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Abstract. Most control applications closed over a shared network are suffering 
from the time-varying characteristics of flexible network workload. This gives 
rise to non-deterministic availability of communication resources and may sig-
nificantly impact the control performance. In the context of integrating control 
and scheduling, a novel feedback scheduler based on neural networks is sug-
gested. With a modular architecture, the proposed feedback scheduler mainly 
consists of a monitor, a predictor, a regulator and an actuator. An online learn-
ing Elman neural network is employed to predict the network conditions, and 
then the control period is dynamically adjusted in response to estimated avail-
able network utilization. A fast algorithm for period regulation is employed. 
Preliminary simulation results show that the proposed feedback scheduler is ef-
fective in managing workload variations and can provide runtime flexibility to 
networked control applications. 

1   Introduction 

Today’s control systems are representatively closed over a shared network of certain 
type, e.g. CAN (Controller Area Network), FF (Foundation Fieldbus), and Control-
Net. Despite widespread employment in many fields like automotive electronics, 
process control, and robotics, control networks in real world are always bandwidth 
limited. The reasons behind may be economical and/or technical. Although the adop-
tion of common-bus instead of point-to-point connections reduces system complexity 
of installation and maintenance, it also conceives the time-varying property of net-
work workload. For a specific control loop, the availability of communication re-
sources may change unexpectedly [1,2], due to changes in network user demands, or 
disturbances in the network environments such as the loss of a link. In addition, this 
may also arise from the alternative use of general-purpose networks like Ethernet for 
control applications. Consequently, the network QoS (Quality of Service) becomes 
unexpectedly changeable in such environments that feature workload uncertainty and 
may not be able to provide QoS requirements to a networked control application as 
needed. This could considerably impact the networked control systems [3], especially 
when the available communication resources are scarce.  

Although many control techniques have been proposed to attack time delay effects  
[4], the performance of control applications over a network is still tied with the net-
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work conditions regardless of the control algorithm used. It has been recognized that 
applying these control techniques on existing systems that are extensively being used 
in industrial plants could be costly, inconvenient, and time consuming. Moreover, as 
the real-world control applications become more and more complex, only compensat-
ing delay effects via controller design could not always guarantee satisfactory per-
formance. While the system may perform unacceptably under overload conditions, 
certain communication resources may be wasted inadvertently in other cases. That is 
to say, traditional networked applications lack of flexibility, since they are usually 
designed regardless of the availability of communication resources.  

In this paper, we introduce a novel methodology to address these problems, apply-
ing feedback scheduling methodology [5-8] to enable existing networked control 
applications in the presence of flexible workload. Emerging as a technique that inte-
grates control and scheduling, feedback scheduling maps the methodology of feed-
back control to scheduling and provides a promising approach to manage uncertainty 
and enhance runtime flexibility. In this work, the well-established neural network 
(NN) technology [9] is employed to construct a feedback scheduler that is able to 
handle the workload variations intelligently. To achieve high efficiency as well as fast 
computation, we use a modified Elman network to learn from past and current net-
work conditions and predict the future availability of network resources in order that 
the feedback scheduler can improve its behavior and respond in a pre-active fashion. 
If the workload abruptly increases, i.e. the QoS requirements cannot be provided as 
needed, the feedback scheduler will lower the required network utilization of a control 
loop and use the available network resources to perform the task as best as it can. In 
other cases when the workload decreases, the control performance will be upgraded to 
a maximum extent with the help of the feedback scheduler so that the available net-
work resources are maximumly utilized. In this way, the feedback scheduler acts as an 
intelligent assistant to automate the management of flexible workload in NCSs.  

The rest of this paper is structured as follows. Section 2 observes related works as-
sociated with our study. The architecture of the neural network based feedback sched-
uler is given in Section 3. We present the involved algorithms in Section 4. And its 
performance is evaluated via preliminary simulations in Section 5. Section 6 con-
cludes this paper. 

2   Related Works 

An area that closely related to network QoS variations is congestion control. In this 
context, many mechanisms based on feedback methodology have been presented to 
manage network QoS. Feedback control technologies such as PID and fuzzy logic 
have been successfully used online to prevent the network from being congested [10]. 
When the aggregate demand for a bandwidth resource exceeds the available capacity 
of the network, they attempt to lower communication requirements of certain applica-
tions, thereby maintaining good network performance. Others employ neural net-
works to predict network traffic. Examples can be found in ATM [11], Internet [12] 
and other networks. However, almost all works in congestion control are not control 
related. Applications of neural networks can also be found in Internet based control 
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systems, e.g. [13]. In these cases, neural networks are commonly employed for time 
delay forecast, which is different from the way we utilize them. 

