

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3611, pp. 1182 – 1191, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DNA Computing for Complex Scheduling Problem

Mohd Saufee Muhammad, Zuwairie Ibrahim, Satomi Ueda,
Osamu Ono, and Marzuki Khalid

Institute of Applied DNA Computing, Meiji University,
1-1-1 Higashi-Mita, Tama-Ku, Kawasaki-Shi, Kanagawa-Ken 214-8571, Japan
{msaufee, zuwairie, satomixx, ono}@isc.meiji.ac.jp,

marzuki@utmkl.utm.my
http://www.isc.meiji.ac.jp/~i3erabc/IADC.html

Abstract. Interest in DNA computing has increased overwhelmly since
Adleman successfully demonstrated its capability to solve Hamiltonian Path
Problem (HPP). Many research results of similar combinatorial problems which
are mainly in the realm of computer science and mathematics have been
presented. In this paper, implementation ideas and methods to solve an
engineering related combinatorial problem using this DNA computing approach
is presented. The objective is to find an optimal path for a complex elevator
scheduling problem of an 8-storey building with 3 elevators. Each of the
elevator traveled path is represented by DNA sequence of specific length that
represent elevator’s traveling time in a proportional way based on certain initial
conditions such as present and destination floors, and hall calls for an elevator
from a floor. The proposed ideas and methods show promising results that DNA
computing approach can be well-suited for solving such real-world application
in the near future.

1 Introduction

In 1994, Adleman [1] demonstrated the practical possibility of using molecules of
Deoxyribonucleic Acid or DNA as a medium for computation. In his experiment,
Adleman successfully solved a directed Hamiltonian Path Problem (HPP) using the
tools of biomolecular engineering. Adleman [2] created DNA strands to represent an
airplane flight from each of the seven cities, and then combined them to produce
every possible route. Given its vast parallelism, the DNA strands yielded 109 answers
in less than one second.

DNA computation relies on devising algorithms that solve problems using the
encoded information in the sequence of oligonucleotides that make up DNA’s double
helix − the bases Adenine, Guanine, Thymine, and Cytosine (A, G, T, and C,
respectively) and then breaking and making new bonds between them to reach the
answer.

Research on DNA application to solve engineering problem however has not been
very well establish. In this paper DNA computing technique to solve such problem is
proposed. Since DNA computing is very suitable to solve combinatorial problems, an

 DNA Computing for Complex Scheduling Problem 1183

elevator scheduling problem is chosen to be solved using this computing technique.
The elevator scheduling problem involves finding an optimal path, or in other word,
finding the shortest path for the travel path of the elevators for a building with certain
number of elevators and floors. However, this problem is a complex combinatorial
problem since certain criteria need to be fulfilled for the problem solution such as
initial elevator position, its destinations and hall calls made for an elevator.

As mentioned, the elevator scheduling problem involves finding the elevator
shortest travel path. Hence, current research works on DNA computing techniques for
solving shortest path is being reviewed. Among others, Nayaranan and Zorbalas [3]
proposed a constant proportional length-based DNA computing technique for solving
Traveling Salesman Problem (TSP) or shortest path HPP. Yamamoto et al. [4]
proposed a concentration-controlled DNA computing to accomplish local search for
the shortest path problem. Lee et al. [5] proposed a DNA computing technique based
on temperature gradient to solve the TSP problem. Ibrahim et al. [6] on the other hand
proposed a direct-proportional length-based DNA computing for shortest path
problem. The proposed method for the finding the optimal path of the elevator
scheduling problem based on one of the shortest path method is presented in detail in
this paper.

2 Biomolecular Operations of DNA

DNA computing involves biomolecular operations to manipulate the DNA strands by
DNA synthesis, polymerase chain reaction (PCR), ligation, parallel overlap assembly
(POA) and gel electrophoresis operations that are described as follows.

DNA Synthesis. DNA synthesis or replication is the process of copying a double-
stranded DNA strand. Presently, a test tube containing approximately 1018 DNA
molecules are available from commercial DNA synthesis companies at a reasonable
price.

Polymerase Chain Reaction (PCR). PCR is an incredibly sensitive copying machine
for DNA. DNA strands can be copied exponentially using PCR. PCR proceeds in
cycles of 3 steps at different temperatures as illustrated in Fig. 1 [7]. These steps are
denaturation (95°C), involves separation of the double strand template, annealing
(55°C) where primers are ‘annealed’ to both the single strands ends and extension
(75°C) process where polymerase enzymes are used to extend the primers into
replicas of the template. This sequence is repeated causing an exponential growth in
the number of templates.

