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Abstract. Designing optimal measurement infrastructure is a key step for 
network management. In this work the goal of the optimization is to identify a 
minimum aggregating nodes set subject to bandwidth and delay constraints on 
the aggregating procedure. The problem is NP-hard. In this paper, we describe 
the way of using Genetic Algorithm for finding aggregating nodes set. The 
simulation indicates that Genetic Algorithm can produce much better result than 
the current method of randomly picking aggregating nodes. 

1   Introduction 

The explosive growth of Internet has emerged a massive need for monitoring 
technology that will support this growth by providing IP network managers with 
effective tools for monitoring network utilization and performance[1][2]. Monitoring 
of the network-wide state is usually achieved through the use of the Simple Network 
Management Protocol (SNMP) with two kinds of entities: one management center 
and some monitoring nodes. The management center sends SNMP commands to the 
monitoring nodes to obtain information about the network and this function is 
performed by a centralized component responsible for aggregating all monitoring 
nodes [3]. Yet such processing queries have some inherent weaknesses. Firstly it can 
adversely impact router performance and result in significant volumes of additional 
network traffic. Secondly aggregating procedure is its time dependency. The support 
of knowledge of the up-to-date performance information requires the establishment of 
reliable, low delay and low cost aggregating routes [4] [5].  

In above traditional centralized monitoring system, although the center provides a 
network-wide view but has some inherent weaknesses as being pointed out and not 
suitable for large scale network. Taking into account the issues of scalability and 
network-wide view for large service provider networks, an ideal monitoring 
architecture is a hierarchical system which implied that there is a management center 
but the resource intensive nodes such as polling are distributed. Between the 
management center and the monitoring nodes, there exists a set of aggregating nodes. 
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The aggregating nodes are distributed and each node is responsible for an aggregating 
domain consisting of a subset of the network nodes. Information gathered from the 
individual monitoring nodes is then aggregated. Such a hierarchical architecture 
overcomes the weaknesses while still maintaining a network-wide view [4] [5].  

In particular, the most recently works addresses the problem of minimizing the 
number of aggregating nodes while keeping the aggregating bandwidth or delay 
within predefined limits individually [4] [5]. And all these problems are NP-Hard 
with solutions to this problem by using heuristics based on the aggregating load and 
the maximum assignment of monitoring nodes. The difficulties of using heuristics for 
optimal distributed network monitoring model is that after a possible aggregating 
node is picked, the algorithm tries to assign the maximum number of un-assigned 
monitoring nodes to the it without violating bandwidth and delay constraints. 
Unfortunately the general problem that assigns the maximum number of un-assigned 
monitoring nodes without violating constraints is also NP-Hard and all the heuristics 
only consider some special situation now[4] [5]. 

As the idea of using Genetic Algorithm to provide solutions to difficult NP-Hard 
optimization problems has been pursued for over a decade and have some significant 
results. There are no polynomial-time algorithms (yet) that solve NP-Complete 
problems, finding approximate solutions for these problems is usually made more 
efficient when we use the GA concept. (Although a main drawback is that we are not 
guaranteed to be given an optimal solution, even if we spend a large amount of time 
running this genetic process.) 

1. GA provides approximate solutions to several problems. 
2. GA is a valid approach, since we are often times willing to settle for 

approximate solutions. 
3. GA allows one to spend as much time as is allowed to find a solution, while 

providing the “best” solution so far, if terminated. 

In this paper, we consider optimizing distributed monitoring modal with bounded 
bandwidth and delay constraints problem by Genetic Algorithm [6] [7] [8]. 

2   Problem Formulation 

We represent the whole monitoring domain of our model as an undirected 
graph ( )EVG ,  , where { }nvvvV L,, 21=  is the set of all nodes or routers that are in the 

monitoring domain and. VVE ×⊆  represents the set of edges. The node set 
( )Φ≠∧⊆ mmm SVSS  represents the monitoring nodes in the monitoring domain. Each 

node ( )mSvv ∈  generates an aggregating traffic of iw  bps. This aggregating traffic is 

destined to the relative aggregating node which has been assigned to. We define 
function +→ REL :  and +→ REB :  which assign a non-negative weight to each link 
in the network and represent the actual aggregating bandwidth used and the amount of 
link bandwidth allocated for aggregating traffic for each of the edges. And we also 
define edge-delay function +→ RED :  which assigns a non-negative weight to each 
of the edges. The value ( )eD  associated with edge Ee ∈  is a measure (estimate) of 
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total delay that packets experience on the link. Let the set ( )( ) { }meeevuPathE ,,,, 21 L=  

represents the links in the path between node u and v. 
The optimal aggregating node location and monitoring node assignment problem 

