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Abstract. The purpose of this study was to develop a process management sys-
tem to manage ingot fabrication and the quality of the ingot. The ingot is the 
first manufactured material of wafers. Trace parameters were collected on-line 
but measurement parameters were measured by sampling inspection. The qual-
ity parameters were applied to evaluate the quality. Therefore, preprocessing 
was necessary to extract useful information from the quality data. First, statisti-
cal methods were used for data generation, and then modeling was performed, 
using the generated data, to improve the performance of the models. The func-
tion of the models is to predict the quality corresponding to control parameters. 

1   Introduction 

Wafer is an important material in semiconductor industries. In recent years, the size of 
wafers has been enlarged up to 300 mm, so quality management is fundamentally 
required and applied. The wafer manufacturing process includes some chemical proc-
esses, so there is a time delay that causes difficult measurement and control. Among 
these processes, ingot fabrication is the most important, because the quality of the 
ingot will definitely affect the quality of the wafer.  

Over decades, many studies have been performed to detect faults and improve 
yield. An adaptive resonance theory network was used to develop an intelligent sys-
tem that will recognize defect spatial patterns to aid in the diagnosis of failure causes 
[1]. A data warehouse approach to the automation of process zone-by-zone defect-
limited yield analysis [2], and SOI wafer-specific behavior related to the intrinsic 
limitations of laser-scattering defect detection were presented [3]. The calculations 
and results of random defect-limited yield (DLY) using the deterministic yield model 
was introduced [4], and the spatial defect features and cluster chip locations having 
similar defect features were extracted through the SOM neural network [5]. An auto-
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matic, wafer-scale, defect cluster identifier [6] and Geodesic Active Contours on a 
wafer-scale image were studied to extract the overall dimensions of the wafer under 
inspection [7].  

The objectives of these studies were focused on detecting faults and adjusting the 
operational conditions for process optimization and producing wafers having no de-
fects. To detect a fault, data mining tools to analyze input-output data using models 
are required. However, it is difficult to select a proper method from various data min-
ing methodologies. In this research, a data mining roadmap was made to assist the 
selection of an appropriate methodology. Based on the roadmap, the selected method-
ologies were the data model to predict process quality. After selecting the method, 
data acquisition from the target process is used in data mining, and the collected data 
should be sufficient in number and clean enough to perform the data mining. The data 
on the quality of the wafer, prepared for this research, were not sufficient because 
quality evaluation was performed according to a sampling inspection, not a total in-
spection. To solve these problems, the bootstrap method, an appropriate data preproc-
essing method, was used to generate data sufficient for a total inspection. Improve-
ment in model performance was observed from the results. 

In Section 2, we describe the target process, which is the ingot fabrication process, 
and in Section 3, we show one of the important results, the proposed road map for 
data mining. Section 4 explains the applied data mining techniques, and Section 5 
shows the experimental results. Finally, Section 6 concludes the paper. 

2   Wafer Fabrication 

2.1   Wafer for Semiconductors 

Wafers are used in manufacturing memory or non-memory semi-conductor chips. 
Several circuit masks are mounted on one wafer by UV rays or electron beams in 
assembly lines. As semiconductor technology has developed, the wafer size has been 
enlarged to mount more circuits on the wafer. Because semiconductor manufactures 
want to make larger-memory and non-memory chips, they require larger-diameter 
wafers and strict quality assessment from wafer manufacturers. To cope with these 
requirements, optimization of wafer fabrication is essential.  

2.2   Ingot Data 

Ingot is the first manufactured material in wafer fabrication. In ingot fabrication, 
some set-points for handling the position or rotation of ingots and control parameters 
are adjusted for quality management. These operating parameters play an import role 
in wafer quality and size control. Therefore, they should be properly handled for 
improvement of productivity and yield. The operating parameters were used as in-
puts in modeling in this study. The quality parameters consist of five concentration 
values, and six defect values. Four of these were used for outputs in modeling in this 
study.  
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3   Design of Data Mining Roadmap 

3.1   Data Mining 

Data mining techniques that are well suited to the purpose can improve process per-
formance and product quality. Data mining, a procedure for extracting useful informa-
tion from data, is composed of data selection, preprocessing, transformation, data 
mining and interpretation. When collected data is insufficient, a data selection and 
preprocessing procedure should be considered an important stage. The raw data used 
in this research were insufficient to train models because most of the data was ob-
tained from sampling inspection. To overcome this problem, a statistical method such 
as the Monte Carlo/Bootstrap method was used to fill vacancies in the data.  

