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Abstract. Particle swarm optimization algorithm (PSO) is applied to train arti-
ficial neural network (NN) to construct a neural network based on particle 
swarm optimization algorithm (PSONN). Then, PSONN is employed to con-
struct a practical soft-sensor of gasoline endpoint of main fractionator of fluid 
catalytic cracking unit (FCCU). The obtained results indicate that soft-sensing 
model based on PSONN has better performance than soft-sensing model based 
on BPNN and the new method proposed by this paper is feasible and effective 
in soft-sensing modeling of gasoline endpoint. 

1   Introduction 

Soft sensing techniques have been used more frequently as attractive and effective 
methods of process modeling and a replacement of expensive and ineffective online 
analytical instrument to some extent [1]. Now, there are two types of models usually 
used in the soft sensing modeling of the chemical industrial process [1]: mechanistic 
models (or first principle model, FPM) developed from the underlying physical and 
chemical knowledge about a process, and empirical models (EM) developed from the 
operational data of a process. FPM is based on the analysis of the mass, momentum, 
and energy balance as well as empirical correlation. However, only major characteris-
tics and trends of the process are described by the FPM. Additionally, FPM includes 
many assumptions, and lacks in considering random disturbances that are present in 
many real systems. However, the development of FPM for some processes, especially 
some complex processes, can be too difficult or even not possible. For such processes, 
empirical models (EM) based on process operational data should be preferred. Many 
industrial processes exhibit nonlinear dynamic behavior, and nonlinear model should 
be developed. Artificial neural network (NN) has been shown to be able to approxi-
mate any continuous nonlinear functions [2] and is an attractive technique that can be 
applied to nonlinear process modeling. 

Artificial neural network is a representation that attempts to mimic the functional-
ity of the brain. For several decades scientists have being trying to emulate the real 
neural structure of the brain, believing that the human process of learning might be 
reproduced by an algorithmic equivalent. Initially the principal motivation behind this 
research was the desire to achieve the sophisticated level of information processing 
that could be achieved by the brain. However, it is apparent that present research aims 
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are not directed at emulating the sheer complexity of the brain. Generally, the meth-
odology is used on a more modest scale to develop nonlinear models. 

An important issue in NN is the train algorithm. Now back-propagation algorithm 
(BP) is most commonly used to train NN [2]. BP is a gradient-based method, so some 
inherent problems are frequently encountered in the use of this algorithm, e.g., very 
slow convergence speed in training, easily to get stuck in a local minimum, etc. Some 
techniques are therefore introduced in an attempt to resolve these drawbacks, but all 
of them are still far from satisfaction [2], so new train algorithm needs developing. 

Particle swarm optimization algorithm (PSO) is an evolutionary computation algo-
rithm proposed by Eberhart and Kennedy in 1995 [3-4]. The idea of PSO is based on 
the simulation of simplified social models, such as bird flocking, fish schooling, and 
the swarming theory. PSO is a simple algorithm and can be developed over a very 
simple theoretical framework and can be implemented with a few lines of computer 
code, requiring only primitive mathematical operators. PSO is computationally inex-
pensive in terms of both memory requirements and speed. Besides, PSO is indeed a 
population-based stochastic algorithm. It does not need gradient information, as the 
gradient-based algorithm does. This allows functions whose gradients are either un-
available or computationally expensive to be solved using the PSO algorithm. It was 
originally developed for optimization in a continuous space and it has been recently 
adapted to optimization in binary spaces, presenting good performance also when 
applied to discontinuous objective functions and is an attractive algorithm in artificial 
neural network training. Here, PSO is employed to train NN to construct an artificial 
neural network based on particle swarm optimization algorithm (PSONN). Then 
PSONN is applied to construct a practical soft-sensor of gasoline endpoint of main 
fractionator of fluid catalytic cracking unit (FCCU). 

2   Particle Swarm Optimization Neural Network (PSONN) 

2.1   PSO Algorithm 

PSO algorithm uses a population of individual called “particles”. Each particle has its 
own position and velocity to move around the search space. Using the term “particle” 
may convey finite mass-volume objects, which is not true of the PSO algorithm. 
These particles are, in fact, points in space. However, since these points have velocity 
and position, the term “particle” is more suitable than “point”. Particles move to try-
ing to find the solution for the problem being solved. 