Ligation. Ligation is often invoked after an annealing operation to concatenate
strands of DNA. Although it is possible to use some ligase enzymes to concatenate
free-floating double-stranded DNA, it is more efficient to allow single strands to
anneal together, connecting up series of single-strand fragments, and then use a ligase
to seal the covalent bonds between adjacent fragments, as shown in Fig. 2 [8].

Parallel Overlapping Assembly (POA). POA is a method for initial pool generation
to solve weighted graph problems. This method is introduced by Stemmer [9] to
facilitate in vitro mutagenesis. Kaplan et al. [10] successfully applied this method to

1184 M.S. Muhammad et al.

Fig. 1. One cycle of PCR

Fig. 2. Ligation process

Fig. 3. Parallel overlapping assembly (POA) for initial pool generation. The continuous arrows
represent the synthesized oligos which are the input to the computation. The dotted arrows
represent the elongated part during polymerization. The arrowhead indicates the 3’ end.

generate initial pool consisting of binary numbers to solve maximal clique
problem.POA involves thermal cycle where during the thermal cycle, the position
strings in one of the oligo is annealed to the complementary strings of the next oligo.
In the presence of polymerase enzyme, the oligo 3’ end side is extended to form a
longer double stranded DNA as depicted in Fig. 3 [11]. A data pool consisting of all
possible combinations are thus produced after a number of thermal cycles.

Gel Electrophoresis. Gel electrophoresis is a technique for separating DNA strands
according to its length through a gel in an electrical field based on the fact that DNA
is negatively charged [12]. As the separation process continues the separation
between the larger and smaller fragments increases as depicted in Fig. 4 [13, 14].

 DNA Computing for Complex Scheduling Problem 1185

Fig. 4. Gel electrophoresis process

3 Elevator Scheduling Problem

Typically, a building consists of N floors with a total of M elevators. An example of
elevator situation at an instance of a time can be illustrated as in Table 1.

The elevator travel path can be represented as a weighted graph problem. This is
done by representing the elevator position at floor 1, 2, 3, … , N – 2, N – 1, N with
nodes V1, V2, V3, … , VN–2, VN–1, VN respectively. The graph of all possible travel paths
of one of the elevator is constructed as shown in Fig. 5.

Table 1. Elevator situation at an instance of time

Floor No Elevator 1 Elevator 2 … Elevator M−1 Elevator M Hall Call

N … (N−3, 7, 3)

N−1 (N−2, 4, 1) … ↑

N−2 … ↓

: : : : : : :

3 (4, 6, N−2) … ↑

2 … (5, 8, N−1) ↓

1 …

The weight between nodes can be represented as

STij TTij +−=− |)(|||ω (1)

where
 i − elevator present floor position
 j − elevator destination floor position
 | j − i| − total number of floors of elevator movement
 TT − elevator traveling time between two consecutive floors
 TS − elevator stopping time at a floor

The output of the graph, given by sum of the graph weights thus represents the
total traveling time of the elevator, i.e.

∑
−

=−
−=

1

1||
||)(

N

ij
ijEG ω (2)

1186 M.S. Muhammad et al.

Fig. 5. Graph of all possible travel paths of an elevator

For a building with M elevators, M similar graphs as shown in Fig. 5 can be
duplicated representing all M elevators travel paths. The total traveling time of all the
elevators can thus be calculated by summing up each of the elevators traveling time as

)()()()(),,,,(121121 MMMM EGEGEGEGEEEEG ++++= −− LL (3)

The optimal travel path is thus given by the minimum total traveling time of all the
elevators with all initial conditions and requirements satisfied, i.e.

Optimal Travel Path = G (E1, E2, …, EM–1, EM)min (4)

Let us consider a building with 3 elevators and 8 floors. Elevator A is presently at
1st floor and its destination is 4th and 5th floor, elevator B is presently at 6th floor and
its destination is 3rd and 2nd floor, and elevator C is presently at 3rd floor and its
destination is 6th and 8th floor. There are hall calls at 4th floor going up, and hall calls
at 5th floor going down, as illustrated in Table 2.

