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Abstract. Automatic facial expression recognition has been studied
comprehensively recently, but most existent algorithms for this task
perform not well in presence of nonlinear information in facial images. For
this sake, we employ KPCA to map the original facial data to a lower
dimensional space. Then LDA is applied in that space and we derive
the most discriminant vectors using GA. This method has no singular-
ity problem, which often arises in the traditional eigen decomposition-
based solutions to LDA. Other work of this paper includes proposing a
rather simple but effective preprocessing method and using Mahalanobis
distance rather than Euclidean distance as the metric of the nearest
neighbor classifier. Experiments on the JAFFE database show promising
results.

1 Introduction

Automatic facial expression recognition has many potential applications such as
more intelligent human-computer interface and human emotion interpretation.
Along with hot researches in this field, many methods have been proposed. Samel
and Iyengar gave an overview of the early work on this topic [1]. More recent work
can be found in the surveys of Pantic and Rothkrantz [2], Fasel and Luettin [3].

Six basic emotions, i.e. happiness, sadness, surprise, fear, anger and disgust,
are agreed on by most scholars in this realm. In order to recognize these ex-
pressions, Elkman et al. [4] proposed the facial action coding system (FACS),
which uses 44 action units (AUs) to describe facial actions with regard to their
locations as well as their intensities. Instead of dividing the whole face into dif-
ferent units, Lyons et al. [5] chose 34 feature points (e.g., corners of the eye and
mouth) on a face for the purpose of analyzing its expression. Another method is
to base analysis and recognition directly on the whole facial image rather than its
segmentations or so-called feature points [6]. Such method is typically fast and
simple. For this sake, we take the last method in this paper. But before further
processing, we first make all face images have the same inter-ocular distance and
an average face shape so that there is more correspondence among the features
on them.
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As a classic statistical method, linear discriminant analysis (LDA) is widely
used as a way of both feature extraction and dimensionality reduction in the
recognition of facial expressions [5][7]. The basic idea of LDA is to maintain
the cluster property of the data after their projection to the discriminant space.
Traditionally, the LDA model is solved as a problem of generalized eigenvalue
problem [8]. But because the dimensionality of a typical image (i.e. the number
of pixels in it) is usually much larger than the number of available samples, the
scatter matrices might be singular and the LDA works poor. This is called the
singularity problem.

Principal component analysis (PCA) is often used as a preprocessing step
to reduce the dimensionality of the original data. LDA is then applied in the
lower dimensional space. This relieves or eliminates the singularity problem[9].
However, PCA only uses the second order statistical information in data. As a
result, it fails to perform well in nonlinear cases. Recently, with the idea of ker-
nel methods, Scholkopf [10] extended PCA to the nonlinear case, called Kernel
Principle Component Analysis (KPCA). Its application to face recognition [11]
shows excellent performance. This is due to the nonlinear essence of kernel meth-
ods and the substantive nonlinear information in facial images. In this paper, we
employ KPCA as the first step for dimensionality reduction.

LDA is essentially an optimizationproblem.ThereforeGeneticAlgorithm(GA),
an effective optimization algorithm, can be incorporated into LDA. In fact, GA has
already been applied to the recognition of faces [11][12]. In this paper, based on GA,
we propose a new solution for LDA. The proposed algorithm avoids the singularity
problem and the experiments on the JAFFE database prove its effectiveness.

The remainder of this paper is organized as follows. KPCA is reviewed in
section 2. After a simple introduction of LDA, section 3 specifically presents the
GA-driven LDA algorithm. To complete the facial expression recognition system,
we give the preprocessing method and classifier in section 4. Then section 5 shows
the results of our experiments on the JAFFE database. Finally, we concludes
this paper in section 6, where further research directions are also presented.

2 Kernel Principal Component Analysis

When mapped into a higher dimensional space, a non-linearly separable problem
may become linearly separable. This underlies the basic idea of KPCA as well
as other kernel methods. Denote such mapping as

Φ : Rn �→ F, x �→ Φ(x), (1)

where F is a higher dimensional space and it could be infinite. Assume Φ(xi), i =
1, 2, · · · , M , are centered, i.e.

