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Abstract. In this paper, we propose an evolutionary algorithm based on a single 
operator called stochastic weighted learning, i.e., each individual will learn 
from other individuals specified with stochastic weight coefficients in each 
generation, for constrained optimization. For handling equality and inequality 
constraints, the proposed algorithm introduces a learning rate adapting tech-
nique combined with a fitness comparison schema. Experiment results on a set 
of benchmark problems show the efficiency of the algorithm. 

1   Introduction 

Most engineering optimization problems include equality and/or inequality con-
straints, and recent years, evolutionary algorithms have received a lot of attention 
regarding their potential for solving effectively such constrained optimization prob-
lems (see [1], [2], [3] for a comprehensive survey). 

In a previous work [4], we have introduced a new evolutionary algorithm based 
on a single operator called stochastic weighted learning for unconstrained optimiza-
tion problems. The idea of the algorithm is very simple, i.e., in each generation each 
individual will learn from other individuals in the population specified with sto-
chastic weight coefficients that represent the learning strength related to them. The 
similar strategy learning process can be commonly observed in the behavior of 
rational agents within economic environment, and the operator tries to mimic such 
process. 

In this paper, we attempt to extend our algorithm to solve constrained optimization 
problems. Section 2 presents the basic structure of the proposed algorithm. Section 3 
introduces a learning rate adapting technique combined with a fitness comparison 
schema for handling equality and inequality constraints. Section 4 presents the ex-
perimental results on a set of benchmark problems. Comparisons with other evolu-
tionary algorithms are also included in this section. Finally, Section 5 concludes with 
a brief summary of the paper. 
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2   New Evolutionary Algorithm Based on Stochastic Weighted 
Learning 

The general nonlinear programming problem can be formulated as follows: 
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where x = (x1, x2, …, xn) ∈ Rn, xi ∈ [xi
l, xi

u], i = 1, 2, …, n, is n-dimensional real vec-
tor, f(x) is the objective function, gj(x) is the jth inequality constraint, hj(x) is the jth 
equality constraint, and D = ∏[xi

l, xi
u] ⊆ Rn defines the search space. 

Unlike most EAs that have different selection strategies, mutation rules and cross-
over operators, the proposed algorithm uses only one operator that mimics the strat-
egy learning process of rational agents to achieve the objective of optimization, there-
fore it is fairly simple and can be easily realized. 

2.1   Individual Representation 

Individual representation in the proposed algorithm is straightforward. Each individ-
ual in the population is represented only by its solution variables. We denote the ith 
individual in the tth generation by x(t)i, where i = 1, 2, …, M,  M is the population 
size. 

2.2   Stochastic Weighted Learning 

In each generation, each individual will learn new strategy profile from other m indi-
viduals for next generation. In these m individuals, (m – 1) individuals are randomly 
selected from the whole population and one is the best-fit individual in this genera-
tion. Each one of these m individuals is specified with a weight coefficient that repre-
sents the positive or negative learning strength related to that individual. We denote 
these weight coefficients by wk, where k = 1, 2, …, m, and they are satisfied the 
relation below: 
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where wk ~ U(-1, 1). The strategy profile learned from these m individuals is then 
defined as follows: 
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where i = 1, 2, …, M. 
If a certain component of the strategy profile learned, say x′ij (the jth component of 

x′i), is outside the parametric bounds defined by the problem, the algorithm will use the 
arithmetical average of the corresponding components of these m individuals instead. 
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Each individual in the population will adopt the new strategy profile in next gen-
eration if the fitness of the new strategy profile is greater than its current one. Other-
wise, it will hold the current strategy profile without any change. 

2.3   Algorithm 

We have already explained each element in our algorithm. The pseudocode of the 
proposed algorithm can be summarized as follows. 

Procedure SWL 
  t = 0; 
  initialize x(0); 
  while t < T do 
    find the best-fit individual; 
    for i = 1, 2, …, M do 
      randomly select (m-1) individuals and generate wk; 
      x•i = sum[wk x(t+1)k], k = 1, 2, …, m; 
    end 
    for i = 1, 2, …, M do 
      if fitness[x•i] > fitness[x(t)i] then 
        x(t+1)i = x•i; 
      else 
        x(t+1)i = x(t)i; 
      end 
    end 
    t = t + 1; 
  end 
end 

3   Constraint Handling 

Here we introduce a learning rate adapting technique combined with a fitness com-
parison schema for handling equality and inequality constraints. 

