
 

L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3611, pp. 1015 – 1024, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The Convergence of a Multi-objective Evolutionary 
Algorithm Based on Grids 

Yuren Zhou1 and Jun He2 

1 School of Computer Science and Engineering,  
South China University of Technology, 

Guangzhou 510640, China 
zhouyuren@hotmail.com 

2 School of Computer Science, The University of Birmingham,  
Birmingham B15 2TT, UK 

Abstract. Evolutionary algorithms are especially suited for multi-objective op-
timization problems. Many evolutionary algorithms have been successfully ap-
plied to various multi-objective optimization problems. However, theoretical 
studies on multi-objective evolutionary algorithms are relatively scarce. This 
paper analyzes the convergence properties of a simple pragmatic (μ+1)-
MOEA. The convergence of MOEAs is defined and the general convergence 
conditions are studied. Under these conditions, it is proven that the proposed 
(μ+1)-MOEA converges almost surely to the Pareto-optimal front. 

1   Introduction 

Evolutionary algorithms (EAs), which adopt a population-based search, are especially 
suited for multi-objective optimization problems with several conflicting objectives 
[1-2]. EAs can search multiple objectives simultaneously and always keep the better 
solutions to next generation. Multi-Objective Evolutionary Algorithms (MOEAs) 
have been studied for more than ten years. It is generally recognized that Schaffer [3] 
was the first researcher to use EAs to handle vector optimization problems. Today 
various MOEAs, e.g., NSGA [4], SPEA [5], PAES [6] and NSGA-II [7], have been 
proposed and applied in many practical fields. Compared with a great amount of theo-
retical study on single-objective evolutionary algorithms [8-11], rigorous analysis of 
MOEAs is still in its infant phase, and attracts little attention from researchers  
[12-16]. Up to today only a few theoretical results on MOEAs have been obtained. 
Rudolph and Agapie [13] analyzed and proved MOEAs’ convergence using Markov 
chain. Hanne [14] proposed a convergence theorem of function MOEAs with prob-
ability 1 under strict condition of “efficiency preserving”, a requirement that some 
current pragmatic MOEAs do not meet. Laumanns [15] established a MOEA model 
which have both properties of converging to the Pareto-optimal front and maintaining 
a spread among obtained solutions, but he failed to rigorously define the convergence 
of MOEAs and prove that the MOEA model converges to the Pareto optimal sets. 
Recently Laumanns [16] presented the running time analysis of multi-objective EAs 
on pseudo-Boolean model problems.  

This paper aims to discuss convergence of function MOEAs. We will introduce the 
rigorous definition of strong and weak convergences of MOEAs and discuss general 
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conditions that guarantee the convergence of MOEAs. Under these conditions, we 
show that the proposed MOEA converges almost surely to the Pareto optimal set.  

The remainder of this paper is arranged as follows: Section 2 describes the ( µ +1) 

MOEA and introduces some basic definitions and terms; Section 3 analyzes the pro-
posed MOEA’s convergence; Section 4 concludes the paper. 

2   Definitions and Algorithm Description  

Without loss of generality, consider following multi-objective optimization problem 
with n decision variables and m objectives: 
(MOP)   Maximize y = f(x) = ( )x,...,x(f n11 , …, )x,...,x(f n1m )                              (1) 

         Subject to  0)(g i ≤x ,i=1,…,q. 

Where x=(x1, …, xn)∈X nR⊂ , y=(y1,…,ym)∈Y mR⊂ , x is the decision (parameter) 
vector, X is the decision space, y is the objective vector and Y is the objective space, 
g(x) is the constraint condition. This paper deals with non-constraint problems only. 

2.1   Dominance Relation 

Different from fully ordered scalar search spaces, multidimensional search spaces are 
only partially ordered, i.e., two different solutions are related to each other in two 
possible ways: either one dominates the other or none of them is dominated. Firstly 
let’s introduce two basic definitions used in MOEAs: dominance relation and Pareto 
set. 

