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Abstract. Based on the concept of coarse-grained description, a new en-
coding scheme with grouped weight for protein sequence is presented in
this paper. By integrating the new scheme with the component-coupled
algorithm, the overall prediction accuracy of protein structural class is
significantly improved. For the same training dataset consisting of 359
proteins, the overall prediction accuracy achieved by the new method is
7% higher than that based solely on the amino-acid composition for the
jackknife test. Especially for α+β the increase of prediction accuracy can
achieve 15%. For the jackknife test, the overall prediction accuracy by
the proposed scheme can reach 91.09%, which implies that a significant
improvement has been achieved by making full use of the information
contained in the protein sequence. Furthermore, the experimental anal-
ysis shows that the improvement depends on the size of the training
dataset and the number of groups.

1 Introduction

It is generally accepted that protein structure is determined by its amino acid
sequence [1] and that the knowledge of protein structures plays an important
role in understanding their functions. Understanding the relation between amino
acid sequence and three-dimensional protein structure is one of the major goals
of contemporary molecular biology. A priori knowledge of protein structural
classes has become quite useful from both an experimental and theoretical point
of view. The concept of protein structural classes was proposed by Levitt and
Chothia more than 20 years ago [2]. According to this concept, a protein is
usually classified into one of the following structural classes: all-α, all-β, α/β
and α + β. The structural class of a protein presents an intuitive description of
its overall folding and the restrictions of the structural class have a high impact
on its secondary and tertiary structure prediction [3]. Some researchers have
claimed that the knowledge of structural classes might be used to decrease the
complexity of searching conformational space during energy optimization, and
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provide useful information for a heuristic approach to find the tertiary structure
of a protein. Owing to the importance and the relative simplicity of structural
class prediction, considerable attention has been focused on this problem during
the past years [3-11].

Historically, Nishikawa’s found [4] that structural classes of proteins correlate
strongly with amino acid composition. It marked the onset of algorithm devel-
opments aimed at predicting the structural class of a protein from its amino acid
composition solely. There have been a number of algorithms about this topic,
such as the least Hamming distance, the least Euclidian distance, the discrimi-
nate analysis, the vector decomposition, the component-coupled algorithm, and
fuzzy structural vectors. Although the amino-acid composition is very convenient
to calculate, the full information contained in the protein sequence is reduced
considerably. The prediction accuracy is limited by the amino-acid composition-
based approach. It is the aim of this study to overcome this drawback.

Based on the concept of coarse-grained description, a protein sequence was re-
duced to a few of binary sequences, which we named characteristic sequences. For
each characteristic sequence, a canonical weight function was introduced to real-
ize the grouped weight encoding of protein sequence. We name this new encoding
approach of protein sequence as EBGW (Encoding Based on Grouped Weight)
approach. Integrating the new scheme (EBGW) with the component-coupled al-
gorithm, it shows that the overall prediction accuracy of protein structural class
is significantly improved. Furthermore, the methodology presented here might
be useful for other studies of protein structure.

2 Methods

For many quite different things, we can treat them as one if they have some
same characters. This is the main idea of coarse-grained and was applied to DNA
sequence analysis in [12]. It is well known that the three-dimensional structure of
protein is more conservative than its protein sequence. In the process of folding,
the insertion, deletion or permutation of single amino acid residue may not
destroy the three-dimensional structure. The most important influencing factor
of protein folding is the unique character of amino acid residue. Thus ,in the
following, we present a new encdoing scheme (named EBGW) of amino acid
sequence based on the different character of amino acid residue and coarse-
grained idea.

2.1 EBGW of Protein Sequence

Considering the hydrophobicity and charged character, we can divide the 20
amino acid residues into four different classes as follows [13]:

neuter and non-polarity residue C1={G,A,V,L,I,M,P,F,W}
neuter and polarity residue C2={Q,N,S,T,Y,C}
acidic residue C3={D,E}
alkalescence residue C4={H,K,R}
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Thus, we can get three combinations, each of which can partition the 20
amino acid residues into two disjoint group: C1+C2 vs C3+C4, or C1+C3 vs
C2+C4, and C1+C4 vs C2+C3.