3.1   Fitness Comparison 

All equality constraints are converted into inequality constraints, |h(x)| − ε ≤ 0, where 
ε is the degree of tolerated violation. We define v(x) = max(v1(x), …, vq(x)), where 
vj(x) is: 
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In the algorithm, the fitness of x1 is greater than the fitness of x2 if one of the condi-
tions (a) v(x1) = 0 and v(x2) = 0 and f(x1) > f(x2); or (b) v(x1) = 0 and v(x2) > 0; or (c) 
v(x1) > 0 and v(x1) < v(x2) is fulfilled. That is, if the both individuals are feasible, then 
the one with greater f(x) is better; feasible individual is better than infeasible one; and 
if the both individuals are infeasible, then the one with less v(x) is better. 



1108 J. Ye, X. Liu, and L. Han 

 

3.2   Learning Rate Adapting 

In every ∆t generations, there are ∆t × M times of tries for learning a better strategy 
profile. We denote the times of made-learning (the strategy profile learned is better 
than the current one) in these tries by s. The learning rate r is defined as: 

r = s / (∆t × M) (5) 

In the algorithm, the number of individuals that each individual will learn from, m 
will be adjusted adaptively within a predefined range [m1, m2] along the evolution 
according to r, i.e., if r < r1 and m > m1, then m = m − 1; else if r > r2 and m < m2, then 
m = m + 1. (r1 and r2 are two predefined threshold values, 0 < r1 < r2 < 1) 

For the problems that have equality constraints, the degree of tolerated violation ε 
will be adjusted adaptively along the evolution according to r as well, i.e., if r < r1, 
then ε = ε / α; else if r > r2, then ε = ε × α. (α is a predefined scaling factor, 0 < α < 1) 

The idea is, start with an initial value m(0) (and ε(0) if have equality constraints), for 
every ∆t generations, if the learning rate is lower than a certain level, then decrease m 
to speed up the learning process (and increase ε to enlarge the feasible domain); or if 
the learning rate is higher than a certain level, then increase m to slow down the learn-
ing process (and decrease ε to reduce the feasible domain). 

4   Experimental Results 

We use a set of benchmark problems G01 to G13 for testing the performance of the 
proposed algorithm. These problems are proposed in [1] and [5]. And for all test prob-
lems, the parameters are fixed to M = 70, T = 5000, ∆t = 10, r1 = 0.01, r2 = 0.03, 
m(0) = 10, m1 = 9, m2 = 11, ε(0) = 10, α = 0.85. These parameters were selected based 
on the experimental experience. A total number of 35 independent runs are executed 
for each problem, and each run involves 350000 function evaluations. Results are 
shown in Table 1. 

The column indicated by “optimal” in Table 1 shows the known “optimal” solution 
for each problem. The three columns under caption “Fitness” give the best, mean, and 
worst objective value found, and the three columns under caption “Violation” give the 
minimal, mean, and maximal solution violations. 

From the table, one may find that the algorithm has consistently found the “opti-
mal” solutions for all problems in 35 runs except G02. And for problems G03, G05, 
G11 and G13 that have equality constraints, the solution violations are very low, com-
pared with 1e-3 and 1e-4, the values of tolerated violation degree usually used by 
other evolutionary algorithms. 

Table 2 shows the result of another experiment on problem G02 with the parameter 
settings of M = 200, T = 12000, m(0) = m1 = m2 = 11. A total number of 35 independ-
ent runs are executed, and each run involves 2400000 function evaluations. As ex-
pected, with large population and suitable value m, the proposed algorithm can con-
sistently found the optimal solutions for G02 in all runs. 

Table 3 summarizes the comparison between our results and Runarsson and Xin 
Yao’s results [6]. The results of [6] shown in Table 3 is the statistics of 30 independent 
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Table 1. Experimental Results on Benchmark Problems 

  Fitness Violation 

 optimal Best Mean Worst Best Mean Worst 

G01 -15.000 -15.000 -15.000 -15.000 0 0 0 
G02 -0.803619 -0.803619 -0.792695 -0.756970 0 0 0 

G03 -1.000 -1.000 -1.000 -1.000 0 1.33e-17 2.22e-16 
G04 -30665.539 -30665.539 -30665.539 -30665.539 0 0 0 
G05 5126.498 5126.498 5126.498 5126.498 0 2.73e-13 4.55e-13 

G06 -6961.814 -6961.814 -6961.814 -6961.814 0 0 0 
G07 24.306 24.306 24.306 24.306 0 0 0 

G08 -0.095825 -0.095825 -0.095825 -0.095825 0 0 0 
G09 680.630 680.630 680.630 680.630 0 0 0 
G10 7049.248 7049.248 7049.248 7049.248 0 0 0 

G11 0.750 0.750 0.750 0.750 0 7.22e-17 1.11e-16 
G12 -1.000000 -1.000000 -1.000000 -1.000000 0 0 0 
G13 0.053950 0.053950 0.053950 0.053950 0 1.53e-15 4.88e-15 

