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Abstract. Interest in DNA computing has increased overwhelmly since 
Adleman successfully demonstrated its capability to solve Hamiltonian Path 
Problem (HPP). Many research results of similar combinatorial problems which 
are mainly in the realm of computer science and mathematics have been 
presented. In this paper, implementation ideas and methods to solve an 
engineering related combinatorial problem using this DNA computing approach 
is presented. The objective is to find an optimal path for a complex elevator 
scheduling problem of an 8-storey building with 3 elevators. Each of the 
elevator traveled path is represented by DNA sequence of specific length that 
represent elevator’s  traveling time in a proportional way based on certain initial 
conditions such as present and destination floors, and hall calls for an elevator 
from a floor. The proposed ideas and methods show promising results that DNA 
computing approach can be well-suited for solving such real-world application 
in the near future. 

1   Introduction 

In 1994, Adleman [1] demonstrated the practical possibility of using molecules of 
Deoxyribonucleic Acid or DNA as a medium for computation. In his experiment, 
Adleman successfully solved a directed Hamiltonian Path Problem (HPP) using the 
tools of biomolecular engineering. Adleman [2] created DNA strands to represent an 
airplane flight from each of the seven cities, and then combined them to produce 
every possible route. Given its vast parallelism, the DNA strands yielded 109 answers 
in less than one second. 

DNA computation relies on devising algorithms that solve problems using the 
encoded information in the sequence of oligonucleotides that make up DNA’s double 
helix − the bases Adenine, Guanine, Thymine, and Cytosine (A, G, T, and C, 
respectively) and then breaking and making new bonds between them to reach the 
answer. 

Research on DNA application to solve engineering problem however has not been 
very well establish. In this paper DNA computing technique to solve such problem is 
proposed. Since DNA computing is very suitable to solve combinatorial problems, an 
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elevator scheduling problem is chosen to be solved using this computing technique. 
The elevator scheduling problem involves finding an optimal path, or in other word, 
finding the shortest path for the travel path of the elevators for a building with certain 
number of elevators and floors. However, this problem is a complex combinatorial 
problem since certain criteria need to be fulfilled for the problem solution such as 
initial elevator position, its destinations and hall calls made for an elevator. 

As mentioned, the elevator scheduling problem involves finding the elevator 
shortest travel path. Hence, current research works on DNA computing techniques for 
solving shortest path is being reviewed. Among others, Nayaranan and Zorbalas [3] 
proposed a constant proportional length-based DNA computing technique for solving 
Traveling Salesman Problem (TSP) or shortest path HPP. Yamamoto et al. [4] 
proposed a concentration-controlled DNA computing to accomplish local search for 
the shortest path problem. Lee et al. [5] proposed a DNA computing technique based 
on temperature gradient to solve the TSP problem. Ibrahim et al. [6] on the other hand 
proposed a direct-proportional length-based DNA computing for shortest path 
problem. The proposed method for the finding the optimal path of the elevator 
scheduling problem based on one of the shortest path method is presented in detail in 
this paper. 

2   Biomolecular Operations of DNA 

DNA computing involves biomolecular operations to manipulate the DNA strands by 
DNA synthesis, polymerase chain reaction (PCR), ligation, parallel overlap assembly 
(POA) and gel electrophoresis operations that are described as follows. 

DNA Synthesis. DNA synthesis or replication is the process of copying a double-
stranded DNA strand. Presently, a test tube containing approximately 1018 DNA 
molecules are available from commercial DNA synthesis companies at a reasonable 
price. 

Polymerase Chain Reaction (PCR). PCR is an incredibly sensitive copying machine 
for DNA. DNA strands can be copied exponentially using PCR. PCR proceeds in 
cycles of 3 steps at different temperatures as illustrated in Fig. 1 [7]. These steps are 
denaturation (95°C), involves separation of the double strand template, annealing 
(55°C) where primers are ‘annealed’ to both the single strands ends and extension 
(75°C) process where polymerase enzymes are used to extend the primers into 
replicas of the template. This sequence is repeated causing an exponential growth in 
the number of templates. 

Ligation. Ligation is often invoked after an annealing operation to concatenate 
strands of DNA. Although it is possible to use some ligase enzymes to concatenate 
free-floating double-stranded DNA, it is more efficient to allow single strands to 
anneal together, connecting up series of single-strand fragments, and then use a ligase 
to seal the covalent bonds between adjacent fragments, as shown in Fig. 2 [8]. 