Researchers from the control community have made efforts to handle the impact of 
limited communication on control performance, for example, [14,15]. Most of these 
works focus on the design of control algorithms, and attempt to improve the system 
performance such as robustness with respect to uncertain communication delay. The 
methods used are static, i.e. they cannot provide run time adaptation to control tasks. 
In addition, these algorithms are often built upon simplified models of the complex 
characteristics of network workload variations. Instead of controller design, we focus 
on run time flexibility of control tasks. An interesting approach to providing net-
worked control adaptation for network QoS variations is [1], where Chow and Tipsu-
wan propose a gain scheduling approach for networked DC motor control systems to 
compensate for the changes in QoS requirements. 

Recent years witness considerable amount of attention on codesign of control and 
scheduling, both from the control community and the computing community. Several 
approaches to real-time QoS adaptation and graceful performance degradation in 
control applications are presented in the literature, e.g. [16,17]. A system’ resource 
allocation is adjusted online in order to maximize the performance in certain respects. 
Feedback scheduling has been proposed as a promising methodology to increase 
flexibility and to master uncertainty with respect to resource allocation. Its applica-
tions for control purpose include optimal feedback scheduler [18] and its approxima-
tion versions [6], intelligent feedback schedulers [8,19] and those for anytime control-
lers [20,21]. However, these works are dedicated to co-design of control and CPU 
scheduling, while the main concern of this paper is control over networks with flexi-
ble workload.  

In order to achieve dynamic integration of control and network scheduling, several 
methods have been proposed in the context of NCS. For example, Branicky et al [22] 
propose a co-design approach to the treatment of both network and controlled systems 
issues, where a set of control loops are optimally scheduled. Park et al [23] present a 
scheduling method for NCSs to adjust the sampling period as small as possible, allo-
cate the bandwidth of the network for three types of data, and exchange the transmis-
sion orders of data for sensors and actuators. In [24], the allocation of bandwidth to 
control loops is done locally at run time according to the state of each controlled proc-
ess, and control laws are designed to account for the variations on the assigned band-
width. The methods employed in these works are reactive in the sense that they will 
only adjust the communication resource requirements of control applications once the 
network is already overloaded. We attempt to develop a pre-active approach to flexi-
ble quality of control (QoC) management with respect to network workload 
variations. A more detailed survey with additional references related to real-time 
scheduling in networked and embedded control systems can be found in [25]. 

3   Feedback Scheduling Architecture 

The system we attempt to deploy the feedback scheduler into is a control loop sharing 
a network with other communication entities. The workload within the network may 
vary over time, and hence the available network utilization for this control application 
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is non-deterministic. Generally, a traditional controller is designed offline regardless 
of workload variations. From the control perspective, the control performance may be 
degraded, or even destabilized due to the uncertain delays stemming from scarcity of 
network resources. From the scheduling perspective, the network resources may be 
under-utilized. To address these problems, both control and scheduling are syntheti-
cally considered. Following the methodology of feedback scheduling [5-8], a NN 
based feedback scheduler (see Fig.1) is proposed to maximize the control perform-
ance via maximum use of available network resources.  

Control Network
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Actuator

Sensor

Controller

Control Loop

Monitor

Predictor

Regulator

Actuator

Feedback
Scheduler

 

Fig. 1. Architecture of a networked control system equipped with a feedback scheduler 

