notes in Computer Science, pages 502–520. Springer, 1990.

Timed Shuffle Expressions

Cătălin Dima

Laboratoire d’Algorithmique, Complexité et Logique,
Université Paris XII – Val de Marne, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France

Abstract. We show that stopwatch automata are equivalent to timed shuffle ex-
pressions, an extension of timed regular expressions with the shuffle operation.
This implies that the emptiness problem for timed shuffle expressions is undecid-
able. The result holds for both timed state sequence semantics and timed event
sequence semantics of automata and expressions.

Similarly to timed regular expressions, our timed shuffle expressions employ
renaming. But we show that even when renaming is not used, shuffle regular ex-
pressions still have an undecidable emptiness problem. This solves in the negative
a conjecture of Asarin on the possibility to use shuffle to define timed regular lan-
guages.

We also define a subclass of timed shuffle expressions which can be used
to model preemptive scheduling problems. Expressions in this class are in the

form (E1 . . . En) ∧ E, where Ei and E do not use shuffle. We show that
emptiness checking within this class is undecidable too.

1 Introduction

Regular expressions are an important and convenient formalism for the specification of
sets of discrete behaviors. Their connection to automata is one of the cornerstones of
theoretical computer science, relating the class of behaviors recognizable by a finite-
memory device to those that can be characterized as regular.

In the past decade several results have been lifted to the theory of timed systems over
a continuous time domains. Several classes of regular expressions have been devised
[4,5,6,7], but the connection between automata and regular expressions is less elegant
than in classical automata theory. For example, the timed regular expressions of [4]
need intersection and renaming in order to be equivalent to the timed automata of [1].

Eugene Asarin has recently asked [2] a series of questions whose answers would
hopefully “substantially improve our understanding of the area” of timed systems. One
of these questions is whether the shuffle of two timed regular languages is always regu-
lar. It was observed that, e.g. 5 3 = 8 and that 5a 3b is a timed regular language. A
positive answer to this question might have helped the development of an alternative set
of regular expressions for timed automata, with the hope that shuffle would eventually
replace intersection and/or renaming.

In this paper we show that timed regular expressions (in the sense of [4] or [3])
extended with shuffle are equivalent to stopwatch automata [9], when they employ
renaming. This result implies that they are strictly more powerful than timed regular

� Partially supported by the PAI “Brancusi” no. 08797XL.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 95–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 C. Dima

expressions, at least because the emptiness problem for stopwatch automata is unde-
cidable. We then show that even without renaming, timed regular expressions extended
with shuffle have an undecidable emptiness problem. These results rely on the possib-
lity to encode non-difference constraints with a combination of shuffle and intersection.
An example of such a combination gives a negative answer to the question of Asarin.

We also define a subclass of timed shuffle expressions which could be regarded as a
“specification language” for preemptive scheduling problems. Our expressions, called
preemptive scheduling expressions, are in the form (E1 . . . En)∧E, where Ei and
E do not use shuffle. We show that emptiness checking within this class is undecidable
too. This result complements results of [12] on the undecidability of emptiness checking
for some class of timed automata augmented with preemptive jobs and different types
of scheduling strategies. We note here that the expressive power of our preemptive
scheduling expressions is not an issue in this paper, though it is an interesting question
in itself.

Our proofs work for both state-based (i.e. signals or timed state sequences) and
action-based (i.e. timed words) semantics. When presenting our undecidability result,
we concentrate on state-based semantics, since preempting a job is somewhat equiv-
alent to a “state change” in the system. But we also give an encoding of state-based
expressions into action-based expressions, since the original conjecture of Asarin was
stated on action-based semantics. However our undecidability results for action-based
semantics rely on a “weakly monotonic semantics”, that is, we allow two actions to
occur at the same instant, but in a certain order. The restriction to strongly monotonic
time is an open question.

The paper is divided as follows: in the second section we recall the timed event
sequence (or timed words) framework and the timed state sequence (or signals) frame-
work for the semantics of timed systems. Then, in the third section we recall the notion
of stopwatch automata and the undecidability of their emptiness problem. The fourth
section serves for the introduction of the timed shuffle expressions and for the proof of
the Kleene theorem relating them to stopwatch automata. The fifth section presents the
new undecidability results and the preemptive scheduling expressions, while the sixth
section gives the translation of our results to action-based semantics. We end with a
short section containing conclusions and further directions of study.

2 Timed Languages

Timed event sequences and timed state sequences are the two alternative models for the
behavior of timed systems. While timed event sequences put the accent on actions that a
system is executing and on moments at which actions take place, timed state sequences
put the accent on states in which the system is and on state durations.

A signal (or timed state sequence) is a finite sequence of pairs of symbols from
Σ and nonnegative numbers. For example, the signal (s, 1.2) (t, 1.3) (s, 0.1) denotes a
behavior in which the state s holds for 1.2 time units, then is followed by the state t for
another 1.3 time units, and ends with the state s again, which holds for 0.1 time units.
For easier readability, we denote this signal as follows: s1.3t1.2s0.1. The set of timed
state sequences over Σ can be organized as a monoid, denoted Sig(Σ). Note that in this

Timed Shuffle Expressions 97

monoid, concatenation of identical signals amounts to the addition of their exponents,
hence s1.3t0.3 · t0.9s0.1 = s1.3t1.2s0.1. And also s0 = ε, the empty signal. The length
�(ω) of a signal ω is the sum of all the numbers occurring in it, e.g. �(s1.3t1.2s0.1) =
1.2+1.3+0.1=2.6. Timed (signal) languages are then sets of signals.

We will also work with timed event sequences (or timed words) which are finite
sequences of nonnegative numbers and symbols from Σ. For example, the sequence
1.2 a 1.3 b denotes a behavior in which an action a occurs 1.2 time units after the be-
ginning of the observation, and after another 1.3 time units action b occurs. The set of
timed words over Σ can be organized as a monoid w.r.t. concatenation; we denote this
monoid as TW(Σ). Note that in this monoid, concatenation of two reals amounts to
summation of the reals, hence, a 1.3 · 1.7 b = a(1.3 + 1.7)b = a 3 b. The length �(w)
of a timed word w is the sum of all the reals in it, e.g. �(1.2 a 1.3 b) = 1.2 + 1.3 = 2.5.
Timed event languages are then sets of timed words.

Besides concatenation, we will be interested in the shuffle operation, which is the
generalization of shuffle on Σ∗. Formally, given w1,w2 ∈ Sig(Σ)

w1 w2 =
{
u1v1 . . .unvn | w1 = u1 . . .un,w2 = v1 . . . vn

}
(1)

A shuffle operation with the same definition as above can be defined on timed words.
Shuffle can be extended as a set operation to languages: given L1, L2 ⊆ Sig(Σ) (or

L1, L2 ⊆ TW(Σ)) L1 L2 =
⋃{

w1 w2 | σ1 ∈ L1, σ2 ∈ L2

}
.

Another useful operation on timed languages is renaming: it simply replaces some
symbols with some others, while keeping durations the same. The renaming of a ∈ Σ
with b ∈ Σ is denoted [a/b], For signals, renaming cannot delete symbols. An example
of renaming on signals is t2.5u0.1 = [s/t]

(
s1.3t1.2u0.1

)
.

For timed words, we may also employ symbol deletion. The deletion of a symbol
a ∈ Σ is denoted [a/ε]. By abuse of notation (and of naming), we will call renam-
ing also an operation in which some of the action symbols are deleted (but not time
passage!). For example, [a/c][b/ε]

(
1.3 a 1.2 b 0.1 a

)
= 1.3 c 1.3 c.

3 Stopwatch Automata

We recall here the definition of stopwatch automata [9], adapted such that they accept
signals in our setting.

A stopwatch automaton [9] is a tuple A = (Q,X , Σ, η,λ, δ,Q0,Qf) where Q is
a finite set of states, X is a finite set of stopwatches, Σ is a finite set of state symbols,
Q0,Qf ⊆ Q are sets of initial, resp. final states, λ : Q → Σ is the location labeling
mapping, η : Q → P(X) is a mapping assigning to each state the set of stopwatches
that are active in that state. Finally, δ is a finite set of tuples (i.e. transitions), of the
form (q, C,X, q′), where q, q′ ∈ Q, X ⊆ X , and C is a finite conjunction of stopwatch
constraints. Stopwatch constraints that can be used in transitions are of the form x∈I ,
where x ∈ X and I⊆ [0,∞[is an interval with integer (or infinite) bounds.

For each transition (q, C,X, r) ∈ δ, the component C is called the guard of the
transition, and X is called the reset component of the transition.

The semantics of the automaton A is given in terms of a timed transition system
T (A) = (Q, θ,Q0,Qf) where Q = Q × Rn

≥0, Q0 = Q0 × {0n}, Qf = Qf × Rn
≥0

and

98 C. Dima

θ =
{
(q, v) τ−→ (q, v′) | v′i = vi + τ, ∀i ∈ [n] with xi ∈ η(q), v′i = vi otherwise.

}
∪
{
(q, v) → (q′, v′) | ∃(q, C,X, q′) ∈ δ such that v |= C and ∀1 ≤ i ≤ n, (2)

if i ∈ X then v′i = 0 and if i
∈ X then v′i = vi

}
In the line (2) of the definition of θ we say that the transition q

C,X−−−→ q′ ∈ δ
generates the transition (q, v) → (q′, v′) ∈ θ.

Informally, the automaton can make time passage transitions (without changing lo-
cation), in which all stopwatches that are active in that location advance by τ , and dis-
crete transitions, in which location changes. The discrete transitions are enabled when
the “current stopwatch valuation” v satisfies the guard C of a certain tuple (q, C,X, q′)∈
δ, and when they are executed, the stopwatches in the reset componentX are set to zero.

The label of a discrete transition (q, v) → (q′, v′) is ε, the empty sequence. The
label of a time passage transition (q, v) τ−→ (q, v′) is λ(q)τ .

A run in T (A) is a chain ρ =
(
(qi−1, vi−1)

ξi−→ (qi, vi)
)

1≤i≤k
of transitions from

θ, while a run in A is a chain of transitions ρ′ =
(
qi−1

Ci,X−i−−−−−→ qi

)
1≤i≤k′

in δ. The

two runs ρ, ρ′ are associated iff the i-th discrete transition in ρ is generated by the i-th
transition of ρ′. An accepting run in T (A) is a run which starts in Q0, ends in Qf and
does not end with a time passage transition. An accepting run accepts a signal w iff w
represents the formal concatenation of the labels of the transitions in the run.

The language accepted by A is then the set of signals which are accepted by some
accepting run of T (A). The language accepted by A is denoted L(A). Two timed au-
tomata are called equivalent iff they have the same language.

The Figure 1 gives an example of a stopwatch automaton. The active stopwatches
in each location are identified as having derivative one; hence in location q1 only stop-
watch x is active. The language of this automaton is{

st1ut2 . . . st2k−1ut2kst |
∑

t2i−1 ∈ [2, 3],
∑

t2i ∈ [3, 4[, t +
∑

t2i−1 = 3
}

(recall that accepting runs cannot end with time passage transitions, hence the label ν
of the final state may never occur in any accepted signal!)

A stopwatch automaton in which all stopwatches are active in each location is a
timed automaton. In this case we will speak of clocks instead of stopwatches.

The underlying untimed automaton for a stopwatch automaton A is the automaton
that keeps only the information regarding the transitions between states, and “forgets”
all about stopwatch values and constraints. Hence, if A = (Q,X , Σ, η,λ, δ,Q0,Qf)
then the underlying untimed automaton forA is Â = (Q, ∅, Σ, η,λ, δ′,Q0,Qf) where

q4, ν
q1, s
ẋ = 1
ẏ = 0

q2, u
ẋ = 0
ẏ = 1

q3, s
ẋ = 1
ẏ = 1y∈ [3, 4[

x∈ [2, 3] ∧ x = 3

Fig. 1. A stopwatch automaton on signals

Timed Shuffle Expressions 99

(q, true, ∅, r) ∈ δ′ if and only if (q, C,X, r) ∈ δ for some constraint C and subset of
stopwatches X ⊆ X .

Theorem 1 ([9]). The emptiness problem for stopwatch automata is undecidable.

The essential property that induces this undecidability is the fact that division by
two, resp. doubling the value of a stopwatch can be simulated in stopwatch automata.

4 Timed Shuffle Expressions

In this section we introduce the class of timed shuffle expressions and prove their equiv-
alence with stopwatch automata.

The syntax of timed shuffle expressions is the following:

E ::= s | E + E | E ·E | E ∧ E | E∗ | 〈E〉I | E E | [s/s′]E

Here I is an interval and s,s′ ∈Σ. An expression not using shuffle is a timed regular
expression.

The semantics of a timed shuffle expression (with renaming) is given by the follow-
ing rules:

‖s‖ = {sl | l ∈ R≥0} ‖[s/u]E‖ =
{
[s/u](w) | w ∈ ‖E‖

}
‖E1 + E2‖ = ‖E1‖ ∪ ‖E2‖ ‖E∗‖ = ‖E‖∗

‖E1 ∧ E2‖ = ‖E1‖ ∩ ‖E2‖ ‖〈E〉I‖ =
{
w ∈ ‖E‖ | �(w) ∈ I

}
‖E1 ·E2‖ = ‖E1‖ · ‖E2‖ ‖E1 E2‖ = ‖E1‖ ‖E2‖

For example, the following expression is equivalent to the automaton in Figure 1:

[s1/s]
((〈

〈s1〉[2,3]s
〉
3

u
)
∧
(
〈u〉[3,4[s s1

)
∧ (s1u)∗s

)
(3)

Theorem 2. Timed shuffle expressions with renaming have the same expressive power
as stopwatch automata.

Proof. For the direct inclusion, the union, intersection, concatenation, star, time binding
and renaming constructions from [4] can be easily extended to stopwatch automata. We
will only give here the construction for the shuffle of two automata. The basic idea is to
put together the two automata, making the control pass nondeterministically from one
automaton to the other; moreover, to accept a timed word, the run must pass through an
initial location and a final location in both automata.

So take two automata Ai = (Qi,Xi, Σ, ηi,λi, δi,Q
i
0,Q

i
f) (i = 1, 2). The automa-

ton accepting L(A1) L(A2) is thenA = (Q,X , Σ, η,λ, δ,Q0,Qf) where

– Q = Q1 ×Q2 × {1, 2} and X = X1 ∪ X2.
– Q0 = Q1

0 ×Q2
0 × {1, 2} and Qf = Q1

f ×Q2
f × {1, 2}.

– λ : Q → Σ is defined by λ(q1, q2, i) = λi(qi), while η : Q → P(X1 ∪ X2) is
defined by η(q1, q2, i) = ηi(qi).

100 C. Dima

– the transition relation is defined as follows:

δ =
{
(q1, q, 1)

C,X−−−→ (q2, q, 1) | q1
C,X−−−→ q2 ∈ δ1

}
∪
{
(q, q1, 2)

C,X−−−→ (q, q2, 2) | q1
C,X−−−→ q2 ∈ δ2

}
∪
{
(q1, q2, 1)

true,∅−−−→ (q1, q2, 2), (q1, q2, 2)
true,∅−−−→ (q1, q2, 1) | q1 ∈ Q1, q2 ∈ Q2

}
The proof of the reverse inclusion is a two-step proof: the first step involves the

decomposition of each stopwatch automaton with n stopwatches into the intersection
of n one-stopwatch automata – similarly to the proof of the Kleene theorem for timed
automata [4]. The second step shows how to associate a timed shuffle expression to an
automaton with one stopwatch, by generalizing the construction of the expression (3)
associated to the automaton in Figure 1.

The decomposition step requires a relabeling of the states ofA such that two differ-
ent states bear different labels. To do this, we simply replace Σ with Q as state labels,
and put the identity function id : Q → Q as the state labeling function. Hence, if
Ã = (Q,X ,Q, η, id, δ,Q0,Qf) is the result of the above transformation, then L(A) =
λ#(L(Ã) where λ# is the renaming defined by λ : Q → Σ.

Then we decompose Ã into n automata Ai = (Q, {xi},Q, ηi, id, δi,Q0,Qf) hav-
ing a single stopwatch; here ηi(q) = η(q) ∩ {xi} and δi is a copy of δ in which the
guard and the reset component of each tuple is a projection on {xi}. Then

L(A) = λ#
(
L(A1) ∩ . . . ∩ L(An)

)
For the second step, suppose thatB is an automaton with a single stopwatch in which

all states have distinct state labels, B = (Q, {x},Q, η, id, δ,Q0,Qf). The following
terminology will be used throughout the rest of this proof: we will speak of a state q
as being x-active if η(q) = x; otherwise, we will say q is x-inactive. A run that passes
through x-inactive states – excepting perhaps the starting and the ending state – is called
a x-inactive run.

We will decompose B into three automata such that:

L(B) =
(
L(B1) L(B2)

)
∩ L(B̂)

In this decomposition, B1 is a one-clock timed automaton, while B2 is an untimed au-
tomaton and B̂ is the underlying untimed automaton for B. B1 will carry the duration
constraints of x, the stopwatch ofB, while B2 will carry the sequential properties within
the states in which x is inactive. The task of B̂ is to correctly connect the sequences of
states in which x is active with those in which x is inactive. The ideas of this decompo-
sition can be traced to the expression (3) associated to the automaton in Figure 1.

Consider then an x-inactive run ρ =
(
qi−1

Ci,∅−−−→ qi

)
1≤i≤k

, in which x is never
reset. Note that Ci = (x ∈ Ii) for some nonnegative interval Ii. Throughout this
run, the value of the stopwatch x remains unchanged, hence all the guards could be
replaced with a single guard x ∈ Iρ :=

⋂
1≤i≤k

Ii, which can be placed on any of the

transitions. This implies that, in order to construct B1, we need to consider all sub-runs
that contain only states inactive for x; then, for each such run, construct the intersection
of the intervals on their guards.

Timed Shuffle Expressions 101

Note further that we do not need to take into consideration runs with circuits: if ρ is
a run from q to q′ and ρ is another run that was constructed from ρ by adding a circuit in
a state of ρ, then Iρ ⊇ Iρ, hence a transition from q to q′ labeled with Iρ is superfluous.
The consequence of this observation is that, given any two transitions τ, τ ′ ∈ δ, the set
of all non-superfluous intervals Iρ associated to runs that start with τ and end in τ ′ can
be computed by a Dijkstra-like algorithm. Let us denote then

Iττ ′ =
{
Iρ | ρ is an x-inactive run without circuits that starts with transition τ ,

ends with τ ′ and contains no transition resetting x
}
.

When τ = τ ′ = q
x∈I,∅−−−−→ q′ we put Iττ ′ = {I}.

The above remarks deal with x-inactive runs that do not pass through a transition
resetting x. Taking into consideration resetting transitions can be done as follows: con-

sider ρ =
(
qi−1

Ci,Xi−−−−→ qi

)
1≤i≤k

an x-inactive run in which the first transition which

resets x is qj−1
Cj,{x}−−−−→ qj . This run is unfeasible if there exists a guard Ci : (x ∈ Ii)

with i > j for which 0
∈ Ii. Hence, for all feasible runs ρ we can replace all Ci with
i>j with x=0 while all the guards Ci with i≤j could be replaced with x∈

⋂
1≤i≤j Ii.

Thence, given q′∈Q and a transition τ ∈δ, we do the following constructions:

1. Build (q′) =
{
τ ′ ∈ δ | τ ′ = r

x∈J,{x}−−−−−→ r′ and q′ is reachable from r′

through an x-inactive run whose clock constraints all contain 0.
}

This set is computable by backward reachability analysis on B.

2. For each τ ′ = r
x∈J,{x}−−−−−→ r′ ∈ (q′) and τ ′′ = r′′

C,X−−−→ r ∈ δ , compute Iττ ′′ as
above.

3. Then compute Jττ ′ :=
{
I ∩ J | I ∈ Iττ ′′

}
. where J is the interval labeling

τ ′ = r
x∈J,{x}−−−−−→ r′.

4. If τ = τ ′ then we put Jττ ′ =
{
J
}

(similarly to the fact that circuits can be ignored
when computing I).

The timed automaton B1 is then B1 =
(
Q1 ∪Qf , {x},Q, η1, id, δ1,Q

1
0,Qf

)
where

Q1 =
{
q ∈ Q | q is x-active

}
and η1(q) = {x} for all q ∈ Q1 ∪Qf

Q1
0 =

{
q ∈ Q1 | ∃ρ x-inactive run starting in q0 ∈ Q0 and ending in q and

whose clock constraints all contain 0
}

δ1 =
{
q

C,X−−−→ q′ ∈ δ | q, q′ ∈ Q1

}
∪
{
q

x∈I,X−−−−→ q′ | q, q′ ∈ Q1, ∃τ1 = q
x∈I1,∅−−−−→ r1 ∈ δ, τ2 = r2

x∈I2,X−−−−−→ q′ ∈ δ s.t.

η(r1) = η(r2) = ∅ and I ∈ Iτ1τ2

}
(4)

∪
{
q

x∈I,{x}−−−−−→ q′ | q, q′ ∈ Q1, ∃τ1 = q
x∈I1,X1−−−−−→ r1 ∈ δ, τ2 = r2

C,z,{x}−−−−−→ r3,

τ2 ∈ (q′) s.t. η(r1) = η(r2) = ∅, τ2 ∈ (q′) and I ∈ Jτ1τ2

}
(5)

∪
{
q

x∈I,∅−−−−→ qf | qf ∈ Qf , ∃τ1 = q
x∈I,X1−−−−−→ q1, τ2 = q2

x∈J,X2−−−−−→ q3 ∈ δ and

either I ∈ Iτ1τ2 and q3 = qf or I ∈ Jτ1τ2 and τ2 ∈ (qf)
}

(6)

102 C. Dima

Note that the components 4 and 5, are used for assembling pieces of x-active parts
in an accepting run in B.

The timed automaton B2 is then B2 =
(
Q2, ∅,Q2, η2, id, δ2,Q

2
0,Q

2
f

)
where

Q2 =
{
q ∈ Q | η(q) = ∅

}
and η2(q) = ∅ for all q ∈ Q2

Q2
0 =

{
q ∈ Q2 | q ∈ Q0 or there exists an x-active run ρ starting in Q0 and ending in q

}
Q2

f =
{
q ∈ Q2 | q ∈ Qf or there exists an x-active run ρ starting in q and ending in Qf

}
δ2 =

{
q

true,∅−−−→ q′ ∈ δ | q, q′ ∈ Q2

}
∪{

q
true,∅−−−→ q′ | there exists an x-active run ρ starting in q and ending in q′

}
Hence, B2 keeps track of the x-inactive parts of each accepting run of B. To cor-

rectly combine runs in B1 with runs in B2 we further intersect their shuffle with L(B̂),
the language of the underlying untimed automaton for B̂. This final intersection for-
bids incorrect “plugging” of parts of x-active runs, as provided by B1, with parts of
x-inactive runs, as found in B2.

The Kleene theorem for timed automata [3] assures then the existence of timed
regular expressions equivalent to each of the three automata (B1. B2 and B̂), fact which
ends our proof. ,-

Note that the equivalence in Theorem 2 is effective, i.e. all the constructions in the
proof are algorithmic. This ensures then the following

Corollary 1. The emptiness problem for timed shuffle expressions with renaming is
undecidable.

5 Timed Shuffle Expressions Without Renaming Are Undecidable

The technique used in the papers [3,10] can be adapted to show that intersection and re-
naming are necessary for the Theorem 2 to hold. However we will be interested here in
a different problem: can we diminish the expressive power of the timed shuffle expres-
sions (without giving up the shuffle!) such that they be comparable to timed automata?
And the first natural question is to compare timed shuffle expressions without renaming
and timed regular expressions.

In this section we will show that the emptiness problem remains undecidable even
for s timed shuffle expressions without renaming. Recall that the essential property that
gives the undecidability is the fact that we may “double” the value of a stopwatch. We
will adapt this property to timed shuffle expressions without renaming.

Remark 1. We start with an example showing that timed shuffle expressions may in-
duce more general linear constraints than those induced by timed regular expressions.
Namely, for any timed word in the semantics of the following expression:

E1/2 =
〈
ps
〉
1
uvz ∧

(
p
〈
suz

〉
1

v
)
∧ ps

〈
uv

〉
1
z ∧ psu

〈
vz
〉
1

the duration of the state symbol p represents twice the duration of the state symbol u:

‖E1/2‖ =
{
pt1st2ut3vt4zt5 | t1 = 2t3, t1 + t2 = 1 = t3 + t4, t3 = t5

}
(7)

Timed Shuffle Expressions 103

Note that t2 is used as a reference for asserting that t1 and t3 + t5 must be equal, and
similarly for t4, which asserts that t3 and t5 are equal. On the other hand, t5 is used as
a “divisor”.

The main result of this section is the following:

Theorem 3. The emptiness problem for timed shuffle expressions without renaming is
undecidable.

Proof. The proof goes by reduction of the problem of the existence of a terminating
computation of a Minsky machine [11]. We will show that, for each 2-counter (Minsky)
machine M , the computation of M can be encoded into a timed shuffle expression E. To
this end, we encode the value of each counter of the machine M in some configuration
as the duration of a certain state symbol. The value of the counter x, denoted x too,
will be encoded by the signal s2−x

= s
1
2x and similarly, y is encoded by u2−y

. Then,
decrementing the counter x amounts to “doubling the length” of the state symbol s
whereas incrementing x amounts to “dividing the length” of s by two, along the idea
presented in the remark 1.

The encoding of a configuration (q, x, y) will consist of the set of timed state se-
quences of the type ql0sl1

1 s2−x

ul2
1 u2−y

where s1, u1, s,u are distinct symbols (i ∈
[1 . . . 3]) and l0, l1, l2 are some nonnegative numbers.

So suppose the 2-counter machine is M = (Q, θ, q0,Qf) where

θ ⊆ Q×
{
x++, y++, x−−, y−−, x = 0?, y = 0?

}
×Q

Remind that we may consider M being deterministic, in a sense that implies that be-
tween two states q, r, at most one transition could occur in δ.

We will first associate to each transition τ = (q, op, r) ∈ δ four timed regular
expressions, Ex

(q,op,r), Ey
(q,op,r), E0

(q,op,r) and E∧(q,op,r), with the aim to encode in the
following expression:
E(q,op,r) := (Ex

(q,op,r) Ey
(q,op,r) E0

(q,op,r)) ∧ E∧(q,op,r) the sequentialization of an
encoding of a configuration (q, x, y) before taking τ with an encoding of the resulting
configuration (q, x′, y′), the result of τ . The desired expressions, for op = x++, are:

Ex
(q,x++,r) = 〈q〉1s1

〈
s〈r〉1s1

〉
3
ss3

(〈
ss3

〉
2
〈r〉1s ∧ s

〈
s3rs

〉
3

)
Ey

(q,x++,r)
= 〈q〉1u1

〈
u〈r〉1u1

〉
3

〈
u〈r〉1u1

〉
3
u ∧ qu1ur

〈
u1u

〉
2
r
〈
u1u

〉
2

E0
(q,x++,r) = 〈q〉1s2s3u2u3〈r〉1s2u2u3〈r〉1s1

E∧
(q,x++,r) = 〈q〉3s1ss2s3u1uu2u3〈r〉3

(〈
s1ss2

〉
2
s3 ∧ s1s

〈
s2s3

〉
2

)
u1uu2u3〈r〉3s1su1u

Note that if q3sl1
1 slsl2

2 sl3
3 um1

1 umum2
2 um3

3 r3sl4
1 sl′sl5

2 sl6
3 um4

1 um′
um5

2 um6
3 r3sl7

1 sl′′um7
1

um′′
belongs to ‖E(q,x++,r)‖, then

– l + l4 = l4 + l′ + l5 = 2 (by Ex
(q,x++,r) and E∧(q,x++,r)).

– l′ + l6 = l5 + l6 = l6 + l′′ = 2 (again by Ex
(q,x++,r) and E∧(q,x++,r)), hence

l = 2l′ = 2l′′.
– m + m4 = m4 + m′ = m′ + m7 = m7 + m′′ = 2 (by Ey

(q,x++,r)), hence
m = m′ = m′′.

104 C. Dima

Hence if q3sl1
1 slum1

1 um encodes some configuration (q, x, y) then q3sl7
1 sl′′um7

1 um′′

encodes (r, x + 1, y), which is the result of the transition (q, op, r).
The subexpressions for E(q,x−−,r) are:

Ex
(q,x−−,r) = 〈q〉1

〈
s1s2

〉
2
〈r〉1

(
s1

〈
srs1

〉
3
s
)

Ey
(q,x−−,r) = 〈q〉1u1

〈
u〈r〉1u1

〉
3

〈
u〈r〉1u1

〉
3
u ∧ qu1ur

〈
u1u

〉
2
〈r〉1

〈
u1u

〉
2
r
〈
u1u

〉
2

E0
(q,x−−,r) = 〈q〉1s2s3uu3〈r〉1s2s3u2u3〈r〉1

E∧(q,x−−,r)=〈q〉3
(〈

s1s
〉
2
s2

〈
s3u1uu2u3

〉
4
〈r〉3

〈
s1s

〉
2
∧ s1

〈
ss2s3

〉
2

〈
u1uu2u3rs1

〉
7
s
)

· s2s3u1uu2u3〈r〉3s1su1u

Note that if q3sl1
1 slsl2

2 sl3
3 um1

1 umum2
2 um3

3 r3sl4
1 sl′sl5

2 sl6
3 um4

1 um′
um5

2 um6
3 r3sl7

1 sl′′um7
1

um′′
belongs to ‖E(q,x++,r)‖ then

– l1 + l = l1 + l2 = 2 (by Ex
(q,x−−,r) and E∧(q,x−−,r)), hence l = l2.

– m + m4 = m4 + m′ = m′ + m7 = m7 + m′′ = 2 (as implied by Ey
(q,x−−,r)),

hence m = m′ = m′′.
– l + l2 + l3 = l4 + l′ = l′ + l7 = l7 + l′′ = 2 and l3 + m1 + m + m2 + m3 =

m1 + m + m2 + m3 + l4 = 4 (as implied by Ex
(q,x−−,r) and E∧(q,x−−,r)), hence

l + l2 = 2l = l′ = l′′.

Finally, the subexpressions for E(q,x=0?,r) are the following:

Ex
(q,x=0?,r) = 〈q〉1s1〈s〉1〈r〉1s1〈s〉1〈r〉1s1〈s〉1

Ey
(q,x=0?,r) = 〈q〉1u1

〈
u〈r〉1u1

〉
3

〈
u〈r〉1u1

〉
3
u ∧ qu1ur

〈
u1u

〉
2
〈r〉1

〈
u1u

〉
2

E0
(q,x=0?,r) = 〈q〉1s2s3u2u3〈r〉1s2s3u2u3〈r〉1

E∧
(q,x=0?,r) = 〈q〉3s1ss2s3u1uu2u3〈r〉3

(
〈s1ss2

〉
2
s3 ∧ s1s

〈
s2s3

〉
2

)
u1uu2u3〈r〉3s1su1u

Along the same lines, we want to construct an expression E =
(
Ex Ey E0

)
∧

E∧, such that Ex gives the (encoding of the) projection of the run of M onto the counter
x, Ey does the same for y, E0 inserts some “locally unused” symbols, while E∧ ensures
that Ex and Ey apply synchronously the same transition of M .

Let us denote

Ex
δ =

∑
(q,op,r)∈δ

Ex
(q,op,r), Ey

δ =
∑

(q,op,r)∈δ
Ey

(q,op,r),

E0
δ =

∑
(q,op,r)∈δ

E0
(q,op,r), E∧δ =

∑
(q,op,r)∈δ

E∧(q,op,r)

An important remark to make here is that for all σ ∈
∥∥∥(Ex

δ Ey
δ E0

δ

)
∧ E∧δ

∥∥∥
we have in fact that σ ∈

∥∥∥(Ex
(q,op,r) Ex

(q,op,r) Ex
(q,op,r)

)
∧ Ex

(q,op,r)

∥∥∥ for the same

(q, op, r) ∈ δ. (Remind that the Minsky machine was deterministic.)
To see this, note that E∧δ requires that σ contain only two state symbols q, r ∈

Q, both of which last for 3 time units. But then, if Ex
δ , Ey

δ and E0
δ choose different

transitions, i.e., if we pick σ1 ∈ Ex
(q1,op1,r1)

, σ2 ∈ Ey
(q2,op2,r2)

, σ3 ∈ E0
(q3,op3,r3)

, where

Timed Shuffle Expressions 105

at least two of the three transitions are distinct, then σ1 σ2 σ3 contains three distinct
state symbols of non-zero length from the set

{
(q1)1, (q2)1, (q3)1, (r1)1, (r2)1, (r3)1

}
.

Hence, σ1 σ2 σ3
∈
∥∥E∧δ ∥∥.

Thence, the expression
((

Ex
δ

)∗ (
Ey

δ

)∗ (
E0

δ

)∗)∧ (E∧δ)∗ encodes sequences of

arbitrary transitions in M , but imposes no connection between two consecutive tran-
sitions either by state symbols or by counter values. We will then have to add more
constraints to the subexpressions Ex

δ and Ey
δ , in order to ensure proper “propagation”

of states and counter values.
For each q ∈ Q, consider the following expressions:

Ex
q = 〈q〉1(ε + s1)

(〈
s〈q〉1s1

〉
3
(s + s2) ∧ sq

〈
s1(s + s2)

〉
2

)
Ex

q = 〈q〉1(ε + u1)
(〈

u〈q〉1u1

〉
3
(u + u2) ∧ uq

〈
u1(u + u2)

〉
2

)
These expressions will be essential in asserting correct connection of intermediary
states and counter values. Note that, for example, in each σ = q1smq1sl2

1 sm′ ∈ ‖Ex
q ‖,

we have that m = m′, and similarly with σ′ = q1sl1
1 smq1sl2

1 sm′
2 ∈ ‖Ex

q ‖, and all the
other types of signals in ‖Ex

q ‖.
Let us denote further

Ex =
(
Ex

δ

)∗ ∧ q0s1s
(∑

q∈Q
qs1s(s3 + ε)Ex

q

)∗
·
∑

q∈Qf

qs1s(ε + s3)q(ε + s1)s

Ey =
(
Ey

δ

)∗ ∧ q0u1u
(∑

q∈Q
qu1u(s3 + ε)Ey

q

)∗
·
∑

q∈Qf

qu1u(ε + u3)q(ε + u1)u

E0 =
(
E0

δ

)∗
, E∧ =

(
E∧δ

)∗
Observe now that, in the expression Ex, we ensure correct connection of the inter-

mediary states of M and of the counter values for x. This remark follows by a case
study for each of the possibilities of having two successive transitions. For example, if

σ1σ2, . . . , σk ∈ Ex with σi = q
li1
i s

li2
1 smir

li3
i s

li4
1 sm′

is
li5
3 r

li6
i s

li7
1 sm′′

i ∈ ‖Ex
δ ‖ for 1 ≤ i ≤ k,

then we must have that ri−1 = qi and m′
i−1 = m′′

i−1 = mi, that is, two consecutve
signals represent part of the encoding of two consecutive transitions that share the in-
termediary state and the counter value for x.

Another example is when some σi is of the form q
li1
i s

li2
1 smi

2 r
li3
i s

li4
1 sm′

ir
li6
i s

li7
1 sm′′

i ∈
‖Ex

δ ‖. This situation occurs when σi ∈
∥∥Ex

(qi−1,x−−,qi)

∥∥. We have again ri−1 = qi and
m′

i−1 =mi, but this time it is the length of s2 in σi that copies the duration of the last s
in σi−1. But this is ok, if we recall from the definition of E(q,x−−,r) that the length of the
first s2 and the length of the first s in σi are equal. Hence, again two consecutive signals
represent part of the encoding of two consecutive transitions that share the intermediary
state and the counter value for x. All the other cases lead to similar conclusions about
the correct connection of intermediary states and counter values.

The expression that encodes the (unique!) run of M is the following:

Eρ =
(
Ex Ey E0

)
∧E∧ (8)

Then ‖Eρ‖ = ∅ iff M does not have a finite run. ,-

106 C. Dima

The particularity of the proof of Theorem 3 suggests us that shuffle expressions
without renaming are not the only interesting strict subclass of expressions that have an
undecidable emptiness problem.

Preemptive scheduling expressions are timed shuffle expressions of the form
E ∧ (E1 . . . Ek)

where E, E1, . . . , Ek are timed regular expressions – i.e. do not contain shuffle (but
may contain renaming). Their name comes from the fact that E1, . . . , Ek may be con-
sidered as expressions defining the behavior of some (preemptive) jobs, encapsulating
duration constraints within each job, whereas E can be regarded as an expression em-
bodying overall timing constraints for each job and the scheduling policy.

As an example, consider the following expressions:

E1 =
(
s1〈s2s3〉2

)∗
, E2 =

(
u1〈u2u3〉2

)∗
E =

(
〈s1s2〉2(s3+u1+u2+u3)∗

)∗ ∧ (〈u1(s1+s2+s3)∗u2〉2(s1+s2+s3+u3)∗
)∗

The expression E ∧ (E1 E2) can be regarded as a specification of (the solution of) a
two-job scheduling problem, in which

1. In the job E1, the duration of s2 plus s3 equals 2 time units;
2. In the job E2, the duration of u2 plus u3 equals 2 time units;
3. The part s1s2 of E1 cannot be preempted, hence has higher priority over E2 and

must be executed within 2 time units of the starting of signal state s1.
4. The part u1u2 of E2 must be executed within 2 time units of the starting of signal

state u1, regardless of the interruptions.

The proof of Theorem 3 implies also the following:

Theorem 4. Preemptive shuffle expressions have an undecidable emptiness problem.

As we may see from the proof of Theorem 3, expressions with three “components”
– that is, expressions of the form E ∧ (E1 E2 E3) – already have an undecidable
emptiness problem. It is an open question whether two components would suffice.

6 Action-Based Semantics for Automata and Expressions

Throughout this section we show that all the results in this paper also apply to automata
and expressions with timed word semantics.

Let us review in more detail the definition of stopwatch automata with action se-
mantics: a stopwatch automaton is a tuple A = (Q,X , Σ, η, δ,Q0,Qf) where Q, Σ,
X , η, Q0 and Qf have the same meaning as in Section 3, while δ is a finite set of tuples
(i.e. transitions), of the form (q, C, a,X, q′), where q, q′ ∈ Q, X ⊆ X , a ∈ Σ and C is
a finite conjunction of stopwatch constraints.

Similarly to automata with signal semantics, the timed word semantics of a stop-
watch automaton is given in terms of a timed transition system T (A) = (Q, θ,Q0,Qf)
whereQ = Q× Rn

≥0, Q0 = Q0 × {0n},Qf = Qf × Rn
≥0 and

θ =
{
(q, v) τ−→ (q, v′) | v′i = vi + τ, ∀i ∈ [n] with xi ∈ η(q), v′i = vi otherwise.

}
∪
{
(q, v) a−→ (q′, v′) | ∃(q, C, a,X, q′) ∈ δ such that v |= C and for all i ∈ [n],

if i ∈ X then v′i = 0 and if i
∈ X then v′i = vi

}

Timed Shuffle Expressions 107

The label of a discrete transition (q, v) a−→ (q′, v′) is the symbol a that lies on the
arrow. The label of a time passage transition (q, v) τ−→ (q, v′) is τ .

A run in T (A) is a chain ρ =
(
(qi−1, vi−1)

ξi−→ (qi, vi)
)

1≤i≤k
of transitions from

θ, while a run in A is a chain of transitions ρ′ =
(
qi−1

Ci,ai,Xi−−−−−→ qi

)
1≤i≤k′

. The

two runs ρ, ρ′ are associated iff the i-th discrete transition in ρ is generated by the i-th
transition of ρ′. An accepting run in T (A) is a run which starts in Q0, ends in Qf and
does not end with a time passage transition. An accepting run accepts a timed word w
iff w represents the formal concatenation of the labels of the transitions in the run.

The Figure 2 gives an example of a stopwatch automaton whose language is

L(A) =
{
t1at2bt3c | t1 + t3 = 1

}
.

Recall that the last transition in an accepting run cannot be a time passage transition and
hence the automaton cannot spend any time in the last state q4 when accepting a timed
word.

ẋ = 1ẋ = 1
q2

ẋ = 0
true, a, ∅ true, b, ∅ q3q1 q4

ẋ = 0
x = 1, c, ∅

Fig. 2. A stopwatch automaton with action semantics.

The syntax of timed action shuffle expressions is the following:

E ::= a | t | E + E | E ·E | E ∧ E | E∗ | 〈E〉I | E E | [a/b]E

where I is an interval, a ∈ Σ and b ∈ Σ ∪ {ε}.
Their semantics follows the same compositional rules as the semantics of timed

shuffle expressions over signals, with the only difference on the rules on atoms, which,
for timed action shuffle expressions are the following:

‖a‖ =
{
a
}
, ‖t‖ =

{
t | t ∈ R≥0

}
For example, the expression E1 = [z1/ε][z2/ε]

(
(〈z1taz1tc〉1 z2tb)∧z1taz2tbz1tc

)
represents the language of the automatonA from Figure 2. Note the need to “duplicate”
each transition label: if we do not make use of the additional symbols z1 and z2, we
would not be able to correctly “insert” the first subexpression of the shuffle “within”
the second. That is, the following shuffle expression is not equivalent to the automaton
in Figure 2:

E2 =
(
〈tatc〉1 tb

)
∧ tatbtc

(E2 was obtained from E1 by removing all occurrences of z1 and z2.) This expression
is equivalent to the timed expression E3 = 〈tatbtc〉]1,∞[, which is obviously not what
is needed. The problem lies in the fact that the duration before b in the subexpression tb
must not “mix” with the other durations. The use of the additional symbols z1 and z2 is
essential in forbidding this mixing.

108 C. Dima

In order to compare the expressive power of state based and action based semantics,
note that the “division” expression from Identity 7 can be converted to action-based
semantics:

Ea
1/2 = 〈atâ btb̂〉1ctĉ dtd̂ etê ∧

(
atâ〈btb̂ ctĉ etê〉1 dtd̂

)
∧

atâ btb̂〈ctĉ dtd̂〉1etê ∧ atâ btb̂ ctĉ〈dtd̂ etê〉1 (9)

Here, the duration of the time interval between a and â represents twice the duration of
the interval between c and ĉ:

‖Ea
1/2‖ =

{
at1â bt2b̂ ct3ĉ dt4d̂ et5ê | t1 = 2t3, t1 + t2 = 1 = t3 + t4, t3 = t5

}
Given a set of symbols Σ, consider a copy Σ̂ of it, and denote ŝ the copy of the

symbol s ∈ Σ. Consider then the following morphism ϕ : Sig(Σ) → TW(Σ), defined
by

ϕ(sα) = stαŝ, ϕ(w1w2) = ϕ(w1)ϕ(w2) for all w1,w2 ∈ Sig(Σ)
Then, given any stopwatch automaton A with signal semantics, we may associate

to it a stopwatch automaton B with action semantics such that L(B) = ϕ
(
L(A)

)
. A

similar result can be provided for expressions E with signals semantics, by constructing
an expression with action semantics E′ such that ‖E′‖ = ϕ

(
‖E‖

)
.

We give here the construction for shuffle expressions, since the respective construc-
tion for automata can be derived by the Kleene theorem. This construction is straight-
forward: given a timed shuffle expression over signals E, we replace each atom a ∈ Σ
with atâ. We denote the resulting expression ϕ(E).

Remark 2. Note that
∥∥ϕ(E)

∥∥
= ∅ iff
∥∥E

∥∥
= ∅ and that, if we apply this construction to
an expression without renaming or to a preemptive scheduling expression, the resulting
expression remains in the same class.

Also note that ϕ
(
[p/a][s/b][u/c][v/d][z/e]

(
E1/2

))
= Ea

1/2

Theorem 5. Emptiness checking for timed action shuffle expressions without renaming
or for preemptive shuffle expressions with action semantics is undecidable.

We end with the sketch of the proof that timed action shuffle expressions without
intersection are more expressive than timed regular expressions. Our example is:

E0 = 〈atâbtb̂〉1ctĉ ∧
(
〈atâctĉ〉1 btb̂

)
We also rely on the following observation (that is proved e.g. in [13,8]) saying roughly
that timed words having n + 1 action symbols and whose time intervals belong to the
same (n + 1)-dimensional region cannot be distinguished by timed automata:

Remark 3. For any timed regular expression E and w = a0t1a1 . . . an−1tnan ∈ ‖E‖ if
we have w′=a0t

′
1a1 . . . an−1t

′
nan (ai∈Σ, ti, t

′
i∈R≥0) such that for all 1≤ i≤j≤n,[∑

i≤k≤j
tk

]
=
[∑

i≤k≤j
t′k

]
and frac

(∑
i≤k≤j

xk

)
= frac

(∑
i≤k≤j

x′k)
)

(10)

then w′∈‖E‖. Here [α] is the integral part and frac(α) is the fractional part of α ∈ R.

Hence, we may see that w1 = a 0.5 â b 0.5 b̂ c 0.5 ĉ∈‖E0‖, w2 = a 0.3 â b 0.7 b̂ c 0.3 ĉ
∈
‖E0‖, and w1 and w2 meet the condition (10). Therefore no timed regular expression
can be equivalent to E0.

Timed Shuffle Expressions 109

7 Conclusions and Comments

We have seen that shuffle regular expressions with renaming are equivalent to stopwatch
automata, and that, even without renaming, they still have an undecidable emptiness
problem. The use of weakly monotonic time was essential in the proof of the last result.
We do not know whether, in a strongly monotonic time setting, this theorem still holds.

Note that the automata encodings of [9] for the undecidability for stopwatch au-
tomata cannot be directly transformed into expressions without renamings or into pre-
emptive scheduling expressions: the paper [9] utilizes a technique called “wrapping of
clock values” which, when translated to shuffle expressions, require renamings.

An interesting direction of study concerns the expressive power of shuffle expres-
sions w.r.t. preemptive scheduling problems, especially on defining of a class of expres-
sions embodying scheduling strategies.

Finally, it is not very hard to figure out that shuffle regular expressions without
intersection have a decidable emptiness problem. The the proof idea would proceed in
a “compositional” manner along the following three observations:

– ‖E1E2‖
= ∅ iff ‖E1‖
= ∅ and ‖E1‖
= ∅, and similarly for E1 E2.
– ‖E1 + E2‖
= ∅ iff ‖E1‖
= ∅ or ‖E1‖
= ∅.
– ‖E‖
= ∅ iff ‖E∗‖
= ∅.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–
235, 1994.

2. E. Asarin. Challenges in timed languages. Bulletin of EATCS, 83, 2004.
3. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In Proceedings of

LICS’97, pages 160–171, 1997.
4. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal of ACM, 49:172–206,

2002.
5. P. Bouyer and A. Petit. Decomposition and composition of timed automata. In Proceedings

of ICALP’99, volume 1644 of LNCS, pages 210–219, 1999.
6. C. Dima. Kleene theorems for event-clock automata. In Proceedings of FCT’99, volume

1684 of LNCS, pages 215–225, 1999.
7. C. Dima. Real-time automata. Journal of Automata, Languages and Combinatorics, 6:3–23,

2001.
8. C. Dima. A nonarchimedian discretization for timed languages. In Proceedings of FOR-

MATS’03, volume 2791 of LNCS, pages 161–181, 2003.
9. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid au-

tomata. J. Comput. Syst. Sci, 57:94–124, 1998.
10. P. Herrmann. Renaming is necessary in timed regular expressions. In Proceedings of

FST&TCS’99, volume 1738 of LNCS, pages 47–59, 1999.
11. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley/Narosa Publishing House, 1992.
12. P. Krcál and Wang Yi. Decidable and undecidable problems in schedulability analysis using

timed automata. In Proceedings of TACAS’04, volume 2988 of LNCS, pages 236–250, 2004.
13. J. Ouaknine and James Worrell. Revisiting digitization, robustness, and decidability for timed

automata. In IEEE Computer Society Press, editor, Proceedings of LICS’03, pages 198–207,
2003.

A New Modality for Almost Everywhere

Properties in Timed Automata�

Houda Bel Mokadem1, Béatrice Bérard2, Patricia Bouyer1,
and François Laroussinie1

1 LSV, CNRS & ENS de Cachan,
61 av. du Président Wilson, 94235 Cachan Cedex, France

{mokadem, bouyer, fl}@lsv.ens-cachan.fr
2 LAMSADE, CNRS & Université Paris-Dauphine,

Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
berard@lamsade.dauphine.fr

Abstract. The context of this study is timed temporal logics for timed
automata. In this paper, we propose an extension of the classical logic
TCTL with a new Until modality, called “Until almost everywhere”. In
the extended logic, it is possible, for instance, to express that a property
is true at all positions of all runs, except on a negligible set of posi-
tions. Such properties are very convenient, for example in the framework
of boolean program verification, where transitions result from changing
variable values. We investigate the expressive power of this modality and
in particular, we prove that it cannot be expressed with classical TCTL
modalities. However, we show that model-checking the extended logic
remains PSPACE-complete as for TCTL.

1 Introduction

Verification of Timed Temporal Logic Properties. Temporal logic pro-
vides a fundamental framework for formally specifying systems and reasoning
about them. Furthermore, model-checking techniques lead to the automatic ver-
ification that a finite-state model of a system satisfies some temporal logic spec-
ification. Since the introduction of timed automata [AD90,AD94] and timed
logics like MITL, Lν or TCTL [AH92,LLW95,AFH96], model-checking has been
extended to real-time models [HNSY94] and analysis tools have been devel-
oped [DOTY96,HHWT95,LPY97] and successfully applied to numerous case
studies.

Among these case studies, some examples concern the verification of pro-
grams which handle boolean or integer variables. The usual way to build a (pos-
sibly timed) model of the program consists in defining the discrete control states
as tuples of variable values. The transitions are thus equipped with updates for
the variables (and possibly time constraints). In such a model, a variable may
change its value exactly upon leaving a control state and reaching another one,

� Work partially supported by the project VSMT of ENS de Cachan.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 110–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Modality for Almost Everywhere Properties in Timed Automata 111

which gives an ambiguous semantics: a variable can have several different values
at a given time. This may lead to detect errors in the system, which are only
due to the modeling phase. Such problems occur in the area of industrial au-
tomation, for the verification of Programmable Logic Controllers. In this case,
programs are written from a set of languages described by the IEC-61131-3
specification [IEC93].

Example. Consider the SFC (Sequential Function Chart, one of the languages
of the IEC standard) in Figure 1 below. It describes the control program of a
device, designed to start some machine when two buttons (L and R for left and
right button respectively) are pushed within 0.5 seconds. If only one button is
pushed (then L+R is true) and the 0.5 seconds delay is reached (time-out Et has
occurred), then the whole process must be started again. After the machine has
started, it stops as soon as one button is released, and it can start again only
after both buttons have been released (L.R is true).

L.R.Et
Et

1

2

3

4

start

L+R

L.R.Et

L+R

L.R

T=0.5s

Fig. 1. SFC program for the two button machine

This device can be modeled with three timed automata (Figure 2), which
communicate through the boolean variables L and R. The two automata for the
buttons simply give arbitrary values in {0, 1} to L and R, while the automaton
for the control program is a straightforward translation of the SFC, with the
only addition of an initialization step. The latter automaton handles a clock
to measure the time interval of length 0.5. Note that some transitions must be
urgent: for instance, the transition into state running, which sets the output
variable s to 1, must be taken as soon as both buttons are pushed (if t < 0.5).

112 H.B. Mokadem et al.

init

running

L:=1

L:=0

t>=0.5

R:=1

R:=0

!L ∧ !R

L ∨ R
t:=0

L ∧ R
∧ t<0.5

s:=1

!L ∨ !R
s:=0

!L ∧ !R
∧ t<0.5

Fig. 2. Timed automata for the control program and the buttons

Consider now the following property: it is always true that the machine has
started only if both buttons have been pushed, i.e. if s=1 then L=1 and R=1. This
property does not hold because the automaton is still in state running when
one of the buttons has been released, even if the transition into the next state
will occur instantaneously afterward. What we should require instead is that
this property be true almost everywhere, meaning that it could be false only on
intervals with null duration.

A similar problem can occur when a sequence of transitions must be exe-
cuted in an atomic way. To this purpose, a convenient feature was introduced
in Uppaal: when a location of a timed automaton is labeled as committed, no
time delay is permitted in this location and a new action transition has to be
performed to leave this location. This mechanism is used in particular to obtain
n-ary synchronization when only binary synchronization is possible. For exam-
ple, the sequence s1

a1−→ s2
a2−→ s3 executes atomically if location s2 is committed.

Like above, a given property may be true before s1 and after s3 but false in the
intermediate location s2 where the control stays for a null duration. Again in
this case, a property true “almost everywhere” would be sufficient.

Some Solutions. A basic method to solve the particular example of the “two
buttons machine” described above would be to synchronize the update transi-
tions of the L and R variables with the control transitions. This would amount to
remove the variables in the model, introducing synchronizing channels instead.
However, the resulting models do not faithfully represent the control program of
the device, which receives the values of L and R by intermediate variables up-
dated through sensors. Since the control program may later be translated into
some other language of the standard (like Ladder Diagram), the model should
remain as close as possible to the original specification.

A simple way of dealing with the general case consists in defining restricted
semantics for timed automata, requiring that at most one configuration be as-
sociated with a given time. This holds for instance when only strictly increasing
time sequences are permitted. However, when practical issues are considered, it
is often useful to assume that several actions are executed in an atomic way (as

A New Modality for Almost Everywhere Properties in Timed Automata 113

described above for synchronization), which leads to simpler models. Restrict-
ing the expressive power of a model is generally not a good idea. When such
atomicity hypotheses are made, it is then possible to modify the property to be
checked, requiring it to be true only in specified states where no ambiguity can
occur. Such methods were used for instance in the verification with HyTech of
the ABR protocol [BFKM03]. But this is an ad-hoc construction, where all the
details of the system must be carefully investigated.

Finally, one could think of introducing an observer automaton. For example,
to test if some atomic proposition a is true almost everywhere, such an automa-
ton would move to an error state if it has stayed in ¬a for a non null duration.
However, it is well known that this method does not apply to full TCTL, but is
restricted to a fragment expressing safety properties [ABBL03].

Contribution. In this paper, we propose a solution that does not depend on
the model, which can thus remain as it was originally designed (often in a long
and difficult process) for a given system. This solution consists in extending the
syntax of the TCTL logic with an almost everywhere until modality Ua. We
obtain for instance formulae like AGaϕ, meaning that property ϕ is true almost
everywhere.

Section 2 recalls the main features of the timed automata model and gives
definitions for the syntax and semantics of our extended logic. In Section 3,
we investigate the expressive power of this extension, comparing it with TCTL.
In particular, we prove that the modality Ua cannot be expressed with TCTL
operators and conversely that Ua cannot express TCTL modalities. Finally, in
the last section, we show that model-checking the extended logic TCTLext is
decidable by some labeling procedure, with the same complexity as TCTL.

Some proofs are omitted and can be found in the research report [BMBBL05].

2 Timed Automata and TCTLext

Let N and R≥0 denote respectively the sets of natural and non-negative real
numbers. Let X be a set of real valued clocks. The set of valuations is the
set RX

≥0 of mappings from X to R≥0. We write C(X) for the set of boolean
expressions over atomic formulae of the form x ∼ k with x ∈ X , k ∈ N, and
∼ ∈ {<,≤, =,≥,>}. Constraints of C(X) are interpreted over clock valuations.
For every v ∈ RX

≥0 and d ∈ R≥0, we use v + d to denote the time assignment
which maps each clock x ∈ X to the value v(x) + d. For a subset r of X , we
write v[r ← 0] for the valuation which maps each clock in r to the value 0 and
agrees with v over X \ r. Let AP be a set of atomic propositions.

2.1 Timed Automata

Definition 1. A timed automaton (TA) is a tuple A = 〈X,QA, qinit, →A, InvA,
lA〉 where X is a finite set of clocks, QA is a finite set of locations or control states
and qinit ∈ QA is the initial location. The set →A ⊆ QA × C(X)× 2X ×QA is a
finite set of action transitions: for (q, g, r, q′) ∈ →A, g is the enabling condition

114 H.B. Mokadem et al.

and r is a set of clocks to be reset with the transition (we write q
g,r−→A q′).

InvA : QA → C(X) assigns an invariant to each control state. Finally lA : QA →
2AP labels every location with a subset of AP.

A configuration of a TA A is a pair (q, v), where q ∈ QA is the current
location and v ∈ RX

≥0 is the current clock valuation. The initial state of A is
(qinit, v0) with v0(x) = 0 for any x in X . There are two kinds of transition. From
(q, v), it is possible to perform the action transition q

g,r−→A q′ if v |= g and
v[r ← 0] |= InvA(q′) and then the new configuration is (q′, v[r ← 0]). It is also
possible to let time elapse, and reach (q, v + t) for some t ∈ R whenever the
invariant is satisfied along the delay. Formally the semantics of a TA A is given
by a Timed Transition System (TTS) TA = (S, sinit, →TA , l) where:

– S = {(q, v) | q ∈ QA and v ∈ RX
≥0 s.t. v |= InvA(q)} and sinit = (qinit, v0).

– →TA ⊆ S × S and we have (q, v)→TA(q′, v′) iff
• either q′ = q, v′ = v + t and v + t′ |= InvA(q) for any t′ ≤ t. This is a

delay transition, written (q, v) t−→ (q, v + t),
• or ∃q g,r−→A q′ and v |= g, v′ = v[r ← 0] and v′ |= InvA(q′). This is an

action transition, written (q, v) →a (q′, v′).
– l : S → 2AP labels every state (q, v) with the subset lA(q) of AP .

A run of A is an infinite path s0 →TA s1 →TA s2 . . . in TA such that (1) time
diverges and (2) there are infinitely many action transitions. Note that a run can
always be described as an alternating infinite sequence s0

t0−→→a s1
t1−→→a · · ·

for some ti ∈ R. Such a run ρ goes through any configuration s′ reachable from
some si by a delay transition of duration t ∈ [0, ti]. We write Exec(s) for the set
of all runs starting from s. A configuration can occur several times along some
run ρ. A particular occurrence p of a configuration is called a position, we write
p ∈ ρ. For such a p, the corresponding configuration is denoted by sp.

The standard notions of prefix, suffix and subrun apply for paths in TTS:
given a position p ∈ ρ, ρ≤p is the prefix leading to p, ρ≥p is the suffix issued
from p. Finally a subrun σ from p to p′ is denoted by p

σ�→ p′.
Given two positions p and p′, we say that p precedes strictly p′ along ρ (written

p <ρ p′) iff there exists a finite subrun σ of ρ s.t. p
σ�→ p′ and σ contains at least

one non null delay transition or one action transition (i.e. σ is not reduced to
0−→). Note that the set of positions along ρ is totally ordered by <ρ, independently
of the representation of the run.

Given a position p ∈ ρ, the prefix ρ≤p has a duration, Time(ρ≤p), defined as
the sum of all delays along ρ≤p. Since time diverges along an execution, we have:
for any t ∈ R, there exists p ∈ ρ such that Time(ρ≤p) > t. For a subset P ⊆ ρ
of positions in ρ, we define a natural measure μ̂(P) = μ{Time(ρ≤p) | p ∈ P},
where μ is Lebesgue measure on the set of real numbers.

2.2 Definition of TCTLext.

We extend the syntax of TCTL to express that a formula holds almost every-
where: TCTLext is obtained by adding the two modalities E Ua

∼c and A Ua
∼c to

TCTL.

A New Modality for Almost Everywhere Properties in Timed Automata 115

Definition 2 (Syntax of TCTLext). TCTLext formulae are given by the follow-
ing grammar:

ϕ,ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EϕU∼cψ | AϕU∼cψ | EϕUa
∼cψ | AϕUa

∼cψ

where Pi ∈ AP, ∼ belongs to the set {<,>,≤,≥, =} and c ∈ N.

Standard abbreviations include �,⊥,ϕ ∨ ψ,ϕ ⇒ ψ, . . . as well as :

EFa
∼c ϕ

def= E(� Ua
∼c ϕ) AFa

∼c ϕ
def= A(� Ua

∼c ϕ)
EGa

∼c ϕ
def= ¬AFa

∼c¬ϕ AGa
∼c ϕ

def= ¬EFa
∼c¬ϕ

Definition 3 (Semantics of TCTLext). The following clauses define when a
state s of some TTS T = 〈S, sinit, →, l〉 satisfies a TCTLext formula ϕ, written
s |= ϕ, by induction over the structure of ϕ (the semantics of boolean operators
is omitted).

s |= EϕU∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕU∼cψ
s |= AϕU∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕU∼cψ
s |= EϕUa

∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕUa
∼cψ

s |= AϕUa
∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕUa

∼cψ

ρ |= ϕU∼cψ iff ∃p ∈ ρ s.t. Time(ρ≤p) ∼ c ∧ sp |= ψ ∧ ∀p′ <ρ p, sp′ |= ϕ
ρ |= ϕUa

∼cψ iff there exists a subrun σ s.t. μ̂(σ) > 0, ∃p ∈ σ, Time(ρ≤p) ∼ c,
∀p′ ∈ σ, sp′ |= ψ, μ̂({p′ | p′ <ρ p ∧ sp′
|= ϕ}) = 0

Note that in the case of the almost modality Ua, we ask that ϕ holds almost
everywhere before ψ occurs. Moreover, we require that ψ holds not only at a
single position (which has a measure equal to 0), like in the usual framework,
but on a whole interval around the position satisfying the time constraint.

For example, AGa
≥0ϕ specifies that along every run, the set of positions at

which ϕ does not hold has a measure equal to 0, i.e. ϕ holds almost everywhere
along all paths. It was precisely this kind of property we wanted to be able to
express. Note that the positions where some formula ϕ does not hold are not
restricted to discrete transitions, contrary to some intuition. Indeed, consider
the automaton below, with two atomic propositions a and b, and the formula
ϕ = EaU=1b. Let ρ be a run starting in (q0, 0). Clearly, the only position where
ϕ is satisfied is (q0, 1), which does not correspond to a discrete transition. In this
case, we have (q0, 0) |= AGa(¬ϕ) (but (q0, 0)
|= AG(¬ϕ)).

q0

a,¬b
q1

¬a, b
x = 2

The standard TCTL logic is the fragment of TCTLext without E Ua
∼c and

A Ua
∼c , while the logic TCTLa is the restriction of TCTLext where classical

E U∼c and A U∼c are forbidden.
The size |ϕ| of a formula ϕ is defined in the standard way, with constants

written in binary notation.

116 H.B. Mokadem et al.

3 Expressiveness of Ua Modality

In this section we show that the modality Ua cannot be expressed with TCTL
operators and conversely that Ua cannot express TCTL modalities.

Formally we say that two formulae ϕ and ψ are equivalent for a class of
models C whenever their truth value is the same for any element of C, this is

denoted ϕ
C≡ ψ or just ϕ ≡ ψ when C is clear from the context. Let L and L′

be two logical languages interpreted over the same models. L′ is said to be as
expressive as L (denoted L L′) iff for any formula ϕ ∈ L there exist ϕ′ ∈ L′
s.t. ϕ ≡ ϕ′. Moreover L′ is strictly more expressive than L (written L ≺ L′) iff
L L′ and L′
 L.

3.1 TCTL ≺ TCTLext

First we show that Ua cannot be expressed with standard U modality. The
proof is based on classical techniques used in untimed temporal logics (see for
ex. [Eme91,EH86]). However, adapting them to the timed framework results in
more involved constructions.

Let Ψ be the TCTLa formula E(aUa
>0b). We will prove that there is no TCTL

formula equivalent to Ψ . Consider the timed automata Mi and Ni with i ≥ 1 in
Figure 3. Clearly we have Mi, (qi, 0) |= Ψ while Ni, (q′i, 0)
|= Ψ . The next lemma
states that Mi and Ni satisfy the same TCTL formula whose size is less than i.

We first introduce some notations. Given two configurations s and s′, we
write s ≡k

TCTL s′ iff for any ϕ ∈ TCTL with |ϕ| ≤ k, we have s |= ϕ ⇔ s′ |= ϕ.
We write s ≡TCTL s′ iff s ≡k

TCTL s′ for any k ≥ 1.
Automata Mi and Ni contain only one clock, any configuration is then defined

as a pair (�, t) where � is a location and t ∈ R≥0 is a value for x. Moreover the
automata have only one cycle on r0: for any configuration of the form (qj , t),
(q′j , t), (rj , t), or (r′j , t) with j ≥ 1, there is at most one such position along ρ.

Proof of expressiveness will be a consequence of the following Lemma:

Lemma 4. Given the automata described in Figure 3, ∀k ≥ 1, ∀i ≥ k and
∀t ∈ R, we have:

(qi, t) ≡k
TCTL (q′i, t) (ri, t) ≡k

TCTL (r′i, t)

Let ρ be a run starting in (q′i, t) in Ni with i > 0. The run ρ is characterized by
the time elapsed δ0 in q′i, the time elapsed δ1 in r′i and a suffix ρ1 in Ni−1 or
Mi−1. Then ρ has the following structure:

(q′i, t)
δ0−→ (q′i, δ0 + t) →a (r′i, 0) δ1−→ (r′i, δ1) →a

ρ1�→

Note that the suffix ρ1 is in Mi−1 only if δ1 > 0. Let fMi(ρ) be the run of
Mi defined by: (qi, t)

δ0−→ (qi, δ0 + t) →a (ri, 0) δ1−→ (ri, δ1) →a
ρ1�→. The same can

be done for a run issued from (r′i, t), but in this case there is only the delay
transition labeled by δ1. Note that ρ and fMi(ρ) share the same suffix ρ1.

Given a run ρ in Mi from (qi, t) or (ri, t), one can also define a corresponding
run fNi(ρ) in Ni whenever the delay δ1 spent in ri is strictly positive.

A New Modality for Almost Everywhere Properties in Timed Automata 117

M1:
q1

a
r1

c
q0

a
r0

b

x > 0, x := 0 x ≥ 0, x := 0 x > 0

N1:
q′1
a

r′1
c

x > 0, x := 0
x > 0, x := 0

x > 0

Mi:
qi

a
ri

c Mi−1

x > 0, x := 0 x ≥ 0, x := 0

Ni:
q′i
a

r′i
c Ni−1

x > 0, x := 0 x ≥ 0, x := 0

x ≥ 0, x := 0

x > 0, x := 0

Fig. 3. Automata Mi and Ni, i = 1, 2, . . .

Proof (of Lemma 4). The proof is done by induction over k, the size of formulae.
First note that, given the guards and the resets on transitions of Mi and Ni,

we clearly have for every j ≥ 0 and locations � ∈ {qj , rj , q
′
j , r

′
j}

(rj , 0) ≡TCTL (rj , t) ∀t > 0 (1)
(�, t) ≡TCTL (�, t′) ∀t, t′ > 0 (2)

For formulae of size k = 1, the equivalences of the lemma hold because qi and
q′i (resp. ri and r′i) are labeled by the same atomic propositions.

We assume now that k > 1 and that equivalences of the lemma hold for
formulae with size < k. The case of boolean combinations is obvious, so we now
concentrate on formulae A(ϕ1U∼cϕ2) and E(ϕ1U∼cϕ2).

From equivalences (1) and (2) and from induction hypothesis, if ρ is a run
in Ni, then fMi(ρ) exists and ρ |= (ϕ1U∼cϕ2) ⇐⇒ fMi(ρ) |= (ϕ1U∼cϕ2).
Similarly, if ρ is a run in Mi and if fNi(ρ) exists, then ρ |= (ϕ1U∼cϕ2) ⇐⇒
fNi(ρ) |= (ϕ1U∼cϕ2). Note that there exist some runs ρ in Mi for which there is
no corresponding fNi(ρ) (when there is no delay in location ri).

We thus deduce immediately that⎧⎪⎪⎪⎨⎪⎪⎪⎩
(qi, t) |= A(ϕ1U∼cϕ2) =⇒ (q′i, t) |= A(ϕ1U∼cϕ2)
(ri, t) |= A(ϕ1U∼cϕ2) =⇒ (r′i, t) |= A(ϕ1U∼cϕ2)

(q′i, t) |= E(ϕ1U∼cϕ2) =⇒ (qi, t) |= E(ϕ1U∼cϕ2)
(r′i, t) |= E(ϕ1U∼cϕ2) =⇒ (ri, t) |= E(ϕ1U∼cϕ2)

To get all equivalences of Lemma 4, we need some extra work for several impli-
cations.

118 H.B. Mokadem et al.

– Assume that (qi, t) |= E(ϕ1U∼cϕ2) and take a run ρ from state (qi, t) satis-
fying ϕ1U∼cϕ2 with no corresponding run fNi(ρ) (the delay in location ri

is thus 0). We note (�, v) the position along ρ which satisfies ϕ2 while all
previous positions satisfy ϕ1. If that position is before (qi−1, 0), then taking
a run which starts with the prime version of the prefix of ρ ending in (�, v),
by induction hypothesis, we get a run which satisfies ϕ1U∼cϕ2. Otherwise
we need to change delays in ρ (to get a run ρ′) as follows: on ρ, there is no
delay in location ri, we add one small delay in this state, small enough such
that the run is unchanged after state ri−1 (the accumulated delays in states
ri and qi−1 in ρ′ corresponds to the delay in qi−1 on run ρ, see the figure
below) and such that if � = qi−1 (in which case v > 0 by assumption), then
the corresponding position on ρ′ is some (qi−1, v

′) with v′ > 0.

qi ri qi−1 ri−1
ρ

(�, v) |= ϕ2

ρ′

|= ϕ1U∼cϕ2

q′i r′i qi−1 ri−1
fNi(ρ′) |= ϕ1U∼cϕ2

The run ρ′ then satisfies ϕ1U∼cϕ2: the position which corresponds to (�, v) on
ρ′ also satisfies ϕ2, and all previous positions satisfy ϕ1 (using equivalences
(1) and (2)). We thus get that fNi(ρ′) also satisfies ϕ1U∼cϕ2. Thus, (q′i, t) |=
E(ϕ1U∼cϕ2).

A similar construction can be done to prove that (ri, 0) |= E(ϕ1U∼cϕ2)
implies (r′i, 0) |= E(ϕ1U∼cϕ2).

– For the formula A(ϕ1U≺cϕ2) where ≺ is either < or ≤ and c > 0, we consider
a location � ∈ {qi, ri, q

′
i, r

′
i}. The following then holds:

• if t > 0, (�, t) |= A(ϕ1U≺cϕ2) iff (�, t) |= ϕ2 as we can take a run waiting
at least c time units in location �, and for some delay d ≺ c, (�, t + d)
will have to satisfy ϕ2 (which entails by (2) that (�, t) must satisfy ϕ2)

• similarly (�, 0) |= A(ϕ1U≺cϕ2) iff (�, 0) |= ϕ2 or ((�, 0) |= ϕ1 and (�, t) |=
ϕ2 for every t > 0)

Using induction hypothesis (on formulae ϕ1 and ϕ2), we get that (�′, t) |=
A(ϕ1U≺cϕ2) implies (�, t) |= A(ϕ1U≺cϕ2) if � ∈ {qi, ri}.

– We consider formula A(ϕ1U=cϕ2) with c > 0. Any reachable state from some
(�, t) can be reached in exactly c units of time and in strictly less than c units
of time (because there is no real constraints on delays in states). This formula
is then equivalent to ϕ1∧ϕ2 over states (�, t) with � ∈ {qi, ri, q

′
i, r

′
i} and t > 0,

and (�, 0) |= A(ϕ1U=cϕ2) iff (�, 0) |= ϕ1 and all reachable states from (�, 0)
satisfy ϕ1∧ϕ2 (� is in {qi, ri, q

′
i, r

′
i}). Using induction hypothesis, we get that

(�′, t) |= A(ϕ1U=cϕ2) implies (�, t) |= A(ϕ1U=cϕ2) for � ∈ {qi, ri}.

A New Modality for Almost Everywhere Properties in Timed Automata 119

– We assume that (q′i, t) |= A(ϕ1U≥cϕ2) and we want to prove that (qi, t) |=
A(ϕ1U≥cϕ2). We consider a run ρ in Mi starting in (qi, t) such that fNi(ρ)
is not defined (the delay in state ri is 0). We will construct a run in Ni from
state (q′i, t) “equivalent” to ρ, and distinguish two cases, depending on the
delay δ in location qi. We first consider the case where δ < c.

qi ri qi−1 ri−1
ρ

ρ′

|= ϕ1U≥cϕ2

< c

< c

q′i r′i qi−1 ri−1
fNi(ρ′) |= ϕ1U≥cϕ2

|= ϕ2

In ρ, the delay in qi is < c whereas the delay in ri is null. We first construct
a run ρ′ with a positive delay in ri (however smaller than the initial delay of
ρ in state qi−1) such that the accumulated delay in qi and ri is still < c (see
the figure above). From ρ′ we construct run fNi(ρ′) in Ni. Using induction
hypothesis, at all positions, the two runs ρ′ and fNi(ρ′) agree on properties
ϕ1 and ϕ2. As (q′i, t) |= A(ϕ1U≥cϕ2), this implies that fNi(ρ′) |= ϕ1U≥cϕ2,
and thus that ρ′ |= ϕ1U≥cϕ2. In particular, ϕ1 has to hold in states (ri, t)
for every t ≥ 0. Moreover, property ϕ2 holds at some position along ρ′, and
ϕ2 will also hold at the same position on ρ. We thus get that ρ also satisfies
property ϕ1U≥cϕ2.

We now assume that δ ≥ c. From ρ which does not delay in state ri, we
construct a run ρ′ which waits a small amount of time (as in the previous
case), and then consider the corresponding run fNi(ρ′) in Ni. By assumption,
this runs satisfies ϕ1U≥cϕ2. Then several cases can happen: (i) the property
ϕ2 holds in some (q′i, t+d) with d ≥ c, in which case ϕ2 also holds in (qi, t+d)
by induction hypothesis, and ϕ1 holds in all (qi, t + d′) for d′ < d (also by
induction hypothesis) which implies that ρ |= ϕ1U≥cϕ2; (ii) the property
holds in some (r′i, d) for some d ≥ 0, which implies that ϕ2 also holds in
(ri, d) by i.h. and thus that (ri, 0) |= ϕ2 using (1), thus ρ |= ϕ1U≥cϕ2; (iii)
the property ϕ2 holds for some other state (�, d), which will be also true on
run ρ, thus in that case also ρ |= ϕ1U≥cϕ2.

In both cases we can conclude that (qi, t) |= A(ϕ1U≥cϕ2).
Similar constructions can be done to prove that (r′i, t) |= A(ϕ1U≥cϕ2)

implies (ri, t) |= A(ϕ1U≥cϕ2).
– Formula A(ϕ1U>cϕ2) is almost handled in a similar way as A(ϕU≥cϕ2). Like

before, we consider a run ρ in Mi which has no corresponding run fNi(ρ). If δ
is the delay in location qi, we have also to distinguish three cases (instead of
two): cases where δ < c or δ > c can be done exactly as previously. The only
different case is when δ = c. As previously we first construct a run ρ′ which
waits some positive delay in location ri, and then consider run fNi(ρ′) which

120 H.B. Mokadem et al.

has to satisfy ϕ1U>cϕ2, and then using induction hypothesis we get that
ρ′ |= ϕ1U>cϕ2, from which we get that ρ |= ϕ1U>cϕ2 (using equivalences (1)
and (2)). In that case, the delay in location qi is shortened, and the accu-
mulated delay in qi and ri (in run ρ′) is precisely c, as seen in the figure below.

qi ri qi−1 ri−1
ρ

ρ′

|= ϕ1U>cϕ2

= c

= c

q′i r′i qi−1 ri−1
fNi(ρ′) |= ϕ1U>cϕ2

– It is easy to see that formula A(ϕ1U=0ϕ2) is equivalent to ϕ2 over states of
Mi and Ni. ,-

Now we have the following result:

Theorem 5. TCTLext is strictly more expressive than TCTL.

Proof. This is a consequence of Lemma 4: assume that there exists a TCTL
formula Φ equivalent to formula E(aUa

>0b). Then (qi, 0) |= Φ and (q′i, 0)
|= Φ for
any i ≥ 0, but this contradicts (qi, 0) ≡|Φ|TCTL (q′i, 0) for any i ≥ |Φ| provided by
Lemma 4. ,-

3.2 TCTLa ≺ TCTLext

However, modality Ua is no help to express the classical U modality:

Theorem 6. TCTLext is strictly more expressive than TCTLa.

Proof. Let A be the automaton described in Figure 4. It can be easily proven that
(q0, t) and (q′0, t) agree on the same TCTLa formulae. Indeed the only difference
is that the state (r′0, 0) belongs to any run from q′0. But this state has to be left
immediately and then this position has a measure null along any run and cannot
have an effect on the truth value of TCTLa formulae. ,-

4 Model-Checking TCTLext

We now address the model-checking problem for TCTLext: given a TA A and
a formula Φ ∈ TCTLext, we want to decide whether Φ holds for A or not. The
number of states of the TTS TA is infinite, we then use the standard region
graph technique introduced by Alur, Courcoubetis and Dill [ACD93] for TCTL
model-checking. This method consists in defining an equivalence ∼= over clocks
valuations such that (1) (q, v) and (q, v′) satisfy the same formulae when v ∼= v′,

A New Modality for Almost Everywhere Properties in Timed Automata 121

A :

q0
a

q1
b

x > 0, x := 0

q′0
a

r′0
c

x > 0, x := 0

x = 0

Fig. 4. (q0, 0) |= E(aUb), (q′0, 0) �|= E(aUb), but (q0, 0) ≡TCTLa (q′0, 0)

and (2) the quotient RX
≥0/

∼= is finite. Then model-checking TCTL reduces to
model-checking a CTL-like logic over a (finite) abstracted graph. This technique
can be extended to TCTLext by using the same equivalence over valuations as
the one used for TCTL.

Given A and some clock x ∈ X , we use cx ∈ N to denote the maximal
constant that x is compared with in the guards and invariants of A. Let ∼= be
the following equivalence [AD90] over clocks valuations of v, v′ ∈ RX

≥0: v ∼= v′

iff (1) 2v(x)3 = 2v′(x)3 ∨ (v(x) > cx ∧ v′(x) > cx) for any x ∈ X , and (2) for
any x, y ∈ X s.t. v(x) ≤ cx and v(y) ≤ cy, we have: frac(v(x)) ≤ frac(v(y)) ⇔
frac(v′(x)) ≤ frac(v′(y)) and frac(v(x)) = 0 ⇔ frac(v′(x)) = 0. This equivalence
is of finite index. An equivalence class of ∼= is called a region and [v] denotes the
class of v. Now we can show that this equivalence is consistent with the truth
values of TCTLext formulae:

Lemma 7. Given a TA A = 〈X,QA, qinit, →A, InvA, lA〉, q ∈ QA, a formula
Φ ∈ TCTLext and v, v′ ∈ RX

≥0 s.t. v ∼= v′, we have: (q, v) |= Φ ⇔ (q, v′) |= Φ.

Proof (sketch). The proof follows the same steps as the corresponding one for
TCTL. First, given a run ρ ∈ Exec(q, v), we can build a run ρ′ ∈ Exec(q, v′) where
the same action transitions are taken at “almost” the same times and where the
regions visited for a duration strictly positive are the same. Let ρ ∈ Exec(q, v) be
the run (q0, v0)

t0−→→a (q1, v1)
t1−→→a . . . with q0 = q and v0 = v. Let δi =

∑
j<i tj

be the time at which the i-th action transition takes place, and δ0 = 0. Let v∗i
be the extended valuation over X ∪ {δ} – where δ is a new symbol – defined by
v∗i (x) = vi(x) and v∗i (δ) = δi. Now we consider the equivalence ∼= extended to
valuations over X ∪ {δ} by assuming cδ = ∞. Like in [ACD93], we can build

a run ρ′ ∈ Exec(q, v′) of the form (q0, v
′
0)

t′0−→→a (q1, v
′
1)

t′1−→→a . . . with v′0 = v′

such that for any i we have: v∗i
∼= v′∗i . This clearly entails that there is no strictly

positive delay between the i-th and (i + 1)-th action transitions in ρ iff there is
no strictly positive delay between the i-th and (i+1)-th action transitions in ρ′.

We now prove the lemma by structural induction over the TCTLext formulae.
Since the property holds for TCTL formulae, we only have to consider the Ua

modalities.

122 H.B. Mokadem et al.

Assume (q, v) |= EϕUa
∼cψ and assume that the truth value of ϕ and ψ are

homogeneous over regions (q, [u]) (i.e. for any region γ, they hold for any valu-
ation of γ, or for no valuation of γ). There exists some run ρ ∈ Exec(q, v) with
a subrun σ s.t. : μ̂(σ) > 0, ∃p ∈ σ s.t. Time(ρ≤p) ∼ c, ∀p′ ∈ σ we have sp′ |= ψ
and μ̂({p′ |p′ <ρ p ∧ sp′
|= ϕ}) = 0. Now consider a run ρ′ corresponding to ρ as
described above. Clearly there exists a subrun σ′ in ρ′ corresponding to the same
regions as σ, and then these regions also satisfy ψ. Moreover, like for the TCTL
case, there exists some position p′ in ρ′ s.t. Time(ρ′≤p′

) ∼ c ⇔ Time(ρ≤p) ∼ c.
The set of positions {p′ |p′ <ρ p∧sp′
|= ϕ} corresponds to a set of regions along ρ
where no time elapses. In ρ′ the same regions are visited and no delay transition
occur. Then this set will also have a null measure. Thus (q, v′) |= EϕUa

∼cψ.
The same argument can be used for AϕUa

∼cψ because any run from (q, v) has a
corresponding run from (q, v′) and vice versa. ,-

Given some region γ ∈ RX
≥0/

∼=, the successor region of γ, when it exists,
is the region distinct from γ s.t. for any v ∈ γ, there exists some t ∈ R≥0 s.t.
v+ t ∈ Succ(γ) and v+ t′ ∈ γ∪Succ(γ) for any 0 ≤ t′ < t. We will write γ(x) ∼ c
when any valuation v in γ satisfies v(x) ∼ c. Finally the region γ[r ← 0] denotes
the region [v[r ← 0]] for any v ∈ γ.

Model-checking TCTLext reduces to a model-checking problem for a CTL-
like logic over a finite graph, called the region graph. Let X∗ be the set of clocks
X∪{xΦ}. The new clock xΦ is used to handle subscripts ∼ c in U modalities, the
value cxΦ is the maximal constant occurring in a subscript. For any subscript ∼ c
in Φ we add new atomic propositions p<c, p>c and p=c, that hold for regions γ s.t.
γ(xΦ) ∼ c. Let pb be another proposition that holds for boundary regions : γ |= pb

iff there is some clock x ∈ X∗ with frac(x) = 0 in γ. Let AP+ = AP∪{pb, p<c, . . .}
be the extended set of atomic propositions.

We can now recall the region graph of [ACD93]: For a TA A = 〈X,QA, qinit,
→A, InvA, lA〉 and a TCTLext formula Φ, the region graph RA,Φ is the finite fair
graph (V, →, l, F) with:

– V = {(q, γ) | q ∈ QA and γ ∈ RX∗
≥0 /∼=}

– The set of transitions →=→t ∪ →a contains two kinds of transitions:
• (q, γ) →t (q, Succ(γ)) if Succ(γ) |= InvA(q).
• (q, γ) →a (q, γ′) s.t. there exists q

g,r−→A q′ with γ |= g, γ′ = γ[r ← 0] and
γ′ |= InvA(q′).

– l : V → 2AP+
labels the vertices with the atomic propositions it satisfies:

l(q, γ) contains lA(q) and the propositions for γ.
– F is a set of fairness constraints: F = {Fx |x ∈ X∗} with Fx = {(q, γ)|γ(x) =

0∨γ(x) > cx}. A fair path inRA,Φ has to visit infinitely often a configuration
in Fx for any x ∈ X∗.

We now define R+
A,Φ an extension of RA,Φ where we consider the transitive

closure of →a:R+
A,Φ = (V, →, l, F) where V , l and F are defined as for RA,Φ, and

→=→t ∪→+
a . Then an action transition in R+

A,Φ (q, γ) →+
a (q′, γ′) corresponds

to a sequence of action transitions in A which can be performed with no delay
in between. Note that all the intermediate configurations along such a sequence

A New Modality for Almost Everywhere Properties in Timed Automata 123

are visited but the set of their positions is of measure 0 w.r.t. μ̂. We call these
configurations transient configurations, and more formally, a configuration along
a run ρ is non-transient iff its region is non-boundary and the previous or the
next transition on ρ is a delay transition (a strictly positive delay has to elapse
in the state along ρ). We will use this extended region graph when looking for
the existence of a run satisfying ϕUa

∼cψ because we do not need to consider such
intermediate transient configuration.

We reduce model-checking TCTLext to model-checking CTL overR+
A,Φ. We will

use the classical E U and A U operators where E and A deal with paths inRA,Φ,
whereas E+ and A+ deal with paths inR+

A,Φ, that is when transitions correspond-
ing to transitive closure of action transitions in RA,Φ are allowed. Finally we also
assume that for any state (q, γ) of RA,Φ, there is a fair path rooted at (q, γ).

It remains to describe a labeling procedure to label every state of RA,Φ with
the Φ-subformulae it satisfies. This is done by adapting the procedure for the
TCTL case [ACD93], using the graphs RA,Φ and R+

A,Φ. For example, in the case
of formula EGa

≤cϕ, a state (q, γ) is labeled by EGa
≤cϕ iff (q, γ[xΦ ← 0]) satisfies

the CTL formula:

E+(pb ∨ ϕ)U
(
p=c ∧

(
(ϕ ∧ EXp>c) ∨ EX(p>c ∧ ϕ)

))
where the next operator (EX) ensures that the position for which the right-hand
side of the Until has to hold, is the last position at duration = c along a run.

This leads to the following result:

Theorem 8. Given a TA A and a TCTLext formula Φ, deciding whether Φ
holds for A is a PSPACE-complete problem.

5 Conclusion

In this work, we studied the extension TCTLext of the classical logic TCTL,
obtained by introducing a new modality Ua

∼c. The superscript a means “almost
everywhere” and expresses the fact that a property must be true except on a
negligible set of positions. We proved that this modality cannot be expressed by
the classical ones, and conversely. We also proposed a model-checking procedure
for TCTLext, with the same complexity result than TCTL, where the classical
constructions must be adapted to take into account the set of negligible positions
on a run. Further work could consist in extending this new modality for the
verification of “permanent” properties, i.e. properties that hold on an sufficiently
large interval, the length of which could be a parameter.

References

[ABBL03] L. Aceto, P. Bouyer, A. Burgueño, and K.G. Larsen. The power of reach-
ability testing for timed automata. Theoretical Computer Science, 300(1–
3):411–475, 2003.

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

124 H.B. Mokadem et al.

[AD90] R. Alur and D. Dill. Automata for modeling real-time systems. In Proc.
17th International Colloquium on Automata, Languages and Program-
ming (ICALP’90), vol. 443 of LNCS, pp. 322–335. Springer, 1990.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctu-
ality. Journal of the ACM, 43(1):116–146, 1996.

[AH92] R. Alur and T.A. Henzinger. Logics and models of real-time: a survey.
In Real-Time: Theory in Practice, Proc. REX Workshop 1991, vol. 600 of
LNCS, pp. 74–106. Springer, 1992.

[BMBBL05] H. Bel Mokadem, B. Bérard, P. Bouyer, and F. Laroussinie. A new modal-
ity for almost everywhere properties in timed automata. Research Report
LSV-05-06, LSV, ENS de Cachan, France, 2005.

[BFKM03] B. Bérard, L. Fribourg, F. Klay, and J.-F. Monin. A compared study of
two correctness proofs for the standardized algorithm of abr conformance.
Formal Methods in System Design, 22(1):59–86, 2003.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In
Proc. Hybrid Systems III: Verification and Control (1995), vol. 1066 of
LNCS, pp. 208–219. Springer, 1996.

[EH86] E.A. Emerson and J.Y. Halpern. ”Sometimes” and ”not never” revisited:
On branching versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986.

[Eme91] E.A. Emerson. Temporal and Modal Logic, vol. B (Formal Models and
Semantics) of Handbook of Theoretical Computer Science, pp. 995–1072.
MIT Press Cambridge, 1991.

[HHWT95] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next genera-
tion. In Proc. 16th IEEE Real-Time Systems Symposium (RTSS’95), pp.
56–65. IEEE Computer Society Press, 1995.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and Sergio Yovine. Symbolic
model-checking for real-time systems. Information and Computation,
111(2):193–244, 1994.

[IEC93] IEC (International Electrotechnical Commission). IEC Standard 61131-3:
Programmable controllers - Part 3, 1993.

[LLW95] F. Laroussinie, K.G. Larsen, and C. Weise. From timed automata to
logic – and back. In Proc. 20th International Symposium on Mathematical
Foundations of Computer Science (MFCS’95), vol. 969 of LNCS, pp. 529–
539. Springer, 1995.

[LPY97] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Journal of
Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

The Coarsest Congruence for Timed Automata with
Deadlines Contained in Bisimulation�

Pedro R. D’Argenio1,�� and Biniam Gebremichael2

1 CONICET – FaMAF, Universidad Nacional de Córdoba,
Ciudad Universitaria, 5000 Córdoba, Argentina

2 Institute for Computing and Information Sciences. Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

dargenio@famaf.unc.edu.ar

B.Gebremichael@cs.ru.nl

Abstract. Delaying the synchronization of actions may reveal some hidden be-
havior that would not happen if the synchronization met the specified deadlines.
This precise phenomenon makes bisimulation fail to be a congruence for the par-
allel composition of timed automata with deadlines, a variant of timed automata
where time progress is controlled by deadlines imposed on each transition. This
problem has been known and unsolved for several years. In this paper we give
a characterization of the coarsest congruence that is included in the bisimulation
relation. In addition, a symbolic characterization of such relation is provided and
shown to be decidable. We also discuss the pitfalls of existing parallel composi-
tions in this setting and argue that our definition is both reasonable and sufficiently
expressive as to consider the modeling of both soft and hard real-time constraints.

1 Introduction

Design and specification languages allow to model systems in a modular manner by
linking small modules or components using the language operations —such as the se-
quential composition or the parallel composition— in order to build larger modules.
Hence a desirable requirement is that the language is compositional with respect to its
semantics. By compositional we mean that components can be replaced by behaviorally
equivalent components without changing the properties of the larger model in which
they are embedded. The preservation of such properties can be guaranteed by means
of semantic equivalences or preorders. For example branching bisimulation preserves
CTL∗ [11], language inclusion preserves LTL [22] and, in particular, timed bisimulation
preserves (timed) properties expressed in logics such as TCTL [27]. Hence, composi-
tionality amounts to requiring that relations like these are congruences (or precongru-
ences) for the different operations of the language.

Timed automata [1,18] are used to model real-time systems and have become pop-
ular as modeling language for several model checkers because of its simplicity and
tractability [2,9,10]. Timed automata are automata with the additional ingredients of

� Supported by the EC project IST-2001-35304 AMETIST, URL: ametist.cs.utwente.nl.
�� Also at Formal Methods and Tools, Dep. of Comp. Sci. University of Twente. Supported by

the NWO Vernieuwingsimpuls and the ANPCyT project PICT 11-11738.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 125–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 P.R. D’Argenio and B. Gebremichael

s1

s2

s0

t2 t3

t1

t0

a

x := 0
b

γ : x ≥ 2
δ : x ≥ 3

T1

a

δ : x = 6

x := 0
b

γ : 4 ≤ x ≤ 6
δ : x ≥ 3
γ : x ≥ 2

c

T2

(a)

x := 0
b

T1 ||a stop

δ : x = 6

x := 0
b

c
γ : 4 ≤ x ≤ 6

T2 ||a stop

(b)

Fig. 1. TAD and compositionality

clocks. Clocks are variables that increase at the same rate in order to register time
progress. Transitions are labeled with constraints on clocks, called guards, that indicate
when such transition may take place. Usually timed automata are used to model real-
time systems with hard constraints. In this cases, timed automata are equipped with
an invariant, which is a constraint on clocks that limits time progress in each control
state [18]: the system is obliged to leave such state before invalidating the invariant.

Because of the nature of invariants, time is allowed to progress in the composed
timed automaton only if time is allowed to progress in all component automata. There-
fore, if one of the automaton fails to meet the deadline imposed by a partner in a syn-
chronisation, then the entire system crashes (which is represented by the so called time
deadlock: the composed system has reached a state where time is blocked forever). This
is the nature of hard deadlines. But it is debatable whether hard deadlines are always
appropriate to model synchronisation in real-time systems. An alternative composition
is, a composition with soft deadlines that allows the fast partner to wait the slow partner
if nothing else is possible. In this case the deadlines can be violated, but the synchroni-
sation is performed urgently whenever possible.

Timed automata with deadlines (TAD for short) [26,7,5,6] were introduced for these
reasons. Parallel compositions with hard and soft deadlines as well as urgency can be
naturally defined in TAD. At the same time, the TAD model ensures, under reasonable
assumption, what is called time reactivity in [6] and time lock freedom in [8], that is,
whenever time progress stops there exists at least one transition enabled. (Note that
time reactivity and hard constraints are not fully compatible.) This model is nowadays
embedded in modeling languages such as IF [10] and MoDeST [16,4], and urgent tran-
sitions in Uppaal [3] can be seen as a particular instance of TAD transitions.

TADs do not have invariants. Instead, a TAD transition has associated a second
clock constraint, called deadline, that indicates in which moment such transition must
be taken. As a consequence, a deadline is required to hold only if the corresponding
guard holds ensuring the transition can be taken after the deadline is reached. In this
sense, the deadline impose an urgency constraint.

Contrary to the traditional timed automata setting, bisimulation in the TAD model is
not preserved by parallel composition [6]. This is illustrated in the following example.
T1 in Fig. 1.(a) depicts a TAD in which circles represent control state and arrows are
control transitions. In particular the small incoming arrow identifies the initial state. T1

performs first an action b at any moment and sets clock x to 0. As time progresses,
the value of x increases and when it takes value 2 action a becomes enabled. This is

The Coarsest Congruence for Timed Automata 127

controlled by guard γ : x ≥ 2. At any point after x takes value 2, this transition may
take place, but as time continues to progress and x takes value 3, the deadline δ : x ≥ 3
obliges the execution of the transition. Notice that T2 shows a similar behavior since
action c cannot be executed: the deadline of a obliges its execution before the guard of
c becomes enabled. In fact, T1 and T2 are timed bisimilar in the sense of [6].

Suppose now that T1 is composed in parallel with the automaton stop requiring
synchronization on action a. (stop is the automaton with a single location and no tran-
sition; hence, it does not do anything but idling.) This blocks the execution of action a
in T1. The resulting automaton T1 ||a stop is depicted in Fig. 1.(b). Similarly, the com-
position of T2 with stop in T2 ||a stop also blocks the execution of a, but in this case
time progresses beyond 3 time units allowing the execution of c after 4 time units (see
Fig. 1.(b)). As a consequence T1 ||a stop and T2 ||a stop are not bisimilar.

To the best of our knowledge there is no characterization of a congruence for parallel
composition on TADs. The only exception is what is called strong congruence in [6],
which is the usual bisimulation applied directly on TADs. This relation is, however, far
too strong as it requires the syntactic equality of guards, deadlines, and clock resets.

In this paper we present a congruence relation for parallel composition and prove
that it is the coarsest congruence included in the bisimulation relation. This new re-
lation, which we call ∇-bisimulation (read “drop-bisimulation”), is in fact the usual
bisimulation on an extended semantics of TAD. Such semantics allows for time pro-
gressing beyond deadlines but carefully accounting the actions whose deadline have
been overruled. We also give a symbolic characterization of ∇-bisimulation, that is,
a relation defined directly on TADs. As a corollary of this characterization we ob-
tain that ∇-bisimulation is decidable. Another particular contribution of this paper is
that the proof of congruence is entirely carried out at symbolic level (i.e., without re-
sorting to the underlying transition system in which ∇-bisimulation is defined). We fi-
nally discuss different kind of parallel compositions on TADs (mostly defined already
in the literature) reporting which of them preserves ∇-bisimulation and which do not
and why.

Related Work. The failure of bisimulation to be a congruence becomes apparent when
soft deadlines are considered, that is actions that may be urgent in isolation are re-
quired to wait if they are intended for synchronization i.e. synchronizing actions need
to be patient. This problem has appeared in the context of stochastic process algebra
where synchronization is required to be patient (e.g. [20,19,14]). It becomes evident (in
a similar manner as above) if bisimulation is considered for the underlying probabilistic
transition system rather than for the finer symbolic model [14]. The problem of compo-
sitionality also showed up in other process algebras for performance behavior [13].

In [21], compositionality is studied on timed automata with urgent actions w.r.t.
simulation. (An urgent action corresponds to an action in TADs for which guard and
deadline are the same.) In this case, it suffices to add a condition of readiness on the ur-
gent actions to achieve precongruence. Recently, [17] defined a variant of TADs where
actions are distinguished between input and output following the model of [25] and for
which bisimulation is a congruence for the parallel composition. This is possible due
to input enabling and to the fact that only output actions are allowed to be urgent (i.e.
to have deadline.) Therefore there is no need to wait for synchronization as it is always

128 P.R. D’Argenio and B. Gebremichael

possible. Though the restrictions imposed by [17] makes the new model much simpler
and tractable, using it to describe soft real-time systems may result in complex models.

In addition to the solution for the compositionality problem, we also give a symbolic
characterization of the congruence. Our work is based on the result of Lin & Yi [23]
who gave a symbolic characterization of the bisimulation for timed automata. In turn,
their result is based on Čerāns’ who determined that bisimulation for timed automata is
decidable [12]. We use also this result to show the decidability of the ∇-bisimulation.

Paper Outline. The paper is organized as follows. Section 2 gives the preliminaries
recalling timed automata with deadlines, its semantics in terms of transition systems,
the definition of bisimulation, and particularly, the definition of parallel composition.
In Section 3 we discuss the pitfalls of the composition and progressively construct the
semantics that leads to the definition of ∇-bisimulation. The symbolic characterization
is provided in Section 4 and shown to be the coarsest congruence in Section 5. We
conclude in Section 6 discussing decidability of ∇-bisimulation and the different kind
of synchronization in parallel composition. A full version of this paper appeared as [15].

2 Preliminaries

Timed Automata with Deadlines. A clock is a non-negative real-valued variable,
which can be reset to zero at the occurrence of an event, and between two resets, its
derivative with respect to time is equal to 1. We denote C = {x1, . . . , xN } to be a finite set
of clocks. A clock constraint F (C) is a conjunction of formula(s) of atomic constraints
in the form of xi �� n or xi − x j �� m, where xi and x j are clocks in C, �� ∈ {<, >,≤,≥,=}
and n,m are natural numbers. The constraints tt and ff are used to denote, respectively,
the atomic constraints which are constantly true and false. We will assume that there is
a global finite set of actions A for all timed automata with deadlines.

Definition 1. A timed automaton with deadlines [6] (TAD for short) is a structure T =
(L, l0,C, �) where (i) L is a finite set of locations, (ii) l0 ⊆ L is the set of initial
locations, (iii) C is a finite set of clocks, (iv) � ⊆ L× (A×F (C)×F (C)×2C)×L, is a

finite set of edges. If (s, a, γ, δ, x, s′) ∈ � we write s a,γ,δ,x� s′ and require that δ⇒ γ
holds, moreover we assume δ is left-closed (left-closure is formally defined in Def. 2).

The notion s a,γ,δ,x� s′ represents an edge from location s to s′ that executes action
a whenever guard γ becomes true. In addition, deadline predicate δ impose an urgency
condition: the transition cannot be delayed whenever δ is satisfied. When executing the
transition, clocks in x are set to 0.

Parallel Composition of TADs. Parallel composition allows the independent execution
of the activity of the component automata except if they are intended to synchronize.
We assume CSP synchronization in which actions with equal name synchronize if and
only if they belong to a set of synchronizing actions B ⊆ A. Since enabling of actions
is determined by guards, we define the guard on the synchronized transition to be the
conjunction of the guards on the synchronizing transitions. Therefore synchronization
takes place only if both partners are able to execute the same synchronizing action.
(Other compositions of guards are discussed in Sec. 6). Similarly, the deadlines of the

The Coarsest Congruence for Timed Automata 129

synchronizing transitions should affect the deadline of the synchronization. In this case,
we do not fix any particular operation. Instead, we assume a given operator⊗ that, when
applied to guards and deadlines of the synchronizing transitions, returns the deadline of
the synchronization. We require that ⊗ satisfies the following:

1. (δ1, γ1) ⊗ (δ2, γ2) ⇒ (γ1 ∧ γ2) whenever δ1 ⇒ γ1 and δ2 ⇒ γ2

2. ⊗ preserves left-closure, that is, if δ1 and δ2 are left closed, so is (δ1, γ1) ⊗ (δ2, γ2)
3. ⊗ distributes with respect to ∨ in all its arguments, that is(∨

i

(
δi

1, γ
i
1

)
⊗
(
δi

2, γ
i
2

))
⇔
(∨

i δ
i
1,
∨

i γ
i
1

)
⊗
(∨

i δ
i
2,
∨

i γ
i
2

)
4. There exists a constraint 0δ such that (0δ, tt) acts as a neutral element for ⊗ in the

following sense: ((δ1, γ1) ⊗ (0δ, tt)) ⇔ δ1

(δ1, γ1) ⊗ (δ2, γ2) has to imply the guard γ1 ∧ γ2 of the resulting transition in order to
preserve this property on the composed TAD. This is required in 1. Similarly, condi-
tion 2 ensures that deadlines of the composed TAD are left-closed. The distributivity
of 3 is needed to prove congruence (see proof of Theorem 2). As we will see in the next
section, time passage in a location is limited by the complement of the disjunction of
the outgoing deadlines. Therefore condition 3 states compositionality for ⊗, allowing
to represent the deadline of a synchronized action in terms of the deadlines and guards
of the component automata. Constraint 4 is only necessary to show that our definition
is the coarsest congruence included in the bisimulation (see Lemma 6). For operators
not meeting this condition there may exist coarser congruences than ours that are also
bisimulation. Constraint 4 guarantees a way to test the validity of the original dead-
line in a component’s transition by means of a synchronization. In Sec. 6 we discuss
different implementations of ⊗.

Let Ti = (Li, l0i,Ci, �
i), such that C1 ∩ C2 = ∅ for i ∈ {1, 2}, and let B ⊆ A be

a set of synchronizing actions, and ⊗ be an operation for synchronizing deadlines. The
parallel composition T1 ||⊗B T2 is defined by the TAD (L1 × L2, l01 × l02,C1 ∪ C2, �)
where � is defined as the smallest relation satisfying:

si
a,γ,δ,x�

i s′i s j=s′j {i, j}={1, 2} a � B

(s1, s2) a,γ,δ,x� (s′1, s
′
2)

s1
a,γ1 ,δ2 ,x1�

1 s′1 s2
a,γ2 ,δ2 ,x2�

2 s′2 a ∈ B

(s1, s2) a,γ1∧γ2 ,(δ1 ,γ1)⊗(δ2 ,γ2),x1∪x2� (s′1, s
′
2)

The rules are fairly standard. Notice, in particular, that the last rule only allows to syn-
chronize guards when both of them are valid. This is a significant restriction w.r.t. [6].
We later argue that this is nevertheless reasonable and discuss the feasibility of compo-
sitions not consider here. From now on, subscripts on edges will be omited.

Transition Systems and Bisimulation. A transition system (TS for short) is a structure
TS = (S, s0, Σ,−−→) where S is an infinite set of states, s0 is the set of initial states, Σ
is a set of labels, and −−→⊆ (S × Σ × S) is a set of transitions. Since we use TSs to
model timed systems, we consider two kind of labels: those representing the execution
of discrete actions and those representing the passage of time. Then Σ = A∪ R≥0.

A bisimulation [24] is a symmetric relation R ∈ S × S such that for all a ∈ Σ,

whenever (p, q) ∈ R and p
a−−→ p′ then q

a−−→ q′ and (p′, q′) ∈ R for some q′. We write
p ∼ q if (p, q) ∈ R for some bisimulation relation R on TS. Given two TSs TS1 and
TS2 with set of initial states s0

1 and s0
2, respectively, we say that they are bisimilar

(notation TS1 ∼ TS2) if there is a bisimulation R in the disjoint union of TS1 � TS2 such

130 P.R. D’Argenio and B. Gebremichael

that s0
j ⊆ R(s0

i) for {i, j} = {1, 2}, i.e. every initial state of TS1 is related to some initial
state of TS2 and vice-versa.

Semantics of TADs. In the following we recall the semantics of TADs in terms of TSs.
A state of the timed system is divided in two parts, one indicating the current control
location in the TAD, and the other the current time values. This last part is represented
by means of a clock valuation which is a function ρ : C → R≥0 mapping to each
clock the time elapsed since the last time it was reset to 0. Given a clock valuation ρ
and d ∈ R≥0 the function ρ + d denotes the valuation such that for each clock x ∈ C,
(ρ + d)(x) = ρ(x) + d. The function ρ{x:=0} denotes the valuation such that for each
clock x ∈ x ∩ C, ρ{x:=0}(x) = 0, otherwise ρ{x:=0}(x) = ρ(x). We first define what it
means for a constraint to be left-closed, followed by the semantics of TADs.

Definition 2. A constraint φ is called left closed if and only if for all valuations ρ,
ρ |= ¬φ ⇒ ∃ε > 0 : ∀ε′ ≤ ε : ρ + ε′ |= ¬φ.
Definition 3. Let T = (L, l0,C, �) be a TAD. Its semantics is given by TS(T) = (L ×
(C �→ R≥0), l0 × (C �→ 0),A∪ R≥0,−−→), where −−→ is the smallest relation satisfying:

A1: discrete transition s a,γ,δ,x� s′ and ρ |= γ implies sρ
a−−→ s′ρ{x:=0}; and

A2: delay transition ∀d′ < d : ρ + d′ |= tpc(s) implies sρ
d−−→ s(ρ + d)

where tpc(s) = ¬∨{δ | ∃a, γ, x, s′ : s a,γ,δ,x� s′} is the time progress condition in s.

Rule A1 states that an edge s a,γ,δ,x� s′ defines a discrete transition in current
location s whenever the guard holds in current valuation ρ. After the transition is taken
clocks in x are set to 0 in the new valuation. According to A2, time can progress in s
only when tpc(s) is true, that is as long as no deadline of an edge leaving s becomes
true. Notice that tpc(s) is required to hold for all d′ < d but not for d itself. Therefore
it is indistinguishable whether tpc(s) holds in the limit or not. For instance, if ρ(x) = 0
both x < 3 and x ≤ 3 hold in all ρ + d′ with d′ < 3. Thus our assumption that deadline
has to be specified as left-closed predicate is not a limitation but a preference to avoid
technical complications which do not contribute to the work.

As a consequence of Def. 3 the notion of bisimulation extends to TADs straightfor-
wardly: two TADs T1 and T2 are bisimilar (notation T1 ∼ T2) if TS(T1) ∼ TS(T2).

Example. Consider automata T1 and T2 of Fig. 1. Using Def. 3 it is routine to check
that relation {(s0{x:=d}, t0{x:=d}) | 0 ≤ d} ∪ {(s1{x:=d}, t1{x:=d}) | 0 ≤ d ≤ 3} ∪
{(s2{x:=d}, t2{x:=d}) | 2 ≤ d} is a bisimulation witnessing T1 ∼ T2. Besides, if stop =
({r}, {r},∅,∅), then T2 ||⊗a stop can execute the trace b 5 c, which is not possible in
(s0, r){x:=0}. Consequently, T1 ||⊗a stop � T2 ||⊗a stop.

3 Towards a Congruence Relation

In the following we discuss different proposals for congruence until finding a satisfac-
tory definition. All proposals are bisimulation relations on different modifications of the
transition system underlying the TAD.

The Coarsest Congruence for Timed Automata 131

x := 0

γ : x ≥ 1
δ : ff

c
γ : x ≥ 2
δ : x ≥ 2

a

b

T3

γ : x ≥ 1
δ : x ≥ 2

c
γ : x ≥ 2
δ : ff

b

x := 0
a

T4

(a)

T′

a

b

T′′

a

b

y := 0

γ : y ≥ 2
δ : y ≥ 2

(composing automata)

x := 0
a

b c

b
γ : x ≥ 1
δ : ff

b
γ : x ≥ 2
δ : x ≥ 2

T5

x := 0
a

b c

δ : x ≥ 2

b
γ : x ≥ 1

b
γ : x ≥ 2
δ : ff

T6

(b)

x := 0
a

b
γ : x = 1
δ : x = 1

b
γ : x ≥ 2
δ : x ≥ 2

T7

x := 0
a

δ : x = 1
γ : x = 1

b b
γ : x ≥ 2
δ : ff

T8

(c)

Fig. 2. (Counter)examples for congruence

The example in Fig. 1 suggests that action c could be distinguished if time would
be allowed to elapse beyond the deadline. Therefore, a first naive proposal would be
to let time progress beyond the time progress condition but this would not be compat-
ible with the bisimulation since TADs with different deadlines but equal guards may
become equated. So, a modification of this semantics could consider separately a po-

tential time progress by adding a new kind of transition: sρ
[d]−−−→ s(ρ + d) for all d ≥ 0.

Though clearly stronger than bisimulation —notice that it would distinguish T1 and T2

in Fig. 1— it fails to be a congruence. This is shown in Fig. 2(a). The relation would
equate T3 and T4, but not their compositions T3 ||⊗B T′ and T4 ||⊗B T′ with B = {a, b, c}. No-
tice that after realization of action a, T3 ||⊗B T′ lets (non-potential) time progress beyond
2 time units while this is not possible in T4 ||⊗B T′ due to the deadline in b.

As a consequence, we may think to consider different potential time progress transi-
tion for each edge in the TAD, but this turns to be too strong (apart from cumbersome).
See automata T5 and T6 in Fig. 2(b) which share some similitude with the previous
example, only that c has been renamed to b. They are expected to be congruent.

The new example suggests that time can potentially progress differently for every
action name since they can be delayed or preempted independently. A possible solution
seems to consider a different kind of potential time progress for each action. Since
time progress is associated to deadlines, we follow a different approach: instead of
considering potential time progress, we consider a new type of discrete action ∇D, D ⊆
A, that indicates that from the moment action ∇D is issued, deadlines of actions in D
would be disregarded. We call this type of action “drop” (since it drops the deadline).
Notice that a drop action can be performed at any moment.

Let A∇ = {∇D | D ⊆ A}. To keep track of which deadlines have to be disregarded,
states also need to book keep the current set of actions whose deadlines were dropped.
The extended semantics of T = (L, l0,C, �) is then given by the TS (L × 2A × (C �→
R≥0), l0×{∅}×(C �→ 0),A∪A∇∪R≥0,−−→), where−−→ is the smallest relation satisfying:

132 P.R. D’Argenio and B. Gebremichael

A1∇: discrete transition s a,γ,δ,x� s′ and ρ |= γ implies (s,D)ρ
a−−→ (s′,∅)ρ{x:=0}

A2∇: delay transition ∀d′<d : ρ+d′ |= ¬dl(s,A− D) implies (s,D)ρ
d−−→ (s,D)(ρ+d)

A3: drop transition (s,D)ρ
∇E−−−→ (s,D ∪ E)ρ

where dl(s, A) is the deadline collected by actions in A ⊆ A in location s and is defined

by dl(s, A) =
∨{δ | s a,γ,δ,x� s′ and a ∈ A for some a, γ, x, s′}. Bisimulation in this new

semantics distinguishes automata in Figs. 1(a) and 2(a), and equates those in Fig. 2(b).
Regarding to the new predicate dl(s, A) notice that for any location s, tpc(s) = ¬dl(s,A).

Notice that once a deadline is dropped, it cannot be observed anymore. Example
in Fig. 2(c) shows that this semantics does not yet yields a congruence. According to
this semantics T7 and T8 are equated. However, under the assumption that deadlines of
synchronizing transitions are arranged in a conjunction (i.e. ⊗ is ∧), the compositions
T7 ||⊗B T′′ and T8 ||⊗B T′′, with B = {a, b}, are distinguished by the usual bisimulation: after
executing action a, T8 ||⊗B T′′ let time progress beyond 2 time units while this is not the
case in T7 ||⊗B T′′ due to the composed deadline (x ≥ 2) ∧ (y ≥ 2) in b.

This phenomenon is due to the fact that after action a is performed, automaton T′′
temporarily disregard the deadline of b during the first 2 units of time, but later it allows
to observe it again. As a consequence, we introduce a new action Δ (read “undrop”)
which indicates that in the future all deadlines will be consider again.

Definition 4. The extended semantics of T = (L, l0,C, �) is given by TS∇(T) = (L ×
2A× (C �→ R≥0), l0× {∅}× (C �→ 0),A∪A∇∪{Δ}∪R≥0,−−→), where −−→ is the smallest
relation satisfying A1∇, A2∇, and A3 above plus

A4: undrop transition (s,D)ρ
Δ−−→ (s′,∅)ρ

Notice that the undrop action can be performed at any moment. Notice also that the
execution sequence a∇{b} 2Δ 1 is possible in T8 but not in T7. Hence, a bisimulation in
this setting distinguishes T7 from T8. We define such a relation as follows.

Definition 5 (∇-bisimulation). We say that automata T1 and T2 are ∇-bisimilar, nota-
tion T1 ∼∇ T2, if TS∇(T1) ∼ TS∇(T2). We also say that locations s and t are ∇-bisimilar in
some valuation ρ, notation sρ ∼∇ tρ, if (s,∅)ρ ∼ (t,∅)ρ.

Notice that two ∇-bisimilar automata are also bisimilar. We conclude this section
by stating two basic properties (lemmas) of ∇-bisimulation. They are needed to prove
Theorem 1 which relates ∼∇ to a symbolic bisimulation.

Notice that the ability of dropping all the deadlines, letting time pass, and then un-
dropping the deadlines, ensures that if two locations are∇-bisimilar at a certain moment,
no matter how long the activity is blocked, this two locations will still be ∇-bisimilar.
This is stated in Lemma 1. Moreover, if two locations are ∇-bisimilar at some given
valuation ρ then both satisfy the deadline associated to some action in valuation ρ, or
none of them does. This is easy to check by dropping all the deadlines except those
associated to the action of interest. This is formally stated in Lemma 2.

Lemma 1. If tρ ∼∇ uρ then t(ρ + d) ∼∇ u(ρ + d), for all d ≥ 0.

Lemma 2. If tρ ∼∇ uρ then ρ |= dl(t,D) ⇔ dl(u,D), for any D ⊆ A.

The Coarsest Congruence for Timed Automata 133

4 Symbolic Characterization of ∇-Bisimulation

We postpone the proof that ∇-bisimulation is a congruence until Sec. 5 and give first a
symbolic characterization of ∼∇. That is, we give a relation directly in TADs which does
not resort to the underlying transition system and equates exactly the same automata
as ∼∇ does. The symbolic bisimulation we propose works in a similar fashion to that
of [23]. The construction of such relation is based on zone and region manipulation. A
clock region or region for short, is a consistent conjunction of atomic constraints of the
form, ψ ≡ ∧x∈C ψx ∧∧{x,y}⊆C,x�y ψ{x,y} where

– each ψx is either x = n, m < x < m + 1 or x > N, and
– each ψ{x,y} is either x−y = n, m < x−y < m + 1 or x−y > N.

with n,m,N non-negative integers such that 0 ≤ n ≤ N, and 0 ≤ m < N. Regions can
be expressed by constraints as we defined above, and any constraint can be expressed
as a disjunction of regions. Similar to the clock resetting (ρ{x := 0}) and time successor
(ρ+d) of the clock valuation defined earlier, we define below their symbolic counterpart.

Reset: For a constraint φ and a set of clocks x, the reset φ↓x is a predicate such that
for all ρ, ρ |= φ↓x iff ρ = ρ′{x := 0} and ρ′ |= φ for some ρ′

Time successor: For a constraint φ, the time successor φ⇑ is a predicate such that for
all ρ, ρ |= φ⇑ iff ρ = ρ′ + d and ρ′ |= φ for some ρ′ and d ≥ 0

A constraint φ is⇑-closed if and only if φ ⇑⇔ φ is valid (i.e. a tautology). The op-
erations above distribute on disjunction and are expressible in terms of constraints (see
e.g. [28,23].) The following facts can be derived from the definitions or have already
appear elsewhere [28,23].

Fact 1. (1) Let ψ and φ be regions. Let ρ and ρ′ be valuations s.t. ρ |= ψ and ρ′ |= ψ. If
ρ+d |= φ for some d ≥ 0, there exists d′ ≥ 0 s.t. ρ′+d′ |= φ. (2) If φ is a region then, for
any constraint ψ, either φ⇒ ψ is valid or φ∧ψ is a contradiction. (3) If φ is a region, so
does φ↓x. (4) ρ |= φ implies ρ |= φ⇑. (5) φ⇑ is⇑-closed. (6) If φ is⇑-closed then ρ |= φ
implies ρ+ d |= φ for all d ∈ R≥0. (7) If φ1 and φ2 are⇑-closed (resp. left-closed), so are
φ1 ∧ φ2 and φ1 ∨ φ2.

Given a constraint φ, a φ-partition [23] is a finite set of constraints Φ if
∨
Φ ⇔ φ and

for any two distinct ψ, ψ′ ∈ Φ, ψ and ψ′ are disjoint (i.e. ψ ∧ ψ′ is a contradiction). A
φ-partition Φ is called finer than another φ-partition Ψ if Φ can be obtained from Ψ by
decomposing some of its elements. RC(φ) denotes the set of all regions that constitute
φ. Notice that φ⇔ ∨RC(φ) and that RC(φ) is the finest of all φ-partitions.

Lemma 3. Let ψ be a region and ρ be such that ρ |= ψ. For all φ ∈ RC(ψ⇑) exists d ≥ 0
such that ρ + d |= φ.
The definition of symbolic bisimulation we propose is based on Lin & Yi’s defini-
tion [23], which in turns is based on Čerāns’ result [12]. A symbolic bisimulation is
a relation containing tuples (s, t, φ) meaning that locations s and t are related in any
valuation that satisfies constraint φ. Here φ is a constraint over the disjoint union of the
set of clocks of the two automata. In this way, the relation ensures that clocks in both
automata progress at the same rate. In turn, this guarantees that the related locations can
idle the same time until some given deadline becomes true.

134 P.R. D’Argenio and B. Gebremichael

Definition 6 (Symbolic Bisimulation). Let T1 and T2 be two TADs with disjoint set
of clocks C1 and C2 and disjoint set of locations L1 and L2 respectively. A relation
S ⊆ (L1 × L2 ∪ L2 × L1) × F (C1 ∪ C2) (where F (C) denotes the set of all constraints
with clocks in C) is a symbolic bisimulation if for all (t, u, φ) ∈ S ,

(1) (u, t, φ) ∈ S , (2) φ is⇑-closed,

(3) whenever t a,γ,δ,x� t′, there is a (φ ∧ γ)-partition Φ such that for each φ′ ∈ Φ,

u a,γ′,δ′,y� u′, φ′ ⇒ γ′ and (t′, u′, φ′↓xy⇑) ∈ S , for some γ′, δ′, y and u′; and
(4) φ⇒ (dl(t, A) ⇔ dl(u, A)) is valid for all A ⊆ A.

We write t ∼φ u if (t, u, φ) ∈ S for some symbolic bisimulation S . We also write T1 ∼φ T2

if for every initial location t of T1 there is an initial location u in T2 such that t ∼φ u,
and the same with the roles of T1 and T2 exchanged.

Property 1 states the symmetric characteristics of a bisimulation. The requirement
that φ is⇑-closed (property 2) ensures that location t and u show an equivalent behavior
any time in the future which is necessary if deadlines are dropped. Property 3 ensures
the transfer properties of discrete transitions. This is similar to [23] except that there is
no invariant to consider. Finally, property 4 states that any possible combination of dead-
lines should match under the assumption that φ holds. This ensures that the time elapsed
until a deadline associated to a given action is the same in both locations. Notice that

T10

δ : y ≥ 4

b
γ : tt

δ : ff

b

δ : x ≥ 4
γ : x ≤ 2

b

T9

γ : x > 2

Fig. 3. T9 ∼x=y T10

property 4 is equivalent to requiring that φ ⇒
(dl(t, {a}) ⇔ dl(u, {a})) for all a ∈ A. This makes
evident that deadlines may be “changed” from one
edge to another as long as both edges are labeled
with the same action (see Fig. 2(b)). Moreover
property 4 is comparable to the property of invari-
ants in [23]. Like in [23], the use of partitioning
allows that one edge is matched by several edges as is the case in Fig. 3 where both
T9 ∼∇ T10 and T9 ∼x=y T10.

The following theorem states that symbolic bisimulation completely captures the
notion of ∇-bisimulation.

Theorem 1. For⇑-closed φ, t ∼φ u iff tρ ∼∇ uρ for any ρ |= φ
Proof (Sketch). From the results exposed above, it follows that if S be a symbolic
bisimulation, then {((t,D)ρ, (u,D)ρ) | ∃φ : ρ |= φ : (t, u, φ) ∈ S and D ⊆ A} is a
bisimulation up to ∼ [24], which proves the “only if”. Moreover, it also follows that
{(t, u, φ)|φ is ⇑ -closed and ∀ψ ∈ RC(φ) : ∃ρ : ρ |= ψ : tρ ∼∇ uρ} is a symbolic bisimu-
lation, which proves the other implication. ��
Corollary 1. Let φ0 ≡ ∧x,y∈C1∪C2

(0 ≤ x = y). T1 ∼φ0 T2 iff T1 ∼∇ T2.

5 The Coarsest Congruence Included in ∼
In this section, we show that ∼φ0 (and hence ∼∇, too) is the coarsest congruence for the
parallel composition included in bisimulation. The first part of the section is devoted to

The Coarsest Congruence for Timed Automata 135

prove that ∼φ0 is a congruence. It is interesting to notice that the proof of congruence is
carried out fully at symbolic level (in contrast to the usual proof using the underlying
transition system). To the best of our knowledge, this is a novel approach. In the second
part we show that ∼∇ is the coarsest congruence included in ∼.

The next two lemmas are required for the proof of congruence. Lemma 4 implies
that a deadline of a set of actions can be decomposed as a disjunction of the deadlines
of each of the actions. Lemma 5 states that if two locations t and u are symbolically
bisimilar under a constraint φ, then a given action a is enabled in t if and only if it is
enabled in u for all valuations that satisfy constraint φ.

Lemma 4. dl(s,D ∪ E) ⇔ (dl(s,D) ∨ dl(s, E))

Lemma 5. Define gd(s, a) =
∨{γ | s a,γ,δ,x� s′ for some δ, x, s′}. If S is a symbolic

bisimulation s.t. (t, u, φ) ∈ S , then φ⇒ (gd(t, a) ⇔ gd(u, a)) is valid for all a ∈ A.

In particular, these lemmas are needed to check that property 4 of the symbolic bisim-
ulation is preserved in the congruence.

Now, we are in conditions to prove that ∼φ is a congruence for any parallel composi-
tion defined as in Sec. 2. In particular, we notice that the proof does not use constraints 1
and 4 imposed on ⊗.

Theorem 2. Let T j
i = (L j

i , l
0 j

i ,C j
i ,

�), for i, j ∈ {1, 2} such that C j
i ∩Cl

k = ∅ if i � k or
j � l. Then T1

1 ∼φ T1
2 and T2

1 ∼φ T2
2 imply T1

1 ||
⊗
B

T2
1 ∼φ T1

2 ||
⊗
B

T2
2 for all B ∈ A, operation

⊗ and constraint φ.

Proof (Sketch). Let S 1 and S 2 be symbolic bisimulations witnessing T1
1 ∼φ1 T1

2 and
T2

1 ∼φ2 T2
2 , resp. The proof checks that S = {((t1, t2), (u1, u2), φ1∧φ2) | (t1, u1, φ1)∈S 1 and

(t2, u2, φ2)∈S 2} is also a symbolic bisimulation. Properties 1 and 2 in Def. 6 follow easily
since S 1 and S 2 also satisfy them. Property 3 follows from the definitions of parallel
composition and symbolic bisimulation making careful manipulations of constraints,
regions, and partitions using Fact 1. Because of Lemma 4, property 4 is a consequence
of implication (φ1 ∧ φ2) ⇒ (dl((t1, t2), {a}) ⇔ dl((u1, u2), {a})), which, for a�B, follows
from the definitions. For a∈B, conditions 2 and 3 on ⊗ allow to show that dl((t1, t2), {a})
is equivalent to (dl(t1, {a}), gd(t1, a)) ⊗ (dl(t2, {a}), gd(t2, a)), and similarly for (u1, u2).
Then, by Lemma 5, and since S 1 and S 2 are symbolic bisimulations, dl((t1, t2), {a}) and
dl((u1, u2), {a}) can be proved equivalent. ��
Because of Corollary 1 and Theorem 2, ∼∇ is also a congruence.

The next lemma is core for the proof that ∼∇ is the coarsest congruence included
in ∼. We notice that it does not use constraints 1, 2, and 3 imposed on ⊗. The lemma
exhibits a test automata Tt that distinguish, modulo bisimulation, two automata that are
not ∇-bisimilar. Automata Tt is built by adding extra actions in such a way that, when
composed with an automata T, the composition can mimic in the original semantics the
behavior of T in the extended semantics. In fact, the extra actions are the same drop
(∇D) and undrop (Δ) actions of the extended semantics.

Lemma 6. Define the test automata Tt with set of locations Lt = {sD | D ⊆ A},
l0t = {s∅}, set of clocksCt = ∅, set of actionsA∪A∇∪{Δ} and, for all D,D′ ⊆ A, a � D,

136 P.R. D’Argenio and B. Gebremichael

define sD
a,tt,0δ,∅� s∅, sD

∇D′ ,tt,ff,∅� sD∪D′ , and sD
Δ,tt,ff,∅� s∅. Let T1 and T2 be

TADs with set of locationsL1 andL2 respectively. Suppose that T1 ||⊗ATt ∼ T2 ||⊗ATt. Then,
R = {((t1,D)ρ1, (t2,D)ρ2) | t1 ∈ L1, t2 ∈ L2, sD ∈ Lt, and (t1, sD)ρ1 ∼ (t2, sD)ρ2 } is
a bisimulation relation that witnesses T1 ∼∇ T2.

The proof of the lemma is fairly straightforward except in the case of the delay transi-
tion. Notice that a delay transition from (t,D) is governed by satisfaction of¬dl(t,A−D)
(by A2∇) while in (t, sD), it is governed by tpc(t, sD). To show that both predicates are
equivalent it is necessary that (0δ, tt) is neutral for ⊗.

From Lemma 6, it follows that ∼∇ and ∼φ0 are the coarsest congruence in ∼:

Theorem 3. Fix ⊗ satisfying conditions 1 and 2 in Sec. 2. Then ∼∇ (and hence ∼φ0) is
the coarsest congruence included in ∼ for the family of operators ||⊗

B
, with B ⊆ A.

6 Concluding Remarks

On Deciding ∇-Bisimulation. Our symbolic characterisation is based on [23] and [12].
In particular, [12] states that bisimulation is decidable for timed automata. The same ap-
plies to our relation. Since the number of regions is finite so is the number of (relevant)
constraints (modulo logic equivalence) and as a consequence also the number of rel-
evant⇑-closed constraints. Therefore, any possible symbolic bisimulation relating two
TADs will also be finite. Besides, operations ↓x and⇑ are expressible in terms of con-
straints, and it is possible to decide validity of the constraints on clocks. Following [12],
checking that two TADs T1 and T2 are ∇-bisimilarity is then possible by taking relation
S = {(t, u, φ⇑) | φ ∈ RC(tt)} (which is the finest partition possible since RC(tt) is the set
of all regions) and checking that the transfer rules in Def. 6 hold for all tuples reachable
from some set I ⊆ (S ∩ (ini1 × ini2 × RC(φ0))) such that it relates all initial states of T1

(resp. T2) with some initial state of T2, (resp. T1).

A Remark on Symbolic Bisimulation. The third constraint in the definition of sym-
bolic bisimulation (Def. 6) can be relaxed as follows:

whenever t a,γ,δ,x� t′, there is a (φ∧γ)-partitionΦ s.t. for each φ′∈Φ, u a,γ′,δ′,y� u′,
φ′ ⇒ γ′, φ′↓xy⇑ ⇒ ψ, and (t′, u′, ψ) ∈ S , for some ψ, γ′, δ′, y and u′.

the difference being on the existence of ψ such that φ′↓xy⇑ ⇒ ψ. It is not difficult to
check that the new characterisation is equivalent to the original definition. This modifi-
cation is important since it allows to obtain smaller relations due to the fact that a tuple
(t, u, φ) ∈ S is redundant if there is a different tuple (t, u, φ′) ∈ S such that φ⇒ φ′.
On Synchronising Constraints in Parallel Compositions. In [6] the synchronisation
of guards and deadlines of synchronising actions are defined by two operations which
we call here ⊕ and ⊗ respectively. Some conditions are imposed in ⊕ and the only
condition imposed in ⊗ is that (δ1, γ1) ⊗ (δ2, γ2) ⇒ (γ1 ⊕ γ2) whenever δ1 ⇒ γ1 and
δ2 ⇒ γ2 ([6] also suggest that (δ1, γ1)⊗ (δ2, γ2) ⇒ (δ1 ∨ δ2) should hold). We will only
discuss here some particular examples that have recurred on the works of Sifakis et al.
(see, e.g. [7,5,6]). We first focus on the guard:

The Coarsest Congruence for Timed Automata 137

T12

a

T11

γ : ff

T14

a
γ : x ≥ 5

T13

b

a

γ : x ≤ 1

γ : x ≥ 5
a
γ : x ≤ 1

T16

a

T15

y := 0
γ : x ≤ 1

γ : x ≥ 3
c

∧y ≤ 1

T′′′ T′′′′

a
γ : z ≥ 3

a
γ : tt

Fig. 4. T11 ∼∇ T12, T13 ∼∇ T14, and T15 ∼∇ T16

⊕ = ∧. This is the one we use and amounts to check that both guards are enables in
order to enable the synchronised transition.

⊕ = ∨. The synchronised transition can execute if any of the partners can do so.

⊕ = max, where γ1maxγ2 = (γ1∧γ2⇑) ∨ (γ2∧γ1⇑). In this case, a component is willing
to synchronise if the synchronising transition was enabled in the past and the other
component is ready to synchronise now.

⊕ = min, where γ1minγ2 = (γ1∧γ2⇓) ∨ (γ2∧γ1⇓) with⇓ being the time predecessor op-
erator (the dual of⇑). In this case, the synchronised guard anticipates the execution
of the synchronising transitions.

Our congruence relation only works for ∧. It is debatable how reasonable are the other
operations. Synchronisation through ∨ is highly questionable. It is expected that au-
tomata T11 and T12 in Fig. 4 are equivalent under any reasonable criterion. Nevertheless,
the composition T11 ||⊗a T′′′ can perform action a at any moment while T12 ||⊗a T′′′ cannot.

Under min, a component may anticipate the future behaviour of the synchronising
partner. [7] and [6] suggest that the intention of this synchronisation is that the earli-
est synchronising transition makes irrelevant the second one (e.g. a tramway leaves a
crossing and after a while it signals to allow the change of the traffic light though it
may be ignored if the light has already changed [6]). This intuition does not completely
match the behaviour of min which will speed up the slower component allowing it to do
activity otherwise impossible. This is observed when automata T′′′ is composed with
T13 and with T14 synchronising on a (see Fig. 4). Notice that T13 and T14 exhibit an
apparent equal behaviour since action a in T13 is always too late to execute b. However,
the composition T13 ||⊗a T′′′ may hasten the synchronisation on a making b apparent.

Dually, under max, an automata may allow the execution of the synchronising ac-
tion if it was enabled in the past. Notice that T15 and T16 in Fig. 4 exhibit equivalent
behaviour: c cannot be executed in T15 since clock y is always set too early. Instead, the
composition with T′′′′ synchronising on a will delay the execution long enough as to
set y sufficiently late to enable the c transition. The intention behind this form of syn-
chronisation is that the fastest component can always wait for the slowest. This design
choice seems an adequate choice to use with soft deadlines. Notice also that the appear-
ance of new activity is reasonable since it may be important to cope with the occasional
delay. What is debatable is the need of max since this type of synchronisation can eas-
ily be represented using ∧: Notice that the max synchronisation does not allow any test
automata to distinguish between γ and γ ⇑. Hence, it is more reasonable to model this
kind of synchronisation using ∧ instead of max and let all guards be⇑-closed.

138 P.R. D’Argenio and B. Gebremichael

With respect to deadlines, [6] is more liberal. The two type of synchronising dead-
lines that stand out are:

Patient synchronisation: (δ1, γ1) ⊗ (δ2, γ2) = δ1 ∧ δ2 with 0δ = tt, and
Impatient synchronisation: (δ1, γ1) ⊗ (δ2, γ2) = (δ1 ∨ δ2) ∧ (γ1 ∧ γ2) with 0δ = ff.

The nomenclature corresponds to [16] but these definitions are already introduced in
[26] with the names of flexible and stiff respectively. Patient synchronisation allows
to model soft deadlines, in the sense that one of the components is always willing to
wait for the other (as long as its guards remain valid). On the other hand, impatient
synchronisation impose urgency and obliges the execution as soon as both partners
are ready to execute the synchronising transition. Both [26] and [16,4] give a weaker
definition of impatient synchronisation: (δ1, γ1) ⊗ (δ2, γ2) = δ1 ∨ δ2. Taking 0δ = ff,
our result is also valid for this definition. The only problem with it is that it does not
preserve time reactivity, i.e. condition 1 on ⊗ (see Sec. 2) does not hold1.

We finally mention that ∇-bisimulation is still a congruence for ||⊗
B

if condition 4
on ⊗ is dropped. However, it is not the coarsest congruence in ∼ any longer. (This can
easily be seen by taking (δ1, γ1) ⊗ (δ2, γ2) = ff).

Conclusions. We have characterised the coarsest congruence for parallel compositions
of TADs with soft and hard deadline synchronisation that is included in bisimulation.
We also gave a symbolic characterisation of it and show that it is decidable. An aside
novelty in our result is that the proof of congruence was entirely carried out in the sym-
bolic semantics rather than resorting to the underlying transition system. The choice on
this strategy is not fortuitous. It is mainly due to the complexity on defining an equiv-
alent parallel composition on transition systems. To begin with, any possible definition
needs to be tailored for a particular choice of deadline. Besides, it would need complex
bookkeeping to know which possible deadline is blocking the passage of time. Many
other different complications appear depending on the choice of ⊗.

We finally discussed different types of synchronisation in parallel composition and
conclude that our choice is both reasonable and sufficiently expressive as to consider
the modelling of both soft and hard real-time constraints.

Acknowledgments. We thank Frits Vaandrager for his remarks on early drafts that
helped to improve the quality of the paper. Referees are also acknowledged for their
useful remarks.

References

1. R. Alur and D. Dill. A theory of timed automata. TCS, 126:183–235, 1994.
2. G. Behrmann, A. David, K.G. Larsen, O. Möller, P. Pettersson, and Wang Yi. Uppaal –

present and future. In Proc. of 40th IEEE Conf. on Decision and Control. IEEE Press, 2001.
3. J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Uppaal - A tool suite for

automatic verification of real-time systems. In R. Alur, T.A. Henzinger, and E.D. Sontag,
eds., Hybrid Systems III: Verification and Control, LNCS 1066, pp. 232–243. Springer, 1996.

1 To strictly model hard deadlines, this composition requires some modification on the rules in
order to ensure the time-blockage produced when a component is ready to synchronise but the
other cannot do it at all. A possible solution appears in [4].

The Coarsest Congruence for Timed Automata 139

4. H. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. MoDeST: A composi-
tional modeling formalism for real-time and stochastic systems. CTIT Tech. Rep. 04-46,
University of Twente, 2004. Submitted for publication.

5. S. Bornot and J. Sifakis. On the composition of hybrid systems. In Thomas A. Henzinger and
Shankar Sastry, eds., Hybrid Systems: Computation and Control, First International Work-
shop, HSCC’98, LNCS 1386, pp. 49–63. Springer, 1998.

6. S. Bornot and J. Sifakis. An algebraic framework for urgency. Inf. & Comp., 163:172–202,
2000.

7. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In Roever W.-P.
de, H. Langmaack, and A. Pnueli, eds., Compositionality: The Significant Difference, LNCS
1536, pp. 103–129. Springer, 1998.

8. H. Bowman. Modelling timeouts without timelocks. In J.-P. Katoen, ed., Formal Methods for
Real-Time and Probabilistic Systems, 5th International AMAST Workshop, ARTS’99, LNCS
1601, pp. 334–353. Springer, 1999.

9. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-
checking tool for real-time systems. In A.J. Hu and M. Vardi, eds., Procs. of 10th CAV, LNCS
1427, pp. 546–550. Springer, 1998.

10. M. Bozga and L. Mounier S. Graf. IF-2.0: A validation environment for component-based
real-time systems. In E. Brinksma and K.G. Larsen, eds., Procs. of 14th CAV, LNCS 2404,
pp. 343–348. Springer, 2002.

11. M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in
propositional temporal logic. TCS, 59(1,2):115–131, 1988.

12. K. Čerāns. Decidability of bisimulation equivalences for parallel timer processes. In G. von
Bochmann and D.K. Probst, eds., Procs. of 4th CAV, LNCS 663, pp. 302–315. Springer, 1992.

13. F. Corradini. On performance congruences for process algebras. Inf. & Comp., 145(2):191–
230, 1998.

14. P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD thesis,
Department of Computer Science, University of Twente, 1999.

15. P.R. D’Argenio and B. Gebremichael. The coarsest congruence for timed automata with
deadlines contained in bisimulation. Tech. Rep. ICIS-R05015. Radboud University Nijme-
gen, 2005.

16. P.R. D’Argenio, H. Hermanns, J.-P. Katoen, and R. Klaren. MoDeST - a modelling and
description language for stochastic timed systems. In L. de Alfaro and S. Gilmore, eds.,
Procs. of PAPM-PROBMIV 2001, LNCS 2165, pp. 87–104. Springer, 2001.

17. B. Gebremichael and F.W. Vaandrager. Specifying urgency in timed I/O automata. To appear
In Procs. of 3rd IEEE Conference on Software Engineering and Formal Methods, 2005.

18. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-
time systems. Inf. & Comp., 111:193–244, 1994.

19. H. Hermanns. Interactive Markov Chains : The Quest for Quantified Quality, LNCS 2428.
Springer, 2002.

20. J. Hillston. A Compositional Approach to Performance Modelling. Distinguished Disserta-
tion in Computer Science. Cambridge University Press, 1996.

21. H.E. Jensen, K.G. Larsen, and A. Skou. Scaling up Uppaal automatic verification of real-
time systems using compositionality and abstraction. In M. Joseph, ed., Procs. of FTRTFT
2000, LNCS 1926, pp. 19–30. Springer, 2000.

22. L. Lamport. What good is temporal logic? In R.E. Mason, ed., Information Processing 83,
pp. 657–668. North-Holland, 1983.

23. H. Lin and W. Yi. Axiomatizing timed automata. Acta Informatica, 38(4):277–305, 2002.
24. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
25. R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N.A. Lynch. Liveness in timed and un-

timed systems. Inf. & Comp., 141(2):119–171, 1998.

140 P.R. D’Argenio and B. Gebremichael

26. J. Sifakis and S. Yovine. Compositional specification of timed systems. In Procs. of the
STACS’96, LNCS 1046, pp. 347–359, Grenoble, France, 1996. Springer.

27. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations.
Formal Methods in System Design, 18(1):25–68, 2001.

28. S. Yovine. Model checking timed automata. In G. Rozenberg and F.W. Vaandrager, eds.,
Lectures on Embedded Systems, LNCS 1494, pp. 114–152. Springer, 1998.

A Behavioural Pseudometric for

Metric Labelled Transition Systems

Franck van Breugel�

Department of Computer Science, York University,
4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

franck@cs.yorku.ca

Abstract. Metric labelled transition systems are labelled transition sys-
tems whose states and actions form (pseudo)metric spaces. These sys-
tems can capture a large class of timed transition systems, including
systems with uncountably many states and uncountable nondetermin-
ism. In this paper a behavioural pseudometric is introduced for metric
labelled transition systems. The behavioural distance between states,
a nonnegative real number, captures the similarity of the behaviour of
those states. The smaller the distance, the more alike the states are. In
particular, the distance between states is 0 iff they are bisimilar. Three
different characterisations of this pseudometric are given: a fixed point,
a logical and a coinductive characterisation. These generalise the fixed
point, logical and coinductive characterisations of bisimilarity.

1 Introduction

Concurrent systems are often modelled by labelled transition systems in which
bisimilar states are considered behaviourally indistinguishable. Bisimilarity can
be characterised in different ways. Park [24] showed that bisimilarity can be cap-
tured as the greatest fixed point of a monotone selfmap on a complete lattice of
relations. Hennessy and Milner [19] introduced a modal logic and showed that
states are bisimilar iff they satisfy the same formulae. A coalgebraic character-
isation of bisimilarity was given by Aczel and Mendler in [1]. For more about
bisimilarity, we refer the reader to, for example, [23,25].

In this paper, we study labelled transition systems whose states and actions
contain quantitative data, like, for example, time. Notions of bisimilarity have
been adapted for these systems. However, such a discrete notion (states are either
bisimilar or they are not) sits uneasily with models featuring quantitative data.
If some of the quantities change a little bit—these quantities are often obtained
experimentally and, hence, are usually approximations—states that used to be
bisimilar may not be anymore or vice versa. In summary, bisimilarity is not
robust for these types of systems.

To address this problem, Giacalone, Jou and Smolka [16] suggested to exploit
pseudometrics that assign a distance, a nonnegative real number, to each pair
� Supported by the Natural Sciences and Engineering Research Council of Canada.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 141–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 F. van Breugel

of states of a system. Such a pseudometric yields a quantitative analogue of
bisimilarity in that the distances between states express the similarity of the
behaviour of those states. The smaller the distance, the more the states behave
alike. In particular, the distance between states is 0 if they are bisimilar.

Recently, there has been a renewed interest in such behavioural pseudomet-
rics. Most work has focused on different types of probabilistic systems (see, for
example, the work of Desharnais, Gupta, Jagadeesan and Panangaden [13,14,15],
de Alfaro, Henzinger and Majumdar [9,11] and Van Breugel and Worrell [6,7,8]).
Behavioural pseudometrics for so-called action-labelled quantitative transition
systems have been proposed by Deng, Chothia, Palamidessi and Pang in [12].
Time has been considered by Ying and Wirsing [29,30] and Gupta, Jagadeesan
and Panangaden have studied a combination of time and probability in [18]. Be-
havioural pseudometrics for so-called quantitative transition systems have been
put forward by de Alfaro, Faella and Stoelinga [10]. Related systems have been
considered by Girard and Pappas [17]. We will discuss some related work in more
detail in the concluding section.

Here, we consider metric labelled transition systems. These are labelled tran-
sition systems the states of which are endowed with a pseudometric and the
actions of which are endowed with a metric. Each labelled transition system
can be turned into a metric labelled transition system by endowing both the
states and the actions with the discrete metric. Metric labelled transition sys-
tems can capture a large class of timed transition systems, including systems
with uncountably many states and uncountable nondeterminism.

Three different approaches have been put forward to define behavioural pseu-
dometrics. Desharnais, Gupta, Jagadeesan and Panangaden [14] defined a be-
havioural pseudometric for probabilistic transition systems as the greatest fixed
point of a monotone selfmap on a complete lattice of pseudometrics. Desharnais
et al. [13,15] also defined a behavioural pseudometric for probabilistic transition
systems in terms of a real-valued interpretation of a modal logic. Van Breugel
and Worrell [7,8] gave a coalgebraic definition of a behavioural pseudometric for
probabilistic transition systems and showed that it coincides with the logical
definition of Desharnais et al.

In this paper, we apply these three approaches to metric labelled transition
systems. The three approaches are shown to give rise to the same behavioural
pseudometric. This behavioural pseudometric captures bisimilarity since states
have distance 0 iff they are bisimilar. Therefore, the fixed point, logical and
coalgebraic definition of the behavioural pseudometric can be viewed as a quan-
titative generalisation of the characterisations of bisimilarity mentioned in the
first paragraph of this introduction. Because of lack of space, no proofs are given.
These can be found in [4].

2 Metric Labelled Transition Systems

Labelled transition systems are generalised to metric labelled transition systems
by augmenting them with some additional structure. The states are endowed

A Behavioural Pseudometric for Metric Labelled Transition Systems 143

with a pseudometric and the actions are endowed with a metric. Before formally
defining metric labelled transition systems, let us first introduce the notions of
a pseudometric space and a metric space.

Definition 1. A pseudometric space is a pair (X, dX) consisting of a set X and
a distance function dX : X ×X → [0,∞] satisfying

1. for all x ∈ X, dX(x, x) = 0,
2. for all x, y ∈ X, dX(x, y) = dX(y, x),
3. for all x, y, z ∈ X, dX(x, z) ≤ dX(x, y) + dX(y, z).

If the distance function dX also satisfies

4. for all x, y ∈ X, if dX(x, y) = 0 then x = y,

then (X, dX) is a metric space.

Instead of (X, dX) we often write X and we denote the distance function of
a space X by dX . Note that we allow infinite distances1. Also observe that in
pseudometric spaces different elements may have distance zero.

In the examples below, we will use the following two distance functions.

Example 1. Let X be a set. The discrete metric dX : X ×X → [0,∞] is defined
by

dX(x, y) =
{

0 if x = y
∞ otherwise.

The Euclidean metric d[0,∞] : [0,∞]× [0,∞]→ [0,∞] is defined by

d[0,∞](r, s) = |r − s|.

Definition 2. A metric labelled transition system is a triple 〈S,A,→〉 consist-
ing of

– a pseudometric space S of states,
– a metric space A of actions, and
– a labelled transition relation → ⊆ S ×A× S.

Instead of 〈s, a, s′〉 ∈ → we often write s
a−→ s′. We will restrict our attention

to a particular class of metric labelled transition systems. To capture this class,
we introduce two constructions on pseudometric spaces.

Given pseudometric spaces X and Y , the pseudometric space X⊗Y consists
of the Cartesian product2 of the sets underlying the pseudometric spaces X and
Y endowed with the following distance function.
1 ∞+∞ =∞ and ∞−∞ = 0.
2 The Cartesian product can be endowed with many different distance functions. The

distance function introduced in Definition 3 corresponds to the tensor product (see
Section 6). The distance function corresponding to the product is considered in the
concluding section of this paper.

144 F. van Breugel

Definition 3. The distance function dX⊗Y : (X × Y) × (X × Y) → [0,∞] is
defined by

dX⊗Y (〈u, v〉, 〈x, y〉) = dX(u, x) + dY (v, y).

We write P(X) for the set of subsets of a pseudometric space X . This set is
endowed with the following distance function.

Definition 4. The distance function dP(X) : P(X)× P(X) → [0,∞] is defined
by

dP(X)(A,B) = max
{

sup
a∈A

inf
b∈B

dX(a, b), sup
b∈B

inf
a∈A

dX(a, b)
}

.

Note that inf ∅ = ∞ and sup ∅ = 0. The distance function dP(X) is known as
the Hausdorff metric.3

Next, we generalise the condition of finitely branching from labelled transi-
tion systems to metric labelled transition systems. Recall that a subset A of a
pseudometric space X is compact if each sequence in A has a subsequence that
is convergent in A. Also recall that a function f : X → Y is nonexpansive if
it does not increase any distances, that is, dY (f(x), f(y)) ≤ dX(x, y) for all x,
y ∈ X .

Definition 5. A metric labelled transition system 〈S,A,→〉 is compactly
branching if for each s ∈ S, the set

{ 〈a, s′〉 ∈ A⊗ S | s a−→ s′ }

is compact. A metric labelled transition system 〈S,A,→〉 is nonexpansive if the
function t : S → P(A⊗ S) defined by

t(s) = { 〈a, s′〉 ∈ A⊗ S | s a−→ s′ }

is nonexpansive.

Example 2. Let 〈S,A,→〉 be a finitely branching labelled transition system. If we
endow both the states and the actions with the discrete metric, then we obtain
a compactly branching and nonexpansive metric labelled transition system.

3 A Fixed Point Characterisation

Bisimilarity can be characterised as the greatest fixed point of a monotone self-
map on a complete lattice of relations. Here we generalise that characterisation
by capturing the behavioural pseudometric as the greatest fixed point of a mono-
tone selfmap on a complete lattice of pseudometrics. For the rest of this section,
we fix a metric labelled transition system 〈S,A,→〉.
3 One could also consider an assymmetric version of the Hausdorff metric, by drop-

ping the second half of the maximum. This gives rise to a quantitative analogue of
similarity (see, for example, [10]).

A Behavioural Pseudometric for Metric Labelled Transition Systems 145

Pseudometrics on the set (underlying the pseudometric space) S can be
viewed as a quantitative generalisation of equivalence relations on S.4 The
smaller the distance between states, the more they are related. In the char-
acterisation of bisimilarity as a greatest fixed point, the relations are ordered by
inclusion. This order can be generalised5 as follows.

Definition 6. The relation ! on pseudometrics on S is defined by

d1 ! d2 if d1(s1, s2) ≥ d2(s1, s2) for all s1, s2 ∈ S.

Note the reverse direction of ! and ≥ in the above definition (so that !
generalises ⊆). The set of pseudometrics on S endowed with the order ! forms
a complete lattice.

Definition 7. Let d be a pseudometric on the set (underlying the pseudometric
space) S of states of the metric labelled transition system and let dA be the metric
on the set A of actions of the system. The distance function Δ(d) : S×S → [0,∞]
is defined by

Δ(d)(s1, s2) = max

⎧⎨⎩ sup
s1

a1−−→s′
1

inf
s2

a2−−→s′
2

dA(a1, a2) + d(s′1, s
′
2),

sup
s2

a2−−→s′
2

inf
s1

a1−−→s′
1

dA(a1, a2) + d(s′1, s
′
2)

⎫⎬⎭ .

The suprema and infima in the above definition are the quantitative ana-
logues of universal and existential quantifiers, respectively. Δ(d) is a pseudo-
metric on S and Δ is monotone. According to Tarski’s fixed point theorem, a
monotone selfmap on a complete lattice has a greatest fixed point. We denote
the greatest fixed point of Δ by gfp(Δ).

Definition 8. The distance function df : S × S → [0,∞] is defined by

df = gfp(Δ).

Definition 7 and 8 are quantitative analogues of the characterisation of bisim-
ilarity as the greatest fixed of a monotone selfmap on a complete lattice of rela-
tions (see, for example, [22, Section 4.6]).

The behavioural pseudometric df is a quantitative analogue of bisimilarity.
In particular, states are bisimilar iff they have distance 0, provided that the
metric labelled transition system is compactly branching.

4 An equivalence relation R on S can be viewed as the pseudometric dR defined by

dR(s1, s2) =

{
0 if s1 R s2

∞ otherwise.

5 Let R1 and R2 be equivalence relations on S with R1 ⊆ R2. Then dR1 dR2 .

146 F. van Breugel

Theorem 1. 1. If s1 and s2 are bisimilar then df (s1, s2) = 0.
2. If 〈S,A,→〉 is compactly branching and df (s1, s2) = 0 then s1 and s2 are

bisimilar.

The next examples show that the second part of the above theorem does not
hold for arbitrary metric labelled transition systems, not even for those satisfying
obvious weakenings of the compactly branching condition. Recall that a subset
of a complete pseudometric space is compact iff it is closed and totally bounded
(see, for example, [26]).

Example 3. Consider the metric labelled transition system 〈{s1, s2, s3}, [0, 1],→〉.
The set {s1, s2, s3} of states is endowed with the discrete metric and the set [0, 1]
of labels is endowed with the Euclidean metric. The system has the following
transitions.

s1
r−→ s3 for all r ∈ [0, 1]

s2
r−→ s3 for all r ∈ (0, 1)

Since the states are endowed with the discrete metric, the metric labelled tran-
sition system is obviously nonexpansive. However, the metric labelled transition
system is not compactly branching, since the set t(s2) is not closed. Note that
the sets t(s1), t(s2) and t(s3) are totally bounded. Obviously, s1 and s2 are not
bisimilar, but one can easily verify that df (s1, s2) = 0.

Example 4. Consider the metric labelled transition system 〈ω + 1 ∪ {s0, s1, s2},
[0, 1],→〉. The states are endowed with the discrete metric and the labels are
endowed with the Euclidean metric. The system has the following transitions
(where we assume 2−ω = 0)

s1
0−→ n for all n ∈ ω

s2
0−→ n for all n ∈ ω + 1

n
2−n

−−−→ s0 for all n ∈ ω + 1

Trivially, the metric labelled transition system is nonexpansive. However it is
not compactly branching, since the sets t(s1) and t(s2) are closed but not totally
bounded. Let d be a pseudometric on ω + 1 ∪ {s0, s1, s2} such that

d(m,n) = |2−m − 2−n| for all m,n ∈ ω + 1
d(s1, s2) = 0

and all other distances are ∞. One can easily verify that Δ(d) = d. Since df is
the greatest fixed point, d ! df and, hence, df (s1, s2) ≤ d(s1, s2) = 0, but s1

and s2 are clearly not bisimilar.

According to Tarski’s fixed point theorem, the greatest fixed point of a mono-
tone selfmap from on complete lattice can be obtained by iteration of the function
starting from the greatest element. In our setting, this iteration boils down to
the following.

A Behavioural Pseudometric for Metric Labelled Transition Systems 147

Definition 9. The distance function d0
f : S × S → [0,∞] is defined by

d0
f (s1, s2) = 0.

For each ordinal α, the distance function dα+1
f : S × S → [0,∞] is defined by

dα+1
f = Δ(dα

f).

For each limit ordinal α, the distance function dα
f : S × S → [0,∞] is defined by

dα
f =

�
β∈α

dα
f .

If the metric labelled transition system is not only compactly branching but
also nonexpansive, then the greatest fixed point is reached in at most ω iterations.
This can be viewed as a quantitative analogue of, for example, [22, Section 10.4].

Theorem 2. If 〈S,A,→〉 is compactly branching and nonexpansive then
Δ (dω

f) = dω
f .

Without restricting to nonexpansiveness the above result does not hold in
general as is demonstrated by the following example.

Example 5. Consider the metric labelled transition system 〈{ 2−n | n ∈ ω +
1 } ∪ {s0, s1, s2}, {a},→〉. The states { 2−n | n ∈ ω + 1 } are endowed with the
Euclidean metric and the states s0, s1 and s2 have distance ∞ to all other states.
The system contains the following transitions.

2−(n+1) a−→ 2−n for all n ∈ ω

s1
a−→ 2−n for all n ∈ ω + 1

s2
a−→ 2−n for all n ∈ ω + 1

s2
a−→ s0

s0
a−→ s0

One can verify that the metric labelled transition system is compactly branching.
However the system is not nonexpansive, since states 1

2 and 1
4 are 1

4 apart but
t(1

2) and t(1
4) are 1

2 apart. One can prove that for all m ∈ ω + 1 and n ∈ ω,

dn
f (2−m, s0) =

{
0 if m < n
∞ otherwise

by induction on n. Hence, for all n ∈ ω, dn+1
f (s1, s2) = infm∈ω+1 dn

f (2−m, s0) = 0.
Obviously, s1 and s2 are not bisimilar. Hence, from Theorem 1 we can conclude
that df (s1, s2)
= 0. Therefore, df
= dω

f .

148 F. van Breugel

4 A Logical Characterisation

In this section we show that our behavioural pseudometric admits a logical char-
acterisation. This is motivated by the well-known characterisation of bisimilarity
in terms of Hennessy-Milner logic. The logic we consider is syntactically almost
identical to Hennessy-Milner logic. However, we change its semantics by inter-
preting the logic in the interval [0,∞].

For the rest of this section, we fix a metric labelled transition system
〈S,A,→〉.

Definition 10. The logic L is defined by

ϕ ::= true | 〈a〉ϕ | [a]ϕ | ϕ + r |
∧
i∈I

ϕ |
∨
i∈I

ϕ

where a ∈ A, r ∈ [0,∞] and I is an index set.

Next, we provide a real-valued interpretation of the logic. For each formula ϕ
and state s, the real number ϕ(s) provides a quantitative measure of the validity
of ϕ in s. The smaller ϕ(s), the more ϕ is valid in s.6

Definition 11. For each ϕ ∈ L, the function ϕ : S → [0,∞] is defined by

true(s) = 0
(〈a〉ϕ)(s) = inf{ϕ(s′) + dA(a, b) | s b−→ s′ }
([a]ϕ)(s) = sup{ϕ(s′)4 dA(a, b) | s b−→ s′ }

(ϕ + r)(s) = ϕ(s) + r
(
∧

i∈I ϕi)(s) = supi∈I ϕi(s)
(
∨

i∈I ϕi)(s) = infi∈I ϕi(s)

where

r 4 s =
{

r − s if r ≥ s
0 otherwise.

Notice how the interpretation of the possibility modality 〈a〉 and the necessity
modality [a] reflect the pseudometric on actions. In the clause for ([a]ϕ)(s), in
any transition s

b−→ s′, the further b is from a the lesser the requirement on
ϕ(s′). Dually7, in the clause for (〈a〉ϕ)(s), in any transition s

b−→ s′, the further
b is from a the greater the requirement on ϕ(s′).

Given the logic and its real-valued interpretation, we can define a behavioural
pseudometric as follows.
6 In contrast with the real-valued interpretations of probabilistic modal logics in, for

example, [15], we use 0 to represent true and ∞ to represent false. Consequently,
existential and universal quantification are interpreted as infimum and supremum,
respectively.

7 For each r ∈ [0,∞], · ! r and · + r form an adjunction: for all r1, r2 ∈ [0,∞],
r1 ≥ r2 ! r iff r1 + r ≥ r2.

A Behavioural Pseudometric for Metric Labelled Transition Systems 149

Definition 12. The distance function d� : S × S → [0,∞] is defined by

d�(s1, s2) = sup
ϕ∈L

|ϕ(s1)− ϕ(s2)|.

To show that the behavioural pseudometrics df and d� coincide, for each
state s and ordinal α we introduce a characteristic formula ϕα

s .

Definition 13. For each s ∈ S, the formula ϕ0
s is defined by

ϕ0
s = true.

For each s ∈ S and ordinal α, the formula ϕα+1
s is defined by

ϕα+1
s =

⎛⎝ ∧
s

a−→s′

〈a〉ϕα
s′

⎞⎠ ∧
⎛⎝∧

b∈A

[b]
∨

s
a−→s′

ϕα
s′ + dA(a, b)

⎞⎠ .

For each s ∈ S and limit ordinal α, the formula ϕα
s is defined by

ϕα
s =

∧
β∈α

ϕβ
s .

The formula ϕα
s shows similarities to the characteristic formula in Hennessy-

Milner logic that captures bisimilarity (see, for example, [27, Definition 4.1]).
Note that ϕα+1

s contains a subformula of the form ϕ+r. The formula ϕα
s provides

an upper bound for the dα
f -distances from state s to any other state.

Proposition 1. For each s1, s2 ∈ S and ordinal α,

ϕα
s1

(s1) = 0
ϕα

s1
(s2) ≥ dα

f (s1, s2)

The above proposition is one of the key ingredients of the proof of

Theorem 3. df = d�.

Next, we restrict our attention to the sublogic with finite conjunctions and
disjunctions.

Definition 14. The logic Lω is defined by

ϕ ::= true | 〈a〉ϕ | [a]ϕ | ϕ + r | ϕ ∧ ϕ | ϕ ∨ ϕ.

This sublogic gives rise to the same behavioural pseudometric if the metric
labelled transition system is compactly branching and nonexpansive.

Theorem 4. If 〈S,A,→〉 is compactly branching and nonexpansive, then for all
s1, s2 ∈ S,

d�(s1, s2) = sup
ϕ∈Lω

|ϕ(s1)− ϕ(s2)|.

The above result can be seen as a generalisation of the result of Hennessy
and Milner [19, Theorem 2.2] in the discrete setting. Without nonexpansiveness
the result does not hold in general (an example very similar to Example 5 can
be constructed that shows this).

150 F. van Breugel

5 A Coalgebraic Characterisation

Below, we present yet another characterisation of the behavioural pseudometric.
This characterisation is based on the theory of coalgebra. In this section, how-
ever, we do not refer to that theory. The details will be provided in the next
section.

Definition 15. Let 〈S1, A,→1〉 and 〈S2, A,→2〉 be compactly branching and
nonexpansive metric labelled transition systems. A zigzag map from 〈S1, A,→1〉
to 〈S2, A,→2〉 is a nonexpansive function h : S1 → S2 satisfying

– if s1
a−→1 s′1 then h(s1)

a−→2 h(s′1) and
– if h(s1)

a−→2 s′2 then s1
a−→1 s′1 for some s′1 such that h(s′1) = s′2.

A zigzag map preserves and reflects transitions (see, for example, [28]) and
it does not increase any distances.

Theorem 5. Given a metric space A, there exists a compactly branching and
nonexpansive metric labelled transition system 〈SA, A,→A〉 such that

(1) for every compactly branching and nonexpansive metric labelled transition
system 〈S,A,→〉 there exists a unique zigzag map from 〈S,A,→〉 to
〈SA, A,→A〉.

For the rest of this section, we fix a compactly branching and nonexpan-
sive metric labelled transition system 〈S,A,→〉. Given a compactly branching
and nonexpansive metric labelled transition system 〈SA, A,→A〉 satisfying (1)
of Theorem 5, we can define a behavioural pseudometric on S as follows.