3.2   Data Mining Roadmap 

In this study, we proposed the roadmap for data mining. Figure 1 shows the proposed 
roadmap, which was constructed based on several reference books and papers. We 
selected the methods and procedures for diagnosis and optimization of the ingot proc-
ess by referring to the roadmap. The selected methods of this study were data genera-
tion (bootstrap method) and prediction modeling (DPNN).  

3.3   Application of Data Mining 

3.3.1   Data Preprocessing in Reducing Data Effects 
The collected data from assembly lines can be missed or limited to specific cases; 
thus, the quality data are not always uniformly distributed. Insufficient data results in 
unreliable prediction models in the modeling stage. To solve these problems, data 
preprocessing is required in order to add data and improve performance. In this study, 
the Bootstrap method, a type of Monte Carlo method, was applied to compensate 
leakage data caused by sampling inspection.  

3.3.2   Data Modeling in Quality Prediction  
In modeling prediction models, inputs of models can affect the performance of the 
models. Selection of inputs corresponding to data characteristics is necessary to im-
prove model performance, because unnecessary inputs can have a strong influence on 
prediction results. Therefore, in this study, we selected the principal inputs that 
greatly influence model accuracy after modeling. For the function, we proposed the 
dynamic polynomial neural network (DPNN). The DPNN has the advantages that it 
requires only small computation, so it is very useful in modeling with high-dimension 
variables and a large amount of data. The other advantage is that this method can 
select essential inputs through the modeling stages.  

3.4   Process Management System in Ingot Fabrication  

The designed models and the extracted rules are integrated into the process management 
system. This system will play important quality management roles in ingot manufactur-
ing. The quality will be predicted by models and the control parameters will be modified 
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by rules on-line. In Fig. 2, the quality predictor is to predict quality of the wafer accord-
ing to the control parameters and the parameter estimator decides how to adjust the 
control parameters to improve the quality corresponding to the predicted quality. 
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Fig. 1. Data mining roadmap proposed in this research 
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Fig. 2. Structure of the proposed system 

4   Applied Data Mining Tools 

The process data have limited characteristics. Trace data (control parameters) are 
collect by real-time measurement, but measurement data (quality parameters) are 
measured by sampling inspection after manufacturing. Therefore, input and output 
data cannot be one-to-one correspondent and target data are insufficient. The insuffi-
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cient data problem results in modeling inadequate performance of the model because 
the target data are insufficient. To solve this problem, we used the Bootstrap method 
with data generation. After the data generation, the prediction model was constructed 
using the DPNN.  

4.1   Bootstrap Method 

The interested reader is referred to more information on the theory behind the boot-
strap. Some studies refer to the re-sampling techniques of the previous section as 
bootstrap methods. Here, the term bootstrap is used to refer to Monte Carlo simula-
tions that treat the original sample as a pseudo-population or as an estimate of the 
population. The bootstrap is a method of Monte Carlo simulation where no parametric 
assumptions are made about the underlying population that generated the random 
sample. Instead, the sample is used as an estimate of the population [8].  

4.2   Dynamic Polynomial Neural Network (DPNN) 

Polynomial neural network (PNN) based on the GMDH algorithm is a useful method 
to model the system from many observed data and input variables. It is widely em-
ployed for modeling of dynamic systems, prediction, and artificial intelligent control 
because of its advantages in data handling. Figure 3 includes the recurrent inputs with 
one-to-n time-delayed output variables [9-11].  
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Fig. 3. Basic structure of DPNN 

5   Experimental Results 

5.1   Trace and Measurement Data of Ingots 

Application data were collected from ingot fabrication on the company assembly line. 
Fourteen trace parameters and 11 measurement parameters that are used for quality 
analysis were included in the data sets. The trace parameter data are collected on-line. 
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The measure parameter data are gathered by sampling inspection and used for quality 
analysis. Forty-eight process parameters are collected by one data set per one minute 
from a puller.  