Definition 1. (Characteristic Sequence) Let A(n) = a1a2 · · · an be a protein
sequence, we can transform it into three binary sequences by three homomor-
phic maps Φi(A(n)) = Φi(a1)Φi(a2) · · · Φi(an) (i = 1, 2, 3) which are defined as
follows:

Φ1(aj) =
{

1 if aj ∈ C1 ∪ C2
0 if aj ∈ C3 ∪ C4 (j = 1, 2, · · · , n) (1)

Φ2(aj) =
{

1 if aj ∈ C1 ∪ C3
0 if aj ∈ C2 ∪ C4 (j = 1, 2, · · · , n) (2)

Φ3(aj) =
{

1 if aj ∈ C1 ∪ C4
0 if aj ∈ C2 ∪ C3 (j = 1, 2, · · · , n) (3)

Denote H(n)i = Φi (A(n)) = hi
1h

i
2 · · · hi

n (i = 1, 2, 3), we call H(n)1, H(n)2,
H(n)3 as 1-,2- and 3-characteristic sequences of the protein sequence, respec-
tively.

For simplicity, in the following text we denote H(n) = h1h2 · · · hn as any
characteristic sequence of three defined above.

Definition 2. (Weight) Let H(n) = h1h2 · · · hn be a characteristic sequence,
the weight of H(n) is defined as the enumeration of digit 1 in H(n).

We can see that the weight of characteristic sequence is dependent on the
sequence length. So it could not be applied to the comparison or analysis of
sequences with different lengths.

Definition 3. (Canonical Weight) Let H(n) = h1h2 · · · hn be a characteristic
sequence, the canonical weight w(n) is defined as the frequency of digit 1 occurs
in H(n), that is w(n) = p/n, where p is the weight of H(n).

Definition 4. (Encoding Based on Grouped Weight) Let H(n) = h1h2 · · · hn

be a characteristic sequence, assume L be a positive integer, we can partition
H(n) into L pieces of subsequence. The process of subsequence partitioning can
refer to Figure 1. From Figure 1 we know that the length of each subsequence is
progressive increase. Let H (�kn/L�) (k = 1, 2, · · · , L) be subsequences of H(n)
whose length are �kn/L� (k = 1, 2, · · · , L), where�•� is the operation return-
ing a number down to the nearest integer, and w (�kn/L�) (k = 1, 2, · · · , L)
be the canonical weight of H (�kn/L�) (k = 1, 2, · · · , L), we can get W =
[w (�n/L�) , w (�2n/L�) , · · · w (�Ln/L�)] which we call as the EBGW string of
characteristic sequence H(n).

Thus, given a protein sequence A(n) = a1a2 · · · an, we can transform it
into three characteristic sequencesH(n)1, H(n)2, H(n)3 by using definition 1.
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H(n) 10101100101111001101001000010001010011011010111000010101011101111
H(10) 1010110010
H(21) 101011001011110011010
H(32) 10101100101111001101001000010001
H(43) 1010110010111100110100100001000101001101101
H(54) 101011001011110011010010000100010100110110101110000101
H(65) 10101100101111001101001000010001010011011010111000010101011101111

n=65 L=6 length of subsequence is 10,21,32,43,54,65 respectively

Fig. 1. Partitioning subsequence of characteristic sequence

For each characteristic sequence H(n)i(i = 1, 2, 3), it can be encoded into a
L-dimension vector W i(i = 1, 2, 3) with definition 4. That is, we can trans-
form a protein sequence into a 3L-dimension vector X = [W 1, W 2, W 3] =
[x1, x2, · · · x3L], we call x as the EBGW string of protein sequence A.