Definition 16. The distance function dc : S × S → [0,∞] is defined by

dc(s1, s2) = dSA(h(s1), h(s2)),

where h is the unique zigzag map from 〈S,A,→〉 to 〈SA, A,→A〉.

There is more than one compactly branching and nonexpansive metric la-
belled transition system satisfying (1) of Theorem 5. However, the definition of
the behavioural pseudometric dc does not depend on the choice of 〈SA, A,→A〉.
Assume that the compactly branching and nonexpansive metric labelled transi-
tion systems 〈S1

A, A,→1
A〉 and 〈S2

A, A,→2
A〉 both satisfy (1) of Theorem 5. Con-

sider the following unique zigzag maps.

〈S1
A, A,→1

A〉
h2
1

�� 〈S2
A, A,→2

A〉
h1
2

��

〈SA, A,→A〉
h1

�������������� h2

��������������

A Behavioural Pseudometric for Metric Labelled Transition Systems 151

By uniqueness, we can conclude that h1 = h1
2 ◦ h2 and h2 = h2

1 ◦ h1. Hence, for
all s1, s2 ∈ S,

d1
c(s1, s2) = dS1

A
(h1(s1), h1(s2))

= dS1
A
(h1

2(h2(s1)), h1
2(h2(s2)))

≤ dS1
A
(h2(s1), h2(s2)) [h1

2 is nonexpansive]

= d2
c(s1, s2).

Therefore, d1
c 5 d2

c . Similarly, we can show that d1
c ! d2

c .
Note that the definition of the behavioural pseudometric dc is restricted to

compactly branching and nonexpansive metric labelled transition systems. For
these systems, the behavioural pseudometrics dc, df and d� coincide.

Theorem 6. dc = df .

6 Terminal Coalgebras and Accessible Categories

In this section, we capture some of the results presented in the previous section
in categorical terms. In particular, we exploit the theory of coalgebra to prove
Theorem 5.

Definition 17. Let C be a category. Let F : C → C be a functor. An F -
coalgebra consists of an object C in C together with a morphism f : C → F(C)
in C. An F -homomorphism from F-coalgebra 〈C, f〉 to F-coalgebra 〈D, g〉 is a
morphism h : C → D in C such that F(h) ◦ f = g ◦ h.

C
h ��

f
��

D
g

��

F(C)
F(h)

�� F(D)

The F-coalgebras and F-homomorphisms form a category. If this category has a
terminal object, then this object is called a terminal F -coalgebra.

For more details about the theory of coalgebra, we refer the reader to, for
example, [20].

As we will see, compactly branching and nonexpansive metric labelled tran-
sition systems can be viewed as coalgebras. Next, we introduce the ingredients
of the functor that induces those coalgebras.

The category PMet has pseudometric spaces as objects and nonexpansive
functions as morphisms. We denote the identity functor on PMet by IdPMet . Let
A be a metric space. The constant functor A : PMet → PMet maps each pseu-
dometric space to the space A and each nonexpansive function to the identity
function on A. The operation ⊗ introduced in Definition 3 can be extended to
a bifunctor as follows.

152 F. van Breugel

Definition 18. Let f : U → X and g : V → Y be nonexpansive functions. The
function f ⊗ g : (U × V)→ (X × Y) is defined by

(f ⊗ g)〈u, v〉 = 〈f(u), g(v)〉.

For a pseudometric space X , the subspace of P(X) consisting of the compact
subsets of X endowed the Hausdorff metric introduced in Definition 4 is denoted
by H(X). This operation can also be extended to a functor.

Definition 19. Let f : X → Y be a nonexpansive function. The function H(f) :
H(X)→ H(Y) is defined by

H(f)(A) = { f (a) | a ∈ A }.

Combining the above ingredients, we obtain the following functor.

Definition 20. Given a metric space A, the functor TA : PMet → PMet is
defined by

TA = H(A⊗ IdPMet).

One can easily verify that the TA-coalgebras exactly capture the compactly
branching and nonexpansive metric labelled transition systems whose action
space is A, and that the TA-homomorphisms are the zigzag maps of Definition 15.
Hence, to prove Theorem 5, it suffices to prove

Theorem 7. For each metric space A, a terminal TA-coalgebra exists.

To prove the above theorem, we exploit the theory of accessible categories
(see, for example, [21]). In particular, we apply the following terminal coalgebra
theorem: If the category C is accessible and complete and the functor F : C → C
is accessible, then a terminal F -coalgebra exists. This theorem is implicit in [21]
(see also [5, Theorem 1]). The category PMet is complete (see, for example, [2,
Chapter 4]) and the functor TA is accessible (see [5, Section 4 and 5]). Hence,
Theorem 7 follows from the above terminal coalgebra theorem.

Theorem 7 can be viewed as a generalisation of [3, Example 4.6]. There, a
functor on the category of sets and functions is introduced whose coalgebras
can be viewed as finitely branching labelled transition systems. This functor has
a terminal coalgebra as well. Given any finitely branching labelled transition
system, there exists a unique zigzag map from the system to the terminal one.
The kernel of this zigzap map is bisimilarity.

7 Conclusion

Before discussing related and future work, we first briefly review our main contri-
butions. We have presented a behavioural pseudometric for compactly branching
and nonexpansive metric labelled transition systems. These systems capture a
large class of timed transition systems. In particular, systems with uncountably

A Behavioural Pseudometric for Metric Labelled Transition Systems 153

many states and uncountable nondeterminism can be captured. Both are es-
sential features of many timed transition systems. As we will see below, most
related work restricts to finite nondeterminism or even to finite state spaces.
Furthermore, we have painted a fairly complete picture by showing that the
fixed point, logical, and coalgebraic characterisation of the behavioural pseudo-
metric coincide. As a consequence, we can exploit the advantages of all three
approaches. Most related work only provides one or two characterisations. Our
three characterisations generalise the corresponding characterisations of bisim-
ilarity. In particular, we have shown that states have distance 0 iff they are
bisimilar.

7.1 Related Work

In the introductory section we have already mentioned some related work. Here,
we discuss that work which is most relevant to ours.

Our work is most closely related to that of Ying and Wirsing [29,30]. Given a
labelled transition system 〈S,A,→〉 and a binary relation R on S, they introduce
a bisimulation index iR which is a nonnegative real number. Its definition shows
similarities with the Hausdorff metric. The smaller iR, the more R resembles a
bisimulation. They also define an approximate notion of bisimilarity. For each
λ ∈ [0,∞], the binary relation ∼λ on S is defined by s1 ∼λ s2 if s1 R s2 for
some R such that iR ≤ λ. Ordinary bisimilarity corresponds to ∼0. Ying and
Wirsing provide a fixed point characterisation of ∼λ. They introduce a logic
similar to Hennessy-Milner logic with the modality 〈a〉rϕ, where a is a sequence
of actions and r is a nonnegative real number. A logical characterisation is only
given when either λ = 0 or the set of actions is endowed with an ultrametric
(the Euclidean metric is not an ultrametric). Hence, this logic may not be very
suitable for approximate reasoning (corresponding to the case λ
= 0) of timed
transition systems (where the actions usually carry the Euclidean metric). We
conjecture that our behavioural pseudometric and their approximate notion of
bisimilarity are related as follows: d(s1, s2) = inf{λ | s1 ∼λ s2 }.

Also the work of Deng, Chothia, Palamidessi and Pang [12] is closely related
to ours. They consider a more general type of system (they not only consider
nondeterminism but also probabilistic nondeterminism), but they restrict them-
selves to finite state spaces and finite action spaces (and, hence, to finite nonde-
terminism). Deng et al. only provide a fixed point definition of their behavioural
pseudometric. We conjecture that their behavioural pseudometric can be char-
acterised coalgebraically by means of the functor H(K(A × IdPMet)), where K
denotes the Kantorovich functor studied in [5].

De Alfaro, Faella and Stoelinga [10] consider a different type of system:
finitely branching transition systems (and, hence, finite nondeterminism), the
states of which are labelled (rather than the transitions). For these systems
they define behavioural pseudometrics as fixed points and they also charac-
terise them logically. We conjecture that their behavioural pseudometrics can
be characterised coalgebraically by the functor A × H(IdPMet) and variations
thereof.

154 F. van Breugel

Very recently, Girard and Pappas [17] introduced behavioural pseudometrics
for systems with continuous state spaces. Their distance functions are similar to
the ones of de Alfaro, Faella and Stoelinga.

7.2 Future Work

If we replace the tensor product ⊗ with the product × in the functor H(A ⊗
IdPMet), we obtain the functor H(A × IdPMet). The corresponding coalgebras
represent a class of metric labelled transition systems. For this functor, also a
terminal coalgebra exists and, hence, it induces a behavioural pseudometric as
well. Whereas the behavioural pseudometric studied in this paper accumulates
differences, the proposed modification does not. This behavioural pseudometric
can also be characterised as a fixed point. Modifying the logic and its interpreta-
tion so that we obtain a logical characterisation of the behavioural pseudometric
is left as future work.

Logical formulae of the form ϕ+r play a key role in the characteristic formula
ϕα+1

s introduced in Definition 13. It is, however, not clear to us yet whether the
logic L of Definition 10 and the logic L without formulae of the form ϕ + r give
rise to different behavioural pseudometrics.

Developing an algorithm to approximate our behavioural pseudometric is
another topic for further research. The algorithms of [6,10] cannot be adapted
in a straightforward way to our setting.

Acknowledgements

The author thanks Marcelo Fiore, Claudio Hermida, Robin Milner, Glynn Winskel
and James Worrell for discussion and the referees for their constructive feedback.

References

1. P. Aczel and N. Mendler. A final coalgebra theorem. In Proceedings of CTCS,
volume 389 of LNCS, pages 357–365, 1989. Springer-Verlag.

2. M.A. Arbib and E.G. Manes. Arrows, Structures, and Functors: the categorical
imperative, Academic Press, 1975.

3. M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer
Science, 114(2):299–315, 1993.

4. F. van Breugel. A behavioural pseudometric for metric labelled transition systems.
Technical Report CS-2005-11, York University, 2005.

5. F. van Breugel, C. Hermida, M. Makkai, and J. Worrell. An accessible approach
to behavioural pseudometrics. In Proceedings of ICALP, volume 3580 of LNCS,
pages 1018–1030, 2005. Springer-Verlag.

6. F. van Breugel and J. Worrell. An algorithm for quantitative verification of prob-
abilistic transition systems. In Proceedings of CONCUR, volume 2154 of LNCS,
pages 336–350, 2001. Springer-Verlag.

7. F. van Breugel and J. Worrell. Towards quantitative verification of probabilistic
transition systems. In Proceedings of ICALP, volume 2076 of LNCS, pages 421–432,
2001. Springer-Verlag.

A Behavioural Pseudometric for Metric Labelled Transition Systems 155

8. F. van Breugel and J. Worrell. A behavioural pseudometric for probabilistic tran-
sition systems. Theoretical Computer Science, 331(1):115–142, 2005.

9. L. de Alfaro. Quantitative verification and control via the mu-calculus. In Proceed-
ings of CONCUR, volume 2761 of LNCS, pages 102–126, 2003. Springer-Verlag.

10. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for quan-
titative transition systems. In Proceedings of ICALP, volume 3142 of LNCS, pages
97–109, 2004. Springer-Verlag.

11. L. de Alfaro, T.A. Henzinger, and R. Majumdar. Discounting the future in systems
theory. In Proceedings of ICALP, volume 2719 of LNCS, pages 1022–1037, 2003.
Springer-Verlag.

12. Y. Deng, T. Chothia, C. Palamidessi, and J. Pang. Metrics for action-labelled
quantitative transition systems. In Proceedings of QAPL, ENTCS, 2005. Elsevier.

13. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled
Markov systems. In Proceedings of CONCUR, volume 1664 of LNCS, pages 258–
273, 1999. Springer-Verlag.

14. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. The metric analogue
of weak bisimulation for probabilistic processes. In Proceedings of LICS, pages
413–422, 2002. IEEE.

15. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

16. A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic reasoning for probabilistic
concurrent systems. In Proceedings of PROCOMET, pages 443–458, 1990. North-
Holland.

17. A. Girard and G.J. Pappas. Approximation metrics for discrete and continuous
systems. Technical Report MS-CIS-05-10, University of Pennsylvania, 2005.

18. V. Gupta, R. Jagadeesan, and P. Panangaden. Approximate reasoning for real-time
probabilistic processes. In Proceedings of QEST, pages 304–313, 2004. IEEE.

19. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

20. B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the EATCS, 62:222–259, 1997.

21. M. Makkai and R. Paré. Accessible Categories: The Foundation of Categorical
Model Theory, American Mathematical Society, 1989.

22. R. Milner. Communication and Concurrency, Prentice Hall International, 1989.
23. R. Milner. David Michael Ritchie Park (1935–1990) in memoriam. Theoretical

Computer Science, 133(2):187–200, 1994.
24. D. Park. Concurrency and automata on infinite sequences. In Proceedings of 5th

GI-Conference on Theoretical Computer Science, volume 104 of LNCS, pages 167–
183, 1981. Springer-Verlag.

25. D. Sangiorgi. Bisimulation: from the origins to today. In Proceedings of LICS,
pages 298–302. IEEE, 2004.

26. M.B. Smyth. Topology. In Handbook of Logic in Computer Science, volume 1,
pages 641–761. Oxford University Press, 1992.

27. B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes with diver-
gence. Information and Computation, 110(1):149–163, 1994.

28. G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in
Computer Science, volume 4, pages 1–148. Oxford University Press, 1995.

29. M. Ying. Bisimulation indexes and their applications. Theoretical Computer Sci-
ence, 275(1/2):1–68, 2002.

30. M. Ying and M. Wirsing. Approximate bisimilarity. In Proceedings of AMAST,
volume 1816 of LNCS, pages 309–322, 2000. Springer-Verlag.

On Probabilistic Program Equivalence and

Refinement�

Andrzej S. Murawski and Joël Ouaknine

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We study notions of equivalence and refinement for prob-
abilistic programs formalized in the second-order fragment of Proba-
bilistic Idealized Algol. Probabilistic programs implement randomized
algorithms: a given input yields a probability distribution on the set of
possible outputs. Intuitively, two programs are equivalent if they give
rise to identical distributions for all inputs. We show that equivalence is
decidable by studying the fully abstract game semantics of probabilistic
programs and relating it to probabilistic finite automata. For terms in
β-normal form our decision procedure runs in time exponential in the
syntactic size of programs; it is moreover fully compositional in that it
can handle open programs (probabilistic modules with unspecified com-
ponents).

In contrast, we show that the natural notion of program refinement, in
which the input-output distributions of one program uniformly dominate
those of the other program, is undecidable.

1 Introduction

Ever since Michael Rabin’s seminal paper on probabilistic algorithms [1], it has
been widely recognized that introducing randomization in the design of algo-
rithms can yield substantial improvements in time and space complexity. There
are by now dozens of randomized algorithms solving a wide range of problems
much more efficiently than their ‘deterministic’ counterparts—see [2] for a good
textbook survey of the field.

Unfortunately, these advantages are not without a price. Randomized algo-
rithms can be rather subtle and tricky to understand, let alone prove correct.
Moreover, the very notion of ‘correctness’ slips from the Boolean to the prob-
abilistic. Indeed, whereas traditional deterministic algorithms associate to each
input a given output, randomized algorithms yield for each input a probabilistic
distribution on the set of possible outputs.

The main focus of this paper is the study of probabilistic equivalence. Intu-
itively, two algorithms are equivalent if they give rise to identical distributions
for all inputs. To this end, we introduce (second-order) Probabilistic Idealized

� Work supported by the UK EPSRC (GR/R88861/01) and St John’s College, Oxford.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 156–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Probabilistic Program Equivalence and Refinement 157

Algol, a programming language which extends Idealized Algol1 by allowing (fair)
coin-tossing as a valid expression. It can be shown that, in the presence of loop
constructs, this notion of randomization is as powerful as any other ‘reasonable’
one. Any randomized algorithm can therefore be coded in Probabilistic Ideal-
ized Algol. An important consequence of our work is to enable the automated
comparison of different randomized algorithms against each other.

We study program equivalence through fully abstract game models, and ob-
tain Exptime decidability by recasting the problem in terms of probabilistic
automata. We also investigate program refinement, a notion intended to cap-
ture the relationship that an implementation should enjoy with respect to its
specification, and prove undecidability. Our paper continues the algorithmic line
of research in game semantics initiated in [4,5], which aims to exploit the fully
abstract character of the game models. These provide exact accounts of exten-
sional behaviour and lead to models of programs that are much different from
the traditional approaches to program verification. Their distinctive feature is
the absence of explicit reference to state (state manipulations are hidden) which
leads to precise and compact summaries of observable program behaviour.

Related Work. Much previous work in probabilistic program verification has
focussed on probabilistic model checking, whereby a probabilistic program is
checked against a probabilistic temporal logic specification—see, e.g., [6,7] and
references within. Probabilistic behavioural equivalences have also been stud-
ied in the context of process algebra, both from an operational (e.g., [8]) and a
denotational (e.g., [9]) perspective.

2 Probabilistic Idealized Algol

The subject of this paper is the finitary version PAf of Probabilistic Idealized
Algol. Its types θ are generated by the grammar

β ::= com | exp | var θ ::= β | θ → θ

where β stands for base types: com is the command type, exp is the finite
type of expressions (exp = { 0, · · · ,max } for max > 0), var is the type of
assignable variables in which one can store values of type exp. The order of a type,
written ord(θ) is defined by: ord(β) = 0, ord(θ → θ′) = max(ord(θ) + 1, ord(θ′)).
PAf enables probabilistic functional and imperative programming. Recursion is
allowed only in the strictly restricted form of while-loops. The complete syntax
is shown in Figure 1. We will say that a term-in-context Γ �M : θ is of order i
provided ord(θ) ≤ i and identifiers from Γ have types of order strictly less than
i. The big-step operational semantics is defined for terms Γ �M : θ, where Γ =
1 Devised by Reynolds [3], Idealized Algol augments a Pascal-like procedural language

with functional programming constructs. We consider a finitary version in which vari-
ables range over a bounded set of integers, terms are parameterized by the allowable
higher-order types of their free identifiers, and neither recursion nor pointers are
allowed.

158 A.S. Murawski and J. Ouaknine

Γ � skip : com
i ∈ { 0, · · · ,max }

Γ � i : exp Γ � coin : exp

Γ, x : θ � x : θ
Γ �M : exp

Γ � succ(M) : exp
Γ � M : exp

Γ � pred(M) : exp

Γ �M : exp Γ � N0 : β Γ � N1 : β
Γ � ifzeroM N0 N1 : β

Γ �M : com Γ � N : β
Γ �M ; N : β

Γ �M : exp Γ � N : com
Γ � while M do N : com

Γ �M : var
Γ � !M : exp

Γ �M : var Γ � N : exp
Γ �M := N : com

Γ, X : var �M : com , exp
Γ � new X in M : com, exp

Γ, x : θ �M : θ′

Γ � λxθ.M : θ → θ′
Γ �M : θ → θ′ Γ � N : θ

Γ �MN : θ′

Fig. 1. Syntax of PAf

x1 : var , · · · , xn : var , through judgments of the shape (s,M) ⇓p (s′, V), where
s, s′ are functions from { x1, · · · , xn } to { 0, · · · ,max }. Whenever an evaluation
tree ends in (s,M) ⇓p (s′, V) we can interpret that as “the associated evaluation
of M from state s has probability p”. Because of coin , M may have countably
many evaluations from a given s. We shall write (s,M) ↓p V iff p =

∑
pi and

the sum ranges over all evaluations of the form (s,M) ⇓pi (s′, V) (for some
s′). If there are no such reductions, we simply have (s,M) ↓0 V . The judgment
(s,M) ↓p V thus denotes the fact that the probability of evaluating M in state
s to V is p. When M is closed we write M ↓p V , because s is then trivial. For
instance, we have coin ↓0.5 0 and coin ↓0.5 1.

We can now define the induced notion of contextual equivalence: the terms-
in-context Γ � M1 : θ and Γ � M2 : θ are equivalent (written Γ � M1

∼= M2)
if for all contexts C[−] such that � C[M1], C[M2] : com we have C[M1] ↓p skip if
and only if C[M2] ↓p skip. Danos and Harmer gave a fully abstract game model
for ∼= in [10], which we review in the following section.

As stated in the Introduction, randomized algorithms can readily be coded
in Probabilistic Idealized Algol. Under mild conditions2, contextual equivalence
then precisely corresponds to the natural notion of equivalence for randomized
algorithms: identical input/output distributions.

3 Probabilistic Game Semantics

The games needed to interpret probabilistic programs are played in arenas as in
the sequential case. An arena A is a triple 〈MA,λA,�A 〉, where MA is the set of

2 Essentially syntactic restrictions aimed at preventing undesirable side-effects.

On Probabilistic Program Equivalence and Refinement 159

moves, λA : MA → {O,P }×{Q, A } indicates to which of the two players (O or
P) each move belongs and whether it is a question- or an answer-move, and �A

is the so-called enabling relation between { � }+ MA and MA. �A is required to
satisfy a number of technical conditions: for instance, moves enabled by �, called
initial and collected in the set called IA, must be O-questions and whenever
one move enables another they have to belong to different players. Here are the
arenas used to interpret base types:

�com� �exp� �var�
�

run

done

�

q

0
��
. . . max

���

�

read

���������� write(0) write(max)

��������

0
���
. . . max

���
ok . . . ok

The moves run, q, read and write(i) (0 ≤ i ≤ max) are initial O-questions, the
rest are P-answers enabled by the respective O-questions.

Arenas can be combined to form product and arrow arenas as follows3.

MA×B = MA + MB

λA×B = [λA,λB]
�A×B = �A + �B

MA⇒B = MA + MB

λA⇒B = [λA,λB]
�A⇒B = (�A ∩ (MA ×MA)) + (IB × IA) + �B

The allowable exchanges of moves in an arena A are justified sequences, which
are sequences of moves of A such that each occurrence of a non-initial move n is
equipped with a pointer to an earlier move m such that m �A n. In order for a
justified sequence to become a play, the moves must alternate between the two
players (O necessarily begins then) and the standard conditions of visibility and
bracketing must be satisfied [11,12]. The set of plays over A will be denoted by
LA, that of odd- and even-length ones by Lodd

A and Leven
A respectively.

The notion of a probabilistic strategy makes a departure from sequential
game semantics. A strategy σ is a function σ : Leven

A → [0, 1] such that σ(ε) = 1
and for any s ∈ Leven

A , sa ∈ Lodd
A we have σ(s) ≥

∑
{ sab∈Leven

A } σ(sab). Let Tσ be
the set of all even-length plays s such that σ(s) > 0. In the following they will
be called the traces of σ. To interpret coin one takes the strategy σ : �exp� such
that σ(qi1 · · · qin) = (1/2)n where i1, · · · , in ∈ { 0, 1 } and σ(s) = 0 otherwise.

The above definition of a strategy describes the global probabilistic be-
haviour. Providing s ∈ Tσ and sa ∈ Lodd

A the conditional (local) probability
of sab given sa can be calculated by taking σ(sab)/σ(s).

Probabilistic strategies are composed by considering interaction sequences
between them. Suppose u is a sequence of moves from arenas A,B,C together
with unique pointers from all moves except those initial in C. We define u � B,C

3 λA works like λA except that it reverses the ownership of moves.

160 A.S. Murawski and J. Ouaknine

by deleting from u all moves from A together with associated pointers. u � A,B is
defined in a similar way. u � A,C works analogously except that whenever there
was a pointer from an A-move mA to a B-move mB and a pointer from mB to a
C-move mC , we introduce a pointer from mA to mC . u is called an interaction
sequence of A,B,C provided u � A,B ∈ LA⇒B and u � B,C ∈ LB⇒C . The set of
interaction sequences is then denoted by I(A,B,C). If s ∈ Leven

A⇒C , the set of B-
witnesses of s, written witB(s), is defined to be { u ∈ I(A,B,C) |u � A,C = s }.
Finally, given σ : A⇒ B and τ : B ⇒ C, one defines σ; τ : A⇒ C by

(σ; τ)(s) =
∑

u∈witB(s)

σ(u � A,B) · τ(u � B,C).

4 Inside the Game Model

In general, plays may contain several occurrences of initial moves. Such occur-
rences define threads within the play in the following way: two moves are in the
same thread if they are connected via chains of pointers to the same occurrence
of an initial move. Plays that contain just one occurrence of an initial move (and
consequently consist of one thread only) are called well-opened (we write Lwo

A

for the set containing them)4.
Because plays satisfy the visibility condition, responses by P are always in the

same thread as the preceding O-move, a condition known as well-threadedness.
A stricter class of single-threaded strategies arises when one requires that P-
responses depend on the thread of play of the preceding O-move. This behaviour
is formally captured by the notion of a comonoid homomorphism in [10] and
can be summed up in two points. Firstly, the threads occurring in a trace are
also traces, so we can regard traces as interleavings of well-opened ones (such
that only O can switch between threads). Secondly, whenever a trace s is an
interleaving of well-opened s1, · · · , sn, we have σ(s) = σ(s1) · . . . · σ(sn). As
shown in [10], arenas and single-threaded strategies, quotiented by the intrinsic
preorder, constitute a fully abstract model for ∼=. Next we give a more direct
full abstraction result based on comparing probabilities in special kinds of plays
rather than quotienting them.

Our analysis will also capture a notion of probabilistic refinement defined as
follows: Γ �M1 : θ refines Γ �M2 : θ, written Γ �M1

�∼M2, iff for all contexts
C[−] such that � C[M1], C[M2] : com if C[M1] ↓p1 skip then C[M2] ↓p2 skip and
p1 ≤ p2. Note that M1

∼= M2 iff M1
�∼M2 and M2

�∼M1. We are going to show
that, like in the sequential second-order case [4], ∼= is decidable. However, in
contrast, �∼ will turn out undecidable.

4 Equivalently, one can present the model in the style of [12], where terms induce
well-opened sequences only and the interpretation of function spaces adheres to
the decomposition A ⇒ B = !A � B. In this paper we stick to the presentation
of [10], where the induced plays do not have to be well-opened, but the strategies
are restricted to be single-threaded.

On Probabilistic Program Equivalence and Refinement 161

Definition 1. A play s ∈ Leven
A is complete iff all questions in s are answered.

The set of complete plays of A is denoted by Lcomp
A . Suppose σ1, σ2 : A are

single-threaded strategies. We then define:

σ1 ≤π σ2
def⇐⇒ σ1(s) ≤ σ2(s) for all s ∈ Lwo

A ∩ Lcomp
A .

Lemma 1. Let � M1,M2 : θ and σi = �� Mi� (i = 1, 2). Then � M1
�∼M2 if

and only if σ1 ≤π σ2.

Proof. Suppose � M1
�∼M2. Let s ∈ Lwo

�θ� ∩ L
comp
�θ� and σ1(s) = p1. By the de-

finability result for (sequential) Idealized Algol in [12] there exists a determin-
istic context x : θ � C[x] : com such that the only well-opened complete play in
�x : θ � C[x] : com�IA is run s done. Then in the probabilistic game model we have
�x : θ � C[x] : com�(run s done) = 1 and �x : θ � C[x] : com�(run s′ done) = 0
whenever s
= s′. So:

�� C[M1] : com�(run done) = (σ1; �x : θ � C[x] : com�)(run done) = p1.

By adequacy (Theorem 3.2 in [10]) C[M1] ↓p1 skip. Because � M1
�∼M2 we

have C[M2] ↓p2 skip and p1 ≤ p2. By soundness for evaluation (Theorem 3.2
in [10]) σ2(run done) = p2. Because �� C[M2]� = σ2; �x : θ � C[x] : com� and C
is deterministic, we have σ2(s) = p2. Hence, σ1 ≤π σ2.

Now we prove the contrapositive of the converse. Suppose we do not have �
M1

�∼M2, i.e. there exists a context C[−] such that � C[Mi] : com, C[Mi] ↓pi skip
for i = 1, 2 and p1 > p2. By soundness, compositionality and the composition
formula we have

pi = �� C[Mi]�(run done) = (σi; �x : θ � C[x] : com�)(run done) =

=
∑

u∈wit�θ�(run done)

σi(u � 1, �θ�) · �x : θ � C[x] : com�(u � �θ�, �com�).

Since p1 > p2, there must exist u ∈ wit�θ�(run done) such that σ1(u � 1, �θ�) >
σ2(u � 1, �θ�). Let s = u � 1, �θ�. Because run done is complete, so is s. In general
s might be an interleaving of several well-opened complete plays, let us call them
s1, · · · , sk. Because σi is single-threaded, we then have σi(s) =

∏k
j=1 σi(sj)

and, further, because σ1(s) > σ2(s), we must have σ1(sj) > σ2(sj) for some j.
Consequently, σ1
≤π σ2. ,-

The Lemma generalizes to open terms (by observing that Γ � M1
�∼M2 is

equivalent to � λΓ.M1
�∼ λΓ.M2) and implies the following result for program

equivalence. Given single-threaded strategies σ1, σ2 : A we write σ1 =π σ2 iff
σ1(s) = σ2(s) for all s ∈ Lwo

A ∩ Lcomp
A .

Lemma 2. Let � M1,M2 : θ and σi = �� Mi� (i = 1, 2). Then � M1
∼= M2 if

and only if σ1 =π σ2.

162 A.S. Murawski and J. Ouaknine

5 Probabilistic Automata

Probabilistic automata (PA) generalize finite automata in that probability dis-
tributions are imposed on transitions. Their first definition goes back to Rabin’s
work in the 1960s [13] (see Paz [14] for a textbook treatment). Various modi-
fications of the automata have recently reappeared in research on probabilistic
systems (see e.g. [15,16]).

Let X be a finite set. A subprobability over X is a function ω : X → [0, 1]
such that

∑
x∈X ω(x) ≤ 1. A probabilistic distribution over X is a subprobability

such that
∑

x∈X ω(x) = 1. We write S(X),P(X) respectively for the sets of all
subprobabilities and probabilistic distributions over X .

Definition 2. A probabilistic automaton is a tuple A = 〈Q, Σ, i, F, δ 〉,
where Q is a finite set of states, Σ is the alphabet, i ∈ Q is the initial state,
F ⊆ Q is the set of final states and δ is the transition function, which can take
one of the following two shapes: either δ : Q×Σ → P(Q) or δ : Q→ P(Σ×Q).
In the former case A is called reactive, in the latter generative.

The different shapes of the transition function reflect the typical scenarios which
the two kinds of automata are used to model. Reactive automata describe proba-
bilistic reactions to given symbols, while for generative ones the symbol is viewed
as part of the probabilistic response. The automata we are going to use to model
probabilistic programs will turn out to combine the features of the two. O-moves
will adhere to a restricted form of the reactive framework, whereas P-moves will
be generative.

We refer to transitions by writing q
x,p−−→ q′ whenever δ(q, x)(q′) = p (the

reactive case) or δ(q)(x, q′) = p (the generative case). A run r of a probabilistic
automaton is a sequence of transitions

i
x1,p1−−−→ q1

x2,p2−−−→ . . .
xk,pk−−−→ qk.

Let us write PA(r) for the probability of the run r, i.e. PA(r) =
∏k

i=1 pi. The
word associated with the run r will be denoted by WA(r), i.e. WA(r) = x1 · · ·xk.
A run is accepting if qk ∈ F . Let AccA(w) be the set of accepting runs r such
that WA(r) = w. For a given automaton A we define a function A : Σ� → [0, 1]
as follows

A(w) =
∑

r∈AccA(w)

PA(r).

A(w) denotes the probability that the automaton reaches a final state and reads
the string w.

From now on we restrict our attention to automata in which the probabilities
associated with transitions are rational numbers. We shall also often consider
automata where the requisite distributions are in fact only subprobabilities on
the understanding that they can be extended to probability distributions by
adding a dummy “sink” state and dummy transitions. In this sense generative
automata can be considered special cases of reactive ones. Note also that a

On Probabilistic Program Equivalence and Refinement 163

reactive automaton A can be converted to a generative one, which we denote
A/|Σ|, by dividing all probabilities occurring in transitions by the size of the
alphabet. We introduce the following two decision problems.

Definition 3. Suppose A1,A2 are probabilistic automata of the same kind.

– Equivalence: A1(w) = A2(w) for all w ∈ Σ∗.
– Refinement: A1(w) ≤ A2(w) for all w ∈ Σ∗.

Equivalence for reactive automata was already considered by Paz in [14] (in a
slightly different setting) and shown decidable. His proof relies on the observation
that in order to prove two automata equivalent it suffices to verify equivalence
for strings of length n1 + n2 − 1, where n1, n2 are the respective numbers of
states. This leads to an NP algorithm. Paz’s result was subsequently refined by
Tzeng [17], who presented a Ptime algorithm based on a search for a basis in a
vector space. Note that the decidability of Equivalence for reactive automata
implies decidability for generative automata as well.

In contrast, we next show that Refinement is undecidable by reducing the
following problem to it:

Nonemptiness with threshold: Given a reactive automaton A and
a rational 0 ≤ λ ≤ 1, there exists w ∈ Σ∗ such that A(w) > λ.

Nonemptiness with threshold was introduced by Rabin [13] and proved
undecidable by Paz [14]. More recently, Blondel and Canterini [18] gave a more
elementary proof based on Post’s Correspondence Problem. Observe that the
complement of Nonemptiness with threshold reduces to Refinement (for
reactive automata) by considering the automaton A = 〈 { i, f }, Σ, i, { f }, δ 〉
below which accepts every non-empty word with probability λ.

i
Σ,λ �� f Σ,1��

Then we have A(w) = λ for any w ∈ Σ+, which implies undecidability of
Refinement in the reactive case.

The undecidability carries over to the generative case, because the refinement
of A1 by A2, where both are reactive, is equivalent to the refinement of A1/|Σ|
by A2/|Σ| (both generative). Furthermore, refinement remains undecidable for
pairs of generative automata in which all probabilities in A1 and A2 are of the
form m/2n. To see this, observe that refinement of A1 by A2 is equivalent to
that of vA1 by vA2, where v ∈ (0, 1] and vA is obtained from A by multiplying
all probabilities on transitions by v. Now given A1 and A2, choose v = d/2n,
where d is the least common denominator of all the probabilities appearing in
both A1 and A2, and 2n is the smallest power of two that exceeds d. Every
weight in vA1 and vA2 is now of the form m/2n for some integer m. We are
interested in restricting the probabilities to this form, because later on we are
going to simulate generative automata in PAf . Although it was shown in [10] that
the strategy representing coin is universal, the proof relied on infinitary features
such as infinite datatypes and recursion. By contrast, distributions based on

164 A.S. Murawski and J. Ouaknine

probabilities of the shape m/2n can be simulated in a small fragment of PAf

that does not even require while.
Another problem from the theory of probabilistic automata that will be useful

in our work concerns ε-transitions. Note that the definitions of probabilistic
automata (as well as those of PA(r),WA(r) and A(w)) can easily be extended to
encompass ε-transitions. Then it is natural to ask whether and how ε-transitions
can be removed in such a way as to yield an equivalent automaton. This problem
was investigated by Mohri in the general setting of weighted automata, where
the weights come from a variety of semirings [19,20]. The probabilistic case then
falls into the case of closed semirings, which require a special approach based
on a decomposition into strongly-connected components and a generalization
of the Floyd-Warshall all-pairs shortest-path algorithm. This decomposition is
designed to handle the problematic ε-cycles, as it is easier to deal with them in a
strongly-connected component. A consequence of the algorithm is the fact that
rationality of weights is preserved after ε-removal, which should be contrasted
with the general failure of compositionality for rational strategies pointed out
in [10].

6 Second-order Program Equivalence is Decidable

Recall that a PAf term Γ � M : θ is a second-order term if ord(θ) ≤ 2 and
the type of each identifier from Γ is either a base type or a first-order type.
We show that program equivalence for second-order PAf terms is decidable. The
argument will be based on a reduction to Equivalence for reactive automata
via Lemma 2. More precisely, we show that for any second-order PAf term there
exists a reactive automaton which accepts (the sequences of moves that occur
in) well-opened complete plays with the same probabilities as those assigned to
them by the corresponding probabilistic strategy. As we are interested in the
second-order terms only, it is not necessary to represent pointers, because they
can be uniquely reconstructed [4]. Consequently, we ignore them completely in
what follows.

The automata corresponding to programs will be special instances of reactive
automata. Their sets of states will be partitioned into O-states and P-states:
only transitions on O-moves (respectively P-moves) will be available from O-
states (respectively P-states). Moreover, at O-states, there can only be at most
one transition for a given input letter (its probability is then 1). For P-states,
however, the probabilities of all outgoing transitions will have to add up to
at most 1, which is consistent with the generative framework. This pattern of
behaviour is captured by the definition below (MO

A and MP
A stand for the sets

of O-moves and P-moves respectively).

Definition 4. An A-automaton is a tuple A = 〈Q,MA, i, f, δ 〉, where:

1. Q = QO + QP is the set of states (elements of QO,QP are called O-states
and P-states respectively);

2. i has no incoming transitions, f has no outgoing transitions;

On Probabilistic Program Equivalence and Refinement 165

3. { i, f } ⊆ QO;
4. δ = δO + δP , where δO : QO ×MO

A ⇀ QP (δ(q,m) = q′ is taken to mean
δ(q,m)(q′) = 1) and δP : QP ⇀ S(MP

A ×QO);
5. sequences of moves determined by runs of A are plays of A, accepting runs

are complete positions.

Example 1. coin : exp will be interpreted by the automaton i
q,1 �� ◦

0, 1
2 ��

1, 1
2

�� f .

Definition 5. A �Γ � θ�-automaton A represents Γ �M : θ iff

A(w) =
{ �Γ �M : θ�(w) w ∈ Lwo

�Γ�θ� ∩ L
comp
�Γ�θ�

0 otherwise

In the rest of this section we set out to prove that any second-order PAf term
is represented by an automaton as specified in the definition above. It suffices
to prove that this is the case for terms in β-normal form, since β-equivalent
terms are also ∼=-equivalent (the fully abstract model [10] is a cartesian-closed
category). The most difficult stage in the construction is the interpretation of
the application rule

Γ �M : θ → θ′ Γ � N : θ
Γ �MN : θ′

which will be split into two simpler rules, multiplicative application and contrac-
tion respectively:

Γ �M : θ → θ′ Δ � N : θ
Γ,Δ �MN : θ′

Γ, x : θ, y : θ �M : θ′

Γ, x : θ �M [x/y] : θ′
.

The former is simply interpreted by composition, because (up to currying)
�Γ,Δ � MN : θ′� is equal to �Δ � N : θ� ; � � λxθ .λΓ.Mx : θ → (Γ → θ′)�.
Hence, in order to interpret application we need to be able to handle compo-
sition and contraction. Other term constructs (except λ-abstraction) can also
be interpreted through application by introducing special constants for each of
them [12]. For instance, assignment then corresponds to the constant (:=) :
var → exp → com so that ((:=)M)N corresponds to M :=N . For local vari-
ables one uses newβ : (var → β) → β so that new X in M is equivalent to
newβ(λX.M).

Theorem 1. For any second-order term Γ � M : θ there exists a �Γ � θ�-
automaton representing Γ �M : θ.

Proof. We construct the automata by induction on the structure of β-normal
terms. The base cases are ground-type constants (coin , skip, i : exp), free
identifiers (of base type or first-order type) and the constants corresponding
to succ,pred, ifzero, ; ,while, !, := ,new. The automaton for coin was given
in Example 1. The shape of the strategies corresponding to other constants and

166 A.S. Murawski and J. Ouaknine

free identifiers is already known from work on sequential Algol (see e.g. [21]). Be-
cause the strategies are all deterministic, the probabilistic automata representing
them can be obtained by assigning probability 1 to all transitions of the finite
automata associated with them. Thus it remains to interpret λ-abstraction and
application. The former is trivial in game semantics, because currying amounts
to the identity operation (up to associativity of the disjoint sum), so we only
need to concentrate on application, i.e. composition and contraction.

Let σ = �Δ � N : θ� and τ = �x : θ � λΓ.Mx : Γ → θ′�. Suppose A1 =
〈Q1,M�Δ� + M�θ�, i1, f1, δ1 〉 and A2 = 〈Q2,M�θ� + M�Γ � + M�θ′�, i2, f2, δ2 〉
represent Δ � N and x � λΓ.Mx respectively. Because we consider β-normal
terms of second order only, well-opened complete traces of σ; τ can arise only
from interaction sequences which involve well-opened complete traces from τ and
iterated well-opened complete traces from σ. Thus, as a first step, we have to
construct a probabilistic automaton that accepts iterated well-complete traces
from σ with the same probabilities as those assigned to them by σ. Since σ is
well-threaded, we would like the probability of accepting a complete trace which
is not well-opened to be equal to the product of probabilities with which the
automaton accepts the constituent well-opened traces. This is achieved simply
by identifying f1 with i1, because i1 does not have any incoming transitions
and f1 has no outgoing ones. We write A∗1 for the automaton obtained from
A1 in this way. Let A = �Δ�, B = �θ� and C = �Γ → θ′�. We define another
automaton

A|| = 〈Q||,MA + MB + MC , (i1, i2), (f1, f2), δ 〉,
where Q|| = (QO

1 × QO
2) + (QO

1 × QP
2 + QP

1 × QO
2), which will model all the

interactions that may result in well-opened complete plays of σ; τ . This is done
by parallel composition of A∗1 with A2 synchronized on moves from B. The
function δ is defined by the transitions given below (qO

1 , qP
1 below range over

O-states and P-states of A∗1 respectively; qO
2 , qP

2 are used analogously for A2):

– for any qO
1 ∈ QO

1 and x ∈MC

(qO
1 , qO

2)
x,1−−→ (qO

1 , qP
2) if qO

2
x,1−−→ qP

2

(qO
1 , qP

2)
x,p−−→ (qO

1 , qO
2) if qP

2
x,p−−→ qO

2

– for any qO
2 ∈ QO

2 and x ∈MA

(qO
1 , qO

2)
x,1−−→ (qP

1 , qO
2) if qO

1
x,1−−→ qP

1

(qP
1 , qO

2)
x,p−−→ (qO

1 , qO
2) if qP

1
x,p−−→ qO

1

– for any x ∈MB

(qO
1 , qP

2)
x,p−−→ (qP

1 , qO
2) if qO

1
x,1−−→ qP

1 and qP
2

x,p−−→ qO
2

(qP
1 , qO

2)
x,p−−→ (qO

1 , qP
2) if qP

1
x,p−−→ qO

1 and qO
2

x,1−−→ qP
2 .

By the structure of interaction sequences (as described, for instance, by the state
diagram in Figure 2 of [10]) each run of A|| determines an interaction sequence

On Probabilistic Program Equivalence and Refinement 167

of σ and τ . Moreover, because accepting runs of A∗1 and A2 determine complete
plays in the respective games (well-opened for A2), the accepting runs of A||
determine interactions that, when projected onto MA + MC yield well-opened
complete plays in A ⇒ C. Note that the probability of an accepting run of A||
is the product of probabilities associated with the corresponding runs of A∗1 and
A2. Because interaction sequences are uniquely determined by the constituent
plays, for any w ∈ Lwo

�Δ→(Γ→θ′)� ∩ L
comp
�Δ→(Γ→θ′)� we get

A||(w) =
∑

r∈AccA|| (w)

PA||(r)

=
∑

r1∈AccA∗
1
(w�A,B)

∑
r2∈AccA∗

2
(w�B,C)

PA∗
1
(w � A,B) · PA2(w � B,C)

= A∗1(w � A,B) · A2(w � B,C) = σ(w � A,B) · τ(w � B,C).

By the composition formula for σ; τ , in order to construct an A⇒ C-automaton
for Δ � λΓ.MN , it now suffices to relabel all transitions on B-moves as ε-
transitions and subsequently replace them using Mohri’s algorithm [19] (in fact,
the full power of the algorithm is needed to handle composition with while
and new, other cases can be easily solved “by hand”). Because B-moves are
only available from states in (QO

1 × QP
2 + QP

1 × QO
2), the automaton after

the ε-removal will be an A ⇒ C-automaton with the partition of states given
before.

Finally, we discuss contraction. It is interpreted simply by identifying moves
originating from the two contracted copies of θ, i.e. by relabelling. To complete
the argument, we only need to show that the transition function retains the
shape required in A-automata. This is obvious for P-states but (at least in prin-
ciple) the relabelling might produce an O-state with two outgoing transitions on
the same O-move. Then we claim that the O-state is unreachable and, conse-
quently, can be deleted. Indeed, if it were reachable, there would exist a position
s such that the automaton representing the term before contraction would read
both s o1 and s o2, where o1 and o2 are O-moves from the two different copies
of θ. By 5. both so1 and so2 would be plays then, but this is impossible be-
cause only one of them can satisfy visibility (since the questions justifying o1

and o2 cannot appear in the O-view at the same time). Consequently, contrac-
tion can be interpreted in such a way that we get an automaton of the required
shape.

By Lemma 2, the Lemma above and the decidability of Equivalence we have:

Theorem 2. ∼= is decidable for second-order PAf terms.

Note that the size of the automaton produced in the above proof will be ex-
ponential in the size of the β-normal term. Because ε-removal and equivalence
testing work in polynomial time, equivalence of β-normal second-order PAf terms
can be decided in Exptime.

168 A.S. Murawski and J. Ouaknine

7 Probabilistic Program Refinement Is Undecidable

Probabilistic program refinement at second order will be shown undecidable
by reducing Refinement for generative probabilistic automata to probabilis-
tic program refinement. To this end, for each generative automaton where the
probabilities are of the form m/2n, we construct a PAf term representing it in a
way to be described later.

First we discuss how to model the special distributions in PAf . Let us define
a family of terms choicen(M0, · · · ,M2n−1) which evaluate to each of the terms
Mi with the same probability 1

2n :

choice0(M0) = M0

choicen+1(M0, · · · ,M2n+1−1) =
ifzero coin (choicen(M0, · · · ,M2n−1)) (choicen(M2n , · · · ,M2n+1−1)).

Observe that by using the same term M as Mi for several i’s we can vary
(increase) the probability of choicen(M0, · · · ,M2n−1) being equivalent to Mi.
Suppose that, given terms N1, · · · , Nk, we are to construct another term N̂
which evaluates to Ni (1 ≤ i ≤ k) with probability pi = mi

2n , where mi ∈ N

and
∑k

i=1 pi = 1. This can be done by taking N̂ to be choicen(M0, · · · ,M2n−1)
where for M0, · · · ,M2n−1 we take mi copies of Ni for each i = 1, · · · , k (the
order is irrelevant). Then the probability of Ni being selected is mi

2n .
In order to complete the encoding of the special generative automata we

have to define how strings are interpreted. Suppose Σ = { x1, · · · , xm }. A string
w = xj1 · · ·xjl

is then interpreted by the position ŵ:

runrunf (runf,1runxj1
donexj1

donef,1) · · · (runf,1runxjl
donexjl

donef,1)donefdone

in the game �comx1 , · · · , comxm , comf,1 → comf � com�, where we have used
subscripts to indicate the origin of moves from the various occurrences of com .

Lemma 3. Suppose A = 〈Q, Σ, i, F, δ 〉 is a generative automaton and Σ =
{ x1, · · · , xm }. There exists a term-in-context Γ �MA : com, where

Γ = x1 : com , · · · , xm : com, f : com → com ,

such that for all s ∈ Lwo
�Γ�com� ∩ L

comp
�Γ�com�:

�Γ �MA�(s) =
{
A(w) ∃w∈Σ∗ s = ŵ

0 otherwise.

Proof. We will construct MA in such a way that its induced plays will emulate
runs of A. The state of A will be kept in a variable ST . If |Q| > max we
will use sufficiently large tuples of variables, which we also denote by ST . Using
branching we can easily define a case distinction construct case[!ST](· · · , Hq, · · ·)
which for each q ∈ Q selects Hq if !ST represents q. We will use the first-order
identifier f : com → com for iterating the transitions. MA has the shape

new ST in ST := i; f(case[!ST](· · · , Hq, · · ·)); [!ST ∈ F]

On Probabilistic Program Equivalence and Refinement 169

where [condition] ≡ if condition then skip elsediv and div ≡ while 1 do skip.
The condition !ST ∈ F can also be implemented via branching. Finally, the
terms Hq will have the shape N̂ and will be constructed for the distribution
δ(q) ∈ P(Σ ×Q). Recall that in order to complete the definition of N̂ we need
to specify the terms N1, · · · , Nk. They are defined as follows: if δ(q)(xj , q

′) = pi

then Ni ≡ (xj ;ST := q′). ,-

Theorem 3. �∼ is undecidable.

Proof. Let A1,A2 be generative automata. By the above Lemma and Lemma 1
the refinement of A1 by A2 is equivalent to Γ �MA1

�∼MA2 . Because Refine-
ment is undecidable, so is �∼ .

Note that the terms used for simulating generative automata are of second order
(the types of free identifiers have order 0 or 1) and that the encoding does not
rely on while. Accordingly, the undecidability result applies not only to PAf

but also to its while-free fragment. Note however that the above argument did
depend on free first-order identifiers. If we leave them as well as while out, the
problem becomes decidable as the length of the induced well-opened traces is
then bounded (the corresponding automata have no cycles).

8 Conclusion and Future Work

The main result of this paper is an Exptime algorithm for deciding proba-
bilistic contextual equivalence of β-normal second-order Probabilistic Idealized
Algol terms. Subject to mild conditions, this corresponds to the natural notion of
equivalence for randomized algorithms, namely identical input/output distribu-
tions, and therefore enables the comparison of different randomized algorithms
against each other.

It can be shown that probabilistic equivalence is Pspace-hard, since it sub-
sumes the deterministic case, which itself is Pspace-complete [22]. We conjec-
ture that probabilistic equivalence is in fact also Pspace-complete. In any case,
even the Exptime bound is quite encouraging within the realm of verification,
and we therefore intend to implement our algorithm to conduct a number of
experimental case studies.

An interesting alternative to (exact) probabilistic equivalence is that of ap-
proximate probabilistic equivalence, parameterized by some small ‘tolerance
margin’ ε. Such a notion would allow us to quantitatively compare two random-
ized algorithms, or a randomized and a deterministic algorithm, by checking
whether their input/output distributions remain within a predetermined small
bound of each other. Unfortunately, the most natural interpretation of approxi-
mate equivalence is already undecidable for reactive probabilistic automata, by a
simple reduction from Nonemptiness with threshold. Moreover, contextual
approximate equivalence for programs seems difficult to define sensibly: if two
non-divergent programs fail to be exactly equivalent, then a context can always
be manufactured that, through some kind of ‘statistical testing’, can magnify

170 A.S. Murawski and J. Ouaknine

the differences between the two programs to arbitrarily large values. We would
like to investigate this question in greater detail, perhaps by restricting contexts
to using their arguments only a bounded number of times. We would also like
to discover conditions under which such problems become decidable (cf. [17]), or
alternatively develop efficient semi-algorithms for them.

References

1. Rabin, M.O.: Algorithms and Complexity. Academic Press, 1976.
2. Motwani, R., Raghavan, P.: Randomized Algorithms. CUP, 1995.
3. Reynolds, J.: The essence of Algol. In Jaco W. de Bakker and J. C. van Vliet,

eds.: Algorithmic Languages. North-Holland, 1981.
4. Ghica, D.R., McCusker, G.: Reasoning about Idealized Algol using regular expres-

sions. In ICALP 2000, LNCS 1853.
5. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.H.L.: Applying game semantics

to compositional software modelling and verification. In TACAS 2004, LNCS 2988.
6. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking

with PRISM: a hybrid approach. In TACAS 2002, LNCS 2280.
7. Bustan, D., Rubin, S., Vardi, M.: Verifying ω-regular properties of Markov chains.

In CAV 2004, LNCS 3114.
8. Giacalone, A., Jou, C., Smolka, S.A.: Algebraic reasoning for probabilistic con-

current systems. In IFIP WG 2.2/2.3 Conference on Programming Concepts and
Methods, 1990.

9. Lowe, G.: Probabilistic and prioritized models of Timed CSP. Theoretical Com-
puter Science 138(2), 1995.

10. Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. on Comp.
Logic 3(3), 2002.

11. Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF. Information and
Computation 163(2), 2000.

12. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In O’Hearn, P.W., Tennent,
R.D., eds.: Algol-like languages, Birkhaüser, 1997.

13. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 1963.
14. Paz, A.: Introduction to Probabilistic Automata. Academic Press, 1971.
15. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, MIT. Available as Technical Report MIT/LCS/TR-676, 1995.
16. Stoelinga, M.I.A.: An introduction to probabilistic automata. In Rozenberg, G.,

ed.: EATCS bulletin. Volume 78, 2002.
17. Tzeng, W.G.: A polynomial-time algorithm for the equivalence of probabilistic

automata. SIAM Journal on Computing 21, 1992.
18. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of

fixed dimension. Theoretical Computer Science 36(3), 2003.
19. Mohri, M.: Generic e-removal and input e-normalization algorithms for weighted

transducers. International Journal of Foundations of Computer Science 13, 2002.
20. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.

Journal of Automata, Languages and Combinatorics 7, 2002.
21. Abramsky, S.: Algorithmic games semantics: a tutorial introduction. In Schwicht-

enberg, H., Steinbruggen, R., eds.: Proof and System Reliability. Kluwer, 2002.
22. Murawski, A.: Games for complexity of second-order call-by-name programs. The-

oretical Computer Science, to appear.

Probabilistic Anonymity�

Mohit Bhargava1,�� and Catuscia Palamidessi2

1 Indian Institute of Technology Delhi
2 INRIA Futurs and LIX, École Polytechnique

Abstract. The concept of anonymity comes into play in a wide range of sit-
uations, varying from voting and anonymous donations to postings on bulletin
boards and sending mails. The systems for ensuring anonymity often use random
mechanisms which can be described probabilistically, while the agents’ interest
in performing the anonymous action may be totally unpredictable, irregular, and
hence expressable only nondeterministically.

Formal definitions of the concept of anonymity have been investigated in the
past either in a totally nondeterministic framework, or in a purely probabilistic
one. In this paper, we investigate a notion of anonymity which combines both
probability and nondeterminism, and which is suitable for describing the most
general situation in which both the systems and the user can have both proba-
bilistic and nondeterministic behavior. We also investigate the properties of the
definition for the particular cases of purely nondeterministic users and purely
probabilistic users.

We formulate our notions of anonymity in terms of observables for processes
in the probabilistic π-calculus, whose semantics is based on Probabilistic Au-
tomata.

We illustrate our ideas by using the example of the dining cryptographers.

1 Introduction

The concept of anonymity comes into play in those cases in which we want to keep
secret the identity of the agent participating to a certain event. There is a wide range
of situations in which this property may be needed or desirable; for instance: delation,
voting, anonymous donations, and posting on bulletin boards.

An important characteristic of anonymity is that it is usually relative to a particular
point of view. In general an event can be observed from various viewpoints - differing in
the information they give access to, and therefore, the anonymity property depends on
the view from which the event is being looked at (that is the exact information available
to the observer). For example, in the situation of electronic bulletin boards, a posting by
one member of the group is kept anonymous to the other members; however, it may be
possible that the administrator of the board has access to some privileged information
and can determine the member who posted the message(s), either directly or indirectly.

� This work has been partially supported by the Project Rossignol of the ACI Sécurité Informa-
tique (Ministère de la recherche et nouvelles technologies).

�� This work has been carried out during the visit of Mohit Bhargava at INRIA, which has been
supported by the INRIA/DREI programme for International Internship.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 171–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 M. Bhargava and C. Palamidessi

In general anonymity may be required for a subset of the agents only. In order to
completely define anonymity for a system it is therefore necessary to specify which
set(s) of members has to be kept anonymous. A further generalization is the concept
of group anonymity: the members are divided into a number of sets, and it is revealed
which of the groups is responsible for an event, but the information as to which partic-
ular member has performed the event must be hidden. In this paper, however, we do not
consider the notion of group anonymity, we leave it for further work.

Various formal definitions and frameworks for analyzing anonymity have been de-
veloped in literature. They can be classified into approaches based on process-calculi
([24,22]), epistemic logic ([26,11]), and “function views” ([13]). In this paper, we focus
on the approach based on process-calculi.

The framework and techniques of process calculi have been used extensively in
the area of security, to formally define security properties, and to verify cryptographic
protocols. See, for instance, [2,15,21,23,3]. The common denominator is that the vari-
ous entities involved in the system to verify are specified as concurrent processes and
present typically a nondeterministic behavior. In [24,22], the nondeterminism plays
a crucial role to define the concept of anonymity. More precisely, this approach to
anonymity is based on the so-called “principle of confusion”: a system is anonymous
if the set of the possible outcomes is saturated with respect to the intended anonymous
users, i.e. if one such user can cause a certain observable trace in one possible com-
putation, then there must be alternative computations in which each other anonymous
user can give rise to the same observable trace (modulo the identity of the anonymous
users).

The principle of anonymity described above is very elegant and general, however it
has a limitation: Many systems for anonymity use random mechanisms. See, for exam-
ple, Crowds ([20]) and Onion Routing ([27]). If the observer has the means to repeat the
experiment and perform statistical analysis, he may be able to deduce certain quantita-
tive information on the system. In particular, he may be able to compute the probability
of certain observables and from that infer the probability of the relation between users
and observables. Now, the situation of perfect anonymity can be only achieved when
one cannot differenciate the agents by the observable. However this condition cannot
be expressed in the nondeterministic approach, since the latter is based on set-theoretic
notions, and it is therefore only able to detect the difference between possible and im-
possible (which in the finite case correspond to positive and zero probability respec-
tively). Even the case in which one user has probability close to 1 will be considered
acceptable by the definition of anonymity based on nondeterminism, provided that all
the other users have positive probability.

Probabilistic information also allows to classify various notions of anonymity ac-
cording to their strength. See for instance the hierarchy proposed by Reiter and Robin
([20]). In this paper we explore a notion of anonymity which corresponds to the
strongest one (perfect anonymity: from the observables we deduce no information about
the possible user).

A probabilistic notion of anonymity was developed (as a part of a general episte-
mological approach) in [11]. The approach there is purely probabilistic, in the sense

Probabilistic Anonymity 173

that both the system and the users are assumed to act probabilistically. In particular the
emphasis is on the probabilistic behavior of the users.

In this work, we take the opposite point of view, namely we assume that nothing
may be known about the relative frequency by which the users perform the anonymous
action. More precisely, the users can in principle be totally unpredictable and change in-
tention every day, so that their behavior cannot be described probabilistically, not even
by repeating statistical observations. The mechanisms of the systems, on the contrary,
are like coin tossing, or random selection of a nearby node, are supposed to exhibit
a certain regularity and obey a probabilistic distribution. Hence, we investigate a no-
tion of anonymity which combines both probability and nondeterminism, and which
is suitable for describing the most general situation in which both the systems and the
user can have both probabilistic and nondeterministic behavior. We also investigate the
properties of the definition for the particular cases of purely nondeterministic users and
purely probabilistic users.

In order to define the notion of probability we need, of course, a model of com-
putation able to express both probabilistic and nondeterministic choices. This kind of
systems is by now well established in literature, see for instance the probabilistic au-
tomata of [25], and have been provided with solid mathematical foundations and so-
phisticated tools for verification. These models have practically replaced nowadays the
purely probabilistic models since it was recognized that nondeterministic behavior is
not “probabilistic behavior with unknown probabilities”, but rather a phenomenon on
its own, which is needed to describe situations in which an entity has a completely
unpredictable and irregular behavior.

For reasons of space we omit the proofs and we only sketch the preliminary notions.
The full details can be found on the report version of this paper, available on line ([4]).

2 The Nondeterministic Approach to Anonymity

In this section we briefly recall the approach in [24,22]. In these works, the actions of a
system S are classified into three sets which determine the “point of view”:

– A: the actions that are intended to be known anonymously by the observer,
– B: the actions that are intended to be known completely by the observer,
– C: the actions that are intended to be abstracted (hidden) to the observer.

Typically the set A consists of actions of the form a.i, where a is a fixed “abstract”
action (the same for all the elements of A), and i represents the identity of an anonymous
user. Hence A = {a.i | i ∈ I}., where I is the set of all the identities of the anonymous
users.

Consider a dummy action d (different from all actions in S) and let f be the function
on the actions of A

⋃
B defined by f(α) = d if α ∈ A, and f(α) = α otherwise. Then

S is said to be (strongly) anonymous on the actions in A if f−1(f(S\C)) ∼T S\C,
where, following the CSP notation ([5]), S\C is the system resulting from hiding C in
S, f(S′) is the system obtained from S′ by applying the relabeling f to each (visible)
action, f−1 is the relation inverse of f , and ∼T represents trace equivalence.

Intuitively, the above definition means that for any action sequence #α ∈ A∗, if an
observable trace t containing #α (not necessarily as a consecutive sequence) is a possible

174 M. Bhargava and C. Palamidessi

c
0,0

c
2,0

c
2,2

c
1,2

c
1,1

c
0,1

1
m

2
m

0
m

0
out

2
out

1
out

Master

Crypt0

Crypt2
Crypt1

Coin2

Coin1 Coin0

Fig. 1. Chaum’s system for the Dining Cryptographers ([7,22])

outcome of S\C, then, any trace t′ obtained from t by replacing #α with an arbitrary
#α ′ ∈ A∗ must also be a possible outcome of S\C.

We now illustrate the above definition on the example of the Dining Cryptographers.

3 The Dining Cryptographers’ Problem

This problem, described by Chaum in [7], involves a situation in which three cryptogra-
phers are dining together. At the end of the dinner, each of them is secretly informed by
a central agency (master) whether she should pay the bill, or not. So, either the master
will pay, or one of the cryptographers will be asked to pay. The cryptographers (or some
external observer) would like to find out whether the payer is one of them or the master.
However, if the payer is one of them, they also wish to maintain anonymity over the
identity of the payer.

A possible solution to this problem, described in [7], is that each cryptographer
tosses a coin, which is visible to herself and her neighbor to the right. Each cryptog-
rapher observes the two coins that she can see and announces agree or disagree. If a
cryptographer is not paying, she will announce agree if the two sides are the same and
disagree if they are not. However, the paying cryptographer will say the opposite. It
can be proved that if the number of disagrees is even, then the master is paying; other-
wise, one of the cryptographers is paying. Furthermore, if one of the cryptographers is
paying, then neither an external observer nor the other two cryptographers can identify,
from their individual information, who exactly his paying.

The Dining Cryptographers (DC) will be a running example through the paper.

3.1 Nondeterministic Dining Cryptographers

In this approach the outcome of the coin tossing and the decision of the master regarding
the payment of bill are considered to be nondeterministic ([24,22]).

The specification of the solution can be given in a process calculus style as illus-
trated below. In the original works ([24,22]) the authors used CSP. For the sake of
uniformity we use here the π-calculus ([18]). We recall that + (

∑
) is the nondetermin-

istic sum and | (Π) is the parallel composition. 0 is the empty process. τ is the silent

Probabilistic Anonymity 175

Table 1. The dining cryptographer protocol specified in π-calculus

Master =
∑2

i=0 τ . mip . mi⊕1n . mi⊕2n . 0

+ τ.m0n . m1n . m2n . 0

Crypt i = mi(x) . ci,i(y) . ci,i⊕1(z) .

if x = p

then pay i . if y = z

then out idisagree

else out iagree

else if y = z

then out iagree

else out idisagree

Coini = τ .Head i + τ .Tail i

Head i = ci,ihead . ci�1,ihead . 0

Tail i = ci,itail . ci�1,itail . 0

DCP = (ν �m)(Master

| (ν�c)(Π2
i=0Crypt i | Π2

i=0Coini))

(or internal) action. cm and c(x) are, respectively, send and receive actions on channel
c, where m is the message being transmitted and x is the formal parameter. ν is an
operator that, in the π-calculus, has multiple purposes: it provides abstraction (hiding),
enforces synchronization, and generates new names. For more details on the π-calculus
and its semantics, we refer to [18,17].

In the code, given in Table 1,⊕ and4 represent the sum and the subtraction modulo
3. Messages p and n sent by the master are the requests to pay or to not pay, respectively.
pay i is the action of paying for cryptographer i.

We remark that we do not need all the expressive power of the π-calculus for this
program. More precisely, we do not need guarded choice (all the choices are internal be-
cause they start with τ), and we do not need neither name-passing nor scope extrusion,
thus ν is used just like the restriction operator of CCS ([16]).

Let us consider the point of view of an external observer. The actions that are to be
hidden (set C) are the communications of the decision of the master and the results of
the coins (#m, #c). These are already hidden in the definition of the system DCP . The
anonymous users are of course the cryptographers, and the anonymous actions (set A)
is constituted by the pay i actions, for i = 0, 1, 2. The set B is constituted by the actions
of the form out iagree and out idisagree , for i = 0, 1, 2.

Let f be the function f(pay i) = pay and f(α) = α for all the other actions. It
is possible to check that f−1(f(DCP))) ∼T DCP , where we recall that ∼T stands
for trace equivalence. Hence the nondeterministic notion of anonymity, as defined in
Section 2, is verified.

176 M. Bhargava and C. Palamidessi

d d d

d

d

a

a

a

a

1
out

2
out

0
out

Fig. 2. Illustration of Example 1: the results that are observed with high frequency

3.2 Limitations of the Nondeterministic Approach

As a result of the nondeterminism, we cannot differentiate between a fair coin and an
unfair one. However, it is evident that the fairness of the coins is essential to ensure the
anonymity property in the system, as illustrated by the following example.

Example 1. Assume that, whenever a cryptographer pays, an external observer obtains
almost always (i.e. with high frequency, say 99% of the times) one of the three outcomes
represented in Figure 2, where a stands for agree and d for disagree. What can the
observer deduce? By examining all possible cases, it is easy to see that the coins must
be biased, and more precisely, Coin0 and Coin1 must produce almost always head,
and Coin2 must produce almost always tail (or vice-versa). From this estimation, it is
immediate to conclude that, in the first case, the payer is almost for sure Crypt1, in the
second case Crypt2, and in the third case Crypt0.

In the situation illustrated in the above example, clearly, the system does not provide
anonymity. However the nondeterministic definition of anonymity is still satisfied (as
long as “almost always” is not “always”, which in terms of observations means that the
fourth configuration d, a, a must also appear, from time to time). The problem is that
that definition can only express whether or not it is possible to have a particular trace,
but cannot express whether one trace is more likely than the other.

3.3 Probabilistic Dining Cryptographers

The probabilistic version of the system can be obtained from the nondeterministic one
by attaching probabilities to the the outcome of the coin tossing. We wish to remark that
this is the essential change in perspective: the random mechanisms internal to the system
which is designed to ensure anonymity are assumed to have a probabilistic behavior.
As for the choices of the master, those are in a sense external to the system, and it is
secondary whether they are nondeterministic or probabilistic.

We start by considering a nondeterministic master, which is in a sense the basic case:
the fact that the master is nondeterministic means that we cannot assume any regularity
in its behavior, nobody has any information about it, not even a probabilistic one. The
anonymity system must then assure that this complete lack of knowledge be preserved
through the observations of the possible outcomes (except, of course, for gaining the
information on whether the payer is one of the cryptographers or not).

We use the probabilistic π-calculus (πp) introduced in [12,19] to represent the prob-
abilistic system. The essential difference with respect to the π-calculus is the presence

Probabilistic Anonymity 177

of a probabilistic choice operator of the form
∑

i piαi.Pi, where the pi’s represents
probabilities, i.e. they satisfy pi ∈ [0, 1] and

∑
i pi = 1, and the αi’s are non-output

prefixes, i.e. either input or silent prefixes. (Actually, for the purpose of this paper,
only silent prefixes are used.) For the detailed presentation of this calculus we refer to
[12,19,4].

The only difference with respect to the program presented in Section 1 is the defi-
nition of the Coin i’s, which is as follows (ph and pt represent the probabilities of the
outcome of the coin tossing):

Coin i = phτ .Head i + ptτ .Tail i

It is clear that the system obtained in this way combines probabilistic and nondeter-
ministic behavior, not only because the master is nondeterministic, but also because the
various components of the system and their internal interactions can follow different
scheduling policies, selected nondeterministically (although it can be proved that this
latter form of nondeterminism is not relevant for this particular problem).

This kind of systems (combining probabilistic and nondeterministic choices) is by
now well established in literature, see for instance the probabilistic automata of [25],
and have been provided with solid mathematical foundations and sophisticated tools for
verification. In particular, we are interested here in the definition of the probability as-
sociated to a certain observable. The canonical way of defining such a probability is the
following: First we solve the nondeterminism, i.e. we determine a function (scheduler)
which, for each nondeterministic choice in the the computation tree, selects one alter-
native. After pruning the tree from all the non-selected alternatives, we obtain a fully
probabilistic automaton, and we can define the probabilities of (measurable) sets of runs
(and therefore of the intended observables) in the standard way. See [4] for the details.

One thing that should be clear, from the description above, is that in general the
probability of an observable depends on the given scheduler.

4 Probabilistic Anonymity for Nondeterministic Users

In this section we propose our notion of probabilistic anonymity for the case in which
the anonymous user is selected nondeterministically.

The system in which the anonymous users live and operate is modeled as a proba-
bilistic automaton M ([25], see [4]. Following [24,22] we classify the actions of M into
the three sets A, B and C (cfr. Section 2). As before, these three sets are determined by
the set of the anonymous users, the specific type of action on which we want anonymity,
and the observer. We only change notation slightly:

– The set of the anonymous actions: A = {a(i) | i ∈ I}, where I is the set of the
identities of the anonymous users and a is an injective functions from I to the set
of actions which we call abstract action. We also call the pair (I, a) anonymous
action generator.

– The set of the actions that we observe entirely, B. We will use b, b′, . . . to denote
the elements of this set.

– The set of the hidden actions C.

178 M. Bhargava and C. Palamidessi

It should be remarked the the term “observable” here is relative: we assume that the
observer can observe only B and a, but, to the purpose of defining anonymity and
checking whether a system is anonymous, we need the elements of A to be visible
outcomes of the system.

Definition 1. An anonymity system is a tuple (M, I, a, B,Z , p), where M is a proba-
bilistic automaton which we assume already restricted (abstracted) on C, (I, a) is an
anonymous action generator, B is a set of observable actions, Z is the set of all possible
schedulers for M , and for every ς ∈ Z , pς is a probability measure on the event space
generated by the execution tree of M under ς (denoted by etree(M, ς)), i.e. the σ–field
generated by the cones in etree(M, ς) (cfr. [4]).

Note that, as expressed by the above definition, given a scheduler ς , an event is a
set of executions in etree(M, ς). We introduce the following notation to represent the
events of interest:

– a(i) : all the executions in etree(M, ς) containing the action a(i)
– a : all the executions in etree(M, ς) containing an action a(i) for an arbitrary i

– o : all the executions in etree(M, ς) containing as their maximal sequence of ob-
servable actions the sequence o (where o is of the form 〈b1, b2, . . . , bn〉 for some
b1, b2, . . . , bn ∈ B). We denote by O the set of all such o’s (observables).

We use the symbols ∪, ∩ and ¬ to represent the union, the intersection, and the com-
plement of events, respectively.

We wish to keep the notion of observables as general as possible, but we still need to
make some assumptions on them. First, we want the observables to be disjoint events.
Second, they must cover all possible outcomes. Third, an observable o must indicate
unambiguously whether a has taken place or not, i.e. it either implies a, or it implies
¬a. In set-theoretic terms it means that either o is contained in a or in the complement
of a. Formally:

Assumption 1 (Assumptions on the observables) 1. ∀ς ∈ Z . ∀o1, o2 ∈ O. o1
=
o2 ⇒ pς(o1 ∪ o2) = pς(o1) + pς(o2)

2. ∀ς ∈ Z . pς(O) = 1
3. ∀ς ∈ Z . ∀o ∈ O. pς(o ∩ a) = pς(o) ∨ pς(o ∩ ¬a) = pς(o)

Analogously, we need to make some assumption on the anonymous actions. We
consider here conditions tailored for the nondeterministic users: Each scheduler deter-
mines completely whether an action of the form a(i) takes place or not, and in the
positive case, there is only one such i. Formally:

Assumption 2 (Assumption on the anonymous actions for nondeterministic users)

∀ς ∈ Z . pς(a) = 0 ∨ (∃i ∈ I. (pς(a(i)) = 1 ∧ ∀j ∈ I. j
= i ⇒ pς(a(j)) = 0))

We are now ready to give the definition of anonymity for the case in which the
anonymous user is selected nondeterministically:

Probabilistic Anonymity 179

Definition 2 (Probabilistic anonymity for nondeterministic users).
A system (M, I, a, B,Z , p) is anonymous if

∀ς,ϑ ∈ Z . ∀o ∈ O. pς(a) = pϑ(a) = 1 ⇒ pς(o) = pϑ(o)

Intuitively, the above definition expresses the fact that, for every two possible non-
deterministic choices ς and ϑ which both select a, (say a(i) and a(j), with i and j
possibly different) it should not be possible to detect from the probabilistic measure of
the observables whether the choice was ς or ϑ (i.e. whether the user was i or j).

Example 2. Consider the DC with probabilistic coins and nondeterministic master. If
the coins can give both head and tail, then, for each scheduler which chooses a (i.e.
mip for some i), the possible observable events are 〈a, a, d〉, 〈a, d, a〉, 〈d, a, a〉, and
〈d, d, d〉 (〈r0, r1, r2〉 here represents the collective result out0r0, out1r1, and out2r2).
In principle different schedulers would affect also the order in which the outputs are
emitted, but it is easy to see that the order, in this system, does not matter.

Consider the case in which the coins are totally fair, i.e. each of them gives head
and tail with 1/2 probability each. By considering all the 8 possible configurations of
the coins, 〈h, h, h〉, 〈h, h, t〉, . . . 〈t, t, t〉, it is easy to see that, for each possible payer i,
each of the above observables is produced by exactly two configurations and hence has
probability 1/4. Hence Definition 2 is verified.

Consider now the case in which the coins are biased. Say, Coin0 and Coin1 give
head with probability 9/10 and tail with probability 1/10, and vice-versa Coin2 gives
head with probability 1/10 and tail with probability 9/10. (This case is analogous to
that illustrated in Example 1). Let us consider the observable 〈a, a, d〉. In case Crypt1

is the payer, then the probability to get 〈a, a, d〉 is equal to the probability that the result
of the coins is 〈h, h, t〉, plus the the probability that the result of the coins is 〈t, t, h〉,
which is 9/10 ∗ 9/10 ∗ 9/10 + 1/10 ∗ 1/10 ∗ 1/10 = 730/1000. In case Crypt2 is the
payer, then the probability to get 〈a, a, d〉 is equal to the probability that the result of the
coins is 〈h, h, h〉, plus the the probability that the result of the coins is 〈t, t, t〉, which is
9/10 ∗ 9/10 ∗ 1/10 + 1/10 ∗ 1/10 ∗ 9/10 = 90/1000.

Hence, in the biased case, Definition 2 is not verified. And this is what we expect,
because the system, intuitively, is not anonymous: when we observe 〈a, a, d〉, Crypt1

is much more likely to be the payer than Crypt2.

As proved in the example above, the DC with fair coins are anonymous.

Proposition 1. The DC with probabilistic fair coins and nondeterministic master are
probabilistically anonymous.

5 Probabilistic Anonymity for Users with Combined Probabilistic
and Nondeterministic Behavior

In this section we develop a notion of anonymity for the more general case in which
also the users may be selected according to some probabilistic distribution, possibly
combined with a nondeterministic selection.

180 M. Bhargava and C. Palamidessi

An example of such kind of behavior in the DC can be obtained by specifying the
master as making first a nondeterministic choice on which probabilistic distribution to
apply for selecting the payer, and then a probabilistic choice.

An example of such a master in πp would be the following (p0, . . . , p3, q0, . . . , q3

represent the probabilities of the various decisions of the master)

Master = τ.Master1 + τ.Master2

Master1 =
∑2

i=0 pi τ .mip .mi⊕1n .mi⊕2n . 0

+ p3τ.m0n .m1n .m2n . 0

Master2 =
∑2

i=0 qi τ .mip .mi⊕1n .mi⊕2n . 0

+ q3τ.m0n .m1n .m2n . 0

Note that the choice in Master is nondeterministic while the choices in Master1

and Master2 are probabilistic.
While the assumptions on the observables remain the same, the assumption on the

anonymous actions in this case is much weaker: the scheduler does not determine com-
pletely, in general, whether a is executed or not, and who is the user. However, we still
require that there be at most an user which performs a for each computation, i.e. a(i)
and a(j) must be disjoint for i
= j. Formally:

Assumption 3 (Assumption on the anonymous actions for users with combined
probabilistic and nondeterministic behavior)

∀ς ∈ Z . ∀i, j ∈ I. i
= j ⇒ pς(a(i) ∪ a(j)) = pς(a(i)) + pς(a(j))

The notion of anonymity, in this case, must take into account the probabilities of the
a(i)’s. When we observe a certain event o, the probability of o having been induced by
a(i) must be the same as the probability of o having been induced by a(j) for any other
j ∈ I . To formalize this notion, we need the concept of conditional probability. Given
two events x and y with p(y) > 0, the conditional probability of x given y is defined as
p(x | y) = p(x∩y)

p(y) .

Definition 3 (Probabilistic anonymity for users with combined probabilistic and
nondeterministic behavior). A system (M, I, a, B,Z , p) is anonymous if

∀ς,ϑ ∈ Z . ∀i, j ∈ I. ∀o ∈ O.

(pς(a(i)) > 0 ∧ pϑ(a(j)) > 0) ⇒ pς(o | a(i)) = pϑ(o | a(j))

Example 3. Consider the DC with probabilistic coins and the nondeterministic and
probabilistic master illustrated above. Assume that the coins are totally fair. Consider a
scheduler ς which selects Master1 and assume that Master1 selects i ∈ I as the payer,
with probability pi. Consider now a scheduler ϑ which selects Master2, and assume
that Master2 selects j ∈ I as the payer, with probability qj . Again, the possible ob-
servable events are 〈a, a, d〉, 〈a, d, a〉, 〈d, a, a〉, and 〈d, d, d〉. By considering all the 8

Probabilistic Anonymity 181

possible configurations of the coins, it is easy to see that if the scheduler is ς and the
payer is i, each of the above observables is produced by exactly two configurations and
hence the conditional probability of that observable, given that i is the payer, is 1/4.
The same holds for ϑ and j, hence Definition 3 is verified.

The behavior of a master which combines nondeterministic and probabilistic behav-
ior can be much more complicated than the one illustrated above. However it is easy to
see that as long as the master does not influence the behavior of the coins, and these are
fair, the conditional probability of each observable for a given payer is 1/4.

Proposition 2. The DC with probabilistic fair coins and nondeterministic and proba-
bilistic master are probabilistically anonymous.

We terminate this section by giving an alternative characterization of anonymity.

Theorem 1. A system (M, I, a, B,Z , p) is anonymous iff

∀ς,ϑ ∈ Z . ∀i ∈ I. ∀o ∈ O. (pς(a(i)) > 0 ∧ pϑ(a) > 0) ⇒ pς(o | a(i)) = pϑ(o | a)

6 Probabilistic Anonymity for Fully Probabilistic Users

In this section we consider the case of a totally probabilistic system. For instance, in the
case of the dining philosophers, the master would be of the form

Master =
∑2

i=0 pi τ .mip .mi⊕1n .mi⊕2n . 0

+ p3τ.m0n .m1n .m2n . 0

Furthermore, we would fix the scheduling of the parallel activities, so that each step in
the computation would be either deterministic or probabilistic.

Since there is no nondeterminism, there is no choice of scheduler either, so we can
eliminate Z from the tuple and we can write p(x) instead of pς(x). The definition of
probabilistic anonymity given in previous section simplifies into the following:

Definition 4 (Probabilistic anonymity for probabilistic users).
A system (M, I, a, B, p) is anonymous if

∀i, j ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a(j)) > 0) ⇒ p(o | a(i)) = p(o | a(j))

Furthermore, the alternative characterization in Theorem 1 reduces to the following:

Corollary 1. A system (M, I, a, B, p) is anonymous iff

∀i ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a) > 0) ⇒ p(o | a(i)) = p(o | a)

In the fully probabilistic case there are two other interesting characterizations: The
first is based on the intuition that a system is anonymous if the observations do not
change the probability of a(i): we may know the probability of a(i) by some means
external to the system, but the system should not increase our knowledge about it (cfr.
[11]). The second is based on the (similar) idea that observing o rather than o′ should
not change our knowledge of the probability of a(i). Formally:

182 M. Bhargava and C. Palamidessi

Proposition 3. The following conditions are equivalent, and are equivalent to the con-
dition of anonymity.

1. ∀i ∈ I. ∀o ∈ O. p(o ∩ a) > 0 ⇒ p(a(i) | o) = p(a(i))/p(a)
2. ∀i ∈ I. ∀o, o′ ∈ O. (p(o ∩ a) > 0 ∧ p(o′ ∩ a) > 0) ⇒ p(a(i) | o) = p(a(i) | o′).

Proposition 3 can be reformulated as a general property of probablistic spaces, in-
dependent from anonymity. Similar results have been presented in [10] and in [9].

6.1 Characterizations Given by Proposition 3 and Nondeterminism

It is not clear whether the characterizations expressed in Proposition 3 can be general-
ized to the case of the users with combined nondeterministic and probabilistic behavior.
The “naive” extensions obtained by introducing the scheduler in the formulae would
not work. Let us consider the first characterization in Proposition 3 (the other would be
analogous). One possible way of reintroducing the notion of scheduler is

∀ς,ϑ ∈ Z . ∀i ∈ I. ∀o ∈ O.

(pς(o ∩ a) > 0 ∧ pϑ(a) > 0) ⇒ pς(a(i) | o) = pϑ(a(i))/pϑ(a)

However this condition is too strong because it implies that pϑ(a(i))/pϑ(a) is the same
for every ϑ, and this is clearly not the case for instance for the nondeterministic and
probabilistic master specified in Section 5.

On the other hand, if we weaken the condition by identifying ς and ϑ:

∀ς ∈ Z . ∀i ∈ I. ∀o ∈ O. pς(o ∩ a) > 0 ⇒ pς(a(i) | o) = pς(a(i))/pς(a)

then the condition would be too weak to ensure anonymity, as shown by next example:

Example 4. Consider a system in which the master influences the behavior of the coins
somehow, in such a way that when Crypti is chosen as the payer (say, purely nondeter-
ministically, by ςi) the result is always o0 = 〈d, a, a〉 for i = 0, o1 = 〈a, d, a〉 for i = 1,
and o2 = 〈a, a, d〉 for i = 2. Then we would have pςi(oj ∩ a) > 0 only if j = i, and
pςi(a(i) | oi) = 1 = pςi(a(i))/pςi(a). Hence the above condition would be verified, but
the system is not be anonymous at all: whenever we observe 〈d, a, a〉, for instance, we
are sure that Crypt0 is the payer.

6.2 Independence from the Probability Distribution of the Users

One important property of Definition 4 is that it is independent from the probability dis-
tribution of the users. Intuitively, this is due to the fact that the condition of anonymity
implies that p(o | a(i)) = p(o)/p(a), hence it is independent from p(a(i)).

Theorem 2. If (M, I, a, B, p) is anonymous (according to Definition 4) then for any
p′ which differs from p only on the a(i)’s, (M, I, a, B, p′) is anonymous.

Also the characterizations of anonymity given in Proposition 3 are (obviously) inde-
pendent from the probability distribution of the users. It should be remarked, however,
that their correspondence with Definition 4, and the property of independence from the
probability of the users, only holds under the hypothesis that there is at most one agent
performing a. (Assumption 3.)

Probabilistic Anonymity 183

7 Related work

The work [13] presents a modular framework to formalize a range of properties (including
numerous flavors anonymity and privacy) of computer systems in which an observer has
only partial information about system behavior, thereby combining the benefits of the
knowledge-based approach (natural specification of information-hiding) and the algebra-
based approach (natural specification of system behavior). It proposes the notion of
function view to represent a mathematical abstraction of partial knowledge of a function.
The logical formulas describing a property are characterized as opaqueness of certain
function views, converted into predicates over observational equivalence classes, and
verified, when possible, using the proof techniques of the chosen process formalism.

In [11,26] epistemic logic is used to characterize a number of information-hiding
requirements (including anonymity). In particular, [26] introduces the notion of a group
principal and an associated model, language and logic to axiomatize anonymity. The
main advantage of modal logic is that even fairly complex properties can be stated
directly as formulas in the logic. On the other hand, [11] uses a completely seman-
tic approach and provides an appropriate semantic framework in which to consider
anonymity. It also propose notions of probabilistic anonymity in a purely probabilistic
framework. In particular, it propose a notion of conditional probability (cfr. Definition
4.4 in [11]) which is similar to the first characterization in Proposition 3, if we interpret
the formula ϕ in [11] as the occurrence of the event a.

The first characterization in Proposition 3 was also implicitly used by Chaum in [7]
(in which he considered a purely probabilistic system) as definition of anonymity. The
factor p(a) is not present in the formula of Chaum, but that’s probably a typo, because
in the informal explanation he gives, that factor is taken into account.

In literature there have been other works involving the use of variants of the π-
calculus for formalizing protocols providing anonymity or similar properties. See for
example [1,14].

8 Conclusion and Future Work

We have proposed a new notion of anonymity based on a model which combines prob-
ability and nondeterminism, and we have shown that it can be regarded as a generaliza-
tion of the probabilistic one given in [11].

We have formulated the notion of anonymity in terms of observables for processes in
the probabilistic π-calculus, whose semantics is based on the probabilistic automata of
[25]. This opens the way to the automatic verification of the property. We are currently
developing a model checker for the probabilistic π-calculus.

We are currently investigating weaker versions of our notion of anonymity, and
studying their application to protocols like Crowds [8,6].

References
1. Martı́n Abadi and Cédric Fournet. Private authentication. Theoretical Computer Science,

322(3):427–476, 2004.
2. Martı́n Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi cal-

culus. Information and Computation, 148(1):1–70, 10 January 1999

184 M. Bhargava and C. Palamidessi

3. Roberto M. Amadio and Denis Lugiez. On the reachability problem in cryptographic proto-
cols. In Proceedings of CONCUR 00, volume 1877 of Lecture Notes in Computer Science.
Springer, 2000. INRIA Research Report 3915, march 2000.

4. Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity. Technical re-
port, INRIA Futurs and LIX, 2005. To appear in the proceedings of CONCUR 2005.
Report version available at www.lix.polytechnique.fr/˜catuscia/papers/
Anonymity/report.ps.

5. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984.

6. Kostantinos Chatzikokolakis and Catuscia Palamidessi. Probable innocence revisited.
Technical report, INRIA Futurs and LIX, 2005. www.lix.polytechnique.fr/
˜catuscia/papers/Anonymity/reportPI.pdf.

7. David Chaum. The dining cryptographers problem: Unconditional sender and recipient un-
traceability. Journal of Cryptology, 1:65–75, 1988.

8. Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Weak probabilistic anonymity. Tech-
nical report, INRIA Futurs and LIX, 2005. Submitted for publication. www.lix.
polytechnique.fr/˜catuscia/papers/Anonymity/reportWA.pdf.

9. R.D. Gill, M. van der Laan, and J. Robins. Coarsening at random: Characterizations, conjec-
tures and counterexamples. In D.Y. Lin and T.R. Fleming, editors, Proceedings of the First
Seattle Symposium in Biostatistics, Lecture Notes in Statistics, pages 255–294. Springer-
Verlag, 1997.

10. P. D. Grunwald and J. Y. Halpern. Updating probabilities. Journal of Artificial Intelligence
Research, 19:243–278, 2003.

11. Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and information hiding in multiagent
systems. In Proc. of the 16th IEEE Computer Security Foundations Workshop, pages 75–88,
2003.

12. Oltea Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronous π-calculus. In
Jerzy Tiuryn, editor, Proceedings of FOSSACS 2000 (Part of ETAPS 2000), volume 1784 of
Lecture Notes in Computer Science, pages 146–160. Springer-Verlag, 2000.

13. Dominic Hughes and Vitaly Shmatikov. Information hiding, anonymity and privacy: a mod-
ular approach. Journal of Computer Security, 12(1):3–36, 2004.

14. Steve Kremer and Mark D. Ryan. Analysis of an electronic voting protocol in the applied
pi-calculus. In Mooly Sagiv, editor, Programming Languages and Systems – Proceedings of
the 14th European Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes
in Computer Science, pages 186–200, Edinburgh, U.K., April 2005. Springer.

15. Gavin Lowe. Casper: A compiler for the analysis of security protocols. In Proceedings of
10th IEEE Computer Security Foundations Workshop, 1997. Also in Journal of Computer
Security, Volume 6, pages 53-84, 1998.

16. R. Milner. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, 1989.

17. Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge University
Press, 1999.

18. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40 & 41–77, 1992. A preliminary version appeared
as Technical Reports ECF-LFCS-89-85 and -86, University of Edinburgh, 1989.

19. Catuscia Palamidessi and Oltea M. Herescu. A randomized encoding of the π-calculus with
mixed choice. Theoretical Computer Science, 335(2-3):73–404, 2005. To appear.

20. Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998.

Probabilistic Anonymity 185

21. A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In
Proceedings of the 8th IEEE Computer Security Foundations Workshop, pages 98–107. IEEE
Computer Soc Press, 1995.

22. Peter Y. Ryan and Steve Schneider. Modelling and Analysis of Security Protocols. Addison-
Wesley, 2001.

23. S. Schneider. Security properties and csp. In Proceedings of the IEEE Symposium Security
and Privacy, 1996.

24. Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc. of the European
Symposium on Research in Computer Security (ESORICS), volume 1146 of Lecture Notes in
Computer Science, pages 198–218. Springer-Verlag, 1996.

25. Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995. An extended abstract appeared in Pro-
ceedings of CONCUR ’94, LNCS 836: 481-496.

26. Paul F. Syverson and Stuart G. Stubblebine. Group principals and the formalization of
anonymity. In World Congress on Formal Methods (1), pages 814–833, 1999.

27. P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and onion routing.
In IEEE Symposium on Security and Privacy, pages 44–54, Oakland, California, 1997.

Secrecy Despite Compromise: Types, Cryptography,
and the Pi-Calculus

Andrew D. Gordon1 and Alan Jeffrey2,�

1 Microsoft Research
2 DePaul University and Bell Labs, Lucent Technologies

Abstract. A realistic threat model for cryptographic protocols or for language-
based security should include a dynamically growing population of principals (or
security levels), some of which may be compromised, that is, come under the con-
trol of the adversary. We explore such a threat model within a pi-calculus. A new
process construct records the ordering between security levels, including the pos-
sibility of compromise. Another expresses the expectation of conditional secrecy
of a message—that a particular message is unknown to the adversary unless par-
ticular levels are compromised. Our main technical contribution is the first system
of secrecy types for a process calculus to support multiple, dynamically-generated
security levels, together with the controlled compromise or downgrading of se-
curity levels. A series of examples illustrates the effectiveness of the type system
in proving secrecy of messages, including dynamically-generated messages. It
also demonstrates the improvement over prior work obtained by including a se-
curity ordering in the type system. Perhaps surprisingly, the soundness proof for
our type system for symbolic cryptography is via a simple translation into a core
typed pi-calculus, with no need to take symbolic cryptography as primitive.

1 Introduction

Ever since the Internet entered popular culture it has had associations of insecurity.
The Morris worm of 1989 broke the news by attacking vulnerable computers on the
network and exploiting them to attack others. At least since then, compromised hosts
and untrustworthy users have been a perpetual presence on the Internet, and, perhaps
worse, inside many institutional intranets. Hence, like all effective risk management,
good computer security does not focus simply on prevention, but also on management
and containment.

There is by now a substantial literature on language-based techniques to prevent dis-
closure of secrets [21]. This paper contributes new language constructs to help manage
and contain the impact of partial compromise on a system: we generalize the attacker
model from a completely untrusted outsider to include attacks mounted by compro-
mised insiders. We use the pi-calculus [17], a theory of concurrency that already sup-
ports reasoning about multiple, dynamically generated identities, and security based on

� This material is based upon work supported by the National Science Foundation under Grant
No. 0208549.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 186–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 187

abstract channels or symbolic cryptography [1,4]. We formalize the new idea of con-
ditional secrecy, that a message is secret unless particular principals are compromised.
We describe a type system that checks conditional secrecy, and hence may help assess
the containment of compromise within a system.

Specifying Compromise and Conditional Secrecy. We model systems as collections
of processes, that interact by exchanging messages on named channels. Most of the
examples in the paper rely on channel abstractions for security, but our methods also
handle protocols that rely on cryptography. The opponent is an implicit process that
runs alongside the processes making up the system under attack, and may interact with
it using channels (or keys) in its possession. We say a message is public if it may come
into the possession of the opponent (possibly after a series of interactions).

We base our model of partially compromised systems on a security ordering be-
tween abstract security levels. Secrecy levels model individual (or groups of) princi-
pals, hosts, sessions, and other identifiers. For instance, the level of the opponent is the
distinguished lowest security level⊥.

The process construct L1 ≤ L2, called a statement, declares that level L1 is less than
level L2. Hence, any process defines a security ordering between levels; it is given by the
set of active statements occurring in the process, closed under a set of inference rules in-
cluding reflexivity and transitivity. (Statements are akin to the use of process constructs
to describe the occurrence of events [6,14] or to populate a database of facts [10].) We
say a level L is compromised when L≤⊥. Compromise may arise indirectly: if L1 ≤ L2

and subsequently L2 is compromised, then so too is L1, by transitivity. So L1 ≤ L2 can
be read “L1 is at risk from L2” as well as “L1 is less secure than L2.”

Compromise may be contained or non-catastrophic in the sense that despite the
compromise of one part of a system, another part may reliably keep messages secret.
For example, key establishment protocols often have the property that A and B can keep
their session key secret even though a session key established between B and a compro-
mised party C has become public. However, as soon as either A or B is compromised,
their session key may become public.

The process construct secret M amongst L, called an expectation of conditional
secrecy, declares the invariant “M is secret unless L is compromised”. For example,
the process secret S amongst (A,B) asserts that S is secret unless the composite secu-
rity level (A,B) has been compromised, which occurs if either A or B has been com-
promised. This definition of conditional secrecy via a syntactic process construct is
new and may be of interest independently of our type system. By embedding falsifi-
able expectations within processes, we can express the conditional secrecy of freshly
generated messages, unlike previous definitions [2]. Our trace-based notion of secrecy
concerns direct flows to an active attacker; we do not address indirect flows or nonin-
terference.

Checking Conditional Secrecy by Typing. Our main technical contribution is the first
system of secrecy types for a process calculus that supports multiple, dynamically-
generated security levels, together with compromise or downgrading of security levels.
Abadi’s original system [1] of secrecy types for cryptographic protocols, and its descen-
dants, are limited to two security levels, and therefore cannot conveniently model the

188 A.D. Gordon and A. Jeffrey

dynamic creation and compromise of security levels, or the possibility of attack from
compromised insiders. Our treatment of asymmetric communication channels builds on
our recent work on types for authentication properties [13].

Our main technical result, Theorem 2, is that no expectation of conditional secrecy
is ever falsified when a well-typed process interacts with any opponent process.

We anticipate applications of this work both in the design of security-typed lan-
guages and in the verification of cryptographic protocols. Security types with mul-
tiple security levels are common in the literature on information flow in program-
ming languages, but ours is apparently the first use in the analysis of cryptographic
protocols.

Section 2 describes our core pi-calculus. Section 3 exhibits a series of example
protocols that make use of secure channels. Theorem 2 can be applied to show these
protocols preserve the secrecy of dynamically generated data. Previous type systems
yield unconditional secrecy guarantees, and therefore cannot handle the dynamic de-
classification of data in these protocols. Section 4 presents our type system formally.
Section 5 outlines the extension of our results to a pi-calculus with symbolic cryptog-
raphy. Section 6 discusses related work, and Section 7 concludes.

A companion technical report [15] includes further explanations and examples, an
extension of the core calculus and type system to cover symbolic cryptography, and
proofs. Notably, the soundness of the extended type system follows via a straightfor-
ward translation into our core pi-calculus. We represent ciphertexts as processes, much
like the encoding [17] of other data structures in the pi-calculus. Although such a rep-
resentation of ciphertexts is well known to admit false attacks in general, it is adequate
in our typed setting.

2 A Pi Calculus with Expectations of Conditional Secrecy

Our core calculus is an asynchronous form of Odersky’s polarized pi-calculus [19] ex-
tended with secrecy expectations and security levels.

Computation is based on communication of messages between processes on named
channels. The calculus is polarized in the sense that there are separate capabilities to
send and receive on each channel. The send capability k! confers the right to send
(but not receive) on a channel k. Conversely, the receive capability k? confers the
right to receive (but not send) on k. The asymmetry of these capabilities is analo-
gous to the asymmetry between public encryption and private decryption keys, and
allows us to write programs with the flavour of cryptographic protocols in a small cal-
culus.

Messages are values communicated over channels between processes. As well as
send and receive capabilities, messages include names, pairs, tagged messages, and the
distinguished security levels � and ⊥.

Processes include the standard pi-calculus constructs plus operations to access pairs
and tagged unions. To track direct flows of messages, each output is tagged with its
security level; for instance, an output by the opponent may be tagged ⊥. The only new
process constructs are statements M ≤ N and expectations secret M amongst L.

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 189

Names, Messages, Processes:

a, . . . ,n,v, . . . ,z names and variables
L,M,N ::= message, security level

x name, variable
M? capability to input on M
M! capability to output on M
(M,N) message pair
inl M left injection
inr M right injection
� highest security
⊥ lowest security

C ::= M ≤ N clause: level M less secure than level N
#M,#N ::= M1, . . . ,Mm sequence of messages (m≥ 0)
T,U type: defined in Section 4
P,Q,R ::= process

out M N :: L asynchronous output at level L
inp M(x:T);P input (scope of x is P)
new x:T ;P name generation (scope of x is P)
repeat P replication
P | Q parallel composition
stop inactivity
split M is (x≤ y:T,z:U);P pair splitting (scope of x,y is U , P, of z just P)
match M is (x≤ N:T,z:U);P pair matching (scope of x is U , P, of z just P)
case M is inl (x:T) P is inr (y:U) Q union case (scope of x is P, of y is Q)
C statement of clause C
secret M amongst L expectation of conditional secrecy

We write P → Q to mean P may reduce to Q, and P ≡ Q to mean P and Q are struc-
turally equivalent. The mostly standard definitions of these relations are in [15]. The
only nonstandard reductions are for split and the first-component-matching operation
match, which bind an extra variable. (We motivate the use of this variable in Sec-
tion 3).

split (M,N) is (x≤ y:T,z:U);P → P{x←M}{y←M}{z←N}
match (M,N) is (x≤M,z:U);P → P{x←M}{z←N}

Any message M can be seen as a security level. Levels are ordered, with bottom element
⊥, top element�, and meet given by (M,N). We write S for a set of clauses of the form
M ≤ N, and write S �M ≤ N when M ≤ N is derivable from hypotheses S.

Set of Clauses:

S ::= {C1, . . . ,Cn} set of clauses

{C1, . . . ,Cn}
6= C1 | · · · |Cn | stop when considered as a process

190 A.D. Gordon and A. Jeffrey

Preorder on Security Levels: S �M ≤ N

C ∈ S ⇒ S �C (Order Id)
S �M ≤M (Order Refl)
S � L≤M∧S �M ≤ N ⇒ S � L≤ N (Order Trans)
S � ⊥≤M (Order Bot-L)
S �M ≤� (Order Top-R)
S � (M,N)≤M (Order Meet-L-1)
S � (M,N)≤ N (Order Meet-L-2)
S � L≤M∧S � L ≤ N ⇒ S � L ≤ (M,N) (Order Meet-R)

Since processes contain ordering statements, we can derive P � M ≤ N whenever P
contains statements S, and S �M ≤ N.

Security Order Induced by a Process: P �M ≤ N

Let P �M ≤ N if and only if P≡ new#x:#T ;(S | Q) and S �M ≤ N and fn(M,N)∩{#x}= ∅.

An expectation secret M amongst N in a process is justified if every output of M is
at a level L such that N ≤ L. That is, the secret M may flow up, not down. We say P
is safe for conditional secrecy to mean no unjustified expectation exists in any process
reachable from P. The “robust” extension of this definition means the process is safe
when composed with any opponent process, much as in earlier work [12].

Safety:

A process P is safe for conditional secrecy if and only if
whenever P →∗ new#x:#T ;(secret M amongst N | out !x M :: L | Q), we have Q � N ≤ L.

Opponent Processes and Robust Safety:

A process O is Un-typed if and only if every type occurring in O is Un.
Write erase(P) for the Un-typed process given by replacing all types in P by Un.
A process O is secret-free if any only if there are no secret expectations in O.
A process O{#x} with fn(O{#x}) = {#x} is an opponent if and only if it is Un-typed and secret-free.
A process P is robustly safe for conditional secrecy despite#L if and only if

P | O{#L} is safe for secrecy for all opponents O{#x}.

3 Examples of Secrecy Despite Compromise

The examples in this section illustrate some protocols and their secrecy properties, and
also informally introduce some aspects of our type system. We use mostly standard
abbreviations for common message and process idioms, such as arbitrary-length tuples.
These are much the same as in previous work [13], and are given in [15].

A Basic Example. Consider a world with just the two security levels � and ⊥. The
following processes, at level �, communicate along a shared channel k. (We use the
keyword process to declare non-recursive process abbreviations.)

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 191

process Sender(k:Ch(Secret{�})) =
new s:Secret{�}; out k!(s) :: �| secret s amongst � .

process Receiver(k:Ch(Secret{�})) =
inp k?(s:Secret{�}); secret s amongst � .

The parallel composition Sender(k) | Receiver(k) is robustly safe despite ∅ but not, for
example, despite either {k!} (because the attacker can send public data to falsify the
receiver’s expectation) or {k?} (because the attacker can obtain the secret s to falsify
the sender’s expectation).

Our type system can verify the robust safety property of this system based on its
type annotations. Messages of type Secret{L} are secrets at level L. Messages of type
Ch T are channels for exchanging messages of type T . Later on, we use types ?Ch T
and !Ch T for the input and output capabilities on channels of T messages.

An Example of Secrecy Despite Host Compromise. To establish secrecy properties (for
example, that A and B share a secret) in the presence of a compromised insider (for
example C, who also shares a secret with B) requires more security levels than just
� and ⊥. For example, consider the following variant on an example of Abadi and
Blanchet [3] (rewritten to include the identities of the principals).

process Sender(a:Un, b:Un, cA:Type2(a,b), cB:Type1(b)) =
new k:Secret{a,b}; secret k amongst (a,b);
new s:Secret{a,b}; secret s amongst (a,b);
out cB (a, k, cA!) :: a |
inp cA? (match k, cAB:!Type3(a,b)); // pattern-matching syntax
out cAB (s) :: a.

process Receiver(b:Un, cB:Type1(b)) =
inp cB? (a≤a′:Un, k:Secret{a,b}, cA:!Type2(a,b)); // pattern-matching syntax
new cAB:Type3(a,b);
out cA (k, cAB!) :: b |
inp cAB? (z:Secret{a,b}); stop.

Here, sender A sends to receiver B a tuple (A,k,cA!), along a trusted output channel cB,
whose matching input channel is known only to B. She then waits to receive a message
of the form (k,cAB), whose first component matches the freshly generated name k,
along the channel cA?, which must have come from B, as only A and B know k. Hence,
A knows that cAB is a trusted channel to B, and so it is safe to send s along cAB.

Receiver B runs the matching half of the protocol, but gets much weaker guarantees,
as the output channel cB is public, and so anyone (including an attacker) can send
messages along it. When B receives (A,k,cA?), he knows that it claims to be from A,
and binds a′ to A’s security level. However, he does not know who the message really
came from: it could be A, or it could be an attacker masquerading as A. All B knows is
that there is some security level a≤a′ indicating who really sent the message.

When a process such as Receiver receives an input such as (A,k,cA!), it binds two
variables a≤a′ reflecting the actual and claimed security level of the message. This
is reflected in the dependent type (πx≤ y : T,U), which binds two variables in U . The

192 A.D. Gordon and A. Jeffrey

variable x is bound to the actual security level, and the variable y is bound to the claimed
security level. At run-time, the binding for x is unknown, so it is restricted to only being
used in types, not in messages. In examples, we often elide x when it is unused.

Processes have two ways of accessing a pair: they may use the split construct to
extract the components of the pair, or they may use the match construct to match the
first element of the pair against a constant. For example, the Sender process above con-
tains the input inp ca?(match k, cAB:!Type3(a,b)), which requires the first component
to match the known name k, or else fails, and (implicitly) uses split to bind the second
component to cAB. (We are using pattern-matching abbreviations to avoid introducing
large numbers of temporary variables, as discussed in [15].) These two forms of access
to tuples are not new, and have formed the basis of our previous work on typechecking
cryptographic protocols [12,13]. What is new is that these forms of access are reflected
in the types. We tag fields with a marker π, which is either split or match, to indicate
how they are used.

The types for this example are:

type Type3(a,b) = Ch (Secret{a,b})
type Type2(a,b) = Ch (match k:Secret{a,b}, split cAB:!Type3(a,b))
type Type1(b) = Ch (split a≤a′:Un, split k:Secret{a,b}, split cA:!Type2(a,b))

Given the environment:

A:Un, CA:Type2(A,B), B:Un, CB:Type1(B), C:Un, CC:Type2(C,B)

we can typecheck:

repeat Sender(A,B,CA,CB!) | repeat Receiver(B,CB) |
repeat Sender(C,B,CC,CB!) | C≤⊥

Hence, soundness of the type system (Theorem 2) implies the system is robustly safe
for secrecy despite {A,B,C,CA!,CB!,CC}. The statement C≤⊥ represents the com-
promise of C. Thus, A and B are guaranteed to preserve their secrecy, even though
compromised C shares a secret CC with B.

An Example of Secrecy Despite Session Compromise. Finally, we consider an adaption
of the previous protocol to allow for declassification of secrets. Declassification may
be deliberate, or it may model the consequences of an exploitable software defect. We
regard the session identifier k as a new security level, that may be compromised inde-
pendently of A and B. We modify the example by allowing the sender to declassify the
secret after receiving a message on channel d.

process Sender(a:Un, b:Un, cA:Type2(a,b), cB:Type1(b), d:Un) =
new k:Secret{a,b}; secret k amongst (a,b);
new s:Secret{a,b,k}; secret s amongst (a,b,k);
out cB (a, k, cA!) :: a |
inp cA? (match k, cAB:!Type3(a,b));
out cAB (s) :: a |
inp d?(); k≤⊥ ; out d!(s) :: a

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 193

Here, the sender declassifies s by the statement k≤⊥ . Since k is mentioned in the
security level of s, this statement allows s to be published on public channel d. The rest
of the system remains unchanged and the types are now:

type Type3(a,b,k) = Ch (Secret{a,b,k})
type Type2(a,b) = Ch (match k:Secret{a,b}, split cAB:!Type3(a,b,k))
type Type1(b) = Ch (split a≤a′:Un, split k:Secret{a,b}, split cA:!Type2(a,b))

Theorem 2 now gives us not only that A and B can maintain secrecy despite compromise
of C, but also that it is possible to compromise one session k, and hence declassify the
matching secret s, without violating secrecy of the other sessions.

4 A Type System for Checking Conditional Secrecy

A basic idea in our type system is to identify classes of public and tainted types [13].
Intuitively, messages of public type can flow to the opponent, while messages of tainted
type may flow from the opponent. More formally, if Un is the type of all messages
known to the opponent and <: is the subtype relation, a type T is public just when
T <: Un, and a type T is tainted just when Un <: T .

Both classes depend on the security ordering. Just as the attacker encroaches on
the compromised parts of a system over time, types may become public or tainted over
time. We reflect this dependency syntactically by decorating types with symbolic kinds.
A kind K is a pair {?M, !N} of security levels. A message of a type decorated {?M, !N}
can be assumed to flow from a source at level M (or higher), and is allowed to flow to a
target at level N (or higher). If M ≤ ⊥ the type is tainted; if N ≤ ⊥ the type is public.
We often write shorthand such as {A,?B, !C} for the kind {?(A,B), !(A,C)}.

Kinds:

K ::= {?M, !N} tainted if M ≤⊥, public if N ≤⊥

Write {L1, . . . ,Ll ,?M1, . . . ,?Mm, !N1, . . . , !Nn}
for {?(L1, . . . ,Ll,M1, . . . ,Mm), !(L1, . . . ,Ll ,N1, . . . ,Nn)}.

Our language of types consists of standard constructs for channels with optional read-
only and write-only attributes, sum types, and Ok types [11]. The only non-standard
types are the dependent pairs (πx≤ y : T,U), discussed previously in Section 3.

Types:

ν ::= ? | ! input-only (?) or output-only (!) attribute
π ::= split |match split-only or match-only attribute
T,U ::= type

Ch K T channel for T messages
νCh K T input or output capability on channel for T messages
(πx≤ y:T,U) split-only or match-only dependent pair (scope of x,y is U)
T +U tagged sum type
Ok S proof of security ordering

194 A.D. Gordon and A. Jeffrey

Our judgments are defined with respect to an environment, a list of all names in scope,
paired with their types. A generative type is one that can be freshly generated.

Environments:

E ::= ∅ | E,x:T environment: list of name typings
dom(∅) = ∅ dom(E,x:T) = dom(E)∪{x}
clauses(∅) = ∅ clauses(E,x:T) = clauses(E)∪{C1, . . . ,Cn | T is Ok{C1, . . . ,Cn}}

Generative Types and Environments:

Let a type be generative if and only if it is a channel type Ch K T .
Let an environment E be generative if and only if E(x) is generative for each x ∈ dom(E).

Judgments of the Type System:

E � 8 good environment
E � Public(T) public type: T data may flow to the opponent
E � Tainted(T) tainted type: T data may flow from the opponent
E � T <: T ′ subtype
E �M : T good message of type T
E � P good process

Next, we present the rules defining these judgments. We rely on several abbreviations.

Abbreviations:

Write E,S for the environment E,x : Ok S where x is fresh.
Write E �M for E � 8 and fn(M)⊆ dom(E).
Write E �M ≤ N for E � (M,N) and clauses(E) �M ≤ N.
Write E � S for E �M ≤ N for every (M ≤ N) ∈ S.
Write E �M↔ N for E �M ≤ N and E � N ≤M.
Write E � T <:> U for E � T <: U and E �U <: T .

The following standard rules state that in a good environment, each declared name must
be fresh, and each name occurring in a type must be declared previously.

Good Environment:

(Env ∅)

∅ � 8

(Env x)
E � 8 x /∈ dom(E) fn(T)⊆ dom(E)

E,x:T � 8

The judgments E � Public(T) and E � Tainted(T) formalize the classes of public and
tainted types. The rules follow the pattern of previous work [13]. The most interesting
rules are those for determining when a dependent pair (πx ≤ y:T,U) is tainted. If data
of this type has been received from the opponent, then we know that the real security
level of the term is ⊥, and so when we check U for taintedness, we first replace x
by ⊥. In the case when π is match, we can be even more liberal, and add into the

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 195

environment extra clauses generated by tainting the type T : for example (match x ≤
y:Secret{a},Secret{a}) is tainted, because we add the clause a≤⊥ to the environment
before checking taintedness of the type Secret{a}.

Extracting a Set of Clauses from a Tainted Type:

taint(Ch{?M, !N} T) 6= {M ≤⊥,N ≤⊥}
taint(νCh {?M, !N} T) 6= {M ≤⊥}
taint(πx≤ y:T,U) 6= taint(T +U) 6= taint(Ok S) 6= ∅

Public and Tainted Types:

(Public I/O)
E �M ↔⊥ E � N ↔⊥
E � Public(T) E � Tainted(T)

E � Public(Ch {?M, !N} T)

(Tainted I/O)
E �M ↔⊥ E � N ↔⊥
E � Public(T) E � Tainted(T)

E � Tainted(Ch {?M, !N} T)

(Public I)
E �M E � N ↔⊥ E � Public(T)

E � Public(?Ch {?M, !N} T)

(Tainted I)
E �M ↔⊥ E � N E � Tainted(T)

E � Tainted(?Ch {?M, !N} T)

(Public O)
E �M E � N ↔⊥ E � Tainted(T)

E � Public(!Ch {?M, !N} T)

(Tainted O)
E �M ↔⊥ E � N E � Public(T)

E � Tainted(!Ch {?M, !N} T)

(Public Split)
E � Public(T)
E,x:T,y:T,x≤ y � Public(U)

E � Public((split x≤ y:T,U))

(Tainted Split)
E � Tainted(T)
E,y:T � Tainted(U{x←⊥})

E � Tainted((split x≤ y:T,U))

(Public Match)
E � Public(T)
E,x:T,y:T,x≤ y � Public(U)

E � Public((match x≤ y:T,U))

(Tainted Match)
E,taint(T) � Tainted(T)
E,y:T,taint(T) � Tainted(U{x←⊥})

E � Tainted((match x≤ y:T,U))

(Tainted Sum)
E � Tainted(T) E � Tainted(U)

E � Tainted(T +U)

(Public Sum)
E � Public(T) E � Public(U)

E � Public(T +U)

(Public Order)
E � 8 fn(S)⊆ dom(E)

E � Public(Ok S)

(Tainted Order)
E � 8 E �Mi ↔⊥ E � Ni ∀i ∈ 1..n

E � Tainted(Ok {M1 ≤ N1, . . . ,Mn ≤ Nn})

The rules for subtyping are mostly taken from [13]. The main exception is the rule for
(matchx≤ y:T,U), which requires an extra condition to ensure that subtyping preserves
the taint function used in the definition of E � Tainted(T).

196 A.D. Gordon and A. Jeffrey

Subtyping:

(Sub Public/Tainted)
E � Public(T) E � Tainted(U)

E � T <: U

(Sub I/O)
E �M ↔M′ E � N ↔ N′ E � T <:> T ′

E � Ch {?M, !N} T <: Ch {?M′, !N′} T ′

(Sub I)
E �M′ ≤M E � N ≤ N′ E � T <: T ′

E �?Ch {?M, !N} T <: ?Ch {?M′, !N′} T ′

(Sub O)
E �M′ ≤M E � N ≤ N′ E � T ′ <: T

E �!Ch {?M, !N} T <: !Ch {?M′, !N′} T ′

(Sub Split)
E � T <: T ′

E,x:T,y:T,x≤ y �U <: U ′

E � (split x≤ y:T,U) <: (split x≤ y:T ′,U ′)

(Sub Match)
E � T <: T ′ E,taint(T ′) � taint(T)
E,x:T,y:T,x≤ y �U <: U ′

E � (match x≤ y:T,U) <: (match x≤ y:T ′,U ′)

(Sub Sum)
E � T <: T ′ E �U <: U ′

E � T +U <: T ′+U ′

(Sub Hierarchy)
E � 8 E,S � S′

E �Ok S <: Ok S′

To illustrate the judgments defined so far, we derive the types Un and SecretK, used
already in examples. (Our examples rely also on standard abbreviations, such as tuple
types encoded using pair types. Full details are in [15].)

Abbreviations for Un and SecretK:

Un 6= Ch {⊥} (Ok{}) generative type of messages known to opponent

SecretK
6= ?Ch K Un type of secrets at kind K

Given these derived types, the four types Secret{?M, !N} where M,N ∈ {�,⊥} have
the following properties, assuming that⊥<�. Moreover, the subtype ordering induces
a diamond lattice, with Any at the top, and Empty at the bottom. The Empty type is
uninhabited, and the remaining inhabited types are exactly those of Abadi [1].

The Four Types Secret{?M, !N} with M,N ∈ {�,⊥}:
Any

6= Secret{?⊥, !�} tainted, not public

Pub
6= Secret{?⊥, !⊥} tainted, public

Sec
6= Secret{?�, !�} not tainted, not public

Empty
6= Secret{?�, !⊥} not tainted, public

Next, here are the type assignment rules for messages.

Good Message:

(Msg Subsum)
E �M : T E � T <: T ′

E �M : T ′

(Msg x)
E � 8 (x:T) ∈ E

E � x : T

(Msg I)
E � L : Ch {?M, !N} T

E � L? :?Ch {M} T

(Msg O)
E � L : Ch {?M, !N} T

E � L! :!Ch {N} T

(Msg Pair)
E �M : T E � N : U{x←M}{y←M}

E � (M,N) : (πx≤ y:T,U)

(Msg ⊥)
E � 8

E � ⊥ : Un

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 197

(Msg Inl)
E �M : T fn(U)⊆ dom(E)

E � inl M : T +U

(Msg Inr)
E � N : U fn(T)⊆ dom(E)

E � inr N : T +U

(Msg Ok)
E � 8 E � S

E � � : Ok S

The type rules for processes are standard, with two exceptions. The rule for output
performs an extra check on the security level of the output, to ensure that the data
can be published at that level: the assumption E,L ≤ ⊥ � Public(T) can be read “if
the level L were compromised, the type T would be public”. The rule for composition
typechecks each component in an environment extended with any top-level statement
M ≤ N occurring in the other component.

Extracting Environments from Processes:

env(P | Q) = env(P),env(Q)
env(repeat P) = env(P)
env(M ≤ N) = x:Ok {M ≤ N} for fresh x
env(new x:T ;P) = y:T,env(P{x←y}) for fresh y
env(P) = ∅ otherwise

Good Process:

(Proc Output)
E,L≤⊥ � Public(T)
E �M :!Ch K T E � N : T

E � out M N :: L

(Proc Input)
E �M :?Ch K T E,x:T � P

E � inp M(x:T);P

(Proc Res)
E,x:T � P T generative

E � new x:T ;P

(Proc Repl)
E � P

E � repeat P

(Proc Par Mutual)
E,env(Q) � P E,env(P) � Q

E � P | Q

(Proc Stop)
E � 8

E � stop

(Proc Split)
x
∈ fn(erase(P))
E �M : (split x≤ y:T,U)
E,x:T,y:T,x≤ y,z:U � P

E � split M is (x≤ y:T,z:U);P

(Proc Match)
x
∈ fn(erase(P))
E �M : (match x≤ y:T,U) E � N : T
E,x:T,x≤ N,z:U{x←N} � P

E �match M is (x≤ N,z:U{y←N});P

(Proc Case)
E �M : T +U E,x:T � P E,y:U � Q

E � case M is inl (x:T) P is inr (y:U) Q

(Proc Clause)
E �M E � N

E �M ≤ N

(Proc Secret Cap)
E �M : νCh {?L} T

E � secret M amongst L

We can now state the main result of the paper, that the type system is sound with respect
to robust safety. (Proofs are in [15].)

Theorem 1 (Safety). If E �P and E is generative then P is safe for conditional secrecy.

Theorem 2 (Robust Safety). If E � P, E is generative, and E � #M : Un then P is
robustly safe for conditional secrecy despite #M.

198 A.D. Gordon and A. Jeffrey

5 An Extended Calculus with Symbolic Cryptography (Outline)

To express cryptographic protocols, we can add symbolic encryption and decryption
operations to our core calculus to obtain a form of the spi-calculus [5]. We can easily ex-
tend our type system to accommodate these operations, much as in previous work [13];
for example, encryption and decryption keys are treated analogously to the output and
input capabilities in our core calculus. Somewhat surprisingly, we can prove sound-
ness of the extended type system by a straightforward translation into the core calculus.
Keys are translated to channels, encryption keys to output channels, decryption keys to
input channels, and ciphertexts to the constant ⊥. The translation is not fully abstract,
but preserves typings and reflects safety, which suffices to establish that well-typed
spi-calculus processes are robustly safe. (The companion report [15] has full details
of the extended calculus, type system, and the translation.) As an example of using
the extended calculus, consider Lowe’s variant of the Needham–Schroeder public key
protocol:

Message 1. A →B: {|msg1(A,sA)|}kB
Message 2. B →A: {|msg2(B,sA,sB)|}kA
Message 3. A →B: {|msg3(sB)|}kB

In [15] we show that this protocol robustly preserves conditional secrecy of sA and sB
amongst {A,B}, in the presence of compromised insiders. The proof is based on the
type for a key for use by principal p:

type NS(p) = Key(msg1(split a≤a′:Un, split sa:Secret{a,p})
| msg2(match b:Un, match sa:Secret{p,b}, split sb:Secret{p,b})
| msg3(match sb:Secret{?⊥ ,!p})).

Abadi and Blanchet [3] consider the same protocol, under similar assumptions of com-
promise, but rely on two separate typing derivations to prove the secrecy of sA and sB.

6 Related Work

Abadi [1] proposes the use of security types for establishing secrecy properties in cryp-
tographic protocols expressed in the spi-calculus [5]. Abadi takes a fixed, binary view of
security, where the world is divided into system and attacker, and a secret is something
the attacker does not have. We are the first to generalize his work to multiple security
levels and to allow the boundary between system and attacker to shift as levels are cre-
ated and compromised. Another generalization of Abadi’s work is the type system of
Bugliesi, Focardi, and Maffei [8], which checks security properties in the presence of a
fixed set of compromised hosts, but assumes this set is known during typechecking.

Abadi’s type system establishes an equationally-defined secrecy property of Abadi
and Gordon [5], that prevents some indirect flows as well as direct flows. Our ex-
pectations of conditional secrecy generalize the notion of explicit flow introduced by
Abadi [2], and since used in several papers on process calculi [6,9].

The decentralized label model (DLM) of Myers and Liskov [18] is the basis of the
Jif language in which security types track ownership and possible compromise of data.

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 199

DLM policies govern which principals can downgrade data—the system of the present
paper does not address this question. A “declassify” expression converts the level of a
whole expression, but it does not alter the security ordering. Since they convert high data
into low data, programs using declassification typically falsify noninterference proper-
ties; there have been several proposals of modified noninterference properties to handle
declassification [22].

Pottier and Simonet’s Flow Caml [23], has global, static declarations of flows, but
no local or dynamic declarations.

Two recent papers consider dynamic additions to the security ordering. Boudol and
Matos [7] introduce block-structured declarations of orderings, in which edges may
temporarily be added to the security ordering. They present a type and effect system
that establishes a form of noninterference. They do not consider dynamic creation of
security levels and they do not associate levels with code. Tse and Zdancewic [24]
consider dynamic creation and communication of principal identities, and propose a
delegation operation that allows temporary modification of the lattice of security levels.

We mention a couple of the many studies of security orderings within process cal-
culi. Hennessy and Riely [20] study mobile agents migrating between locations, that
may or may not be compromised. By a combination of static and dynamic checks they
prevent type violations at uncompromised sites. Hoshina, Sumii, and Yonezawa [16]
introduce a security order between protection domains in a process calculus. They use a
type system with dependent types to prevent access violations. To the best of our knowl-
edge, the present paper is the first to consider runtime compromise of security levels in
the setting of a process calculus.

Finally, many of the techniques for the Dolev-Yao model other than type systems
deal with host compromise and insider attacks; type systems such as ours do require
some human effort to construct type annotations, but given these annotations admit
automatic, efficient protocol checking.

7 Conclusion

This paper introduces a mutable security ordering into a process calculus, in order
to model a dynamically growing population of principals, some of which may be-
come compromised. We advocate the placement of conditional secrecy annotations in
processes to express containment of compromise; that particular messages are kept se-
cret, unless particular principals are compromised. We describe a type system for check-
ing that no opponent can interact with the system to falsify these annotations. As well
as proving a soundness theorem for the type system, we assess our proposal by exhibit-
ing a series of typed examples, showing an improvement over prior work. Our system
verifies versions of all the examples considered by Abadi and Blanchet [3] (modified to
include multiple principals, and multiple simultaneous runs of the protocols).

We end by discussing three criticisms. First, our present system tracks only secrecy
properties. We expect it is possible to combine our system with prior constructs express-
ing authentication and authorization properties [10,14]. Second, our type system allows
any process to augment any part of the security ordering. This is acceptable in short
programs modelling cryptographic protocols, but for larger programs there should be

200 A.D. Gordon and A. Jeffrey

an enforceable policy governing additions to the security ordering. Prior work on poli-
cies for declassification may be applicable. Third, our type-based verification method
requires the programmer to supply type annotations. A type inference algorithm would
lessen this burden, although the lack of principal types would make such an algorithm
non-trivial. A complementary approach may be to adapt logic programming interpre-
tations of the pi-calculus [4] to obtain a logic-based method for checking conditional
secrecy. We leave these directions for future work.

Acknowledgements. We thank Gérard Boudol, Ana Matos, Andrei Sabelfeld, and Dave
Sands for sending us previews of their CSFW’05 papers [7,22]. Thanks also to Tony
Hoare and the anonymous reviewers for useful comments.

References

1. M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786, Sept. 1999.
2. M. Abadi. Security protocols and their properties. In Foundations of Secure Computation,

pages 39–60. IOS Press, Amsterdam, 2000.
3. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theoretical Com-

put. Sci., 298(3):387–415, 2003.
4. M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy Types and Logic

Programs. Journal of the ACM, 52(1):102–146, 2005.
5. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Information and Computation, 148:1–70, 1999.
6. B. Blanchet. From secrecy to authenticity in security protocols. In 9th International Static

Analysis Symposium (SAS’02), volume 2477 of LNCS, pages 242–259. Springer, 2002.
7. G. Boudol and A. Matos. On declassification and the non-disclosure policy. In 18th IEEE

Computer Security Foundations Workshop. IEEE Computer Society Press, 2005. To appear.
8. M. Bugliesi, R. Focardi, and M. Maffei. Authenticity by tagging and typing. In Formal

Methods in Security Engineering (FMSE’04), pages 1–12, 2004.
9. L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. Information and

Computation, 196(2):127–155, 2005.
10. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies. In

European Symposium on Programming (ESOP’05), LNCS, pages 141–156. Springer, 2005.
11. A. D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many correspondences in secu-

rity protocols. In Software Security—Theories and Systems, volume 2609 of LNCS, pages
270–282. Springer, 2002.

12. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal of
Computer Security, 11(4):451–521, 2003.

13. A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
Journal of Computer Security, 12(3/4):435–484, 2003.

14. A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communication proto-
cols. Theoretical Computer Science, 300:379–409, 2003.

15. A. D. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the
pi-calculus. Technical Report MSR–TR–2005–76, Microsoft Research, 2005.

16. D. Hoshina, E. Sumii, and A. Yonezawa. A typed process calculus for fine-grained resource
access control in distributed computation. In 4th International Symposium on Theoretical
Aspects of Computer Software (TACS 2001), volume 2215 of LNCS, pages 64–81. Springer,
2001.

Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus 201

17. R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.
18. A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM

Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.
19. M. Odersky. Polarized name passing. In Foundations of Software Technology and Theoretical

Computer Science, volume 1026 of LNCS, pages 324–335. Springer, 1995.
20. J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents. In 26th

ACM Symposium on Principles of Programming Languages, pages 93–104, 1999.
21. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on

Selected Areas in Communications, 21(1):5–19, 2003.
22. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In 18th IEEE

Computer Security Foundations Workshop. IEEE Computer Society Press, 2005. To appear.
23. V. Simonet. The Flow Caml system: documentation and user’s manual. Technical Report

0282, INRIA, 2003.
24. S. Tse and S. Zdancewic. Run-time principals in information-flow type systems. In IEEE

Computer Society Symposium on Research in Security and Privacy, 2004.

Timed Spi-Calculus with Types for Secrecy and
Authenticity�

Christian Haack1 and Alan Jeffrey1,2

1 CTI, DePaul University,
2 Bell Labs, Lucent Technologies

Abstract. We present a discretely timed spi-calculus. A primitive for key com-
promise allows us to model key compromise attacks, thus going beyond the stan-
dard Dolev–Yao attacker model. A primitive for reading a global clock allows
us to express protocols based on timestamps, which are common in practice.
We accompany the timed spi-calculus with a type system, prove that well-typed
protocols are robustly safe for secrecy and authenticity and present examples of
well-typed protocols as well as an example where failure to typecheck reveals a
(well-known) flaw.

1 Introduction

Models for cryptographic protocols often assume perfect cryptography— an example is
the spi-calculus [3]— and ignore the fact that session keys can be compromised given a
sufficient amount of time. Yet typical protocols for the distribution of session keys are
careful to prevent attacks that fool honest agents into accepting compromised session
keys. A security goal of such protocols is that after the end of a protocol run each
principal possesses a session key that is currently secret (and will remain secret until its
expiration time). This goal could not be expressed, for instance, in [11], which instead
uses injective agreement as a security goal for key distribution protocols. In this paper,
we extend the spi-calculus with a simple notion of time so that we can express such
security goals. We also add a primitive for key compromise, which allows us to express
key compromise attacks, thus going beyond the Dolev–Yao attacker model. A primitive
for reading a global clock allows us to express protocols based on timestamps, which
are common in practice.

Our model of time is very coarse and simple. A clock-tick represents the end of
an epoch. Protocol designers may specify that a key is a short-term secret and a key
compromise primitive cracks keys that are short-terms secrets. Cracking uses up all
time of the current epoch (and not more than that) moving on to the next epoch. So
after a clock-tick short-term secrets cannot be considered secret anymore and expire.
Cracking a key is the only interesting action that uses up time. The usual spi-calculus
actions are instantaneous. The safety of cryptographic protocols often depends on the
fact that sessions expire when waiting for input for too long. We model this by letting
input and most other statements expire with a clock-tick.

� This material is based upon work supported by the National Science Foundation under Grant
No. 0208459.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 202–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Timed Spi-Calculus with Types for Secrecy and Authenticity 203

We think that our simple model of time is enough to capture important aspects
of security protocols in the presence of key compromise. On the other hand, be-
cause of its simplicity reasoning in this model remains tractable. In order to make
this point, we have accompanied our timed spi-calculus with a type system for secrecy
and authenticity and prove its robust safety. We show how an attempt to typecheck
the Needham–Schroeder Symmetric Key Protocol [20] reveals its flaw and typecheck
Denning–Sacco’s fix [8] of this protocol. It turns out that proving our type system safe
for short-term assertions is considerably simpler than the proofs for injective agreement
in [11], which may suggest that short-term assertions are easier to reason about than
injective agreement.

2 Syntax
Our protocol description language is an extension of the spi-calculus. In this section,
we define its syntax: Messages are built from variables, time constants and the empty
message by concatenation, symmetric encryption and message tagging. Unlike some
other versions of the spi-calculus, we do not distinguish between variables and names.
The ciphertext {M}K represents M encrypted with symmetric key K. Key K may be an
arbitrary message, but the typing rules for honest agents require K to be a variable. The
term L(M) represents M tagged by label L. Label L may be an arbitrary message, but the
typing rules for honest agents require L to be a variable. Message tagging is a common
technique for avoiding type confusion attacks [17,4] and is often treated explicitly in
typed spi-calculi. A ciphertext that is formed by honest principals is typically of the
form {l(M)}k, where k is a secret key and l is a public message tag, whose purpose it
is to distinguish the plaintext l(M) from other plaintexts that are encrypted by the same
key k.

Messages:

x,y,z,k, l,m,n variables and names
s, t ∈ N discrete time
K,L,M,N ::= message

x variable or name
t time
() empty message
(M,N) M concatenated with N
{M}K M encrypted with symmetric key K
L(M) M tagged by L

As usual for spi-calculi, the process language includes a π-calculus extended with
primitives for encryption. The importance of this paper is the inclusion of the op-
eration crack M is {x:T}y:U . This operation gives attackers the capability of cracking
short-term keys given a sufficient amount of time. Thus, the attacker capabilities that
we model go beyond the standard Dolev–Yao model. We also include an operation
clock(x:T) for reading a global clock. This clock-operation permits to express proto-
cols with timestamps, which are quite common in practice.

For specification purposes, secrecy and correspondence assertions may be inserted
into programs. The meaning of secrecy assertions is the intuitive one. Correspondence

204 C. Haack and A. Jeffrey

assertions are a standard method for specifying authenticity. They specify that in every
protocol run every end(M)-assertion must have been recently preceded by a correspond-
ing begin!(M)-assertion. In this paper, we restrict our attention to short-term, many-to-
one correspondences for short-term, non-injective agreement.

Processes with Assertions:

#x:#T type-annotated variables, |#x|= |#T |
τ ∈ {lt,st} long/short qualifier (long-term or short-term)
O,P,Q,R ::= process

P | Q parallel composition
!P replication
0 inactivity
out N M asynchronous output of message M on channel N
π; P prefix π followed by P
A assertion

π ::= prefix
inp N (x:T) input x from channel N (binding x in P)
new(n:T) generating name n (binding n in P)
decrypt M is {x:T}K decrypting M (binding x in P)
untag M is L(x:T) untagging M (binding x in P)
split M is (x:T,y:U) splitting M (binding x in U and x,y in P)
match M is (N,x:T) matching M against (N,x) (binding x in P)
crack M is {x:T}y:U cracking key y of ciphertext M (binding x,y in P)
clock(x:T) reading current time into x (binding x in P)
begin!(M) short-term begin-assertion: begin session M

A,B,C ::= assertions
end(M) short-term end-assertion: session M has recently begun
θ(M) secrecy assertion

θ ::= secrecy predicates
τ-secret τ = st: secret for the current epoch; τ = lt: secret forever
public public

Prefixing and replication bind more tightly than parallel composition. We often elide 0
from the end of processes, write (out N M; P) for (out N M | P), write (A;P) for (A |P),
and write (new θ (n:T); P) for (new(n:T); θ(n); P). We write fv(P) for the set of free
variables of P; similarly for messages and other objects that may contain variables.

3 Semantics

The architecture of our operational semantics is inspired by [18]. It is defined as a reduc-
tion relation on states of the form (t;#n; Ā || P), where t is a natural number representing
the global time,#n is a binder for (Ā,P)’s free names, Ā is the set of correspondences that
can be ended in the particular run, and P is the process that remains to be executed. The
reduction rules are divided into a set of instantaneous reductions, which are assumed
to take no time, and a set of tick-reductions, which use up all time in the current epoch
moving on to the next epoch. The instantaneous reductions are pretty standard:

Timed Spi-Calculus with Types for Secrecy and Authenticity 205

Structural Process Equivalence, P≡ Q:

P≡ P (Struct Refl)
P≡ Q ⇒ Q≡ P (Struct Symm)
P≡ Q,Q≡ R ⇒ P≡ R (Struct Trans)
Q≡ R ⇒ P |Q≡ P | R (Struct Par)
P | 0≡ P (Struct Par Zero)
P |Q≡ Q | P (Struct Par Comm)
(P | Q) | R≡ P | (Q | R) (Struct Par Assoc)
!P≡ P | !P (Struct Repl Par)

Instantaneous Reductions, (t;#n; Ā || P) → (t;#m; B̄ || Q):

P≡ P′, (t;#n; Ā || P′) → (t;#m; B̄ || Q′), Q′ ≡ Q ⇒ (t;#n; Ā || P) → (t;#m; B̄ || Q)
(Redn Equiv)

m
∈ fv(#n,Q) ⇒ (t;#n; Ā || new(m:T);P | Q) → (t;#n,m; Ā || P |Q) (Redn New)
(t;#n; Ā || out N M | inp N (x:T);P | Q) → (t;#n; Ā || P{x←M} |Q) (Redn IO)
(t;#n; Ā || decrypt {M}K is {x:T}K ;P | Q) → (t;#n; Ā || P{x←M} |Q) (Redn Decrypt)
(t;#n; Ā || untag L(M) is L(x:T);P |Q) → (t;#n; Ā || P{x←M} | Q) (Redn Untag)
(t;#n; Ā || split (M,N) is (x:T,y:U);P | Q) → (t;#n; Ā || P{x,y←M,N} | Q) (Redn Split)
(t;#n; Ā || match (M,N) is (M,x:T);P |Q) → (t;#n; Ā || P{x←N} | Q) (Redn Match)
(t;#n; Ā || clock(x:T);P |Q) → (t;#n; Ā || P{x←t} |Q) (Redn Clock)
(t;#n; Ā || begin!(M);P | Q) → (t;#n; Ā,end(M) || P | Q) (Redn Begin)

Tick-Reductions, (t;#n; Ā || P) σ→ (t + 1;#n; /0 || Q):

(Tick Par)

(t;#n; Ā || P) σ→ (t + 1;#n; /0 || P′) (t;#n; Ā || Q) σ→ (t + 1;#n; /0 || Q′)

(t;#n; Ā || P |Q) σ→ (t + 1;#n; /0 || P′ |Q′)

(Tick Crack)
P = (st-secret(K) | crack {M}K is {x:T}y:U ;Q)

(t;#n; Ā || P) σ→ (t + 1;#n; /0 || Q{x,y←M,K})

(Tick Remain)
P is !Q, (out N M), public(M) or lt-secret(M)

(t;#n; Ā || P) σ→ (t + 1;#n; /0 || P)

(Tick Expire)

(t;#n; Ā || P) σ→ (t + 1;#n; /0 || 0)

We write ⇒ for the reflexive and transitive closure of (→ ∪ σ→).
The tick-reduction rule (Tick Par) ensures that a clock-tick happens simultaneously

in every branch of a parallel composition. crack operates as expected and uses up time.
Process replication and output remain alive in the next epoch. Importantly, every other
syntactic form expires with a clock-tick, degenerating to the null-process. In particular,
if a process waits for input for more than one epoch it aborts and declines to accept
later incoming messages. Many security protocols depend on this kind of behavior, and
we have decided to make expiring input the default in our process calculus. Because

206 C. Haack and A. Jeffrey

process replication survives clock-ticks, we can express the capability to start a session
at any time in the future. Our choice to let asynchronous output survive clock-ticks
is a bit arbitrary. A language where output expires would probably have been equally
suitable for modeling security protocols.

Definition 1 (Safety). P is safe for secrecy iff (s; fv(P); /0 || P)
⇒ (t;#n; Ā || public(N) |
τ-secret(M) | out N M | Q). P is safe for authenticity iff (s; fv(P); /0 || P) ⇒
(t;#n; Ā || end(M) | Q) implies end(M) ∈ Ā. P is safe iff it is both safe for secrecy and
authenticity.

Definition 2 (Opponent Processes). A process is an opponent process iff its only as-
sertions are of the form public(M) and all its type annotations are the special type Un.

Definition 3 (Robust Safety). A process P is robustly safe iff (P | O) is safe for all
opponent processes O.

Our type system is designed so that well-typed processes with public free names are
robustly safe:

Theorem (Robust Safety) If (#n:#T � public(#n)) and (#n:#T � P), then P is robustly safe.

4 Examples
We will use derived forms for lists and matching against tagged lists. Their definition
uses derived forms for list types as type annotations. Type annotations have no impact
operationally and the definition of list types is postponed to the type system.

Derived Forms for Lists and Matching Against Lists:

〈〉 Δ= () 〈M〉 Δ= (M,()) 〈M,#N〉 Δ= (M,〈#N〉)
match M is 〈N〉[Ā] Δ= match M is (N,x:〈〉[Ā])
match M is 〈x:T 〉[Ā] Δ= split M is (x:T,y:〈〉[Ā])
match M is 〈x:T,nxts〉[Ā] Δ= split M is (x:T,y:〈nxts〉[Ā]); match y is 〈nxts〉[Ā]
match M is 〈N,nxts〉[Ā] Δ= match M is (N,y:〈nxts〉[Ā]); match y is 〈nxts〉[Ā]
match M is L〈nxts〉[Ā] Δ= untag M is L(x:〈nxts〉[Ā]); match x is 〈nxts〉[Ā]

Example 1: Establishing a session key using a nonce.

B generates nonce n
B → A n
A generates short-term secrets kab and m
A begins! “A sending session key kab to B” and “A sending secret message m to B”
A → B {msg1〈n,kab〉}lab, {msg2〈m〉}kab
B asserts st-secret(kab) and ends “A sending session key kab to B”
B asserts st-secret(m) and ends “A sending secret message m to B”

Bob wants to receive a secret message from Alice. To this end, he sends Alice a freshly
generated nonce n. In reply, Alice generates a short-term session key kab and sends it to
Bob together with n and encrypted by their shared long-term key lab. Alice also sends
the secret message m encrypted by kab. The names msg1 and msg2 are used as tags.

Timed Spi-Calculus with Types for Secrecy and Authenticity 207

To express this protocol in spi, we assume that X is some finite set of principal
names and abbreviate newa,b∈X lt-secret (lab:?) for the generation of their long-term
keys and ∏x,y∈X P(x,y) for the parallel composition of all processes P(x,y). We use the
additional tags key and sec in our correspondence assertions.

P
Δ= public(net) | newa,b∈X lt-secret (lab:?); ∏a,b∈X (!PA(a,b, lab) | !PB(a,b, lab))

PA(a :?,b :?, lab :?) Δ=
inp net (n:?); new st-secret (kab:?); begin!(key(a,kab,b)); new st-secret (m:?);
begin!(sec(a,m,b));out net ({msg1〈n,kab〉}lab, {msg2〈m〉}kab)

PB(a :?,b :?, lab :?) Δ=
new public (n:?); out net n; inp net (x:?,u:?); decrypt x is {y:?}lab;
match y is msg1〈n,kab:?〉[?]; st-secret(kab); end(key(a,kab,b));
decrypt u is {v:?}kab; match v is msg2〈m:?〉[?]; st-secret(m); end(sec(a,m,b))

This protocol is robustly safe: Bob only accepts the session key kab if received shortly
after he generated nonce n. Because the ciphertext contains the fresh nonce, Bob knows
that it must have been formed recently and that it is not a replay of an old message.
Consequently, the session key that is contained in the ciphertext is still a secret and A
has recently begun the key(A,kab,B)-session. Bob’s second secrecy and end-assertions
are safe, because Bob’s session expires before opponents can possibly have cracked the
session key. With appropriate type annotations this protocol typechecks.

Example 2: Needham–Schroeder Symmetric Key Protocol (NSSK). In this protocol,
Alice and Bob want to establish a short-term session key kab via key server S using
long-term keys las and lbs. NSSK is not robustly safe and, by the robust safety theorem,
does not typecheck.

A generates nonce na
A → S A,B,na
S generates short-term secret kab
S begins! init(kab,A,B) and resp(kab,B,A)
S → A {msg2〈na,B,kab,{msg3〈A,kab〉}lbs〉}las
A asserts st-secret(kab) and ends init(kab,A,B)
A → B {msg3〈A,kab〉}lbs
B generates nonce nb
B → A {msg4〈nb〉}kab
A → B {msg5〈nb〉}kab
B asserts st-secret(kab) and ends resp(kab,B,A)

Alice’s secrecy- and end-assertions are safe. Bob’s secrecy and end-assertions, however,
are unsafe. The problem is that msg3 may be a replay from an old protocol run. Here is
an opponent process O that compromises this protocol; (NSSK | O) is unsafe for both
secrecy and authenticity:

O
Δ= inp net (m3:Un); out net m3; // monitoring msg3

inp net (m4:Un); out net m4; // monitoring msg4
crack m4 is {x:Un}kab:Un; // cracking short-term key kab
inp net (m′3:Un); // intercepting msg3 from a later protocol run
out net m3; // sending m3 instead of m′3 to Bob
out net kab // publishing old key kab

208 C. Haack and A. Jeffrey

The output statement (out net m3) results in a violation of Bob’s end-assertion, be-
cause Bob wants to end an old resp(kab,B,A)-session, but is only entitled to end a
resp(kab′,B,A)-session, where kab′ is the new session key that is contained in mes-
sage m′3. The output statement (out net kab) obviously violates Bob’s secrecy assertion
st-secret(kab).

5 Type System

For the type system we extend the set of assertions from Section 2:

Type-Level Assertions:

A,B,C ::= assertions
. . . as defined in Section 2
M : T M has type T
fresh(N) N is a fresh nonce
now(N) N is the current time
N-stampedt(A) A is stamped by time N
N-stampedn(A) A is stamped by nonce N

Type-level assertions are needed to define type environments: An environment is simply
an assertion set. Let E,F,G, Ā, B̄,C̄ range over environments. An important judgment
of our system is assertion entailment, E � Ā. We usually use meta-variables E,F,G
left of � and Ā, B̄,C̄ right of �. We define the subjects of environments: subj(/0) Δ=
/0; subj(E,M:T) Δ= subj(E) ∪ {M}; subj(E,A) Δ= subj(E) otherwise. Let (E � 8) iff
fv(E) ⊆ fv(subj(E)). We often write (M1, . . . ,Mn):(T1, . . . ,Tn) for {M1:T1, . . . ,Mn:Tn},
write #M:T for {M:T | M ∈ #M}, write θ{#M} for {θ(M) | M ∈ #M}, write end{#M} for
{end(M) | M ∈ #M}, write fresh{#N} for {fresh(N) | N ∈ #N}, and write N-stampedi(Ā)
for {N-stampedi(A) | A ∈ Ā} if i ∈ {t,n}.
Types:

T,U,V,W ::= types
Top well-typed text
Un public text
τ-Secret τ-secret
τ-Key(#M) principals #M’s shared τ-key
Tag(X) tag of type-scheme X
τ-Auth(K, #M) plaintext to be authenticated by principals #M’s shared τ-key K
(x:T,U) T -text paired with U-text (binding x in U)
Ok(Ā) empty text with precondition Ā

X ,Y,Z ::= type-schemes for tags
T → τ-Auth(k:U,#x:#V) text T to tagged text τ-Auth(k,#x) (binding k,#x in T,U,#V)

A type T is called generative iff T
= Ok(Ā) for all Ā. Names generated by new are
required to have generative types.

Types include a top type, dependent pair types, a type Un for public messages and
types τ-Secret (where τ ∈ {lt,st}) for long- or short-term secrets. In addition, there are
the following types:

Timed Spi-Calculus with Types for Secrecy and Authenticity 209

– The key type τ-Key(#M) is the type of secret keys shared by principals #M.
– The ok-type Ok(Ā) is a type for the empty message. In order to assign this type to

the empty message in environment E , it is required that (E � Ā).
– The authentication type τ-Auth(K, #M) is a type of tagged messages that require

authentication by principals #M’s shared τ-key K.
– The tag type Tag(T → τ-Auth(k:U,#x:#V)) is a type of tags l that may tag mes-

sages M of type T{k,#x←K,#N}. The type of the resulting tagged message l(M) is
τ-Auth(K,#N).

For instance, consider the following tag:

l : Tag((x:st-Secret, Ok(end(sec(p,x,q)))) → st-Auth(k:st-Key(p,q), p:Un,q:Un))

In environment E = (A:Un,B:Un,kab:st-Key(A,B),m:st-Secret,end(sec(A,m,B))),
this tag can be used to tag message 〈m〉 (= (m,())) forming l〈m〉 of type
st-Auth(kab,A,B), which can then be authenticated by encryption with kab resulting
in {l〈m〉}kab. Type-schemes for tags are a form of dependent types. Technically, they
resemble type-schemes for polymorphic data constructors in languages like Haskell or
ML (with the difference that binders range over messages instead of types).

Ok-types are important as a tool to “statically communicate” assertions between
parallel processes for the purpose of typechecking. Typically, the set Ā in Ok(Ā) con-
tains assertions of the form end(M) indicating that it is safe to end M-sessions. When
typechecking a sender of the empty message at type Ok(end(M)), the typechecker is
required to prove that it is safe to end M-sessions. On the other hand, when typecheck-
ing a receiver of a message of type Ok(end(M)), the typechecker may use that it is safe
to end M-sessions.

Subtyping, T ≤U:

(Sub Refl)

T ≤ T

(Sub Top)

T ≤ Top

(Sub Key)

τ-Key(#M)≤ τ-Secret

(Sub Tag)

Tag(X)≤ Un

(Sub Pair)
T ≤ T ′ U ≤U ′

(x:T,U)≤ (x:T ′,U ′)

(Sub Pair Un)
T ≤ Un U ≤ Un

(x:T,U)≤ Un

(Sub Ok Un)

Ok()≤ Un

(Sub Env)
E � 8 fv(T,U)⊆ fv(E) T ≤U

E � T ≤U

The rule (Sub Key) expresses that long- or short-term keys are long- or short-term
secrets, and (Sub Tag) expresses that tags are public. Pair types are covariant, by
(Sub Pair). The rules (Sub Ok Un) and (Sub Pair Un) express that the empty message
and pairs of public messages may be published.

Step-Function, step(Ā):

step(T) Δ= Un, if T ≤ st-Secret or T = st-Auth(K, #M); step(Ok(Ā)) Δ= Ok(step(Ā));
step(x:T,U) Δ= (x:step(T),step(U)); step(T) Δ= T, otherwise; step(end(M)) Δ= /0;

step(st-secret(M)) Δ= {public(M)}; step(fresh(N)) Δ= step(now(N)) Δ= /0;

step(M:T) Δ= {M:step(T)}; step(A) Δ= {A}, otherwise; step(Ā) Δ= ∪{step(A) | A ∈ Ā}

210 C. Haack and A. Jeffrey

The step-function maps an assertion set to the assertion set that it evolves into with
a clock-tick: assertions fresh(N) or now(N) are dropped, st-secret(M) is mapped to
public(M), short-term types are mapped to Un, and all other clauses are the identity or
defined by structural induction. We call an assertion set Ā long-term if step(Ā) = Ā, and
short-term otherwise.

Assertion Entailment, E � Ā:

(Id)
E,A � 8
E,A � A

(And) E � 8
E � A1 · · · E � An

E � A1, . . . ,An

(Public)
E �M : Un

E � public(M)

(Secret)
E �M : τ-Secret

E � τ-secret(M)

(Time)
E � 8

E � t : Un

(Nonce Stamp)
E � N : Top, A

E � N-stampedn(A)

(Time Stamp)
E � N : Top, now(N), A

E � N-stampedt(A)

(Sub)
E �M : T E � T ≤U

E �M : U

(Encrypt)
E � K : τ-Key(#N), M : τ-Auth(K,#N)

E � {M}K : Un

(Encrypt Un)
E � K : Un, M : Un

E � {M}K : Un

(Tag Un)
E � L : Un, M : Un

E � L(M) : Un

(Tag) ρ = (k,#x←K,#N)
τ = st ⇒ step(T)≤ Un τ = lt ⇒ step(T,U,#V) = (T,U,#V)
E � L : Tag(T → τ-Auth(k:U,#x:#V)), M:T{ρ}, K:U{ρ}, #N:#V{ρ}

E � L(M) : τ-Auth(K,#N)

(Pair)
E �M : T, N : U{x←M}

E � (M,N) : (x:T,U)

(Empty)
E � Ā

E � () : Ok(Ā)

The rule (Time) expresses that time values are public. (Nonce Stamp) is typically used
to stamp short-term assertions. Importantly, stamped assertions are long-term. Thus, the
rule (Nonce Stamp) turns short-term assertions into long-term assertions by associating
them with a nonce N. The rule (Time Stamp) is similar. The process-level typing rules
(Nonce Unstamp) and (Time Unstamp) presented below, then permit a “receiver” of an
assertion N-stampedi(A) to use A, if he can validate that N is a fresh nonce or the cur-
rent time. Note that the rule (Time Stamp) requires that the “creator” of a timestamped
assertion knows that the stamp is current: it would be dangerous if he used a future
timestamp. The rule (Encrypt) is consistent with our informal interpretation of authen-
tication types; ciphertexts are public. (Encrypt Un) and (Tag Un) allow us to typecheck
Dolev–Yao attackers; typically, these rules are not used for type-checking honest agents.
Perhaps the most interesting typing rule is (Tag) for formation of trusted tagged mes-
sages. The premise for τ = st enforces that short-term keys may not encrypt long-term
secrets; a requirement that is obviously needed for long-term secrecy. The premise for
τ = lt enforces that long-term keys may not encrypt messages of short-term types. With-
out this premise the system would be unsafe because a receiver of a short-term assertion
under a long-term key has no guarantee that the short-term assertion is still valid at the

Timed Spi-Calculus with Types for Secrecy and Authenticity 211

time of reception. It is still possible to communicate short-term assertions under long-
term keys, provided the short-term assertions are associated with nonces or timestamps
using (Nonce Stamp) and (Time Stamp). The rule (Pair) is the standard rule for depen-
dent pair types.

Well-Typed Processes, E � P:

(Par)
E � P E � Q

E � P |Q

(Repl)
E � P step(E) � P

E � !P

(Zero)
E � 8
E � 0

(Begin)
E, end(M) � P

E � begin!(M); P

(Out)
E � N : Un, M : Un

E � out N M

(In) x
∈ fv(E)
E � N : Un E, x : Un � P

E � inp N (x:Un); P

(New) n
∈ fv(E), T generative
E, n : T, fresh(n) � P

E � new(n:T); P

(Clock) x
∈ fv(E)
E, x : Un, now(x) � P

E � clock(x:Un); P

(Crack) x,y
∈ fv(E)
E �M : Un step(E), x : Un, y : Un � P

E � crack M is {x:Un}y:Un; P

(Decrypt) x
∈ fv(E)
E �M : Un, K : τ-Key(#N) E, x : τ-Auth(K,#N) � P

E � decrypt M is {x : τ-Auth(K,#N)}K ; P

(Decrypt Un) x
∈ fv(E)
E �M : Un, K : Un E, x : Un � P

E � decrypt M is {x:Un}K ; P

(Untag Un) x
∈ fv(E)
E �M : Un, L : Un E, x : Un � P

E � untag M is L(x:Un); P

(Untag) x
∈ fv(E) ρ = (k,#y←K,#N) E � T{ρ} ≤U
E � M : τ-Auth(K,#N), L : Tag(T → τ-Auth(k:U,#y:#V)) E, x : U � P

E � untag M is L(x:U); P

(Split) x,y
∈ fv(E)
E �M : (x:T,U) E, x : T, y : U � P

E � split M is (x:T,y:U); P

(Split Un) x,y
∈ fv(E)
E �M : Un E, x : Un, y : Un � P

E � split M is (x:Un,y:Un); P

(Match) y
∈ fv(E) ρ = (x←N)
E �M : (x:Top,T), N : Top E, y : T{ρ} � P

E �match M is (N,y:T{ρ}); P

(Match Un) x
∈ fv(E)
E �M : Un, N : Un E, x : Un � P

E �match M is (N,x:Un); P

(Nonce Unstamp) E,A � P
E � fresh(N), N-stampedn(A)

E � P

(Time Unstamp) E,A � P
E � now(N), N-stampedt(A)

E � P

(Ok) E, Ā � P
E �M : Ok(Ā)

E � P

Among the process rules, (Repl) for process replication is noteworthy, because it re-
quires to typecheck the body P of a replicated process !P both in the current envi-
ronment E and the future environment step(E). Checking P in E is needed because

212 C. Haack and A. Jeffrey

replicated processes unfold instantaneously (by (Redn Equiv)); checking P in step(E)
is needed because replicated processes survive clock-ticks (by (Tick Remain)); because
the step-function is idempotent, it suffices to check P in environment step(E) instead of
stepn(E) for all n≥ 1. For typechecking the process continuation P in (new(x:T);P) or
(clock(x:Un);P), we may assume that x is fresh or current. Remember that specification
processes end(M) and θ(M) are both processes and assertions, so their typing rules are
given with the rules for assertion entailment.

6 Typed Examples

We will annotate the earlier example with types using these derived forms:

Derived Forms for List Types:

〈〉[Ā] Δ= Ok(Ā); 〈x:T 〉[Ā] Δ= (x:T,Ok(Ā)); 〈N〉[Ā] Δ= (x:Top,Ok(Ā));
〈x:T,nxts〉[Ā] Δ= (x:T,〈nxts〉[Ā]); 〈N,nxts〉[Ā] Δ= (x:Top,〈nxts〉[Ā])

Example 1: Establishing a session key using a nonce. Recall Example 1 from Section 4.
Here are the types for the global names:

net : Un Ā(n,k, p,q) Δ= n-stampedn(k:st-Key(p,q), end(key(p,k,q)))
msg1 : Tag(〈n:Un,k:Top〉[Ā(n,k, p,q)] → lt-Auth(l:lt-Key(p,q), p:Un,q:Un))
msg2 : Tag(〈m:st-Secret〉[end(sec(p,m,q))] → st-Auth(k:st-Key(p,q), p:Un,q:Un))

In the type of msg1, note that the typing rules force us to stamp the type assertion
k:st-Key(p,q). If we directly annotated the binder k by short-term type st-Key(p,q),
then the protocol would not typecheck: Alice would not be permitted to form the mes-
sage msg1〈t,kab〉 because step(st-Key(p,q))
= st-Key(p,q) in violation to the premise
for τ = lt in the (Tag)-rule. Here is the type-annotated spi-calculus specification:

PA(a:Un,b:Un, lab:lt-Key(a,b)) Δ=
inp net (n:Un); new st-secret (kab:st-Key(a,b)); begin!(key(a,kab,b));
new st-secret (m:st-Secret); begin!(sec(a,m,b));
out net ({msg1〈n,kab〉}lab, {msg2〈m〉}kab)

PB(a:Un,b:Un, lab:lt-Key(a,b)) Δ=
new public (n:Un); out net n; inp net (x:Un,u:Un);
decrypt x is {y:lt-Auth(lab,a,b)}lab;
match z is msg1〈n,kab:Top〉[Ā(n,kab,a,b)]; st-secret(kab); end(key(a,kab,b));
decrypt u is {v:st-Auth(kab,a,b)}kab;
match v is msg2〈m:st-Secret〉[end(sec(a,m,b))];
st-secret(m); end(sec(a,m,b))

Example 2: Needham–Schroeder Symmetric Key Protocol (NSSK). This protocol is
unsafe and, hence, does not typecheck. The problem is msg3:

· · ·
A → B {msg3〈A,kab〉}lbs
· · ·

Here is the type that we want to give to the message tag:

msg3 : Tag(〈p:Un,k:st-Key(p,q)〉[] → lt-Auth(l:lt-Key(p,q), p:Un,q:Un))

Timed Spi-Calculus with Types for Secrecy and Authenticity 213

However, this type does not permit Alice to form the tagged message msg3〈A,kab〉
because step(st-Key(p,q))
= st-Key(p,q) in violation to the premises of (Tag).

Example 3: Denning–Sacco Protocol with acknowledgment. The Denning–Sacco pro-
tocol for establishing a short-term session key avoids the key compromise attack on
NSSK by including a timestamp. We have added to the Denning–Sacco protocol Bob’s
acknowledgment for receipt of session key kab, which is achieved by Bob using kab to
encrypt a tagged null-message.

A → S A,B
S generates short-term secret kab and timestamp t
S begins! init(S,kab,A,B) and resp(S,kab,B,A)
S → A {msg2〈t,B,kab,{msg3〈t,A,kab〉}lbs〉}las
A asserts st-secret(kab) and ends init(S,kab,A,B)
A → B {msg3〈t,A,kab〉}lbs
B asserts st-secret(kab) and ends resp(S,kab,B,A)
B begins! ack(B,kab,A)
B → A {msg4〈〉}kab
A ends ack(B,kab,A)

The types for the long-term keys are las:lt-Key(A,S) and lbs:lt-Key(B,S). Here are the
tag types:

msg2 : Tag(〈t:Un,q:Un,k:Top,x:Un〉[t-stampedt(k:st-Key(p,q), end(init(s,k, p,q)))]
→ lt-Auth(l:lt-Key(p,s), p:Un,s:Un))

msg3 : Tag(〈t:Un, p:Un,k:Top〉[t-stampedt(k:st-Key(p,q), end(resp(s,k,q, p)))]
→ lt-Auth(l:lt-Key(q,s),q:Un,s:Un))

msg4 : Tag(〈〉[end(ack(q,k, p))] → st-Auth(k:st-Key(p,q), p:Un,q:Un))

7 Type Preservation

Like in other type systems for spi-calculi, robust safety is a consequence of a type
preservation theorem. In this section, we present this theorem and a few selected lem-
mas that are needed to prove it. Proofs and additional lemmas are omitted and given
in an extended version of this paper. In order to define well-typed computation states,
we extend the judgment for assertion entailment: Let (E �+ Ā) iff it is derivable by
the �-rules plus the rules (Useless Nonce) and (Useless Time) below. The relation ≤
in (Useless Time) is defined by: M ≤ N iff either M = N or M = s ≤ t = N for times
s, t ∈ N.

Well-typed Computation States, (t;#n;end{#M} || P) : 8:
(Good State) E = (#n:#T ,end{#M}, fresh{#N},now(t))
E �+ Ā Ā � P #n distinct #T generative

(t;#n;end{#M} || P) : 8

(Useless Nonce) fv(A)⊆ fv(E)
fresh(N)
∈ E E �+ N : Top

E �+ N-stampedn(A)

(Useless Time) fv(A)⊆ fv(E)
(∀M)(now(M) ∈ E ⇒ M
≤ N) E �+ N : Top

E �+ N-stampedt(A)

214 C. Haack and A. Jeffrey

The additional rules (Useless Nonce) and (Useless Time) allow to stamp assertions with
messages that are neither fresh nonces nor current or future times. This is safe because
the typing rules for unstamping are not applicable in such cases. Technically, these rules
are needed to prove the following lemma.

Lemma (Step Invariance) . If E is basic and (E �+ Ā), then (step+(E) �+ step(Ā)).

Proof step+/step maps (Nonce Stamp) to (Useless Nonce), and (Time Stamp) to
(Useless Time). (Encrypt) is mapped to itself if τ = lt and to (Encrypt Un) if τ = st.
(Tag) is mapped to itself if τ = lt and to (Tag Un) if τ = st. �

Here are the definitions that are needed to fully understand the step invariance lemma:
We call environment E basic iff it is of the form E = (#n:#T ,end{#M}, fresh{#N},now(t))
for distinct#n and generative #T . Let step+(E,now(t)) Δ= (step(E),now(t + 1)).

Lemma (Cut). If E is basic, (E �+ Ā) and (Ā � B̄), then (E �+ B̄).