Definition 1: Let f, g∈ mR , vector f is said to dominate vector g (written as ff g) if 
and only if 

1) ∀ }1,...,m{i ∈ : ii gf ≥ ;  

2) ∃ {1,...,m}j∈ : ii gf >   

if ff g, it also means that g is dominated by f, denoted as gp f.  

Definition 2: Let F mR⊂ be a vector set, the set of vectors in F that are not domi-
nated by any vector in F is called Pareto set of F, denoted as P(F), i.e., P(F)  : = 

}:F|F{ gffg f∈¬∃∈ .  

Based on the above notation, now we define Pareto-optimal front, Pareto-optimal 
solution and Pareto-optimal set as follows.  

Definition 3: Let fR be the range of function f in MOP (1), the Pareto set of fR is 

called Pareto-optimal front. That is P( fR )= }:R|R{ yyyy ff f′∈′¬∃∈ . 

Definition 4: Let P( fR ) be the Pareto-optimal front of MOP (1), the image source of 

P( fR ) under mapping f is said to be Pareto-optimal set, denoted as P(f(x)), i.e. 

P(f(x)) := )}()(:X|X{ xfxfxx f′∈′¬∃∈ .  
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The vector in P(f(x)) is called Pareto-optimal solution. 
The concept of ε-neighborhood, which is useful in discussing convergence of 

MOEA, is defined as follows. 

Definition 5: Let f=( 1f , 2f ,…, mf )∈ mR , ε> 0, the ε-neighborhood )(N fε of f is 

defined as follows:  

)(N fε  : = { |R m∈y  y=( 1y , 2y ,…, my ), iy )f,f( ii ε+ε−∈ , i=1,…,m}  

In fact, )(N fε  is an m–dimension hyper-box centered on f in mR . 

Let F mR⊂ , the union of the vectors’ ε-neighborhood in F is said to be F’s ε-
neighborhood, denoted as )F(N ε , i.e., 

)F(N ε =U
F

)(N
∈

ε
f

f .  

2.2   (µ +1)-MOEA 

Since there are more than one objectives to be optimized simultaneously in multi-
objective optimization, the solution is no longer a single optimal point, rather a whole 
set of possible solutions with equivalent quality, i.e., Pareto-optimal set. This deter-
mines that the task faced by MOEAs is also two-objective: 

To guide the search towards the Pareto-optimal set;  
To maintain a diverse population in order to achieve a well distributed trade-off 

front.     
Researchers have developed several MOEAs to implement the above tasks. One of 

them is the MOEA based on grids, developed mainly by Knowles [6] and Laumanns 
[15]. Based on ε-dominance concept (or grid), Deb [17] proposed a steady-state 
MOEA that had a good compromise in terms of convergence near to Pareto-optimal 
front, diversity of solutions and computational time. The basic idea of this MOEA is 
to divide the search space into a number of grids (or hyper-boxes) and to maintain the 
diversity by ensuring that a hyper-box can be occupied by only one solution. Many 
MOEAs (including the algorithm developed in [17]) make use of two co-evolving 
populations: an EA population and an archive population. This kind of MOEA is 
more difficult to analyze and we don’t discuss it in this paper. 

In this paper we only discuss a simple ( µ +1) MOEA for MOP(1) based on grids 

introduced in [15][6]. This ( µ +1) MOEA is composed of algorithm 1-3 where the 

details of Algorithm 1, Algorithm 3 and the notations can be found in [15]. It is simi-
lar to (µ +1) evolution strategy [18] and uses only one population.  

The (µ +1) MOEA is described as follows: 

Algorithm 1: Iterative search algorithm 
t := 0 

)0(A  := ∅  

while terminate ( )t(A ,t) = false do 
   t := t+1 
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   )t(f  := generate( )1t(A − ) 

   )t(A  := update( )1t(A − , )t(f ) 
end while 
Output: )t(A  
   
Algorithm 1 is the general framework of iterative searching algorithm. The integer t 

denotes the evolution generation. The set )(tA  is the population of objective space at 

generation t with a dynamic size. The vector )t(f  in objective space is the new indi-
vidual yielded by using “generate” function. “Update” function is used to produce the 
next population from current population and new individual. 