Parallel Overlapping Assembly (POA). POA is a method for initial pool generation 
to solve weighted graph problems. This method is introduced by Stemmer [9] to 
facilitate in vitro mutagenesis. Kaplan et al. [10] successfully applied this method to 
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Fig. 1. One cycle of PCR 

 

Fig. 2. Ligation process 

 

Fig. 3. Parallel overlapping assembly (POA) for initial pool generation. The continuous arrows 
represent the synthesized oligos which are the input to the computation. The dotted arrows 
represent the elongated part during polymerization. The arrowhead indicates the 3’ end. 

generate initial pool consisting of binary numbers to solve maximal clique 
problem.POA involves thermal cycle where during the thermal cycle, the position 
strings in one of the oligo is annealed to the complementary strings of the next oligo. 
In the presence of polymerase enzyme, the oligo 3’ end side is extended to form a 
longer double stranded DNA as depicted in Fig. 3 [11]. A data pool consisting of all 
possible combinations are thus produced after a number of thermal cycles. 

Gel Electrophoresis. Gel electrophoresis is a technique for separating DNA strands 
according to its length through a gel in an electrical field based on the fact that DNA 
is negatively charged [12]. As the separation process continues the separation 
between the larger and smaller fragments increases as depicted in Fig. 4 [13, 14]. 
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Fig. 4. Gel electrophoresis process 

3   Elevator Scheduling Problem 

Typically, a building consists of N floors with a total of M elevators. An example of 
elevator situation at an instance of a time can be illustrated as in Table 1. 

The elevator travel path can be represented as a weighted graph problem. This is 
done by representing the elevator position at floor 1, 2, 3, … , N – 2, N – 1, N  with 
nodes V1, V2, V3, … , VN–2, VN–1, VN respectively. The graph of all possible travel paths 
of one of the elevator is constructed as shown in Fig. 5. 

Table 1. Elevator situation at an instance of time 

Floor No Elevator 1 Elevator 2 … Elevator M−1 Elevator M Hall Call 

N   … (N−3, 7, 3)   

N−1 (N−2, 4, 1)  …   ↑ 

N−2   …   ↓ 

: : : : : : : 

3  (4, 6, N−2) …   ↑ 

2   …  (5, 8, N−1) ↓ 

1   …    

The weight between nodes can be represented as 

STij TTij +−=− |)(|||ω  (1) 

where 
      i −  elevator present floor position 
      j −  elevator destination floor position 
  | j − i| −  total number of floors of elevator movement 
     TT −  elevator traveling time between two consecutive floors 
     TS −  elevator stopping time at a floor 

The output of the graph, given by sum of the graph weights thus represents the 
total traveling time of the elevator, i.e. 

∑
−

=−
−=

1

1||
||)(

N

ij
ijEG ω  (2) 
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Fig. 5. Graph of all possible travel paths of an elevator 

For a building with M elevators, M similar graphs as shown in Fig. 5 can be 
duplicated representing all M elevators travel paths. The total traveling time of all the 
elevators can thus be calculated by summing up each of the elevators traveling time as 

)()()()(),,,,( 121121 MMMM EGEGEGEGEEEEG ++++= −− LL  (3) 

The optimal travel path is thus given by the minimum total traveling time of all the 
elevators with all initial conditions and requirements satisfied, i.e. 

Optimal Travel Path = G (E1, E2, …, EM–1, EM)min (4) 

Let us consider a building with 3 elevators and 8 floors. Elevator A is presently at 
1st floor and its destination is 4th and 5th floor, elevator B is presently at 6th floor and 
its destination is 3rd and 2nd floor, and elevator C is presently at 3rd floor and its 
destination is 6th and 8th floor. There are hall calls at 4th floor going up, and hall calls 
at 5th floor going down, as illustrated in Table 2. 

Table 2. Elevator position for elevator scheduling problem example 

Floor No Elevator A Elevator B Elevator C Hall Call 

8     

7     

6  (3, 2)   

5    ↓ 
4    ↑ 

3   (6, 8)  

2     
1 (4, 5)    

The solution to this elevator scheduling problem is to find the optimal travel path 
for all the elevators that fulfill all initial conditions and requirements defined. 
Therefore, it is necessary to calculate the total output of the graphs G (A, B, C). The 
optimal travel path will thus be given by the minimum graph output among all the 
graph output for all possible travel paths of elevator A, B and C. 



 DNA Computing for Complex Scheduling Problem 1187 

 

4   DNA Computing to Solve Elevator Scheduling Problem 

A method proposed by [6] to solve the shortest path problem is being applied to solve 
the elevator scheduling problem. Using this method, the weights between every node 
are encoded by oligonucleotide length in a proportional way to represent the 
elevator’s traveling time between floors. A number of steps are performed for the 
computation process that is discussed below. 