Table 2. Elevator position for elevator scheduling problem example

Floor No Elevator A Elevator B Elevator C Hall Call

8

7

6 (3, 2)

5 ↓
4 ↑

3 (6, 8)

2
1 (4, 5)

The solution to this elevator scheduling problem is to find the optimal travel path
for all the elevators that fulfill all initial conditions and requirements defined.
Therefore, it is necessary to calculate the total output of the graphs G (A, B, C). The
optimal travel path will thus be given by the minimum graph output among all the
graph output for all possible travel paths of elevator A, B and C.

 DNA Computing for Complex Scheduling Problem 1187

4 DNA Computing to Solve Elevator Scheduling Problem

A method proposed by [6] to solve the shortest path problem is being applied to solve
the elevator scheduling problem. Using this method, the weights between every node
are encoded by oligonucleotide length in a proportional way to represent the
elevator’s traveling time between floors. A number of steps are performed for the
computation process that is discussed below.

Step 1. The elevator position are represented as nodes V1, V2, V3, V4, V5, V6, V7, V8 and
V1', V2', V3', V4', V5', V6', V7', V8' for upward and downward movements respectively
representing all the 8 floor positions in the building.

Step 2. The weights between nodes are assigned in such a way that it will directly
represent the elevator’s traveling time between the floors. Since the building consists
of 8 floors, the maximum number of floors that the elevator can travel is (8 – 1) = 7
floors. Now, assuming that TT = 5 sec, TS = 15 sec, and representing every 5 sec with
10 units, we have form (1)

 ω 0 = 0(5) + 15 = 15 sec = 30 , ω 1 = 1(5) + 15 = 20 sec = 40
 ω 2 = 2(5) + 15 = 25 sec = 50 , ω 3 = 3(5) + 15 = 30 sec = 60
 ω 4 = 4(5) + 15 = 35 sec = 70 , ω 5 = 5(5) + 15 = 40 sec = 80
 ω 6 = 6(5) + 15 = 45 sec = 90 , ω 7 = 7(5) + 15 = 50 sec = 100

Step 3. Construct a graph with its corresponding weight representing all possible
travel path combinations of each elevator that fulfill all the required initial conditions
and requirements as shown in Fig. 6. Note that all possible end paths of elevator A are
joined with the start path of elevator B. Similarly, all possible end paths of elevator B
are joined with the start path of elevator C. This is done in order that the total output
of the graph G (A, B, C) representing the travel path of all the elevators can be
calculated.

Fig. 6. Graph of all possible travel path combinations of elevators A, B and C

1188 M.S. Muhammad et al.

Table 3. DNA sequence for nodes (elevator floor position)

20-mer Sequence (5’−3’) Upward
Movement Via Vib

GC% Tm (°C)

V1 TCATCCTCCC GTCATTAACT 0.45 59.35

V2 TTGGCTAAGG AAGTCGGTAG 0.50 59.32

V3 GCTCTAAGCT AGTATCGCGG 0.55 59.24

V4 CAATACTGCG CGAATGTTAC 0.45 59.20
V5 AAATACCAAA AACATGCCGT 0.35 59.19

V6 ATAGGGGGGA CATATCCAAT 0.45 59.19

V7 CTAATTCTGC AAACCACACG 0.45 59.18
V8 AATTTGGGTG GACCGTAGTA 0.45 59.16

20-mer Sequence (5’−3’) Downward
Movement Via Vib

GC% Tm (°C)

V8' ACGGAGTCAA GTGAATAGCC 0.50 59.15

V7' GGGCTTGATT GTTCTGAGTT 0.45 59.13
V6' CACATAGACT GGGGGTTACC 0.55 59.12

V5' GAAGGGGCTC AAAGTCATAA 0.45 59.11

V4' AACTCGCCTA GAACTGCCTA 0.50 59.09
V3' CAATATGCTT TCCGGCTTAT 0.40 59.05

V2' ATCCCAATTA TGGGTCTCAA 0.40 59.04

V1' CTACTCCCCA CTCCACAGTT 0.55 59.01

Step 4. Assign a unique DNA sequence for each of the node (elevator floor position)
and its direction. Using available software for DNA sequence design named
DNASequenceGenerator [15], the sequence is generated as shown in Table 3. The GC
contents (GC%) and melting temperature (Tm) of each sequence is also shown in the
table. Note that Vi is separated into half-5 end Via and half-3 end Vib.