Suppose that the search space is D-dimensional and a particle swarm consists of 
m  particles, then the i-th particle of the swarm can be represented by a D-
dimensional vector, ),,,,( 321 iDiiii xxxxX L= , mi ,,2,1 L= . The velocity of this particle 

can be represented by another D-dimensional vector, ),,,,( 321 iDiiii vvvvV L= . The fit-

ness of every particle can be evaluated according to the objective function of optimi-
zation problem. The best previously visited position of the i -th particle is denoted as 
its individual best position, ),,,,( 321 iDiiii ppppP L= . Define g  as the index of the best 

particle of the whole swarm, the position of the best individual of the whole swarm is 
denoted as the global best position 

gP , and the fitness of the global best position is 
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denoted as the global best fitness 
gF . Then the velocity of particle and its new posi-

tion will be assigned according to the following two equations [3-5]: 

))()(( 2211 idgdidididid xprcxprcvv −+−+⋅= ωχ                     (1) 

ididid vxx +=                                                           (2) 

whereχ is a constriction factor;ω is called inertia weight; c1 and c2 are two positive 
constants called acceleration coefficients; r1 and r2 are two random numbers uni-
formly from the interval [0, 1]. 

2.2   The Structure of PSONN 

An artificial neural network consists of a system of simple interconnected neurons, or 
nodes, as illustrated in Fig. 1. It is a model representing a non-linear mapping between 
input and output vectors. The nodes are connected by weights and output signals, 
which are a function of the sum of the inputs to the node modified by a simple non-
linear transfer function, or activation function. It is the superposition of many simple 
non-linear transfer functions that enables the neural network to approximate ex-
tremely non-linear functions. The output of a node is scaled by the connecting weight 
and feed forward to be an input to the nodes in the next layer of network. The archi-
tecture of a neural network is variable, but, in general, consists of several layers of 
neurons. The input layer plays no computational role but merely serves to pass the 
input vector to the network. A neural network may have one or more hidden layers 
and have only an output layer. The neural network is described as being fully con-
nected to every node in the next and the previous layer. 

In Fig. 1, x is the input of NN. net is the sum of the inputs to the node modified by 
activation function. O is the output of neural node. y is the output of NN. PSONN 
assumes the weight and threshold of NN as the position of particle of PSO, evaluates 
the fitness of particle according to objective function of system, then searches for the 
global best weight and the global best threshold by PSO. If the search is accom-
plished, the position of the global best particle is the combination of the best weight 
and the best threshold of PSONN. 

 

 

Fig. 1. The structure of PSONN 
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By selecting a suitable set of weights and transfer functions, it is known that a neu-
ral network can approximate any smooth, measurable function between the input and 
output vectors. The neural network has the ability to learn through training. The train-
ing requires a set of training data, i.e., a series of input and associated output vectors. 
During the training, the neural network is repeatedly presented with the training data 
and the weights in the network are adjusted from time to time till the desired input–
output mapping occurs. If, after the training, the neural network is presented with an 
input vector, not belonging to the training pairs, it will simulate the system and pro-
duce the corresponding output vector. The error between the actual and the predicted 
function values is an indication of how successful the training is. 

2.3   Train Algorithm of PSONN 

PSONN train algorithm can be summarized in the following steps: 
1. Initialize the structure, activation function and objective function of PSONN. 
2. Initialize the algorithm parameters of PSO. 
3. Store initial position of each particle. Evaluate and store initial fitness of each 

particle. Evaluate and store the global best position and global best fitness of the 
swarm. 

4. Update particles’ velocities and positions by equation (1) & equation (2), and set 
a limit to particles’ positions and particles’ velocities. 

5. Update the individual best fitness and the individual best position of each parti-
cle; Update the global best fitness and the global best position of the swarm. 

6. If the stopping condition is not satisfied, go to step 4. Otherwise, stop iterating 
and obtain the best weight and the best threshold from the global best position. 