can therefore be stated as follows: Given a network ( )EVG , , determine (1) a minimum 
subset of nodes ( )VSS aa ⊆  on which to place aggregating node such that the 

bandwidth constraint on each and every link ( ) ( )eBeL ≤  is satisfied (where ( )eB  is the 
maximum bandwidth that can be used for aggregating on link e) and the delay 
constraint on every node ( )mSvv ∈  satisfy ( )( ) δ≤wvPathDelay , (where δ  is the 

maximum delay that can be used for aggregating by a node defined as w ). (2) A 
mapping λ  which maps a monitoring node to its aggregating node. That is, for any 
node ( )mSvv ∈ , if ( ) wv =λ , then node v  is assigned to the aggregating node w . Note in 

some situation, we can use additional constraints to decide whether the monitoring 
node v  can be aggregated by itself. 

Now we define some variable to describe the integer program formulation about the 
problem. The binary variable ijx indicates whether monitoring node iv  is aggregated by 

node jv , where mi Sv ∈ and Vv j ∈ . The binary variable ij
eb  indicates whether edge e  

belongs to the ),( ji vvPath  between node iv and jv . The binary variable jy indicates 

whether node jv is an aggregating node or not .The problem minimizing the number 

of aggregating nodes in a given network subject to delay constraints can naturally 
expressed as an integer programming formulation: 

The objective is: ∑
=

V

j
jyMinimize

1

 and the constraints are below: 

( )∑
=

∈∀=
V

j
miij Svx

1

1                                                          (1) 

( )VvSvyx jmijij ∈∀∈∀≤ ,                                                   (2) 

( ) ( )( )EeVvSveBxvLb jmi
i j

iji
ij
e ∈∈∀∈∀≤∑∑ ,,                                  (3) 

( ) ( )VvSvxeDb jmiij
Ee

ij
e ∈∀∈∀≤∑

∈
,δ                                          (4) 

{ }( )VvSvx jmiij ∈∀∈∀∈ ,1,0                                              (5) 

{ }( )Vvy jj ∈∀∈ 1,0                                                       (6) 

The first constraint makes sure that each monitoring node iv  is aggregated by 

exactly one aggregating node. The second constraint guarantees that a node jv  must 

be an aggregating node if some other monitoring node iv  is assigned to (aggregated 

by) it. The third constraint ensures the aggregating traffic on every link e  not exceed 
the predefined bandwidth limits ( )eB . The fourth constraint ensures that delay during 
aggregating procedure not exceeds the delay constraint on the path between each 
monitoring node and its aggregating node. 

It is well-known that the integer programming formulation has an exponential 
running time in the worst case. In the previous work the greedy algorithm normally 
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consists of two steps. In the first step the algorithm calculate out the maximum 
number of monitoring nodes satisfying the bandwidth or delay constraint when they 
are assigned to an aggregating node, and the set of these monitoring nodes is called 
candidate monitoring set of the relative node. In the second step algorithm greedily 
repeatedly picks an additional aggregating node (based on the greedy selection 
criteria) if there are any monitoring nodes still present in the network that does not 
have an aggregating node assigned to it. After an aggregating node is picked, the 
algorithm assigns candidate monitoring set to it without violating bandwidth or delay 
constraint. The repeat will interrupt when all monitoring nodes have been assigned, 
and the approximate aggregating node set includes all pickup additional aggregating 
nodes. Unfortunately the general problem that assigns the maximum number of un-
assigned monitoring nodes without violating constraints is also NP-Hard and all the 
heuristic algorithm only consider some special situation. So the below we consider 
using Genetic Algorithm to solve the problem. 

3   Evolution and Genetic Algorithm 

Evolutionary algorithms are optimisation and search procedures inspired by genetics 
and the process of natural selection. This form of search evolves throughout 
generations improving the features of potential solutions by means of biologically 
inspired operations. On the ground of the structures undergoing optimisation the 
reproduction strategies, the genetic operators’ adopted, evolutionary algorithms can 
be grouped in: evolutionary programming, evolution strategies, classifier systems, 
genetic algorithms and genetic programming. 

The genetic algorithms behave much like biological genetics [8]. The genetic 
algorithms are an attractive class of computational models that mimic natural 
evaluation to solve problems in a wide variety of domains [9] [10]. A genetic 
algorithm comprises a set of individual elements (the population size) and a set of 
biologically inspired operators defined over the population itself etc. Genetic 
algorithms manipulate a population of potential solutions to an optimisation (or 
search) problem and use probabilistic transition rules. According to evolutionary 
theories, only the most suited elements in a population are likely to survive and 
generate offspring thus transmitting their biological heredity to new generations. A 
genetic algorithm maps a problem onto a set of strings (the chromosomes) and each 
string representing a potential solution. The three most important aspects of using 
genetic algorithms are: (1) definition of the objective function, (2) definition and 
implementation of the genetic representation, and (3) definition and implementation 
of the genetic operators. 