This cut lemma is not hard to prove. Step invariance and cut are used to prove that tick-
reductions preserve well-typedness. More generally, we obtain the following theorem.

Theorem (Type Preservation). If ((t;#n; Ā || P) : 8) and (t;#n; Ā || P) ⇒ (s;#m; B̄ || Q),
then ((s;#m; B̄ || Q) : 8).

8 Conclusion

Related Work. Compared to other work on the spi-calculus [3,1,11,12,10,2,16], the
novelty of this paper is the addition of time, key-compromising attackers and short-
term assertions for secrecy and authenticity. To the best of our knowledge, this is the
first spi-calculus type system for reasoning about short-term assertions.

There are some formal models for cryptographic protocols that deal with recency
or key compromise implicitly (without explicitly modeling time): BAN logic [5] has a
primitive formula for freshness, which allows reasoning about recency. Guttman shows
how to reason about recency for nonce-based protocols within the strand space model
[15]. Both these works are based on the assumption that protocol sessions time out be-
fore short-term keys can possibly get compromised. Paulson’s inductive method [21]
models key compromise by a rule called “Oops” for leaking short-term keys, and his
safety theorems typically require premises that certain data has not been leaked to dis-
honest principals. Recently, Gordon and Jeffrey [13] have presented a type system for
proving conditional secrecy that models key compromise in a similar way.

There are also some models that deal with time more explicitly: Evans and Schnei-
der [9] analyze time dependent security properties in tock-CSP using theorem proving
with the rank function method. Rank functions have similarities with type systems: on
the one hand, both rank functions and type systems are designed to prove safety prop-
erties without assuming a bounded number of sessions and, on the other hand, both
require less help from protocol specifiers than general theorem proving—the supply of
a rank-function or type-annotations is enough. Gorrieri, Locatelli and Martinelli [14]
present the process algebra tCryptoSPA with event-based time for expressing crypto-
graphic protocols. Both tock-CSP and tCryptoSPA seem a bit more expressive than our

Timed Spi-Calculus with Types for Secrecy and Authenticity 215

timed spi-calculus. For instance, these languages can express processes that patiently
wait for input arbitrarily long, whereas it is not obvious how to express this in our lan-
guage. On the other hand, both tock-CSP and tCryptoSPA allow some anomalies, like
timestops, that our language omits. Bozga, Ene and Lakhnech [19] and Delzanno and
Ganty [7] model real time and present symbolic procedures for checking time sensitive
safety properties. These procedures are more automatic than typechecking; they do not
require help in the form of type annotations. On the other hand, they assume a bounded
number of sessions [19] or do not guarantee termination [7]. The Casper model checker
is based on discretely timed CSP and can analyze protocols for timed agreement and
timed secrecy [22]. It requires bounds on the size of protocols. Most of the languages
discussed in this paragraph, with the exception of [19], do not explicitly model key
compromising attackers. [19] models key compromising attackers by creating for each
short-term key a key-cracking process that accepts messages encrypted under this key,
then waits for a while and then publishes the key. In this model, attackers can crack
keys by directing ciphertexts to key-cracking processes. Key compromising attackers
could probably be modeled similarly in the other languages above, but we expect that
key-cracking processes create additional problems for some of the verification methods.

Limitations of our Model of Time. A limitation is that we cannot distinguish between
the amounts of time that it takes to timeout and the time needed for cracking short-term
keys. In reality, the former is usually much shorter than the latter. While it is often safe
to assume that timeout happens later than it really does, it sometimes prevents us from
expressing attacks. Consider, for instance, the Wide Mouthed Frog protocol (WMF):

A generates short-term key kab
A → S A,{ti,B,kab}kas
S → B {ts,A,kab}kbs
B asserts st-secret(kab)

There is a type confusion attack on WMF, where the attacker repeatedly intercepts the
second message and plays it back to the server as the first message of another run.
The attacker, thus, always has a message of the correct format that contains a current
timestamp and after cracking kab he can fool either principal to accept the compro-
mised kab as recent. In our model, the server’s timestamp ts will always be equal to the
initiator’s timestamp ti. Therefore, the attack is not possible in the model. (Fortunately,
WMF still does not typecheck, though.) While it would not be hard to refine our model
of time, it is less clear how to refine the type system.

Future Work. Although this article deals with symmetric cryptography only, we expect
no problems to integrate this work into a more general system with public cryptography
and other cryptographic operators [12,16]. Our type system is simple and can typecheck
many key distribution protocols from the literature [6]. While we plan to investigate
how it can be extended to verify protocols with additional intricacies, like Yahalom [5],
we do not think that such extensions are of utmost importance, because often similar,
sometimes simpler, protocols exist that achieve the same security goals and obey our
type discipline, for instance BAN’s Yahalom simplification [5]. More interestingly, we
plan to investigate if we can find similar type systems for refined models of time.

216 C. Haack and A. Jeffrey

References
1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786,

September 1999.
2. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In Foundations of

Software Science and Computation Structures, volume 2030 of LNCS. Springer, 2001.
3. M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. Infor-

mation and Computation, 148:1–70, 1999.
4. M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. IEEE

Transactions on Software Engineering, 22(1):6–15, 1996.
5. M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. Proceedings of the

Royal Society of London A, 426:233–271, 1989.
6. J. Clark and J. Jacob. A survey of authentication protocol literature. Unpublished report.

University of York, 1997.
7. G. Delzanno and P. Ganty. Automatic verification of time sensitive cryptographic protocols.

In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 2988 of LNCS, pages 342–356. Springer, 2004.

8. D.E. Denning and G.M. Sacco. Timestamps in key distribution protocols. Communications
of the ACM, 24(8):533–536, 1981.

9. N. Evans and S. Schneider. Analysing time dependent security properties in CSP using PVS.
In F. Cuppens, Y. Deswarte, D. Gollmann, and M. Waidner, editors, ESORICS, volume 1895
of LNCS, pages 222–237. Springer, 2000.

10. A. D. Gordon and A.S.A. Jeffrey. Typing one-to-one and one-to-many correspondences in
security protocols. In Proc. Int. Software Security Symp., volume 2609 of Lecture Notes in
Computer Science, pages 263–282. Springer-Verlag, 2002.

11. A.D. Gordon and A.S.A. Jeffrey. Authenticity by typing for security protocols. J. Computer
Security, 11(4):451–521, 2003.

12. A.D. Gordon and A.S.A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
J. Computer Security, 12(3/4):435–484, 2003.

13. A.D. Gordon and A.S.A. Jeffrey. Secrecy despite compromise: Types, cryptography and the
pi-calculus. In CONCUR 2005: Concurrency Theory, LNCS. Springer, 2005.

14. R. Gorrieri, E. Locatelli, and F. Martinelli. A simple language for realtime cryptographic
protocol analysis. In P. Degano, editor, 12th European Symposium on Programming, volume
2618 of LNCS, pages 114–128. Springer, 2003.

15. Joshua D. Guttman. Key compromise, strand spaces, and the authentication tests. Electr.
Notes Theor. Comput. Sci., 45, 2001.

16. C. Haack and A.S.A. Jeffrey. Pattern-matching spi-calculus. In 2nd IFIP Workshop on
Formal Aspects in Security and Trust, volume 173 of IFIP. Kluwer Academic Press, 2004.

17. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security proto-
cols. In 13th IEEE Computer Security Foundations Workshop, pages 255–268. IEEE Com-
puter Society Press, 2000.

18. M. Hennessy and T. Regan. A process algebra for timed systems. Information and Compu-
tation, 117(2):221–239, 1995.

19. Y. Lakhnech L. Bozga, C. Ene. A symbolic decision procedure for cryptographic protocols
with time stamps. In CONCUR 2004: Concurrency Theory, volume 3170 of LNCS, pages
177–192. Springer, 2004.

20. R.M. Needham and M.D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

21. L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Com-
puter Security, 6:85–128, 1998.

22. P. Ryan and S. Schneider. Modelling and Analysis of Security Protocols. Addison-Wesley,
2001.

Selecting Theories and Recursive Protocols�

Tomasz Truderung

LORIA-INRIA-Lorraine, France
Institute of Computer Science, Wrocław University, Poland

Abstract. Many decidability results are known for non-recursive cryptographic
protocols, where the protocol steps can be expressed by simple rewriting rules.
Recently, a tree transducer-based model was proposed for recursive protocols,
where the protocol steps involve some kind of recursive computations. This
model has, however, some limitations: (1) rules are assumed to have linear left-
hand sides (so no equality tests can be performed), (2) only finite amount of infor-
mation can be conveyed from one receive-send action to the next ones. It has been
proven that, in this model, relaxing these assumptions leads to undecidability.

In this paper, we propose a formalism, called selecting theories, which extends
the standard non-recursive term rewriting model and allows participants to com-
pare and store arbitrary messages. This formalism can model recursive protocols,
where participants, in each protocol step, are able to send a number of messages
unbounded w.r.t. the size of the protocol. We prove that insecurity of protocols
with selecting theories is decidable in NEXPTIME.

1 Introduction

Formal verification of cryptographic protocols has been very successful in finding flaws
in published cryptographic protocols (see [14,7] for an overview). Although the general
verification problem is undecidable [10,1,11], there are important decidable variants
[9,10,16]. One of them is the insecurity problem of protocols analyzed w.r.t. a bounded
number of sessions, in presence of the so-called Dolev-Yao intruder [16,6,5,8]. In this
case, one assumes that actions performed by participants during the course of the pro-
tocol execution are simple and can be described by single rewrite rules of the form
t → s. Such a rule is intended to specify receive-send action of a principal who after
receiving a message tθ, for some ground substitution θ, replies sθ. However, in many
protocols, participants perform more complicated, recursive computations which can-
not be expressed by simple rewrite rules. Examples of protocols of this kind are Internet
Key Exchange Protocol (IKE), the Recursive Authentication (RA) protocol [4], and the
A-GDH.2 protocol [2]. We will call protocols that involve some kind of iterative or
recursive computations recursive protocols.

Recently, a tree transducer-based model was proposed for recursive protocols
[13,12]. Tree transducers seem to be a natural choice in the context of recursive cryp-
tographic protocols. The proposed model has, however, the following limitations: (1)
rules are assumed to have linear left-hand sides, so no equality tests can be performed,

� Partially supported by the RNTL project PROUVE-03V360 and by SATIN Project of ACI
Sécurité Informatique.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 217–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

218 T. Truderung

(2) only finite amount of information can be conveyed from one receive-send action to
the next ones. Moreover, these assumptions cannot be relaxed without losing decidabil-
ity. In some cases, these limitations can make modeling of protocols inconvenient or
even impossible. For example, the RA protocol, which was chosen in [13] and [12] to
illustrate the tree transducer-based protocol model, has rules with non-linear left-hand
sides and had to be slightly modified. It should be mentioned that both equality tests
for messages of arbitrary size and the possibility of storing arbitrary messages can be
easily expressed in the standard term rewriting-based model.

The goal of this paper is to provide a model which can express some recursive
computations, without limiting the possibility of compare and store messages. In fact,
in many cases the expression power of tree transducers is more than sufficient, so one
could ask, whether there is some restricted class of tree transducers which can be used
to model protocols, preserving the ability of parties to compare and store messages. One
can, however, prove that these assumption cannot be relaxed even, if we consider very
weak forms of tree transducers (or any similar formalism) which allow us to model the
following basic kinds of computations:
(a) list mapping — for an input which is an encoded list {[t1, . . . tn]}k, produce an

encoded list {[t′1, . . . , t′n]}k′ , where, for each i = 1, . . . , n, the term t′i is the result
of applying some simple rewrite rule to ti,

(b) mapping functional symbols — replace functional symbols of a given term with
functional symbols of the same arity, preserving the exact structure of the term
(distinct occurrences of a symbol need not be replaced with the same symbol).

The model presented in this paper can express recursive protocols, where participants,
in each protocol step, can send a number of messages unbounded w.r.t. the size of the
protocol. Each of these messages is the result of applying some simple rewriting rule to
some subterm of the messages received so far. So called selecting theories are used to
determine which rewriting rule should be applied to which terms. Participants are able
to store and compare arbitrary messages, like in the case of standard term rewriting-
based approach. We assume that keys used in symmetric and public key encryption
are constants. Clearly, in our model, one cannot model computations described in the
items (a) and (b) above. One can, however, model actions like for instance: for a list
[t1, . . . , tn] produce and send the list [t′1, . . . , t′n], where, for each i = 1, . . . , n, the
term t′i is the result of applying some simple rewrite rule to ti. It is possible, because
from the point of view of the Dolev-Yao intruder, the effect of sending [t′1, . . . , t′n] is
the same as the effect of sending terms t′1, . . . , t

′
n separately. The key fact here is that

the result list is not encrypted, which is the case, when protocols like IKE or RA are
considered. In the paper, we show how to model the RA protocol in our framework.
Because the formalism can express protocols with non-linear left-hand sides of rules,
we model this protocol without changes.

We prove that insecurity of protocols with selecting theories with respect to bounded
number of sessions decidable in NEXPTIME.

Structure of the Paper. Section 2 contains some basic definitions. In Section 3, the
model is introduced. It is also showed how to model the RA protocol in the proposed
framework. Section 4 contains the proof of the main result of the paper, decidability of
protocols with selecting theories.

Selecting Theories and Recursive Protocols 219

2 Preliminaries

Let T (Σ, V) denote the set of terms over the signature Σ and the set of variables V .
A term is ground, if it does not contain variables. A (ground) substitution is a mapping
from variables to (ground) terms, which, in a natural way, is extended to a mapping
from term to terms. We denote the set of subterms of t by sub(t).

For a given signature Σ, a term-DAG D is a labelled directed acyclic ordered graph
such that, if a node v is labelled with a function symbol f of arity n, then it has n
ordered immediate successors v1, . . . , vn. In such a case we write v =D f(v1, . . . , vn),
and we say that v is a parent of vi (for each i = 1, . . . , n), and vi is a child of v. We
define also the notion of descendant in the usual way. For a term-DAG D, and a vertex
v =D f(v1, . . . , vn), we recursively define the term t(v, D) represented by v in D
by the equation t(v, D) = f(t(v1, D), . . . , t(vn, D)). For s = t(v, D), we will write
v ⇒D s, or v ⇒ s, if D is known from the context.

Let Σ be a signature, V be a set of variables, and P be a set of unary predicate
symbols. If p ∈ P , and t ∈ T (Σ, V), then p(t) is an atomic formula. An atomic
formula p(t) is ground, if t is ground. A unary Horn theory is a finite set of clauses of
the form a0 ← a1, . . . , an, where a0, . . . , an are atomic formulas.

We will use the following notation. Let T be a unary Horn theory, let A, B be sets
of ground atomic formulas. We write A �T B, if there exists a proof of B with respect
to T assuming A, i.e. a sequence a1, . . . , an of atomic formulas such that each element
of B occurs in a1, . . . , an, and, for each i = 1, . . . , n, we have either (i) ai ∈ A, or
(ii) there exists a clause b0 ← b1, . . . , bm in T and a substitution θ such that ai = b0θ,
and each of b1θ, . . . , bmθ occurs in a1, . . . , ai−1. For a set of atomic formulas A, and
an atomic formula a, we write A �T a for A �T {a}.

3 The Formal Model

Protocols with Selecting Theories. Messages are ground terms over the signature Σ
consisting of constants (atomic messages such as principal names, nonces, keys), the
unary function symbol hash(·) (hashing), and the following binary function symbols:
〈·, ·〉 (pairing), {·}· (symmetric encryption), and {|·|}· (public key encryption). We as-
sume that keys used to encrypt messages are constants1. We assume that there is a
bijection ·−1 on atomic messages which maps every public (private) key k to its corre-
sponding private (public) key k−1. We assume that Σ contains the constant c0 known
to the intruder and the constant Sec (a secret). We will sometimes omit 〈·, ·〉 and write,
for instance, {t, s}k instead of {〈t, s〉}k.

Let Q and R be disjoint sets of pop predicate symbols and push predicate symbols,
respectively. A selecting theory Φ over (Q,R) is a set of clauses of the forms

q1(x1), . . . , qn(xn) ⇒ q(f(x1, . . . , xn)), (1)

q1(t), . . . , ql(t), r(t) ⇒ r′(x) where x ∈ Var(t) (2)

q1(t), . . . , ql(t), r(t) ⇒ I (s) where Var(s) ⊆ Var(t), (3)

1 In the case of the NP-completeness result for non-recursive protocols [16], only keys used in
public-key cryptography are assumed to be constants.

220 T. Truderung

where I /∈ Q ∪ R is a predicate symbol, q, q1, . . . , qn ∈ Q, r, r′ ∈ R, f ∈ Σ is a
function symbol of arity n, and x, x1, . . . , xn are variables. Clauses of the form (1),
called pop clauses, have an auxiliary role: they can simulate runs of any finite tree
automaton. The information about which states (predicate symbols) can be assigned
to a term can be used in (2) and (3), which provides a regular look-ahead. Clauses of
the form (2), called push clauses, transfer some information (predicate symbols) from
a term to its subterms. Clauses of the form (3), called send clauses, select terms to be
sent (the predicate symbol I means that the term is sent and thus it is known to the
intruder).

Let Φ be a selecting theory over (Q,R). For a term t and r ∈ R ∪ {I }, we define
the set of terms selected by Φ, �r(t)�Φ = {s | r(t) �Φ I (s)}. A rule over (Q,R) has
the form t → r(s), where t, s are terms and r ∈ R ∪ {I }. The intended meaning of
such a rule is that a principal, after receiving a term tθ, for some ground substitution θ,
sends all the terms from the set �r(sθ)�Φ . Note that the number of terms which are sent
in one step of a protocol is not bounded by the size of the protocol, it is only bounded
by the size of the message sθ. Because (for any Φ) we have �I (s)�Φ = {s}, each simple
non-recursive rewrite rule t → s can be easily expressed in our formalism by t → I (s).

A principal Π over (Q,R) is a sequence (ti → ri(si))n
i=1 of rules over (Q,R)

such that, for each i = 1, . . . , n, we have ti, si ∈ T (Σ, V), for a set of variables V , and
every variable in si occurs in t1, . . . , ti. A protocol over (Q,R) is a pair (P,Φ), where
P is a finite set of principals over (Q,R) and Φ is a selecting theory over (Q,R).

Example. Now, we show how to model the Recursive Authentication (RA) protocol
[4] in our formalism. This protocol has been analyzed using theorem provers [15,3]. In
[13] and [12] a version of this protocol has been expressed in the tree transducer-based
model (the original version has rules with non-linear left hand sides which cannot be
expressed in this model). In the presentation of the protocol we follow [13] and [12].
Because, as it was mentioned above, non-recursive receive-send actions can be modeled
in our formalism in a straightforward way, we will only describe the only recursive
action of the protocol. In this action, the server S receives a sequence of requests of
pairs of principals who want to obtain session keys. In response, S generates certificates
containing the sessions keys. For instance, suppose that S receives

m = hKc(C, S, Nc, hKb
(B, C, Nb, hKa(A, B, Na,−))),

where Na, Nb, Nc are nonces generated by A, B, C, respectively, Ka, Kb, Kc are
long-term keys shared between S and A, B, C, and hk(m) stands for the term
〈hash(k, m), m〉. The constant ‘−’ marks the end of the sequence of requests. In gen-
eral, messages sent to S may contain an arbitrary number of requests. In response to
m, the server generates two certificates for C: {Kcs, S, Nc}Kc

and {Kbc, B, Nc}Kc
,

two certificates for B: {Kbc, C, Nb}Kb
and {Kab, A, Nb}Kb

, and one certificate for A:
{Kab, B, Na}Ka

.

So, suppose that P0, . . . , Pn are principals, S = Pn, and Ki is the long-term key
shared by Pi and S. The recursive action of S can be described by the rule x → r(x)
with the selecting theory over (∅, {r}) given by the following set of clauses.

Selecting Theories and Recursive Protocols 221

I (x), I (y)⇒ I (〈x, y〉), I (x), I (k)⇒ I ({x}k), (4)

I (x)⇒ I (hash(x)) I (x), I (k)⇒ I ({|x|}k), (5)

I (〈x, y〉)⇒ I (x), I ({x}k), I (k)⇒ I (x), (6)

I (〈x, y〉)⇒ I (y), I ({|x|}k), I (k−1)⇒ I (x) (for each key k) (7)

Fig. 1. TI — The Intruder Theory

r
(
hKi(Pi, Pj , x, y)

)
⇒ r(y)

r
(
hKi(Pi, Pj , x, hKl

(Pl, Pi, x
′, y))

)
⇒ I

(
{Kij , Pj , x}Ki

)
, I
(
{Kil, Pl, x}Ki

)
r
(
hKi(Pi, Pj , x, −)

)
⇒ I

(
{Kij , Pj , x}Ki

)
,

where the constant Kij is the key for secure communication of Pi and Pj . Note that
this theory does not use a regular look-ahead, and uses only one push symbol r.

Attacks. In the Dolev-Yao model [9], the intruder have the entire control over the net-
work. He can intercept and memorize messages, generate new messages and send them
to participants with a false identity. We express the ability of the intruder to generate
(derive) new messages from a given set of messages by the theory TI in Figure 1, where
the predicate symbol I is intended to describe the intruder knowledge. For a set A of
messages, let I (A) = {I (t) | t ∈ A}. We will say that the intruder can derive a message
t from messages A, if I (A) �TI I (t).

Now, we give a definition of an attack for a bounded number of sessions. In an at-
tack, the intruder nondeterministically chooses an execution order for the protocol steps
and then produces input messages for the protocol rules. These input messages have to
be derived from the intruder’s initial knowledge and the output messages obtained so
far. The aim of the intruder is to derive the secret message Sec. If some number of inter-
leaving sessions of a protocol is to be analyzed, then these sessions have to be encoded
into the protocol, which is the standard approach when protocols are analyzed w.r.t. a
bounded number of sessions (see, for instance [16,6]).

Formally, given a protocol ({Π1, . . . ,Πl},Φ), a protocol execution scheme is a
sequence of rules π = π1, . . . ,πn such that each element of π can be assigned to
one of the participants Π1, . . . ,Πl, and, for each participant Πk (k = 1, . . . , l), the
subsequence of the elements of π assigned to Πk is Π1

k , . . . ,Πm
k , for some m ≤ |Πk|,

where Πi
k is the i-th rule of Πk.2 An attack is a pair (π, σ), where π = (ti → ri(si))n

i=1

is a protocol execution scheme, and σ is a ground substitution such that

I (c0), I (�r1(s1σ)�Φ), . . . , I (�ri−1(si−1σ)�Φ) �TI I (tiσ), for all i = 1, . . . , n (8)

I (c0), I (�r1(s1σ)�Φ), . . . , I (�rn(snσ)�Φ) �TI I (Sec). (9)

2 More formally, a sequence π1, . . . , πn of rules is a protocol execution scheme, if there is a
function f : {1, . . . , n} → {1, . . . , l} such that, for each k = 1, . . . , l, assuming that integers
i1 < · · · < im are all the elements of f−1(k), we have πij = Πj

k, for each j = 1, . . . , m.

222 T. Truderung

Recall that c0 is the only constant initially known to the intruder3. A protocol is inse-
cure, if there exists an attack on it.

We end this section with the following, easy to prove lemma.

Lemma 1. A �TI B iff there exists a proof of B with respect to TI assuming A such
that all the facts obtained by rules (6), (7) are before the facts obtained by rules (4), (5).

4 Main Result

Theorem 1. Insecurity of protocols with selecting theories w.r.t. a bounded number of
sessions is decidable in nondeterministic exponential time.

The remainder of this section is devoted to prove Theorem 1. In Subsections 4.1 and
4.2, the existence of an attack is expressed in a way which is more appropriate for the
rest of the proof. In Subsection 4.3 we introduce the key notion of ADAG. ADAGs are
labelled term-DAGs which can represent attacks. We show how to minimize ADAG, so
that, if an ADAG exists, then there exists an ADAG of an exponential size, which gives
rise to the nondeterministic exponential time algorithm for the insecurity problem.

4.1 The Theory of a Protocol

In this section we express the existence of an attack in a more uniform way, without
using expressions of the form �r(s)�Φ . We use here the fact that both selecting theories
and the intruder theory are unary horn theories. Moreover, Lemma 1 allows us to extend
selecting theories in such a way that the clauses (6) and (7) of TI are not necessary.

In the following, Acc(t) denotes the set of elements of the form s/K , where s is
a subterm of t and K is a minimal set of keys sufficient to access s providing t is
known. For example, if t = {c, {d}b}a, then Acc(t) = {t/∅, c/{a}, {d}b/{a}, d/{a,b}}.
Formally, we define Acc by the equations Acc(〈t1, t2〉) = {〈t1, t2〉/∅} ∪ Acc(t1) ∪
Acc(t2), Acc({t}k) = {{t}k/∅} ∪ {s/{k}∪K | s/K ∈ Acc(t))}, and Acc({|t|}k) =
{{|t|}k/∅} ∪ {s/{k−1}∪K | s/K ∈ Acc(t))}. Note that t/∅ ∈ Acc(t), for each term t.

Definition 1. Let (P,Φ) be a protocol over (Q,R). Let rI be a fresh predicate symbol.
The theory ΦI of the protocol P consists of the rules given in Fig. 2.

Note that the theory ΦI consists of rules of three types: (a) rules (10)
and (11), called the intruder pop rules, (b) pop rules, (c) rules of the form
I (k1), . . . , I (kn), q1(t), . . . , ql(t), r(t) ⇒ r′(x), called generalized push rules, and (d)
rules of the form I (k1), . . . , I (kn), q1(t), . . . , ql(t), r(t) ⇒ I (s), called generalized
send rules. Note also that ΦI contains all the rules of Φ. By Lemma 1, rules (12)–(14)
and (16) can simulate the intruder rules (6) and (7). Thus, one can prove the following
characterization of the existence of an attack.

3 If we want to consider an initial knowledge of the intruder given by a finite set {t1, . . . , tm},
we can add a principal with the rule c0 → I (〈t1, . . . , tm〉).

Selecting Theories and Recursive Protocols 223

I (x), I (y)⇒ I (〈x, y〉), I (x), I (k)⇒ I ({x}k), (10)

I (x)⇒ I (hash(x)) I (x), I (k)⇒ I ({|x|}k), (11)

rI(x)⇒ I (x), (12)

rI(〈x, y〉)⇒ rI(x), rI({x}k), I (k)⇒ rI(x), (13)

rI(〈x, y〉)⇒ rI(y), rI({|x|}k), I (k−1)⇒ rI(x) (for each key k) (14)

ϕ, for each pop or push rule ϕ of Φ (15)

I (k1), . . . , I (kn),q1(t), . . . , ql(t), r(t)⇒ p(s′), (16)

for each send rule q1(t), . . . , ql(t), r(t) ⇒ I (s) of Φ, for each s′/K ∈ Acc(s) with K =
{k1, . . . , kn}, where p = I , if s′ is not a variable, and p = rI , otherwise.

Fig. 2. ΦI — the theory of the protocol (P, Φ)

Lemma 2. Let (P,Φ) be a protocol over (Q,R), let π = (ti → ri(si))n
i=1 be a proto-

col execution scheme for P and σ be a substitution. The pair (π, σ) is an attack iff we
have

I (c0), r̂1(s1σ), . . . , r̂i−1(si−1σ) �ΦI I (tiσ), for all i = 1, . . . , n (17)

I (c0), r̂1(s1σ), . . . , r̂n(sn) �ΦI I (Sec), (18)

where, for each i = 1, . . . , n, we put r̂i = rI , if ri = I , and r̂i = ri, otherwise.

4.2 Stage Theories

In this subsection, we express the existence of an attack using a stage theory of a proto-
col. In this theory, instead of representing the knowledge of the intruder by the predicate
symbol I , the family of predicate symbols I (0), . . . , I (m) is used to represent his knowl-
edge at different stages of an attack.

Let (P,Φ) be a protocol over (Q,R) and π = (ti → ri(si))n
i=1 be a protocol

execution scheme. Let K be the set containing the constant Sec and all the keys of P .
A sequence e = e1, . . . , em of elements of K ∪ {1, . . . , n} is called a stage sequence
for π, if e contains all the elements Sec, 1, . . . , n, and whenever ei = k and ej = l, for
i < j, then k < l. A stage sequence represents key elements of the intruder knowledge
at consecutive stages of an attack. An element ei of such a sequence either represents a
new key that can be used by the intruder at the i-th stage (if ei is a key), or, if ei = j,
it express progress in the protocol execution, and it means that at the i-th stage the j-th
step of the protocol has been executed, so the intruder can use terms from �rj(sjσ)�Φ.

Let Ki = {a ∈ K | a = ej for some j ≤ i}. The stage theory for Φ and e, denoted
by Φe, is given in Figure 3, where p(i), for i = 0, . . . , m, and p ∈ R ∪ {rI , I}, are
fresh predicate symbols. The predicate symbol I (k) is intended to describe the intruder
knowledge at the k-th stage of an attack. The intended meaning of r(k)(t) is that the
intruder is able to prove r(t) at the k-th stage.

224 T. Truderung

q1(x1), . . . , qn(xn)⇒ q(f(x1, . . . , xn)), (19)

for each pop rule q1(x1), . . . , qn(xn)⇒ q(f(x1, . . . , xn)) of ΦI ,

q1(t), . . . , ql(t), r
(j)(t)⇒ p(i)(s), (20)

for each (generalized) push or send rule I (k1), . . . , I (km), q1(t), . . . , ql(t), r(t) ⇒ p(s) of ΦI ,
for i ≥ j, and k1, . . . , km ∈ Ki,

I (j)(x), I (k)(y)⇒ I (i)(〈x, y〉) I (j)(x)⇒ I (i)(hash(x)) if i ≥ j, k (21)

I (j)(x)⇒ I (i)({x}a), I (j)(x)⇒ I (i)({|x|}a) if i ≥ j, and a ∈ Ki. (22)

Fig. 3. Φe — The Stage Theory for Φ and e

Lemma 3. Let π = (ti → ri(si))n
i=1 be a protocol execution scheme and σ be a

ground substitution. The pair (π, σ) is an attack iff there is a stage sequence e =
e1, . . . , em for π such that

I (0)(c0),ψ1, . . . ,ψm �Φe ϕ1, . . . ,ϕm, (23)

where ϕ1, . . . ,ϕm and ψ1, . . . ,ψm are defined as follows. If ei = j ∈ {1, . . . , n},
then ϕi = I (i−1)(tjσ), and ψi = r̂

(i)
j (sjσ), where r̂ is defined like in Lemma 2. If

ei = a ∈ K, then ϕi = I (i−1)(a) and ψi = I (0)(c0).

Proof. First, suppose that (23) holds, for some π, e, and σ, and that Γ is a proof of it.
Let Γ0 denotes the subsequence of Γ containing only facts of the form q(t), for q ∈ Q.
Let Γi denotes the subsequence of Γ containing only facts of the form p(i)(t), and let
Γ≤i be the concatenation of Γ0, . . . , Γi. Let Γ ∗≤i be the sequence obtained from Γ≤i by

substituting each p(k) by p. One can show that Γ ∗≤i−1 is a proof of (17), and Γ ∗≤m is a
proof of (18). Hence, (π, σ) is an attack.

Now, suppose that we have an attack (π, σ). By Lemma 2, (17) and (18) hold.
So, let Πi be a proof of (17), for i = 1, . . . , n, and let Πn+1 be a proof of (18).
We split each Πk (for k = 1, . . . , (n + 1)) into the maximal (w.r.t. its length)
sequence Π1

k , . . . ,Πmk

k such that the last element of Πi
k, for 1 ≤ i < mk, is

of the form I (a), for a ∈ K, and this occurrence of I (a) is the only one in
Π1, . . . ,Πk−1,Π

1
k , . . . ,Πi

k. We want to re-index the obtained sequence of Πi
k, so let

Π̂1, . . . , Π̂N = Π1
1 , . . . ,Πm1

1 , . . . ,Π1
n+1, . . . ,Π

mn+1
n+1 .

For i = 1, . . . , N , let Γi be the sequence of facts obtained from Π̂i by substituting
each p(t), for p ∈ R ∪ {rI , I}, by p(i−1)(t), and let ei be equal to k, if Π̂i = Πmk

k , for
some k, and, otherwise, let ei be a, where I (a) is the last element of Π̂i. One can prove
that the concatenation of Γ1, . . . , Γn is a proof of (23). ,-

We say that a fact I(i)(t) is stronger than I(j)(t), if i ≤ j. A proof is normal, if for
each term t, it contains at most one fact of the form I (i). The following lemma is easy
to prove.

Lemma 4. It holds (23) iff there is a normal proof of

I (0)(c),ψ1, . . . ,ψm �Φe ϕ′1, . . . ,ϕ
′
m, (24)

where, for each k = 1, . . . , m, the fact ϕ′k is stronger than ϕk.

Selecting Theories and Recursive Protocols 225

4.3 ADAGs

This section is the central part of the proof of Theorem 1. We give here the definition
of an ADAG and link the existence of ADAGs with the existence of attacks (Lemma 5).
Next, we show that if there exists an ADAG which represents an attack on a protocols,
then there exists an ADAG of exponential size. Finally, as a consequence of the above,
we obtain an NEXPTIME algorithm for deciding insecurity of protocols.

We will assume that selecting theories have the following property: the push rules
are flat, i.e. are of the form (2) with t = f(x1, . . . , xn), where x1, . . . , xn are variables.
We can do it without loss of generality, because, for any selecting theory, one can easily
obtain an equivalent selecting theory with this property.

Definition 2. Let D be a term-DAG over Σ with the set V of vertices, and let T be
a set of terms over Σ and V. A function θ : sub(T) → V is a D-embedding for T , if
θ(f(t1, . . . , tn)) = v implies that v =D f(v1, . . . , vn) and θ(ti) = vi, for i = 1, . . . , n.
Embeddings θ1 and θ2 are compatible, if for each variable x which is in the domain of
both θ1 and θ2, we have θ1(x) = θ2(x).

Let v ∈ V , and t ∈ T (Σ, V). By emb(t �→ v) we denote the unique embedding
θ for {t} such that θ(t) = v (if it exists). Let v1, v2 ∈ V , and t1, t2 ∈ T (Σ, V). The
terms (t1, t2) embeds to (v1, v2), if the embeddings emb(t1 �→ v1) and emb(t2 �→ v2)
exist and are compatible.

Definition 3. Let Φ and Ψ be stage theories over (Q,R). The theory Ψ is an instance
of Φ, if each clause in Ψ is an instance of a clause in Φ.

Definition 4. Let (P,Φ) be a protocol over (Q,R), let π = (ti → ri(si))n
i=1 be a

protocol execution scheme, and e = e1, . . . , em be a stage sequence for π. Let TP

denote the set {ti, si}n
i=1 ∪{c0}∪K, and Qe denote the set of predicate symbols of Φe.

A DAG of the attack (an ADAG for short) for (Φ,π, e) is a tupleD = 〈D, α,β, Ψ, δ〉
where D is a term-DAG over Σ with the set of vertices V , δ : V → 2Qe , α is a
D-embedding for TP , a stage theory Ψ is an instance of Φ, and β is a partial function
from V ×Qe to V × Ψe, called a witness function, such that

(i) if v = α(tj), then I (i′) ∈ δ(v), for some i′ < i, where i is the integer such that
ei = j,

(ii) for each vertex v, the set δ(v) contains at most one element of the form I (i),
(iii) if p ∈ δ(v) then one of the following conditions holds:

(a) v = α(c0) and p = I (l) (for some l), or v = α(sj) and p = r̂
(i)
j , for some

i, j such that ei = j,
(b) v =D f(v1, . . . , vn), and Ψe contains the clause p1(x1), . . . , pn(xn) ⇒

p(f(x1, . . . , xn)), for some p1 ∈ δ(v1), . . . , pn ∈ δ(vn),
(c) β(v, p) = (v′,ϕ), where ϕ =

(
p1(t), . . . , pl(t) ⇒ p(xi)

)
, for t =

f(x1, . . . , xj), is a push clause of Ψe, {p1, . . . , pl} ⊆ δ(v′), and v′ =D

f(v1, . . . , vn) with vi = v, or
(d) β(v, p) = (v′,ϕ), where ϕ =

(
p1(t′), . . . , pl(t′) ⇒ p(t)

)
is a send clause

of Ψe (so p = I (j)), {p1, . . . , pl} ⊆ δ(v′), and (t, t′) embeds to (v, v′).

226 T. Truderung

Lemma 5. If there is an attack (π, σ) on a protocol (P,Φ) then there is an ADAG

〈D, α,β, Ψ, δ〉 for (Φ,π, e), for some stage sequence e for π, such that Ψ = Φ. If there
exists an ADAG for (Φ,π, e) then there exists an attack (π, σ), for some substitution σ.

Proof. Suppose that there is an attack (π, σ). By Lemma 3 and Lemma 4, there is
a sequence e and a normal proof Γ of (24). Let D be the DAG representing all the
terms of the form tσ, where t ∈ TP . For t ∈ TP , let α(t) be the vertex v such that
v ⇒ tσ. For a vertex v of D, let δ(v) be the set of the predicate symbols p ∈ Qe

such that p(tv) occurs in Γ , for v ⇒ tv . Further, if we have p(tv) in Γ , because
ϕ =

(
q1(s′), . . . , ql(s′), p′(s′) ⇒ p(s)

)
is a push or send clause of Φe, tv = sσ,

for some substitution σ, and q1(s′σ), . . . , ql(s′σ), p′(s′σ) occur in Γ before p(tv), then
let β(v, p) = (v′,ϕ), where v′ is the vertex of D such that v′ ⇒ s′σ (such a vertex
exists, because s′σ has to be a subterm of some siσ). One can show that 〈D, α,β,Φ, δ〉
is an ADAG.

Now, suppose that 〈D, α,β, Ψ, δ〉 is an ADAG for (Φ,π, e). Let σ(x) = t, where t
is the term such that α(x) ⇒ t. We produce the following sequence of facts: First, we
put all the facts of the form q(t), where v ⇒ t and q ∈ δ(v), for q ∈ Q, in such a way
that q(t) is before q′(t′), if t < t′. Second, we put all the fact of the form r(i)(t), where
v ⇒ t and r(i) ∈ δ(v), for r ∈ R ∪ {rI}, in such a way that p(t) is before p′(t′), if
t > t′. Finally, we put all the fact of the form I (i)(t), where v ⇒ t and I (i) ∈ δ(v),
in such a way that p(t) is before p′(t′), if t < t′. One can prove that this sequence
is a normal proof of (24) (note that Ψ is an instance of Φ, so each clause of Ψe is an
instance of a clause of Φe), which by Lemma 3 and Lemma 4, implies that there exists
an attack. ,-

Lemma 5 is a crucial step of our construction, because it characterizes the existence
of an attack by a structure which is defined by some local properties. Now, we will
describe how to minimize ADAGs, roughly speaking, by merging vertices which are
indistinguishable from the point of view of this local properties. We proceed in three
steps given by Lemmas 6, 7, and 8 below (proofs of these lemmas are given in the
separate sections). To formulate these lemmas we need the following definitions.

Let (P,Φ) be a protocol, and let D = 〈D, α,β, Ψ, δ〉 be an ADAG for (Φ,π, e). A
vertex v of D is bounded, if v = α(t), for some t ∈ sub(TP). Otherwise, v is free. Let
B(D) be the set of vertices which can be reached from bounded vertices, moving from
a vertex to its child, in less than |P | · |Φ| steps. Note that B(D) is exponentially bounded
with respect to the size of the protocol.

A goal is a vertex v with I (i) ∈ δ(v), for some i, such that the item (iii,d) of Defini-
tion 4 holds for v and p = I (i). Let G(D) be the set of goals of D. For a stage sequence
e, let Gk(D) = {v | v ∈ G(D), and I (i) ∈ δ(v) for e−1(k) ≤ i < e−1(k + 1)}, where
e−1(0) = 0, e−1(n + 1) = ∞, and, for k = 1, . . . , n, let e−1(k) be the integer i such
that ei = k. Let G>k(D) =

⋃
i>k Gi(D).

An ADAG D is simple, if, whenever u /∈ B(D) is a descendant of v ∈ Gi(D), then
u /∈ G>i(D). Let Φ̂ = Φ ∪ {C′ | C′ is an instance of a send clause C ∈ Φ of the form
(. . . ⇒ I (i)(s)), and the depth of C′ is not greater than |P | · i}.

Lemma 6. Let (P,Φ) be a protocol. If D = 〈D, α,β,Φ, δ〉 is an ADAG for (Φ,π, e),
then there exists a simple ADAG D′ = 〈D′, α′,β′, Φ̂, δ′〉 for (Φ,π, e).

Selecting Theories and Recursive Protocols 227

Lemma 6 states that each ADAG can be transformed to a simple ADAG. Having a
simple ADAG, we can minimize the number of its goals, which is expressed by the
following lemma. It allows us to minimize the size of the whole ADAG, as is stated in
Lemma 8.

Lemma 7. Let (P,Φ) be a protocol. If D = 〈D, α,β, Φ̂, δ〉 is a simple ADAG for
(Φ,π, e), then there exists an ADAG D′ = 〈D′, α′,β′, Φ̂, δ′〉 such that the set of goals
of D′ is exponentially bounded w.r.t. the size of (P,Φ).

Lemma 8. Let (P,Φ) be a protocol over (Q,R). If D0 = 〈D, α,β, Φ̂, δ〉 (for some
D, α,β, δ) is an ADAG for (Φ,π, e) with an exponentially bounded set of goals (w.r.t.
the size of (P,Φ)), then there is an ADAG for (Φ,π, e) of an exponentially bounded size.

Lemmas 5, 6, 7, and 8 have the following consequence.

Corollary 1. Let (P,Φ) be a protocol, and let π be a protocol execution scheme. There
is an attack (π, σ), for some σ, iff there exists an ADAG for (Φ,π, e), for some e, of an
exponential size w.r.t. the size of the protocol.

The Algorithm. To decide insecurity of a given protocol (P,Φ), we guess an attack
skeleton π, a stage sequence e, and an ADAG for (Φ,π, e) of exponential size w.r.t.
the size of the protocol. Correctness of this algorithm is given by the Corollary 1. The
algorithm works in NEXPTIME, which concludes the proof of Theorem 1. ,-

An easy to obtain lower bound is DEXPTIME, because the problem of the emptiness
of the intersection of regular tree languages, which is DEXPTIME-hard, can be easily
reduced to the problem of deciding protocols with selecting theories (in the reduction,
pop-clauses of selecting theories are used).

4.4 Proof of Lemma 6

We start this section with technical definitions used in this section and in the following
ones. For an ADAG D, let Si

D denote the set of descendants of α(c0), α(tj), α(sj), for
j ≤ i. For a goal u, we define sets of vertices Bu

D and Fu
D in the following way. Let

β(u, I (i)) = (u′,ϕ), with ϕ =
(
q1(t′), . . . , ql(t′), r(t′) ⇒ I (i)(t)

)
, θ = emb(t �→ u),

and θ′ = emb(t′ �→ u′). Bu
D = {θ(s) | s is a subterm of t or t′}. Fu

D = {θ(x) | x ∈
dom(θ) ∩ dom(θ′)} (note that θ and θ′ are compatible, so θ(x) = θ′(x)).

We write (v′, p′) D�(v, p), if β(v, p) = (v′,ϕ), for ϕ =
(
q1(t′), . . . , ql(t′), p′(t′) ⇒

p(t)
)
. Let D�∗ denotes the transitive closure of D�. If u is a goal and I (i) ∈ δ(u), then

we can write (v, p) D�∗u instead of (v, p) D�∗(u, I (i)), and v D�∗u, if, for some p′, we
have (v, p′) D�∗(u, I (i)).

In order to prove Lemma 6, we construct a sequence D0, . . . ,Dn = D′ of ADAGs
such that D0 = 〈D, α,β, Ψ̂ , δ〉 and, for each Di (i = 0, . . . , n), we have

(∗) if u /∈ B(Di) is a descendant of v ∈ Gj(Di), for j = 1, . . . , i, then u /∈
G>j(Di), and

(∗∗) if u ∈ G>i(Di) and β(u) = (u′,ϕ), then either ϕ ∈ Φ, or Fu
Di
⊆ Si

Di
.

228 T. Truderung

It is easy to show that D0 is an ADAG for (Φ,π, e) and (∗), (∗∗) hold for D0. Now,
assume that (∗) and (∗∗) hold for Di−1 = 〈Di−1, α,βi−1, Φ̂, δi−1〉. We will con-
struct Di = 〈Di, α,βi, Φ̂, δi〉. Let Vi−1 and Vi denote the sets of vertices of Di−1

and Di, respectively. Let A = {u | u is a descendant of some u′ ∈ Gi(Di−1),
u /∈ Gi(Di−1), u /∈ Si

Di−1
}. Let X be the least set of vertices of Di−1 such that

(i) if u ∈ A and u is bounded, then u ∈ X , (ii) if u ∈ X and u′ ∈ A is a child of u,
then u′ ∈ X .

The construction of Di. Let Vi = Vi−1 ∪Wi, where Wi is the set of fresh vertices
of the form v̂, for v ∈ A. Now, suppose that v =Di−1 f(v1, . . . , vn). For each i =
1, . . . , n, we define h(v, i) as follows. If v /∈ A, vi ∈ A, v /∈ G≤i(Di−1), and v or vi is
free, then h(v, i) = v̂i. Otherwise, h(v, i) = vi. We put v =Di f(h(v, 1), . . . , h(v, n)).
For v ∈ A with v =Di−1 f(v1, . . . , vn) we put v̂ =Di f(v′1, . . . , v

′
n), where, for each

i = 1, . . . , n, v′i = v̂i, if vi ∈ A, and v′i = vi, otherwise. Note that Si
Di−1

= Si
Di

.
The construction of δi. For v ∈ A we define the set R(u) ⊆ R ∪ {rI} by the

following equivalence: r ∈ R(u) iff there exist vertices w /∈ A and v ∈ A such that
h(w, k) = v̂, for some k, and (w, r′′)Di−1� (v, r′)Di−1� ∗(u, r), for some r′, r′′. For v /∈ A,
let δi(v) = δi−1(v). For v ∈ A, we define δi(v) and δi(v̂) as follows: δQ = {q ∈
Q | q ∈ δi−1(v)}, δi(v) = δQ ∪ {r ∈ R | r ∈ δi−1(v), r /∈ R(v)} ∪ {I (j) | I (j) ∈
δi−1(v), and either j ≤ i, or v ∈ X}, and δi(v̂) = δQ ∪ {r ∈ R | r ∈ δi−1(v), r ∈
R(v)} ∪ {I (j) | I (j) ∈ δi−1(v)}. It is easy to check that δi−1(v) = δi(v) ∪ δi(v̂).

The construction of βi. If v is a vertex ofDi−1 and r ∈ R∪{rI}, r ∈ δi(v), then let
βi(v, r) = βi−1(v, r). If v ∈ A and r ∈ R∪{rI}, r ∈ δi(v̂), then let βi(v̂, r) = (w, r′),
where βi−1(v, r) = (u, r′), and w = u, if u /∈ A, and w = û, otherwise.

For v ∈ Vi, let us define v̌ ∈ Vi−1 as follows: v̌ = v, if v ∈ Vi−1, and v̌ = u, if
v = û. For v ∈ Vi−1, and r ∈ δi−1(v), we define g(v, r) ∈ Vi as follows: g(v, r) = v,
if r ∈ δi(v), and g(v, r) = v̂, otherwise.

Let v ∈ Vi with I (j) ∈ δi(v). We will define βi(v, I (j)). Let (v′,ϕ) = βi−1(v̌, I (j)),
with ϕ =

(
q1(t′), . . . , ql(t′), r(t′) ⇒ I (j)(t)

)
. Let w = g(v′, r). Note that, because

r ∈ δi(u), we have r ∈ δi+1(w). Since, by the inductive hypothesis, (∗∗) holds for
Di−1, it is enough to consider two cases:

1. Bv̌
Di−1

∩A = ∅, or F v̌
Di−1

⊆ Si
Di

. In this case, let βi(v, I (j)) = (w,ϕ).
2. Bv̌

Di−1
∩ A
= ∅, and ϕ ∈ Φ. In this case we proceed as follows. Let θv̌ =

emb(t �→ v̌). We define a substitution σ with the domain dom(σ) = {x | x ∈
Var(t), θv̌(x) ∈ A} as follows. Let x ∈ dom(σ). Let u be an (arbitrarily chosen)
vertex in Gi(Di−1) such that θv̌(x) is a descendant of u (such a vertex exists, be-
cause θv̌(x) ∈ A). Let βi(u, I (i)) = (u′,ψ), with ψ of the form (. . . ⇒ I (i)(s)),
θu = emb(s �→ u). One can show that there exists a subterm s′′ of s such that
θv̌(x) = θu(s′′). We define σ(x) = s′′. Let ϕ′ = ϕσ. One can show that ϕ′ ∈ Φ̂.
Finally, let βi(v, I (j)) = (w,ϕ′).

One can prove that Di is an ADAG and (∗∗) holds. Now we will show that (∗) holds.
Let u /∈ B(Di) be a descendant of some v ∈ Gj(Di), for some j = 1, . . . , i. Note that
u /∈ B(Di) implies u /∈ X . For j < i, if we suppose that u ∈ G>j(Di), then we have
v̌ ∈ Gj(Di−1) and ǔ ∈ G>j(Di−1). We also have that ǔ is a descendant of v̌, which
contradicts the inductive hypothesis.

Selecting Theories and Recursive Protocols 229

Now, assume that j = i. Note that, for any v ∈ A, the vertex v̂ is not a descendant
of any v′ ∈ Gi(Di). So, suppose that u ∈ A. In this case the definition of δi guarantees
that u /∈ G>j(Di). Second, suppose that u /∈ A. In this case u ∈ Si

Di
, and because u /∈

B(Di), u is free and u is reachable from α(ti). It means that there is a path v1, . . . , vM

in Di, such that v1 = α(ti), vM is a leaf, and u = vk, for some k. Because I (i−1) ∈
δi(v1), then there exists an index l such that vl ∈ Gi−1(Di) and, for each l′ = 1, . . . , l,
I (i−1) ∈ δi(vl′). So, if k ≤ l, then u /∈ G>j(Di) (δi(v) contains I (i−1), so it cannot
contain I (j) for any j
= i− 1), and if k > l, then by inductive hypothesis, we also have
u /∈ G>j(Di). It concludes the proof of Lemma 6. ,-

One can also prove, using very similar argumentation to the one in the last paragraph
of the proof above, the following fact.

Lemma 9. If D is a simple ADAG, u ∈ Si
D and u /∈ B(D), then u /∈ G≥i(D).

4.5 Proof of Lemma 7

We will construct a sequence Dn, . . . ,D0 of ADAGs, starting with Dn = D. We will
show that G≥i(Di) is exponentially bounded, which, for i = 0, means that the set of
goals ofD0 is exponentially bounded. All the ADAGs of this family share the same α, Φ̂,
and the same set of vertices. So, letDi+1 = 〈Di+1, α,β, δi+1〉. We will constructDi =
〈Di, α,β, δi〉. By induction, we assume that G>i(Di+1) is exponentially bounded.

For v1, v2 ∈ Gi(Di+1), let v1 ∼ v2 iff δi+1(v1) = δi+1(v2). Let h be a function
which for the equivalence class [v]∼ of v, gives some vertex h([v]∼) ∈ [v]∼ such that no
vertex v′ ∈ [v]∼ is a descendant of h([v]∼). Let H = {v ∈ Gi(Di+1) | h([v]∼) = v}.
Let G be the least subset of Gi(Di+1) such that:

(a) if u ∈ Gi(Di+1) is an element of B(Di+1) ∪H , then u ∈ G,
(b) if u ∈ Bv

Di+1
, for some v ∈ G>i(Di+1), then u ∈ G,

(c) if u
Di+1� ∗u′, for some u′ ∈ G>i(Di+1), then u ∈ G,

(d) if u ∈ Gi(Di+1) is a descendant of some u′ ∈ G, then u ∈ G.

Using Lemma 9 and the fact that, for u ∈ Gi(Di+1), we have Fu
Di+1

⊆ Si
Di+1

, one can
show that each u ∈ Gi(Di+1) can have at most exponentially many descendants in G,
and hence, the size of G is exponentially bounded as well. Let Ḡ = Gi(Di+1) \ G.

The construction of Di. We define δi(v) as follows. Let δQ(v) = δi+1(v) ∩ Q, let

δR(v) = {r(j) | r(j) ∈ δi+1(v), and (v, r(j))Di+1� u, for some u /∈ Ḡ }, and let δI(v) =
{I (j) | I (j) ∈ δi+1(v)}. If v ∈ Ḡ, then let δi(v) = δQ(v) ∪ δR(v). Otherwise, let
δi(v) = δQ(v)∪ δR(v)∪ δI(v). To define the term-DAG Di, let v =Di+1 f(v1, . . . , vk).
For each i = 1, . . . , k, we define v′i: If I (j) ∈ δ(v), v /∈ Gj(Di+1), and vi ∈ Ḡ, then
v′i = h([vi]∼). Otherwise, v′i = vi. Note that because Gi(Di) = G, the size of Gi(Di)
is exponentially bounded. Note also that the number of goals from G>i(Di)∪G<i(Di)
has not been changed.

One can show that Di it is an ADAG. The most difficult thing to prove is that
the item (iii,d) of Definition 4 holds for each vertex v ∈ Gj(Di) (for some j). So
suppose that v ∈ Gj(Di). Clearly, v ∈ Gj(Di+1). Let (v′,ϕ) = β(v, I (j)) with
ϕ =

(
q1(t′), . . . , ql(t′), r(t′) ⇒ I (j)(t)

)
. We have (t, t′) embeds to (v, v′) in Di+1.

230 T. Truderung

If Bv
Di+1

does not contain any u ∈ Ḡ, then Bv
Di+1

and Bv
Di

have exactly the same struc-
ture and clearly (t, t′) embeds to (v, v′) in Di. So suppose that there exists u ∈ Bv

Di+1

such that u ∈ Ḡ. Because u /∈ G, we have v /∈ G>i(Di+1) (see (b) above). We consider
two cases. In the both we get a contradiction.

1. u is a descendant of v. Then v /∈ G<i(Di+1), because Di+1 is simple and, by (a),
u /∈ B(Di+1). So, v ∈ Gi. But in this case we cannot have v ∈ G (because u
would be in G too; see (d)), and v cannot be in Gi(Di).

2. u is not a descendant of v. By Lemma 9, either u ∈ B(Di+1) and u ∈ G (see (a)),
or u /∈ Si

Di+1
which implies v′ /∈ Si

Di+1
and v /∈ G≤i(Di+1). ,-

4.6 Proof of Lemma 8

For an ADAG D let U(D) be the set of free vertices which are not in Bv
D, for any goal

v of D, and let U(D) denote the set of vertices of D which are not in U(D). One can
check that the size of U(D0) is exponentially bounded.

Now, consider the following procedure. For an input ADAG D = 〈D, α,β, Ψ, δ〉
such that some vertex u ∈ U(D) has more than one parent, we construct an ADAG D′ =
〈D′, α,β′, Ψ, δ′〉 in the following way. Let v1, . . . , vk be the parents of u (k > 1). We
construct the term-DAG D′ from D by splitting u into u1, . . . , uk and making vi the only
parent of ui. If u′
= u, then we put δ′(u′) = δ(u) and β′(u′) = β(u′). We put δ′(ui) =
{p ∈ δ(u) | either p ∈ Q, p is of the form I (j), or (p′, vi) D�(p, u), for some p′}. For
r ∈ R ∪ {rI}, r ∈ δ′(ui), we put also β′(ui, r) = β(u, r). One can verify, thatD′ is in
fact an ADAG. Note also that U(D′) = U(D).

Starting with D0, we can repeat this procedure until we obtain an ADAG D1 =
〈D1, α,β1, Φ̂, δ1〉 for (Φ,π, e) such that each v ∈ U(D1) has at most one parent and,
because U(D0) = U(D1), the number of goals is exponentially bounded. Now, we will
minimize the number of vertices in U(D1). Let V denotes the set of vertices of D1, let
U = U(D1), and U = U(D1). Let ≺ be a linear ordering on V compatible with the
DAG ordering (i.e. if v is a descendant of v′ then v ≺ v′). Let v1 ≺ · · · ≺ vN−1 be
all the vertices of U . For k = 0, . . . , N , we define the k-th segment Uk of D by the
following equations: U0 = {u ∈ U | u ≺ v1}, UN = {u ∈ U | vN−1 ≺ u}, and for
k = 1, . . . , (N − 1), Uk = {u ∈ U | vk−1 ≺ u ≺ vk}. Note that

⋃N
k=1 Uk = U .

For a vertex v, let ρ(v) = {u | u is a goal and v
D1�∗u}. Let v, v′ ∈ Uk (for k =

0, . . . , N). Suppose that ρ(v) = ρ(v′) and δ(v) = δ(v′). Then we have either v < v′

or v′ < v. Let us assume that v < v′ holds. Let us remove v and replace it by v′ (i.e.
whenever v was a child of u, we make v′ a child of u instead). For each r ∈ δ(v′), let
β(v′, r) = β(v, r). One can prove that what we have obtained is an ADAG. We repeat
this procedure until the ADAG has no two distinct vertices v, v′ ∈ Uk, for some k, with
ρ(v) = ρ(v′) and δ(v) = δ(v′).

Because |U | = |U(D0)| is exponentially bounded and N = |U |, to complete the
proof it is enough to show that each Uk is exponentially bounded. Let M denote the
number of goals of the resulting ADAG (which is equal to the number of goals of D0)
and K denote the number of distinct possible values of δ. One can show that each path
in Uk is not longer than M ·K (since vertices from Uk can have at most one parent, the
values of ρ(u) can only decrease along a path). One can also show that, if v, v′ ∈ Uk are

Selecting Theories and Recursive Protocols 231

not on the same path, then ρ(v)∩ρ(v′) = ∅, and thus, the number of distinct (maximal)
paths in Uk is bounded by M . Hence, the size of Uk is bounded by M2 · K which is
exponential w.r.t. the size of (P,Φ). ,-

5 Conclusions

We have introduced a new formalism to model recursive cryptographic protocols. In this
formalism, one can express protocols such that participants are able to send many mes-
sages in one step, to compare, and to store messages. Usefulness of the proposed model
is illustrated by an example. We have proven that the insecurity problem of protocols
with selecting theories w.r.t. a bounded number of sessions is decidable in NEXPTIME.

The proof technique used in this paper (stage theories, representing attacks by
ADAGs) is, in its outline, an adaptation of the method used in [17] to prove NP-com-
pleteness of insecurity of (non-recursive) protocols, where the initial knowledge of the
intruder is a regular language of terms. In [17], however, the minimization of an ADAG

is relatively simple and straightforward, whereas in this paper, it is the main technical
difficulty.

Future work. The exact complexity of the problem of deciding protocols with selecting
theories is not known. Another open problem is decidability of security of protocols
with selecting theories and with complex keys.

References

1. Roberto M. Amadio and Witold Charatonik, On name generation and set-based analysis in
the Dolev-Yao model, CONCUR, Lecture Notes in Computer Science, vol. 2421, Springer,
2002, pp. 499–514.

2. G. Ateniese, M. Steiner, and G. Tsudik, Authenticated group key agreement and friends, Pro-
ceedings of the 5th ACM Conference on Computer and Communication Serucity (CCS’98),
ACM Press, 1998.

3. J. Bryans and S.A. Schneider, CSP, PVS, and a recursive authentication protocol, DIMACS
Workshop on Formal Verification of Security Protocols, 1997.

4. J.A. Bull and D.J. Otway, The authentication protocol, Technical Report DRA/CIS3/PROJ/
CORBA/SC/1/CSM/436-04/-03, Defence Research Agency, Malvern, UK, 1997.

5. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani, Deciding the security of protocols
with Diffie-Hellman exponentiation and products in exponents, FSTTCS, 2003.

6. , An NP decision procedure for protocol insecurity with XOR, LICS, 2003.
7. H. Comon and V. Shmatikov, Is it possible to decide whether a cryptographic protocol is

secure or not?, Journal of Telecommunications and Information Technology, special issue
on cryptographic protocol verification 4 (2002), 5–15.

8. H. Comon-Lundh and V. Shmatikov, Intruder deductions, constraint solving and indecurity
decision in presence of exclusive or, LICS, 2003.

9. D. Dolev and A.C. Yao, On the security of public-key protocols, IEEE Transactions on Infor-
mation Theory 29 (1983), 198–208.

10. N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrov, Undecidability of bounded security
protocols, Workshop on Formal Methods and Security Protocols (FMSP’99), 1999.

232 T. Truderung

11. S. Even and O. Goldreich, On the security of multi-party ping-pong protocols, Technical
Report 285, Israel Institute of Technology, 1983.

12. Ralf Küsters and Thomas Wilke, Automata-based analysis of recursive cryptographic proto-
cols, Technical Report IFI 0311, CAU Kiel, 2003.

13. , Automata-based analysis of recursive cryptographic protocols, STACS, Lecture
Notes in Computer Science, vol. 2996, Springer, 2004, pp. 382–393.

14. Catherine Meadows, Formal methods for cryptographic protocol analysis: Emerging issues
and trends, IEEE Journal on Selected Areas in Communication 21 (2003), no. 1, 44–54.

15. L.C. Paulson, Mechanized proofs for a recursive authentication protocol, 10th IEE Computer
Security Foundations Workshop (CSFW-10), IEEE Press, 1997.

16. Michaël Rusinowitch and Mathieu Turuani, Protocol insecurity with a finite number of ses-
sions, composed keys is NP-complete, Theor. Comput. Sci. 1-3 (2003), no. 299, 451–475.

17. Tomasz Truderung, Regular protocols and attacks with regular knowledge, Proceedings of
CADE 2005, LNCS, Springer, 2005, to appear.

Constraint Solving for Contract-Signing Protocols

Detlef Kähler and Ralf Küsters

Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany

{kaehler, kuesters}@ti.informatik.uni-kiel.de

Abstract. Research on the automatic analysis of cryptographic protocols has so
far mainly concentrated on reachability properties, such as secrecy and authen-
tication. Only recently it was shown that certain game-theoretic security proper-
ties, such as balance for contract-signing protocols, are decidable in a Dolev-Yao
style model with a bounded number of sessions but unbounded message size.
However, this result does not provide a practical algorithm as it merely bounds
the size of attacks. In this paper, we prove that game-theoretic security properties
can be decided based on standard constraint solving procedures. In the past, these
procedures have successfully been employed in implementations and tools for
reachability properties. Our results thus pave the way for extending these tools
and implementations to deal with game-theoretic security properties.

1 Introduction

One of the central results in the area of automatic analysis of cryptographic protocols
is that the security of cryptographic protocols is decidable when analyzed w.r.t. a finite
number of sessions, without a bound on the message size, and in presence of the so-
called Dolev-Yao intruder (see, e.g., [14,1]). Based on this result, many fully automatic
tools (see, e.g., [2,7,13]) have been developed and successfully been applied to find
flaws in published protocols, where many of these tools employ so-called constraint
solving procedures (see, e.g., [13,7,4]). However, the mentioned decidability result and
tools are restricted to security properties such as authentication and secrecy which are
reachability properties of the transition system associated with a given protocol. In con-
trast, crucial properties required of contract-signing and related protocols (see, e.g.,
[9,3]), for instance abuse-freeness [9] and balance [5], are game-theoretic properties of
the structure of the transition system associated with a protocol. Balance, for instance,
requires that in no stage of a protocol run, the intruder or a dishonest party has both a
strategy to abort the run and a strategy to successfully complete the run and thus obtain
a valid contract.

Only recently [11], the central decidability result mentioned above was extended
to such game-theoretic security properties, including, for instance, balance. However,
similar to the result by Rusinowitch and Turuani [14] for reachability properties, the
decision algorithm presented in [11] is merely based on the fact that the size of at-
tacks can be bounded, and hence, all potential attacks up to a certain size have to be
enumerated and checked. Clearly, just as in the case of reachability properties, this is
completely impractical. For reachability properties, one has therefore developed the
mentioned constraint solving procedures to obtain practical decision algorithms.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 233–247, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

234 D. Kähler and R. Küsters

The main contribution of the present work is a constraint-based decision algorithm
for the game-theoretic security properties of the kind considered in [11]. The main
feature of our algorithm is that it can be built on top of standard constraint solving
procedures (see, e.g., [13,7,4] and references therein). As mentioned, such procedures
have successfully been employed for reachability properties in the past and proved to
be a good basis for practical implementations. Hence, our algorithm paves the way for
extending existing implementations and tools for reachability properties to deal with
game-theoretic security properties.

In a nutshell, our constraint-based algorithm works as follows: Given a protocol
along with the considered game-theoretic security property, first the algorithm guesses
what we call a symbolic branching structure. This structure represents a potential at-
tack on the protocol and corresponds to the interleavings, which are, however, linear
structures, guessed for reachability properties. In the second step of the algorithm, the
symbolic branching structure is turned into a constraint system. This step requires some
care due to the branching issue and write-protected channels considered in our model
(also called secure channels here), i.e., channels that are not under the control of the in-
truder. Then, a standard constraint solving procedure is used to compute a finite sound
and complete set of so-called simple constraint systems. A simple constraint system
in such a set represents a (possibly infinite) set of solutions of the original constraint
system and the sound and complete set of these simple constraint systems represents
the set of all solutions of the original constraint system. Finally, it is checked whether
(at least) one of the computed simple constraint systems in the sound and complete set
passes certain additional tests.

There are some crucial differences of our constraint-based algorithm to algorithms
for reachability properties: First, as mentioned, instead of symbolic branching struc-
tures, for reachability properties only interleavings, i.e., linear structures, need to be
guessed. Turning these interleavings into constraint systems is immediate due to the ab-
sence of the branching issue and the absence of secure channels. Second, and more im-
portantly, for reachability properties it suffices if the constraint solving procedure only
returns one simple constraint system, rather than a sound and complete set. Third, the
final step of our constraint-based algorithm—performing additional tests on the simple
constraint system—is not required for reachability properties.

We emphasize that even though for reachability properties it suffices if the constraint
solving procedure returns only one simple constraint system, standard constraint solv-
ing procedures are typically capable of computing sound and complete sets of simple
constraint systems. Any such procedure can be used by our constraint-based algorithm
as a black-box for solving constraint systems. This makes it possible to extend exist-
ing implementations and tools for reachability properties to deal with game-theoretic
properties since the core of the algorithms—solving constraint systems—remains the
same, provided that the considered cryptographic primitives can be dealt with by the
constraint solving procedure (see Section 4).

The protocol and intruder model that we use is basically the one proposed in [11],
which in turn is the “bounded session” version of a model proposed in [5]. We slightly
modify the model of [11]—without changing its expressivity and accuracy—in order to
simplify our constraint-based algorithm (see Section 2 and 3).

Constraint Solving for Contract-Signing Protocols 235

Further Related Work. Contract-signing and related protocols have been analyzed both
manually [5], based on a relatively detailed model (as mentioned before, our model is
a “bounded session” version of this model), and using finite-state model checking (see,
e.g., [15,12]), based on a coarser finite-state model. Drielsma and Mödersheim [8] were
the first to apply an automatic tool based on constraint solving to the contract-signing
protocol by Asokan, Shoup, and Waidner [3]. Their analysis is, however, restricted to
reachability properties since game-theoretic properties cannot be handled by their tool.
The results shown in the present work pave the way for extending such tools in order to
be able to analyze game-theoretic properties.

Structure of This Paper. We first introduce our protocol and intruder model (Section 2)
as well as intruder strategies and game-theoretic properties (Section 3). Section 4 pro-
vides the necessary background on constraint solving. In Section 5, we present our
constraint-based decision algorithm along with an example and state our main result—
soundness, completeness, and termination of the algorithm. We conclude in Section 6.
Full definitions and proofs can be found in our technical report [10].

2 The Protocol and Intruder Model

The protocol and intruder model that we use basically coincides with the model first
introduced in [11], which in turn is the “bounded session” version of the model pro-
posed in [5]. We only slightly modify the model in [11] in that we impose a restriction
on principals which is necessary for principals to perform feasible computations.

In our model, a protocol is a finite set of principals and every principal is a finite
tree, which represents all possible behaviors of the principal, including all subprotocols
a principal can carry out. Each edge of such a tree is labeled by a rewrite rule, which
describes the receive-send action that is performed when the principal takes this edge
in a run of the protocol.

When a principal carries out a protocol, it traverses its tree, starting at the root. In
every node, the principal takes its current input, chooses one of the edges leaving the
node, matches the current input with the left-hand side of the rule the edge is labeled
with, sends out the message which is determined by the right-hand side of the rule, and
moves to the node the chosen edge leads to. While in the standard Dolev-Yao model
(see, e.g., [14]) inputs to principals are always provided by the intruder, in our model
inputs can also come from the secure channel. Secure channels are typically used by
principals in contract-signing protocols to communicate with a trusted third party. The
important point is that these channels are not controlled by the intruder, i.e., the intruder
cannot delay, duplicate, remove messages, or write messages onto this channel under a
fake identity (unless he has corrupted a party). However, just as in [5], the intruder can
read the messages written onto the secure channel. We note that our results also hold
in case of read-protected secure channels. Another difference to standard Dolev-Yao
models is that, in order to be able to formulate game-theoretic properties, we explicitly
describe the behavior of a protocol as an infinite-state transition graph which comprises
all runs of a protocol.

We now describe the model in more detail by defining terms and messages, the
intruder, principals and protocols, and the transition graph.

236 D. Kähler and R. Küsters

Terms and Messages. As usual, we have a finite set V of variables, a finite set A of
atoms, a finite set K of public and private keys equipped with a bijection ·−1 assigning
public to private keys and vice versa. In addition, we have a finite set N of principal
addresses for the secure channels and an infinite set AI of intruder atoms, containing
nonces and symmetric keys the intruder can generate. All of the mentioned sets are
assumed to be disjoint.

We define two kinds of terms by the following grammar, namely plain terms and
secure channel terms:

plain-terms ::= V | A | AI | 〈plain-terms, plain-terms〉 | {plain-terms}s
plain-terms |

{plain-terms}a
K | hash(plain-terms) | sigK(plain-terms)

sec-terms ::= sc(N ,N , plain-terms)
terms ::= plain-terms | sec-terms | N

While the plain terms are standard in Dolev-Yao models, a secure channel term of the
form sc(n, n′, t) stands for feeding the secure channel from n to n′ with t. Knowing
n grants access to secure channels with sender address n. A (plain/secure channel)
message is a (plain/secure channel) ground term, i.e., a term without variables.

Intruder. Given a set I of messages, the (infinite) set d(I) of messages the intruder
can derive from I is the smallest set satisfying the following conditions: I ⊆ d(I);
if m, m′ ∈ d(I), then 〈m, m′〉 ∈ d(I); if 〈m, m′〉 ∈ d(I), then m ∈ d(I) and
m′ ∈ d(I); if m, m′ ∈ d(I), then {m}s

m′ ∈ d(I); if {m}s
m′ ∈ d(I) and m′ ∈ d(I),

then m ∈ d(I); if m ∈ d(I) and k ∈ d(I) ∩ K, then {m}a
k ∈ d(I); if {m}a

k ∈ d(I)
and k−1 ∈ d(I), then m ∈ d(I); if m ∈ d(I), then hash(m) ∈ d(I); if m ∈ d(I)
and k−1 ∈ d(I) ∩ K, then sigk(m) ∈ d(I) (the signature contains the public key
but can only be generated if the corresponding private key is known); if m ∈ d(I),
n ∈ d(I)∩N , and n′ ∈ N , then sc(n, n′, m) ∈ d(I) (writing onto the secure channel);
AI ⊆ d(I) (generating fresh constants).

Intuitively, n ∈ d(I) ∩ N means that the intruder has corrupted the principal with
address n and therefore can impersonate this principal when writing onto the secure
channel.

In our model, all (strongly) dishonest parties are subsumed in the intruder. Weakly
dishonest parties can be modeled as principals whose specification deviates from the
specification of the protocol.

Principals and Protocols. Principal rules are of the form L ⇒ R where L is a term or
ε and R is a term.

A rule tree Π = (V, E, r, �) is a finite tree rooted at r ∈ V where � maps every
edge (v, v′) ∈ E of Π to a principal rule �(v, v′).

A principal is a tuple consisting of a rule tree Π = (V, E, r, �) and a finite set of
plain messages, the initial knowledge of the principal. Similar to models for reachability
properties, we require that every variable occurring on the right-hand side of a principal
rule �(v, v′) in Π also occurs on the left-hand side of �(v, v′) or on the left-hand side
of a principal rule on the path from r to v. In addition, and unlike [11], we require a
condition necessary for the principal to perform a feasible computation: The decryption

Constraint Solving for Contract-Signing Protocols 237

and signature verification operations performed when receiving a message can actually
be carried out, i.e., terms in key positions (t′ in {t}s

t′ , k−1 in {t}a
k, and k in sigk(t))

on the left-hand side of principal rules can be derived from the set consisting of the
left-hand side of the current principal rule, the left-hand sides of preceeding rules, and
the initial knowledge of the principal. Obviously, the above condition is satisfied for
all realistic principals. Moreover, it allows to simplify the constraint-based algorithm
(Section 5).

For v ∈ V , we write Π↓v to denote the subtree of Π rooted at v. For a substitu-
tion σ, we write Πσ for the principal obtained from Π by substituting all variables x
occurring in the principal rules of Π by σ(x).

A protocol P = ((Π1, . . . ,Πn), I) consists of a finite sequence of principals Πi

and a finite set I of messages, the initial intruder knowledge. We require that each
variable occurs in the rules of only one principal, i.e., different principals must have
disjoint sets of variables. We assume that intruder atoms, i.e., elements of AI , do not
occur in P .

As an example protocol, let us consider Pex as depicted in Figure 1. This protocol
consists of two principals Π1 and Π2 and the initial knowledge I0 = {{a}s

k, {b}s
k} of

the intruder. Informally speaking, Π2 can, without waiting for input from the secure
channel or the intruder, decide whether to write 〈a, b〉 or 〈b, b〉 into the secure channel
from Π2 to Π1. While the intruder can read the message written into this channel, he
cannot modify or delay this message. Also, he cannot insert his own message into this
channel as he does not have the principal address 2 in his intruder knowledge, and
hence, cannot generate messages of the form sc(2, ·, t). Consequently, such messages
must come from Π2. Principal Π1 first waits for a message of the form 〈x, b〉 in the
secure channel from Π2 to Π1. In case Π2 wrote, say, 〈a, b〉 into this channel, x is
substituted by a, and this message is written into the network, and hence, given to
the intruder. Next, Π1 waits for input of the form {y}s

k. This is not a secure channel
term, and thus, comes from the intruder. In case the intruder sends {b}s

k, say, then y is
substituted by b. Finally, Π1 waits for input of the form a (in the edges from f3 to f4

and f3 to f5) or b (in the edge from f3 to f6). Recall that x was substituted by a and y
by b. If the intruder sends b, say, then Π2 takes the edge from f3 to f6 and outputs c2

into the network. If the intruder had sent a, Π1 could have chosen between the first two
edges. We note that this protocol is not meant to perform a useful task. It is rather used
to illustrate different aspects of our constraint-based algorithm ([11] contains a formal
specification of the contract-signing protocol by Asokan, Shoup, and Waidner [3] in our
model).

2.1 Transition Graph Induced by a Protocol

A transition graph GP induced by a protocol P comprises all runs of a protocol. To
define this graph, we first introduce states and transitions between these states.

A state is of the form ((Π1, . . . ,Πn), σ, I,S) where σ is a ground substitution,
for each i, Πi is a rule tree such that Πiσ is a principal, I is a finite set of messages,
the intruder knowledge, and S is a finite multi-set of secure channel messages, the
secure channel. The idea is that when the transition system gets to such a state, then
the substitution σ has been performed, the accumulated intruder knowledge is what can

238 D. Kähler and R. Küsters

g1

g2 g3

ε ⇒ sc(2, 1, 〈a, b〉) ε ⇒ sc(2, 1, 〈b, b〉)
Π2:Π1: f1

f4 f5 f6

f2

f3

sc(2, 1, 〈x, b〉)⇒ x

a ⇒ c1 y ⇒ c2x ⇒ c2

{y}s
k ⇒ y

Fig. 1. Protocol Pex = ({Π1, Π2}, I0) with I0 = {{a}s
k, {b}s

k}, initial knowledge {1, a, b, k,

c1, c2} of Π1 and initial knowledge {2, a, b} of Π2.

be derived from I, the secure channels hold the messages in S, and for each i, Πi is
the “remaining protocol” to be carried out by principal i. This also explains why S
is a multi-set: messages sent several times should be delivered several times. Given a
protocol P = ((Π1, . . . ,Πn), I) the initial state of P is ((Π1, . . . ,Πn), σ, I, ∅) where
σ is the substitution with empty domain.

We have three kinds of transitions: intruder, secure channel, and ε-transitions. In
what follows, let Πi = (Vi, Ei, ri, �i) and Π ′

i = (V ′i , E′i, r
′
i, �
′
i) denote rule trees. We

define under which circumstances there is a transition

((Π1, . . . ,Πn), σ, I,S) τ−→ ((Π ′
1, . . . ,Π

′
n), σ′, I ′,S′) (1)

with τ an appropriate label.

1. Intruder transitions: The transition (1) with label i, m, I exists if there exists v ∈ Vi

with (ri, v) ∈ Ei and �i(ri, v) = L ⇒ R, and a substitution σ′′ of the variables
in Lσ such that (a) m ∈ d(I), (b) σ′ = σ ∪ σ′′, (c) Lσ′ = m, (d) Π ′

j = Πj for
every j
= i, Π ′

i = Πi↓v, (e) I ′ = I ∪{Rσ′} if R
= sc(·, ·, ·), and I ′ = I ∪{tσ′}
if R = sc(·, ·, t) for some t, (f) S′ = S if R
= sc(·, ·, ·), and S′ = S ∪ {Rσ′}
otherwise. This transition models that principal i reads the message m from the
intruder (i.e., the public network).

2. Secure channel transitions: The transition (1) with label i, m, sc exists if there
exists v ∈ Vi with (ri, v) ∈ Ei and �i(ri, v) = L ⇒ R, and a substitution σ′′

of the variables in Lσ such that m ∈ S, (b)–(e) from 1., and S′ = S \ {m} if
R
= sc(·, ·, ·), and S′ = (S \{m})∪{Rσ′} otherwise. This transition models that
principal i reads message m from the secure channel.

3. ε-transitions: The transition (1) with label i exists if there exists v ∈ Vi with
(ri, v) ∈ Ei and �i(ri, v) = ε ⇒ R such that σ′ = σ and (d), (e), (f) from above.
This transition models that i performs a step where neither a message is read from
the intruder nor from the secure channel.

Given a protocol P , the transition graph GP induced by P is the tuple (SP , EP , qP)
where qP is the initial state of P , SP is the set of states reachable from qP by a sequence

Constraint Solving for Contract-Signing Protocols 239

of transitions, and EP is the set of all transitions among states in SP . We write q ∈ GP

if q is a state in GP and q
τ→ q′ ∈ GP if q

τ→ q′ is a transition in GP .
We note that GP is a DAG since by performing a transition, the size of the first

component of a state decreases. While the graph may be infinite branching, the maximal
length of a path in this graph is bounded by the total number of edges in the principals
Πi of P .

3 Intruder Strategies and Strategy Properties

We now define intruder strategies on transition graphs and the goal the intruder tries to
achieve following his strategy. To define intruder strategies, we introduce the notion of
a strategy tree, which captures that the intruder has a way of acting such that regardless
of how the other principals act he achieves a certain goal, where goal in our context
means that a state will be reached where the intruder can derive certain constants and
cannot derive others (e.g., for balance, the intruder tries to obtain IntruderHasContract
but tries to prevent HonestPartyHasContract from occurring).

More concretely, let us consider the protocol Pex depicted in Figure 1. We want
to know if the intruder has a strategy to get to a state where he can derive atom c2

but not atom c1 (no matter what the principals Π1 and Π2 do). Such a strategy of the
intruder has to deal with both decisions principal Π2 may make in the first step because
the intruder cannot control which edge is taken by Π2. It turns out that regardless of
which message is sent by principal Π2 in its first step, the following simple strategy
allows the intruder to achieve his goal: The intruder can send {b}s

k to principal Π1 in
the second step of Π1 and in the last step of Π1, the intruder sends b to principal Π1.
This guarantees that in the last step of Π1, the left-most edge is never taken, and thus,
c1 is not returned, but at least one of the other two edges can be taken, which in any case
yields c2. Formally, such strategies are defined as trees. In our example, the strategy tree
corresponding to the strategy informally explained above is depicted in Figure 2.

Definition 1. For q ∈ GP a q-strategy tree Tq = (V, E, r, �V , �E) is an unordered tree
where every vertex v ∈ V is mapped to a state �V (v) ∈ GP and every edge (v, v′) ∈ E
is mapped to a label of a transition such that the following conditions are satisfied for
all v, v′ ∈ V , principals j, messages m, and states q′, q′′:

1. �V (r) = q.

2. �V (v)
E(v,v′)−→ �V (v′) ∈ GP for all (v, v′) ∈ E. (Edges correspond to transitions.)

3. If �V (v) = q′ and q′
j−→ q′′ ∈ GP , then there exists v′′ ∈ V such that (v, v′′) ∈ E,

�V (v′′) = q′′, and �E(v, v′′) = j. (All ε-transitions originating in q′ must be
present in Tq .)

4. If �V (v) = q′ and q′
j,m,sc−→ q′′ ∈ GP , then there exists v′′ ∈ V such that (v, v′′) ∈

E, �V (v′′) = q′′, and �E(v, v′′) = j, m, sc. (The same as 3. for secure channel
transitions.)

5. If (v, v′) ∈ E, �E(v, v′) = j, m, I , and there exists q′′
= �V (v′) with �V (v)
j,m,I−→

q′′ ∈ GP , then there exists v′′ with (v, v′′) ∈ E, �E(v, v′′) = j, m, I and �V (v′′) =
q′′. (The intruder cannot choose which principal rule is taken by j if several are
possible given the input provided by the intruder.)

240 D. Kähler and R. Küsters

h6

h7

h8

h9 h10

((f1, g3), ∅, I2, {sc(2, 1, 〈b, b〉)})

1, sc(2, 1, 〈b, b〉), sc

1, {b}s
k, I

((f3, g3), σ4, I2 ∪ {b}, ∅)
1, b, I

((f5, g3), σ4, I2 ∪ {b, c2}, ∅)

1, b, I

((f6, g3), σ4, I2 ∪ {b, c2}, ∅)

((f2, g3), σ3, I2 ∪ {b}, ∅)

h2

h3

h4

h5

((f1, g2), ∅, I1, {sc(2, 1, 〈a, b〉)})
1, sc(2, 1, 〈a, b〉), sc

1, {b}s
k, I

((f3, g2), σ2, I1 ∪ {a, b}, ∅)
1, b, I

((f6, g2), σ2, I1 ∪ {a, b, c2}, ∅)

((f2, g2), σ1, I1 ∪ {a}, ∅)

((f1, g1), ∅, I0, ∅)h1

2 2

Tex:

Fig. 2. Strategy tree Tex for Pex with I1 = I0 ∪ {〈a, b〉}, I2 = I0 ∪ {〈b, b〉}, σ1 = {x �→ a},
σ2 = σ1 ∪ {y �→ b}, σ3 = {x �→ b}, and σ4 = σ3 ∪ {y �→ b}. Also, for brevity of notation,
in the first component of the states we write, for instance, f1 instead of Π1↓f1. The strategy
property we consider is ((Cex, C′

ex)) = (({c2}, {c1})).

A strategy property, i.e., the goal the intruder tries to achieve, is a tuple ((C1, C
′
1),

. . . , (Cl, C
′
l)) where Ci, C

′
i ⊆ A ∪ K ∪ N . A state q ∈ GP satisfies ((C1, C

′
1), . . . ,

(Cl, C
′
l)) if there exist q-strategy trees T1, . . . , Tl such that every Ti satisfies (Ci, C

′
i)

where Ti satisfies (Ci, C
′
i) if for all leaves v of Ti all elements from Ci can be derived

by the intruder and all elements from C′i cannot, i.e., Ci ⊆ d(I) and C′i ∩ d(I) = ∅
where I denotes the intruder knowledge in state �V (v).

The decision problem STRATEGY asks, given a protocol P and a strategy property
((C1, C

′
1), . . . , (Cl, C

′
l)), whether there exists a state q ∈ GP that satisfies the property.

In this case we write (P, (C1, C
′
1), . . . , (Cl, C

′
l)) ∈ STRATEGY.

Note that in a q-strategy tree Tq there may exist vertices v′
= v with �V (v′) = �V (v)
such that the subtrees Tq↓v and Tq↓v′ of Tq rooted at v and v′, respectively, are not
isomorphic. In other words, the intruder’s strategy may depend on the path that leads
to a state (i.e., the history) rather than on the state alone, as is the case for positional
strategies. We note that the strategies defined in [11] are positional. However, it is easy
to see that in our setting both notions of strategies are equivalent. The motivation for
using history dependent strategies is that the constraint-based algorithm (Section 5)
becomes considerably simpler.

4 Constraint Solving

In this section, we introduce constraint systems and state the well-known fact that pro-
cedures for solving these systems exist (see, e.g., [13,10] for more details). In Section 5,
we will then use such a procedure as a black-box for our constraint-based algorithm.

A constraint is of the form t : T where t is a plain term and T is a finite non-empty
set of plain terms. Since we will take care of secure channel terms when turning the

Constraint Solving for Contract-Signing Protocols 241

symbolic branching structure into a constraint system, we can disallow secure channel
terms in constraints.

A constraint system C is a tuple consisting of a sequence s = t1 : T1, . . . , tn : Tn

of constraints and a substitution τ such that i) the domain of τ is disjoint from the set
of variables occurring in s and, ii) for all x in the domain of τ , τ(x) only contains
variables also occurring in s. We call C simple if ti is a variable for all i. We call C
valid if it satisfies the origination and monotonicity property as defined in [13]. The
precise definition of valid constraint systems is not needed for the rest of the paper. Let
us only note that origination and monotonicity are standard restrictions on constraint
systems imposed by constraint solving procedures. Valid constraint systems are all that
is needed in our setting.

A ground substitution σ where the domain of σ is the set of variables in t1 :
T1, . . . , tn : Tn is a solution of C (σ � C) if tiσ ∈ d(Tiσ) for every i. We call σ ◦ τ (the
composition of σ and τ read from right to left) a complete solution of C (σ ◦ τ �c C)
with τ as above.

A simple constraint system C obviously has a solution. One such solution, which
we denote by σC , replaces all variables in C by new intruder atoms a ∈ AI where
different variables are replaced by different atoms. We call σC the solution associated
with C and σC ◦ τ the complete solution associated with C.

Given a constraint system C, a finite set {C1, . . . , Cn} of simple constraint systems
is called a sound and complete solution set for C if {ν | ν �c C} = {ν | ∃i s.t. ν �c

Ci}. Note that C does not have a solution iff n = 0.
From results shown, for example, in [7,13,4] it follows:

Fact 1. There exists a procedure which given a valid constraint system C outputs a
sound and complete solution set for C.

While different constraint solving procedures (and implementations thereof) may
compute different sound and complete solution sets, our constraint-based algorithm in-
troduced in Section 5 works with any of these procedures. It is only important that
the set computed is sound and complete. As already mentioned in the introduction,
to decide reachability properties it suffices if the procedure only returns one simple
constraint system in the sound and complete set. However, the constraint solving proce-
dures proposed in the literature are typically capable of returning a sound and complete
solution set.

In what follows, we fix one such procedure and call it the constraint solver. More
precisely, w.l.o.g., we consider the constraint solver to be a non-deterministic algorithm
which non-deterministically chooses a simple constraint system from the sound and
complete solution set and returns this system as output. We require that for every simple
constraint system in the sound and complete solution set, there is a run of the constraint
solver that returns this system. If the sound and complete set is empty, the constraint
solver always returns no.

We note that while standard constraint solving procedures can deal with the crypto-
graphic primitives considered here, these procedures might need to be extended when
adding further cryptographic primitives. For example, this is the case for private con-
tract signatures, which are used in some contract signing protocols [9] and were taken

242 D. Kähler and R. Küsters

into account in [11]. However, constraint solving procedures can easily be extended to
deal with these signatures. We have not considered them here for brevity of presentation
and since the main focus of the present work is not to extend constraint solving proce-
dures but to show how these procedures can be employed to deal with game-theoretic
security properties.

5 The Constraint-Based Algorithm

We now present our constraint-based algorithm, called SolveStrategy, for deciding
STRATEGY. As mentioned, it uses a standard constraint solver (Fact 1) as a subproce-
dure.

In what follows, we present the main steps performed by SolveStrategy, with more
details given in subsequent sections. The input to SolveStrategy is a protocol P and a
strategy property ((C1, C

′
1), . . . , (Cl, C

′
l)).

1. Guess a symbolic branching structure B, i.e., guess a symbolic path πs from the
initial state of P to a symbolic state qs and a symbolic qs-strategy tree T s

i,qs for
every (Ci, C

′
i) starting from this state (see Section 5.1 for more details).

2. Derive from B = πs, T s
1,qs , . . . , T s

l,qs and the strategy property ((C1, C
′
1), . . . ,

(Cl, C
′
l)) the induced and valid constraint system C = CB (see Section 5.2 for

the definition). Then, run the constraint solver on C. If it returns no, then halt. Oth-
erwise, let C′ be the simple constraint system returned by the solver. (Recall that C′

belongs to the sound and complete solution set and is chosen non-deterministically
by the solver.)

3. Let ν be the complete solution associated with C′. Check whether ν when ap-
plied to B yields a valid path in GP from the initial state of P to a state q and
q-strategy trees Ti,q satisfying (Ci, C

′
i) for every i. If so, output yes and B with

ν applied, and otherwise return no (see Section 5.3 for more details). In case yes
is returned, B with ν applied yields a concrete solution of the problem instance
(P, (C1, C

′
1), . . . , (Cl, C

′
l)).

We emphasize that, for simplicity of presentation, SolveStrategy is formulated as a
non-deterministic algorithm. Hence, the overall decision of SolveStrategy is yes if
there exists at least one computation path where yes is returned. Otherwise, the overall
decision is no (i.e., (P, (C1, C

′
1), . . . , (Cl, C

′
l)) /∈ STRATEGY).

In the following three sections, the three steps of SolveStrategy are further ex-
plained. Our main result is the following theorem:

Theorem 1. SolveStrategy is a decision procedure for STRATEGY.

Recall that decidability of STRATEGY was already shown in [11]. The main point of
Theorem 1 is that SolveStrategy uses standard constraint solving procedures as a
black-box, and as such, is a good basis for extending existing practical constraint-based
algorithms for reachability properties to deal with game-theoretic security properties.

The proof of Theorem 1 is quite different from the cut-and-paste argument in [11]
where, similar to [14], it was shown that an attack can be turned into a “small” attack.
Here we rather make use of the fact that procedures for computing sound and complete

Constraint Solving for Contract-Signing Protocols 243

h1

h6h2

h3 h7

h4

h5

h8

2, g2

h9 h10

2, g3

1, f2, sc(2, 1, 〈b, b〉), sc

1, f3, I

1, f6, I

1, f2, sc(2, 1, 〈a, b〉), sc

1, f3, I

1, f6, I 1, f5, I

((f1, g1), I0, ∅)

((f1, g2), I1, {sc(2, 1, 〈a, b〉)})

((f2, g2), I1 ∪ {xh3}, ∅)

((f3, g2), I1 ∪ {xh3 , yh4}, ∅)

((f6, g2), I1 ∪ {xh3 , yh4 , c2}, ∅)

((f1, g3), I2, {sc(2, 1, 〈b, b〉)})

((f2, g3), I2 ∪ {xh7}, ∅)

((f3, g3), I2 ∪ {xh7 , yh8}, ∅)

((f5, g3), I2 ∪ {xh7 , yh8 , c2}, ∅) ((f6, g3), I2 ∪ {xh7 , yh8 , c2}, ∅)

T s
ex:

Fig. 3. Symbolic strategy tree T s
ex for the protocol Pex where I1 = I0 ∪ {〈a, b〉} and I2 =

I0 ∪ {〈b, b〉}. For brevity of notation, in the first component of the symbolic states we write, for
instance, f1 instead of Π1↓f1.

solution sets exist, which makes our proof (and also our algorithm) more modular and
easier to extend.

We note that if we used positional strategies as in [11], SolveStrategy would have
to be extended to guess the symbolic states of symbolic branching structures that co-
incide after the substitution ν is applied. To avoid this, we employ the strategies with
history as explained above.

5.1 Guess the Symbolic Branching Structure

To describe the first step of SolveStrategy in more detail, we first define symbolic
branching structures, which consist of symbolic paths and symbolic strategy trees. To
define symbolic paths and strategy trees, we need to introduce symbolic states, tran-
sitions, and trees (see [10] for full details). These notions will be illustrated by the
example in Figure 1.

A symbolic state qs = ((Π1, . . . ,Πn), I,S) is defined just as a concrete state (see
Section 2.1) except that the substitution is omitted and the intruder knowledge I and
the secure channel S may contain terms (with variables) instead of only messages. The
symbolic initial state of a protocol P = ((Π1, . . . ,Πn), I0) is ((Π1, . . . ,Πn), I0, ∅).

A symbolic transition, analogously to concrete transitions, is a transition between
symbolic states and is of the form

((Π1, . . . ,Πn), I,S) −→ ((Π ′
1, . . . ,Π

′
n), I ′,S′) (2)

with � an appropriate label where again we distinguish between symbolic intruder, se-
cure channel, and ε-transitions. Informally speaking, these transitions are of the follow-
ing form (see [10] for details and the example below): For symbolic intruder transitions
the label � is of the form i, f, I where now f is not the message delivered by the in-
truder, as was the case for concrete intruder transitions, but a direct successor of the

244 D. Kähler and R. Küsters

root ri of Πi. The intuition is that the principal rule L ⇒ R the edge (ri, f) is labeled
with in Πi is applied. The symbolic state ((Π1, . . . ,Πn), I,S) is updated accordingly
to ((Π ′

1, . . . ,Π
′
n), I ′,S′) (see the example below). We call L ⇒ R the principal rule

associated with the symbolic transition. Similarly, the label of a symbolic secure chan-
nel transition is of the form i, f, L′, sc where f is interpreted as before and L′ is the
term read from the secure channel. If L ⇒ R is the principal rule associated with
the transition, then S′ is obtained by removing L′ from S and adding R if R is a se-
cure channel term. When constructing the constraint system, we will guarantee that L′

unifies with L. Finally, the label of symbolic ε-transitions is of the form i, f with the
obvious meaning.

A symbolic qs-tree T s
qs = (V, E, r, �V , �E) is an unordered finite tree where the

vertices are labeled with symbolic states, the root is labeled with qs, and the edges
are labeled with labels of symbolic transitions such that an edge (v, v′) of the tree,
more precisely, the labels of v and v′ and the label of (v, v′) correspond to symbolic
transitions. We call the principal rule associated with such a symbolic transition the
principal rule associated with (v, v′). Note that the symbolic transitions of different
edges may be associated with the same principal rule. Now, since the same rule may
occur at different positions in the tree, its variables may later be substituted differently.
We therefore need a mechanism to consistently rename variables.

Figure 3 depicts a symbolic qs
0-tree T s

ex for protocol Pex (Figure 1) where qs
0 =

({Π1,Π2}, I0, ∅) is the symbolic initial state of Pex. For brevity of notation, just as in
the case of the strategy tree in Figure 1, the first component of the symbolic states in
this tree does not contain the principals but only their corresponding roots. Note that
the principal rules of Π1 are applied at different places in this tree. Therefore, different
copies of the variables x and y need to be introduced, which we do by indexing the
variables by the name of the vertex where the rule is applied. This yields the variables
xh3 , xh7 , yh4 , yh8 in T s

ex.

A symbolic path πs of a protocol P is a symbolic qs
0-tree where every vertex has at

most one successor and qs
0 is the symbolic initial state of P .

A symbolic qs-strategy tree T s
qs = (V, E, r, �V , �E) is a symbolic qs-tree which

satisfies additional conditions. Among others, we require that in one node of this tree
the intruder may only send a message to one principal Πi; we show that this is w.l.o.g.
Also, all ε-transitions applicable in one node are present. Symbolic strategy trees are
defined in such a way that for every symbolic state qs the number of symbolic qs-
strategy trees is finite and all such trees can effectively be generated. The tree depicted
in Figure 3 is a symbolic qs

0-strategy tree.

For a protocol P and strategy property ((C1, C
′
1), . . . , (Cl, C

′
l)), a symbolic branch-

ing structure is of the form Bs = πs, T s
1 , . . . , T s

l where πs is a symbolic path of P and
the T s

i are symbolic qs-strategy trees where qs is the symbolic state the leaf of πs is
labeled with. Given a protocol and a strategy property, there are only a finite number of
symbolic branching structures and these structures can be generated by an algorithm. In
particular, there is a non-deterministic algorithm which can guess one symbolic branch-
ing structure Bs among all possible such structures.

Constraint Solving for Contract-Signing Protocols 245

For the strategy property ((Cex, C′ex)) = (({c2}, {c1})), we can consider T s
ex in

Figure 3 also as a symbolic branching structure Bs
ex of Pex where the path πs is empty

and the number of symbolic strategy trees in Bs
ex is l = 1.

5.2 Construct and Solve the Induced Constraint System

We now show how the constraint system C = CB is derived from the symbolic branch-
ing structure B = πs, T s

1 , . . . , T s
l (guessed in the first step of SolveStrategy) and the

given strategy property ((C1, C
′
1), . . . , (Cl, C

′
l)). This constraint system can be shown

to be valid, and hence, by Fact 1, a constraint solver can be used to solve it. In this
extended abstract, we only illustrate how C is derived from B and the strategy property
by the example in Figure 1 (see [10] for full definitions).

Before turning to the example, we informally explain how to encode in a constraint
system communication involving the secure channel. (Another, somewhat less interest-
ing issue is how to deal with secure channel terms generated by the intruder. This is
explained in our technical report [10].) The basic idea is that we write messages in-
tended for the secure channel into the intruder’s knowledge and let the intruder deliver
these messages. The problem is that while every message in the secure channel can only
be read once, the intruder could try to deliver the same message several times. To pre-
vent this, every such message when written into the intruder’s knowledge is encrypted
with a new key not known to the intruder and this key is also (and only) used in the prin-
cipal rule which according to the symbolic branching structure is supposed to read the
message. This guarantees that the intruder cannot abusively deliver the same message
several times to unintended recipients or make use of these encrypted messages in other
contexts. Here we use the restriction on principals introduced in Section 2, namely that
decryption keys can be derived by a principal. Without this condition, a principal rule of
the form {y}s

x ⇒ x would be allowed even if the principal does not know (i.e., cannot
derive) x. Such a rule would equip a principal with the unrealistic ability to derive any
secret key from a ciphertext. Hence, the intruder, using this principal as an oracle, could
achieve this as well and could potentially obtain the new keys used to encrypt messages
intended for the secure channel.

We now turn to our example and explain how the (valid) constraint system, called
Cex, derived from Bs

ex and ((Cex, C′ex)) looks like and how it is derived from Bs
ex,

where Bs
ex, as explained above, is simply the symbolic strategy tree T s

ex (Figure 3): Cex

is the following sequence of constraints with an empty substitution where k1, k2, k3 ∈
A are new atoms and we write t1, . . . , tn instead of {t1, . . . , tn}.

1. {〈xh3 , b〉}s
k1

: I1, {〈a, b〉}s
k1

6. xh7 : I2, {〈b, b〉}s
k2

, xh7 , yh8

2. {〈xh7 , b〉}s
k2

: I2, {〈b, b〉}s
k2

7. yh8 : I2, {〈b, b〉}s
k2

, xh7 , yh8

3. {yh4}s
k : I1, {〈a, b〉}s

k1
, xh3 8. c2 : I1, {〈a, b〉}s

k1
, xh3 , yh4 , c2

4. {yh8}s
k : I2, {〈b, b〉}s

k2
, xh7 9. c2 : I2, {〈b, b〉}s

k2
, xh7 , yh8 , c2

5. yh4 : I1, {〈a, b〉}s
k1

, xh3 , yh4 10. c2 : I2, {〈b, b〉}s
k2

, xh7 , yh8 , c2

This constraint system is obtained from Bs
ex as follows: We traverse the vertices of Bs

ex

in a top-down breadth first manner. Every edge induces a constraint except those edges
which correspond to symbolic ε-transitions. This is how the constraints 1.–7. come

246 D. Kähler and R. Küsters

about where 1., 3., and 5. are derived from the left branch of Bs
ex and 2., 4., 6., and 7.

from the right branch. Note that in 1. and 2. we encode the communication with the
secure channel by encrypting the terms with new keys k1 and k2. The terms {〈a, b〉}s

k1

and {〈b, b〉}s
k2

are not removed anymore from the right-hand side of the constraints, i.e.,
from the intruder knowledge, in order for Cex to satisfy the monotonicity property of
constraint systems (recall that monotonicity is necessary for the validity of constraint
systems). As explained above, since we use new keys and due to the restriction on prin-
cipals, this does not cause problems. The constraints 8.–10. are used to ensure that c2

can be derived at every leaf of T s
ex, a requirement that comes from our example security

property ((Cex, C′ex)) where Cex = {c2}. In vertex h8 of T s
ex, two symbolic intruder

transitions leave the vertex, which, as explained above, means that the associated prin-
cipal rules should both be able to read the message delivered by the intruder.

Let C1 and C2 be constraint systems with empty sequences of constraints and the
substitution ν1 = {xh3 �→ a, xh7 �→ b, yh4 �→ a, yh8 �→ b} and ν2 = {xh3 �→
a, xh7 �→ b, yh4 �→ b, yh8 �→ b}, respectively. It is easy to see that {C1, C2} is a sound
and complete solution set for Cex. Since Cex is valid, such a set can be computed by
the constraint solver (Fact 1).

5.3 Check the Induced Substitutions

Let Bs = πs, T s
1 , . . . , T s

l be the symbolic branching structure obtained in the first step
of SolveStrategy and let C′ be the simple constraint system returned by the constraint
solver when applied to C = CBs in the second step of SolveStrategy. Let ν be the
complete solution associated with C′ (see Section 5.2). We emphasize that for our algo-
rithm to work, it is important that ν replaces the variables in C′ by new intruder atoms
fromAI not occurring in Bs.

Basically, we want to check that when applying ν to Bs, which yields Bsν =
πsν, T s

1 ν, . . . , T s
l ν, we obtain a solution of the problem instance (P, (C1, C

′
1), . . . ,

(Cl, C
′
l)). Hence, we need to check whether i) πsν corresponds to a path in GP from

the initial state of GP to a state q ∈ GP and ii) T s
i ν corresponds to a q-strategy tree

for (Ci, C
′
i) for every i. However, since ν is a complete solution of C, some of these

conditions are satisfied by construction. In particular, πsν is guaranteed to be a path
in GP starting from the initial state. Also, the conditions 1.–3. of strategy trees (Def-
inition 1) do not need to be checked and we know that T s

i ν satisfies (Ci, ∅). Hence,
SolveStrategy only needs to make sure that 4. and 5. of Definition 1 are satisfied for
every T s

i ν and that T s
i ν fulfills (∅, C′i). Using that the derivation problem is decid-

able in polynomial time [6] (given a message m and a finite set of messages I, decide
whether m ∈ d(I)), all of these remaining conditions can easily be checked (see [10]
for details).

In our example, the induced substitution for Ci is νi as Ci does not contain any
variables. It can easily be verified that with C′ = C2 and the induced substitution ν2,
the above checks are all successful. However, they fail for C′ = C1 and ν1 because in
h4 the rule a ⇒ c1 could also be applied but it is not present in Bs

ex. This violates Defin-
ition 1, 5. In fact, Bs

exν1 would not yield a solution of the instance (Pex, ((Cex, C′ex))).
This example illustrates that in SolveStrategy one cannot dispense with the last step,
namely checking the substitutions, and that one has to try the different constraint sys-
tems in the sound and complete solution set for C.

Constraint Solving for Contract-Signing Protocols 247

6 Conclusion

We have shown that certain game-theoretic security properties, such as balance, of
contract-signing and related protocols can be decided using standard constraint solving
procedures as a black-box. This opens the way for extending existing constraint-based
implementations and tools, which have successfully been employed for reachability
properties, to deal with game-theoretic security properties. As future work, we plan to
implement our algorithm, which will probably require some optimizations, and evaluate
the algorithm on existing contract-signing and related protocols.

References

1. R.M. Amadio, D. Lugiez, and V. Vanackere. On the symbolic reduction of processes with
cryptographic functions. Theoretical Computer Science, 290(1):695–740, 2002.

2. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Mödersheim, M. Rusi-
nowitch, M. Turuani, L. Viganò, and L. Vigneron. The AVISS Security Protocol Analysis
Tool. In CAV 2002, LNCS 2404, pages 349–353. Springer, 2002.

3. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange.
In Security&Privacy 2002, pages 86–99, 1998.

4. D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security Pro-
tocol Analysis. In ESORICS 2003, LNCS 2808, pages 253–270. Springer, 2003.

5. R. Chadha, M.I. Kanovich, and A.Scedrov. Inductive methods and contract-signing proto-
cols. In CCS 2001, pages 176–185. ACM Press, 2001.

6. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP Decision Procedure for
Protocol Insecurity with XOR. In LICS 2003, pages 261–270. IEEE, Computer Society
Press, 2003.

7. Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In ASE
2001, pages 373–376. IEEE CS Press, 2001.

8. P. H. Drielsma and S. Mödersheim. The ASW Protocol Revisited: A Unified View. In
ARSPA, 2004.

9. J.A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. In
CRYPTO’99, LNCS 1666, pages 449–466. Springer-Verlag, 1999.

10. D. Kähler and R. Küsters. A Constraint-Based Algorithm for Contract-Signing Pro-
tocols. Technical report, IFI 0503, CAU Kiel, Germany, 2005. Available from
http://www.informatik.uni-kiel.de/reports/2005/0503.html

11. D. Kähler, R. Küsters, and Th. Wilke. Deciding Properties of Contract-Signing Protocols. In
STACS 2005, LNCS 3404, pages 158–169. Springer, 2005.

12. S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract signing. In CSFW 2002,
pages 206–220. IEEE Computer Society, 2002.

13. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic proto-
col analysis. In CCS 2001, pages 166–175. ACM Press, 2001.

14. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of sessions, com-
posed keys is NP-complete. Theoretical Computer Science, 299(1–3):451–475, 2003.

15. V. Shmatikov and J.C. Mitchell. Finite-state analysis of two contract signing protocols.
Theoretical Computer Science, 283(2):419–450, 2002.

A Ground-Complete Axiomatization of Finite

State Processes in Process Algebra

Jos C.M. Baeten1 and Mario Bravetti2

1 Division of Computer Science,Technische Universiteit Eindhoven
josb@win.tue.nl

2 Department of Computer Science,Università di Bologna
bravetti@cs.unibo.it

Abstract. We consider a generic process algebra of which the standard
process algebras ACP, CCS and CSP are subalgebras of reduced expres-
sions. In particular such an algebra is endowed with a recursion opera-
tor which computes minimal fixpoint solutions of systems of equations
over processes. As model for processes we consider finite-state transition
systems modulo Milner‘s observational congruence and we define an op-
erational semantics for the process algebra. Over such a generic algebra
we show the following. We provide a syntactical characterization (allow-
ing as many terms as possible) for the equations involved in recursion
operators, which guarantees that transition systems generated by the
operational semantics are indeed finite-state. Vice-versa we show that
every process admits a specification in terms of such a restricted form of
recursion. We then present an axiomatization which is ground-complete
over such a restricted signature: an equation can be derived from the ax-
ioms between closed terms exactly when the corresponding finite-state
transition systems are observationally congruent. Notably, in presenting
such an axiomatization, we also show that the two standard axioms of
Milner for weakly unguarded recursion can be expressed by using just a
single axiom.

1 Introduction

The problem of developing a sound and complete axiomatization for a weak
form of bisimulation (abstracting from internal τ activities) over a process alge-
bra expressing finite-state processes with both guarded and (weakly and fully)
unguarded recursion has been solved by Robin Milner [16]. His solution has been
developed in the context of a basic process algebra (basic CCS) made up of vis-
ible prefix a.t, silent prefix τ.t, summation t′ + t′′ and recursion recX.t (based
on least transition system solution), whose model is assumed to be finite-state
transition systems modulo observational congruence (rooted weak bisimulation).
Such a solution is crucially based on three axioms: one for fully unguarded re-
cursion

(FUng) recX.(X + t) = recX.t

and two for weakly unguarded recursion

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 248–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Ground-Complete Axiomatization of Finite State Processes 249

(WUng1) recX.(τ.X + t) = recX.τ.t
(WUng2) recX.(τ.(X + t) + s) = recX.(τ.X + t + s).

The idea is that by means of the three axioms above we are able to turn each
(weakly or fully) unguarded process algebraic term into an equivalent guarded
one. Then the proof of completeness just works on normal forms where recursion
is assumed to be guarded, i.e. it is shown that if two guarded terms are equivalent
then they can be equated by the axiomatization. This is done by exploiting the
two crucial axioms

(Unfold) recX.t = t{recX.t/X}
(Fold) t′ = t{t′/X} ⇒ t′ = recX.t if X is guarded in t

However Milner’s result is crucially based on the fact that the signature of the
process algebra under consideration is very simple. For example if we extend the
signature to full CCS (by e.g. considering parallel composition and restriction),
we have that the axioms above are no longer sufficient to get rid of unguarded
recursion. In other words, even if two CCS terms are both finite-state it may
be that they are not equated by an axiomatization including the standard CCS
axioms (the axioms for CCS without the recX.t recursion operator) plus the
axioms for unguarded and guarded recursion above. An example is the following:

((recX.a.X) | (recX.a.X)) \a

where “|” and “\” denote CCS parallel composition and restriction, respec-
tively. The model of such a term has just one state with a τ self-loop, but cannot
be equated by the axiomatization to the equivalent term recX.τ.X or to τ.0. The
problem is that, since the process above produces unguarded recursion (a loop
with only τ transitions in the transition system), we cannot apply the folding ax-
iom (Fold). We should first remove unguarded recursion, but the three axioms
(FUng), (WUng1), (WUng2) only work with the restricted signature (which
does not include the parallel and restriction operators).

In this paper we consider a generic process algebra of which the standard
process algebras ACP, CCS and CSP are subalgebras of reduced expressions.
More precisely such an algebra is an extension of the algebra TCP [1,2] (which
extends ACP by including successful termination ε and prefixing à la CCS) with
a recursion operator 〈X |E〉 which computes minimal fixpoint solutions of sys-
tems of equations (denoted by E = {X = tX , Y = tY , . . . }) over processes
and consider an initial variable X among variables V defined by the system of
equations E. Such an operator (which extends the similar operator introduced
in [8] with the possibility of nesting recursion operators inside recursion opera-
tors) encompasses both the CCS recX.t operator (which is obtained by taking
E = {X = t}) and the standard way to express recursion in ACP (where usually
only guarded recursion is considered via systems of equations E). As we will
see, such an algebra, called TCP+REC, is endowed with sequencing “t′ · t′′”,
hiding “τI(t)”, restriction “∂H(t)”, relabeling “ρf(t)”, and parallel composition
“t′ ‖ t′′” à la ACP (where a communication function γ is assumed to compute
the type of communicating actions).

250 J.C.M. Baeten and M. Bravetti

As model for processes we consider finite-state transition systems modulo
Milner‘s observational congruence and we define an operational semantics for
such a process algebra.

In order to guarantee that transition systems generated by the operational
semantics are indeed finite-state, we provide a syntactical constraint for the sys-
tems of equations E = E(V) involved in recursion operators 〈X |E〉. Such a
constraint is similar to that considered in [9]: in essence we disallow variables
in V occurring in the right-hand side of equations in E (that are bound by the
〈X |E〉 operator) to be in the scope of static operators like hiding, restriction,
relabeling and parallel composition or in the left-hand side of a sequencing op-
erator. For example 〈X |{X = τI(a.X)}〉 for any hiding set I, which produces
an infinite-state transition system, is a term rejected by the constraint that we
consider. Note however that recursion can be included in the scope of static op-
erators (or in the left-hand side of sequencing) as in the case of the CCS term
((recX.a.X) |(recX.a.X))\a shown before (it is simple to express such a term in
terms of our generic process algebra by using ACP parallel, hiding and restric-
tion). We also show that the syntactical constraint that we propose is somehow
the weakest: if a (reachable) variable which is bound by an outer recursion oper-
ator occurs in the scope of a static operator or in the lefthand-side of sequencing
then it produces an infinite-state transition system. We call TCP+RECf the
process algebra which extends TCP with the recursion operator 〈X |E〉, where
E satisfies the constraint above.

Vice-versa we show that in the considered context of finite-state models every
process admits a specification in terms of TCP+RECf .

The main result of the paper is the introduction of an axiomatization that is
ground-complete over the signature of TCP+RECf : an equation can be derived
from the axioms between closed terms exactly when the corresponding finite-
state transition systems are observationally congruent.

This axiomatization is based on the introduction of the new axiom

τI(〈X |X = t〉) = 〈X |X = τI(t)〉

which allows the hiding operator (the only static operator which may generate
unguarded recursion) to be exchanged with the recursion operator. We will show
that by using such a crucial axiom, that was previously considered also in [14]
(where the author just showed it to be sound), it is possible to achieve complete-
ness in the finite-state case when static operators are considered, thus extending
Milner’s result. The main idea is that, by means of this axiom, we can first move
the hiding operator inside recursion and more generally outside-in traversing the
whole syntactic structure of the term considered (so to get the effect of hiding
on the actions syntactically occurring in the term), and then (by applying it
in the reversed way) inside-out again. Supposing that we are turning the term
into normal form (essentially basic CCS where recursion is guarded) by means
of syntactical induction, once we have done the procedure above we can apply
Milner’s rule for unguarded recursion in the term inside the hiding operator,
thus getting a term in normal form on which the hiding operator has no longer

A Ground-Complete Axiomatization of Finite State Processes 251

any effect. As a consequence we can get rid of it like we do with any other static
operator by using the Fold axiom.

Notably, in the axiomatization that we present we also make use of the fol-
lowing result that we introduce here. The two axioms of Milner for getting rid
of weakly unguarded recursion presented above (WUng1 and WUng2) can be
equivalently expressed by means of the following single axiom:

〈X |X = τ.(X + t) + s〉 = 〈X |X = τ.(t + s)〉
The paper is structured as follows. In Sect. 2 we present the model of

processes that we consider (finite state transition systems) and the notion of
observational congruence. In Sect. 3 we present the process algebra TCP and its
operational semantics. In Sect. 4 we introduce the recursion operator, its opera-
tional semantics, the considered syntactical constraint over sets of equations and
the full syntax of TCP+RECf . Moreover we prove that: (i) TCP+RECf terms
produce finite-state transitions systems only, (ii) the constraint that we consider
is the weakest and (iii) every finite-state transition system can be expressed in
terms of a TCP+RECf term. In Sect. 5 we present the axiomatization and we
show that it is sound and ground-complete for observational congruence over the
TCP+RECf signature. Sect. 6 concludes the paper.

2 Finite Behaviours

In this paper, we consider finite behaviours: the model of finite state transition
systems modulo Milner’s observational congruence.

Definition 1 (Transition-system space). A transition-system space over a
set of labels L is a set S of states, equipped with one ternary relation → and
one subset ↓:

1. →⊆ S × L× S is the set of transitions ;
2. ↓⊆ S is the set of terminating or final states.

The notation s
α→ t is used for (s, α, t) ∈→ and s ↓ for s ∈ ↓.

Here, we will always assume the sets S and L are finite, and the set of labels
will consist of a set of actions A and a special label τ
∈ A.

In the remainder, assume that (S, L, →, ↓) is a transition-system space. Each
state s ∈ S can be identified with a transition system that consists of all states
and transitions reachable from s. The notion of reachability is defined as usual.

Definition 2 (Weak Bisimilarity). Define s ⇒ t if there is a sequence of 0
or more τ -steps from s to t. A symmetric binary relation R on the set of states
S of a transition-system space is a weak bisimulation relation if and only if the
following so-called transfer conditions hold:

1. for all states s, t, s′ ∈ S, whenever (s, t) ∈ R and s
α→ s′ for some α ∈ L,

then either α = τ and (s′, t) ∈ R or there are states t∗, t′′, t′ such that
t ⇒ t∗

a→ t′′ ⇒ t′ and (s′, t′) ∈ R;

252 J.C.M. Baeten and M. Bravetti

2. whenever (s, t) ∈ R and s ↓ then there is a state t∗ such that t ⇒ t∗ ↓;

Two transition systems s, t ∈ S are weak bisimulation equivalent or weakly bisim-
ilar, notation s↔wt, if and only if there is a weak bisimulation relation R on S
with (s, t) ∈ R.

The pair (s, t) in a weak bisimulation R satisfies the root condition if when-
ever s

τ→ s′ there are states t′′, t′ such that t
τ→ t′′ ⇒ t′ and (s′, t′) ∈ R. Two

transition systems s, t ∈ S are rooted weak bisimulation equivalent, observation-
ally congruent or rooted weakly bisimilar, notation s↔rwt, if and only there is a
weak bisimulation relation in which the pair (s, t) satisfies the root condition.

3 Process Algebra

We consider the process algebra TCP (Theory of Communicating Processes),
introduced in [1] and completely worked out in [2], of which the standard process
algebras ACP, CCS and CSP are subalgebras of reduced expressions.

Our theory has two parameters: the set of actions A, and a communication
function γ : A×A → A. The function γ is partial, commutative and associative.
The signature elements are the following. Constant δ denotes inaction (or dead-
lock), and is the neutral element of alternative composition: process δ cannot
execute any action, and cannot terminate. Constant ε denotes the empty process
or skip and is the neutral element of sequential composition: process ε cannot ex-
ecute any action, but terminates successfully. For each a ∈ A, there is the unary
prefix operator a. : process a.x executes action a and then proceeds as x. There
is the additional prefix operator τ. . Here, τ
∈ A is the silent step, that cannot be
observed directly. Binary operator + denotes alternative composition or choice:
process x + y executes either x or y, but not both (the choice is resolved upon
execution of the first action). Binary operator · denotes sequential composition:
having sequential composition as a basic operator, makes it necessary to have a
difference between successful termination (ε) and unsuccessful termination (δ).
Sequential composition is more general than action prefixing. Binary operator ‖
denotes parallel composition. In order to give a finite axiomatization of parallel
composition, there are two variations on this operator, the auxiliary operators ‖
(left-merge) and | (synchronization merge). In the parallel composition x ‖ y, the
separate components may execute a step independently (denoted by x‖ y resp.
y‖ x), or they may synchronize in executing a communication action (when they
can execute actions for which γ is defined), or they may terminate together (the
last two possibilities given by x | y). Unary operator ∂H denotes encapsulation
or restriction, for each H ⊆ A: actions from H are blocked, cannot be executed.
Unary operator τI denotes abstraction or hiding, for each I ⊆ A: actions from I
are turned into τ , and are thus made unobservable. Unary operator ρf denotes
renaming or relabeling, for each f : A → A.

In the following we will use meta-variables x, y to range over processes of our
process algebra, i.e. finite-state transition-systems possibly denoted via a term
over the signature of the algebra, a, b, c to range over A and α to range over
A ∪ {τ}.

A Ground-Complete Axiomatization of Finite State Processes 253

We turn the set of closed terms (i.e. terms containing no variables) over the
signature of the algebra into a transition-system space by providing so-called
operational rules. See Table 1. States in the transition-system space are denoted
by closed terms over the signature. These rules give rise to a finite transition
system, without cycles, for each closed term.

Table 1. Deduction rules for TCP

ε ↓ α.x
α→ x

x
α→ x′

x + y
α→ x′

y
α→ y′

x + y
α→ y′

x ↓
x + y ↓

y ↓
x + y ↓

x
α→ x′

x · y α→ x′ · y
x ↓, y α→ y′

x · y α→ y′
x ↓, y ↓
x · y ↓

x
a→ x′, y b→ y′, γ(a, b) = c

x ‖ y
c→ x′ ‖ y′

x ↓, y ↓
x ‖ y ↓

x
α→ x′

x ‖ y
α→ x′ ‖ y

y
α→ y′

x ‖ y
α→ x ‖ y′

x
a→ x′, y b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′
x ↓, y ↓
x | y ↓

x
α→ x′

x‖ y
α→ x′ ‖ y

x
τ→ x′, x′ | y α→ z

x | y α→ z

y
τ→ y′, x | y′ α→ z

x | y α→ z

x
τ→ x′, x′ | y ↓

x | y ↓
y

τ→ y′, x | y′ ↓
x | y ↓

x
α→ x′, α �∈ H

∂H(x)
α→ ∂H(x′)

x ↓
∂H(x) ↓

x
α→ x′, α �∈ I

τI(x)
α→ τI(x

′)

x
a→ x′, a ∈ I

τI(x)
τ→ τI(x

′)

x ↓
τI(x) ↓

x
a→ x′

ρf (x)
f(a)→ ρf (x′)

x
τ→ x′

ρf (x)
τ→ ρf (x′)

x ↓
ρf (x) ↓

We can provide an axiomatization that is ground-complete, i.e. an equation
can be derived from the axioms between two closed terms exactly when the
corresponding transition systems are observationally congruent. The basic set of
axioms is presented in Table 2.

This process algebra is generic, in the sense that most features of commonly
used process algebras can be embedded in it. In the following, we made use
of [13,14] and [4].

We consider a subtheory corresponding to CCS, see [17]. This is done by
omitting the signature elements ε, ·, ‖ , | . Next, we specialize the parameter set
A by separating it into three parts: a set of names A, a set of co-names Ā and
a set of communications A∗ such that for each a ∈ A there is exactly one ā ∈ Ā
and exactly one a∗ ∈ A∗. The communication function γ is specialized to having
as the only defined communications γ(a, ā) = γ(ā, a) = a∗, and then the CCS
parallel composition operator | CCS can be defined by the formula

x | CCS y = τA∗(x ‖ y).
We consider a subtheory corresponding to ACPτ , see [7]. This is done by

defining, for each a ∈ A, a new constant a by a = a.ε, and then omitting the
signature elements ε, ., ρf .

254 J.C.M. Baeten and M. Bravetti

Table 2. Axioms of TCP

x + y = y + x A1 x ‖ y = x‖ y + y‖ x + x | y M
(x + y) + z = x + (y + z) A2
x + x = x A3 δ‖ x = δ LM1
(x + y) · z = x · z + y · z A4 ε‖ x = δ LM2
(x · y) · z = x · (y · z) A5 α.x‖ y = α.(x ‖ y) LM3
x + δ = x A6 (x + y)‖ z = x‖ z + y‖ z LM4
δ · x = δ A7
ε · x = x A8 x | y = y | x SM1
x · ε = x A9 δ | x = δ SM2
(α.x) · y = α.(x · y) A10 ε | ε = ε SM3

a.x | b.y = c.(x ‖ y) if γ(a, b) = c SM4
∂H(δ) = δ D1 a.x | b.y = δ otherwise SM5
∂H(ε) = ε D2 a.x | ε = δ SM6
∂H(a.x) = δ if a ∈ H D3 (x + y) | z = x | z + y | z SM7
∂H(α.x) = α.∂H(x) otherwise D4
∂H(x + y) = ∂H(x) + ∂H(y) D5 ρf (δ) = δ RN1

ρf (ε) = ε RN2
τI(δ) = δ TI1 ρf (a.x) = f(a).ρf (x) RN3
τI(ε) = ε TI2 ρf (τ.x) = τ.ρf (x) RN4
τI(a.x) = τ.τI(x) if a ∈ I TI3 ρf (x + y) = ρf (x) + ρf (y) RN5
τI(α.x) = α.τI(x) otherwise TI4
τI(x + y) = τI(x) + τI(y) TI5

α.τ.x = α.x T1 τ.x + x = τ.x T2
α.(τ.x + y) = α.(τ.x + y) + α.x T3 τ.x | y = x | y T4

We consider a subtheory corresponding to CSP, see [15]. The non-
deterministic choice operator , can be defined by

x , y = τ.x + τ.y,
but the external choice operator � cannot be defined directly, as possible non-
determinism is removed at the start of the process. It can be axiomatized as
shown by Brookes in [10]. The parameter set A is specialized into two parts: a
set of names A and a set of communications A∗ such that for each a ∈ A there is
exactly one a∗ ∈ A∗. The communication function γ is specialized to having as
the only defined communications γ(a, a) = a∗, and further, we use the renaming
function f that has f(a∗) = a. Then, the CSP parallel composition operator ‖S ,
parametrized by a set of names S ⊆ A, can be defined by the formula

x ‖S y = ρf (∂S(x ‖ y)).

4 Recursion

We proceed to define recursion in our setting, in order to obtain also finite-state
transition systems with cycles.

A Ground-Complete Axiomatization of Finite State Processes 255

Let V be a set of variables ranging over processes, ranged over by X, Y .
According to a terminology which is usual in the ACP setting, a recursive spec-
ification E = E(V) is a set of equations E = {X = tX | X ∈ V } where each
tX is a term over the signature in question and variables from V . A solution of
a recursive specification E(V) is a set of transition systems {yX |X ∈ V } such
that the equations of E(V) correspond to equivalent transition systems, if for
all X ∈ V , yX is substituted for X . Mostly, we are interested in one particular
variable X ∈ V , called the initial variable.

Let t be a term containing a variable X . We call an occurrence of X in t
guarded if this occurrence of X is in the scope of an action prefix operator (not
τ prefix) and not in the scope of an abstraction operator.

We call a recursive specification guarded if all occurrences of all its variables
in the right-hand sides of all its equations are guarded or it can be rewritten to
such a recursive specification using the axioms of the theory and the equations
of the specification.

Now, in the models obtained by adding rules for recursion to the operational
semantics given above, and dividing out one of the congruence relations strong
bisimulation, or observational congruence, guarded recursive specifications have
unique solutions, so we can talk about the process given by a guarded recursive
specification. On the other hand, unguarded recursive specifications usually have
several solutions. Thus, the specification {X = X} will have every transition sys-
tem as a solution, and the specification {X = τ.X} will have multiple solutions
under observational congruence, as any transition system with a τ -step as only
initial step will satisfy this equation.

The process algebras ACP, CCS and CSP handle this situation in differ-
ent ways. In ACP, variables occurring in unguarded recursive specifications are
treated as (constrained) variables, and not as processes. In CCS, where recur-
sive specifications are made via so-called “constants”, ranged over by A, B, ..,
or equivalently by the recX.t operator, where t is a term containing variable
X , from the set of solutions the solution will be chosen that has the least tran-
sitions in the generated transition system. Thus, the solution chosen for the
equation {X = X} has no transitions, is the process δ, and the solution chosen
for {X = τ.X} has only a τ -transition to itself, a process that is bisimilar to
τ.δ in observational congruence. Finally, also in CSP a solution will be chosen,
but a different one, the least deterministic one. Thus, both CCS and CSP use a
least fixed point construction, but with respect to a different ordering relation.
In CSP, the solution chosen for the equation {X = X} is the chaos process ⊥,
a process that satisfies x + ⊥ = ⊥ for all processes x (for an extension of TCP
with such a process, see [2], based on [3]).

Here we will introduce in TCP the possibility of performing (not guarded)
recursive specifications by means of an operator 〈X |E〉 (where E = E(V) is a
recursive specification and X a variable in V which acts as the initial variable)
which, similarly as in CCS, yields the least transitions in the generated transition
system. Note that our approach also encompasses recursive specifications in ACP

256 J.C.M. Baeten and M. Bravetti

which are usually assumed to be guarded. The extended signature gives rise to
a process algebra that we call TCP+REC.

More precisely, the set of terms of TCP+REC is generated by the following
syntax:

t ::= δ | ε | a.t | τ.t | t + t | t · t | t ‖ t | t‖ t | t | t | ∂H(t) | τI(t) | ρf (t) | X | 〈X |E〉

where E = E(V) is a set of equations E = {X = t |X ∈ V }.
Note that terms t included in recursive specifications are again part of the

same syntax, i.e. they may include again recursive specifications. In the following
we will use tX to denote the term defining variable X (i.e. X = tX) in a given
recursive specification.

As usual, in the following, we will use, as terms representing processes, closed
terms over the syntax above. In the setting above a closed term is a term in which
every variable X occurs in the scope of a binding recursive specification E(V)
such that X ∈ V . Note that the binding recursive specification may not be the
one that directly includes the equation which contains the occurrence of X in
the right-hand term, but X may be bound by an outer recursive specification,
as e.g. in:

〈X | {X = a.〈Y |{Y = X + Y }〉 } 〉
Table 3 provides deduction rules for recursive specifications. Such rules are

similar to those in [11], but we have the additional possibility of nesting recursion
operators inside recursion operators. They come down to looking upon 〈X |E〉
as the process 〈tX |E〉, which is defined as follows.

Definition 3. Given a recursive specification 〈X |E〉 with the syntax above,
where E = E(V), we define 〈tX |E〉 to be tX where, for all Y ∈ V , all free
occurrences of Y in tX are replaced by 〈Y |E〉.

Note that in 〈tX |E〉 we replace not only variables Y ∈ V occurring directly
in tX , but even Y occurring freely inside inner recursive specifications, e.g. in

〈 a.〈Y |{Y = X + Y }〉 | {X = a.〈Y |{Y = X + Y }〉 } 〉
variable X of a.〈Y |{Y = X+Y }〉 is replaced by 〈X |{X = a.〈Y |{Y = X+Y }〉 }〉
yielding:

a.〈 Y | {Y = 〈X |{X = a.〈Y |{Y = X + Y }〉 }〉+ Y } 〉

Table 3. Deduction rules for recursion

〈tX |E〉 α→ y

〈X|E〉 α→ y

〈tX |E〉 ↓
〈X|E〉 ↓

In order to remain in the setting of processes with a finite-state model we
now consider a restricted syntax for constants 〈X |E〉 which guarantees that
transition systems generated by the operational rules are indeed finite-state.

A Ground-Complete Axiomatization of Finite State Processes 257

Definition 4. Let E be a recursive specification over a set of variables V . We call
E essentially finite state if E has only finitely many equations and all variables
in all right-hand sides of all equations of E do not occur in the scope of one of
the operators ‖, ‖ , | , ∂H , τI , ρf or on the left-hand side of the operator ·. We
call E regular if E has only finitely many equations and each equation is of the
form

X =
∑

1≤i≤n

αi.Xi + {ε},

where an empty sum stands for δ and the ε summand is optional, for certain
n ∈ IN, αi ∈ A ∪ {τ},Xi ∈ V . It is immediate that every regular recursive
specification is essentially finite-state.

Now it is a well-known fact that each finite state process allows a regular
recursive specification. But also in the other direction, every process specified by
a term including essentially finite state recursive specifications only has finitely
many states in the transition system generated by the operational rules.

Proposition 5. Given a term t such that every recursive specification E in-
cluded in t is essentially finite state. Then the transition system generated by
the operational rules has only finitely many states.

Proof. See [5] for a complete proof. �

The following proposition shows that the definition of essentially finite state
does not disregard unnecessarily terms which generate finite-state transition sys-
tems. In the proposition we assume that an occurrence of a variable X is reach-
able, if, once such an occurrence of X is replaced by aX .δ, there is a path that
leads to the execution of the action aX .

Proposition 6. Let t be a term that includes a recursion 〈X |E〉 such that the
recursive specification E has finitely many equations but is not essentially finite
state. If one of the occurrences of variables in V which violate the condition,
i.e. which are in the scope of one of the operators ‖, ‖ , | , ∂H , τI , ρf or on the
left-hand side of the operator ·, is reachable from 〈X |E〉, then t has infinitely
many states.

Proof. It is just a matter of showing that, since there is a variable which violates
the condition and is reachable, then there is a loop where every time a new copy
of the static operator is produced (or of the righthand-side of the sequencing),
hence the transition system produced is infinite. �

In the rest of this paper, we will consider the process algebra TCP+RECf

obtained by extending the signature of TCP with essentially finite state re-
cursive specifications, i.e. we consider closed terms in the syntax above, where
we additionally require that every recursive specification included is essentially
finite-state. Together Table 1 and Table 3 provide a transition system space over
the signature of TCP+RECf .

258 J.C.M. Baeten and M. Bravetti

Table 4. Axioms for recursion

〈X|E ∪̃ {Y = t}〉 = 〈X|E{〈Y |Y = t〉/Y }〉 if X �= Y Dec
〈X|X = t〉 = t{〈X|X = t〉/X} Unf
y = t{y/X} ⇒ y = 〈X|X = t〉 if X = t guarded Fold
〈X|X = X + t〉 = 〈X|X = t〉 Ung
〈X|X = τ.(X + t) + s〉 = 〈X|X = τ.(t + s)〉 WUng
τI(〈X|X = t〉) = 〈X|X = τI(t)〉 Hid

5 Axiomatization

Now we will present a sound axiomatization which is ground-complete for the
process algebra TCP+RECf . The axioms in Table 2 together with the axioms in
Table 4 form such an axiomatization. In the axioms of Table 4 we use the usual
operation {t/X} for expressing syntactical replacement of a closed term t for
every free occurrence of variable X . Such an operation can be applied to a term
t′ or to the righthand-side of all equations in a recursive specification E = E(V)
such that X
∈ V by writing t′{t/X} and E{t/X}, respectively. Moreover the
symbol ∪̃ stands for disjoint union. Note that the axioms in Table 4 are axiom
schemes : we have these axioms for each possible term t.

The axiom Dec is used to decompose recursive specifications E made up of
multiple (finitely-many) equations into several recursive specifications made up
of single equations. For example the process

〈 X | {X = a.X + b.Y, Y = c.X + d.Y } 〉
is turned into

〈 X | {X = a.X + b.〈Y |{Y = c.X + d.Y }〉} 〉
The unfolding axiom (Unf) is Milner’s standard one. In ACP, where usually

there is no explicit recursion operator, it corresponds to the Recursive Definition
Principle: it states that the constant 〈X |E〉 is a solution of the recursive speci-
fication E. Thus, each recursive specification has a solution. The folding axiom
(Fold) is Milner’s standard one: it states that if y is a solution for X in E, and E
is guarded, then y = 〈X |E〉. In ACP, where usually there is no explicit recursion
operator, it corresponds to the Recursive Specification Principle: it says that
each guarded recursive specification has at most one solution.

Axioms Ung, WUng, Hid are used to deal with unguarded specifications.
Ung, which is the same as in Milner’s axiomatization, is the axiom that deals
with variables not in the scope of any prefix operator (fully unguarded recursion).
WUng and Hid are instead needed to get rid of weakly unguarded recursion. As
far as WUng is concerned, it gets rid of weakly unguarded recursion arising from
just prefixing and summation. It is easy to see that it replaces the two axioms
of Milner:

A Ground-Complete Axiomatization of Finite State Processes 259

〈X |X = τ.X + t〉 = 〈X |X = τ.t〉
〈X |X = τ.(X + t) + s〉 = 〈X |X = τ.X + t + s〉

The first one is obtained from (WUng) by just taking t = δ. The second one is
obtained from (WUng) as follows:

〈X |X = τ.(X + t) + s〉 = 〈X |X = τ.(t + s)〉
by directly applying (WUng) and then

〈X |X = τ.(t + s)〉 = 〈X |X = τ.X + t + s〉
by applying (WUng) where we take s = t + s and t = δ.

As explained in the introduction, the axiom (Hid) is used to get rid of weak
unguardedness generated by the hiding operator. It allows to turn a term into
such a form that the standard axioms for weak unguardedness can be used (see
the proof of the following Proposition 8).

Note that if we want to derive a ground-complete axiomatization in a setting
where no construct is added for recursion, as usually done in the context of the
ACP process algebra (so we just have closed terms over the syntax of TCP and
we just consider sets of recursion equations over this syntax), then in order to
achieve the effect of our axiom Hid we have to add a much more complex set of
conditional equations called CFAR (Cluster Fair Abstraction Rule) introduced
in [18]. CFAR is a generalisation of the KFAR (Koomen’s Fair Abstraction Rule)
introduced in [6].

Proposition 7. The axiomatization formed by the axioms in Table 2 and by
the axioms in Table 4 is sound for the model of transition systems modulo ob-
servational congruence generated by the rules in Tables 1 and 3.

Proof. Most of the axioms are standard. See [14] for the axiom (Hid). �

Proposition 8. The axiomatization formed by the axioms in Table 2 and by
the axioms in Table 4 is ground-complete for the model of transition systems
modulo observational congruence generated by the rules in Tables 1 and 3.

Proof. We show, by structural induction over the syntax of (possibly open)
terms t of TCP+RECf such that free variables do not occur in the scope of one
of the operators ‖, ‖ , | , ∂H , τI , ρf or on the left-hand side of the operator ·, that
t can be turned into normal form, where normal forms are defined as follows.
A term is normal form if it is made up of only δ,ε,X ,a.t′,τ.t′,t′ + t′′ and 〈X |E〉,
where E is guarded and contains one equation only. Proving this yields ground-
completeness; this because normal forms are like terms of basic CCS (with the
only difference that we have two non equivalent kinds of terminating processes
δ and ε, instead of just one) and completeness over such terms has been proved
by Milner (since we do not have · or ‖ operators in normal forms the presence
of the two ways of termination does not change the proof).

The base cases of the induction (t ≡ δ or t ≡ ε or t ≡ X) are trivial because
they are in normal form already.

The inductive cases of the induction are the following ones:

– if t ≡ a.t′ or t ≡ τ.t′ or t ≡ t′ + t′′ then t can be turned into normal form by
directly exploiting the inductive argument over t′ and t′′.

260 J.C.M. Baeten and M. Bravetti

– if t ≡ t′ ‖ t′′ or t ≡ t′‖ t′′ or t ≡ t′ | t′′ or t ≡ ∂H(t′) or t ≡ ρf (t′), then we can
turn t into normal form as follows. By exploiting the inductive argument over
t′ and t′′, and by observing that t cannot include free variables, we know that
t has a finite transition system. Let t1 . . . tn be the states of the transition
system of t, tn ≡ t. It can be easily seen that, for each i ∈ {1 . . .n}, there
exist mi, {αi

j}j≤mi (denoting actions), {ki
j}j≤mi (denoting natural numbers)

s.t. we can derive ti =
∑

j≤mi
αi

j .tki
j

+ {ε}. Hence we can characterize the
behavior of t by means of a set of equations similarly as in [16]. Moreover,
similarly as for the unique solution of equations theorem of [16], we have
that there is a term t′′′ in normal form such that we can derive t′′′ = tn ≡ t.
This can be shown as follows. For each i, from 1 to n, we do the following.
If i is such that ∃j ≤ mi : ki

j = i we have, by applying Fold, that ti =
〈X |X =

∑
j≤mi:ki

j �=i αi
j .tki

j
+
∑

j≤mi:ki
j=i αi

j .X +{ε}〉. Note that axiom Fold

is applicable because, by exploiting the inductive argument, t′ and t′′ are in
normal form and contain guarded recursion only, hence (since the operators
considered cannot turn visible actions into τ ones) every cycle in the derived
transition system contains at least a visible action. Then we replace each
subterm ti occurring in the equations for ti+1 . . . tn with its equivalent term.
When, in the equation for tn ≡ t, we have replaced tn−1, we are done.

– if t ≡ t′ · t′′ then t is turned into normal form similarly as in the previous
item. The only difference is that t′′ may include free variables. Supposing
that c(t′′) denotes the closed term obtained from t′′ by replacing each free
occurrence of a variable X by aX .δ, the procedure for obtaining the normal
form from t ≡ t′ · t′′ is the same followed for t′ · c(t′′) with the procedure of
the previous item (note that when a state is reached such that any actions
aX corresponding to free variables X in t′′ are immediately executable, the
· operator has disappeared already).

– if t ≡ 〈X |E〉 then t is turned into normal form by first exploiting the induc-
tive argument over terms tY where Y ∈ V , assuming E = E(V), and then by
applying axioms Ung and WUng to get rid of generated unguarded recur-
sion as in the standard approach of Milner (after decomposing multi-variable
recursion with axiom Dec).

– if t ≡ τI(t′) then t is turned into normal form as follows. By exploiting the
inductive argument over t′, we consider term t′′ which is obtained by turning
t′ into normal form. Observe that t′ (hence t′′) cannot include free variables
and that it has a finite transition system.
We first show, by structural induction on term t′′, that τI(t′′) can be turned
into τI(t′′′), where t′′′ is obtained from t′′ by syntactically replacing each
occurrence of an action in I with τ .
The base cases of the induction (t′′ ≡ δ or t′′ ≡ ε or t′′ ≡ X) are trivial
because no action in I is included.
The inductive cases of the induction are the following ones:
• if t′′ ≡ a.t′′1 then we have the following two cases:

∗ if a ∈ I then, since τI(a.t′′1) can be turned into τ.τI(t′′1), which by
induction hypothesis can be turned into τ.τI(t′′′1), with t′′′1 such that

A Ground-Complete Axiomatization of Finite State Processes 261

each occurrence of an action in I is replaced with τ , we obtain term
t′′′ by the final transformation into τI(τ.t′′′1).

∗ if a
∈ I then it is a repetition of the previous case where a is not
turned into τ .

• if t′′ ≡ τ.t′′1 it is a repetition of the previous item where τ is not affected
by the transformation.

• if t′′ ≡ t′′1 + t′′2 then, since τI(t′′1 + t′′2) can be turned into τI(t′′1) + τI(t′′2),
which by induction hypothesis can be turned into τI(t′′′1) + τI(t′′′2), with
t′′′1 and t′′′2 such that each occurrence of an action in I is replaced with
τ , we obtain term t′′′ by the final transformation into τI(t′′′1 + t′′′2).

• if t′′ ≡ 〈X |{X = t′′1}〉 then, since τI(〈X |{X = t′′1}〉) can be turned
into 〈X |{X = τI(t′′1)}〉 by means of axiom Hid, which by induction
hypothesis can be turned into 〈X |{X = τI(t′′′1)}〉, with t′′′1 such that
each occurrence of an action in I is replaced with τ , we obtain term t′′′

by the final transformation into τI(〈X |{X = t′′′1 }〉) by means again of
axiom Hid.

Then we use Ung and WUng to get rid of generated unguarded recursion
into t′′′ as in Milner’s standard approach, thus getting a guarded t′′′′.
Finally we consider τI(t′′′′) and we apply the same technique as for, e.g.,
the ‖ operator to turn it into normal form (exploiting the fact that t′′′′ is
guarded, finite state and does not include free variables). In particular now
we can do that because the application of the hiding operator has no effect
on labels of transitions, hence it cannot generate cycles made up of only τ
actions when the semantics is considered. �

6 Conclusion

We just make some commentary about future work. First of all, we claim that the
axiomatization that we presented is complete over all terms in the signature of
TCP plus the recursion operator 〈X |E〉 (without syntactical restriction) which
are finite state, i.e. we can include also terms with variables bound by an outer
recursion operator that are in the scope of static operators (or in the lefthand-
side of a sequence) provided that they are not reachable. Moreover, we plan to
rebuild the whole machinery we showed here in the case of branching bisimulation
instead of considering observational congruence. In particular we claim that we
can find a ground-complete axiomatization for essentially finite state behaviours
modulo branching bisimulation by taking the axiomatization of [12], extending
the syntax as we have done, and adding as only extra axiom our axiom (Hid).

Acknowledgements

We thank Rob van Glabbeek (NICTAustralia) and the anonymous reviewers for
their useful remarks and suggestions. The replacement of the two axioms of Mil-
ner for weakly guarded recursion by just one axiom was also found independently
by Rob van Glabbeek, but never published.

262 J.C.M. Baeten and M. Bravetti

References

1. J.C.M. Baeten. Embedding untimed into timed process algebra: The case for
explicit termination. Mathematical Structures in Computer Science, 13(4):589–
618, 2003.

2. J.C.M. Baeten, T. Basten, and M.A. Reniers. Algebra of Communicating Processes.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2005.

3. J.C.M. Baeten and J.A. Bergstra. Process algebra with propositional signals. The-
oretical Computer Science, 177(2):381–406, 1997.

4. J.C.M. Baeten, J.A. Bergstra, C.A.R. Hoare, R. Milner, J. Parrow, and R. de Si-
mone. The variety of process algebra. Deliverable ESPRIT Basic Research Action
3006, CONCUR, 1991.

5. J.C.M. Baeten and M. Bravetti. A ground-complete axiomatization of finite state
processes in process algebra. Technical Report CS Report 05-18, Technische Uni-
versiteit Eindhoven, Department of Mathematics and Computer Science, 2005.

6. J. A. Bergstra and J. W. Klop. Verification of an alternating bit protocol by
means of process algebra. In Wolfgang Bibel and Klaus P. Jantke, editors, Proc.
Mathematical Methods of Specification and Synthesis of Software Systems, volume
215 of LNCS, pages 9–23. Springer, 1986.

7. J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77–121, 1985.

8. J.A. Bergstra and J.W. Klop. A complete inference system for regular processes
with silent moves. In F.R. Drake and J.K. Truss, editors, Proc. Logic Collo-
quium’86, pages 21–81. North-Holland, 1988.

9. M. Bravetti and R. Gorrieri. Deciding and axiomatizing weak st bisimulation for
a process algebra with recursion and action refinement. ACM Transactions on
Computational Logic, 3(4):465–520, 2002.

10. S.D. Brookes. On the relationship of CCS and CSP. In J. Diaz, editor, Proceedings
ICALP’83, number 154 in LNCS, pages 83–96. Springer Verlag, 1983.

11. R.J. van Glabbeek. Bounded nondeterminism and the approximation induction
principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ing, editors, Proceedings STACS’87, number 247 in Lecture Notes in Computer
Science, pages 336–347. Springer Verlag, 1987.

12. R.J. van Glabbeek. A complete axiomatization for branching bisimulation congru-
ence of finite-state behaviours. In A.M. Borzyszkowski and S. Sokolowski, editors,
Proc. MFCS’93, volume 711 of LNCS, pages 473–484. Springer, 1993.

13. R.J. van Glabbeek. On the expressiveness of ACP (extended abstract). In
A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Proceedings First Work-
shop on the Algebra of Communicating Processes, ACP94, Utrecht, The Nether-
lands, May 1994, Workshops in Computing, pages 188–217, 1994. Available at
http://boole.stanford.edu/pub/acp.ps.gz.

14. R.J. van Glabbeek. Notes on the methodology of CCS and CSP. Theoretical
Computer Science, 177(6):329–349, 1997.

15. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
16. R. Milner. A complete inference system for a class of regular behaviours. Journal

of Comput. System Sci., 28(3):439–466, 1984.
17. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
18. F.W. Vaandrager. Verification of two communication protocols by means of process

algebra. Technical Report report CS-R8608, CWI Amsterdam, 1986.

Decomposition and Complexity of Hereditary History
Preserving Bisimulation on BPP�

Sibylle Fröschle and Sławomir Lasota��

Institute of Informatics, Warsaw University,
02–097 Warszawa, Banacha 2, Poland
{sib, sl}@mimuw.edu.pl

Abstract. We propose a polynomial-time decision procedure for hereditary his-
tory preserving bisimilarity (hhp-b) on Basic Parallel Processes (BPP). Further-
more, we give a sound and complete equational axiomatization for the equiva-
lence. Both results are derived from a decomposition property of hhp-b, which
is the main technical contribution of the paper. Altogether, our results comple-
ment previous work on complexity and decomposition of classical and history-
preserving bisimilarity on BPP.

1 Introduction

The success of automatic verification in the finite-state world is contrasted by the re-
ality that in practice most processes have either an infinite or an extremely large state
space. Thus, it is important to clarify: how far can the automatic methods of the finite-
state world be extended to infinite-state processes? It is folklore that full process cal-
culi such as CCS are too expressive to allow for a decidable theory. However, there is
now a standard hierarchy of restricted processes, the Process Rewrite Systems (PRS)
hierarchy, along which the borderlines of decidability and complexity with respect to
the major verification problems are well-investigated [19]. One central category of the
PRS-hierarchy is Basic Parallel Processes (BPP): it can be seen as an extension of finite
automata by a parallel composition operator. One of the major verification problems is
to check whether two processes are equivalent under a given bisimulation equivalence.

With the recent addition of two more results our understanding of the computational
power of bisimulation equivalences on BPP is now almost complete. On the one hand,
the complexity of classical bisimilarity on BPP has finally been settled to be PSPACE-
complete [18,11]. On the other hand, [16] has established that truly-concurrent bisim-
ulation equivalences, such as history preserving bisimilarity (hp-b), are P-complete for
this class; in [12] the upper bound has been improved to O(n3), building on the tech-
nique of [11]. Together, these results indicate the following trend: while in the finite-
state world truly-concurrent verification problems are at least as hard as their interleav-
ing counterparts (e.g. [13,15]), in the infinite-state world this effect seems reversed. The
same trend has also been revealed in model-checking [4], and linear-time equivalence
checking [20].

� This work is supported by the European Community Research Training Network GAMES.
�� Partially supported by Polish KBN grant No. 4 T11C 042 25.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 263–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 S. Fröschle and S. Lasota

One gap remains in our understanding of bisimilarities on BPP: the complexity
of hereditary history preserving bisimilarity (hhp-b) [2,14]. Hhp-b is known to coin-
cide with hp-b for simple BPP (SBPP) [6], and is thus polynomial-time decidable here.
For full BPP it was shown to be decidable [5], but the proof left the complexity open.
This paper fills this gap: we establish that hhp-b is polynomial-time decidable on BPP.
Thereby we settle that hhp-b conforms to the positive trend for true-concurrency in the
infinite-state world. This is particularly interesting since hhp-b takes a special position
among bisimilarities: it is often considered to be the bisimulation equivalence for true-
concurrency [14,8]. Unlike all the other equivalences it is undecidable for finite-state
systems [15]; only a few positive results could be achieved for restricted classes [7].

The reason behind the positive trend for true-concurrency in the infinite-state world
seems to be the following: BPP processes have natural decomposition characteristics;
these may translate into decomposition results for truly-concurrent equivalences, and
allow us to decide the respective concept by a ‘divide and conquer’ approach. There are
two kinds of decomposition results that one can consider. The classical question is [17]:
given a process class and an equivalence, is each process term uniquely, up to the equiv-
alence, represented as a parallel composition of prime processes? A process is prime if
it cannot be expressed, up to the equivalence, as a non-trivial parallel composition. This
type of decomposition stands behind the polynomial-time algorithm for bisimilarity on
normed BPP by Hirshfeld et. al. [10]. Unique decomposition has also been shown for
BPP with respect to distributed bisimilarity [3] (which coincides with hp-b for BPP).

As recently advocated in [6], in a truly-concurrent framework one can also consider
whether a given equivalence is decomposable with respect to the independent compo-
nents of the processes to be compared. If two processes P and Q are equivalent then we
ask whether there is a one-to-one correspondence between the components of P and
those of Q such that related components are equivalent. This kind of decomposition
stands behind the coincidence of hhp-b with hp-b on SBPP: decomposition was proved
for hp-b and hhp-b for a class that subsumes SBPP (and incomparable to BPP) [6]. Hp-b
is not decomposable in general, and, as we will see later, neither is it for BPP.

As our core result, we will resolve that, modulo hhp-bisimilar choices (a concept to
be explained later), hhp-b on BPP is indeed decomposable in the second sense. We will
also show that an analogue for the choice operator holds. Building on our decomposition
theory we will design a decision procedure for hhp-b on BPP, running in O(n2 log n)
time. Further, we will give a complete equational theory for hhp-b. The latter connects
to work of Christensen, who presented equational theories for classical and distributed
bisimilarity for BPP [3]. We proceed as follows. Section 2 contains the necessary def-
initions. In particular, we define hhp-b in terms of a step game. In Section 3 we prove
our decomposition results. In Section 4 we present the algorithm and in Section 5 the
equational theory. In Section 6 we discuss the consequences of our results, and highlight
some further directions. Some proofs, missing here, can be found in [9].

2 Preliminaries

BPP. In the following assume a countably infinite set of actions Act = {a, b, . . .} and
a countably infinite set of process variables Vars = {X,X1, . . .}. BPP expressions are
given by the following grammar:

Decomposition and Complexity of Hereditary History 265

E ::= 0 |X | a.E | E+E | E||E,

where 0 is the empty process, X is a process variable, a.X is action prefix, E+E
denotes nondeterministic choice, and E||E parallel composition. We usually consider
BPP expressions modulo associativity and commutativity of choice and parallel com-
position, and 0 as unit for these operators. A BPP definition Δ is a finite family of

recursive equations X
def= EX , where the X are distinct variables, and each EX is a

BPP expression that only contains variables defined by Δ and where each variable oc-
currence is guarded, i.e., within the scope of action prefix. (This ensures that recursive
definitions yield unique solutions.) The set of variables occurring in Δ is denoted by
VarsΔ. A BPP process is a pair (Δ, E), where Δ is a BPP definition, and E is an
expression that only contains variables of VarsΔ. If Δ is clear from the context, we
denote (Δ, E) simply by E.

Execution Normal Form. We will mainly work with BPP in Execution Normal Form
(ENF). BPP expressions in ENF (ENF expressions) are defined by:

E ::= 0 | a.X | E+E | E||E.

Each BPP process (E, Δ) can easily be transformed into a process in ENF, enf(E).
During the transformation, always work modulo 0 as unit for ‘+’ and ‘||’: remove
all superfluous occurrences of 0 in the expressions. Translate E and all defining ex-
pressions of Δ into ENF expressions by replacing each subexpression a.E′ by a.XE′ .

Add new equations XE′
def= E′ to Δ. E′ is possibly unguarded. Therefore, replace each

unguarded occurrence of a variable Y by EY . Treat such newly created defining ex-
pressions as the original ones, until finally all defining expressions will be in ENF. Note
that this transformation only makes use of operations such as unfolding of variables
and introduction of new variables for subexpressions, which will be respected by any
behavioural equivalence.

Transition-Based ENF. For our definition of hhp-b, given a BPP E, we need to be able
to uniquely identify each occurrence of an action prefix within E. A convenient way to
do so is to work with labelled transitions rather than actions. In the following, for each
a ∈ Act , assume a countably infinite set of transitions labelled by a, Ta = {ta, ta1 , . . .}.
Let T = Ta ∪ Tb ∪ . . . be the set of all transitions. Let t, t1, . . . range over T , and set
l(t) = a if t ∈ Ta. Transition-based ENF (T-ENF) expressions are defined as follows:

E ::= 0 | t.X | E+E | E||E,

where t.X is transition prefix. We denote the set of transitions occurring in E by TE .
We only consider T-ENF expressions E that are transition-genuine in that every t ∈ TE

appears syntactically only once in E. Given t ∈ TE , there will be exactly one X such
that ‘t.X’ is a subexpression of E; denote X by Xt. Given a definition Δ, by T -ENFΔ

we denote all T-ENF expressions E such that E only contains variables of VarsΔ.

Proviso. In the following, we mainly work with T-ENF processes. We allow us to as-
sume that all defining expressions in a definition Δ are in T-ENF, and that enf(E) is in

266 S. Fröschle and S. Lasota

T-ENF as well. Clearly, whatever we state for T-ENF processes can be carried over to
ENF processes obtained by replacing all transitions with their labels.

Steps of T-ENF Processes. Rather than providing an operational semantics for T-ENF
processes we prefer to capture the concurrent steps of a T-ENF expression E, i.e., the
sequences of pairwise concurrent transitions initially enabled at E. This will be suffi-
cient for our definition of hhp-b.

We say a transition t is enabled at E, written E
t→, iff t ∈ TE . If E

t→ then
the parallel remainder of E wrt. t, written pR(E, t), is inductively defined as follows,
where we work modulo 0 as unit for ‘+’ and ‘||’:

pR(t.X, t) = 0,
pR(E+F, t) = if t ∈ TE then pR(E, t) else pR(F, t),
pR(E||F, t) = if t ∈ TE then pR(E, t)||F else E||pR(F, t).

We say r = t1 . . . tn ∈ T ∗E is a concurrent step of E, denoted by r ∈ steps(E), iff

there is a sequence E1, . . . , En such that E = E1, and ∀i ∈ [1, n], Ei
ti→ and Ei+1 =

pR(Ei, ti). We generalize pR(E, t) to steps in the obvious way. Given r ∈ steps(E)
and t ∈ TE , we say t is enabled at r, written r

t→, iff E′
t→, where E′ = pR(E, r).

E′ is a parallel remainder of E, written E′ ∈ pR(E), iff E′ = pR(E, r) for some
r ∈ steps(E).

Step Game and Hhp-b. The usual way to define hhp-b for BPP would be to proceed as
follows: first, give the standard definition of hhp-b for, say, 1-safe Petri nets; second, de-
fine true-concurrency semantics for BPP so that each BPP is interpreted as a (typically
infinite) 1-safe Petri net; and third, define two BPP to be hhp-bisimilar iff their inter-
pretations as 1-safe Petri nets are hhp-bisimilar ([5]). To avoid the bulk of definitions
this would require, we define hhp-b in a non-standard way, making use of a characteri-
zation of [5]: two T-ENF processes E and F are hhp-bisimilar iff: (1) Duplicator has a
winning strategy H in a bisimulation game with backtracking, which is only played in
the scope of the concurrent steps of E and F ; and (2) whenever two transitions tE and
tF are related byH then XtE and XtF are hhp-bisimilar.

Let E be a T-ENF expression, and r = t1t2 . . . tn ∈ steps(E). Write |r| for the
length of r, that is |r| = n. Given k ∈ [1, |r|], we define δ(r, k) to be the result of
backtracking the kth transition in r, that is δ(r, k) = t1 . . . tk−1tk+1 . . . tn. Observe that
we have δ(r, k) ∈ steps(E). GivenH ⊆ steps(E)×steps(F), we define Matches(H)
to be the set {(tE, tF) | (rEtEr′E , rF tF r′F) ∈ H, where |rE | = |rF |}.

Let E and F be T-ENF expressions. The (E, F)step -game between Spoiler and Du-
plicator is played as follows. Configurations are pairs (rE , rF) ∈ steps(E)×steps(F)
with |rE | = |rF |. The initial configuration is (ε, ε). A play proceeds from (rE , rF) by
the following rules:

1. Spoiler chooses one of E or F , say E, and picks a transition tE ∈ TE that is
enabled at rE . Duplicator has to respond by executing a transition tF in F that is
enabled at rF and satisfies l(tE) = l(tF). Play continues at (rEtE , rF tF).

Decomposition and Complexity of Hereditary History 267

2. Alternatively, Spoiler chooses one of E or F , say E; he picks k ∈ [1, |rE |], and
backtracks the kth transition in rE . Duplicator has to backtrack the corresponding
transition in rF . Play resumes at (δ(rE , k), δ(rF , k)).

3. The play continues like this forever, in which case Duplicator wins, or until either
Spoiler or Duplicator is unable to move, in which case the other participant wins.

Note that a play can continue indefinitely only because of repeated backward and for-
ward steps which may undo each other.

A winning strategy for Duplicator in the (E, F)step-game is a set of configurations
H such that (ε, ε) ∈ H and whenever Spoiler has a move at some (rE , rF) ∈ H then
Duplicator has a response and the accordingly updated configuration is inH.

Let Δ be a BPP definition in T-ENF. We map a relation ∼⊆ T -ENFΔ×T -ENFΔ

to a relation
�∼⊆ T -ENFΔ×T -ENFΔ as follows: E

�∼ F iff Duplicator has a winning
strategy H in the (E, F)step-game such that for all (tE , tF) ∈ Matches(H), XtE ∼
XtF (by convention, for variables X and Y we write X ∼ Y if EX ∼ EY). In [9] it is
proved that the standard definition of hhp-b on BPP (e.g. [5]) is equivalent to:

Definition 1. Hhp-b, denoted by ∼hhp , is the greatest relation ∼ such that ∼ = �∼. We
carry over ∼hhp to all BPP processes: E ∼hhp F iff enf(E) ∼hhp enf(F).

3 Decomposition

Let Δ be a BPP definition in T-ENF. All processes that appear in this section are as-
sumed to be in T -ENFΔ. We define the summands and factors of a process inductively
as follows:

summands(E1+E2) = summands(E1) ∪ summands(E2)
summands(E1||E2) = {E1||E2}

factors(E1+E2) = {E1+E2}
factors(E1||E2) = factors(E1) ∪ factors(E2)

summands(t.X) = {t.X}
summands(0) = ∅

factors(t.X) = {t.X}
factors(0) = ∅.

We investigate whether hhp-b is decomposable wrt. parallel composition in the follow-
ing sense: whenever E and F are hhp-bisimilar is there a bijection between the factors
of E and those of F such that related factors are hhp-bisimilar? We also ask whether
hhp-b is decomposable wrt. choice in the analogous sense. In view of Section 4 we
prove our decomposition results in a more general formulation: we work with

�∼ rather
than∼hhp , where we assume∼⊆ T -ENFΔ×T -ENFΔ to be an arbitrary equivalence.

A first observation is that we will have to work modulo choices that are trivial
wrt.

�∼: let P = E||F and Q = P ′+P ′′ such that P
�∼ P ′

�∼ P ′′; clearly P is equivalent
to Q under any reasonable behavioural equivalence, but there is no bijection between
the factors of P and those of Q. Formally, we capture trivial choices as follows.

Definition 2. We say that E contains a trivial choice wrt.
�∼ if it contains, up to as-

sociativity and commutativity of +, a subexpression E1+E2 with E1
�∼ E2. When

�∼ = ∼hhp , we say that E contains a hhp-bisimilar choice.

