

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3611, pp. 913 – 921, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Optimizing the Distributed Network Monitoring Model
with Bounded Bandwidth and Delay Constraints by

Genetic Algorithm

Xianghui Liu1, Jianping Yin1, Zhiping Cai1, Xueyuan Huang2,
and Shiming Chen2

1 School of Computer Science, National University of Defense Technology,
Changsha City, Hunan Province, 410073, PRC

LiuXH@tom.com
2 Ende Technology, Changsha City, Hunan Province, 410073, PRC

Abstract. Designing optimal measurement infrastructure is a key step for
network management. In this work the goal of the optimization is to identify a
minimum aggregating nodes set subject to bandwidth and delay constraints on
the aggregating procedure. The problem is NP-hard. In this paper, we describe
the way of using Genetic Algorithm for finding aggregating nodes set. The
simulation indicates that Genetic Algorithm can produce much better result than
the current method of randomly picking aggregating nodes.

1 Introduction

The explosive growth of Internet has emerged a massive need for monitoring
technology that will support this growth by providing IP network managers with
effective tools for monitoring network utilization and performance[1][2]. Monitoring
of the network-wide state is usually achieved through the use of the Simple Network
Management Protocol (SNMP) with two kinds of entities: one management center
and some monitoring nodes. The management center sends SNMP commands to the
monitoring nodes to obtain information about the network and this function is
performed by a centralized component responsible for aggregating all monitoring
nodes [3]. Yet such processing queries have some inherent weaknesses. Firstly it can
adversely impact router performance and result in significant volumes of additional
network traffic. Secondly aggregating procedure is its time dependency. The support
of knowledge of the up-to-date performance information requires the establishment of
reliable, low delay and low cost aggregating routes [4] [5].

In above traditional centralized monitoring system, although the center provides a
network-wide view but has some inherent weaknesses as being pointed out and not
suitable for large scale network. Taking into account the issues of scalability and
network-wide view for large service provider networks, an ideal monitoring
architecture is a hierarchical system which implied that there is a management center
but the resource intensive nodes such as polling are distributed. Between the
management center and the monitoring nodes, there exists a set of aggregating nodes.

914 X. Liu et al.

The aggregating nodes are distributed and each node is responsible for an aggregating
domain consisting of a subset of the network nodes. Information gathered from the
individual monitoring nodes is then aggregated. Such a hierarchical architecture
overcomes the weaknesses while still maintaining a network-wide view [4] [5].

In particular, the most recently works addresses the problem of minimizing the
number of aggregating nodes while keeping the aggregating bandwidth or delay
within predefined limits individually [4] [5]. And all these problems are NP-Hard
with solutions to this problem by using heuristics based on the aggregating load and
the maximum assignment of monitoring nodes. The difficulties of using heuristics for
optimal distributed network monitoring model is that after a possible aggregating
node is picked, the algorithm tries to assign the maximum number of un-assigned
monitoring nodes to the it without violating bandwidth and delay constraints.
Unfortunately the general problem that assigns the maximum number of un-assigned
monitoring nodes without violating constraints is also NP-Hard and all the heuristics
only consider some special situation now[4] [5].

As the idea of using Genetic Algorithm to provide solutions to difficult NP-Hard
optimization problems has been pursued for over a decade and have some significant
results. There are no polynomial-time algorithms (yet) that solve NP-Complete
problems, finding approximate solutions for these problems is usually made more
efficient when we use the GA concept. (Although a main drawback is that we are not
guaranteed to be given an optimal solution, even if we spend a large amount of time
running this genetic process.)

1. GA provides approximate solutions to several problems.
2. GA is a valid approach, since we are often times willing to settle for

approximate solutions.
3. GA allows one to spend as much time as is allowed to find a solution, while

providing the “best” solution so far, if terminated.

In this paper, we consider optimizing distributed monitoring modal with bounded
bandwidth and delay constraints problem by Genetic Algorithm [6] [7] [8].