Step 1. The elevator position are represented as nodes V1, V2, V3, V4, V5, V6, V7, V8 and 
V1', V2', V3', V4', V5', V6', V7', V8' for upward and downward movements respectively 
representing all the 8 floor positions in the building. 

Step 2. The weights between nodes are assigned in such a way that it will directly 
represent the elevator’s traveling time between the floors. Since the building consists 
of 8 floors, the maximum number of floors that the elevator can travel is (8 – 1) = 7 
floors. Now, assuming that TT = 5 sec, TS = 15 sec, and representing every 5 sec with 
10 units, we have form (1) 

 ω 0 = 0(5) + 15 = 15 sec = 30 , ω 1 = 1(5) + 15 = 20 sec = 40 
 ω 2 = 2(5) + 15 = 25 sec = 50 , ω 3 = 3(5) + 15 = 30 sec = 60 
 ω 4 = 4(5) + 15 = 35 sec = 70 , ω 5 = 5(5) + 15 = 40 sec = 80 
 ω 6 = 6(5) + 15 = 45 sec = 90 , ω 7 = 7(5) + 15 = 50 sec = 100 

Step 3. Construct a graph with its corresponding weight representing all possible 
travel path combinations of each elevator that fulfill all the required initial conditions 
and requirements as shown in Fig. 6. Note that all possible end paths of elevator A are 
joined with the start path of elevator B. Similarly, all possible end paths of elevator B 
are joined with the start path of elevator C. This is done in order that the total output 
of the graph G (A, B, C) representing the travel path of all the elevators can be 
calculated. 

 

 

Fig. 6. Graph of all possible travel path combinations of elevators A, B and C 
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Table 3. DNA sequence for nodes (elevator floor position) 

20-mer Sequence (5’−3’) Upward 
Movement Via Vib 

GC% Tm (°C) 

V1 TCATCCTCCC GTCATTAACT 0.45 59.35 

V2 TTGGCTAAGG AAGTCGGTAG 0.50 59.32 

V3 GCTCTAAGCT AGTATCGCGG 0.55 59.24 

V4 CAATACTGCG CGAATGTTAC 0.45 59.20 
V5 AAATACCAAA AACATGCCGT 0.35 59.19 

V6 ATAGGGGGGA CATATCCAAT 0.45 59.19 

V7 CTAATTCTGC AAACCACACG 0.45 59.18 
V8 AATTTGGGTG GACCGTAGTA 0.45 59.16 

20-mer Sequence (5’−3’) Downward 
Movement Via Vib 

GC% Tm (°C) 

V8' ACGGAGTCAA GTGAATAGCC 0.50 59.15 

V7' GGGCTTGATT GTTCTGAGTT 0.45 59.13 
V6' CACATAGACT GGGGGTTACC 0.55 59.12 

V5' GAAGGGGCTC AAAGTCATAA 0.45 59.11 

V4' AACTCGCCTA GAACTGCCTA 0.50 59.09 
V3' CAATATGCTT TCCGGCTTAT 0.40 59.05 

V2' ATCCCAATTA TGGGTCTCAA 0.40 59.04 

V1' CTACTCCCCA CTCCACAGTT 0.55 59.01 

Step 4. Assign a unique DNA sequence for each of the node (elevator floor position) 
and its direction. Using available software for DNA sequence design named 
DNASequenceGenerator [15], the sequence is generated as shown in Table 3. The GC 
contents (GC%) and melting temperature (Tm) of each sequence is also shown in the 
table. Note that Vi is separated into half-5 end Via and half-3 end Vib. 

Step 5. Synthesize the oligos for every path in the graph according to the following 
rules [6] so that the oligos length will directly represent the weight between the nodes 

 (i)   If i is a start node and j is an intermediate node, synthesize the oligo as 
  V iab (20) + W ij (ω ij − 30) + V ja (20) 
 (ii)  If i is an intermediate node and j is an end node, synthesize the oligo as 
  V ib (20) + W ij (ω ij − 30) + V jab (20) 
 (iii) If i and j are both intermediate nodes, synthesize the oligo as 
  V ib (20) + W ij (ω ij − 20) + V ja (20) 

where V denotes the DNA sequence for node, W denotes the DNA sequence for 
weight, ω denotes the weight value, and ‘+’ denotes a ‘join’ between the DNA 
sequence. All the synthesized oligos based on the stated rules are shown in Table 4. 
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Table 4. DNA sequence for path between nodes 