Step 5. Synthesize the oligos for every path in the graph according to the following
rules [6] so that the oligos length will directly represent the weight between the nodes

 (i) If i is a start node and j is an intermediate node, synthesize the oligo as
 V iab (20) + W ij (ω ij − 30) + V ja (20)
 (ii) If i is an intermediate node and j is an end node, synthesize the oligo as
 V ib (20) + W ij (ω ij − 30) + V jab (20)
 (iii) If i and j are both intermediate nodes, synthesize the oligo as
 V ib (20) + W ij (ω ij − 20) + V ja (20)

where V denotes the DNA sequence for node, W denotes the DNA sequence for
weight, ω denotes the weight value, and ‘+’ denotes a ‘join’ between the DNA
sequence. All the synthesized oligos based on the stated rules are shown in Table 4.

 DNA Computing for Complex Scheduling Problem 1189

Table 4. DNA sequence for path between nodes

DNA Sequence (5’ – 3’) Node
Path Vi Wij Vj

V1 → V4 TCATCCTCCC GTCATTAACT 30 CAATACTGCG

V2 → V4 AAGTCGGTAG 20 CAATACTGCG CGAATGTTAC

V3 → V4 GCTCTAAGCT AGTATCGCGG 10 CAATACTGCG

V3 → V6 GCTCTAAGCT AGTATCGCGG 30 ATAGGGGGGA

V4 → V5 CGAATGTTAC 10 AAATACCAAA AACATGCCGT

V4 → V5 CGAATGTTAC 20 AAATACCAAA

V5 → V5' AACATGCCGT 0 GAAGGGGCTC AAAGTCATAA

V6 → V8 CATATCCAAT 20 AATTTGGGTG GACCGTAGTA

V6 → V8 CATATCCAAT 30 AATTTGGGTG

V8 → V8' GACCGTAGTA 10 ACGGAGTCAA

V8 → V5' GTGAATAGCC 30 GAAGGGGCTC AAAGTCATAA

V6 → V5' CACATAGACT GGGGGTTACC 10 GAAGGGGCTC

V6 → V3' CACATAGACT GGGGGTTACC 30 CAATATGCTT

V5 → V3' AAAGTCATAA 30 CAATATGCTT

V3 → V2' TCCGGCTTAT 10 ATCCCAATTA TGGGTCTCAA

V3 → V2' TCCGGCTTAT 20 ATCCCAATTA

V2 → V2 TGGGTCTCAA 10 TTGGCTAAGG

Step 6. All the synthesized oligos are then poured into a test tube for initial pool
generation. POA is used to for the initial pool generation as suggested by Lee et al.
[11] who demonstrated that POA is a more efficient and economical initial pool
generation method for weighted graph problems. POA operation is similar to PCR;
the only difference is that POA operates without the use of primers. As PCR, one
cycle consists of three steps: hybridization, extension, and denaturation. During the
annealing step, the temperature is decreased slowly so that partial hybridization is
allowed to occur at respective locations. The extension on the other hand is applied
with the presence of polymerase enzyme and the polymerization can be done from 5’
to 3’ direction. The generated double stranded DNA molecules are then separated by
denaturation step. This can be done by increasing the temperature until the double
stranded DNA molecules are separated to become single stranded DNA molecules.

From the graph of Fig. 6, the total output of the graph representing the travel path
of each elevator A, B and C with either elevator A, B and C answering the hall calls
can be calculated. The calculations performed verifies that the optimal path is VA1 →

VA4 → VA5 → VA5′ for elevator A, VB6′ → VB3′ → VB2′ for elevator B and VC3 → VC6 → VC8
for elevator C with a total output G (A, B, C) = 340.

Fig. 7 illustrates the oligos involved in the generation of this optimal path. Note
that at the same time, all other combinations of travel paths are also generated in the
same manner.

1190 M.S. Muhammad et al.

Fig. 7. DNA duplex based on POA method representing elevator’s optimal path VA1 → VA4 →

VA5 → VA5′ → VB6′ → VB3′ → VB2′ → VC3 → VC6 → VC8. The 3’ end is indicated by the arrowhead.