2 Problem Formulation

We represent the whole monitoring domain of our model as an undirected
graph ()EVG , , where { }nvvvV L,, 21= is the set of all nodes or routers that are in the

monitoring domain and. VVE ×⊆ represents the set of edges. The node set
()Φ≠∧⊆ mmm SVSS represents the monitoring nodes in the monitoring domain. Each

node ()mSvv ∈ generates an aggregating traffic of iw bps. This aggregating traffic is

destined to the relative aggregating node which has been assigned to. We define
function +→ REL : and +→ REB : which assign a non-negative weight to each link
in the network and represent the actual aggregating bandwidth used and the amount of
link bandwidth allocated for aggregating traffic for each of the edges. And we also
define edge-delay function +→ RED : which assigns a non-negative weight to each
of the edges. The value ()eD associated with edge Ee ∈ is a measure (estimate) of

 Optimizing the Distributed Network Monitoring Model 915

total delay that packets experience on the link. Let the set ()() { }meeevuPathE ,,,, 21 L=

represents the links in the path between node u and v.
The optimal aggregating node location and monitoring node assignment problem

can therefore be stated as follows: Given a network ()EVG , , determine (1) a minimum
subset of nodes ()VSS aa ⊆ on which to place aggregating node such that the

bandwidth constraint on each and every link () ()eBeL ≤ is satisfied (where ()eB is the
maximum bandwidth that can be used for aggregating on link e) and the delay
constraint on every node ()mSvv ∈ satisfy ()() δ≤wvPathDelay , (where δ is the

maximum delay that can be used for aggregating by a node defined as w). (2) A
mapping λ which maps a monitoring node to its aggregating node. That is, for any
node ()mSvv ∈ , if () wv =λ , then node v is assigned to the aggregating node w . Note in

some situation, we can use additional constraints to decide whether the monitoring
node v can be aggregated by itself.

Now we define some variable to describe the integer program formulation about the
problem. The binary variable ijx indicates whether monitoring node iv is aggregated by

node jv , where mi Sv ∈ and Vv j ∈ . The binary variable ij
eb indicates whether edge e

belongs to the),(ji vvPath between node iv and jv . The binary variable jy indicates

whether node jv is an aggregating node or not .The problem minimizing the number

of aggregating nodes in a given network subject to delay constraints can naturally
expressed as an integer programming formulation:

The objective is: ∑
=

V

j
jyMinimize

1

 and the constraints are below:

()∑
=

∈∀=
V

j
miij Svx

1

1 (1)

()VvSvyx jmijij ∈∀∈∀≤ , (2)

() ()()EeVvSveBxvLb jmi
i j

iji
ij
e ∈∈∀∈∀≤∑∑ ,, (3)

() ()VvSvxeDb jmiij
Ee

ij
e ∈∀∈∀≤∑

∈
,δ (4)

{ }()VvSvx jmiij ∈∀∈∀∈ ,1,0 (5)

{ }()Vvy jj ∈∀∈ 1,0 (6)

The first constraint makes sure that each monitoring node iv is aggregated by

exactly one aggregating node. The second constraint guarantees that a node jv must

be an aggregating node if some other monitoring node iv is assigned to (aggregated

by) it. The third constraint ensures the aggregating traffic on every link e not exceed
the predefined bandwidth limits ()eB . The fourth constraint ensures that delay during
aggregating procedure not exceeds the delay constraint on the path between each
monitoring node and its aggregating node.

It is well-known that the integer programming formulation has an exponential
running time in the worst case. In the previous work the greedy algorithm normally

916 X. Liu et al.

consists of two steps. In the first step the algorithm calculate out the maximum
number of monitoring nodes satisfying the bandwidth or delay constraint when they
are assigned to an aggregating node, and the set of these monitoring nodes is called
candidate monitoring set of the relative node. In the second step algorithm greedily
repeatedly picks an additional aggregating node (based on the greedy selection
criteria) if there are any monitoring nodes still present in the network that does not
have an aggregating node assigned to it. After an aggregating node is picked, the
algorithm assigns candidate monitoring set to it without violating bandwidth or delay
constraint. The repeat will interrupt when all monitoring nodes have been assigned,
and the approximate aggregating node set includes all pickup additional aggregating
nodes. Unfortunately the general problem that assigns the maximum number of un-
assigned monitoring nodes without violating constraints is also NP-Hard and all the
heuristic algorithm only consider some special situation. So the below we consider
using Genetic Algorithm to solve the problem.