∑M
i=1 Φ(xi) = 0. Then the total scatter matrix of

these samples in F is SΦ
t = 1

M

∑M
i=1 Φ(xi)Φ(xi)T , where T denotes the transpose

operation. PCA is applied in F, i.e. to solve the following eigenvalue equation:

SΦ
t wΦ = λΦwΦ, (2)

where wΦ is a column of the optimal projection matrix WΦ in F. Substituting
SΦ

t into (2), we get
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wΦ =
1

λΦ

1
M

M∑

i=1

(Φ(xi) · wΦ)Φ(xi), (3)

where ‘·’ denotes the inner product. From (3) we can see that all solutions wΦ

with λΦ �= 0 lie in the span of Φ(x1), Φ(x2), · · · , Φ(xM ). Thus, (2) is equivalent
to the set of equations:

(Φ(xi) · SΦ
t wΦ) = λΦ(Φ(xi) · wΦ), for all i = 1, 2, · · · , M, (4)

and there exist coefficients αi (i = 1, 2, · · · , M) such that

wΦ =
M∑

i=1

αiΦ(xi). (5)

According to (4) and (5), we have

λΦ
M∑

i=1

αi(Φ(xk) · Φ(xi)) =
1
M

M∑

i=1

αi(Φ(xk) ·
M∑

j=1

Φ(xj)(Φ(xj) · Φ(xi))), (6)

for all k = 1, 2, · · · , M . Defining an M ×M matrix K with its element in the ith
row and jth column as

Kij := (Φ(xi) · Φ(xj)), (7)

this reads
MλΦKα = K2α, (8)

where α denotes the column vector with entries α1, α2, · · · , αM . As shown in
[10], all its solutions are given by the eigenvectors of K :

MλΦα = Kα. (9)

With these α’s and (5), we get the optimal projection matrix for the samples in
F. And for a test sample x, we can calculate its kth principal component in F by

(wΦ
k · Φ(x)) =

M∑

i=1

αk
i (Φ(xi) · Φ(x)), (10)

where wΦ
k is the kth column of WΦ and αk is the eigenvector of K corresponding

to its kth largest eigenvalue.
Generally, m eigenvectors corresponding to the m largest eigenvalues are

chosen to span the KPCA space and in order to normalize them, we take the
whitening procedure as following:

αi =
αi

√
λΦ

i

, i = 1, 2, · · · , m. (11)

According to the Mercer condition, the dot product in these equations can
be replaced by

k(xi, xj) = (Φ(xi) · Φ(xj)), (12)

where k(*,*) is called a kernel function. The polynomial function
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k(x, y) = (x · y + 1)d, (13)

where d is any positive integer, and the radial basis function or Gaussian kernel
function

k(x, y) = exp(−‖x − y‖2

σ2
), (14)

where σ > 0, are among the commonly used kernel functions [10].

3 GA-Driven LDA

Suppose there are M samples, x1, x2, · · · , xM ∈ Rn, which are categorized into
L classes with Nj samples of the class j(j = 1, 2, · · · , L). Let Ij denote the set
of indexes of the samples belonging to the class j, c denote the mean of all
these samples, and cj denote the mean of the class j. The within-class scatter
matrix Sw = 1

L

∑L
j=1

1
Nj

∑
i∈Ij

(xi − cj)(xi − cj)T and the between-class scatter

matrix Sb = 1
L

∑L
j=1 Nj(cj − c)(cj − c)T . The quotient of the determinants of

the between-class and within-class scatter matrices of the projected samples is
a common criterion of LDA and the optimal projection matrix of LDA is to
maximize it:

WLDA = argmax
W

|WT SbW |
|WT SwW | . (15)

To apply GA, the optimal discriminant vectors, i.e. the column vectors in WLDA,
are viewed as the rotation of the basis of the KPCA space [12]. We start the
evolution with the identity basis of the KPCA space and rotate them two by two
with randomly selected angles. A random number of vectors are then chosen as
discriminant vectors from the rotated vectors.

Definition of Chromosome. Referring to Liu and Wechsler’s work [12], bi-
nary chromosome, i.e. a bit string, is defined for GA-driven LDA. As we have
discussed above, the solutions (discriminant vectors) are derived from the pair-
wise rotation of the identity basis of the KPCA space: ε1, ε2, · · · , εm, where
εi ∈ Rm with ‘1 ’ as its ith element and ‘0 ’ the others. Because two of the basis
are rotated together once, the total number of rotation angles for m basis vec-
tors is m(m−1)

2 . Thus the chromosome should depict the following rotation angles:
a1, a2, · · · , am(m−1)

2
. Each angle ak (k = 1, 2, · · · , m(m−1)

2 ) is represented by 10
bits, thus the rotation interval is π

211 (the rotation angles are confined to [0, π
2 ] for

simplicity). And ak corresponds to the ith and jth vectors (suppose i < j), where
k =

∑i−1
t=1(m − t) + j − i. The corresponding rotation matrix Qk is an m × m

identity matrix but Qk(i, i) = cos(ak), Qk(i, j) = − sin(ak), Qk(j, i) = sin(ak)
and Qk(j, j) = cos(ak). And the total rotation matrix is Q = Q1Q2 · · ·Qm(m−1)

2
.