According to real-time scheduling theory, the requested network utilization can be 
calculated as Ur = c/h, where c is the transmission time and h is the transmission pe-
riod, which is assumed to be equal to the sampling period of the control loop (also 
called control period). In order to comply with the CPU scheduling theory, we choose 
c to denote the time needed for transmitting the control loop’s data/message in each 
sampling interval under the condition where total network bandwidth is exclusively 
dedicated to the considered control application, i.e. no other applications consuming 
communication bandwidth exist. It is assumed that the size of the data/message to be 
transmitted remains constant all the time. Therefore, the value of c does not change. 
For example, for a control network with a data rate of 1 Mb/s, if the data size is 500 
bytes, the transmission time c = 3500 8 /10× = 4 ms. And then, the requested network 
utilization Ur will only depend on the control period h. It is well-known in digital 
control theory that smaller sampling period leads to better control performance. In the 
case of resource constraints, however, this is not always the fact [3], and the sampling 
period should be determined properly so that the message is schedulable, i.e. the re-
source constraints cannot be violated. To reflect the uncertain characteristic of the 
workload, we use U to denote the available network utilization for the control loop, 
which is time varying and naturally bounded in the range [0, 1]. As the total band-
width is fixed, U will be determined directly by current workload. Intuitively, larger 
U represents light workload while smaller U corresponds to heavy workload. In this 
way, the workload uncertainty can be reflected by unexpected changes in U. 
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Then, the problem of managing workload uncertainty can be stated as dynamically 
adjusting the sampling period with respect to the variations of U so that the tradeoff 
between control performance and available communication resource is achieved. As 
shown in Fig.1, the feedback scheduler introduced to address this problem mainly 
consists of four components: a monitor, a predictor, a regulator, and an actuator. The 
monitor interfaces with the control network and measures the variations in the net-
work condition. It works periodically in time-driven fashion to activate the feedback 
scheduler. The predictor is built using neural networks and responsible for making 
prediction of the next-to-come value of the available network utilization. This enables 
the feedback scheduler to work in an intelligent way based on the history knowledge 
about the workload variations and to act in advance. Furthermore, the online learning 
capability of neural networks ensures the validity and efficiency of the feedback 
scheduler even when the characteristic behavior of workload variations changes. The 
regulator makes its decision based on the prediction of the neural predictor. It per-
forms the role of determining a new sampling period to maximize the control per-
formance under the predicted network resource constraint. The actuator within the 
feedback scheduler acts as an interface with the control loop to adjust its sampling 
period. To reduce sampling period jitters, an invocation condition is introduced in the 
actuator. The control period will be updated only when the absolute difference be-
tween the current value and the newly produced one exceeds a pre-specified dead-
band/threshold.  

From the viewpoint of feedback control, the feedback scheduler can be regarded as 
a NN prediction based controller. The controlled variable is the network utilization, 
and the manipulated variable is the control loop’s period. With flexible workload, the 
problem of feedback scheduling is similar to some kind of trajectory tracking issues, 
which are familiar to control engineers. 

4   Algorithms 

In this section, we present the algorithms utilized in the feedback scheduler. Particular 
emphasis is on two major components, the predictor and the regulator. 

4.1   Neural Predictor 

In the predictor, a neural network is employed to model the complex characteristics of 
the variations in available network utilization and estimate in real-time the next U 
value. To meet the timing constraints, we use a modified Elman network [9] (given in 
Fig.2) because of its simple structure, fast computation, and dynamic memory capa-
bility.  There are two inputs, the current available network utilization U(k) and its 
previous value U(k-1), and one output, the predicted value of available network utili-
zation at the next sampling instance, i.e. Û(k+1), where k denotes sampling instances 
of the monitor within the feedback scheduler. Note that the sampling interval of the 
monitor is different from that of the control loop. The number of the hidden nodes is 
chosen to be 3. The squared error between the predicted and actual values, i.e. Û(k+1) 
and U(k+1) is chosen as the performance index for the online training operation at the 
(k+1)th instance.  
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Fig. 2. Neural predictor structure 

According to the neural network structure (Fig. 2), it is held that: 
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is the activation function, Th and To are biases in the hidden layer and the output layer, 
respectively, and W1, W2, W3 are connection weights. 

In this work, the standard BP algorithm is employed for the network training. Thus 
the weights and biases of the network can be updated at each sampling instance ac-
cording to: 
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and ( )g , respectively. 

4.2   Regulator 

According to the data/information flow inside the feedback scheduler, the output of 
the predictor, i.e. the estimated value of the available network utilization Û(k+1) will 
be forwarded into the regulator. Based on this input and its internal knowledge about 
the transmission time of the control loop, the regulator attempts to determine an opti-
mal sampling period. In the newly emerging field of feedback scheduling, it has been 
revealed [6,18] that a simple rescaling of the sampling period could bring almost 
optimal solutions in most cases. Therefore, in order to achieve timely responses, we 
use the following simple and fast calculation to determine the control period: 

i i i

i i i i
i
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where h0 is the nominal period, and U0 is the nominal requested network utilization, 
which satisfies U0 = c/h0. Let’s take a look at the control period h(k) deduced from 
equation (3) from the viewpoints of both control and scheduling. Firstly, on the behalf 
of scheduling, the available network resources will be maximumly used, since the 
requested utilization U(k) = c/h(k) = h0U0/h(k) = Û(k). Given that the available net-
work utilization is accurately predicted, there will be no waste of resources, while the 
constraints are properly met. Secondly, for control purpose, the minimum control 
period under current resource constraint is obtained because any h value smaller than 
the one in (3) will result in a requested utilization more than the network can provide. 
Therefore, the control performance will be maximized using this regulator.  