3 Evolution and Genetic Algorithm

Evolutionary algorithms are optimisation and search procedures inspired by genetics
and the process of natural selection. This form of search evolves throughout
generations improving the features of potential solutions by means of biologically
inspired operations. On the ground of the structures undergoing optimisation the
reproduction strategies, the genetic operators’ adopted, evolutionary algorithms can
be grouped in: evolutionary programming, evolution strategies, classifier systems,
genetic algorithms and genetic programming.

The genetic algorithms behave much like biological genetics [8]. The genetic
algorithms are an attractive class of computational models that mimic natural
evaluation to solve problems in a wide variety of domains [9] [10]. A genetic
algorithm comprises a set of individual elements (the population size) and a set of
biologically inspired operators defined over the population itself etc. Genetic
algorithms manipulate a population of potential solutions to an optimisation (or
search) problem and use probabilistic transition rules. According to evolutionary
theories, only the most suited elements in a population are likely to survive and
generate offspring thus transmitting their biological heredity to new generations. A
genetic algorithm maps a problem onto a set of strings (the chromosomes) and each
string representing a potential solution. The three most important aspects of using
genetic algorithms are: (1) definition of the objective function, (2) definition and
implementation of the genetic representation, and (3) definition and implementation
of the genetic operators.

There are a lot of list heuristic methods which are used to scheduling nodes onto
parallel processors. Most of them give a good solution problem. Example, each node
graph is assigned a priority, and then added to a list of waiting nodes in order of
decreasing priority. As processors become available the node with the highest priority
is selected from the list and assigned to the most suited processor. If more than one
node has the same priority a node is selected randomly.

Initialisation - an initial population of the search nodes is randomly generated. The
strings encoding mechanism should map each solution to a unique string. The

 Optimizing the Distributed Network Monitoring Model 917

encoding mechanism depends on the nature of the problem variables and it use for
representing the optimisation problem’s variables. The representation is unique. In
some cases the variables assume continuous values, while in other cases the variables
are binary. It can be integer parameters, real-valued parameters, vectors of
parameters, Gray code, dynamic parameter encoding etc. The fitness values of each
node are calculated according to the fitness function (objective function). The fitness
function provides the mechanism for evaluating each chromosome in the problem
domain. It is always positive. Three operators are needed to achieve this selection,
crossover and mutation. The selection criterion is that string with higher fitness value
should have a higher chance of surviving to the next generation. A quality measure
for the solutions (fitness function) of the problem is known. Fitter solutions survive,
while weaker ones perish. There are many different models of selection. The most
popular selection in genetic algorithms is fitness proportionate selection, rank
selection, tournament selection and elitist selection. After selection comes crossover.

The crossover operator takes two chromosomes (parents) and swaps part of their
genetic information to produce new chromosomes (child). The offspring (child) keep
some of the characteristics of the parents. One point crossover involves cutting the
chromosomes of the parents at a randomly chosen common point and exchanging the
right - hand – side sub-chromosomes. In two – point crossover chromosomes are
thought of as rings with the last and the first gene connected. The rings are cut in two
sites and the resulting sub-parts are exchanged. In uniform crossover each gene of the
offspring is selected randomly from the corresponding genes of the parents. Crossover
is applied to the individuals of a population with a constant probability, usually from
0.5 to 0.95.

Mutation consists of making (usually small) alterations to the values of one or
more genes in a chromosome. In genetic algorithms, mutation is considered a method
to recover lost genetic material. When we have the network topology graph, we need
use topological sorting. Topological sorting consists of finding some global
aggregating node set with these local constraints.

4 Proposed Algorithm

Now, we will consider initialisation, crossover, and mutation and evaluation
algorithm.

With initialisation we will make population of solutions. Let be N population size
and Z will be number of node in network topology graph. Randomly we choose the
one of processors from set of [1,P] where P is total number of processors and then add
the node from the list of node sortie by indexes on increasing order.

The chromosome is consisting from P sorted arrays. Example, let be P=3 and
Z=10. One example of string looking as:

S[1]
S[2]
S[3]

2 5 6
1 4 7 8 9

3 10

Fig. 1. Example of string (work with indexes (sorted by width) of nodes)

918 X. Liu et al.

This is only chromosome (string) but not scheduling. On that way and with number
of iterations we have defined algorithm of initialisation.