 Algorithm 2: “generate” function 

Input: )1t(A − = { 1a , 2a ,…, µa } 

1)1t( )A( −−  := { )( 1
1 af − , )( 2

1 af − , …, )(1
µ

− af }  

        := { 1x , 2x ,…, µx } 

ix  := Random { 1x , 2x ,…, µx } 

x′  := mutate ix  
)t(f  := f( x′ ) 

Output: )t(f  

The purpose of algorithm 2 is to generate a new individual. The process works in a 
simple way: a individual is randomly selected from a population and then variation is 
conducted to generate a new individual. 

Algorithm 3: “update” function 
Input: A, f 
D := { f ′ ∈A| box(f) f box( f ′ ) 
if D ≠ ∅  then   

  A′ := AU {f}\D 

else if ∃ f ′ : (box( f ′ ) = box(f) ∧ f f f ′ ) then 
  A′ := AU {f}\{ f ′ } 

else if ¬ ∃ f ′ : box( f ′ ) = box(f) ∨ box( f ′ )f box(f) then 
  A′ := AU {f} 
else 
  A′ := A 
end if 
Output: A′  

Algorithm 3 is the “update” function. Let the objective space Y be {( 1f , 2f ,…, 

mf ) | ia ≤ if ≤ ib  (i=1,...,m)}, 1δ , 2δ ,…, mδ  be previously given positive real 
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vector (the smaller the number iδ (i=1,...,m), the higher precision of the algorithm). 

Firstly, the objective space is divided into a number of m-dimension hyper-boxes, 

each having iδ  size in the i-th objective. The number of hyper-boxes in objective 

space Y is less than or equal to ∏
=

+
δ
−m

1i i

ii )1]
ab

([ . The box dominance relation can 

be easily generalized from the vector dominance relation. The algorithm allows at 
most one solution to be present in each hyper-box and always maintains a set of non-
dominated boxes. Thus it maintains the diversity in the population and forces the 
population to converge to Pareto-optimal front. It is an elitist approach and its popula-
tion size µ  changes dynamically. 

3   Convergence Analysis of (µ +1) MOEA 

Unlike the single objective optimization problem where its optimal value is a real 

number, Pareto-optimal front in MOPs is a set of points in mR . It is necessary to give 
the rigorous definition of convergence of MOEAs. Recall the definition of conver-
gence for random variable sequence { nX , n ≥ 1}, there are definitions such as con-

vergence almost surely, convergence in probability and convergence in mean [19]. 

Definition 6: Let {X, nX (n=1, 2, … ) } be random variables on a probability space 

( Ω , F, P), the random variable sequence nX is said to converge almost surely to ran-

dom variable X, if  

}XXlim{P n
n

=
∞→

= 1;  

converge in probability to X, if  

}|XX{|Plim n
n

≤∈−
∞→

= 1, ε∀ >0;  

converge in mean to X, if  

|}XX{|Plim n
n

−
∞→

=0. 

Both convergence almost surely and convergence in mean implies convergence in 
probability whereas the converse is wrong in general. 

Lemma 1: The following statements are equivalent 
Random variable sequence nX converge almost surely to random variable X; 

0>ε∀ , 
∞→m

lim P{| XXn − |< ε , for all n ≥ m} = 1; 

0>ε∀ , 
∞→m

lim P{| XXn − | ≥ ε , for some n ≥ m } = 0; 
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0>ε∀ ，P{| XXn − | ≥ ε  appears infinite times} = 0； 

0>ε∀ ，P{ )|(|
1

ε≥−
∞

=

∞

=
IU
m mn

n XX } = 0. 

Proof: see [19]. 

With the equivalent definitions in Lemma 1 we can define the convergence of (μ+1)-
MOEA as follows.   

Definition 7: Let )n(A  (n=1,2,…) be the sequence of populations generated by 
(μ+1)-MOEA. Objective space is divided into m-dimension hyper-boxes. Let 

iB (i=1,…,s) denote the hyper-boxes that contain the Pareto front of MOP(1), 

and iF (i=1,…,s) the Pareto-optimal front in iB . iF ’s ε-neighborhood is denoted as 

)F(N iε  (see Definition 5). 