In EBGW approach, characteristic sequence is introduced based on the con-
cept of coarse-grained. It reflects the distribution of residues with the same
unique characteristic and portrays the essence of protein sequence. Although
the amino-acid composition is very convenient to calculate, the information con-
tained in the protein sequence is reduced considerably. In EBGW approach,
grouping presented can contain more information in the protein sequence. If
grouping based on the amino acid composition, a protein sequence can be trans-
formed into a 20L-dimension vector, where L is the number of groups. However,
grouping based on characteristic sequence, a protein sequence can be transformed
into a 3L-dimension vector. The computational complexity is largely decreased.
From definition 4, we know that the larger the value of L used, the more infor-
mation of EBGW approach contained, and the higher accuracy of test reached.
On the other hand, information may be less when L equals the length of pro-
tein sequence. So the optimal value of L should be carefully chosen for different
dataset.

2.2 Component-Coupled Algorithm

Suppose there are N proteins forming a set S, i.e.

S = Sα ∪ Sβ ∪ Sα+β ∪ Sα/β (4)

where the subset Sα consists of only all-α proteins, the subset Sβ consists of only
all-β proteins, and so forth. According to the EBGW approach, any protein in
the set S corresponds to a vector (or a point) in the 3L-dimension space, i.e.

Xξ
k = [xξ

k, 1, x
ξ
k, 2, · · · , x

ξ
k, 3L] (k = 1, 2, · · · , Nξ) (5)

where ξ = α, β, α + β, α/β denotes one of the four different structural classes
and Nξ is the number of proteins in the subset ξ.
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The standard vector for the subset Sξis defined by

Xξ = [xξ
1, x

ξ
2, · · · , x

ξ
3L] (6)

where

xξ
i =

1
Nξ

Nξ∑
k=1

xξ
k,i i = 1, 2, · · ·3L (7)

Suppose X is a protein whose structural class is to be predicted. It can be
either one of the N proteins in the set S or a protein outside it. It also corresponds
to a point [x1, x2, · · ·x3L] in the 3L-dimension space with EBGW approach.

The component-coupled algorithm is based on the squared Mahalanobis dis-
tance, defined by

F 2
M (X, Xξ) = (X − Xξ)C−1

ξ (X − Xξ)T + ln Kξ (8)

where Cξ = (cξ
i,j)3L×3L is a covariance matrix given by

Cξ =

⎡
⎢⎢⎢⎢⎣

cξ
1,1 cξ

1,2 · · · cξ
1,3L

cξ
2,1 cξ

2,2 · · · cξ
2,3L

...
...

. . .
...

cξ
3L,1 cξ

3L,2 · · · cξ
3L,3L

⎤
⎥⎥⎥⎥⎦

and the superscript T is the transposition operator; C−1
ξ is the inverse matrix

of Cξ. The matrix elements Cξ
i,j are given by

cξ
i,j =

1
Nξ − 1

Nξ∑
k=1

[xξ
k,i − xξ

i ][x
ξ
k,j − xξ

j ] (i, j = 1, 2, · · · 3L) (9)

Kξ is the product of all positive eigenvalues of Cξ. The target protein X is
predicted to be the structural class for which the corresponding Mahalanobis
distance has the least value, as can be formulated as follow

F 2
M (X, Xλ) = min

{
F 2

M (X, Xα), F 2
M (X, Xβ), F 2

M (X, Xα+β), F 2
M (X, Xα/β)

}
(10)

where λ can be α,β,α/β or α+β and the superscript λ in Equation (10) will give
the subset (or structural class) to which the predicted protein X should belong.