Step 7. At this stage, an initial pool of solution is produced. The optimal path
combinations among many other alternative path combinations of the problem have to
be filtered. This filtering process copies the target DNA duplex exponentially using
the PCR process by amplifying all the DNA molecules containing start node VA1 and
end node VC8. Numerous amount of DNA strands representing the start node VA1 and
end node VC8 passing through all possible travel path combinations will be presented
once the PCR operation is accomplished. Finally, gel electrophoresis is then
performed onto the output solution of the PCR. The DNA molecules will be separated
according to its length during this operation. The bands of gel electrophoresis are then
analyzed, and the DNA duplex representing the shortest path starting from VA1 and
end node VC8 will be extracted to represent the required solution of the problem.

5 Conclusions

In this paper, ideas and implementation methods to solve an elevator scheduling
problem using DNA computing has been presented and discussed in details. DNA
computing application towards solving this type of engineering problem has been
shown to be achievable and applicable. It is expected from experimental results that
the shortest DNA sequence length will represent the required optimal path for the
elevator scheduling problem. With the successful confirmation of the expected result,
the applicability of DNA computing could be extended into many more complex
problems of this type of nature. Hence, the applicability of DNA computing could be
extended into greater fields of other engineering related problems.

References

1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science,
Vol. 266 (1994) 1021-1024

2. Adleman, L.M.: Computing with DNA. Scientific American (1998) 34-41
3. Narayanan, A., Zorbalas, S.: DNA Algorithms for Computing Shortest Paths. Proceedings

of Genetic Programming, (1998) 718-723

 DNA Computing for Complex Scheduling Problem 1191

4. Yamamoto, Y., Kameda, A., Matsuura, N., Shiba, T., Kawazoe, Y., Ahochi, A.: Local
Search by Concentration-Controlled DNA Computing. International Journal of
Computational Intelligence and Applications, Vol. 2 (2002) 447-455

5. Lee, J.Y., Shin, S.Y., Augh, S.J., Park, T.H., Zhang, B.T.: Temperature Gradient-Based
DNA Computing for Graph Problems with Weighted Edges. Lecture Notes in Computer
Science, Springer-Verlag, Vol. 2568 (2003) 73-84

6. Ibrahim, Z., Tsuboi, Y., Ono, O., Khalid, M.: Direct-Proportional Length-Based DNA
Computing for Shortest Path Problem. International Journal of Computer Science and
Applications, Vol. 1, Issue 1 (2004) 46-60

7. Fitch, J. P.: Engineering Introduction to Biotechnology. SPIE Press (2001)
8. Zucca, M.: DNA Based Computational Models. PhD Thesis, Politecnico Di Torino, Italy

(2000)
9. Stemmer, W.P.: DNA Shuffling by Random Fragmentation and Reassembly: In Vitro

Recombination for Molecular Evolution. Proc. Natl. Acad. Sci. U.S.A., Vol. 91 (1994)
10747-10751

10. Kaplan, P.D., Ouyang, Q., Thaler, D.S., Libchaber, A.: Parallel Overlap Assembly for the
Construction of Computational DNA Libraries. Journal of Theoretical Biology, Vol. 188,
Issue 3 (1997) 333-341

11. Lee, J.Y., Lim, H.W., Yoo, S.I., Zhang, B.T., Park, T.H.: Efficient Initial Pool Generation
for Weighted Graph Problems Using Parallel Overlap Assembly. Preliminary Proceeding
of the 10th International Meeting on DNA Computing (2004) 357-364

12. Paun, G., Rozenberg, G., Salomaa, A.,: DNA Computing: New Computing Paradigms.
Lecture Notes in Computer Science, Springer-Verlag, Vol. 1644 (1998) 106-118

13. Amos, M.: DNA Computation. PhD Thesis, The University of Warwick, UK (1997)
14. Yamamoto, Y., Kameda, A., Matsuura, N., Shiba, T., Kawazoe, Y., Ahochi, A.: A

Separation Method for DNA Computing Based on Concentration Control. New Generation
Computing, Vol. 20, No. 3 (2002) 251-262

15. Udo, F., Sam, S., Wolfgang, B., Hilmar, R.: DNASequenceGenerator: A Program for the
Construction of DNA Sequences. Proceedings of the Seventh International Workshop on
DNA Based Computers (2001) 23-32

	Introduction
	Biomolecular Operations of DNA
	Elevator Scheduling Problem
	DNA Computing to Solve Elevator Scheduling Problem
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