DNA Sequence (5’ – 3’) Node 
Path Vi Wij Vj 

V1 → V4 TCATCCTCCC GTCATTAACT 30 CAATACTGCG 

V2 → V4 AAGTCGGTAG 20 CAATACTGCG CGAATGTTAC 

V3 → V4 GCTCTAAGCT AGTATCGCGG 10 CAATACTGCG 

V3 → V6 GCTCTAAGCT AGTATCGCGG 30 ATAGGGGGGA 

V4 → V5 CGAATGTTAC 10 AAATACCAAA AACATGCCGT 

V4 → V5 CGAATGTTAC 20 AAATACCAAA 

V5 → V5' AACATGCCGT 0 GAAGGGGCTC AAAGTCATAA 

V6 → V8 CATATCCAAT 20 AATTTGGGTG GACCGTAGTA 

V6 → V8 CATATCCAAT 30 AATTTGGGTG 

V8 → V8' GACCGTAGTA 10 ACGGAGTCAA 

V8 → V5' GTGAATAGCC 30 GAAGGGGCTC AAAGTCATAA 

V6 → V5' CACATAGACT GGGGGTTACC 10 GAAGGGGCTC 

V6 → V3' CACATAGACT GGGGGTTACC 30 CAATATGCTT 

V5 → V3' AAAGTCATAA 30 CAATATGCTT 

V3 → V2' TCCGGCTTAT 10 ATCCCAATTA TGGGTCTCAA 

V3 → V2' TCCGGCTTAT 20 ATCCCAATTA 

V2 → V2 TGGGTCTCAA 10 TTGGCTAAGG 

Step 6. All the synthesized oligos are then poured into a test tube for initial pool 
generation. POA is used to for the initial pool generation as suggested by Lee et al. 
[11] who demonstrated that POA is a more efficient and economical initial pool 
generation method for weighted graph problems. POA operation is similar to PCR; 
the only difference is that POA operates without the use of primers. As PCR, one 
cycle consists of three steps: hybridization, extension, and denaturation. During the 
annealing step, the temperature is decreased slowly so that partial hybridization is 
allowed to occur at respective locations. The extension on the other hand is applied 
with the presence of polymerase enzyme and the polymerization can be done from 5’ 
to 3’ direction. The generated double stranded DNA molecules are then separated by 
denaturation step. This can be done by increasing the temperature until the double 
stranded DNA molecules are separated to become single stranded DNA molecules. 

From the graph of Fig. 6, the total output of the graph representing the travel path 
of each elevator A, B and C with either elevator A, B and C answering the hall calls 
can be calculated. The calculations performed verifies that the optimal path is VA1 → 

VA4 → VA5 → VA5′ for elevator A, VB6′ → VB3′ → VB2′ for elevator B and VC3 → VC6 → VC8 
for elevator C with a total output G (A, B, C) = 340. 

Fig. 7 illustrates the oligos involved in the generation of this optimal path. Note 
that at the same time, all other combinations of travel paths are also generated in the 
same manner. 
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Fig. 7. DNA duplex based on POA method representing elevator’s optimal path VA1 → VA4 → 

VA5 → VA5′ → VB6′ → VB3′ → VB2′ → VC3 → VC6 → VC8. The 3’ end is indicated by the arrowhead. 

Step 7. At this stage, an initial pool of solution is produced. The optimal path 
combinations among many other alternative path combinations of the problem have to 
be filtered. This filtering process copies the target DNA duplex exponentially using 
the PCR process by amplifying all the DNA molecules containing start node VA1 and 
end node VC8. Numerous amount of DNA strands representing the start node VA1 and 
end node VC8 passing through all possible travel path combinations will be presented 
once the PCR operation is accomplished. Finally, gel electrophoresis is then 
performed onto the output solution of the PCR. The DNA molecules will be separated 
according to its length during this operation. The bands of gel electrophoresis are then 
analyzed, and the DNA duplex representing the shortest path starting from VA1 and 
end node VC8 will be extracted to represent the required solution of the problem. 

5   Conclusions 

In this paper, ideas and implementation methods to solve an elevator scheduling 
problem using DNA computing has been presented and discussed in details. DNA 
computing application towards solving this type of engineering problem has been 
shown to be achievable and applicable. It is expected from experimental results that 
the shortest DNA sequence length will represent the required optimal path for the 
elevator scheduling problem. With the successful confirmation of the expected result, 
the applicability of DNA computing could be extended into many more complex 
problems of this type of nature. Hence, the applicability of DNA computing could be 
extended into greater fields of other engineering related problems. 
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