2.3 Evaluation of the Prediction Results

In order to assess the accuracy of a prediction algorithm, the sensitivity for each
type is calculated according to Baldi et al [14]. Evaluating a given prediction
method is a common but quite subtle problem. Usually, a prediction method is
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evaluated by the prediction results for a training data set and testing data set,
respectively. According to the statistical terminology, the former is called a test
of resubstitution reflecting the self-consistency, and the latter is a test of cross-
validation reflecting the extrapolating effectiveness of the algorithm studied. As
is well known, the single-test-set analysis, sub-sampling and jackknife analysis
are the three methods often used for cross-validation examination[5]. In the
single-test-set examination, the selection of a testing dataset is arbitrary, and the
accuracy thus obtained lacks an objective criterion unless the training database
is an ideal one and the testing dataset is sufficiently large. Another approach for
cross-validation is sub-sampling analysis, according to which a given dataset is
divided into a training set and a testing set. However, how to divide the whole
dataset into a training set and a testing set is a serious problem. The number of
possible divisions might be extremely large. In comparison with the single-set-
test examination and the sub-sampling analysis, the jackknife test, also called the
leave-one-out test seems to be most effective. In the jackknife test, each domain
in the dataset is singled out in turn as a test domain and all the rule-parameters
are determined from the remaining domains. Hence the memorization effects that
are included in the resubstitution tests can be completely removed. During the
process of jackknife analysis, both the training and testing datasets are actually
open, and a domain will in turn move from each to the other. Both tests of
resubstitution and jackknife are used to evaluate the new prediction method
proposed here.

3 Results and Discussion

3.1 Dataset

To facilitate the comparison between our approach and the amino-acid composi
tion- based approach, the same datasets and algorithm used by Chou and
Maggiora [5] are used here. In their work several datasets were selected from
structural classification of proteins (SCOP) [15] for the study of a four-class pre-
diction. These datasets consist of 253, 359, 225 and 510 proteins respectively.
The datasets T359 and T253 are mainly used here for comparison. Furthermore,
the datasets T225 and T510 are also used as a practical application. The Protein
DataBank codes of these proteins are referred to [5], and the constructions of all
the datasets are listed in Table 1.

Table 1. Datasets used in this paper

Dataset
The number of sequences in different classes

Total
all − α all − β α/β α + β

T253 63 58 61 71 253
T225 61 45 56 63 225
T359 82 85 99 93 359
T510 109 130 135 136 510
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3.2 Prediction Results

The prediction results for dataset T359 are listed in Table 2. For convenience,
we abbreviate the two approaches as follows: AAC, the amino acid composition-
based approach; EBGW, encode based on grouped weight approach. In the fol-
lowing tables, we also abbreviate Resb and Jack as the Resubstitution test and
the jackknife test respectively. As seen from Table 2, the overall prediction ac-
curacy achieved by EBGW is 5% higher than AAC for the Resubstitution test.
Meanwhile, the overall prediction accuracy achieved by EBGW is about 7%
higher than AAC for the jackknife test. As the jackknife test is thought of a
rigorous cross-validation, the improvement of the overall prediction accuracy for
the jackknife test is considered remarkable. Carefully analysis the data in Ta-
ble 2, we find that the prediction accuracy for each class is improved. Especially
for the protein structure class of α + β the increase of prediction accuracy can
achieve about 15%. Note that the above results for EBGW approach is depen-
dent on the datasets and the number of groups L adopted (L=13 here). We will
discuss this point as well as several other points below.

Table 2. Prediction results for dataset T359 using EBGW (L=13)

Method/test
Prediction accuracy for each class

Overall accuracy
all − α all − β α/β α + β

EBGW/Resb 100% 100% 100% 98.92% 99.72%
AAC[5]/Resb 93.90% 94.12% 95.96% 93.55% 94.43%
EBGW/Jack 95.12% 85.88% 89.90% 93.55% 91.09%
AAC[5]/Jack 89.02% 83.53% 85.86% 78.49% 84.12%

3.3 The Optimal Choice of the Number of Groups

The number of groups is denoted as L in definition 4. Usually, the larger the value
of L is used, the higher the accuracy of the resubstitution test can get. However,
our study shows that a great number of groups do not always lead to a better
prediction result for the jackknife test. For the dataset T359 we find that L=13
leads to the highest prediction accuracy of jackknife test, i.e. 327/359=91.09%,
while for the dataset T510 we find that L= 14 is the best choice. We should
point out that the optimal L value is dependent on the dataset. For the different
datasets discuss here, the optimal L value are found to vary from 7 to 14 (see
Table 2-6).