 

Table 2. Experimental Result on G02 with M = 200, T = 12000, m(0) = m1 = m2 = 11 

  Fitness Violation 

 optimal Best Mean Worst Best Mean Worst 

G02 -0.803619 -0.803619 -0.803619 -0.803619 0 0 0 

 

Table 3. Comparison Between Our (Indicated by SWL) and Runarsson and Xin Yao’s (Indi-
cated by SR [6]) Algorithms 

 Best Mean Worst 
 optimal SWL SR SWL SR SWL SR 

G01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 
G02 -0.803619 -0.803619 -0.803515 -0.792695 -0.781975 -0.756970 -0.726288 
G03 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 
G04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 
G05 5126.498 5126.498 5126.497 5126.498 5128.881 5126.498 5142.472 
G06 -6961.814 -6961.814 -6961.814 -6961.814 -6875.940 -6961.814 -6350.262 
G07 24.306 24.306 24.307 24.306 24.374 24.306 24.642 
G08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 
G09 680.630 680.630 680.630 680.630 680.656 680.630 680.763 
G10 7049.248 7049.248 7049.316 7049.248 7559.192 7049.248 8835.655 
G11 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
G12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
G13 0.053950 0.053950 0.053957 0.053950 0.067543 0.053950 0.216915 
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runs and each run involves 350000 function evaluations. And for problems G03, G05, 
G11 and G13, the tolerated violation degree for equality constraints is fixed to 10-4. 
From the table, one may find that the algorithm proposed in this paper outperforms 
that in [6] for all cases (the best solution found by [6] for G05 which is better than the 
“optimal” solution is a result of loose tolerated violation degree). 

Table 4 and 5 summarizes the comparisons between our results and the more re-
cent work [7]. The results of [7] shown in Table 4 and 5 is the statistics of 31 inde-
pendent runs and each run involves 1500000 function evaluations. From the tables, 
one may find that the results of our algorithm are better not only in term of objective 
value but also in term of solution violations. 

Table 4. Comparison Between Our (Indicated by SWL) and Hamida and Schoenauer’s (Indi-
cated by ASCHEA [7]) Algorithms 

 Best Median Mean 
 optimal SWL ASCHEA SWL ASCHEA SWL ASCHEA 

G01 -15.000 -15.000 -15 -15.000 -15 -15.000 -14.84 
G02 -0.803619 -0.803619 -0.803614 -0.794885 -0.794568 -0.792695 -0.788950 
G03 -1.000 -1.000 -1.000 -1.000 -0.999995 -1.000 -0.99997 
G04 -30665.539 -30665.539 -30665.5 -30665.539 -30665.5 -30665.539 -30665.5 
G05 5126.498 5126.498 5126.5 5126.498 5126.5 5126.498 5126.53 
G06 -6961.814 -6961.814 -6961.81 -6961.814 -6961.81 -6961.814 -6961.81 
G07 24.306 24.306 24.3323 24.306 24.6162 24.306 24.6636 
G08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 
G09 680.630 680.630 680.630 680.630 680.635 680.630 680.641 
G10 7049.248 7049.248 7049.42 7049.248 7272.19 7049.248 7615.2 
G11 0.750 0.750 0.75 0.750 0.75 0.750 0.75 
G12 -1.000000 -1.000000 - -1.000000 - -1.000000 - 
G13 0.053950 0.053950 - 0.053950 - 0.053950 - 

Table 5. Violation Comparison Between Our (Indicated by SWL) and Hamida and Schoe-
nauer’s (Indicated by ASCHEA [7]) Algorithms for G03, G05, G11 and G13 

 Violation 
 Best Mean Worst 
 SWL ASCHEA SWL ASCHEA SWL ASCHEA 

G03 0 0 1.33e-17 1.8e-16 2.22e-16 2.22e-16 
G05 0 1.6e-9 2.73e-13 2.61e-4 4.55e-13 0.008 
G11 0 0 7.22e-17 1.87e-11 1.11e-16 4.46e-11 
G13 0 - 1.53e-15 - 4.88e-15 - 

5   Conclusion 

This paper is a continuation of the study devoted to stochastic weighted learning, a 
new operator for EAs introduced in earlier work. By extending with a learning rate 
adapting technique and a fitness comparison schema, the evolutionary algorithm 
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based on stochastic weighted learning can solve constrained optimization problems 
efficiently. The validity of the proposed algorithm was tested on a set of benchmark 
problems and the experimental results are very promising. From these results, we may 
conclude that the proposed algorithm seems to be a useful candidate for EAs. 
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