The measurement parameter data were collected by sampling test, but the trace pa-
rameter data were gathered by on-line measurement. Thus, the insufficient data prob-
lem exists in modeling stage. The merging data from several pullers can be applied to 
solve the data insufficient data problem. However, each puller has a unique recipe, so 
the process features of each are different. Therefore, one puller data set was used with 
data addition based on data generation at the preprocessing stage. At the preprocess-
ing stage, the number of the target data can be the same as that of the input data. Fig-
ure 4 shows the data interpolation. 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y2 y3 y4 y5
18.00 1.20 0.11 56.20 5.00 204.91 75.55 24.40 18.03 17.97 114.88 15.04 -14.11 10.95 3.30
17.98 1.04 0.12 56.20 5.00 204.84 77.15 24.40 18.00 17.94 114.90 11.57 -2.79 10.73 2.70
18.00 1.08 0.12 56.30 5.00 205.25 78.15 24.60 17.97 17.91 114.91 10.71
18.01 1.21 0.14 56.50 5.00 206.07 80.10 24.20 17.95 17.88 114.82 11.79 -5.85
18.04 0.82 0.09 56.70 5.00 205.20 82.05 24.20 17.89 17.85 114.80 10.72
18.03 1.38 0.11 56.70 5.00 206.01 83.45 24.60 17.87 17.82 114.76 10.69
18.01 1.39 0.16 57.00 5.00 206.34 85.45 24.40 17.84 17.79 114.73 10.71
18.01 1.45 0.17 57.10 5.00 206.86 87.40 24.20 17.81 17.74 114.70
18.01 1.30 0.15 57.20 5.00 206.63 89.60 24.80 17.76 17.71 114.65 10.68
18.01 0.96 0.15 57.50 5.00 206.63 91.55 24.60 17.73 17.68 114.64 10.67
18.01 1.01 0.12 57.50 5.00 206.77 93.40 24.40 17.68 17.65 114.64 10.7
18.00 0.98 0.11 57.60 5.00 206.50 94.50 24.60 17.65 17.62 114.61 10.68
17.99 1.16 0.13 57.70 5.00 206.45 96.10 24.40 17.63 17.59 114.59
18.00 0.84 0.14 57.90 5.00 206.50 97.95 24.60 17.60 17.56 114.54 10.69
18.03 0.62 0.06 78.80 5.01 206.70 116.90 24.20 12.88 12.82 111.17 10.25
18.01 0.62 0.06 78.80 5.03 206.79 116.85 24.20 12.85 12.79 113.12 11.47 -2.71 10.29 1.03
18.05 0.62 0.06 78.90 5.02 206.83 116.90 24.20 12.82 12.79 113.09
18.03 0.62 0.06 78.90 5.03 206.86 116.85 24.20 12.82 12.79 113.11 10.2
18.04 0.62 0.06 79.10 5.04 206.87 116.85 24.20 12.82 12.76 111.30 10.19
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Fig. 4. Data generation for unmeasured quality data 

5.2   Quality Prediction and Variable Selection Using DPNN 

The process of wafer manufacturing is a chemical process, so the product quality can 
be measured after fabrication. If the quality is predicted by current control conditions, 
the manufacturing process can be effectively operated. This section treats modeling 
stage selection that is based on the roadmap. In this study, we used a DPNN because 
the DPNN is a useful method for data modeling with many variables and data.  