The crossover operator use two strings randomly choose (choose one at random
node) Ti from one of two sets and put on the new string. Precedence relation must be
kept and whole time we work with indexes of nodes (getting by topological sorting).
If Ti element the same set at both parents then Ti is coping on the same place for new
string (child). If we randomly choose two same parents (strings A=B) and if one of
parents e.g. A the best string we use operator mutation on the second B string. It is
elitism. Else, we mutate the first set and child generate randomly.

This algorithm performs the crossover operation on two strings (A and B) and
generates new string.

Crossover (A; B) {
 If (A==B) {//elimination duplicate
 If (A is the best string) mutation (B);
 Else mutation (A);
 Random generate child;
 Return
}
 For (i=1;i<=Z;i++){

 If (Ti∈P on both parents)
 Ti copy on the same place on the child
 Else
 Ti below one from sets of parents (randomly);
}

}

Increasing order indexes of the nodes must be kept.
Before crossover operation:

A[1]
A[2]
A[3]

B[1]
B[2]
B[3]

After crossover operation (child):

C[1]
C[2]
C[3]

Fig. 2. Example of crossover operator

2 5 6
1 4 7 8 9

3 10

1 5
3 4 8

2 6 7 9 10

1 5
3 4 8 9

2 6 7 10

 Optimizing the Distributed Network Monitoring Model 919

Next, what we must to do is define the mutation operator. We first generate two
randomly chosen numbers r i q from the sets [1,P]. The condition for that is that: a) r
q, and b) set r aren’t empty.

After that from set r, choose one node at random and remove him in the set q. We
must take in the account that the node which we move, must be put on the place that
indexes of node be ordered by increasing.

Let be r=1 and q=2 and randomly choose the node has the index 5.
Before mutation:

S[1]
S[2]
S[3]

After mutation:

S[1]
S[2]
S[3]

Fig. 3. Example of mutation operator

The below is the evaluation algorithm.

Evaluation () {

 For (i=1;i<=P;i++) FTP[i]=0;// reset FTP for all
processors

 For (i=1;i<=Z;i++){

// Ti∈{sets of nodes processor p},p∈[1,P]
 FTP[p] += duration (Ti);

 For (j=1;j<=P;j++){

 If (j == p) continue;

 // the precedence relations are maintained in
this line

 If (((Tx∈j)<Ti) && (FTP[j]>pom))

 /* x is the biggest index of nodes set p (nodes
which execution onto processor p), and that content the
condition x<j.*/

 FTP[p] = FTP[j] + Ti;

 }

 }

 FT = maxi∈[1,P]{FTP[i]};

}

2 5 6
1 4 7 8 9

3 10

2 6
1 4 5 7 8 9

3 10

920 X. Liu et al.

The fitness function for the multiprocessor scheduling problem in our genetic
algorithms is finishing time a besides it can be also throughput and processor
utilization. Finishing time of a schedule is defined as follows: FT=maxi∈[1,P]{FTP[i]}
where FTP[i] is the finishing time for the last node in processor i.

5 Simulation

In this section, we evaluate the performance of proposed algorithm with the heuristic
algorithm on several different topologies and parameter settings. For simplicity, we
make the reasonable assumption of shortest path routing.

The network graph used in this study is the Waxman model. We generate different
network topologies by varying the Waxman parameter β for a fixed parameter

2.0=α .The varying β gives topologies with degrees of connectivity ranging from 4
to 8 for a given number of nodes in the network. Each link allocates a certain fraction
of their bandwidth for aggregating traffic based on the capacity constraint imposed for
the link. In our simulation, the fraction is the same for all links and the value is 5%
and 10% respectively. The delay for every link changes from 0.1 to 2.0 with a fix
delay tolerance parameter 10=δ . Simulation results presented here are averaged over
5 different topologies. Our performance metrics are (1) total number of aggregating
nodes required, and (2) fraction of total bandwidth consumed for aggregating.

Random Picking of Aggregator: the heuristic is to pick a possible aggregating node
from V randomly. This heuristic serves as a base-line comparison for the neural
network algorithm proposed in the paper. Once we select an aggregating node, we
need to determine the set of monitoring nodes to be assigned to that it. Ideally, we
would like to assign maximum number of unassigned monitoring nodes to a new
aggregating node. The algorithm is present in paper [4].