Once produced, the new sampling period h(k) will be put forward to the actuator as 
its input. And then, it will be decided whether to take an action to update the control 
period according to the invocation condition inside the actuator. 

Obviously, there are two important design parameters within the monitor and the 
actuator, with one for each. The first one is the sampling interval of the monitor. It is 
used to determine how often the network condition is sampled. Intuitively, smaller 
intervals allow high sensitivity while being more resource consuming, and vice versa. 
The second one is the deadband utilized in the actuator. It is originally employed to 
avoid too frequent refreshing operations on the control period, which inversely de-
grades the control performance. Similarly, a smaller deadband leads to more accurate 
response to workload variations while being more sensitive to noises, and vice versa. 
Without formal design methodology for these parameters, tradeoffs should be done 
when implementing the feedback scheduler in practical applications.  

5   Performance Evaluation 

In this section, we evaluate the performance of the proposed feedback scheduler 
through considering networked control of a plant over a CAN-bus. The controlled 
plant is given as 2( ) 1000 /( )G s s s= + . The transmission time c is assumed to be 4 ms. 

With nominal network utilization U0 = 0.5 provided, a traditional PID controller is 
well-designed pre-runtime to control the plant.  The nominal control period h0 = 8 ms. 
During run time, the available network utilization varies as shown in Fig. 3 (dashed 
magenta line), reflecting characteristic behaviors of flexible workload. The following 
two cases are simulated.  

In Case I, the controller works with a fixed sampling period of 8 ms all along. 
Therefore, the requested network utilization remains changeless, see dash-dot red line 
in Fig. 3. In the time interval t = 0 to 1 s, because the available network utilization 
vibrates around 0.5, the control performance is slightly impacted, as shown in Fig. 4 
(dashed red line). Still, the performance is satisfactory. From t = 1 to 2s, the plant 
performs well thanks to good availability of network resources. However, a lot of 
network resource is wasted. From time t = 2 s, the control system turns to be unstable 
because the available network utilization falls below the requested value of 0.5.  
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Fig. 3. Network utilization 

 

Fig. 4. Transient responses of the plant 

In Case II, the NN based feedback scheduler we present is implemented. The sam-
pling interval of the monitor is chosen as 15 ms. The deadband in the actuator is set 
to be 0.5 ms. The PID parameters are online updated to compensate jitters of the con-
trol period, allowing us to concentrate on the effectiveness of the proposed feedback 
scheduler. The requested network utilization is illustrated in Fig. 3 (solid blue line 
with circles). The system response is also plotted in Fig.4 (solid blue line). As we can 
see, the control performance is improved all along the simulation. This is especially 
the truth when the available utilization goes below U0 from t = 2s. With the help of 
the NN based feedback scheduler, the plant exhibits satisfactory performance even 
when the network resources become scarce. In response to workload variations, the 
feedback scheduler attempts to maximize the control performance through maximiz-
ing the use of available network resources in an intelligent way all the time, as shown 
in Fig. 3 and 4. This mainly benefits from the powerful capability of the Elman NN 
for effectively predicting the network conditions.  
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6   Conclusions 

Control applications built upon a shared control network must meet increasingly de-
manding requirements to cope with significant degrees of workload uncertainty, espe-
cially when the communication resource is limited. These requirements give rise to 
the integration of feedback control and network scheduling. In this paper, we demon-
strate a novel application of neural networks in the newly emerging field of feedback 
scheduling. In order to handle flexible workload in control networks, we present a 
feedback scheduler based on a neural predictor. The primary goal is to maximize the 
quality of control under constraints on the availability of network resources. It is ar-
gued that this feedback scheduler allows the control application to be highly flexible 
with respect to complex workload variations, while improving the control perform-
ance to the maximum extent. As a future work in this direction, we will attempt to 
develop effective control algorithms to compensate the sampling period jitter, which 
seems to be the main problem in the proposed approach.  
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