3.4 The Impact of the Size of Dataset to the Prediction Accuracy

We also try to discover how the size of dataset can affect the prediction accuracy.
A smaller dataset consisting of 253 proteins was used early in Chou et al [5],
which has less overlap with those of dataset T359. The same prediction was
performed for dataset T253, the results are shown in Table 4(L=8). The overall
prediction accuracy of the resubstitution test for EBGW is about 0.79% higher
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Table 3. Optimal choice of the number of groups for dataset T359

L
Prediction accuracy for each class in jackknife test

Overall accuracy
all − α all − β α/β α + β

10 87.80% 82.35% 86.87% 89.25% 86.63%
11 91.46% 85.88% 80.81% 92.47% 87.47%
12 90.24% 83.53% 88.89% 91.40% 88.58%
13 95.12% 85.88% 89.90% 93.55% 91.09%
14 98.78% 83.53% 87.88% 88.17% 89.42%
15 98.78% 72.94% 87.88% 88.17% 86.91%

than that for AAC, whereas the overall prediction accuracy of the jackknife test
for EBGW is about 2.77% higher than that for AAC. Because the component-
coupled algorithm needs more training data to make its prediction mechanism
work properly, the decrease in the improvement (from 7% to about 3%) may be
caused by the smaller size of the dataset T253. We should point out that in the
case of the smaller dataset T253, the optimal number of groups used is changed,
here we find that L=8 leads to the highest overall prediction accuracy.

Table 4. Prediction results for dataset T253 using EBGW (L=8)

Method/test
Prediction accuracy for each class

Overall accuracy
all − α all − β α/β α + β

EBGW/Resb 90.48% 98.28% 96.72% 98.59% 96.05%
AAC[5]/Resb 95.24% 93.10% 98.36% 94.37% 95.26%
EBGW/Jack 82.54% 75.86% 75.41% 91.55% 81.82%
AAC[5]/Jack 84.13% 79.31% 70.49% 81.69% 79.05%

To test the new approach for a larger dataset, another dataset, which was
used in Chou [5], consisting of 510 proteins extracted from SCOP is used here.
Performing exactly the same prediction as for the dataset T359, the detailed
prediction results are shown in Table 5 (L=14). The overall prediction accuracy
of the jackknife test for EBGW is 91.96%, indicating that a higher overall predic-
tion accuracy is achieved with EBGW approach. This prediction confirms again
the point of view that in order to work properly, the new method needs a much
larger training dataset.

Table 5. Prediction results for dataset T510 using EBGW (L=14)

Method/test
Prediction accuracy for each class

Overall accuracy
all − α all − β α/β α + β

EBGW/Resb 100% 100% 99.26% 100% 99.80%
EBGW/Jack 91.74% 88.46% 91.11% 96.32% 91.96%
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3.5 Application

The prediction quality of EBGW approach can be improved has been demon-
strated above through both resubstitution and jackknife tests. Here, a practical
application is presented to indicate the consistency of this kind of improvement.

The procedure consists of the following two steps: (1) constructing a training
dataset from which the prediction-rule-parameters are derived; (2) constructing
an independent testing dataset for which the prediction is performed using the
parameters derived from the training dataset. Another two datasets, which used
in Chou [5], consisting of 225 and 510 proteins extracted from SCOP are used
here as training dataset and testing dataset respectively. By following the same
prediction procedure, the structural classes of the 510 proteins in the testing
dataset can be predicted based on the parameters derived from the 225 proteins
in the training dataset. The prediction results are summarized in Table 6, from
which it can be seen that the overall prediction rate of correct prediction for the
independent testing dataset by EBGW approach is about 3% higher than those
by AAC approach. This is consistent with the jackknife test results demonstrated
in the previous section.