5.2.1   Data Modeling Using One Puller Data (Case 1) 
Figures 5 to 6 show the test result using the trained DPNN model with unseen data. 
The prediction models were designed for quality prediction corresponding to Oxygen, 
ORG (Oxygen Gradient), RES (Resistivity), and RRG (Resistivity Gradient). In the 
RES case, the model can be designed by one puller data because the data are suffi-
cient to design a model. And the model performance is also adequate to predict the 
quality of wafers with RES. However, other three-parameter data are not sufficient to 
design a good performance model. The model was not trained well with one puller 
data. Table 1 shows train and test results and selected inputs from modeling using one 
puller data.  
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5.2.2   Advanced Proposed Modeling Based on Data Generation (Case 2) 
As mentioned above, insufficient data cannot construct a good performance model, so 
the preprocessing stage was required to compensate for weak points caused by insuf-
ficient data before applying the main data mining techniques. In this paper, we used 
the Bootstrap method to solve the data problem. The Bootstrap method is a type of 
Monte Carlo simulation. It can generate reasonable data to design data models and 
improve model performance. Figures 7 to 8 show the improved results that are 
achieved by data generation. Table 2 shows the prediction results and input selection. 
As shown in the results, AR gas flow, Chamber press and Heat power were selected.  

5.2.3   Comparison of Performance of Prediction Models 
Table 3 shows the comparison result for two modeling cases. In Case 1, the models 
were designed by one puller data that was insufficient in amount, so an overfitting 
problem occurred. This means that a model trained by insufficient data cannot ensure 
the good performance of models. However, in Case 2, the model trained stably by 
data addition using the Bootstrap method showed a good performance. The results 
provide on indication that statistical data generation can reduce the effect of the insuf- 
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Fig. 5. Prediction result for Oxygen and ORG 
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Fig. 6. Prediction result for RES and RRG 
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Fig. 7. Prediction result for Oxygen and ORG 
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Fig. 8. Prediction result for RES and RRG 

ficient data problem. It is difficult to analyze the relationship between inputs and 
outputs using field data because sometimes field data are insufficient for modeling. 
Therefore, data preprocessing is required. In this study, an adequately descriptive 
model was designed by data generation.  

Table 1. Modeling results using one puller data including prediction and input selection 

Value Oxygen ORG RES RRG 
Learning error 9.7089e-015 4.8174e-014 0.0632 4.5275e-016 

Prediction error 1.4422 8.0759 0.043938 1.6293 
Selected layer 3 5 3 3 

Selected inputs 

1 
4 
5 
9 

10 

2 
3 
4 
5 
6 
9 

10 
11 

3 
4 
6 
7 
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2 
3 
4 
5 

10 
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Table 2. Modeling results with data generation including prediction and input selection 

Value Oxygen ORG RES RRG 
Learning error 0.4550 1.2730 0.3005 0.8512 

Prediction error 0.29528 1.8733 0.10423 1.2942 
Selected layer 4 4 4 3 

Selected inputs 

1 
2 
3 
7 
8 
9 

11 

1 
2 
3 
5 
6 
8 

11 

2 
3 
4 
7 
9 

11 

1 
2 
6 
7 
8 
9 

11 

Table 3. Comparison results for three case data sets 

Value Case Oxygen ORG RES RRG 
1 9.7089e-015 4.8174e-014 0.0632 4.5275e-016 

Learning error 
2 0.4550 1.2730 0.3005 0.8512 
1 1.4422 8.0759 0.043938 1.6293 

Prediction error 
2 0.29528 1.8733 0.10423 1.2942 
1 3 5 3 3 

Selected layer 
2 4 4 4 3 

6   Conclusions 

In ingot fabrication, quality inspection is accomplished by product sampling testing, 
and then the control parameter is adjusted by an operator’s action corresponding to 
the quality. Therefore, it is necessary to predict the quality with respect to current 
control parameters and to handle the parameters effectively.  

However, it is difficult to design models using collected data from the field be-
cause the data are gathered by sampling inspection. In this study, we proposed data 
generation using the bootstrap method to solve insufficient data problem. And then 
we designed prediction models using the DPNN. Through the stages, the performance 
of the models could be improved and were reasonable. The final goal of this study 
was to integrate both the diagnosis and the optimization systems of the ingot fabrica-
tion process. By using the integrated management system, the quality can be predicted 
corresponding to the control parameters. 
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