3   Practical Application in Soft-Sensing Modeling 

3.1   Introduction of Engineering Background 

Main fractionator is one of the most important equipment of FCCU, which is a most 
important unit in refineries [6]. The feed-in material of the tower is get from catalytic 
cracking reactor. The effluent product of reaction goes to the main fractionator, where 
the heat is removed in its various pump-around and loops and initial product separa-
tion is accomplished, then usable products including gas, gasoline, light diesel oil and 
heavy diesel oil are produced. 

Gasoline endpoint is a most important product quality indicator of main fractiona-
tor of  FCCU [6]. But gasoline endpoint can’t be measured on-line directly. At pre-
sent, gasoline endpoint is usually acquired mainly by artificial analyzing once every 4 
hours. It can cause a long delay in control and the product will be unqualified if the 
component of the reactor product changes a lot. So it is very important for refineries 
to acquire gasoline endpoint on-line. 

3.2   Soft-Sensing Model of Gasoline Endpoint Based on PSONN 

Gasoline endpoint can’t be measured directly like temperatures, pressures and flow 
rates. But it can be estimated by soft-sensor. According to the analysis of system’s 
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technological mechanism and the principal component analysis of the practical indus-
trial data, gasoline endpoint is related with these nine variables that can be measured 
and recorded on-line: the pressure of the top of the tower, the temperature of oil-gas at 
the top of the tower, the temperature of reflux at the top of the tower, the temperature 
of the 18-th floor tray, the temperature of the 9-th floor tray, the temperature of the 
first middle reflux of the tower, the temperature of gasoline of the tower, the flow rate 
of reflux flow of the first middle reflux and the temperature of the feed oil-gas of 
main fractionator. In this section, gasoline endpoint is studied. The relationship be-
tween gasoline endpoint and the above-mentioned nine variables is complex nonlinear 
relationship. To estimate gasoline endpoint, we must find the relationship between 
gasoline endpoint and the nine variables. In this section, a PSONN that has nine input 
signals that correspond with the above nine variables, a middle layer whose number of 
node is twenty and an output signal that is gasoline endpoint is employed to find the 
relationship between gasoline endpoint and the nine variables. The structure of PSONN 
is 9-20-1. The transfer function of neurons of PSONN takes hyperbolic tangential func-
tion. The objective function of the soft-sensing model can be expressed as follow: 

∑
=

−⋅=
pn

kk

kkkk ytE
1

2)(
2

1
min                                                      (3) 

Where t is the real value of gasoline endpoint, y is the estimated value of gasoline 
endpoint, kk is the serial number of samples, np is the total number of samples. 

To evaluate the performance of soft-sensing model conveniently, the mean square 
error and the mean absolute error are defined as follow: 

∑ −=
pn

kkkk

p

yt
n

RMSE
1

2)(
1                                                   (4) 

∑ −=
pn

kkkk

p

yt
n

Meanae
1

1                                                         (5) 

In searching for the global best weight and threshold of NN by PSO, population of 
swarm is set to100; The maximal number of iteration step is set to 20000; Error limit 
of objective function is 0.2; c1 and c2 are set to 2.0; ω  is gradually decreased from 
1.8 to 0.06; χ is set to 0.8. 

In order to compare the result of soft-sensor based on PSONN with the result of 
soft-sensor based on BPNN that a NN based on BP algorithm, this paper constructs 
another soft-sensing model of gasoline endpoint based on BPNN. In BPNN, the struc-
ture of NN, the transfer function of neurons and the sample data all are the same as 
that of PSONN. The differences are: the train algorithm is BP algorithm, the learning 
velocity is 0.016 and the momentum factor is 0.012. 

3.3   Discussion of Application Results 

There are 127 sets of sample data that consist of nine operating variables in different 
operating states and one output variable, the real value of gasoline endpoint. 77 pairs 
of them are used as off-line training data sets and another 50 pairs are used as on-line 
examining data sets. All the sample data are processed by error-detected, smoothed, 
filtered and standardized in the intervals [-1, +1] before they are used as input or out-
put of the two soft-sensors. 
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After the learning and statistical accounting, the errors of 66.2 percent of learning 
samples are less than 1± ℃; The errors of 98.7 percent of learning samples are less 

than 2± ℃; The mean square error of the learning samples is 0.9248℃; The mean 
absolute error of the learning samples is 0.7671℃ in soft-sensor based on PSONN. 
However, in soft-sensor based on BPNN, the errors of 64.9 percent of learning sam-
ples are less than 1± ℃; The errors of 96.1 percent of learning samples are less than 