268 S. Fröschle and S. Lasota

We will prove that, modulo trivial choices,
�∼ is indeed decomposable wrt. both

operators. The proof of decomposition wrt. parallel composition relies on three lemmas.
The first is a cancellation lemma, which holds in general.

Lemma 1. F ||E �∼ G||E =⇒ F
�∼ G.

Proof. For shorter notation we set L = F ||E and R = G||E. Assume a winning strat-
egyH for Duplicator in the (L,R)step-game such that for all (tL, tR) ∈ Matches(H),
XtL ∼ XtR .

Based onHwe exhibit a winning strategyH′ for Duplicator in the (F, G)step -game.
The idea behind the construction of H′ is as follows. Assume, in the (F, G)step -game,
Spoiler picks a transition in F , say tF , as his first move. This move can be copied to
the (L,R)step-game. According to H, Duplicator has a reply, say tm, either in E or
in G. If the latter holds then Duplicator can copy tm straight to the (F, G)-game. But
what to do if tm is in E? Then Duplicator can obtain her answer to tF by the following
‘zig-zag’-strategy. Spoiler can choose tm in L as his next move in the (L,R)step-game.
If, according to H, Duplicator’s answer, say t′m, is in G, take t′m to be her reply to
tF in the (F, G)step -game. Otherwise, let Spoiler perform t′m in L as his next move
in the (L,R)step-game, and check whether this time Duplicator’s answer is in G. We
repeat this procedure, until, finally, we hit a match in G. In this manner, we will exhibit
answers for Duplicator not only to Spoiler’s first moves but to all of his moves.

We will make use of the following two observations, where rL ∈ steps(L), rR ∈
steps(R), rF ∈ steps(F), and rG ∈ steps(G). We use a notation r � T for projection
of a concurrent step r on a set of transitions T , i.e., r � T is a concurrent step obtained
by dropping all transitions of r that are not in T .

1. If rL � TE = rR � TE then ∀tE ∈ TE , rL
tE→ ⇐⇒ rR

tE→.
2. If rL � TF = rF then ∀tF ∈ TF , rL

tF→ ⇐⇒ rF
tF→. And, in analogy:

If rR � TG = rG then ∀tG ∈ TG, rR
tG→ ⇐⇒ rG

tG→.

Formally, we constructH′ inductively from the initial configuration while preserv-
ing the following property:

Property P. Let (rF , rG) ∈ H′; (rF , rG) is of the form (t1F . . . tmF , t1G . . . tmG), where
m ≥ 0 and ∀i ∈ [1, m], tiF ∈ TF , tiG ∈ TG. Then there is (rL, rR) ∈ H such that
rL = w1

L . . . wm
L , rR = w1

R . . . wm
R , and ∀i ∈ [1, m], wi

L and wi
R are of the form

wi
L = tiF t1E . . . tnE , or wi

L = t1E . . . tnEtiF ,
wi

R = t1E . . . tnEtiG, wi
R = tiGt1E . . . tnE ,

where n ≥ 0 and ∀j ∈ [1, n], tjE ∈ TE .

Base case. We start with (ε, ε) ∈ H′. Property (P) trivially holds since (ε, ε) ∈ H.

Inductive case. Let (rF , rG) ∈ H′. Spoiler chooses his next move according to rule (1)
or (2) of the game. Assume (rL, rR) ∈ H as given by (P). In either case, we construct
a response for Duplicator such that (P) is preserved.

Decomposition and Complexity of Hereditary History 269

(1) Spoiler chooses one of F or G, say F , and performs a transition tF of F that is
enabled at rF . Consider the (L,R)step-game. Let Spoiler perform tF at (rL, rR); this
is possible by Observation (2). Say Duplicator’s response according to H is tm. We
obtain a match for tF in the (F, G)step -game by the following ‘zig-zag’ algorithm:

rL := rLtF ; rR := rRtm; -- update the configuration
while tm
∈ TG do

let Spoiler perform tm in L;
set t′m to be Duplicator’s response according to H;
rL := rLtm; rR := rRt′m; -- update the configuration
tm := t′m; -- update the match

return tm;

The following is an invariant of the while-loop: let r′R be given by rR minus Du-
plicator’s last match; (a) rL � TE = r′R � TE , and (b) r′R � TG = rG. By (a) and
Observation (1), the first instruction of the while-loop is indeed a valid move in the
(L,R)step-game. The algorithm clearly terminates: there is only a finite number of
transitions in TE . We take tm to be Duplicator’s response to tF in the (F, G)step -game;
by (b) and Observation (2) this is a legal move. Thus, we extend H′ by (rF tF , rGtm).
Property (P) will be preserved: at the last stage of the algorithm (rL, rR) is a configu-
ration as required.

(2) Spoiler chooses one of F or G, say F ; he picks k ∈ [1, |rF |], and backtracks
the kth transition in rF . Duplicator must backtrack the kth transition in rG. We add
(δ(rF , k), δ(rG, k)) to H′. Property (P) will be preserved by this addition. In the
(L,R)step-game, at (rL, rR), let Spoiler backtrack all the wk

L-transitions. Then (w1
L

. . . wk−1
L wk+1

L . . . wm
L ,w1

R . . . wk−1
R wk+1

R . . . wm
R) ∈ H; but this is exactly a configura-

tion as required.
It remains to check whether for all (tF , tG) ∈ Matches(H′), XtF ∼ XtG . Let

(tF , tG) ∈ Matches(H′). If (tF , tG) ∈ Matches(H) then XtF ∼ XtG is immediate.
Otherwise, wlog. assume (P) gives us (tF , t1E), (t1E , t2E), . . . , (tnE , tG) ∈ Matches(H),
where n > 0, and ∀i ∈ [1, n], tiE ∈ TE . We know that XtF ∼ Xt1E

, ∀i ∈ [1, n − 1],
Xti

E
∼ Xti+1

E
, and Xtn

E
∼ XtG . But then XtF ∼ XtG follows by transitivity of ∼. ,-

Relation
�∼ is a congruence with respect to parallel composition; hence we also obtain:

Corollary 1. (E
�∼ E′) & (F ||E �∼ F ′||E′) =⇒ F

�∼ F ′.

The second lemma implies: if a choice and a parallel composition are related by
�∼

then the choice must be trivial wrt.
�∼.

Lemma 2. If E
�∼ F and |factors(F)| ≥ 2 then for each G ∈ summands(E),

G
�∼ F .

Proof. Let E and F be given as above. If |summands(E)| < 2 then the lemma is im-
mediate. Otherwise, letH be a winning strategy for Duplicator in the (E, F)step-game
such that for all (tE , tF) ∈ Matches(H), XtE ∼ XtF . Choose any G ∈ summands(E).
We will exhibit a winning strategy H′ for Duplicator in the (G, F)step-game such that

270 S. Fröschle and S. Lasota

(tG, tF) ∈ Matches(H′) only if (tG, tF) ∈ Matches(H). This will clearly yield

G
�∼ F .
If Spoiler picks a transition in G as his first move then Duplicator can copy her

response and all subsequent moves straight from H. This is so because: once we have
decided for G, the other E-summands become disabled, and, from this point onwards,
the (E, F)step-game corresponds exactly to the (G, F)step-game. Similarly, if Spoiler
picks a transition in F as his first move, and, according toH, Duplicator responds with
a G-transition then she can copy this response and all subsequent moves from H. The
difficult case is when Spoiler performs his first move in F , say he executes tF , and H
prescribes a match in a E-summand other than G. We show that, in this case, Duplicator
has an alternative match in G: we exhibit tE ∈ G such that (tE , tF) ∈ H.

Consider the (E, F)step-game. At (ε, ε), let Spoiler perform a transition in G, say
tG; this is clearly possible. Assume, according to H, Duplicator answers this move by
t′F . There are three cases:

(a) t′F = tF , (b) t′F and tF are concurrent in F , (c) t′F and tF are in conflict in F .

(Given an expression E, two distinct transitions t, t′ ∈ TE are in conflict in E if there is
a subexpression E1 +E2 of E with t ∈ TE1 and t′ ∈ TE2 ; otherwise t, t′ are concurrent
in E.)

If (a) holds then tG is a match as required. In case (b) Spoiler can perform tF as his
next move. Duplicator must match tF by a transition in G, say t′G. Let Spoiler backtrack
t′F . Duplicator must backtrack tG. We arrive at (t′G, tF) ∈ H, and thus t′G is a match
as required. Finally, assume (c) holds. tF and t′F must belong to the same factor of F ,
say H . There must be a further factor of F , say H ′. Spoiler can perform a transition
in H ′, say t′′F , as his next move. Duplicator must match t′′F by a G-transition, say t′G.
Let Spoiler backtrack t′F . Duplicator must backtrack tG. We arrive at (t′G, t′′F) ∈ H; but
from here we can proceed exactly as in (b). ,-

With the help of the previous lemma we will show: given E
�∼ F , where E and

F are non-zero and contain no trivial choice, we can always find a factor G of E and
a factor H of F such that G

�∼ H . This will ensure that we can apply Corollary 1
consecutively to obtain our decomposition result.

Lemma 3. Assume that E and F contain no trivial choice wrt.
�∼, and E
= 0 or

F
= 0. If E
�∼ F then there exist G ∈ factors(E) and H ∈ factors(F) such that

G
�∼ H .

Proof. Wlog. assume E
= 0. Let H be a winning strategy for Duplicator in the
(E, F)step-game such that for all (tE , tF) ∈ Matches(H), XtE ∼ XtF . Choose
any G ∈ factors(E), and consider rE ∈ steps(E) such that pR(E, rE) = G;
this is clearly possible. There must be rF ∈ steps(F) such that (rE , rF) ∈ H. Set

F ′ = pR(F, rF). It is straightforward to derive G
�∼ F ′. One of the following three

cases will hold:

1. F ′ ∈ factors(F).
2. F ′ ∈ pR(H) and F ′
= H for some H ∈ factors(F).

Decomposition and Complexity of Hereditary History 271

3. F ′ = H ′
1|| . . . ||H ′

n, where n ≥ 2 and ∀i ∈ [1, n], H ′
i
= 0 and H ′

i ∈ pR(H) for
some H ∈ factors(F).

If (1) holds then G and F ′ are factors as required. If (2) applies, at (rE , rF), let
Spoiler backtrack all the H-transitions in rF . Duplicator must backtrack the corre-
sponding transitions. The new configuration, say (r′E , r′F), satisfies: pR(F, r′F) = H
and pR(E, r′E) = G||G′1|| . . . ||G′n, where n ≥ 1 and ∀i ∈ [1, n], G′i
= 0 and
G′i ∈ pR(G′) for some G′ ∈ factors(E). But this means (2) reduces to (3): wlog. we
can exchange G by H . Finally, assume (3) holds. G cannot be of the form t.X : we have
G

�∼ F ′ but there are at least two concurrent transitions in F ′ for Duplicator to match.
Since G cannot be a parallel composition either, we conclude |summands(G)| ≥ 2. But
then we can apply Lemma 2 to obtain a contradiction with our assumption that E does
not contain any trivial choice wrt.

�∼. ,-
Now, we are ready to prove decomposition wrt. parallel composition.

Theorem 1. Assume E and F contain no trivial choice wrt.
�∼. If E

�∼ F then there
exists a bijection β : factors(E) → factors(F) such that G

�∼ β(G) for each
G ∈ factors(E).

Proof. Set m = |factors(E)|. The proof is by induction on m. If m = 0 then we must
also have |factors(F)| = 0, and a bijection as required is trivially given. If m > 0,
we can apply Lemma 3 to obtain G ∈ factors(E) and H ∈ factors(F) such that

G
�∼ H . Let E′ be given by E = E′||G, and F ′ by F = F ′||H . Corollary 1 gives

us E′
�∼ F ′, and, applying the induction hypothesis, we easily obtain a bijection as

required. ,-
Decomposition wrt. choice is not as involved to prove. It is a consequence of the

following theorem.

Theorem 2. If E
�∼ F then

– for each G ∈ summands(E) there is H ∈ summands(F) such that G
�∼ H ,

– for each H ∈ summands(F) there is G ∈ summands(E) such that G
�∼ H .

Corollary 2. Assume E and F contain no trivial choice wrt.
�∼. If E

�∼ F then there
exists a bijection β : summands(E) → summands(F) such that G

�∼ β(G) for each
G ∈ summands(E).

Although we will build on Theorem 1 and Corollary 2 it is worth spelling them out
for the special case ∼ = ∼hhp . By definition of hhp-b all the previous results carry
over, and we obtain decomposition of hhp-b wrt. all BPP operators.

Corollary 3. Assume E and F contain no hhp-bisimilar choice. If E ∼hhp F then

– there exists a bijection β : factors(E) → factors(F) such that G ∼hhp β(G)
for each G ∈ factors(E);

– there exists a bijection β : summands(E) → summands(F) such that G ∼hhp

β(G) for each G ∈ summands(E).

Note that
�∼, including ∼hhp , is clearly compositional, i.e., preserved by ‘+’ and ‘||’;

hence the opposite directions of Theorems 1, 2 and Corollaries 2, 3 hold as well.

272 S. Fröschle and S. Lasota

4 Algorithm

Let Δ be a BPP definition in T-ENF. By convention, let EX denote the defining expres-
sion of a variable X . Let n be the size of Δ, i.e., the sum of lengths of all EX . We will
concentrate on relations∼ ⊆ VarsΔ×VarsΔ between variables in this section. Hence,
in the following, symbol ∼hhp is used to denote hhp-b restricted to variables. We will
show that ∼hhp can be computed in time polynomial wrt. n.

Define an operator F that given ∼ ⊆ VarsΔ×VarsΔ yields a relation F(∼) ⊆
VarsΔ×VarsΔ, defined by: 〈X, Y 〉 ∈ F(∼) iff EX

�∼ EY . F can be seen as the

restriction of the mapping ∼ �→ �∼ to variables. In particular, F is monotonic: if ∼1 ⊆
∼2 then F(∼1) ⊆ F(∼2). By Definition 1 we get:

Proposition 1. ∼hhp is the greatest fixed point of F .

Hence, ∼hhp is the limit of the following sequence of approximants, where ∼0 =
VarsΔ×VarsΔ:

∼0 ⊇ F(∼0) ⊇ F2(∼0) ⊇

In other words, ∼hhp equals the first F i(∼0) with F i(∼0) = F i+1(∼0). It can easily
be shown, by induction on i, that all the approximants are equivalence relations; hence
the number of iterations is not greater than the number of variables. We only need to
show that computing F i+1(∼0) from F i(∼0) can be done in polynomial time. We will
prove:

Lemma 4. Given an equivalence ∼ ⊆ VarsΔ×VarsΔ, relation F(∼) can be com-
puted in time O(n log n).

We will also show that checking whether the limit has been reached can be done without
any extra cost. Thus, altogether we obtain:

Theorem 3. Relation ∼hhp can be computed in time O(n2 log n).

In the rest of this section we describe the algorithm announced in Lemma 4. It is in-
spired by the standard algorithm solving tree isomorphism (e.g. [1]). Our algorithm
assigns an integer i(v) to each node v of the syntactic trees corresponding to the defin-
ing expressions of Δ such that for any two nodes v1, v2 we have: i(v1) = i(v2) iff the

expressions represented by v1 and v2 are related by
�∼.

The nodes of the syntactic trees are of three types: prefix, ‘+’ and ‘||’; the leaves
are precisely the nodes of type prefix. We assume that the trees are constructed up to
associativity and commutativity of ‘+’ and ‘||’. In particular, if a node has type ‘+’, its
parent has type ‘||’, and vice versa. The trees can be constructed in timeO(n).

The algorithm works in bottom-up manner, visiting each of the nodes once. It starts
in the leaves and each non-leaf is processed after all its children have been visited. In
each node v, a sorted list lv is computed. To start off with, lv exactly contains the child
nodes of v. To notionally remove trivial choices from the trees, lv is processed such that:
(1) if v is of type ‘+’ then, for any integer j, lv will contain at most one node v′ with
i(v′) = j; (2) if v is of type ‘||’ and some child v′ of v has been identified as a trivial
choice, i.e., v′ is of type ‘+’ and lv′ contains only one node, say v′′, then the nodes of

Decomposition and Complexity of Hereditary History 273

lv′′ will be inserted into lv in place of v′. For convenience, we assume lv = {v} at each
leaf v. A table T is used to store triples (j, x, t), where j is an integer assigned to some
non-leaf node v, x is the type of v, and t = i(lv) is the sorted tuple of integers assigned
to the nodes of lv. The table T is initially empty.

Assign integers to all leaves such that two leaves t.X and t′.X ′ have the same
integer iff l(t) = l(t′) and X ∼ X ′. This can clearly be done in time O(n). The
processing of a non-leaf v depends on its type. First, we do the following:

let lv be a tuple containing all child nodes of v
if v is of type ‘+’

sort lv wrt. the integers assigned to the nodes
remove duplicates from lv: (∗)

as long as v1, v2 ∈ lv, v1
= v2 and i(v1) = i(v2), remove one of v1, v2

if lv contains only one node, mark node v ‘trivial choice’
else -- i.e., v is of type ‘||’

for each node v′ ∈ lv marked ‘trivial choice’
replace v′ by the elements of lv′′ , where {v′′} = lv′ (∗∗)

sort lv wrt. the integers assigned to the nodes.

If v is marked ‘trivial choice’ then we assign to v the integer that has been given to the
unique element of lv. Otherwise, we perform a look-up in T . If a triple (j, x, t) is found
with t = i(lv) and x the type of v, assign j to v. Otherwise, assign to v a fresh number
j′ and update T by inserting (j′, x′, i(lv)) into T , where x′ is the type of v.

After all nodes have been processed we assign to each variable X of Δ the integer
assigned to the root of the tree that represents EX . This yields a representation ofF(∼).

The correctness of the algorithm follows from Lemma 5 below. For its formulation
and proof we adopt some conventions. Given an expression E, define the children of
E, denoted by children(E), as follows: if E is a choice then set children(E) =
summands(E), otherwise define children(E) = factors(E). (If E is a prefix this
implies children(E) = {E}.) Given a processed node v, let lrv be the ‘real’ tuple of
v: if v is marked ‘trivial choice’ set lrv to be lv′ where {v′} = lv, otherwise set lrv to be

lv. We carry over
�∼ to nodes in the obvious way: e.g., given a node v, we write E

�∼ v

iff E and the expression represented by v are related by
�∼.

Lemma 5. Let v, v1, v2 be nodes of the trees after termination of the algorithm.

1. v
�∼ E for some process E such that

(a) E does not contain any trivial choice;
(b) there exists a bijection β : lrv → children(E) such that v′

�∼ β(v′) for each
v′ ∈ lrv;

(c) if there is no entry for i(v) in T then E is a prefix, otherwise E is of type x,
where x is given by (i(v), x, i(lrv)) ∈ T .

2. v1
�∼ v2 iff i(v1) = i(v2).

Proof (Sketch). The lemma follows by induction on the number of nodes that have
already been processed. (1) If v is a prefix then take E to be v. Otherwise, for each
vi ∈ lrv assume Ei such that Ei

�∼ vi as given by the induction hypothesis. Let x be

274 S. Fröschle and S. Lasota

defined by (i(v), x, i(lrv)) ∈ T . If x = ‘||’ then take E to be the parallel composition of
the Ei, otherwise take E to be the choice of the Ei. Using the induction hypothesis of
(2) it is routine to check that E

�∼ v and that conditions (a)–(c) are satisfied.

(2)(⇒) Assume E1 and E2 such that E1
�∼ v1 and E2

�∼ v2 as given by (1). Since
E1 and E2 do not contain any trivial choice we can apply Theorem 1 and Corollary 2
to obtain: E1 and E2 must be of the same type, and there is a bijection between the
children of E1 and those of E2 such that related children are in

�∼. If E1 and E2 are
of type prefix then i(v1) = i(v2) can be derived immediately. Otherwise, using the
induction hypothesis, we first obtain i(lrv1

) = i(lrv2
), and then conclude i(v1) = i(v2).

(⇐) By a converse argument using congruence rather than decomposition. ,-

Finally, we provide a cost estimation of the algorithm.

Claim. The algorithm runs in time O(L · log n), where L =
∑

v |lv| is the sum of
lengths of all tuples lv. (When v is a ‘+’ node, we consider the length of lv before
removing duplicates in (∗).)

Indeed: sorting lv requiresO(|lv| · log |lv|) time; each look-up and update can be done
in time O(|lv| · log n) by bisection: T never contains more than n entries, and equality
test for lv requires at most time |lv| since all tuples are sorted. The crucial observation
for the total cost estimation is the following:

Claim. L is O(n).

Each node w belongs to a tuple lv of its parent v (before w may be removed from lv dur-
ing (∗)). Moreover, a node can belong to several other tuples lv′ , due to the replacement
(∗∗) in the algorithm. Obviously, L is equal to the total number of pairs (w, v) : w ∈ lv.
There are at most n such pairs with v being the parent of w. We will show that there are
also at most n pairs with v not the parent of w. Concretely, we will injectively assign to
each such pair a node in the tree.

Consider stage (∗∗) of the algorithm: assume a ‘||’ node v with one of its children v′

marked ‘trivial choice’; let lv′ = {v′′}, and assume w ∈ lv′′ . Node v′ has type ‘+’ and
v′′ can either be of type prefix or of type ‘||’. We will assign to the pair (w, v) a node
as follows. There must be a second child v̄′′ of v′ which satisfies i(v̄′′) = i(v′′); v̄′′

must have been removed from lv′ at an earlier stage of the algorithm. We have i(lv′′) =
i(lv̄′′). Assign to (w, v) a corresponding node w̄ in lv̄′′ . (Note that w̄ is not necessarily
a child of v̄′′.) In total, all pairs (w, v) with w ∈ lv′′ can be assigned injectively to the
nodes of lv̄′′ . The crucial observation is that a node from lv̄′′ will not be assigned to
any other pair again later, since v̄′′ has been removed from lv′ . This implies that the
mapping is injective.

To complete the cost estimation, we note that checking whether ∼ = F(∼) can
be done without any extra cost. It can be shown that, as long as the limit has not been
reached, in each iteration of the algorithm the set of nodes marked ‘trivial choice’ is a
strict subset of the nodes thus marked in the previous iteration. Hence, let the overall
algorithm terminate when no node is ‘unmarked’ during the current iteration.

Decomposition and Complexity of Hereditary History 275

5 Equational Theory

In this section we work with general BPP expressions. We give a complete equational
theory for hhp-b. That is to say, E ∼hhp F if and only if � E = F can be derived
within the theory. Our approach is sequent-based (similarly to [3]), i.e., we provide
a set of axioms of the form Γ � E = F , to be read as “E = F is provable under
assumption Γ ”, where Γ is a finite set of equations. We write � E = F when Γ is
empty. Interestingly, our axiomatization is essentially the same as that given by [3] for
hp-b on SBPP, a subclass for which hhp-b and hp-b coincide [6]. We work relative to a
BPP definition Δ.

Summation Composition

(S1) Γ � E+F = F+E (P1) Γ � E||F = F ||E
(S2) Γ � E+(F+G) = (E+F)+G (P2) Γ � E||(F ||G) = (E||F)||G
(S3) Γ � E+0 = E (P3) Γ � E||0 = E

(S4) Γ � E+E = E

Recursion

(R1) Γ, E = F � E = F (R2)
Γ,X = F � EX = F

Γ � X = F
(X def= EX)∈Δ

Axioms (S1)-(S3) and (P1)-(P3) are the commutative monoid laws for summation and
parallel composition. Axiom (S4) is idempotency for summation. Rules (R1)-(R2) are
laws for recursion and can be seen as an instance of fixed-point induction. In particular,
Rule (R2) says that in order to prove a goal X = F under assumption Γ , one is allowed
to replace X by its defining expression. Moreover, the additional assumption X = F is
added to Γ , which guarantees immediate termination of the proof, by (R1), whenever a
subgoal X = F is to be proved again.

In addition, we need standard equivalence rules (E1)-(E3) and substitutivity rules
(C1)-(C3):

Equivalence

(E1) Γ � E = E (E2)
Γ � E = F

Γ � F = E
(E3)

Γ � E = F Γ � F = G

Γ � E = G
Congruence

(C1)
Γ � E = F

Γ � a.E = a.F
(C2)

Γ � E = F

Γ � E||G = F ||G (C3)
Γ � E = F

Γ � E+G = F+G

A proof of Γ � E = F is in the form of a finite tree, whose root is labelled by
Γ � E = F , leaves are instances of axioms and the children of each non-leaf are
determined by an instance of some rule (in fact, only (E3) admits more than one child).
We write Γ � E = F when such a proof exists. (It would be more precise to write
Γ �Δ E = F ; however, we assume that Δ is clear from the context.)

Soundness of the theory for hhp-b is intuitively clear: one would expect each rule
to be respected by any behavioural equivalence. Completeness follows from the strong

276 S. Fröschle and S. Lasota

decomposition characteristics of hhp-b on BPP. A formal proof of soundness and com-
pleteness is provided in [9].

Theorem 4 (soundness, completeness). � E = F if and only if E ∼hhp F .

6 Conclusions

We have provided a polynomial-time procedure (working in timeO(n2 log n)) to com-
pute hhp-b on BPP. Our algorithm takes a BPP definition in T-ENF as input. Transfor-
mation to T-ENF can easily be done in time quadratic wrt. the size of the input; the size
of the definition may also grow by that factor during the transformation. Furthermore,
we have proposed a sound and complete equational axiomatization of the equivalence.
The crucial insight behind both of these results is that, modulo hhp-bisimilar choices,
hhp-b is decomposable wrt. parallel composition and choice. Our results highlight that,
modulo trivial choices, hhp-b fully reflects the structure of BPP expressions. One could
argue that this is what one would intuitively expect of a truly-concurrent bisimulation
equivalence. In particular, it does not imply that hhp-b is trivial on BPP: hhp-bisimilar
choices may be hidden deeply within the process definition.

One could ask whether hhp-b also satisfies the unique decomposition property usu-
ally investigated in the interleaving setting: is each BPP process uniquely, up to hhp-b,
represented as a parallel composition of primes? A process is prime if it cannot be ex-
pressed, up to hhp-b, as a non-trivial parallel composition. Indeed, from our results it
is straightforward to derive that hhp-b does satisfy unique decomposition in this sense:
Lemma 2 ensures that there is a one-to-one correspondence between prime factors wrt.
hhp-b and factors that do not contain any hhp-bisimilar choices.

As mentioned in the introduction, unique decomposition with respect to distributed
bisimilarity, and hence with respect to hp-b, has been established for BPP [3]. It has
also been proved that cancellation (c.f. Lemma 1) does hold for distributed bisimilarity
[3]. However, the following example of [3] shows that hp-b is not decomposable wrt. ||
or +, in the sense of Section 3.

E = (a.0 + b.0)||a.0 + a.0||a.0 F = (a.0 + b.0)||a.0.
Both E and F have no hp-bisimilar choices, and E ∼hp F . But summands(E) and
factors(F) have two elements while summands(F) and factors(E) are singletons.
In particular, the example illustrates that Lemma 2 fails for hp-b. An interesting ques-
tion that remains open is whether, modulo hhp-bisimilar choices, hhp-b is decompos-
able with respect to prime decompositions of labelled asynchronous transition systems
(c.f. [6]).

Our algorithm is a natural complement of the polynomial-time procedures for hp-b
on BPP [16,12]. However, in the case of hhp-b the good complexity is due to its very
strong decomposition properties; the technique of [11] seems not to be applicable here.
Both algorithms can be carried over to CPP, an extension of BPP that allows for syn-
chronization between processes in CCS style but disallows a silent action τ to appear
explicitly inside expressions. It is not clear whether a polynomial-time procedure exists
for hhp-b or hp-b on BPPτ , which extends CPP by allowing explicit τ -actions. Prelim-
inary investigations give hope that polynomial-time complexity of hhp-b on BPPτ can
indeed be achieved;—this issue will be treated in detail in a full version of this paper.

Decomposition and Complexity of Hereditary History 277

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Co., 1974.

2. M. Bednarczyk. Hereditary history preserving bisimulation or what is the power of the future
perfect in program logics. Technical report, Polish Academy of Sciences, Gdansk, 1991.

3. S. Christensen. Decidability and Decomposition in process algebras. PhD thesis, Dept. of
Computer Science, University of Edinburgh, UK, 1993.

4. J. Esparza and A. Kiehn. On the model checking problem for branching time logics and
basic parallel processes. In CAV’95, volume 939 of LNCS, pages 353–366. Springer-Verlag,
1995.

5. S. Fröschle. Decidability of plain and hereditary history-preserving bisimulation for BPP. In
Proc. EXPRESS’99, volume 27 of ENTCS, 1999.

6. S. Fröschle. Composition and decomposition in true-concurrency. In Proc. FOSSACS’05,
LNSC. Springer-Verlag, to appear, 2005.

7. S. Fröschle. The decidability border of hereditary history preserving bisimilarity. Informa-
tion Processing Letters, to appear, 2005.

8. S. Fröschle and T. Hildebrandt. On plain and hereditary history-preserving bisimulation. In
MFCS’99, volume 1672 of LNCS, pages 354–365. Springer-Verlag, 1999.

9. S. Fröschle and S. Lasota. Decomposition and complexity of hereditary history preserving
bisimulation on BPP. Technical Report 280, Institute of Informatics, Warsaw University,
Poland, 2005.

10. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial time algorithm for deciding bisimula-
tion equivalence of normed basic parallel processes. Mathematical Structures in Computer
Science, 6:251–259, 1996.

11. P. Jančar. Bisimilarity of basic parallel processes is PSPACE-complete. In Proc. LICS’03,
pages 218–227, 2003.

12. P. Jančar and Z. Sawa. On distributed bisimilarity over Basic Parallel Processes. In Proc.
AVIS2’05, 2005.

13. L Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences on safe, finite nets.
Theoretical Computer Science, 154:107–143, 1996.

14. A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Information and
Computation, 127:164–185, 1996.

15. Marcin Jurdziński, Mogens Nielsen, and J. Srba. Undecidability of domino games and hhp-
bisimilarity. Inform. and Comput., 184:343–368, 2003.

16. S. Lasota. A polynomial-time algorithm for deciding true concurrency equivalences of Basic
Parallel Processes. In Proc. MFCS’03, LNCS 2747, pages 521–530. Springer-Verlag, 2003.

17. R. Milner and F. Moller. Unique decomposition of processes. TCS, 107(2):357–363, 1993.
18. J. Srba. Strong bisimilarity and regularity of Basic Parallel Processes is PSPACE-hard. In

Proc. STACS’02, LNCS 2285, 2002.
19. J. Srba. Roadmap of Infinite Results, volume 2: Formal Models and Semantics. World

Scientific Publishing Co., 2004.
20. K. Sunesen and M. Nielsen. Behavioural equivalence for infinite systems—partially decid-

able! In ICATPN’96, volume 1091 of LNCS, pages 460–479. Springer-Verlag, 1996.

Bisimulations Up-to for the Linear Time

Branching Time Spectrum�

David de Frutos Escrig and Carlos Gregorio Rodŕıguez

Department of Sistemas Informáticos y Programación,
Universidad Complutense de Madrid
{defrutos, cgr}@sip.ucm.es

Abstract. Coinductive definitions of semantics based on bisimulations
have rather pleasant properties and are simple to use. In order to get coin-
ductive characterisations of those semantic equivalences that are weaker
than strong bisimulation we use a variant of the bisimulation up-to tech-
nique in which we allow the use of a given preorder relation. We prove
that under some technical conditions our bisimulations up-to characterise
the kernel of the given preorder. It is remarkable that the adequate orien-
tation of the ordering relation is crucial to get this result. As a corollary,
we get nice coinductive characterisations of all the axiomatic semantic
equivalences in Van Glabbeek’s spectrum. Although we first prove our
results for finite processes, reasoning by induction, then we see, by us-
ing continuity arguments, that they are also valid for infinite (finitary)
processes.

1 Introduction

Along the years a great variety of concurrent process semantics have been pro-
posed under different settings and from quite dissimilar points of view. The
comparative study of concurrency semantics tries to shed light on this heteroge-
neous field to bring up differences and similarities that will allow to order and
classify the variety of semantics, in spite of the different ways they are defined.

Clearly, the thorough work of Van Glabbeek is a cornerstone in the field of
comparative concurrency semantics. In [Gla01] he presents the well known linear
time-branching time spectrum for processes without internal transitions. There,
fifteen different semantics are defined and ordered by their inclusion relations.
Besides, for each equivalence a motivating testing scenario is provided, and for
most of them, a complete axiomatisation for basic processes is given. Figure 1
shows these axiomatised semantics (but tree semantics) ordered by inclusion.

Not just because it is the strongest one of them, bisimulation [Par81, Mil89]
merits a special attention. Bisimulation is a mathematically elegant concept that
is recursively defined over the intensional description of processes. Its stability
and elegance have been shown by several characterisations, for instance in terms

� Partially supported by the projects TERMAS TIC2003-07848-C02-01, MIDAS
TIC2003-01000, PAC-03-001 and MRTN-CT-2003-505121/TAROT.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 278–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bisimulations Up-to for the Linear Time Branching Time Spectrum 279

bisimulation

ready simulation

possible worlds

complete simulation ready trace

failure trace readiness

failure

simulation complete trace

trace

Fig. 1. Axiomatic Semantics in the Linear Time-Branching Time Spectrum I

of modal logic, final coalgebras, testing, etc. There also exist efficient algorithms
to decide bisimulation equivalence and several tools that can effectively check
process bisimilarity.

However, bisimulation is also too strong, and in many cases it is enough to
take into account some weaker semantics. But, most of the semantics in Fig. 1 are
extensional ([CS96]) and none of them has a symmetric, coinductive definition
as bisimulation does. It is true that all the simulation semantics (simulation,
ready simulation and so on) are intensional and quite close to bisimulation, but
the induced equivalences are just the kernel of the corresponding preorder and
do not admit a direct single symmetric definition. Could these semantics be
somehow characterised by a symmetric definition? And for the other extensional
semantics? Could they be expressed in a coinductive way?

In this paper we propose a way to weaken the definition of bisimulation by us-
ing a preorder relation, what we call bisimulation up-to the preorder. In this way
we obtain a conductively and symmetrically defined equivalence, parameterised
by preorders. As main results we prove that, under quite sensible assumptions
on the considered preorder, bisimulation up-to such a preorder defines exactly
the same equivalence that the kernel of the preorder does. These results are
quite general and can be applied to all the semantics in Fig. 1 (and beyond), so
that we get symmetric, coinductive, bisimulation-like definitions for nearly any
reasonable semantics.

With these results we have answered the questions we left open in [dFG04],
where we studied ready simulation as a representative example. There, we defined
our global bisimulations that are indeed closely related to bisimulations up-to.
They were previously introduced in a different context in [dFLN99].

There have been indeed some other previous approaches to the problem of
getting coinductive characterisations of extensional semantics. Most of them
study the question in a rather coalgebraic framework [JH03, KS03, Kli04, Jac04]
and, in many cases, are based on relatively complex categorical concepts. These

280 D. de Frutos Escrig and C. Gregorio Rodŕıguez

works aim generality and their results are rather general, but just because of
that the machinery to apply them in particular cases can be rather complex.
Instead, our results, at least as presented here, can only be applied to transition
systems but they are quite simple to state and to apply.

Rutten [Rut03] has also made a coalgebraic approach to the subject but based
on the novel concept of behavioural differential equations. Boreale and Gadducci
in [BG03] have applied this technique to define a fully abstract model for the
failures semantics. However the extension to other semantics seems not easy.

A different approach is presented in [Gar03] where the author uses predicate
transformers to get a variant of the bisimulation equivalence that gives rise to
both trace and failure preorders. However, for each of these preorders an ad-
hoc construction is needed and it is not clear how to extend it to cover other
semantics.

The rest of the paper is structured as follows. In Sec. 2 definitions and nota-
tions on processes and preorders are presented. In Sec. 3 we define bisimulations
up-to a preorder and present the main results of the paper, namely Theorems 1
and 2. As a corollary of Theorem 1 all the semantics in Fig. 1 can be expressed by
a bisimulation-like definition. Some examples help to clarify the role of the con-
ditions in the theorems. In Sec. 4 the results of the previous section are extended
to infinite finitary tree-like processes. In Sec. 5 we discuss a simple application
example. Finally, in Sec. 6 we present some conclusions and lines for future
work.

Along this paper we make use of the semantics in Fig. 1. Most of them can be
considered classical and are well known, anyway we refer to [Gla01] for formal
definition of each semantics and to Tables 2 and 3 in that paper for the complete
axiomatisation for the equivalences and preorders, respectively, that we use in
some of our examples and proofs.

2 Processes and Preorders

The behaviour of processes is usually described using the well-established for-
malism of labelled transition systems [Plo81] or lts for short.

Definition 1. A labelled transition system is a structure T = (P ,Act, →) where

– P is a set of processes, agents or states,
– Act is a set of actions and
– →⊆ P ×Act× P is a transition relation.

A rooted lts is a pair (T , p0) with p0 ∈ P.

Act is the set of actions that processes can perform and the relation →
describes the process transitions after the execution of actions. The triple 〈p, a, q〉
is represented by p

a−→ q, indicating that process p performs action a evolving to
process q. A rooted lts describe the semantics of a process: that corresponding
to its initial state p0.

Bisimulations Up-to for the Linear Time Branching Time Spectrum 281

Some usual notations on lts are used. We write p
a−→ if there exists a process

q such that p
a−→ q and, on the contrary, we write p
 a−→ if there exists no process

q such that p
a−→ q. For a string of actions σ = a1a2 · · · an, ai ∈ Act, p

σ−→ q
means that there exist processes q1 . . . qn−1, such that p

a1−→ q1
a2−→ q2

a3−→
· · · qn−1

an−→ q. The function I calculates the set of initial actions of a process,
I (p) = {a | a ∈ Act and p

a−→}.
Lts’s for finite processes are just finite trees, which can be syntactically de-

scribed by a basic process algebra BCCSP, which was also used in [Gla01].

Definition 2. Given a set of actions Act, the set of BCCSP processes is defined
by the following BNF-expression:

p ::= 0 | ap | p + q

where a ∈ Act. 0 represents the process that performs no action; for every action
in Act, there is a prefix operator; and + is a choice operator.

Therefore, BCCSP is just the term algebra for the signature (0, a ∈ Act, +).
The set of rooted lts’s is also the support of such an algebra, by defining prefix
and choice operators in the natural way. All the definitions in the paper are valid
for arbitrary processes, that is, for arbitrary rooted lts’s. However we are going
to prove the main results in the paper in two steps. First, we reason by induction
on the depth of processes, and therefore the results would only be valid, at the
moment, for BCCSP processes. Second, we use continuity arguments to extend
these results to a general class of infinite tree-like processes.

The operational semantics for the BCCSP terms is defined in Fig. 2. The
depth of a BCCSP process is the depth of the tree it denotes.

ap
a−→ p

p
a−→ p′

p + q
a−→ p′

q
a−→ q′

p + q
a−→ q′

Fig. 2. Operational Semantics for BCCSP Terms

As usual, trailing occurrences of the constant 0 are omitted. By using
∑

as
a shorthand for multiple choice (which is commutative and associative) we can
write any process as

∑
i

∑
j aipij . A process aq′ is a summand of the process

q if and only if q
a−→ q′. Given a ∈ Act we define p|a as the (sub)process

we get by adding all the a-summands of p. That is, if p =
∑

i

∑
j aipij , then

p|ai =
∑

j aipij .
Preorders, that we represent by !, are reflexive and transitive relations. We

use the symbol 5 to represent the preorder relation !−1. Every preorder induces
an equivalence relation that we denote by ≡; that is, p ≡ q if and only if p ! q
and q ! p. We will denote by =B the bisimulation equivalence. We are interested
on preorders that are weaker than it.

282 D. de Frutos Escrig and C. Gregorio Rodŕıguez

Definition 3. A preorder relation ! over processes is a behaviour preorder
when it is weaker than the bisimulation equivalence, i.e. p =B q ⇒ p ! q, and it
is a precongruence with respect to the prefix and choice operators, i.e. if p ! q
then ap ! aq; and if p ! q then p + r ! q + r.

Definition 4. A behaviour preorder ! is initials preserving when p ! q implies
I(p) ⊆ I(q). It is action factorised (or just factorised) when p ! q implies
p|a ! q|a, for all a ∈ I(p).

Initials preservation and factorisation are natural properties that are satisfied
by any of the behaviour preorders corresponding to the semantics in Fig. 1,
from trace preorder to ready simulation preorder (Table 3 in [Gla01] shows the
axiomatisation of these preorders).

There are other properties that a behaviour preorder can satisfy and that are
going to play an important role in the rest of the paper. We say that a behaviour
preorder ! satisfies the property

(S) if for all p and q, p ! p + q
(CS) if for all a, p and q, ap ! ap + q
(RS) if for all a, p and q, ap ! ap + aq

These axioms characterise the simulation preorder, the complete simulation
preorder and the ready simulation preorder, respectively.

We finish this section by introducing another interesting property.

Definition 5. Let ! be a behaviour preorder and ≡ the induced equivalence.
Then ! has the Hoare equivalence property1 (HE for short) whenever

for all p
a−→ p′ there exists q′, q

a−→ q′ and p′ ! q′

and for all q
a−→ q′ there exists p′, p

a−→ p′ and q′ ! p′

}
then p ≡ q

3 Bisimulation Up-to a Preorder

In Sec. 2 the behaviour of processes is described in terms of the actions they can
perform, so it is natural to define the process equivalence in terms of these action
transitions. That is precisely what bisimulations do: they inductively explore the
intensional behaviour of processes. Bisimulation was introduced in [Par81] and it
has became one of the fundamental notions in the theory of concurrent processes.
It is defined as follows.

Definition 6 ([Mil89]). A binary relation R is called a (strong) bisimulation
if for all p, q processes such as p R q, and for all a ∈ Act, the following properties
are satisfied:

– Whenever p
a−→ p′ there exists some q′ such that q

a−→ q′ and p′ R q′.
– Whenever q

a−→ q′ there exists some p′ such that p
a−→ p′ and p′ R q′.

1 The name comes from Hoare’s powerdomain construction.

Bisimulations Up-to for the Linear Time Branching Time Spectrum 283

Two processes p and q are bisimilar, notation p =B q, if there exists a bisimu-
lation containing the pair 〈p, q〉.

Let us recall that the definition imposes simultaneous simulations by means of
a single symmetrical definition of bisimulations. If instead, separated simulations
are considered, the induced equivalence relation, that we call mutual simulation,
is weaker than bisimulation equivalence (see [Gla01] for details).

In [Mil89], in order to make bisimilarity easier to decide, Milner introduced
the notion of bisimulation up-to (strong) bisimilarity. This is a useful technique,
but care must be taken when generalising it. It is well known that the original
(simple and natural!) definition of weak bisimulation up-to weak bisimulation,
that appeared in [Mil89], was wrong. Later, in [SM92] two new up-to (now
correct, but more involved!) techniques were proposed. Sangiorgi continued with
the study of up-to techniques in [San98], but focusing on reducing the size of the
bisimulation relations to prove that two given processes are bisimilar.

In this paper we retake the concept of bisimulation up-to but we use it with
a different goal. We are looking for the adequate way to weaken the definition
of bisimulation in such a manner that weaker equivalences can be captured by
a coinductive definition.

Definition 7. Let ! be a behaviour preorder. Then a binary relation S over
processes is a bisimulation up-to !, if pSq implies that:

– For every a, if p
a−→ p′a, then there exist q′ and q′a, q 5 q′

a−→ q′a and p′aSq′a;
– For every a, if q

a−→ q′a, then there exist p′ and p′a, p 5 p′
a−→ p′a and p′aSq′a.

Two processes are bisimilar up-to !, written p � q, if there exists a bisimula-
tion up-to !, S, such that pSq.

The key point in the previous definition is that the process that has to mimic
the movement of the other is allowed to: first, to transform itself according to the
inverse of the considered preorder relation; second, to execute the corresponding
action. The added capability generalises the original definition of bisimulation,
so that we have now more chances to prove the equivalence between processes.
When the behaviour preorder is just the identity relation we get the bisimulation
equivalence, but, as we are going to prove below, considering other behaviour
preorders we will be able to get other interesting semantics (traces, failures,
ready simulation and so on).

For the sake of simplicity, we often drop the subscript, and use � instead of
� , when the behaviour preorder is clear from the context.

Proposition 1. For every behaviour preorder !, if p ≡ q then p � q.

Proof. If p ≡ q then p ! q and q ! p. For every transition p
a−→ p′a, then q 5

p
a−→ p′a and, symmetrically, for every transition q

a−→ q′a, then p 5 q
a−→ q′a.

284 D. de Frutos Escrig and C. Gregorio Rodŕıguez

t

a

b

c

b

d

u

a

b

c

b

d

a

b

c d

v

a

b

c

b

d

a

b

c

b

a(bc + bd) a(bc + bd) + ab(c + d) a(bc + bd) + a(bc + b)

Fig. 3. Examples of Processes

Example 1. Let us consider processes t and v in Fig. 3. Let !S be the simu-
lation preorder, =S the induced equivalence, and =B the (strong) bisimulation
equivalence. Processes t and v are not (strongly) bisimilar, t
=B v, but they
are bisimilar up-to the simulation preorder, t � S v. The only difficult point to
find a bisimulation up-to between t and v corresponds to the case when v starts
executing a and evolves into v′ = bc + b. Then t can be reduced to abc, since
abc !S t, and then performing the action a the process evolves into t′ = bc. Now,
by using the fact that b !S bc one can check in a similar way that v′ and t′ are
bisimilar up-to the simulation preorder, and conclude the proof.

Lemma 1. For every initials preserving behaviour preorder !, if p � q then
I(p) = I(q).

Proof. It is enough to show that I(p) ⊆ I(q). For any a ∈ I(p), since q 5 q′
a−→

q′a, a ∈ I(q′), and therefore a ∈ I(q), due to the initials preservation property of
!.

Theorem 1. For every behaviour preorder !, that is initials preserving, action
factorised and satisfying the axiom (RS), we have that p � q if and only if p ≡ q.

Proof. If p ≡ q then p � q is proved in Proposition 1. We prove the reverse
implication, if p � q then p ≡ q. We proceed by induction on the depth of process
p and prove that if p � q then p ! q.

By definition of p � q, if p
a−→ p′a then q 5 q′

a−→ q′a and p′a � q′a. By
induction hypothesis p′a ≡ q′a, in particular it is also true that p′a ! q′a, and,
since ! is a precongruence, ap′a ! aq′a. On the other hand, q 5 q′ and, due to
the factorised property, q|a 5 q′|a.

We would like to establish the order relation between q′|a and aq′a. In fact,
q′|a = aq′a + r, and given that I(q′|a) = {a} we have also I(r) = {a}. Then we
can use the axiom (RS) ax + ay 5 ax, to conclude that q′|a 5 aq′a. All together:

ap′a ! aq′a ! q′|a ! q|a

Bisimulations Up-to for the Linear Time Branching Time Spectrum 285

Considering now the general definition of p =
∑

i

∑
j aipij, we can write for

every i and j the following sequence of relations

aipij ! aiq
ij
ai
! qij |ai ! q|ai

and therefore
p =

∑
i

∑
j

aipij !
∑

i

q|ai

Finally, by Lemma 1, I(p) = I(q) and we conclude that
∑

i q|ai = q and therefore
p ! q.

This result even if simple is rather general, all the preorders for the semantics
in Fig. 1 below the ready simulation satisfy the axiom (RS) and therefore the
corresponding bisimulations up-to characterise each equivalence. That is, this
theorem provides a symmetric, bisimulation-like characterisation for any equiva-
lence in the linear time-branching time spectrum from trace equivalence to ready
simulation equivalence. Besides, as a corollary, we get that for any of the equiv-
alence relations, defined by the semantics in Fig. 1, it is true also that �≡ is
equal to ≡.

Example 2. Let us retake again our Example 1. As the simulation preorder is
one of those in the conditions of Theorem 1, the fact that t � v is enough to
conclude that t and v are simulation equivalent, that is, we have proved it by
constructing a single bisimulation instead of two simulations t !S v and v !S t.

The conditions imposed to the behaviour preorders in Theorem 1 suggest
that not every preorder is adequate to get the induced equivalence by means of
a bisimulation up-to. Next we comment some examples.

Example 3. Let us consider the behaviour preorder defined by the following ax-
iom: p + q ! p. This preorder relation is the inverse of the simulation preorder
(!S) and therefore its kernel is also the simulation equivalence. However, bisim-
ulation up-to ! is far from being equal to the simulation equivalence. In fact it
relates any two processes: for every p and q whenever p

a−→ p′, q 5 q + p
a−→ p′

and conversely, whenever q
a−→ q′, p 5 p + q

a−→ q′. Note that we have not
contradicted Theorem 1 because the preorder ! is not initials preserving.

There exist also other preorders which do not allow bisimulation up-to char-
acterization via Theorem 1 because they do not fulfil the axiom (RS) as shown
by the next example.

Example 4. Let us consider the behaviour preorder relation that is induced by
the axiom a(p + q) ! ap + aq. Obviously, by definition, this relation is action
factorised and initials preserving, but does not satisfy the axiom (RS). Let us
consider the processes t and u in Fig. 3. Let us take t′ = bc+bd and u′ = b(c+d). It
is true that u ! t (t = a(bc+bd) ! a(bc+bd)+a(bc+bd) ! a(bc+bd)+ab(c+d) =
u), but t
! u, (because the application of the axiom only allows to take choices
earlier, but never to delay them as in the right subprocess of u). However, t and
u are bisimilar up-to !:

286 D. de Frutos Escrig and C. Gregorio Rodŕıguez

– Any action transition of t can be trivially simulated by u because t is a
subprocess of u;

– If u performs action a and evolves into t′, then t can trivially simulate that
movement;

– If u performs action a and evolves into u′, then t can delay its choice and
reduces to ab(c + d), then performing action a, evolves also into u′.

Although the range from trace equivalence to ready simulation equivalence is
quite wide and most of the classic semantics fall into it, we have studied whether
the use of the bisimulations up-to is also possible outside these margins. We have
found that there is a family of semantic preorders for which the bisimulations up-
to work properly. Any preorder in this family is a simulation (see, for instance,
[Gla01]).

Lemma 2. For every behaviour preorder ! being a simulation, whenever p 5
p′

a−→ p′a, there exists pa such that p
a−→ pa 5 p′a.

Proof. By definition of simulation.

For behaviour preorders that are simulations and satisfy the Hoare Equiva-
lence property, we have the following result:

Theorem 2. For every behaviour preorder !, being a simulation and satisfying
the Hoare equivalence property, p � q if and only if p ≡ q.

Proof. If p ≡ q then p � q is proved by Proposition 1. The reverse implication,
if p � q then p ≡ q, is proved by induction on the depth of the first process.

Let us consider p � q. Then whenever p
a−→ p′a there exist q′ and q′a such

that q 5 q′
a−→ q′a and p′a � q′a and, by induction hypothesis, p′a ≡ q′a. As

the behaviour preorder is a simulation, by Lemma 2, there exists qa such that
q

a−→ qa 5 q′a. Therefore, for some process r, it is true that q = aqa + r 5
aq′a + r ≡ ap′a + r. That is, for every p

a−→ p′a there exists qa such that qa 5 p′a.
Symmetrically, we can prove that for every q

a−→ q′a there exists pa such that
pa 5 q′a. These are the premises for the HE property that our behaviour preorder
satisfies, and so we conclude that p ≡ q.

Both the simulation preorder and the ready simulation preorder are simu-
lations and satisfy the HE property, so for these preorders Theorem 2 provides
an alternative proof to that of Theorem 1. But there are other interesting pre-
orders that induce equivalences between strong bisimulation and ready simu-
lation equivalence for which Theorem 2 provide a characterisation in terms of
bisimulation up-to.

Example 5. Let us consider the preorder !FS defined as p !FS q if there exist
a binary relation S over processes such that pSq implies

– For every a, p
a−→ p′, there exists q′, q

a−→ q′ and p′Sq′;
– F (p) = F (q).

where F (p) = {(a,X) | a ∈ I (p),X ⊂ Act p
a−→ p′ and X ∩ I(p′) = ∅}

Bisimulations Up-to for the Linear Time Branching Time Spectrum 287

That is, !FS is much alike the ready simulation preorder but instead of
checking the equality of initial actions, we check the equality of the failures
immediately below the root of the processes.

The preorder !FS satisfies the conditions to apply Theorem 2: obviously
it is a simulation and it can be easily checked that satisfies the HE property.
Therefore, bisimulation up-to !FS defines the same equivalence relation as !FS

∩ !−1
FS . To check that the induced equivalence is finer than the ready simulation

equivalence let us consider, for instance, the processes p = a(bc + bd) and q =
abc + a(bc + bd), that are ready simulation equivalent but q
!FS p.

Following the ideas in the previous example it is quite easy to find other
constrained simulations in the conditions of Theorem 2 that define equivalences
between the ready simulation and strong bisimilarity. Some of them can be
defined axiomatically in an easy way, as that in the following example.

Example 6. Let us consider the axiom a(p + q) ! a(p + q) + ap and the induced
behaviour preorder. This preorder refines the axiom of the simulation preorder,
and satisfies the HE property.

Next example points out the necessity of the HE property in the conditions
of Theorem 2.

Example 7. Let us consider the axiom ap ! ap + a(p + q) and the induced
behaviour preorder. This preorder refines the axiom of the simulation preorder
but it does not satisfies the HE property. We will see that there exist some
pairs of processes which are not related by the induced equivalence relation but
however are bisimilar up-to that preorder. For instance, let us consider m =
a(bc + b(c + d)) + abc and n = a(bc + b(c + d)), we have that n ! m and m
! n
but m and n are bisimilar up-to !:

– m can trivially simulate n;
– If m performs action a and evolves into bc + b(c + d) then n can trivially

simulate that movement;
– If m performs action a and evolves into bc then n can be reduced by the

preorder to a(bc+ b(c+ d)) ! abc, and then, performing a, it evolves into bc.

4 Bisimulations Up-to for Infinite Processes

The results in the previous sections were proved for BCCSP processes. In this
section we extend these results, considering processes to be (possibly) infinite
finitary trees. We will use the same notation as for finite trees (prefix, choice,
multiple choice. . .) extended in the natural way.

To reduce infinite trees to (collections of) finite trees, we define an adequate
notion of approximation, that we call level continuity, and prove how level con-
tinuous behaviour preorders give way to level continuous bisimulations up-to.
Once this result is stated, Theorems 1 and 2 can also be proved for level con-
tinuous behaviour preorders, using simple continuity reasonings. The definition
of level continuity is rather natural, so that every behaviour preorder for the
semantics in Fig. 1 is indeed level continuous.

288 D. de Frutos Escrig and C. Gregorio Rodŕıguez

Definition 8. A behaviour preorder is level continuous if p ! q if and only if
for all n p ↓n! q ↓n where p ↓n is the result of pruning process p below level n,
that is:

– p↓0= 0
– (

∑
apa)↓n+1=

∑
a(pa)↓n

Note that p ↓n is always a finite process having depth at most n. Next we
prove a technical lemma stating that the number of equivalence classes, with
respect to the bisimulation equivalence, of processes having bounded depth is
finite. We use |A| to denote the cardinal of a set A and [p]=B

to denote the
equivalence class of p with respect to bisimulation equivalence, =B.

Lemma 3. If the alphabet of actions Act is finite, for any natural number n we
have

|{[p]=B
| depth(p) ≤ n}| <∞

Proof. By induction on n. For n = 0, p = 0. For n > 0, if p =
∑

i api
a and

q =
∑

j aqj
a, then p =B q iff

– for all a and i there exists j such that pi
a =B qj

a,
– for all a and j there exists i such that pi

a =B qj
a.

Thus, p =B q iff for any a action, {[pi
a]=B

} = {[qj
a]=B

}, therefore, the elements
of {[p]=B

| depth(p) ≤ n+1} are in one to one correspondence with functions in
Act −→ P({[p]=B

| depth(p) ≤ n}). And thus we conclude the proof by applying
the induction hypothesis.

Then, for every behaviour preorder stronger than the trace preorder we have
the following finiteness result:

Lemma 4. If a behaviour preorder ! is stronger than the trace preorder
(!⇒!T), for any finite process q, then the set of bisimilarity classes {[p]=B

| p !
q} is finite.

Proof. Since !⇒!T we have that p ! q ⇒ depth(p) ≤ depth(q) and that any
action in the alphabet of process p is also in that of process q. We are then in
the hypothesis of Lemma 3.

Proposition 2. For every behaviour preorder !, and the corresponding bisim-
ulation up-to !, �, if ! is level continuous then � is level continuous too.

Proof. According to the definition, we have to prove that p � q iff for all n,
p↓n� q↓n. First we prove the left to right implication.

Let S be a bisimulation up-to !, then Sf = {(p ↓n, q ↓n) | pSq} is also a
bisimulation up-to !. Whenever p↓n

a−→ p′a ↓n−1, because of the level continuity
of !, q↓n5 q′ ↓n

a−→ q′a ↓n−1, and since p′aSq′a then p′a ↓n−1 Sf q′a ↓n−1.
Now we prove the right to left implication. Let us define the relation R =

{(p, q) | for all n p↓n� q↓n}. We will see that it is a bisimulation up-to !. We

Bisimulations Up-to for the Linear Time Branching Time Spectrum 289

have that p
a−→ p′a iff p ↓n

a−→ p′a ↓n−1, and then there exists q ↓n! q′n
a−→ q′n,a

with p′a ↓n−1� q′n,a.
It is easy to check that for all m > n, p′a ↓n−1� q′m,a ↓n−1. Then, we define

Qm
n = {q′m ↓n | q↓m5 q′m

a−→ q′m,a and p′a ↓n−1� q′m,a} and because ! is weaker
than bisimulation equivalence, we have that Qm

n is closed under =B. We can now
check that for all m′ > m,Qm′

n ⊆ Qm
n since if q′m′ ↓n∈ Qm′

n then (q′m′ ↓m) ↓n=
q′m′ ↓n and (q′m′ ↓m) ↓n∈ Qm

n . Now, applying Lemma 4, Qm′
n /=B

⊆ Qm
n/=B

and
therefore 0 < |Qm

n/=B
| <∞

We conclude that there exists a natural number m such that for any other
natural number m′, Qm′

n = Qm
n . Defining Qn = Qm

n for such an m, we also have
Qn = Qn′ ↓n for all n′ ≥ n. Then it is clear that there exists some process q′ such
that for all n q′ ↓n∈ Qn and therefore for all n q↓n! q′ ↓n and q′ ↓n

a−→ q′n,a with
p′a ↓n−1� q′n,a, so that we have both q 5 q′ and q′

a−→ q′a with p′a ↓n−1� q′a ↓n−1,
thus proving that the pair (p′a, q′a) ∈ R, so that R is indeed a bisimulation up-to
!.

All the preorders for the semantics in Fig. 1 are level continuous. We give
the proof for two representative examples.

Proposition 3. The trace preorder !T is level continuous.

Proof. p !T q iff whenever p
σ−→ then q

σ−→ iff for all n, p↓n
σ−→ then q↓n

σ−→,
iff for all n, p↓n!T q↓n.

Proposition 4. The ready simulation preorder !R is level continuous.

Proof. p !R q iff for all n, p ↓n!R q ↓n. For the left to right implication we
define the relation R = {(p ↓n, q ↓n) | p !R q} that is a ready simulation since
I(p) = I(q) implies that I(p↓n) = I(q↓n) and if p

a−→ p′ then p↓n
a−→ p′ ↓n−1.

For the other implication we define R = {(p, q) | for all n, p ↓n!R q ↓n},
and show that it is a ready simulation. Firstly, I(p) = I(p↓1), so that, whenever
pRq we have I(p) = I(q). Then, whenever p

a−→ p′, we know p↓n
a−→ p′ ↓n−1 for

all n ≥ 1 and therefore there exists q′′n such that q ↓n
a−→ q′′n with p′ ↓n−1!R q′′n.

Obviously, there exists some descendent of q that extends q′′n, that is there exists
q′i(n) such that q

a−→ q′i(n) and q′i(n) ↓n−1= q′′n.
Since q is finitely branching there exists some q′, such that q′ = q′i(n) for

infinitely many n, and therefore, we can take as q′i(n) this q′ for any n. Then,
p′ ↓n!R q′ ↓n for all n and then p′Rq′, proving that R is a ready simulation
containing the pair (p, q).

Thus for any level continuous preorder verifying the hypothesis of any of
the theorems in Sec. 3 the results of these theorems are also valid for infinite
processes.

290 D. de Frutos Escrig and C. Gregorio Rodŕıguez

5 A Simple Application Example

As a simple application we present the same example used by Klin in [Kli04]. We
prove that any process has the same traces as its deterministic form. This result
can be easily proved, by induction, for finite processes. But we need care when
coping with infinite processes. As Klin, we use here a coalgebraic reasoning to
do it, but our proof is simpler than that in [Kli04], although it is true that Klin
develops his approach in a broader framework than ours.

Definition 9. For any process p =
∑

a

∑
i apa,i the deterministic form of p is

defined as Det(p) =
∑

a aDet(
∑

i pa,i).

We wish to prove that p and Det(p) are trace equivalent. We will do it by
using our bisimulation up-to technique. First we prove the following lemma.

Lemma 5. For any processes p and q we have that Det(p) !T Det(p + q).

Proof. We prove something stronger, in fact Det(p) is simulated by Det(p + q).
As Det(p) =

∑
a aDet(

∑
i pa,i) whenever Det(p) a−→ Det(

∑
i pa,i) we have also

Det(p + q) a−→ Det(
∑

i pa,i +
∑

j qa,j).

Proposition 5. For any process p, p � T Det(p).

Proof. We will prove that the relation R= {(p,Det(p)) | p is a process } is a
bisimulation up-to !T . Whenever p

a−→ pa,i, then, by using Lemma 5, Det(p)=∑
a aDet(

∑
i pa,i) 5T aDet(pa,i)

a−→Det(pa,i). Besides, if Det(p) a−→Det(
∑

pa,i),
applying the axioms that characterise the trace preorder (x !T x + y, a(x +
y) = T ax + ay) we have that p 5T

∑
i apa,i 5T a

∑
i pi and therefore p 5T

a
∑

pa,i
a−→

∑
pa,i.

It is important to note that even if in the definition of bisimulation up-to
we have the full power of the trace preorder, we just use a simple part of it,
namely that corresponding to the result of Lemma 5. As a matter of fact, we
are just transferring the way bisimulation up-to bisimulation is used to prove
bisimilarity between processes. Therefore, we are just proving the initial part
of the property in which we are interested and coinduction makes the rest, by
means of bisimulation up-to.

6 Conclusions and Future Work

We have defined the notion of bisimulation up-to a preorder. This settles a
framework in which to define, in a coalgebraic flavour, many of the classical
equivalences of process semantics, and therefore, the possibility of reasoning
about them by using coinduction.

We have also transferred the up-to preorder technique to the simulation
framework. Using simulations up-to preorders we have obtained coinductive char-
acterisations of the considered preorders. Besides, simulations up-to and bisimu-
lations up-to can be related concluding that, under similar conditions than those

Bisimulations Up-to for the Linear Time Branching Time Spectrum 291

in the results in the paper, two processes are bisimilar up-to a preorder if and
only if they are mutually similar up-to it. Due to lack of space it has not been
possible to reproduce here these results.

Although, obviously, it is not possible to avoid the high complexity of the
equivalence problem with respect to most of the classical semantics, our results
open the door for using the tools to check bisimilarity to decide other equiv-
alences. In fact, some results already exist in that direction. A seminal paper
relating testing semantics and bisimulation is [CH92]. There the authors change
the transition system defining the operational semantics of processes, to get a
more complex and (bigger) transition system where bisimulation corresponds
to the original testing semantics. More recently, Kucera and Mayr have related
simulation and bisimulation. First, in [KM02a] they prove that bisimulation can
be easily translated into simulation, so proving that to decide the latter is at
least as expensive as the former. In [KM02b] the opposite reduction is studied,
and the results are similar to those in [CH92], but for the simulation semantics.
They use an ad-hoc technique to transform the original transition system into a
suitable transition system that, in this case, is smaller than the original one, but
much more difficult to obtain, although they also prove that for a class of Petri
Nets with at most one unbounded place the transformation can be effectively
done.

As work in progress, we are studying the other semantics in the linear time-
branching time not discussed in this paper, namely, the nested simulation seman-
tics. They are the only ones for which Van Glabbeek provides no axiomatisation.

Moreover, the study of bisimulations up-to has showed us that all the seman-
tics in Van Glabbeek’s spectrum have always a simulation part, corresponding
to axioms such as p ! p + q, that characterises the intensional behaviour and,
possibly, another component that characterises the extensional behaviour, for
instance, a(p + q) = ap + aq for the trace semantics. In particular, we are inter-
ested in the axiomatisations and we are looking for a systematic way to relate
the axioms of the preorders with those of the corresponding equivalences.

References

[BG03] Michele Boreale and Fabio Gadducci. Denotational testing semantics in
coinductive form. In Branislav Rovan and Peter Vojtás, editors, 28th In-
ternational Symposium, MFCS 2003, volume 2747 of Lecture Notes in Com-
puter Science, pages 279–289. Springer, 2003.

[CH92] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisim-
ulation equivalence. Formal Aspects of Computing, 3:1–21, 1992.

[CS96] Rance Cleaveland and Scott A. Smolka. Strategic directions in concurrency
research. ACM Computing Surveys., 28(4):607–625, 1996.

[dFG04] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Semantics equiv-
alences defined with global bisimulations. Annual meeting of the IFIP
Working Group 2.2, Bertinoro, Italy, September 2004.

[dFLN99] David de Frutos-Escrig, Natalia López, and Manuel Núñez. Global timed
bisimulation: An introduction. In Formal Methods for Protocol Engineering

292 D. de Frutos Escrig and C. Gregorio Rodŕıguez

and Distributed Systems, FORTE XII / PSTV XIX, pages 401–416. Kluwer
Academic Publishers, 1999.

[Gar03] Paul Gardiner. Power simulation and its relation to traces and failures
refinement. Theoretical Computer Science, 309:157–176, 2003.

[Gla01] Rob J. van Glabbeek. Handbook of Process Algebra, chapter The Linear
Time – Branching Time Spectrum I: The Semantics of Concrete, Sequential
Processes, pages 3–99. Elsevier, 2001.

[Jac04] Bart Jacobs. Trace semantics for coalgebras. In CMCS’04: 7th International
Workshop on Coalgebraic Methods in Computer Science, volume 106 of
Electronic Notes in Theoretical Computer Science. Elsevier, 2004.

[JH03] Bart Jacobs and Jesse Hughes. Simulations in coalgebra. In CMCS’03:
6th International Workshop on Coalgebraic Methods in Computer Science,
volume 82 of Electronic Notes in Theoretical Computer Science. Elsevier,
2003.

[Kli04] Bartek Klin. A coalgebraic approach to process equivalence and a coin-
ductive principle for traces. In CMCS’04: 7th International Workshop on
Coalgebraic Methods in Computer Science, volume 106 of Electronic Notes
in Theoretial Computer Science. Elsevier, 2004.

[KM02a] Antońın Kucera and Richard Mayr. Why is simulation harder than bisimu-
lation? In CONCUR 2002 - Concurrency Theory, 13th International Con-
ference, Proceedings, volume 2421 of Lecture Notes in Computer Science,
pages 594–610. Springer, 2002.

[KM02b] Antońın Kucera and Richard Mayr. Simulation preorder over simple process
algebra. Information and Computation, 173(2):184–198, 2002.

[KS03] Bartek Klin and Pawel Sobocinski. Syntactic formats for free. In 14th Inter-
national Conference, CONCUR 2003 - Concurrency Theory, Proceedings,
volume 2761 of Lecture Notes in Computer Science, pages 72–86. Springer,
2003.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[Par81] David M.R. Park. Concurrency and automata on infinite sequences. In

Theoretical Computer Science, 5th GI-Conference, volume 104 of Lecture
Notes in Computer Science, pages 167–183. Springer, 1981.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Computer Science Department, Aarhus Uni-
versity, 1981.

[Rut03] Jan J. M. M. Rutten. Behavioural differential equations: a coinductive
calculus of streams, automata, and power series. Theoretical Computer
Science, 308(1-3):1–53, 2003.

[San98] Davide Sangiorgi. On the bisimulation proof method. Journal of Mathe-
matical Structures in Computer Science, 8(5):447–479, 1998.

[SM92] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In
W.R. Cleveland, editor, Proc. CONCUR ’92, volume 630 of Lecture Notes
in Computer Science, pages 32–46. Springer, 1992.

Deriving Weak Bisimulation Congruences
from Reduction Systems�

Roberto Bruni, Fabio Gadducci, Ugo Montanari, and Paweł Sobociński

Dipartimento di Informatica, Università di Pisa, Italia

Abstract. The focus of process calculi is interaction rather than computation,
and for this very reason: (i) their operational semantics is conveniently expressed
by labelled transition systems (LTSs) whose labels model the possible interac-
tions with the environment; (ii) their abstract semantics is conveniently expressed
by observational congruences. However, many current-day process calculi are
more easily equipped with reduction semantics, where the notion of observable
action is missing. Recent techniques attempted to bridge this gap by synthesis-
ing LTSs whose labels are process contexts that enable reactions and for which
bisimulation is a congruence. Starting from Sewell’s set-theoretic construction,
category-theoretic techniques were defined and based on Leifer and Milner’s rel-
ative pushouts, later refined by Sassone and the fourth author to deal with struc-
tural congruences given as groupoidal 2-categories.

Building on recent works concerning observational equivalences for tile logic,
the paper demonstrates that double categories provide an elegant setting in which
the aforementioned contributions can be studied. Moreover, the formalism allows
for a straightforward and natural definition of weak observational congruence.

1 Introduction

Since Milner’s proposal of an alternative semantics for the π-calculus [14] based on
reactive rules modulo a suitable structural congruence, ongoing research focused on
the investigation of the relationship between the labelled transition system (LTS) based
semantics for process calculi and the more abstract reduction semantics.

Early attempts by Sewell [19] devised a strategy for obtaining an LTS from a re-
duction relation by adding suitable contexts as labels on transitions. The technique was
further refined by Leifer and Milner [11] who introduced the notion of relative pushout
(RPO) in order to capture the notion of minimal contexts. Such attempts share the basic
property of a congruent bisimulation equivalence.

In this paper we pursue the comparison between these two different semantic styles,
using categorical tools to model and to relate the possible approaches. The result is a
schema for the translation of reductions semantics into LTS semantics such that their
natural bisimulation equivalences are indeed congruences with respect to the state struc-
ture. In particular, we show that double categories provide a uniform framework for
experimenting with different constructions of observational models out of reactive sys-
tems, accounting for both weak and strong bisimulation congruences.

� This work has been partly supported by the EU within the project HPRN-CT-2002-00275
SEGRAVIS (Syntactic and Semantic Integration of Visual Modelling Techniques).

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 293–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 R. Bruni et al.

0
P �� 1

α.[]|ᾱ
��⇓τ

[]

�� 1
C[] �� 1

Fig. 1. The reduction C[α.P|ᾱ] ⇒ C[P].

Reduction semantics. The dynamics of many calculi is often defined in terms of re-
duction relations. For example, the λ-calculus has the β-reduction (λx.M)N ⇒ M[N/x]
that models the application of a functional process λx.M to the actual argument N.
Usually, this kind of rules can be freely instantiated and contextualised because they
represent internal reductions of a system component. For example the reduction rule
α.P|ᾱ ⇒ P for asynchronous CCS-like communication can be instantiated to P = β̄
and contextualised in the unary context C[] = β.nil|[] yielding the rewrite sequent

β.nil|α.β̄|ᾱ⇒ β.nil|β̄
illustrated in Fig. 1 with a standard notation: natural numbers represents the number of
context-holes, hence an arrow from 0 to 1 is a ground process, while an arrow from 1 to
1 is a context with a unique hole. Processes and contexts compose horizontally, while
reductions proceed vertically.

Observational semantics. Reduction semantics have the advantage of conveying the
semantics of calculi with relatively few compact rules. The main drawback of reduction
semantics is poor compositionality, in the sense that the dynamic behaviour of arbitrary
stand alone terms (like α.P in the example above) can be interpreted only by inserting
them in the appropriate context (i.e., []|ᾱ), where a reduction may take place. Instead,
in LTS semantics, transitions are labelled over suitable observable actions; these are
intended to capture the potential interactions of each process with any environment.
Because interaction is explicit, this approach has proven to be flexible in defining vari-
ous notions of process equivalence.

Reductions vs. Labelled Transitions, or Cells vs. Double Cells. Both reductions and
labeled transitions have a strong set-theoretic flavour. Nevertheless, both logical and
categorical presentations for these paradigms have been proposed in the literature. Con-
cerning reduction semantics, it is agreed that enriched categories (more specifically,
2-categories) are a suitable model [16, 17], and rewriting logic [13] a successful logi-
cal framework for interpreting many computational formalisms. Concerning LTSs, tile
logic [8] offers a uniform approach to system specifications, admitting both a sequent
calculus presentation (with rules accounting for side-effects and synchronisations) and
a categorical semantics in terms of double categories. Moreover, tile logic yields a nat-
ural notion of observational equivalence, tile bisimulation, for which congruence proofs
can be carried out in a purely diagrammatic way. Our belief is that the comparison be-
tween reduction semantics and LTS semantics can be conveniently pursued at the level
of their categorical representatives.

Indeed, Leifer and Milner’s notion of reactive system can be seen as a 2-category
in which the 2-cells are freely generated from a set of basic ground reaction rules.
This treatment generalises to Sassone and the fourth author’s work, where the starting

Deriving Weak Bisimulation Congruences from Reduction Systems 295

point is a special kind of 2-category that accounts for structural congruences, called a
G-category, and adds such reductions freely to obtain a 2-category.

In order to study the derivations on a LTS, we construct the observational double
category out of a reduction system, which expresses the orthogonality of reactions (the
vertical dimension of the double category) and contexts (the horizontal dimension).
This double category unites all of the structure (terms, contexts, structural congruence
and reductions) in the same categorical universe, and it allows us to recover Leifer and
Milner’s notion of strong bisimilarity. More interestingly, the ordinary notion of tile
bisimilarity turns out to define a congruent weak bisimilarity which promises to be an
operationally more natural equivalence.

Structure of the Paper. In Section 2 we recall the definitions of double categories, 2-
categories and tile bisimulation. In Section 3 we recall the definition of reactive system
and show how the theory can be reconciled with traditional 2-categorical approaches
to rewriting. Section 4 is devoted to the main contribution of the paper, showing that:
(1) depth preserving tile bisimulation over observational double categories is a congru-
ence which corresponds to Leifer and Milner’s strong bisimilarity, and (2) ordinary tile
bisimilarity results in a notion of weak bisimulation congruence. In the Conclusion we
summarise the results and point out further extensions and other possible applications
of our framework. In the Appendix we give some technical background on previous
work relating to the notions of reactive systems and relative pushouts.

2 Background

Double Categories. This section presents a minimal introduction to double categories;
we refer the reader to [2, 8] for further details. Throughout the paper we shall follow
the convention of denoting composition in the diagrammatic order.

Concisely, a double category is simply an internal category in Cat (the category of
small categories and functors). This means that a double category contains two categor-
ical structures, called horizontal and vertical respectively, defined over the same set of
cells. More explicitly, double categories admit the following, naı̈ve definition.

Definition 1 (Double category). A double category D consists of a collection of cells
α, β, γ, ... such that

1. cells form the horizontal categoryD∗, where ∗ denotes horizontal cell composition;
2. cells form the vertical category D• , where • denotes vertical cell composition;
3. the objects ofD∗, ranged by v, u,w, ..., are called observations and form the vertical

1-category V over the objects in O, ranged by a, b, c, ...;
4. the objects of D• , ranged by h, g, f , ..., are called configurations and form the hor-

izontal 1-categoryH over the same objects O of V;
5. both the vertical and horizontal composition of cells are functorial with each other

and w.r.t. the corresponding compositions in the underlying 1-categories.

We shall often use ‘;’ to denote composition in both the horizontal and vertical
1-categories. A cell α with horizontal source v, horizontal target u, vertical source h

296 R. Bruni et al.

a
h ��

αv
		

b
u

		
c

g
�� d

Fig. 2. Graphical representation of a cell

and vertical target g is written α : h
v−→
u g and depicted as in Fig. 2—its sources and

targets must be compatible, in the sense that h and v must have the same domain a, the
codomain of v must coincide with the domain of g and so on, as illustrated in Fig. 2.

The functoriality requirement amounts to impose the convenient exchange law

(α • γ) ∗ (β • δ) = (α ∗ β) • (γ ∗ δ)
for any composable cells α : h

v−→
u g, β : f

u−→
w l, γ : g

z−→
x h′, and δ : l

x−→
y f ′.

To substantiate the definition of a double category, we give some basic examples.

Example 1 (Square category). Given a category C, the corresponding double category
of squares is defined by taking the objects of C as objects, C as both the horizontal 1-
category and vertical 1-category, and the set of square diagrams formed by compatible
arrows (in the sense explained above) as cells.

Example 2 (Quartet category). Cells of a square category are compatible, but not nec-
essarily commuting. Given a category C, we denote by � C the double category of
quartets of C: its objects are the objects of C, its horizontal and vertical arrows are the
arrows of C, and its cells are the commuting square diagrams of arrows in C (i.e., such
that h; u = v; g with reference to Fig. 2). The quartet category is therefore a sub-double
category of the square category.

Since any square in the square category over C is uniquely characterised by its
“border” (i.e., any two squares with the same border are equal), it is immediate that
in all the examples above the exchange law is trivially satisfied. Note that in general
a double category can have many different cells with the same border. Indeed, when
considering double categories which arise from 2-categories using a generalisation of
the quartet construction, we shall consider two cells to be equal if they have equal border
and equal internal 2-cells (Definition 10).

2-Categories. A 2-category is described concisely as a double category whose under-
lying vertical 1-category is discrete (i.e., it only contains identity arrows). In other terms
a 2-categoryC is a category where every homset (the collections of arrows between any
pair of objects a and b) is the class of objects of some category C(a, b) and, correspond-
ingly, whose composition “functions” C(a, b) × C(b, c) → C(a, c) are functors.

Definition 2 (2-category). A 2-category C consists of

1. a class of objects a, b, c, . . .;
2. for each a, b ∈ C a category C(a, b). The objects of C(a, b) are called 1-cells, or

simply arrows, and denoted by f : a → b. Its morphisms are called 2-cells, and are
written α : f ⇒ g : a → b. Composition in C(a, b) is denoted by • and referred to
as vertical composition. Identity 2-cells are denoted by 1 f : f ⇒ f ;

Deriving Weak Bisimulation Congruences from Reduction Systems 297

3. for each a, b, c ∈ C a functor ∗ : C(a, b) × C(b, c) → C(a, c), called horizontal
composition. Horizontal composition is associative and admits 1ida as identities.

Definition 3 (G-category). A groupoidal category (or G-category) is a 2-category
where all 2-cells are invertible.

Starting from [16, 17, 13], 2-categories have been the chosen formalism for the al-
gebraic presentation of the reduction semantics for many term-like structures [5, 7]–the
2-cells of such 2-categories model reduction. The idea is to start from an abstract pre-
sentation of the basic reduction steps of a system: the closure with respect to contexts
is then precisely obtained by the 2-categorical operation of whiskering [20]. Here, the
relevant notion is that of (G-)computad: a (G-)category enriched with a relation on
homsets, each pair representing a basic reduction step of the system. Via a well-known
construction, a 2-category can be freely generated from any (G-)computad.

Definition 4 (G-computad). A G-computad is a pair 〈H , T 〉, whereH is a G-category
and T =

⋃
a,b∈H Ta,b is a family of relations on arrows Ta,b ⊆ H(a, b) ×H(a, b).

When writing f T g we assume that f , g belong to the same homset. G-computads
are slightly more general than computads, in that H is a G-category instead of an ordi-
nary category (which itself can be seen as a G-category whose 2-cells are all identities).

Ground Tile Bisimilarity. When used as a semantic foundation for computational
models as tile logic, double categories allow for a suitable notion of behavioural equiv-
alence which is reminiscent of the well-known technique of bisimulation. This notion
can be lifted to a more abstract level of generic double categories without much effort.

The general definition of tile bisimulation establishes a family of equivalences for
each homset in the horizontal categoryD∗. A restricted variant, called ground tile bisim-
ulation in [4], focuses just on the suitable homset of closed processes; it is relevant for
us because reactive systems (in the sense of Leifer and Milner, see Definition 7) are de-
signed for closed systems. In our framework, closed systems correspond to horizontal
arrows which cannot be left-instantiated, except in trivial ways.

In the following we shall assume that our horizontal 1-category has a distinguished
ground object ι: we require that for all objects a, if there exists f : a → ι then f = idι.
The closed systems we shall consider are then characterised by having a ground object
in their left interface and we simply write t−→v t′ for a cell with horizontal source idι.

Definition 5 (Ground Tile Bisimulation). Let D be a double category with a ground
object ι. A symmetric relation B on closed configurations (arrows in the homsetsH[ι, a]
for any object a) is called a ground tile bisimulation if whenever s B t and s−→v s′ ∈ D,

then t′ exists such that t−→v t′ ∈ D and s′ B t′.

The maximal ground tile bisimulation is denoted by ≈, and two closed configura-
tions s and t are ground tile bisimilar if s ≈ t. Note that ≈ only relates arrows within the
same homset. Bisimilarity is said to be congruent when s ≈ t implies s; c ≈ t; c for any
arrow c in D∗. The following property on D is known to be sufficient for congruence.

298 R. Bruni et al.

ι

		

s1 �� a1
h �� a

v
		

ι
t

�� b

ι

		

s1 �� a1

u
		

h �� a
v

		
ι

t1
�� b1 g

�� b

Fig. 3. Ground decomposition

Definition 6 (Ground decomposition). A double category D enjoys the ground de-
composition property if for any ground configuration s : ι→ a and any cell s1; h−→v t ∈
D such that s = s1; h, there exists an observation u, a ground configuration t1 and a

configuration g such that s1−→u t1 ∈ D and h
u−→
v g, with t = t1; g.

The situation is depicted in Fig. 3. The observation u defines the amount of interac-
tion between s1 and the environment h that is needed to perform the effect v. In general
u is not uniquely determined, as s1 and h can interact in many ways. For example, it
can be that u = id if h can perform v without interacting with s1. The key point about
the (ground) decomposition property is that a transition of the whole can always be
expressed as a suitable combination of the transitions of its parts.

Theorem 1 (Cfr. [4]). The ground decomposition property implies that ground tile
bisimilarity is a congruence.

3 From Reactive Systems to 2-Categories

Reactive systems were proposed by Leifer and Milner as a general framework for the
study of simple formalisms equipped with a reduction semantics [11]. The setting was
extended by Sassone and the fourth author [18] in order to treat the situation where
the contexts of a formalism are equipped with a structural congruence relation. For
instance, in examples which contain a parallel composition operator, it is usually not
satisfactory to simply quotient out terms with respect to its commutativity—intuitively,
it is important to know the precise location within the term where the reaction occurs.
This information is expressed in a natural way as a 2-dimensional structure, where the
2-cells are isomorphisms which “permute” the structure of the term.

Definition 7 (Reactive system). A reactive system C consists of

1. a G-category C of context;
2. a distinguished object ι ∈ C;
3. a composition-reflecting, 2-full 2-subcategory E of evaluation contexts1;
4. a set of pairs R ⊆ ⋃a∈E C(ι, a) × C(ι, a) called the reaction rules.

Reaction rules are closed with respect to evaluation contexts in order to obtain the
reaction relation on the closed terms (arrows with domain ι) of C.

1 That is, E is full on the two-dimensional structure and e1; e2 ∈ E ⇒ e1 ∈ E and e2 ∈ E.

Deriving Weak Bisimulation Congruences from Reduction Systems 299

A Calculus with Restriction. As a running example, we shall first define a G-category
C, the arrows of which shall represent the terms of a simple process calculus with a re-
striction operator. Adding the expected reaction rules, we shall obtain a reactive system.

Objects. Two objects: 0, 1.

Arrows. The homset C(0, 0) is the singleton containing only the identity arrow. There
are no arrows from 1 to 0. Fixing a set A of channel names, we construct the terms of
our simple calculus as specified by the grammar below

P � ε | a | a | − | P | P | νa.P (a ∈ A)

Although the parallel composition ‘|’ is a binary operator, we shall consider terms to
be quotiented with respect to its associativity. The set of closed terms (those terms
containing no occurrences of the hole ‘−’) is the homset C(0, 1). The set of terms which
contain precisely one hole forms the homset C(1, 1).

Composition of C arrows (either an arrow t : 0 → 1 with an arrow c : 1 → 1, or
two arrows c : 1 → 1 and d : 1 → 1) is substitution of the first term for the unique hole
within the second term. Note that the hole in an open term is allowed to be within the
scope of a restriction, and thus substitution can involve capturing.

2-Cells. Roughly, the structural isomorphisms between terms of our G-category C cor-
respond to the usual axioms describing the commutativity of ‘|’, while at the same time
respecting the scopes of any present restriction.

More concretely, 2-cells between terms without restriction are permutations which
swap parallel components (where by ‘component’ we mean an occurrence of an in-
put/output on a channel or a hole). Thus, for instance, there are two automorphisms on
a | a : 0 → 1, the identity, and the automorphism which swaps the two copies of a.2

The restriction νa.P reduces the allowed permutations in any context: an input or
output on a within the scope of the restriction νa is not allowed to be taken outside the
scope, and dually, an input or an output on a not within the scope of a restriction νa is
not allowed to be taken into its scope. In open terms (members of the homset C(1, 1)),
holes are not allowed to cross any scoping boundaries.

In order to check whether there exists a structural isomorphism between two arrows
s and t it is enough to erase all occurrences of ν, check for the existence of a permutation,
reintroduce the instances of ν and check whether the permutation respects their scope.
Two 2-cells are equal if and only if their domains and codomains coincide, and their
underlying permutations are equal. Moreover, we postulate that an automorphism is the
identity 2-cell if and only if its underlying permutation is the identity permutation.

Thus, there are six automorphisms on a | a | a but only two on a | νa.(a | a).
However, there is an invertible 2-cell νa.(b | a) → b | νa.a, induced by the identity per-
mutation, capturing the usual structural congruence rule. Similarly, there are invertible
2-cells νa.b → b and νa.a | b → b | νa.a, but no 2-cell νa.a | νa.a → νa.(a | a).

2 We do not quotient the terms with respect to the commutativity of ‘|’ because it is important
not to lose the concrete position of a redex within a term when considering interaction with
arbitrary contexts – in contrast, the associativity of ‘|’ plays no role and can be quotiented out.

300 R. Bruni et al.

Vertical composition of 2-cells in the 2-category is the obvious composition of per-
mutations and horizontal composition of 2-cells is defined as expected.

Reactive System. It is a simple exercise to show that all of the data defines a G-category
C. We construct a reactive system Ccal by adding rules { 〈a | a, ε〉 | a ∈ A } and taking
all contexts to be the set of evaluation contexts. The reader will notice that the resulting
reduction relation (obtained by instantiating the rules with all contexts) is as expected.

In order to keep the example as simple as possible, we add neither extra axioms
or structural rules which guarantee that the null process ε is the identity for parallel
composition nor do we require any notions of α-equivalence; we note, however, that
any derived operational equivalence we shall consider relates terms which would be
equated via such axioms. For instance, any arrow P is related with ε | P and any two
α-equivalent (closed) terms are related.

The 2-Category of Computations. We shall now show that a reactive system can be
used to generate 2-categories in two relevant ways. The first of the two constructions
is the classic one, but it does not have an immediate computational intuition associated
with the 2-dimensional structure. In the following, all definitions are parametric w.r.t. a
reactive systems C, with components 〈C, ι,E,R〉.

Definition 8 (2-category of interactions). Let Ci denote the 2-category freely gener-
ated from the G-computad 〈C,R〉.

Indeed, the 2-cells in Ci are generated freely from the original G-category C and the
reaction rules R. Thus, in general, a 2-cell of Ci does not denote a meaningful compu-
tation in C as it allows reduction even in non-evaluation contexts.

Definition 9 (2-category of computations). Let Cc denote the smallest sub-2-category
of Ci which includes the reaction rules R and the cells of the G-category E.

The 2-cells in Cc are generated by extending the original structural isomorphisms in
C with the 2-cells corresponding to computations. It is easy to show that there is a close
relationship with Leifer and Milner’s reaction relation because we use the 2-category E
of evaluation contexts in the construction of Cc.

4 From 2-Categories to Double Categories

In Definition 8 we defined the 2-category of interactions. In this section we shall as-
sociate to such a 2-category C a double category Ĉ that simulates also the potential
reductions of partial redexes in C. We start by recalling a construction which lifts the
quartet category approach in order to obtain a double category from a 2-category.

Definition 10 (Quartet double category). Let C be a 2-category. The quartet double
category �C is obtained decomposing each cell as in Fig. 4, and defining horizontal
and vertical composition as sketched in Fig. 5.

Deriving Weak Bisimulation Congruences from Reduction Systems 301

b
f2

��a

f1 ��

g1

d
c

g2

��

a
f1 ��

g1
		

b
f2		�� 		

		
	

		
		

	

c
g2

�� d

Fig. 4. A 2-cell and a tile associated to it

a
f1 ��

g1
		

b

h
		

f3 ��

�� 		
		

	
		

		
	

m

f3
		��

c
g2

�� d g3
�� n

m
f3

��
��b h

f2 ��

��

n
a

f1 ��

g1

d g3

��

c
g2

��

Fig. 5. Horizontal composition, and the corresponding 2-cell

A check is enough to guarantee that the resulting structure is indeed a double cate-
gory, and both vertical and horizontal 1-categories coincide with the category underly-
ing C (even if the exchange law becomes more difficult to prove).

As for Example 2, also the previous construction is folklore, the standard reference
being probably [15]. It appears implicitly in recent works on tile bisimilarity [4]. From
our perspective, it suggests an automatic generation of a labeled relation (abstracting a
double category), starting from an unlabelled one (abstracting a 2-category).

From Computads to Double Categories. The mechanism we propose for synthesising
labeled transition systems is an instantiation of the general construction of the quartet
category: It takes into account the cells of the original G-computad, closing them with
just enough information for obtaining the right closure of the resulting double category.

We shall use the notion of groupoidal idempushouts [18] (GIPOs), an extension to
G-categories of Leifer and Milner’s [11] notion of idempushout (IPO), in the central
construction of Definition 11. Here we shall briefly recall a definition of (G)IPOs, di-
recting to the appendix for further results and their use in the theory of reactive systems.

Intuitively, a (G)IPO refers to a commutative (up to an isomorphic 2-cell α) square
as illustrated in Fig. 6, in which the arrows g1 : b → d and g2 : c → d are minimal, in
the sense that there is no non-trivial arrow h : e → d and arrows h1 : b → e, h2 : c → e
such that f1; h1 is (up to an isomorphic 2-cell) f2; h2, h1; h is (up to an isomorphic 2-cell)
g1 and h2; h is (up to an isomorphic 2-cell) g2. When working with G-categories, these
isomorphisms are required to paste together to obtain the original isomorphism α.

Given arbitrary f1 and f2, it is usual for categories of contexts to have more than one
such closure—i.e., there is more than one (G)IPO that has f1 and f2 as its lower compo-

a

f2

		

f1 �� b

g1

		
α

�� 		
		

		

		
		

		

c
g2

�� d

Fig. 6. A GIPO

302 R. Bruni et al.

nents. It turns out that to obtain a (G)IPO one constructs a (bi)pushout in a (pseudo) slice
category. Such pushouts have been dubbed (groupoidal) relative pushouts, or (G)RPOs.

Example 3. Consider the reactive system Ccal previously defined. The underlying cat-
egory of terms has GRPOs. Diagram (i), below, is a simple example of a GIPO, while
diagram (ii), with σ : νa.(a | a) | b → b | νa.(a | a) the unique 2-cell between these two
terms is not, since − | b is unnecessary and may be factored out. Diagrams (iii) (where
τ : a | a | b | a → a | a | b | a is the permutation which swaps the two copies of
a) and (iv) are both GIPOs, which illustrates our previous remark that two arrows may
have several different minimal closures. Diagram (v) is also an example of a GIPO,
which is less interesting since the terms a | a and b are disjoint.

0
a|a

		

νa.(a|a)�� 1
id

�� ��
��

�
��

��
�

−
		

1 νa.−
�� 1

(i)

0
a|a

		

νa.(a|a)�� 1
σ

�� ��
��

�
��

��
�

−|b
		

1
b|νa.−

�� 1

(ii)

0
a|a

		

a|a|b �� 1
τ

�� ��
��

�
��

��
�

−|a
		

1 −|b|a
�� 1

(iii)

0
a|a

		

a|a|b �� 1
id

�� ��
��

�
��

��
�

− b		
1 −|b

�� 1

(iv)

0
a|a

		

b �� 1
id

�� ��
��

�
��

��
�

−|a|a
		

1
b|−

�� 1

(v)

Definition 11 (Observational double category). Let C = 〈C, ι,E,R〉 be a reactive
system. The observational double category of C, denoted O(C), is the smallest sub-
double category of the quartet double category � Ci which includes the double cells

ι

		

�� ι
ρ

�� ��
��

�
��

��
�

l
		

ι
r

�� a

(i)

a
f1 ��

f2
		

b
α

�� ��
��

��
��

��
��

g1
		

c
g2

�� d

(ii)

where the tiles of type (i) correspond to the rules of R, and the tiles of type (ii) corre-
spond to GIPOs in C, with g2 ∈ E.

Remark 1. Notice that while the observational double category is a sub-double category
of the quartet double category � Ci, the resulting cells are filled in with 2-cells of Cc,
as a consequence of requiring g2 to be an evaluation context. The advantage of working
within �Ci is that our congruence results (Corollaries 1 and 2) hold w.r.t. all contexts,
not just the evaluation contexts.

Thanks to the properties of GIPOs, it is easy to check that the resulting 1-categories
coincide with the category underlyingC. Later we will show that the proof of decompo-
sition property can be carried out rather easily for the observational double category be-
cause of the above facts. Before proving that the decomposition property holds, though,
we introduce the notion of depth of a double-cell.

Definition 12 (Depth of a cell). A cell in O(C) has depth n if it contains n occurrences
of ρ tiles, defined according to Definition 11 (i.e., the cells ρ modelling the rules).

The definition is meaningful, since the closure of the quartet construction allows for
no equivalence between cells containing a different number of such basic cells (while
this is not the case for those associated with GIPOs).

Deriving Weak Bisimulation Congruences from Reduction Systems 303

Example 4. As an example of a cell of depth 2 in the observational double category
which results from the reactive system Ccal previously defined, consider the cell illus-
trated in the diagram below left, which factorises into the rules ρ, ρ′ and GIPOs obtained
by taking the unique choices for α and α′.

ι

		

a|b �� 1
ξ

�� ��
��

�
��

��
�

−|b|a
		

ι
ε|ε

�� 1

ι

		

�� ι
ρ

��

b|b 		

a|b �� 1
α

�� ��
��

�
��

��
�

−|b
		

ι

		

�� ι
ρ′

�� ��
��

��

��
��

��
a|a

		

ε
�� 1 −|a

�� 1
α′

�� �������
������� −|a

		
ι

ε
�� 1

ε|−
�� 1

First, we offer an analysis of the labels of the observational double category. The
following lemma is similar in nature to Melliès’ Verticalization Theorem [12–Theo-
rem 2] and states that any cell can be decomposed into ‘elementary’ cells – that is, cells
which result from the composition of a single reduction (diagram (i) of Definition 11)
with a minimal context (diagram (ii) of Definition 11).

Lemma 1 (Characterisation). Let f−→u g be a cell of depth n in O(C). Then

– either n ≥ 1 and there exists cells fi−1−→ui
fi of depth 1 for i = 1 . . . n with f0 = f

and fn = g, such that u = u1; . . . ; un;
– or n = 0 and u is an equivalence and f , g : ι → a are related by an invertible cell

in Cc.

The special case for n = 0 is a basic consequence of the fact that the square below
is always a GIPO, for any invertible cell α relating f and g in Cc.

ι

		

f �� a
α

��

 ida		

ι
g

�� a

Next we can prove the key result.

Lemma 2 (Ground decomposition). O(C) satisfies ground decomposition.

Proof. By induction on the depth of a cell τ : s−→h t. If τ has depth 0 then decomposition
holds by the decomposition properties of GIPOs (see Lemma 5 in Appendix). Suppose
τ has depth n > 0, then by Lemma 1 τ decomposes as shown in Fig. 7(i), where (a) α
and β are GIPOs; (b) ρ models a rewrite rule; and (c) τ′ has depth n − 1.

Using the fact that GIPOs decompose (see Lemma 5 in the Appendix), we obtain
α1, α2 such that α1 ∗ α2 = α and β1, β2 such that β1 ∗ β2 = β (see Fig. 7(ii)). The
remainder of the decomposition follows via the inductive hypothesis on τ′ (along the
decomposition of its vertical source r; g in r; g1 and g2). �

304 R. Bruni et al.

ι

		

s1 �� a1
s2 �� a

h1		α

ι

		
�� ι

ρ l		
f �� b
β h2		

ι

		
r

�� e g �� c
k		τ′

ι
t

��

(i)

d

ι

		

s1 �� a1

α1 h′1		

s2 �� a
h1		

α2

ι

l
		

f1 �� b1

β1 h′2		

f2 �� b
h2

		
β2

e
g1

�� c1 g2
��

(ii)

c

Fig. 7. Ground decomposition, diagrammatically

Depth-Preserving Bisimulation. We exploit the definition of depth in order to offer a
refined notion of tile bisimulation.

Definition 13 (Depth-preserving tile bisimulation). A (ground) tile bisimulation B on
O(C) is depth-preserving if whenever s B t for s, t ∈ C, then for any cell s−→v s′ of depth

n there exists t′ ∈ C and a cell t−→v t′ of the same depth such that s′ B t′.

We shall denote the largest depth-preserving tile bisimulation by ∼ and refer to it
as depth-preserving bisimilarity. It yields Leifer and Milner’s semantics for a given
reactive system; we include a definition of the latter in the Appendix (Definition 14).

Lemma 3. Depth preserving tile bisimilarity on O(C) defines the same relation as
strong bisimilarity on LTS(C) (as defined in Definition 14).

Indeed, as a direct consequence of Lemma 2 we have the following corollary.

Corollary 1. Depth preserving tile bisimilarity on O(C) is a congruence.

Tile Bisimilarity as a Weak Bisimulation. We shall now look at the results of con-
sidering ordinary tile bisimilarity and, in particular, we shall argue that it amounts to a
notion of weak bisimulation. This follows straightforwardly from Lemma 1.

Thus, in the bisimulation game, a minimal context which sets off a chain of reactions
on f may be matched by the minimal context for another chain of reactions as long as
the results are a bisimilar pair of terms. The fact that internal reaction (i.e. only the
identity context is provided) can be matched either by internal reaction or no reaction
is reminiscent of Milner’s original formulation of weak bisimilarity for CCS in which a
τ action can be matched by zero or more τ’s.

Jensen has carried out a preliminary study [9] of defining the notion of weak bisim-
ilarity for reactive systems, and specifically, for bigraphs [10]. We plan to study the
relationship between the two bisimilarities as future work.

By definition of depth preserving tile bisimilarity we have the result below.

Lemma 4. Depth preserving tile bisimilarity ∼ on an observational double category
implies tile bisimilarity ≈ over that double category.

The case study which follows shows that, in general, ∼ is strictly finer than ≈ (see
hence Example 5). As a direct consequence of Lemma 2 we have the corollary below.

Deriving Weak Bisimulation Congruences from Reduction Systems 305

Corollary 2. Tile bisimilarity ≈ on an observational double category is a congruence.

We conclude by illustrating how the constructions we have seen so far can be ap-
plied to the simple process algebra previously introduced.

Example 5. Let Ccal be the reactive system defined in our running example, and let
a ∈ A be a name. Then νa.(a | a) � 0 while νa.(a | a) ≈ 0. For the first part, note that

νa.(a | a)−→id νa.0 via a cell of depth 1, which cannot be matched by 0. For the second

part, observe instead that νa.(a | a)−→id νa.0 can be matched by the depth 0 cell 0−→id 0.

5 Conclusions

In this paper we presented a novel approach to the synthesis of a labelled transition
system out of reactive system. Our proposal builds on the results by Leifer and Mil-
ner, later refined by Sassone and the fourth author, since in order to obtain the contexts
necessary for the observation we rely on (groupoidal) relative pushouts. However, we
dispense with any set-theoretical presentation. We show instead how the mechanism of
synthesising can be obtained as an instance of the classical construction of the quartet
category, relating 2-categories and double categories, considered as abstract presenta-
tions for reactive and labelled transition systems, respectively.

Our work was also inspired by a series of papers on tile logic, the proof-theoretic
counterpart of double categories. The associated tile bisimulation often fails to be a
congruence, and the research focused on the characterisation of syntactical constraints
for proving when the property holds. One approach has been the saturation of the cate-
gory with additional cells, thus recovering e.g. (ground) dynamic congruence [4]. The
methodology has been applied for recovering s-semantics for logic programming of [3].

We feel confident that our contribution streamlines former results on tile logic and
synthesised labelled transition systems, and highlights what we consider the basic ingre-
dient on both approaches, namely, the decomposition property. In fact, relative pushouts
decompose, and this is the reason why the bisimulation on the observational double cat-
egory is a congruence. Note also that both [3, 4] can be considered as instances of the
general approach proposed in the paper since all pushouts are also IPOs.

Future Directions. We envision two clear roads for further development. First of all, we
would like to tackle open tile bisimulation, in order to lift the restriction to ground reac-
tive systems since, after all, usually a presentation is given in terms of under-specified
components, which should be also instantiated, besides being contextualised. Ground-
ness is clearly effective for proving that a bisimulation is a congruence, but of course
double categories, with their obvious notion of triggering for a cell, seem to offer a
mathematically sound environment where to consider the most general case of open
systems. After all, the quartet construction has no restriction whatsoever, and in fact it
has a much more general, and stimulating, theory underlying it [15].

The second path to follow concerns the chance of synthesising adequate concur-
rent semantics. Usually, the concurrent semantics for a reactive system is obtained by
considering some notion of permutation equivalence on reductions; while on labelled
transition systems it is usually recovered by capturing some notion of independence

306 R. Bruni et al.

on the labels. Thus, the quartet construction appears to be a general mechanism that
is well-suited, especially if categories with structure (i.e. either monoidal or cartesian
categories) are considered, and the structure on the arrows is lifted to the observations).
After all, tile logic has been successfully applied to term and graph rewriting, and the
decomposition property has been established in many different settings [1, 6, 12].

References

1. R. Bruni, D. de Frutos-Escrig, N. Martı́-Oliet, and U. Montanari. Bisimilarity congruences
for open terms and term graphs via tile logic. In Proc. of CONCUR 2000, vol. 1877 of Lect.
Notes in Comp. Sci., pp. 259–274. Springer, 2000.

2. R. Bruni, J. Meseguer, and U. Montanari. Symmetric and cartesian double categories as a
semantic framework for tile logic. Mathematical Structures in Computer Science, 12:53–90,
2002.

3. R Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programming. Theory
and Practice of Logic Programming, 1:647–690, 2001.

4. R. Bruni, U. Montanari, and V. Sassone. Observational congruences for dynamically recon-
figurable tile systems Theor. Comp. Sci., 335(2-3):331-372, 2005.

5. A. Corradini and F. Gadducci. Rewriting on cyclic structures: Equivalence between the oper-
ational and the categorical description. Informatique Théorique et Applications/Theoretical
Informatics and Applications, 33:467–493, 1999.

6. G. Ferrari and U. Montanari. Tile formats for located and mobile systems. Inform. and
Comput., 156:173–235, 2000.

7. F. Gadducci, R. Heckel, and M. Llabrés. A bi-categorical axiomatisation of concurrent graph
rewriting. In Proc. of CTCS’99, vol. 29 of Electr. Notes in Theor. Comp. Sci., Elsevier, 1999.

8. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction: Essays
in Honour of Robin Milner, pp. 133–166. MIT Press, 2000.

9. O. H. Jensen. Bigraphs and weak bisimilarity. Talk at Dagstuhl Seminar 04241, June 2004.
10. O. H. Jensen and R. Milner. Bigraphs and mobile processes. Technical Report 570, Computer

Laboratory, University of Cambridge, 2003.
11. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In Proc. of

CONCUR 2000, vol. 1877 of Lect. Notes in Comp. Sci., pp. 243–258. Springer, 2000.
12. P. A. Melliès. Double categories: A modular model of multiplicative linear logic. Mathe-

matical Structures in Computer Science, 12:449–479, 2002.
13. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comp.

Sci., 96:73–155, 1992.
14. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification, vol. 94

of Nato ASI Series F, pp. 203–246. Springer, 1993.
15. P.H. Palmquist. The double category of adjoint squares. In Midwest Category Seminar, vol.

195 of Lectures Notes in Mathematics, pp. 123–153. Springer, 1971.
16. A.J. Power. An abstract formulation for rewrite systems. In Category Theory and Computer

Science, vol. 389 of Lect. Notes in Comp. Sci., pp. 300–312. Springer, 1989.
17. D.E. Rydehard and E.G. Stell. Foundations of equational deductions: A categorical treatment

of equational proofs and unification algorithms. In Category Theory and Computer Science,
vol. 283 of Lect. Notes in Comp. Sci., pp. 114–139. Springer, 1987.

18. V. Sassone and P. Sobociński. Deriving bisimulation congruences using 2-categories. Nordic
Journal of Computing, 10:163–183, 2003.

19. P. Sewell. From rewrite rules to bisimulation congruences. Theor. Comp. Sci., 274:183–230,
2004.

20. R.H. Street. Categorical structures. Handbook of Algebra, vol. 1, pp. 529–577. North-
Holland, 1996.

Deriving Weak Bisimulation Congruences from Reduction Systems 307

Appendix: (G)IPOs

Using the universal properties of (bi)colimits, one can prove that (G)IPOs satisfy several
basic properties reminiscent of ordinary pushouts.

Lemma 5 (Composition and decomposition of (G)IPOs). Let C be a (G-)category
which has (G)RPOs. Then

a

f2
		

f1 �� b
α

�� ��
��

��

��
��

��
g1

		

f ′1 �� b′

g′1
		

σ

�� ��
��

��

��
��

��

c
g2

�� d
g′2

�� d′

(i)

a

f2
		

f1; f ′1 �� Z

f
		

f1;σ •α;g′2
����

�� ����
c

g2;g′2
�� d′

(ii)

1. if both squares α and β in diagram (i) are (G)IPOs then the exterior (see dia-
gram (ii)) is also a (G)IPO;

2. if the left square α and the exterior (see diagram (ii)) of diagram (i) are (G)IPOs
then so is the right square.

The basic idea, originally due to Sewell [19], is that the labels are the smallest
contexts which allow a reaction to occur.

Definition 14 (LTS). Let C be a reactive system. The associated labelled transition
systems LTS(C) is given by

1. the states of LTS(C) are arrows s : ι→ a in C
2. there is a transition s f � t′ iff there exists 〈l, r〉 ∈ R, t ∈ E and a 2-cell α : s; f ⇒

l; t such that the square below is a GIPO and t′ = r; t.

ι

l
		

s �� a

f
		

α

��

b t
�� c

In the case of G-categories, one normally quotients the states and the transitions of
the LTS with respect to isomorphism—in other words, the 2-dimensional structure is
no longer necessary and may be discarded.

One of the main results that holds for such an LTS is that when the underlying
(G-)category has enough (G)RPOs (one only has to require so-called redex-GRPOs to
exist), then bisimilarity is a congruence. This was originally shown by Leifer and Mil-
ner [11] and extended to the more general setting by Sassone and the fourth author [18].

SOS for Higher Order Processes

(Extended Abstract)

MohammadReza Mousavi1, Murdoch J. Gabbay2, and Michel A. Reniers1

Abstract. We lay the foundations for a Structural Operational
Semantics (SOS) framework for higher order processes. Then, we
propose a number of extensions to Bernstein’s promoted tyft/tyxt format
which aims at proving congruence of strong bisimilarity for higher
order processes. The extended format is called promoted PANTH. This
format is easier to apply and strictly more expressive than the promoted
tyft/tyxt format. Furthermore, we propose and prove a congruence
format for a notion of higher order bisimilarity arising naturally
from our SOS framework. To illustrate our formats, we apply them to
Thomsen’s Calculus of Higher Order Communicating Systems (CHOCS).

Keywords: Formal Semantics, Structural Operational Semantics,
Bisimulation, Congruence, Congruence Rule Formats.

1 Introduction

Bisimilarity, in its different flavors, is a central notion to concurrency theory.
Congruence is a very much desired property for bisimilarity which does not
generally hold. Congruence is essential for algebraic treatment of bisimilarity as
well as for using it in a compositional manner. Thus, it is an interesting question
whether a notion of bisimilarity is a congruence for a particular language or not.

This question has been addressed in a great depth and breadth for languages
endowed with a Structural Operational Semantics (SOS) [17] (see [1] for an
overview). These studies are usually formulated in terms of syntactic formats
that induce congruence for a notion of bisimilarity once the SOS rules conform
to the formats.

For languages with a higher order notion of behavior (which may emit and
receive their own terms as labels), a few proposals exist in the literature [3,14,19].
This work’s most direct inspiration is from Bernstein’s promoted tyft/tyxt for-
mat [3] which aims at proving congruence of strong bisimilarity for higher or-
der processes. We lay the foundations for an SOS framework for higher order
processes and extend Bernstein’s promoted tyft/tyxt , making it both easier to
use and strictly more expressive.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 308–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1Department of Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

2Department of Computer Science, King’s College London, London, UK

SOS for Higher Order Processes 309

For processes with a higher order behavior, strong bisimilarity might be too
restrictive since it requires the emitted or received processes (shown as labels) to
be syntactically the same. In practice, however, processes are considered impor-
tant up to their behavior and hence they should be related using a behavioral
(and not syntactic) notion of equality. This leads to a higher order notion of
bisimilarity [2,6,22]. In this paper, we also present and prove a novel format that
induces congruence for higher order bisimilarity.

This paper is organized as follows: In the next section, we give more details
of our contribution in the context of the literature. Section 3 formally defines our
SOS framework and defines the intended notions of bisimilarity and congruence.
Based on these concepts, our promoted PANTH format is presented in Section 4.
Section 5 studies higher order bisimilarity and proposes the higher order PANTH
format which induces congruence for this notion. We conclude the paper and
comment on future work in Section 6.

2 Related Work

From Tyft/tyxt to PANTH. The tyft/tyxt format [13] is aimed at proving con-
gruence of strong bisimilarity and it allows for SOS rules of the following forms:

{ti
li→ yi | i ∈ I}

f(−→xj)
l→ t

,
{ti

li→ yi | i ∈ I}

x
l→ t

,

where xj and yi are distinct variables ranging over process terms, f is a function
symbol or operator (e.g., sequential composition, parallel composition, etc.), I
is a (possibly infinite) set of indices and t and ti’s are process terms.

In [12], negative premises of the form ti
li� were added to the tyft/tyxt format,

resulting in the ntyft/ntyxt format. The format guarantees the congruence prop-
erty in this extended setting provided that the transition system specification
is stratified. Stratification is concerned with defining a measure that decreases
from the conclusion to negative premises and does not increase from the con-
clusion to positive premises. Note that the addition of negative premises to the
tyft/tyxt format is a non-trivial extension in that it increases expressiveness and
introduces technical complications with respect to existence and uniqueness of
an intended model for the semantics.

Finally, the PANTH format [23] (for Predicates And Negative Tyft/tyxt Hy-
brid format) extends the ntyft/ntyxt format. A deduction rule in the PANTH
format may have predicates, negative predicates, transitions and negative tran-
sitions in its premises and a predicate or a transition in its conclusion.

Promoted Tyft/tyxt. Bernstein in [3] proposes the promoted tyft/tyxt format
which extends the tyft/tyxt format by allowing for the use of terms as labels.
Rules in this format have the following form:

{ti
t′i→ yi | i ∈ I}

f(−→xj)
g(−→zk)→ t

,
{ti

t′i→ yi | i ∈ I}
f(−→xj)

z→ t
,

{ti
t′i→ yi | i ∈ I}

x
g(−→zk)→ t

,
{ti

t′i→ yi | i ∈ I}
x

z→ t
.

The intuition behind the symbols in common with the tyft/tyxt format remains
unchanged. For the rest, g is a function symbol, zk’s and z are variables, vari-
ables in the source and label of the conclusion and targets of the premises are
all distinct and furthermore, all t′i’s (labels of premises) are assumed to contain
at least one function symbol, i.e., they are not variables. Bernstein proves con-
gruence of strong bisimilarity for SOS specifications conforming to the promoted
tyft/tyxt format.

Promoted PANTH. In this paper, we show that most of the restrictions on la-
bels imposed above are not necessary in general and propose a more general
and relaxed format based on the promoted tyft/tyxt format of [3]. We call our
new format for strong bisimilarity promoted PANTH . Furthermore, the pro-
moted PANTH format extends syntactic capabilities of the promoted tyft/tyxt
format by allowing for predicates, negative premises and lists of terms as labels.
We show that the promoted PANTH format is strictly more expressive than
the promoted tyft/tyxt format and point out some usual patterns of SOS rules
that the promoted tyft/tyxt format cannot deal with and the promoted PANTH
format can.

Proof Methods for Evaluation Systems. The proof method of Howe [14] and
related methods such as those proposed in [18] have been used for proving con-
gruence of applicative bisimulation for functional languages. Sangiorgi also pro-
poses a similar framework in [19] for concurrent extensions of lambda-calculi.
Although some of the standard concepts of Howe’s method, such as abstraction
and evaluation structures, are not explicitly present in our framework, as shown
by [3], we can still model the systems studied by [14,18,19] and obtain similar
results using our formats.

Higher Order Bisimulation and Higher Order PANTH. It was first noted in
[2,6] that there is a need for a notion of behavioral equivalence that relates the
behavior of labels instead of their syntax. This notion was also used in [21,22]
for the Calculus of Higher Order Communicating Systems (CHOCS).

In this paper, we give a general framework for defining the semantics of such
systems and proving congruence for the higher order notion of bisimilarity. We
also specify CHOCS [22] in our framework, show that the higher order bisimi-
larity of [22] trivially coincides with ours and conclude that bisimilarity in this
framework is indeed a congruence. This way, one can save pages of proof (such
as those given explicitly in [22]) for proving congruence.

In [20], it is argued that the higher order notion of bisimilarity may be still
too strong for systems with static restriction while it works fine with dynamic
restriction of names. It goes beyond the scope of this paper to discuss this issue
but the techniques developed here can be useful in formulating congruence meta-
theorems for other notions of bisimilarity for higher order processes (e.g., normal
and context bisimilatities of [20]).

It is worth mentioning that in [3], the promoted tyft/tyxt format is used to
prove that higher order bisimilarity is a congruence for CHOCS. But to do so,

310 M.R. Mousavi, M.J. Gabbay, and M.A. Reniers

SOS for Higher Order Processes 311

the semantics of CHOCS is translated into a new semantics and it is shown that
higher order bisimilarity in CHOCS coincides with strong bisimilarity in the new
semantics. Using our approach, one can save these intermediate steps and arrive
at the desired result directly.

Other SOS Frameworks. Our SOS framework is closest to that of [8] (simpli-
fied by omitting the binding signatures) for which no known congruence format
exists. The generalized PANTH format [15] includes variable binding operators
(which are not addressed in this paper), but does not allow for terms as la-
bels and hence cannot deal with higher order process algebras such as CHOCS
directly. Galpin in [10] defines a multi-sorted SOS framework with terms as la-
bels. However there, the sort of labels is necessarily different from the sort of
processes. Thus higher order processes and higher order bisimilarity do not have
a natural presentation in the extended TSS framework of [10].

3 Preliminaries

3.1 SOS with First Order Labels

Fix an infinite set of variables x, y, . . . ∈ V . A signature is a collection of func-
tion symbols f , g, each with an associated arity ar(f) which is the number of
arguments of f . We call f a constant when ar(f) = 0.

(Process) terms t, t′, t0 . . . ∈ T (Σ) are inductively defined in the standard
way given variables and a signature. Terms p, q, . . . ∈ C(Σ) are closed when
they mention no variables. We tend to write p, q, p0, . . . for closed terms. We
shall keep Σ fixed but arbitrary henceforth, so we may drop it. Write L for the
set of finite lists of terms (of possibly zero length). We write L, L′, or (if we
want to refer to elements)

−→
ti for lists. Finally, we write f(

−→
ti) and by that we

mean f(t0, . . . , tar(f)−1) by an implicit assumption that the list
−→
ti is of the right

length, i.e., ar(f).
A substitution σ replaces variables in a term with other terms. The set of

variables appearing in term t is denoted by vars(t). Two substitutions σ and σ′

respect relation R when for all x ∈ V , (σ(x), σ′(x)) ∈ R.
A transition system specification, defined below, is a logical way of defining

transition relations and predicates on (closed) terms. We need some important
basic definitions first:

For a (transition) relation r ∈ Rel of arity n, t, t′ ∈ T , and
−→
ti ∈ L of length

n, call t
−→
ti→r t′ a positive and t

−→
ti�r a negative transition formula. We call

t the source of both transitions and t′ the target of the positive one.
For a predicate P ∈ Pred of arity n, t ∈ T , and

−→
ti ∈ L of length n, we call

P (
−→
ti) t a positive predicate formula and ¬P (

−→
ti) t a negative predicate

formula. A (positive or negative) formula is a (positive or negative) transition
or predicate formula.

We say formulae are closed when all the terms they mention are.

A deduction rule dr ∈ D is a tuple (H, c) where H is a set of formulae and
c is a positive formula. We call c the conclusion and formulae in H premises.
We write (H, c) as H

c .

Definition 1 (Transition System Specification (TSS)). A transition system
specification is a tuple (Σ,Rel ,Pred , D) consisting of a signature Σ, disjoint
sets of relations Rel and predicates Pred on terms with fixed arities, and a set
of deduction rules D.

Note that a transition relation of arity n can be viewed as a predicate of arity
n+1. [23] also shows how to code predicate formulae as transition formulae with
dummy right-hand sides.

In the following example, we give the TSS of a higher order process algebra
called CHOCS [22] which serves as a running example throughout the rest of
the paper.

Example 1 (Calculus of Higher Order Communicating Systems (CHOCS)) The
signature of CHOCS consists of the following operators: 0, a, τ. , c! . , c?a. , + ,
| , \ c and [S] where c is taken from the set C of channel names, a from

the set A of atoms and S : C → C is a function on channel names. (In [22],
atoms are called process variables. To avoid confusion with variables in our SOS
setting, we use the term atom instead.)

Process 0 is a deadlocking process. An atom a is supposed to represent a
“hole” in the process description which can be substituted by another process
term. Other than being substituted by a term, an atom does not have any other
observable behavior. Internal action prefixing τ.p first performs a τ -step and then
behaves as p. A send prefixed process c!p.p′ sends process p along the channel c
and becomes p′ afterwards. A receive prefixed process c?a.p, receives a process
along c and substitutes it for atom a in p. Choice is denoted by + and parallel
composition by |. To make a channel name c internal to process p the restriction
expression p \ c is used. Finally, renaming expression p[S] renames all channel
names of p as specified by the the renaming function S.

The transition relations for this formalism are classes of unary substitution
t→/a , send t→c! and receive t→c? transitions and a nullary internal action →τ

transition. Substitution transition p
p′

→/a p′′ stands for “substituting a with p′ in

p results in p′′”. Send transition p
p′

→c! p
′′ means that process p emits process p′

along channel c and arrives in p′′, similarly p
p′

→c? p′′ means that p receives p′

along channel c and becomes p′′. No predicates are used in the TSS of CHOCS.
The deduction rules of the CHOCS semantics are given in Figure 1. For

brevity, we have omitted the rules dedicated to commutativity of choice and
parallel composition. Also, we assume that processes are written in such a way
that the substitution happening in the receive rule avoids capture of bound
atoms. This can be dealt with explicitly in our SOS framework (cf. [3]) but it
will only clutter our presentation and hence we dispense with it.

312 M.R. Mousavi, M.J. Gabbay, and M.A. Reniers

SOS for Higher Order Processes 313

a
z→/a z b

z→/a b
a �= b

x0
z→/a y0 x1

z→/a y1

c!x0.x1
z→/a c!y0.y1

x
z→/b y

c?a.x z→/b c?a.y
a �= b

x0
z→/a y0 x1

z→/a y1

x0 +x1
z→/a y0 + y1

x0
z→/a y0 x1

z→/a y1

x0 | x1
z→/a y0 | y1

x0
z→/a y0

x0 \ c
z→/a y0 \ c

x0
z→/a y0

x0[S] z→/a y0[S]

τ.x→τ x c!x0.x1
x0→c! x1

x1
z→/a y1

c?a.x1
z→c? y1

x0 →τ y0

x0 +x1 →τ y0

x0
z→c! y0

x0 +x1
z→c! y0

x0
z→c? y0

x0 +x1
z→c? y0

x0 →τ y0

x0 | x1 →τ y0 | x1

x0
z→c? y0 x1

z→c! y1

x0 | x1 →τ y0 | y1

x0
z→c! y0

x0 | x1
z→c! y0 | x1

x0
z→c? y0

x0 | x1
z→c? y0 | x1

x0 →τ y0

x0 \ c →τ y0 \ c

x0
z→c′! y0

x0 \ c
z→c′! y0 \ c

c �= c′
x0

z→c′? y0

x0 \ c
z→c′? y0 \ c

c �= c′

x0 →τ y0

x0[S] →τ y0[S]
x0

z→c! y0

x0[S] z→S(c)! y0[S]
x0

z→c? y0

x0[S] z→S(c)? y0[S]

Fig. 1. Deduction Rules for CHOCS

Not all TSS’s induce a unique set of transition relations and predicates.
However, in this paper and in all practical cases, it is essential to make sure
that a TSS uniquely defines the intended semantics. A criterion that helps in
this respect is stratification [12] which guarantees that a TSS uniquely defines
an intuitive model, called its stable model. Since it plays no role in the technical
development of this paper, we do not give the details about stratification and
only use it in our proofs. Henceforth and without comment, we assume all TSS’s
under study are stratified and consequently, induce a unique stable model.

Definition 2 (Proof). We say a positive closed formula φ is provable from a
set of positive formulae T and a TSS tss, denoted by (T , tss) � φ when there is
a well-founded upwardly branching tree with nodes labelled by closed formulae
such that:

– the root node is labelled by φ, and
– if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}

is the set of labels of the nodes directly above q, then there is a deduction

rule
{χi | i ∈ I}

χ
in tss (N.B. χi can be a positive or a negative formula) and

a substitution σ such that σ(χ) = ψ and for all i ∈ I, σ(χi) = ψi;

– if the label of a node q, denoted by p
L
� , is a negative formula then there

exists no p′ such that p
L→ p′ ∈ T (or similarly, if it is of the form ¬P (L)p

then P (L)p /∈ T).

Definition 3 (Stable Model). A stable model defined by tss is a set of positive
formulae T such that φ ∈ T if and only if (T , tss) � φ, for all closed positive
formulae φ.

3.2 Bisimilarity

Strong bisimilarity is a natural behavioral equivalence. It is generally too fine-
grained (it does not equate enough terms) but it can serve as a basis for other
weaker equivalences (e.g., those ignoring internal actions [11]). Congruence for-
mats for weak equivalences (e.g. [4]) are often based on those for strong bisimi-
larity. Hence, we start with studying strong bisimilarity as an important notion
of behavioral equivalence.

We may write pRq for (p, q) ∈ R, or even −→piR
−→qi to say −→pi and −→qi have the

same length and piRqi, for each i.

Definition 4 (Strong Bisimulation and Bisimilarity). Given a TSS (Σ, Rel ,
Pred , D) which induces a unique set of transition relations and predicates, a
relation R ⊆ C ×C is a strong simulation relation if and only if ∀p,q∈C pRq ⇒

1. ∀r∈Rel,L∈L,p′∈C p
L→r p′ ⇒ ∃q′∈C q

L→r q′ ∧ p′Rq′;
2. ∀P∈Pred,L∈L P (L)p ⇒ P (L)q.

A strong bisimulation relation is a symmetric strong simulation relation. Closed
terms p and q are strongly bisimilar, denoted by p ↔s q, if and only if there
exists a strong bisimulation relation R such that pRq.

We treat this notion in Section 4 and there, we formulate a congruence meta-
theorem for it in Theorem 1.

On one hand, our SOS framework allows for processes as labels. On the other
hand processes are usually considered important up to their behavior (and not
up to their syntax). Hence, it seems more natural to use a different notion of
bisimilarity, rather than the strong one, which not only relates the behavior of
source and target processes but also the behavior of label processes. This way,
we come to the notion of higher order bisimilarity defined below.

Definition 5 (Higher Order Bisimulation and Bisimilarity [2]). Given a TSS
(Σ,Rel , Pred , D) which induces a unique set of transition relations and predi-
cates, a relation R ⊆ C × C is a higher order simulation relation if and only
if ∀p,q∈C pRq ⇒

1. ∀r∈Rel,L∈L,p′∈C p
L→r p′ ⇒ ∃L′∈L,q′∈C q

L′
→r q′ ∧ LRL′ ∧ p′Rq′;

2. ∀P∈Pred,L∈L P (L)p ⇒ ∃L′∈L P (L′)q ∧ LRL′.

A higher order bisimulation relation is a symmetric higher order simulation re-
lation. Closed terms p and q are higher order bisimilar, denoted by p ↔h q, if
and only if there exists a higher order bisimulation relation R such that pRq.

314 M.R. Mousavi, M.J. Gabbay, and M.A. Reniers

SOS for Higher Order Processes 315

We treat this notion in Section 5 and the corresponding congruence results are
given in Theorem 3.

Note that higher order bisimilarity is sometimes required to be closed under
substitution of atoms [6,22]. Here, we do not add this requirement for the sake of
generality but in the coming examples, we show that this additional constraint
can easily be coded in the semantic model.

It is also worth noting that higher order bisimilarity, though more natural
in our setting, does not make strong bisimilarity obsolete. In some cases, the
labels have a syntactic structure and use terms from the language but do not
show any behavior, or alternatively, scrutinizing their behavior is a very complex
task. In other words, not always terms on the labels are processes or treated as
such. In cases, where labels are indeed terms but do not show any observable
behavior, all labels are considered equal from a bisimilarity viewpoint and hence
higher order bisimilarity renders very weak and impractical. Thus, presenting a
meta-theorem for congruence of bisimilarity is interesting even in the presence
of terms as labels.

As one might expect, higher order bisimilarity is strictly coarser than strong
bisimilarity, i.e., it identifies more processes. Examples of this are shown in the
remainder. In Section 5, we also give some sufficient criteria for the two notions
to coincide.

3.3 Congruence for Bisimilarity

Next, we define the concept of congruence which is of central importance to our
topic.

Definition 6 (Congruence). For a TSS with signature Σ, an equivalence relation
R ⊆ T (Σ) × T (Σ) is a congruence when for all function symbols f ∈ Σ and
for all terms pi, qi ∈ T (Σ) (0 ≤ i < ar(f)), if −→piR

−→qi then f(−→pi)Rf(−→qi).

None of the notions of bisimilarity are necessarily a congruence. In the rest
of this paper, we endeavor to find sufficient conditions that guarantee them to
be a congruence. After all, it turns out that the sufficient conditions for the two
notions are somewhat different. A natural question is whether this difference
is genuine or not. In the following two examples we show that the notions of
congruence for these two equivalences are indeed unrelated, i.e., for neither of
the two equivalences, congruence of one implies congruence for the other.

Example 2 .
f(a) a→r a a

a→r a b
b→r b

Consider the above set of deduction rules defined on the signature a, b and
f(). In the above TSS, it holds that a ↔h b but not f(a) ↔h f(b) since f(a)
can make an r-transition with label a but f(b) cannot make any transition.
Higher order bisimilarity is not a congruence for the above TSS. As for strong
bisimilarity, it does not hold that a ↔s b in the first place and hence, strong
bisimilarity is trivially a congruence.

Example 3 .
f(a) a→r a f(b) b→r a a

a→r a b
a→r b

Consider the above set of deduction rules defined on the same signature as
of Example 2. This time, higher order bisimilarity is a congruence since a ↔h b
and f(a) ↔h f(b). However, strong bisimilarity is not a congruence since a ↔s b
but not f(a) ↔s f(b).

4 Congruence for Strong Bisimilarity

In this section, we propose a syntactic restriction on TSSs, in the form of a
format, that guarantees strong bisimilarity is a congruence. To begin with, we
define the auxiliary notion of volatile operators.

4.1 Volatile Operators

Due to the possible interaction between terms and labels, for some operators,
it is essential to make sure that transitions with these operators (as labels) are
always possible under the change of their arguments by bisimilar ones. First, we
give a simple example motivating this concept and then we present the formal
definition.

Example 4 .
a

g(x)→r y

f(x) a→r′ y a
g(a)→r a b

g(a)→r a
Consider the above TSS with a and b as constants and f and g as unary

function symbols. It holds that a ↔s b but it does not hold that f(a) ↔s f(b)
and hence strong bisimilarity is not a congruence.

In this case, we call g volatile for r transitions because in the premise of the
left-most rule, g appears as a label with an argument that comes from the source
of the conclusion of this rule and as such can be replaced by different terms. In
order for strong bisimilarity to be a congruence, we require that r-transitions
with g in the label should be indifferent to replacing arguments of g by bisimilar
ones. However, this is clearly not the case for the middle and rightmost rules
since for both an r transition with g(a) is allowed while the same transitions
with g(b) are prohibited, thus causing the anomaly.

Definition 7 (Volatile Operators). Given a TSS (Σ,Rel ,Pred , D) an operator
f ∈ Σ is called volatile for r ∈ Rel (similarly for P ∈ Pred) when there exists
a rule d ∈ D of the following form:

{Pi(Li)ti or ti
Li→ri t′i | i ∈ I} {¬Pj(Lj)tj or tj

Lj
�rj | j ∈ J}

P ′(L)t or t
L→r′ t′

and f(
−→
tk) is a subterm of a component of Lm for some m ∈ I ∪ J such that

r = rm (P = Pm) and vars(
−→
tk) ∩ vars(t)
= ∅ or ∃i∈Ivars(

−→
tk) ∩ vars(t′i)
= ∅.

It trivially follows from the above definition that no constant can be volatile.

316 M.R. Mousavi, M.J. Gabbay, and M.A. Reniers

SOS for Higher Order Processes 317

4.2 Promoted PANTH Format

Next, we formulate our congruence format for strong bisimilarity.

Definition 8 (Promoted PANTH Format). A deduction rule is in the pro-
moted PANTH format when it is of the following form

{Pi(Li)ti or ti
Li→ri yi | i ∈ I} {¬Pj(Lj)tj or tj

Lj
�rj | j ∈ J}

P (L)f(−→xi) or f(−→xi)
L→r t′

and first, all the variables xi and yj (0 ≤ i < ar(f) and j ∈ I) and the variables
in L are pairwise distinct, second, if a component of Lk (k ∈ I ∪ J) is a variable
(i.e., does not have any function symbol) then it is not among xi’s and yj ’s and
third, for all components t of L:

1. if t contains a volatile g ∈ Σ for r (for P) then t is of the form g(−→zl) where
all zl’s are distinct variables and for all k ∈ I ∪ J , all components of Lk

containing a variable among −→zl are of the form g′(
−→
tm) where g′ is volatile for

rk (for Pk),
2. if there is a volatile operator for r (for P) in the signature and if t is a

variable z then for all k ∈ I∪J , all components of Lk containing z are either
z itself or are of the form g′(

−→
tn) where g′ is volatile for rk (for Pk).

A TSS is in the promoted PANTH format when all its deduction rules are.

Observe that if there is no volatile operator in the signature then none of the
two checks on the labels are needed. Volatile operators are very rare in process-
algebraic formalisms as it can be observed in the coming examples. Hence, most
of the times, the above format can be simplified and checks on the labels can
be saved. Surprisingly, the promoted tyft/tyxt format is formulated in such a
way that all operators can be considered volatile and thus, it turns out to be
more restrictive and less expressive than ours. Examples of these phenomena are
pointed out next.

Example 5 (Congruence of Strong Bisimilarity for CHOCS). Consider the TSS
of CHOCS given in Example 1. No operator in this language is not volatile. All
the deduction rules of this TSS are in the promoted PANTH format but the one
concerning the send operator c! . . This rule violates the format by exploiting
variable x0 in both the source and the label of the conclusion. All the other
rules, having a premise are not in the promoted tyft/tyxt format since they have
variables as labels of premises. Note that this restriction of the promoted tyft/tyxt
format can be seen as a disadvantage since using this format, one cannot deal
with ordinary process algebraic operators (e.g., choice and parallel composition)
by replacing variables for constant labels. This restriction is not present in the
promoted PANTH format.

Hitherto, one can imagine two scenarios. Either our format is too weak to
capture the congruence of strong bisimilarity for CHOCS (since syntactic for-
mats only give sufficient and not necessary conditions) or strong bisimilarity for

CHOCS is not a congruence in the first place. Fortunately, the latter is the case
and this can be shown by a very simple example.

Consider two processes 0 and 0+0. It clearly holds that 0 ↔s 0+0 and 0 ↔s 0
but it does not hold that c!0.0 is bisimilar to c!(0 + 0).0 as the former can only
perform a 0→c! transition but the latter can only make a 0+0→c! a transition and
0 and 0 + 0 are not (syntactically) the same terms.

However, one can change the language a bit so that strong bisimilarity be-
comes a congruence. One such approach is presented in [3] and with a proof
of more than a page, it is shown that strong bisimilarity in the new language
coincides with a notion of higher order bisimilarity [22] in the original semantics
and hence, it is concluded that this notion of higher order bisimilarity for the
original language is a congruence. In Section 5, we propose a congruence format
for higher order bisimilarity and using that we give a direct proof for congruence
of higher order bisimilarity. So, we do not take the approach of [3] in this section.

Alternatively, in order to make the strong bisimilarity a congruence, we pro-
pose to change the send operator as follows. First, we change the syntax of a
send operator to be a class of unary send operators c!p. for given closed terms
p ∈ P . Then, we change the semantics of the send operator and replace it with
this rule:

c!p.x0
p→c! x0

.

Note that in the above rule the p in the source of the conclusion is part
of the function symbol while the p in the label is a term. To check that this
rule fits in the promoted PANTH format one has to check the following two
conditions: first, the set of variables appearing in p and c!p.x0 should be disjoint
which holds trivially since the former p is a closed term and second, either p
contains no volatile operator or it is of the form g(−→x) for a volatile g. Since the
language contains no volatile operator the second obligation is also discharged
and hence, we can conclude that strong bisimilarity is a congruence for this
slightly modified language. Note that one cannot get a similar result by using
the promoted tyft/tyxt format for it only allows for labels of the form x or g(−→x)
in the conclusion.

Next, by a simple and abstract example, we show that our format is strictly
more expressive than the promoted tyft/tyxt format of [3].

Example 6 .
x

z→r y

f(x) z→r y a
f(a)→r b b

f(a)→r b
Consider a TSS defined by signature {a, b, f()}, a unary transition relation

→r , no predicate and the deduction rules given above. None of the three deduc-
tion rules are in the promoted tyft/tyxt format while they are all in the promoted
PANTH format and one can check that strong bisimilarity is indeed a congru-
ence. Our claim is that there exists no TSS in the promoted tyft/tyxt format that
induces the same transition relation as the one induced by the above TSS.

The proof of our claim is quite simple and follows from the proof of The-
orem 2.1 in [3]. There, it is shown that, for a TSS in the promoted tyft/tyxt
format, for all terms f(−→pi) and g(−→qj) if there exists p′ ∈ C and

−→
p′i ,
−→
q′j ∈ L such

318 M.R. Mousavi, M.J. Gabbay, and M.A. Reniers

SOS for Higher Order Processes 319

that f(−→pi)
g(−→qj)→r p′, −→pi ↔s

−→
p′i and −→qj ↔s

−→
q′j then there exists a p′′ ∈ C such that

f(
−→
p′i)

g(
−→
q′

j)
→r p′′. Getting back to our example, suppose that there exists a TSS in

the promoted tyft/tyxt format that induces the same transition relation as the

one induced by the above TSS. Then, since a ↔s b and f(a)
f(a)→r b, it should

hold that f(b)
f(b)→r p′′ for some p′′ ∈ C such that b ↔s p′′. But note that in the

transition relation induced by the above TSS, no transition with label f(b) is
provable. Q.E.D.

4.3 Characteristic Theorem

Common to [3], we impose an extra constraint on the promoted PANTH format
to prove congruence, namely the well-foundedness of the TSS under considera-
tion.

Definition 9 (P-Well-Foundedness). For a deduction rule, the p-variable or-
dering ≤p is an ordering among variables. We wrie x ≤p y, for two variables x
and y, when x appears in the source or the label of a premise of the deduction rule
and y in the target of the same premise. A TSS is called p-well-founded when
for all deduction rules in TSS, there is no infinite backward chain of variables
with respect to ≤p.

Note that in [7] it has been shown that the well-foundedness assumption, al-
though being very convenient for proofs, is not essential for the PANTH format.
Indeed, for each non-well-founded TSS in the PANTH format, one can construct
a well-founded one in a subset of this format (called NTree rules format) that
induces the same transition relations and predicates. We leave it open whether
the results of [7] carries over to our settings or not.

Theorem 1 (Congruence for Promoted PANTH). For a p-well-founded TSS in
the promoted PANTH format, strong bisimilarity is a congruence.

5 Congruence for Higher Order Bisimilarity

5.1 Persistency

In this section, we seek sufficient syntactic criteria for the higher order bisimi-
larity induced by a TSS to be a congruence.

We begin with an auxiliary definition that has the same spirit as that for
volatile operators. It is supposed to capture that the labels of a transition can
be replaced by bisimilar ones.

Definition 10. Consider a TSS (Σ,Rel , Pred , D) and a set Ps of tuples (U, L)
where U ∈ Rel ∪ Pred and L ∈ L. We call Ps a persistent set when for all

(U, L) ∈ Ps and all deduction rules d ∈ D if d has U in its conclusion then it is
of the following form:

{P (Li)ti or ti
Li→ri yi | i ∈ I} {¬P (Lj)tj or tj

Lj
�rj | j ∈ J}

U(L′)f(−→x) or f(−→x) L′
→U t′

where L = σ(L′) for some substitution σ and

1. all xi’s, yj’s (0 ≤ i < ar(f) and j ∈ I) and variables appearing in L′ are
pairwise distinct;

2. for all k ∈ I ∪ J , (rk, σ(Lk)) ∈ Ps (or (Pk, σ(Lk)) ∈ Ps).

If a set Ps is persistent and (U, L) ∈ Ps then we say that U-transitions (pred-
icates) are persistent for L labels. A transition relation (predicate) is per-
sistent if it is persistent for a label of the form −→zi where zi are distinct variables.

The following theorem gives an idea about the intuition behind persistency.

Theorem 2. If for a TSS all its transition relations and predicates are persistent
then:

1. higher order bisimilarity is a congruence;
2. higher order and strong bisimilarity coincide.

Example 7 (Persistency for CHOCS). Substitution, receive and τ -transitions
are all persistent in CHOCS, i.e., substitution and receive are persistent for a
variable.

5.2 Higher Order PANTH Format

Our criteria are formulated as a syntactic format which we call higher order
PANTH.

Definition 11 (Higher Order PANTH Format). A deduction rule is in the
higher order PANTH format when it is of the following form

{P (Li)ti or ti
Li→ri yi | i ∈ I} {¬P (Lj)tj or tj

Lj
�rj | j ∈ J}

P (L)f(−→xi) or f(−→xi)
L→r t′

where variables xi’s and yj ’s (0 ≤ i < ar(f) and j ∈ I) are all pairwise distinct
and for all k ∈ I ∪ J

1. rk-transitions (predicates) are persistent for Lk labels (Definition 10);
2. or alternatively, k ∈ I, Lk is a list of distinct variables −−→zkm that are dis-

tinct from labels of other non-persistent transitions and predicates and are
different from xi’s and yj ’s.

320 M.R. Mousavi, M.J. Gabbay, and M.A. Reniers

SOS for Higher Order Processes 321

A TSS is in the higher order PANTH format when all its rules are.

Next, we define the notion of well-foundedness for TSS’s in the higher order
PANTH format.

Definition 12 (H-Well-Foundedness). An h-variable ordering ≤h with re-
spect to a deduction rule is an ordering on variables. For two variables x and y,
x ≤h y if x appears in the source of a premise of the rule and y appears in its
label or target. A TSS is h-well-founded when for all deduction rules in TSS,
there is no infinite backward chain of variables with respect to ≤h.

We believe that well-foundedness for this format is a convenience for our
proofs and is not a necessary ingredient for congruence but this remains to be
formally checked.

Theorem 3 (Congruence for Higher Order PANTH). For an h-well-founded
TSS in the higher order PANTH format, higher order bisimilarity is a congru-
ence.

Example 8 (Congruence of Higher Order Bisimilarity for CHOCS). The se-
mantics of CHOCS as given in Example 1 conforms to our format. To verify this
claim we have to check that in the conclusion of each deduction rule mentions
only one function symbol, the targets of premises mention distinct variables and
the label of premises either mention distinct variables or are persistent. The first
two checks are straightforward. For the third, the only problem arises from the
rules having two premises mentioning the same label z. Two of such rules ap-
pear in the definition of substitution transitions which is shown to be persistent,
so they conform to our format. The only other rule having the same condition
is the one defining communication for parallel composition. But in that rule,
the receive transition is persistent and hence, the only non-persistent premise
(the send transition) trivially satisfies the second criterion of Definition 11. Note
that the notion of higher order bisimilarity in [22] also requires that bisimilarity
should be closed under substitution of atoms. Our notion does not require this
in general, but in the case of CHOCS semantics, the addition of substitution,
makes sure that bisimilar terms always have the same “substitution behavior”.
Hence, the two notions trivially coincide.

6 Conclusion

In this paper, we presented two syntactic formats that guarantee congruence for
two notions of strong and higher order bisimilarity. We applied these formats to
the CHOCS process algebra [22].

Due to the abundant presence of notions of names and binders in the for-
malisms with higher order behavior, the addition of these notions to our formats
is a very natural and useful extension. We are currently considering this exten-
sion and we try to exploit the Gabbay-Pitts Nominal Techniques [9,16] for this
purpose.

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
Handbook of Process Algebra, Chapter 3, pages 197–292. Elsevier Science, 2001.

2. E. Astesiano, A. Giovini, and G. Reggio, Generalized bisimulation in relational
specifications. In Proc. of STACS’88, volume 294 of LNCS, pages 207–226,
Springer, 1988.

3. K. L. Bernstein. A congruence theorem for structured operational semantics of
higher-order languages. In Proc. of LICS’98, pages 153–164. IEEE CS, 1998.

4. B. Bloom. Structural operational semantics for weak bisimulations. TCS, 146:25–
68, 1995.

5. R. Bol and J. F. Groote. The meaning of negative premises in transition system
specifications. JACM, 43(5):863–914, 1996.

6. G. Boudol. Towards a lambda-calculus for concurrent and communicating systems.
In Proc. of TAPSOFT’89, volume 351 of LNCS, pages 149–161, Springer, 1989.

7. W. J. Fokkink and R. J. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules.
I&C, 126(1):1–10, 1996.

8. W. J. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. I&C, 146(1):24–54, 1998.

9. M. J. Gabbay and J. Cheney. A Sequent Calculus for Nominal Logic, In Proc. of
LICS’04, pages 139–148, IEEE CS, 2004.

10. V. Galpin. A format for semantic equivalence comparison, TCS, 309(1-3):65–109,
2003.

11. R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. JACM, 43(3):555–600, 1996.

12. J. F. Groote. Transition system specifications with negative premises. TCS,
118(2):263–299, 1993.

13. J. F. Groote and F. W. Vaandrager. Structured operational semantics and bisim-
ulation as a congruence. I&C, 100(2):202–260, 1992.

14. D. J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. I&C, 124:103–112, 1996.

15. C. A. Middelburg. Variable binding operators in transition system specifications.
JLAP, 47(1):15–45, 2001.

16. A. M. Pitts. Nominal logic, a first order theory of names and binding. I&C,
186(2):165–193, 2003.

17. G. D. Plotkin. A structural approach to operational semantics. JLAP, 60:17–139,
2004.

18. D. Sands. From SOS rules to proof principles: An operational metatheory for
functional languages. Proc. of POPL’97, pages 428-441, ACM Press, 1997.

19. D. Sangiorgi. The Lazy lambda calculus in a concurrency scenario. I&C,
111(1):120–153, 1994.

20. D. Sangiorgi. Bisimulation for Higher-Order Process Calculi. I&C, 131(2):141–178,
1996.

21. B. Thomsen. Plain CHOCS a second generation calculus for higher order processes.
Acta Informatica, 30(1):1–59, 1993.

22. B. Thomsen. A theory of higher order communicating systems. I&C, 116:38–57,
1995.

23. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

322 M.R. Mousavi, M.J. Gabbay, and M.A. Reniers

The Individual and Collective Token

Interpretations of Petri Nets

Robert Jan van Glabbeek

National ICT Australia
and School of Computer Science and Engineering,

The University of New South Wales
rvg@cs.stanford.edu

Abstract. Starting from the opinion that the standard firing rule of
Petri nets embodies the collective token interpretation of nets rather
than their individual token interpretation, I propose a new firing rule
that embodies the latter. Also variants of both firing rules for the self-
sequential interpretation of nets are studied. Using these rules, I ex-
press the four computational interpretations of Petri nets by semantic
mappings from nets to labelled step transition systems, the latter be-
ing event-oriented representations of higher dimensional automata. This
paper totally orders the expressive power of the four interpretations,
measured in terms of the classes of labelled step transition systems up
to isomorphism of reachable parts that can be denoted by nets under
each of the interpretations. Furthermore, I extend the unfolding con-
struction of place/transition nets into occurrence net to nets that may
have transitions without incoming arcs.

1 Introduction

In the literature on Petri nets 2 × 2 = 4 computational interpretations of nets
can be distinguished, that in Van Glabbeek & Plotkin [6] were called the
individual token and the collective token interpretation, and, orthogonally, the
self-sequential and the self-concurrent interpretation. The differences show up
only when dealing with non-safe place/transition nets and, as far as the individ-
ual/collective token dichotomy concerns, only when precisely keeping track of
causal dependencies between action occurrences.

The individual token interpretation has been formalised by the notion of a
process, described in Goltz & Reisig [7]. A causality respecting bisimulation
relation based on this approach was proposed by Best, Devillers, Kiehn &
Pomello [3] under the name fully concurrent bisimulation. Engelfriet [4]
and Meseguer et al. [8] define an unfolding of Petri nets into occurrence nets
that preserves this interpretation. Best & Devillers [2] adapted the process
concept of [7] to fit the collective token philosophy. Equivalence relations on
Petri nets based on the collective token interpretation were proposed in [6].

In older papers on Petri nets a multiset of transitions was allowed to fire
only if it was a set, i.e., no transition could fire multiple times concurrent with

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 323–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 R.J. van Glabbeek

itself. The argument for this restriction was that a transition can be thought of
as a subsystem like a printer, that can only print one file at a time. When there
are enough tokens in its preplaces (representing print-requests and other pre-
conditions for printing) to handle two files, these have to be printed one by one.
Goltz & Reisig [7] exemplified that not all subsystems suffer from such limita-
tions; when one does, this is a matter of scarcity of recourses that can be modelled
by an extra place. Since [7] multisets are generally allowed to fire. Nevertheless,
for the sake of completeness, I take both interpretations into account.

The present work can be understood as a way of formally pinpointing the
differences between these computational interpretations. This is done by for-
mulating four different firing rules, and by giving four translations from Petri
nets into labelled step transition systems, one for each interpretation. Labelled
step transition systems arose from discussions with Vaughan Pratt in 1991 as
an event-oriented representation of higher dimensional automata [10], an angle
that will not be pursued here. Step transition systems were used to describe the
operational behaviour of Petri nets in Mukund [9]. In the form proposed here,
but without the labelling, they appear in Badouel [1].

I compare the expressive power of classes of Petri nets under each of the four
interpretations in terms of the labelled step transition systems they can denote
up to isomorphism of reachable parts, and find that the class of all Petri nets
under either one of the individual token interpretations is equally expressive as a
subclass of nets on which all four interpretations coincide. Likewise, the class of
all Petri nets under the self-concurrent collective token interpretation is equally
expressive as a subclass of nets on which both collective token interpretations
coincide. This gives rise to the following hierarchy:

self-sequential individual token interpretation
��

self-concurrent individual token interpretation

�
self-sequential collective token interpretation

�
self-concurrent collective token interpretation

Fig. 1. Relative expressiveness of four computational interpretations of Petri nets

The expressiveness results above were first claimed by me in [5], using a different
model of higher dimensional automata for interpreting the dynamic behaviour
of Petri nets, namely cubical sets instead of labelled step transition systems.
However, the individual token interpretations of [5] apply to standard nets only,
nets in which each transition has at least one incoming arc, and a proof is given
for the expressiveness result relating the two self-concurrent interpretations only.

As a spin-off, this study provides a particularly simple definition of the unfold-
ing of an arbitrary place/transition net into an occurrence net. My construction
extends the constructions of [11], [4] and [8] by including non-standard nets.

The Individual and Collective Token Interpretations of Petri Nets 325

2 Petri Nets and the Firing Rule

Definition 1. A (labelled, marked) Petri net is a tuple (S,T , F, I, l) with
– S and T two disjoint sets of places (Stellen in German) and transitions,
– F : (S × T ∪ T × S) → IN, the flow relation,
– I : S → IN, the initial marking,
– and l : T → A, for A a set of actions, the labelling function.

Petri nets are pictured by drawing the places as circles and the transitions as
boxes, containing their label. For x,y∈S∪T there are F (s, t) arcs from x to y.
When a Petri net represents a concurrent system, a global state of this system is
given as a marking, a function M : S → IN. Such a state is depicted by placing
M(s) dots (tokens) in each place s. The initial state is given by the marking I.
In order to describe the behaviour of a net, one defines the step transition relation
between markings.

Definition 2. A multiset over a set S is a function M : S → IN, i.e. M ∈ INS .
For multisets M and N over S write M ≤ N if M(s) ≤ N(s) for all s ∈ S.
M + N ∈ INS is the multiset with (M + N)(s) = M(s) + N(s), and M −N is
the function given by (M −N)(s) = M(s)−N(s)—it is not always a multiset.
The function 0 : S → IN given by 0(s) = 0 for all s ∈ S is the empty multiset.
A multiset M ∈ INS with M(s) ≤ 1 for all s ∈ S is identified with the set
{s ∈ S |M(s) = 1}. A multiset M over S is finite if {s ∈ S |M(s) > 0} is finite.
Let M(S) denote the collection of finite multisets over S.

Definition 3. For a finite multiset U : T → IN of transitions in a Petri net, let
•U, U• : S → IN be the multisets of input and output places of U , given by

•U(s) =
∑
t∈T

F (s, t) · U(t) and U•(s) =
∑
t∈T

U(t) · F (t, s) for all s ∈ S.

U is enabled under a marking M if •U ≤ M . In that case U can fire under M ,
yielding the marking M ′ = M − •U + U•, written M

U−→ M ′.

If a multiset U of transitions fires, for every transition t in U and every arc
from a place s to t, a token moves along that arc from s to t. These tokens are
consumed by the firing, but also new tokens are created, namely one for every
outgoing arc of t. These end up in the places at the end of those arcs. If t occurs
several times in U , all this happens several times (in parallel) as well. The firing
of U is only possible if there are sufficiently many tokens in the preplaces of U
(the places where the incoming arcs come from).

The components of a net N are called SN, TN, FN, IN and lN, a convention
that also applies to other structures given as tuples. When clear from context,
the index N is omitted.

Two nets P and Q are isomorphic, written P ∼= Q, if they differ only in the
names of their places and transitions, i.e. if there are bijections β : SP → SQ

and η : TP → TQ such that, for s ∈ SP and t ∈ TP: IQ(β(s)) = IP(s),
FQ(β(s), η(t)) = FP(s, t), FQ(η(t),β(s)) = FP(t, s) and lQ(η(t)) = lP(t).

326 R.J. van Glabbeek

3 The Individual and Collective Token Interpretations

In the individual token interpretation of Petri nets one distinguishes different
tokens residing in the same place, keeping track of where they come from. If a
transition fires by using a token that has been produced by another transition,
there is a causal link between the two. Consequently, the causal relations between
the transitions in a run of a net can always be described by means of a partial
order. In the collective token interpretation, on the other hand, tokens cannot be
distinguished: if there are two tokens in a place, all that is present there is the
number 2. This gives rise to more subtle causal relationships between transitions
in a run of a net, which cannot be expressed by partial orders.

The following example illustrates the difference between the two interpreta-
tions.

A: • a • b •

In this net, the transitions labelled a and b can fire once each. After a has
fired, there are two tokens in the middle place. According to the individual
token philosophy, it makes a difference which of these tokens is used in firing
b. If the token that was there already is used (which must certainly be the
case if b happens before the token from a arrives), the transitions a and b are
causally independent. If the token that was produced by a is used, b is causally
dependent on a. Thus, the net A above has two maximal executions, that can be
characterised by the partial orders a

b and a�b. According to the collective token
philosophy on the other hand, all that is present in the middle place after the
occurrence of a is the number 2. The preconditions for b to fire do not change,
and consequently b is always causally independent of a.

The following illustrates that both philosophies yield incomparable notions
of equivalence.

B: • a • b •

In the collective token philosophy the precondition of b expressed by the place
in the middle is redundant, and hence A must be equivalent to B. However,
A and B are not fully concurrent bisimulation equivalent (a causality respecting
equivalence based on the individual token approach [3]), as B lacks the execution
a�b. On the other hand, A is fully concurrent bisimulation equivalent with C
below.

C: • a b •

b•

In fact, C is the occurrence net obtained from A by the unfolding of [4,8]. In
the individual token philosophy, both A and C have the executions a�band a

b.
However, in the collective token philosophy A does not have a run a�band can
therefore not be equivalent to C in any causality preserving way.

The Individual and Collective Token Interpretations of Petri Nets 327

•

HCT(D)

◦

a

◦
c

◦
b

b c ◦

b
a b

c

◦

b

◦

a
c

a c

a
c

D

•

a

•

b

•

•

HIT(D)

◦

a

◦

ca

◦
b

b ca ◦

b
a b

ca

◦

b

◦

a cb

◦

cb

a cb

a

The Petri net D above (ignore HCT(D) and HIT(D) for now) illustrates how
the collective token interpretation gives rise to causal relationships that cannot
be expressed by partial orders. Under the collective token interpretation this
net features disjunctive causality: c is causally dependent on a ∨ b. In contrast,
under the individual token interpretation D admits two executions, one in which
c depends only on a, and one in which c depends only on b.

Antoni Mazurkiewicz once argued for the collective reading of this net by
letting a and b be £1 contributions of two school children to buy a present for
their teacher. The act of buying the present, which only costs £1, is represented
by c. Now the individual token interpretation suggests that the present is bought
from the contribution from either one child or the other, whereas the collective
token interpretation admits only one complete execution, in which the buying
of the present is caused by the disjunction of the two contributions. The latter
would be a fairer description of the intended state of affairs.

4 A Firing Rule for the Individual Token Interpretation

In my opinion, the standard definition of a marking and the corresponding firing
rule (Def. 3) embody the collective token interpretation rather than the individ-
ual one. Here I will redefine these concepts in a way that embodies the individual
token interpretation. To this end I define the notion of a token as it could occur
in a Petri net, in such a way that all possible token occurrences have a differ-
ent name. A token will be a triple (t′, k, s), with s the place where the token
occurs, and t′ the transition firing that brought it there. For tokens that are in
s initially, I take t′ = ∗. When the number of tokens that t′ deposits in s in n,
I distinguish these tokens by giving them ordinal numbers k = 0, 1, 2, . . . , n−1.
In order to define tokens as announced above I need to define transition firings
simultaneously. These will be pairs (X, t) with t the transition that fires, and X
the set of tokens that is consumed in the firing. Transitions t that can fire with-
out consuming tokens can fire multiple times on the same (empty) input; these
firings will be called (k, t) with k ∈ IN instead of (∅, t). I define the functions β
from tokens to the places where they occur by β(x, k, s) = s, and η from tran-
sition firings to the transition that fires by η(x, t) = t. The function β extends
to a function from sets of tokens X to multisets of places β(X) : S → IN, by
β(X)(s) = |{s′ ∈ X | β(s′) = s}|.

328 R.J. van Glabbeek

Definition 4. Given a Petri net N = (S,T , F, I, l), the sets of tokens S• and
transition firings T• of N are recursively defined by

– (∗, k, s) ∈ S• for s ∈ S and k < I(s);
– (t′, k, s) ∈ S• for s ∈ S, t′ ∈ T• and k < F (η(t′), s);
– (X, t) ∈ T• for t ∈ T and X ⊆ S• such that β(X) = •t
= 0;
– (k, t) ∈ T• for k ∈ IN and t ∈ T such that •t = 0.

The labelling function l• : T• → A on transition firings is given by l•(t) = l(η(t)).
An individual marking of N is a multiset M : S• → IN of tokens. The initial
individual marking I• : S• → IN is given by I•(∗, k, s) = 1 and I•(t′, k, s) = 0.

Standard Nets. A standard net is a net N in which each transition has at least
one incoming arc: ∀t ∈ T. •t > 0. A net is standard iff its set of spontaneous
transition firings T◦ = {(k, t) ∈ T• | k ∈ IN} is empty. I define the firing rule
embodying the individual token interpretation for standard nets first.

Definition 5. For a finite set U ⊆ T• of transition firings in a standard net, let

•U =
∑

(X,t)∈U

X and U• = {(t′, k, s) | t′ ∈ U ∧ k < F (η(t′), s)}

be the multiset of input tokens and the set of output tokens of U . The set U is
enabled under an individual marking M ∈ INS• if •U ≤ M . In that case U can
fire under M , yielding M ′ = M − •U + U• ∈ INS• , written M

U−→• M ′.
A chain I•

U1−→• M1
U2−→• · · ·

Un−→• Mn is called a firing sequence. An individual
marking M ∈ INS• is reachable if there is such a sequence ending in M = Mn.

The following proposition says that I succeeded in giving all possible token oc-
currences a different name.

Proposition 1. In a standard net, any reachable multiset of tokens is a set.

Proof. I show that in a firing sequence I•
U1−→• M1

U2−→• · · ·
Un−→• Mn the

multiset I• +
∑n

i=1 U•i , which includes Mn, is a set. Applying induction on n,
the base case holds by the definition of I•. For the induction step, if a token
occurs twice in I• +

∑n
i=1 U•i , the definitions of I• and U• imply that it has the

form (t′, k, s), hence the transition firing t′ occurs twice in
∑n

i=1 Ui. As t′ is not
spontaneous, it has the form (X, t) with X a nonempty set of tokens. By the
definition of •U , a token in X occurs twice in I• +

∑n−1
i=1 U•i . ,-

Prop. 1 also shows that there is no point in upgrading Def. 5 to multisets U .

Non-Standard Nets. For arbitrary nets, the definition of U•, for U a finite set
of transitions, remains the same, but in the definition of •U one needs to decide
on the input conditions of spontaneous transition firings. The simplest solution
would be to treat k as ∅ in the definition of •U or, equivalently, to let the sum
range over the non-spontaneous transition firings in U only. However, this would

The Individual and Collective Token Interpretations of Petri Nets 329

lead to a failure of Prop. 1 for non-standard nets, as a spontaneous transition
firing (k, t) could occur multiple times in a firing sequence, leaving multiple
copies of its output tokens in the resulting reachable marking. A solution for
this problem would be to upgrade the definition of a firing sequence with the
requirement that each spontaneous transition firing may only occur once in it.
This condition would be motivated by the idea that every time a transition t
with •t = 0 fires, its firing gets a different identifier.

Here I aim at the same result by using a notion of state that consists of an
individual marking, together with the set names of spontaneous transition firings
that may still fire. I could just as well have taken the set of spontaneous transition
firings that have already occurred, this set being equally rich in information
content, but the choice above allows me to combine both components of a state
into one set of resources that need to be available for transition firings to occur.

Definition 6. Let N be a Petri net. Let S+
• = S•∪{tk | (k, t)∈T◦} be the set of

resources of N. An individual state M ∈ INS+
• of N is the union of an individual

marking and a multiset of names tk of spontaneous transition firings (k, t). The
initial state I+

• = {(∗, k, s) | k < I(s)} ∪ {tk | (k, t) ∈ T◦} is the union of I•
and the set of names of all spontaneous transition firings. The multiset of input
resources of a finite set of transition firings U ⊆ T• is given by

•U =
∑

(X,t)∈U−T◦

X + {tk | (k, t) ∈ U ∩ T◦}.

All other elements of Def. 5 apply unchanged, but using individual states instead
of individual markings, and I+

• instead of I•.

Corollary 1. In any Petri net, all reachable individual states are sets.

5 The Individual and Collective Firing Rules Agree

Having defined a new firing rule that caters to the individual token interpreta-
tion, I now show how it is consistent with the standard firing rule of Definition 3.
I use variables M• to range over individual states, and U• to range over sets of
transition firings. The function η from transition firings to the transition that
fires extends to a function from sets of transition firings U• to multisets of tran-
sitions η(U•) : T → IN, by η(U•)(t) = |{t′ ∈ U• | η(t′) = t}|. Moreover, the
function β from tokens to the places where they occur extends to a function
from individual states (multisets of resources) to markings (multisets of places)
by β(M•)(s) =

∑
s′∈β−1(s) M•(s′) (where non-token resources are ignored).