The (μ+1)-MOEA is said to converge almost surely to the front of MOP(1) if 

 0>ε∀ , 
∞→m

lim P{ )n(A I )F(N iε ≠ ∅  for all n ≥ m } = 1, 1 ≤ i ≤ s; 

The (μ+1)-MOEA is said to converge in probability to the front of MOP(1) if  

0>ε∀ , 
∞→n

lim P{ )n(A I )F(N iε ≠ ∅ } = 1, 1 ≤ i ≤ s. 

Similar to Lemma 1, we have the equivalent definition as follows.  

Lemma 2: The following statements are equivalent 
The (μ+1)-MOEA converge almost surely to the front of MOP(1); 

0>ε∀ , 
∞→m

lim P{ )n(A I )F(N iε = ∅  for some n ≥ m } = 0 (1 ≤ i ≤ s); 

0>ε∀ ，P{ )n(A I )F(N iε = ∅  appears infinite times} = 0 (1 ≤ i ≤ s); 

0>ε∀ ，P{ ))F(NA(
1m mn

i
)n( ∅=

∞

=

∞

=
εIU I } = 0 (1 ≤ i ≤ s). 

Lemma 3: (Borel-Cantelli) Let { nX , n=1,2,…} be event sequence, then 

∑
∞

=1n
n )X(P < ∞  ⇒  P{IU

∞

=

∞

=1m mn
nX }=0. 

Proof: See [19]. 

Based on above definitions and lemmas, we give the main MOEA convergence theo-
rems as follows.  

Theorem 1: Let )n(A  (n=1,2,…) be the sequence of populations generated by (μ+1)-
MOEA. )F(N iε (i=1,…,s) is the ε-neighborhood as specified in definition 7. Let   

i
nα  := P{ )1n(A + I )F(N iε = ∅ | )n(A I )F(N iε ≠ ∅ }, n ≥ 1, i=1,…,s; 
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i
nβ := P{ )1n(A + I )F(N iε = ∅ | )n(A I )F(N iε = ∅ }, n ≥ 1, i=1,…,s; 
i
nγ  := 1β × 2β …× nβ , n ≥ 1, i=1,…,s.  

Then  

(1) If 0>ε∀ , 
∞→n

lim i
nγ =0(i=1, …, s), then ( µ +1)-MOEA converges in probability to 

the Pareto-optimal front; 

(2) If ∑
∞

=

γ
1n

i
n < ∞ (i=1, …, s), then (µ +1)-MOEA converges almost surely to Pareto-

optimal front. 

Proof: Firstly note that i
nα =0 (n ≥ 1, i=1, …, s) because ( µ +1)-MOEA uses an elitist 

preserving approach. 

(1) Given i∈{1,2,…s}, let  

)n(P )i( = P{ )n(A I )F(N iε = ∅ }. 

According to Bayesian formula, we obtain 

)1n(P )i( +  = P{ )1n(A + I )F(N iε =∅ } 

     = P{ )1n(A + I )F(N iε =∅ | )n(A I )F(N iε ≠ ∅ } P{ )n(A I )F(N iε ≠ ∅ } 

       + P{ )1n(A + I )F(N iε =∅ | )n(A I )F(N iε =∅ } P{ )n(A I )F(N iε =∅ } 

           = i
nα P{ )n(A I )F(N iε ≠ ∅ } + i

nβ P(n)  

           = i
nβ … i

1β P(1) 

           = i
nγ P(1) 

Because 
∞→n

lim i
nγ = 0, we get 

∞→n
lim )1n(P )i( +  = 0.  

Hence, according to Definition 6(2), ( µ +1)-MOEA converges in probability to 

Pareto-optimal front.  

(2) From )1n(P )i( +  = i
nγ P(1), ∑

∞

=

γ
1n

i
n < ∞  and Lemma 3, we know that the ( µ +1)-

MOEA converges almost surely to Pareto-optimal front.                                            □ 

Theorem 2: Let the ( µ +1)-MOEA be used to solve Problem MOP(1). Assume that 

the decision space X in MOP(1) is a compact set in nR , the objective function f(x) is 
continuous on X, and the variation in Algorithm 2 of the ( µ +1)-MOEA is a Gaussian 

variation. Then ( µ +1)-MOEA converges almost surely to the Pareto-optimal front of 

MOP(1) . 