Let ξ1, ξ2, · · · , ξm ∈ Rm be the result vectors after rotation:

[ξ1ξ2 · · · ξm] = [ε1ε2 · · · εm] × Q. (16)
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Not all these vectors are chosen as discriminant vectors. Instead, we randomly
select l vectors from them. This leads to another m bits in the chromosome.
These bits, b1, b2, · · · , bm, demonstrate which vectors are selected: if bi=1, then
ξi is chosen; otherwise, discarded.

Genetic Operators. Two genetic operators, crossover and mutation, are em-
ployed. Both of them are conducted with a given probability. If crossover is taken
on two individuals, a random position is selected. Then the bits before this po-
sition in one individual and those after this position in the other individual are
combined to form a new individual. So are the rest of them. As for mutation, if
one bit of an individual is supposed to be mutated, then it is converted from ‘0 ’
to ‘1 ’ or from ‘1 ’ to ‘0 ’; otherwise, keep it unchanged.

Fitness. The fitness in GA-driven LDA is based on the criterion of LDA. Take
an individual D = (a1a2 · · · am(m−1)

2
; b1b2 · · · bm) as an example. Assume the

vectors after rotation are ξ1, ξ2, · · · , ξm and l vectors η1, η2, · · · , ηl are selected
from them as the discriminant vectors. Then the sample xKPCA ∈ Rm in the
KPCA space will be mapped to xGA−LDA ∈ Rl in the GA-LDA space:

xGA−LDA = [η1η2 · · · ηl]T · xKPCA, (17)

where xKPCA can be obtained from the original sample x ∈ Rn according to (10).
Project all samples into the GA-LDA space by (10) and (17) and calculate

the within-class scatter matrix SG
w and the between-class scatter matrix SG

b for
the projected samples in the GA-LDA space. Then the fitness of the individual
D is defined as

ζ(D) = tr(SG
b )/tr(SG

w ). (18)

Once the fitness of all individuals in the population has been worked out, choose
those individuals with larger fitness and form a new generation. Unless the stop-
ping criterion is met, for example, the maximum number of trials is reached, GA
is run on the new generation again. When GA stops, the individual with the
largest fitness in the last generation gives the result, i.e. l optimal discriminant
vectors: WGA−LDA = [η∗

1η∗
2 · · · η∗

l ].

4 Facial Expression Recognition

4.1 Preprocessing Facial Images

Firstly, we manually mark the centers of eyes on each face with two points and
the face region with a rectangle. Let’s denote the centers of left and right eyes as
El and Er. And the left-most, the right-most, the upper-most and the bottom-
most points of the face are denoted by L, R, T and B respectively. Secondly,
calculate the average Y coordinate Ēy of eyes, the average X coordinates Ēlx
and Ērx of the left and right eyes, and the average Y coordinates T̄y and B̄y

of the top-most and bottom-most points. Hereafter, the subscripts ‘x ’ and ‘y’
represent the X and Y coordinates. Thirdly, calibrate the eyes to make them
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have the same average inter-ocular distance d̄ = Ērx − Ēlx. This is implemented
through scaling in three intervals along the horizontal direction on the face: [Lx,
Elx], [Elx, Erx] and [Erx, Rx]. These intervals are scaled, respectively, to the
average ones, [0, (w − d̄)/2], [(w − d̄)/2, d̄ + (w − d̄)/2] and [d̄ + (w − d̄)/2, w ],
where w = Rx − Lx is the width of the face. Fourthly, calibration along the
vertical direction is conducted on each facial image, i.e., vertically divide the
face into two intervals, [Ty, Ey] and [Ey, By], and scale them to two average
intervals, [0, h ∗ (Ēy − T̄y)/(B̄y − Ēy)] and [h ∗ (Ēy − T̄y)/(B̄y − Ēy), h], where
h = By − Ty is the height of the face. Lastly, the face is scaled to the standard
width W and height H.

After the calibration and standardization, we work out the average images of
each expression and average these average images to get another average image,
which we call the BLANK one. Then it is subtracted from all facial images so
that we get the difference images as the final input data of the facial expression
recognition system. Here the philosophy lies in the belief that information really
helpful for the recognition task is included in the difference, thus with these
difference images we can perform the recognition task well and the redundant
information is reduced. Fig. 1 shows this procedure.