There are a lot of list heuristic methods which are used to scheduling nodes onto 
parallel processors. Most of them give a good solution problem. Example, each node 
graph is assigned a priority, and then added to a list of waiting nodes in order of 
decreasing priority. As processors become available the node with the highest priority 
is selected from the list and assigned to the most suited processor. If more than one 
node has the same priority a node is selected randomly.  

Initialisation - an initial population of the search nodes is randomly generated. The 
strings encoding mechanism should map each solution to a unique string. The 
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encoding mechanism depends on the nature of the problem variables and it use for 
representing the optimisation problem’s variables. The representation is unique. In 
some cases the variables assume continuous values, while in other cases the variables 
are binary. It can be integer parameters, real-valued parameters, vectors of 
parameters, Gray code, dynamic parameter encoding etc. The fitness values of each 
node are calculated according to the fitness function (objective function). The fitness 
function provides the mechanism for evaluating each chromosome in the problem 
domain. It is always positive. Three operators are needed to achieve this selection, 
crossover and mutation. The selection criterion is that string with higher fitness value 
should have a higher chance of surviving to the next generation. A quality measure 
for the solutions (fitness function) of the problem is known. Fitter solutions survive, 
while weaker ones perish. There are many different models of selection. The most 
popular selection in genetic algorithms is fitness proportionate selection, rank 
selection, tournament selection and elitist selection. After selection comes crossover.  

The crossover operator takes two chromosomes (parents) and swaps part of their 
genetic information to produce new chromosomes (child). The offspring (child) keep 
some of the characteristics of the parents. One point crossover involves cutting the 
chromosomes of the parents at a randomly chosen common point and exchanging the 
right - hand – side sub-chromosomes. In two – point crossover chromosomes are 
thought of as rings with the last and the first gene connected. The rings are cut in two 
sites and the resulting sub-parts are exchanged. In uniform crossover each gene of the 
offspring is selected randomly from the corresponding genes of the parents. Crossover 
is applied to the individuals of a population with a constant probability, usually from 
0.5 to 0.95.  

Mutation consists of making (usually small) alterations to the values of one or 
more genes in a chromosome. In genetic algorithms, mutation is considered a method 
to recover lost genetic material. When we have the network topology graph, we need 
use topological sorting. Topological sorting consists of finding some global 
aggregating node set with these local constraints. 

4   Proposed Algorithm 

Now, we will consider initialisation, crossover, and mutation and evaluation 
algorithm. 

With initialisation we will make population of solutions. Let be N population size 
and Z will be number of node in network topology graph. Randomly we choose the 
one of processors from set of [1,P] where P is total number of processors and then add 
the node from the list of node sortie by indexes on increasing order.  

The chromosome is consisting from P sorted arrays. Example, let be P=3 and 
Z=10. One example of string looking as: 

 

S[1] 
S[2] 
S[3] 

2 5 6   
1 4 7 8 9 

3 10    

Fig. 1. Example of string (work with indexes (sorted by width) of nodes) 
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This is only chromosome (string) but not scheduling. On that way and with number 
of iterations we have defined algorithm of initialisation. 

The crossover operator use two strings randomly choose (choose one at random 
node) Ti from one of two sets and put on the new string. Precedence relation must be 
kept and whole time we work with indexes of nodes (getting by topological sorting). 
If Ti element the same set at both parents then Ti is coping on the same place for new 
string (child). If we randomly choose two same parents (strings A=B) and if one of 
parents e.g. A the best string we use operator mutation on the second B string. It is 
elitism.  Else, we mutate the first set and child generate randomly.  

This algorithm performs the crossover operation on two strings (A and B) and 
generates new string. 

Crossover (A; B) { 
  If (A==B) {//elimination duplicate  
    If (A is the best string) mutation (B); 
    Else mutation (A); 
    Random generate child; 
  Return 
} 
  For (i=1;i<=Z;i++){ 

    If (Ti∈P on both parents) 
      Ti copy on the same place on the child 
    Else 
      Ti below one from sets of parents (randomly); 
} 

} 

Increasing order indexes of the nodes must be kept.   
Before crossover operation: 

 
A[1] 
A[2] 
A[3] 
 
B[1] 
B[2] 
B[3] 
 

After crossover operation (child): 
 
C[1] 
C[2] 
C[3] 

 

Fig. 2. Example of crossover operator 

2 5 6   
1 4 7 8 9 

3 10    

1 5    
3 4 8   

2 6 7 9 10 

1 5    
3 4 8 9  

2 6 7 10  
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Next, what we must to do is define the mutation operator. We first generate two 
randomly chosen numbers r i q from the sets [1,P]. The condition for that is that: a) r 
# q, and b) set r aren’t empty. 