Now the following theorem, whose proof is trivial, says that the functions β
and η constitute a bisimulation between the step transition relations of a given
net under the individual and collective token interpretations.

Theorem 1. β(I+
•) = I and for any individual states M• and markings M ′:

β(M•)
U−→ M ′ ⇔ ∃U•, M ′

• : M•
U•−→• M ′

• ∧ η(U•) = U ∧ β(M ′
•) = M ′.

330 R.J. van Glabbeek

6 Firing Rules for the Self-sequential Interpretations

The firing rules of Sections 2 and 4 embody the self-concurrent interpretations
of Petri nets, allowing a transition to fire concurrently with itself. Here I inves-
tigate how they need to be adapted to obtain firing rules for the self-sequential
interpretations, excluding transitions from firing concurrently with themselves.

The firing rule for the self-sequential collective token interpretation is evident:
a multiset U of transitions is enabled under the self-sequential interpretation of
nets if it is enabled in the sense of Def. 3 and U is a set. The self-sequential step
transition relation →ss between markings is given by M

U−→ssM ′ iff M
U−→ M ′

and U is a set.
On standard nets, a firing rule for the self-sequential individual token inter-

pretation can be obtained in the same way: a multiset U of transition firings
is enabled under the self-sequential interpretation of nets if it is enabled in the
sense of Def. 5 and U is a set with the property that if (X, t), (Y, t) ∈ U for
t ∈ T then X = Y . Thus, all transition firings in U should be firings of different
transitions. One defines →ss

• by imposing the same requirement.
On non-standard nets, before employing the same definitions, I take the op-

portunity to rectify an unfortunate design decision that was unavoidable under
the self-concurrent interpretation. Namely, if a net contains a transition t with-
out input places, Def. 6 yields an infinitely branching transition relation: there

is a transition I•
{(k,t)}
−−−→• M(k,t) for any k ∈ IN. The reason this was unavoid-

able under the self-concurrent interpretation is that any number of transition
firings (k, t) can happen simultaneously, and I want to preserve the fundamental
property of Petri nets that whenever a number of transition firings can happen
in one step, they can happen in any order; so any of the firings (k, t) can hap-
pen first. Under the self-sequential interpretation, on the other hand, it is much
more natural so take the point of view that although the transition t allows
arbitrary many firings to occur sequentially, there is no point in distinguishing
different kinds of first firings. Thus, I will use k not merely as a label taken from
an arbitrary countable set, but as an actual number, (k, t) denoting the k+1th

firing of transition t. The set S+
• of resources of a net and the individual states

M ∈ INS+
• are as in Def. 6, but this time the presence of tk in a state signifies

that the k+1th firing of t is enabled. The multiset of input resources remains
the same as in Def. 6, but the notions of initial state and output resources need
to be adapted.

Definition 7. Let N be a Petri net. The initial state of N under the self-
sequential interpretation is Iss

• = {(∗, k, s) | k < I(s)}∪{t0 | t∈T ∧• t = 0}, and
the set of output resources of a finite set of transition firings U ⊆ T• is

U•ss = {(t′, k, s) | t′ ∈ U ∧ k < F (η(t′), s)} ∪ {tk+1 | (k, t) ∈ U ∩ T◦}.

The set U is enabled in an individual state M : S+
• → IN under the self-sequential

interpretation if •U ≤ M and ∀t((x, t), (y, t)∈U ⇒ x = y). In that case U can
fire under M , yielding the state M ′ = M − •U + U•ss, written M

U−→ss
• M ′.

The Individual and Collective Token Interpretations of Petri Nets 331

Again, it is trivial to check that all →ss
• -reachable individual states are sets, and

β and η constitute a bisimulation between the step transition relations of a net
under the self-sequential individual and collective token interpretations.

Theorem 2. β(Iss
•) = I and for any individual states M• and markings M ′:

β(M•)
U−→ssM ′ ⇔ ∃U•, M ′

• : M•
U•−→ss

• M ′
• ∧ η(U•) = U ∧ β(M ′

•) = M ′.

7 Labelled Step Transition Systems

Definition 8. A labelled step transition system is a tuple (Q, E, →, I, l) with
– Q and E are two disjoint sets of states and events,
– → ⊆ Q×M(E)×Q, the step transition relation, satisfying

(1) if (p, u, q), (p, u, q′) ∈→ then q = q′ (determinism)
(2) (p, 0, p) ∈→ (trivial step)
(3) if (p, u + v, r) ∈→ then ∃q : (p, u, q), (q, v, r) ∈ → (asynchronousness)

– I ∈ Q, the initial state,
– and l : E → A, for A a set of actions, the labelling function.

Henceforth, write p
u−→ q for (p, u, q) ∈ →.

Notes. A labelled transition system (LTS) is a quadruple (Q, Σ, →, I) with Q a
set of states, Σ a set of labels, → ⊆ Q×Σ×Q, and I ∈ Q. An LTS is deterministic,
if it satisfies (1) above; in that case the transition relation → is really a partial
function from Q×Σ to Q. A step transition system is an LTS whose labels are
sets or multisets of actions, rather than single actions. Here p

u−→ q means that
the represented system can transition from state p to state q by performing the
actions in u in one step, meaning simultaneously or concurrently. Property (2)
says that in any state p it is possible to do nothing and stay in p. Together with
(1), property (2) implies that p

0−→ q iff q = p, so without performing actions it
is not possible to move to another state. The information content would be the
same if in Def. 8 instead of (2) it would be required that transitions are labelled
by nonempty multisets.

A step transition system is asynchronous if it satisfies (3). This requirement
represents the postulate that different action occurrences do not synchronise in
any way; they can happen simultaneously only if they are causality independent,
and in that case they can also happen in any order.

Now a labelled step transition system (LSTS) is a doubly labelled transition
system. First of all the arrows are labelled by sets of events, and secondly the
events are labelled by actions. This double layer of labelling is reflected in the
name, as the word “step” already implies “labelled”. The creation of events as an
intermediate concept between transitions and actions is a trick that allows me to
control the non-determinism of concurrent systems on the level of actions. I want
to be able to model that a system in state p has a choice between two a-actions,
leading to different successor states, and at the level of abstraction at which the
system is represented there is no way to tell the two as apart (or influence the

332 R.J. van Glabbeek

choice). However, optionally based on the belief that the world is not truly non-
deterministic, the nondeterminism can be attributed to a difference between the
two a actions that, although not observable, does account for the fact that they
lead to different successor states. An event is now an action together with all its
subtle qualities that influence which state it leads to when executed in a given
state. Thus, an action is an equivalence class of events that are indistinguishable
at the chosen level of abstraction.

When used for representing concurrent systems, LSTSs need to be considered
modulo a suitable semantic equivalence. One the finest possible candidates is the
following notion of isomorphism of reachable parts, ∼=R:

Definition 9. Two LSTSs A and B are isomorphic, written A ∼= B, if they
differ only in the names of their states and events, i.e. if there are bijections
β : QA → QB and η : EA → EB such that β(IA) = IB, and, for p, q ∈ QA,
u : EA → IN and e∈EA: β(p)

η(u)−→ β(q) iff p
u−→ q and lB(η(e)) = lA(e).

The set R(Q) of reachable states in A = (Q, E, →, I, l) is the smallest set such
that I is reachable and whenever p is reachable and p

u−→ q then q is reachable.
The reachable part of A is the LSTS R(A) = (R(Q), E, →\R(Q), I, l).

Write A ∼=R B if R(A) and R(B) are isomorphic.

To check A ∼=R B it suffices to restrict to subsets of QA and QB that contain all
reachable states, and construct an isomorphism between the resulting LSTSs.

8 Interpreting Petri Nets in LSTSs

I now give four translations from Petri nets into labelled step transition systems,
one for each of the computational interpretations of this paper. This is a way of
formally pinpointing the differences between these interpretations; it amounts
to giving four different semantics of Petri nets.

Definition 10. Let N = (S,T , F, I, l) be a net. Then HCT(N) = (INS ,T , →, I, l)
is the LSTS associated to N under the self-concurrent collective token interpre-
tation, and HIT(N) = (INS+

• ,T•, →•, I
+
• , l•) is the LSTS associated to N under

the self-concurrent collective token interpretation. Hss
CT(N) = (INS ,T , →ss, I, l)

and Hss
IT(N) = (INS+

• ,T•, →ss
• , Iss

• , l•) are the LSTSs associated to N under the
self-sequential interpretations.

Example 1. The LSTSs below express the collective and individual token inter-
pretation of the net A from Sect. 3, respectively. The equivalence of A and B

HCT(A) ∼=R HCT(B) ∼=R HIT(B)

•

◦

a

◦

b
a b ◦

b

a

HIT(A) ∼=R HIT(C) ∼=R HCT(C)

•

◦

a

◦

ba

◦

b∗
a b∗ ◦

b∗

a

The Individual and Collective Token Interpretations of Petri Nets 333

under the collective token interpretation, and of A and C under the individual
token interpretation, manifests itself as isomorphism of reachable parts of the
associated LSTSs.

The pictures above display LSTSs up to isomorphism of reachable parts. Let-
ters like ba and b∗ stand for “different events labelled b”. In fact, if the places of A
are called s1, s2 and s3, respectively, and its transitions a and b, then the event b∗
is ({(∗, 0, s2), (∗, 0, s3)}, b), whereas ba = ({(({(∗, 0, s1)}, a), 0, s2), (∗, 0, s3)}, b).

Example 2. The LSTSs associated to the net D of Sect. 3 under the the collective
and individual token interpretations can be found right next to it.

Example 3. In the previous examples there was no difference between the self-
sequential and the self-concurrent interpretations. The following shows, however,
that in general all four interpretations yield a different result.

••

a

E

•
HIT(E) :

◦

a0

◦

a1

a0 a1 ◦

a1

a0

•
Hss

IT(E) :

◦

a0

◦

a1

◦

a1

a0

•
HCT(E) :

◦

a

◦

a
a a

•
Hss

CT(E) :

◦

a

◦

a

9 The Relative Expressiveness of the Four Interpretations

Each of the four computational interpretations above makes a different model of
concurrency out of Petri nets. These models can now be compared with respect
to their expressive power in denoting labelled step transition systems.

9.1 The Individual Versus Collective Token Interpretations

The following theorem says that Petri nets under the self-concurrent collec-
tive token interpretation are at least as expressive as Petri nets under the self-
concurrent individual token interpretation, in the sense that any LSTS that can
be denoted by a net under the latter interpretation can also be a denoted by a net
under the former interpretation. On the other hand, the LSTSHCT(D) in Sect. 3
cannot be denoted by a Petri net under the individual token interpretation.

Theorem 3. For every net N there is a net N• such that HCT(N•) = HIT(N).

Proof. N• = (S+
• ,T•, F•, I

+
• , l•) with S+

• , T•, I+
• and l• as in Def. 4 and 6, and

334 R.J. van Glabbeek

– F•(s′, t′) = 1 if t′ = (X, t) with s′ ∈ X , or t′ = (k, t) ∈ T◦ and s′ = tk;
F•(s′, t′) = 0 otherwise;

– F•(t′, s′) = 1 if s′ has the form (t′, k, s); F•(t′, s′) = 0 otherwise.
That HCT(N•) = HIT(N) is straightforward. ,-

The net N• constructed above is a close relative of the unfolding of a Petri net
into an occurrence net, as defined in [11,4,8] (see Sect. 10). The difference is that
I have not bothered to eliminate unreachable places and transitions.

9.2 The Self-sequential Versus Self-concurrent Interpretations

In general, results as strong as the one above can not be obtained: in order to
compare expressiveness in a meaningful way, processes represented by LSTSs,
Petri nets, or other models of concurrency should be regarded modulo some se-
mantic equivalence relation. A particularly fine equivalence relation that allows
me to totally order the computational interpretations of Petri nets is isomor-
phism of reachable parts of LSTSs (see Def. 9 in Sect. 7).

The following theorem shows that the behaviour of nets under the self-
sequential interpretations can easily be encoded into the behaviour of nets under
the corresponding self-concurrent interpretation.

Theorem 4. For every net N there is a net Nss such that HCT(Nss) ∼=RHss
CT(N)

and HIT(Nss) ∼=R Hss
IT(N).

Proof. Following [7], Nss is obtained from N by adding for every transition t
a self-loop, consisting of a place st with I(st) = F (st, t) = F (t, st) = 1 and
F (st, u) = F (u, st) = 0 for all u
= t. Write Snew for the set of new places st.

To check thatHCT(Nss) ∼=R Hss
CT(N), restrict the states ofHCT(Nss), i.e. the

markings M of Nss, to the ones with M(st) = 1 for all st∈Snew ; this set of states
surely contains all reachable ones. Let β(M)∈ INS be obtained by restricting the
domain of M ∈ INS∪Snew to S, and η be the identity. Now the bijections β and η
constitute an isomorphism of reachable parts between HCT(Nss) and Hss

CT(N).
To check that HIT(Nss) ∼=R Hss

IT(N), restrict the states of HIT(Nss) to the
individual states M• of Nss that contain exactly one token of the form (x, 0, st)
for each st ∈ Snew; this set of states surely contains all reachable ones. Also, in
view of Cor. 1, the states of HIT(Nss) and Hss

IT(N) may be restricted to sets of
resources rather than multisets. Let S◦ = {st∈Snew | •t = 0 (in N)}. For st∈S◦,
let s0

t = (∗, 0, st) and sk+1
t = (({sk

t }, t), 0, st). Then all tokens (x, k, st) of Nss

are of the form sk
t for k ∈ IN. Now the mappings η from the transition firings in

Nss to the transition firings in N, for convenience extended with η(∗) = ∗, and
β from sets of individual tokens in Nss to sets of individual resources in N, are
defined with recursion on the structure of transition firings and sets of tokens

by η(X, t) =
{

(β(X), t) if •t
= 0
(k, t) if •t = 0 ∧X = {sk

t }
and β(X) = {(η(x), k, s) | (x, k, s)∈X ∧ s
∈Snew} ∪ {tk | sk

t ∈X ∧ st∈S◦}.
Again, the bijections β and η constitute an isomorphism between the reachable
parts of HIT(Nss) and Hss

IT(N). ,-

The Individual and Collective Token Interpretations of Petri Nets 335

The construction of Nss above, reducing the self-sequential to the self-concurrent
interpretation of nets is well known [7]. The point of the proof above is to some
extent just a sanity check on the definitions of HCT, Hss

CT, HIT and Hss
IT.

By Theorem 4, any LSTS that can be denoted by a Petri nets under the self-
sequential collective token interpretation, can also be denoted by a net under
the self-concurrent collective token interpretation, and likewise for nets under
the individual token interpretations. On the other hand, the LSTS HCT(E) of
Example 3 cannot be denoted by a Petri net under the self-sequential collective
token interpretation.

9.3 Subsumption

So far, I proved the expressiveness results Hss
IT HIT ≺ HCT ; Hss

CT, where
J ≺ K means that up to ∼=R the class of LSTSs that can be denoted by Petri
nets under the computational interpretation J is a proper subclass of the class
that can be denoted by Petri nets under the computational interpretation K.
Here I will strengthen and augment these results by considering the following
subsumption relation between computational interpretations and classes of nets.

Definition 11. Write J C K if C is a class of Petri nets such that
– for any net N ∈ C one has J (N) ∼=R K(N) and
– for any net N there is a net N′ ∈ C such that J (N′) ∼=R J (N).

If J C K, then up to ∼=R, the class of all Petri nets under interpretation J is
equally expressive as the subclass C on which the two interpretations coincide.

Observation 1. If J C K D L and C ⊆ D then J C L.

Observation 2. If J C K C L then K C J .

Moreover, J C K implies J K. Also note that in the presence of the first
clause, the second clause of Def. 11 is equivalent with
– for any net N there is a net N′ ∈ C such that K(N′) ∼=R J (N).

9.4 Self-sequential Petri Nets

Definition 12. A Petri net is self-sequential if, using the standard firing rule of
Def. 3, under no reachable marking a proper multiset of transitions is enabled,
i.e. a transition is doubly enabled. Let SS be the class of self-sequential nets.

Theorem 5. Hss
CT SS HCT and Hss

IT SS HIT.

Proof. If N is self-sequential, trivially R(Hss
CT(N)) = R(HCT(N)), and therefore

Hss
CT(N) ∼=R HCT(N). Likewise, R(Hss

IT(N)) = R(HIT(N)), considering that self-
sequential nets can have no transitions t with •t = 0. The second clause of Def. 11
is satisfied because the net Nss constructed in the proof of Theorem 4 is self-
sequential.

336 R.J. van Glabbeek

9.5 Unique-Occurrence Nets

Definition 13. A Petri net is a unique-occurrence net if ∀t ∈ T. •t > 0 (i.e.
it is a standard net), ∀s ∈ S. I(s) + Σt∈T F (t, s) = 1 and the flow relation F
is well-founded, i.e. there is no infinite alternating sequence x0, x1, . . . of places
and transitions such that F (xi+1, xi) > 0 for i ∈ IN. Let UO be the class of
unique-occurrence nets.

This class of nets is a close relative of the class of occurrence nets of Winskel
[11]; it just lacks the requirements that cause the elimination of unreachable
places and transitions (see Sect. 10).

Proposition 2. For every Petri net N, the net N• is an unique-occurrence net.
Moreover, if N is an unique-occurrence net, then N• ∼= N.

Proof. The first statement follows immediately from the construction of N•, the
well-foundedness of F being a consequence of the recursive nature of Def. 4.

The second statement follows with induction on the well-founded order F ,
using the mappings β and η of Sect. 4. ,-

Prop. 2 tells that in a unique-occurrence net there is a bijective correspondence
between places and token occurrences, and between transitions and transition
firings. In particular, in a run of a net each place will be visited at most once,
and each transition will fire at most once. Hence the name “unique-occurrence
nets”. It follows that unique-occurrence nets are self-sequential.

Theorem 6. HIT UO HCT.

Proof. Let N be a unique-occurrence net. Then HIT(N) = HCT(N•) ∼= HCT(N),
using Theorem 3, Prop. 2 and the observation N• ∼= N ⇒ HCT(N•) ∼= HCT(N).
Now let N be any Petri net. Then N• ∈ UO by Prop. 2 and HCT(N•) ∼= HIT(N)
by Theorem 3.

Theorem 7. Hss
IT UO HIT UO Hss

CT and HIT UO Hss
IT UO HCT.

Proof. Let N be a unique-occurrence net. As unique-occurrence nets are self-
sequential, Theorems 5 and 6 yieldHss

IT(N) ∼=RHIT(N) ∼=RHCT(N) ∼=RHss
CT(N).

Now let N be any Petri net. Then (Nss)• is a unique-occurrence net by Prop. 2
and Hany

any ((Nss)•) ∼=R HCT((Nss)•) ∼=R HIT(Nss) ∼=R Hss
IT(N) by Theorems 3

and 4.

This yields the expressiveness hierarchy of Fig. 1.

10 Unfolding into Occurrence Nets

Definition 14 ([11]). An occurrence net is a unique-occurrence net such that
– the conflict relation #⊆ T × T is irreflexive, where

x#y ⇔ ∃t, t′∈T. t
= t′, •t ∩ •t′
= ∅, tF ∗x, tF ∗y

– and ∀t ∈ T. {t′ | t′F ∗t} is finite.

The Individual and Collective Token Interpretations of Petri Nets 337

Here F ∗ denotes the reflexive and transitive closure of the flow relation, given by
xFy iff F (x, y) > 0. It is easy to see that transitions in a unique-occurrence net
that violate the conditions above can never fire, and in fact an occurrence net
is a unique-occurrence net with the property that every place occurs in a reach-
able marking and every transition in a firing sequence. Therefore, any unique-
occurrence net can be converted into an occurrence net by the operation R that
omits all transitions t that violate the requirements above, together with all
places and transitions x with tF ∗x. The netR(N) consists of the reachable places
and transitions in N, and H(R(N)) ∼=R H(N) for H ∈ {HCT,HIT,Hss

CT,Hss
IT}.

This allows me to define an unfolding operator U , turning any given Petri net N
into an occurrence net U(N) with HIT(U(N)) ∼=R HIT(N), as follows.

Definition 15. Let N be a Petri net. The unfolding U(N) of N is R(N•).

This construction extends the prior unfolding constructions of Winskel [11],
Engelfriet [4] and Meseguer, Montanari & Sassone [8]. The latter, and
most general, was given for standard nets only. Instead of restricting to reachable
transitions at the end, these approaches do so on the fly. The same could be done
here, by applying the two requirements of Def. 14 in the third clause of Def. 4.

References

1. E. Badouel (1996): Splitting of actions, higher-dimensional automata, and net
synthesis. Technical Report RR-3490, Inria, France.

2. E. Best & R. Devillers (1987): Sequential and concurrent behavior in Petri net
theory. Theoretical Computer Science 55(1), pp. 87–136.

3. E. Best, R. Devillers, A. Kiehn & L. Pomello (1991): Concurrent bisimula-
tions in Petri nets. Acta Informatica 28, pp. 231–264.

4. J. Engelfriet (1991): Branching processes of petri nets. Acta Informatica 28(6),
pp. 575–591.

5. R.J. van Glabbeek (2005): On the expressiveness of higher dimensional automata
(extended abstract). Available at http://boole.stanford.edu/pub/hda-ea.pdf.
Electronic Notes in Theoretical Computer Science 128(2): Proc. 11th International
Workshop on Expressiveness in Concurrency, EXPRESS 2004, pp. 5–34.

6. R.J. van Glabbeek & G.D. Plotkin (1995): Configuration structures (extended
abstract). In D. Kozen, editor: Proceedings 10th Annual IEEE Symposium on Logic
in Computer Science, LICS’95, San Diego, USA, IEEE Computer Society Press,
pp. 199–209. Available at http://boole.stanford.edu/pub/conf.ps.gz.

7. U. Goltz & W. Reisig (1983): The non-sequential behaviour of Petri nets. In-
formation and Computation 57, pp. 125–147.

8. J. Meseguer, U. Montanari & V. Sassone (1997): On the semantics of place/
transition Petri nets. Mathematical Structures in Computer Science 7, pp. 359–397.

9. M. Mukund (1992): Petri nets and step transition systems. International Journal
of Foundations of Computer Science 3(4), pp. 443–478.

10. V.R. Pratt (1991): Modeling concurrency with geometry. In Proc. 18th Ann.
ACM Symposium on Principles of Programming Languages, pp. 311–322.

11. G. Winskel (1987): Event structures. In W. Brauer, W. Reisig & G. Rozenberg,
editors: Petri Nets: Applications and Relationships to Other Models of Concur-
rency, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course,
Bad Honnef, September 1986, LNCS 255, Springer, pp. 325–392.

Merged Processes — A New Condensed

Representation of Petri Net Behaviour

Victor Khomenko1, Alex Kondratyev2, Maciej Koutny1, and Walter Vogler3

1 School of Computing Science, University of Newcastle, NE1 7RU, U.K.
2 Cadence Berkeley Labs, Berkeley, CA 94704, USA

3 Institut für Informatik, Universität Augsburg, D-86135 Germany

Abstract. Model checking based on Petri net unfoldings is an approach
widely applied to cope with the state space explosion problem.

In this paper we propose a new condensed representation of a Petri
net’s behaviour called merged processes, which copes well not only with
concurrency, but also with other sources of state space explosion, viz.
sequences of choices and non-safeness. Moreover, this representation is
sufficiently similar to the traditional unfoldings, so that a large body
of results developed for the latter can be re-used. Experimental results
indicate that the proposed representation of a Petri net’s behaviour al-
leviates the state space explosion problem to a significant degree and is
suitable for model checking.

Keywords: Merged processes, Petri net unravelling, Petri net unfolding,
state space explosion, model checking, formal verification.

1 Introduction

A reactive system is commonly described by a set of concurrent processes that
interact with each other. Processes typically have descriptions which are short
and manageable, and the complexity of the behaviour of the system as a whole
comes from highly complicated interactions between them. One way of coping
with this complexity problem is to use formal methods and, especially, com-
puter aided verification tools implementing model checking (see, e.g., [1]) —
a technique in which the verification of a system is carried out using a finite
representation of its state space.

The main drawback of model checking is that it suffers from the state space
explosion problem [16]. That is, even a relatively small system specification can
(and often does) yield a very large state space. To cope with this, several tech-
niques have been developed, which usually aim either at a compact represen-
tation of the full state space of the system, or at the generation of a reduced
state space (that is still sufficient for a given verification task). Among them, a
prominent technique is McMillan’s (finite prefixes of) Petri net unfoldings (see,
e.g., [5,7,11]). They rely on the partial order view of concurrent computation,
and represent system states implicitly, using an acyclic unfolding prefix.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 338–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Merged Processes — A New Condensed Representation 339

(a)

m

p1

m

pn

t

(b)

p1

t1

pn

tn

(c)

Fig. 1. Examples of Petri nets

There are several common sources of state space explosion. One of them is
concurrency, and the unfolding techniques were primarily designed for efficient
verification of highly concurrent systems. Indeed, complete prefixes are often
exponentially smaller than the corresponding reachability graphs, because they
represent concurrency directly rather than by multidimensional ‘diamonds’ as it
is done in reachability graphs. For example, if the original Petri net consists of
100 transitions which can fire once in parallel, the reachability graph will be a
100-dimensional hypercube with 2100 vertices, whereas the complete prefix will
be isomorphic to the net itself. However, unfoldings do not cope well with some
other important sources of state space explosion, in particular with sequences of
choices and non-safeness. Below we consider examples illustrating this problem.

First, consider Figure 1(a) with the dashed part not taken into account. The
cut-off condition proposed in [5] copes well with this Petri net (since the marking
reached after either choice on each stage is the same — in fact, the Petri net
has very few reachable markings), and the resulting prefix is linear in the size
of the original Petri net. However, if the dashed part of the figure is taken into
account, the smallest complete prefix is exponential in the size of the Petri net,
since no event can be declared a cut-off (intuitively, each reachable marking of
the Petri net ‘remembers’ its past). Thus Petri nets performing a sequence of
choices leading to different markings may yield exponential prefixes.

Another problem arises when one tries to unfold non-safe Petri nets. Consider
the Petri net in Figure 1(b). Its smallest complete unfolding prefix contains mn

instances of t, since the unfolding distinguishes between different tokens on the
same place. One way to cope with non-safe nets is to convert them into safe
ones and unfold the latter, as was proposed in [5]. However, such an approach
destroys the concurrency and can lead to very large prefixes; e.g., this approach
applied to the Petri net in Figure 1(c) would yield a prefix exponential in the
size of the original Petri net, while the traditional unfolding technique would
yield a prefix which is linear in its size [5].

The described problems with Petri net unfoldings should be viewed in the
light of the fact that all the above examples have a very simple structure —
viz. they are all acyclic, and thus many model checking techniques, in particular
those based on the marking equation [7,13,15], could be applied directly to the
original Petri nets. And so it may happen that a prefix exponential in the size
of the Petri net is built for a relatively simple problem!

340 V. Khomenko et al.

In this paper we propose a new condensed representation of a Petri net’s
behaviour called merged processes, which remedies the problems described above.
It copes well not only with concurrency, but also with other sources of state space
explosion we mentioned, viz. sequence of choices and non-safeness. Moreover, this
representation is sufficiently similar to the traditional unfoldings, so that a large
body of results developed for unfoldings can be re-used.

The main idea behind this representation is to fuse some equally labelled
nodes in the complete prefix of the Petri net being verified, and use the resulting
net as the basis for verification. For example, the unfolding of the Petri shown
in Figure 1(a) (even with the dashed part taken into account) will collapse back
to the original net after the fusion. In fact, this will happen in all the examples
considered above. Of course, such a fusion can result in various problems, in
particular cycles can appear and the marking equation alone is not sufficient for
verification of such nets. The rest of this paper is devoted to formally defining
this transformation and solving some of the arising problems. The experimental
results indicate that the proposed representation of a Petri net’s behaviour alle-
viates the state space explosion problem to a significant degree and is suitable
for model checking.

All the proofs and further examples can be found in the technical report [8]
(available on-line).

2 Basic Notions

In this section we introduce the basic notions concerning Petri nets and their
unfoldings (see also [5,7,9,11,13-15])

Petri Nets. A net is a triple N
df= (P,T , F) such that P and T are disjoint sets of

respectively places and transitions, and F ⊆ (P ×T)∪ (T ×P) is a flow relation.
A marking of N is a multiset M of places, i.e., M : P → N

df= {0, 1, 2, . . .}.
The standard rules about drawing nets are adopted in this paper, viz. places
are represented as circles, transitions as boxes, the flow relation by arcs, and the
marking is shown by placing tokens within circles. As usual, •z df= {y | (y, z) ∈ F}
and z•

df= {y | (z, y) ∈ F} denote the pre- and postset of z ∈ P ∪T . In this paper,
the presets of transitions are restricted to be non-empty, i.e., •t
= ∅ for every
t ∈ T . A net system (or Petri net) is a pair Σ

df= (N, M0) comprising a finite
net N and an initial marking M0. It is assumed that the reader is familiar with
the standard notions of Petri net theory, such as the enabledness and firing of a
transition, reachability of a marking, the marking equation, safe Petri net and
deadlock (see, e.g., [15] for a brief introduction).

Branching Processes. A branching process [5,7] β of a Petri net Σ is a finite
or infinite acyclic net which can be obtained through unfolding Σ, by successive
firings of transition, under the following assumptions: (i) for each new firing a
fresh transition (called an event) is generated; and (ii) for each newly produced
token a fresh place (called a condition) is generated. There exists a unique (up to

Merged Processes — A New Condensed Representation 341

isomorphism) maximal (w.r.t. the prefix relation) branching process of Σ called
the unfolding of Σ. For example, the unfolding of the Petri net in Figure 2(a) is
shown in part (b) of this figure (with the dashed lines ignored).

The unfolding is infinite whenever Σ has an infinite run; however, if Σ has
finitely many reachable states then the unfolding eventually starts to repeat
itself and can be truncated (by identifying a set of cut-off events) without loss
of essential information. The sets of conditions, events, arcs and cut-off events
of β will be denoted by B, E, G and Ecut , respectively, (note that Ecut ⊆ E),
and the labelling function mapping the nodes of β to the corresponding nodes
of Σ will be denoted by h.

Since β is acyclic, the transitive closure of its flow relation is a partial order <
on B ∪E, called the causality relation. (The reflexive order corresponding to <
will be denoted by ≤.) Intuitively, all the events which are smaller than an
event e ∈ E w.r.t. < must precede e in any valid execution of β containing e. To
make this precise, consider the implicit initial marking of β, obtained by putting
a single token in each condition which does not have an incoming arc. Note that
h is a homomorphism, i.e., it maps the conditions in the preset (postset resp.)
of an event e bijectively to the preset (postset resp.) of h(e) and, intuitively, it
maps the (implicit) initial marking of β to the initial marking of Σ. Such as any
homomorphism, h maps runs of β to runs of Σ. It is known that in acyclic nets
like β, a marking is reachable if and only if the corresponding marking equation
has a solution [15], and hence branching processes can be used for efficient model
checking [6,7,10,11,12,13].

Two nodes x, y ∈ B ∪ E are in conflict, denoted x#y, if there are distinct
events e, f ∈ E such that •e∩ •f
= ∅ and e ≤ x and f ≤ y. Intuitively, no valid
execution of β can contain two events in conflict. Two nodes x, y ∈ B ∪ E are
concurrent, denoted x co y, if neither y#y′ nor y ≤ y′ nor y′ ≤ y. Intuitively, two
concurrent events can be enabled simultaneously, and executed in any order, or
even concurrently. For example, in the branching process shown in Figure 2(b)
the following relationships hold: e1 < e5, e3#e4 and c1 co c4.

Due to structural properties of branching processes (such as acyclicity), the
reachable markings of Σ can be represented using configurations of β. A con-
figuration is a finite set of events C ⊆ E such that for all e, f ∈ C, ¬(e#f)
and, for every e ∈ C, f < e implies f ∈ C. For example, in the branching pro-
cess shown in Figure 2(b) {e1, e3, e5} is a configuration whereas {e1, e2, e3} and
{e1, e5} are not (the former includes events in conflict, e1#e2, while the latter
does not include e3, a causal predecessor of e5). Intuitively, a configuration is a
partial-order execution, i.e., an execution where the order of firing of some of its
events is not important.

After starting β from the implicit initial marking and executing all the events
in C, one reaches the marking denoted by Cut(C). Mark(C) denotes the corre-
sponding marking of Σ, reached by firing a transition sequence corresponding to
the events in C. A branching process β is marking-complete w.r.t. a set Ecut ⊆ E
if for every reachable marking M of Σ there is a configuration C of β such that
C ∩ Ecut = ∅ and Mark(C) = M ; moreover, β is complete if it is marking-

342 V. Khomenko et al.

complete and for each configuration C of β such that C ∩ Ecut = ∅ and each
event e /∈ C of the unfolding such that C∪{e} is a configuration of the unfolding,
e is in β (e may be in Ecut); this additional preservation of firings is sometimes
used for deadlock detection. Complete branching processes are often called com-
plete (unfolding) prefixes. One can build such a complete prefix ensuring that
the number of non-cut-off events |E \ Ecut | in it does not exceed the number of
reachable markings of Σ [5,7].

3 Merged Processes

In this section we introduce the notion of a merged process, which is the main
construction investigated in this paper.

Definition 1 (occurrence-depth). Let β be a branching process of a Petri net
Σ, and x be one of its nodes (condition or event). The occurrence-depth of x
is defined as the maximum number of h(x)-labelled nodes on any directed path
starting at a minimal (w.r.t. <) condition and terminating at x in the directed
graph representing β.

The above notion is well-defined since there is always at least one directed path
starting at a minimal (w.r.t. <) condition and terminating at x, and the number
of all such paths is finite. In Figure 2(b) the occurrence-depths of conditions are
shown in brackets.

Definition 2 (merged process). Given a branching process β, the correspond-
ing merged process μ = Merge(β) is a Petri net which is obtained in two steps,
as follows:

Step 1: the places of μ, called mp-conditions, are obtained by fusing together
all the conditions of β which have the same labels and occurrence-depths; each
mp-condition inherits its label and arcs from the fused conditions, and its initial
marking is the total number of minimal (w.r.t. <) conditions which were fused
into it.
Step 2: the transitions of μ, called mp-events, are obtained by merging all the
events which have the same labels, presets and postsets (after step 1 was per-
formed); each mp-event inherits its label from the merged events (and has ex-
actly the same connectivity as either of them), and it is declared cut-off iff all
the events merged into it were cut-off events in β.

Figure 2(b,c) illustrates this notion. In the sequel, � will denote the homomor-
phism mapping the nodes of β to the corresponding nodes of μ, and Ê, B̂, Ĝ,
M̂0, Êcut and ĥ will denote the set of its mp-events, the set of its mp-conditions,
its flow relation, its initial marking, the set of its cut-off events and the homo-
morphism mapping the nodes of μ to the corresponding nodes of Σ (note that
ĥ ◦ � = h). The merged process corresponding to the (full) unfolding of Σ will
be called the unravelling of Σ. A few simple properties of merged processes are
listed below:

Merged Processes — A New Condensed Representation 343

p1

p2

p3

t1 t2

p4

t3

p5

t4

(a)

p1
1

p1
2

p1
3

t1 t2

p1
4 p1

5

t3 t4 t4t3

p2
4p2

5

(c)

c1

p1(1)

c2 p2(1)

c3

p3(1)

e1t1 e2 t2

c4

p4(1)

c5

p5(1)

e3t3 e4 t4

c6p5(1) c7 p4(1)

e5t4 e6 t3

c8

p4(2)

c9

p5(2)

(b)

Fig. 2. A Petri net (a), its unfolding with the occurrence-depths of conditions shown
in brackets and the conditions to be fused connected by dashed lines (b), and its
unravelling (c).

1. There is at most one mp-condition pk resulting from the fusion of conditions
labelled by place p of Σ occurring at depth k ≥ 1.

2. Two distinct conditions in β having the same label and occurrence-depth
are either concurrent or in conflict. Hence, if the original Petri net was safe
then all the conditions in β which were fused into the same mp-condition pk

of μ were in conflict.
3. For two mp-conditions, pk and pk+1, there is a directed path from the former

to latter. Moreover, if pk+1 is present and k ≥ 1 then pk is also present.
4. In general, μ is not acyclic (cycles can arise due to criss-cross fusions of con-

ditions, as illustrated in Figure 2(b,c)). This, in turn, leads to complications
for model checking, in particular the marking equation can have spurious
solutions, i.e., solutions which do not correspond to any reachable marking.
To simplify model checking, one could stop fusing conditions in Definition 2
when this leads to cycles, but this is not a satisfactory solution, since μ is
not uniquely defined in such a case; moreover, this would lead to lower com-
pression. So we chose to allow cycles, and strengthen the marking equation
with additional constraints excluding spurious solutions (see Proposition 6).

5. There can be events consuming conditions in the postset of a cut-off mp-
event.

344 V. Khomenko et al.

6. There is a strong correspondence between the runs of Σ and those of its
unravelling: σ is a run of Σ iff σ = ĥ(σ̂) for some run σ̂ of the unravelling of
Σ.

A multiset Ĉ of mp-events is an mp-configuration of μ if Ĉ = �(C) for some
configuration C of the unfolding of Σ (that we refer to the full unfolding rather
than β here is a subtle point explained in [8]). If Ĉ is an mp-configuration then
the corresponding mp-cut Cut(Ĉ) is defined as the marking of μ reached by
executing all the events of Ĉ starting from the initial marking M̂0. (Cut(Ĉ) can
be efficiently computed using, e.g., the marking equation.) Moreover, Mark(Ĉ)
is defined as ĥ(Cut(Ĉ)). Note that if Ĉ = �(C) then Mark(Ĉ) = Mark(C).

Canonical Merged Processes. Since Merge is a deterministic transformation,
one can easily define the canonical merged process as Merge(β), where β is the
canonical unfolding prefix [9]. This allows for an easy import of the results of [7,9]
related to the canonicity.

The Size of a Merged Process. One can see that in Definition 2 the fusion
of conditions can only decrease the number of conditions without affecting the
number of events or arcs; moreover, merging events can only decrease the num-
ber of events and arcs, without affecting the number of conditions. Hence, the
following result holds:

Proposition 1 (size). If β is finite then μ is finite and |B̂| ≤ |B|, |Ê| ≤ |E|
and |Ĝ| ≤ |G|.

This result allows to import all the upper bounds proved for unfolding pre-
fixes [5,7,9]; in particular, since for every safe Petri net Σ one can build a
marking-complete branching process with the number of events not exceeding
the number of reachable markings of Σ, the corresponding merged process μ has
the same upper bound on the number of its events. However, the upper bound
given by Proposition 1 is rather pessimistic; in practice, merged processes turn
out to be much more compact than the unfolding prefixes.

Tables 1 and 2 show the results of our experiments. The popular set of bench-
marks collected by J.C. Corbett [2] has been attempted. The meaning of the
columns is as follows (from left to right): the name of the problem; the number
of places and transitions in the original Petri net; the number of conditions,
events and cut-off events in the unfolding prefix; the time taken by deadlock
checking based on unfoldings (discussed in the next section); the number of mp-
conditions and mp-events in the corresponding merged process; the time taken
by deadlock checking based on merged processes (discussed in the next section);
and the ratios |Ê|/|T | and |E|/|Ê| giving measures of compactness of the merged
process relative to the original Petri net and its unfolding prefix, respectively. The
unfolding prefixes in our experiments were built using the algorithm described
in [5,7,9], and the corresponding merged processes were obtained by application
of the algorithm given by Definition 2. (The time taken by this algorithm is

Merged Processes — A New Condensed Representation 345

Table 1. Experimental results for benchmarks with deadlocks

Problem Net Unfolding Unravelling

|P | |T | |B| |E| |Ecut | MC [s] |B̂| |Ê| MC [s] |Ê|/|T | |E|/|Ê|
Q 163 194 16123 8417 1188 <1 248 256 <1 1.32 32.88
Speed 33 39 4929 2882 1219 <1 92 175 <1 4.49 16.47
Dac(6) 42 34 92 53 0 <1 42 35 <1 1.03 1.51
Dac(9) 63 52 167 95 0 <1 63 53 <1 1.02 1.79
Dac(12) 84 70 260 146 0 <1 84 71 <1 1.01 2.06
Dac(15) 105 88 371 206 0 <1 105 89 <1 1.01 2.31
Dp(6) 36 24 204 96 30 <1 60 37 <1 1.54 2.59
Dp(8) 48 32 368 176 56 <1 80 49 <1 1.53 3.59
Dp(10) 60 40 580 280 90 <1 100 61 <1 1.53 4.59
Dp(12) 72 48 840 408 132 <1 120 73 <1 1.52 5.59
Elev(1) 63 99 296 157 59 <1 73 89 <1 0.90 1.76
Elev(2) 146 299 1562 827 331 <1 150 241 <1 0.81 3.43
Elev(3) 327 783 7398 3895 1629 <1 304 588 <1 0.75 6.62
Elev(4) 736 1939 32354 16935 7337 <1 634 1387 <1 0.72 12.21
Hart(25) 127 77 179 102 1 <1 153 102 <1 1.32 1.00
Hart(50) 252 152 354 202 1 <1 303 202 <1 1.33 1.00
Hart(75) 377 227 529 302 1 <1 453 302 <1 1.33 1.00
Hart(100) 502 302 704 402 1 <1 603 402 <1 1.33 1.00
Key(2) 94 92 1310 653 199 <1 147 402 <1 4.37 1.62
Key(3) 129 133 13941 6968 2911 <1 201 1086 11 8.17 6.42
Key(4) 164 174 135914 67954 32049 <1 255 2054 69 11.80 33.08
Mmgt(1) 50 58 118 58 20 <1 61 58 <1 1.00 1.00
Mmgt(2) 86 114 1280 645 260 <1 111 282 <1 2.47 2.29
Mmgt(3) 122 172 11575 5841 2529 2 159 662 <1 3.85 8.82
Mmgt(4) 158 232 92940 46902 20957 10 207 1206 <1 5.20 38.89
Sent(25) 104 55 383 216 40 <1 120 81 <1 1.47 2.67
Sent(50) 179 80 458 241 40 <1 195 106 <1 1.33 2.27
Sent(75) 254 105 533 266 40 <1 270 131 <1 1.25 2.03
Sent(100) 329 130 608 291 40 <1 345 156 <1 1.20 1.87

not included in the tables because it was negligible.) The algorithm for build-
ing merged processes directly from Petri nets is a matter of future research [8]
(significant progress has already been made).

One can see that merged processes can be by orders of magnitude smaller
than unfolding prefixes, and, in many cases, are just slightly greater than the
original Petri nets. In fact, in some of the examples merged processes are smaller
than the original Petri nets due to the elimination of dead transitions. However,
merged processes are much more amenable to model checking than general safe
Petri nets — e.g., most of ‘interesting’ behaviourial properties are known to
be PSPACE-complete for safe Petri nets [4], whereas in Section 4 we develop a
non-deterministic polynomial-time algorithm for checking reachability-like prop-
erties of merged processes, i.e., many behaviourial properties of merged processes
are in NP . Since many such properties are known to be NP-complete already
for unfolding prefixes, the complexity class is not worsened if one uses merged
processes rather than unfolding prefixes.

Since merged processes are inherently more compact than unfolding prefixes,
it would be natural to seek sharper upper bounds than the trivial ones given by
Proposition 1. In particular, it would be interesting to identify subclasses of Petri
nets whose unfolding prefixes can be exponential in the size of the original Petri
net, but whose merged prefixes are guaranteed to be only polynomial. Below, we
present two such results.

346 V. Khomenko et al.

Table 2. Experimental results for deadlock-free benchmarks

Problem Net Unfolding Unravelling

|P | |T | |B| |E| |Ecut | MC [s] |B̂| |Ê| MC [s] |Ê|/|T | |E|/|Ê|
Abp 43 95 337 167 56 <1 75 83 <1 0.87 2.01
Bds 53 59 12310 6330 3701 <1 145 359 <1 6.08 17.63
Ftp 176 529 178085 89046 35197 16 304 875 <1 1.65 101.77
Cyclic(3) 23 17 52 23 4 <1 39 21 <1 1.24 1.10
Cyclic(6) 47 35 112 50 7 <1 84 45 <1 1.29 1.11
Cyclic(9) 71 53 172 77 10 <1 129 69 <1 1.30 1.12
Cyclic(12) 95 71 232 104 13 <1 174 93 <1 1.31 1.12
Dme(2) 135 98 487 122 4 <1 309 98 <1 1.00 1.24
Dme(3) 202 147 1210 321 9 <1 463 148 <1 1.01 2.17
Dme(4) 269 196 2381 652 16 <1 617 197 <1 1.01 3.31
Dme(5) 336 245 4096 1145 25 <1 771 246 <1 1.00 4.65
Dme(6) 403 294 6451 1830 36 <1 925 295 <1 1.00 6.20
Dme(7) 470 343 9542 2737 49 <1 1079 344 <1 1.00 7.96
Dme(8) 537 392 13465 3896 64 <1 1233 393 <1 1.00 9.91
Dme(9) 604 441 18316 5337 81 <1 1387 442 <1 1.00 12.07
Dme(10) 671 490 24191 7090 100 2 1541 491 <1 1.00 14.44
Dme(11) 738 539 31186 9185 121 2 1695 540 <1 1.00 17.01
Dpd(4) 36 36 594 296 81 <1 81 78 <1 2.17 3.79
Dpd(5) 45 45 1582 790 211 <1 102 100 <1 2.22 7.90
Dpd(6) 54 54 3786 1892 499 <1 123 122 <1 2.26 15.51
Dpd(7) 63 63 8630 4314 1129 <1 144 144 <1 2.29 29.96
Dpfm(2) 7 5 12 5 2 <1 10 5 <1 1.00 1.00
Dpfm(5) 27 41 67 31 20 <1 31 31 <1 0.76 1.00
Dpfm(8) 87 321 426 209 162 <1 89 209 <1 0.65 1.00
Dpfm(11) 1047 5633 2433 1211 1012 <1 313 1211 <1 0.21 1.00
Dph(4) 39 46 680 336 117 <1 87 108 <1 2.35 3.11
Dph(5) 48 67 2712 1351 547 <1 129 293 <1 4.37 4.61
Dph(6) 57 92 14590 7289 3407 <1 198 904 2313 9.83 8.06
Dph(7) 66 121 74558 37272 19207 1 277 2773 >10 hrs 22.92 13.44
Furn(1) 27 37 535 326 189 <1 70 98 <1 2.65 3.33
Furn(2) 40 65 4573 2767 1750 <1 121 432 <1 6.65 6.41
Furn(3) 53 99 30820 18563 12207 <1 180 1224 <1 12.36 15.17
Gasnq(2) 71 85 338 169 46 <1 87 103 <1 1.21 1.64
Gasnq(3) 143 223 2409 1205 401 <1 173 325 <1 1.46 3.71
Gasnq(4) 258 465 15928 7965 2876 6 308 748 21 1.61 10.65
Gasnq(5) 428 841 100527 50265 18751 321 505 1449 4455 1.72 34.69
Gasq(1) 28 21 43 21 4 <1 35 21 <1 1.00 1.00
Gasq(2) 78 97 346 173 54 <1 96 111 <1 1.14 1.56
Gasq(3) 284 475 2593 1297 490 <1 316 509 <1 1.07 2.55
Gasq(4) 1428 2705 19864 9933 4060 9 1540 3004 34 1.11 3.31
Over(2) 33 32 83 41 10 <1 51 39 <1 1.22 1.05
Over(3) 52 53 369 187 53 <1 89 97 <1 1.83 1.93
Over(4) 71 74 1536 783 237 <1 138 217 <1 2.93 3.61
Over(5) 90 95 7266 3697 1232 <1 186 375 <1 3.95 9.86
Ring(3) 39 33 97 47 11 <1 58 40 <1 1.21 1.18
Ring(5) 65 55 339 167 37 <1 110 97 <1 1.76 1.72
Ring(7) 91 77 813 403 79 <1 160 146 <1 1.90 2.76
Ring(9) 117 99 1599 795 137 <1 210 194 <1 1.96 4.10
Rw(6) 33 85 806 397 327 <1 51 85 <1 1.00 4.67
Rw(9) 48 181 9272 4627 4106 <1 75 181 <1 1.00 25.56
Rw(12) 63 313 98378 49177 45069 <1 99 313 <1 1.00 157.12

Proposition 2 (unravelling of an acyclic Petri net). If Σ is an acyclic
Petri net then its unravelling is isomorphic to the Petri net obtained from Σ by
removing all its dead transitions and unreachable places.

This result easily follows from the fact that no token in an acyclic Petri net can
‘visit’ a place more than once, and thus the occurrence-depth of every condition

Merged Processes — A New Condensed Representation 347

Fig. 3. An LSFC2 Petri net whose unfolding prefix is exponential in its size

in the unfolding of Σ is 1. On the other hand, unfolding prefixes of even safe
acyclic Petri nets can be exponential in the size of the original nets, e.g., this is
the case for the acyclic Petri net in Figure 1(a) with the dashed part taken into
account.

In the discussion below, LSFCk denotes the class of live and safe free-choice
Petri nets [3] whose transitions’ postsets have cardinality less than or equal to
k ∈ N ∪ {∞}; hence, LSFC∞ denotes the whole class of live and safe free-
choice Petri nets. It turns out that if k
=∞ then the marking-complete merged
processes for the nets in LSFCk are polynomial in the size of the original nets,
even though their unfolding prefixes can be exponential; e.g., one can make the
Petri net in Figure 1(a) (with the dashed part taken into account) live by adding
a subnet ‘gathering’ tokens at the end of the execution and returning a token to
the initial place, as shown in Figure 3. This net is in LSFC2 and its complete
prefix is exponential in its size.

Proposition 3 (merged processes of LSFCk-nets [8]). For any k ∈ N,
there exist marking-complete merged processes of LSFCk-nets polynomial in the
sizes of the original nets.

This result is unlikely to be generalised to LSFC∞ [8]. However, one should
note that the expressive power of LSFCk for k ≥ 2 is comparable with that of
LSFC∞, since every transition of an LSFC∞-net with postset of cardinality
greater than k can be replaced by a tree of transitions with postsets of cardinality
not exceeding k, and the resulting Petri net will be in LSFCk.

Finiteness of a Merged Process. In view of Proposition 1, μ is finite if β
is. However, it is not obvious that the reverse holds, since, in general, infinitely
many nodes of β can correspond to a single node of μ [8]. However, by the analog
of König’s lemma for branching processes [7,9], if β is infinite then there exists
an infinite path in β. Since the number of places in Σ is finite, some place p ∈ P
is repeated infinitely many times along this path, and so the occurrence-depth of
its instances grows unboundedly in β. Thus there are infinitely many instances
of p after fusion, and the following result holds:

348 V. Khomenko et al.

Proposition 4. μ is finite iff β is finite.

Again, this result allows to import into the new framework all the finiteness
results proved for unfolding prefixes [5,7,9].

Completeness of a Merged Process. The marking-completeness of a merged
process is defined similarly to the marking-completeness of a branching process.
A merged process μ is marking-complete w.r.t. a set Êcut ⊆ Ê if for every
reachable marking M of Σ there exists an mp-configuration Ĉ of μ such that
Ĉ ∩ Êcut = ∅ and Mark(Ĉ) = M .

Let C be a configuration of β and Ĉ = �(C) be the corresponding config-
uration in μ. One can easily show that if C contains no cut-off event then Ĉ
contains no cut-off mp-events, and that Mark(C) = Mark(Ĉ). Hence:

Proposition 5. If β is marking-complete then μ is marking-complete.

However, no such result holds for full completeness [8]; therefore, model
checking algorithms developed for unfolding prefixes relying on the preservation
of firings (e.g., some of the deadlock checking algorithms in [6,7,11-13]) can-
not be easily transferred to merged processes. However, marking-completeness
is sufficient for most purposes, as the transitions enabled by the final state of
an mp-configuration can be easily found using the original Petri net. The model
checking algorithm proposed in the next section does not make use of cut-off
mp-events, and so they can be removed from the merged process before model
checking.

4 Model Checking Based on Merged Processes

Model checking algorithms [6,7,10-13] working on complete prefixes of Petri net
unfoldings are usually based on the following non-deterministic algorithm:

choose a set of events C ⊆ E \ Ecut

if C is a configuration violating the property (e.g., deadlock-freeness)
then accept /* C is a certificate convertible to a witness trace */
else reject

Various kinds of solvers have been employed to implement it, e.g., ones based
on mixed-integer programming [13], stable models of logic programs [6], integer
programming [7] and Boolean satisfiability (SAT) [10]. More precisely, a system
of constraints having for each non-cut-off event e of the prefix a variable confe
is built (it might also contain other variables), and for every satisfying assign-
ment A, the set of events C

df= {e | A(confe) = 1} is a configuration such that
Mark(C) violates the property being checked. This system of constraints usually
has the form CONF&VIOL. The role of the configuration constraint, CONF ,
is to ensure that C is a configuration of the prefix (not just an arbitrary set of
events), and the role of the violation constraint, VIOL, is to capture the property

Merged Processes — A New Condensed Representation 349

violation condition for a configuration C, so that if a configuration C satisfying
this constraint is found then the property (e.g., deadlock-freeness) does not hold,
and any ordering of events in C consistent with the causal order on the events
of the prefix is a violation trace.

It is natural to follow a similar approach for verification based on merged
processes. However, one should bear in mind the following complications:

– An mp-configuration is generally a multiset (rather than a set) of mp-events.
Though this is not a major problem, it does hamper verification employing
Boolean solvers, as associating a single Boolean variable with each mp-event
is no longer sufficient for representing an mp-configuration. But if the original
Petri net is safe, the mp-configurations of its merged processes are sets.

– An easily testable characterisation of an mp-configuration is necessary (our
‘indirect’ definition of an mp-configuration as an �-image of some config-
uration of the unfolding is not of much use for model checking). In what
follows we develop such a characterisation for mp-configurations of merged
processes of safe Petri nets. Some issues make it non-trivial to develop such
a characterisation:
Spurious Solutions of the Marking Equation. Many model checking

algorithms working on unfolding prefixes [6,7,10,13] are based on the
marking equation (perhaps expressed not as integer linear constraints
but in some other form, e.g., as a Boolean formula) and the fact that for
acyclic Petri nets it cannot have spurious solutions [15]. Since merged
processes are not generally acyclic, the marking equation can have spu-
rious solutions. For example, the associated marking equations for the
unravelling shown in Figure 2(c) has a spurious solution: if one ‘bor-
rows’ a token in p1

4 then the t3- and t4-labelled mp-events forming a
cycle can be executed, returning the borrowed token to p1

4 and leading
to the spurious marking {p1

2}.
Spurious Runs. The correspondence between the runs and mp-configura-

tions of μ is not very straightforward: some of its runs (e.g., the run
comprised of the instance of t1 followed by the left instance of t3 in
Figure 2(c)) do not form mp-configurations.

Below we solve these problems for merged processes of safe Petri nets.

The Case of Safe Petri Nets

To capture the notion of an mp-configuration in the case when the original Petri
net Σ is safe, we proceed as follows. Let C be a configuration of β, and Ĉ be a
set of mp-events of μ. Below, G(C) and G(Ĉ) will denote two graphs induced by
the events of C together with their adjacent conditions and the minimal (w.r.t.
<) conditions of β and by the mp-events of Ĉ together with their adjacent
mp-conditions and the initially marked mp-conditions of μ, respectively.

We say that Ĉ satisfies: (a) ME if it is a solution of the marking equation
for μ; (b) ACYCLIC if G(Ĉ) is acyclic; and (c) NG (no-gap) if, for all k > 1

350 V. Khomenko et al.

and all places p of Σ, the following holds: if pk is a node in G(Ĉ) then pk−1 is
also a node in G(Ĉ). Note that if Ĉ = �(C) then G(C) is isomorphic to G(Ĉ)
(including the labelling in terms of places and transitions). The next result gives
a direct characterisation of mp-configurations and is crucial for model checking:

Proposition 6 (mp-configurations in the safe case [8]). A set of mp-events
Ĉ is an mp-configuration iff ME&ACYCLIC&NG holds for Ĉ.

Hence it is enough for model checking to take CONF df= ME&ACYCLIC&NG
and apply an algorithm similar to that described in the beginning of this section
for unfolding prefixes.

We implemented a deadlock checking algorithm based on merged processes
using zChaff [14] as the underlying SAT solver. (Note that other reachability-
like properties can also be implemented simply by adjusting the VIOL con-
straint.) All the experiments were conducted on a PC with a PentiumTM

IV/2.8GHz processor and 512M RAM.
The implementation of the ME and VIOL constraints as Boolean formulae

is very similar to that for unfoldings and not discussed here. The NG constraint
has been implemented as a conjunction of implications of the form confpk →
confpk−1 , for all mp-conditions pk such that k > 1. (Intuitively, confpk = 1
conveys that pk is in G(Ĉ); similarly, conf ê = 1 conveys that ê is in G(Ĉ), for
each non-cut-off mp-event ê of μ.)

The implementation of ACYCLIC constraint is different from that in [8]
(and so we report better results for deadlock checking). The problem can be
re-formulated as follows: given a digraph G = (V, E) (representing μ) with a
boolean variable confv associated with each vertex v ∈ V , construct a boolean
formula ACYCLIC (depending on the variables conf∗ and, perhaps, other vari-
ables) such that, given an assignment to variables conf∗, the formula obtained
from ACYCLIC by substituting the variables conf∗ by their values is satisfiable
iff the subgraph of G induced by the vertices whose corresponding variables
were assigned to 1 is acyclic. (Note that ME , NG and VIOL also contain the
variables conf∗.)

Since each cycle is contained in some strongly connected component of G,
one can partition G into its strongly connected components, generate such a
constraint for each of them separately and form ACYCLIC as their conjunction.
For each strongly connected component Gk = (Vk, Ek) of G = (V, E), the vertices
are sorted to heuristically minimise the number of feedback vertices, i.e., vertices
v ∈ Vk for which there exists w ∈ Vk such that (w, v) ∈ Ek and w > v (since the
vertices of Gk are ordered, we identify each vertex v ∈ Vk with its position in
this order). Then for each such a feedback vertex v ∈ Vk the following formula
is generated (reach∗ are auxiliary variables created separately for each such v):

(confv→reachv) ∧
∧

(x,y)∈Ek
x≥v∧y>v

(
(reachx ∧ confy)→reachy

)
∧
∧

(w,v)∈Ek
w>v

¬reachw .

The idea behind this formula is to perform a reachability analysis in Gk starting
from v and ignoring all the vertices which precede v in the chosen order or are not

Merged Processes — A New Condensed Representation 351

selected. Note that if the values of the variables conf∗ are fixed then this formula
is unsatisfiable iff at least one of the sources of the feedback arcs ending at v is
reachable from v (and hence there is a cycle); moreover, the unsatisfiability can
be proven by unit resolution alone, i.e., one can setup the solver not to branch
on the variables reach∗.

The experimental results in Tables 1 and 2 show that the developed model
checking algorithm is quite practical and it even outperformed the one work-
ing on unfolding prefixes on some of the benchmarks. On the other hand, its
performance deteriorated on the Dph and Gasnq series. We reckon that this
is due to our still inefficient implementation of the ACYCLIC constraint, and
that this can be significantly improved (major improvements over the results
reported in [8] have already been achieved due to a different implementation of
ACYCLIC).

The point we are making with these results is: merged processes are a more
compact behaviour representation than unfolding prefixes, but still allow model
checking of reachability-like properties in at least comparable time. Since space
considerations are of utmost importance in model checking, we regard this as
very promising — although, to make merged processes practical, we still have
to develop an unravelling algorithm that builds them directly from Petri nets
instead of deriving them from unfolding prefixes (significant progress has already
been made).

5 Conclusions and Future Work

We proposed the notion of a merged process — a new condensed representation
of a Petri net’s behaviour allowing one to contain state space explosion arising
not only from concurrency, but also from a sequence of choices and from non-
safeness of the Petri net. Experimental results show that merged processes can
be smaller by orders of magnitude than the corresponding unfolding prefixes, and
are in many cases not much bigger than the original Petri nets. Many results
developed for Petri net unfoldings (related to canonicity, finiteness, completeness
and size) have been transferred to the new framework. Moreover, we proved
sharper upper bounds for some of the net subclasses and directly characterised
the mp-configurations of merged processes of safe Petri nets, which allowed us
to develop a model checking algorithm.

We now identify possible directions for future study (see also the discussion
in [8]): (i) direct characterisation of merged processes (cf. the characterisation of
branching processes by occurrence nets); (ii) direct characterisation of (general)
mp-configurations (for non-safe Petri nets this is still an open problem); (iii)
more efficient model checking; and (iv) direct unravelling algorithm.

Acknowledgements. The authors would like to thank Keijo Heljanko for a
helpful discussion about expressing ACYCLIC and Javier Esparza for sharing
his expertise on LSFC nets. This research was supported by the EC IST grant
511599 (Rodin).

352 V. Khomenko et al.

References

1. E. M.Clarke, O.Grumberg and D.Peled: Model Checking. MIT Press (1999).
2. J. C. Corbett: Evaluating Deadlock Detection Methods for Concurrent Software.

IEEE Transactions on Software Engineering 22 (1996) 161–180.
3. J. Desel and J. Esparza: Free Choice Petri Nets. Cambridge Tracts in Theoretical

Computer Science 40, Cambridge University Press (1995).
4. J. Esparza: Decidability and Complexity of Petri Net Problems — an Introduction.

In: Lectures on Petri Nets I: Basic Models, LNCS 1491 (1998) 374–428.
5. J. Esparza, S.Römer and W.Vogler: An Improvement of McMillan’s Unfolding Al-

gorithm. Formal Methods in System Design 20 (2002) 285–310.
6. K.Heljanko: Using Logic Programs with Stable Model Semantics to Solve Dead-

lock and Reachability Problems for 1-Safe Petri Nets. Fundamenta Informatica 37
(1999) 247–268.

7. V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
Thesis, School of Computing Science, University of Newcastle upon Tyne (2003).

8. V.Khomenko, A.Kondratyev, M.Koutny and V.Vogler: Merged Processes —
a New Condensed Representation of Petri Net Behaviour. Technical Report
CS-TR-884, School of Computing Science, University of Newcastle (2005).
URL: http://homepages.cs.ncl.ac.uk/victor.khomenko/home.formal/papers/
CS-TR-884.pdf

9. V.Khomenko, M.Koutny and V.Vogler: Canonical Prefixes of Petri Net Unfold-
ings. Acta Informatica 40 (2003) 95–118.

10. V.Khomenko, M. Koutny and A.Yakovlev: Detecting State Coding Conflicts in
STG Unfoldings Using SAT. Fundamenta Informatica 62 (2004) 221–241.

11. K. L.McMillan: Using Unfoldings to Avoid State Explosion Problem in the Verifi-
cation of Asynchronous Circuits. Proc. of CAV’1992, LNCS 663 (1992) 164–174.

12. K. L.McMillan: Symbolic Model Checking: an Approach to the State Explosion
Problem. PhD thesis, CMU-CS-92-131 (1992).

13. S.Melzer and S.Römer: Deadlock Checking Using Net Unfoldings. Proc. of Com-
puter Aided Verification (CAV’97), LNCS 1254 (1997) 352–363.

14. S.Moskewicz, C.Madigan, Y. Zhao, L. Zhang and S.Malik: Chaff: Engineering an
Efficient SAT Solver. Proc. of DAC’2001, ASME Tech. Publ. (2001) 530–535.

15. T. Murata: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77 (1989) 541–580.

16. A.Valmari: The State Explosion Problem. In: Lectures on Petri Nets I: Basic Mod-
els, LNCS 1491 (1998) 429–528.

Concurrent Clustered Programming�

(Extended Abstract)

Vijay Saraswat1,�� and Radha Jagadeesan2,� � �

1 IBM T.J. Watson Research Lab
2 School of CTI, DePaul University

Abstract. We present the concurrency and distribution primitives of X10, a mod-
ern, statically typed, class-based object-oriented (OO) programming language,
designed for high productivity programming of scalable applications on high-end
machines. The basic move in the X10 programming model is to reify locality
through a notion of place, which hosts multiple data items and activities that op-
erate on them. Aggregate objects (such as arrays) may be distributed across mul-
tiple places. Activities may dynamically spawn new activities in mulitple places
and sequence them through a finish operation that detects termination of ac-
tivities. Atomicity is obtained through the use of atomic blocks. Activities may
repeatedly detect quiescence of a data-dependent collection of (distributed) activ-
ities through a notion of clocks, generalizing barriers. Thus X10 has a handful of
orthogonal constructs for space, time, sequencing and atomicity. X10 smoothly
combines and generalizes the current dominant paradigms for shared memory
computing and message passing.

We present a bisimulation-based operational semantics for X10 building on
the formal semantics for “Middleweight Java”. We establish the central theorem
of X10: programs without conditional atomic blocks do not deadlock.

1 Introduction

A holy grail of concurrency and theoretical programming languages is the develop-
ment of clean but real concurrent languages. Real enough that they can be used for
regular programming tasks by millions of programmers. Clean enough that they can be
formalized, theorems proven, and correct compilers, transformation systems, program
development methodologies and interactive refactoring tools developed.

There has always been considerable theoretical research in concurrency – CCS,
CSP, process algebras, CCP, π-calculus etc. On the practical front, in imperative lan-
guages, CILK[1,2] has introduced some novel ideas such as work-stealing for symmet-
ric multi-processors (SMPs). Titanium [3], Co-Array Fortran [4] and Unified Parallel
C [5] (UPC) have introduced the Partitioned Global Address Space (PGAS) model [6]
in JAVA, Fortran and C respectively, albeit in a Single Program Multiple Data (SPMD)

� We thank Bard Bloom, Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian
Grothoff, Allan Kielstra, Doug Lea, Maged Michael, Robert O’Callahan, Christoph von Praun,
Vivek Sarkar, and Jan Vitek for many discussions on the topic of this paper.

�� Research supported in part by DARPA No. NBCH30390004.
��� Research supported in part by NSF 0430175.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 353–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 V. Saraswat and R. Jagadeesan

framework. However, the state of the art in concurrent high performance computing
continues to be library-based (e.g. OpenMP [7] for shared-memory concurrency and
MPI [8] for message-passing) rather than language-based. Mainstream languages have
been slow to adopt concurrency. JAVAT M [9] has the best thought out model (some re-
cent work has been proposed on a memory model for C++ [10]), but it suffers from sev-
eral problems. A single global heap does not scale – complex memory models [11] are
needed to enable efficient implementation on modern multi-processors. As is widely ac-
cepted, lock-based synchronization is very brittle – leading to underlocking/overlocking
and bugs that are very hard to find. For high performance (HPCS) computation, JAVA

does not support multidimensional arrays, user-definable value types, relaxed exception
model, aggregate operations etc [12,13].

A number of ideas have come together now which promise a breakthrough. The
exciting new idea of atomic blocks [14,15,16] has raised the possibility that the promise
of robust, reliable parallel imperative programming may be at hand. A fundamental
new opportunity presents itself with the development of the next generation of high
performance computers (e.g. capable of ≈ 1015 operations per second). These will be
based on scale-out techniques rather than clock rate increases (because of power and
heat dissipation issues). This leads to a notion of clustered computing: a single computer
may contain hundreds of thousands of tightly coupled (multi-threaded/SMP) nodes.
Unlike a distributed model, failure of a single node is tantamount to failure of the entire
machine (and all nodes may be assumed to lie in the same trust boundary). However
because of latency and bandwidth, the notion of a single uniform shared memory is no
longer appropriate for such machines.

Together with our colleagues, we have have designed an explicitly parallel program-
ming language for clustered computing, X10 [17], under the aegis of the DARPA HPCS
programme. The fundamental goal of X10 is to enable scalable, high-performance,
high-productivity programming for high-end computers – for traditional numerical com-
putation workloads (such as weather simulation, molecular dynamics, particle transport
problems etc) as well as commercial server workloads. X10 is explicitly parallel be-
cause of our unwillingness to rely on heroic compilers to automatically extract enough
parallelism to keep hundreds of thousands of nodes busy. For productivity, we have
chosen to design X10 in the familiar statically typed, class-based, object-oriented pro-
gramming mould; X10 is intended to be readily accessible to programmers in JAVA-like
languages. Thus X10 is intended to support in an integrated fashion the set of problems
that are today addressed by libraries such as OpenMP and MPI bolted onto base pro-
gramming languages such as Fortran or C.

A reference manual for the language has been completed [17]. The language has
been implemented via a translator to JAVA, developed using the Polyglot compiler
framework. A number of programs have been written in X10 and preliminary pro-
ductivity measures are reported in [18]. In this paper we lay out the basic semantic
foundations of X10.

1.1 Basic Paradigm

Space. Local vs remote memory latency and bandwidth ratios for large scale-out ma-
chines are often higher than two, perhaps three orders of mangitude. Another problem

Concurrent Clustered Programming 355

is that current architecture research has not yet established the efficiency of sequenti-
cally consistent (SC) execution of threads. Attempts to provide a “weaker” semantics
have proven very difficult to formalize and understand (cf the work on the Java memory
model [9,11]).

Our approach to this dilemma is to introduce the notion of a place. A place consists
of a collection of data and activities that operate on the data. (A computation may
consist of millions of places.) A programmer may think of a place as an MPI task
or a node in a distributed Java Virutal Machine (JVM) with its own heap and collection
of threads.

An asynchronous activity is created by a statement async(p)s where p is a place
expression and s is a statement. Such a statement is executed by spawning an activity
at the place designated by p to execute statement s. An activity is created in a place
and remains resident at that place for its lifetime. s (and p) may access lexically scoped
final variables.

Each activity has a sequentially consistent view of the data at that place and may
operate only on the data at the place. It may reference data at other places, but must
operate on them only by launching asynchronous activities (at the place where the data
lives). Thus X10 supports a globally asynchronous, locally synchronous (GALS) com-
putation model, familiar from hardware design and embedded systems research. Unlike
other PGAS languages, X10 is not SPMD – different (collections of) activities may run
at each place.

Any activity may use the place expression here to reference the current place.
Places are assumed to be totally ordered; if p is a place expression, then p.next is
a place expression denoting the next place in the order. There are no expressions for
creating a new place, rather each computation is initiated with a fixed number of places.1

Each object carries its location through a final field location. Access to non-final
fields is permitted only for objects at the same place. Any attempt to access remote
mutable data results in a BadPlaceException (BPE).

EXAMPLE 1 (LATCH). A latch is an object which is initially unlatched, and may be-
come latched. Once it is latched it stays latched. It may be implemented in X10 thus:2

class Latch {
boolean forced = false;
nullable Object result = null;
atomic boolean setValue(nullable Object val) {
if (forced) return false;
this.result = val; this.forced = true; return true;

}
Object force() {when (forced) {return result;}}

}

1 This is consistent with most MPI programs that are started with a fixed number of processes.
2 In X10, reference types do not contain null by default (unlike JAVA), instead the nullable

type constructor must be used to construct a type with the value null. This is one of the
sequential features of X10 we do not discuss in this paper for lack of space.

356 V. Saraswat and R. Jagadeesan

Sequencing. Since X10 supports fine-grained asynchronous, parallel activities – even
a remote read is an activity – a reliable mechanism is needed to detect termination.
X10 provides a finish construct (Section 2.4). Intuitively, finish S executes S
and suspends until all activities created while doing so have terminated (normally or
abruptly).

EXAMPLE 2 (FUTURES). Consider a new expression of the form future (p){e}
where e is of type T. It is desired that this stand for a value of type future<T>. When
this is forced, it will return a value of type T which is the result of evaluating the
expression e in the place p. Such an expression may be implemented as a new latch L,
with the following statement executed in parallel:

async(p){finish T X = e; async(L.location){L.setValue(X);}}

This example shows how distributed datastructures may be created in X10 (even with-
out using distributed arrays); the field of an object may contain a reference to an object
at a different place.

Atomicity. How can multiple activities running in the same place reliably access shared
data? JAVA-like languages support a notion of monitors – the programmer must write
code that explicitly obtains and releases locks [9]. Our experience is that locks are a
very low-level and error-prone synchronization mechanism, making it very easy for
programmers to write erroneous code that underlocks (causing race conditions) or over-
locks (causing deadlock). Instead X10 supports atomic blocks (cf. [15,19,20]) (Sec-
tion 2.2). The statement when(c) s where s is a statement blocks until (if ever) a
state is reached in which c evaluates to true; in this state s is executed atomically –
in a single step as if all other activities are frozen.

when is the only construct for atomicity and mutual exclusion in X10: constructs
such as clocks (Section 2.5) can be expressed using when. This power comes at the cost
of potential deadlock, a risk that can be avoided by using the more restrictive clocks.

We use the shorthand atomic s for when(true) s. We permit the modifier
atomic on method definitions and take that to mean that the body of the method is
enclosed in an atomic.

EXAMPLE 3 (CAS). The following class implements a compare and swap (CAS) op-
eration, the basis for many highly concurrent, non-blocking (lock-free, wait-free) data-
structures (e.g. [21,22]). In the code below target is defined in the lexically enclosing
environment.

atomic boolean CAS(Object old, Object new){
if (target.equals(old)){target = new;return true;}
return false;
}

Time. Thus an X10 computation consists of a large number of asynchronous activities
scattered across space. We now introduce a notion of time. Many scientific computa-
tions need to progress in a sequence of phases. In each phase, activities (scattered across

Concurrent Clustered Programming 357

multiple places) read and write shared data (e.g. a distributed array). Once all activities
have performed one phase of their calculations, each is informed of this global quies-
cence and computation moves to the next phase, and the process repeats. For instance,
in a molecular dynamics application, it may be necessary for a controller activity to
determine that (the activity associated with) each molecule has computed the force in-
cident on it from all other molecules, and hence its instantaneous acceleration a. The
controller may then advance simulation time, causing each molecule to determine its
new position p and velocity v (as a function of its mass m, a and old p and v).

In SPMD languages this phasing is accomplished using the notion of a (split-phase)
barrier. For instance, UPC provides a single barrier for all threads in a computation,
accessed through upc notify (signal that this thread has reached the barrier) and
upc wait (wait until all threads have reached this barrier).

X10 clocks (Section 2.5) can be thought of as obtained from split-phase barriers
while (1) permitting dynamic creation, (2) permitting dynamic (de-) registration of ac-
tivities, and (3) ensuring that operations are race-free (hence determinate). By race-free
we mean that two operations on the same clock performed at the same time by two
separate activities commute with each other (hence cannot conflict).

Concretely, a clock is a data-structure that may be dynamically created (clock
c is new); an activity may create as many clocks as it wishes.3 Conceptually each
clock is associated with an integer that specifies the current phase of the clock; this
integer is initially zero, and is incremented each time the clock advances. A clock is
said to advance to the next phase when all activities registered with it have quiesced
(see below).

The activity creating the clock is automatically registered with it. An activity A may
at any time deregister itself from clock c by executing c.drop(); any subsequent
attempt by A to invoke an operation on c results in a ClockUseException (CUE)
being thrown. A may indicate that it has quiesced on c (in its current phase) by executing
c.resume(). It may suspend until all clocks it is registered with have moved to the
next phase by executing the next; statement (this automatically resumes all clocks the
activity is registered with). There is no statement allowing A to suspend until a given
clock it is registered with has moved to the next phase; such a statement can easily cause
deadlock.

An activity A may register a new activity it is spawning with clocks c1, ..., cn
by executing async(P) clocked (c1,...,cn) s. We require the Live Clock
Condition (LCC) to hold: A itself be live on ci (for i in 1,...,n). That is, A should
be registered with ci and not have quiesced on it. A ClockUseException is thrown
if this condition is violated.

The LCC ensures that the only way an activity can be registered on a pre-existing
clock c is if it is created by an activity that is live on c. While an activity is live on
c, c cannot advance; hence X10 has no race conditions between registration and clock
advance. (It is easy to see that permitting an activity to read a clock as the value of some
field of some object and register itself on it could cause a race condition.) The execution
of c.resume() (or c.drop()) operations by two activities commute, hence they do
not constitute a race. Thus X10 clocks are race-free.

3 In particular, we remark that clocks may be used to obtain oversampling through nesting.

358 V. Saraswat and R. Jagadeesan

A key semantic property of a clock is that clock quiescence is stable (Theorem 5):
once every activity registered on the clock has quiesced, no further action by any activity
can change this fact. Therefore when the last activity quiesces, it can trigger a clock
advance.

finish interacts with clocks. finish async clocked(c) next; dead-
locks when executed by an activity A registered on c. (A cannot advance till the async
terminates; that cannot happen until A executes c.resume().) To ensure deadlock
freedom, X10 requires that the activity executing the body of a finishmust not spawn
a clocked async while doing so. This can be accomplished dynamically by throwing a
ClockUseException in such a case (Section 2.5) or statically, with appropriate
type rules.

The fundamental theorem of X10 is that these conditions are sufficient to ensure
that programs without when are deadlock-free (Theorem 9).

EXAMPLE 4 (NOW). Imagine we wish to define a construct now (c) s intended to
ensure that execution of statement s terminate completely in the current phase of the
clockc. This may be accomplished by: async clocked(c) finish async s;

The outer activity is registered on c; hence c cannot advance until it performs a
next or terminates. It cannot terminate until the finish is completed. An async is
used to ensure that the execution of s is done in an activity which is not registered with
any old clock. Thus any next performed by s will interact only with “new” clocks
(produced during the execution of s).

1.2 Rest of This Paper

This completes a description of the basic concurrency and distribution primitives in
X10. We briefly mention those aspects of X10 that are not covered in this abstract for
reasons of space (details in [17]). X10 supports a rooted, synchronous, non-resumptive
exception model, with a try/catch/finally construct. An exception thrown by
an abruptly terminating activity A is caught by the enclosing activity suspended on
a finish waiting for A to terminate. This paper, however, permits exceptions to be
raised but not caught; thus any exception raised is fatal and terminates the entire com-
putation. X10 supports a notion of immutable datastructures called value types and an
explicit nullable type annotation (to specify that the type contains the value null).
X10 supports multi-dimensional arrays that may be distributed across multiple places,
using the concept of named regions (set of index points), and distributions (mapping of
these points to places). X10 also has a static place-based type system (augmented with
dynamic place-casts).

The rest of this paper presents a formal operational semantics for the concurrency
and distribution features of X10. The semantics is intended to be used as a basis for in-
formal reasoning with programs, program development methodologies, advanced com-
piler optimizations, and program refactoring.

The primary contributions of this paper are as follows. (1) We present a simple pro-
gramming model for clustered computing. (2) We show that programs in a rich subset
– including finish and nested clocks – cannot deadlock. (3) We formalize a com-
positional operational semantics based on bisimulation. (4) We establish other basic

Concurrent Clustered Programming 359

properties of the programming model: equational laws for various constructs; the cor-
rectness of programs is not affected by the number of places; clock quiescence is stable.
We refer the reader to the sister paper [18] for a discussion of how lock-free computa-
tions, CILK programs, systolic arrays and MPI computations can be expressed in this
subset.

The model is formalized in the style of previous JAVA-centric calculi focusing on
types ([23]) and (sequential) imperative programming (MJ [24]).

1.3 Related Work

While there has been a lot of work on formal models for concurrency, there has been
less work on formal models for real concurrent languages. We have chosen to design
X10 on top of a modern OO language and present the semantics as such in this paper.
However the core concurrency and distribution model can also be adapted for other
imperative languages such as C or Fortran.

X10 is a member of the PGAS family of languages and is distinguished from them
in not being based on an SPMD model, permitting multiple activities per locale or
place, supporting very general notions of clocked computations, supporting sequencing
of distributed computations (through finish), and using atomic blocks for mutual
exclusion.

The X10 async and finish operations are related to CILK’s spawn and sync
constructs but are not arbitrarily scoped to methods. (CILK has no notion of places,
distributed arrays, clocks or atomic blocks.)

While being similar to JAVA in its sequential aspects, X10 has a completely different
concurrency and distribution model. All the Java Grande Forum benchmarks [25] that
use threads (crypt, lufact, moldyn, montecarlo, raytracer, series, sor) have been ported
to the deadlock-free fragment of X10.

An MPI program may be represented in X10 with a place per MPI process, running
a single main activity. The MPI-2 communication primitives can be directly imple-
mented with asyncs.

2 The X10 Programming Model

Our presentation is built on top of the MJ calculus [24]. It includes mutable state, block
structured values and basic object-oriented features. Additional sequential constructs
may be added in a routine fashion.

An MJ configuration consists of a quadruple (H,VS,s,FS) where:

– H represents the heap of objects. The heap is represented as a binding of object
names to a pair of the class name and a finite function mapping field names to
values (objects or basic values).

– VS, the variable stack, represents the block structure of the underlying program-
ming language. The variable stack changes during reduction whenever a new scope
is added or removed.

– s is the statement currently being executed.

360 V. Saraswat and R. Jagadeesan

– FS the frame stack, represents the continuation that follows the execution of s. In
the case that s is an expression that evaluates to a value (say v), the head of the
frame stack is an open frame with a hole to indicate the position at which v is to
be substituted. Otherwise (s is a statement without a return value), the head of the
frame stack is a closed frame without a hole.

This structure is changed for X10 by taking a configuration to be a triple (H,σ,Δ) where
H is a heap (changed from MJ to include place information with each object), σ is a
constraint store used to model clocks and Δ is a tree each of whose nodes is labeled with
an activity. An activity is of the form p : (s,(V S,FS,K)) where p indicates the place
of the activity, VS and FS are as above and K is a clock-map associating object id’s
representing clocks with their associated data structure (clock-counters, Section 2.5).
These changes are summarized in Figure 1.

The Table is to be taken in conjunction with Figure 1 and the Table in Section 2.3
of [24]. The former defines the syntactic categories programs (p), class (cd), field (f d),
constructor(cnd), method (md) definitions, expressions (MJe below), and statements
(MJs). The latter defines MJ’s Variable Stack (MJVS), Closed Frame (MJCF), and Open
Frame (MJOF). We refer the reader to [24] for a detailed description of MJ.

Table 1. Syntax and Configurations for X10

e ::=pe |MJe
s ::=(Statement)

when(c) s
async(p)clocked(c̄)s
finish s
next;
clock x is new
resume c
drop c
MJs

pe::=(Place Expression)
here | pe.next | v.place

(X10 Conf.) Xc ::= (H,σ,Δ) | E
(Activity) a ::= p : (s,(VS,FS,K)) | E
(Term. Activity)ta ::= p : (; ,(VS, [], [])) | E
(Frame Stack) FS ::= F ◦FS | []
(Frame) F ::= CF | OF
(Variable Stack)VS ::= MJVS
(Places) p,q ::= int
(Closed Frame) CF ::= waitn;

waitf; |MJCF
(Open Frame) OF ::= async(•) s

| when(•) s |MJOF
(Values) v ::= null | o | p
(Error) E ::= BPE | CUE | FE | NPE | CCE

The transition relation relates configurations. X10 specifies the top-level statement
is executed implicitly in a finish.

Tree Transitions. The transition relation on composite configurations is described as a
tree transformation. Let Δ̄ be the (possibly empty) sequence Δ0, . . . ,Δk−1. We use the
notation n � Δ̄ to indicate a tree with root node n and subtrees Δ0, . . . ,Δk−1.

A rule Δ[Δ1] −→ Δ[Δ2] is understood as saying that a tree Δ containing a subtree
Δ1 can transition to a tree which is the same as Δ except that the subtree Δ1 is re-
placed by Δ2. Thus if Δ is the tree A1(A2(A3,A4),A5(A6)) then an application of the
rule Δ[A2] −→ Δ[A8(A9)] gives the tree A1(A8(A9,A3,A4),A5(A6)). An application of
the rule Δ[A2 � Δ′]−→ Δ[A8(A9)] gives the tree A1(A8(A9),A5(A6)) (the entire subtree
at A2 is replaced).

Concurrent Clustered Programming 361

(COMPOSITE)

(H,σ,Δ1)−→ (H ′,σ′,Δ2)
(H,σ,Δ[Δ1])−→ (H ′,σ′,Δ[Δ2])

MJ Transitions. The transition system incorporates mutatis mutandis all the MJ reduc-
tion and decomposition reduction rules ([24, Fig 2,3])) for the various MJ constructs,
except for changes caused by the introduction of places. These changes are: the rule
(E-New) is replaced by (New) below (to ensure the new object is created at the right
place); the rules (E-Method), (E-MethodVoid), (E-FieldAccess) and (E-FieldWrite) are
replaced by rules that check that the target object is local. We illustrate below with
FieldAccess.

2.1 Places and Activities

The heap has place information for each object, recoverable using the final field location.
Access to non-final fields is permitted only for objects at the same place. Access to ob-
jects located at a different place leads to a BPE.

(HERE)

(H,σ, p : (here,S))−→ (H,σ, p : (p,S))

(NEW)

cnBody(C) = (x̄, s̄),Δc(C) = C̄,o
∈ dom(H),
F = [location �→ p, f �→ null, f ∈ f ields(C)],BS = [this �→ (o,C), x̄ �→ (v̄,C̄)]
(H,σ, p : (new C(v̄),(V S,FS,K)))

−→ (H[o �→ p : (C,F)],σ, p : (s̄,((BS◦ [])◦V S,(return o;)◦FS),K))

(FIELDACCESS)

H(o) = q : ((C,F)),F (f) = v,q = p or f is final

(H,σ, p : (o. f ,S))−→ (H,σ, p : (v,S))

(FIELDACCESSBPE)

H(o) = q : ((C,F)), p
= q and f is not final

(H,σ, p : (o. f ,S))−→ BPE

2.2 Atomic Blocks

when(e) s completes in one step if and when e evaluates to true in the current store and
without interruption s completes execution. X10 syntax rules guarantee that an atomic
block cannot execute an async or a clock operation; hence K remains unchanged in
the antecedent of Rule Atomic1.

(ATOMIC1)

(H,σ, p : (e,(VS, [],K))) �−→ (H1,σ1, p : (true,(VS1, [],K))
(H1,σ1, p : (s,(VS1, [],K))) �−→ (H2,σ2, p : (; ,(VS2, [],K))) | E
(H,σ, p : (when(e) s,(VS,FS,K)))−→ (H2,σ2, p : (; ,(VS2,FS,K))) | E

(ATOMIC2)

(H,σ, p : (e,(VS, [],K))) �−→ E

(H,σ, p : (when(e) s,(VS,FS,K)))−→ E

362 V. Saraswat and R. Jagadeesan

2.3 Asynchronous Activities

Async Without Clocks. In async(e) s, the expression e must be evaluated first. It is
considered locally terminated after it has spawned the new activity. The spawned activ-
ity is started with an empty continuation, but is given the variable stack of the spawning
environment (the static semantics ensures only final variables can be accessed in VS).

(ASYNC1)

(H,σ, p : (async(e) s,(VS,FS,K)))−→ (H,σ, p : (e,(VS,async(•) s◦FS,K)))

(ASYNC2)

(H,σ, p : (async(q) s,(VS,FS,K))−→ (H,σ, p : (; ,(VS,FS,K))�q : (s,(VS, [], [])))

2.4 finish

The finish rule creates a nested activity, with the given variable stack and clocks but no
continuation. 4 On termination of this activity and its subtree the parent activity may
continue, with updated VS and K. The second and third rules replace an entire subtree
of terminated activities with a single node. (For the purposes of the simpler exception
semantics of this paper, the last rule could have been simplified to propagate exceptions
more eagerly.)

(FINISH1)

(H,σ, p : (finish(s),(VS,FS,K)))−→ (H,σ, p : (waitf;,([],FS, []))� p : (s,(VS, [],K)))

(FINISH2)

Δ is a tree of terminated activities w/ no exceptions

(H,σ, p : (waitf;,([],FS, []))�q : (; ,(VS, [],K))�Δ)−→ (H,σ, p : (; ,(VS,FS,K)))

(FINISH3)

Δ is a tree of terminated activities containing an exception

(H,σ, p : (waitf;,([],FS, []))�Δ)−→ FE

In the last rule the exception could have been propagated more eagerly; we choose
the above formulation because it reflects the semantics of finish in the richer model
in which exceptions are propagated and may be caught.

2.5 Clocks

To specify the semantics of clocks, we use the streamed short circuit technique for
detecting stable properties of distributed systems from concurrent logic programming
[26,27]. This technique makes the proof of the Clock Quiescence Stability theorem
(Theorem 5) immediate. We note that this technique is used purely to specify the se-
mantics of clocks.

In essence, the technique uses constraints to implement a distributed stable counter
(henceforth: counter). A counter X is equipped with the following operations: (1) set

4 This nesting is necessary: consider finish {s1; finish {s2;} s3;}. s3 cannot be
initiated until all the activities spawned by s2 have terminated; but there is no requirement
that activities spawned by s1 have terminated.

Concurrent Clustered Programming 363

Table 2. Clock Rules

(NEW CLOCK)

(H,σ, p : (clock x is new;,(VS,FS,K)))
−→ (H,σ+g, p : (; ,(VS,FS,K[x �→ (g,g)])))

(CLOCK-ASYNC)

{c0, . . . ,cn−1} ⊆ |K|,waitf; not in FS,
K′ = K[ci �→ (Kg(ci),Xi) | i < n],K′′ = [ci �→ (Kg(ci),Yi) | i < n]
(H,σ, p : (async(q)clocked(c0, . . . ,cn−1) s,(VS,FS,K)))
−→ (H,σ∪{Kl(ci) = Xi +Yi | i < n}, p : (; ,(VS,FS,K′))�q : (s,(VS, [],K′′)))

(CLOCK-ASYNC-EXCEPTION)

{c0, . . . ,cn−1}
⊆ |K| or waitf; in FS

(H,σ, p : (async(q)clocked(c0, . . . ,cn−1) s,(VS,FS,K)))−→ CUE

(RESUME)

(H,σ, p : (resume c,S))−→ (H,σ∪{Kl (c).car= 0}, p : (; ,S))

(NEXT)

σ′ = σ∪{Kl (c).car= 0 | c ∈ |K|}
(H,σ, p : (next;,S))−→ (H,σ′, p : (waitn;,S))

(WAITNEXT)

σ � Kg(c).car= 0 (∀c ∈ |K|)
K′ = [c �→ (Kg(c).cdr,Kl(c).cdr) | c ∈ |K|]
(H,σ, p : (waitn;,(VS,FS,K)))−→ (H,σ, p : (; ,(VS,FS,K′)))

(DROP)

(H,σ, p : (drop c,(VS,FS,K)))−→ (H,σ∪{0(Kl (c))}, p : (; ,(VS,FS,K \c)))

(TERMINATE)

(H,σ, p : (; ,(VS, [],K)))−→ (H,σ∪{0(Kl (c)) | c ∈ |K|}, p : (; ,(VS, [], [])))

to zero, (2) split and (3) check if zero. A counter r can only be split if it is not zero;
two new counters are created and when both reach zero, r is set to zero. Once zero, the
counter stays at zero, hence the success of the check is stable. These operations may be
implemented with constraints as follows: A counter is represented by a variable X, it is
set to zero by asserting X=0, it is split by asserting X=Y+Z, where Y and Z are two new
variables, and it is checked by asking if X=0.

Clocks require a check for quiescence in each phase, hence we need a stream of
counters, a counter-stream.

Formally, a constraint store σ is a set of constraints, equipped with a function var
which represents the set of variables over which the constraints are defined. If X does
not occur in σ, then we write σ + X to indicate a constraint store identical to σ except
that var(σ+ X) = var(σ)∪{X}. The relevant constraints are:

(Term) t ::= X | 0 | t+t | t.cdr | t.car
(Constraint Store)σ ::= true | t = t | 0(t) | σ,σ

364 V. Saraswat and R. Jagadeesan

with the obvious entailment relation, augmented with the axioms: 0(X), X.car =
Z � Z=0 and 0(X), X.cdr = Z � 0(Z).

A clock-counter is a pair of terms 〈g, l〉, where g is the global counter-stream and
l the local counter-stream. We will arrange matters so that if the set of activities regis-
tered with a clock c is A1, . . . ,An, then each Ai has a clock-counter (g, li), and the store
has the constraint g.car= l1.car+ ...+ ln.car. When activity Ai performs
a resume it asserts the constraint li.car= 0. Ai can determine when all activities
have quiesced by checking g=0. It can move to the next phase by progressing with the
clock-counter (g.cdr, li.cdr). It can drop the counter by asserting 0(li). No
separate active representation of a clock is needed.

In Table 2, we present the formal rules capturing these ideas. We augment the state
of each activity with a clock map (henceforth: map) K (a finite partial function from
oids to clock-counters). We use ε to indicate the unique map with empty domain. If
K(c) = (x,y), we use Kg(c) for x and Kl(c) for y. We use |K| for the domain of K;
K[c �→ Xc | φ] for K extended with the value Xc for each c satisfying φ (we drop K when
it is ε, the empty map); and K \ c for K with c removed from its domain.

In the rule for new clocks, we assume alpha renaming to ensure that x and g are new.
Note that for a newly created clock the global counter-stream is the same as the local
counter-stream, reflecting the fact that the clock has a single activity registered with it.
Clocks may be transmitted to new activities when they are created.

THEOREM 5 (CLOCK QUIESCENCE IS STABLE). Let configuration (H,σ,Δ) be such
that σ � X.car= 0 where X is the global counter-stream of a clock in the clock set of
some activity in Δ. Let (H,σ,Δ)−→ (H ′,σ′,Δ′). Then σ′ � X.car= 0.

The only operations performed on the constraint store are Ask and Tell operations [27].
So, the theorem follows from the monotonicity of the constraint store.

3 Properties of X10 Programs

3.1 Bisimulation

We define a notion of bisimulation and show that it is a congruence. Our study of bisim-
ulation focuses on issues relating to concurrency and shared memory. Thus, our treat-
ment does not validate enough equations in the sequential subset, eg. those relating to
garbage collection. However, even this weak notion of equality suffices to prove several
basic laws relating the new control constructs that we have discussed in this paper.

The transition system defined so far is for closed programs. In order to get a no-
tion of equality that is a congruence wrt shared memory concurrent programming, we
need to model the transition relation for open programs. We use a notion of an en-
vironment move to model update of shared heap by a concurrent activity. For a heap
H, an environment move λ = (o, f , p,o′) is the update of the field f in object o (if
it exists) to o′. Formally, if H(o) = (C,F), f ∈ dom(F) then, the resulting heap is
λH = H[o �→ p : (C,F [f �→ o′])]. This notion of environment move is stronger than
necessary, e.g. it does not respect the visibility constraints imposed by the underlying
OO paradigm.

Concurrent Clustered Programming 365

DEFINITION 6. A binary relation≡ on configurations is a bisimulation if the following
holds. If (H1,σ1,Δ1)≡ (H2,σ2,Δ2), then:

– H1 = H2, σ1 = σ2.
– For all environment moves λ = (o, f , p,o′), if (λH1,σ1,Δ1) −→ (H ′

1,σ
′
1,Δ

′
1), then

there exists (λH2,σ2,Δ2)
�−→ (H ′

2,σ′2,Δ′2) such that (H ′
1,σ′1,Δ′1)≡ (H ′

2,σ′2,Δ′2).
– For all environment moves λ = (o, f , p,o′), if (λH2,σ2,Δ2) −→ (H ′

2,σ′2,Δ′2), then

there exists (λH1,σ1,Δ1)
�−→ (H ′

1,σ
′
1,Δ

′
1) such that (H ′

2,σ
′
2,Δ

′
2)≡ (H ′

1,σ
′
1Δ′1).

Let C[·] be an activity context with a statement hole. Two statements s1,s2 are
bisimilar, written s1 ≡ s2 if for all C[·] forall heaps H and forall σ , (H,σ,C[s1]) ≡
(H,σ,C[s2]). Similarly for two (promotable) expressions e1,e2, e1 ≡ e2 if for all C[·]
with expression holes, forall heaps H and forall σ, (H,σ,C[e1])≡ (H,σ,C[e2]).

The definition of ≡ quantifies over all sequential contexts. The use of environment
moves in Definition 6 enables us to prove a congruence property for all contexts includ-
ing tree contexts.

LEMMA 7. Let Δ[·] (resp. Δ′[·]) be a tree of open or closed activity contexts with a
statement (resp. expression) hole. Then, for all heaps H and forall σ, if s1 ≡ s2, then:
(H,σ,Δ[s1])≡ (H,σ,Δ[s2]) and (H,σ,Δ′[e1])≡ (H,σ,Δ′[e2]).

The following equations hold upto bisimulation.

when(c) when(d) s ≡ when(c&&d) s

atomic { s1; atomic s2} ≡ atomic {s1; s2}
async(P){s}; async(Q) {s1} ≡ async(Q){s1}; async(P){s}

async(P){async(Q){s} s1} ≡ async(Q[here/P]){s}; async(P) {s1}
finish{s; s1} ≡ finish{s}; finish{s1}

finish{when(c){s}} ≡ when(c){finish{s}}
finish async(p) {} ≡ {}

Additionally finish s is equal to s for s a next, resume or drop operation.

3.2 Monotonicity of Places

As an application of bisimulation, we show that FX10 programs are insensitive to the
location of objects in the heap. For these programs, distribution may introduce effi-
ciency but does not affect correctness. Let SCoord = {here,here.next,here.next.next. . .}.
Let s be such that no transition sequence from ([],σ, p : ([],s, [])) leads to an error.

LEMMA 8. Let Θ be an operator on the set SCoord. Let trans(Θ,s) be the result
of replacing every subexpression async(p) in s by async(Θ(e)). Then: ([],σ, p :
(s,([], [], []))) ≡ ([],σ, p : (trans(Θ,s),([], [], []))).

When Θ is the constant function, we get a class of programs can be debugged and
developed in a one-place execution environment before being deployed in a multi-place
execution environment for efficiency.

366 V. Saraswat and R. Jagadeesan

3.3 Deadlock Freedom

For any configuration, define a wait-for graph as follows. There is a node for each clock
and each activity that is suspended on a next; or a finish. There is an edge from
each clock to an activity registered on that clock that is suspended on a finish. There
is an edge from each activity suspended on a next to a clock the activity is registered on.
There is an edge from each activity suspended on a finishs to each activity spawned
by s that is suspended. A configuration is stuck iff it is terminal or there is a cycle in
the wait-for graph.

Clocks (without finish) are deadlock free, since no activity has an incoming edge
in this case. Deadlock-freedom holds for a larger language that encompasses lock-free
computations, CILK programs, systolic arrays and MPI computations.

THEOREM 9. There are no cycles in the wait-for graph for programs in the language
with atomic, clocks, and finish.

4 Conclusion and Future Research

We believe that X10 offers a simple, clean but real design for high-productivity, high-
performance concurrent programming for high-end computers.

However, these are just the first stages of X10 development. Considerable additional
work is needed to establish efficient compilers and multi-node virtual machines for
X10.

References

1. CILK-5.3 reference manual. Technical report, Supercomputing Technologies Group (2000)
2. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work stealing. In:

Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. (1994)
356–368

3. Yelick, K.A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfinger,
P.N., Graham, S.L., Gay, D., Colella, P., Aiken, A.: Titanium: A high-performance java
dialect. Concurrency - Practice and Experience 10 (1998) 825–836

4. Numrich, R., Reid, J.: Co-array Fortran for parallel programming. Fortran Forum 17 (1998)
5. El-Ghazawi, T., Carlson, W., Draper, J.: UPC Language Specification v1.1.1. Technical

report, George Washington University (2003)
6. Carlson, W., El-Ghazawi, T., Numrich, B., Yelick, K.: Programming in the Partitioned

Global Address Space Model (2003) Presentation at SC 2003, http://www.gwu.edu/ upc/
tutorials.html.

7. (Openmp specifications) www.openmp.org/specs.
8. Skjellum, A., Lusk, E., Gropp, W.: Using MPI: Portable Parallel Programming with the

Message Passing Iinterface. MIT Press (1999)
9. Gosling, J., Joy, W., Steele, G., Bracha, G.: The Java Language Specification. Addison

Wesley (2000)
10. Alexandrescu, A., Boehn, H., Henney, K., Lea, D., Pugh, B.: Memory model for multi-

threaded c++. Technical report, metalanguage.com (2004) JTC1/SC22/WG21 – C++, Doc-
ument Number: WG21/N1680=J16/04-0120.

Concurrent Clustered Programming 367

11. Pugh, W.: Java Memory Model and Thread Specification Revision (2004) JSR 133,
http://www.jcp.org/en/jsr/detail?id=133.

12. Moreira, J.E., Midkiff, S.P., Gupta, M., Artigas, P.V., Snir, M., Lawrence, R.D.: Java pro-
gramming for high-performance numerical computing. IBM Systems Journal 39 (2000) 21–

13. Moreira, J., Midkiff, S., Gupta, M.: A comparison of three approaches to language, compiler,
and library support for multidimensional arrays in java computing. In: Proceedings of the
ACM Java Grande - ISCOPE 2001 Conference. (2001)

14. Flanagan, C., Freund, S.: Atomizer: A dynamically atomicity checker for multithreaded pro-
grams. In: Conference Record of POPL 04: The 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Venice, Italy, New York, NY (2004)

15. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA. (2003)
388–403

16. Harris, T., Herlihy, M., Marlow, S., Jones, S.P.: Composable memory transaction. In: SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. (2005)

17. Saraswat, V.: Report on the Experimental Language X10, v0.41. Technical report, IBM
Research (2005)

18. Charles, P., Grothoff, C., Donawa, C., Ebcioglu, K., Kielstra, A., von Praun, C., Saraswat, V.,
Sarkar, V.: X10: An object-oriented approach to non-uniform cluster computing. Technical
report, IBM Research (2005) To appear in OOPSLA 2005 Onwards! Track Proceedings.

19. Hansen, P.B.: Structured multiprogramming. CACM 15 (1972)
20. Hoare, C.: Monitors: An operating system structuring concept. CACM 17 (1974) 549–557
21. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and

Systems 13 (1991) 124–149
22. Michael, M., Scott, M.: Simple, Fast and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms. In: Proceedings of the 15th ACM Annual Symposium on Principles of
Distributed Computing. (1996) 267–275

23. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus for java
and gj. ACM Trans. Program. Lang. Syst. 23 (2001) 396–450

24. G.M. Bierman, M.P., Pitts, A.: MJ: An imperative core calculus for Java and Java with
effects. Technical Report 563, University of Cambridge Computer Laboratory (2003)

25. : (The java grande forum benchmark suite) www.epcc.ed.ac.uk/javagrande/javag.html.
26. Saraswat, V., Kahn, K., Shapiro, U., Weinbaum, D.: Detecting stable properties of networks

in concurrent logic programming languages. In: Seventh Annual ACM Symposium on Prin-
ciples of Distributed Computing. (1988) 210–222

27. Saraswat, V.: Concurrent Constraint Programming. Doctoral Dissertation Award and Logic
Programming. MIT Press (1993)

A Theory of System Behaviour in the Presence of
Node and Link Failures

(Extended Abstract)

Adrian Francalanza and Matthew Hennessy

University of Sussex, Falmer Brighton BN1 9RH, England

Abstract. We develop a behavioural theory of distributed programs in the pres-
ence of failures such as nodes crashing and links breaking. The framework we
use is that of Dπ, a language in which located processes, or agents, may mi-
grate between dynamically created locations. In our extended framework, these
processes run on a distributed network, in which individual nodes may crash in
fail-stop fashion or the links between these nodes may become permanently bro-
ken. The original language, Dπ, is also extended by a ping construct for detecting
and reacting to these failures.

We define a bisimulation equivalence between these systems, based on labelled
actions which record, in addition to the effect actions have on the processes, the
effect on the actual state of the underlying network and the view of this state
known to observers. We prove that the equivalence is fully abstract, in the sense
that two systems will be differentiated if and only if, in some sense, there is
a computational context, consisting of a surrounding network and an observer,
which can see the difference.

1 Introduction

It is generally accepted that partial failures are one of the principal factors preclud-
ing location transparency in distributed settings such as wide-area networks, [4], large
computational infrastructures which may even span the globe. Because of this, vari-
ous location-aware calculi and programming languages have arisen in the literature to
model the behaviour of distributed programs in the presence of failures, and to study
the correctness of algorithms is such a setting. The purpose of this paper is to:

– invent a simple framework, a distributed process calculus, for describing computa-
tions over a distributed network in which individual nodes and links between the
nodes are subject to failure

– use this framework to develop a behavioural theory of distributed systems in which
these failures are taken into account.

Our point of departure is Dπ [12], a simple distributed version of the standard π-calculus
[16], where the locations that host processes model closely physical network nodes.
Ignoring the type system developed for Dπ, which is orthogonal to the issues addressed
here, we consider the following three Dπ abstract server implementations as motivation:

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 368–382, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

{adrianf, matthewh}@sussex.ac.uk

A Theory of System Behaviour in the Presence of Node and Link Failures 369

server ⇐ (ν data)

(
l[[req?(x, y).data!〈x, y〉]]
| l[[data?(x, y).y!〈 f (x)〉]]

)
servD ⇐ (ν data)

(
l[[req?(x, y).go k1.data!〈x, y〉]]
| k1[[data?(x, y).go l.y!〈 f (x)〉]]

)

servD2Rt ⇐ (ν data)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣req?(x, y).(νsync)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
go k1.data!〈x, sync〉
| go k2. go k1. data!〈x, sync〉
| synch?(x).y!〈x〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

| k1

[[
data?(x, y).

(
go l. y!〈 f (x)〉
go k2. go l. y!〈 f (x)〉

)]]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The three systems server, servD and servD2Rt implement a server that accepts a single
request for processing on channel req at location l with two arguments, x being the
value to be processed and y being the return channel on which to return the result of
the processing. A typical client for these servers would have the form l[[req!〈n, ret〉]],
sending the name n as the value to be looked up and ret as the return channel.

Every server forwards the request to an internal database hidden from the client,
denoted by the scoped channel data, which processes the value using an unspecified
function f (x). The three implementations differ by where the internal database is located
and how it is handled. More specifically, server holds the database locally at l and
carries out all the processing there; by contrast, servD and servD2Rt distribute the
database remotely at location k1. The latter two server implementations also differ by
how the remote database is accessed: servD accesses the database using the direct route
from l to k1; servD2Rt forwards the service requests along two concurrent routes, that is
the direct one from l to k1 and an indirect route using an intermediary node k2 and non-
deterministically selects one of two results if both routes are active.Intuitively, these
three server implementations are not equivalent because they exhibit distinct behaviour
in a setting with node and link failure. For instance, if node k1 fails, servD and servD2Rt
may not be able to service a client request whereas server would continue to work
seamlessly. Moreover, servD and servD2Rt are also distinct because if the link between
l and k1 breaks, servD may block and not serve a request while servD2Rt would still
operate as intended. Despite the fact that these three implementations are qualitatively
different, it is hard to distinguish between them in Dπ theories such as [10].

In this paper, we develop a behavioural theory that tells these three systems apart.
We use extended Dπ configurations of the form Σ � N where Σ is a representation
of the current state of the network, and N consists of the systems such as those we
have just seen, software executing in a distributed manner over Σ. Here Σ records the
set of nodes in the network, their status (whether they are alive or dead), and their
connectivity (the set of symmetric links between these nodes). This results in a succinct
but expressive framework, in which many of the phenomena associated with practical
distributed settings, such as routing algorithms and ad-hoc network discoveries, can be
examined.

The corresponding behavioural theory takes the form of (weak) bisimulation equiv-
alence, based on labelled actions

Σ � N
μ−→ Σ′ � N′ (1)

370 A. Francalanza and M. Hennessy

where the label μ represents the manner in which an observer, also running on the net-
work Σ, can interact with the system N. This interaction may not only change the state
of the system, to N′, in the usual manner, but also affect the nature of the underlying
network. For instance, an observer may extend the network by creating new locations or
otherwise induce faults in the network by killing sites or breaking links between sites,
thereby capturing, at least, some of the reaction of N to dynamic failures.

It turns out that the definition of the actions in (1) needs to be relatively sophisti-
cated: although the system and the observer may initially share the same view of the
underlying network, Σ, interactions quickly give rise to situations in which these views
diverge. More specifically, observers may learn of new nodes in the system as a result of
interaction (scope extrusion), but at the same time, cannot determine the state of such
nodes and the code executing at them either because the newly discovered nodes are
completely disconnected or because the observer does not have enough information to
determine a route which leads to these nodes. As a result, in (1) above, the network rep-
resentation Σ needs to somehow record the actual full state of the underlying network,
together with the observer’s partial view of it.

We choose to develop the theory in terms of a representation with nodes and links,
despite the widely held view that representation of nodes only is sufficient; this would
typically entail encoding a link between location l and k as an intermediary node lk,
encoding migration from l to k as a two step migration from l to lk and lk to k, and finally
encoding link failure as the intermediary node lk failing. A network representation with
partial connection between nodes is very natural in itself since WANs are often not a
clique. The resulting calculus also gives rise to an interesting theory of partial views that
deserves to be investigated in its own right. In addition, this setting allows us to study
directly the interplay between node and link failure and their respective observation
from the software’s point of view. Finally, it is unlikely that a theory resulting from an
encoding into a nodes only calculus would be fully abstract, due to the fact that any
encoding would typically decomposes atomic reductions such as migration into sub-
reductions, which in turn affects the resulting bisimulation equivalence; see [9].

The paper is organised as follows: Section 2 introduces DπF and the reduction se-
mantics. In Section 3 we present an initial definition of actions for DπF, based on the
general approach of [11]. The resulting bisimulation equivalence can be used to demon-
strate equivalencies between systems, but we show, by a series of examples, that it is
too discriminating. In Section 4, we revise the definition of these actions, by abstract-
ing from internal information present in the action labels, and show that the resulting
equivalence is fully abstract with respect to an intuitive form of contextual equivalence.
This means that two systems will be differentiated by the bisimulation equivalence if
and only if, in some sense, there is a computational context, consisting of a network and
an observer, which can see the difference. The complete proofs, elaborate discussions
and extensive examples may be found in the corresponding technical report [8].

2 The Language

We assume a set of variables Vars, ranged over by x, y, z, . . . and a separate set of
names, Names, ranged over by n,m, . . . , which is divided into locations, Locs, ranged

A Theory of System Behaviour in the Presence of Node and Link Failures 371

Table 1. Syntax of typed DπF

Types
T, U, W ::= ch | locS[C] S ::= a | d C, D ::= {u1, . . . , un}

Processes
P,Q ::= u!〈V〉.P | u?(X).P | ∗ u?(X).P | if v=u then P else Q | 0 | P|Q | (ν n :T)P

| go u.P | kill | break u | ping u.P else Q

Systems
M,N,O ::= l[[P]] | N|M | (ν n :T)N

over by l, k, . . . and channels, Chans, ranged over by a, b, c, Finally we use u, v, . . .
to range over the set of identifiers, consisting of either variables and names.

The syntax of DπF is given in Figure 1, where the main syntactic category is that
of systems, ranged over by M,N; these are essentially a collection of located processes,
or agents l[[P]], but there may also be occurrences of typed scoped names, (ν n : T)N.
Although we could employ the full power of the type system for Dπ [10], for simplicity,
we use a very simple notion of type and adapt it to the purpose at hand. Thus, if n is
used as a channel in N, then T is simply ch; however if it is a location then T = locS[C]
records it’s status S, whether it is alive a or dead d, and the set of locations C to which
it is linked, {l1, . . . , ln}.

The syntax for agents, P,Q, is an extension of that in Dπ. There are input and out-
put on channels; here V is a tuple of identifiers, and X a tuple of variables, to be inter-
preted as a pattern. We also have the standard forms of parallel, replicated input, local
declarations, a test for equality between identifiers and an asynchronous migration con-
struct. We also introduce a ping conditional construct, l[[ping k.P else Q]], in the style
of [2,1,15], branching to l[[P]] or l[[Q]] depending on the accessibility of k from l. Fi-
nally we have two new constructs to simulate failures; l[[kill]] kills the location l, while
k[[break l]] breaks the link between l and k, if it exists. We are not really interested in
programming with these last two operators. Nevertheless, when we come to consider
contextual behaviour, their presence will mean that the behaviour will take into account
the effects of dynamic failures.

In this extended abstract, we will assume the standard notions of free and bound
occurrences of both names and variables, together with the associated concepts of α-
conversion and substitution. Furthermore, we will assume that all system terms are
closed, that is they have no free occurrences of variables.

Reduction Semantics: This takes the form of a binary relation

Δ � N −→ Δ′ � N′ (2)

where Δ and Δ′ are representations of the state of the network. Intuitively this must
record the set of locations in existence, whether they are alive or dead, and any live
links between them.

Definition 1 (Network Representation). We first introduce some notation to represent
the links in a network. A binary relation L over locations is called a linkset if it is:

372 A. Francalanza and M. Hennessy

– symmetric, that is, 〈l, k〉 ∈ L implies 〈k, l〉 is also in L
– reflexive, that is, 〈l, k〉 ∈ L implies 〈l, l〉 and 〈k, k〉 are also in L.

A network representation, Δ, is any triple 〈N ,D,L〉 where

– N is a set of names, divided into loc(N) (location names) and chan(N) (channel
names)

– A ⊆ loc(N) represents the set of live locations
– L ⊆ loc(N) × loc(N) is a linkset representing the set of live connections between

locations

In the sequel, we use the abbreviation l↔ k in linksets to denote the pairs 〈l, l〉, 〈k, k〉,
〈l, k〉, 〈k, l〉; we also denote the components of Δ as ΔN , ΔA and ΔL.

We may therefore take Δ and Δ′ in (2) above to be network representations. For-
mally, we call pairs Δ � N configurations, whenever every free name in N occurs in
the name component of Δ, and we define reductions to take place between such con-
figurations. Since not all nodes are interconnected, the reduction semantics is based on
the notions of accessibility and reachability between nodes: k is accessible from l in Δ,
denoted as Δ # k← l, if and only if k is alive (k ∈ ΔA) and there is a (direct) live link
between l and k (〈l, k〉 ∈ ΔL); a node k is reachable from l in Δ, denotes as Δ # k� l, if
there exists a chain of live links between the two nodes, where every intermediate node
is alive.

The rules governing these reductions are given in Figures 2, 3 and 4. Figure 2
gives the standard rules for (local) communication, and the management of replication,
matching and parallelism, derived from the corresponding rules for Dπ in [12]. Every
rule depends on the requirement that l, the location of the activity, is currently alive; this
is the intent of the predicate Δ # l : alive. The rules in Figure 3 are more interesting.
Rules (r-go) and (r-ngo) state that a migration is successful depending on the accessibility
of the destination. Similarly, (r-ping) and (r-nping) are subject to the same condition for
the respective branchings. Note that l[[pingk.P else Q]] yields partial information about
the state of the underlying network: it can only determine that k is inaccessible, but does
not give information on whether this is caused by the failure of node k, the breaking of
the link l↔ k, or both. The rules (r-kill), (r-brk) make the obvious changes to the current
network; Δ − l means changing l to be a dead site in Δ, while Δ − l↔k means breaking
the link between l and k. Finally (r-newc) and (r-newl) regulates the generation of new
names; for example, (r-newl) launches a new location with a declared type locS[C] using
the function inst(locS[C], l, Δ). Intuitively, this returns the location type locS[D], where
the set of locations D, is the subset of locations in C∪{l} which are reachable from l. We
refer the reader to the technical report, [8], for an example explaining how this function
works.

Finally, in Figure 4 we have an adaptation of the standard contextual rules, which
allow the basic reductions to occur in evaluation contexts. The rule (r-str) allows re-
ductions up to a structural equivalence, in the standard manner, using the identities in
Figure 5. The only non-trivial identities in Figure 5 are (s-flip-1) and (s-flip-2), where the
types of the successively scoped locations need to be changed if they denote a link be-
tween them, thus avoiding unwanted name capture. The rules (r-ctxt-par) and (r-ctxt-rest)
allow reductions to occur under contexts; note that the latter is somewhat non-standard,

A Theory of System Behaviour in the Presence of Node and Link Failures 373

Table 2. Local Reduction Rules for DπF

Assuming Δ # l :alive

(r-comm)

Δ � l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Δ � l[[P]] | l[[Q{V/X}]]

(r-rep)

Δ � l[[∗a?(X).P]] −→ Δ � l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

Δ � l[[P|Q]] −→ Δ � l[[P]] | l[[Q]]

(r-eq)

Δ � l[[if u=u then P else Q]] −→ Δ � l[[P]]

(r-neq)

Δ � l[[if u=v then P else Q]] −→ Δ � l[[Q]]
u � v

Table 3. Network Reduction Rules for DπF

Assuming Δ # l : alive

(r-go)

Δ � l[[go k.P]] −→ Δ � k[[P]]
Δ # k← l

(r-ngo)

Δ � l[[go k.P]] −→ Δ � k[[0]]
Δ � k← l

(r-ping)

Δ � l[[ping k.P else Q]] −→ Δ � l[[P]]
Δ # k← l

(r-nping)

Δ � l[[ping k.P else Q]] −→ Δ � l[[Q]]
Δ � k← l

(r-kill)

Δ � l[[kill]] −→ (Δ − l) � l[[0]]

(r-brk)

Δ � l[[break k]] −→ (Δ − l↔k) � l[[0]]
Δ # l↔k

(r-newc)

Δ � l[[(ν c :ch) P]] −→ Δ � (ν c :ch) l[[P]]

(r-newl)

Δ � l[[(ν k :locS[C]) P]] −→ Δ � (ν k :locS[D]) l[[P]]
locS[D] = inst(locS[C], l, Δ)

but as reductions may induce faults in the network, it may be that the status and con-
nectivity of the scoped (location) name n is affected by the reduction, thereby changing
T to U.

This completes our exposition of the reduction semantics. At this point, we should
point out that in a configuration such as Δ � N, contrary to what we have implied up to
now, Δ does not give a completely true representation of the network on which the code
in N is running; the type information associated with scoped locations encodes parts of
the network Δ that is hidden from the observer.

Example 1 (Syntax). Let Δ represent the network 〈{l, a}; {l}; {l↔ l}〉 consisting of a chan-
nel a and a live node l and M1 the system

(ν k2 :loca[∅]) (ν k1 :locd[{l, k2}]) (l[[a!〈k2〉.P]] | k2[[Q]])

374 A. Francalanza and M. Hennessy

Table 4. Contextual Reduction Rules for DπF

(r-str)
Δ � N′ ≡ Δ � N Δ � N −→ Δ′ � M Δ′ � M ≡ Δ′ � M′

Δ � N′ −→ Δ′ � M′

(r-ctxt-rest)
Δ + n : T � N −→ Δ′ + n : U � M
Δ � (ν n : T)N −→ Δ′ � (ν n : U)M

(r-ctxt-par)
Δ � N −→ Δ′ � N′

Δ � N|M −→ Δ′ � N′|M Δ # M

Table 5. Structural Rules for DπF

(s-comm) N|M ≡ M|N
(s-assoc) (N|M)|M′ ≡ N|(M|M′)
(s-unit) N|l[[0]] ≡ N
(s-extr) (ν n :T)(N|M) ≡ N|(ν n :T)M n � fn(N)
(s-flip-1) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N n � fn(U)
(s-flip-2) (ν n :T)(νm :U)N ≡ (νm : U−n)(ν n : T+m)N n ∈ fn(U)
(s-inact) (ν n :T)N ≡ N n � fn(N)

Here M1 generates two new locations k1, k2, where k1 is dead and linked to the existing
node l and k2 is alive linked to k1. Although Δ only contains one node l, the located
process l[[a!〈k2〉.P]] (as well as k2[[Q]]) is running on a network of three nodes, two
of which, k1, k2 are scoped, that is not available to other systems. We can informally
represent this network by

� ��� �� �
l k1 k2

where the nodes ◦ and • denote live and dead nodes respectively. Note that the same
network could be denoted by the system N1

(ν k1 :locd[{l}]) (ν k2 :loca[{k1}]) (l[[a!〈k2〉.P]] | k2[[Q]])

Note also that the two systems are structurally equivalent, M1 ≡ N1, through (s-flip-2).
As a notational abbreviation, in all future example we will omit the status annotation a
in live location declarations; so for example system N1 would be given as

(ν k1 :locd[{l}]) (ν k2 : {k1}) (l[[a!〈k2〉.P]] | k2[[Q]])

3 A Labelled Transition System

In this section we give a labelled transition system for the language, in which the la-
belled actions are intended to mimic the possible interactions between a system and an
observer; it is natural to assume that both share the same underlying network. However
Example 2 below demonstrates that our representation of this joint network is no longer

A Theory of System Behaviour in the Presence of Node and Link Failures 375

sufficient if we want to faithfully record the effect interactions have on systems, because
they may lead to a discrepancy between the system network view and the observer net-
work view.

Example 2 (Observer’s Network view). Let Δ and M1 be defined as in Example 1. An
observer O at site l, such as l[[a?(x).P(x)]], can gain knowledge of the new location
k2, thereby evolving to l[[P(k2)]]. But even though it is in possession of the name k2,
it’s knowledge of the state of the underlying network is no longer represented by Δ, and
there is now a mismatch between the observer view of the network, and the system view.
The system view is now Δ′ = 〈{a, l, k2}; {l, k2}; {l↔ l, k2↔ k2}〉, that is Δ augmented by
the scope extrusion of the live node k2 linked to a private (dead) node k1, which is, in
turn, linked to l. But the observer’s view is quite different: the node l is accessible to the
observer, since it has code running there; nevertheless, even though the observer knows
about k2 at l in P(k2), it does not have enough information to reach k2 from l. As a result,
it has no means how to determine k2’s state (its status and connections) nor interact with
any code at k2. This means that the representation of the observers view, requires a new
kind of annotation, for nodes such as k2, whose name is known but cannot be reached.

� ?
l k2

Stated otherwise, in order to give an lts semantics, we need to refine our represen-
tations of networks.

Definition 2 (Effective Network Representations). An effective network representa-
tion Σ is a triple 〈N ,O,H〉, where:

– N is a set of names, as before, divided into loc(N) and chan(N)
– O is a linkset, denoting the live locations and links that are observable by the con-

text
– H is another linkset, denoting the live locations and links that are hidden (or un-

reachable) to the context.

We also assume three consistency requirements: (i) dom(O) ⊆ loc(N), (ii) dom(H) ⊆
loc(N) and (iii) dom(O)∩dom(H)=∅.

The intuition is that an observer running on a network representationΣ, knows about
all the names in Σ, denoted as ΣN , and has access to all the locations in dom(O). As a
result, it knows the state of every location in dom(O) and the live links between these
locations. The observer, however, does not have access to the live locations in dom(H);
as a result, it cannot determine the live links between them nor can it distinguish them
from dead nodes. Σ, optimises on the previous (intuitive) network representation Δ in
two ways: (1) It encodes the node and liveness using a single linkset, instead of two
distinct sets, ΔA and ΔL (2) it does not represent unusable live links, that is links where
either end point is a dead node. Summarising, Σ hold all the necessary information from
the observer’s point of view, that is, the known names, N , the known state, O, and the
state that can potentially become known in future, as a result of scope extrusion,H . For
brevity, we omit channel names from any ΣN in the remainder of the paper.

376 A. Francalanza and M. Hennessy

With this refined notion, we can now represent the observers view of Example 2
as N = {l, k2}, O = {l ↔ l} and H = {k2 ↔ k2}. In the sequel, we use configurations
of the form Σ � N, where Σ is a network representation, and N satisfies the previous
consistency constraint, fn(N) ⊆ ΣN .

We now define a labelled transition system for DπF, which consists of a collection

of actions over configurations, Σ � N
μ−→ Σ′ � N′, where μ can be an internal action,

τ, a bound input, (ñ : T̃)l : a?(V) or bound output, (ñ : T̃)l : a!〈V〉, adopted from
[11,10], or the new labels, kill : l and l � k, denoting external location killing and
link breaking respectively. These actions are defined by transition rules given in the full
paper, [8]. In Figure 6 we give the interesting rules. The transition rules introducing
external actions such as (l-halt) and (l-disc) are subject to judgements of the form Σ #obs

l : alive, requiring that l is alive (Σ # l : alive) and accessible by the observer (l ∈
dom(ΣO)). We employ three rules for scoping, the standard (l-rest), the standard but
modified (l-open) which filters (unusable) links connected to dead nodes through the
condition U = T ∩ dom(ΣO ∪ ΣH), and the non-standard (l-rest-typ), which filters links
between scope extruded locations and scoped locations in bound output labels.

With these actions we can now define in the standard manner a bisimulation equiv-
alence between configurations, which can be used as the basis for contextual reasoning.
Let us write

Σ |= M ≈int N

to mean that there is a (weak) bisimulation between the configurations Σ �M and Σ �N

Example 3 (Server Implementations Revisited). Consider the network:

�

�

���

������

������

������

�����	

l

k2

k1

formally represented as Σ = 〈N ,O,H〉, whereN = {l, k1, k2},O = {l↔k1, l↔k2, k1↔
k2} and H = ∅. If we assume that the three server implementations presented earlier in
the Introduction were running over Σ, we are able to formally argue that

Σ |= server '≈int servD '≈int servD2Rt

To see this, it is sufficient to examine the behaviour of these systems subsequent to an

actions such as
l�k1−−−→ and

kill:k1−−−−→.

One can also use the lts to establish positive results. For example, for Σl,k =

〈{l, k}, {l↔k}, ∅〉, one can prove

Σl,k |= l[[ping k. a!〈〉 else 0]] ≈int k[[go l.a!〈〉]]
Nevertheless, we can argue, at least informally, that this notion of equivalence is too
discriminating and the lts labels too intensional, because we distinguish between con-
figurations where the differences in behaviour are difficult to observe. Problems arise
when there is an interplay between hidden nodes, links and dead nodes.

A Theory of System Behaviour in the Presence of Node and Link Failures 377

Table 6. Main Operational Rules for DπF

Assuming Σ # l : alive

(l-kill)

Σ � l[[kill]]
τ−→ (Σ − l) � l[[0]]

(l-brk)

Σ � l[[break k]]
τ−→ Σ − (l↔k) � l[[0]]

Σ # l↔k

(l-halt)

Σ � N
kill:l−−→ (Σ − l) � N

Σ #obs l : alive

(l-disc)

Σ � N
l�k−→ Σ − (l↔k) � N

Σ #obs l↔k

(l-open)

Σ+n :T � N
(ñ:T̃)l:a!〈V〉−−−−−−−→ Σ′ � N′

Σ � (ν n :T)N
(n:U,ñ:T̃)l:a!〈V〉−−−−−−−−−−→ Σ′ � N′

l, a � n ∈ V, U = T ∩ dom(ΣO ∪ ΣH)

(l-weak)

Σ+n :T � N
(ñ:T̃)l:a?(V)−−−−−−−−→ Σ′ � N′

Σ � N
(n:T,ñ:T̃)l:a?(V)−−−−−−−−−−→ Σ′ � N′

l, a � n ∈ V, (Σ + ñ : T̃) #obs T

(l-rest-typ)

Σ+k :T � N
(ñ:T̃)l:a!〈V〉−−−−−−−→ (Σ+ñ : Ũ) +k :U � N′

Σ � (ν k :T)N
(ñ:Ũ)l:a!〈V〉−−−−−−−→ Σ+ñ : Ũ � (ν k :U)N′

l, a � k ∈ fn(T̃)

(l-rest)

Σ+n :T � N
μ−→ Σ′+n :U � N′

Σ � (ν n :T)N
μ−→ Σ′ � (ν n :U)N′ n � fn(μ)

(l-par-ctxt)

Σ � N
μ−→ Σ′ � N′

Σ � N|M μ−→ Σ′ � N′|M
Σ � M|N μ−→ Σ′ � M|N′

Σ # M

Example 4 (Inaccessible Network State). Let Σ be the network in which there is only
one node, l, which is alive and consider the two systems

M2 ⇐ (ν k1 : {l}) (ν k2 : {k1}) (ν k3 : {k1, k2}) l[[a!〈k2, k3〉.P]]

N2 ⇐ (ν k1 : {l}) (ν k2 : {k1}) (ν k3 : {k1}) l[[a!〈k2, k3〉.P]]

When M2 and N2 are running on Σ, the code l[[a!〈k2, k3〉.P]], present in both M2 and N2,
is effectively running on the following respective networks, due to the newly declared
locations:

� �

�

�

��

�

�

�
�

�

�

l k1

k3

k2

� �

�

�

��

�

�

�
�

l k1

k3

k2

378 A. Francalanza and M. Hennessy

Using our lts, we determine that Σ |= M2 '≈int N2 because the configurations give rise to
different output actions:

Σ � M2
(k2:∅, k3:{k2})l:a!〈k2 ,k3〉−−−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 : {k2} � (ν k1 : {l, k2, k3}) l[[P]]

Σ � N2
(k2:∅, k3:∅)l:a!〈k2 ,k3〉−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 :∅ � (ν k1 : {l, k2, k3}) l[[P]]

The difference lies in the type at which the location k3 is exported: M2 exports k3 con-
nected to k2 whereas in N2 exports a completely disconnected k3.

However, if k1 does not occur in P, then k1 can never be scope extruded to the
observer and thus k2 and k3 will remain inaccessible in both systems. This means that
the presence (or absence) of the link k2 ↔ k3 can never be verified by the observer and
thus there should be no observable difference between M2 and N2 running on Σ.

Example 5 (Interplay between Node and Link Failure). We consider the following three
configurations together with the depiction of the respective networks over which the
common located process l[[a!〈k〉.P]] is running:

M1
3 ⇐ 〈{l, a}, {l1↔ l1}, ∅〉 � (ν k :locd[{l}])l[[a!〈k〉.P]] : � �� �

l k

M2
3 ⇐ 〈{l, a}, {l1↔ l1}, ∅〉 � (ν k :locd[∅])l[[a!〈k〉.P]] : � �

l k

M3
3 ⇐ 〈{l, a}, {l1↔ l1}, ∅〉 � (ν k :loca[∅])l[[a!〈k〉.P]] : � �

l k

Intuitively, no observer can distinguish between these three configurations; even though
some observer might obtain the scoped name k by inputting on channel a at l, it cannot
determine the difference in the state of network. From rule (l-nping), we conclude that
any attempt to ping k from l will yield the negative branch. However, such an observa-
tion does not give the observer enough information about whether it was caused by a
node fault at k, a link fault between l and k or both. As a result, we would like to equate
all three configuration. However, our lts specifies that all three configurations perform
the output with different scope extrusion labels, namely:

〈{l}, {l↔ l}, ∅〉 � M1
3

(k:locd[{l}])l:a!〈k〉−−−−−−−−−−−−−→ 〈{l}, {l↔ l}, ∅〉 � l[[P]]

〈{l}, {l↔ l}, ∅〉 � M2
3

(k:locd[∅])l:a!〈k〉−−−−−−−−−−−−→ 〈{l}, {l↔ l}, ∅〉 � l[[P]]

〈{l}, {l↔ l}, ∅〉 � M3
3

(k:loca[∅])l:a!〈k〉−−−−−−−−−−−−→ 〈{l}, {l↔ l}, {k↔k}〉 � l[[P]]

and as a result, these configurations are differentiated by ≈int.

4 Reduction Barbed Congruence

The fundamental problem with the lts of the previous section is that when new loca-
tions are scope extruded, the associated information, coded in the types at which they
are exported, is too detailed. The current actions carry too much internal information
and hence, we need a revised form of action, which carry just the right amount of
information.

A Theory of System Behaviour in the Presence of Node and Link Failures 379

However, before we plunge into our revision, it is best to have yardstick with respect
to which we can calibrate the appropriateness of the revised labelled actions, and the
resulting bisimulation equivalence. We adapt a well-known formulation of contextual
equivalence to DπF, [13,11], called reduction barbed congruence. This relies on the
notion of a barb, a collection of primitive observations which can be made on systems.
Let us write Σ � N ⇓a@l to mean that an output on channel a at an accessible location
l can be observed. Then, we would expect all reasonable behavioural equivalences to
preserve these barbs. But the key idea in the definition is to use a notion of contextual
relation over configurations, in which the contexts only have access to the observable
part of the network.

Definition 3 (Contextual Relations). A relationR over configurations is contextual if:

(Parallel Systems)

• Σ � M R Σ′ � N and Σ #obs O, Σ′ #obs O implies
− Σ |= M|O R N|O
− Σ |= O|M R O|N

(Network Extensions)
• Σ � M R Σ′ � N and Σ #obsT, Σ

′ #obsT, n fresh implies Σ+n :T |= M R N

where Σ #obs O and Σ #obs T restrict the observer O and connections of location types
to accessible locations only.

Definition 4 (Reduction Barbed Congruence). Let � be the largest relation between
configurations which is contextual, preserves barbs and is reduction-closed.

Note that, apriori, this definition allows us to compare configurations which have dif-
ferent networks. However, it turns out that whenever Σ � M � Σ′ � N, the external parts
of Σ and Σ′ must coincide. In the sequel, we abbreviate Σ �M � Σ � N, the cases where
both networks are identical, to Σ |= M � N.

We now outline a revision of our labelled actions with the property that the result-
ing bisimulation equivalence coincides with the yardstick relation, �. The idea is to
reuse the same actions but to simply change the types at which bound names appear.
Currently, these are of the form T = ch or locS[C], where the latter indicates the sta-
tus of a location and its connectivity. We change these types to new types of the form
L, K = {l1 ↔ k1, . . . , li ↔ ki} where L, K are linksets. these represent the new live nodes
and links, which are made accessible to observers by the extrusion of the new loca-
tion. Alternatively, this is the information which is added to the observable part of the
network representation, ΣO, as a result of the action.

The formal definition is given in Figure 7, which is expressed in terms of a function
lnk(n : T, Σ), the definition of which is relegated to the Appendix. Intuitively, if n is
a channel (T = ch) or a dead location (T = locd[L]), lnk(n : T, Σ) returns the empty
link set ∅. Otherwise, when it is a live location (T = loca[C]), it constructs the linkset
denoting the nodes and links that are made accessible by the addition of the new location
n : loca[C] to the network Σ.

These revised actions give rise to a new bisimulation equivalence over configura-
tions, ≈, and we use

Σ |= M ≈ N

to mean that the configurations Σ � M and Σ � N are bisimilar.

380 A. Francalanza and M. Hennessy

Table 7. The derived lts for DπF

(l-deriv-1)

Σ � N
μ−→ Σ′ � N′

Σ � N
μ�−→ Σ′ � N′ μ ∈ {τ, kill : l, l�k}

(l-deriv-2)

Σ � N
(ñ:T̃)l:a!〈V〉−−−−−−−→ Σ′ � N′

Σ � N #(ñ:L̃)l:a!〈V〉−−−−−−−→ Σ′ � N′
L̃ = lnk(ñ : T̃, Σ)

(l-deriv-3)

Σ � N
(ñ:T̃)l:a?(V)−−−−−−−−→ Σ′ � N′

Σ � N #(ñ:L̃)l:a?(V)−−−−−−−−→ Σ′ � N′
L̃ = lnk(ñ : T̃, Σ)

Example 6 (Derived bisimulations). Recall that, in Example 4, we had different actions
for Σ � M2 and Σ � N2 because Σ � M2 exported k3 with a link to k2 and Σ � N2 did not.
However, Σ contains only one accessible node, l, and extending it with the completely
disconnected new node k2 does not increase the set of accessible nodes, ΣO. Further-
more, increasing Σ+ k2 : ∅ with a new node k3, linked to the inaccessible k2 (in the
case of Σ � M2) or completely disconnected (in the case of Σ � N2), also leads to no
increase in the accessible nodes. Correspondingly, the calculations of lnk(k2 : ∅, Σ) and
lnk(k3 : {k2}, Σ+k2 : ∅) both lead to the empty linkset type. Formally, we get the same
derived actions

Σ � M2 #(k2:∅,k3:∅)l:a!〈k2 , k3〉−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 : {k2} � (ν k1 : {l, k2, k3}) l[[P]]

Σ � N2 #(k2:∅,k3:∅)l:a!〈k2 , k3〉−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 :∅ � (ν k1 : {l, k2, k3}) l[[P]]

Furthermore, if P contains no occurrence of k1, we can go on to show Σ |= M ≈ N.
On the other hand, if P is a!〈k1〉, the subsequent transitions are:-

Σ+k2 :∅ + k3 : {k2} � (ν k1 : {l, k2, k3}) l[[P]] #(k1:L)l:a!〈k1〉−−−−−−−−−→ . . .

Σ+k2 :∅ + k3 :∅ � (ν k1 : {l, k2, k3}) l[[P]] #(k1:K)l:a!〈k1〉−−−−−−−−−→ . . .

where L/K = {k2 ↔ k3}. More specifically, L and K hold information directly related
to k1 such as k1 ↔ l together with information related to previously inaccessible nodes
such as k2↔k3, which has now become accessible as a result of exporting k1. The first
derived action (k1 : L)l : a!〈k1〉 thus exports the extra (previously hidden) information
k2↔k3 in L and based on this discrepancy, we have Σ |= M2 '≈ N2

Revisiting Example 5, the three different actions of M1
3 , M2

3 and M3
3 now converge

to the same action Mi
3 #(k:∅)l:a!〈k〉−−−−−−−→ . . . � l[[P]], hence Σ |= M1

3 ≈ M2
3 ≈ M3

3 .

The main result of this paper can now be stated:

Theorem 1. In DπF, Σ |= M ≈ N if and only if Σ |= M � N

Proof. (Outline) In one direction, this involves showing that ≈ as a relation over con-
figurations satisfies the defining properties of reduction barbed congruence. The main

A Theory of System Behaviour in the Presence of Node and Link Failures 381

problem here is to show that ≈ is contextual, and in particular that Σ |= M ≈ N implies
Σ |= M|O ≈ N|O for every O which only has access to the external (accessible) part
of Σ. The overall structure of the proof is similar to the corresponding result in [10],
Proposition 12, but the details are more complicated because of the presence of the
network. We refer to the full paper, [8], for an elaborate presentation of the proofs.

The essential part of the converse is to show Definability, that is for every derived
action, relative to a network Σ, there is an observer which only uses the external knowl-
edge of Σ to completely characterises the effect of that action. These observers have
already been constructed for simpler languages such as π-calculus, in [11], and Dπ, in
[10]. Here the novelty is to be able to characterise the observable effect that actions have
on a network.

5 Conclusions and Related Work

We have presented a simple extension of Dπ, in which there is an explicit representa-
tion of the state of the underlying network on which processes execute. Our main result
is a fully-abstract bisimulation equivalence for reasoning about the behaviour of dis-
tributed processes in the presence of network configurations with dead nodes, partial
connectivity and dynamic network failures. To the best of our knowledge, this is the first
time system behaviour in the presence of link failure (permanent partial accessibility of
nodes) has been investigated. It is also the first time that software observation of node
and link failure has been investigated in a process calculus setting.

Application and Future Work: Our work is best viewed as a well-founded framework
from which numerous variations could be considered such as unidirectional links, ping
constructs that are eventually correct and transient failure. In our more immediate re-
search, we intend to use our present results to develop a theory of fault-tolerance and to
apply it to example systems from the literature such as [5]. As it currently stands, our
work lends itself well to the study of distributed software that needs to be aware of the
dynamic computing context in which it is executing; various examples can be drawn
from ad-hoc networks, embedded systems and generic routing software. In these set-
tings, the software typically discovers new parts of the neighbouring network at runtime
and updates its knowledge of the network state with changes caused by failure.

Related Work: There have been a number of studies on process behaviour in the pres-
ence of permanent node failure only, amongst them [15], our point of departure. In this
work, they developed bisimulation techniques for a distributed variant of CCS with lo-
cation failure. Our work is also very close to the pioneering work [2,1]; their approach
to developing reasoning tools is however quite different from ours. Rather than develop,
justify and use bisimulations in the source language of interest, in their case πl and π1l,
they propose a translation into a version of the π-calculus without locations, and use
reasoning tools on the translations. But most importantly, they do show that for certain
π1l terms, it is sufficient to reason on these translations. The closest work to the study of
link failure is [6], where distributed Linda-like programs are studied in the presence of
connect and disconnect software primitives that dynamically change the accessibility of
locations. The connect construct employed is however very powerful and can connect

382 A. Francalanza and M. Hennessy

any two disconnected sites; this obviates the need for observer restricted views, thereby
simplifying immensely the theory. Elsewhere, permanent location failure with hierar-
chical dependencies have been studied by Fournet et al [7]. Berger [3] was the first to
study a π-calculus extension that models transient location failure with persistent code
and communication failures, while Nestmann et al [14] employ a tailor-made process
calculus to study standard results in distributed systems, such as [5].

References

1. Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
Proc. COORDINATION’97, volume 1282, pages 374–391, Berlin, Germany, 1997. Springer-
Verlag.

2. Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, 14, 1994.

3. Martin Berger. Basic theory of reduction congruence for two timed asynchronous π-calculi.
In Proc. CONCUR’04, 2004.

4. Luca Cardelli. Wide area computation. In Proceedings of 26th ICALP, Lecture Notes in
Computer Science, pages 10–24. Springer-Verlag, 1999.

5. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

6. Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a calulus for
global computing. Technical report, Universita di Firenze, 2004.

7. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents. CONCUR 96, LNCS 1119:406–421, August 1996.

8. Adrian Francalanza and Matthew Hennessy. Location and link failure in a distributed π-
calculus. Technical report, 2005:01, University of Sussex, 2005.

9. R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement
of actions. In Proc. MFCS ’89, volume 379 of lncs, pages 237–248. Springer-Verlag, 1989.

10. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systems. Theoretical Computer Science, 322:615–
669, 2004.

11. Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtyping. Mathematical Structures in Computer Science, 14:651–684, 2004.

12. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

13. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

14. Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculus. In CONCUR:
14th International Conference on Concurrency Theory. LNCS, Springer-Verlag, 2003.

15. James Riely and Matthew Hennessy. Distributed processes and location failures. Theoretical
Computer Science, 226:693–735, 2001.

16. Davide Sangiorgi and David Walker. The π-calculus. Cambridge University Press, 2001.

Comparing Two Approaches
to Compensable Flow Composition

Roberto Bruni1, Michael Butler2, Carla Ferreira3, Tony Hoare4,
Hernán Melgratti1, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 School of Electronics and Computer Science, University of Southamptom, UK

3 Department of Computer Science, Technical University of Lisbon, Portugal
4 Microsoft Research Cambridge, UK

Abstract. Web services composition is an emerging paradigm for the integra-
tion of long running business processes, attracting the interest of both Industry,
in terms of XML-based standards for business description, and Academy, ex-
ploiting process description languages. The key challenging aspects to model are
orchestration workflows, choreography of exchanged messages, fault handling,
and transactional integrity with compensation mechanisms. Few recent proposals
attempted to mitigate the explosion of XML-constructs in ad hoc standards by
a careful selection of a small set of primitives related to the above aspects. This
papers clarifies analogies and differences between two such recent process de-
scription languages: one based on interleaving trace semantics and the other on
concurrent traces. We take advantage of their comparison to characterise and re-
late four different coordination policies for compensating parallel processes. Such
policies differ on the way in which the abort of a process influences the execution
of sibling processes, and whether compensation is distributed or centralised.

1 Introduction

Orchestration and choreography languages are tailored to the definition of web service
composition. Typically, these languages provide, among others, programming primi-
tives for the definition of business transactions, i.e., transactions that may require long
periods of time to complete, also called Long-Running Transactions (LRTs). Moreover,
they may be interactive and hence not able to be check-pointed. Consequently, LRTs
cannot be based on locking (as usual for database transactions), but instead they rely on
a weaker notion of atomicity based on compensations [8]. Compensations are activities
programmed ad hoc to recover partial executions of transactional processes.

The existing babel of approaches developed along the years for orchestration and
choreography building on WSDL [15] (WSCL [14], WSCI [13], BPML [3], WSFL [10],
XLANG [16], BPEL4WS [2]) witnesses the need of languages for service integration with
solid theoretical foundations. Several proposals have recently appeared in the literature
focused on the formalisation of compensable processes using process calculi. They can
be roughly divided into two types: (i) compensable flow composition [6, 5, 7] closer to
the spirit of orchestration languages like BPEL4WS, where suitable process algebras are
designed from the scratch to describe the possible flow of control among services; and

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 383–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

384 R. Bruni et al.

(ii) interaction based compensations [1, 4, 9, 11], as suitable extensions of well-known
name passing calculi, like the π-calculus and join-calculus, for describing transactional
choreographies, where each service describes its possible interactions, and the actual
composition takes place dynamically, i.e. when services interact.

In this paper we pursue the first approach, i.e., to study the abstract composition
of services according to basic workflow shapes (sequential and parallel) and compens-
able transaction mechanisms (compensable activities, compensation scope, transaction
scope, nesting). Nevertheless, we are not aimed at designing a new language but at
comparing two main proposals, namely compensating CSP (cCSP) [7] and Sagas cal-
culi [5]. Apart from stylistic differences (e.g., the trace semantics of cCSP and the big
step SOS semantics of Sagas calculi), this comparison highlights the fact that such pro-
posals account for different compensation policies when handling concurrent processes.
First of all, we characterise such policies as the combination of two orthogonal strate-
gies: (i) whether parallel flows are forced to interrupt their executions when a sibling
process aborts; and (ii) whether compensation handling is centralised or distributed.
The combination of such strategies gives rise to the following four policies:

1. No interruption and centralised compensation. All concurrent processes execute
until completion, and only then they are compensated for if some abort.

2. No interruption and distributed compensation. All parallel flows execute until com-
pletion but, if needed, they compensate without waiting the completion of siblings.

3. Coordinated interruption. Parallel branches may be stopped when one flow aborts,
but the activation of the compensation procedure is handled in a centralised way,
i.e., all component flows have to be stopped, and only then the corresponding com-
pensations are executed.

4. Distributed interruption. Flows, if needed, are interrupted and then their compen-
sation procedures can be activated independently from the rest of the flows.

We show that all these policies can be defined by following either the cCSP ap-
proach or the Sagas style. Moreover, we note that the semantics of original cCSP cor-
responds to policy (3), while the two original semantics of Sagas Calculi, called Naı̈ve
and Revised, follow respectively policies (2) and (4). Finally, we compare the four alter-
natives (and hence the original semantics of both proposals) by relating the set of traces
that each policy associates to a process. In particular, we show that these policies form
a partial order of traces, where original cCSP and Naı̈ve Sagas are more restrictive than
Revised Sagas, but original cCSP is unrelated to Naı̈ve Sagas.

Structure of the Paper. We start by recalling in § 2 the syntax and semantics of cCSP
and Sagas from [5, 7]. Then, we outline the conceptual and stylistic similarities and dif-
ferences between the two approaches in § 3. The more technical contribution starts in
§ 4, where we focus on the key aspects for the sequential case, by taking the correspond-
ing fragments of the calculi associated with sequential processes, for which we prove
the correspondence of both semantics by means of two straightforward encodings. The
different policies implemented by the two approaches emerge in § 5, where we analyse
the case of parallel processes in transactions. The formal comparison of compensation
policies is summarised in § 6. Finally, in § 7 we draw some conclusions and discuss
future work. Due to space limitation most proofs are omitted and some just sketched.

Comparing Two Approaches to Compensable Flow Composition 385

2 Background

In this section we summarise the basics of Compensating CSP (cCSP) proposed in [7]
and of Sagas calculi from [5]. We focus on simplified versions by leaving out several
features present in both proposals, like exception handling and nesting.

2.1 Compensating CSP

The set of cCSP processes is defined by the following grammar:

(STANDARD PROCESSES)

P,Q ::= A | P;Q | P|Q | SKIP | THROW | YIELD | [PP]

(COMPENSABLE PROCESSES)

PP,QQ ::= P÷Q | PP;QQ | PP|QQ | SKIPP | THROWW | YIELDD

A standard process is either a basic activity A from an alphabet Σ, the sequential
composition P;Q of processes, the parallel composition P|Q, the empty process SKIP,
the raise of an interruption THROW, the yield to an interruption YIELD, or a transac-
tion block [PP]. A basic compensable process is a compensation pair P÷Q where P
is an atomic process and Q is its compensation. Compensable processes can be com-
posed either in sequence PP;QQ or in parallel PP|QQ. The remaining processes are the
compensable counterpart of the standard ones.

Figure 1 summarises the trace semantics of cCSP. A trace for a standard process
is a string s〈ω〉, where s ∈ Σ∗ is said the observable flow and ω ∈ Ω is the final event,
with Ω = {�, !,?}, with Σ∩Ω = /0 (� stands for success, ! for fail, and ? for yield). The
sequential composition p;q concatenates the observable flows of p and q only when p
terminates with success, otherwise it is p. The composition of two concurrent traces
p〈ω〉||q〈ω′〉 corresponds to the set p|||q of all possible interleavings of the observable
flows, with final event ω&ω′, where & is associative and commutative.

The definition for the traces of standard processes is straightforward. The most in-
teresting one is that of a transaction block [PP]. Note that any trace of a compensable
process PP is a pair (p〈ω〉, p′), where p〈ω〉 is the forward trace and p′ is a compensa-
tion trace for p. Then, [PP] selects all successful traces p〈�〉 of PP, and the traces pp′,
corresponding to failed forward flows p〈!〉 followed by their compensations p′.

When composing compensable traces in series, the forward trace corresponds to the
sequential composition of the original forward traces, while the compensation trace
starts by the second compensation followed by the first one. The parallel composi-
tion is defined as all possible interleavings of the forward and the backward flows,
separately.

2.2 Sagas Calculi

We report here the two alternative semantics proposed in [5] for parallel Sagas, namely
the naı̈ve and revised versions. The main difference between the two semantics is that
the latter allows the interruption of flow executions when a transaction fails. The set of
parallel Sagas is given by the following grammar:

386 R. Bruni et al.

COMPOSITION OF STANDARD TRACES

Sequential
{ p〈�〉;q = pq

p〈ω〉;q = p〈ω〉when ω
= �

Parallel p〈ω〉||q〈ω′〉= {r〈ω&ω′〉|r ∈ (p|||q)}, where
ω ! ! ! ? ? �
ω′ ! ? � ? � �

ω&ω′ ! ! ! ? ? �

and

{ p|||〈〉= {p}
〈〉|||q = {q}

〈x〉p|||〈y〉q = {〈x〉r|r ∈ (p|||〈y〉q)}∪{〈y〉r|r ∈ (〈x〉p|||q)}

TRACES OF STANDARD PROCESSES

A =traces {〈A,�〉} for A ∈ Σ SKIP =traces {〈�〉}
P;Q =traces {p;q|p ∈ P∧q ∈ Q} THROW =traces {〈!〉}
P|Q =traces {r|r ∈ (p||q)∧ p ∈ P∧q ∈Q} YIELD =traces {〈?〉}
[PP] =traces {pp′|(p〈!〉, p′) ∈ PP} ∪ {p〈�〉|(p〈�〉, p′) ∈ PP}

COMPOSITION OF COMPENSABLE TRACES

Sequential
{ (p〈�〉, p′);(q,q′) = (pq,q′; p′)

(p〈ω〉, p′);(q,q′) = (p〈ω〉, p′) when ω
= �
Parallel (p, p′)||(q,q′) = {(r,r′)|r ∈ (p||q)∧ r′ ∈ (p′||q′)}

Compensation pair
{ p〈�〉÷q = (p〈�〉,q)

p〈ω〉÷q = (p〈ω〉,〈�〉) when ω
= �

TRACES OF COMPENSABLE PROCESSES

P÷Q =traces {(〈?〉,〈�〉)}∪{p÷q|p ∈ P∧q ∈Q}
PP;QQ =traces {pp;qq|pp ∈ PP∧qq ∈ QQ}
PP|QQ =traces {rr|rr ∈ (pp||qq)∧ pp ∈ PP∧qq ∈ QQ}
SKIPP =traces SKIP÷SKIP =traces {(〈?〉,〈�〉),(〈�〉,〈�〉)}

THROWW =traces THROW÷SKIP =traces {(〈?〉,〈�〉),(〈!〉,〈�〉)}
YIELDD =traces YIELD÷SKIP =traces {(〈?〉,〈�〉)}

Fig. 1. Trace semantics of cCSP

(STEP) X ::= 0 | A | A÷B
(PROCESS) P ::= X | P;P | P|P
(SAGA) S ::= {[P]}

A saga S encloses a process P in a transaction scope. Each step in P corresponds
either to an activity A or a compensated activity A÷B, where A is the activity of the
normal flow and B its compensation. The term 0 represents the inert process, P;P stands
for the sequential composition of processes, and P|P for the parallel composition.

To reduce the number of rules, the semantics of Sagas is defined up-to structural
congruence over processes given by the following axioms:

A÷0 ≡ A 0;P ≡ P;0 ≡ P (P;Q);R ≡ P;(Q;R)
P|Q ≡ Q|P P|0 ≡ P P|(Q|R) ≡ (P|Q)|R

Comparing Two Approaches to Compensable Flow Composition 387

Moreover, activities are assumed to be named differently. The set of possible results
for the execution of a saga is R = {�,�,�}, where � stands for commit, � for (com-
pensated) abort, and � for abnormal termination (when the compensation procedure
fails). We let � to range over R . The execution of a sequential saga is described in
terms of a context Γ, i.e., a partial function Γ : A → {�,�} that maps any activity to
the result obtained with its execution. Activities can only commit or abort (they do not
terminate abnormally). A particular function Γ is written A1 �→ �1, . . . ,An �→ �n, where
Ai
= A j for all i
= j. (Note that ’,’ stands for the disjoint union of partial functions).

The semantics of a saga S is given by a relation Γ � S
α−→ �, which denotes that the

execution of S produces � when the atomic activities behave like Γ. The observation
α describes the actual flow of control occurring when executing S under the context Γ.
The flow α is a process whose activities have no compensations. The auxiliary relation
Γ � 〈P,β〉 α−→ 〈�,β′〉 describes the behaviour of a process P within a saga that already
installed the compensation β (but β itself contains no compensation). When P is exe-
cuted inside a saga, it can either commit, abort, or fail, but additionally, it can change
the compensations to β′, for instance by installing new activities.

Naı̈ve Semantics. The naı̈ve semantics for a parallel saga is shown in Figure 2(a). Rule
(S-ACT) stands for the successful execution of the compensated activity A÷B that in-
stalls B in front of β. Rules (S-CMP) and (F-CMP) describe the execution of A÷B when
A fails. Both rules activate the compensation β (premises of the rules). In particular, (S-
CMP) stands for the successful compensation, while rule (F-CMP) handles the failure of
the compensation procedure. Rule (S-STEP) describes the behaviour of a process P;Q
when the step P commits. In such case, Q is executed with the compensation installed
by P. Rule (A-STEP) handles the case in which P;Q is stopped because P aborts or ends
abnormally. Rule (SAGA) states that the execution of a saga {[P]} runs P in a thread that
initially has no compensations. The rules described above give the semantics for the
sequential case, while the remaining rules define the naı̈ve semantics of parallel com-
position. Rule (S-PAR) deals with the successful execution of both branches, while the
remaining rules handle the cases in which at least one branch fails.

Revised Semantics. The revised semantics avoids the unnecessary execution of activ-
ities in the forward flow when the saga fails. This is achieved by stopping the execution
of the forward flow when some activity fails. For this reason, the execution of a process
may also finish with: (i) �, i.e. the execution is forced to compensate and the com-
pensation is successful, and (ii) �, i.e., the execution is forced to compensate and the
compensation procedure fails. The associative and commutative operator ∧ expresses
the result obtained by combining the execution of two parallel branches (see Figure 3).
Note that ∧ is not defined when one operand is � and the other is not. In fact, it is
not possible for a branch to commit when the other aborts or fails: in P|Q when P can
commit but Q aborts, then P is forced to compensate.

For the revised semantics, all rules for the sequential case are as in Figure 2(b), but
considering for rule (A-STEP) the side condition σ ∈ {�,�,�,�}), and for rule (SAGA)
the side condition �∈ {�,�,�}. In addition, rules in Figure 2(b) describe the behaviour
of concurrent processes. Rule (FORCED-ABT) forces the activation of the compensation
before executing P, which will produce a forced termination � or �. Rule (S-PAR) is

388 R. Bruni et al.

(ZERO)

Γ � 〈0,β〉 0−→ 〈�,β〉
(S-ACT)

A �→�,Γ � 〈A÷B,β〉 A−→ 〈�,B;β〉
(S-CMP)

Γ � 〈β,0〉 α−→ 〈�,0〉

A �→�,Γ � 〈A÷B,β〉 α−→ 〈�,0〉

(F-CMP)

Γ � 〈β,0〉 α−→ 〈�,0〉

A �→�,Γ � 〈A÷B,β〉 α−→ 〈�,0〉
(S-STEP)

Γ � 〈P,β〉 α−→ 〈�,β′′〉 Γ � 〈Q,β′′〉 α′−→ 〈�,β′〉

Γ � 〈P;Q,β〉 α;α′−→ 〈�,β′〉

(A-STEP)

Γ � 〈P,β〉 α−→ 〈σ,0〉

Γ � 〈P;Q,β〉 α−→ 〈σ,0〉
σ ∈ {�,�}

(SAGA)

Γ � 〈P,0〉 α−→ 〈�,β〉

Γ � {[P]} α−→�

(S-PAR)

Γ � 〈P,0〉 α−→ 〈�,β′〉 Γ � 〈Q,0〉 α′−→ 〈�,β′′〉

Γ � 〈P|Q,β〉 α|α′−→ 〈�,(β′|β′′);β〉
(F-PAR-NAÏVE-1)

Γ � 〈P,0〉 α−→ 〈�,0〉 Γ � 〈Q,0〉 α′−→ 〈�,0〉 Γ � 〈β,0〉 α′′−→ 〈�1,0〉

Γ � 〈P|Q,β〉 (α|α′);α′′−→ 〈�2,0〉

�2 =
{

� if �1 = �

� otherwise

(F-PAR-NAÏVE-2)

Γ � 〈P,0〉 α−→ 〈�,0〉 Γ � 〈Q,0〉 α′−→ 〈�,β′〉 Γ � 〈β′,0〉 α′′−→ 〈�,0〉

Γ � 〈P|Q,β〉 α|(α′;α′′)−→ 〈�,0〉
(F-PAR-NAÏVE-3)

Γ � 〈P,0〉 α−→ 〈�,0〉 Γ � 〈Q,0〉 α′−→ 〈σ,0〉

Γ � 〈P|Q,β〉 (α|α′)−→ 〈�,0〉

with σ ∈ {�,�}

(F-PAR-NAÏVE-4A)

Γ � 〈P,0〉 α−→ 〈�,β′〉 Γ � 〈Q,0〉 α′−→ 〈�,0〉 Γ � 〈β′,0〉 α′′−→ 〈�,0〉

Γ � 〈P|Q,β〉 (α;α′′)|α′−→ 〈�,0〉
(F-PAR-NAÏVE-4B)

Γ � 〈P,0〉 α−→ 〈�,β′〉 Γ � 〈Q,0〉 α′−→ 〈�,0〉 Γ � 〈β′,0〉 α′′−→ 〈�,0〉 Γ � 〈β,0〉 α′′′−→ 〈�1,0〉

Γ � 〈P|Q,β〉 ((α;α′′)|α′);α′′′−→ 〈�2,0〉 �2 =
{

� if �1 = �

� otherwise

(a) Naı̈ve semantics of parallel Sagas.

(FORCED-ABT)

Γ � 〈β,0〉 α−→ 〈�1,0〉

Γ � 〈P,β〉 α−→ 〈�2,0〉
�2 =

{
� if �1 = �

� otherwise

(S-PAR)

Γ � 〈P,0〉 α−→ 〈�,β′〉 Γ � 〈Q,0〉 α′−→ 〈�,β′′〉

Γ � 〈P|Q,β〉 α|α′−→ 〈�,(β′|β′′);β〉
(F-PAR)

Γ � 〈P,0〉 α−→ 〈σ1,0〉 Γ � 〈Q,0〉 α−→ 〈σ2,0〉

Γ � 〈P|Q,β〉 α|α′−→ 〈σ1∧σ2,0〉

{
σ1 ∈ {�,�}
σ2 ∈ {�,�,�,�}

(C-PAR)

Γ � 〈P,0〉 α−→ 〈σ1,0〉 Γ � 〈Q,0〉 α′−→ 〈σ2,0〉 Γ � 〈β,0〉 γ−→ 〈�1,0〉

Γ � 〈P|Q,β〉 (α|α′);γ−→ 〈σ1∧σ2∧�2,0〉

σ1,σ2 ∈ {�,�} and

�2 =
{

� if �1 = �

� otherwise

(b) Revised semantics of parallel Sagas.

Fig. 2. Concurrent semantics of Sagas

Comparing Two Approaches to Compensable Flow Composition 389

∧ � � � � �

� � − − − −
� − � � � �

� − � � � �

� − � � � �

� − � � � �

Fig. 3. The operator ∧

the same as in the naı̈ve semantics, while the rollback of a branch is handled by (F-PAR)
and (C-PAR). Rule (C-PAR) handles the case in which both P and Q are successfully
compensated for, while (F-PAR) handles the failure of the compensation procedure.

An interesting aspect on the revised semantics is that rule (SAGA) requires P to end
with �, � or �, but not with forced termination. This implies that a saga aborts if and
only if (at least) one activity aborts.

3 cCSP vs Sagas Calculi

In this section we try to enucleate the main conceptual differences between the two
approaches and to give an informal account of the underlying different policies for
business process design and execution.

Executions of Activities. An activity A is always successful in cCSP. Instead, the
execution of activities in Sagas depends on a particular execution context Γ, which
allows to evaluate the semantics of a process according to different scenarios.