Proof: Given i∈{1, 2, …, s}, 0>ε∀ , according to Theorem 1(2), it is sufficient to 

show that there exists a constant c∈(0,1)， i
nβ ≤ c (n=1, 2, …). 
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The Gaussian variation of the ( µ +1)-MOEA is denoted as x′ :=x+Z, where Z 

~ )I,0(N n
2σ  is a normally distributed random vector and nI denotes the n-

dimension unit matrix. 
Let 0y  be a point on Pareto front in iB , where 0y = f( 0x ), 

0x =( 1
0x , 2

0x ,… n
0x )∈X. 

Because f(x) is continuous on X, there exists a positive r>0 such that when x satis-

fies 
∞

− 0xx ≤ r (here 
∞

is the maximum norm), then
∞

− )()( 0xfxf ≤ ε , 

therefore f(x) ∈ )F(N iε . 

Let r,0
D x  := { x∈X | 

∞
− 0xx ≤ r}, for x =( 1x , 2x ,… nx )∈X, we have 

P{x+Z∈ r,0
D x } = due

2

1 2

2
kk

0

kk
0

2

un

1k

rxx

rxx

σ
−

=

+−

−−∏ ∫ σπ
. 

Let 1P (x, 0x )= P{x+Z ∈ r,0
D x }, then 0< 1P (x, 0x )<1. 

Because 1P (x, 0x ) is continuous on compact set X, there exists 1x′ , 0x′ ∈X, such 

that 

1P (x, 0x ) ≥ 1P ( 1x′ , 0x′ ) =
Xx, 0

min
∈x

1P (x, 0x ), and 0< 1P ( 1x′ , 0x′ )<1. 

Therefore 

P{ )1n(A + I )F(N iε ≠ ∅ | )n(A I )F(N iε =∅ } ≥ 1P ( 1x′ , 0x′ ) 
i
nβ = P{ )1n(A + I )F(N iε =∅ | )n(A I )F(N iε =∅ } 

≤ 1- 1P ( 1x′ , 0x′ ) = c, c∈(0,1).                                                                                      □ 

From the proof of Theorem 2, we know that if the Gaussian variation is replaced 
by Cauchy variation [20], Theorem 2 is still valid. 

Furthermore, we have the following more general convergence theorem for the 
( µ +1)-MOEAs: 

Theorem 3: Except for the variation, let all other assumptions remain the same as 

Theorem 2. Let the random variation vector be Z=( 1z , 2z ,…, nz ), where iz (i = 

1,2,…n) are the independently identically distributed random variables whose density 
function is )x(ϕ .If )x(ϕ  satisfies: 

(1) )x(ϕ  is continuous on R; 

(2) Rb,a ∈∀ , a<b, ∫ϕ
b

a
dx)x( >0. 

Then the ( µ +1)-MOEA converges almost surely to Pareto-optimal front. 

Proof: Similar to that of Theorem 2. 
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4   Conclusions and Future Work 

Compared with single-objective evolutionary algorithms, the design and analysis of 
MOEAs are much more complicated. This paper has investigated the convergence 
properties of a simple pragmatic (μ+1)-MOEA based on grids [6,15]. We have estab-
lished the conditions that guarantee the convergence of the algorithm, and proved that 
the (μ+1)-MOEA using either Gaussian variation or Cauchy variation is convergent. 
In more general, the proposed MOEA is proved to be convergent under the assump-
tion that the variation parameter in the algorithm remains constant. 

However, the convergent conditions presented in the paper do not hold for the al-
gorithms with self-adaptation variation, which are widely applied in evolution strat-
egy to improve convergence speed. This is one of our future works. Like the analysis 
in single-objective evolutionary algorithms [21,22], the limit behavior, time complex-
ity, and dynamical behavior of MOEAs are also important topics in our future re-
search.    
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