2± ℃; The mean square error of the learning samples is 1.0626℃; The mean abso-
lute error of the learning samples is 0.8483℃. Table 1 and Fig. 2 show the compari-
son between learning result of soft-sensing model based on PSONN and learning 
result of soft-sensing model based on BPNN. These experiment data, Table 1 and Fig. 
2 show that the learning result of soft-sensing model based on PSONN is better than 
learning result of soft-sensing model based on BPNN. The soft-sensing model based 
on PSONN has higher learning precision and better learning ability than the soft-
sensing model based on BPNN. 

Table 1. Comparison of the learning results of the two soft-sensing models 

 Avera-
value 

Mini- 
value 

Maxi- 
value 

|e| |e|<1 1<|e|<2 |e|>2 

Real values (℃) 198.0 192 207 Total 77 

PSONN 197.9 191.6 206.3 Numbers 51 25 1 Predictive 
values BPNN 198.7 192.2 207.0 Numbers 50 24 3 

PSONN (℃) 0.7671 PSONN 0.9248 (℃) 
Meanae 

BPNN (℃) 0.8483 
RMSE 

BPNN 1.0626 (℃) 

PSONN 0.01061 PSONN 0 the maximum 
relative error BPNN 0.01783 

 

the minimum 
relative error BPNN 0.00005 

 

Fig. 2. Comparison of learning result 
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After the examining and statistical accounting, the errors of 52 percent of examin-
ing samples are less than 1± ℃; The errors of 88 percent of examining samples are 

less than 2± ℃; The mean square error of the examining samples is 1.3787℃; The 
mean absolute error of the examining samples is 1.1034℃ in soft-sensor based on 
PSONN. However, in soft-sensor based on BPNN, the errors of 54 percent of examin-
ing samples are less than 1± ℃; The errors of 86 percent of examining samples are 
less than 2± ℃; The mean square error of the examining samples is 1.4425℃; The 
mean absolute error of the examining samples is 1.1284℃. Table 2 and Fig. 3 show 
the comparison between examining result of soft-sensing model based on PSONN and 
examining result of soft-sensing model based on BPNN. These experiment data, Fig. 
3 and Table 2 show that the examining result of soft-sensing model based on PSONN 
is better than examining result of soft-sensing model based on BPNN. The soft-
sensing model based on PSONN has higher examining precision and better generali-
zation ability than the soft-sensing model based on BPNN. 

Table 2  Comparison of the examining results of the two soft-sensing models 

 Aver- 
values 

Mini- 
values 

Maxi- 
values 

|e| |e|<1 1<|e|<2 |e|>2 

Real values (℃) 197.6 192 205 Total 50 

PSONN 197.9 192.3 204.9 Numbers 26 18 6 Predictive 
values BPNN 198.0 191.2 204.8 Numbers 27 15 8 

PSONN (℃) 1.1034 PSONN 1.3787 (℃) 
Meanae 

BPNN (℃) 1.1284 
RMSE 

BPNN 1.4425 (℃) 

PSONN 0.01904 PSONN 0.00015 the maximum 
relative error BPNN 0.01986 

 

the minimum 
relative error BPNN 0.00018 

 

Fig. 3. Comparison of examining result 

.
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4   Conclusion 

A neural network based on PSO is proposed for soft-sensing modeling of gasoline 
endpoint of main fractionator of FCCU. The approach takes a novel kind of optimiza-
tion algorithm, i.e., particle swarm optimization algorithm, to train the neural net-
work. A performance comparison is emphasized on the PSO-based soft-sensing 
model with the most commonly used BP-based soft-sensing model. The results show 
that the soft-sensor based on PSONN has better training performance, higher preci-
sion and better predicting ability than soft-sensor based on BPNN. It is convenient for 
refineries to estimate, display, record and analyze gasoline endpoint on-line. It is 
worth to mention that the current study is very preliminary for the PSO-based neural 
network approach applied in soft-sensing modeling of gasoline endpoint of main 
fractionator of FCCU. More researches need to be done, for example, to improve 
current approach and apply it to other product quality estimate of industrial process or 
more complex industrial cases. 
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