Aborted Activities vs Programmable Abort. In cCSP the special primitive THROW
introduces programmable aborts. Instead, the abort of a saga is caused by the abort of
an activity in the scenario Γ. Thus, the primitive THROW roughly corresponds to a
Sagas activity that always fails in any Γ.

Yielding to Interrupt. In cCSP the yielding to interrupt is explicitly programmed by
using the special primitive YIELD. Instead, in Sagas the yielding to interrupt is wired
in the semantics rules and cannot be programmed.

Failed Compensations. Different from Sagas calculi, the abort of and the successful
compensation of a transaction block in cCSP is silent to the parent process, i.e., there
is no possibility to distinguish this case from the situation in which the forward flow
complete successfully. Although not reported in § 2, Sagas calculi provide the primi-
tive try S or P in [5], which allows to activates P when S aborts and it is compensated
successfully.

Interleaving vs Concurrent Traces. The semantics of a cCSP process is given by
listing all possible executions that differ on the interleaving of their concurrent activ-
ities. Instead, in the Sagas calculi computations are described up-to interleavings. Note
that any label α in a reduction denotes a set of possible executions.

390 R. Bruni et al.

Compensation of Parallel Processes. As described in § 1, the most important distinc-
tion of both proposal is when defining the compensation for P|Q, since they use different
compensation policies. This distinction is formalised in § 5

Nesting. The primitive P÷Q of cCSP allow for the nesting of transactions. The Sagas
counterpart is called nested Sagas and it is presented in [5], which provides two dif-
ferent kinds of compensations called default compensations and programmed compen-
sation. The latter is equivalent to the cCSP primitive. The common fragment to cCSP
and Sagas we shall discuss does not allow nesting, and therefore only compensable
activities A÷B will be considered.

Adequacy of the Semantics. Although not described here, correctness of cCSP se-
mantics is stated in terms of self-cancelling properties. That is, when assuming com-
pensations to be perfect, it is shown that the execution of a transaction is equivalent to
its forward flow or to SKIP. In Sagas, the meaning of the execution of a transaction
is shown by suitable adequacy theorems, which are more precise but less intuitive and
more complex to express than the self-cancelling properties.

In the rest of the paper we shall focus on the formal comparison of the sequential
and parallel fragments of the two calculi, leaving to future work the treatment of the
last two items from the above list (nesting and adequacy). The yielding modality and
parallel compensations are discussed in detail in § 5, while all the remaining items are
relevant also for the sequential fragment in § 4.

4 The Sequential Case

In this section we focus on the subset of sequential processes and we show that both
semantics coincide by giving two encodings. Sequential cCSP is obtained by restricting
the syntax of compensable processes as follow.

PP,QQ ::= A÷B | PP;QQ | SKIPP | THROWW | YIELDD

Note that instead of having P÷Q, we only allow basic activities to be compensated
by basic activities. Sequential Sagas is obtained by forbidding the parallel composition
of processes P|P. We denote by cCSPseq the set of sequential cCSP processes, and by
Sagasseq the set of sequential Sagas processes.

4.1 Encoding cCSPseq into Sagasseq

The main idea is that any process PP ∈ cCSPseq is associated with both a saga process
P ∈ Sagasseq and a particular environment Γ ∈ ∇ in which all activities of P commits
(∇ stands for the set of all possible environments). Moreover, the THROWW primitive
is represented by a fresh activity that aborts in Γ. The last subtlety is that all activities
in P have to be named differently, for this reason the encoding assures activities in P to
have different names. Formally, the encoding is given by the following function

� � : cCSPseq → Sagasseq×∇

Comparing Two Approaches to Compensable Flow Composition 391

which is defined in terms of the auxiliary function (used to assure activity names to be
different)

� � : cCSPseq×N∗ → Sagasseq×∇

The encoding is defined by letting �PP� = �PP�0, with:

�A÷B�σ = Aσ÷Bσ,{Aσ �→ �,Bσ �→ �}
�PP1;PP2�σ = P1;P2,Γ1�Γ2 s.t. �PPi�σ.i = Pi,Γi for i = 1,2

�SKIPP�σ = �YIELDD�σ = 0, /0 �THROWW�σ = Tσ,{Tσ �→ �}

Notation 1. We let �α� be obtained from α by removing all the subscripts σ from activ-
ities and by considering 0 as SKIP. Given a saga S, we let A(S) = {A | A occurs in S}
be the set of its activities and |S| be its forward flow, which is obtained by replacing the
pattern A÷B by A everywhere in S (i.e., removing all compensations).

Theorem 4.1. Let �PP� = P,Γ. If Γ � {[P]} α−→ �, then �α� =traces [PP].

Proof (Sketch). The proof is by induction on the structure of PP, showing that one of the

following conditions holds (for any β and Γ′ s.t. Γ′ � 〈β,0〉 β−→ 〈�,0〉):

– Γ,Γ′ � 〈P,β〉 α−→ 〈�,β′;β〉 and PP = {(p〈�〉, p′)|p〈�〉 ∈ �α�∧ p′ ∈ �β′�}∪ T ,
where T is the set of all yielding traces (q〈?〉,q′〈�〉) s.t. q and q′ have the same
length and q is a prefix of a trace in �α� and q′ is prefix of a trace in �β�.

– Γ,Γ′ � 〈P,β〉 α;α′;β−→ 〈�,0〉 s.t. A(α) ⊆ A(|P|) ∧ A(α′) ∩ A(|P|) = /0, and PP =
{(p〈!〉, p′)|p〈�〉 ∈ �α�∧ p′ ∈ �α′�}∪T , where T is defined as before. ��

4.2 Encoding Sagasseq into cCSPseq

Any process P ∈ Sagasseq represents a set of processes PP ∈ cCSPseq, one for any pos-
sible environment Γ ∈ ∇. Hence, the encoding is defined as follow:

� � : Sagasseq×∇ → cCSPseq

�0�Γ = SKIPP �P;Q�Γ = �P�Γ;�Q�Γ�A�A �→�,Γ = A �A�A �→�,Γ = THROWW
�A÷B�A �→�,B �→�,Γ = A÷B �A÷B�A �→�,Γ = THROWW

Note that the encoding for a compensation pair is defined only when the compen-
sation B is an activity that commits, because the fragment of cCSP we are considering
does not allow THROW in compensation pairs. Hence, we shall account only for con-
texts Γ that never make a saga to terminate abnormally (by adequacy results in [12, 5]).

Theorem 4.2. Let Γ be an environment, P∈ Sagasseq, and �P�Γ=PP. If Γ � {[P]} α−→ �,
then �α� =traces [PP].

392 R. Bruni et al.

5 Alternative Semantics for Parallel Compensations

In this section we formally characterise the four compensation policies mentioned in § 1.

Notation 2. We write cCSPpari and Sagaspari to denote the cCSP and Sagas semantics
when considering the strategy i = 1, . . . ,4, as enumerated in § 1.

In all remaining sections assume the encoding functions extended as follow

�PP1|PP2�σ = P1|P2,Γ1�Γ2 s.t. �PPi�σ.i = Pi,Γi for i = 1,2

�P|Q�Γ = �P�Γ|�Q�Γ

5.1 No Interruption and Centralised Compensation

The desired behaviour for a parallel transaction when assuming no interruption and
centralised compensation can be illustrated with the following law for cCSPpar1:

[A÷A′ | B÷B′ | THROWW] =traces (A|B);(A′|B′)

The forward flow A|B is executed completely before the compensation A′|B′. More-
over, all activities in the forward flow are observed even though their execution could
be avoided in a clever system (since the transaction will fail anyway).

Trace Semantics. The trace semantics for this case is obtained by redefining the traces
of compensation pairs and parallel composition. Since parallel branches do not yield to
an interrupt, the definition for a compensation pair is simplified as follow:

A÷B =traces {p÷q|p∈ A∧q ∈ B} =traces {(〈A,�〉,〈B,�〉)}
We remove from the original definition the possibility for a compensation pair to

yield to an interrupt before executing the forward flow A. On the other hand, the traces for
parallel composition P|Q consider only the traces of P and Q that have finished
either successfully or with a failure, but not those yielding to an interruption, i.e.,

p〈ω〉||q〈ω′〉= {r〈ω&ω′〉|r ∈ (p|||q)∧ω,ω′ ∈ {�, !}}

Since we do not allow interruption, YIELDD has no effects and, hence, we let
YIELDD =traces SKIPP =traces {(〈�〉,〈�〉)}. Moreover, THROWW =traces {(〈!〉,〈�〉)}.
SOS Semantics. The SOS semantics for the case of no interruption and centralised com-
pensation is in Figure 4. The main differences with the rules in Figure 2(a) is that the
activation of the compensation procedure is left to the rule (SAGA) and not to (F-ACT).
Note also that the result for P|Q is given by & (not by ∧ as in § 2.2), which is analogous
to the trace semantics.

Correspondence. The following results assure the correspondence between the two
semantics.

Theorem 5.1. LetPP∈ cCSPpar1 and�PP�= P,Γ,withP∈ Sagaspar1.IfΓ�{[P]} α−→ �,
then �α� =traces [PP].

Theorem 5.2. Let Γ be an environment, P ∈ Sagaspar1, and �P�Γ = PP, with PP ∈
cCSPpar1. If Γ � {[P]} α−→ �, then �α� =traces [PP].

Comparing Two Approaches to Compensable Flow Composition 393

(ZERO)

Γ � 〈0,β〉 0−→ 〈�,β〉
(S-ACT)

A �→�,Γ � 〈A÷B,β〉 A−→ 〈�,B;β〉

(F-ACT)

A �→�,Γ � 〈A÷B,β〉 0−→ 〈�,β〉

(S-STEP)

Γ � 〈P,β〉 α−→ 〈�,β′′〉 Γ � 〈Q,β′′〉 α′−→ 〈�,β′〉

Γ � 〈P;Q,β〉 α;α′−→ 〈�,β′〉
(A-STEP)

Γ � 〈P,β〉 α−→ 〈�,β′〉

Γ � 〈P;Q,β〉 α−→ 〈�,β′〉

(PAR)

Γ � 〈P,0〉 α1−→ 〈�1,β1〉 Γ � 〈Q,0〉 α2−→ 〈�2,β2〉

Γ � 〈P|Q,β〉 α1|α2−→ 〈�1&�2,β1|β2;β〉
where �&� = �,�&� = �,and � &� = �

(CMT-SAGA)

Γ � 〈P,0〉 α−→ 〈�,β〉

Γ � {[P]} α−→�

(ABORTED-SAGA)

Γ � 〈P,0〉 α−→ 〈�,β〉 Γ � 〈β,0〉 β−→ 〈�,0〉

Γ � {[P]} α;β−→�
(FAILED-SAGA)

Γ � 〈P,0〉 α−→ 〈�,β〉 Γ � 〈β,0〉 β′−→ 〈�,0〉

Γ � {[P]} α;β′−→�

Fig. 4. SOS for no interruption and centralised compensation

5.2 No Interruption and Distributed Compensation

As aforementioned, a distributed procedure for compensating parallel branches may
allow the execution of activities of the backward flow even when parts of the forward
flow are still in execution. As an example, the following law should hold in cCSPpar2

(i.e., by assuming no interruption and distributed compensation):

[A÷A′ | B÷B′ | THROWW] =traces A;A′|B;B′

Note that the forward flows A and B are executed entirely, but parallel branches are
independently compensated for. For example, A′ can be executed even before B.

Trace Semantics. As for the previous case, the traces of a compensation pair do not
have yielding behaviours, and SKIPP, YIELDD and THROWW are defined analogously.
Instead, the parallel composition of traces is as follow

(p〈�〉, p′)||(q〈�〉,q′) = {(r〈�〉,r′〈�〉)|r ∈ (p|||q)∧ r′〈�〉 ∈ (p′||q′)}
∪{(r〈?〉,〈�〉)|r〈�〉 ∈ (pp′||qq′)}

(p〈ω〉, p′)||(q〈ω′〉,q′) = {(r〈ω&ω′〉,〈�〉)|r〈�〉 ∈ (pp′||qq′)} if ω&ω′ ∈ {!,?}

Note that the parallel composition of two successful traces contains all the interleav-
ings of the forward flows compensated with the interleavings of the original compensa-
tions, and a set of yielding traces. Yielding traces stand for the behaviours of processes
PP|QQ in case they are composed in parallel with a process that fails, for instance

394 R. Bruni et al.

PP|QQ|THROWW. Finally, the parallel composition when at least one trace ends with
? or ! is defined as the interleavings of the original compensated flows.

SOS Semantics. This case corresponds to the naı̈ve semantics described in § 2.2.

Correspondence. Different from previous cases, for a saga {[P]} and an environment Γ
there can be several αi s.t. Γ� {[P]} αi−→ �. For instance, consider P= A1÷B1|A2÷B2|F1

and Γ = A1 �→ �,A2 �→ �,B1 �→ �,B2 �→ �,F1 �→ �. Then, it is easy to check that

Γ� {[P]} αi−→ � for α1 = A1;B1|A2;B2 and α2 = (A1|A2);(B1|B2), depending on whether
P is considered either as (A1÷B1|A2÷B2)|F1 or as A1÷B1|(A2÷B2|F1). Nevertheless,
note that the result � is always unique by results in [5].

We note Γ � {[P]} κ−→ �, where κ = {αi|Γ � {[P]} αi−→ �} and let

�κ� =traces ∪αi∈κ�αi�

Theorem 5.3. LetPP∈ cCSPpar2 and�PP�= P,Γ,withP∈ Sagaspar2.IfΓ�{[P]} κ−→ �,
then �κ� =traces [PP].

Theorem 5.4. Let Γ be an environment, P ∈ Sagaspar2, and �P�Γ = PP, with PP ∈
cCSPpar2. If Γ � {[P]} κ−→ �, then �κ� =traces [PP].

5.3 Interruption and Centralised Compensation

When considering interruption, the main idea is to avoid the execution of steps by stop-
ping the forward flow as soon as an activity fails. Nevertheless, in a distributed setting
we cannot expect processes to be stopped immediately. The law we would like to prove
when using this strategy is the following.

[A÷A′ | B÷B′ | THROWW] =traces SKIP ∪ (A;A′) ∪ (B;B′) ∪ (A|B);(A′|B′)

The first three terms show that parallel branches can be aborted even before starting
their execution when one process fails (i.e., THROWW). Instead, the last term of the right
hand side means that compensation is centralised.

Trace Semantics. The case of interruption and centralised compensation corresponds
to the original proposal of the trace semantics summarised in § 2.1.

SOS Semantics. The SOS semantics for this strategy is obtained by adding forced
termination to the rules corresponding to the policy of no interruption and centralised
compensation (shown in Figure 4). In order to achieve that, rules in Figure 4 are ex-
tended with the additional rule

(FORCED-ABT) Γ � 〈P,β〉 0−→ 〈�,β〉

which introduces forced termination. In this case, it is enough to consider one result,
which we note �. Moreover we extend the definition of & used in rule (PAR), as fol-
low �&� = �, �&� = �, �&� = �. (Note that this definition makes the operator &
isomorphic in both the trace and the SOS semantics).

Comparing Two Approaches to Compensable Flow Composition 395

Correspondence. As for the previous cases, we have the following correspondence
results for cCSPpar3 and Sagaspar3

Theorem 5.5. LetPP∈ cCSPpar3 and�PP�= P,Γ,withP∈ Sagaspar3.IfΓ�{[P]} κ−→ �,
then �κ� =traces [PP].

Theorem 5.6. Let Γ be an environment, P ∈ Sagaspar3, and �P�Γ = PP, with PP ∈
cCSPpar3. If Γ � {[P]} κ−→ �, then �κ� =traces [PP].

5.4 Interruption and Distributed Compensation

This policy can be illustrated by the following equality in cCSPpar4:

[A÷A′|B÷B′|THROWW] =traces SKIP ∪ (A;A′) ∪ (B;B′) ∪ (A;A′)|(B;B′)

The difference with the policy reported in § 5.3 relies in the last term of the sum-
mation in the right hand side of the equality. In fact, the last term of the above equality
shows that the compensation is handled in a distributed way. The remaining terms stand
for the cases in which the forward flow is stopped before completion.

Trace Semantics. The trace semantics for this policy is obtained from the original one
(see Figure 1) by changing the definition for the parallel composition of traces as in § 5.2,
i.e.,

(p〈�〉, p′)||(q〈�〉,q′) = {(r〈�〉,r′〈�〉)|r ∈ (p|||q)∧ r′〈�〉 ∈ (p′||q′)}
∪{(r〈?〉,〈�〉)|r〈�〉 ∈ (pp′||qq′)}

(p〈ω〉, p′)||(q〈ω′〉,q′) = {(r〈ω&ω′〉,〈�〉)|r〈�〉 ∈ (pp′||qq′)} if ω&ω′ ∈ {!,?}

SOS Semantics. This strategy corresponds to the original revised semantics of parallel
Sagas (Figure 2(b)).

Correspondence. The following results state the correspondence between the trace
and SOS semantics for this policy.

Theorem 5.7. LetPP∈ cCSPpar4 and�PP�= P,Γ,withP∈ Sagaspar4.IfΓ�{[P]} κ−→ �,
then �κ� =traces [PP].

Theorem 5.8. Let Γ be an environment, P ∈ Sagaspar3, and �P�Γ = PP, with PP ∈
cCSPpar3. If Γ � {[P]} κ−→ �, then �κ� =traces [PP].

6 Relation of the Proposed Semantics

The four strategies presented in § 5 correspond to alternative implementations for the
compensation mechanism. In this section, we analyse the relation among such policies.
The following result states the relation among the traces of a transaction [PP] accord-
ingly to the four possible semantics for compensating parallel processes.

396 R. Bruni et al.

Theorem 6.1. Let [PP] be a parallel cCSP process, and let [PP]cCSPpari denote the
traces of [PP] when considering the strategy i = 1, ...,4. Then, the four trace seman-
tics satisfy the following diagram

[PP]cCSPpar1

⊆ ��

⊆
		

[PP]cCSPpar2

⊆
		

Naı̈ve Sagas

[PP]cCSPpar3

⊆ ��Original cCSP [PP]cCSPpar4 Revised Sagas

Proof (Sketch). The proof for any inclusion follows by showing (by induction on the
structure of PP) that any trace in PPcCSPpari corresponds with a trace in PPcCSPpar j . For
instance, that

– (p〈�〉, p′) ∈ PPcCSPpar1 ⇒ (p〈�〉, p′) ∈ PPcCSPpar2

– (p〈!〉, p′p′′) ∈ PPcCSPpar1 ⇒ (pp′〈!〉, p′′) ∈ PPcCSPpar2 . ��

Note that the above diagram does not include [PP]cCSPpar2 ⊆ [PP]cCSPpar3 nor
[PP]cCSPpar3 ⊆ [PP]cCSPpar2 . In fact, it is easy to check that there are processes [PP] for
which none of them holds. For instance, consider P = [A÷A′;B÷B′|C÷C′|THROWW].
Note that p = 〈A,B,B′,A′,C,C′,�〉 ∈ PcCSPpar2 , but p �∈ PcCSPpar3 , since compensations
A′ and B′ take place before C. On the other hand, note that q = 〈�〉 ∈ PcCSPpar3 , but
q �∈ PcCSPpar2 since the forward flow is required to execute until termination.

The above result makes incomparable the semantics of original cCSP and naı̈ve
Sagas. On the other hand, it shows that the revised version of Sagas allows more
traces than cCSP, and hence it is less restrictive on which are the acceptable execu-
tions of processes. Nevertheless, the distributed compensation mechanism of cCSPpar4

includes a “guessing mechanisms” that allows branches on the forward flow to compen-
sate even before an activity aborts. For instance, [A÷A′;THROWW|B÷B′] has the trace
p = 〈B;B′;A;A′〉. Since A is executed after B, p stands for an execution in which the
branch B÷B′ starts its compensation before THROWW is reached. Although this is an
acceptable and valid execution of the above transaction, it is hard to imagine a plausible
implementation of such a mechanism, which suggests that a more realistic policy relies
in between cCSP and revised Sagas.

7 Final Remarks

We have compared two recent formal approaches to the modelling of compensable flow
composition, that have been proposed independently in [5, 7]. For the sequential case
we have shown that the two frameworks essentially coincide by providing fully abstract
encodings. For the parallel case we have observed that the two approaches followed
different compensation policies, and that up to four different choices were possible for
activating compensations in parallel branches. We have shown that each alternative can
be formalised by adjusting the semantics of the two calculi. Finally we have related all
different policies by showing that they form a partial order of trace models.

Our more ambitious research programme is to extend the comparison to deal with
more advanced features, like nesting, joint transactions, message passing and action

Comparing Two Approaches to Compensable Flow Composition 397

refinement. To this end, the research presented here has been valuable in deepening our
understanding of the phenomenon of a compensable parallel transaction and the range
of available design options.

Acknowledgements. Research supported by the project HPRN-CT-2002-00275 SEG-
RAVIS. We thank Microsoft Research (Cambridge) for hosting two workshops at which
the ideas behind the paper were initiated and discussed. We also thank the anonymous
referees for their helpful comments.

References

1. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In E. Najm,
U. Nestmann, and P. Stevens, editors, Proceedings of FMOODS 2003, 6th IFIP International
Conference on Formal Methods for Open-Object Based Distributed Systems, volume 2884
of Lect. Notes in Comput. Sci., pages 124–138. Springer Verlag, 2003.

2. BPEL Specification (v.1.1). http://www.ibm.com/developerworks/library/ws-bpel.
3. Business Process Modeling Language (BPML). http://www.bpmi.org/BPML.htm.
4. R. Bruni, H. Melgratti, and U. Montanari. Nested commits for mobile calculi: extending Join.

In J.-J. Lévy, E. Mayr, and J. Mitchell, editors, Proceedings of the 3rd IFIP-TCS 2004, 3rd
IFIP Intl. Conference on Theoretical Computer Science, pages 569–582. Kluwer Academic
Publishers, 2004.

5. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. In Proceedings of POPL 2005, 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 209–220. ACM Press, 2005.

6. M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling
long-running business transactions. In R. De Nicola, G. Ferrari, and G. Meredith, editors,
Proceedings of Coordination 2004, volume 2949 of Lect. Notes in Comput. Sci., pages 87–
104. Springer Verlag, 2004.

7. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In
A. Abdallah, C.B. Jones, and J. Sanders, editors, Proceedings of 25 Years of CSP, volume
3525 of Lect. Notes in Comput. Sci., pages 133–150. Springer Verlag, 2005.

8. H. Garcia-Molina and K. Salem. Sagas. In U. Dayal and I.L. Traiger, editors, Proceedings
of the ACM Special Interest Group on Management of Data Annual Conference, pages 249–
259. ACM Press, 1987.

9. C. Laneve and G. Zavattaro. Foundations of web transactions. In V. Sassone, editor, Pro-
ceedings of FoSSaCS 2005, 8th International Conference on Foundations of Software Science
and Computational Structures, volume 3441 of Lect. Notes in Comput. Sci., pages 282–298.
Springer Verlag, 2005.

10. F. Leymann. WSFL Specification (v.1.0). http://www-306.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf, May 2001.

11. M. Mazzara and R. Lucchi. A framework for generic error handling in business processes.
In M. Bravetti and G. Zavattaro, editors, Proceedings of WS-FM 2004, 1st International
Workshop on Web Services and Formal Methods, 2004. To appear as ENTCS.

12. H. Melgratti. Models and Languages for Global Computing Transaction. PhD thesis, Com-
puter Science Department, University of Pisa, 2005. Submitted.

13. Web Service Choreography Interface (WSCI) 1.0. http://www.w3.org/TR/wsci.
14. Web Services Conversation Language (WSCL) 1.0. http://www.w3.org/TR/wscl10/.
15. Web Service Description Language (WSDL). http://www.w3.org/TR/wsdl.
16. Web Services for Business Process Design (XLANG). http://www.gotdotnet.com/

team/xml wsspecs/xlang-c/default.htm.

Transactions in RCCS

Vincent Danos1 and Jean Krivine2,�

1 CNRS & Université Paris 7
2 INRIA Rocquencourt & Université Paris 6

Jean.Krivine@inria.fr

Abstract. We propose a formalisation of the notion of transaction,
using a variant of CCS, RCCS, that distinguishes reversible and irre-
versible actions, and incorporates a distributed backtrack mechanism.
Any weakly correct implementation of a transaction in CCS, once em-
bedded in RCCS, automatically obtains a correct one. We show examples
where this method allows for a more concise implementation and a sim-
pler proof of correctness.

1 Introduction

Transactions involve participants trying to reach for an agreement. Participants
don’t have usually a complete view of their context, nor of its possible evolu-
tions. All they can do, is engage in a series of interactions, and decide, based on
what they learn from this exploration, whether their requirements are met, and
whether they want to commit themselves to the transaction.

A basic condition to meet in the design of a transaction is that whenever there
is a solution, some evolution may find it (i). This is intuitively saying that, given
a complete view of the system, it is possible to schedule participants so as to reach
any extant solution. One also has to ask that participants don’t come to wrong
decisions, actually committing to a transaction, while their requirements are not
met (ii), and in addition one wants participants to always find a agreement when
one is possible (iii).

In designing a transaction, it is usually a relatively easy task to cater for con-
ditions (i) and (ii). Why is this ? Because one has a pretty firm grasp of the local
knowledge of any participant, it becomes therefore easy to verify, at any time,
whether this local knowledge is compatible with the participant requirements. In
essence, one asks that the exploration process inherent to the transaction makes
no mistakes and knows how to tell a solution when it finds one.

It seems much harder, however, to deal with condition (iii), because potential
deadlocks, or more generally undue partial commitments, resulting from the ex-
ploration process, are hard to detect and to prevent. In examples, condition (iii)
is often met by allowing some controlled form of backtracking, so that the trans-
action never gets stuck in an exploration. We set up here a framework where
conditions (i) and (ii) are clearly separated from condition (iii), and prove that
the latter can indeed always be successfully handled by backtracking.
� Corresponding author.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 398–412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Transactions in RCCS 399

Specifically, we propose a formalisation of transactions using RCCS, a variant
of CCS [1], based on a distinction between reversible and irreversible actions [2].
It is often a delicate point to justify one’s choice of a formalism, however, we have
here two good reasons for ours. First, CCS has been widely adopted as a basis
for analysing concurrent systems. Second our variant of CCS provides exactly
what we need here, namely a controlled and distributed backtracking mechanism.
Importantly, the syntax of RCCS stays close to CCS, since backtracking stays
hidden from the programmer, except for the distinction between reversible and
irreversible actions. Thus, our choice seems to provide a suitable testbed to
prove the result we have in mind. We are also confident that the idea, once well
understood in CCS, will extend to π-calculus [3].

A transactional system is specified simply as a labelled transition system
where each completed transaction is represented as an atomic transition. An
RCCS process is then said to be a correct implementation if it is weakly bisimilar
to its specification, where only irreversible actions —corresponding to commits
in the transaction— are observable. In examples, the notion of participant is
always clear, and so we have not made it a part of the current formalisation,
even though it fixes a minimum level of distribution for the implementation.

With our formalisation in place, condition (i) translates as a weak simu-
lation property restricted to causal CCS traces, while (ii) translates naturally
into a ‘no bad states’ condition. None of these conditions enforces the absence
of deadlocks. We show that whenever a CCS process checks (i) and (ii), the
corresponding RCCS process also checks (iii), and as a result is weakly bisimilar
to the specification. A crucial point is that the RCCS backtracking mechanism
only reaches states that could be reached forwardly, else condition (ii) would be
no longer satisfied, and reaches them all, else condition (iii) would no longer be
satisfied either [2]. The significance of the result lies in that it allows sometimes
both for a more concise code, since all the needed backtracking stays implicit,
and for a simpler correctness proof, since there is less to prove.

The paper is organised as follows. First we recall briefly the definitions of
RCCS, then we turn to the study of causal computation traces, which we char-
acterise via a syntactic relation on their labels. We then state our formalisation
of the implementation of a transactional system, and move on to the proof of
our main result, based on the use of causal traces. We also show that causal
traces are necessary. The paper ends with some examples, and a discussion of
the merits of the method, and of the various trade-offs one can imagine between
a concise code, an easy proof and an efficient implementation. Related work and
perspectives are discussed in the conclusion.

2 RCCS

2.1 Syntax and Transitions

The syntax of RCCS starts with a distinction between two kinds of actions:
reversible actions will be written τ , a, ā, . . . , while irreversible ones will be

400 V. Danos and J. Krivine

written τ , a, ā, . . . , and it is understood that these subsets are disjoint. The rest
of the syntax is given in Figure 1.

Processes of the form m� p are called threads, where m is a memory used to
keep track of the thread past interactions. Memories are organised as stacks, and
we will write ≤ for the associated prefix ordering, and < for the strict version.
We write m �− r, when m is the memory of some thread in r, m <− r when there
is an m′ �− r such that m ≤ m′, and M(r) for the set of memories m such that
m <− r. Together with the syntax one has a set of rules for deriving transitions,

m := 〈〉, 〈1〉.m, 〈2〉.m, 〈∗, α, p〉.m, 〈m, α, p〉.m, 〈◦〉.m Memories
r := m � p, r | r, (a)r RCCS processes
p := 0,

∑
αi.pi, p | p, (a)p CCS processes

Fig. 1. RCCS Syntax

each of which bears a label μ : ζ. The first component, μ, is either a memory,
in which case one says the transition is unary, or a pair of memories, in which
case one says the transition is binary. The second component, ζ, either reads α,
in which case one says the transition is forward, or α∗, in which case α has to
be reversible, and one speaks of a backward transition.

We write μt for the memories labelling a given transition t, indicating the
threads responsible for the transition. Thread transitions and synchronisation
rules are given in Figure 2.

act

m � α.p + q
m:α−→ 〈∗, α, q〉 ·m � p

act∗
〈∗, α, q〉 ·m � p

m:α∗−→ m � a.p + q

act

m � α.p + q
m:α−→ 〈◦〉 ·m � p

r
m1:α−→ r′ s

m2:ᾱ−→ s′
com

r | s m1,m2:τ−→ r′m2@m1 | s′m1@m2

r
m1:α∗−→ r′ s

m2:ᾱ∗−→ s′
com∗

rm2@m1 | sm1@m2

m1,m2:τ∗−→ r′ | s′

r
m1:α−→ r′ s

m2:ᾱ−→ s′
com

r | s m1,m2:τ−→ r′ | s′

Fig. 2. Thread transitions and Synchronisations

The first two rules act and act∗ concern reversible actions. The corresponding
memory 〈∗, α, q〉.m is called a semi-synch. The yet unknown partner, written ∗,
may be identified later in the synchronisation rules com and com∗. Specifically,
given a process r and memoriesm1, m2, we write rm2@m1 for the process obtained
by replacing in r all semi-synchs 〈∗, α, q〉.m1 with 〈m2, α, q〉.m1, which is then called
a synch.

Transactions in RCCS 401

r
μ:ζ−→ r′

par-l

r | s μ:ζ−→ r′ | s
r

μ:ζ−→ r′
par-r

s | r μ:ζ−→ s | r′

r
μ:ζ−→ r′ ζ �$ a

res

(a)r
μ:ζ−→ (a)r′

r1 ≡ r
μ:ζ−→ r′ ≡ r′1 ≡

r1
μ:ζ−→ r′1

Fig. 3. Contextual transitions

Note that in a synch, the memory of a thread is used as its name. We will
introduce early in the next section a coherence condition on processes which
makes sure that this naming scheme stays injective. As a consequence, once
a thread s with memory m1 has used com, its memory is instantiated, and the
resulting sm1@m2 cannot undo the synchronisation alone, it has to use rule com∗.
This will be referred to as the lock effect.

The third transition rule, act concerns irreversible actions. In this case there
is no need to remember anything, so one uses instead a placeholder 〈◦〉. For the
same reason, there is no rule inverse to the irreversible synchronisation com, and
no longer a need to instantiate r′ and s′ in the right hand side of the rule. When
all actions are taken to be irreversible, RCCS essentially becomes CCS.

Contextual rules are given in Figure 3. These are as usual, except for (≡)
which uses the congruence generated by the following rules:

m � (p | q) ≡ 〈1〉.m � p | 〈2〉.m � q (1)
m � (a)p ≡ (a)m � p (2)

where the last rule assumes a doesn’t occur in m. Process summation is taken
to be associative and commutative, and CCS processes are taken up to α-
equivalence. Perhaps unusually, and because memories are using the syntactic
product structure to record forks, as can be seen from the first clause of ≡’s
definition, the parallel product is not taken to be commutative or associative.

Memories of the form 〈i〉.m with i ∈ {1, 2} will be called forks. Just as in the
case of a synch, there is a lock effect, as it is impossible for a thread to backtrack
a fork alone.

2.2 Traces and Equivalence

Define a trace to be a sequence of composable transitions. Say a trace is forward
if it only uses forward transitions. Write r→� s when there is a trace from r to
s in RCCS, and likewise p→� q when there is a trace from p to q in CCS.

A first thing we can say is that our calculus is a decoration of CCS. Indeed,
one has the following forgetful map φ from RCCS to CCS:

φ(m � p) = p
φ(r | s) = φ(r) | φ(s)
φ((a)r) = (a)φ(r)

402 V. Danos and J. Krivine

The forgetful map φ is easily seen to extend to traces:3

Proposition 1. If p →� q and φ(r) = p, then r →� s for some s such that
q = φ(s).

Conversely, the backtracking mechanism is consistent in the following sense:

Proposition 2. If 〈〉 � p→� r, then p→� φ(r).

One also has that, when all actions are reversible, any two traces with same
source and target are equivalent, in the sense that one can be rearranged so as
to obtain the other by commuting concurrent actions.4

As said, when all actions are irreversible in r, it behaves as a CCS process,
while in the opposite case, when all actions are reversible, the set of processes
reachable from r is invariant along any trace. Interesting behaviours arise in the
middle ground, when some, but not all actions are reversible. This is where one
typically finds transactional processes, and to understand them, we need first to
understand causal dependencies between transitions, and how these reflect as a
partial order over memories. This is what we do now.

3 Causality

Thereafter, we will assume all processes to be coherent, in the sense that their
memories do reflect some past. Specifically, we define a process r to be coherent
if for some p, 〈〉�p→∗ r. As a consequence, no memory m �− r occurs twice in r,
and for any transition t, μt can be safely handled with set-based notations. The
restriction to coherent processes also has the following consequence:

Lemma 1. Backtracking is noetherian and confluent.

Proof. Any backward transition decreases the total memory size, so backward
traces are bounded, and it is enough to prove local confluence to conclude to
the second point. This in turn, downs to proving that any two distinct backward
transitions t, t′ with the same source are concurrent, which means μt ∩ μt′ is
empty. This is indeed the case, since the lock effect applies, because naming is
injective on coherent processes. ��

Further consequences of the coherence requirement are that: M(r) is closed
under the mating relation, ∼, here defined as the least reflexive relation over
memories such that:
3 As was pointed out by the referees, α-conversion is sometimes needed. Suppose one

wants to simulate in RCCS the reduction of a.(a)(a | ā):

〈〉 � a.(a)(a | ā) → 〈∗, a〉 � (a)(a | ā) ≡ 〈∗, a〉 � (b)(b | b̄) ≡ (b)〈∗, a〉 � (b | b̄) ≡
(b)(〈0〉〈∗, a〉 � b | 〈1〉〈∗, a〉 � b̄)→ (b)(〈〈1〉〈∗, a〉, b〉〈0〉〈∗, a〉 � 0 | 〈〈0〉〈∗, a〉, b̄〉〈1〉〈∗, a〉 � 0)

as one sees, this is only possible if α-conversion is used in the second step, else the
side-condition in the congruence rule (2) would forbid the next one.

4 Further details can be found in the paper where these basic properties of RCCS were
established [2].

Transactions in RCCS 403

— 〈m, α, p〉.m′ ∼ 〈m′, ᾱ, q〉.m
— 〈i〉.m ∼ 〈j〉.m

and that mates are co-scoped, meaning if m occurs in the scope of some restriction
(x), and x occurs in m, then m’s mate, if any, is in the scope of the same (x).
Note that ∼ is an equivalence relation over M(r), each class having either two
elements in the case of synchs and forks, or one in the case of semi-synchs.

3.1 Causal Traces

There is a natural notion of causality between transitions in a same trace, which
corresponds to structural dependency in CCS [4,5].

Definition 1. Let t1; . . . ; tn be a forward trace. One says ti is a direct cause of
tk, if there is mi ∈ μti and mk ∈ μtk

such that mi < mk. The causality relation
< over transitions occurring in a same trace σ is the transitive closure of the
direct cause relation.

One says a trace σ is in t-causal form if σ = σ0; t;σ1 and for all t′ ∈ σ0,
t′ < t. When t is the last transition in σ, one simply says σ is in causal form.

Up to equivalence, any forward trace can be put in causal form with respect
to any transition:

Lemma 2. Let σ be a forward trace, and let t be a transition in σ, there exists
an equivalent trace σ′ such that σ′ is in t-causal form.

Proof. It is enough to prove the statement when σ ends with t. Let t′ be the right-
most transition in σ, distinct from t, and not causing t, if any. This t′ commutes
to its successor in σ, say t′′. Indeed, if not, then by definition it causes t′′, and
then by transitivity, also t. One concludes by an easy induction. ��

3.2 Locked Memories

Let us for a moment put aside the notion of causality between transitions ex-
plained above. An irreversible action taken by a process may have a domino-effect
on some other memories, and prevent them from being undone.

Let us say that a memory m in M(r) is locked if for all r →∗ r′, m <− r′, and
write B(r) for the set of memories locked in r. Clearly, 〈〉 ∈ B(r), if 〈◦〉.m′ <− r,
then 〈◦〉.m′ ∈ B(r), and for all r →∗ r′, B(r) ⊆ B(r′).

Say a process r is initial, when all its memories are locked, that is to say when
M(r) = B(r), and write ι for the restriction of φ to initial processes. Thereafter,
whenever we write ι(r), it is understood that r is initial. On such initial processes
the forgetful map φ does not forget anything useful. This can be put in a form
that generalises proposition 2.

Proposition 3. If r is initial and r →∗ s, then ι(r) →∗ φ(s).

What we want now is a more convenient description of B(r), explaining how
B(r) is generated by irreversible actions. This description can be construed as a
procedure for collecting locked memories which have become useless.

404 V. Danos and J. Krivine

Define ≺:= (∼;<;∼)+, where ∼ is the mating relation over memories. This
new relation over memories is meant to express the causal dependencies at the
level of memories.

We will write m � m′, when m ≺ m′ or m ∼ m′. Because memory size
decreases under <, ≺ is a strict finite partial order. Note also that M(r) is
downward closed under ≺, since it is downward closed under <, and closed
under ∼ (by the coherence condition). The same is true of B(r):

Lemma 3. For all m, m′, r: m ≺ m′,m′ ∈ B(r) ⇒ m ∈ B(r).

Proof. It is enough to remark that B(r) is closed under the mate relation, because
of the lock effect on forks and synchs, and downward closed under <, since if
m1 < m2, m1 always persists longer than m2 along any trace. ��

Corollary 1. For all m, r, ∃m′ : m � 〈◦〉.m′ ⇒ m ∈ B(r).

Proof. Either m ∼ 〈◦〉.m′, in which case m is also of the form 〈◦〉.m′′, and we are
done, or m ≺ 〈◦〉.m′ and then the conclusion follows from lemma 3. ��

One also has a converse to the corollary above, namely for all m �= 〈〉, and
r, if m ∈ B(r) then there is an m′ such that m � 〈◦〉.m′. This says that our
procedure is exhaustive, but we don’t need this in the rest of the paper.

3.3 Causality and Irreversibility

Now that we have obtained our syntactic characterisation of locked memories,
we turn back to causal traces and see that the two notions are intimately related.

Lemma 4. Let t and t′ be two forward transitions in a same trace, then t < t′

iff there is m ∈ μt and m′ ∈ μt′ such that m ≺ m′.

Proof. ⇒: by induction on t < t′.
If t is a direct cause of t′ then, by definition there is m ∈ μt and m′ ∈ μt′

such that m < m′, and so m ≺ m′. Suppose now t < t′′ and t′′ is a direct cause
of t′. If t′′ is a semi-synch, the reasoning is easy. If not, then μt′′ = {m′′0 ,m′′1}
and by induction there is m in μt such that m ≺ m′′0 , say, and m′ in μt′ such
that one of m′′0 and m′′1 is < m′. If it is m′′0 , again it is easy to conclude. Else,
let r be the target of t′′. We have that 〈m′′

1 , α, p〉.m′′0 �− r and 〈m′′
0 , ᾱ, p′〉.m′′1 �− r

for some α, p, p′. We have 〈m′′
0 , ᾱ, p′〉.m′′1 ≤ m′, which implies 〈m′′

1 , α, p〉.m′′0 � m′,
since 〈m′′

1 , α, p〉.m′′0 ∼ 〈m′′
0 , ᾱ, p′〉.m′′1 . So we have m′′0 ≺ m′ and hence m ≺ m′.

⇐: by induction on m ≺ m′.
If m < m′ we have that t is a direct cause of t′. If not, there exists m′′ such

that m ≺ m′′ for some m′′ ∼ m′ such that m < m′, and then we are in one of
the following cases.

– m′′ = 〈m0, α, p〉.m1 is a synch: this implies that m′ and m′′ were created
by some transition t′′ with μt′′ = {m0,m1}; and by the hypothesis, m <
m′ = 〈m1, ᾱ, p′〉.m0, so we have t ≤ t′′. Since m′ ∈ μt′ we have also t′′ < t′,
hence t < t′.

Transactions in RCCS 405

– m′′ = 〈i〉.m0 is a fork: in that case, we remark that if 〈i〉.m0 occurs in the
label of some transition in a trace, then m0 does not. This is because we use
only guarded choice, e.g., we cannot have m � (p | q) + p′. So m < 〈j〉.m0,
which implies m < m0, and therefore m < 〈i〉.m0 and t < t′.

The inductive case is obvious. ��

From this we infer that all memories involved in transitions which have caused
an irreversible action are locked.

Lemma 5. Let σ be a forward trace with target r, and tk be an irreversible
transition in σ, then for all t < tk, and m ∈ μt, m ∈ B(r).

Proof. Suppose tk reads r′ μ:α−→ r′′ for some α irreversible. Pick t < tk, there are
m ∈ μt and mk ∈ μ such that m ≺ mk (by lemma 4, ⇒). Besides, mk ∈ B(r′′),
since by definition of an irreversible transition 〈◦〉.mk �− r′′. Therefore, m ∈ B(r′′)
(by lemma 3), and m ∈ B(r), because B(r′′) ⊆ B(r). If μt = {m,m′}, then one
also has m′ ∈ B(r) because of the lock effect. ��

4 Transactions

With our causality lemmas in place, we turn now to the formalisation of trans-
actional systems. The idea driving the definition, is that a successful transaction
starts in a given state, which here we take as initial (in the technical sense that
it cannot go backward), then proceeds to a series of reversible actions taken
by the various participants, exploring the state space, and finally commits to
an irreversible change. When all the preliminary reversible actions are actually
involved in the success, in that they cause the last irreversible action, one says
the transaction is minimal.

It is interesting to compare the notion of minimal transaction with the
ACID requirements (Atomicity, Consistency, Isolation, and Durability) used in
database management systems. In ACID terms, minimal transactions correspond
to single logical operations, starting in a consistent state, proceeding then to a
sequence of sub-atomic steps, which are committed only at the end, so as to
ensure atomicity and consistency of the final state. The durability of the trans-
action is ensured by the fact that no backward transition is possible in the final
state (because it is initial). On the other hand, the notion of isolation makes
sense only in the context of shared-memory models, and doesn’t have a direct
analog in our process-algebraic approach.

Definition 2. A forward trace θ = t1; . . . ; tn : r →∗ s is transactional, or
simply a transaction, if r is initial, tn is irreversible, and ti is reversible for
i < n. If s is also initial, one says the transaction is minimal.

Lemma 6. A transaction θ is minimal iff it is in causal form.

Proof. If θ is not in causal form for tn, let ti be the rightmost transition such
that ti �< tn. Then for all j > i, ti �< tj , so no m ∈ μti is a strict prefix of an

406 V. Danos and J. Krivine

m′ in μtj (by lemma 4, ⇐), and we can commute ti with all tjs, obtaining a
equivalent trace, ending with ti. Since ti is reversible, one can now go backward,
and hence rn is not initial, so θ is not minimal.

Conversely, suppose θ : r0 →∗ rn is in causal form, tn is its last transition, and
a backward transition tb is possible after tn. We show that for all i, μtb

∩μti = ∅.
Consider first the case of tn. If μtb

and μtn have a proper intersection, by the
lock effect, these must be equal, and this is impossible since tn is irreversible.
Next, consider ti, i < n. Again μtb

= μti if they intersect at all. Suppose now ti is
binary, and μti = {mi,m

′
i}, since ti < tn (because θ is causal), mi,m

′
i ≺ mn for

some mn ∈ μtn (by lemma 4, ⇒), so one of mi, m′i, say mi < m � mn for some
m ∈ M(rn). The only possibility is that tb undoes m, but then m ∈ B(rn) (by
lemma 3), since mn ∈ B(rn) (because tn is irreversible), so this is not possible.
The case where ti is unary is similar. Now, if μtb

has an empty intersection with
all μti , tb commutes to all ti, and this contradicts the fact that r0 is initial. So
no backward tb is possible, which means indeed θ is minimal. ��

4.1 Causal Encoding

We first define a notion of causal encoding between a labelled transition system,
representing the specification, and a CCS process. This notion is based on the
idea that one does not observe all CCS actions, but only a specific subset K,
which we will later interpret as irreversible actions in RCCS.

We write respectively →∗, and →∗
k for CCS traces with no labels in K, and

CCS traces with no labels in K, except the last one k ∈ K.
We also extend the notion of a causal trace to CCS, by saying that a CCS

trace is in causal form if it is the projection of an RCCS trace in causal form.
Finally, when p is a CCS process, we write T (p) for the labelled transition

system associated to p, and S(p) for its state space. Likewise, if r is an RCCS
process, we write T (r) for the labelled transition system associated to r, where
the memories μ in labels μ : ζ are dropped, and write S(r) for its state space.

Definition 3. Let S = (S, s0, L,→) be an LTS, p0 be a CCS process, and Φ ⊆
L×K be a binary relation. A relation RΦ over S ×S(p0) is said to be a causal
encoding with respect to S, p0, and Φ if:

1. s0 RΦ p0

2. (Causal simulation) if s RΦ p then, for all s →l s
′, there exists p →∗

k p′

in causal form, such that s′ RΦ p′, and l Φ k.
3. (No bad states) if s RΦ p then, for all p→∗

k p′ in causal form, there exists
s→l s

′, such that s′ RΦ p′ and l Φ k.

A first thing worth noticing, is that one asks in the second condition traces
p→∗

k p′ to be causal. The idea is that non causal traces may backtrack, once p0 is
seen as an RCCS process, and thus may induce behaviours that the specification
cannot match. We will see later in an example that the theorem below does not
hold if one relaxes this requirement, and allows for S actions to be matched also
by non causal traces.

Transactions in RCCS 407

Dually, the third condition deals only with →∗
k traces, and not with general

transitions of the form p → p′. Therefore, the notion of causal encoding leaves
the possibility that some unobservable traces in T (p0) are leading to deadlocks
or partial choices. By asking that only traces corresponding to successful explo-
rations be matched by the specification, we obtain a stronger theorem. In fact,
without this relaxation, RΦ would be a weak Φ-bisimulation (see definition right
below) and the theorem would become completely uninteresting.

4.2 Weak Φ-Bisimilarity

The notion of causal encoding has a degree of flexibility, in that the two transition
systems don’t have to use the same set of labels. To manage the correspondence
between labels, we use a relation over labels, written Φ, to screen off actions which
we don’t want to observe, and relate those we want to observe. The corresponding
notion of weak bisimilarity, called weak Φ-bisimilarity is defined below.

Definition 4. Let S = (S, s0,→, L), and S′ = (S′, s′0,→′, L′) be labelled transi-
tion systems, and let Φ be be a relation over L× L′.

Define the range of Φ as r(Φ) := {l′ ∈ L′ | ∃l ∈ L, l Φ l′}, write Φ−1 for the
inverse relation, and define S/Φ to the labelled transition system obtained by
substituting silent actions τ to actions l �∈ r(Φ−1) in S.

One says S and S′ are weak Φ-bisimilar if S/Φ and S′/Φ−1 are weak bisimilar.

In the particular case where Φ is the identity relation, S/Φ = S, and weak
Φ-bisimilarity is weak bisimilarity.

4.3 The Main Result

We may proceed to the theorem now.

Theorem 1. Let S = (S, s0, L,→) be an LTS, p0 be CCS process, Φ ⊆ L ×K
be a binary relation, and RΦ be a causal encoding with respect to S, p0, and Φ,
then S and T (〈〉�p0), where actions in K are chosen to be irreversible in RCCS,
are weak Φ-bisimilar.

Proof. Set s ≈ r := ∃r′ : r →∗ r′ & s RΦ ι(r′). We want to prove that ≈ is
a weak Φ-bisimulation (with the obvious definition). Clearly s0 ≈ r0, since by
definition, r0 = 〈〉�p0, so ι(〈〉�p0) = p0, and s0 RΦ p0. We distinguish now three
cases.

– Suppose s ≈ r and s→l s
′.

We know that for some r′, r →∗ r′ and s RΦ ι(r′). Since RΦ satisfies the ‘causal
simulation’ property, there is a causal CCS trace ι(r′) →∗

k p such that s′ RΦ p
and l Φ k. Then there is an RCCS trace r′ →∗

k r′′ with φ(r′) = ι(r′), and
φ(r′′) = p (by proposition 1). By definition, this trace is also in causal form, and
so is a minimal transaction (by lemma 6, ⇐). So ι(r′′) = p, s′RΦι(r′′), hence
s′ ≈ r′′.

408 V. Danos and J. Krivine

– Suppose s ≈ r and r →∗
k r′.5

Again for some r′′, r →∗ r′′ and s RΦ ι(r′′). By backtracking, one sees the trace
r →∗

k r′ is equivalent to r →∗ r′′′ →∗ r →∗
k r′, where r′′′ →∗ r →∗

k r′ is forward,
and r′′′ is initial (by lemma 1). Hence r′′′ →∗ r →∗

k r′ is a transaction, call it θ.
Now, r′′′ = r′′ (again by lemma 1). We may now put the transaction θ : r′′ →∗

k r′

in causal form for its last transition tk (by lemma 2), and obtain r′′ →∗
k r′0 →∗ r′,

where θ′ : r′′ →∗
k r′0 is minimal, i.e., r′0 is initial (by lemma 6, ⇐). So, r′′ →∗

k r′0
projects to a CCS trace ι(r′′) →∗

k ι(r′0), also in causal form (by proposition 3).
Now, RΦ satisfies the ‘no bad state’ property, therefore, for some s′, s →l s′

with s′ RΦ ι(r′0) and l Φ k. By backtracking, r′ →∗ r′0, hence s′ ≈ r′.

– Finally, suppose s ≈ r and r →∗ r′.

By backtracking, r′ →∗ r, and again r →∗ r′′ for some initial r′′, so r′ →∗ r′′,
and s ≈ r′. ��

4.4 Causal Traces Are Needed

The reader may perhaps wonder whether the theorem still holds if one drops
the causality requirements on traces in the simulation property. It does not.
Compare the transition systems, S and P(p0):

s0a

��
b

��
a

		

s1

b ��

s2

a��s3

p0a

��

b,τ

��
p1

b,τ ��

p2

a��p3

with p0 = a.0 | (b.0 + τ.0), p1 := 0 | (b.0 + τ.0), p2 := a.0 | 0, and p3 := 0 | 0.
Clearly the relation RΦ := {(si; pi), i = 0, 1, 2, 3} defines a ‘non-causal’ en-

coding with respect to S and p0, and Φ := {(a; a), (b; b)}. And, just as clearly,
the simulation property does not hold for causal traces since no causal trace
starting from p0 can match s0 →a s3.

On the RCCS side, the relation≈, defined in the proof of the theorem, fails to
be a weak Φ-bisimulation between S and 〈〉�p0. In fact, 〈〉�p0 is weak Φ-bisimilar
to a.0 | b.0 which is not weak Φ-bisimilar to S, so there is no such bisimulation
at all.

5 Discussion

There is an amusing analogy between the method we propose and simulated
annealing techniques which physicists developed in the 80s, and which turned
out to be useful in some optimisation problems [6]. In essence, one has to walk
a complicated space on the search for some optimum, and the task is hard
5 One may take this trace to be of length one, but it doesn’t help.

Transactions in RCCS 409

enough so that no up front computation is feasible (in the analogy centralised
scheduling is not possible). The idea, then, is to base the search on inexpensive
and overoptimistic cues, e.g., the gradient of the function to minimise (a role
played in the analogy by the CCS process), which one follows most of the time,
except for some computation steps picked with a small probability, where one
does random moves in the search space (a role played here by backtracking,
combined with the inherent non-determinism of forward transitions).

Having said that, the purpose of this section is to illustrate our theorem with
two basic examples of transactional systems, and discuss whether the theorem
might have some merits and when. Ideally, the theorem should lead to shorter
and more intuitive CCS code, and easier proofs. Recursive definitions can be
incorporated to RCCS, and so we will use them freely in the following.

5.1 Dining Philosophers

We begin with the timeless example of the dining philosophers. There are a
certain number of philosophers, say n, eating or thinking. So, n = E +T , where
T is the set of thinking philosophers, and E the set of eating philosophers.
Philosopher i may stop eating at any time, and conversely philosopher i may
start eating but he needs two chopsticks for this. The trouble is, he is sharing
one chopstick with i− 1, and one with i + 1.6 This translates into the following
system:

E + {i} , T →ti E, T + {i}
E, T + {i− 1, i, i+ 1} →ei E + {i} , T + {i− 1, i+ 1}

On the CCS side, we clearly want one process for each philosopher,7 and need
to make sure a transaction θi corresponding to the latter transition may only
commit after the acquisition of two chopsticks. Here is a simple CCS encoding
(where we already have underlined the irreversible actions):

THINKi := csi.ei+1.EATi + csi+1.ei.EATi

EATi := ti.(THINKi | STICKi | STICKi+1)
STICKi := csi.0 + ēi.0
PHILE,T :=

∏
i∈T

THINKi |
∏

j∈E

EATj |
∏

u∈U

STICKu

where U := T − {i, i+ 1 | i ∈ E} is the set of unused chopsticks. Set Φ :=
{(ei, τ), (ti, ti)}, and define RΦ as:

(E, T) RΦ SE,T := (cs1)(e1) · · · (csn)(en)PHILE,T

It is easy to verify that RΦ is a causal encoding. Causal simulation downs to
exhibiting causal traces for:

SE+{i},T →∗
ti
SE,T+{i}

SE,T+{i−1,i,i+1} →∗
τ SE+{i},T{i−1,i+1}

6 Addition is taken modulo n.
7 As said in the introduction, the level of distribution of the implementation one is

looking for is usually quite clear in specific examples.

410 V. Danos and J. Krivine

One finds exactly one causal trace ending with ti in the first case, and two
symmetrical causal traces, depending on which chopstick i grabs first. Verifying
the other condition amounts to showing that for any causal trace with source
SE,T , there exists a corresponding transition in the specification LTS. That is
to say, one has to verify that if SE,T →∗

τ p, then p ≡ SE+i,T−i for some i, and
if SE,T →∗

ti
p we have p ≡ SE−{i},T+{i}. As said, for a given i, the causal traces

leading to τ are symmetric so we already checked the property. Furthermore,
there is only one causal trace leading to ti, so again we know the answer.

To handle backtrack explicitly, one would need a modification such as:

THINK′i := csi.
(
τ.(STICKi | THINKi) + ei+1.EATi

)
+csi+1.

(
τ.(STICKi+1 | THINKi) + ei.EATi

)
Not only is the code larger and not as immediately intuitive, but one has more
to prove, and with a larger transactional system, where deeper exploration is
needed, it would be even more so.

5.2 Choices

The object of this second example is to contrast the expressiveness of RCCS with
that of CCS. We start with a system of agents indexed by a set I, where each
agent is capable of emitting a vote, and the problem is to enforce that no more
than c0 ≤ |I| votes are actually emitted. The corresponding transition system is:

Vc(J + {i}) →vi Vc−1(J)

where 0 < c, J ⊂ I, together with the initial state Vc0(I). One may think of a
simple implementation in CCS:

Pc(J) := (l)
(∏
i∈J

Ai(l, vi) |
∏

1≤i≤c

l.0
)

Ai(l, vi) := l̄.vi.0

This system has no deadlocks, and for a while, the encoding may seem correct.
But really it is not, as can be seen already in the case c0 = 1 and I = {1, 2}. In
that case the specification is no other than the external choice v1 + v2, and yet,
in the corresponding process P1(I) one can move silently to a state where only v1

(or v2) is possible. Actually P1(I) is bisimilar to τ.v1+τ.v2, and is the traditional
non-divergent encoding of internal choice, which is not weakly bisimilar to the
specification.

However, it is correct enough so that we can apply our theorem. To see this,
take for RΦ the pairs of the form (Vc(J), Pc(J)), with vi Φ vi for all i ∈ I. It is
easy to check for the ‘no bad state’ and ‘causal simulation’ properties at once,
since there is only one causal trace of the form Pc(J + {i}) →∗

vi
p, and for this

trace p ≡ Pc−1(J).
As in the preceding example, one could also directly define a weakly bisimilar

encoding by modifying the behaviour of Ai:

A′i(l, vi) := l̄.
(
vi.0 + τ.(Ai(l, vi) | l.0)

)

Transactions in RCCS 411

Again, the complete weak bisimulation has to be proved, and that is harder [7].
In a way, RCCS gets the best of both worlds, in that the code is as simple as
the non-divergent encoding (actually it is the same encoding), while at the same
time, the behaviour is fully correct. Another point worth observing, is that both
the modified code and the RCCS code are divergent (i.e., may loop). This is not
because we are clumsy, Palamidessi and Herescu have shown that any solution
has to be divergent [8].

6 Conclusion

We have presented a formalisation of the notion of transaction based on RCCS
where reversible actions are distinguished from irreversible or commit actions.
One interest of this formalisation is that one may prove that relatively straight-
forward correctness conditions on a CCS process with respect to a given speci-
fication, will ensure that the corresponding RCCS process is fully correct with
respect to the same specification. We believe the method does have some inter-
esting applications, and the consideration of simple examples in the last section
gives some more credence to that, since we have found code which was shorter
and easier to understand, and definitely simpler to prove correct.

An interesting question is to relate the present approach with the represen-
tation of transactional processes by means of zero-safe nets [9]. These are used
to screen off traces leading to deadlocks, and retain only those which are decom-
posable as minimal transactions. Implementations in Join-calculus using resets,
and processes monitoring running transactions [10], should be compared with
the implicit backtracking mechanism inherent to RCCS.

There are also important transaction concepts which are not addressed here,
such as compensations, during which participants may jump to some rally point
in their state space, using a compensation. In so doing, they do not neces-
sarily forget all what they learned during the interaction, and thus may not
go back to their exact initial state. This mechanism is certainly useful, and
was already studied in the context of process algebras [11,12]. Nested transac-
tions are not considered either [13]. Whether a revision of the fundamentals of
RCCS including compensations or nested transactions is possible, remains to be
seen.

A further problem not addressed here, is the question of efficiency. By includ-
ing in the picture some quantitative semantics, either by timeouts or probabili-
ties, to control backtrack, would give means to evaluate the efficiency of the code
one obtains. Then, an interesting question would be to find general conditions
for efficiency, perhaps based on an analysis of the distribution of the causality
chains in a transaction.

Acknowledgements. The authors wish to thank the referees for many useful
suggestions, and specifically for drawing their attention to the need of including
α-conversion in the structural equivalence over CCS processes.

412 V. Danos and J. Krivine

References

1. Robin Milner. Communication and Concurrency. International Series on Computer
Science. Prentice Hall, 1989.

2. Vincent Danos and Jean Krivine. Reversible communicating systems. In Proceed-
ings of CONCUR’04, volume 3170 of LNCS, pages 292–307. Springer, September
2004.

3. Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge
University Press, Cambridge, 1999.

4. Gérard Boudol and Ilaria Castellani. Permutation of transitions: An event struc-
ture semantics for CCS and SCCS. In Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, volume 354 of LNCS, pages 411–427.
Springer, 1989.

5. Pierpaolo Degano and Corrado Priami. Non interleaving semantics for mobile
processes. In Automata, Languages and Programming, volume 944 of LNCS, pages
660–667. Springer, 1995.

6. V. Cerny. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. J. Opt. Theory Appl., 45(1), 1985.

7. Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. In Proceedings
of CONCUR’96, volume 1119 of LNCS, pages 179–194. Springer, 1996.

8. Catuscia Palamidessi and Oltea Mihaela Herescu. A randomized encoding of the
π-calculus with mixed choice. Theoretical Computer Science, 2004. To appear.

9. Roberto Bruni and Ugo Montanari. Zero-safe nets: Comparing the collective and
individual token approaches. Information and Computation, 156(1–2), 2000.

10. Roberto Bruni, Cosimo Laneve, and Ugo Montanari. Orchestrating transactions
in join calculus. In Proceedings of CONCUR’02, volume 2421 of LNCS, pages
321–336. Springer, 2002.

11. Jan A. Bergstra, Alban Ponse, and Jos van Wamel. Process algebra with back-
tracking. In Proceedings of the REX School/Symposium, volume 803 of LNCS,
pages 46–91. Springer, 1994.

12. Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattaro. A calculus for long running
transactions. In Proceedings of FMOODS 2003, volume 2884 of LNCS, pages 124–
138. Springer, 2003.

13. Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Nested commits for mobile
calculi: extending Join. In Proceedings of IFIP-TCS’04, pages 569–582, 2004.

Two-Player Nonzero-Sum ω-Regular Games

Krishnendu Chatterjee

Dept. of EECS, University of California, Berkeley
c krish@eecs.berkeley.edu

Abstract. We study infinite stochastic games played by two-players
on a finite graph with goals specified by sets of infinite traces. The
games are concurrent (each player simultaneously and independently
chooses an action at each round), stochastic (the next state is deter-
mined by a probability distribution depending on the current state and
the chosen actions), infinite (the game continues for an infinite number
of rounds), nonzero-sum (the players’ goals are not necessarily conflict-
ing), and undiscounted. We show that if each player has an ω-regular
objective expressed as a parity objective, then there exists an ε-Nash
equilibrium, for every ε > 0. However, exact Nash equilibria need not
exist. We study the complexity of finding values (payoff profile) of an
ε-Nash equilibrium. We show that the values of an ε-Nash equilibrium
in nonzero-sum concurrent parity games can be computed by solving the
following two simpler problems: computing the values of zero-sum (the
goals of the players are strictly conflicting) concurrent parity games and
computing ε-Nash equilibrium values of nonzero-sum concurrent games
with reachability objectives. As a consequence we establish that values
of an ε-Nash equilibrium can be computed in TFNP (total functional
NP), and hence in EXPTIME.

1 Introduction

Stochastic Games. Non-cooperative games provide a natural framework to
model interactions between agents [12,14]. The simplest class of non-cooperative
games consists of the “one-step” games — games with single interaction be-
tween the agents after which the game ends and the payoffs are decided (e.g.,
matrix games). However, a wide class of games progress over time and in stateful
manner, and the current game depends on the history of interactions. Infinite
stochastic games [16,8] are a natural model for such games. A stochastic game is
played over a finite state space and is played in rounds. In concurrent games, in
each round, each player chooses an action from a finite set of available actions,
simultaneously and independently of other players. The game proceeds to a new
state according to a probabilistic transition relation (stochastic transition ma-
trix) based on the current state and the joint actions of the players. Concurrent
games subsume the simpler class of turn-based games, where at every state at
most one player can choose between multiple actions. In verification and control
of finite state reactive systems such games proceed for infinite rounds, generating
an infinite sequence of states, called the outcome of the game. The players receive
a payoff based on a payoff function that maps every outcome to a real number.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 413–427, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

414 K. Chatterjee

Objectives. Payoffs are generally Borel measurable functions [11]. The payoff
set for each player is a Borel set Bi in the Cantor topology on Sω (where S is the
set of states), and player i gets payoff 1 if the outcome of the game is in Bi, and
0 otherwise. In verification, payoff functions are usually index sets of ω-regular
languages. The ω-regular languages generalize the classical regular languages
to infinite strings, they occur in low levels of the Borel hierarchy (they are in
Σ3∩Π3), and they form a robust and expressive language for determining payoffs
for commonly used specifications. The simplest ω-regular objectives correspond
to safety (“closed sets”) and reachability (“open sets”) objectives.

Zero-Sum Games. Games may be zero-sum, where two players have directly
conflicting objectives and the payoff of one player is one minus the payoff of
the other, or nonzero-sum, where each player has a prescribed payoff function
based on the outcome of the game. The fundamental question for games is the
existence of equilibrium values. For zero-sum games, this involves showing a
determinacy theorem that states that the expected optimum value obtained by
player 1 is exactly one minus the expected optimum value obtained by player 2.
For one-step zero-sum games, this is von Neumann’s minmax theorem [21]. For
infinite games, the existence of such equilibria is not obvious, in fact, by using the
axiom of choice, one can construct games for which determinacy does not hold.
However, a remarkable result by Martin [11] shows that all stochastic zero-sum
games with Borel payoffs are determined.

Nonzero-Sum Games. For nonzero-sum games, the fundamental equilibrium
concept is a Nash equilibrium [10], that is, a strategy profile such that no player
can gain by deviating from the profile, assuming the other player continues
playing the strategy in the profile. Again, for one-step games, the existence of
such equilibria is guaranteed by Nash’s theorem [10]. However, the existence of
Nash equilibria in infinite games is not immediate: Nash’s theorem holds for
finite bimatrix games, but in case of stochastic games, the strategy space is not
compact. The existence of Nash equilibria is known only in very special cases of
stochastic games. In fact, Nash equilibria may not exist, and the best one can
hope for is an ε-Nash equilibrium for all ε > 0, where an ε-Nash equilibrium
is a strategy profile where unilateral deviation can only increase the payoff of
a player by at most ε. Exact Nash equilibria do exist in discounted stochastic
games [9]. For concurrent nonzero-sum games with payoffs defined by Borel
sets, surprisingly little is known. Secchi and Sudderth [15] showed that exact
Nash equilibria do exist when all players have payoffs defined by closed sets
(“safety objectives”). In the case of open sets (“reachability objectives”), the
existence of ε-Nash equilibrium for every ε > 0, has been established in [5].
The above results hold even in the case of n-player games. In an important
recent result in stochastic game theory, Vieille shows the existence of ε-Nash
equilibrium, for every ε > 0, in two-player nonzero-sum concurrent games with
limit-average payoff [19,20]. The existence of ε-Nash equilibrium in two-player
concurrent games with objectives in higher levels of Borel hierarchy has been an
intriguing open problem.

Two-Player Nonzero-Sum ω-Regular Games 415

Result and Proof Techniques. In this paper we show that ε-Nash equilibrium
exists, for every ε > 0, for two-player concurrent games with ω-regular objectives.
However, exact Nash equilibria need not exist. For two-player concurrent games
our result extends the existence of ε-Nash equilibrium from the lowest level of
Borel hierarchy (open and closed sets) to ω-regular objectives that lie in the
higher levels of Borel hierarchy; and our result for ω-regular objectives parallels
Vieille’s result for limit-average objectives. Our result is organized as follows:

1. In Section 3 we first show the existence of ε-Nash equilibrium, for every
ε > 0, for a sub-class of concurrent games, namely single strongly connected
component (Sscc) games, with ω-regular objectives.

2. We extend the above result to all concurrent games in Section 4.

The result for Sscc games involves the following key ideas:

– We identify four sufficient conditions that ensure existence of ε-Nash equi-
librium, for every ε > 0, in Sscc games.

– We then show that if the sufficient conditions are not satisfied, then the
game can be reduced to a nonzero-sum game with reachability objectives,
with some desired properties. The result is proved by generalizing a result
from [2] and using a fragment of analysis of Vieille [19].

– The existence of ε-Nash equilibrium, for all ε > 0, in the original game is
then established by the use of punishing or spoiling strategies.

Complexity of ε-Nash Equilibrium. Computing the values of a Nash equilib-
ria, when it exists, is another challenging problem [13,22]. For one-step zero-sum
games, equilibrium values and strategies can be computed in polynomial time (by
reduction to linear programming) [12]. For one-step nonzero-sum games, no poly-
nomial time algorithm is known to compute an exact Nash equilibrium in two-
player games [13]. In case of zero-sum concurrent games with ω-regular objectives
several algorithms are known to compute values with in ε-approximation [7,2].
Since the values can be irrational, ε-approximation is the best one can achieve.
From the computational aspects, a desirable property of an existence proof of
Nash equilibrium is its ease of algorithmic analysis. We show that our proof for
existence of ε-Nash equilibrium is completely constructive and algorithmic. Our
proof shows that the computation of values of an ε-Nash equilibrium in two-
player concurrent games with parity objectives can be reduced to the following
two simpler problems:

1. Computing values of zero-sum concurrent games with parity objectives.
2. Computing values of some special ε-Nash equilibrium of nonzero-sum con-

current games with reachability objectives.

Since zero-sum games are special cases of nonzero-sum games, computing
ε-Nash equilibrium in nonzero-sum games are at least as hard as solving the
optimum values in zero-sum games. Our result shows that the extra cost of
computing ε-Nash equilibrium for ω-regular objectives is no more than solving
some special ε-Nash equilibrium of games with reachability objectives. We then

416 K. Chatterjee

prove that the equilibrium values of an ε-Nash equilibrium can be computed in
TFNP (total functional NP) and hence in EXPTIME. Our result matches the
best known complexity bound for the simpler case of turn-based games [5].

2 Definitions

Notation. For a countable set A, a probability distribution on A is a func-
tion δ : A �→ [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probabil-

ity distributions on A by D(A). Given a distribution δ ∈ D(A), we denote by
Supp(δ) = {x ∈ A | δ(x) > 0} the support of δ.

Definition 1 (Concurrent games). A (two-player) concurrent game struc-
ture G = 〈S,Moves ,Γ1,Γ2, δ〉 consists of the following components:

– A finite state space S and a finite set Moves of moves.
– Two move assignments Γ1,Γ2 : S �→ 2Moves \∅. For i ∈ {1, 2}, assignment Γi

associates with each state s ∈ S the non-empty set Γi(s) ⊆ Moves of moves
available to player i at state s.

– A probabilistic transition function δ : S×Moves×Moves → D(S), that gives
the probability δ(s, a1, a2)(t) of a transition from s to t when player 1 plays
a1 and player 2 plays a2, for all s, t ∈ S and a1 ∈ Γ1(s), a2 ∈ Γ2(s).

A special class of concurrent game structures are Markov decision processes
(MDPs). A concurrent game structure is a Markov decision process (MDP) if
there exists an i ∈ {1, 2} such that at every state s, |Γi(s)| = 1. In other words,
MDPs are one-player stochastic games: only one player has a non-trivial choice
of moves and for the other player the choice of the moves are fixed.

We define the size of the game structure G to be equal to the size of the tran-
sition function δ; specifically, |G| =

∑
s∈S

∑
a∈Γ1(s)

∑
b∈Γ2(s)

∑
t∈S |δ(s, a, b)(t)|,

where |δ(s, a, b)(t)| denotes the space to specify the probability distribution. At
every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and
independently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds
to the successor state t with probability δ(s, a1, a2)(t), for all t ∈ S. A state
s is called an absorbing state if for all a1 ∈ Γ1(s) and a2 ∈ Γ2(s) we have
δ(s, a1, a2)(s) = 1. In other words, at s for all choices of moves of the players
the next state is always s. Each player chooses her strategy independently and
secretly from the other player, and is only interested in maximizing her own
payoff. For all states s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we indicate
by Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible successors of s when
moves a1, a2 are selected.

A path or a play ω of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states
in S such that for all k ≥ 0, there are moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) with

δ(sk, ak
1 , ak

2)(sk+1) > 0. We denote by Ω the set of all paths and by Ωs the set
of all paths ω = 〈s0, s1, s2, . . .〉 such that s0 = s, i.e., the set of plays starting
from state s.

Two-Player Nonzero-Sum ω-Regular Games 417

Randomized Strategies. A selector ξ for player i ∈ { 1, 2 } is a function
ξ : S �→ D(Moves) such that for all s ∈ S and a ∈ Moves , if ξ(s)(a) > 0 then
a ∈ Γi(s). We denote by Λi the set of all selectors for player i ∈ {1, 2}. A strategy
for player 1 is a function σ : S+ → Λ1 that associates with every finite non-empty
sequence of states, representing the history of the play so far, a selector. Similarly
we define strategies π for player 2. A memoryless strategy is independent of the
history of the play and depends only on the current state. Memoryless strategies
coincide with selectors, and we often write σ for the selector corresponding to
a memoryless strategy σ. We denote by Σ and Π the set of all strategies for
player 1 and player 2, respectively.

Once the starting state s and the strategies σ and π for the two players
have been chosen, the game is reduced to an ordinary stochastic process. Hence,
the probabilities of events are uniquely defined, where an event A ⊆ Ωs is a
measurable set of paths. For an event A ⊆ Ωs, we denote by Prσ,π

s (A) the
probability that a path belongs to A when the game starts from s and the
players follow the strategies σ and π.

Objectives. An objective for a player in a game G is a set W ⊆ Ω of infinite
paths. We consider the following objectives.

– Reachability objective. For a set R ⊆ S of target states, the Reachability
objective is defined as Reach(R) = { 〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ∈ N. sk ∈ R }.

– Safety objective. For a set F ⊆ S of safe states, the Safety objective is
defined as Safe(F) = { 〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ∈ N. sk ∈ F }. Note that
Ω \Reach(R) = Safe(S \R). Hence the reachability objective with target set
R is complementary to the safety objective with safe set S \R.

– Parity objective. Given d ∈ N, we write [d] for the set { 0, 1, 2, . . . , d }
and [d]+ for the set { 1, 2, . . . , d }. Let p : S �→ [d] be a function
that assigns a priority p(s) to every state s ∈ S, where d ∈ N. For
an infinite path ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ω) = { i ∈
[d] | p(sk) = i for infinitely many k ≥ 0 }. The parity objective is defined as
Parity(p) = { ω ∈ Ω | min

(
Inf(ω)

)
is even }. Informally we say that a path

ω satisfies the parity objective, Parity(p), if ω ∈ Parity(p).

The ability to solve games with parity objectives suffices for solving games
with arbitrary ω-regular objectives, since every ω-regular objective can be spec-
ified as a parity objective [17].

A concurrent nonzero-sum parity game consists of a game structure G and
two priority functions p1 and p2 for player 1 and player 2, respectively. The
objectives of player 1 and player 2 are Parity(p1) and Parity(p2), respectively.
We write Ψ for an arbitrary parity objective. We write the objectives of player 1
and player 2 as Ψ1 and Ψ2, respectively, where Ψ1 and Ψ2 are arbitrary ω-regular
objectives formalized as parity objectives. We also use Ψ1 to denote the set of
paths ω ∈ Ω such that ω ∈ Parity(p1). Similarly we write Ψ2 to denote the set
of paths Parity(p2). Given a state s we write Ψ1s to denote Ωs∩Ψ1 and similarly
we write Ψ2s to denote Ωs ∩ Ψ2. We also write Ψs to denote Ωs ∩ Ψ . Given a
parity objective Ψ , the set of paths Ψs is measurable for any choice of strategies

418 K. Chatterjee

for the two players [18]. Hence, the probability that a path satisfies objective Ψ
starting from state s ∈ S under strategies σ, π for the two players is Prσ,π

s (Ψs).

Concurrent Nonzero-Sum Games. A concurrent nonzero-sum game con-
sists of a concurrent game structure G and objectives Ψ1 and Ψ2 for player 1
and player 2, respectively. A concurrent game is zero-sum if the objectives of
the players are complementary, i.e., Ψ1 = Ω \ Ψ2. The zero-sum values for the
players in concurrent games with objectives Ψ1 and Ψ2, for player 1 and player 2,
respectively, are defined as follows.

Definition 2 (Zero-sum values). Let G be a concurrent game structure with
objectives Ψ1 and Ψ2 for player 1 and player 2, respectively. Given a state s ∈ S
we call the maximal probability with which player 1 can ensure that Ψ1 holds
from s against any strategy of player 2 is the zero-sum value of player 1 at s.
The zero-sum value for player 2 is defined symmetrically. Formally, the zero-sum
value for player 1 and player 2 are given by functions 〈〈1〉〉val (Ψ1) : S �→ [0, 1]
and 〈〈2〉〉val (Ψ2) : S �→ [0, 1], defined for all s ∈ S by

〈〈1〉〉val (Ψ1)(s) = sup
σ∈Σ

inf
π∈Π

Prσ,π
s (Ψ1s); 〈〈2〉〉val (Ψ2)(s) = sup

π∈Π
inf

σ∈Σ
Prσ,π

s (Ψ2s).

Concurrent zero-sum games satisfy a quantitative version of determinacy [11],
stating that for all parity objectives Ψ1 and Ψ2, such that Ψ1 = Ω \ Ψ2, and all
s ∈ S, we have 〈〈1〉〉val (Ψ1)(s) + 〈〈2〉〉val (Ψ2)(s) = 1. A strategy σ for player 1 is
optimal with respect to objective Ψ , if for all s ∈ S we have infπ∈Π Prσ,π

s (Ψs) =
〈〈1〉〉val (Ψ)(s). For ε > 0, a strategy σ for player 1 is ε-optimal with respect to
objective Ψ , if for all s ∈ S we have infπ∈Π Prσ,π

s (Ψs) ≥ 〈〈1〉〉val (Ψ)(s) − ε. We
define optimal and ε-optimal strategies for player 2 symmetrically. Note that
the quantitative determinacy of concurrent zero-sum games is equivalent to the
existence of ε-optimal strategies for both players for all ε > 0, at all states s ∈ S.

Definition 3 (Cooperative value). Given a concurrent game structure G and
an objective Ψ we define the cooperative value at a state s ∈ S as the maximal
probability with which player 1 and player 2 can cooperate to satisfy the objective
Ψ at s. Formally, the cooperative value is given by the function 〈〈1, 2〉〉val (Ψ) :
S �→ [0, 1], defined for all s ∈ S by 〈〈1, 2〉〉val (Ψ)(s) = sup(σ,π)∈Σ×Π Prσ,π

s (Ψs).

Note that the computation of the cooperative value function 〈〈1, 2〉〉val (Ψ) can
be interpreted as the computation of a value function in a MDP with objective
Ψ , where player 1 and player 2 cooperatively choose strategies.

Definition 4 (ε-Nash equilibrium). Let G be a concurrent game structure
and let the objectives for player 1 and player 2 be Ψ1 and Ψ2, respectively. For
ε ≥ 0, a strategy profile (σ∗, π∗) ∈ Σ ×Π is an ε-Nash equilibrium for a state
s ∈ S iff the following two conditions hold:

sup
σ∈Σ

Prσ,π∗
s (Ψ1s) ≤ Prσ∗,π∗

s (Ψ1s) + ε; sup
π∈Π

Prσ∗,π
s (Ψ2s) ≤ Prσ∗,π∗

s (Ψ2s) + ε.

An exact Nash equilibrium is an ε-Nash equilibrium with ε = 0.

Two-Player Nonzero-Sum ω-Regular Games 419

It may be noted that in case of zero-sum concurrent games with parity objec-
tives optimal strategies need not exist, and only existence of ε-optimal strategies
can be guaranteed, for all ε > 0 [6]. Hence in the general case of nonzero-sum
concurrent games with parity objectives Nash equilibrium need not exist, and
existence of ε-Nash equilibrium, for all ε > 0, is the best one can achieve.

Definition 5 (ε-optimal and ε-spoiling strategies). Given a nonzero-sum
concurrent game with objective Ψ1 for player 1 and Ψ2 for player 2, a strategy σε

is ε-optimal if it is ε-optimal with respect to objective Ψ1, and a strategy σε is ε-
spoiling if it is ε-optimal with respect to objective Ψ2 = Ω\Ψ2. The ε-optimal and
ε-spoiling strategies for player 2 are defined similarly. We denote by Σε and Πε

the set of ε-optimal strategies for player 1 and player 2, respectively. Similarly,
we denote by Σε and Πε the set of ε-spoiling strategies for player 1 and player 2,
respectively.

The determinacy of concurrent games with parity objectives ensures that for
all ε > 0, the sets Σε,Πε,Σε and Πε are non-empty.

3 Sscc Games

In this section we prove the existence of ε-Nash equilibrium for all ε > 0, in
a subclass of concurrent games, namely, single strongly connected component
games. In the next section we generalize the existence of ε-Nash equilibrium, for
all ε > 0, to all concurrent games using the result of this section. Given a game
structure G we define a underlying graph GG of G.

Definition 6 (Graph of a game structure G). Given a concurrent game
structure G = 〈S,Moves ,Γ1,Γ2, δ〉 the graph of the game structure G is a directed
graph GG = (SG , EG) that is defined as follows:

– SG = S, i.e., the set of states of GG is same as the state space of G.
– EG = { (s, t) | ∃ a1 ∈ Γ1(s), ∃ a2 ∈ Γ2(s). t ∈ Dest(s, a1, a2) }.

Definition 7 (Single strongly connected component (Sscc) game
structures). Let G be a concurrent game structure with parity objectives Ψ1 =
Parity(p1) and Ψ2 = Parity(p2) for player 1 and player 2, respectively. Let GG
be the graph of G. We call G a single strongly connected component (Sscc) game
structure if the graph GG satisfy the following conditions:

– The state space SG can be partitioned into three sets: C, U, T , with T =
{ t00, t10, t01, t11 }.

– C is a strongly connected component in the graph GG .
– The states tij ∈ T are absorbing states, for i, j ∈ { 0, 1 }. The priority

function for the states in T are as follows: p1(tij) = i and p2(tij) = j, for
i, j ∈ { 0, 1 }. Note that at state t00 objective of both the players are satisfied;
at state t01 only player 1’s objective is satisfied; at state t10 only player 2’s
objective is satisfied and at state t11 none of the players objective is satisfied.

420 K. Chatterjee

– For every state s ∈ U we have |Γi(s)| = 1 for i ∈ {1, 2} and ({s}×SG)∩EG ⊆
{s}×T . In other words, at states in U there is no non-trivial choice of moves
for the players and thus for any state s in U the game proceeds to the set T
according to the probability distribution of the transition function δ at s.

– C × (SG \C)∩EG ⊆ C ×U , i.e., the edges out of C end at a state in U . We
also require that (C × U) ∩EG �= ∅.

Reduction Gadget. Let G be a Sscc game structure with parity objectives
Ψ1 and Ψ2 for player 1 and player 2, respectively. Suppose for all ε > 0, there
is an ε-Nash equilibrium (σ∗ε , π∗ε) at s, with x1(s) = limε→0 Prσ∗

ε ,π∗
ε

s (Ψ1s) and
x2(s) = limε→0 Prσ∗

ε ,π∗
ε

s (Ψ2s). Consider the gadget gad(s) to replace s as follows:

– Without loss of generality let x1(s) ≤ x2(s) (when x2(s) ≤ x1(s) the gadget
is symmetric). Then gadget to replace s is as follows: Γ1(s) = { a }, Γ2(s) =
{ b }, and

δ(s, a, b)(t00) = x1(s), δ(s, a, b)(t10) = x2(s)− x1(s),
δ(s, a, b)(t11) = 1− x2(s), δ(s, a, b)(t01) = 0,

where tij are as defined in Definition 7.

The construction ensures that at state s the set { t00, t01 } of states is reached
with probability x1(s), i.e., player 1’s objective is satisfied with probability x1(s),
and the set { t00, t10 } of states is reached with probability x2(s), i.e., player 2’s
objective is satisfied with probability x2(s).

Proposition 1 states that if existence of ε-Nash equilibrium is established at a
state s, then state s can be replaced by the gadget gad(s) and to prove existence
of ε-Nash equilibrium in the original game it suffices to prove existence of ε-Nash
equilibrium in the transformed game with the gadget gad(s) replacing state s.

Proposition 1. Let G be a Sscc game structure with parity objectives Ψ1 and
Ψ2 for player 1 and player 2, respectively. Suppose for every ε > 0, there
is an ε-Nash equilibrium (σ∗ε , π∗ε) at s, with x1(s) = limε→0 Prσ∗

ε ,π∗
ε

s (Ψ1s) and
x2(s) = limε→0 Prσ∗

ε ,π∗
ε

s (Ψ2s). The game structure G can be transformed to a game
structure G′ by replacing the state s with the gadget gad(s) such that if there is
an ε-Nash equilibrium in the transformed game structure G′ for all states in G′,
for all ε > 0, then there is an ε-Nash equilibrium in the original game structure
G for all states in G, for all ε > 0.

The result follows from the observation that player 1 and player 2 can switch
to strategies (σ∗ε , π∗ε) when the game reaches s.
Four Properties (P1-P4). Let G be a Sscc game structure with parity objec-
tives Ψ1 and Ψ2 for player 1 and player 2, respectively. We define four properties
(P1-P4) for a state s ∈ C as follows:

(P1) 〈〈1, 2〉〉val (Ψ1 ∩ Ψ2)(s) = 1; (P2) 〈〈1〉〉val (Ψ1)(s) = 1;
(P3) 〈〈2〉〉val (Ψ2)(s) = 1; (P4) 〈〈1〉〉val (Ψ1)(s)=0 and 〈〈2〉〉val (Ψ2)(s)=0.

Two-Player Nonzero-Sum ω-Regular Games 421

Lemma 1. Let G be a Sscc game structure with parity objectives Ψ1 and Ψ2 for
player 1 and player 2, respectively. If any of the four properties (P1-P4) hold for
a state s ∈ C, then for every ε > 0, there is an ε-Nash equilibrium (σ∗, π∗) for
the state s ∈ C.

Proof. 1. Suppose there is a state s ∈ C such that 〈〈1, 2〉〉val (Ψ1 ∩ Ψ2)(s) = 1,
then there is a strategy profile (σ∗, π∗) such that Prσ∗,π∗

s (Ψ1s) = 1 and
Prσ∗,π∗

s (Ψ2s) = 1. Since 1 is the maximum payoff a player can achieve, clearly
(σ∗, π∗) is a Nash equilibrium at s.

2. Suppose there is a state s ∈ C such that 〈〈1〉〉val (Ψ1)(s) = 1. Then for
every ε > 0, there is an ε-optimal strategy σε for player 1 such that
infπ∈Π Prσε,π

s (Ψ1s) ≥ 1− ε. Consider a strategy π∗ such that Prσε,π∗
s (Ψ2s) ≥

supπ∈Π Prσε,π
s (Ψ2s)− ε. In other words, we fix an ε-optimal strategy σε for

player 1 and a strategy π∗ for player 2 that ensures player 2 the maximal
probability to satisfy Ψ2 against the strategy σε, within ε-precision. Thus we
have supσ∈Σ Prσ,π∗

s (Ψ1s) ≤ 1 ≤ Prσε,π∗
s (Ψ1s) + ε and supπ∈Π Prσε,π

s (Ψ2s) ≤
Prσε,π∗

s (Ψ2s)+ε. Hence (σ∗, π∗) is an ε-Nash equilibrium at s, where σ∗ = σε.
The proof for the case when we have a state s such that 〈〈2〉〉val (Ψ2)(s) = 1
is symmetric.

3. Suppose there is a state s ∈ C such that 〈〈1〉〉val (Ψ1)(s) = 0 and
〈〈2〉〉val (Ψ2)(s) = 0. Then consider ε-spoiling strategy pair (σε, πε) ∈ Σε×Πε.
Since σε and πε are ε-spoiling strategies it follows that supπ∈Π Prσε,π

s (Ψ2s) ≤
ε and supσ∈Σ Prσ,πε

s (Ψ1s) ≤ ε. Hence (σ∗, π∗) = (σε, πε) is an ε-Nash equi-
librium at s.

Let W1 = { t00, t01 } and W2 = { t00, t10 }. We consider a nonzero-sum
reachability game GR on the Sscc game structure G, such that the objectives for
player 1 and player 2 are Reach(W1) and Reach(W2), respectively. The following
key lemma states that if properties (P1-P4) do not hold for every state s in C,
then there exists an ε-Nash equilibrium in the game GR such that the values
of the ε-Nash equilibrium is greater than the respective zero-sum values of the
original game. The proof idea is as follows: with the assumption that properties
(P1-P4) do not hold for every state in C we establish the existence of ε-optimal
strategies σε and πε such that Prσε,πε

s (Reach(U)) = 1, for all states s ∈ C, as
ε → 0. The above fact and a fragment of analysis of Vieille [19] enables us to
establish the following lemma. The proof of the lemma is non-trivial, and requires
involved construction of punishing ε-optimal strategies (details available in [1]).

Lemma 2. Let G be a Sscc game structure with parity objectives Ψ1 and Ψ2 for
player 1 and player 2, respectively. If properties (P1-P4) do not hold for every
state s ∈ C, then for every ε > 0, there is an ε-Nash equilibrium (σ∗, π∗) in the
nonzero-sum reachability game GR, and there exists k ∈ N such that

1. Prσ∗,π∗
s (Reachk(U)) ≥ 1 − ε; where Reachk(U) denotes reachability to U in

k steps, i.e., Reachk(U) = { 〈s0, s1, s2, . . .〉 ∈ Ω | ∃i. 0 ≤ i ≤ k. si ∈ U };
2. for all plays ω = 〈s0, s1, s2, . . .〉 ∈ Outcome(s, σ∗, π∗), if ωk = 〈s0, s1, . . . , sk〉

and s0 = s, then (a) Prσ∗,π∗
s (Reach(W1) | ωk) ≥ 〈〈1〉〉val (Ψ1)(sk) − ε; and

(b) Prσ∗,π∗
s (Reach(W2) | ωk) ≥ 〈〈2〉〉val (Ψ2)(sk)− ε.

422 K. Chatterjee

Lemma 3. Let G be a Sscc game structure with parity objective Ψ1 for player 1
and Ψ2 for player 2. If for every state s ∈ C the properties (P1-P4) do not hold,
then for every ε > 0, there is an ε-Nash equilibrium for every state s ∈ C.

Proof. Fix arbitrary ε > 0, and we show that there is an 3ε-Nash equilibrium
for every state s ∈ C. Since ε is arbitrary the result follows. Let (σ∗, π∗) be an ε-
Nash equilibrium of the reachability game GR as specified in Lemma 2. Consider
the strategy σ∗ε for player 1 defined as follows:

σ∗ε (s0, s1 . . . , sl) =

{
σ∗(s0, s1, . . . , sl) if l < k

σε(s0, s1, . . . , sl) if l ≥ k

where k of Lemma 2 is used and σε ∈ Σε, i.e., player 1 plays σ∗ for k steps and
then switches to an ε-spoiling strategy σε. Similarly, we define the strategy π∗ε
for player 2. Since Prσ∗,π∗

s (Reachk(U)) ≥ 1− ε, we have that

Pr
σ∗

ε ,π∗
ε

s (Ψ1s) ≥ Prσ∗,π∗
s (Reach(W1))− ε; Pr

σ∗
ε ,π∗

ε
s (Ψ2s) ≥ Prσ∗,π∗

s (Reach(W2))− ε.

Recall that (σ∗, π∗) is an ε-Nash equilibrium of the reachability game
such that for all plays ω = 〈s0, s1, s2, . . .〉 ∈ Outcome(s, σ∗, π∗), if ωk =
〈s0, s1, . . . , sk〉 and s0 = s, then Prσ∗,π∗

s (Reach(W1) | ωk) ≥ 〈〈1〉〉val (Ψ1)(sk) − ε

and Prσ∗,π∗
s (Reach(W2) | ωk) ≥ 〈〈2〉〉val (Ψ2)(sk) − ε. Since the players play an

ε-spoiling strategy after k-steps it follows that

sup
σ∈Σ

Prσ,π∗
ε

s (Ψ1s) ≤ Prσ∗,π∗
s (Reach(W1)) + 2ε ≤ Prσ∗

ε ,π∗
ε

s (Ψ1s) + 3ε;

sup
π∈Π

Prσ∗
ε ,π

s (Ψ2s) ≤ Prσ∗,π∗
s (Reach(W2)) + 2ε ≤ Prσ∗

ε ,π∗
ε

s (Ψ2s) + 3ε.

Hence it follows that (σ∗ε , π∗ε) is an 3ε-Nash equilibrium.

Theorem 1 (ε-Nash equilibrium in Sscc game). Let G be a Sscc game
structure with parity objective Ψ1 for player 1 and Ψ2 for player 2. For every
ε > 0, there is an ε-Nash equilibrium for every state s ∈ C.

Proof. If for every state s ∈ C, the properties (P1-P4) do not hold, then the
result follows from Lemma 3. Otherwise, there is a state s ∈ C, such that one of
the properties (P1-P4) hold at s, and then by Lemma 1, for every ε > 0, there
is an ε-Nash equilibrium at state s. By Proposition 1 we can replace s by the
gadget gad(s). This breaks C into smaller strongly connected components. We
can then proceed recursively on the smaller strongly connected components in a
bottom-up order. The idea is as follows: consider the transformed game G′ with
s replaced by gad(s). Observe that in the graph GG′ edges out of s end in T , and
after replacing s by gad(s) it belongs to the set U . Consider a lowest strongly
connected component C1 ⊂ C in the gamegraph G′, i.e., in the graph GG′ there
is no edge from C1 to a state in C \ (C1 ∪ {s}). We consider two cases.

Two-Player Nonzero-Sum ω-Regular Games 423

1. If for every state s1 ∈ C1, the properties (P1-P4) do not hold, and then from
Lemma 3 we conclude that for all ε > 0, ε-Nash equilibrium exists for all
states s1 ∈ C1.

2. Else for some state s1 ∈ C1, one of the properties (P1-P4) hold at s1, and
then using the result of Lemma 1, s1 can be replaced by gad(s1) and we
proceed recursively.

Hence we conclude (by induction on the size of the components) that for all
ε > 0, ε-Nash equilibrium exists for every state s1 ∈ C1. By Proposition 1 every
state s1 ∈ C1 can be replaced by the gadget gad(s1). This gives a smaller Sscc
game and we proceed in bottom-up fashion to establish the desired result.

4 Existence of ε-Nash Equilibrium

In this section we show that for all nonzero-sum concurrent game structures G,
with ω-regular objectives specified as parity objectives Ψ1 and Ψ2 for player 1 and
player 2, respectively, for every ε > 0, there exists an ε-Nash equilibrium for every
state s of game G. The proof follows from an inductive argument: by induction
on the size of the state space of G and by application of Theorem 1. We assume
without loss of generality that there are four special states { t00, t01, t10, t11 } in
G, as defined in Definition 7.

Lemma 4. Let G be a concurrent game structure with parity objectives Ψ1 and
Ψ2 for player 1 and player 2, respectively. Let GG be the graph of G and TC be
a terminal strongly connected component in GG. Then for every ε > 0, there is
an ε-Nash equilibrium for every state s ∈ TC.

Proof. The proof is by induction on the size of TC. It is easy to argue when
|TC| = 1, i.e., TC consists of an absorbing state. Consider the sub-game induced
by the set of states TC and call the sub-game GTC.

– Suppose there is a state s ∈ TC such that 〈〈1〉〉val (Ψ1)(s) = 1. Then fix an ε-
optimal strategy σ for player 1 and let π be an ε-optimal strategy for player 2
against σ. Then (σ, π) is an ε-Nash equilibrium. We can replace s by the
gadget described in Proposition 1. This will break TC into (possibly many)
smaller strongly connected components. By induction hypothesis, Theorem 1
and the bottom-up evaluation procedure described in Theorem 1 it follows
that ε-Nash equilibrium exists at every state in TC. Similar arguments hold
if there is a state s ∈ TC such that 〈〈2〉〉val (Ψ2)(s) = 1.

– Suppose for every state s ∈ TC we have 〈〈1〉〉val (Ψ1)(s) < 1 and
〈〈2〉〉val (Ψ2)(s) < 1. It follows from Corollary 1 of [6] that in a zero-
sum concurrent game with ω-regular objectives if for every state s we
have 〈〈1〉〉val (Ψ1)(s) < 1, then for every state s in the game we have
〈〈1〉〉val (Ψ1)(s) = 0, i.e., if the zero-sum value is positive for player 1 at
some state, then there exists a state s where the zero-sum value is 1. Hence
it follows from the above condition that for all states s ∈ TC we have
〈〈1〉〉val (Ψ1)(s) = 0 and 〈〈2〉〉val (Ψ2)(s) = 0. Let πε be an ε-spoiling strategy for

424 K. Chatterjee

player 2 and σε be an ε-spoiling strategy for player 1. Hence we have the fol-
lowing inequalities: supσ∈Σ Prσ,πε

s (Ψ1s) ≤ ε and supπ∈Π Prσε,π
s (Ψ2s) ≤ ε.

Hence we have (σε, πε) is an ε-Nash equilibrium for all states s ∈ TC.

Theorem 2 (ε-Nash equilibrium). Let G be a concurrent game structure with
parity objectives Ψ1 and Ψ2 for player 1 and player 2, respectively. For every
ε > 0, there is an ε-Nash equilibrium for every state s ∈ S.

Proof. Let GG be the graph of G. It follows from Lemma 4 that for every state s in
a terminal strongly connected component of GG there is an ε-Nash equilibrium,
for all ε > 0. By Proposition 1 we can replace every state s of a terminal
strongly connected component by the gadget gad(s). For the rest of the strongly
connected components we proceed in a bottom-up order as follows: consider a
strongly connected component C when all the strongly connected component
below it are replaced by the gadgets of Proposition 1. The sub-game induced by
C and the gadgets of the strongly connected components below C form a Sscc
game. By Theorem 1 we have there is an ε-Nash equilibrium for every state
s ∈ C, for all ε > 0.

5 Computational Complexity

In this section we show how to compute the values of an ε-Nash equilibrium
of Sscc games within ε-precision. We prove that every case of the existence
proof of ε-Nash equilibrium is constructive and computable. It may be noted
that even in the case of zero-sum concurrent games with parity objectives the
values can be irrational (for an example see [7]). Hence, one can only achieve ε-
approximation of the values in the general case of nonzero-sum concurrent parity
games. It follows from the inductive argument of Theorem 2 that the values of
an ε-Nash equilibrium for nonzero-sum concurrent games with parity objectives
can be computed by |S|-iterations of a procedure to compute ε-Nash equilibrium
values for Sscc games.

Complexity of ε-Nash Equilibrium. To analyze the complexity of computing
values of an ε-Nash equilibrium in Sscc games we consider the following cases:

1. Case 1. Compute the values of ε-Nash equilibrium when the property P1 is
satisfied for some state s.

2. Case 2. Compute the values of ε-Nash equilibrium when the property P4 is
satisfied for some state s.

3. Case 3. Compute the values of ε-Nash equilibrium when the property P2 or
P3 is satisfied for some state s.

4. Case 4. Compute the values of some special ε-Nash equilibrium of Sscc
games with reachability objectives.

Two-Player Nonzero-Sum ω-Regular Games 425

We analyze the above cases below.

1. Case 1. Given Ψ1 and Ψ2 are parity objectives, the objective Ψ1 ∩ Ψ2

is a Streett objective [17]. To analyze the computation of sup(σ,π)∈Σ×Π

Prσ,π
s (Ψ1 ∩ Ψ2), observe that this is equivalent to the computation of val-

ues of MDPs where player 1 and player 2 cooperate to achieve the objective
Ψ1∩Ψ2. Hence the computation reduces to computing values in a MDP with
Streett objective, which can be done in polynomial time [3].

2. Case 2. After the computation of the zero-sum values 〈〈1〉〉val (Ψ1)(·) and
〈〈2〉〉val (Ψ2)(·), it is easy to determine if there is a state s such that
〈〈1〉〉val (Ψ1)(s) = 0 and 〈〈2〉〉val (Ψ2)(s) = 0. Hence Case 2 can be solved by
computing the zero-sum values for player 1 and player 2.

3. Case 3. Given the zero-sum values for player 1 and player 2, we describe a
polynomial time procedure to determine the values of an ε-Nash equilibrium
when property P2 or P3 is satisfied. We prove the result for the case when
property P2 is satisfied and the result for the case when property P3 is
satisfied is symmetric. Consider the set W = { s | 〈〈1〉〉val (Ψ1)(s) = 1 } of
states that have zero-sum value 1 for player 1. Since property P2 is satisfied,
we have W ∩C �= ∅. Given a state s ∈W , consider the set SafeAct(s) = {a ∈
Γ1(s) | ∀ b ∈ Γ2(s). Dest(s, a, b) ⊆W } of moves for player 1 that ensures that
the set W is never left. Consider a reduced sub-game G′ induced by W such
that at every state s ∈W the available moves for player 1 is SafeAct(s). Let
Σ′ be the set of strategies such that player 1 plays only moves in SafeAct(s)
for every state s ∈W , i.e., the set of strategies in G′. We compute the values
〈〈1, 2〉〉val (Ψ1 ∩ Ψ2)(s) = sup(σ,π)∈Σ′×Π Prσ,π

s (Ψ1 ∩ Ψ2). It may be noted that
there exists ε-optimal strategy σε in the original game such that for every
strategy π ∈ Π we have Prσε,π

s (Ψ1 ∩ Safe(W)) ≥ 1− ε, for all states s ∈ W .
Hence it follows that

Prσε,π
s (Ψ2) ≤ Prσε,π

s (Ψ1 ∩ Ψ2 ∩ Safe(W)) + ε

≤ sup
(σ,π)∈Σ′×Π

Prσ,π
s (Ψ1 ∩ Ψ2) + ε. (1)

– If for some state s ∈ W ∩ C we have 〈〈1, 2〉〉val (Ψ1 ∩ Ψ2)(s) = 1, then
property P1 is satisfied and then Case 1 is followed.

– Else for every state s ∈ W ∩ C we have 〈〈1, 2〉〉val (Ψ1 ∩ Ψ2)(s) < 1. It
follows from property of MDPs that for any ω-regular objective Ψ , the
maximum probability to satisfy Ψ is equal to the maximum probability
of reaching the set of states where the value is 1. Hence we have

sup
(σ,π)∈Σ′×Π

Prσ,π
s (Ψ1 ∩ Ψ2) = sup

(σ,π)∈Σ′×Π

Prσ,π
s (Reach(t00)) (2)

We show that for every state s ∈ W ∩ C, the profile (1, 〈〈1, 2〉〉val (Ψ1 ∩
Ψ2)(s)) is the values of an ε-Nash equilibrium profile, for all ε > 0. Let
(σ̂, π̂) be a memoryless strategy profile such that Prσ̂,π̂

s (Reach(t00)) =
〈〈1, 2〉〉val (Ψ1 ∩ Ψ2)(s), for all s ∈W ∩ C. The existence of such a memo-
ryless strategy profile follows from [4]. For any ε > 0, let k ∈ N be such

426 K. Chatterjee

that Prσ̂,π̂
s (Reachk(t00)) ≥ 〈〈1, 2〉〉val(Ψ1 ∩Ψ2)(s)− ε. The strategy profile

(σ∗, π∗) is described as follows:

σ∗(s0, s1, . . . , sl) =

{
σ̂(s0, s1, . . . , sk) l < k

σε(s0, s1, . . . , sk) l ≥ k

where σε ∈ Σε and π∗ = π̂. Given strategy σ∗, for any strategy π
the play never leaves W within k steps, since σ̂ ∈ Σ′. Since σε ∈ Σε

and for every state s ∈ W we have 〈〈1〉〉val (Ψ1)(s) = 1 it follows that
Prσ∗,π∗

s (Ψ1) ≥ 1 − ε. Since σ∗ follows σ̂ for k steps, it follows that
Prσ∗,π∗

s (Ψ2) ≥ Prσ∗,π∗
s (Reach(t00))− ε. It follows from equation 1 and 2

that supπ∈Π Prσ∗,π
s (Ψ2) ≤ Prσ∗,π∗

s (Reach(t00))+ ε. Hence it follows that
(1, 〈〈1, 2〉〉val(Ψ1 ∩ Ψ2)(s)) is an ε-Nash equilibrium value profile for all
states s ∈ W ∩ C, for all ε > 0.

It follows from above that the values of an ε-Nash equilibrium of states
s ∈ C can be computed by a polynomial procedure and solving the zero-sum
values for player 1 and player 2 when Case 1, Case 2 or Case 3 is satisfied. The
analysis of Case 4 involves solving some special ε-Nash equilibrium values
of the game GR with reachability objectives. The existence of polynomial
witness and polynomial time verification procedure for Case 4 follows from
the results similar to [5] (details in [1]).

Let ZS(G,Ψ, ε) denote the time complexity of an algorithm to compute the
zero-sum values of a concurrent game structure G within ε-precision, for a par-
ity objective Ψ . Let NZReach(G, ε,ΨR

1 ,ΨR
2) denote the time complexity of an

algorithm to compute the values of an ε-Nash equilibrium, greater than some
specified value, of a concurrent game structure G with reachability objectives ΨR

1

and ΨR
2 for player 1 and player 2, respectively. It follows from [2] and [5] that

there exist ZS(G, ε,Ψ) and NZReach(G, ε,ΨR
1 ,ΨR

2) that are in the complexity
class TFNP, for all constants ε > 0. The above analysis yields the next Theorem.

Theorem 3 (Complexity of ε-Nash equilibrium).

1. The values of an ε-Nash equilibrium of a nonzero-sum concurrent game
structure G with parity objectives Ψ1 and Ψ2 for player 1 and player 2, re-
spectively, can be computed in time

O
(
n · (ZS(G, ε,Ψ1) + ZS(G, ε,Ψ2) + NZReach(G, ε,ΨR

1 ,ΨR
2))

)
+ O

(
p(|G|)

)
where p is a polynomial function and n = |S| is the size of the state space.

2. For all constants ε > 0, the values of an ε-Nash equilibrium of nonzero-
sum concurrent games with parity objectives can be computed in TFNP; and
hence in EXPTIME.

The existence of ε-Nash equilibrium, for all ε > 0, for higher levels of Borel
hierarchy than ω-regular objectives, and for ω-regular objectives for more than
two-players are interesting open problems.

Two-Player Nonzero-Sum ω-Regular Games 427

Acknowledgments. I am grateful to Tom Henzinger and Luca de Alfaro for
several insights on concurrent ω-regular games. I thank Rupak Majumdar for
interesting discussions. I am deeply indebted to Nicollas Vieille for several key
insights of his results that he gave me. This research was supported in part by
the ONR grant N00014-02-1-0671, the AFOSR MURI grant F49620-00-1-0327,
and the NSF grant CCR-0225610.

References

1. K. Chatterjee. Two-player nonzero-sum ω-regular games. 2004. Technical Report:
UCB/CSD-04-1364.

2. K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of quantitative
concurrent parity games. 2004. Technical Report: UCB/CSD-04-1354.

3. K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of stochastic
Rabin and Streett games. 2004. Technical Report: UCB/CSD-04-1355.

4. K. Chatterjee, L. de Alfaro, and T.A. Henzinger. Trading memory for randomness.
In QEST 04. IEEE Computer Society Press, 2004.

5. K. Chatterjee, R. Majumdar, and M. Jurdziński. On Nash equilibria in stochastic
games. In CSL 04, pages 26–40. LNCS, 2004.

6. L. de Alfaro and T.A. Henzinger. Concurrent omega-regular games. In LICS 00,
pages 141–154. IEEE Computer Society Press, 2000.

7. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. In
STOC 01, pages 675–683. ACM Press, 2001.

8. J.FilarandK.Vrieze. CompetitiveMarkovDecisionProcesses. Springer-Verlag,1997.
9. A.M. Fink. Equilibrium in a stochastic n-person game. Journal of Science of

Hiroshima University, 28:89–93, 1964.
10. J.F. Nash Jr. Equilibrium points in n-person games. Proceedings of the National

Academny of Sciences USA, 36:48–49, 1950.
11. D.A. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,

63(4):1565–1581, 1998.
12. G. Owen. Game Theory. Academic Press, 1995.
13. C.H. Papadimitriou. On the complexity of the parity argument and other inefficient

proofs of existence. JCSS, 48(3):498–532, 1994.
14. C.H. Papadimitriou. Algorithms, games, and the internet. In STOC 01, pages

749–753. ACM Press, 2001.
15. P. Secchi and W.D. Sudderth. Stay-in-a-set games. International Journal of Game

Theory, 30:479–490, 2001.
16. L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. USA, 39:1095–1100, 1953.
17. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

volume 3, Beyond Words, chapter 7, pages 389–455. Springer, 1997.
18. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems.

In STOC 85, pages 327–338. IEEE Computer Society Press, 1985.
19. N. Vieille. Two player stochastic games I: a reduction. Israel Journal of Mathe-

matics, 119:55–91, 2000.
20. N. Vieille. Two player stochastic games II: the case of recursive games. Israel

Journal of Mathematics, 119:93–126, 2000.
21. J. von Neumann and O. Morgenstern. Theory of games and economic behavior.

Princeton University Press, 1947.
22. B. von Stengel. Computing equilibria for two-person games. Chapter 45, Handbook

of Game Theory, 3:1723–1759, 2002.

Games Where You Can Play Optimally Without

Any Memory�

Hugo Gimbert and Wies�law Zielonka

Université Paris 7 and CNRS, LIAFA, case 7014,
2, place Jussieu, 75251 Paris Cedex 05, France

{hugo, zielonka}@liafa.jussieu.fr

Abstract. Reactive systems are often modelled as two person antago-
nistic games where one player represents the system while his adversary
represents the environment. Undoubtedly, the most popular games in this
context are parity games and their cousins (Rabin, Streett and Muller
games). Recently however also games with other types of payments, like
discounted or mean-payoff [5,6], previously used only in economic con-
text, entered into the area of system modelling and verification. The
most outstanding property of parity, mean-payoff and discounted games
is the existence of optimal positional (memoryless) strategies for both
players. This observation raises two questions: (1) can we characterise
the family of payoff mappings for which there always exist optimal posi-
tional strategies for both players and (2) are there other payoff mappings
with practical or theoretical interest and admitting optimal positional
strategies. This paper provides a complete answer to the first question
by presenting a simple necessary and sufficient condition on payoff map-
ping guaranteeing the existence of optimal positional strategies. As a
corollary to this result we show the following remarkable property of
payoff mappings: if both players have optimal positional strategies when
playing solitary one-player games then also they have optimal positional
strategies for two-player games.

1 Introduction

We investigate deterministic games of infinite duration played on finite graphs.
We suppose that there are only two players, called Max and Min, with exactly
opposite interests. The games are played in the following way. Let G be a finite
graph such that each vertex is controlled either by player Max or by player Min.
Initially, a pebble is put on some vertex of G. At each step of the play, the player
controlling the vertex with the pebble chooses an outgoing edge and moves the
pebble along it to the next vertex. Players interact in this way an infinite number
of times and a play of the game is simply an infinite path traversed by the pebble.

� This research was supported by European Research Training Network: Games and
Automata for Synthesis and Validation and ACI Sécurité Informatique 2003-22 VER-
SYDIS.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 428–442, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Games Where You Can Play Optimally Without Any Memory 429

We assume that the edges of G are coloured by elements of a set C of colours.
Thus a play yields an infinite sequence of visited colours and it is this sequence
that is used to determine the amount of money paid by player Min to player
Max; namely we assume that there is a payoff mapping that maps each infinite
sequence of colours to the set R ∪ {±∞} of extended reals. The objective of
player Max is to maximise the outcome of the game while player Min will seek
to minimise it. Players plan their actions and such plans are called strategies.
Thus a strategy indicates which move to choose in a given situation and this
decision may depend on the whole history of previous moves.

For several well-known games: parity, mean-payoff, discounted games, both
players can play optimally using particularly simple positional (or memoryless)
strategies; their moves depend then only on the current vertex and all previous
history is irrelevant [8,12,7,14]. (In fact, for all three payoffs cited above, if the
state and action spaces are finite then even more general perfect information
stochastic games have optimal deterministic positional strategies). In computer
science, the most popular of these games is the parity game used in model-
checking and μ-calculus while discounted and mean-payoff games were studied
mainly in economics, see however [5,6].

Games with optimal positional strategies are of much interest in computer
science since to implement such strategies no memory is needed, which saves
computational resources and there is an ongoing quest for new positionally op-
timal games, especially on push-down graphs [2,1,11,9].

Recently, Colcombet and Niwiński [4] have shown that for infinite graphs if
the payoff takes only values 0 and 1 and is prefix independent (the finite prefix
of a play has not influence on the payoff value) then only parity games have
positional optimal strategies.

While in our paper we consider only games over finite graphs, contrary to
[4] we allow general real valued payoff and do not impose any supplementary
restriction (like prefix independence). In the previous paper [10] we provided
necessary conditions for a payoff mapping guaranteeing the existence of optimal
positional strategies. These conditions were robust enough to hold for all popular
positional payoffs as well as for several new ones. Nevertheless, there are some
trivial positional payoff mappings that do not satisfy the criteria of [10]. In the
present paper we improve on the result of [10] by giving a complete character-
isation of positional payoff mappings, i.e. we provide conditions that are both
sufficient and necessary.

As an application, we describe how to construct, by means of priorities,
new positional payoff mappings. As a particular case, we obtain a positional
payoff mapping for which both the parity and mean-payoff games are just special
cases. This example may be of interest by itself combining qualitative criteria
expressed by parity condition with quantitative measures expressed by mean-
payoff. Note that recently another combination of parity and mean-payoff games
was proposed in [3], however the payoff of [3] happens to be very different from
ours, in particular it is not positional.

430 H. Gimbert and W. Zielonka

2 Games, Arenas, Preferences and Optimal Strategies

For any set C, we write C∗, C+, Cω to denote respectively the sets of finite, finite
non-empty and infinite words over C. In general, for X ⊂ C∗, X∗ =

∑∞
i=0 X

i is
the usual Kleene iteration operation.

We begin by defining arenas where our players meet to confront each other.
Let us fix a set C of colours. An arena coloured by C is a triple

G = (SMax, SMin, E),

where SMax and SMin are two disjoint sets of states and E is the set of coloured
transitions. More specifically, if S = SMax ∪ SMin is the set of all states then
E ⊂ S × C × S. For a transition e = (s, c, t) ∈ E, the states s, t and the
colour c are respectively called the source, the target and the colour of e and
we note source(e) = s, target(e) = t and colour(e) = c. For a state s ∈ S,
sE = {e ∈ E | source(e) = s} is the set of transitions outgoing from s.

Throughout this paper, we always assume that arenas have finitely many
states and transitions and that each state has at least one outgoing transition.

A path in G is a finite or infinite sequence of transitions p = e0e1e2 . . . such
that, for all i ≥ 0, target(ei) = source(ei+1). The source source(p) of p is the
source of the first transition e0. If p is finite then target(p) is the target of the
last transition in p. It is convenient to assume that for each state s there exists
an empty path λs with no transitions and such that source(λs) = target(λs) = s.
The set of finite paths in G, including the empty paths, is denoted P ∗G.

Two players Max and Min play on the arena G in the following way: if the
current game position is a state s ∈ SP controlled by player P ∈ {Max, Min}
then player P chooses an outgoing transition e ∈ sE and the state target(e)
becomes the new game position. If the initial position is s then in this way the
players traverse an infinite path p = e0e1e2 . . . in G such that source(p) = s.
In the sequel, finite and infinite paths in G are called often (finite and infinite)
plays.

Every play p = e0e1e2 . . . generates a sequence

colour(p) = colour(e0) colour(e1) colour(e2) . . .

of visited colours; we call colour(p) the colour of p (i.e. a colour of a play is a
sequence of colours rather than a colour).

Players express their preferences for the game outcomes by means of prefer-
ence relations.

A preference relation over a set C of colours is a binary complete, reflexive
and transitive relation over the set Cω of infinite colour sequences (complete
means here that for all x, y ∈ Cω either x y or y x). Thus is in fact a
complete preorder relation over infinite colour sequences.

Intuitively, if x y then the player whose preference relation is appreciates
the sequence y at least as much as the sequence x. On the other hand, if x y
and y x then the outcomes x and y have the same value for our player, we

Games Where You Can Play Optimally Without Any Memory 431

shall say that x and y are equivalent for . By −1 by denote the inverse of ,
x −1 y iff y x.

We shall write x � y to denote that x y but not y x.
A two-person game is a triple (G, Max, Min), where G is a finite arena and

 Max, Min are preference relations for players Max and Min. The obvious aim
of each player is to obtain the most favourable for him infinite colour sequence.

We will investigate only antagonistic games where the preference relation for
player Min is just the inverse of the preference relation of player Max. One of the
preference relations being redundant in this case, antagonistic games (or simply
games in the sequel) are just pairs (G,), where is the preference relation of
player Max and G a finite arena.

Most often preference relations are introduced by means of payoff or utility
mappings. Such a mapping u : Cω → R ∪ {−∞, +∞} maps infinite colour
sequences to extended real numbers. If u is the payoff mapping of player Max
for example and the game outcome is an infinite colour sequence x ∈ Cω then
player Max receives the payoff u(x). A payoff mapping u induces a natural
preference relation u compatible with u and defined by x u y iff u(x) ≤ u(y).

Although in game theory preference relations are slightly less employed than
payoff mappings they are still standard, for example preference relations are
largely used in the popular textbook of Osborne and Rubinstein [13]. We have
chosen here to base our exposition on preference relations rather than on payoffs
for several reasons: first of all the proofs are more comprehensive when written
in the language of preference relations, secondly, one really does not need precise
payoff values unless the so-called ε-optimal strategies are considered which is not
the case in this paper, finally, for some preference relations it would be artifi-
cial, cumbersome and counterintuitive to define a corresponding payoff mapping
(while, as noted before, the converse is always true, a payoff defines immediately
a preference relation).

Intuitively, a strategy of a player is a method he uses to choose his moves
during the play. Thus for each finite play p that arrives at a state controlled
by player P , target(p) ∈ SP , the strategy indicates a transition with the source
in the state target(p) to be taken by player P after p. Therefore in general a
strategy for player P is a mapping

σP : {p ∈ P ∗G | target(p) ∈ SP } → E,

such that σP (p) ∈ sE if s = target(p).
A finite or infinite play p = e0e1e2 . . . is said to be consistent with the

strategy σP if whenever target(ei) ∈ SP then ei+1 = σP (e0...ei) and moreover
e0 = σP (λs) if s = source(p) ∈ σP .

A positional (or memoryless) strategy for player P is a mapping σP : SP → E
such that for all s ∈ SP , σP (s) ∈ sE. Using such a strategy σP , after a finite
play p with target(p) ∈ VP player P chooses the transition σP (target(p)), i.e.
the chosen transition depends only on the current game position. Our interest
in positional strategies is motivated by the fact that they are especially easy to
implement, no memory of the past history is needed.

432 H. Gimbert and W. Zielonka

In the sequel σ and τ , possibly with subscripts or superscripts, will always
denote strategies for players Max and Min respectively.

Given a state t and strategies σ and τ for players Max and Min, there exists
a unique play in G, denoted by pG(t, σ, τ), with source t consistent with both σ
and τ .

Strategies σ# and τ# are called optimal if for all states s ∈ S and all strate-
gies σ and τ of both players

colour(pG(s, σ, τ#)) colour(pG(s, σ#, τ#)) colour(pG(s, σ#, τ)) . (1)

Inequalities above mean that players Max and Min have no incentive to deviate
unilaterally from their optimal strategies.

It is easy to see that if (σ#
1 , τ#

1) and (σ#
2 , τ#

2) are pairs of optimal strategies
then (σ#

1 , τ#
2) and (σ#

2 , τ#
1) are optimal and in fact colour(pG(s, σ#

1 , τ#
1))) and

colour(pG(s, σ#
2 , τ#

2))) are equivalent for .

3 Preferences Relations with Optimal Positional
Strategies

The main aim of this section it to provide a complete characterisation of pref-
erence relations for which both players have optimal positional strategies for all
games on finite arenas.

Let Rec(C) be the family of recognizable subsets of C∗ (C can be infinite
and then L ∈ Rec(C) means that there exists a finite subset B of C such that L
a recognizable subset of B∗). For any language of finite words L ⊂ C∗, Pref(L)
will stand for the set of all prefixes of the words in L. We define an operator
[·] that associates with each language L ⊂ C∗ of finite words a set [L] ⊂ Cω of
infinite words:

[L] = {x ∈ Cω | every finite prefix of x is in Pref(L)} .

We extend the preference relation to subsets of Cω : for X,Y ⊂ Cω ,

X Y iff ∀x ∈ X, ∃y ∈ Y, x y .

Obviously, for x ∈ Cω and Y ⊂ Cω, x Y and Y x stand for {x} Y and
Y {x} respectively. We write also

X � Y iff ∃y ∈ Y, ∀x ∈ X, x � y .

Definition 1. A preference relation is said to be monotone if for all recog-
nizable sets M,N ∈ Rec(C),

∃x ∈ C∗, [xM] � [xN] =⇒ ∀y ∈ C∗, [yM] [yN] .

A preference relation is said to be selective if for each finite word x ∈ C∗ and
all recognizable languages M,N, K ∈ Rec(C),

[x(M ∪N)∗K] [xM∗] ∪ [xN∗] ∪ [xK] .

Games Where You Can Play Optimally Without Any Memory 433

Now we are ready to state the main result of this paper.

Theorem 2. Given a preference relation , both players have optimal positional
strategies for all games (G,) over finite arenas G if and only if the relations
 and its inverse −1 are monotone and selective.

Before proceeding to the proof of Theorem 2 it can be useful to convey some
intuitions behind the definitions of monotone and selective properties.

Roughly speaking, a preference relation of Max is monotone if at each mo-
ment during the play the optimal choice of player Max between two possible
futures does not depend on the preceding finite play. For example, consider the
payoff function u defined on the set C = R of colours by the formula

u(x1x2 . . .) = sup
n∈N

1
n

n∑
k=1

xk, (2)

where x1x2 . . . is an infinite sequence of real numbers. Consider the finite se-
quences x = 0000 and y = 1111 and the infinite sequences v = 2000 . . . = 20ω

and w = 1111 . . . = 1ω. Then u(xv) < u(xw) while u(yw) < u(yv), hence the
preference relation u associated with u is not monotone. This means that player
Max has no optimal positional strategy in the one-player arena depicted on the
left of Fig 1, if Max plays optimally the transition to take at state z depends on
whether he arrives from s or from t. It is worth to note that the payoff (2) is
selective.

s

z

t

r

1 1 1
1

0 0 0
0

2

1
0

1

10

Fig. 1. When playing on the left arena using the non-monotone payoff (2), or playing
on the right arena using the non-selective payoff “wins 1 if the colours 0 and 1 appear
infinitely often and 0 otherwise” player Max has no optimal positional strategies.

The selective property expresses the fact that player Max cannot improve his
payoff by switching between different behaviors. Typical non selective payoff is
provided by the Muller condition. Let u be the payoff function for C = {0, 1}
defined by u(x0x1 . . .) = 1 if the colours 0 and 1 occur infinitely often, otherwise
the payoff is 0. This payoff mapping is monotone (as are all payoffs that do not
depend on finite prefixes) but is not selective. It is clear that when Max plays
with this payoff on the one-player arena depicted on the right of Fig 1 then
he should alternate infinitely often between the two transitions to maximize his
payoff.

We begin the proof of Theorem 2 by noting the following trivial property of
the operator [·]:

434 H. Gimbert and W. Zielonka

Lemma 3. For all L,M ⊂ C∗, [L ∪M] = [L] ∪ [M].

A finite (non-deterministic) automaton over C is a tuple A = (Q, i,F,Δ),
where Q is a finite set of states, i ∈ Q the initial state, F ⊂ Q the set of
final states and Δ ⊂ Q × C × Q is the transition relation. A path in A is a
path in the one-player arena (Q, ∅,Δ) that we can construct from A and the
notions of source, target and colour of a path are defined as for arenas. So, in
this terminology, the language recognized by A is simply the set
{colour(p) | p is a finite path in A such that source(p) = i and target(p) ∈ F}.
The automaton A is said to be co-accessible if from any state there is a (possibly
empty) path to a final state.

Lemma 4. Let A = (Q, i,F,Δ) be a co-accessible finite automaton recognizing
a language L ⊂ C∗. Then

[L] = {colour(p) | p is an infinite path in A with source(p) = i}.

Proof. Let p = e0e1e2 . . . be an infinite path in A, where ∀j, ej ∈ Δ and
source(e0) = i. Since A is co-accessible, for every n there is a path from the
state target(en) to a final state. Therefore the finite word colour(e0 . . . en) is a
prefix of some word recognized by A. Hence colour(p) ∈ [L].

Conversely, let x = c0c1c2 · · · ∈ [L]. Let T be the directed tree defined as
follows. The vertices of T are finite paths q in A such that colour(q) is a prefix
of x and source(q) = i. There is an edge from a vertex q of T to a vertex q′ iff
there is a transition e ∈ Δ such that q′ = qe. The root of T is the empty path
λi with the source and target i. Clearly, T is infinite since x is infinite and the
degree of vertices of T is bounded by the cardinality of Δ. Hence, by the Koenig
Lemma, there exists an infinite path in T starting from the root λi. This infinite
path corresponds to an infinite path in A coloured by x. ��

It turns out that already for one-player games controlled by player Max to
guarantee that Max has an optimal positional strategy it is necessary for his
preference relation to be monotone and selective:

Lemma 5. Suppose that player Max has optimal positional strategies for all
games (G,) over finite one-player arenas G = (SMax, ∅, E), where he controls
all states. Then is monotone and selective.

Proof. We want to use finite automata as one-player arenas with all states con-
trolled by player Max. Technically however, this raises a problem since we require
that arenas have always at least one outgoing transition for each state s and this
condition may fail for automata. For this reason we introduce the following no-
tion.

For any finite automaton A = (Q, i,F,Δ), a state s ∈ Q is said to be essential
if there exists an infinite path in A with source s. A transition is essential if its
target is essential. Note that for any essential state s there is at least one essential
transition with source s and any infinite path in A traverses uniquely essential
states and transitions. Moreover, by Lemma 4, ifA is co-accessible and recognizes

Games Where You Can Play Optimally Without Any Memory 435

L then [L] �= ∅ iff the initial state is essential. By arena(A) we shall denote the
arena (Q′, ∅,Δ′), where Q′ and Δ′ are respectively the sets of essential states
and essential transitions of A.

Suppose that satisfies the hypothesis of our lemma. We show first that
is monotone. Let x, y ∈ C∗ and M,N ∈ Rec(C) and

[xM] � [xN] . (3)

We shall prove that this implies

[yM] [yN] . (4)

Let Ax and Ay be the usual deterministic co-accessible automata recogniz-
ing the one-word languages {x} and {y}. Let AM ,AN be finite co-accessible
automata recognizing respectively M , N . Without loss of generality we can as-
sume that neither AM nor AN has a transition with the initial state as the
target.

If [M] is empty then (4) holds trivially. Thus we can assume that [M] and
[N] are non-empty and the initial states of AM and AN are essential.

A

Qx\t Qy\t

QM\t QN\t

t

B

Qx\t

QM\t QN\t

QK\t

t

BM

t

Qx\t

QM\t

BK

t

Qx\t

QK\t

BN

Qx\t

QN\t

t

Fig. 2. AutomatonA used to prove that is monotone is obtained by “gluing” together
the final states of Ax andAy with initial states of AM and AN . Qx, Qy, QM , QN are the
states of the corresponding automata. Automaton B used to prove that is selective
is obtained by “gluing” together the final state of Ax, the initial and the final states
of AM and AN and the initial state of AK .

From automataAx,Ay,AM ,AN we obtain a new automatonA by identifying
the following four states: the final state of Ax, the final state of Ay, the initial
state of AM and the initial state of AN . We note t the state obtained in this way.
The transitions of Ax and Ay with target in the final state have target t in A
while the transitions of AM ,AN with the source in the initial state have source
t in A. All the other states and transitions remain unchanged in A, see Fig 2.
The final states of AM and AN are final in A while the initial state of Ax is
initial in A. Note that since AM and AN are co-accessible A is also co-accessible.
Moreover, A recognizes the language x(M ∪N) (since we have assumed that no
transition of AM and AN returns to the initial state).

436 H. Gimbert and W. Zielonka

Let σ# be an optimal positional strategy of player Max in the game
(arena(A),u). Then, by Lemma 4 applied to A, the set of plays in arena(A)
starting from the initial state of A is [x(M ∪N)], which is equal to [xM]∪ [xN]
by Lemma 3. Let p be the unique infinite play in arena(A) with source in the
initial state of A and consistent with the strategy σ#. Then by optimality of
σ#, [xM] ∪ [xN] colour(p) implying, by (3), colour(p) �∈ [xM].

Therefore, play p reaching the state t takes a transition leading to the states
of AN (Fig. 2) and stays forever in AN in the sequel. In other words, we can
conclude that σ#(t) is a transition of AN .

Now let us examine the unique infinite play q in arena(A) consistent with σ#

and starting at the initial state of Ay. Since q is consistent with σ# and σ#(t)
is a transition of AN , play q traverses first the states of automaton Ay and next
the states of AN .

Since from all the states traversed by q we can reach in A the final states of
AN , we have

colour(q) ∈ [yN] . (5)

On the other hand, for the same reasons as for A but now with the initial state
of Ay, the optimality of σ# yields [yM] ∪ [yN] colour(q). This and (5) imply
immediately (4).

It remains to prove that is selective. Let x ∈ C∗, M,N, K ∈ Rec(C).
Without loss of generality we can assume that M and N do not contain the
empty word and choose the automata AM and AN recognizing M and N to
be co-accessible, with one initial and one final state and with no transition
returning to the initial state and no transition leaving the final state. Let AK

be a co-accessible automaton recognizing K with no transition returning to its
initial state. We glue together the final states of automata Ax,AM ,AN and the
initial states of AM ,AN ,AK . The resulting state is called t. Taking the initial
state from Ax and the final states from AK we obtain an automaton B.

Let σ# be an optimal positional strategy of player Max in the game
(arena(B),). Let p be the infinite play consistent with σ# and with the ini-
tial state of B as the source. Automaton B is co-accessible and recognizes the
language x(M ∪N)∗K, therefore, by Lemma 4 and optimality of σ#,

[x(M ∪N)∗K] colour(p) . (6)

Since σ# is positional, each time p traverses the state t, σ# chooses the same
outgoing transition. This means that p is an infinite path in one of the three co-
accessible automata BM ,BN ,BK depicted on Fig. 2. By Lemma 4, colour(p)
[xM∗] ∪ [xN∗] ∪ [xK]. This and (6) imply that u is selective. ��

With each arena G with a state set S and a transition set E we associate the
index nG of G defined as nG = |E| − |S|. Note that since in arenas each state
has at least one outgoing transition the index is always non-negative. The proof
of Theorem 2 will be carried on by induction on the value of nG and the decisive
inductive step is provided by the following lemma.

Games Where You Can Play Optimally Without Any Memory 437

Lemma 6. Let G be an arena and a monotone and selective preference rela-
tion. Suppose that players Max and Min have optimal positional strategies in all
games (H,) over the arenas H such that nH < nG. Then Max has an optimal
positional strategy in the game (G,).

Proof. Let G = (SMax, SMin, E) and let be monotone and selective. If for every
t ∈ SMax there is only one transition with the source t then Max has never any
choice and he has therefore a unique strategy which is positional and optimal.

Suppose now that there exists a state t ∈ SMax such that |tE| > 1. Fix
a partition of tE into two disjoint non-empty sets A0, A1. We define two new
arenas Gi = (SMax, SMin, Ei), i = 0, 1, where Ei = E \A1−i. In other words, Gi

is obtained by removing from G the transitions with the source t not belonging
to Ai. Since nGi < nG we can apply the hypothesis of our lemma to the games
Gi = (Gi,) to conclude that in both games Gi players Max and Min have
optimal positional strategies σ#

i , τ#
i respectively. Let us note G = (G,) the

initial game over G.
Let Mi ⊂ C∗ be the set of finite colour sequences colour(p) of all finite plays

p in Gi that are consistent with strategy τ#
i and have source and target t.

To see that Mi ∈ Rec(C), we can build a finite automaton with the same
state space as for the arena Gi, we keep also all transitions of Gi that have the
source in the set SMax, however for each state s ∈ SMin controlled by player
Min we keep only one outgoing transition, namely the transition τ#

i (s) ∈ sEi

chosen by the strategy τ#
i . Then Mi is the set of words recognized by such an

automaton if we take t as the initial and the final state.
Now we define the sets Ki ⊂ C∗, i = 0, 1 consisting of colours colour(p) of

all finite plays p in the arena Gi that have source t and are consistent with τ#
i

(but can end in any state of Gi). Again it should be obvious that Ki ∈ Rec(C).
The monotonicity of implies that either ∀x ∈ C∗, [xK0] [xK1] or ∀x ∈

C∗, [xK1] [xK0] Since the former condition is symmetric to the latter, without
loss of generality, we can assume that

∀x ∈ C∗, [xK1] [xK0] . (7)

Let us set
σ# = σ#

0 . (8)

We shall show that, if (7) holds then strategy σ# is not only optimal for player
Max in the game G0 but it is also optimal for him in G. It is clear that σ# is
a well-defined positional strategy for Max in the game G. To finish the proof of
Lemma 6 we should construct a strategy τ# for player Min such that (σ#, τ#)
is a couple of optimal strategies. However, contrary to σ#, to implement the
strategy τ# player Min will need some finite memory.

We define first a mapping h : P ∗G → {0, 1} that assigns to each finite play
p ∈ P ∗G in G a one bit value h(p):

h(p) =

⎧⎪⎨⎪⎩
0 if either p does not contain any transition with the source t or

the last transition of p with the source t belongs to A0,
1 if the last transition of p with the source t belongs to A1.

438 H. Gimbert and W. Zielonka

Then the strategy τ# of Min in G is defined by

τ#(p) =

{
τ#
0 (target(p)) if h(p) = 0,

τ#
1 (target(p)) if h(p) = 1,

for finite plays p with target(p) ∈ SMin. In other words, playing in G player Min
applies either his optimal strategy τ#

0 from the game G0 or his optimal strategy
τ#
1 from the game G1 depending on the value h(p). Initially, before the first visit

to t, player Min uses the strategy τ#
0 . After the first visit to t the choice between

τ#
0 and τ#

1 depends on the transition chosen by his adversary Max at the last
visit to t, if the chosen transition was in A0 then player Min uses the strategy
τ#
0 , otherwise, if Max took a transition of A1 then player Min plays according

to τ#
1 . The intuition behind the definition of τ# is the following: If at the last

visit to t player Max has chosen a outgoing transition from A0 then this means
that the play from this moment onward is like a play in G0 and therefore player
Min tries to respond using his optimal strategy from G0. Symmetrically, if at
the last visit to t player Max has chosen an outgoing transition from A1 then
from this moment onward the play is like a play in G1 and player Min tries to
counter with his optimal strategy from G1.

It should be clear that the strategy τ# needs in fact just two valued memory
{0, 1} for player Min to remember if during the last visit to t a transition of A0

or a transition of A1 was chosen by his adversary. This memory is initialised to
0 and updated only when the state t is visited.

We shall prove that (σ#, τ#) is a couple of optimal strategies in G, i.e. (1)
holds for any strategies σ, τ of players Max and Min and any initial state s.

In the sequel we shall write frequently p q for infinite plays p and q as an
abbreviation of colour(p) colour(q).

Let τ be any strategy for player Min in the game G and let τ0 be its restriction
to the set P ∗G0

of finite plays in the arena G0. Clearly τ0 is a valid strategy of
Min over the arena G0. Then for any state s of G

pG(s, σ#, τ#) = pG0(s, σ
#
0 , τ#

0) by definition of σ# and τ#,

 pG0(s, σ
#
0 , τ0) by optimality of (σ#

0 , τ#
0) in G0,

= pG(s, σ#, τ) by definition of σ# and τ0,

which concludes the proof of the right hand side inequality in (1).
Now let σ be any strategy for player Max in G and s any state of G. There

are two cases to examine depending on whether the play pG(s, σ, τ#) traverses
t or not.

Case 1: pG(s, σ, τ#) does not traverse the state t.
In this case, according to the definition of τ#, player Min uses in fact all the

time during this play the strategy τ#
0 , never switching to τ#

1 .
Let us take any strategy σ0 for player Max which is defined exactly as σ

for all finite plays with the target different from t while for plays with target

Games Where You Can Play Optimally Without Any Memory 439

t the strategy σ0 chooses always a transition of A0. The last condition implies
that σ0 is also a valid strategy over the arena G0. Moreover, since pG(s, σ, τ#)
never traverses t the strategies σ and σ0 choose the same transitions for all finite
prefixes of pG(s, σ, τ#) with the target the state controlled by player Max, there-
fore pG(s, σ, τ#) = pG0(s, σ0, τ

#
0). However, pG0(s, σ0, τ

#
0) pG0(s, σ

#
0 , τ#

0) =
pG(s, σ#, τ#), where the first inequality follows from optimality of σ#

0 , τ#
0 in G0

while the last equality is just the consequence of (8) and definition τ#. Therefore,
pG(s, σ, τ#) pG(s, σ#, τ#), i.e. the left-hand side of (1) holds in this case.

Case 2: pG(s, σ, τ#) traverses the state t.
Let p′ be the shortest finite play such that p′ is a prefix of pG(s, σ, τ#) and

target(p′) = t. Note that by the definition of τ# it follows that p′ is in fact
consistent with τ#

0 . Let colour(p′) = x.
Then by definition of x,M0,M1, K0 and K1, any prefix of colour(pG(s, σ, τ#))

longer than x belongs to the set x(M0 ∪M1)∗(K0 ∪K1), hence

colour(pG(s, σ, τ#)) ∈ [x(M0 ∪M1)∗(K0 ∪K1)]
 [x(M0)∗] ∪ [x(M1)∗] ∪ [x(K0 ∪K1)] since is selective,
 [x(M0)∗] ∪ [x(M1)∗] ∪ [xK0] ∪ [xK1] by Lemma 3,
 [xK0] ∪ [xK1] since (Mi)∗ ⊂ Ki,
 [xK0] by (7).

(9)

Let us define a new transition set δ ⊂ E, where E is the the set of transitions
of the arena G: for any state r of G the set of transitions with source r under δ
is defined by:

rδ =

⎧⎪⎨⎪⎩
A0 if r = t,
rE if r ∈ SMax \ {t},
τ#
0 (r) if r ∈ SMin.

(10)

Let Q be the set of states of G that are accessible from t under δ. Take a finite
automaton D with the initial state t, the set of states Q all of which are final
and the transition relation δ restricted to Q.

Automaton D is co-accessible, recognizes the language K0 and therefore, by
Lemma 4, [K0] is precisely the set of colour sequences colour(q) of infinite plays
q with source t that are consistent with τ#

0 .
Let U be the set of all colour sequences colour(q′) of infinite plays q′ in G0

with source s that are consistent with τ#
0 . Then x[K0] ⊂ U implying that

x[K0] U colour(pG0(s, σ
#
0 , τ#

0)), (11)

where the last inequality follows from optimality of σ#
0 in the game G0. But, by

definition of σ# and τ#, we get pG0(s, σ
#
0 , τ#

0) = pG(s, σ#, τ#), which together
with (9) and (11) yield pG(s, σ, τ#) pG(s, σ#, τ#) terminating the proof of
the left hand-side of (1) in this case. ��

440 H. Gimbert and W. Zielonka

Proof. of Theorem 2. Note that, due to symmetry, we can permute players Max
and Min and replace the preference relation by −1 in Lemmas 5 and 6. Since,
clearly, players have optimal positional strategies for the preference relation
iff they have optimal positional strategies with the preference −1 under the
permutation (in fact these are the same strategies), Lemma 5 shows that to be
monotone and selective for and −1 is necessary for the existence of optimal
positional strategies.

Now Lemma 6 allows us to apply a trivial induction over the arena index to
conclude immediately that these conditions are also sufficient. ��

The following corollary turns out to be much more useful in practice than
Theorem 2 itself.

Corollary 7. Suppose that is such that for each finite arena G =
(SMax, SMin, E) controlled by one player, i.e. such that either SMax = ∅ or
SMin = ∅, the player controlling all states of G has an optimal positional strategy
in the game (G,). Then for all finite two-player arenas G both players have
optimal positional strategies in the games (G,).

Proof. By Lemma 5 if both players have optimal positional strategies on one-
player games then and −1 are monotone and selective and then, by Theo-
rem 2, they have optimal positional strategies on all two-person games on finite
arenas. ��

4 An Example: Priority Mean-Payoff Games

The interest in Corollary 7 stems from the fact that often it is quite trivial to ver-
ify if a given preference relation is positional for one-player games. To illustrate
this point let us consider mean-payoff games [7]. Here colours are real numbers
and for an infinite sequence r1r2 . . . of elements of R the payoff is calculated by
limsupn→∞

1
n

∑n
i=1 ri. Suppose that G is an arena controlled by player Max.

Take in G a simple cycle (in the sense of graph theory) with the maximal mean
value. It is easy to see that any other infinite play in G cannot supply a payoff
greater than the mean-payoff over this cycle. Thus the optimal positional strat-
egy for player Max is to go as quickly as possible to this maximum payoff cycle
and next go round this cycle forever. Clearly, player Min has also optimal posi-
tional strategies for all arenas where he controls all states and Corollary 7 allows
us to conclude that in mean-payoff games both players have optimal positional
strategies.

As a more sophisticated example illustrating Corollary 7 we introduce here
priority mean-payoff games. Let C = {0, . . . , k} × R be the set of colours,
where for each couple (m, r) ∈ {0, . . . , k} × R the non-negative integer m is
called the priority and r is a real-valued reward. The payoff for an infinite se-
quence x = (m1, r1), (m2, r2), . . . of colours is calculated in the following way:
let k = limsupi→∞mi be the maximal priority appearing infinitely often in x
and let i1 < i2 < . . . be the infinite sequence of all positions in x with the pri-
ority k, i.e. k = mi1 = mi2 = Then the priority mean-payoff is calculated

Games Where You Can Play Optimally Without Any Memory 441

as the mean payoff of the corresponding subsequence ri1ri2 . . . of real rewards,
limsupt→∞

1
t

∑t
n=1 rin . In other words priorities are used here to select an ap-

propriate subsequence of real rewards for which the mean-payoff mapping is
applied subsequently.

This payoff, rather contrived at first sight, is in fact a common natural gener-
alization of mean-payoff and parity payoffs. On the one hand, we recover simple
mean-payoff games if there is only one priority. On the other hand, if we allow
only a subset of colours consisting of couples (m, r) such that r is 1 if m is odd
and r is 0 for m even then the rewards associated with the maximal priority are
constant and we just obtain the parity game coded in an unusual manner.

Instead of proving immediately that the priority mean-payoff mapping admits
optimal positional strategies let us generalize it slightly before.

Let u0, . . . ,uk be payoff mappings on the set C of colours. We define a payoff
mapping u on the set B = {0, . . . , k} × C of colours which we shall call priority
product of u0, . . . ,uk. In the sequel we call the elements of {0, . . . , k} priorities.
Let x = (p1, c1), (p2, c2), . . . ∈ Bω be an infinite colour sequence of elements of
B. Define priority(x) to be the highest priority appearing infinitely often in x:
priority(x) = limsupi→∞ pi.

Let (jm)∞m=0 be the sequence of positions in x with priority priority(x),
priority(x) = pj1 = pj2 = pj3 = Then the priority product gives us the
payoff

u(x) = um(cj1cj2cj3 . . .), where m = priority(x) .

A payoff mapping u is said to be prefix-independent if ∀x ∈ C∗, ∀y ∈ Cω ,
u(xy) = u(y).

Lemma 8. If ui, i = 0, . . . , k, are prefix-independent and admit all optimal
positional strategies for both players for all games on finite arenas then their
priority product u admits optimal positional strategies for both players on all
finite arenas.

Note first that the priority product of several mean-payoff mappings is just the
priority mean-payoff mapping. Thus Lemma 8 implies that on finite arenas pri-
ority mean-payoff mapping admits optimal positional strategies for both players.

Proof. We prove that, under the conditions of Lemma 8, player Max has optimal
positional strategies on one-player arenas. Let G be such an arena. For each
simple cycle in G we can calculate the value of the payoff u for the play that
turns round the cycle forever. Let a be the maximal payoff calculated in this
way and c the cycle giving this value. We prove that for any infinite play p on G,
u(colour(p)) ≤ a, which means that an optimal strategy for player Max is to go
to as quickly as possible to the cycle c and turn round c forever. This strategy
is positional. Thus let p be any infinite path in G and let m be the maximal
priority appearing infinitely often in p. This implies that in G there exists at
least one simple cycle with the maximal priority m. Let b be the maximum
payoff of u over all simple cycles with the maximal priority m, this quantity is

442 H. Gimbert and W. Zielonka

well-defined since we noted that such cycles exist. It is not difficult to observe
that u(colour(p)) ≤ b, but b ≤ a just by the definition of a.

The proof for arenas controlled by player Min is symmetrical and Corollary 7
applies. ��

References

1. A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness
and regular conditions. In FSTTCS, volume 2380 of LNCS, pages 88–99, 2003.

2. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3 winning
condition. In CSL, volume 2471 of LNCS, pages 322–336, 2002.

3. K. Chatterjee, T.A. Henzinger, and M. Jurdziński. Mean-payoff parity games. In
LICS, 2005. to appear.

4. T. Colcombet and D. Niwiński. On the positional determinacy of edge-labeled
games. submitted.

5. L. de Alfaro, M. Faella, T. A. Henzinger, Rupak Majumdar, and Mariëlle Stoelinga.
Model checking discounted temporal properties. In TACAS 2004, volume 2988 of
LNCS, pages 77–92. Springer, 2004.

6. L. de Alfaro, T. A. Henzinger, and Rupak Majumdar. Discounting the future in
systems theory. In ICALP 2003, volume 2719 of LNCS, pages 1022–1037. Springer,
2003.

7. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games.
Intern. J. of Game Theory, 8:109–113, 1979.

8. E.A. Emerson and C. Jutla. Tree automata, μ-calculus and determinacy. In
FOCS’91, pages 368–377. IEEE Computer Society Press, 1991.

9. H. Gimbert. Parity and exploration games on infinite graphs. In Computer Science
Logic 2004, volume 3210 of LNCS, pages 56–70. Springer, 2004.

10. H. Gimbert and W. Zielonka. When can you play positionally? In Mathematical
Foundations of Computer Science 2004, volume 3153 of LNCS, pages 686–697.
Springer, 2004.

11. E. Grädel. Positional determinacy of infinite games. In STACS, volume 2996 of
LNCS, pages 4–18. Springer, 2004.

12. A.W. Mostowski. Games with forbidden positions. Technical Report 78, Uniwer-
sytet Gdański, Instytut Matematyki, 1991.

13. M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press,
2002.

14. L. S. Shapley. Stochastic games. Proceedings Nat. Acad. of Science USA, 39:1095–
1100, 1953.

On Implementation of Global Concurrent

Systems with Local Asynchronous Controllers

Blaise Genest

Department of Computer Science, Warwick, Coventry, CV4 7AL, UK

Abstract. The classical modelization of concurrent system behaviors
is based on observing execution sequences of global states. This model
is intuitively simple and enjoys a variety of mathematical tools, e.g. fi-
nite automata, helping verifying concurrent systems. On the other hand,
parallel composition of local controllers are needed when dealing with
the actual implementation of concurrent models. A well known tool for
turning global observation into local controllers is Zielonka’s theorem,
and its derivatives. We give here another algorithm, simpler and cheaper
than Zielonka’s theorem, in the case where the events observed do not
include communication but only local asynchronous actions. In a devel-
oper point of view, it means that she does not have to explicitly specify
the messages needed, which will be added (if allowed) automatically by
the implementation algorithm.

1 Introduction

Specifying the behavior of software systems in such a way that formal methods
can be applied and validation tasks can be automated, is a challenging goal.
While research has brought strong results and tools for simple systems, complex
systems still lack powerful techniques. For instance, concurrent systems such as
message passing systems are still hard to cope with.

One of the challenging problem concerning concurrent systems is to design
parallel algorithms. The problem is that it is easy to think in a sequential way,
and to observe and model the global behavior of such a system. On the other
hand, it is much harder to build local controllers, that is controllers that have
only a local view of the behaviors. They have to deal with partial information,
consisting of local behaviors plus information brought by messages from other
processes. One method used for the implementation is to automatically turn,
when possible, a global specification into a set of local controllers. Zielonka’s
theorem [22] states that the regular models that can be implemented by local
controllers in term of asynchronous automata are exactly those closed by com-
mutation. This theorem was further used and extended to give local controllers
in term of communicating automata, with channels either bounded [18,11,12],
or existentially-bounded [9] (that is a set of bounded executions suffices to rep-
resent up to commutation every execution of the system, even the unbounded
ones [13,14,9]). This method has several major drawbacks. The first one is that
the complexity of these Zielonka-based theorems is of several exponents [11].
Moreover, the implementation obtained in terms of communicating automata

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 443–457, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

444 B. Genest

has unavoidable deadlocks, which is unacceptable for an implementation. Last,
but not least, it forces the designer to provide every single message that will be
needed: forgetting a message can compromise the implementability of a specifi-
cation. These messages are used as support for passing information with control
data (or gossiping in the terminology of [18,11]).

Our starting point is to implement a FIFO, deadlock-free communicat-
ing automata, with possibly more messages than specified by a regular set
of executions. Of course, using all channels for messages is neither interesting
(every system could be sequentialized, thus implemented), nor wanted (the less
messages, channels and synchronizations used, the better), nor possible (some
channel might not be available, as a direct communication from a PDA to a
satellite). Thus, an architecture is set once for all, by means of a set of couples
of processes, standing for the directed available channels. Since the implemen-
tation algorithm can add messages, we assume that no message is provided by
the specification, even if we could technically express them. The specification is
thus given by a finite automaton, whose transitions are labeled by local actions.
Until this point, the background is general enough to use either synchronous
or asynchronous messages, and to use open or closed systems. For instance, an
action of a synchronous system would be a tuple of local actions (possibly the
null action), one for each process. Here, we consider asynchronous systems that
are closed, modeling communicating protocols, where every action is associated
with one process. We want to obtain a deadlock-free communicating automaton
such that the projection on local actions of its set of (partial) executions is ex-
actly the language given as specification. Thus, every state is considered as final,
for both the specification and the implementation. This non trivial restriction
is natural when deadlocks are forbidden. Like Zielonka’s theorem, the closure
under a (semi) commutation related to the architecture is necessary. But unlike
it, it is not always sufficient, due to the deadlock-free requirement.

Results: We first show that in the subcase where one process (the boss) can
send messages to any other process (possibly via other processes), then an easy
implementation exists as soon as the specification is closed by commutation.

We then give two different notions of deadlock-freeness (strong and weak),
together with algorithms to test their implementability in the general setting.
Strong deadlock-freeness allows only choices that are local, which we translate
for the specification into the forward diamond property [6]. A linear size imple-
mentation can then be obtained. Weak deadlock-freeness allows global-choices
(that is, choices involving the decision from several processes), which can be
really tricky to implement. Nonetheless, we show the decidability of the weak
deadlock-free implementability too, which yields an implementation exponential
in the number of global choices. More precisely, we show that there are finitely
many decisions to make, enabling us to test them all to find a potential unpre-
dictable choice. The implementation is obtained by ruling out the global choices
at the beginning of the implementation, and then by using the small implementa-
tion obtained in case there are only local-choices. It is worth noting that usually,
the number of global choices is restricted, which limits the use of the expansive

On Implementation of Global Concurrent Systems 445

step of ruling out the global choices. We also define very weak deadlock-freeness,
but argue against it, even though the algorithm for implementability is easier
than for the weak deadlock freeness. We give examples that separate these three
deadlock-free notions in section 3.3.

Related Work: Other papers deal with deadlock-free implementation. [1,3] give
an algorithm for the implementation only when no information can be exchanged
by processes, avoiding many protocols from being implementable. Moreover, [8,2]
consider only local specifications (local-choice CMSC-graph [10] and a local flavor
of EMSO logic), unlike the global specification in our paper. In the non FIFO
case (two messages with different contents can overtake each other), Petri nets
implementation can be used [5], allowing much more systems to be implemented.
However unwanted scenarios can be implied.

Several papers were also published considering open systems. Synchronous
open systems become quickly undecidable due to undecidability for partial in-
formation games [20], both if the specification is global [19,17] or local [15].
This basic undecidability result cannot be translated to the asynchronous case,
so decidability is more likely: some promising results in restricted cases were
published, as [7,16].

2 Preliminaries

Until the end of the paper, we consider that the set P of processes is fixed.
We want to implement a global specification S by a set A = (Ap)p∈P of local
controllers for process p, using some communicating channels Ch.

1!2(a)

1 2

1(b) 2(b)

S
1(a)

2(a)
1

2

Ch

1(b)

1(a)

1!2(b)

2(a)

2?1(b)

2?1(a)

2(b)

Implementation

Fig. 1. An example of a specification S, an architecture Ch, and a communicating
finite-state machine (CFM) on processes {1, 2}

446 B. Genest

A specification is given by an automaton S, whose transitions are labeled
by local events p(a), meaning that process p ∈ P does the action a. Here,
we think that the specification to implement does not provide the messages
yet. Indeed, it is the task of the implementation to find which messages are
to be sent. Actually, the specification stands for the possibilities of executions,
which is an arena the system should never exit. That is, u ∈ L(S) means that
there exists a path labeled by u in S (we consider that every state of S is
final).

We now define our target model, communicating finite state machines, which
are restricted since every state is considered as final.

A communicating finite-state machine (CFM) A = (Ap)p∈P [4] consists
of finite automata Ap associated with processes p ∈ P , that communicate over
unbounded, error-free, FIFO channels. With each pair (p, q) ∈ P2 of distinct
processes we associate a channel Cp,q. The content of a channel is a word over a
finite alphabet C. Each Ap is described by a tuple Ap = (Sp, Ap, →p) consisting
of a set of local states Sp, a set of actions name Ap, and a transition relation
→p⊆ Sp×Ap×Sp. An action of Ap is either a local action p(a), a send p!q(a) or
a receive p?q(a), with p, q ∈ P . Sending message p!q(a) means that a is appended
to the channel Cp,q. Receiving message p?q(a) means that a must be the first
message in Cq,p, which will be then removed from Cq,p. The function P associates
an event with its process: P (p(a)) = P (p!q(a)) = P (p?q(a)) = p for all p, q ∈ P .
Every computation begins in the initial state s0, where s0 ∈

∏
p∈P Sp.

A run of a CFM is a word x such that for all p ∈ P , the projection of x on
events of process p is a run of Ap, and such that any receive p?q(a) is enabled,
that is the first letter of Cq,p before p?q(a) is a. We say that a run is successful
if every channel is empty at the end of the run. Moreover, we say that a CFM is
very weakly deadlock-free if every run can be extended to a successful run. The
set of successful runs generated by A is denoted L(A), the language of A. With
this definition of run, a CFM satisfies the FIFO restriction, that is, the n-th send
event s from p to q is received by the n-th receive r from p to q. Thus, we call
(s, r) a message if s and r are the n-th send and receive on the same channel,
and define a mapping m(s) = r and an order s <m r iff (s, r) is a message. Let
x be a run of a CFM. The process order of x is a <p b if P (a) = P (b) = p ∈ P
and a appears before b in x. The visual order < of x is the transitive closure of⋃

p <p ∪ <m. For every set of event X of x, we denote Future(X) = {z | y < z
for some y ∈ X}.

An architecture is a graph (P ,Ch) where P is the set of processes and
Ch ⊆ P × P is the set of directed channels. The channels which can be used
have to be provided as an architecture since some channel might not be available
(there is no way to talk to a sensor designed only to send some information, nor
to send a message directly to a satellite with a small device). We call q a child
of p for (p, q) ∈ Ch. We assume that for all p ∈ P , (p, p) ∈ Ch. We will prove
later that we can assume without loss of generality that (P ,Ch) is an acyclic
graph closed by transitivity. We thus call a process p minimal for Ch if there is
no process q �= p with (q, p) ∈ Ch.

On Implementation of Global Concurrent Systems 447

3 Implementability

3.1 Properties for Implementability

Given a specification S, we want to obtain, when possible, a deadlock-free com-
municating automaton A on processes P , which uses only the channels Ch, such
that the projection π(L(A)) of L(A) on local actions {p(a) | p ∈ P , a ∈ Σ} equals
L(S). We will consider several deadlock-free restrictions, but all will respect the
very weak condition at least. The size |P| of P is the number of processes. The
size |A| of an automaton A is its number of nodes. The size |A| of a CFM
A = (Ap) is |A| =

∑
p∈P |Ap|.

We show now that we can assume without loss of generality that Ch is
closed by transitivity, that is Ch = Ch∗. If two processes p, q are such that
(p, q) ∈ Ch∗, then any implementation A for Ch ∪ (p, q) can be translated into
an implementation A′ for Ch. Let p0 · · · pn be some sequence of processes with
(pi, pi+1) ∈ Ch and p0 = p, pn = q. It suffices to change every action p!q(a) into
p!p1(fw, a) (for every a, (fw, a) is a new symbol meaning forward a), and q?p(a)
into q?pn−1(fw, a). Moreover, simple loops are added on every state of processes
pi, i ∈ {1, · · · , n − 1}, labeled by pi?pi−1(fw, a) then pi!pi+1(fw, a). Obtaining
an implementation for Ch from an implementation A for Ch∗ is of size at most
|P||A|. Hence, from now on, we will assume that Ch is closed by transitivity.

We show now that we can assume without loss of generality that Ch is loop-
free (remember that Ch is closed by transitivity). If two processes p �= q are
such that (p, q) ∈ Ch and (q, p) ∈ Ch, then any implementation A for P \ q,
where every action q(a) is replaced by an action p(r, a), can be translated into
an implementation for P . It suffices to change every actions p(r, a) in A into
two actions p!q(a), p?q(ack). Moreover, the process q is easily made of loops
q?p(a), q(a), q!p(ack). The aim of the acknowledgements ack is to ensure the
good timing of actions with respect to p and q. Obtaining an implementation
for P from an implementation A for P \ q is of size at most |P||A|.

Moreover, the specification S can be assumed to be closed by the semi-
commutation: ab � ba if (P (a), P (b)) /∈ Ch (see [6] for a formal definition of
semi commutation). First, notice that for any CFM A, if uxyv ∈ L(A) and
y /∈ Future(x), then uyxv ∈ L(A). Let S be a specification not closed by semi
� commutation: there is uabv ∈ S with ab � ba and ubav /∈ S. Assume by
contradiction that there exists an implementation A of S. Then u′awbv′ ∈ L(A)
with π(u′awbv′) = uabv. Let w = wbw

′ with wb in the past of b. Since b is not in
the future of w′, u′awbbw

′v′ ∈ L(A). We have that wb∩Future(a) = ∅, else there
would exist in w a sequence of messages from a to b, which is not possible since
(P (a), P (b)) /∈ Ch and Ch is closed by transitivity. So u′wbabw′v′ ∈ L(A), hence
u′wbbaw

′v′ ∈ L(A), so π(u′wbbaw
′v′) = uabv ∈ S, which is false. Hence, being

closed by semi commutation is a necessary condition for being implementable.
We thus consider for the rest of the paper that S, given as minimal and

deterministic, is diamond. That is if there exist 3 states r, s, t with r
a−→ s

b−→ t

and ab � ba, then there exists also a fourth state s′ with r
b−→ s′

a−→ t, which
translates the semi-commutation [6].

448 B. Genest

3.2 An Easy Subcase

Here, we give a subcase where the diamond property is enough to ensure the
implementability. We do not need it for solving the general problem, but it is an
easy implementation which stands for a good first example.

Namely, in case where there is a unique minimal process for Ch called boss,
then any specification is implementable. The idea is that boss makes the choices
and dictates their behaviors to other processes.

Proposition 1. If S is an automaton whose language is closed by semi �-
commutation, and there is a unique minimal process boss for Ch, then S is
implementable by a CFM of size O(|S| · |P|!).

Proof. We define now Ap for p �= boss as a program, which can be easily turned
into an automaton.

while(true)
{ wait until p?boss(a);

If a = top(q) then p!q(top);
If a = wait(Q) then for all q ∈ Q, p?q(top);
If a = do(b) then b; }

We define now the automaton for boss. It is built upon S, with two differences.
A memory is kept recording the ordering of the last event on each process. More
formally, let ≺ be an order on P . After each transition labeled by an event on
process p, the order ≺ is updated such that the restriction of ≺ on P \ {p} is
kept, and for all q �= p, q ≺ p. In the initial state, the order 1 ≺ · · · ≺ n is chosen
(but any other is fine).

Consider a transition labeled by a with P (a) = p, from a state with an
order ≺ between the processes. Let Q be the set of processes q with p ≺ q
and (q, p) ∈ Ch. Now, we replace this transition labeled by a by a sequence of
transitions boss!q(top(p)) for all q ∈ Q, then boss!p(wait(Q)), then boss!p(do(a)).

We have easily that πboss!p(do(a))(L(A)) = L(S), so it is closed by semi-
commutation. Now, we can prove easily that πboss!p(do(a))(L(A)) = π(L(A)). �

3.3 Several Deadlock-Free Restrictions

If the implementation seems really easy in the case where there is a boss, many
problems can arise in the case where there are several minimal processes in Ch.