Fig. 1. Preprocessing facial images: H=24 and W=24

4.2 Facial Expression Classifier

Generally, the nearest neighbor classifier [8] is taken when the features of facial
images are extracted. And the common metric is Euclidean distance. However, in
the view of probability and statistics, the Euclidean distance does not make use
of the deviation or covariance of samples. In this paper, we take the Mahalanobis
distance as the metric of the nearest neighbor classifier. Take a sample X from a
cluster, whose mean is µ and covariance matrix is Σ, as an example, the distance
between X and the cluster center µ is defined as

d2
m = (X − µ)T × Σ−1 × (X − µ), (19)

where the superscript ‘-1’ denotes the inverse matrix.

5 Experimental Results

We test the proposed algorithm with the Japanese Female Facial Expression
(JAFFE) database. The database contains 213 images of 7 facial expressions
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Fig. 2. Samples from the JAFFE database
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Fig. 3. The hit rate in relation to the number of principal vectors

(angry, depressed, fear, happy, normal, sad, surprised) posed by 10 Japanese
female models. Fig. 2 shows some samples of one model.

The experiments are conducted in two ways: leave-one-image-out and leave-
one-subject-out. In the ‘leave-one-image-out’ test, one image is randomly selected
out from each expression category. As a result, the whole image set is divided into
two sets. One has seven images as the testing set and the other consists of the rest
ones as the training set. The whole training and testing process is conducted 10
times and every time a new testing set is selected. Finally we average the results
to get the hit rate, or recognition rate, of the proposed scheme. In the ‘leave-one-
subject-out’ test, all images of one subject are selected out to form the testing
set with the rest ones as the training set. We also conduct the process 10 times
and take the average result as the final hit rate over identity.

We first take the Gaussian kernel function with its σ = 10 to perform the
‘leave-one-subject-out’ test. In Fig. 3 we give the hit rate over identity in relation
to the number of principal vectors (PV s). From the diagram we can see the
best hit rate is 96%, which is apparently better than that of Lyons, 92% [5].
We also perform the tests using the polynomial kernel function. Table 1 shows
the average hit rates in the ‘leave-one-image-out’ and the ‘leave-one-subject-out’
tests. And the result of ‘leave-one-image-out’ test, 80%, is also better than Lyons’
result, 75% [5].

6 Conclusions and Further Considerations

In this paper, an effective algorithm is proposed for facial expression recognition.
The proposed facial image preprocessing procedure improves the performance of
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Table 1. Average Hit Rates

Kernel Function Leave-one-image-out Leave-one-subject-out

Polynomial, d=1 72% 85%

Polynomial, d=2 75% 90%

Gaussian, σ=10 80% 96%

Gaussian, σ=1000 78% 92%

the following KPCA and LDA. This algorithm avoids the singularity problem of
LDA through applying KPCA before LDA and acquiring the optimal discrimi-
nant vectors by GA iterations rather than by solving the generalized eigenvalue
problem. Moreover, the nearest neighbor classifier using Mahalanobis distance
also performs well in recognizing facial expressions. Experiments on JAFFE
database testify the effectiveness of this GA-driven LDA scheme in KPCA space
for the task of facial expression recognition. A possible explanation to the excel-
lence of this proposed algorithm is that it deals well with the nonlinear properties
in facial images by using KPCA and taking into consideration the variances of
different facial expressions.

However, the proposed preprocessing method is conducted by hand. This
makes it laborious. What we are considering now is how to accomplish it auto-
matically. Actually, both the segmentation of faces and the location of facial
features, eyes and mouths for instance, are other hot but difficult topics in
the literature of face and facial expression recognition. The complexion-based
method [13] works well for segmenting faces in color images. Its basic idea is to
distinguish human faces from other objects in images by their different optical
properties, for example colors, and shape information. This method as well as
other methods used in face detection are in our consideration. As for marking
eyes in human faces, we intend to make use of such characteristics of eyes as the
apparent difference in gray level between the area of eyes and its surroundings.
Our primary goal is either to develop new algorithms or to enhance the accuracy
of existent automatical face segmentation and face feature location methods.

Apart from the automatical marking of faces and eyes, we are also interested
in the effect of the number of retained principal components as well as discrim-
inant vectors on the final recognition rate. How to choose a proper number of
such components and vectors is another direction for further researches.
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