After that from set r, choose one node at random and remove him in the set q. We 
must take in the account that the node which we move, must be put on the place that 
indexes of node be ordered by increasing. 

Let be r=1 and q=2 and randomly choose the node has the index 5. 
Before mutation: 

 

S[1] 
S[2] 
S[3] 
 

After mutation: 
 
S[1] 
S[2] 
S[3] 
 

Fig. 3. Example of mutation operator 

The below is the evaluation algorithm. 

Evaluation () { 

  For (i=1;i<=P;i++) FTP[i]=0;// reset FTP for all 
processors 

  For (i=1;i<=Z;i++){   

// Ti∈{sets of nodes processor p},p∈[1,P] 
    FTP[p] += duration (Ti); 

    For (j=1;j<=P;j++){ 

      If (j == p) continue; 

      // the precedence relations are maintained in 
this line 

      If (((Tx∈j)<Ti ) && (FTP[j]>pom)) 

      /* x is the biggest index of nodes set p (nodes 
which execution onto processor p), and that content the 
condition x<j.*/ 

         FTP[p] = FTP[j] + Ti; 

    } 

  } 

  FT = maxi∈[1,P]{FTP[i]}; 

} 

2 5 6    
1 4 7 8 9  

3 10     

2 6     
1 4 5 7 8 9 

3 10     
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The fitness function for the multiprocessor scheduling problem in our genetic 
algorithms is finishing time a besides it can be also throughput and processor 
utilization. Finishing time of a schedule is defined as follows: FT=maxi∈[1,P]{FTP[i]} 
where FTP[i] is the finishing time for the last node in processor i. 

5   Simulation 

In this section, we evaluate the performance of proposed algorithm with the heuristic 
algorithm on several different topologies and parameter settings. For simplicity, we 
make the reasonable assumption of shortest path routing.  

The network graph used in this study is the Waxman model. We generate different 
network topologies by varying the Waxman parameter β  for a fixed parameter 

2.0=α .The varying β  gives topologies with degrees of connectivity ranging from 4 
to 8 for a given number of nodes in the network. Each link allocates a certain fraction 
of their bandwidth for aggregating traffic based on the capacity constraint imposed for 
the link. In our simulation, the fraction is the same for all links and the value is 5% 
and 10% respectively. The delay for every link changes from 0.1 to 2.0 with a fix 
delay tolerance parameter 10=δ . Simulation results presented here are averaged over 
5 different topologies. Our performance metrics are (1) total number of aggregating 
nodes required, and (2) fraction of total bandwidth consumed for aggregating. 

Random Picking of Aggregator: the heuristic is to pick a possible aggregating node 
from V randomly. This heuristic serves as a base-line comparison for the neural 
network algorithm proposed in the paper. Once we select an aggregating node, we 
need to determine the set of monitoring nodes to be assigned to that it. Ideally, we 
would like to assign maximum number of unassigned monitoring nodes to a new 
aggregating node. The algorithm is present in paper [4]. 

The simulation shows the Hopfield network have more better result than the 
randomly method. 

 

β  Nodes Algorithm Link 
Fraction 0.05 0.10 0.15 0.20 

5% 13.973% 9.257% 7.193% 5.067% Random 
Picking 10% 17.157% 14.928% 13.016% 9.942% 

5% 11.265% 8.364% 6.327% 3.985% 

200 

GA 
10% 12.943% 11.406% 9.158% 9.043% 
5% 18.278% 14.487% 11.975% 10.013% Random 

Picking 
10% 21.345

% 
19.857% 15.475% 13.976% 

5% 15.433
% 

12.587% 10.247% 8.083% 

400 

GA 

10% 19.164
% 

16.169% 14.724% 12.867% 

Fig. 4. The result for simulation 
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6   Conclusion 

The primary motivation for work to design good measurement infrastructure it is 
necessary to have a scalable system at a reduced cost of deployment. As the model is 
NP-Hard and the current heuristics algorithm is that after a possible aggregating node 
is picked, the algorithm tries to assign the maximum number of un-assigned 
monitoring nodes to it without violating bandwidth and delay constraints. 
Unfortunately the general problem that assigns the maximum number of un-assigned 
monitoring nodes without violating constraints is also NP-Hard.  

In this paper, we have demonstrated that Genetic Algorithms techniques can 
compete effectively with more traditional heuristic solutions to practical 
combinatorial optimization problems, but they are not guaranteed to perfectly solve a 
problem (esp. in polynomial time). 
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