Consider first the specification S0 made of three states {s1, s2, s3} with

s1
p(a)−→ s2 and s1

q(b)−→ s3, with p, q two distinct minimal processes of Ch. While
S0 satisfies the diamond property, it is not implementable in this architecture.
The reason is that p and q can act separately, and since they have no common
information (they are minimal in Ch), they can also act in the same time in any
implementation, yielding the execution p(a)q(b) which is not in the specification.
When there is a process r with (r, p) ∈ Ch and (r, q) ∈ Ch, then r can choose
between p and q and inform either p or q (but not both) that it has to act, which
is exactly what happens when there is a unique minimal process in Ch.

On Implementation of Global Concurrent Systems 449

When a choice between 3 processes is involved, then a solution can be much
difficult to obtain. Consider an architecture with 6 processes {1, 2, 3, 4, 5, 6} with
Ch = {(1, 4), (1, 5), (2, 4), (2, 6), (3, 5), (3, 6)}, that is every pair of processes from
{4, 5, 6} has a common ancestor, but there is no common ancestor to {4, 5, 6}.
Assume that the specification S1 allows 4(a)5(a), 5(a)6(a) or 4(a)6(a) up to
commutation but not 4(a)5(a)6(a). Since every state of S1 is final, we have
L(S1) = {ε, 4(a), 5(a), 6(a), 4(a)5(a), 5(a)6(a), 4(a)6(a)} (up to commutation).
There is a way to implement S1 with a very weakly deadlock free CFM A.
Processes 1, 2, 3 guess two processes among 4, 5, 6 and send this guess to their
children (two processes among 4, 5, 6). Process p ∈ {4, 5, 6} does a if and only
if the two guesses it received are the same (we could deal with some difference
too) and contain p. We indeed have L(A) = L(S1). Moreover, A is very weakly
deadlock-free because every message is received (the channels are empty) and the
state reached is final. The problem is that if the guesses 1, 2, 3 are not coherent
(which is usually the case), then the CFM sends its messages and no local action
happens, which is a kind of deadlock as well, even though it is allowed since
ε ∈ L(S1). We think this is due to a weakness of the (very weakly) deadlock-
freeness as it is defined, and we propose two alternatives in our context where
π(L(A)) = L(S).

Definition 1. A very weakly deadlock-free CFM is strongly deadlock-free if for
every run x, if there exists an accepting run y with π(y) = π(x)a, then x can be
extended into an accepting run xz with π(z) = a.

A very weakly deadlock-free CFM is weakly deadlock-free if for every run x,
if there exists an accepting run y with π(y) = π(x)a, then x can be extended into
an accepting run.

The difference between the two definitions is that if a word x can be extended
in k different ways in S, then any run of a strongly deadlock-free CFM imple-
menting x must be extendable in k different ways, while a weakly deadlock-free
CFM must be extendable in at least one way. Strong deadlock-freeness is more
restrictive than weak deadlock-freeness, but also easier to implement.

First, it is easy to show that the specification S1 defined above cannot be
implemented by a weakly deadlock-free CFM, and hence neither by a strongly
deadlock-free CFM. Then, consider the same architecture as for S1, that is
P = {1, 2, 3, 4, 5, 6} with Ch = {(1, 4), (1, 5), (2, 4), (2, 6), (3, 5), (3, 6)}. This
time, let S2 = {4(a)5(a)6(b), 4(a)5(b)6(a), 4(b)5(a)6(a), 4(b)5(b)6(b)} (up to
commutation). Consider the following CFM A: Process i guesses a bit bi, where
i ∈ {1, 2, 3}. It sends bi to its two children. Each process j ∈ {4, 5, 6} checks if
the two bits it received from its two parents are equal. If yes, then it does b, else
it does a. Either the three bits are equal, thus the CFM yields the execution
4(b)5(b)6(b) (up to commutation), or two bits are equal, let say b1 = b2, and
then 4 does b, while 5, 6 does a. The CFM A is not strongly deadlock-free since
the run x where 1, 2, 3 have sent their bit can be extended in only one way, while
π(x) = ε can be extended in many other ways. But A is weakly deadlock-free.
While strong deadlock-freeness usually suffices, it sometimes forbids implement-

450 B. Genest

ing legitimate specifications. For instance, the specification S2 corresponds to an
election of two or none processes among three (or distributed mutual exclusion).

The proposition 2 shows that no strongly deadlock-free CFM can implement
S2. First, let us define the forward diamond property:

Definition 2. A deterministic and diamond automaton S fulfills the forward
diamond property if for every states r, s, s′ with r

a−→ s, r
b−→ s′ and ab � ba

or ba � ab (that is P (a) �= P (b) since Ch is acyclic), there exists a fourth state
t with r

a−→ s
b−→ t and r

b−→ s′
a−→ t.

Notice that S2 does not fulfill the forward diamond property.

Proposition 2. Let S be a deterministic and diamond specification. If S is im-
plemented by a strongly deadlock-free CFM A, then S fulfills the forward diamond
property.

Proof. By contradiction, assume that S is implemented by a strongly deadlock-
free CFM A and that there exists r

a−→ s, r
b−→ s′ and (P (a), P (b)) /∈ Ch

but there is no transition labeled by b coming from s (else, by the diamond
(non forward) property, there would be a transition labeled by q coming from
s′ as well). Let x be a run of S stopping in r. Since xa ∈ L(S) and A is an
implementation of S, there exists a run va of A with π(v) = x. Since A is
strongly deadlock-free, there exists w with π(w) = ε and vwb is a run of A.
Let w = wbw

′ with wb the past of b. The word vwbb is also an execution of A.
Since (P (a), P (b)) /∈ Ch, wbb contains no events on p with (p, P (b)) /∈ Ch. The
projection of vawbb on p with (p, P (b)) /∈ Ch is the same as the projection of va,
which is an execution on p. The projection of vawbb on q with (q, P (b)) ∈ Ch is
the same as the projection of vwbb, which is an execution on q. So vawbb is an
execution of A which means that π(vawbb) = xab ∈ L(S), a contradiction. �

Last, notice that the proof of proposition 1 builds a weakly deadlock-free
CFM. There are cases where it cannot be made strongly deadlock-free because
of the proposition 2.

4 Strongly Deadlock-Free Implementation

We show in this section that proposition 2 is an equivalence, namely that S
fulfills the forward diamond properties if and only if it is implementable by a
strongly deadlock-free CFM.

We first build the communicating automaton AS = (Ap)p∈P we use for
the implementation, based on the automaton S. For each process p, we let Sp

be the accessible nodes of S from the initial node by any action of processes
{q | (q, p) ∈ Ch} (recall that (p, p) ∈ Ch). We then defineAp from the automaton
Sp, where the labels a ∈ Σq, q �= p of the transitions are replaced by p?q(a).
Furthermore, every transition labeled by a ∈ Σp is replaced by a sequence of
transitions labeled by a then by p!q(a) for all (p, q) ∈ Ch. That is, when an action
is done on p, then p informs each of its children. Conversely, the projection of
u ∈ AS on p defines a run in Sp.

On Implementation of Global Concurrent Systems 451

Proposition 3. Let S be a deterministic specification. If S fulfills the diamond
and forward diamond properties, then S is implementable, and one of its strongly
deadlock-free implementation is AS , of size O(|P| · |S|).

Proof. We let A = AS . We show that π(L(A)) = L(S), and that A is strongly
deadlock-free. Notice that both diamond properties hold for Sp, p ∈ P .
L(S) is included into π(L(A)). Let u ∈ L(S). We define an execution v by

replacing every action p(a) by a sequence of actions p(a), p!q(a), q?p(a) for all
(p, q) ∈ Ch. We thus have π(v) = u.

We show now that v ∈ L(A), which ends the proof of L(S) ⊆ π(L(A)). Let
p ∈ P . Let u � upu

′ with up containing every event of u on p or on (q, p) ∈ Ch,
and none on other processes. Since S is closed by commutation, upu

′ ∈ L(S),
and thus up ∈ L(Sp). The execution of Ap which corresponds to up is exactly
the projection vp of v on p. Thus for all p, vp ∈ L(Ap), that is v ∈ L(A).

π(L(A)) is included into L(S). Let u ∈ L(A). Assume by contradiction
that v = π(u) is not an execution of S. Let v = v′p(a)w with v′ the longest prefix
with v′ ∈ L(S). We let t be the state of S where the path labeled by v′ ends. We
define v′ � v′pv

′′, with v′p containing every event of v′ on p or on (q, p) ∈ Ch,
and none on other processes. Since S is diamond, v′pv

′′ ∈ L(S) labels a path in
S which ends in t. Moreover, v′p ∈ L(Sp), and let s be the state reached by the

path labeled by v′p. That is, s
v′′
−→ t.

Let up be the projection of u on p, which belongs to L(Ap), and wp be the
associated execution of L(Sp). Notice that v′p may not be a prefix of wp since p
may hear (receive the messages) about actions of an ancestor process much later
than when it did happen. Anyway, it is a prefix of some equivalent run of wp

because of the FIFO condition. Hence, since Sp is closed by semi commutation,
wp ∈ L(S), and wp � v′pp(a)x, there is a transition from s labeled by p(a) in
Sp, so in S.

Applying inductively the forward diamond property of S to s, to the tran-
sition labeled by p(a), and to those leading to t and labeled by an event on
a process not in p or in (q, p) ∈ Ch, we get a transition from t labeled by
p(a) in S. This means v′p(a) ∈ L(S), contradicting the maximality of v′. So
π(L(A)) = L(S).
A is very weakly deadlock-free. Considering L(A) is closed by prefix,

the only reason for A to have a very weak deadlock would be not to be able to
receive some message p!q(a) sent. We show that this is not possible.

Assume that there is a partial execution u of A with an unreceived send
event c = p!q(a). We choose c to be the minimal unreceived send in u sent by
the smallest process possible. We show that u d is also a partial execution, with
d the receive q?p(a).

Let uq be the projection of u on q, which belongs to Aq, and wq be the
associated execution in Sq. Let wq � wpw

′ with wp containing all events on
process p or on (k, p) ∈ Ch. Because every send sent by any k �= p, (k, p) ∈ Ch
is already received (by minimality of c), wp contains exactly all the events of u
on k �= p, (k, p) ∈ Ch, and by FIFO, all the events until c on p.

452 B. Genest

Since u contains the send c, it means that there exists a prefix u′pc of the
projection of u on p. Let w′pp(a) be the execution of Sp associated with u′pc. We
have wp � w′px, that is wq � w′py. By the diamond property of Sq, we have

states s, t with s0

w′
p−→ s →∗ t and s0

wq−→ t. Consider now that c is enabled after
u′p, so p(a) is enabled after w′p, so after s.

Applying the forward diamond property inductively in Sq, to the transition
labeled by p(a), and the sequence of transitions leading to t (labeled by an event
on a process different that p), p(a) is enabled after t. The meaning in Aq is that
d can be received by q after the projection of u on q, that is u d is a partial
execution of A.
A is strongly deadlock-free. By the very construction of A, if an execution

x is such that π(x)a ∈ S, then a transition labeled by a on P (a) is possible
after x. �

Remark 1. 1. Figure 1 depicts a specification and its corresponding implemen-
tation given by proposition 3.

2. One definition of a deterministic CFM is that if π(x) = π(y) for two runs x, y
of a CFM, then x and y are equal up to commutation. It makes sense in our
case since only the projection on local events matters. Then any deterministic
implementation needs to be strongly-deadlock free.

3. The CFM obtained in proposition 3 is deterministic for the determinacy
definition of [11]. That is, each automaton Ap is deterministic, and there is

no node r with two transitions r
p!q(a)−→ s and r

p!q(b)−→ s labeled by different
messages data a �= b.

4. The CFM obtained is not universally bounded. That is, there are specifica-
tions for which for every b, the implementation obtained has a run which
uses more than b messages in some channel at one time.

5. The existential boundedness is defined in [13] (see also [14,9]). The CFM
obtained in proposition 3 is not existentially bounded. Anyway, it is easy
to obtain a strongly deadlock-free implementation which is existentially 1
bounded (but it is not of linear size). It suffices for a process p to simulate
every process q with (q, p) ∈ Ch. For every state where two messages from
different processes can be received (that is the two simulated states are not
stuck), the transition receiving the message from the lower process (for Ch)
can be deleted. It makes the CFM even more deterministic. The diamond
property on S will allow process p to receive this message later, when the
higher process will be stuck waiting for the same message, preserving the
deadlock-freeness.

5 Weakly Deadlock-Free Implementation

5.1 Global Choices

The challenge with weakly deadlock-free implementation is that global choices
(choices involving the decision from several processes) are possible. In contrast,

On Implementation of Global Concurrent Systems 453

being forward diamond means that every choice in the specification can be made
locally by one process. The strategy we use to solve the weakly deadlock-free
implementability is to make a precomputation on the specification (if possible) to
have a forward diamond specification. Hence, we can use the strongly deadlock-
free implementation, whose algorithm is fast and produce small implementations.

The important step in our algorithm is proposition 5 which states that the
number of global choices is finite. Then proposition 6 states that there exists
a finite number of different ways to take a decision, implying they can all be
tested. A crucial hypothesis for proposition 5 is to choose S deterministic, hence
we will assume that it is the case from now on (we can anyway determinize and
minimize the specification, preserving the diamond property).

First, we give a syntactical characterization of global choices. We denote by
L(s) the language of S with initial node s. We denote by LQ the projection of L
on set of processes Q, where Q is such that if q ∈ Q and (p, q) ∈ Ch, then p ∈ Q.
In particular, if L satisfies the diamond property, LQ is the accessible part of L
by events in Q. This is the case for L(s) for every node s of S.

Definition 3. A transition s
τ−→ t is a global choice if LQ(s) �= LQ(t) for

Q = {k | (P (τ), k) /∈ Ch}. We denote by G the set of global choices.

Notice that S satisfies the forward diamond property iff G = ∅.
First, we can test for global choice involving two process p, q without common

ancestor. If such global choices exist, no implementation is possible since p and
q cannot take a coherent decision.

Proposition 4. Assume that a transition s
τ−→ t is such that LK(s) �= LK(t)

with K = {q |� ∃k, (k, q) ∈ Ch ∧ (k, P (τ)) ∈ Ch}. Then S is not (very) weakly
deadlock-free implementable.

Proof. By contradiction, assume that A is a very weak deadlock-free imple-
mentation of S. Let u ∈ L(S) such that this execution ends in the state s.
We decompose u in u1,u2, with u1 = πK(u). Let v ∈ LK(s) \ LK(t). So
u1u2v,u1u2τ ∈ L(S), but u1u2τv /∈ L(S), neither u2τu1v /∈ L(S) (by semi com-
mutation of S). So there exists wxy,w′x′τ ∈ L(A), with π(w) = π(w′) = u1,
π(x) = π(x′) = u2, π(y) = v, and wy = πK(xwy). We have wy is a partial exe-
cution of the processes in K since they cannot receive any message from other
processes. In the same line, x′τ is a partial execution of A. Hence x′τwy is a
partial execution of A. Since A is a very weakly deadlock-free implementation
of S, we have π(x′τwy) = u2τu1v ∈ L(S), a contradiction. �

5.2 A Finite Number of Decisions

We prove here that there is no loop around a global choice. That is, there is only
a finite number of ”questions” whether to take a choice or not.

Proposition 5. Let S be a deterministic automaton that fulfills the diamond
property. There is no loop s

τ−→ t
y−→ s with (s τ−→ t) ∈ G a global choice.

454 B. Genest

Proof. Since s
τ−→ t is a global choice, there exists x ∈ LQ(s), x /∈ LQ(t) with

Q = {k | (P (τ), k) /∈ Ch}. Now, for z the projection of y on Q, we have y � zz′.

We can merge τ with z′, and renaming s, we obtain s
z′
−→ t

z−→ s. We thus
have the semi commutation z′x � xz′ and z′z � zz′. Because of the diamond
property, x ∈ LQ(s) for the new s, and still x /∈ LQ(t). Hence s �= t.

Since z′z � zz′, applying the diamond property, we obtain a state s′ with

s
z−→ s′

z′
−→ s. Because z′x ∈ L(s′), z′x � xz′ and the diamond property,

x ∈ LQ(s′). This means s′ �= t. The fact that s′ �= s comes from the determinacy

of S, since s′
z′
−→ s and s

z′
−→ t with s �= t. Assume by induction that we have

constructed n different states sn in this way. Then since z′z � zz′, applying

the diamond property, we obtain a state sn+1 with sn
z−→ sn+1

z′
−→ sn. Since

x ∈ LQ(sn) by induction hypothesis, and z′x � xz′, we have x ∈ LQ(sn+1).

So sn+1 �= t. Assume that sn+1 = si. Then si
z′
−→ sn+1. But we have already

si
z′
−→ si−1. So by determinacy, sn+1 = si−1 as well. We come to a contradiction

when sn+1 = s means that sn+1 = t by determinacy, which is known to be false.
We can iterate this to obtain an infinite number of nodes, using the diamond

property and the determinacy, which is a contradiction with the finiteness of the
automaton. �

Since the number of decisions to make is finite, they can be made once at the
beginning, as a subset G ⊆ G of the global choices which can be used. However,
not every subset can be chosen. Let SG be the specification obtained from S by
deleting every global choice not in G. We say that G is compatible if:

– There exists G ⊆ H with SH diamond and forward diamond (a transition
of SH may be a global choice of S but is not in SH).

– Every x ∈ L(SG) that cannot be extended in SG cannot be extended in S
either.

We denote by F the set of compatible sets G ⊆ G. Let Fp denote the set of
projections of subsets of F on process p. We can easily compute (Fp)p∈P .

5.3 Implementing Locally the Global Choices

Process p shall choose one set of global choices it can use among Fp. If it could
choose a set outside, then it would lead to an implementation which is not
weakly deadlock-free (because a run cannot be extended), or which breaks the
requirement L(A) = L(S).

First, we test whether
⋃

G∈F L(SG) = L(S), else every implementation A
will satisfy π(L(A)) ⊆

⋃
G∈F L(SG) � L(S): S cannot be implemented.

To help processes choosing locally a global choice among F (and not a com-
bination of choices which is not in F), they are helped by information sent by
their ancestors. We can model the choices made by a function choice which as-
sociates each process p and each tuple of information sent to a set of Fp which
the process p will execute if it receives the information. Of course, this function

On Implementation of Global Concurrent Systems 455

depends for p only on the information sent by ancestors of p. Let Ip be the set
of different information that can be sent by process p. Let I = I1 × · · · × In be
the set of tuples of information.

We then say that F is implementable with I information if there exists a
function choice as described above, such that:

– for every tuple i ∈ I, let f(i) =
⋃

p∈P choice(p)(i),
– for every tuple i ∈ I of information sent, f(i) ∈ F , that is every global choice

made by choice is compatible.
–
⋃

i L(Sf(i)) = L(S), that is we get the whole language of S by implementing
the function choice.

Notice that choice is defined by f : I → F with f(i) =
⋃

p∈P choice(p)(i).
We show here that the information I can be limited. We can assume without
loss of generality that minimal processes only send some information.

Proposition 6. If F is implementable, then it is implementable with log(|F|)
bits of information sent by every minimal process p.

Proof. Since F is implementable, there are a set of information I and f : I → F
which implements G. Assume that |I1| > |F| = n0 different information on
process 1. We want to show that some information x is useless, that is the
restriction f |I\{x} still implements G. We partition the space into n0 pigeon
holes: A tuple of information i ∈ I is in the pigeon hole f(i).

Obviously, if
⋃

i∈I\x L(Sf(i)) = L(S), then we can forget the information
x ∈ I1. In particular, it is the case if every pigeon hole which contains a tuple
using x contains also a tuple not using x. Assume by contradiction that this is not
the case. So for all information x ∈ I1, there exists a pigeon hole which contains
only information whose first component is x. Applying Dirichlet’s pigeon hole
lemma, since there are n0 < |I1| pigeon holes, there is a pigeon hole associated
with two different information, a contradiction. �

We can thus test if F is implementable or not by testing every function of
choice f using information |Ip| = |F| ≤ 2|G| for each minimal process p (there are
at most |F||F||P|

such functions), telling us whether S is weakly deadlock-free
implementable or not. It gives us the following theorem:

Theorem 1. Let S be a deterministic and diamond specification. It is decidable
to test whether a specification S is weakly deadlock-free implementable. The com-
plexity is EXPSPACE(m|G|) and the implementation obtained is of size at most
O(|P| · |S| · 2m|G|), where |G| ≤ |S| is the number of global choices and m ≤ |P|
the number of minimal processes.

Proof. If F is implementable by f using information |Ip| = |F| for each minimal
process p, then aweaklydeadlock-free implementation is obtained in two steps. The
first step is that every minimal process guesses log(|F|) ≤ |G| bits of information
and sends it to each of its children. Then every process q computes G = f(q)(i).
The second step is for process q to run the CFM obtained as in section 4 from the
specification SG

q . Every CFM Ai obtained from the information i ∈ I is weakly

456 B. Genest

deadlock-free and satisfies π(L(Ai)) ⊆ L(S) by the definition of G. Moreover, G is
implemented by f , which means that

⋃
i∈I π(L(Ai)) = L(S). �

Remark 2. We can show that transitions s
τ−→ t with LQ(s) �= LQ(t) (cf proposi-

tion 4) are the only reasons a specification may not be very weakly deadlock-free
implementable, which gives a polynomial time algorithm to test implementabil-
ity. If there is no such transition, each minimal process guesses a subset G ∈ G.
A process does nothing if the guesses of its parents are not consistent, else it
runs the implementation of section 4 on SG. The implementation obtained is
also of size at most O(|P| · |S| · 2m|G|).

6 Conclusion

Unlike the deadlock-free implementability of global specifications when no mes-
sage can be added (but data can) for which no result but heuristics are known
[8], the implementability of a global specification S is decidable when messages
can be added.

– The very weak deadlock-free implementability can be tested in PTIME and
the implementation obtained is of exponential size. However, this deadlock-
free restriction is too weak since the implementation is allowed to stop, while
actions can still happen according to the specification.

– The strong deadlock-free implementability can be tested in PTIME and yields
an implementation of size O(|P||S|). The implementation enjoys many good
properties, while it doesn’t compromise any deterministic implementation.
For instance, the usb protocol [21] is strongly deadlock-free implementable
since it does not involve global choices.

– The weak deadlock-freeness allows global choices, contrary to the strong
deadlock-freeness. Its much more involved implementation yields a single
exponential size implementation. However, our algorithm becomes tractable
for really small number of global choices, which we think is the case in real-
life examples. In the unlikely case where there are a lot of global choices,
the help from the user can still be asked, by highlighting the global choices,
asking if they are really needed, and if yes, asking for a redesign of the
specification to explain how these choices can be locally taken.

Acknowledgement. I would like to thank Anca Muscholl, Doron Peled, Igor
Walukiewicz for fruitful discussions and an annonymous referee for his com-
ments.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In ICALP’01, LNCS 2076, pp.797-808, 2001.

2. B. Bollig and M. Leucker. Message-Passing Automata are expressively equivalent
to EMSO Logic. In CONCUR’04, LNCS 3170, pp. 146-160, 2004.

On Implementation of Global Concurrent Systems 457

3. N. Baudru and R. Morin. Safe implementability of regular message sequence chart
specifications. In SNPD’03, pp 210–217. ACIS, 2003.

4. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2):pp.323-342, 1983.

5. B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes. HMSCs as partial spec-
ifications... with PNs as completions. In Modeling and Verification of Parallel
Processes, 4th Summer School, MOVEP 2000, Nantes, France 2000.

6. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

7. P. Gastin, B. Lerman, M. Zeitoun. Distributed Games with Causal Memory Are
Decidable for Series-Parallel Systems. In FSTTCS’04, LNCS 3328, pp. 275-286,
2004.

8. B. Genest. Compositional Message Sequence Charts (CMSCs) are better to Im-
plement than MSCs. In TACAS’05, LNCS , pp. 429-444, 2005.

9. B. Genest, D. Kuske and A. Muscholl. A Kleene Theorem and Model Checking for
a Class of Communicating Automata. In DLT’04, LNCS 3340, pp. 30-48, 2004.

10. E. Gunter, A. Muscholl, and D. Peled. Compositional Message Sequence Charts. In
TACAS’01, LNCS 2031, pp. 496–511, 2001. Journal version International Journal
on Software Tools for Technology Transfer (STTT) 5(1): 78-89 (2003).

11. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P. Thiagarajan.
A Theory of Regular MSC Languages. To appear in Information and Computation,
available at http://www.comp.nus.edu.sg/̃ thiagu/public papers/icregmsc.pdf.

12. D. Kuske. Regular sets of infinite message sequence charts. In Information and
Computation 187, Academic Press, pp.80-109, 2003.

13. M. Lohrey and A. Muscholl. Bounded MSC communication. Information and
Computation, (189):135–263, 2004.

14. P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs. In
FSTTCS’01, LNCS 2245, pp. 256-267, 2001.

15. P. Madhusudan and P.S. Thiagarajan. Distributed Controller Synthesis for Local
Specifications. In ICALP’01, LNCS 2076, pp. 396-407,2001.

16. P. Madhusudan and P.S. Thiagarajan. A Decidable Class of Asynchronous Dis-
tributed Controllers. In CONCUR’02, LNCS 2421, pp. 145-160, 2002.

17. S. Mohalik and I. Walukiewicz. Distributed Games. In FSTTCS’03, LNCS 2914,
pp. 338-351, 2003.

18. M. Mukund, K. Narayan Kumar and M. Sohoni. Synthesizing Distributed Finite-
State Systems from MSCs. In CONCUR 2000, LNCS 1877 , pp. 521-535, 2000.

19. A. Pnueli and R. Rosner. Distributed Reactive Systems Are Hard to Synthesize.
In FOCS 1990, pp. 746-757, 1990.

20. J.H. Reif. The Complexity of Two-player Games of Incomplete Information. J.
Comp. Sys. Sci. 29, pp 274-301, 1984.

21. USB 1.1 specification, available at http://www.usb.org/developers/docs/usbspec.zip
22. W. Zielonka. Note on finite asynchronous automata, R.A.I.R.O. Informatique

Théorique et Applications, 21:pp.99-135, 1987.

1 2 3,�

1

2

3

�

©

P1 t
P2 t

P1 t
P2

t P2

P1 P2

P2

P2

Gδ

Σ Σ+ Σω Σ∞ = Σ+ ∪ Σω

α,β
x, y x

|x| = ω x
 x x′

x x′ x′ x x↑ = {y | x y} x↓ = {y | y x}
x

(αi)i=0,1,... αi αi+1

supi αi x = s0, s1, . . . i 0 ≤ i < |x| x xi

i s0, . . . , si x

E ⊆ Σ∞

E E ⊆ Σ+ E ⊆ Σω

Σω

x E x ∈ E x
E S x S

α x S S
S

∀x �∈ S : ∃α x : α↑ ∩ S = ∅.

S
x ∈ S y x y ∈ S

αi ∈ S i ∈ N αi αi+1 supi αi ∈ S E
α x ∈ E α x E

E α ∈ Σ+ S
E S (S, E) E ∩ S

α ∈ Σ+ ∩ S
Σ+ Σω ∅ =

Σω ∩Σ+

E
E′ ⊇ E Σ∞

Σω Σ∞

T1

Ω
T ⊆ 2Ω

Ω, ∅ ∈ T T B ⊆ T
T G ∈ T B

X ⊆ Ω X
X X X = X

X X = Ω Gδ

X ⊆ Ω TX = {G ∩X | G ∈ T }
T X

Σ∞ G

∀x ∈ G : ∃α x : α↑ ⊆ G.

{α↑ | α ∈ Σ+}
Q G = Q↑ =

⋃
α∈Q α↑

E
E = E ∩ lex(E) E

E lex(E) E

lex(E) = E ∪ ¬E = E ∪
⋃

α↑∩E=∅

α↑.

E ⊆
Σω

Q A(Q) = {x | ∀i < |x| : xi ∈ Q}
E(Q) = {x | ∃i : xi ∈ Q} R(Q) = {x | ∀i < |x| : ∃j ≥ i : xj ∈ Q}
P(Q) = {x | ∃i : ∀j : i ≤ j < |x| : xj ∈ Q} A(Q)

E(Q) R(Q) P(Q)

Q
¬A(Q) = E(¬Q) ¬E(Q) = A(¬Q) ¬R(Q) =

P(¬Q) ¬P(Q) = R(¬Q) ¬·
A(Q) = R(A(Q) ∩ Σ+) E(Q) = R(E(Q) ∩ Σ+)

�

�

�ϕ �ϕ � �ϕ ��ϕ
ϕ

Σ∞

Σ∞

α0

α1

α0 α1

x = supi αi

Σ (αi)i∈N

αi αi+1 (αi)i∈N

E ⊆ Σ∞ supi αi ∈ E
f : Σ+ → Σ+ α f(α)

α ∈ Σ+ f f(α) �= α α ∈ Σ+

(αi)i∈N f i f(α2i) = α2i+1 x f
f (αi)i∈N x = supi αi

f Rf f E Rf ⊆ E

α f f(α) = α
f f

E
E ∩Σω

f E β ∈ Σ+

f ′(α) = f(α)β Rf ′ ⊆ Rf ⊆ E Rf ′ ⊆ Σω f ′

E ∩Σω ��

f Rf

E

E
E

E
E ∩Σω

Ei

fi Ei i ∈ N α ∈ Σ+

|α| = k f(α) = fk(fk−1(. . . f0(α) . . .))
f

⋂
i∈N

Ei ��

Σω Σ+

x {αx | α ∈ Σ+}
� �ϕ

� �ϕ
ϕ

�(ϕ⇒ �ψ) � �ϕ⇒ � �ψ � �ϕ⇒ � �ψ
αβω α,β ∈ Σ+

f
f(α) = αskr k = |α|, s, r ∈ Σ, s �= r

Σ∞

Q

E(Q) Q
α ∈ Σ+ x ∈ Q α

R(Q) Q
P(Q) Q

f
f(f(α)) = f(α) α ∈ Σ+

f f(α) β ⇒
f(β) = β α,β ∈ Σ+

{E(Q) | Q } = {Rf | f }
{R(Q) | Q } = {Rf | f }

Rω(Q) = R(Q) ∩ Σω Rω(Q)
Q

Rω(Q)

��

�ϕ ��ϕ
� �ϕ∩Σω ϕ

Gδ

E Gδ

Gδ

Gδ E x ∈ E x y
y ∈ E Gδ

E Gδ E = E(Q) ∪ Rω(Q′)
Q Q′

Gδ lex(E)
E Gδ E Gδ

Gδ Gδ

∀α ∈ Σ+ : ∃β : α β ∧ β↑ ⊆ E.

�ϕ ⇒ �ψ � �ϕ ⇒ �ψ ψ
E E = lex(E(Q))

Q Gδ

Gδ

Gδ

E

E
E
E Gδ

⇒ f E
Rf = R(f(Σ+)) ∩Σω

⇒ Gδ

⇒
Gδ

��

g = (α, f)
α ∈ Σ+ f g f

(αi)i∈N g α0 = α i f(α2i+1) = α2i+2

x g g (αi)i∈N

x = supi αi g Rg

g E Rg ⊆ ¬E E

E E ∩Σω

Σω

Gδ

E
E g = (α0, f) Rf

Rf ∩E
α0 g α0 Rf

¬E α0 Rf ∩ E Rf ∩ E
Rf Gδ L

L ∩ E
Gδ

��

S
E ⊆ S

S
F S F ∩ S

S S

S F S# =
{x ∈ S | x↑ ∩ S = {x}} S f

S α ∈ S ⇒ f(α) ∈ S α ∈ Σ+ f S
f(α) = α ⇒ α ∈ S# f F S f S
Rf ∩ S ⊆ F F S

Σω

Σ∞ Σω

F S S
S

S S

S

F S
Q F ′ = R(Q)∩S# ⊆ F F ′

S
Gδ E F ′ = E ∩ S ⊆ F F ′ S

F
S

S
S Gδ S

E E S
E

S E ∪ ¬S S

S

lexS(E)
E S

lexS(E) = E ∪
⋃

α∈S,α↑∩E∩S=∅

α↑.

E
lexS(E) S

t ⊆ Σ ×Σ S
x = s0, s1, . . . ∈ S t S i x

s xis ∈ S (si, s) ∈ t t
i (si, si+1) ∈ t

t �(enabledS(t) ⇒ ∃t′ : � taken(t′))

t �� enabledS(t) ⇒
� � taken(t) � � enabledS(t) ⇒ �� taken(t)

ϕ ⊆ Σ ϕ S i
x s ∈ ϕ xis ∈ S ϕ

� � enabledS(ϕ) ⇒ � �ϕ
t ϕ

� �(ϕ ∧ enabledS(t)) ⇒ � �(ϕ ∧ taken(t))
α

t k S i x
α |α| ≤ k xiα ∈ S xiα t k

t � � enabledS(k, t) ⇒ � � taken(t)
t ∞ S i x k

t k i ∞ t
� � enabledS(∞, t) ⇒ � � taken(t) lexS(� � taken(t))

∞
k k ∈ N

� � taken(t)
S

t k i x t
j ≤ i + k x � enabledS(t) ⇒ taken(k, t)

S
S S

y ∈ Σω y S i x xiy ∈ S
i x = xiy � � enabledS(y) ⇒ � taken(y)

S lexS(��ϕ)

t
⋃

k �(enabledS(t) ⇒
taken(k, t)) S

f(α) = αsk k = |α|, s ∈ Σ
t

ti, i ∈ N

S

¬{x} x⋂
x∈Σ∞ ¬{x} = ∅ ��

E
x αx ∈ E α ∈ Σ+ E

E �= ∅ x ∈ E ⇒ αx ∈ E α ∈ Σ+

� �ϕ ��ϕ

E

E β
αβ↑ ⊆ E α ∈ Σ+

E Gδ

E Gδ

Gδ Gδ

Gδ Gδ

�ϕ � �ϕ �(ϕ ⇒
�ψ) Gδ ��ϕ Gδ

E =
⋂

k∈N
(sk ⇒ � rk) s, r ∈ Σ E

rω

Gδ

Gδ

L G Rω

LF

F A U AGδ UG UGδ

Gδ Gδ

Gδ

Ê = {x | ∀α∃β : βα x} =
⋂

α∈Σ+

E(α) E(α) = {x | ∃β : βα x}.

Ê Gδ E(α)
Gδ E Ê E =

⋂
i∈N

Gi

Gi x ∈ Ê Gi y ∈ Gi

Gi β y αβ↑ ⊆ Gi α ∈ Σ+

x ∈ Ê α′ α′β x x ∈ Gi ��

Gδ

��

ω
ω

LGδ

LG

L ∩Gδ

L ∩G
L ∩Rω

LRω

L

LGδ

LG

L ∩Gδ

L ∩G

U

UGδ

UG

A

AGδ

A ∩G

Regular Symbolic Analysis of
Dynamic Networks of Pushdown Systems

Ahmed Bouajjani1, Markus Müller-Olm2, and Tayssir Touili1

1 LIAFA, University of Paris 7, 2 place Jussieu, 75251 Paris cedex 5, France
2 Universität Dortmund, FB 4, LS 5,Baroper Str. 301, 44221 Dortmund, Germany

Abstract. We introduce two abstract models for multithreaded programs based
on dynamic networks of pushdown systems. We address the problem of symbolic
reachability analysis for these models. More precisely, we consider the problem
of computing effective representations of their reachability sets using finite-state
automata. We show that, while forward reachability sets are not regular in gen-
eral, backward reachability sets starting from regular sets of configurations are
always regular. We provide algorithms for computing backward reachability sets
using word/tree automata, and show how these algorithms can be applied for flow
analysis of multithreaded programs.

1 Introduction

Multithreaded programs are an important class of programs, in which parallelism is
used routinely in practice. Parallel programming in general is known to be difficult
and error prone, and multithreaded programs are no exception. Therefore, the design
of methods and techniques for automatic analysis of such programs is an important
and a quite challenging issue. For that, we need to define formal models which are
adequate for modelling multithreaded programs, and for which it is possible to construct
automatic analysis algorithms.

In recent related work, complete analysis algorithms for abstract classes of parallel
programs have been studied by several researchers. Mayr [13] establishes a number of
decidability and undecidability results for process classes in the so-called PRS (process
rewrite system) hierarchy. PRS are able to model sequential as well as parallel phe-
nomena. In fact, they can be seen as combinations of pushdown systems and Petri nets
(defined in a term rewriting setting using prefix and multiset rewrite rules). Follow-
ing the automata-based approach for the symbolic verification of pushdown systems
[2,11], Lugiez and Schnoebelen [12] show how to use tree automata for reachability
analysis of PA processes [1], a particularly well-known class in the PRS hierarchy.
Their paper has inspired further work that applies tree automata techniques to analysis
of more expressive models [6,7,3,4,19]. Another line of research generalizes fixpoint-
based techniques as common in flow analysis to analysis of similar models of parallel
programs [18,14,15]. Both approaches can be used to solve bitvector problems, a certain
type of simple but important data-flow-analysis problems, for flow graph systems with
parallel calls of procedures, or, equivalently, parbegin/parend-blocks interprocedurally
[9,10,18]. While [9,10] reduce the problem to reachability analysis of PA-processes,
[18] uses fixpoint-based techniques.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 473–487, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

474 A. Bouajjani, M. Müller-Olm, and T. Touili

Unfortunately, these results do not cover interprocedural analysis of multithreaded
programs because commands that start new threads cannot adequately be modelled by
parallel calls. In a multithreaded program such a command typically returns immedi-
ately (see, e.g., the JAVA or POSIX thread API). Therefore the father of a new thread
can pursue its execution concurrently to its son and can even terminate or return to its
caller while the son is still alive. In contrast, a parallel call returns only when and if all
its component processes have terminated, which is a fundamentally different behavior.
Indeed we show in Sect. 2 that in presence of procedures, multithreaded programs can
have trace languages different from that of any program with parallel calls.

The goal of this paper is to adapt the automata-based approach mentioned above
to interprocedural (reachability) analysis of multithreaded programs. For this purpose
we propose two models of multithreaded programs, show how to perform reachability
analysis for them with automata-theoretic constructions, and discuss their utility for
modelling and analysing multithreaded and other classes of parallel programs.

In Sect. 2 we introduce Dynamic Pushdown Networks (DPNs) as a basic model of
multithreaded programs. Intuitively, a DPN is a network of pushdown processes that run
independently in parallel. Each process can create new members of the network as a side
effect of a pushdown transition. DPNs thus model a network of threads each of which
can perform basic actions, call (recursively) procedures, and spawn new processes. We
show that while forward reachability of DPNs does not preserve regularity of configu-
ration sets in general, it still preserves context-freeness (Sect. 4). Backward reachability
in contrast preserves regularity and we show how to compute the backward reachability
set of a regular set of configurations by means of a saturation algorithm in polynomial
time (Sect. 4). We also show that DPN allow us to solve bitvector problems interproce-
durally for multithreaded programs (Sect. 3), contrary to previously used models in the
literature such as PA processes (Sect. 2).

We extend DPNs to Constrained DPNs (CDPN) in Sect. 5, a model that combines
(indeed even extends) the modelling power of both DPNs and PA (and even the so-
called PAD [13]). The new idea is that enabledness of a transition for a process can
be made dependent on a constraint which is a regular pattern among the sequence of
control states of its sons. We require constraints to be stable in the sense that further
evolution of the sons cannot invalidate a constraint. We show that otherwise we lose
the property that backward reachability preserves regularity. Transition rules with sta-
ble constraints increase the expressive power considerably over DPNs. In particular
they allow us to model, in addition to thread creation and procedure calls, also paral-
lel calls and various types of join commands among other things. It also allows us to
return information back from procedures called in parallel to their caller which cannot
be handled in PA and not even in PAD. Constrained DPNs inherit from DPNs that for-
ward reachability does not preserve regularity. Therefore, we consider here backward
reachability only. We show that the set of configurations that can reach a given regular
set of configurations of a CDPN can again be computed by a saturation algorithm. As
configurations of CDPNs are given by unbounded width trees rather than by words as
in the DPN case—the tree structure captures the father-son relationship—we resort to
hedge automata here [8]. The construction is nontrivial and its justification uses in a

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 475

subtle manner the assumption about the stability of the constraints in the system defini-
tion. While the overall complexity of this procedure is exponential—we indeed prove a
PSPACE lower bound—it is exponential only in the number of different constraints used
in the rules of the given CDPN, and just polynomial in the other problem parameters.
Therefore, if the number of different constraints is bounded, we obtain a polynomial-
time analysis algorithm. This in particular holds if we just model (in addition to spawn
operations), parallel calls, a fixed selection of join commands, or a combination of these.
Due to lack of space, proofs are omitted. They can be found in [5].

2 Dynamic Pushdown Networks

A Dynamic Pushdown Network (DPN) is a tuple M = (Act,P,Γ,Δ), where Act is a fi-
nite set of visible actions, P is a finite set of control states, Γ is a finite set of stack
symbols disjoint from P, and Δ is a finite set of transition rules of the following forms:

either (a) pγ
a
↪→ p1w1, or (b) pγ

a
↪→ p1w1 � p2w2, where p, p1, p2 ∈ P, a ∈ Act, γ ∈ Γ,

and w1,w2 ∈ Γ∗. A DPN can be seen as a collection of identical sequential processes
running in parallel, each of them being able to (1) perform pushdown operations and
to (2) create processes in the network. Synchronization is not allowed between
processes.

A configuration of a DPN M (also called M-configuration) is a word over the al-
phabet Σ = P∪Γ starting with a symbol in P. An M-configuration can be seen as a
sequence of (sub)words in PΓ∗ each of them corresponding to the configuration of one
of the processes running in parallel in the network. Let Conf M be the set of all M-
configurations.

For every a ∈ Act, we define a−→M to be the smallest relation in Conf M ×Conf M

s.t. ∀u,v ∈ Conf M, u a−→M v iff (1) there is a rule pγ
a
↪→ p1w1 in Δ s.t. u = u1 pγu2 and

v = u1 p1w1u2, or (2) there is a rule pγ
a
↪→ p1w1 � p2w2 in Δ s.t. u = u1 pγu2 and v =

u1 p2w2 p1w1u2. We write u →M v if there exists a ∈ Act s.t. u a−→M v.
The semantics above says that rules of the form (a) correspond precisely to push-

down operations (manipulation of the top of the stack) which can be applied anywhere
in the configuration (i.e., by any of the processes in the network): if a process is at
control state p and has γ as topmost stack symbol, then it can move to control state p1

and replace γ by w1 at the top of its stack. Rules of the form (b) allow in addition the
creation of new processes: a process with control state p and topmost stack symbol γ
can (1) move to state p1 and modify its stack by replacing γ with w1, and moreover,
(2) create (to its left) a process which starts its execution at the initial configuration
p2w2.

Given a configuration c, the set of immediate predecessors (resp. successors) of
c is preM(c) = {c′ ∈ C : c′→Mc} (resp. postM(c) = {c′ ∈ C : c→Mc′}). These no-
tations can be generalized straightforwardly to sets of configurations. Let pre∗M (resp.
post∗M) denote the reflexive-transitive closure of preM (resp. postM). We omit the sub-
script M when it is understood from the context. Given Δ′ ⊆ Δ, we use preΔ′ (resp.
postΔ′) to denote immediate predecessors (resp. successors) using a rule in Δ′. Then,
pre∗Δ′ and post∗Δ′ denote the corresponding reflexive-transitive closures. Furthermore,

TracesM(c) = {w ∈ Act∗ : ∃c′. c
w→M c′} is the set of traces generated by c.

476 A. Bouajjani, M. Müller-Olm, and T. Touili

DPN vs. PA Processes: DPNs allow to model multithreaded programs where creation
of threads is done using spawn commands (see Sect. 3). This is not the case for other
formalisms used in the literature for modelling parallel programs like PA [1]:1

Theorem 1. Let L =
⋃{an

(
bn′ ⊗(cmdm′)

)
: n≥ n′ ≥ 0, m≥m′ ≥ 0}, where⊗ denotes

the shuffle (or interleaving) operator defined as usual. Then:

a) There is a DPN M and an M-configuration c such that TracesM(c) = L .
b) There is no PA system Δ and no process variable A such that TracesΔ(A) = L .

Hence, PA processes are inadequate for capturing the behavior of multithreaded pro-
grams with spawn-like creation of threads. It also follows from the proof that trace
sets of DPNs cannot be captured by the type of constraint systems used as semantic
reference point in the constraint-based approach [18,14,15]. Therefore, the methods of
[9,10,18,15,14] for interprocedural analysis of flow graphs with parallel calls do not
carry over immediately to multithreaded programs. These inadequacy results are rather
strong because any interesting process equivalence would imply equality of traces.

3 Program Analysis Based on DPN

We show hereafter how DPNs can be used to model multithreaded programs and how
our results on symbolic reachability analysis can be used in flow analysis of these pro-
grams. This is inspired by Esparza et. al. [9,10].

Flow Graph Systems: As common in program analysis we assume that the program
is given by a flow graph system. Let Proc be a finite set of procedure names contain-
ing Main. We assume that the program operates on a set X = {x1, . . . ,xk} of global
variables. We consider the following types of basic statements: assignment statements,
xi := e, where xi ∈X and e is some expression; call of a single procedure, call(π), where
π∈ Proc; and spawn of a new thread, spawn(π), where π∈Proc. The intuitive meaning
of assignment statements and calls is obvious. The spawn command spawn(π) models
creation of a new independent thread. Like the call call(π), spawn(π) starts an instance
of procedure π. In contrast to a call, however, the spawn command returns immedi-
ately such that the newly created instance of π runs as a new thread concurrently to the
statements that are executed after the spawn. Let Stmt be the set of basic statements.

The control flow of each procedure π ∈ Proc is described by a control flow graph
Gπ = (Nπ,Eπ,eπ,xπ), where Nπ is a finite set of program points of procedure π; Eπ ⊆
Nπ× Stmt×Nπ is a finite set of edges annotated by basic statements; eπ ∈ Nπ is the
entry point of π; and xπ ∈ Nπ is the exit point of π. We assume that the sets of program
points of different procedures are disjoint, Nπ∩Nπ′ = /0 if π,π′ ∈ Proc, π �= π′, and agree
that N =

⋃
π∈Proc Nπ and E =

⋃
π∈Proc Eπ.

1 PA corresponds to processes definable by a set of rewrite rules of the form A → t where A is
a process variable, and t is a term built from process variables, sequential composition, and
asynchronous parallel composition.

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 477

From Flow Graph Systems to DPN: From a given flow graph system as above we
construct a DPN M = (Act,P,Γ,Δ) that captures its operational semantics:

– The actions are given by the assignments that appear in the flow graph system;
a special symbol τ is used to signify steps in which no assignment is executed:
Act = {x := e | ∃u,v : (u,x := e,v) ∈ E}∪{τ};

– we have just one artificial control state #: P = {#};
– we work with a stack of program points; the topmost stack symbol is the current

program point of the current procedure, the other stack symbols are the return points
of its callers: Γ = N;

– the transition rules in Δ describe computation steps of the flow graph system:

1. for every assignment edge (u,x := e,v) ∈ E we put the rule #u
x:=e
↪→ #v to Δ;

2. for every call edge (u,call(π),v) ∈ E we put the rule #u
τ
↪→ #eπv to Δ;

3. for every spawn-edge (u,spawn(π),v) ∈ E we put the rule #u
τ
↪→ #v�#eπ to Δ,

4. for each procedure π ∈ Proc, we put the rule #xπ
τ
↪→ # to Δ. This rule describes

the return from procedure π.

Note that it is possible to extend the semantics above in order to handle local pro-
cedure variables and return values from procedure calls. For that, we assume as usual
that data values are mapped into a finite abstract domain using standard techniques such
as predicate abstraction. Then, abstract values of local variables can be encoded in the
stack alphabet and abstract return values can be encoded in the control states.

Solving Bitvector Problems: The operational semantics given above can be used for
solving bitvector problems. In order to ease comparison with [10] we discuss detection
of live (global) variables. Other bitvector problems can be solved in a similar fashion.
Informally, a variable x ∈ X is live at a program point u ∈ N if there is an execution
from u in which x is used before it is over-written. We restrict attention to reachable
configurations and use a similar definition and notation as Esparza and Podelski [10].
Thus, we define: program variable x is live at a program point u ∈ N if there is a tran-
sition sequence #eMain

σ1−−→c1
σ2−−→c2

y:=e−−−→c3 such that: (1) u is active in configuration
c1, i.e., appears as the topmost stack symbol of one of the parallel pushdown processes
in the network described by c1; (2) σ2 is a sequence of statements that do not modify x
(i.e., do not write to x); and (3) e is an expression in which x is used.

We denote the set of configurations c in which u is active by Atu, the set of assign-
ments in the given program that modify x by Modx ⊆ Act, and the set of assignments
in the program in which x is used by Usex ⊆ Act. Moreover, we write ΔA for the set of

rules of Δ with an action in a subset A⊆ Act: ΔA = {(pγ
a
↪→ w) ∈ Δ | a ∈ A}. Using this

notation it is not hard to see that x is live at u if and only if

#eMain ∈ pre∗(Atu∩pre∗ΔAct\Modx
(preΔUsex

(Conf M)))

Then, our results concerning backward reachability analysis of DPN given in the next
section (see Theorem 3 and Note 1) can be used to decide this property.

478 A. Bouajjani, M. Müller-Olm, and T. Touili

4 Reachability Analysis for DPN

We consider the problem of computing representations of the post∗ and pre∗ images of
given sets of configurations. We are interested in the case that sets of configurations are
effectively given using automata-based representations.

Computing post∗ Images: We show first that post∗ does not preserve regularity in

general. Consider indeed the DPN M = ({a},{p},{γ1,γ2},{pγ1
a
↪→ pγ1γ1 � pγ2}). It is

easy to see that post∗M({pγ1}) = {(pγ2)n pγn+1
1 : n≥ 0}, which is clearly nonregular.

Proposition 1. There is a DPN M, and a configuration c of M, such that post∗(c) is
not a regular set of configurations.

We prove, however, that post∗ preserves context-freeness:

Theorem 2. For every DPN M and any context-free set C of M-configurations, the set
post∗(C) is context-free and effectively constructible in polynomial time.

Computing pre∗ Images: We show now that pre∗ preserves regularity. Let M be a DPN
and A be an automaton recognizing a set of M-configurations. We define a polynomial-
time algorithm allowing to construct an automaton Apre∗ s.t. L(Apre∗) = pre∗M(L(A)).
For technical reasons, we require that A is in a special form we define below.

M-Automata: Let M = (Act,P,Γ,Δ) be a DPN. A finite automaton A = (S,Σ,δ,s0,F)
is an M-automaton if the following conditions hold:

1. Σ = P∪Γ is the finite alphabet,
2. the set of states is partitioned into two sets, S = Sc∪Ss, Sc∩Ss = /0,
3. for every s ∈ Sc and every p ∈ P, there is a (unique and distinguished) state sp ∈ Ss,
4. there is a relation δ′ ⊆ Ss×Γ× (Ss \{sp : s ∈ Sc, p ∈ P}) ∪ Ss×{ε}×Sc such that

δ = δ′ ∪ {(s, p,sp) : s ∈ Sc, p ∈ P},
5. the initial state s0 ∈ Sc, and
6. F ⊆ S is the set of final states.

For σ ∈ Σ∪{ε} and s,s′ ∈ S, we write s
σ→δ s′ in lieu of (s,σ,s′) ∈ δ. We extend

this notation in the obvious manner to sequences of symbols: (1) ∀s ∈ S. s
ε→δ s, and (2)

∀s,s′ ∈ S. ∀σ ∈ Σ∪{ε}. ∀w ∈ Σ∗. s σw−−→δ s′ iff ∃s′′ ∈ S. s
σ→δ s′′ and s′′

w→δ s′.
Note that requirement (4) codes a number of conditions on δ: (1) each s ∈ Sc has

sp as its unique p-successor and has no Γ-transitions, (2) s is the only predecessor of
sp, (3) only ε-moves from states in Ss lead to states s ∈ Sc, (4) states s ∈ Ss do not
have p-successors, for any p ∈ P. So, every path in an M-automaton (starting from
the initial state) is the concatenation of paths of the form s

p→δ sp
w−→δ t

ε→δ s′ where
s,s′ ∈ Sc, p ∈ P, w ∈ Γ∗, and all states in the path sp

w−→δ t are in Ss. Note that for every
finite automaton A over the alphabet P∪Γ such that L(A) ⊆ Conf M , it is possible to
construct an M-automaton recognizing the same language.

Constructing the Automaton Apre∗: Let M be a DPN and A = (S,Σ,δ,s0,F) be an
M-automaton. The construction of Apre∗ is in the same spirit as the ones for single

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 479

pushdown systems (see [2]). It consists in adding iteratively new transitions to the au-
tomaton A according to saturation rules (reflecting the backward application of the
transition rules in the system), while the set of states remains unchanged. Therefore,
we define Apre∗ to be the finite-state automaton (S,Σ,δ′,s0,F), where δ′ is the smallest
relation which contains δ (i.e., δ⊆ δ′) and satisfies the following conditions:

R1: If (pγ
a
↪→ p1w1) ∈ Δ and s

p1w1−−−→δ′ s
′, for s,s′ ∈ S, then (sp,γ,s′) ∈ δ′.

R2: If (pγ
a
↪→ p1w1 � p2w2) ∈ Δ and s

p2w2 p1w1−−−−−−→δ′ s
′, for s,s′ ∈ S, then (sp,γ,s′) ∈ δ′.

The relation δ′ can be computed as the limit of an increasing sequence of relations
obtained by adding transitions to δ that are required by one of the implications above.
This procedure terminates after a polynomial number of steps since only a polynomial
number of transitions can potentially be added.

Let us explain intuitively the role of the saturation rule (R1). Consider a path in the
automaton of the form s

p1w1−−−→s′. This means, by definition of M-automata, that s is nec-
essarily in Sc and that we have s

p1−−→ sp1

w1−−→s′. Then, the rule consists in adding to the

automaton the transition sp
γ→ s′. Since by definition of M-automata we have s

p→ sp, we

obtain a path s
pγ−−→ s′ in the automaton. Therefore, if a configuration u1 p1w1u2 is recog-

nized by a run s0 u1−−→s
p1w1−−−→s′

u2−−→ sF , then its predecessor u1 pγu2 is also recognized
due to the new transition by the run s0 u1−−→s

pγ−−→ s′ u2−−→sF . The role of (R2) is similar.

Theorem 3. L(Apre∗) = pre∗M
(
L(A)

)
.

Note 1. For the sake of completeness, we mention that for every DPN M, and every M-
automaton A , the sets preM(A) and postM(A) are regular and effectively constructible.
The constructions are quite straightforward. For preM we take two copies of A . The first
copy provides the initial state and the second copy the final states. We then apply the
saturation rules to the first copy of the automaton, but let all new transitions lead from
states of the first copy to states of the second copy. The postM construction is similar (it
needs adding a finite number of intermediary states).

5 Constrained DPN

We consider in this section an extension of the DPN model introduced in Section 2. In
addition to the ability of performing spawn operation as previously, processes are now
allowed to observe the control states of their children (processes they have created in
the past). This is relevant in particular for handling return values and some kinds of join
statements between parallel processes. To achieve that, we define a model where the
application of a transition rule by some process is conditioned by a (regular language)
constraint on the sequence of control states of its children. We need however to impose
a stability condition (defined below) on the constraints in order to have a model which
can be analysed by means of finite-state automata representations. We show later that
we lose regularity of the reachability sets if we relax the stability condition.

Stable Regular Languages: Let Σ be a finite alphabet and let ρ ⊆ Σ×Σ be a binary
relation over Σ. Then, a set of symbols S ⊆ Σ is ρ-stable iff ∀s ∈ S. ∀t ∈ Σ. (s, t) ∈

480 A. Bouajjani, M. Müller-Olm, and T. Touili

ρ⇒ t ∈ S. A ρ-stable regular language over Σ is a subset of Σ∗ which is definable by a
regular expression of the form:

e ::= S, a ρ-stable set | e + e | e · e | e∗

We can prove straightforwardly by induction on the structure of regular expressions:

Lemma 1. Let φ⊆ Σ∗ be a ρ-stable regular language, let u,v ∈ Σ∗, and let a ∈ Σ such
that uav ∈ φ. Then, for every b ∈ Σ, (a,b) ∈ ρ implies that ubv ∈ φ.

Definition of the Models: A Constrained Dynamic Pushdown Network (CDPN) is a
tuple M = (Act,P,Γ,Δ), where Act is a finite set of visible actions, P is a finite set of
control states, Γ is a finite set of stack symbols disjoint from P, and Δ is a finite set

of transition rules of the following forms: either (a) φ : pγ
a
↪→ p1w1, or (b) φ : pγ

a
↪→

p1w1 � p2w2, where p, p1, p2 ∈ P, a ∈ Act, γ ∈ Γ, w1,w2 ∈ Γ∗, and φ is a ρΔ-stable

regular language over P, with ρΔ = {(p, p′)∈P×P : there is a rule ψ : pδ
a
↪→ p′u or ψ :

pδ
a
↪→ p′u � p′′v in Δ}.
A CDPN consists of a collection of identical sequential processes running in paral-

lel, each of them being modeled as a pushdown system which is able to (1) manipulate
its own stack using pushdown rules of the form (a), (2) create a new process (which
becomes its youngest son) using rules of the form (b), and (3) observe, under some
conditions, the states of its children (processes it created in the past): each transition
rule is constrained by the fact that the sequence of control states of the children (given
in the decreasing order of their age) must belong to the specified language φ.

Since we need to refer to the children of each process, a configuration of a CDPN
can be naturally seen as a tree where each vertex is annotated with the configuration
of some sequential process (pushdown system), and where the structure corresponds to
the relation father-son. Notice that such a tree may have an arbitrary width. We define
hereafter a class of terms describing such configurations and we define a transition
relation between such terms.

M-Terms: Let X = {x1, . . . ,xn} be a set of variables. We define the set T [X] of M-terms
over P∪Γ∪X inductively as follows:

– X ⊆ T [X],
– If t ∈ T [X] and γ ∈ Γ, then γ(t) ∈ T [X],
– If t1, . . . ,tn ∈ T [X] and p ∈ P, then p(t1, . . . ,tn) ∈ T [X], for n≥ 0.

Note that in the last item of this definition, n can be 0 (i.e., p is on a leaf). In that
case, we write p() or simply p to represent the corresponding term.

Terms in T [/0] are called ground terms, and will also be denoted by T . A term
in T [X] is linear if each variable occurs at most once. A context C is a linear term. Let
t1, . . . ,tn be n ground terms. Then C[t1, . . . ,tn] is the ground term obtained by substituting
in C the occurrence of the variable xi with the term ti, for 1≤ i≤ n.

A term in T [X] can be seen as a rooted labeled tree of arbitrary width, where (1) an
internal node is either of arity 1 (has one successor) if it is labeled with a stack symbol
γ ∈ Γ, or it has an arbitrary arity if it is labeled with a state p ∈ P, and (2) where the
leaves are labeled with either variables x ∈ X , or with states p ∈ P.

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 481

M-Configurations: We define M-configurations to be the ground M-terms (terms in
T [X] without variables). Given n ground terms t1, . . . ,tn, the term γm · · ·γ1 p(t1, . . . ,tn)
represents a configuration where (1) the common ancestor to all processes is at local
control state p and has γ1 · · ·γm as stack content, where γ1 is the topmost stack symbol,
and (2) this process has n children, the ith of which is described, together with all of
its descendants, by the term ti, for i = 1, . . . ,n. A ground term of the form γm · · ·γ1 p
corresponds to the case of one single process without children.

Transition Relation: Given a CDPN M, we define a transition relation →M between
M-configurations. We introduce first a notation. Given a configuration t of one of the
forms γm · · ·γ1 p(t1, . . . ,tn) or γm · · ·γ1 p, we define S(t) to be the control state p, i.e.,
S(t) is the local control state of the topmost process represented in t. Then, →M is the
smallest relation between M-configurations such that:

– If (φ : pγ
a
↪→ p1w1) ∈ Δ and S(t1) · · ·S(tn) ∈ φ, then

C
[
γp(t1, . . . ,tn)

]
→M C

[
wR

1 p1(t1, . . . ,tn)
]

– If (φ : pγ
a
↪→ p1w1 � p2w2) ∈ Δ and S(t1) · · ·S(tn) ∈ φ, then

C
[
γp(t1, . . . ,tn)

]
→M C

[
wR

1 p1(t1, . . . ,tn,wR
2 p2)

]
where wR denotes the reverse word (mirror image) of w. The notions of post, pre, post∗,
and pre∗ are defined as usual.

Modelling Power: Since CDPN generalize DPN, the modelling of programs with
spawn operations given in Section 3 is still valid for CDPN. Moreover, stable con-
straints as preconditions of transition rules increase tremendously the modelling power
of our formalism. We discuss some applications in this section.

Parallel Calls: In the data-flow analysis scenario, we can use constraints, e.g., in order
to accommodate parallel call commands as another basic primitive for creation of par-
allelism in addition to spawn commands. A parallel call, pcall(π,π′) with π,π′ ∈ Proc
starts an instance of procedure π and an instance of π′ and runs them in parallel. It
terminates if and when both these instances terminate.

Assume that we extend the flow-graph model of Section 3 by allowing parallel
calls as another type of basic statement. In the CDPN model we capture the operational
semantics of an edge (u,pcall(π,π′),v) as follows: we start two new threads for π and π′
and ensure by a transition rule with an appropriate constraint that we can move to v only
after both these threads have terminated. For that, both threads indicate termination by
moving to a special new “terminated” control state � when they see a special new stack
symbol $ that we put at the bottom of their stack upon thread creation. Thus, we have
the following rules for modelling (u,pcall(π,π′),v):

P∗ : #u
τ
↪→ #γ1 � #eπ$ P∗ : #γ1

τ
↪→ #γ2 � #eπ′$ P∗�2 : #γ2

τ
↪→ #v

where γ1,γ2 are two auxiliary stack symbols chosen fresh for each parallel call. More-

over, the rule P∗ : #$
τ
↪→ � allows a thread to move to the state � once it has terminated.

482 A. Bouajjani, M. Müller-Olm, and T. Touili

Join Statements: Besides parallel calls we can also model different types of join-
commands. We use the same technique as above for making termination visible to the

father of threads: we now use the rule #u
τ
↪→ #v � #ep$ to describe the behavior of a

spawn edge (u,spawn(p),v) ∈ E . Thus, we mark the bottom of the stack with the spe-

cial symbol $. We also use the rule P∗ : #$
τ
↪→ � from above to make termination visible

in the control state. This allows us to describe the operational semantics of different
types of join-command such as for instance (1) join∀: proceed if all threads directly cre-
ated by the current thread have terminated, and (2) join∃k: proceed if at least k among
the threads directly created by the current thread have terminated.

The behavior of an edge (u, j,v) where j is one of the join commands from above

is modelled by the rule φ : #u
τ
↪→ #v where φ = �∗ for j = join∀, and φ = (P∗�)kP∗ for

j =join∃k. Obviously, these constraints are stable.

Return Values: We can distinguish between different termination conditions by using
more than one terminated control state and use regular patterns of such control states
in constraints in the father process. This allows us, for instance, to return information
back to the caller from procedures called in parallel. Therefore, the modelling power of
CDPNs exceeds that of PA and even that of PAD 2 [13]: While in a PAD process (like
in a DPN process) we can use control states to return information back to a caller in
a normal procedure call, there is no such mechanism for parallel calls. The modelling
power for calls and parallel calls is thus more symmetric for CDPNs than for PAD.

Observing Execution Phases: Finally, as we allow stable constraints, a creator of a
thread can react on situations in which the created thread has achieved some progress
already but is not necessarily terminated yet. As an example, let us assume that a process
F (the father) creates a number of worker threads that sequentially go through a number
of phases, say phases 1, . . . ,n, before termination. For modelling the worker threads we
use new control states from a hierarchy P0 ⊃ P1 ⊃ . . . ⊃ Pn = /0 of control states such
that a worker thread is in phase i if and only if its control state is in Pi−1\Pi. This means
a worker thread has finished phase i if and only if its control state belongs to Pi. Then,
the sets Pi are stable and can be used as building blocks for constraints in transitions of
F . Hence, process F can react on situations like “all worker threads have finished phase
i” by using the constraint P∗i , “there is a worker thread that has finished phase i and all
other worker threads have finished phase j” by the constraint P∗j PiP∗j , etc.

6 Backward Reachability Analysis of CDPN

Symbolic Representations: We use hedge automata (unbounded width tree automata)
[8] to represent infinite sets of CDPN configurations. Let M = (Act,P,Γ,Δ) be a CDPN.
An M-tree automaton is a tuple A = (Q,δ,F), where Q is a set of states, F is the set
of final states, and δ is a set of rules of either the form (1) γ(q) → q′, where γ ∈ Γ, and
q,q′ ∈Q, or (2) p(L) → q, where L is a regular language over Q, p ∈ P, and q ∈ Q.

In order to define the language recognized by A , we define a move relation →δ
between terms over P∪Γ∪Q: for every two terms t and t ′, we have t →δ t ′ iff there exist

2 PAD extends PA by allowing rewrite rules of the form A ·B → t.

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 483

a context C and a rule r ∈ δ such that t = C[s], t ′ = C[s′], and (1) either r = γ(q) → q′,
s = γ(q), and s′ = q′, or (2) r = p(L) → q, s = p(q1, . . . ,qn), q1 · · ·qn ∈ L, and s′ = q.

Let
∗→δ denote the reflexive-transitive closure of →δ. A term t ∈ T is accepted by

q ∈ Q if t
∗→δ q. Let Lδ

q = {t ∈ T : t
∗→δ q}. A term t is accepted by A if there exists a

state q ∈ F such that t
∗→δ q. Let L(A) be the set of all terms accepted by A .

A straightforward adaptation of the proofs in [8] allows to show that:

Theorem 4. The class of M-tree automata is closed under boolean operations. More-
over, the emptiness problem of M-tree automata is decidable.

Computing pre∗ Images: Let M = (Act,P,Γ,Δ) be a CDPN and let A = (Q,δ,F)
be an M-tree automaton. We present hereafter an algorithm that allows us to construct
an M-tree automaton Apre∗ recognizing the pre∗-image of L(A). The construction pro-
ceeds (similarly to Section 4) by adding new transitions to the original automaton A
corresponding to the backward application of transition rules. In order to deal with the
constraints in the transition rules, we need to extend the original automaton.

Propagating Control States: Remember that, by definition of CDPN terms, the con-
figuration of each process is encoded bottom-up in the tree (reading first the control
state, and then the stack contents starting from its topmost symbol). Since constraints
in CDPN transition rules refer to control states of the children processes, and since
hedge automata can check only constraints on immediate successors in trees (which
correspond in our case to the bottom symbols in the stacks of the children processes),
we need to propagate upward the informations about the control states through the
stacks. Therefore, the first step of our construction consists in defining a new automa-
ton AP = (QP,δP,FP) such that L(AP) = L(A), and where states of Q are labelled by
control states p ∈ P. This automaton is given by: QP = Q×P, FP = F ×P, and δP is
the smallest set of rules such that:

– if p(L) → s ∈ δ, then p(L′) → (s, p) ∈ δP, where L′ is obtained by substituting in
the words of L every occurrence of a state s ∈ Q by {(s, p) | p ∈ P};

– if γ(s) → s′ ∈ δ, then for every p ∈ P, γ
(
(s, p)

)
→ (s′, p) ∈ δP.

Lemma 2. L(AP) = L(A), and for every t ∈ T , t
∗→δP

(s, p) iff t
∗→δ s and S(t) = p.

Note 2. To avoid confusion, we use in the sequel p, p′, p1, p2, . . . to denote elements of
P, s,s′,s1,s2, . . . , to denote states of A , and q,q′,q1,q2, . . . to denote states of AP.

From Constraints over P to Constraints over QP: Given a constraint φ and n terms
t1, . . . ,tn such that ti

∗→δP
qi for 1≤ i≤ n, we need also to be able to get the information

whether S(t1) · · ·S(tn) ∈ φ from the states q1, . . . ,qn. For that, we associate with each
constraint φ over P a constraint 〈φ〉 over QP such that S(t1) · · ·S(tn) ∈ φ if and only if
q1 · · ·qn ∈ 〈φ〉. The definition of 〈φ〉 is straightforward by induction on the structure of
regular expressions for stable languages: (1) 〈S〉= {(s, p) : s∈Q, p∈ S}, (2) 〈φ1 ·φ2〉=
〈φ1〉 · 〈φ2〉, (3) 〈φ1 + φ2〉= 〈φ1〉+ 〈φ2〉, and (4) 〈φ∗〉= 〈φ〉∗.

484 A. Bouajjani, M. Müller-Olm, and T. Touili

Closed Set of Constraints: During the construction of the automaton, new transition
rules of the form p(L′) → q are added where L′ are languages which are built from lan-
guages L appearing in the rules of the original automaton A , and constraints φ appearing
in the transition rules of the CDPN M, using intersection and right-quotient operations.
Intersections L∩〈φ〉 allow us to check that the guarding constraint for the application
of a transition rule is satisfied at the considered position in the tree. Right-quotients
Lq−1 = {w : wq ∈ L} allow us to get immediate predecessors by a spawn operation of
trees where the children of the spawning process are recognized by a sequence of states
in L, and the youngest son among these children (i.e., the one created by the spawn
operation and which is the right-most one in the list of children) is recognized by the
state q. Then, let us define Λ to be the smallest family of languages over QP such that:

– If (p(L) → q) ∈ δP, then L ∈ Λ.

– If L ∈ Λ, and (φ : pγ
a
↪→ p1w1 � p2w2) ∈ Δ, then L∩〈φ〉 ∈ Λ.

– If L ∈ Λ and q ∈ QP, then Lq−1 ∈ Λ.

Lemma 3. The family Λ is finite. Assuming that all languages and constraints appear-
ing in rules δP and Δ are given by backward-deterministic finite-state automata of size
at most K, the number of elements of Λ is in O(Kn+1) where n is the number of different
constraints appearing in the rules of Δ.

Constructing Apre∗: We define Apre∗ to be the M-tree automaton (Q′,δ′,F ′) such that
(1) Q′ = QP∪{qL

p : p ∈ P, L ∈ Λ}, (2) F ′ = FP, and (3) δ′ is the smallest set of rules
such that δ′0 = δP∪{p(L) → qL

p : p ∈ P, L ∈ Λ} ⊆ δ′ and:

R1: If (φ : pγ
a
↪→ p′w) ∈ Δ, p′(L) → q∈ δ′0, and wR(q) ∗→δ′ q′, then

(
γ(qL∩〈φ〉

p) → q′
)
∈ δ′.

R2: If (φ : pγ
a
↪→ p′w1 � p′′w2) ∈ Δ, p′(L) → q′′ ∈ δ′0, wR

1 (q′′) ∗→δ′ q′, and wR
2 (p′′) ∗→δ′ q,

then
(
γ(qLq−1∩〈φ〉

p) → q′
)
∈ δ′.

Note that the states qL
p, for p ∈ P, and L ∈ Λ, are added to the automaton in order to

recognize precisely all the terms having p at the root and such that the sequence of
children of the root is recognized by a sequence of states in the language L. Note also
that all the transitions added by the construction are Γ-transitions, and therefore they do
not add P-transitions to the automaton.

The set of rules δ′ can be computed iteratively as the limit of an increasing sequence
δ′0⊆ δ′1 · · · such that δ′i+1 contains at most one transition more than δ′i added by applying
either (R1) or (R2). Note that δ′ is necessarily finite since (by Lemma 3) the number of
triples (γ,qL

p,q), for γ ∈ Γ, p ∈ P, L ∈ Λ, and q ∈ Q′ is finite.

Lemma 4. For every q ∈ QP, Lδ′
q = pre∗(LδP

q).

The lemma above says that the construction ensures that every state recognizes the
set of all predecessors of its original language (i.e., in the automaton before saturation).
Let us give some intuitive explanations about the role of the saturation rules, and let us
consider the rule (R1) (since the role of (R2) is similar). Consider a term wR p′(t1, . . . ,tn)

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 485

such that ti
∗→δ′ qi, for i ∈ {1, . . . ,n}. Assume that p′(L) → q is a rule of the automaton.

This means that after recognizing each of the terms ti and labelling their roots by the
states qi, the automaton can label the term p′(t1, . . . ,tn) by q if the sequence q1 · · ·qn is
in L. Assume furthermore that wR(q) ∗→δ′ q′. This means that the automaton can pro-
ceed by reading upward the word w and label the term wR p′(t1, . . . ,tn) by q′. Therefore,

if (φ : pγ
a
↪→ p′w) is a transition rule of the system, and if the sequence of control states

S(t1) · · ·S(tn) is in φ, then we must add the term γp(t1, . . . ,tn) (which is the immedi-
ate predecessor of wR p′(t1, . . . ,tn) by the transition rule) to the language of q′ (to say
that this term is a predecessor of some term which was recognized by q′ in the original
automaton). This is achieved by applying the saturation rule which adds to the automa-

ton the transition (γ(qL∩〈φ〉
p) → q′). The justification of this is in fact subtle. First, if

S(t1) · · ·S(tn) ∈ φ, we must have q1 · · ·qn ∈ 〈φ〉. Since states recognize predecessors of
terms in their original language, each state qi is a pair (si, p′i) such that p′i = S(t ′i) for
some t ′i such that ti ∈ pre∗(t ′i). Now, here is the point where the stability property of
φ plays a crucial role: it ensures that backward transitions cannot make a term satisfy
new constraints (or equivalently, that forward transitions cannot falsify a constraint).
Therefore, since S(t1) · · ·S(tn)∈ φ, we must have also S(t ′1) · · ·S(t ′n)∈ φ, which implies
that q1 · · ·qn ∈ 〈φ〉. On the other hand, assume that S(t1) · · ·S(tn) �∈ φ but q1 · · ·qn ∈ 〈φ〉
because S(t ′1) · · ·S(t ′n) ∈ φ. We can show that γp(t1, . . . ,tn) is actually in the pre∗ image
of the original language. Indeed, it is possible in this case to start by rewriting each term

ti to its successor t ′i , which makes the transition rule (φ : pγ
a
↪→ p′w) applicable.

Theorem 5. For every CDPN M, and for every M-tree automaton A , we can construct
an M-tree automaton Apre∗ such that L(Apre∗) = pre∗

(
L(A)

)
.

Note 3. It is easy to show that, given an M-tree automaton A , the set preM(A) (and in
fact also the set postM(A)) is an effectively M-tree automata definable set.

Then, based on the modelling described in Sections 3 and 5, we can apply Theo-
rems 5 and 4 to check reachability properties and solve flow analysis problems (such as
bitvector problems) for multithreaded programs.

Complexity Issues: By Lemma 3, we know that the size of the automaton Apre∗ is at
most exponential in the number of constraints appearing in the given CDPN. In fact,
we can prove the following PSPACE lower bound by a reduction of the satisfiability
problem for quantified Boolean formulas (QBF).

Theorem 6. It is at least PSPACE-hard to decide for a given CDPN M, a regular set
of M-configurations R and an M-configuration c, whether c ∈ pre∗(R) or not.

Despite the hardness result above, in many interesting cases, we only need a fixed num-
ber of constraints, which leads to polynomial analysis algorithms. For instance, this is
the case when only trivial constraints (i.e., of the form P∗) are used, which corresponds
to the case of DPN models. Also, to model parallel calls only one additional constraint
is needed, namely P∗�2, as we have seen in Section 5. Similarly, we only need one
additional constraint for each type of join statement such as join∀ or join∃k. Note that
the automata for these constraints can easily be defined by backward deterministic au-
tomata of very small sizes. Also for typical properties such as bitvector problems (see

486 A. Bouajjani, M. Müller-Olm, and T. Touili

Section 3), the initial automaton is always the one recognizing the set of all configu-
rations. Therefore, for an important fragment of CDPN which subsumes (in modelling
power) existing formalisms such as PA and PAD, and allows us in addition to model
spawn operations, our construction leads to a polynomial analysis algorithm.

However, when return values from parallel processes are taken into account, our
construction becomes exponential in the number of used abstract data values. This price
is unavoidable since dealing with an unfixed domain of return values is precisely the
feature which makes our model complex (see the proof of Theorem 6). Such complexity
does not appear for weaker models such as PA or PAD (which have polynomial analysis
algorithms [12,10,6]) since they cannot handle return values from parallel processes.

Relaxing Stability: We end this section by mentioning the fact that relaxing the stability
condition on the constraints appearing in the transition rules of CDPN leads to a model
for which pre∗ images are not regular in general.

Theorem 7. There exists a CDPN M with nonstable constraints, and a regular set T of
M-configurations such that pre∗M(T) is not definable by an M-tree automaton.

Actually, we can define M s.t. all its transition rules are of the form φ : pγ ↪→ p′γ (i.e.,
without stack manipulation and dynamic creation of processes), and where φ is of the
simple form pP∗, for p ∈ P. This shows that it is hard to relax the stability condition in
the definition of CDPN without losing the property that pre∗ preserves regularity.

7 Conclusion

We have defined new formalisms (DPN and CDPN), based on word/term rewrite sys-
tems, allowing to model adequately spawn-like commands in multithreaded programs.
We have shown that (1) they are more suitable for modelling these commands than
previously proposed formalisms (such as PA and PAD), and that (2) they subsume in
fact in modelling power these models (concerning CDPN), and allow to handle features
these models cannot handle such as return values from parallel processes, various join
commands, etc.

We have defined automata-based techniques for computing backward reachability
sets of our models. In the case of the basic model of DPN, word automata can be used
for this purpose and the construction is simple. In the case of CDPN where constraints
on the children are used, the problem of reachability analysis becomes much more
delicate. The condition of stability we impose in CDPN on the constraints (guards)
appearing in the transition rules seems to be necessary in order to have regular backward
reachability sets. Concerning complexity, our construction is exponential in the number
of different constraints used in the model, but significant classes of parallel programs
can be modelled using a fixed number of constraints (often representable using small
automata), and therefore they can be analysed in polynomial time.

Future work includes the extension of our models and our approach to handle syn-
chronisation between parallel processes. Of course, the reachability analysis becomes
undecidable in general, but reasonable classes of programs with particular synchroni-
sation policies can be considered (see e.g., [16]), and generic frameworks for defining

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 487

abstractions (and refining them) can be developed based on our models and our tech-
niques, e.g., following the approaches of [3,4,14]. We think also that our techniques
could be used to handle models which extend those considered in this paper by allow-
ing a bounded number of context switches, in the spirit of the approach of [17].

References

1. J. Baeten and W. Weijland. Process algebra. In Cambridge Tracts in Theoretical Computer
Science, volume 18, 1990.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata: Ap-
plication to Model Checking. In CONCUR’97. LNCS 1243, 1997.

3. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent
programs with procedures. In POPL’03. ACM, 2003.

4. A. Bouajjani, J. Esparza, and T. Touili. Reachability Analysis of Synchronised PA systems.
In INFINITY’04. to appear in ENTCS, 2004.

5. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular Symbolic Analysis of Dynamic Net-
works of Pushdown Processes. Technical report, LIAFA lab No 2005-05, and University of
Dortmund No 798, June 2005.

6. A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite Systems. In
FSTTCS’03. LNCS 2914, 2003.

7. A. Bouajjani and T. Touili. On Computing Reachability Sets of Process Rewrite Systems. In
RTA’05. LNCS, 2005.

8. A. Bruggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge languages
over unranked alphabets. Research report, 2001.

9. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow analy-
sis. In FoSSaCS’99, volume 1578 of LNCS, 1999.

10. J. Esparza and A. Podelski. Efficient algorithms for pre∗ and post∗ on interprocedural parallel
flow graphs. In POPL’00. ACM, 2000.

11. A. Finkel, B. Willems, and P. Wolper. A Direct Symbolic Approach to Model Checking
Pushdown Systems. In Infinity’97, ENTCS 9. Elsevier Sci. Pub., 1997.

12. D. Lugiez and P. Schnoebelen. The regular viewpoint on PA-processes. Theoretical Com-
puter Science, 274(1-2):89–115, 2002.

13. R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Sys-
tems. Phd. thesis, Technical University Munich, 1998.

14. M. Müller-Olm. Variations on Constants. Habilitationsschrift, Fachbereich Informatik, Uni-
versität Dortmund, 2002.

15. M. Müller-Olm. Precise interprocedural dependence analysis of parallel programs. Theoret-
ical Computer Science, 311:325–388, 2004.

16. S. Qadeer, S. Rajamani, and J. Rehof. Procedure Summaries for Model Checking Multi-
threaded Software. In POPL’04, 2004.

17. S. Qadeer and J. Rehof. Context-Bounded Model-Checking of Concurrent Software. In
TACAS’05. LNCS 3440, 2005.

18. H. Seidl and B. Steffen. Constraint-based inter-procedural analysis of parallel programs. In
ESOP’2000. LNCS 1782, 2000.

19. T. Touili. Dealing with communication for dynamic multithreaded recursive programs. In
1st VISSAS workshop, March 2005. Invited Paper.

Termination Analysis of Integer Linear Loops�

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma

Computer Science Department,
Stanford University,

Stanford, CA 94305-9045
{arbrad, zm, sipma}@theory.stanford.edu

Abstract. Usually, ranking function synthesis and invariant generation
over a loop with integer variables involves abstracting the loop to have
real variables. Integer division and modulo arithmetic must be soundly
abstracted away so that the analysis over the abstracted loop is sound
for the original loop. Consequently, the analysis loses precision. In con-
trast, we introduce a technique for handling loops over integer variables
directly. The resulting analysis is more precise than previous analyses.

1 Introduction

Proving termination of program loops is necessary for ensuring the correct be-
havior of embedded systems and safety critical software. It is also required when
proving general temporal properties of infinite state programs (e.g., [9,12,14]).
The traditional method for proving loop termination is by proving that some
function of the program variables is well-founded within the loop. Such a func-
tion is called a ranking function.

Discovering ranking functions is thus one way of automating termination
proofs. Colón and Sipma describe the synthesis of linear ranking functions over
linear loops using polyhedra [3,4]. In [13], Podelski and Rybalchenko specialize
the technique to a restricted class of single-path imperative loops without initial
conditions. Their method is complete for this class. The authors generalize these
results in [1] to general linear loops: loops that contain multiple paths and that
have a nontrivial initial condition. Ranking functions can be lexicographic and
have supporting invariants simultaneously generated, yet the method is still
complete. The primary feature linking these analyses is that loop variables are
assumed to range over the reals, R. On loops in which variables range over the
integers, Z, or the nonnegative integers, Z∗, and which include integer division or
modulo arithmetic, real-based analyses are weak. They must abstract away this
arithmetic to maintain soundness. Yet loops may terminate precisely because of
the behavior of integer arithmetic.

� This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,
CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant DAAD19-01-1-
0723, and by NAVY/ONR contract N00014-03-1-0939. The first author was ad-
ditionally supported by a Sang Samuel Wang Stanford Graduate Fellowship.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 488–502, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Termination Analysis of Integer Linear Loops 489

Our main contribution is a technique for synthesizing linear ranking func-
tions with supporting linear invariants over integer linear loops, which allow
integer division and modulo arithmetic. The technique treats the integer vari-
ables without abstraction, so that the resulting analysis is guaranteed to find a
linear ranking function with a specified number of supporting linear (inductive)
invariants, if one exists.

Linear inequality invariant generation is a related task. Abstract interpre-
tation [7,8] is the classical approach to invariant generation, while recently, the
constraint-based approach [2] has been proposed. We show how to adapt the
ranking function synthesis method to generate linear inequality invariants with
a fixed number of conjuncts over integer linear loops. The analysis finds stronger
invariants than a real-variable analysis, although at high computational cost.

Our technique is characteristically constraint-based: it solves directly for a
set of expressions that satisfy the ranking function and invariant verification
conditions — the constraints — generated by the loop. The focus of our paper,
then, is the method for solving such constraint systems exactly when the loop
has integer variables. While real analyses (e.g., [2,3,13,1,6]) exploit the dual of
a constraint system to solve for the ranking function or invariants, an integer
analysis cannot be so formulated: an integer constraint system does not have
a known dual. Our analysis is based on two observations. First, integer linear
loops, which allow integer division and modulo arithmetic, may be converted
to equivalent Presburger loops, in which all formulae are Presburger formulae.
Second, one can in principle enumerate all linear functions of the program state
with integer (or, equivalently, rational) coefficients. Determining if each such
function is a ranking function is decidable, as the verification conditions can be
encoded in Presburger arithmetic [15,5]. A similar argument works for generat-
ing invariants. Thus, enumeration provides a complete, although prohibitively
expensive, procedure.

Instead, we propose a region-based search. A region is a collection of intervals
over which the parameters of the problem — the unknown coefficients of the lin-
ear function — may take their values. Thus, a region represents an infinite set of
functions, one for each rational point that it contains. Regions are enumerated
in such a way that examining the corners of regions is equivalent to naive enu-
meration. But a feasibility check can determine that no function in the region
can be a ranking function (or an inductive invariant), pruning the region and all
its functions in one step. For invariant generation, a subsumption check avoids
regions that contain only assertions weaker than already discovered invariants.
The feasibility and subsumption checks are motivated by ideas from the numeri-
cal constraint satisfaction community (see, e.g., [11]). We demonstrate that they
are powerful in practice, making an intractable problem tractable.

The rest of the paper is organized as follows. Section 2 introduces our loop
abstraction and basic concepts. Section 3 describes our synthesis technique for
termination analysis. Section 4 adapts the technique for invariant generation.
Section 5 presents empirical evidence showing the effectiveness of the technique.
Finally, Section 6 concludes.

490 A.R. Bradley, Z. Manna, and H.B. Sipma

uint x > 0
while 2x > 1 do

x := x− x
2

done

uint x
θ : x > 0
τ1 : 2x > 1 ∧ x′ = x− x

2

(a) (b)

Fig. 1. Loop zero written in an (a) imperative form and (b) as an integer linear loop

2 Preliminaries

This section introduces our loop abstraction and basic concepts.

Definition 1 (Integer Variable). A program variable x has type int if its
domain is the integers Z or uint if its domain is the nonnegative integers Z∗.

Definition 2 (Integer Linear Formula). An integer linear term is either c,
cx, c1

E
c2

(division), or c1(E%c2) (modulus), for constants c, c1 ∈ Z, positive
constant c2 ∈ Z+, variable x of type uint or int, and integer linear expression
E. An integer linear expression is the summation of integer linear terms.

An integer linear atom is the comparison E1 �� E2 of two integer linear
expressions, for ��∈ {<,≤, =, �=,≥, >}. An integer linear formula is a Boolean
combination of integer linear atoms.

Definition 3 (Integer Linear Loop). An integer linear loop L :
〈VZ,VZ∗ , θ, T 〉 consists of variables VZ of type int, variables VZ∗ of type uint,
initial condition θ, and set of transitions T . We refer to VZ ∪ VZ∗ as V .

θ is an integer linear formula over V expressing what is true before entering
the loop. Each transition τ ∈ T is an integer linear formula over V ∪ V ′, where
the primed versions of variables indicate their values in the next state.

Integer linear loops allow modeling nondeterminism, both in the update of
variables (e.g., via inequality constraints or no constraints on the next state
value of a variable) and in the execution of transitions (e.g., when guards are
not disjoint).

Example 1. Figure 1 shows the loop zero as an imperative loop and as an integer
linear loop. If x = 1, then x

2 = 0 so that x does not decrease; thus, zero does
not terminate.

If x is a variable ranging over R, the loop terminates: the transition simplifies
to x′ = x

2 so that x eventually reaches 1
2 or below. Thus, abstracting this loop

to the reals results in an unsound termination analysis.

Our synthesis technique is based on deciding validity of Presburger arithmetic
formulae; hence, we need to transform away division and modulo operators.

Definition 4 (Presburger Formula). A Presburger formula is an integer lin-
ear formula that does not involve division or modulo arithmetic. Given an integer
linear formula A, P(A) is an equivalent Presburger formula. P(A) is defined re-
cursively in Figure 2, where P(A) = A if neither rule applies.

Termination Analysis of Integer Linear Loops 491

P(A[c1
E
c2

]) =
∨

b∈[0..c2−1]

(∃a)

(
[c2a + b = E ∧ E ≥ 0 ∧ P(A[c1a])]

∨ [c2a− b = E ∧ E ≤ 0 ∧ P(A[c1a])]

)

P(A[c1(E%c2)]) =
∨

b∈[0..c2−1]

(∃a)

(
[c2a + b = E ∧ E ≥ 0 ∧ P(A[c1b])]

∨ [c2a− b = E ∧ E ≤ 0 ∧ P(A[−c1b])]

)

Fig. 2. P(A) is recursively applied to remove division and modulo operators from A

Definition 5 (Presburger Loop). A loop L is a Presburger loop if all of its
formulae are Presburger formulae.

Example 2. Consider the formula defining τ1 of zero.

P(τ1) = P(2x > 1 ∧ x′ = x− x

2
) = (∃a)[2a = x ∧ x′ = x− a]

∨ (∃a)[2a + 1 = x ∧ x′ = x− a]

The formula is simplified according to the uint type of x.

Definition 6 (Linear Inductive Invariant). A linear inductive invariant ϕ
for loop L : 〈VZ,VZ∗ , θ, T 〉 is a finite conjunction of affine formulae

∧
j(cj,1x1 +

· · ·+ cj,nxn + cj,n+1 ≥ 0) over V = {x1, . . . , xn} with integer coefficients cj,i ∈ Z
that satisfies the following verification conditions:

Initiation (∀V)[θ → ϕ]
Consecution (∀τ ∈ T)(∀V ,V ′)[(ϕ ∧ τ) → ϕ′]

ϕ′ is the formula in which each variable is primed.

Definition 7 (Linear Ranking Function). A linear ranking function δ with
supporting linear invariant ϕ for loop L : 〈VZ,VZ∗ , θ, T 〉 is an affine expression
c1x1 + · · ·+ cnxn + cn+1 over V = {x1, . . . , xn} with integer coefficients ci ∈ Z
that satisfies the following verification conditions:

Bounded (∀τ ∈ T)(∀V ,V ′)[(ϕ ∧ τ) → δ ≥ 0]
Ranking (∀τ ∈ T)(∀V ,V ′)[(ϕ ∧ τ) → δ′ < δ]

Example 3. Consider loop one in Figure 3(a). Figure 3(b) presents the loop as
a Presburger loop. Writing the existentially quantified variables as actual loop
variables reveals that a Presburger loop may be written without quantification,
as in Figure 3(c). The type of a new variable depends on whether the replaced
expression ranges over Z, Z∗, or −Z∗.

We show that the function δ(x, y) = x+y is a ranking function with support-
ing invariant x ≥ 1. The verification conditions have been trivially simplified for
ease of presentation. Note that V ∪ V ′ are universally quantified and that they
range over Z∗.

492 A.R. Bradley, Z. Manna, and H.B. Sipma

uint x, y
θ : x > 0 ∧ x%2 = 0
τ1 : x%2 = 0 ∧ x′ = x− x

2
∧ y′ = y

τ2 : x%3 = 0 ∧ x′ = x− 2 ∧ y′ = y
τ3 : y > x ∧ x′ = x ∧ y′ = y − x

(a)
uint x, y
θ : (∃a)[x > 0 ∧ 2a = x]
τ1 : (∃a)[2a = x ∧ x′ = x− a ∧ y′ = y]
τ2 : (∃a)[3a = x ∧ x′ = x− 2 ∧ y′ = y]
τ3 : y > x ∧ x′ = x ∧ y′ = y − x

uint x, y, a
θ : x > 0 ∧ 2a = x
τ1 : 2a = x ∧ x′ = x− a ∧ y′ = y
τ2 : 3a = x ∧ x′ = x− 2 ∧ y′ = y
τ3 : y > x ∧ x′ = x ∧ y′ = y − x

(b) (c)

Fig. 3. (a) Loop one and (b), (c) two ways of writing one as a Presburger loop

x > 0 ∧ 2a = x → x ≥ 1
}

Initiation
τ1 : x ≥ 1 ∧ 2a = x → x− a ≥ 1
τ2 : x ≥ 1 ∧ 3a = x → x− 2 ≥ 1
τ3 : x ≥ 1 → x ≥ 1

⎫⎬⎭Consecution

τ1 : x ≥ 1 ∧ 2a = x → x + y ≥ 0
τ2 : x ≥ 1 ∧ 3a = x → x + y ≥ 0
τ3 : x ≥ 1 ∧ y > x → x + y ≥ 0

⎫⎬⎭Bounded

τ1 : x ≥ 1 ∧ 2a = x → (x− a) + y < x + y
τ2 : x ≥ 1 ∧ 3a = x → (x− 2) + y < x + y
τ3 : x ≥ 1 ∧ y > x → x + (y − x) < x + y

⎫⎬⎭Ranking

The verification conditions are all valid, so one terminates on all input.

3 Termination

Existence of a ranking function for a loop L proves that L terminates. In prin-
ciple, to find a linear ranking function with supporting linear invariant of some
size, one can enumerate pairs of functions and invariants with integer coeffi-
cients, check whether each satisfies Definitions 6 and 7, and stop when one pair
is found. This enumeration is sufficient to find any linear ranking function with
supporting linear invariant in which all coefficients are rational. Of course, if
no such function exists, then the enumeration does not terminate. It trivially
allows synthesis over linear loops, as all formulae can be expressed in Presburger
arithmetic. However, it is impractical.

We describe an alternate version of enumeration in which an infinite sets
of pairs of functions and assertions, none of which is a ranking function with
supporting invariant, can be pruned in a single step. The technique is based on
searching for a valid instantiation of a ranking function synthesis template.

Definition 8 (Template Assertion). A template expression over V =
{x1, . . . , xn} is an expression c1x1 + · · · + cnxn + cn+1 with unknown coef-
ficients ci. Letting x = (x1, . . . , xn, 1)t be a homogeneous vector, we write

Termination Analysis of Integer Linear Loops 493

ctx = (c1, . . . , cn, cn+1)(x1, . . . , xn, 1)t, with unknown coefficients c. A tem-
plate assertion is a conjunctive assertion

∧
i ci

tx ≥ 0, or Cx ≥ 0, with unknown
coefficient matrix C.

Definition 9 (Ranking Function Synthesis Template). Given loop L :
〈VZ,VZ∗ , θ, T 〉 and the desired size of the supporting invariant isz , the ranking
function synthesis template is

ϕ :

θ → Ix ≥ 0 (initiation)
∧

∧
τ∈T

[(Ix ≥ 0 ∧ τ) → Ix′ ≥ 0] (consecution)

∧
∧

τ∈T
[(Ix ≥ 0 ∧ τ) → rtx ≥ 0] (bounded)

∧
∧

τ∈T
[(Ix ≥ 0 ∧ τ) → rtx′ < rtx] (ranking)

where I is an (n + 1) × isz matrix representing the unknown coefficients of
the supporting invariants, and r is an (n + 1)-vector representing the unknown
coefficients of the ranking function. The elements of I and r are the parameters
of the synthesis template, collectively referred to as P . A synthesis template with
parameters P is written ϕ[P].

To prove the existence of a ranking function supported by invariants for a
loop L, it suffices to prove the validity of (∃P)(∀x,x′)ϕ[P]. This assertion is not
a Presburger formula, as it involves multiplication of elements of P and x. We
propose a search for a solution P̃ such that (∀x,x′)ϕ[P̃], which is a Presburger
formula if L is a Presburger loop, is valid. Later, we show that it is sometimes
useful to split the parameters P into two sets P1 and P2, where the parameters
in P2 are not involved in any multiplication with x, and search for the solution
P̃1 to P1 such that (∃P2)(∀x,x′)ϕ[P̃1, P2] is valid.

Example 4. Consider loop one. i1x + i2y + i3 ≥ 0 is a 1-conjunct invariant
template, and r1x + r2y + r3 is a ranking function template. The conjunction
of the verification conditions of Example 3 is the instantiation of the synthesis
template for one in which i1 = 1, i2 = 0, i3 = −1, r1 = 1, r2 = 1, r3 = 0.

Definition 10 (Parameter Region and Corner). For parameter set P , a
parameter region R is a hyper-rectangle of dimension |P | assigning a closed
interval from R to each parameter in P . A corner of a region is an extreme
point: each parameter is assigned either the lower or upper bound of its interval.
The lower corner is the extreme point in which each parameter is assigned its
lower bound.

A parameter region R represents an infinite number of possible instantiations of
a synthesis template ϕ[P]. Each rational point r ∈ R corresponds to an integer
instantiation of P , P̃ . Specifically, r corresponds to the integer point P̃ such that
the GCD of the coordinates of P̃ is 1 and P̃ is a scalar multiple of r. We write
that P̃ ∈ R if there is some rational point r ∈ R such that r corresponds to P̃ .

494 A.R. Bradley, Z. Manna, and H.B. Sipma

let terminates L isz =
let ϕ[P] = template L isz in

let queue = {(1, [−1, 1]|P |)} in
while |queue | > 0 do

let d, R = choose queue in

if feasible ϕ R then begin

if corner solution ϕ R then raise Terminates;
if d ≤ D · |P | then
let l, r = bisect R in

add {(d + 1, l), (d + 1, r)} queue
end

done;

raise Unknown

Fig. 4. The function terminates returns Terminates if a ranking function with a
supporting invariant is discovered

Definition 11 (Feasible Region). Given synthesis template ϕ[P], region R
for P is feasible if it may contain a solution point.

Figure 4 presents the outline of the method. First, a synthesis template with
supporting invariant template of size isz is constructed. P is the set of parame-
ters. A search queue is initialized to contain a tuple (1, [−1, 1]|P |) expressing that
the search is at depth 1 and the region under consideration is [−1, 1]|P |. While
this queue is not empty, some pair is chosen. The selected region is checked for
feasibility; if it is infeasible, it is pruned. If it is feasible, a corner of the region
is checked by instantiating the template and checking validity. If it is not a solu-
tion and the maximum depth, given by parameter D, has not been reached, the
region is bisected along some dimension, and each half is added to the queue.
We now present the details.

We start with the feasibility check. While a region R represents an infinite
number of possible instantiations of a synthesis template ϕ[P], we want to de-
termine the feasibility of R by checking the validity of only a finite number of
Presburger formulae. We proceed by forming 2|VZ∪V′

Z
| quadrant completions of

ϕ, ϕ̂, each of which forces each variable of VZ ∪ V ′Z to range over either Z∗ or
−Z∗. For each completion ϕ̂, we form a relaxation of ϕ̂ over R, ϕ̂R. If any one
of these relaxed instantiations is invalid, then R does not contain a solution.

Definition 12 (Quadrant Completion). Given loop L : 〈VZ,VZ∗ , θ, T 〉 and
synthesis template ϕ, a quadrant completion ϕ̂ of ϕ has the form(∧

x∈VZ

(x ��x 0 ∧ x′ ��x′ 0)

)
→ ϕ,

where each ��∈ {≤,≥}; i.e., each x ∈ VZ and x′ ∈ V ′
Z

is forced to be either
nonnegative or nonpositive.

Termination Analysis of Integer Linear Loops 495

Definition 13 (Relaxation). Consider loop L : 〈VZ,VZ∗ , θ, T 〉, quadrant com-
pletion ϕ̂[P] of ϕ[P] expressed in negation normal form and with all minus signs
eliminated by rearrangement, and region R : [l,u] for P . The relaxation of ϕ̂
over R is the assertion ϕ̂R in which each inequality α ≥ β of ϕ̂[P] is replaced
by α ≥ β. α is obtained by replacing each term of the form p, where p ∈ P and
� ≤ p ≤ u in R, with u and each term of the form px with ux if ϕ̂[P] requires
x ≥ 0 and �x otherwise. Similarly β is obtained by replacing each term of the
form p with � and each term of the form px with �x if ϕ̂[P] requires x ≥ 0 and
ux otherwise.

Lemma 1 (Feasible Region). Consider synthesis template ϕ[P] and region R
for P . If for some quadrant completion ϕ̂ of ϕ, (∀x,x′)ϕ̂R is invalid, then R is
infeasible.

Definition 14 (Corner Solution). Given synthesis template ϕ[P] and the
corner P̃ ∈ R for P , P̃ is a corner solution if ϕ[P̃] is valid.

Theorem 1 (Sound and Complete). Consider loop L : 〈VZ,VZ∗ , θ, T 〉, sup-
porting invariant size isz , and maximum search depth parameter D. Suppose
that bisect always bisects one of the widest dimensions of a region and that
corner solution always chooses the lower corner of a region. Then L has
a linear ranking function with supporting isz -conjunct linear invariant, ex-
pressed so that all coefficients are integers in [−2D−1, 2D−1), if and only if
(terminates L isz) returns Terminates.

Soundness is immediate: terminates reports success only if it finds a so-
lution, which by construction of the synthesis template obeys the verification
conditions of Definitions 6 and 7.

Completeness (relative to the maximum search depth) is also fairly straight-
forward. First, every rational invariant and ranking function may be represented
such that all coefficients lie in [−1, 1] and the denominators of coefficients are
powers of 2. Second, if bisect and corner solution satisfy the stated restric-
tions, then every combination of such coefficients, with coefficient denomina-
tors up to 2D−1 and numerators in [−2D−1, 2D−1), appears as a corner. Con-
verting these rational coefficients to integers results in integer coefficients in
[−2D−1, 2D−1). Finally, Lemma 1 ensures that no region containing a solution
is pruned.

It is easy to see that alternately running terminates and incrementing the
maximum depth results in a complete procedure: it is guaranteed to find a linear
ranking function with its specified number of supporting invariants, in which co-
efficients are rational, if one exists. However, this procedure is not guaranteed to
terminate when a solution does not exist, as the following example demonstrates.

Example 5. Consider applying the alternating procedure to zero. Consider
checking the feasibility of a region R in which the coefficient of x and the
constant offset are both positive intervals; that is, R = [�1,u1] × [�2,u2] for
�1,u1, �2,u2 > 0. Clearly, any instance of r1x + r2 in R is bounded from below,

496 A.R. Bradley, Z. Manna, and H.B. Sipma

uint x, y
θ : x > 0 ∧ x%2 = 0 ∧ y < 100
τ1 : x%2 = 0 ∧ x′ = x− x

2
∧ y′ = y

τ2 : x%2 = 0 ∧ y < 100− x
2
∧ x′ = x ∧ y′ = y + x

2

Fig. 5. Loop with large constants

as x ≥ 0. This region is also feasible: at worst, x = 1 so that x′ = x, yet then
�1x

′ + �2 = �1x + �2 < u1x + u2, so that the relaxation ϕ̂R is valid. An infinite
number of such regions is encountered during an unbounded search.

We conclude this section on termination by noting that one useful variation
is possible. Constant parameters (e.g., r2 of r1x + r2) that appear in rank-
ing function synthesis templates may be existentially quantified. Consider loop
L : 〈VZ,VZ∗ , θ, T 〉. Letting x = (x1, . . . , xn)t for xi ∈ V , the ranking function
synthesis template is then

(∃i, r)(∀x,x′)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ → Ix + i ≥ 0
∧

∧
τ∈T

[(Ix + i ≥ 0 ∧ τ) → Ix′ + i ≥ 0]

∧
∧

τ∈T
[(Ix + i ≥ 0 ∧ τ) → rtx + r ≥ 0]

∧
∧

τ∈T
[(Ix + i ≥ 0 ∧ τ) → rtx′ < rtx]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
When I and r are instantiated, the formula is decidable, although the quantifier
alternation increases the difficulty of the instance.

Example 6. Consider the loop in Figure 5. x − y + 99 is a ranking function
supported by the invariants x ≥ 1 and y ≤ 99. Without quantifying the constant
coefficients, the search must continue to depth 8; however, with quantification,
the search finds a solution at depth 2.

4 Invariant Generation

In this section, we adapt the technique to invariant generation. The primary chal-
lenge in invariant generation, relative to ranking function synthesis, is to avoid
discovering invariants weaker than those already known. We adapt the region-
based technique to invariant generation by introducing a region-subsumption
check, which may prune a region in which all assertions are subsumed by those
already found.

Definition 15 (Invariant Synthesis Template). Given a loop L :
〈VZ,VZ∗ , θ, T 〉 and the desired size of the conjunctive invariant isz , the invariant
synthesis template is

Termination Analysis of Integer Linear Loops 497

ϕ :
θ → Ix ≥ 0 (initiation)

∧
∧

τ∈T
[(Ix ≥ 0 ∧ τ) → Ix′ ≥ 0] (consecution)

where I is an (n + 1)× isz matrix representing the unknown coefficients of the
invariant. The elements of I are the parameters, which we refer to collectively as
P , of the template.

As with the termination analysis, solutions are integer instantiations P̃ of P
such that (∀x,x′)ϕ[P̃] is valid. However, generating invariants requires reporting
all discovered solutions, rather than halting after finding a solution. Invariants
are common, yet many are weak. The termination analysis prunes many re-
gions containing invariants because they do not support a ranking function. No
such criterion exists here. Instead, the invariant generation method may prune
a region if all of its assertions are subsumed by already discovered invariants.

Definition 16 (Subsumed Region). Consider invariant template Ix ≥ 0,
region R for I, and the set of known invariants K. R is a subsumed region if
every instantiation of Ix ≥ 0 from R is subsumed by

∧
K.

Definition 17 (Subsumption Template). Consider known invariants K and
invariant template Ix ≥ 0. Then(∧

K
)

→ Ix ≥ 0

is the subsumption template for Ix ≥ 0.

Definition 18 (Strengthening). Consider loop L : 〈VZ,VZ∗ , θ, T 〉, quadrant
completion ψ̂[P] of subsumption template ψ[P], and region R : [l,u] for P . The
strengthening of ψ̂ is the assertion ψ̂R in which each inequality α ≥ 0 of ψ̂[P]
containing parameterized terms is replaced by α ≥ 0, and other literals are
unchanged. α is obtained by replacing each term of the form p, where p ∈ P and
� ≤ p ≤ u in R, with � and each term of the form px with �x if ψ̂[P] requires
x ≥ 0 and ux otherwise.

Lemma 2 (Subsumed Region). Consider known invariants K, subsumption
template ψ[P], and region R for P . If for all quadrant completions ψ̂ of ψ,
(∀x)ψ̂R is valid, then R is a subsumed region.

Figure 6 shows the function invariants. It is similar in structure to
terminates, except that it returns the discovered invariants after it has
searched the space defined by the maximum depth parameter D. The function
corner solution returns None if the corner of R is not a solution, and Some I
otherwise. Discovered invariants are recorded in K. subsumed implements the
subsumption check.

Theorem 2 (Sound and Complete). Consider loop L : 〈VZ,VZ∗ , θ, T 〉,
invariant size isz , and maximum search depth parameter D. Suppose that

498 A.R. Bradley, Z. Manna, and H.B. Sipma

let invariants L isz =
let ϕ[P] = template L isz in

let K = {} in

let queue = {(1, [−1, 1]|P |)} in

while |queue | > 0 do

let d, R = choose queue in

if (feasible ϕ R) ∧ ¬(subsumed ϕ R K) then begin

begin

match corner solution ϕ R with

| Some I → add I K
| None → ()

end;

if d ≤ D · |P | then
let l, r = bisect R in

add {(d + 1, l), (d + 1, r)} queue
end

done;

K

Fig. 6. The function invariants returns a set of invariants of L

bisect always bisects one of the widest dimensions of a region and that
corner solution always chooses the lower corner of a region. Then L has
a linear isz -conjunct invariant I, expressed so that all coefficients are inte-
gers in [−2D−1, 2D−1), if and only if the conjunction of the set returned by
(invariants L isz) implies I.

Proving soundness and completeness is again straightforward, given Lemma
2. As with terminates, the procedure that alternately runs invariants and
increases its maximum depth will find any linear inductive invariant with ra-
tional coefficients, unless a stronger one has been found. This procedure is not
guaranteed to terminate.

Example 7. Consider zero again and any region R = [�1,u1]× [�2,u2] in which
�1,u1 ≥ 0, �2 = −u1, and u2 = −�1. The corner instantiation �1x + u2 ≥ 0
(e.g., 4x − 4 ≥ 0) is an invariant of zero. It is also the strongest invariant in
the region, yet it trivially subsumes x ≥ 1, as they are equivalent. But in the
strengthening ψ̂R in which x ≥ 1 is known, �1x + �2 = �1x− u1 = �1x− (�1 + ε),
for some ε > 0. At x = 1, �1x− (�1 + ε) = �1(1)− �1 − ε = −ε �≥ 0, so that ψ̂R is
invalid and R is not pruned as subsumed. An infinite number of such regions is
encountered during an unbounded search.

5 Empirical Observations

In this section, we examine the behavior of terminates and invariants on a
set of loops. We prototyped terminates and invariants in O’Caml, using the
Omega Test [16] to decide validity of Presburger formulae.

Termination Analysis of Integer Linear Loops 499

-15 -10 -5 5 10 15

-15

-10

-5

5

10

15

-60 -40 -20 20 40 60

-60

-40

-20

20

40

60

-30 -20 -10 10 20 30

-30

-20

-10

10

20

30

(a) (b) (c)

Fig. 7. Feasible regions explored during search

int i, j, k
θ : �
τ1 : i + 17j + 33k > 0 ∧ i′ = i + 16 ∧ j′ = j − 1 ∧ k′ = k
τ2 : i + 17j + 33k > 0 ∧ i′ = i + 32 ∧ j′ = j ∧ k′ = k − 1

Fig. 8. Loop with large coefficients

When invariants is applied to loop zero with a maximum search depth
of 5, it can potentially search over two thousand regions. It actually searches
approximately 8% of the regions. Figure 7(a) shows the feasible regions en-
countered during the search. To represent feasible regions pictorially, regions are
normalized to have integer bounds. Regions farther from the origin occur later in
the search. invariants focuses on the invariant true, represented by the vertical
line of regions, and the invariant x ≥ 1, indicated by the diagonal group.

The loop in Figure 8 has the obvious ranking function i + 17j + 33k. We
analyze it to force a deep search: finding it requires searching to a depth of 7,
resulting in over four million possible regions. terminates finds the solution
after searching under three thousand regions. Figure 7(b) shows the feasible
regions encountered during the search. As the search focuses on a coefficient of
1 for i, the graph shows the projection for the coefficients of j and k.

Figure 9(a) presents a loop that does not have a linear ranking function.
When the transitions are strengthened with the invariants discovered during a
depth-two search (e.g., s ≥ 1), running terminates to a depth of 6 reveals that
the loop does not have a linear ranking function supported by that set of invari-
ants. That is, no region is skipped because of depth, proving the nonexistence of

uint x, s
θ : s = 1
τ1 : x > 100 ∧ s �= 1 ∧ x′ = x− 10 ∧ s′ = s− 1
τ2 : x ≤ 100 ∧ x′ = x + 11 ∧ s′ = s + 1

uint x, y
θ : x = 0 ∧ y > 10
τ1 : x′ = x + 1 ∧ y′ = y + 7
τ2 : x′ = y

7
∧ y′ = y

(a) (b)

Fig. 9. (a) Loop without linear ranking function. (b) Loop seven

500 A.R. Bradley, Z. Manna, and H.B. Sipma

Table 1. Summary of experiments. (T) indicates termination analysis; (I) indicates
invariant generation. Time is in seconds. The Regions column indicates the percent-
age of the search space explored; for searches terminating at depth 2, this percentage
is too variable to state.

Loop Time Depth Regions Loop Time Depth Regions

one (T) 20s 2 — Fig. 5 (T) 5s 2 —
zero (I) 1s 5 8% Fig. 8 (T) 100s 7 .07%
Fig. 9(a) (T) 1s 6 1% Fig. 9(b) (I) 45s 5 5%

uint i, n, m1, m2, p
θ : p = 0
for i = 1 to n do

if m1%2 = 1 then
p := p + m2

m1 := m1/2
m2 := 2 ∗m2

done

uint i, n, m1, m2, p
[uint M, M0]
θ : p = 0 ∧ i = 1 ∧ [M = M0]

τ1 :

⎛⎝ i ≤ n ∧m1%2 = 0 ∧ i′ = i + 1 ∧ n′ = n
∧ m′

1 = m1/2 ∧m′
2 = 2m2 ∧ p′ = p

[∧ M ′ = M ∧M ′
0 = M0]

⎞⎠
τ2 :

⎛⎝ i ≤ n ∧m1%2 = 1 ∧ i′ = i + 1 ∧ n′ = n
∧ m′

1 = m1/2 ∧m′
2 = 2m2 ∧ p′ = p + m2

[∧ M ′ = M −m2 ∧M ′
0 = M0]

⎞⎠
(a) (b)

Fig. 10. (a) Multiplication of two n-bit binary numbers m1 and m2 into 2n-bit product
p, where multiplication and division by 2 and modulo arithmetic model bit manipula-
tion. (b) Integer linear loop form, in which M and M0 have been introduced to track
m1m2. Augmenting variables and assertions are in brackets.

a linear ranking function (relative to the discovered supporting invariants). In
this search, about 1% of possible regions are examined. Figure 7(c) shows the
examined feasible regions for the coefficients of x and s.

Running invariants to a depth of 5 on the loop in Figure 9(b) reveals the
two invariants y ≥ 11 and 7x ≤ y. The search examines approximately 5% of the
possible regions and produces about 15 invariants. Disabling the subsumption
check results in examining about a third of the possible regions and producing
over ten thousand invariants.

Table 1 summarizes these results.
Finally, we describe the application of our method to a simple hardware mul-

tiplication algorithm [10]. Figure 10 presents the algorithm for multiplying two
n-bit nonnegative integers, m1 and m2, into 2n-bit product register p. Actually,
m2 is a 2n-bit register, but its left half is initially 0. As we would like to ver-
ify facts about multiplication, which we cannot model explicitly, we introduce
tracking variables M and M0. The variable M tracks the changes to m1m2 as
the algorithm progresses, while M0 records M ’s initial value. After transforming
Figure 10(a) to an integer linear loop, we calculate

M ′ = m′
1m

′
2 = m1

2 (2m2)

=
{

m1m2 = M if m1%2 = 0
m1−1

2 (2m2) = m1m2 −m2 = M −m2 if m1%2 = 1

Termination Analysis of Integer Linear Loops 501

and augment the loop as in Figure 10(b). Termination is trivial. Invariant gen-
eration of 1-conjunct invariants produces the two invariants p + M ≤ M0 and
p + M ≥M0, so that p = M0 −M , proving correctness.

6 Conclusion

We presented a technique for synthesizing linear ranking functions with sup-
porting linear invariants and generating linear invariants of loops with integer
variables. Unlike previous work, the technique handles integer variables directly,
yet remains complete. Thus, it is more precise than previous analyses.

Several parameters of terminates and invariants are left open for heuris-
tics, including the criterion for choosing the dimension to bisect and the method
of choosing regions from the queue. Even with heuristics, analyses over inte-
ger variables cannot scale to the size of problems that real-variable analyses can
handle, while many integer loops can be soundly and effectively analyzed by real-
variable techniques. Thus, future work includes developing an analysis system
that identifies when the stronger integer-based analyses are required. Handling
mixed-variable loops, in which only some variables are integers, would also be
of value.

Acknowledgments. We thank Sriram Sankaranarayanan and the reviewers for
their insightful comments.

References

1. Bradley, A. R., Manna, Z., and Sipma, H. B. Linear ranking with reachability.
In CAV (2005). To appear.

2. Colón, M., Sankaranarayanan, S., and Sipma, H. Linear invariant generation
using non-linear constraint solving. In CAV (2003), pp. 420–433.

3. Colón, M., and Sipma, H. Synthesis of linear ranking functions. In TACAS
(2001), pp. 67–81.

4. Colón, M., and Sipma, H. Practical methods for proving program termination.
In CAV (2002), pp. 442–454.

5. Cooper, D. C. Theorem proving in arithmetic without multiplication. Machine
Intelligence 7 (1972), 91–100.

6. Cousot, P. Proving program invariance and termination by parametric abstrac-
tion, lagrangian relaxation and semidefinite programming. In VMCAI (2005),
pp. 1–24.

7. Cousot, P., and Cousot, R. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
ACM Principles of Programming Languages (1977), pp. 238–252.

8. Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
the variables of a program. In ACM Principles of Programming Languages (Jan.
1978), pp. 84–97.

9. H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. In CAV
(1996), pp. 209–219.

502 A.R. Bradley, Z. Manna, and H.B. Sipma

10. Hennessy, J. L., and Patterson, D. A. Computer organization and design (2nd
ed.): the hardware/software interface. Morgan Kaufmann Publishers Inc., 1998.

11. Hentenryck, P. V., Michel, L., and Benhamou, F. Newton - constraint pro-
gramming over nonlinear constraints. Sci. Comput. Program. (1998), 83–118.

12. Manna, Z., Browne, A., Sipma, H., and Uribe, T. E. Visual abstractions for
temporal verification. In Algebraic Methodology and Software Technology (1998),
pp. 28–41.

13. Podelski, A., and Rybalchenko, A. A complete method for the synthesis of
linear ranking functions. In VMCAI (2004), pp. 239–251.

14. Podelski, A., and Rybalchenko, A. Transition invariants. In LICS (2004),
pp. 32–41.

15. Presburger, M. Ueber die vollstaendigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchem die addition als einzige operation hervortritt. Comptes
Rendus du I congrs de Mathmaticiens des Pays Slaves (1929), 92–101.

16. Pugh, W. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM 35 (1992), 102–114.

A Practical Application of Geometric Semantics

to Static Analysis of Concurrent Programs

Eric Goubault1 and Emmanuel Haucourt2

1 LIST (CEA - Technologies Avancées),
DTSI-SOL, CEA F91191 Gif-sur-Yvette Cedex

Eric.Goubault@cea.fr
2 Preuves, Programmation, Systèmes,

Université Paris 7, 175 rue Chevaleret, F75013
haucourt@cea.fr

Abstract. In this paper we show how to compress efficiently the state-
space of a concurrent system (here applied to a simple shared memory
model, but this is no way limited to that model). The technology used
here is based on research on geometric semantics by the authors and
collaborators [1]. It has been implemented in a abstract interpretation
based static analyzer (ALCOOL), and we show some preliminary results
and benchmarks.

1 Introduction and Related Work

The aim of this paper is to show how to infer some important properties of
concurrent and distributed systems using geometric ideas1. The algorithms we
describe in this paper have been implemented in a prototype “ALCOOL” briefly
benchmarked and explained in Section 4, as well as in appendix A.

A class of examples arises from a toy langage manipulating semaphores. Using
Dijkstra’s notation [2], we consider processes to be sequences of locking opera-
tions Pa on semaphores a and unlocking operations V a. In the example where
two processes share two resources a and b: T 1 = Pa.Pb.V b.V a in parallel with
T 2 = Pb.Pa.V a.V b, the geometric model is the “Swiss flag”, Fig. 1, regarded
as a subset of R2 with the componentwise partial order (x1, y1) ≤ (x2, y2) if
x1 ≤ y1 and x2 ≤ y2. The (interior of the) horizontal dashed rectangle comprises
global states that are such that T1 and T2 both hold a lock on a: this is impossi-
ble by the very definition of a binary semaphore. Similarly, the (interior of the)
vertical rectangle consists of states violating the mutual exclusion property on b.
Therefore both dashed rectangles form the forbidden region, which is the com-
plement of the space X of (legal) states. This space with the inherited partial
order provides us with a particular po-space X [3],[4], as defined in Sect. 2. This
view can be generalized to more general counting semaphores, i.e. resources that
can be shared by some k > 1 but not k + 1 processes (see Figure 3 for the case
k = 2 and three processes). Moreover, legal execution paths, called dipaths, are

1 Work partially funded by EDF under grant CEA/EDF 1-5-163 CE.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 503–517, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

504 E. Goubault and E. Haucourt

Pb Vb VaPa

Pb

Vb

Pa

Va

FORBIDDEN

T2

T1
b=2

b=b+1

b=b*2

T1 gets a and b before T2 does: b=6

Pb Vb VaPa

Pb

Vb

Pa

Va

FORBIDDEN

T2

T1
b=2

b=b+1

b=b*2

T2 gets a and b before T1 does: b=5!

Fig. 1. Essential schedules for the swiss flag

increasing maps from the po-space I (the unit segment with its natural order)
to X . The partial order on X thus reflects (at least) the time ordering on all
possible execution paths. Many different execution paths have the same global
effect: In the “Swiss Flag” example, for any execution path shaped like the one
at the left of Figure 1, T1 gets hold of locks a and b before T2 does. This implies
that for the actual assignments on variable b that we have chosen in this exam-
ple: T1 does b := b + 1 and T2 does b = b ∗ 2, starting with an initial value of
2, all execution paths below the hole will end up with the value b = 6, since T1

will do b = 2 + 1 = 3 and then only after will T2 do b = 3 ∗ 2 = 6. In fact, there
are only two essentially different execution paths from the initial point (0, 0) to
the final point (1, 1), that fully determine the computer-scientific behaviour of
the system. See picture at the right hand side of Figure 1). These are in fact
the only two classes of dipaths from (0, 0) to (1, 1) modulo “continuous defor-
mations” that do not reverse time, i.e., up to dihomotopy as defined in [5]. This
fact is indeed general, and is not at all limited to the example. For determining
the possible outcome of a concurrent program (modelled in a suitable way, as
for our PV programs), only the dihomotopy classes of dipaths count.

Other interesting dipaths, in our example space, start in the initial point
(0, 0) and end in a deadlock, or start in the unreachable point and end in (1, 1)
see the dashed paths on Figure 1.

In general, one of the important invariants of a concurrent system is its
fundamental category [6],[7], defined in Section 3.1, classifiying dipaths between
any pair of points up to dihomotopy, i.e, a directed version of the fundamental
groupoid of a topological space. In nice cases, the relevant information in the
fundamental category is essentially finite. This is shown using a construction
based on categories of fractions [8], as developped in [1] and [9]. The formalism
developped in these last two papers allows to decompose the fundamental cat-
egory (or the state-space) into big chunks as the regions 1 to 10 in Figure 2.
Basically, inside these regions, or components, nothing important happens. This
produces the following compressed state-space on which, using general results
of [1], one can read all temporal properties as pictured in Figure 2 (with two
views, one geometric, the other, algebraic). The graph of the right hand side

A Practical Application of Geometric Semantics to Static Analysis 505

1 2

3 4

5

6

7

8

9

10 5 �� 8
g′

2�� 10

7

g′
1

��

g1
�� 9

g2
��

3

��

f ′
2 �� 4

1

f ′
1

��

f1

�� 2
f2

��

�� 6

��

Fig. 2. The components of the Swiss flag

should be understood as generating a category [10], where morphisms represent
classes of paths of execution, such that we have relations g′2 ◦ g′1 = g2 ◦ g1 and
f ′2 ◦ f ′1 = f2 ◦ f1 (compare with e.g. [11]). In some sense, this so-called category
of components finitely presents the fundamental category and the essential prop-
erties of the state-space, that can be used in a static analysis based verification
tool.

Some comparisons between what this type of approach should buy us with
other state-space reduction techniques such as persistent sets [12],[13], stubborn
sets [14],[15], Petri nets based techniques [16] etc. have been made in [7]. In this
paper, we develop this line of research a bit further, giving actual algorithms
to compute this component category in relevant cases, implementing them and
benchmarking them.

In Section 3.2, we give an algorithm to find the components, and to enu-
merate the “essential traces”, i.e. the traces of execution modulo dihomotopy,
which correspond, on a fragment of the model, to finding representatives of the
Mazurkiewicz traces [17]. This in turn can be used to compute efficiently an
abstraction of the collecting semantics of parallel processes, as used in abstract
interpreters [18]. This is described in Section 4. The implementation of this algo-
rithm is for the time being rather crude, but still, one can fully handle the case
of 9 philosophers, and effectively compress its state-space and its set of essen-
tial schedules (which in this case is very large anyway). This is the base of the
static analyzer ALCOOL we have been developping for EDF (the main French
electricity provider), that we briefly describe at the end of this section.

We should end up this introductory section by saying that this state-space re-
duction technique is entirely orthogonal to other techniques like symbolic model-
checking as developped in e.g. [19],[20],[21] or like abstraction based techniques.
A combination of good abstractions with this algorithm should improve perfor-
mances a lot. Last but not least, other geometric criteria for state-space reduction
are currently being developped, one which looks extremely promising being [22].

2 Models of Concurrent Computation

The main idea (see [23] for instance) is to model a discrete concurrency problem
in a continuous geometric set-up: A system of n concurrent processes will be

506 E. Goubault and E. Haucourt

represented as a subset of Euclidean space Rn. Each coordinate axis corresponds
to one of the processes. The state of the system corresponds to a point in Rn,
whose i’th coordinate describes the state (or “local time”) of the i’th processor.
An execution is then a continuous increasing path within the subset from an
initial state to a final state.

A more general framework on which this paper is based is defined below
(see [5]):

Definition 1.

1. A po-space is a topological space X with a (global) closed partial order ≤
(i.e. ≤ is a closed subset of X ×X).

2. A dimap f : X → Y between po-spaces X and Y is a continuous map that
respects the partial orders (is non-decreasing).

3. A dipath f : I → X is a dimap whose source is the interval I with the usual
order.

Po-spaces and dimaps form a category. To a certain degree, our methods
apply to the more general categories of lpo-spaces [5] , of flows [24] and of d-
spaces [25].

We start with a very simplistic language, in order to explain the concepts. We
will point out in Section 4 that this can be extended to more realistic languages,
as used in ALCOOL.

Procd = ε | Pa.Procd | V a.Procd

(ε being the empty string, a being any object ofO, defined as a binary semaphore:
s(a) = 1 or as a counting semaphore initialized to k: s(a) = k). A PV program
is any parallel combination of these PV processes, Prog = Proc | (Prog |
Prog). The typical example in shared memory concurrent programs is O being
the set of shared variables and for all a ∈ O, s(a) = 1. The P action is putting
a lock and the V action is relinquishing it. We will suppose in the sequel that
any given process can only access once an object before releasing it.

Supposing that the length of the strings Xi (1 ≤ i ≤ n), denoting n processes
in parallel in this language, are integers li, the semantics of Prog is included in
[0, l1]×· · ·×[0, ln]. A description of [[Prog]] can be given by describing inductively
what should be digged into this n-rectangle (the semantics is given in terms of
the set of forbidden hyper-rectangles). The semantics of our language can be
described by the simple rule, [k1, r1] × · · · × [kn, rn] ∈ [[X1 | · · · | Xn]] if there is
a partition of {1, · · · , n} into U ∪ V with card(U) = s(a) + 1 for some object a
with, Xi(ki) = Pa, Xi(ri) = V a for i ∈ U and kj = 0, rj = lj for j ∈ V .

3 Essential Schedules

3.1 A Bit of Theory

Equivalence of dipaths, as used in the examples of Figure 1, is modelled by
the notion of dihomotopy, a directed version of standard homotopy [26]. They

A Practical Application of Geometric Semantics to Static Analysis 507

describe accurately, in a continuous model, a generalized notion of “commutation
of actions”, and make available some powerful tools from algebraic topology (see
[6], [27], [5] for surveys).

Dihomotopies between dipaths f and g (with fixed extremities α and β in
X) are dimaps H : I × I → X such that for all x ∈ I, t ∈ I, H(x, 0) =
f(x), H(x, 1) = g(x), H(0, t) = α, H(1, t) = β. Notice that here I carries the
equality as order contrarily to I (another definition can be given [25], but which
is equivalent in all the cases dealt with in this paper).

A dihomotopy is to be understood as a 1-parameter family of dimaps without
order requirements in the second I-coordinate2. Now, we can define the main ob-
ject of study of this paper, the fundamental category, which contains all relevant
information for the study of traces of execution:

Definition 2. The fundamental category is the category π1(X) with:

– as objects: the points of X,
– as morphisms, the dihomotopy classes of dipaths: a morphism from x to y is

a dihomotopy class [f] of a dipath f from x to y.

Concatenation of dipaths factors over dihomotopy and yields the composition
of morphisms in the fundamental category. A dimap f : X → Y between po-
spaces induces a functor f# : π1(X)→ π1(Y), and we obtain thus a functor π1

from the category of po-spaces to the category of categories.
We formally invert some “inessential” morphisms in the fundamental cate-

gory, as in [1], [9], to obtain a “compressed” component category. For instance,
for a binary semaphore taken by two processes, we will obtain the category gen-
erated by the graph of Figure 6. In the case of three processes trying to get hold
of a counting semaphore initialized to two (geometric semantics given by Figure
3), we would get the component category pictured in Figure 4: each of the 26
subcubes delineated by the green planes are components, and there is one mor-
phism from each of these to neighbouring ones (in the directed order). Every
four neighbours having a segment in common have their four “neighbouring”
morphisms commute.

3.2 Inductive Computation

In the case of the geometric semantics of the toy PV language we chose, all
these component categories are in fact generated by 2-dimensional precubical
sets (graphs plus a notion of 2-cell, filling some of the rectangular holes in the
graph):

Definition 3. A 2-dimensional precubical set is given by

(X0,X1,X2, (∂0
0 , ∂

0
1 , ∂

1
0 , ∂

1
1 : X2 → X1), (∂0

0 , ∂
1
0 : X1 → X0))

such that ∂k
i ◦ ∂l

j = ∂l
j−1 ◦ ∂k

i for i < j and k = 0, 1, l = 0, 1. ∂1
0 and ∂1

1

(respectively ∂0
0 , ∂

0
1) are called end (respectively start) boundary operators.

2 This is slightly different for d-spaces, but coincides in important cases.

508 E. Goubault and E. Haucourt

Fig. 3. Geometric semantics of a

counting semaphore initialized to 2
Fig. 4. Its component category

More general versions of these precubical sets have been used to model con-
current processes [6]. These 2-dimensional precubical sets are somehow the ana-
logues of asynchronous transition systems [28], [29]. Elements of Xn (n = 0, 1, 2)
are called n-transitions. A simple example of a 2-dimensional pre-cubical set
(which should represent a in parallel with b) is given below:

a

b b’A

s s

ss
0

2 3

1

a’

where A is a 2-transition, a, b, a′, b′ are 1-transitions and s0, s1, s2 and s3

are all 0-transitions (or states). We have ∂0
0(A) = a, ∂1

0(A) = a′, ∂0
1(A) = b,

∂1
1(A) = b′, ∂0

0(a) = ∂0
0(b) = s0, ∂1

0(a) = s1 = ∂0
0(b′), ∂1

0(b) = ∂0
0(a′) = s2

and ∂1
1(b′) = ∂1

1(a′) = s3. One can readily check the commutation rules of the
definition, for instance, ∂0

0∂
1
1(A) = ∂0

0(b′) = s1 = ∂1
0(a) = ∂1

0∂
0
0(A). We should

think in the sequel, of A as representing the independance of a and b.

Example. We know from [1] that the po-space and the component category
corresponding to the PV program (where a is a binary semaphore) A = Pa.V a
in parallel with B = Pa.V a are those pictured at Figure 5, respectively, of
Figure 6.

As a matter of fact, the precubical set (here of dimension 1, since there is
no relation between morphisms here) corresponding to this component category
can be pictured as in Figure 7.

Intuition of the Inductive Algorithm. Now, what if we dig in a new hole in
the po-space of Figure 5? We get the po-space pictured in Figure 8 and should
obtain the component category (where solid squares represent relations) pictured
in Figure 9. This po-space corresponds to the PV program A = Pa.V a.Pb.V b in

A Practical Application of Geometric Semantics to Static Analysis 509

Fig. 5. Po-space corre-

sponding to a simple PV

program

A

D

B

C

e1

e4

e2 e3

Fig. 6. Its component cat-

egory

F

A B

DC

e1

e4

e2

e3

Fig. 7. The components,

geometrically

parallel with B = Pb.V b.Pa.V a and the component category corresponds to the
precubical set of dimension 2, pictured “geometrically” in Figure 10. The idea
is that digging a new hole, creates new isothetic hyperplanes, coming out from
the min and max points of this hole. These hyperplanes cut the previous com-
ponents into new components; the orthogonal of these hyperplanes will create
new edges in the component graph, or morphisms in the component category. A
new phenomenon here is that the intersection of two hyperplanes (here lines),
which give a codimension 2 linear variety in general (here, points), correspond
to relations between newly created morphisms. Here, in Figure 10, F2 is the new
hole. The morphisms of the component category for the only hole F1 are denoted
here by f1, f2, f3 and f4. We see3 in Figure 10 that we have two codimension 2
varieties of interest, namely the two intersections e1 ∩ f2 and e3 ∩ f4 which give
the two relations, hence the two 2-cells of the component category, pictured in
Figure 9.

In the case of the 3 philosophers problem, A = Pa.Pb.V a.V b parallel B =
Pb.Pc.V b.V c parallel C = Pc.Pa.V c.V a, we get the very nice component cate-
gory pictured in Figure 11 for instance, where the central point represents both
the deadlocking and the unreachable regions.

Inductive Computation - the Algorithm. We start inductively by a compo-
nent category of [0, 1]n\R, generated by a 2-dimensional precubical set, that we
write in short as (Y0,Y1,Y2, δ

0, δ1). We define a new structure (Z0, Z1, Z2, ∂
0, ∂1)

as follows, which will generate (an “approximation” of) the component category
of U\R:

– Z0 = {A ∩B | A ∈ X0,B ∈ Y0, A ∩B �= ∅}

– Z1 = {A ∩ f | A ∈ X0, f ∈ Y1, A ∩ f �= ∅}
∪{e ∩B | e ∈ X1,B ∈ Y0, e ∩B �= ∅}

– Z2 =
{e ∩ f | e ∈ X1, f ∈ Y1, e ∩ f �= ∅}
∪{R ∩B | R ∈ X2,B ∈ Y0,R ∩B �= ∅}
∪{A ∩ S | A ∈ X0, S ∈ Y2, A ∩ S �= ∅}

3 The intersection a ∩ b in this figure are denoted by the pair a, b.

510 E. Goubault and E. Haucourt

Fig. 8. Po-space

with two incompara-

ble holes

Fig. 9. Component

category (squares are

relations)

F2

F1

A1,A2

A1,C2

D1,D2D1,C2C1,C2

B1,C2
B1,D2

B1,B2B1,A2

A1,f2

e1,C2

e3,C2

e4,C2 D1,f4

e3,D2

B1,f3

B1,f2

B1,f4

e1,C2

e1,A2

relation e1,f2

relation e3,f4

Fig. 10. The precubical set corresponding

to the component category, geometrically

–

∂∗∗ : Z1 → Z0 are defined by:

• ∂0
0(A ∩ f) = A ∩ δ0

0(f),
• ∂1

0(A ∩ f) = A ∩ δ1
0(f),

• ∂0
0(e ∩B) = d0

0(e) ∩B,
• ∂1

0(e ∩B) = d1
0(e) ∩B.

∂∗∗ : Z2 → Z1 are defined by:

• ∂0
0(e ∩ f) = d0

0(e) ∩ f ,
• ∂0

1(e ∩ f) = e ∩ δ0
0(f),

• ∂1
0(e ∩ f) = d1

0(e) ∩ f ,
• ∂1

1(e ∩ f) = e ∩ δ1
0(f),

• ∂k
l (R ∩B) = dk

l (R) ∩B, k, l = 0, 1,
• ∂k

l (A ∩ S) = A ∩ δk
l (S).

One can show that this gives an “over-approximation” of the component
category in general, i.e. that one will get a compressed state-space, which might
not be as optimal as the component category defined in [1]. Similarly, one can
check easily that this, applied to the case of Figure 8 starting with the case of
Figure 6 gives the right result of Figure 10.

3.3 Syntactic Lift

From the component category, we can deduce the maximal morphisms (or equiva-
lently, the equivalences classes of maximal dipaths, or put it differently the max-
imal essential traces), basically from some traversing of the underlying graph
modulo 2 cells. In the case of the maximal dipaths modulo dihomotopy for the 3
philosophers, we find 7 paths, the 3! = 6 non-deadlocking paths, 3 of which are
represented as blue lines in Figures 11, 12 and 13, one deadlocking path.

Now, we want to get back from these “continuous” paths to “discrete” paths.
This “discrete” path should be an interleaving path corresponding to this ideal-
ized execution, which can then be analyzed by any standard sequential analyzer.

We remark, essentially by [1], that (1): every component has a trivial −→π 1

and (2): there exists a path (unique) from the minimum (or infimum in general)
from a component to the minimum of the next component (essentially by the
lifting property). Given the morphisms of the component category, we compute:

A Practical Application of Geometric Semantics to Static Analysis 511

Fig. 11. Paths (1) Fig. 12. Paths (2) Fig. 13. Paths (3)

Fig. 14. First step Fig. 15. Second step Fig. 16. Third step

– (a) the infimum of the components (i.e. of hyperrectangles minus the forbid-
den region)

– (b) the program comprising the possible executions between the minimum of
a component, and the minimum of the next

– (c) we use the interleaving semantics for finding just one path in this program
(using (1), in a very economical manner)

We exemplify this in Figures 14, 15, 16, 17, 18 and 19 for the 3 philosophers’
problem. Forbidden regions are represented in blue, and components are repre-
sented from green to red, in a graded manner. We represent only maximal paths
in the component category as sequences of such components in these figures.

Point (c) is done by taking any interleaving path for some program, extracted
fromProg inaveryeasymanner,usingthecoordinatesof thetwoconsecutive infima
points (represented as red dots) as intervals, in each coordinate, or equivalently
for each process, of instructions to fire (this is represented as red chunks). The first
step of the lifting is (Figure 14) amounts to interpreting 0 | 0 | P(c) in context
sem(c) = 1, sem(b) = 1, and sem(a) = 1. We use the notation sem(x) = k to
express that x is a semaphore which can be taken (by P) by at most k processes.
This describes the state of our concurrent machine. The 2nd, 3rd, 4th, 5th and 6th

steps are respectively described in Figures 15, 16, 17, 18 and 19.

512 E. Goubault and E. Haucourt

Fig. 17. Fourth step Fig. 18. Fifth step Fig. 19. Sixth step

The final interleaving representative is given at Figure 20 and corresponds to4:

P3(c).P3(a).P2(b).V3(c).P2(c).V2(b).V2(c).V3(a).P1(a).P1(b).V1(a).V1(b).

4 Application to Static Analysis

A static analyzer (ALCOOL) based on these principles has been implemented,
it consists of about 25000 lines of C. It relies on Hans Boehm garbage collector
[30] for memory allocation and QT for the graphical user interface. ALCOOL
analyzes programs written in a high-level language, to be described elsewhere,
extending the one of Section 2: binary semaphores, general counting semaphores
but also synchronisation barriers and bounded and unbounded FIFO message
passing queues (with various blocking/unblocking policies for sending and receiv-
ing) are modelled. Numeric variables are allowed, and guards (tests) are allowed
in non-deterministic choices. General expressions on variables are understood,
as well as iteration schemes. As such, this language is not far from the level of
expressiveness of PROMELA [31], with a different syntax, aimed at the particu-
lar geometric models we have developped. A comparison with PROMELA, and
SPIN, will be published elsewhere. An example of the syntax can be found in
appendix A. The analyzer first represents an abstraction of the set of forbid-
den regions (as products of intervals in some subspace of Rn), from the syntax
of the program to analyze. It then computes inductively, using the algorithm
presented in Section 3.2, the component category, as a 2-dimensional precubi-
cal set both geometrically (meaning that the objects, morphisms and relations
are represented as their corresponding 0-, 1- and 2-codimensional geometric vari-
eties) and combinatorially, using the boundary operators. It represents internally
also the duals of the boundary operators, the “coboundary” operators, mapping
each i-dimensional object to the (i + 1)-dimensional objects it is the bound-
ary of. Using these coboundary operators for edges, and a simple depth-first or
breadth-first traversal of the underlying graph, it can determine the maximal
4 Where we put the number of the process which takes the step as a subscript of the P

and V actions.

A Practical Application of Geometric Semantics to Static Analysis 513

Fig. 20. The interleaving representative

dipaths modulo 2-cells (modulo dihomotopy), that is, the essential paths. From
the essential paths, it determines using a simple abstract interpreter [32] (using
intervals of values again), an over-approximation of the local invariants of the
program. It has then to iterate this process again, since knowing more about the
values of the variables at each reachable state, enables to qualify more precisely
whether all the synchronisation that have been modelled as forbidden regions
are actually done (because of the guards of the choices for instance). More about
the look and feel of the analyzer can be found in appendix A. The analyzer has
been applied to a variety of academic examples. For instance, the enumeration of
the compressed state space of the n-philosophers’ problem is shown for different
values of n, on a standard PC with 512Mb of memory and 1GHz clock:

n time mem # o # m # r # p #s # t
3 0.38s ≤ 10 Mb 27 48 18 6 576 1475
4 0.43s ≤ 15 Mb 85 200 132 24 3966 13450
5 0.69 19 Mb 263 770 730 120 27265 113938
6 3.49 23 Mb 807 2832 3516 720 184876 914019
7 96.76s 42 Mb 2467 10094 15484 5040 ? ?
8 1656.9s 100Mb 7533 35216 64312 40320 ? ?
9 13739s 319Mo 22995 120924 256158 362880 ∼2996970∗ ∼22698700∗

where # o, # m and # r denote respectively the number of objects, morphisms
and relations of the component category, # p is the number of maximal terminat-
ing paths (not counting the deadlocking path for instance) and # s (respectively
t) is the number of states (respectively transitions) used in the translation
of the n-philosophers’ problem for SPIN with the partial-order reduction pack-
age (in PROMELA) of [33]5. For the 9 philosophers’ problem, we have only an
estimate ∼ . . .∗, using the bit state hashing reduction technique.

This analyzer has also been applied to a real industrial example, for the
french electricity provider EDF. The code to analyze was a 100000 lines program
written in C, comprising a dozen threads running on top of the VXWORKS op-
5 Some other implementations of the n-philosophers’ problem may find different num-

bers of states and transitions: our experience is that it can vary from 1 to 10.

514 E. Goubault and E. Haucourt

erating system. These threads communicate through FIFO queues, and synchro-
nize using several dozens of semaphores and monitors. First, this code has been
translated in the ALCOOL language (an extract of a typical example is given
in Appendix A). This can now be done using the tool MIEL, by Jean-Michel
Collart (CEA/LIST), which will be described elsewhere. The first analysis has
been made using a handmade translation, taking into account a subgroup of six
processes, accounting for 1966 lines of process algebra code, much like the ones
shown in Appendix A. The analyzer could prove (using some restrictive assump-
tions though) that there is no deadlock, no loss of message in 497.43 seconds, for
a maximal memory consumption of 47 Mb. In order to do this, it enumerated
the class of execution paths (about 6.2 Mb in textual form) and interpret them
using a simple interval abstract interpreter.

5 Conclusion and Future Work

We have described a first step towards using geometric invariants for efficient
static analysis of concurrent programs. Much work is still to do. For instance,
the computation of components is still sub-optimal (in size). We could also use
static/dynamic segment trees to improve the computation of intersections, or
simpler geometric constraints to prune the intersection search. For the compu-
tation of morphisms in the component category, we could think of getting some
help from the first homology group. We can also approximate relations using
some techniques used in persistent sets [34] for instance. On the longer run, we
think that the consideration of higher-dimensional analogues of the fundamental
category (see [6] and in particular [35]) should help us having smaller retracts
of the state space. We should also point out that some other methods used to
compress the state space being entirely orthogonal to our technique, we should
combine the latter with symbolic methods, use of symmetry, on the fly traversal
etc. We would also like to generalize our current ALCOOL analyzer so that it
can deal with more general temporal logic formulas. For the time being, loops
(and non-deterministic branchings) are interpreted in a simplistic way, by just
unravelling them. We are currently trying to see if we can extend our method
to local po-spaces [5] directly.

Acknowledgments. We used Geomview, see the Web page http://freeabel.
geom.umn.--edu/software/download/geomview.html/ to make the 3D pic-
tures of this article (in a fully automated way, from ALCOOL). Acknowledg-
ments are due to Fabrice Derepas for his help with comparing ALCOOL with
SPIN. Acknowledgments to Jean-Michel Collart (CEA), Alain Ourghanlian and
Jean-Baptiste Chabannes (EDF).

References

1. Fajstrup, L., Goubault, E., Haucourt, E., Raussen, M.: Components of the funda-
mental category. Applied Categorical Structures (2004)

2. Dijkstra, E.: Cooperating Sequential Processes. Academic Press (1968)

A Practical Application of Geometric Semantics to Static Analysis 515

3. Nachbin, L.: Topology and Order. Van Nostrand, Princeton (1965)
4. Johnstone, P.T.: Stone Spaces. Cambridge University Press (1982)
5. Fajstrup, L., Goubault, E., Raussen, M.: Algebraic topology and concurrency. sub-

mitted to Theoretical Computer Science, also technical report, Aalborg University
(1999)

6. Goubault, E.: Some geometric perspectives in concurrency theory. Homology
Homotopy and Applications (2003)

7. Goubault, E., Raussen, M.: Dihomotopy as a tool in state space analysis. In
Rajsbaum, S., ed.: LATIN 2002: Theoretical Informatics. Volume 2286 of Lect.
Notes Comput. Sci., Cancun, Mexico, Springer-Verlag (2002) 16 – 37

8. Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Number 35
in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag (1967)

9. Haucourt, E.: A framework for component categories. ENTCS (to appear, 2005)
10. Mac Lane, S.: Categories for the working mathematician. Springer-Verlag (1971)
11. Gaucher, P., Goubault, E.: Topological deformation of higher dimensional au-

tomata. Technical report, arXiv:math.AT/010760, to appear in HHA (2001)
12. Godefroid, P., Peled, D., Staskauskas, M.: Using partial-order methods in the for-

mal validation of industrial concurrent programs. IEEE Transactions on Software
Engineering 22 (1996) 496–507

13. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-space caching revisited. In: For-
mal Methods and System Design. Volume 7., Kluwer Academic Publishers (1995)
1–15

14. Valmari, A.: A stubborn attack on state explosion. In: Proc. of CAV’90, Springer
Verlag, LNCS (1990)

15. Valmari, A.: Eliminating redundant interleavings during concurrent program ver-
ification. In: Proc. of PARLE. Volume 366., Springer-Verlag, Lecture Notes in
Computer Science (1989) 89–103

16. Melzer, S., Roemer, S.: Deadlock checking using net unfoldings. In: Proc. of
Computer Aided Verification, Springer-Verlag (1997)

17. Mazurkiewicz, A.: Basic notions of trace theory. In: Lecture notes for the REX
summer school in temporal logic, Springer-Verlag (1988)

18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. Principles
of Programming Languages 4 (1977) 238–252

19. Boigelot, B., Godefroid, P.: Model checking in practice: An analysis of the ac-
cess.bus protocol using spin. In: Proceedings of Formal Methods Europe’96. Vol-
ume 1051., Springer-Verlag, Lecture Notes in Computer Science (1996) 465–478

20. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: Proc. of the Fifth Annual IEEE Symposium
on Logic and Computer Science, IEEE Press (1990) 428–439

21. Garavel, H., Jorgensen, M., Mateescu, R., Pecheur, C., Sighireanu, M., Vivien,
B.: Cadp’97 – status, applications and perspectives. Technical report, Inria Alpes
(1997)

22. Raussen, M.: Deadlocks and dihomotopy in mutual exclusion models. Tech-
nical report, Aalborg University (2005) available at http://www.math.aau.dk/
index en.html.

23. Carson, S., Reynolds, P.: The geometry of semaphore programs. ACM TOPLAS
9 (1987) 25–53

24. Gaucher, P.: A convenient category for the homotopy theory of concurrency.
preprint available at math.AT/0201252 (2002)

516 E. Goubault and E. Haucourt

25. Grandis, M.: Directed homotopy theory, I. the fundamental category. Cahiers Top.
Gom. Diff. Catg, to appear, Preliminary version: Dip. Mat. Univ. Genova, Preprint
443 (2001)

26. Spanier, E.J.: Algebraic Topology. McGraw Hill (1966)
27. Goubault, E.: Geometry and concurrency: A users’ guide. Mathematical Structures

in Computer Science (2000)
28. Goubault, E.: Cubical sets are generalized transition systems. Technical report,

pre-proceedings of CMCIM’02, also available at http://www.di.ens.fr/˜goubault
(2001)

29. Fahrenberg, U.: A category of higher-dimensional automata. In: Foundations
of Software Science and Computation Structures (FOSSACS) : 8th International
Conference. LNCS, Springer (2005) to appear.

30. Boehm, H.: Bounding space usage of conservative garbage collector. In: Prin-
ciples Of Programing Language. (2002) see http://www.hpl.hp.com/personal/
Hans Boehm/gc/.

31. Holzmann, G.J.: SPIN Model Checker : The Primer and Reference Manual. Ad-
dison Wesley (2003)

32. Cousot, P., Cousot, R.: Comparison of the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. JTASPEFL ’91, Bordeaux.
BIGRE 74 (1991) 107–110

33. Demartini, C., Iosif, R., Sisto, R.: Modeling and validation of java multithreading
applications using spin. In: SPIN Workshop. (1998)

34. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. In: Proc. of the Third Workshop on Computer
Aided Verification. Volume 575., Springer-Verlag, Lecture Notes in Computer Sci-
ence (1991) 417–428

35. Grandis, M.: The shape of a category up to directed homotopy. Technical
Report preprint 509, Dip. Mat. Univ. Genova (2004) available at http://www.
dima.unige.it/∼grandis/rec.public grandis.html.

A ALCOOL Analyzer

Let us give a simple example, in the language used by ALCOOL. Here we define
two FIFO queues containing at most one entry, x and y, and two semaphores z
and evt. INIT is a reserved keyword for initializing, before starting any process
(see PROMELA) the context of execution. @(a,5) stands for setting value 5 to
variable a. We can also use general interval expressions, such as [0,2]. PROG is
a reserved keyword to express which are the processes put in parallel. R(x,z)
stands for (blocking) receive on channel x, and put the received value in z (value
“protected” by semaphore z). A+[x=0]-B stands for: do A is guard (here x=0)
is true, otherwise, do B. The definition of automate as a “matrix” of actions
times events is typical of actuation and control software. S(x,7) stands for
(non-blocking) send on channel x, of value 7.

#fifo x
#fifo y
#sem z
#sem evt

A Practical Application of Geometric Semantics to Static Analysis 517

INIT=@(a,5).@(z,0).@(evt,[0,2])
PROG=automate|tache

act1=R(x,z).@(z,z*2)
act2=R(y,z).@(z,z*3+1)
act3=Pa.@(a,1).Va
ligneA=act1+[a=0]-(act2+[a=1]-(act3+[a=2]-))
ligneB=act2+[a=0]-(act3+[a=1]-(act1+[a=2]-))
ligneC=act3+[a=0]-(act1+[a=1]-(act2+[a=2]-))
matrice=ligneA+[evt=0]-(ligneB+[evt=1]-(ligneC+[evt=2]-))
automate=matrice.automate

tache=S(x,7).S(y,9).Pa.@(a,0).Va.Pa.@(a,2).Va

Verification of Qualitative Z Constraints

Stéphane Demri and Régis Gascon

LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan,
61, av. Pdt. Wilson, 94235 Cachan Cedex, France

{demri, gascon}@lsv.ens-cachan.fr

Abstract. We introduce an LTL-like logic with atomic formulae built
over a constraint language interpreting variables in Z. The constraint
language includes periodicity constraints, comparison constraints of the
form x = y and x < y, it is closed under Boolean operations and it
admits a restricted form of existential quantification. This is the largest
set of qualitative constraints over Z known so far, shown to admit a
decidable LTL extension. Such constraints are those used for instance
in calendar formalisms or in abstractions of counter automata by using
congruences modulo some power of two. Indeed, various programming
languages perform arithmetic operators modulo some integer. We show
that the satisfiability and model-checking problems (with respect to an
appropriate class of constraint automata) for this logic are decidable in
polynomial space improving significantly known results about its strict
fragments. As a by-product, LTL model-checking over integral relational
automata is proved complete for polynomial space which contrasts with
the known undecidability of its CTL counterpart.

1 Introduction

Model-Checking Infinite-State Systems. The verification of systems with an infi-
nite amount of states has benefited from the numerous decidable model-checking
problems for infinite-state systems, including timed automata [AD94], infinite
transition graphs [Cau03], or subclasses of counter systems (see e.g. [CJ98]).
Even though decidability can be obtained via numerous proof techniques (finite
partition of the infinite domain, well-structured systems, Presburger definable
reachability sets, reduction to the second-order theory of the binary tree), show-
ing undecidability of model-checking for some classes of infinite-state systems
is often easy. After all, the halting problem for Minsky machines is already un-
decidable. Decidability is more difficult to establish and it can be sometimes
regained by naturally restricting the class of models (see e.g. the flatness con-
dition in [CJ98]) or by considering fragments of the specification language (to
consider only reachability or repeated reachability for instance).

Systems with Variables Interpreted in Z. Structures with a finite set of control
states augmented with a finite set of variables interpreted either in Z or in N
(counters) are operational models of numerous infinite-state systems, including
broadcast protocols (see e.g. [EFM99, FL02]). The class of counter machines

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 518–532, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verification of Qualitative Z Constraints 519

has numerous undecidable model-checking problems such as the reachability
problem but many classes of counter systems have been shown to be decid-
able: reversal-bounded multicounter machines [Iba78], flat counter systems with
affine update functions forming a finite monoid [Boi98, FL02, BFLP03], flat
counter systems [CJ98] (weaker class of Presburger guards but no condition on
the monoid) and constraint automata with qualitative constraints on Z [DD03].

Our Motivation. Constraint automata with qualitative constraints on Z are quite
attractive operational models since they can be viewed as abstractions of counter
automata where incrementations and decrementations are abstracted by oper-
ations modulo some power of two. Common programming languages perform
arithmetic operators for integer types modulo 2k [MOS05], typically k is either
32 or 64. For example, x = y+1 can be abstracted by x ≡2k y+1 ∧ y < x. Such
an abstraction is well-suited to check safety properties about the original counter
system. In the paper, we study a class of constraint automata with a language of
qualitative constraints as rich as possible and a companion LTL-like logic to per-
form model-checking on such operational models. Our framework should be able
to deal both with abstractions modulo (see e.g. [CGL94, LS01]) and with integer
periodicity constraints used in logical formalisms to deal with calendars [LM01],
i.e. constraints of the form x ≡k y + c. By a qualitative constraint, we mean for
instance a constraint that is interpreted as a non-deterministic binary relation,
like x < y and x ≡2k y + 5 (the relationship between x and y is not sharp).

Our Contribution. We introduce a version of constraint LTL over the con-
straint language IPC�, whose expressions are Boolean combinations of IPC++

constraints from [Dem04] and constraints of the form x < y. The language
IPC++ is already closed under Boolean operators and first-order quantification.
No constraint of the form x < y occurs in the scope of a quantifier. Other-
wise incrementation is definable and it leads to undecidability of the logic. So,
as shown in this paper, adding the single type of constraints x < y leads to
many technical complications, but not to undecidability. We call CLTL(IPC�)
the specification language built over IPC� constraints. We also introduce the
class of IPC�-automata defined as finite-state automata with transitions labelled
by CLTL(IPC�) formula à la Wolper [Wol83]. Such structures can be viewed as
labelled transition systems obtained by abstraction of counter automata.

Constraint LTL over IPC++ is shown to be in pspace in [Dem04] whereas
constraint LTL over constraints of the form either x = y or x < y is also
shown to be in pspace in [DD03]. Both proofs use reductions to the emptiness
problem for Büchi automata following the approach in [VW94]. However, the
proofs are of different nature: in [Dem04] the complexity upper bound is ob-
tained by a finite model property argument whereas in [DD03] approximations
of classes of symbolic models are considered because some formulae can generate
non ω-regular classes of symbolic models. We show that model-checking and sat-
isfiability problems for the logic CLTL(IPC�) are decidable (which was open so
far) and moreover in pspace (pspace-hardness is easy). The proof substantially
generalizes what is done for constraint LTL over the domain 〈Z, <, =〉 by con-

520 S. Demri and R. Gascon

sidering both new constraints of the form x ≤ d, d ∈ Z and integer periodicity
constraints. The optimal treatment of constants occurring in such constraints is
our main technical contribution. As a corollary, we establish that LTL model-
checking over integral relational automata [Čer94] is pspace-complete. Hence,
even though IPC� is a powerful language of qualitative constraints, the pspace
upper bound is preserved in CLTL(IPC�). To our opinion, we provide a definite
complexity characterization of LTL with qualitative constraints over Z.

Related Work. Reachability problems for subclasses of counter systems have
been addressed for instance in [Iba78, CJ98, FL02, BFLP03] (see also richer
questions in [BEM97, JKMS04]). In our work, we have a full LTL-like language,
not restricted to reachability questions, used as a specification language and
no restriction on the structure of the models. However, atomic formulae of the
specification language are qualitative constraints. If we give up the decidability
requirement, LTL over Presburger constraints can be found in [BEH95, CC00].

Constraint LTL over concrete domains (not only restricted to Z) has been
considered in [WZ00, BC02, DD03, GKK+03, Dem04] where often pspace-com-
pleteness is shown. The idea of building LTL over a language of constraints,
although already present in first-order temporal logics, stems from the use of con-
crete domains for description logics, see e.g. [Lut04]. The language CLTL(IPC�)
extends the different LTL-like fragments from [Čer94, LM01, DD03, Dem04]
(past-time operators can be added for free in our formalism thanks to [GK03]).
The class of IPC�-automata introduced in the paper generalizes the class of
integral relational automata from [Čer94] (see details in [DG05]).

Integer periodicity constraints, a special class of Presburger constraints, have
found applications in many formalisms such as abstractions with congruences
modulo an integer of the form 2k (see e.g. [CGL94, MOS05]), logical formalisms
dealing with calendars (see e.g. [LM01]), DATALOG with integer periodicity
constraints [TC98] and in real-time logics [AH94].

Omitted proofs can be found in [DG05].

2 The Logic CLTL(IPC�)

2.1 Language of Constraints

Let V = {x0, x1, . . .} be a countably infinite set of variables (in some places
for ease of presentation, V will denote a particular finite set of variables). The
language of constraints p is defined by the following grammar:

p ::= pmod | x < y | p ∧ p | ¬p

pmod ::= x ≡k [c1, c2] | x ≡k y + [c1, c2] | x = y | x < d | x = d |
pmod ∧ pmod | ¬pmod | ∃x pmod

where x, y ∈ V , k ∈ N \ {0}, c1, c2 ∈ N and d ∈ Z. This language is denoted by
IPC�. We write IPC++ to denote its restriction to constraints ranged over by

Verification of Qualitative Z Constraints 521

pmod , and Zc its restriction to constraints of the form either x ∼ y or x ∼ d. The
symbol ∼ is used to mean either = or <. The language Z is the restriction of Zc

to constraints of the form x ∼ y. We define a valuation v as a map v : V → Z
and the satisfaction relation v |=� p is defined as follows in the standard way:

− v |=� x ∼ y
def⇔ v(x) ∼ v(y); v |=� x ∼ d

def⇔ v(x) ∼ d;
− v |=� x ≡k [c1, c2]

def⇔ v(x) is equal to c modulo k for some c1 ≤ c ≤ c2;
− v |=� x ≡k y + [c1, c2]

def⇔ v(x) − v(y) is equal to c modulo k for some
c1 ≤ c ≤ c2;

− v |=� p ∧ p′
def⇔ v |=� p and v |=� p′; v |=� ¬p

def⇔ not v |=� p;
− v |=� ∃x p

def⇔ there is z ∈ Z such that v[x ← z] |=� p
where v[x← z](x′) = v(x′) if x �= x′ and v[x ← z](x) = z.

We recall that x is equal to y modulo k if there is z ∈ Z such that x− y = k× z.
We write x ≡k c instead of x ≡k [c, c], x ≡k y + c instead of x ≡k y + [c, c] and
v |=� X where X is a set of IPC�-constraints, whenever v |=� p for every p ∈ X .

A constraint p is satisfiable iff there is a valuation v such that v |=� p. Two
constraints are equivalent iff they are satisfied by the same valuations.

Lemma 1. (I) The satisfiability problem for IPC� is pspace-complete. (II)
Every constraint in IPC� admits an equivalent quantifier-free constraint in IPC�.

Hence, IPC� is a quite well understood fragment of Presburger arithmetic.

2.2 Logical Language

We consider the linear-time temporal logic CLTL(IPC�) whose atomic formulae
are defined from constraints in IPC�. The atomic formulae are of the form p[x1 ←
Xi1xj1 , . . . , xr ← Xirxjr], where p is a constraint of IPC� with free variables
x1 . . .xr. We substitute each occurrence of the variable xl with Xilxjl

, which
corresponds to the variable xjl

preceded by il next symbols. Each expression of
the form Xβxα is called a term and represents the value of the variable xα at the
βth next state. Here are examples of atomic formulae: Xy ≡232 x+1 and x < Xy.

The set of CLTL(IPC�) formulae φ is defined by

φ ::= p[x1 ← Xi1xj1 , . . . , xr ← Xirxjr] | ¬φ | φ ∧ φ | Xφ | φUφ,

where p belongs to IPC�. The operators next (X) and until (U) are the classical
operators used in temporal logics. In the language, all the integers are encoded
with a binary representation (this is important for complexity considerations).
Given a set of constraints X included in IPC�, we write CLTL(X) to denote
the restriction of CLTL(IPC�) in which the atomic constraints are built over
elements of X .

A model σ : N×V → Z for CLTL(IPC�) is an ω-sequence of valuations. The
satisfaction relation is defined as follows (we omit the Boolean cases):

− σ, i |= p[x1 ← Xi1xj1 , . . . , xr ← Xir xjr] iff [x1 ← σ(i + i1, xj1), . . . ,
xr ← σ(i + ir, xjr)] |=� p;

− σ, i |= Xφ iff σ, i + 1 |= φ;
− σ, i |= φUφ′ iff there is j ≥ i s.t. σ, j |= φ′ and for every i ≤ l < j, σ, l |= φ.