Table 6. Prediction results for dataset T510 as testing dataset using EBGW (L=11)

Method
Prediction accuracy for each class

Overall accuracy
all − α all − β α/β α + β

EBGW 82.57% 93.08% 85.93% 94.85% 89.41%
AAC[5] 74.31% 90.00% 91.85% 87.50% 86.47%

4 Conclusions

Instead of the approach based on amino acid composition solely, a new encoding
scheme named EBGW is presented in this paper. Applying EBGW approach to
some non-redundant datasets with component-coupled algorithm, considerable
improvements in the overall prediction accuracy are achieved compared with the
AAC approach. The experiment results show that EBGW approach is convenient
to calculate and provides an effective tool to extract valuable information from
protein sequences, which may be a useful tool in other assignment problems in
proteomics and genome research.

References

1. Anfinsen C.B: Principles that govern the folding of protein chains. Science. 181
(1973) 223-230

2. Levitt M, Chothia C: Structure patterns in globular proteins. Nature. 262 (1976)
552-557

3. Chou K.C, Zhang C.T: Prediction of protein structural classes.
Crit.Rev.Biochem.Mol.Biol. 30 (1995) 275-349



A New Encoding Scheme to Improve the Performance 1173

4. Nakashima H, Nishikawa K, Ooi T: The folding type of a protein is relevant to the
amino acid composition. J.Biochem. 99 (1986) 152-162

5. Chou K.C, Maggiora G.M: Domain structural class prediction. Protein Engineer-
ing.11(1998) 523-538

6. Bu W.S, Feng Z.P, Zhang Z.D, Zhang C.T: Prediction of protein (domain) struc-
tural classes based on amino-acid index. Eur. J. Biochem.266 (1999) 1043-1049

7. Li X.Q, Luo L.F: The definition and recognition of protein structural class. Progress
in Biochemistry and Biophysics. 29(2002) 124-127

8. Li X.Q, Luo L.F: The recognition of protein structural class. Progress in Biochem-
istry and Biophysics.29 (2002) 938-941

9. Wang Z.X, Yuan Z: How good is prediction of protein structural class by the
component-coupled method?. Proteins.38 (2000) 165-175

10. Cai Y.D, Liu X.J, Xu X.B, Zhou G.P: Support Vector Machines for predicting
protein structural class. BMC Bioinformatics. 2(2001) 3

11. Luo R.Y, Feng Z.P, Liu J.K: Prediction of protein structural class by amino acid
and ploypeptide composition. Eur.J.Biochem. 269(2002) 4219-4225

12. He P.A, Wang J: Numerical characterization of DNA primary sequence. Internet
Electronic Journal of Molecular Design. 1 (2002) 668-674

13. Lin J.C, Yang K.C: Biochemistry. Shenyang: liaoning science and technology press.
(1996) 6-7

14. Baldi P, Brunak S, Chauvin Y, Andersen C.A, Nielsen H: Assessing the accuracy
of prediction algorithms for classification: an overview. Bioinformatics.16 (2000)
412-424

15. Loredana L.C, Steven E.B, Tim J.P.H, Cyrus C, Alexey G.M: SCOP dataset
in 2002: refinements accommodate structural genomics. Nucleic Acids Research.
30(2002) 264-267


	Introduction
	Methods
	EBGW of Protein Sequence
	Component-Coupled Algorithm
	Evaluation of the Prediction Results

	Results and Discussion
	Dataset
	Prediction Results
	The Optimal Choice of the Number of Groups
	The Impact of the Size of Dataset to the Prediction Accuracy
	Application

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