The simulation shows the Hopfield network have more better result than the
randomly method.

β Nodes Algorithm Link
Fraction 0.05 0.10 0.15 0.20

5% 13.973% 9.257% 7.193% 5.067% Random
Picking 10% 17.157% 14.928% 13.016% 9.942%

5% 11.265% 8.364% 6.327% 3.985%

200

GA
10% 12.943% 11.406% 9.158% 9.043%
5% 18.278% 14.487% 11.975% 10.013% Random

Picking
10% 21.345

%
19.857% 15.475% 13.976%

5% 15.433
%

12.587% 10.247% 8.083%

400

GA

10% 19.164
%

16.169% 14.724% 12.867%

Fig. 4. The result for simulation

 Optimizing the Distributed Network Monitoring Model 921

6 Conclusion

The primary motivation for work to design good measurement infrastructure it is
necessary to have a scalable system at a reduced cost of deployment. As the model is
NP-Hard and the current heuristics algorithm is that after a possible aggregating node
is picked, the algorithm tries to assign the maximum number of un-assigned
monitoring nodes to it without violating bandwidth and delay constraints.
Unfortunately the general problem that assigns the maximum number of un-assigned
monitoring nodes without violating constraints is also NP-Hard.

In this paper, we have demonstrated that Genetic Algorithms techniques can
compete effectively with more traditional heuristic solutions to practical
combinatorial optimization problems, but they are not guaranteed to perfectly solve a
problem (esp. in polynomial time).

References

[1] A. Asgari, P. Trimintzios, M. Irons, G. Pavlou, and S. V. den BergheR. Egan.: A Scalable
Real-Time Monitoring System for Supporting Traffic Engineering. In: Proceedings of
IEEE Workshop on IP Operations and Management, IEEE, New York (2002)

[2] Y. Breitbart, C. Y. Chan, M. Garofalakis, R. Rastogi, and A. Silberschatz.: Efficiently
Monitoring Bandwidth and Latency in IP Networks. In: Proceedings of IEEE Infocom
2002, IEEE, New York (2002)

[3] D. Breitgand, D. Raz, and Y. Shavitt.: SNMP GetPrev: An efficient way to access data in
large MIB tables. In: IEEE Journal of Selected Areas in Communication, Volume 20, No
4, IEEE, New York , (2002), 656–667,

[4] L. Li, M. Thottan, B. Yao, S. Paul.: Distributed Network Monitoring with Bounded Link
Utilization in IP Networks. In: Proceedings. of IEEE Infocom 2003, IEEE, San Francisco
(2003)

[5] Liu, Xiang-Hui; Yin, Jian-Ping; Lu, Xi-Cheng; Cai, Zhi-Ping; Zhao, Jian-Min.:
Distributed network monitoring model with bounded delay constraints. In: Wuhan
University Journal of Natural Sciences, Volume 9,No 4, (2004) 429-434

[6] Ricardo C. Correa, Afonso Ferreira, Pascal Rebreyend.: Scheduling Multiprocessor Node
with Genetic Algorithm. In: IEEE Transactions on Parallel and Distributed systems.
Volume 10, No 8, IEEE, New York (1999)

[7] Albert Y. Zomaya, Chris Ward, Ben Macey.: Genetic Scheduling for Parallel Processor
Systems: Comparative studies and Performance Issues. In: IEEE Transactions on Parallel
and Distributed systems. Volume 10, No 8, IEEE, New York (1999)

[8] G.N. Srinivasa Prasanna , B.R. Musicus.: Generalized Multiprocessor Scheduling and
Applications to Matrix Computations. In: IEEE Transactions on Parallel and Distributed
systems, Volume 7, No 6, IEEE, New York (1996)

[9] C.W. Ahn and R. S. Ramakrishna.: A Genetic Algorithm for Shortest Path Routing
Problem and the Sizing of Populations. IEEE Transactions on Evolutionary Computation,
Volume 6, Issue 6, IEEE, New York (2002), 566–579

[10] D.E. Goldberg. Genetic Algorithms in Search.: Optimization, and Machine Learning.
Addison-Wesley, Reading, MA, (1989)

	Introduction
	Problem Formulation
	Evolution and Genetic Algorithm
	Proposed Algorithm
	Simulation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