522 S. Demri and R. Gascon

By definition, CLTL(IPC�)-models interpret variables but not propositional
variables. However, it is easy to encode propositional variables by using atomic
formulae of the form x = 0 where x is a new variable introduced for this purpose.

2.3 Satisfiability and Model-Checking Problems

We recall below the problems we are interested in.

Satisfiability Problem for CLTL(IPC�): Given a CLTL(IPC�) formula φ, is there
a model σ such that σ, 0 |= φ?

If we extend IPC� to allow constraints of the form x < y in the scope of ∃,
then the satisfiability problem for the corresponding constraint LTL-like logic is
undecidable since the successor relation is then definable and the halting problem
for Minsky machines can be easily encoded.

The model-checking problem rests on IPC�-automata which are constraint
automata. An IPC�-automaton A is defined as a Büchi automaton over the
infinite alphabet composed of CLTL(IPC�) formulae. In an IPC�-automaton,
letters on transitions may induce constraints between the variables of the cur-
rent state and the variables of the next state as done in [CC00]. Hence, guards
and update functions are expressed in the same formalism. We are however a bit
more general since we allow formulae on transitions as done in [Wol83]. As an
illustration, we present an IPC�-automaton in Fig. 1 which is an abstraction of
the pay-phone controller from [CC00, Example 1] (x is the number of quarters
which have been inserted and y measures the total communication time). Incre-
mentation of a variable z is abstracted by Xz ≡232 z + 1 ∧ Xz > z. The formula
φ= denotes Xx = x ∧ Xy = y. Messages are omitted because they are irrelevant
here (simplifications are then possible).

Model-Checking Problem for CLTL(IPC�): Given an IPC�-automaton A and a
CLTL(IPC�) formula φ, are there a symbolic ω-word v = φ0 · φ1 · . . . accepted

q1 q2 q3 q4

q6 q5

x = 0 ∧ y = 0 φ= x > 0 ∧ φ=

y ≤ x ∧ φ=
φ=

φ=

x = y ∧ Xx = 0 ∧ Xy = 0

Xx ≡232 x + 1 ∧ Xx > x ∧ Xy = y

Xx ≡232 x + 1 ∧ Xx > x ∧ Xy = y

y ≤ x ∧ Xy ≡232 y + 1 ∧ Xy > y ∧ Xx = x

Xy ≤ x, Xy ≡232 y + 1 ∧ Xy > y ∧ Xx = x

Fig. 1. An IPC�-automaton

Verification of Qualitative Z Constraints 523

by A and a model σ (a realization of v) such that σ, 0 |= φ and for every i ≥ 0,
σ, i |= φi?

The satisfiability problem and the model-checking problem are reducible to
each other in logspace following techniques from [SC85], by possibly introducing
a new variable. In the following sections, we prove results for the satisfiability
problem but they also extend to the model-checking problem.

The equivalence problem for Extended Single-String automata [LM01] can be
encoded as a model-checking problem for CLTL(IPC�) [Dem04]. Furthermore,
the model-checking problem for integral relational automata restricted to the
LTL fragment of CCTL∗ introduced in [Čer94] is a subproblem of the model-
checking problem for CLTL(IPC�) (see details in [DG05]). The model-checking
problem for CLTL(IPC++) (resp. CLTL(Z)) is shown to be pspace-complete
in [Dem04] (resp. in [DD03]). However, the proof for IPC++ uses an ω-regular
property of the set of models that does not hold when we introduce constraints
of the form x < y. The problem for CLTL(Zc) is shown to be in expspace
in [DD03] by a translation into CLTL(Z) that increases exponentially the size of
formulae (with a binary encoding of the natural numbers).

A restricted IPC�-automaton is defined as an IPC�-automaton such that the
labels on transitions are Boolean combinations of atomic formulae with terms
of the form x and Xx (see Fig. 1). The logic CCTL∗(IPC�) (constraint CTL∗

over IPC� constraints) is defined as the extension of CLTL(IPC�) with the path
quantifiers ∃ and ∀ but restricted to atomic formulae with no variables in V
preceded by X. The models of CCTL∗(IPC�) are the configuration graphs of
restricted IPC�-automata. The satisfaction relation A, 〈q, x〉 |= φ is defined in
the usual way. The model-checking problem for CCTL∗(IPC�) takes as inputs
a restricted IPC�-automaton A, an initial configuration 〈q, 0〉 (q is a control
state and 0 is the initial valuation with null values for the variables) and a
CCTL∗(IPC�) formula φ and checks whether A, 〈q, 0〉 |= φ. Full CCTL∗(IPC�)
model-checking can be shown to be undecidable by using developments in [DG05]
and [Čer94] (even its CTL-like fragment) and one can show that its LTL fragment
is decidable in polynomial space, a new result not captured by [Čer94].

3 Properties of the Constraint Language

In this section, we establish results about the constraint language underlying
the logic CLTL(IPC�). In order to define automata that recognize symbolic
representations of CLTL(IPC�)-models, the valuations v of the form V → Z are
represented by symbolic valuations. Given a finite set X of IPC� constraints,
typically the set of constraints occurring in a given CLTL(IPC�) formula, we
introduce the following notations:

– K is the lcm of k1, . . . , kn where periodicity constraints with relations ≡k1 ,
. . . , ≡kn occur in X . Observe that |K| is in O(|k1|+ · · ·+ |kn|).

– C is the set of constants d occurring in constraints of the form x ∼ d.
– m is the minimal element of C and M is its maximal element.

524 S. Demri and R. Gascon

– C′ denotes the set of constants {m, m − 1, . . . ,M}. The cardinality of C′

is in O(2|m|+|M|) and each element of C′ can be binary encoded in binary
representation with O(|m|+ |M |) bits.

– V is the finite set of variables occurring in X .

In the remaining, we assume that the above objects are always defined (possibly
by adding dummy valid constraints in order to make the sets non-empty).

A maximally consistent set Y of Zc constraints with respect to V and C is
a set of Zc constraints using only the variables from V and the constants from
C such that there is a valuation v : V → Z verifying v |=� Y and for any
proper extension Z of Y , there is no valuation v′ : V → Z verifying v′ |=� Z.
A valuation is abstracted by three disjoint finite sets of IPC� constraints like
regions for timed automata.

Definition 1. Given a finite set X of IPC� constraints, a symbolic valuation
sv is a triple 〈Y1,Y2,Y3〉 such that

– Y1 is a maximally consistent set of Zc constraints wrt V and C.
– Y2 is a set of constraints of the form x = d with x ∈ V and d ∈ C′ \C. Each

x ∈ V occurs at most in one constraint of the form x = d in Y2. Moreover,
for every x ∈ V , (x = d) ∈ Y2 for some unique d ∈ C′ \ C iff for every
d′ ∈ C, (x = d′) �∈ Y1 and {m < x, x < M} ⊆ Y1.

– Y3 is a set of constraints of the form x ≡K c with x ∈ V and 0 ≤ c ≤ K − 1.
Each x ∈ V occurs exactly in one constraint of the form x ≡K c in Y3.

A consequence of Definition 1 is that in a symbolic valuation sv = 〈Y1,Y2,Y3〉,
no constraint occurs in more than one set. That is why, given an IPC� constraint
p, we write p ∈ sv instead of p ∈ Y1 ∪Y2 ∪Y3. A symbolic valuation is satisfiable
iff there is a valuation v : V → Z such that v |=� Y1 ∪ Y2 ∪ Y3.

Lemma 2. Let X be a finite set of IPC� constraints and sv = 〈Y1,Y2,Y3〉 be a
triple composed of IPC� constraints such that Y1 is a set of Zc constraints built
over V and C, Y2 is a set of Zc constraints of cardinality at most |V | built over
V and C′ \ C, Y3 is a set of constraints of the form x ≡K c of cardinality |V |.
Checking whether sv is a satisfiable symbolic valuation can be done in polynomial-
time in the sum of the respective size of X and sv.

Maximal consistency of Y1 can be checked in polynomial-time by using devel-
opments from [Čer94, Lemma 5.5]. Indeed, given a set Y of Zc constraints built
over V and C, a graph GY can be built such that Y is maximally consistent wrt
V and C iff GY satisfies the conditions below. GY is a structure 〈V ∪C,

=−→,
<−→〉

such that n
∼−→ n′

def⇔ n ∼ n′ belongs to Y . Following [Čer94, Lemma 5.5], Y is
maximally consistent iff GY satisfies the conditions below:

(MC1) For all n, n′, either n
∼−→ n′ or n′

∼−→ n for some ∼∈ {<, =}.
(MC2) =−→ is a congruence relation compatible with <−→.
(MC3) There is no path n0

∼0−→ n1
∼1−→ . . .

∼α−1−−→ nα with n0 = nα and < occurs
in {∼0,∼1, . . . ,∼α−1}.

Verification of Qualitative Z Constraints 525

(MC4) For all d1, d2 ∈ C, d1 ∼ d2 implies d1
∼−→ d2.

(MC5) For all d1, d2 with d1 ≤ d2, there is no path n0
∼0−→ n1

∼1−→ . . .
∼α−1−−→ nα

with n0 = d1 and nα = d2 such that the cardinality of {i :∼i equals
<, 1 ≤ i ≤ α− 1} is strictly more than d2 − d1.

The symbolic representations of valuations contain the relevant information
to evaluate constraints.

Lemma 3. Let X be a finite set of IPC� constraints. (I) For every valuation
v : V → Z there is a unique symbolic valuation sv(v) = 〈Y1,Y2,Y3〉 such that
v |=� Y1 ∪ Y2 ∪ Y3. (II) For all valuations v, v′ such that sv(v) = sv(v′) and for
every p ∈ X, v |=� p iff v′ |=� p.

The proof of (I) is by an easy verification whereas (II) is shown by structural
induction on p similarly to the proof of [Dem04, Lemma 1]. By Lemma 3, a
symbolic valuation is an equivalence class of valuations.

Given a symbolic valuation sv and p a constraint, we write sv |=symb p
def⇔

for every valuation v such that sv(v) = sv, v |=� p.

Lemma 4. The problem of checking whether sv |=symb p is pspace-complete
(given that the syntactic resources used in p are included in those used for the
symbolic valuation sv).

4 Satisfiable ω-Sequences of Symbolic Valuations

Given a CLTL(IPC�) formula φ, we write IPC�(φ) to denote the set of IPC�

constraints p such that some atomic formula of the form p[x1 ← Xi1xj1 , . . . , xr ←
Xirxjr] occurs in φ. To IPC�(φ) we associate the objects relative to any finite set
of IPC� constraints. The set V denotes the set of variables occurring in φ. We
write |φ|X to denote the maximal natural number i such that Xix occurs in φ for
some variable x. |φ|X is called the X-length of φ. Without any loss of generality,
we can assume that |φ|X ≥ 1. In the following, we assume that V = {x1, . . . , xs}
and |φ|X = l. We write Terms(φ) to denote the set of terms of the form Xβxα

with β ∈ {0, . . . , l} and α ∈ {1, . . . , s}.
Let V ′ be a set of variables of cardinality |Terms(φ)| and f : Terms(φ) → V ′

be an unspecified bijection such that f and f−1 can be computed in polynomial
time. By extension, for every atomic subformula p of φ, f(p) is obtained from
p by replacing each occurrence of Xβxα by f(Xβxα). The map f−1 is used in a
similar fashion. A symbolic valuation wrt φ is a symbolic valuation built over
the set of variables V ′, C and K.

We say that a pair 〈〈Y1,Y2,Y3〉, 〈Y ′1 ,Y ′2 ,Y ′3〉〉 of symbolic valuations wrt φ is
one-step consistent def⇔

1. f(Xjxi) ∼ f(Xj′xi′) ∈ Y1 and j, j′ ≥ 1 imply f(Xj−1xi) ∼ f(Xj′−1xi′) ∈ Y ′1 ,
2. f(Xjxi) ∼ d ∈ Y1 ∪ Y2 and j ≥ 1 imply f(Xj−1xi) ∼ d ∈ Y ′1 ∪ Y ′2 ,
3. f(Xjxi) ≡K c ∈ Y3 and j ≥ 1 imply f(Xj−1xi) ≡K c ∈ Y ′3 .

526 S. Demri and R. Gascon

An ω-sequence ρ of satisfiable symbolic valuations wrt φ is one-step consistent
def⇔ for every j ∈ N, 〈ρ(j), ρ(j+1)〉 is one-step consistent. A model for ρ is defined
as a CLTL(IPC�)-model σ such that for all j ∈ N and p ∈ ρ(j), σ, j |= f−1(p). In
order to simplify the future developments, we write ρf to denote the ω-sequence
obtained from ρ by substituting each occurrence of some variable x by f−1(x).

One-step consistent ω-sequences of symbolic valuations wrt φ define abstrac-
tions of models for φ. We represent a one-step consistent sequence ρ as an infinite
labeled structure Gρ = 〈(V ∪C′)×N,

=−→,
<−→, mod〉 where mod : (V ∪C′)×N →

{0, . . . , K − 1}:

〈x, i〉 ∼→ 〈y, j〉 iff either i ≤ j and x ∼ Xj−iy ∈ ρf (i)
or i > j and Xi−jx ∼ y ∈ ρf (j),

〈x, i〉 =→ 〈d, j〉 iff x = d ∈ ρf (i),
〈d, i〉 =→ 〈x, j〉 iff x = d ∈ ρf (j),
〈x, i〉 <→ 〈d, j〉 iff there is d′ ∼ d such that x ∼′ d′ ∈ ρf (i) and <∈ {∼,∼′},
〈d, i〉 <→ 〈x, j〉 iff there is d ∼ d′ such that d′ ∼′ x ∈ ρf (j) and <∈ {∼,∼′},
〈d1, i〉 ∼→ 〈d2, j〉 iff d1 ∼ d2,
mod(〈x, i〉) = c iff x ≡K c ∈ ρf (i) and mod(〈d, i〉) = c iff d ≡K c.

for all x, y ∈ V , d1, d2 ∈ C and i, j ∈ N such that |i − j| ≤ l. By construction
of Gρ, the variables and constants are treated in a similar fashion. It is worth
observing that Gρ is well-defined because ρ is one-step consistent. The construc-
tion ensures that the “local” representation of every ρ(i) verifies the conditions
(MC1) to (MC5) of Sect. 3.

In the following, we say that a vertex represents the constant d if it is of the
form 〈d, i〉 for some i. The level of a node n = 〈a, t〉 in Gρ is t, and is denoted by
lev(n). There is some redundancy in Gρ for the nodes of the form 〈d, i〉. However,
this is useful to establish strict relationships between ρ and Gρ.

Example 1. Assuming that C = {2, 4}, K = 2, V ′ = {x, x′} (f(x) = x and
f(Xx) = x′) and l = 1, let us define the sequence ρ = sv0 · (sv1 · sv2)ω where
sv0 = 〈Y 0

1 ,Y 0
2 ,Y 0

3 〉 such that Y 0
1 = {x = x, x′ = x′, x < x′, 2 < x, x < 4, x′ =

4, x′ > 2}, Y 0
2 = {x = 3} and Y 0

3 = {x ≡2 1, x′ ≡2 0}. The symbolic valuation
sv1 = 〈Y 1

1 ,Y 1
2 ,Y 1

3 〉 satisfies: Y 1
1 = (Y 0

1 \ {2 < x, x < 4, x′ = 4, x′ > 2}) ∪ {4 <
x, 4 < x′}, Y 1

2 = ∅ and Y 1
3 = {x ≡2 0, x′ ≡2 1}. The symbolic valuation

sv2 = 〈Y 2
1 ,Y 2

2 ,Y 2
3 〉 verifies Y 2

1 = Y 1
1 , Y 2

2 = Y 2
1 and Y 2

3 = Y 0
3 . The graph Gρ is

presented in Fig. 2. In order to simplify the representation, closure by transitivity
for <−→ and the fact that =−→ is a congruence are omitted. The function mod is
directly encoded in the node label.

A path in Gρ is a sequence (possible infinite) of the form n0
∼0−→ n1

∼1−→ n2
∼2−→

For any finite path w = n0
∼0−→ n1

∼1−→ n2
∼2−→ . . .

∼α−1−−→ nα, its strict length slen(w)
is the cardinality of {i : 0 ≤ i ≤ α−1, ∼i equals <}. When w has a strict length
greater than 1, we say that w is strict. A finite path w such that n0 = nα is called
a cycle. The strict length between two nodes n1 and n2, written slen(n1, n2), is
the least upper bound of the strict lengths of finite paths between n1 and n2. By

Verification of Qualitative Z Constraints 527

〈2, 0〉

〈3, 0〉

〈4, 0〉

〈x, 0〉 ≡2 1

〈2, 1〉

〈3, 1〉

〈4, 1〉

〈x, 1〉 ≡2 0

〈2, 2〉

〈3, 2〉

〈4, 2〉

〈x, 2〉 ≡2 1

〈2, 3〉

〈3, 3〉

〈4, 3〉

〈x, 3〉 ≡2 0

. . .

<

<

<

<

<

<

=

<

=

<

=

<

=

=

<

<

<

<

=

<

=

<

=

<

<

<

<

<

=

<

=

<

=

<

<

Fig. 2. A graph Gρ

convention, if there is no path between n1 and n2, slen(n1, n2) takes the value
−∞. In Fig. 2, slen(〈2, 2〉, 〈x, 3〉) = 4.

In Lemma 5 below, the one-step consistency of ρ implies global constraints on
its graph representation that already hold true locally. By a global constraint, we
mean a constraint on the whole graph and not only on the local representation of
a single symbolic valuation or on two successive satisfiable symbolic valuations.

Lemma 5. Let ρ be a one-step consistent sequence.

(I) Gρ has no strict cycle.
(II) If there is a finite path w starting at 〈d, i〉 and ending at the node n of

level j, then: if w is strict then 〈d, j〉 <−→ n, otherwise 〈d, j〉 =−→ n.
(III) If there is a finite path w starting at the node n of level j and ending at

〈d, i〉, then: if w is strict then n
<−→ 〈d, j〉, otherwise n

=−→ 〈d, j〉.

Corollary 1. Let ρ be a one-step consistent sequence and Gρ its graph repre-
sentation. Then, for all nodes 〈d1, i〉 and 〈d2, j〉 in Gρ representing constants
such that d1 ≤ d2, slen(〈d1, i〉, 〈d2, j〉) = d2 − d1.

So far, we have stated properties about the graph Gρ. Below, we establish
simple conditions on Gρ equivalent to the existence of a model for ρ. An edge-
respecting labeling for Gρ is a map lab : (V ∪ C′) × N → Z such that for
all nodes n1, n2, n1

∼−→ n2 implies lab(n1) ∼ lab(n2) and for every node n,
lab(n) ≡K mod(n). Additionally, lab is said to be strict if for every 〈d, i〉 in Gρ,
lab(〈d, i〉) = d.

Lemma 6. A one-step consistent sequence ρ has a model iff Gρ has a strict
edge-respecting labeling.

The proof is quite direct by unfolding the definitions. A refinement is possible.

Lemma 7. A one-step consistent sequence ρ has a model iff Gρ has an edge-
respecting labeling (not necessarily strict).

528 S. Demri and R. Gascon

Lemmas 6 and 7 state correspondences between ρ and its graphical represen-
tation Gρ. However, we need a more abstract characterization of the one-step
consistent sequences admitting a model (see Lemma 8 below).

Lemma 8. Let ρ be a one-step consistent sequence. The graph Gρ has an edge-
respecting labeling iff for all nodes n1, n2 in Gρ, slen(n1, n2) < ω.

By construction of Gρ, for all nodes 〈d1, i〉 and 〈d2, j〉 representing constants
such that d1 ≤ d2, slen(〈d1, i〉, 〈d2, j〉) = d2 − d1 (see Corollary 1). That is why,
in Lemma 8, there is no additional constraint for nodes of the graph representing
constants.

Lemma 8 characterizes the set of sequences having a model but what we
really need is to recognize them with automata. The main difficulty rests on
the fact that the set of satisfiable one-step consistent ω-sequences of satisfiable
symbolic valuations is not ω-regular, a consequence of [DD03] for the fragment
CLTL(Z). In order to approximate this class of sequences, we define below a
condition (C) shown to be ω-regular such that for every one-step consistent ω-
sequence ρ of satisfiable symbolic valuations that is ultimately periodic, ρ has a
model iff Gρ satisfies (C).

An infinite forward (resp. backward) path in Gρ is defined as a sequence
w : N → (V ∪C′)×N such that: for every i ∈ N, there is an edge w(i) ∼−→ w(i+1)
(resp. w(i + 1) ∼−→ w(i)) in Gρ and if lev(w(i)) = j, then lev(w(i + 1)) ≥ j + 1.
The path w is infinitely often strict def⇔ for every i ≥ 0, there is j ≥ i such that
w(j) <−→ w(j +1) (resp. w(j +1) <−→ w(j)). The condition (C) on the graph Gρ is:
there do not exist vertices n1 and n2 in Gρ with |lev(n1)− lev(n2)| ≤ l satisfying

(AP1) there is an infinite forward path wfor from n1,
(AP2) there is an infinite backward path wback from n2,
(AP3) either wfor or wback is infinitely often strict, and
(AP4) for all i, j ∈ N, whenever |lev(wfor(i)) − lev(wback(j))| ≤ l, wfor(i)

<−→
wback(j) in Gρ.

We say an infinite word is ultimately periodic if it is of the form τ · δω for some
finite words τ and δ.

Lemma 9. Let ρ be one-step consistent ω-sequence of satisfiable symbolic valu-
ations that is ultimately periodic. Then ρ admits a model iff Gρ satisfies (C).

Thanks to the way Gρ is built from ρ, (C) does not explicitly mention the
constants in C′ and the constraints of the form x ≡K c. Hence, Lemma 9 can
be proved as [DD03, Lemma 6.2]: the map mod in Gρ is ignored and a uniform
treatment for all nodes in (V ∪ C′) × N is provided. In [DD03, Lemma 6.2],
there are no nodes of the form C′ ×N but we take into account their specificity
in our construction of Gρ. If ρ admits a model then by Lemma 8 it satisfies
the condition (C). Conversely, let ρ = τ · δω be an ultimately periodic one-step
consistent ω-sequence. We can show that if ρ has no model then it does not
satisfy (C). By Lemma 8, if ρ has no model, then there exist two vertices n1

and n2 such that slen(n1, n2) = ω. One can construct a finite path w between

Verification of Qualitative Z Constraints 529

n1 and n2 long enough so that paths wfor and wback satisfying the conditions
(AP1)–(AP4) can be constructed, witnessing that Gρ does not satisfy (C). The
construction of wfor and wback from w uses the fact that ρ is ultimately periodic
by repeating infinitely finite subpaths. The construction of such infinite paths
can be done smoothly by using the properties established in this section (see
e.g. Lemma 5). As the proof is not essentially different from [DD03, Lemma 6.2]
modulo slight changes mentioned above, we omit it here.

5 Büchi Automata and PSPACE Upper Bound

Based on the previous results and following the approach in [VW94], we show
that given a CLTL(IPC�) formula φ, one can build a standard Büchi automaton
Aφ such that φ is CLTL(IPC�) satisfiable iff L(Aφ) is non-empty. Moreover, we
establish that emptiness of L(Aφ) can be checked in polynomial space in |φ|.
From the technical viewpoint, the construction of Aφ as the intersection of three
Büchi automata can be done quite smoothly thanks to the previous results. In
the following, V , V ′, C and C′ are the sets of variables and constants associated
to φ as defined in Sect. 4. Moreover, K, m and M are constants with their usual
meaning and we use the map f : Terms(φ) → V ′ as previously.

Unlike LTL, the language recognized by the Büchi automaton Aφ is not a set
of models but rather a set of symbolic models. We write Σ to denote the set of
satisfiable symbolic valuations wrt φ. A symbolic model for φ is an ω-sequence
ρ : N → Σ. We write ρ |=′ φ where the symbolic satisfaction relation |=′ is
defined as |= except at the atomic level: ρ, i |=′ p

def⇔ ρ(i) |=symb f(p) where
|=symb is the satisfaction relation between symbolic valuations and constraints.

By Lemma 4 and by using standard techniques for LTL [VW94], checking
whether there is a symbolic model ρ satisfying ρ |=′ φ can be done in pspace
(see more details below). Since every model for φ generates a unique symbolic
model for φ, we obtain the result below.

Lemma 10. A CLTL(IPC�) formula φ is satisfiable iff there is a one-step con-
sistent symbolic valuation ρ such that ρ |=′ φ and ρ has a model.

All the following automata are built over the alphabet Σ which is of expo-
nential size in |φ|. The automaton Aφ is formally defined as the intersection
ALTL ∩ A1cons ∩ AC of Büchi automata where L(ALTL) is the set of symbolic
models satisfying φ, L(A1cons) is the set of one-step consistent sequences of sat-
isfiable symbolic valuations, L(AC) is the set of sequences of symbolic valuations
verifying (C). We briefly explain below how these automata are built. The au-
tomaton ALTL is obtained from [VW94] with a difference for atomic formulae.
We define cl(φ) the closure of φ as usual, and an atom of φ is a maximally
consistent subset of cl(φ). We define ALTL = (Q,Q0, →,F) as the generalized
Büchi automaton below:

– Q is the set of atoms of φ and Q0 = {X ∈ Q : φ ∈ X},
– X

sv→ Y iff

530 S. Demri and R. Gascon

(atomic constraints) for every atomic formula p in X , sv |=symb f(p),
(one step) for every Xψ ∈ cl(φ), Xψ ∈ X iff ψ ∈ Y ,

– let {ψ1Uϕ1, . . . ,ψrUϕr} be the set of until formulas in cl(φ). We pose F
equal to {F1, . . . ,Fr} with for every i ∈ {1, . . . , r}, Fi = {X ∈ Q : ψiUϕi �∈
Xor ϕi ∈ X}.

By Lemma 4, the condition about atomic formulae can be checked in pspace.
Hence, the transition relation can be computed in pspace.

We define A1cons = 〈Q,Q0, →,F 〉 as a Büchi automaton such that Q = Q0 =

F = Q = Σ and the transition relation satisfies: sv sv ′′
−→ sv ′ def⇔ 〈sv , sv ′〉 is one-

step consistent and sv ′ = sv ′′. Since checking whether a symbolic valuation is
satisfiable can be done in P (Lemma 2) and checking whether a pair of symbolic
valuations is one-step consistent can be also done in P, the transition relation
of A1cons can be computed in P.

It remains to define AC that recognizes ω-sequences of symbolic valuations
satisfying (C). As done in [DD03], instead of building AC , it is easier to construct
the Büchi automatonA¬C that recognizes the complement language of L(AC). The
automaton A¬C is essentially the automaton B defined in [DD03, page 20] except
that we work with a different type of alphabet. We need to consider vertices in
the graph that represent constants in C and equality between constants does not
need to be explicitly present in the symbolic valuations (see details in [DG05]).

Lemma 11. A CLTL(IPC�) formula φ is satisfiable iff L(Aφ) is non-empty.

The proof of this lemma is similar to [DD03, Lemma 6.3]. The main trick is
to observe that if L(Aφ) is non-empty then Aφ accepts an ultimately periodic
ω-sequence so that Lemma 9 can be applied. Since given a formula φ we can
effectively construct Aφ and check whether L(Aφ) is empty, the model-checking
and satisfiability problems for CLTL(IPC�) are decidable. We also have all the
arguments to establish the pspace upper bound by using subtle arguments from
complexity theory and [Saf89].

Theorem 1. The satisfiability problem for CLTL(IPC�) is pspace-complete.

All the temporal operators in CLTL(IPC�) are definable in monadic second
order logic (MSO) and by using [GK03], it is immediate that any extension of
CLTL(IPC�) obtained by adding a finite amount of MSO-definable temporal
operators remains in pspace. Only the automaton ALTL needs to be updated.

Corollary 2. The model-checking problem for integral relational automata re-
stricted to the LTL fragment of CCTL∗ introduced in [Čer94] is in pspace.

6 Conclusion

In the paper, we have introduced the logic CLTL(IPC�) extending formalisms
in [Čer94, LM01, DD03, Dem04] and we have shown that both model-checking
over IPC�-automata and satisfiability are decidable in polynomial space. The
proof heavily relies on a translation into the emptiness problem for standard

Verification of Qualitative Z Constraints 531

Büchi automata and on the approximation of non ω-regular sets of symbolic
models. As a by-product, the model checking problem over the integral rela-
tional automata defined in [Čer94] is also pspace-complete when restricted to
its LTL fragment. The logic CLTL(IPC�) supports a rich class of constraints
including those of the form x < y unlike periodicity constraints from [Dem04]
(which are quite useful to compare absolute dates) and comparison with con-
stants unlike logics shown in pspace in [DD03]. Abstraction of counter automata
by performing reasoning modulo can be encoded in CLTL(IPC�) thanks to the
presence of integer periodicity constraints.

To conclude, we mention a few open problems that are worth investigating.

– CTL* for integral relational automata is undecidable [Čer94] whereas we
have shown that its LTL fragment is pspace-complete. It is interesting
to design other decidable fragments of CTL* strictly more expressive than
Boolean combinations of LTL formulae.

– The decidability status of constraint LTL over the domain 〈{0, 1}∗,⊆〉 is
open either with the subword relation or with the prefix relation. Constraint
LTL over the domain 〈{0}∗,⊆〉 is already equivalent to constraint LTL over
〈N, <, =〉 that is a strict fragment of CLTL(IPC�).

– The decidability status of CLTL(IPC�) extended with constraints of the form
3x + 2Xy ≡5 3 is open. They are considered in [MOS05] but not integrated
in any LTL-like language.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. TCS, 126:183–235, 1994.
[AH94] R. Alur and Th. Henzinger. A really temporal logic. JACM, 41(1):181–204,

1994.
[BC02] Ph.Balbiani and J.F.Condotta. Computational complexity of propositional

linear temporal logics based on qualitative spatial or temporal reasoning.
In FroCoS’02, volume 2309 of LNAI, pages 162–173. Springer, 2002.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem
of nonregular properties for nonregular processes. In LICS’95, pages 123–
133, 1995.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: application to model-checking. In CONCUR’97, volume 1243
of LNCS, pages 135–150. Springer, 1997.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In CAV’03, volume 2725 of LNCS, pages
118–121. Springer, 2003.

[Boi98] B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD
thesis, Université de Liège, 1998.

[Cau03] D. Caucal. On infinite transition graphs having a decidable monadic the-
ory. TCS, 290:79–115, 2003.

[CC00] H. Comon and V. Cortier. Flatness is not a weakness. In CSL’00, volume
1862 of LNCS, pages 262–276. Springer, 2000.

[Čer94] K. Čerans. Deciding properties of integral relational automata. In ICALP,
volume 820 of LNCS, pages 35–46. Springer, 1994.

532 S. Demri and R. Gascon

[CGL94] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–
1542, 1994.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
Presburger arithmetic. In CAV’98, volume 1427 of LNCS, pages 268–279.
Springer, 1998.

[DD03] S. Demri and D. D’Souza. An automata-theoretic approach to constraint
LTL. Technical Report LSV-03-11, LSV, August 2003. 40 pages. An
extended abstract appeared in Proc. of FSTTCS’02.

[Dem04] S. Demri. LTL over integer periodicity constraints. Technical Report LSV-
04-6, LSV, February 2004. 35 pages. An extended abstract appeared in
Proc. of FOSSACS’04.

[DG05] S. Demri and R. Gascon. Verification of qualitative Z-constraints. Tech-
nical Report LSV-05-07, LSV, June 2005.

[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast
protocols. In LICS’99, pages 352–359, 1999.

[FL02] A. Finkel and J. Leroux. How to compose Presburger accelerations: Ap-
plications to broadcast protocols. In FST&TCS’02, volume 2256 of LNCS,
pages 145–156. Springer, 2002.

[GK03] P. Gastin and D. Kuske. Satisfiability and model checking for MSO-
definable temporal logics are in PSPACE. In CONCUR’03, volume 2761
of LNCS, pages 222–236. Springer, 2003.

[GKK+03] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Za-
kharyaschev. On the computational complexity of spatio-temporal logics.
In FLAIRS’03, pages 460–464, 2003.

[Iba78] O. Ibarra. Reversal-bounded multicounter machines and their decision
problems. JACM, 25(1):116–133, 1978.

[JKMS04] P. Jančar, A. Kučera, F. Moller, and Z. Sawa. DP lower bounds for
equivalence-checking and model-checking of one-counter automata. I &
C, (188):1–19, 2004.

[LM01] U. Dal Lago and A. Montanari. Calendars, time granularities, and au-
tomata. In Int. Symposium on Spatial and Temporal Databases, volume
2121 of LNCS, pages 279–298. Springer, Berlin, 2001.

[LS01] G. Logothetis and K. Schneider. Abstraction from counters: an application
on real-time systems. In TIME’01, pages 214–223. IEEE, 2001.

[Lut04] C. Lutz. NEXPTIME-complete description logics with concrete domains.
ACM Transactions on Computational Logic, 5(4):669–705, 2004.

[MOS05] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In ESOP’05,
LNCS. Springer, 2005.

[Saf89] S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The
Weizmann Institute of Science, 1989.

[SC85] A. Sistla and E. Clarke. The complexity of propositional linear temporal
logic. JACM, 32(3):733–749, 1985.

[TC98] D. Toman and J. Chomicki. Datalog with integer periodicity constraints.
Journal of Logic Programming, 35(3):263–290, 1998.

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations. I & C,
115:1–37, 1994.

[Wol83] P. Wolper. Temporal logic can be more expressive. I & C, 56:72–99, 1983.
[WZ00] F. Wolter and M. Zakharyaschev. Spatio-temporal representation and

reasoning based on RCC-8. In KR’00, pages 3–14, 2000.

Uniform Satisfiability Problem for Local

Temporal Logics over Mazurkiewicz Traces�

Paul Gastin1 and Dietrich Kuske2

1 LSV, CNRS & ENS de Cachan,
61, Av. du Président Wilson, F-94235 Cachan Cedex, France

Paul.Gastin@lsv.ens-cachan.fr
2 Institut für Informatik, Universität Leipzig,

Augustusplatz 10-11, D-04109 Leipzig, Germany
kuske@informatik.uni-leipzig.de

Abstract. We continue our study of the complexity of temporal logics
over concurrent systems that can be described by Mazurkiewicz traces.
In a previous paper (CONCUR 2003), we investigated the class of local
and MSO definable temporal logics that capture all known temporal
logics and we showed that the satisfiability problem for any such logic is
in PSPACE (provided the dependence alphabet is fixed). In this paper,
we concentrate on the uniform satisfiability problem: we consider the
dependence alphabet (i.e., the architecture of the distributed system) as
part of the input. We prove lower and upper bounds for the uniform
satisfiability problem that depend on the number of monadic quantifier
alternations present in the chosen MSO-modalities.

1 Introduction

Executions of distributed systems can be modeled as Mazurkiewicz traces [5]
where the architecture of the system is mirrored by the dependence alphabet.
Then a trace is a partial order execution of such a system. Over the past fifteen
years, a lot of papers have been devoted to the study of temporal logics over par-
tial orders and in particular over Mazurkiewicz traces (cf. [13,14,11,2,1,9,10,3,4]).
This is motivated by the need for specification languages that are suited for con-
current systems where a property should not depend on the ordering between
independent events. Hence logics over linearizations of behaviors are not ade-
quate and logics over partial orders were developed. In particular local temporal
logics are of interest here due to their good algorithmic properties. The common
feature of these logics is that formulas are evaluated at single events correspond-
ing to local views of processes. In [8], we proposed a unified treatment of all these
local temporal logics very much in the spirit of [7]. Basically, a local temporal
logic is given by a finite set of modality names. The semantics of any such modal-
ity name is described by a monadic second order (MSO) formula having a single

� Work partly supported by the DAAD-PROCOPE project Temporal and Quantita-
tive Analysis of Distributed Systems.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 533–547, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

534 P. Gastin and D. Kuske

individual free variable. For any fixed dependence alphabet (i.e., architecture of
a distributed system) we showed that the satisfiability problem of any such logic
is in PSPACE. For (almost) all temporal logics considered in the literature so
far, this was known before. Our contribution was a uniform proof that would
also be applicable for not-yet-defined temporal logics.

A more realistic setting is the uniform satisfiability problem where both, the
temporal formula and the architecture form the input. In other words, this uni-
form satisfiability problem for the local temporal logic TL asks whether a given
property ϕ ∈TL can be satisfied in a given architecture (Σ,D) (described as
a trace alphabet). The paper at hand studies the complexity of this problem
depending on the temporal logic TL. Recall that the semantics of the modality
names of TL are given by MSO formulas. The complexity of the uniform sat-
isfiability problem depends on the number of alternations of set quantifiers in
these formulas. The bad news is that any quantifier alternation in the MSO-
descriptions of the modalities adds an exponent to the space complexity. The
good news is that local temporal logics considered in the literature do not have
any alternation of set quantifiers and are, more precisely, definable in MΔ1

1.
Section 2 defines and discusses the necessary concepts used in this paper. The

following Section 3 proves an upper bound on the complexity of the uniform
satisfiability problem. Our decision procedure makes crucial use of a locality
theorem due to Schwentick & Bartelmann [12] that generalizes both, Hanf’s and
Gaifman’s locality theorems. Section 4 presents, for any n ∈ N, a local temporal
logic whose uniform satisfiability is hard for n-fold exponential space. Examples
of temporal logics that fall into our setting can be found in Sections 2 (where we
discuss action based logics) and 5 that is devoted to process based logics, e.g.,
Thiagarajan’s logic TrPTL from [13]. From our upper bound, it follows that any
temporal logic from the literature has a uniform satisfiability problem whose
space complexity is doubly exponential in the alphabet and polynomial in the
formula.

Due to space limitations, we had to omit complete proofs as well as many
more examples. They can be found in a technical report available on the web
pages of the authors.

2 Preliminaries

Throughout this paper, we fix some countably infinite set N of action names.
A dependence alphabet is a pair (Σ,D) where Σ ⊂ N is a set of action names
and D ⊆ Σ2 is a symmetric and reflexive relation on Σ. A trace over (Σ,D) is
a labeled at most countably infinite partial order (V,≤,λ) such that (V,≤) is a
partial order and λ : V → Σ is the labeling function satisfying for all x, y ∈ V

– ↓x = {z ∈ V | z ≤ x} is finite
– (λ(x),λ(y)) ∈ D implies x ≤ y or y ≤ x
– x
 y implies (λ(x),λ(y)) ∈ D,

where
 = <\<2 is the immediate successor relation. The set M(Σ,D) comprises
all finite traces while R(Σ,D) contains all traces over (Σ,D).

Uniform Satisfiability Problem for Local Temporal Logics 535

Trace concatenation is an operation · : M(Σ,D) × R(Σ,D) → R(Σ,D) de-
fined by (V,≤,λ) ·(V ′,≤′,λ′) = (V �V ′, (≤∪≤′∪E)∗,λ∪λ′) with E = {(v, v′) ∈
V × V ′ | (λ(v),λ′(v′)) ∈ D}. Its restriction to finite traces is associative, i.e.,
(M(Σ,D), ·) is a monoid, called trace monoid.

We can identify a letter a ∈ Σ with the trace [a] = ({0},≤,λ) with λ(0) = a.
In this sense, the trace monoid M(Σ,D) is generated by the set of letters a ∈ Σ.
The canonical homomorphism [.] : Σ∗ → M(Σ,D) can be extended naturally to
infinite words: for a (finite or infinite) word u = a0a1 . . . with ai ∈ Σ, the trace
[u] = (V, ,λ) is given by V = {i ∈ N | 0 ≤ i < |u|}, = E∗ with (i, j) ∈ E iff
i < j and (ai, aj) ∈ D, and λ(i) = ai.

Formulas of the logic MSO(N,
, fin) will be interpreted over traces. This logic
is based on atomic propositions of the form (λ(x) = a) for a ∈ N, x
 y, x = y,
x ∈ X , and fin(X) for x, y individual variables and X a set variable. Intuitively,
the formula fin(X) means that the set X is finite. Note that we do not allow the
partial order ≤ to be used in our formulas. On one hand, the successor relation
is sufficient since the partial order can be expressed using the successor. On the
other hand, our upper bound proof relies on the fact that the Hasse diagram
of any trace has bounded degree. The fragment MSO(N,
) of MSO(N,
, fin)
consists of all formulas that do not mention the atomic proposition fin(X).

Example 2.1. Consider the following two formulas

upset(x,X) = ∀y(y ∈ X ↔ y = x ∨ ∃z(z ∈ X ∧ z
 y)) and
downset(x,X) = fin(X) ∧ ∀y(y ∈ X ↔ y = x ∨ ∃z(z ∈ X ∧ y
 z)) .

of MSO(N,
) and MSO(N,
, fin), respectively. Then, for a trace t = (V,≤,λ)
(over any finite dependence alphabet), t |= upset(x,X) iff X = {y ∈ V | x ≤ y}
and t |= downset(x,X) iff X = {y ∈ V | y ≤ x}. We could alternatively write the
second of these formulas without the atomic proposition fin(X) at the expense
of additional set quantifications. For later use, we prefer this version. It is not
clear to us whether both, set quantifications and atomic propositions fin(X) can
be avoided when expressing downset(x,X). In the following formulas, we will
write X = ↓x and X = ↑x as a more intuitive abbreviation for the formulas
downset(x,X) and upset(x,X).

An MSO(N,
, fin)-formula is an m-ary modality if it has m free set variables
X1, . . . ,Xm and one free individual variable x.

Definition 2.2. An MSO(N,
, fin)-definable temporal logic is given by

– a finite set B of modality names together with a mapping arity : B → N
giving the arity of each modality name and

– a mapping [[−]] : B → MSO(N,
, fin) such that [[M]] is an m-ary modality
whenever arity(M) = m.

Then the syntax of the temporal logic TL(B) is defined by the grammar

ϕ ::=
∑

M∈B

M(ϕ, . . . ,ϕ︸ ︷︷ ︸
arity(M)

) +
∑
a∈N

a .

536 P. Gastin and D. Kuske

Let t = (V,≤,λ) be a trace over some finite dependence alphabet (Σ,D) and
ϕ ∈ TL(B) a formula of TL(B). The semantics ϕt of ϕ in t is the set of positions
in V where ϕ holds. The inductive definition is as follows. If ϕ = a ∈ N, then
ϕt = {x ∈ V | λ(x) = a}. If ϕ = M(ϕ1, . . . ,ϕm) where M ∈ B is of arity m ≥ 0,
then

ϕt = {p ∈ V | t |= [[M]](ϕt
1, . . . ,ϕ

t
m, p)}.

We also write t, p |= ϕ for p ∈ ϕt.

For notational convenience and consistency, we consider elements of N as
modality names as well and write [[a]] = (λ(x) = a) for a ∈ N.

This definition of an MSO(N,
, fin)-definable temporal logic is very much in
the style of [7]. It differs in as far as we allow set quantifications and the atomic
proposition fin(X) in our modalities. On the other hand, we do not allow to use
the order relation ≤ explicitly (but implicitly using set quantification).

Example 2.3. First, the boolean connectives negation and conjunction can be
expressed by [[¬]](X1, x) = ¬(x ∈ X1) and [[∧]](X1,X2, x) = (x ∈ X1)∧(x ∈ X2).

Existential next EXϕ is one of the simplest temporal modality. Intuitively,
EXϕ means that there is an immediate successor of the current vertex where ϕ
holds. Formally, we can set [[EX]](X1, x) = ∃y(x
 y ∧ X1(y)) which is even a
first-order formula.

The unary modality Ecoϕ (“concurrent”) claims that ϕ holds for some vertex
concurrent to the current vertex x. Thus, its semantics can be defined as

[[Eco]](X1, x) = ∃X∃Y ∃z((X = ↑x) ∧ (Y = ↓x) ∧ z /∈ X ∪ Y ∧ z ∈ X1) .

Universal strict until ϕ SU ψ is a binary modality claiming the existence of
a vertex y in the strict future of the current one x such that ψ holds at y and ϕ
holds for all vertices strictly between x and y. Formally, [[SU]](X1,X2, x) is given
by

∃X∃H (X = ↑x) ∧H ∩X2 �= ∅ ∧ ∀y
(y ∈ H ↔ y ∈ X \ {x} ∧ ∀z ∈ X(z
 y → z ∈ {x} ∪ (H ∩X1))).

The second line expresses that H contains precisely those nodes y ∈ X \{x} such
that any vertex strictly between x and y belongs to X1. Hence, by H ∩X2 �= ∅,
there is one such vertex belonging to X2. The classical non strict version of
universal until is ϕ U ψ = ψ ∨ (ϕ ∧ (ϕ SU ψ)).

Existential until ϕ EU ψ is another binary modality. It claims the existence
of some finite path starting in the current node. At any node along this path, ϕ
holds while ψ holds at the final node. Formally, we have

[[EU]](X1,X2, x) = ∃P, P ∩X2 �= ∅ ∧ P ⊆ X1 ∪X2

∧ ∀z ∈ P, (z = x ∨ ∃p ∈ P, p
 z).

For more examples, see [8] where most modalities met in the literature on
local temporal logics for traces are expressed in terms of MSO(N,≤)-modalities.
As ≤ can be expressed using
, any of those formulas can be transformed into
an equivalent one from MSO(N,
).

Uniform Satisfiability Problem for Local Temporal Logics 537

Uniform Satisfiability Problem for Temporal Logics. Let TL(B) be an
MSO(N,
, fin)-definable temporal logic.

input: a finite dependence alphabet (Σ,D) and a formula ϕ of TL(B)
question: Is there a trace t ∈ R(Σ,D) and a position p in t with t, p |= ϕ?

In [8], we considered the non-uniform satisfiability problem for temporal log-
ics definable in MSO(N,≤) where the dependence alphabet (Σ,D) was fixed
and not part of the input. By the above discussion, any MSO(N,
)-definable
temporal logic is MSO(N,≤)-definable. Hence [8, Thm. 9] translates into:

Theorem 2.4 ([8]). The non-uniform satisfiability problem of any MSO(N,
)-
definable temporal logic and any finite dependence alphabet (Σ,D) is in PSPACE.

Analyzing the proof of this result, one obtains the following

Theorem 2.5 (cf. [8]). For any MSO(N,
)-definable temporal logic, the uni-
form satisfiability problem is elementarily decidable.

In this paper, we present a lower bound and a more precise upper bound for
the uniform satisfiability problem. These bounds are expressed in terms of the
number of monadic quantifier alternations in the formulas [[M]]. Following [6],
MΣ1

n(N,
, fin) comprises all MSO(N,
, fin)-formulae that are logically equiv-
alent to one of the form ∃−→X1∀

−→
X2 . . .∃/∀

−→
Xnϕ where ϕ does not contain any

second-order quantification. A formula belongs to MΠ1
n(N,
, fin) iff its nega-

tion is an element of MΣ1
n(N,
, fin). Finally, MΔ1

n(N,
, fin) = MΣ1
n(N,
, fin)∩

MΠ1
n(N,
, fin). The fragments MΣ1

n(N,
) etc. are defined similarly. Finally, we
write FO(N,
) for MΔ1

0(N,
) = MΣ1
0(N,
) = MΠ1

0 (N,
), i.e., for those for-
mulas that can be written without set quantification or fin(X). In this sense, we
speak of MΠ1

n(N,
, fin)-definable temporal logics whenever all modalities [[M]]
belong to MΠ1

n(N,
, fin).

Example 2.6. We show that all the modalities EX, Eco, EU, and SU are actually
definable in MΔ1

1(N,
, fin). Above, we already gave MΣ1
1(N,
, fin)-definitions

for their semantics, so it remains to present equivalent MΠ1
1 (N,
, fin)-formulas.

This is trivial for EX since the FO(N,
)-formula [[EX]] belongs to MΔ1
1(N,
, fin).

The negation of [[Eco]] is equivalent to

∃X∃Y (X = ↑x ∧ Y = ↓x ∧X1 ⊆ X ∪ Y)

stating that all nodes z satisfying ϕ are comparable with x.
To express ¬[[SU]] by a formula in MΣ1

1(N,
) just replace H ∩ X2 �= ∅ by
H ∩X2 = ∅ in the formula [[SU]].

Next note that ¬[[EU]] states that no path in X1 starts in x and leads to a
node in X2. In other words, the connected component of (↑x∩X1,
) containing
x does not contain any element with upper neighbor in X2. This can be expressed
by the following formula

∃X ∀y (y ∈ X ↔ y ∈ X1 ∧ (y = x ∨ ∃z (z ∈ X ∧ z
 y)))
∧ ∀z ((z = x ∨ ∃y (y ∈ X ∧ y
 z)) → z /∈ X2).

538 P. Gastin and D. Kuske

3 nEXPSPACE Upper Bound for MΔ1
n−1(N,
, fin)-Logics

The function tower : N → N is defined inductively by tower(0, m) = m and
tower(�, m) = 2tower(−1,m) for � > 0. It is the aim of this section to prove an up-
per bound for the uniform satisfiability problem sharper (and more general since
it also deals with MSO(N,
, fin)-modalities) than that given in Theorem 2.5:

Theorem 3.1. Let TL be some MΔ1
n(N,
, fin)-definable temporal logic. Then

the uniform satisfiability problem for TL can be solved in space poly(|ϕ|) ·
tower(n + 1, poly(|Σ|)).

The decision procedure we propose refines ideas from [8]. The main ingredient
are “modality automata” defined below. Let w = a0a1 . . . be a word over Σ and
Xi ⊆ ω be sets for 1 ≤ i ≤ m. Then (w,

−→
X) denotes the word b0b1 . . . over

Σ × {0, 1}m with bi = (ai, x
1
i , x

2
i , . . . , x

m
i) and xj

i = 1 iff i ∈ Xj.

Definition 3.2. Let (Σ,D) be a finite dependence alphabet and α an m-ary
MSO(N,
, fin)-modality. A Büchi-automaton A over Σ×2m+1 is called modal-
ity automaton for (α,Σ,D) if it accepts precisely those words (w,Y0,Y1, . . . ,Ym)
such that the induced trace [w] satisfies [w] |= ∀x(α(Y1,Y2, . . . ,Ym, x)↔ Y0(x)).

Before we explain how to use modality automata to solve the uniform satisfia-
bility problem, we fix some more notation: Let ϕ and ψ be TL(B)-formulas. Then
top(ϕ) denotes the outermost modality name of ϕ. We write ϕ ≤ ψ if ϕ is a sub-
formula of ψ (this includes the case ϕ = ψ). Furthermore Sub(ψ) = {ϕ ∈ TL(B) |
ϕ ≤ ψ} is the set of subformulas of ψ. For an alphabet Σ, we will consider words
of the form (w, (Yϕ)ϕ∈Sub(ψ)) with w ∈ Σω and Yϕ ⊆ ω, i.e., words over the ex-
tended alphabet Σψ = Σ×{0, 1}Sub(ψ). For a subformula ϕ = M(ϕ1, . . . ,ϕm) ≤
ψ and w̄ = (w, (Yξ)ξ≤ψ) ∈ Σω

ψ , let w̄�ϕ = (w,Yϕ,Yϕ1 , . . . ,Yϕm).
Now let ξ be some TL(B)-formula and (Σ,D) some finite dependence alpha-

bet. Furthermore, suppose we are given modality automata AM for ([[M]],Σ,D)
with set of states QM . From these modality automata, we can construct an au-
tomaton A over Σξ with set of states Q =

∏
ϕ≤ξ Qtop(ϕ) that has the following

useful property (this construction follows [8] and can alternatively be found in
the technical report):

Lemma 3.3. Let w̄ = (w, (Yϕ)ϕ≤ξ) ∈ Σω
ξ . Then, w̄ is accepted by A if and only

if for each ϕ ≤ ξ we have Yϕ = ϕ[w] = {p ∈ ω | [w], p |= ϕ}.

As an immediate consequence, we obtain

Proposition 3.4. Let w ∈ Σω. Then there exists p ∈ ω with [w], p |= ξ iff there
exist Yϕ ⊆ ω for ϕ ≤ ξ with Yξ �= ∅ such that (w, (Yϕ)ϕ≤ξ) is accepted by A.

Thus, the satisfiability of ξ is (essentially) equivalent to the emptiness prob-
lem for the automaton A. To solve it, we only need to keep in memory three
|ξ|-tuples of states of our modality automata. Thus, once the modality automata
are computed, the satisfiability of ξ can be solved easily. To prove Thm. 3.1,

Uniform Satisfiability Problem for Local Temporal Logics 539

we have to show that a modality automaton for an MΔ1
n(N,
, fin)-definable

modality can be constructed in space tower(n + 1, poly(|Σ|)) (see Prop. 3.9).
Our construction relies on a locality theorem by Schwentick & Bartelmann [12].
In essence, it says that a FO(N,
)-formula is effectively equivalent to the exis-
tence of some finite sets such that any sphere in the structure extended by these
“colors” satisfies some first-order property (this is the reason why we consider
spheres in traces in the following section). More precisely, this locality theorem
holds for connected structures, only.3 Therefore, from now on, we consider only
rooted traces: Suppose there is # ∈ Σ with Σ × {#} ⊆ D. Then #M(Σ,D) is
the set of finite traces over (Σ,D) that have a least node labeled #. Similarly,
#R(Σ,D) comprises all infinite traces over (Σ,D) with such a minimal node.
We refer to the elements of #R(Σ,D) as rooted traces. The uniform rooted sat-
isfiability problem for temporal logics is the variant of the uniform satisfiability
problem where we ask for the existence of some rooted trace. We only prove the
above main result for this uniform rooted satisfiability problem, the general case
can easily be derived.

3.1 Spheres

The trace graph of a trace t = (V,≤,λ) is the structure G(t) = (V,≤,
, (Pa)a∈Σ)
given by Pa = λ−1(a). The restriction of a structure M = (W,≤,
, (Pa)a∈Σ)
to X ⊆W is the structure

M�X = (X,≤ ∩X2,
 ∩X2, (Pa ∩X)a∈Σ) .

IfM = G(t) is a trace graph,M�X need not be a trace graph itself. In particular,
the relation
 in M�X need not be the covering relation of ≤. A path of length
n in M is a sequence x0, x1, . . . , xn with xi ∈ W and (xi, xi+1) ∈ (
 ∪ �), i.e.,
consecutive elements are related by
 in any direction. For x, y ∈W , the distance
dM(x, y) is the minimal length of a path x0, . . . , xn with x = x0 and y = xn. The
distance is generalized to x ∈ W and U ⊆ W by dM(x, U) = min{dM(x, y) |
y ∈ U}. For r ∈ N and U ⊆ W , let Sr(M, U) = {x ∈ W | dM(x, U) ≤ r} of all
elements of W whose distance to U is at most r. Then the sphere Sphr(M, U)
around U denotes the substructure M�Sr(M, U).

Let t = (V,≤,λ) be a trace and U ⊆ V . Then we write Sphr(t, U) for
Sphr(G(t), U). Furthermore, for a ∈ alph(t), let lasta(t) = max(λ−1(a)) be the
≤-maximal a-labeled node occurring in t. Let last(t) = {lasta(t) | a ∈ alph(t)}
and for r ∈ N, let topr(t) be the structure Sphr(t, last(t)), i.e., the restriction of
G(t) to those nodes from t whose distance to some maximal a-labeled node is at
most r.

3 Hanf and Gaifman proved similar locality theorems (cf. [6]). We could not use Hanf’s
theorem since there is no uniform bound for the degree of trace graphs independent
from the dependence alphabet. Using Gaifman’s theorem results in slightly more
involved automata constructions (because of the disjointness condition) without im-
proving the result.

540 P. Gastin and D. Kuske

Example 3.5. Let Σ = {a, b, c, d} with I = {(b, d), (d, b), (a, c), (c, a)} and con-
sider the trace s = [aabbcccbbbb]. In Fig. 1, the trace graph of s · d is depicted
in the first line. There, solid edges denote the covering relation
. Furthermore,
black nodes are those in last(sd). In the second picture, the structure top1(sd)
is depicted. There, solid arrows have the same meaning as in the first picture,
but the partial order relation ≤ is the reflexive and transitive closure of all ar-
rows (including the dashed ones). If, in this second picture, we erase the d-labeled
node, we obtain top1(s). Note the similarity of these pictures with those of Fig. 2
with t = [ccbbaaabbbb]: In particular, the covering relation restricted to top1(s)
and top1(t) are equal, but they differ in top1(sd) and top1(td). Thus, although
we are only interested in the relation
, in order to update this information, we
also have to keep the order in the top sphere. The following lemma shows that
this information is sufficient to compute topr(sd) from topr(s).

G(s · d)
a a b b

c c c

b b b b

d

top1(sd)
a a b

c c

b b b

d

Fig. 1. Update of top1(s)

G(t · d)
c c b b

a a a

b b b b

d

top1(td)
c c b

a a

b b b

d

Fig. 2. Update of top1(t)

Lemma 3.6. Let s be a trace, a ∈ Σ, and r ∈ N. Then topr(sa) is determined
by topr(s) and the letter a.

Let w ∈ Σ∞ and t = [w] = (V,≤,λ) ∈ R(Σ,D). Fix also some r ∈ N.
A modality automaton will have to check properties of spheres of the form
Sphr(t, x). For each x ∈ V , we can find a finite prefix u of w such that Sphr(t, x)
is contained in top2r([u]). From Lemma 3.6, the structures top2r([u]) can be
computed by an automaton. But we also need to determine when a vertex x in
top2r([u]) is such that Sphr(t, x) is contained in top2r([u]). This is the purpose
of the following definition and lemma.

Uniform Satisfiability Problem for Local Temporal Logics 541

Definition 3.7. Let s = (V,≤,λ) ∈ M(Σ,D) be a finite trace. Let B ⊆ Σ and
r ∈ N. A vertex x ∈ V is r-critical for (s,B) if dG(s)(x, last(s)) ≤ r, and for all
(a, b) ∈ D ∩ (alph(s) × B), if dG(s)(x, lasta(s)) < r then lasta(s) < lastc(s) for
some c ∈ alph(s) with (c, b) ∈ D.

Note that we can determine whether x is r-critical for (s,B) just knowing
topr(s) and B.

Lemma 3.8.

1. Let s = (V,≤,λ) ∈ M(Σ,D), B ⊆ Σ and r ∈ N. If a vertex x ∈ V is
r-critical for (s,B) then for all t ∈ R(Σ,D) with alph(t) ⊆ B, we have
Sphr(st, x) = Sphr(top2r(s), x).

2. Let w ∈ Σ∞, [w] = (V,≤,λ) ∈ R(Σ,D), x ∈ V and r ∈ N. There is a
factorisation w = uv with u finite such that x is r-critical for ([u], alph(v)).

3.2 Construction of Modality Automata

For a k-ary MΔ1
n(N,
, fin)-modality α, the formula ∀x(α(Y1, . . . ,Yk, x)↔Y0(x))

belongs to MΠ1
n(N,
, fin). Its kernel can be written as a Boolean combination

of FO(N,
)-formulas ϕ(X1, . . . ,Xm) and formulas of the form fin(X). By [12,
Theorem 3.2(2)], there are �, r ∈ N and a formula ψ ∈ FO(N,
) with h = m + �
many free set variables X1, . . . ,Xm+ and one free individual variable y such
that

– ψ is r-local around y (i.e., quantifications in ψ are restricted to nodes z with
d(y, z) ≤ r)

– for any finite dependence alphabet (Σ,D) and for any rooted trace t =
(V,≤,λ) ∈ #R(Σ,D) together with m sets X1, . . . ,Xm contained in V , we
have (t,X1, . . . ,Xm) |= ϕ iff (t,X1, . . . ,Xm) |= ∃Xm+1 . . . ∃Xm+(∀y ψ ∧∧

1≤i≤ fin(Xm+i)).

Let (Σ,D) be some finite dependence alphabet. We define a Büchi-automaton
over the alphabet Σ × 2h as follows. A state of this automaton is a tuple q =
(top2r(s), (Xi)1≤i≤h,B,C) where

– s = (V,≤,λ) ∈ #M(Σ,D) is some finite rooted trace and Xi is contained in
top2r(s) for 1 ≤ i ≤ h,

– B,C ⊆ Σ, (the intuition is that B is used to guess the alphabet of the word
that remains to be read and C is used to check the correctness of this guess)

– for any y in topr(s) which is r-critical for (s,B), if we let Yi be the intersection
of Xi and Sphr(top2r(s), y) for 1 ≤ i ≤ h, then we have Sphr(top2r(s), y) |=
ψ(Y1, . . . ,Yh, y).

Based on this set of states Q and using Lemmas 3.6 and 3.8, we can then define
a sphere automaton A(Σ,D,ψ) in space 2h|Σ|O(r)

that checks, reading a word
w = (w,X1, . . . ,Xh) with w ∈ #Σω whether ([w],X1, . . . ,Xh) |= ∀yψ. In this
automaton, if we have a transition labeled (a, x1, . . . , xh) between states q =

542 P. Gastin and D. Kuske

(top2r(s), (Xi)1≤i≤h,B,C) and q′ = (M′, (X ′
i)1≤i≤h,B′,C′) then we haveM′ =

top2r(sa), B = B′ ∪ {a}, C′ = C \ {a} if C �= ∅ and C′ = B′ otherwise, and
for each 1 ≤ i ≤ �, the set X ′

i is obtained from Xi by removing the vertices in
top2r(s) that are no longer in top2r(sa) and by adding a new vertex if x1 = 1.

Note that the finiteness of a set X can be checked by a fixed automaton.
Applying the usual Boolean operations and projections to these Büchi-automata,
we obtain the following proposition which completes the proof of Theorem 3.1.

Proposition 3.9. Let α be an MΔ1
n(N,
)-modality. Then the following prob-

lem can be solved in space tower(n + 1, poly(|Σ|))
input: a finite dependence alphabet (Σ,D)
output: a modality automaton for (α,Σ,D).

4 nEXPSPACE Lower Bound for MΠ1
n+1(N,
)-Logics

This section is devoted to the proof of

Theorem 4.1. Let n ∈ N. There is an MΠ1
n+1(N,
)-definable temporal logic

TLn+1 such that its uniform satisfiability problem is nEXPSPACE-hard.

Towards this aim, we will restrict ourselves to finite traces, the general result
can easily be derived.

Idea of Proof and Notation: Let M be a deterministic Turing machine work-
ing in space tower(n, m) where m is the length of the input word. A configuration
of M is described by a word �αqβ� (of length tower(n, m)) over some alphabet
Γ where q is the current state, αβ is the tape contents and the head of M is on
the first letter of β. We write w � w′ if there is a transition of M from the config-
uration w to the configuration w′. To encode the computation (w0,w1, . . . ,wk)
of M , we consider the word cn+1w0dn+1 cn+1w1dn+1 . . . cn+1wkdn+1 where cn+1

and dn+1 are new letters that act as delimiter. Now, to relate consecutive config-
urations, we will add counters that describe the index in the configuration (i.e.,
any configuration gets replaced by an alternating sequence of letters and coun-
ters). These counters will use additional letters and the number of additional
letters used determines an upper bound of the value of these counters. Our main
task in this section will be to encode counters that can count up to tower(n, m)
using only linearly many new letters (in m). In a first step, we will encode these
counters using new letters from an infinite set A. This will be achieved using in
addition to the covering relation
 a relation ≺ that is an appropriate restriction
of � from the previous section. Thus, in Section 4.1, we will describe encodings
of successful computations of M as words using the relations
 and ≺. In the
following Section 4.2, we will consider traces over some larger alphabet. This
larger alphabet will allow us to replace the relation ≺ just using the covering
relation
. Thus, we will be able to encode successful computations in traces.
The remaining procedure (to be found in Section 4.3) is standard: from an input
word v of length m, we will define a formula ϕ of the temporal logic TL (that we

Uniform Satisfiability Problem for Local Temporal Logics 543

are going to construct from the Turing machine M) and an alphabet (Σm,D)
of size O(m) such that ϕ is satisfiable in M(Σm,D) iff M accepts the word v.

4.1 Encoding by Words

Notation. We fix some pairwise disjoint alphabets Γ (the “alphabet” of the
Turing machine M), Bi = {0i, 1i} and Ci = {ci, di} for i > 0 and we let Δi =
Γ ∪

⋃n
j≥i Bj ∪

⋃n+1
j≥i Cj . Furthermore, let A be an infinite set and Σ = A �Δ1.

For a set E ⊆ Σ of letters, let ΠE : Σ∗ → E∗ be the projection to E (we will
use this in particular for E = Bi, A,Γ). For ΠBi , we write simply Πi.

In this section, we consider formulas of the logic MSO(
,≺) that speak about
words over the alphabet Σ. Atomic formulas are of the form x ∈ X , λ(x) = a
for a ∈ Δ1, x
 y, and x ≺ y. We define the semantics of ≺ by w |= x ≺ y iff

x < y ∧ (λ(x),λ(y) ∈ A → λ(x) = λ(y)) ∧ ∀z(x < z < y → λ(z) /∈ {λ(x),λ(y)}).

We will freely use formulas like λ(x) ∈ E for E ⊆ Δ1 meaning
∨

e∈E λ(x) = e.
Note that formulas λ(x) = a for a ∈ A are not allowed, but we use λ(x) ∈ A for
¬(λ(x) ∈ Δ1).

Level 1 Counters: Let K1 = c1(AB1)+d1. The intuition is that a word v =
c1a1b1 · · · ambmd1 is a counter whose value is Π1(v) ∈ Bm

1 representing a number
between 0 and 2m − 1.

Let L1 be the set of words v = u0v1u1 · · · vkuk ∈ Δ∗2(K1Δ
∗
2)

+ with vi ∈ K1

and ui ∈ Δ∗2 such that ΠA(vi) uses any letter at most once and ΠA(vi) =
ΠA(vj) for all 1 ≤ i, j ≤ k. In other words, L1 is the union of all languages
Δ∗2(c1a1B1 · · · amB1d1Δ

∗
2)

+ where a1, . . . , am is a sequence of pairwise distinct
letters from A. Here the intuition is that a word w ∈ L1 is a sequence of Δ2

words separated by level 1 counters all using the same number m of bits for some
m > 0.

Lemma 4.2. The language L1 can be defined in FO(
,≺), i.e., there is a sen-
tence ϕ1 ∈ FO(
,≺) such that L1 = {w ∈ Σ∗ | w |= ϕ1}.

Proof. First, one writes a formula expressing that a word belongs to Δ∗2(K1Δ
∗
2)+.

Since we can express that the letter at position x belongs to A (by saying that
it does not belong to the finite set Δ1), this is clearly possible. Next, one has to
express that no factor from K1 contains any letter from A more than once. If A
was finite, this could be achieved by listing all these requirements. The problem
caused by the infinity of A can be solved by saying that any position x with
λ(x) ∈ A is ≺-related to some d1-position: ∀x∃y(λ(x) ∈ A → λ(y) = d1∧x ≺ y).
Finally, factors from K1 shall contain the same sequence of letters of A. By
transitivity, it suffices to express this for consecutive such factors that start and
end, resp., in positions x, z and x′, z′ with λ(x) = λ(x′) = c1, λ(z) = λ(z′) = d1,
and x ≺ z ≺ x′ ≺ z′. Then, the formula requires that the relation ≺, restricted
to the A-positions between x and z is an order-isomorphism (more precisely:
≺-isomorphism) onto the A-positions between x′ and z′. ��

544 P. Gastin and D. Kuske

Level � Counters (1 < � ≤ n): Let K be the set of words v ∈ L−1 ∩
c(K−1B)+d such that if we write v = cv0b0 · · · vkbkd with vi ∈ K−1 and
bi ∈ B then we have Π−1(v0) ∈ 0+

−1, Π−1(vk) ∈ 1+
−1, and Π−1(vi+1) =

succ(Π−1(vi)) for all 0 ≤ i < k, where succ denotes the successor for the
lexicographic order. As above, the intuition is that a word v ∈ K is a counter
whose value is Π(v) ∈ B+

 representing an integer between 0 and tower(�, m)−1
for some m > 0. Note that each bit bi in a level � counter is preceded by a level
�− 1 counter vi whose value is the index of this bit. Note also that words from
K use letters from A ∪

⋃
1≤i≤(Bi ∪ Ci), only.

Now, let L = L−1 ∩ Δ∗+1(KΔ
∗
+1)

+. The intuition is that a word in L

represents a sequence of level � counters all using the same number tower(� −
1, m) of bits for some m > 0.

Computation of the Turing Machine M : Recall that M is a deterministic
Turing machine working in space tower(n, m) with m the length of the input.

Let K be the set of words v ∈ Ln ∩ cn+1(KnΓ)+dn+1 such that if we write
v = cn+1v0γ0 · · · vkγkdn+1 with vi ∈ Kn and γi ∈ Γ then Πn(v0) ∈ 0+

n , Πn(vk) ∈
1+

n , and Πn(vi+1) = succ(Πn(vi)) for all 0 ≤ i < k. As above, the intuition is
that a word v ∈ K describes a configuration of M whose value is ΠΓ (v) ∈ Γ+.
Note that each letter γi in a configuration is preceded by a level n counter vi

whose value is the index of this letter.
Now, let L be the set of words w ∈ Ln ∩ K+ such that if we write w =

w0w1 · · ·wk with wi ∈ K then we have ΠΓ (wi) � ΠΓ (wi+1) for all 0 ≤ i < k. In
other words, the language L is the set of encodings of computations of M .

Lemma 4.3. The language L can be defined in MΠ1
n+1(
,≺), i.e., there is a

sentence ψ ∈MΠ1
n+1(
,≺) such that L = {w ∈ Σ∗ | w |= ψ}.

4.2 From Words to Traces

We consider a disjoint copy Ā = {a | a ∈ A} of A and we let Σ′ = Σ ∪{†}∪ Ā∪
(Σ×Δ1). The dependence relation D on Σ′ is the least reflexive and symmetric
relation such that elements of Σ ∪ {†} are mutually dependent, ā depends on a
only (for a ∈ A), and (σ, δ) depends on σ and δ only. For simplicity, we write M
for the trace monoid M(Σ′,D).

Formulas in this section will mention the actions from Δ1 ∪ {†} ∪ (Δ1 ×Δ1)
only. In this section, we will define a set L′ ⊆ M definable in MSO(N,
) such
that ΠΣ(L′) = L, the language from Lemma 4.3.

For σ ∈ Σ, we let T (σ) be the unique trace having exactly one occurrence of
each letter in {σ} ×Δ1. Define a homomorphism η : Σ∗ → M(Σ′,D) by

η(σ) =

{
ā T (a) a † ā T (a) if σ = a ∈ A

σ†T (σ) otherwise.

For Δ1 = {τ1, . . . , τk}, the traces η(a) and η(σ) with a ∈ A and σ ∈ Δ1 are
depicted in Fig. 3. Note that for any w ∈ Σ∗, we have ΠΣ∪{†}(η(w)) ∈ (Σ†)∗.
The language L′ that we will define here is precisely †η(L).

Uniform Satisfiability Problem for Local Temporal Logics 545

a
†
a

(a, τ1)

(a, τ2)
...

...

(a, τk)

...

a

(a, τ1)

(a, τ2)
...

...

(a, τk)

...

σ
†

(σ, τ1)

(σ, τ2)
...

...

(σ, τk)

...

Fig. 3. The traces η(a) and η(σ)

Lemma 4.4. There is a formula ϕ ∈ FO(N,
) such that a trace t ∈ M satisfies
ϕ iff t ∈ †η(Σ∗)

Proof (Sketch). We construct ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3. The formula ϕ1 ensures that
ΠΣ∪{†}(t) ∈ †(Σ†)∗. The formula ϕ2 ensures that any Σ-labeled node is the
center of some factor η(σ). This is easy if σ ∈ Δ1 since {†} ∪ (Δ1×Δ1) is finite.
For σ ∈ A, it turns out to be sufficient to require the existence of at least |Δ1|+2
many upper and lower neighbors. The formula ϕ3 expresses that the whole trace
is the disjoint union of these factors. ��

For any word w ∈ Σ∗ we have w = ΠΣ(t) where t = †η(w). Thus, the word w
can be seen as a chain in the trace t = †η(w). The predicate (λ(x) ∈ Σ) and the
relations
 and ≺ of w can be expressed in t by FO(N,
)-formulas as follows:

(λ(x) ∈ Σ) = ∃z, (x
 z) ∧ (λ(z) = †),
cover(x, y) = ∃z, (x
 z
 y) ∧ (λ(z) = †),

nx(x, y) = ∃z1∃z2, (x
 z1
 y) ∨ (x
 z1
 z2
 y).

More precisely, for w ∈ Σ∗, t = †η(w) and x, y in t with λ(x),λ(y) ∈ Σ, we
have x
 y in w iff t |= cover(x, y), and x ≺ y in w iff t |= nx(x, y). This
allows immediately to derive the following consequence since L is definable in
MΠ1

n+1(
,≺):

Proposition 4.5. The language †η(L) is MΠ1
n+1(N,
)-definable, i.e., there is

a sentence ψ ∈ MΠ1
n+1(N,
) such that †η(L) = {t ∈ M | t |= ψ}.

4.3 The Lower Bound

Proof (of Theorem 4.1). Recall that the deterministic Turing machine M works
(with an input of length m) in space tower(n, m).

Consider the MΠ1
n+1-definable temporal logic TLn+1 based on the modality

SU, the usual boolean connectives, and the constant COMPUTATION with
[[COMPUTATION]] = ψ, the formula from Proposition 4.5 defining †η(L).

546 P. Gastin and D. Kuske

We denote by q0 and q1 the initial state and the accepting state of M respec-
tively. We also denote by � the blank letter of the tape. Let v = v1 · · · vm be an
input word of the Turing machine M and consider the formula INITv

¬Γ SU (� ∧ ¬Γ SU (q0 ∧ ¬Γ SU (v1 ∧ · · · ¬Γ SU (vm ∧ (¬Γ ∨�) SU �) · · ·)))

which intuitively expresses the fact that the first configuration is actually the
initial configuration of M on the input word v. Consider also the alphabets
Σm = Am ∪Δ1 ⊆ Σ and Σ′m = Σm ∪Am ∪ (Σm ×Δ1) ∪ {†} where |Am| = m,
Am = {a | a ∈ Am} and the dependence relation D defined as above. We claim
that v is accepted by M if and only if there is a trace in M(Σm,D) satisfying
the formula gv = COMPUTATION ∧ INITv ∧ , SU q1. Therefore, the uniform
satisfiability problem for TLn+1 is nEXPSPACE-hard. ��

Remark 4.6. Note that all modalities of the logic TLn+1 are of arity at most two.
Furthermore, the only binary temporal modality is SU. In our hardness proof, it
is only used in the context ¬Γ SU−, (¬Γ ∨�)SU− and ,SU−. Thus, we could
have replaced the binary modality SU by these three unary filter modalities in
the style of [9]. Furthermore, the temporal logic could be deprived of constant
formulas a for a /∈ Γ since they are not used in the hardness proof.

5 Process-Based MΔ1
1(N,
, fin)-Definable Logics

In Sect. 2, we showed that the modalities EX, Eco, EU, and SU can be dealt with
in our framework. The technical report that this paper is based on shows that all
modalities considered in the context of action based local temporal logics fall into
our framework. Hence our upper bound shows that their uniform satisfiability
problem can be solved in space poly(|ϕ|) · tower(2, poly(|Σ|)).

It is the aim of this final section to indicate that also Thiagarajan’s logic
TrPTL [13] can be dealt with in the setting of MΔ1

1(N,
, fin)-definable local
temporal logics. The underlying idea of TrPTL is that the actions of the depen-
dence alphabet are executed by independent processes. Communication between
these processes is possible by the execution of joint actions. Hence, with any ac-
tion a ∈ Σ, we associate a nonempty and finite set of processes p(a) ⊆ N in such
a way that (a, b) ∈ D iff p(a) ∩ p(b) �= ∅. This ensures that events performed by
process i are linearly ordered in any trace t. With this additional information,
one can define modalities that speak about the location of an action. The logic
TrPTL is based on modalities Pi, Oi and Ui (i ∈ N) of arity 0, 1 and 2 respec-
tively. Intuitively, Pi holds if the current vertex is located on process i and Oiϕ
means that ϕ holds at the first vertex of process i which is not below the current
one. Finally, ϕUiψ means that we have ϕ until ψ on the sequence of vertices
located on process i and starting from the last vertex of process i which is below
the current one.

We only explain how to handle Pi, the remaining modalities are discussed
in the technical report. The basic idea is that the index i is dealt with as an
additional argument, i.e., P is considered to be of arity 1. The semantics of P

Uniform Satisfiability Problem for Local Temporal Logics 547

is then given by the first-order formula [[P]](X1, x) = (x ∈ X1). Then, given a
concrete and finite dependence alphabet (Σ,D) together with a concrete func-
tion p : Σ → N, Thiagarajan’s formula Pi is given by P(

∨
a∈p−1(i) a). Thus, a

temporal logic admitting modalities ∨ and P is able to simulate the modality
Pi. Similarly, we can deal with the other process based modalities.

References

1. B. Adsul and M. Sohoni. Complete and tractable local linear time temporal logics
over traces. In Proc. of ICALP’02, number 2380 in LNCS, pages 926–937. Springer
Verlag, 2002.

2. R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In
Proc. of LICS’95, pages 90–100. IEEE Computer Society Press, 1995.

3. V. Diekert and P. Gastin. Local temporal logic is expressively complete for cograph
dependence alphabets. Information and Computation, 195:30–52, 2004.

4. V. Diekert and P. Gastin. Pure future local temporal logics are expressively com-
plete for Mazurkiewicz traces. In Proc. of LATIN’04, number 2976 in LNCS, pages
232–241. Springer Verlag, 2004.

5. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

6. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1991.
7. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic. Oxford University

Press, 1994.
8. P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable

temporal logics are in PSPACE. In Proc. of CONCUR’03, number 2761 in LNCS,
pages 222–236. Springer Verlag, 2003.

9. P. Gastin and M. Mukund. An elementary expressively complete temporal logic for
Mazurkiewicz traces. In Proc. of ICALP’02, number 2380 in LNCS, pages 938–949.
Springer Verlag, 2002.

10. P. Gastin, M. Mukund, and K. Narayan Kumar. Local LTL with past constants
is expressively complete for Mazurkiewicz traces. In Proc. of MFCS’03, number
2747 in LNCS, pages 429–438. Springer Verlag, 2003.

11. M. Mukund and P.S. Thiagarajan. Linear time temporal logics over Mazurkiewicz
traces. In Proc. of MFCS’96, number 1113 in LNCS, pages 62–92. Springer Verlag,
1996.

12. Th. Schwentick and K. Bartelmann. Local normal forms for first-order logic with
applications to games and automata. Discrete Mathematics and Computer Science,
3:109–124, 1999.

13. P.S. Thiagarajan. A trace based extension of linear time temporal logic. In Proc.
of LICS’94, pages 438–447. IEEE Computer Society Press, 1994.

14. P.S. Thiagarajan. A trace consistent subset of PTL. In Proc. of CONCUR’95,
number 962 in LNCS, pages 438–452. Springer Verlag, 1995.

Taming Interface Specifications�

Tiziana Margaria1, A. Prasad Sistla2, Bernhard Steffen3, and Lenore D. Zuck2

1 Georg-August-Universität Göttingen
margaria@informatik.uni-goettingen.de

2 University of Illinois at Chicago
{sistla,lenore}@cs.uic.edu

3 Universität Dortmund
Bernhard.Steffen@cs.uni-dortmund.de

Abstract. Software is often being assembled using third-party components
where the developers have little knowledge of, and even less control over, the
internals of the components comprising the overall system. One obstacle to com-
posing agents is that current formal methods are mainly concerned with “closed”
systems that are built from the ground up. Such systems are fully under the con-
trol of the user. Hence, problems arising from ill-specified components can be
resolved by a close inspection of the systems. When composing systems using
“off-the-shelf” components, this is often no longer the case.

The paper addresses the problem of under-specification, where an off-the-
shelf component does only what it claims to do, however, it claims more be-
haviors than it actually has and that one wishes for, some of which may render
it useless. Given such an under-specified module, we propose a method to au-
tomatically synthesize some safety properties from it that would tame its “bad”
behaviors. The advantage of restricting to safety properties is that they are moni-
torable.

The safety properties are derived using an automata-theoretic approach. We
show that, when restricting to ω-regular languages, there is no maximal safety
property. For this case we construct a sequence of increasingly larger safety prop-
erties. We also show how to construct an infinite-state automata that can capture
any safety property that is contained in the original specifications.

1 Introduction

The process of constructing software is undergoing rapid changes. Instead of a mono-
lithic software development within an organization, increasingly, software is being as-
sembled using third-party components (e.g., JavaBeans, .NET, etc.). The developers
have little knowledge of, and even less control over, the internals of the components
comprising the overall system.

One obstacle to composing agents is that current formal methods are mainly con-
cerned with “closed” systems that are built from the ground up. Such systems are fully
under the control of the user. Hence, problems arising from ill-specified components can

� This research was supported in part by NSF grants CCR-0205571 and CCR-0205363, and
ONR grant N00014-99-1-0131

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 548–561, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Taming Interface Specifications 549

be resolved by a close inspection of the systems. When composing agents using “off-
the-shelf” ones, this is often no longer the case. Out of consideration for proprietary
information, or in order to simplify presentation, companies may provide incomplete
specifications. Worse, some agents may have no description at all except one that can
be obtained by experimentation. Despite being ill-specified, “off-the-shelf” components
might still be attractive enough so that the designer of a new service may wish to use
them. In order to do so safely, the designer must be able to deal with the possibility
that these components may exhibit undesired or unanticipated behavior, which could
potentially compromise the correctness and security of the new system.

The main problem addressed in this paper is that of under-specification. As a simple
example of the phenomenon, consider an interface specification that guarantees “after
input query q is received, output r = response(q) is produced.” The designer of the
interface probably meant a stronger specification, “after q is received, nothing else is
produced until r is produced.” Assume that the later version is sufficient and neces-
sary to ensure the correctness of the entire system consisting of the module and the
interface. Formal methods in general, and model checking in particular, are to fail in
such situations since there is no algorithmic way to provide the model checker with the
proper strengthening of the interface specification. Yet, under the assumption that in-
terface specifications may be partial, there may exist a subset of the allowed behaviors
that guarantees correctness, and one may still choose to use the component, provided
deviations of the interface from this “good” set of behaviors can be detected at runtime.

Assume that we are given

• A finite-state module M , designed by our designer and accompanied by the full
details of its implementation;

• An interface specification ΦI for the external component interacting with the mod-
ule M ; and

• A goal specification Φ for the entire system which must be satisfied by the interac-
tion between the module and the interface.

The system thus contains the composition of the module with the external compo-
nent. The goal of the designer is to guarantee that the behavior of the system satisfies
the goal specification Φ. Obviously, our underlying assumption is that the external com-
ponent is helpful for the module, i.e., it computes things that the module cannot accom-
plish on its own. For example, if the module is a “general best buyer,” and the external
component has access to numerous bookstores which the module has no access to, the
module uses the component to obtain the best book deals. However, the book buying
component may be under-specified, thus, allow for behaviors for which the designer
cannot guarantee the goal (while, of course, allow also for ”good” behaviors, otherwise
the designer will not be inclined to use it!).

The designer has a reason to believe that the real interface specification is more
restricted than ΦI , say it is ΦI ∧ φ for some φ. With this assumption, the designer can
compose the module with the component so that Φ is guaranteed. If the property φ can
be run-time monitored, i.e., if there is a simple module that runs synchronously with the
system and watches for violations of φ, the designer can then go ahead and safely use
the designed module as long as the monitor does not alarm.

550 T. Margaria et al.

Using a run-time monitor would allow the system to operate correctly as long as
the external component satisfies φ. When it violates it, the run-time monitor alerts the
user of the system that a violation occurred (and Φ is no longer guaranteed). However,
this should not be viewed as a major obstacle – the applications intended are clearly not
“safety critical” since no designer would use “black box” components inside a safety
critical application. Such components can only be used in applications where a violation
is tolerable. E.g., a leak of the credit card number, if caught in a timely manner, allows
the holder of the credit card to alert the credit company and avoid bogus charges.

In this paper we focus on the problem of synthesizing a property φ that can be run-
time monitored. In fact, we restrict the search to safety properties. Safety properties
are those that can only be violated by a finite prefix. Hence, they can be monitored. In
future work we will show how to synthesize the module M . Here, we restrict to the
case where M is trivial. Thus, given ΦI , we synthesize a safety property φ such that
ΦI ∧ φ → Φ.

We consider properties that are expressed as ω-sequences over a finite alphabet.
Essentially, our synthesis problem reduces to that of finding safety properties that are
contained in the property defined by Ξ = ¬ΦI ∨ Φ. While there is always some safety
property φ that guarantees ΦI ∧ φ → Φ (e.g., the trivially false property), there is,
in general no “maximal” one: Assume that Ξ is neither valid nor an obvious safety
property. We show that when Ξ is ω-regular, then for every safety property φ1 such
that ΦI ∧ φ1 → Φ there exists is a safety property φ2 �= φ1 that is implied by φ1 and
that satisfies ΦI ∧ φ2 → Φ.

We compute a family of safety properties φk such that the higher k is, the more
“accurate” and costly is the computation of φk. All these safety properties are given
by deterministic finite state automata. As to be expected, the number of states of these
automata increases linearly with k.

We also define a class of, possibly infinite-state, deterministic automata called
bounded automata and show that the set of sequences accepted by bounded automata
gives the desired safety property φ. We also prove a completeness result, showing that
every safety property contained in the property defined by Ξ is accepted by some
bounded automaton. In order for these automata to be useful, they need to be recur-
sive, i.e., computable. With this in mind, we define history-based recursive automata
that can be applied in practice.

The paper is organized as follows. Section 2 introduces the notation and definitions.
Section 3 establishes the impossibility of finding a maximal safety properties for the
case of ω-regular languages and contains the construction of the sequence of finite-
state ω-automata for the synthesis of the desired safety property. Section 4 contains the
definitions and results of our study of bounded automata. Section 5 compares our work
with related work, and Section 6 contains discussion and concluding remarks.

2 Preliminaries

Sequences. Let S be a finite set. Let σ = s0, s1, . . . be a possibly infinite sequence
over S. The length of σ, |σ|, is defined to be the number of elements in σ if σ is finite,
and ω otherwise. We let ; denote the concatenation operator for sequences so that if

Taming Interface Specifications 551

α1 is a finite sequence and α2 is a either a finite or a ω-sequence then α1; α2 is the
concatenation of the two sequences in that order.

For integers i and j such that 0 ≤ i ≤ j < |σ|, σ[i, j] denotes the (finite) sequence
si, . . . sj . A prefix of σ is any σ[0, j] for j < |σ|. We denote the set of σ’s prefixes by
Pref (σ). Given an integer i, 0 ≤ i < |σ|, we denote by σ(i) the suffix of σ that starts
with si.

For an infinite sequence σ : s0, . . ., we denote by inf(σ) the set of S-elements that
occur in σ infinitely many times, i.e., inf(σ) = {s : si = s for infinitely many i’s}.

Languages. A language L over a finite alphabet Σ is a set of finite or infinite sequences
over Σ. When L consists only of infinite strings (sequences), we sometimes refer to it
as an ω-language. For a language L, we denote the set of prefixes of L by Pref (L), i.e.,

Pref (L) =
⋃
σ∈L

Pref (σ)

Following [6,2], an ω-language L is a safety property if for every σ ∈ Σ∞:

Pref (σ) ⊆ Pref (L) =⇒ σ ∈ L

i.e., L is a safety property if it is limit closed – for every ω-string σ, if every prefix of σ
is a prefix of some L-string, then σ must be an L-string.

Safety properties play an important role in the results reported here.

Büchi Automata A Büchi automaton (NBA for short)A on infinite strings is described
by a quintuple (Q,Σ, δ, q0,F) where:

– Q is a finite set of states;
– Σ is a finite alphabet of symbols;
– δ : Q×Σ → 2Q is a transition function;
– q0 ∈ Q is an initial state; and
– F ⊆ Q is a set of accepting states.

The generalized transition function δ∗ : Q×Σ∗ → 2Q is defined in the usual way,
i.e., for every state q, δ∗(q, ε) = {q}, and for any σ ∈ Σ∗ and a ∈ Σ, δ∗(q, σ; a) =
∪q′∈δ∗(q,σ)δ(q′, a).

If for every (q, a) ∈ Q × Σ, |δ(q, a)| = 1, then A is called a deterministic Büchi
automaton (or DBA for short).

Let σ : a1, . . . be an infinite sequence over Σ. A run r of A on σ is an infinite
sequence q0, . . . over Q such that:

– q0 = q0;
– for every i > 0, qi ∈ δ(qi−1, ai);

A run r is accepting if inf(r)∩F �= ∅. The automatonA accepts the ω-string σ if it has
an accepting run over σ (for the case of DBAs, the automaton has a single run over σ).
The language accepted byA, denoted by L(A), is the set of ω-strings thatA accepts. A
language L′ is called ω-regular if it is an ω-language that is accepted by some (possibly
non-deterministic) Büchi automaton.

A Büchi automaton A can also be used to define a regular automaton that is just
like A, only the acceptance condition of a run r is that its last state is accepting. We
denote the regular language accepted by the regular version of A by Lf(A).

552 T. Margaria et al.

3 Synthesis of Safety Properties by Finite-State Automata

As described in Section 1, given an interface specification ΦI of a readily available off-
the-shelf reactive component and a desired goal specification Φ, we wish to derive a
safety property φ so that ΦI ∧ φ → Φ. We assume that both ΦI and Φ are given by
temporal logic formulas. Our methods, however, can also be applied to the case where
ΦI and Φ are described by ω-automata. As before, denote Ξ = ¬ΦI ∨ Φ. Obviously,
any safety property φ such that φ → Ξ is a satisfies our requirements.

In this section we describe how to obtain φ as deterministic automaton. The advan-
tage of obtaining the required φ as a deterministic automaton is that it can be directly
used to monitor the execution of the module: The automaton simply runs on the execu-
tions of the module and a violation of the safety property by the execution is indicated
by the automaton entering a “bad” state. In this section we restrict to ω-automata, for
which, as we show, only a limited set of safety properties can be derived. To overcome
this limitation we present, in the next section, automata that are not necessarily finite-
state and study their power.

Using the methods of [13,3], we first obtain a Büchi automatonA whose language
is the set of ω-strings satisfying Ξ . Thus, we reduce the problem to that of obtaining a
deterministic automaton whose language is a safety property that is contained in L(A).
Roughly speaking, we start with the automaton that acceptsΞ , and construct a family of
automata, indexed by some integer k, each accepting a sequence that satisfies Ξ where
an accepting state is realized in every block of k consecutive states.

Example 1. Suppose an off-the-shelf permission manager that receives requests by a
user and grants appropriate permissions, e.g., authorizations to access different re-
sources. Assume there are two types of requests, r1 and r2, with two corresponding
grants, g1 and g2 respectively. The permission manager guarantees that every request is
eventually responded by granting of the corresponding permission. Thus ΦI is:

(r1 → g1) ∧ (r2 → g2)

Assume a user who wishes to use e component and who requires that a r1 request
receives a higher priority than a r2 request, at the possibly cost of ignoring an r2 request,
i.e., that an r1 should be granted before any potentially pending r2 requests are granted.
Thus, the goal Φ of the user is:

(r1 → (¬g2)U g1)

where U is the temporal “until” operator.
Note user’s requirement for r1 is stronger than that guaranteed by the component,

while the user’s requirement for r2 is weaker.
The user can construct a monitor that monitors for violations of a safety property

that is contained in (¬ΦI ∨ Φ), e.g., of the property:

(r1 → (¬g2)W g1)

where W is the unless (weak until) temporal operator. Thus, the property does not
require g1 to hold after r1 (but does require that as long as g1 doesn’t hold, neither
does g2).

Taming Interface Specifications 553

3.1 Derivation of a Safety Property Using Büchi Automata

Ideally, given a property described by a Büchi automatonA, we would like to synthesize
the maximal safety property that is contained in L(A). However, as the following lemma
shows, if L(A) is not already a safety property, then there exists no maximal safety
property in it that can be accepted by a Büchi automaton. The proof of this lemma is
given at the end of this subsection.

Lemma 1. Let A be a Büchi automaton and assume L(A) is not a safety property.
Then for every safety property L′ ⊂ L(A), there exists a safety property L′′ such that
L′ ⊂ L′′ ⊂ L(A). Moreover, if L′ is ω-regular then so is L′′.

In the following, we construct from a given Büchi automaton A and an integer k,
an automaton Ak that accepts those sequences in L(A) that have an accepting A-run
in which an accepting state appears in every k-length block of consecutive states, thus
L(Ak) ⊆ L(A) is a safety property.

Assume a Büchi automaton A : = (QA,Σ, δA, q0
A,FA). Let k > 0 be an integer.

We first define an ω-language Lk(A), that is a subset of L(A), where every string has
an accepting run where accepting (FA) states appear at least every k states from the
beginning. Formally,

Lk(A) = {σ ∈ L(A) : for some acceptingA-run r : q0, . . . over σ,
for every i ≥ 0, r[i× k, ((i + 1)× k)− 1] ∩ FA �= ∅}

Note that ⋃
k>0

Lk(A) ⊆ L(A)

This containment may, in general, be strict.
In general, Lk(A) may not be contained in Lk+1(A). However, it is not difficult to

show that, if k′ ≥ 2k − 1 then Lk(A) ⊆ Lk′(A). As a consequence, by increasing k,
we can get larger and larger safety properties contained in L(A).

We next describe the construction of a DBA Ak that accepts the language Lk(A).
The construction of the automaton is an extension of the standard subset construction
combined with partitioning the input into segments of length k. The segment partition-
ing is done by means of a modulo k counter. The automatonAk simulates the possible
runs of A on the input, and maintains the set of states that A may be at after reading
each prefix. With each such state, Ak also keeps a bit, called accepting state bit, which
indicates if an accepting state had been reached since the beginning of the most recent
input segment.

Let R = FA × {1} ∪ (QA \ FA) × {0, 1}. Fix some k > 0. Define the Büchi
automatonAk = (Q′,Σ, δ′, q′0,F

′) where:

– Q′ = 2R × {0, 1, ..., k− 1};
– q′0 =

{
({(q0

A, 0)}, k − 1) if q0
A �∈ FA

({(q0
A, 1)}, k − 1) otherwise

– F ′ is the set of all Q′’s states whose first coordinate is non-empty, i.e., F ′ = (2R−
∅)× {0, 1, ..., k − 1}

554 T. Margaria et al.

To define δ′, we use two auxiliary transition functions β, γ : 2R ×Σ → 2R defined
below. The function β captures the behavior ofAk within a segment: Note that the first
coordinate of a state q′ ∈ Q′ is a set of the form {(qi, bi) : 1 ≤ i ≤ m} where each qi

is a state A can be in after reading a prefix, and bi is the accepting bit which is 1 iff an
accepting state was reached since the beginning of that segment. After reading an input
letter s from a state q′, Ak reaches all the states A reaches from qi after reading s (i.e.,
δ(qi, s)), and the accepting bit is 1 if either it was 1 before (i.e., bi = 1), or the state
that is reached is accepting. Let β : 2R ×Σ → 2R be defined by:

β(∪m
i=1{(qi, bi)}, s)={(q, b) : ∃i.1 ≤ i ≤ m ∧ q ∈ δ(qi, s) ∧ b↔ (q ∈ FA ∨ bi =1)}

The second auxiliary transition system, γ : 2R × Σ → 2R, captures the behavior of
A when moving in between segments. It is similar to β, only that it restricts moves
between segments to be only from states whose bi is 1.

γ(∪m
i=1{(qi, bi)}, s)={(q, b) : ∃i.1 ≤ i ≤ m ∧ bi =1 ∧ q ∈ δ(qi, s) ∧ (b ↔ q ∈ FA)}

We now define δ′. For c > 0,

δ′
(
〈∪m

i=1{(qi, bi)}, c〉, s
)

= {
(
β(∪m

i=1{(qi, bi)}, s), c− 1
)
}

and for c = 0,

δ′
(
〈∪m

i=1{(qi, bi)}, 0〉, s
)

= {
(
γ(∪m

i=1{(qi, bi)}, s), k − 1
)
}

Lemma 2. Lk(A) is a safety property and L(Ak) = Lk(A).

Proof. Note that in the automatonAk, there are no transitions from states in Q′−F ′ to
states in F ′. Thus the states of the Ak are partitioned into good states (i.e., members of
F ′) and bad states (i.e., members of Q′ − F ′), so that an input sequence is accepted by
it iff the unique run of Ak on the input contains only good states. From [11] it follows
that L(Ak) is a safety property. It remains to show that L(Ak) = Lk(A).
⊇: Assume σ ∈ Lk(A). Thus, there exists an acceptingA-run r = q0, . . . such that

for each j ≥ 0, r[jk, (j + 1)k] ∩ FA �= ∅. Let r̂ : (R0, c0), (R1, c1), . . . be the Ak-run
on σ. For every i, let Qi ⊆ QA be the set {q : (q, b) ∈ Ri for b = 0 or b = 1};i.e., Qi

is the set consisting of projections of each pair in Ri on its first component. By a simple
induction, it can be shown that for i ≥ 0, qi ∈ Qi. Since each Qi is non-empty, r̂ is an
accepting run of Ak. It therefore follows that σ ∈ L(Ak).
⊆: Assume σ = s1, . . . is in L(Ak). Let r̂ : (R0, c0), (R1, c1), . . . be Ak’s run on

σ. For every i, let Qi ⊆ QA be the set {q : (q, b) ∈ Ri for b = 0 or b = 1}. Since r̂ is
accepting, Qi �= ∅ for every i ≥ 0. Define an infinite tree whose nodes are elements of
the form (q, j) ∈ QA × N. The root of the tree is (q0

A, 0). For a tree node n = (q, j),
the children of n are the nodes (n′, j +1) such that n′ ∈ δA(q, sj+1)∩Qj+1. Note that
since r̂ is an acceptingAk-run, this tree is an infinite tree. Since it is finitely branching,
form Köning’s lemma, it follows that the tree has an infinite path r which is an A-
run. Moreover, from the way the accepting bits bj are updated, it follows that, for every
i ≥ 0, the finite sequence r[ik, (i+1)k] contains at least one occurrence of an FA-state.
Consequently, r is an acceptingA- run. It therefore follows that σ ∈ Lk(A). ��

Taming Interface Specifications 555

Note. There are alternate ways of deriving safety properties contained in L(A). We
chose the one above for its relative simplicity.
We can now prove Lemma 1:

Proof (of Lemma 1). Assume L′ ⊂ L(A) is a safety property. Since L(A) is not a
safety property, there exists some σ ∈ Σω \ L(A) such that Pref (σ) ⊆ Pref (L(A))).
Since L′ ⊂ L(A), it is the case, σ is not in L′. Since L′ is safety property, there exists
some α ∈ Pref (σ) which is a bad prefix for L′, i.e., αΣω ∩ L′ = ∅. Consider now the
set Lα = αΣω ∩ L(A) of the L(A) ω-strings with prefix α. The set Lα is an infinite
ω-regular set. Let B be the Büchi automaton that accepts it, i.e., L(B) = Lα. Let k be
an integer greater than or equal to the number of states in B, and consider the language
Lk(B). From Lemma 2 it follows that Lk(B) is a ω-regular safety property contained
in Lα. Since k is at least as large as the number of states of B, Lk(B) �= ∅. Since L′ and
Lk(B) are safety properties, from [11], we see that L′′ = L′ ∪ Lk(B) is also a safety
property. From the fact that L′ and Lk(B) are disjoint subsets of L(A) and Lk(B) �= ∅,
it follows that L′ ⊂ L′′ ⊂ L(A). Note that since ω-languages are closed under union,
it follows that if L′ is ω-regular then so is L′′. ��

r2

q0

q2

q3

q4

q5

q1

∗

∗

¬r1

¬r1

r1, r2

r1

r1

g1

r1

¬g1

¬g2

Fig. 1. Automaton for ¬ΦI ∨ Φ

In Fig 1 we give the automatonA for the property¬ΦI ∨Φ for the permission man-
ager example,i.e., example 1. Notice that this is a non-deterministic Buchi automaton.
All double circles indicate accepting states and the state with an incoming edge from
outside is the initial state. The input alphabet is {r1, g1, r2, g2}. The * symbol on an
input transition indicates that this transition can take place on any input symbol, i.e., it
represents four transitions corresponding to each of the input symbols. The ¬g1 symbol

556 T. Margaria et al.

g1

〈{(q4, 1)}, 0〉

〈{(q5, 1)}, 0〉〈{(q0, 1)}, 0〉

〈{(q1, 0), (q4, 1)}, 0〉

〈{(q1, 0), (q5, 1)}, 0〉

r1

r1

r1

¬r1

¬r1

¬r1

r1, r2 r1, r2

g1

Fig. 2. Our safety property: the k = 1 approximation

on a transition indicates that this transition can take place on any input symbol other
than g1, thus it represents three transitions. The symbols ¬g2,¬r1 are similarly used.

In Fig. 2 we see the k = 1 approximation for our permission manager example,
i.e., the automatonA1. This is a deterministic automaton. Each state of this automaton
has the structure as given in the definition. There is an additional state, not shown in
the figure, which is 〈∅, 0〉. All unspecified transitions in the figure go to this state. For
example, there is a transition from the state 〈{(q5, 1)}, 0〉 to the state on input g2. All
states excepting 〈∅, 0〉 are accepting states. It is not difficult to see that L(A) = L(A1).
Note that this does not contradict Lemma 1 since L(A) is a safety property.

4 Synthesis of Safety Properties by Bounded Automata

Section 3 describes the construction of deterministic finite state automata that synthe-
size safety properties contained in L(A). It is often the case that “interesting” safety
properties that are contained in L(A) cannot be captured by finite state automata. For
example, suppose that L(A) is the set of ω-strings over {a, b}where a appears infinitely
often. Using the construction of Section 3, each L(Ak) requires that the number of bs
between successive occurrences of a be bounded by a constant. Thus, they all rule out,
e.g., a sequence where the number of b’s between the ith and the (i + 1)st occurrence
of a is i. On the other hand, an infinite state automaton that dynamically changes the
bound on the number of input symbols before an acceptance state ofA occurs on a run,
can accept such a sequence.

Let A = (QA,Σ, δA, q0
A,FA) be a Büchi automaton which we fix for this section.

We generalize the construction of Subsection 3.1 using a class of infinite-state automata
called bounded automata, and show that the language accepted by each bounded au-
tomaton is a safety property that is contained in L(A). We also prove the converse,
showing that every safety property contained in L(A) is accepted by some bounded
automaton.

Assume some (possibly infinite) set YB . A bounded automaton B is described by a
tuple (QB,Σ, δB, q0

B,FB) where:

Taming Interface Specifications 557

– QB ⊆ YB × 2QA×{0,1} × (N ∪ {∞}) is a set of states;
– Σ is a finite alphabet;
– δB : QB × Σ → QB is a transition function. We further require that for every
〈r,C, i〉, 〈r′,C′, i′〉 ∈ QB and a ∈ Σ, if δB(〈r,C, i〉, a) = 〈r′,C′, i′〉 then the
following all hold:

• If i =∞ then i′ = ∞.
• If i′ < i then C′ = {(q′, b′) : ∃.(q, b) ∈ C such that q′ ∈ δA(q, a) ∧ (b′ =

1)⇔ (b = 1 ∨ q′ ∈ FA)}.
• If i′ ≥ i then C′ = {(q′, b′) : ∃.(q, 1) ∈ C such that q′ ∈ δA(q, a) ∧ (b =

1 ⇔ q′ ∈ FA)}.
– q0

B is the initial state, and it is required to be of the form (r, {(q0
A, b)}, i) where

b′ = 1⇔ q0
A ∈ FA and i �= ∞.

– FB = {〈r,C, i〉 : C �= ∅ ∧ i �=∞}.

It is to be noted that the range of δB is QB (and not 2QB). This is done to make the
notation simple and it also makes a bounded automaton as a deterministic automaton.
A run of B, an accepting run, and the language accepted by B are defined just in the
case of Büchi automata.

The definition δB implies that once the second component of a state in a run is
empty, it remains so. Similarly, if the third component of a state in a run is ∞, then it
remains so. Thus, once a run enters a state in QB \FB , it remains there. (It thus follows
that it suffices to define a run as accepting if it never reaches a QB \ FB-state.) From
[11] it follows that:

Lemma 3. For a bounded automata B, L(B) is a safety property.

Intuitively, given an input string, B simulatesA. Suppose B reaches a state 〈r,C, i〉.
For each (q, b) ∈ C, q is a state A reaches on some run on the input seen thus far.
The integer i is an upper bound on the number of steps before an accepting state of
A is reached on some run. There are two types of transitions in δB— decreasing and
non-decreasing transitions— denoting, respectively, those transitions that decrease i
and those that do not. In case of decreasing transitions, C is updated to be the suc-
cessor states of the corresponding runs of A. In the case of non-decreasing transitions,
only those runs containing an accepting state of A, since the last occurrence of a non-
decreasing transition, are considered for updating C. The bit b for each (q, b) ∈ C
records whether an accepting state has been reached since the last occurrence of a non-
decreasing transition.

Let α be a finite string overΣ. If δ∗B(q0
B, α) = 〈r,C, i〉, then for every infinite string

σ ∈ L(B) such that α ∈ Pref (σ), for some j ≤ i, δ∗A(q0
A, σ|α|+j) ∩ FA �= ∅ (where σj

denotes the prefix of σ of length j). Thus, i is an upper bound on the number of inputs
before an accepting state is going to appear after α is read on some run of A. From the
description of the operation of B, given above, it is not difficult to show the following
lemma.

Lemma 4. For any bounded automaton B, L(B) ⊆ L(A).

558 T. Margaria et al.

Proof. Let σ = s1, ... be a string in L(B). Let u =〈r0,C0, i0〉, ...,〈rj ,Cj , ij〉, ... be the
(unique) run of B on σ. For each j ≥ 0, let Cj = (Qj , bj). As in the proof of Lemma 1,
define an infinite tree whose nodes are elements of the form (q, j) ∈ QA ×N. The root
of the tree is (q0

A, 0). For a tree node n = (q, j), where j ≥ 0, the children of n are
the nodes (n′, j + 1) such that n′ ∈ δA(q, sj+1) ∩Qj+1. This tree is infinite and hence
has an infinite path. Every such path defines a run of A on σ. Let kj be the number
of non-decreasing transitions of B that occur in the finite run u[0, j]. From our earlier
discussion, it should be easy to see that every path of length j from the root node of the
above tree contains at least kj nodes of the form (q′, l) where q′ ∈ FA. Since the run
u has infinite number of non-decreasing transitions appearing in it, it is the case that
every infinite path in the tree contains infinite nodes of the form (q′, l) where q′ ∈ FA.
Hence each such path gives an accepting run of A on σ. Since there exists at least one
such path, we see that σ ∈ L(A). ��

We next show that for every safety property in L(A) there exists a bounded automa-
ton that accepts it.

Recall that for a Büchi automatonA, Lf (A) is the regular language defined by the
regular version of A. Let S ⊆ L(A) be a safety property. Note that every sequence
in S has infinite number of prefixes that are in Lf (A). For a sequence σ ∈ S and
α ∈ Pref(σ), let min idx (σ, α) = min{|β| : α;β ∈ Lf (A) ∩Pref (σ)}. Note that if
α ∈ Lf(A) ∩ Pref (σ), then min idx (σ, α) = 0.

For any finite string α ∈ Σ∗, let Z(α, S) = {min idx (σ, α) : σ ∈ S and α ∈
Pref (σ)}. Obviously, if α ∈ Lf(A) ∩ Pref (S), then Z(α, S) = {0}. Also, if α /∈
Pref (S) then Z(α, S) = ∅. The following lemma establishes that Z(α, S) is always
finite.

Lemma 5. For any α ∈ Σ∗, Z(α, S) is finite.

Proof. From the comments above it suffices to prove the claim for the case when α ∈
Pref (S)\Lf(A). Assume, by way of contradiction, that Z(α, S) is infinite. Since Σ is
a finite set, it follows that there exists some a0 ∈ Σ such that Z(αa0, S) is an infinite,
hence α1 = α; a0 �∈ Lf(A). We can repeat this observation inductively, and obtain
an infinite sequence of finite sequences α = α0, a1, . . . such that for every i ≥ 0,
αi+1 = αi; ai for some ai ∈ Σ, Z(αi, S) is infinite, and αi �∈ Lf(A). Let β ∈ Σω

be the limit sequence of the αi’s. Since for every i, αi ∈ Pref (S), and S is a safety
property, it follows that β ∈ S. All the prefixes of β of length greater than |α| are not
in Lf (A). Consequently, β /∈ L(A). It therefore follows that S �⊆ L(A), which is a
contradiction. ��

For α ∈ Σ∗, let idx (α, S) = maxi∈Z(α,S) i. If Z(α, S) is empty, we define
idx (α, S) = ∞. Thus, idx (α, S) ∈ N iff α ∈ Pref (S). With a safety property
S ⊆ L(A), we associate a bounded automaton D = (QD,Σ, δD, q0

D,FD) where:

– QD consists of triples of the form 〈α,C, i〉 where α ∈ Σ∗, C ⊆ QA × {0, 1}, and
i = idx (α, S);

– For every 〈α,C, i〉 ∈ QD and a∈Σ, δD(〈α,C, i〉, a)=〈α′,C′, i′〉 implies α′=α; a.
– q0

D is the triple 〈ε, (q0
A, b), idx (ε, S)〉 where ε is the empty sequence and b = 1 ⇔

q0
A ∈ FA;

Taming Interface Specifications 559

For α ∈ Σ∗, it is easy to see that δ∗D(q0
D, α) is of the form (α,C, idx (α, S)). More-

over, if α ∈ Pref (S), then C �= ∅ and i �= ∞. Thus, after having read any prefix of
a S-sequence, D is in a FD-state. Thus, S ⊆ L(D). Conversely, if σ /∈ S, then there
exists some α ∈ Pref (σ) \ Pref (S). In this case, the state reached by D after reading
α is of the form (α,C,∞), and thus σ /∈ L(D). We thus have:

Lemma 6. L(D) = S.

The following theorem follows from Lemma 4 and Lemma 6:

Theorem 1 (Completeness). Let A be a Büchi automaton. Then every safety property
S ⊆ L(A) is accepted by some bounded automaton.

Recursive and History Based Automata. We have shown that the class of languages
accepted by bounded automata is exactly the class of safety properties contained in
L(A). We say that a bounded automaton B = (QB,Σ, δB, q0

B,FB) is recursive if the
set QB is recursive and δB is a computable function. It is to be noted that only recursive
bounded automata are useful. It is not difficult to see that the automata Ak that we
defined in Subsection 3.1 are recursive bounded automata as each of these is a finite
state automaton. Recall that, in these automata, k is the length of the segments into
which the input string is divided. We can generalize the automata Ak, so that it starts
with an initial value of k and increases the value of k dynamically; that is, it increases
the lengths of the segments according to some computable function f , so that f(i) is
the length of the ith segment.

We can now define a class of recursive bounded automata, called history based au-
tomata: Let f : Σ∗×2QA×{0,1} → (N∪{∞}) be some computable function. A history
based automaton with respect to f is the bounded automatonBf =(QB,Σ, δB, q0

B,FB)
where QB = {(α,C, f(α,C)) : α ∈ Σ∗, C ⊆ QA×{0, 1}}. Note that Bf is uniquely
defined. Essentially, the bound in each state of Bf is defined by the recursive function
f . It is not difficult to show that every recursive bounded automaton is homomorphic to
a history based automaton.

5 Related Work

Some of the techniques we employ are somewhat reminiscent of techniques used for
verifying that a safety property described by a state machine satisfies a correctness spec-
ification given by an automaton or temporal logic. For example, simulation relations/
state-functions together with well-founded mappings [5,1,12] have been proposed in
the literature for this purpose. Our bounded automata use a form of well-founded map-
pings in the form of positive integer values that are components of each state. (This is as
it should be, since we need to use some counters to ensure that an accepting state even-
tually appears.) However, here we are not trying to establish the correctness of a given
safety property defined by a state machine, but rather, we are deriving safety properties
that are contained in the language of an automaton.

In [7,8] Larsen et.al. propose a method for turning an implicit specification of a
component into an explicit one. I.e., given a context specification (in their case a process

560 T. Margaria et al.

algebraic expression with a hole, where the desired components needs to be plugged in)
and an overall specification, they fully automatically derive a temporal safety property
characterizing the set of all implementations which, together with the given context,
satisfy the overall specification. While this technique has been developed for compo-
nent synthesis, it can also be used for synthesizing optimal monitors in a setting where
the interface specification ΦI and the goal specification Φ are both safety properties. In
this paper, we do not make any assumptions on ΦI and Φ. They can be arbitrary prop-
erties specified in temporal logic or by automata. We are aiming at exploiting liveness
guarantees of external components (contexts), in order to establish liveness properties
of the overall system under certain additional safety assumptions, which we can run
time check (monitor). This allows us to guarantee that the overall system is as live as
the context, as long as the constructed monitor does not cause an alarm.

Perhaps closest to our work in motivation is the work in [10]. The approach taken
there, however, is that of considering the interaction between the module and the inter-
face as a 2-player game, where the interface has a winning strategy if it can guarantee
that no matter what the module does, Φ is met while maintaining ΦI . Run-time moni-
toring is used to verify that the interface has a winning strategy.

There has been much work done in the literature on monitoring violations of safety
properties in distributed systems. In these works, the safety property is typically explic-
itly specified by the user. Our work is more on deriving safety properties from compo-
nent specifications than developing algorithms for monitoring given safety properties.
In this sense, the approach to use safety properties for monitoring that have been au-
tomatically derived by observation using techniques adapted from automata learning
(see [4]) is closer in spirit to the proposal here. Much attention has since been spent in
optimizing the automatic learning of the monitors [9]. However, the learned monitors
play a different role: whereas the learned monitors are good, but by no means complete,
sensors for detecting unexpected anomalies, the monitors derived with the techniques
of this paper imply the specifying property as long as the guarantees of the component
provider are true.

6 Conclusions and Discussion

In this paper, we considered the problem of customizing a given, off-the-shelf, reactive
component to user requirements. In this process, we assume that the reactive module’s
external behavior is specified by a formula ΦI and the desired goal specifications is
given by a formula Φ. Both ΦI and Φ can be arbitrary properties, i.e. , they need not be
safety properties. We presented methods for obtaining a safety specification φ so that
ΦI∧φ → Φ. Our methods obtain φ as a deterministic (possibly infinite state) automaton.
This automaton can be used to monitor execution of the off-the-shelf component so that
it does not violate φ and hence satisfies the goal specification Φ.

There are a number of issues that need to be further addressed. When the desired
property is given by a finite state automaton, then monitoring executions can be done
in real time, i.e., each successive state change of the automaton can be done within a
constant time that only depends on the size of the automaton but not on the length of
the computation, i.e., the history seen thus far. On the other hand, when φ is given by

Taming Interface Specifications 561

an infinite state automaton, real time change in the state of the automaton may not al-
ways be achievable. For example, we defined a class of infinite state automata, called
history based automata, that divide the input into segments and ensure that an appro-
priate liveness condition is satisfied in each segment. In these automata, the lengths of
successive segments can vary dynamically and are computed as functions of the history
using a computable function. In such cases, one has to ensure that the computation of
the length of the next segment does not take too long a time. Of course, one can com-
pute lengths of successive segments by simple functions such as increasing the lengths
by a constant factor, etc. These and other issues need to be further investigated. We also
need to further investigate practical cases where these techniques can be applied.

References

1. M. Abadi and L. Lamport. The existence of state mappings. In Proceedings of the ACM
Symposium on Logic in Computer Science, 1988.

2. B. Alpern and F. Schneider. Defining liveness. Information Processing Letters, 21:181–185,
1985.

3. E. A. Emerson and A. P. Sistla. Triple exponential decision procedure for the logic ctl*. In
Workshop on the Logics of Program, Carnegie-Mellon University, 1983.

4. H. Hungar and B. Steffen. Behavior-based model construction. STTT, 6(1):4–14, 2004.
5. B. Jonsson. Compositional verification of distributed systems. In Proceedings of the 6th

ACM Symposium on Principles of Distributed Computing, 1987.
6. L. Lamport. Logical foundation, distributed systems- methods and tools for specification.

Springer-Verlag Lecture Notes in Computer Science, 190, 1985.
7. K. Larsen. Ideal specification formalisms = expressivity + compositionality + decidability +

testability + ... In Invited Lecture at CONCUR 1990, LNCS 458, 1990.
8. K. Larsen. The expressive power of implicit specifications. In ICALP 1991, LNCS 510, 1991.
9. T. Margaria, H. Raffelt, and B. Steffen. Knowledge-based relevance filtering for efficient

system-level test-based model generation (to appear). Innovations in Systems and Software
Engineering, a NASA Journal, Springer Verlag.

10. A. Pnueli, A. Zaks, and L. D. Zuck. Monitoring interfaces for faults. In Proceedings of
the 5th Workshop on Runtime Verification (RV’05), 2005. To appear in a special issue of
ENTCS.

11. A. P. Sistla. On characterization of safety and liveness properties in temporal logic. In
Proceedings of the ACM Symposium on Principle of Distributed Computing, 1985.

12. A. P. Sistla. Proving correctness with respect to nondeterministic safety specifications. In-
formation Processing Letters, 39:45–49, 1991.

13. M. Vardi, P. Wolper, and A. P. Sistla. Reasoning about infinite computations. In Proceedings
of IEEE Symposium on Foundations of Computer Science, 1983.

Synthesis of Distributed Systems from

Knowledge-Based Specifications�,��

Ron van der Meyden1 and Thomas Wilke2

1 School of Computer Science and Engineering,
University of New South Wales & National ICT Australia

meyden@nicta.com.au
2 Institut für Informatik, Christian-Albrechts-Universität zu Kiel

wilke@ti.informatik.uni-kiel.de

Abstract. We consider the problem of synthesizing protocols in a dis-
tributed setting satisfying specifications phrased in the logic of linear
time and knowledge. On the one hand, we show that synthesis is already
undecidable in environments with just two agents, one of which observes
every aspect of the system state and one of which observes nothing of
it. This falsifies a conjecture of van der Meyden and Vardi from CON-
CUR’96. On the other hand, we prove that synthesis is decidable in
broadcast environments, verifying a conjecture of van der Meyden and
Vardi from the same paper, and we show that for specifications that
are positive in the knowledge modalities the synthesis problem can be
reduced to the same problem for formulas without knowledge modali-
ties. After adapting Pnueli and Rosner’s decidability result on synthesis
for linear temporal logic specifications in hierarchical environments, we
obtain that, in our setting, synthesis is decidable for specifications posi-
tive in the knowledge modalities when restricted to hierarchical environ-
ments. We conclude the decidability in hierarchical systems of a property
closely related to nondeducibility on strategies, a notion that has been
studied in computer security.

1 Introduction

In program synthesis, one starts with a specification of a system and attempts
to derive a program that implements this specification. This problem is partic-
ularly challenging in the context of open systems, which are required to respond
appropriately to a sequence of inputs provided by an environment that is not
under the full control of the program to be synthesized. A specification of an
open system is said to be realizable if there exists a protocol with the property
that the specification is satisfied, whatever the behaviour of the environment. A
problem that has received significant attention is the synthesis of open systems
� Work supported by a grant from the Australian Research Council. National ICT

Australia is funded through the Australian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research Council.

�� A full version of this paper is available at http://www.cse.unsw.edu.au/∼meyden/
research/unsw-cse-tr-0504.pdf

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 562–576, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Synthesis of Distributed Systems from Knowledge-Based Specifications 563

from temporal logic specifications [2,1,4,10,8,15,16,18,21,19]. It has been shown
that, under certain circumstances, the synthesis process can be automated.

Often, designers of concurrent systems reason informally but explicitly not
just about time, but also about the uncertainty that systems components have
about the global state of the system. One finds statements such as “if process
X knows that the transaction will be aborted, it should rollback its local contri-
bution and terminate immediately.” Such assertions can be made formal in the
logic of knowledge [6]. A variety of distributed protocols have been studied using
the logic of knowledge, and it has been argued that such an approach leads to a
more perspicuous presentation of the design, and to implementations in which
components are optimal in their use of information—see [6] for many citations.

The logic of knowledge also provides expressive capabilities useful for the
specification of information flow in security protocols [7,13]. For example, the
Dining Cryptographers protocol [3] provides a mechanism for a sender to com-
municate a message anonymously. This can be specified in the logic of knowledge
by the requirement that all parties come to know a fact p, but all agents except
the sender should not come to know the identity of the sender [13].

A common assumption in both types of applications of the logic of knowledge
is that agents have perfect recall of their observations, i.e., that they keep a
complete record of all events they have observed, and determine what they know
using this complete record. This assumption is of particular relevance both when
optimal use of information acquired is a design concern, and when we wish to
determine the capabilities of the most powerful possible adversary in a security
analysis. Realizability of specifications in the logic of knowledge and linear time
under the assumption of perfect recall has been studied by van der Meyden
and Vardi [14]. They showed that the realizability problem is decidable for such
specifications in the context of an open system involving a single agent.

In general, realizability for specifications in the logic of knowledge and time
is undecidable when there is more than one agent, because the problem is al-
ready undecidable even for two-agent systems and specifications involving only
linear-time temporal operators, by results of Pnueli and Rosner [17]. However, a
number of cases have been identified where multi-agent temporal specifications
are decidable. Pnueli and Rosner identify a class of architectures for process com-
munication as yielding a decidable case for synthesis from linear-time temporal
logic specification. One example in this class is pipelines, in which communica-
tion is constrained to occur along a chain of processes. The characterization of
the decidable cases has recently been refined [9].

These positive results for realizability from temporal specifications led van
der Meyden and Vardi to conjecture that similar results could be found for spec-
ifications in the logic of knowledge and time. In particular, they proposed that
hierarchical systems and broadcast systems might be cases where realizability
of specifications in the logic of knowledge and linear time could be found to
be decidable. Hierarchical systems are systems in which agents can be linearly
ordered in such a way that each agent in the sequence observes (hence knows)
at least as much as the preceding agents. An example of an hierarchical system

564 R. van der Meyden and T. Wilke

is a system of three agents with security clearances to read unclassified, secret
and top-secret documents, respectively (where a security clearance implies a ca-
pability to read documents at or below the security level.)1 Broadcast systems
are systems in which agents maintain a private state, information about which
they can communicate to other agents, but only by a broadcast to all other
agents, which is synchronous in the sense that all agents receive a broadcast
at the same time. It has been shown that these assumptions lead to lowered
complexity of a variety of problems in the logic of knowledge (e.g., a logic of
knowledge and propositional quantification goes from being highly undecidable
to decidable and axiomatizable in hierarchical systems [5], and implementations
of knowledge based programs go from having a highly complex structure to being
finite state in broadcast environments [12]) so the conjecture that they might
make realizability decidable is reasonable.

We provide in this paper a complete resolution of van der Meyden and Vardi’s
conjectures. In the case of broadcast systems, we show that the conjecture is true.
On the contrary, the conjecture concerning hierarchical systems is false: realiz-
ability for specifications in the logic of knowledge and linear time is undecidable
in hierarchical systems with two or more agents. On the positive side, however,
we identify a special class of formulas: those in which the knowledge operators
have only positive occurrences, and show that for such formulas the realizability
problem can be reduced to a problem of realizability of specifications in linear-
time temporal logic. This result enables known cases of decidable realizability
problems for linear-time temporal logic to be transferred to give decidable cases
of realizability for the logic of knowledge and linear time. In particular, we show
that realizability of linear-time temporal logic formulas is decidable in hierarchi-
cal systems, so the reduction yields the decidability of realizability of positive
specifications in the logic of linear time and knowledge in hierarchical systems.
As an application of this result, we establish the decidability of a property closely
related to the notion of “nondeducibility on strategies” [20] from the computer
security literature.

2 Basic Definitions and Main Result

In this section we lay out the definition of the synthesis problem we study,
provide an example that illustrates how it may express the type of information
flow property that has been studied in the computer security literature, and
state the main results of the paper.

2.1 The Logic of Linear Time and Knowledge

We fix a finite set Prop of propositional variables and a finite number n of agents,
which are simply numbered 1 through n. The formulas of the logic of linear time
and knowledge is built from the elements of Prop using boolean connectives, the
usual temporal operators X and U and the unary operators Ki for i ∈ [n].
1 This definition differs slightly from the definition of hierarchical system shown by

Pnueli and Rosner to yield a decidable class of architectures.

Synthesis of Distributed Systems from Knowledge-Based Specifications 565

For convenience, for each i ∈ [n] the operator Li is also allowed; it is the dual
of Ki and an abbreviation for ¬Ki¬. Similarly, G (always) and F (eventually)
and R (release, dual to U) are allowed.

A formula is said to be positive if every occurrence of a knowledge operator
Ki is under an even number of negations.

An interpreted system is a tuple I = (R, {∼i}i∈[n], π) where R is a set of so-
called runs, π : R×N → 2Prop is an interpretation function which assigns to each
point (r, m) of a run the propositions that hold true in it, and {∼i}i∈[n] is a family
of indistinguishability relations on the points of all runs. Each indistinguishability
relation ∼i is required to be an equivalence relation; the relation ∼i relates the
points that are indistinguishable by agent i.

Given a point (r, m) of an interpreted system I, we define what it means
for a formula ϕ in the logic of linear time and knowledge to hold at this point,
denoted I, (r, m) |= ϕ:

– I, (r, m) |= p if p ∈ π(r, m),
– I, (r, m) |= Xψ if I, (r, m + 1) |= ψ,
– I, (r, m) |= ψ U χ if there exists m′ ≥ m such that I, (r, l) |= ψ for all l with

m ≤ l < m′ and I, (r, m′) |= χ,
– I, (r, m) |= Kiψ if I, (r′, m′) |= ψ for all (r′, m′) with (r, m) ∼i (r′, m′).

The boolean connectives are dealt with as usual.
We write I, r |= ϕ if I, (r, 0) |= ϕ and I |= ϕ if I, r |= ϕ for all runs r of I.

2.2 Systems with Perfect Recall in Finite-State Environments

A signature of size n is a family {ACTi}i∈{e,1,...,n} where each set ACTi is a finite,
non-empty set of actions for the environment e or agent i ∈ [n]. The set of joint
actions of such a signature is defined by ACT = ACTe × ACT1 × · · · × ACTn.
When a denotes a joint action, we write ai for the action of agent i in a.

An environment over a signature as just described is a tuple

E = (S, I, Pe, τ, {Oi}i∈[n], Prop, π) (1)

where S is a finite set of states, I ⊆ S is the set of initial states, Pe : S → 2ACTe

is the protocol of the environment, which says which actions can be performed by
the environment in a given state, τ : ACT → (S → S) is the transition function,
which, for every joint action a specifies a transition function τ(a), {Oi}i∈[n] is a
family of observation functions Oi : S → O for some set O of observations, Prop
is a finite set of propositions, and πe : S → 2Prop is an interpretation function
which assigns to each state the propositions that hold in it.

We require Pe(s) �= ∅ for each s ∈ S. We also note that τ(a)(s) needs only
be defined if ae ∈ Pe(s).

A run of such an environment is an infinite sequence s0, s1, s2, . . . such that
s0 ∈ I and such that for all m there exists a ∈ ACT with ae ∈ Pe(sm) and
τ(a)(sm) = sm+1. When r denotes such a run and (r, m) is a point, we set
r(m) = sm.

566 R. van der Meyden and T. Wilke

To obtain an interpreted system, we set π(r, m) = πe(r(m)) for every point
(r, m). Further, we let Oi(r, m) = Oi(r(0))Oi(r(1)) . . . Oi(r(m)) for every agent i
and call Oi(r, m) the local state of agent i at point (r, m). Using this notation, we
define ∼i by (r, m) ∼i (r′, m′) iff Oi(r, m) = Oi(r′, m′). (Note that this implies
m = m′.) This indistinguishability relation is called synchronous perfect recall.
The resulting interpreted system is denoted I(E).

2.3 Protocols, Realizability, Synthesis Problem

Assume we are given an environment E as above. A protocol for agent i is a
function Pi : O+ → ACTi. A joint protocol is a family P = {Pi}i∈[n] where
each Pi is a protocol for agent i. Given such a protocol and a run r in the
environment, we say r is consistent with the protocol if for every m there exists
a ∈ ACTe such that r(m + 1) = τ(a, P1(O1(r, m)), . . . , Pn(On(r, m)))(r(m)).
The interpreted system which is obtained from I(E) by restricting its runs to
runs consistent with P is denoted I(E , P).

We say a formula ϕ is realizable in an environment E if there exists a joint pro-
tocol P such that I(E , P) |= ϕ. The synthesis problem is to determine whether
a given formula is realizable in a given environment.

2.4 Hierarchical and Broadcast Environments

Hierarchical environments [5] are those in which for all states s and agents
i ∈ [n − 1], we have that Oi(s) = Oi(t) implies Oi+1(s) = Oi+1(t). Intuitively,
this means that each agent in the sequence observes not more than the preceding
agent. Clearly the same property holds for the indistinguishability relations on
points derived using the assumption of perfect recall. The name derives from the
fact that the equivalence classes of these relations form a hierarchically nested
collection of sets.

Say that agent i is omniscient if for all states s, we have Oi(s) = s, i.e., the
complete state is observable to the agent. Say that agent i is blind if for all states
s, we have Oi(s) = ⊥, for some fixed value ⊥. Clearly, a system with agent 1
omniscient and agent 2 blind is hierarchical. This type of simple hierarchical
environment will play a rôle in our undecidability result, Theorem 1.

Broadcast environments [12] model situations in which agents may maintain
private information, but where the only means by which this information can be
communicated is by synchronous simultaneous broadcast to all agents.

Our definition of broadcast environment in this paper will be slightly more
general than that in [12]. Formally, we define a broadcast environment to be
an environment E = (S, I, Pe, τ, {Oi}i∈[n], Prop, π) of a specific structure, deter-
mined by the following ingredients:

– a finite set S0 of shared states,
– a common observation function Oc with domain S0,
– an action interpretation function τ0 : ACT → (S0 → S0),
– an environment action function f : S0 → 2ACTe ,
– for each agent i, a set Si of private states, and
– for each agent i, an action interpretation function τi : ACTi → (Si → Si).

Synthesis of Distributed Systems from Knowledge-Based Specifications 567

The environment E is now determined by S = S0 × S1 × · · · × Sn and

Oi((s0, . . . , sn)) = (Oc(s0), si) , (2)
Pe((s0, . . . , sn)) = f(s0) , (3)

τ(a)((s0, s1, . . . , sn)) = (τ0(a)(s0), τ1(a1)(s1), . . . , τn(an)(sn)) . (4)

Observe that these definitions guarantee that (1) the private state si of agent i is
observable and modifiable only by agent i, (2) agent i’s actions depend on agent
i’s private state and the shared state only, (3) the protocol of the environment
may depend on the shared state only.

For notational convenience, if s = (s0, . . . , sn) denotes a state, we will often
write pi(s) to denote agent i’s private state si.

2.5 A Security Example

Realizability of specifications in the logic of linear time and knowledge may be
used to express a type of information flow property similar to those studied in
the computer security literature. Consider a system with two agents High and
Low, subject to a security policy that permits High to observe any information
belonging to Low, but does not permit any information known only to High to
flow to Low. If the system has been designed in an insecure fashion, and contains
a “covert channel” that enables unintended information flow, High and Low may
be able to collude to ensure that Low comes to know some secret belonging to
High. (Concretely, such collusion may come about if Low has managed to place
a Trojan Horse program at High.) We show how to formulate a version of this
question as a realizability problem.

Let E be an environment with agents H (High) and L (Low) describing the
possible states of the system we wish to analyse for unintended information
flows. We may capture the assumption that information is permitted to flow
from Low to High by defining states the observation functions by OH(s) =
(OL(s), PH(s)), where OL(s) is Low’s observation in s and PH(s) is additional
private information observable to High but not to Low. Note that this makes
the environment hierarchical with respect to the ordering H , L on the agents.
Suppose that p is a proposition whose value depends only on PH(s), and is
moreover unaffected by the agents’ actions. Then we may phrase the question
“Can High and Low collude to reliably pass the information p from High to
Low?” as the problem of whether the formula F(KLp ∨ KL¬p) is realizable.

This question is closely related to, but somewhat stronger than, the notion of
“(non)deducibility on strategies” of Wittbold and Johnson [20]. It can be shown
that deducibility on strategies corresponds to the formula F(KL(p) ∨ KL(¬p))
being true on some run, rather than all runs, as required by our definition of
realizability, with Low acting passively rather than having a choice of protocol.
Realizability of the branching time formula EF(KL(p) ∨ KL(¬p)), (where the
path quantifier Eϕ means that ϕ is true on some computation path) would
correspond more directly to deducibility on strategies. Nevertheless, realizability
of F(KL(p) ∨ KL(¬p)) does seem to correspond to an interesting and intuitive
security notion, which we call strong deducibility on strategies in the sequel.

568 R. van der Meyden and T. Wilke

2.6 Main Results

We start with the theorem stating that the synthesis problem is undecidable in
hierarchical environments. The proof is given in Section 4.

Theorem 1. The synthesis problem for distributed systems with respect to spec-
ifications in the logic of linear time and knowledge is undecidable in an envi-
ronment with two agents, the first being omniscient, the second being blind. In
particular, it is undecidable in hierarchical environments.

Our proof yields an even stronger statement: The problem remains unde-
cidable for the case where the protocol of the blind agent is fixed (so only the
protocol for the omniscient agent needs to be synthesized) and the specification
does not contain the omniscient agent’s knowledge operator (but does contain
the blind agent’s knowledge operator).

For broadcast systems, however, it turns out that synthesis is decidable. The
following result, proved in Section 3, is by a reduction to the case of a single
agent.

Theorem 2. The synthesis problem for specifications in the logic of linear time
and knowledge is decidable in broadcast environments.

As stated before, we can moreover get to decidable cases when we restrict
the syntax of the specifications. Such results are based on the following theorem,
which is proved in Section 5.

Theorem 3. For positive specifications ϕ in the logic of linear time and knowl-
edge, and environments E, there exists an effective construction of a formula ϕ′

of linear time temporal logic and an environment E′ such that ϕ is realizable in
E iff ϕ′ is realizable in E′.

Moreover, if E is hierarchical, then so is E′.

As the synthesis problem for distributed systems with respect to specifica-
tions in the logic of linear time is decidable in hierarchical systems (see below),
we obtain:

Corollary 4. The synthesis problem for positive specifications in the logic of
linear time and knowledge is decidable in hierarchical environments.

Noting that F(KLp ∨ KL¬p) is a positive formula, we obtain the following
result concerning the notion from computer security of Section 2.5.

Corollary 5. Strong deducibility on strategies is decidable in hierarchical envi-
ronments.

Our definition of hierarchical systems and the definition of pipelines shown
by Pnueli and Rosner [17] to yield a decidable case of realizability for linear-time
logic specifications in multi-agent systems are similar in spirit, but differ in some
key respects. (Our definition is adjusted to the knowledge-based setting, that

Synthesis of Distributed Systems from Knowledge-Based Specifications 569

is, hierarchies are specified in terms of observation functions, whereas Pnueli
and Rosner use a definition which is expressed in terms of properties of the
architecture of the system in question.) We therefore also prove that realizability
of linear-time logic specifications is decidable in hierarchical systems, closely
following Pnueli and Rosner’s arguments.

Theorem 6. The synthesis problem for distributed systems with respect to spec-
ifications in the logic of linear time is decidable in hierarchical systems.

3 Broadcast Environments

In this section we describe the major steps of Theorem 2, by means of a reduc-
tion to the synthesis problem for specifications in the logic of linear time and
knowledge in single agent environments, which is decidable by the results of [14].

The following notion is useful for the proof that the reduction works. Define
an isomorphism of interpreted systems I = (R, {∼i}i∈[n], π) and I ′ = (R′, {∼′i
}i∈[n], π

′) to be a bijection f between the runs of I and the runs of I ′ such that
(1) π(r, k) = π′(f(r), k) for all r ∈ R, and k ∈ N and (2) (r, n) ∼i (r′, n′) iff
(f(r), n) ∼′i (f(r′), n′), for all runs r, r ∈ R, k, k′ ∈ N and agents i. We say I
and I ′ are isomorphic, denoted I ∼= I ′, if there exists an isomorphism from I
to I ′.

The following can be shown by a straightforward induction on the construc-
tion of the formula.

Lemma 7. If f is an isomorphism of interpreted systems I and I′, then for all
formulas ϕ of the logic of linear time and knowledge, runs r of I and times k,
we have I, (r, k) |= ϕ iff I ′, (f(r), k) |= ϕ.

To prove Theorem 2, we break the reduction into two stages. Since we syn-
thesize a deterministic protocol for each agent and transitions of agents’ private
state depend only on their choices of action, we can always derive an agent’s
private state from its initial private state and the sequence of observations it has
made of the shared state. This is formalised in the following construction.

Given a broadcast environment E , define the environment

E ′ = (S′, I ′, P ′e, τ
′, {O′i}i∈[n], Prop, π′) (5)

over the same signature by

S′ = {0, 1} × S , I ′ = {0} × I , (6)
π′((x, s)) = π(s) , P ′e((x, s)) = Pe(s) , (7)
O′i((0, s)) = (Oc(s), pi(s)) , O′i((1, s)) = Oc(s) , (8)

τ ′(a)((x, s)) = (1, τ(a)(s)) . (9)

So E ′ is just like E with the only difference that all but the initial observation of
the private state is suppressed.

The fact that we have defined protocols to be deterministic (and that the
semantics for knowledge assumes implicitly that the protocol being executed is
common knowledge) plays a critical role in the following result.

570 R. van der Meyden and T. Wilke

Lemma 8. Let ϕ be a formula of the logic of linear time and knowledge. Then
ϕ is realizable in E iff ϕ is realizable in E ′.

Proof (sketched). For each protocol P for E , we define a protocol P↓ for E ′, and
for each protocol P ′ for E ′ we define a protocol P↑such that I(E , P) ∼= I(E ′, P↓)
and I(E ′, P ′) ∼= I(E , P↑). From Lemma 7, we can then conclude that any formula
ϕ is realizable in E iff ϕ is realizable in E ′.

The transformation from E to E ′ shows that (with respect to each determinis-
tic joint protocol) an agent’s knowledge is completely determined by a sequence
of the form Oi(s0)Oc(s1) . . . Oc(sk), where s0, . . . , sk is a sequence of states of
E. In a second step, we show how the remaining dependency on Oi(s0) can be
eliminated by a further transformation. The basic idea is that we add a compo-
nent to the state space in order to have a memory of the initial state of E at the
start of the run and make the actions depend on this. Formally, we proceed as
follows.

Let Ii = {si | (s0, s1, . . . , sn) ∈ I} be the set of possible initial private states
of agent i in E. We define an environment Ec = (Sc, Ic, P c

e , τc,Oc
c, Propc, πc)

with a single agent that we call c, signature defined by

ACT c
e = ACTe , ACT c

c = (I1 → ACT1)× . . .× (In → ACTn) , (10)

and components defined by

Sc = I × S′ , Ic = {(s, (0, s)) | s ∈ I} , (11)
P c

e ((s, t)) = P ′e(t) , Propc = Prop ∪ {pi,x | i ∈ [n], x ∈ Ii} , (12)
Oc

c((s, (x, t))) = Oc(t) , (13)

and τc((ae, (α1, . . . , αn)))((s, t)) = (s, τ ′((ae, α1(p1(s)), . . . , αn(pn(s))))(t)).
Given a formula ϕ of the logic of linear time and knowledge, define ϕc to be the
formula obtained, recursively, by replacing each subformula of the form Kiψ by∧

x∈Ii

(pi,x → Kc(pi,x → ψc)) . (14)

Then we can prove the following.

Lemma 9. If ϕ is a formula of the logic of linear time and knowledge, then ϕ
is realizable in E′ iff ϕc is realizable in Ec.

Proof (sketched). First note that we can convert a system I(Ec, P c) to a system
In(Ec, P c) for n agents by defining the equivalence relations ∼c

i on points in
the usual way, using the functions Oc

i on points, defined by Oc
i (r, k) = pc

i (r(0)) ·
Oc

c(r, k), where pc
i ((s, t)) = pi(s).

We first show that for every protocol P c for c we can find a protocol P ′ for
E ′ such that In(Ec, P c) ∼= I(E′, P ′), and vice versa.

We then show by an induction on the construction of the formula ψ that
In(Ec, P c), (r, k) |= Kiψ iff I(Ec, P c), (r, k) |=

∧
x∈Ii

(pi,x → Kc(pi,x → ψc)),
which yields the result, when we take Lemma 7 into account.

Synthesis of Distributed Systems from Knowledge-Based Specifications 571

Combining these two lemmas, the transformation from E to E′ to Ec re-
duces the realizability problem for the multi-agent broadcast environment E to
a problem of realizability in a single agent environment Ec, which is decidable
by results of van der Meyden and Vardi [12].

We note that this result plays essentially on the determinism of the evolu-
tion of the private states. If we were to add a source of non-determinism, e.g.,
independent inputs to the agents, then, using techniques from [17], one could
show that the realizability problem would be undecidable already for linear-time
temporal logic formulas.

4 Undecidability for Temporal and Knowledge Formulas

In this section we sketch the proof of Theorem 1, for which we need background
on lossy counter machines. For technical reasons, our set-up differs slightly from
the one in [11].

A complete counter machine with forbidden state is a tuple L=(Q, k, qI , qf ,Δ)
where Q is a finite set of states, k is a natural number, the number of coun-
ters of the machine, qI ∈ Q is the initial state of L, qf ∈ Q, and Δ ⊆
(Q×{0, . . . , k − 1}×Q)∪ (Q×{0, . . . , k− 1}×Q×Q) is the set of commands.
We require that (q, 0, qf) ∈ Δ for every q ∈ Q (justifying the term “complete”).

A configuration of such a counter machine is a tuple (q, r0, . . . , rk−1) where
q is a state and rj ∈ N for all j < k, representing the values of the counters.

To define lossy semantics, we start with the definition of three binary relations
on (Q∪Q̄∪Δ)×Nk where Q is an isomorphic copy of Q. Given a state q ∈ Q, its
isomorphic copy is denoted q. First, for every q ∈ Q, we let (q, r0, . . . , rk−1) →al

(γ, r′0, . . . , r
′
k−1) if γ is a command starting with q and r′j ≤ rj for all j < k.

Second, we let (γ, r0, . . . , rk−1) →am (q′, r′0, . . . , r′k−1) if

1. γ = (q, j, q′), 0 < r′j ≤ rj + 1 and r′j′ ≤ rj′ for all j′ �= j,
2. γ = (q, j, q1, q2), rj > 0, q′ = q1, r′j ≤ rj − 1, and r′j′ ≤ rj′ for all j′ �= j, or
3. γ = (q, j, q1, q2), rj = 0, q′ = q2, and r′j′ ≤ rj′ for all j′.

And, third, we let (q, r0, . . . , rk−1) →aal (q′, r′0, . . . , r
′
k−1) if (q, r0, . . . , rk−1) →l

(q′, r′0, . . . , r
′
k−1).

Next, we set ⇒ = →al ◦ →am ◦ →aal and define a lossy run of a counter
machine to be a sequence s0 ⇒ s1 ⇒ s2 ⇒ . . . of configurations. It is called an
infinite run if the sequence is infinite.

Theorem 10 ([11]). The following problem is undecidable. Given a complete
counter machine L with forbidden state qf , is there a number n such that there
exists an infinite lossy run of L starting with the configuration (qI , 0, . . . , 0, n)
and never going through state qf .

There is another relation we will also need in the proof to follow. This relation
is denoted →am′

. It is different from →am in that 2. and 3. above are simply

572 R. van der Meyden and T. Wilke

replaced by γ = (q, j, q1, q2), q′ ∈ {q1, q2} and r′j′ ≤ rj′ for all j′ < k. In
particular, we have →am ⊆ →am′

.
We say s0, s1, s2, . . . is a refined computation of the given machine if s0 →al

s1 →am s2 →aal s3 →al s4 →am s5 →aal s6 →al We say it is a refined weak
computation if s0 →al s1 →am′

s2 →aal s3 →al s4 →am′
s5 →aal s6 →al . . .

The important observations here are:

1. A refined weak computation s0, s1, s2, . . . is a refined computation iff for
every m with s3m+1=((q, j, q1, q2), r0, . . . , rk−1) and s3m+2 =(q′, r′0, . . . , r

′
k−1)

we have q′ = q2 if rj = 0 and else q′ = q1 and r′j < rj .
2. There is an infinite computation starting with (qI , 0, . . . , 0, n) for some n

iff there is an infinite refined weak computation s0, s1, s2, . . . starting with
(qI , 0, . . . , 0, n) and satisfying the above requirement.

We prove Theorem 1 by reducing the problem from Corollary 10 (in the
variant from the previous remark) to the realizability problem. This will yield
the desired result. To this end, let L be a complete k-counter machine with
forbidden state as above. We construct an environment E with two agents and
a formula ϕ in the language of linear time and knowledge such that there exists
a joint protocol P realizing ϕ in E iff there exists a natural number n such that
there exists an infinite run of L starting with (qI , 0, . . . , 0, n) and avoiding qf .

We call the two agents by the names A and B, where agent A is omniscient
and agent B is blind. We construct the environment E in such a way that for
each joint protocol P we can view I(E , P) as a refined weak computation of L.
In addition, we will construct ϕ in such a way that I(E , P) |= ϕ iff this sequence
is a refined computation and never goes through qf .

To be able to view I(E , P) as a refined computation of L, we simply consider,
for each m, the set of all states a run of I(E , P) can be in. This gives us a multi-
set of states of E in a natural way, and with each such multiset we will associate
an element of a refined computation.

Our environment operates in two phases. In the first phase, the environment
uses nondeterminism to generate the initial configuration of the machine, that
is, the number n counter k − 1 gets assigned in the initial configuration. In the
second phase, the refined computation of L is simulated.

The important point is the following. There needs to be some “coordination”
between the individual runs of I(E , P) so as to ensure that, for instance, the
decision to switch from the first to the second phase is made at the same time
for all runs. This is where agent B comes into the picture. Since B is blind, if B
decides to perform an action corresponding to switch from the first to the second
phase, it will take this decision at the same point in time of all runs. Similarly,
if we want to check that the value of a counter is 0, this can be checked by the
knowledge operator for agent B, which can quantify over all runs, because B is
blind. Agent A is used for “individual” actions, in particular, to model lossiness.

The actual number of runs, hence distinguishable points, may in general be
infinite, but since choice of action is based only on the prefixes, at each moment
of time, there will be a finite number of equivalence classes of points for agent A.
We use the number of these distinct equivalence classes to represent the values

Synthesis of Distributed Systems from Knowledge-Based Specifications 573

of the counters. To distinguish different counters we use different states, that is,
depending on the current state of a point of an equivalence class, this class will
be counted for a certain counter or not.

The environment has the following state set:

S = {spawn, stable, trash, c0, . . . , ck−1, d0, . . . , dk−1} ∪Q ∪Q ∪Δ (15)

where Q is a disjoint copy of Q. The state spawn is the initial state. The states
spawn and stable are the states of the first phase whereas the other states are
the states of the second phase. We also set πe(s) = s for every s ∈ S, that is, we
have a proposition for each state expressing that the system is in that state.

Let P be any joint protocol and let I(E , P) = (R, π, {∼i}i∈[n]). For each m,
let Rm be the set of prefixes of elements from R of length m and let Mm be the
multi-set of all end states of the elements from Rm.

Now, assume a sequence s0, s1, s2, . . . is a refined weak computation starting
with s0 = (qI , 0, . . . , 0, n). Then there will be a joint protocol P such that the
following holds.

First, for every m ≤ n and s different from spawn and stable, we will have:

Mm(spawn) = 1 , Mm(stable) = m , Mm(s) = 0 . (16)

And for all m ≥ 0 with sm = (α, r0, . . . , rk−1) and every α′ ∈ Q∪Δ∪Q different
from α, we will have:

Mn+m(spawn) = 0 , Mn+m(stable) = 0 , Mn+m(α) = 1 , (17)
Mn+m(α′) = 0 , Mn+m(cj) = ri . (18)

That means, in particular, that the number of occurrences of state cj corresponds
exactly to the value of counter j. In the above, we haven’t said anything about
the states dj and the state trash. The latter is simply used as a dummy state if
we want to discontinue a run. The former are used as indicator variables to have
some control over the lossiness. In our construction, if we want to decrement a
counter we could simply switch from ci to trash. What we do is to transition
from ci to di and then to trash; as a consequence we can specify in a formula
that a decrement for counter i has occurred.

For the above claim, the converse will also hold true. That is, for every
system induced by a joint protocol, there will be a sequence as above satisfying
the specified conditions, with one exception. There will also be a system where,
for every m and any state s different from spawn and stable, Mm(spawn) = 1,
Mm(stable) = m, and Mm(s) = 0. That is, the second phase will never be
started in that system.

Since, by (12) and (13) the environment is constructed so that at each mo-
ment of time at most one element α of Q ∪ Δ ∪ Q can occur, and the agent
B has synchronous perfect recall but is blind, the formula LBα says that α is
the unique such element occurring at the current time. Similarly, LBci says that
there is at least one prefix of length equal to the current time ending in state ci.

574 R. van der Meyden and T. Wilke

Taking all this into account, in order to make the reduction work, we will
only have to choose our formula ϕ to be the conjunction of the three formulas.
The first conjunct is FLBqI which rules out the last system, which never gets to
the second phase. The second conjunct ist∧
(q,j,q1,q2)∈Δ

G((q, j, q1, q2) → ((KB¬ci → XLBq2) ∧ (LBcj → X(LBq1 ∧ LBdj))) ,

which takes care of the condition from the observation on weak refined computa-
tions. And the thrid conjunct is

∧
GKB¬qf ; it makes sure we get a run avoiding

qf . Note that this formula refers only to agent B’s knowledge: we do not need the
knowledge modality for agent A. What remains to be specified are the actions
and the transitions. This can be dealt with easily.

5 A Reduction for Positive Formulas

We now define the reduction promised in Theorem 3, and prove its correctness.
Let E be an environment for n agents and ϕ a positive formula. We construct

an environment E′ and a formula ϕ′ in the language of linear time (without
knowledge operators) such that ϕ is realizable in E iff ϕ′ is realizable in E ′.
Moreover, we will be able to derive a protocol realizing ϕ in E from a protocol
realizing ϕ′ in E ′ in a straightforward way (just by forgetting).

The idea is that in the new system in each state each agent has to say which of
his knowledge subformulas he thinks are true by choosing a corresponding action.
That the agent’s choices are indeed correct will then be verified by modifying ϕ
appropriately. To describe E′ we need some more notation. For every i ∈ [n] we
let Φi be the set of subformulas of ϕ of the form Kiψ and Φ∗ the union of all
these sets.

We first describe the sets of actions for E ′, which are denoted by ACT ′e,
ACT ′1, . . . , ACT ′n. We set ACT ′e = ACTe and ACT ′i = ACTi × 2Φi for every
i ∈ [n]. The system E ′ is given by E ′ = (S×2Φ∗

, I ′, P ′e, τ
′, {O′i}i∈[n], P

′, π′e) where
the individual components are defined by

I ′ = {(sI , ∅) | sI ∈ I} , O′i((s,Ψ)) = Oi(s) , (19)
P ′ = P ∪ {pψ | ψ ∈ Φ∗} , π′e((s,Ψ)) = πe(s) ∪ {pψ | ψ ∈ Ψ} , (20)

and τ ′(ae, (a1,Ψ1), . . . , (an,Ψn)) = (τ(a, a1, . . . , an),Ψ1 ∪ · · · ∪ Ψn).
To obtain the new specification ϕ′, we proceed as follows. First, we define

the flattened variant of a formula ψ, denoted ψ. The formula ψ is the temporal
formula obtained from ψ by substituting every maximal knowledge subformula
ψ′ by Xpψ′ . For example, if ψ is K1K2p → GK1q then ψ is (XpK1K2p) → GXpK1q.

Now, the new specification simply says that whenever agent i claims Kiψ is
true it is, in fact, true and uses flattened variants of the knowledge formulas:

ϕ′ = ϕ ∧
∧

i∈[n],Kiψ∈Φi

G(XpKiψ → ψ) . (21)

Synthesis of Distributed Systems from Knowledge-Based Specifications 575

We will also write χ for the big conjunction on the right-hand side. The use of
the X-operator is due to the fact that the claims about valid subformulas an
agent makes by carrying out an action are only available in the environment in
the next state. We omit the proof of correctness of the above construction.

6 Conclusion

We have shown that there exist classes of environments and formulas (broad-
cast, or hierarchical environments and positive formulas) for which synthesis
from specifications in the logic of linear time and knowledge is decidable. These
results suggest several directions for further research. One is to obtain a more
general characterization of the decidable cases, as has been done for tempo-
ral specifications [9]. There are also good reasons to explore versions of these
problems where the temporal logic used is for branching time rather than linear
time. In particular, results on branching-time versions would be directly ap-
plicable to classical security notions such as deducibility on strategies, which we
have closely appromixated but not precisely captured with our notion of strong
deducibility on strategies. Where such notions are found to be decidable, it is
moreover of interest to find precise complexities and develop specially tailored
decision procedures for the automation of security analysis. Another potential
area of application is the compilation of knowledge-based programs [6]. Finally,
our assumption that the protocols synthesized are deterministic should also be
relaxed, particularly as it is often the case that security is attained by creative
use of non-determinism.

References

1. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controlers with
partial observation. Theoretical Computer Science, 303(1):7–34, 2003.

2. P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. ACM Transactions on Programming Languages and Systems, 26(1):125–
1851, 2004.

3. D. Chaum. The dining cryptographers problem: unconditional sender and recipient
untraceability. J., Cryptology, (1):65–75, 1988.

4. E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize synchro-
nization skeletons. Science of Computer Programming, 2:241–266, 1982.

5. K. Engelhardt, R. van der Meyden, and K. Su. Modal logics with a hierarchy of
local propositional quantifiers. In P. Balbiani, N. Suzuki, F. Wolter, and M. Za-
kharyaschev, editors, Advances in Modal Logic, volume 4, pages 9–30. World Sci-
entific, 2003.

6. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

7. J. Y. Halpern and K. O’Neill. Anonymity and information hiding in multiagent sys-
tems. In Proceedings of the 16th IEEE Computer Security Foundations Workshop,
pages 75–88, 2003.

8. O. Kupferman and M.Y. Vardi. Synthesis with incomplete informatio. In 2nd
International Conference on Temporal Logic, pages 91–106, Manchester, July 1997.

576 R. van der Meyden and T. Wilke

9. P. Madhusudan. Control and Synthesis of Open Reactive Systems. PhD thesis,
University of Madras, Nov 2001.

10. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems,
6(1):68–93, January 1984.

11. Richard Mayr. Undecidable problems in unreliable computations. Theoretical
Computer Science, 297(1–3):337–354, March 2003.

12. R. van der Meyden. Finite state implementations of knowledge-based programs.
In Proceedings of the Conference on Foundations of Software Technology and The-
oretical Computer Science, Springer LNCS No. 1180, pages 262–273, Hyderabad,
India, December 1996.

13. R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. In Proc. 17th IEEE Computer Security Foundations Workshop,
pages 280–291, June 2004.

14. R. van der Meyden and M. Y. Vardi. Synthesis from knowledge-based specifica-
tions. In CONCUR’98, 9th International Conf. on Concurrency Theory, Springer
LNCS No. 1466, pages 34–49, Sept 1998.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. on Principles of Programming Languages, Austin, January 1989.

16. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Proc. 16th Int. Colloquium on Automata, Languages and Programming, volume
372, pages 652–671. Lecture Notes in Computer Science, Springer-Verlag, July
1989.

17. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
Proc. 31st IEEE Symp. on Foundation of Computer Science, pages 746–757, 1990.

18. M.Y. Vardi. An automata-theoretic approach to fair realizability and synthesis.
In P. Wolper, editor, Computer Aided Verification, Proc. 7th Int’l Conf., volume
939 of Lecture Notes in Computer Science, pages 267–292. Springer-Verlag, Berlin,
1995.

19. I. Walukiewicz. A landscape with games in the background. In Proc. IEEE Symp.
on Logic In computer Science, pages 356–366, 2004.

20. D.M. Wittbold, J.T.and Johnson. Information flow in nondeterministic systems.
In Proc. IEEE Symp. on Research in Security and Privacy, pages 144–161, 1990.

21. H. Wong-Toi and D.L. Dill. Synthesizing processes and schedulers from temporal
specifications. In E.M. Clarke and R.P. Kurshan, editors, Computer-Aided Veri-
fication’90, volume 3 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 177–186. AMS, 1991.

Author Index

Alur, Rajeev 2

Baeten, Jos C.M. 248
Bel Mokadem, Houda 110
Bérard, Béatrice 110
Bhargava, Mohit 171
Bouajjani, Ahmed 473
Bouyer, Patricia 81, 110
Bradley, Aaron R. 488
Bravetti, Mario 248
Bruni, Roberto 293, 383
Butler, Michael 383

Cardelli, Luca 4
Cassez, Franck 66, 81
Chatterjee, Krishnendu 413

Danos, Vincent 398
D’Argenio, Pedro R. 125
David, Alexandre 66
de Frutos Escrig, David 278
Demri, Stéphane 518
Dima, Cătălin 95

Engler, Dawson 1

Ferreira, Carla 383
Fleury, Emmanuel 66
Francalanza, Adrian 368
Fröschle, Sibylle 263

Gabbay, Murdoch J. 308
Gadducci, Fabio 293
Garg, Deepak 6
Gascon, Régis 518
Gastin, Paul 533
Gebremichael, Biniam 125
Genest, Blaise 443
Gimbert, Hugo 428
Gordon, Andrew D. 186
Goubault, Eric 503
Gregorio Rodŕıguez, Carlos 278

Haack, Christian 202
Haucourt, Emmanuel 503
Hennessy, Matthew 368
Hoare, Tony 383

Jagadeesan, Radha 353
Jeffrey, Alan 186, 202

Kähler, Detlef 233
Khomenko, Victor 338
Kindler, Ekkart 458
Kondratyev, Alex 338
Koutny, Maciej 338
Krivine, Jean 398
Kuske, Dietrich 533
Küsters, Ralf 233

Laird, Jim 51
Laroussinie, François 81, 110
Larsen, Kim G. 66
Lasota, S�lawomir 263
Lime, Didier 66

Manna, Zohar 488
Margaria, Tiziana 548
Mazza, Damiano 26
Melgratti, Hernán 383
Montanari, Ugo 293, 383
Mousavi, MohammadReza 308
Müller-Olm, Markus 473
Murawski, Andrzej S. 156

Ouaknine, Joël 156

Palamidessi, Catuscia 171
Papadimitriou, Christos H. 5
Pfenning, Frank 6

Reniers, Michel A. 308

Saraswat, Vijay 353
Sipma, Henny B. 488
Sistla, A. Prasad 548
Sobociński, Pawe�l 293
Steffen, Bernhard 548

578 Author Index

Tiu, Alwen 36
Touili, Tayssir 473
Truderung, Tomasz 217

van Breugel, Franck 141
van der Meyden, Ron 562
van Glabbeek, Robert Jan 323
Varacca, Daniele 458

Vogler, Walter 338

Völzer, Hagen 458

Wilke, Thomas 562

Zielonka, Wies�law 428

Zuck, Lenore D. 548

	Frontmatter
	Invited Lectures
	Static Analysis Versus Model Checking for Bug Finding
	The Benefits of Exposing Calls and Returns
	A Compositional Approach to the Stochastic Dynamics of Gene Networks

	Contributed Papers
	Games Other People Play
	Type-Directed Concurrency
	Multiport Interaction Nets and Concurrency
	Model Checking for π-Calculus Using Proof Search
	A Game Semantics of the Asynchronous π-Calculus
	Efficient On-the-Fly Algorithms for the Analysis of Timed Games
	Modal Logics for Timed Control
	Timed Shuffle Expressions
	A New Modality for Almost Everywhere Properties in Timed Automata
	The Coarsest Congruence for Timed Automata with Deadlines Contained in Bisimulation
	A Behavioural Pseudometric for Metric Labelled Transition Systems
	On Probabilistic Program Equivalence and Refinement
	Probabilistic Anonymity
	Secrecy Despite Compromise: Types, Cryptography, and the Pi-Calculus
	Timed Spi-Calculus with Types for Secrecy and Authenticity
	Selecting Theories and Recursive Protocols
	Constraint Solving for Contract-Signing Protocols
	A Ground-Complete Axiomatization of Finite State Processes in Process Algebra
	Decomposition and Complexity of Hereditary History Preserving Bisimulation on BPP
	Bisimulations Up-to for the Linear Time Branching Time Spectrum
	Deriving Weak Bisimulation Congruences from Reduction Systems
	SOS for Higher Order Processes
	The Individual and Collective Token Interpretations of Petri Nets
	Merged Processes --- A New Condensed Representation of Petri Net Behaviour
	Concurrent Clustered Programming
	A Theory of System Behaviour in the Presence of Node and Link Failures
	Comparing Two Approaches to Compensable Flow Composition
	Transactions in RCCS
	Two-Player Nonzero-Sum ω-Regular Games
	Games Where You Can Play Optimally Without Any Memory
	On Implementation of Global Concurrent Systems with Local Asynchronous Controllers
	Defining Fairness
	Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems
	Termination Analysis of Integer Linear Loops
	A Practical Application of Geometric Semantics to Static Analysis of Concurrent Programs
	Verification of Qualitative \mathbb{Z} Constraints
	Uniform Satisfiability Problem for Local Temporal Logics over Mazurkiewicz Traces
	Taming Interface Specifications
	Synthesis of Distributed Systems from Knowledge-Based Specifications

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

