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Abstract. Based on clonal selection principle, an improved immune algorithm 
(IIA) is proposed in this paper. This algorithm generates the next population 
under the guidance of the previous superior antibodies (Ab’s) in a small and a 
large neighborhood respectively, in order to realize the parallel global and local 
search capabilities. The computational results show that higher quality solutions 
are obtained in a shorter time, and the degree of diversity in population are 
maintained by the proposed method. Meanwhile, “Average truncated 
generations” and “Distribution entropy of truncated generations” are used to 
evaluate the optimization efficiency of IIA. The comparison with clonal selection 
algorithm (CSA) demonstrates the superiority of the proposed algorithm IIA. 

1   Introduction 

The natural immune system is a complex but self organizing and highly distributed 
system. It employs a multilevel defense against invaders through nonspecific (innate) 
and specific (acquired) immune mechanisms. The natural immune system is a subject 
of great research interest because of its powerful information processing capabilities. In 
particular, it performs many complex computations in a completely parallel and 
distributed fashion [1]. Over the last few years, there are many application areas in 
which immunity-based models appear to be very useful [2]. An immune genetic 
algorithm has been proposed by Cao et al. to solve packing problem effectively [3]. 
Gao has applied the immune algorithm to the power network planning, and compared it 
with that based on genetic algorithm. The results show that the immune algorithm is 
better than the genetic algorithm in global optimization [4]. Furthermore, Timmis et al. 
have employed the artificial immune system in the knowledge discovery of database, 
and compared it with the normal K Means and Kohonen network [5]. The artificial 
immune system has been expected strong advantage over those conventional methods 
to the field of information processing. 

The defensive mechanisms of the natural immune system are very effective, and can 
be used as a source of inspiration for computation problems. If the objective function of 
the practical problem and its solution are respectively regarded as the invading antigen 
(Ag) and the antibody (Ab) generated by the immune system, the solving process of the 
practical problem is quite similar to the natural immune mechanisms. In 2001, based on 
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the clonal selection principle, De Castro and Von Zuben proposed a general clonal 
selection algorithm, named CLONALG (in this paper, we call it CSA) [6]. The clonal 
selection principle is used to explain the basis features of an adaptive immune response 
to an antigenic stimulus, which establishes the idea that only those cells recognizing the 
Ag’s are selected to proliferate. The algorithm was derived primarily to carry out 
machine-learning, pattern-recognition task and optimization problems. Nevertheless, 
when solving complex function optimization tasks and some engineering optimization 
problems, the algorithm has the low degree of diversity in population, and may 
converge to a local optimum. So a reliable global approach would be of considerable 
value to intelligence and computation community.    

In this paper, an improved immune algorithm (IIA) is proposed through modifying 
the cell clone and hypermutation mechanism. The cell clone operation proliferates the 
clonal selected B cells in a small neighborhood to produce the Ab’s with high affinity, 
thereby improving the local search capabilities of the algorithm and obtaining better 
solution. While the hypermutation operation mutates the selected cells in a large 
neighborhood to improve the global search capabilities and maintain the diversity of 
the population. To demonstrate the superiority of the method, simulation results for 
four benchmark functions have been compared with various techniques available in 
literature, namely, standard genetic algorithm (SGA), clonal selection algorithm (CSA) 
and particle swarm optimization algorithm (PSO). Meanwhile, the optimization 
efficiency of IIA is evaluated. It is shown that the optimization efficiency of IIA is 
higher than that of CSA. 

2   Clonal Selection Theory and Improved Immune Algorithm 

2.1   Clonal Selection Theory 

Learning in the immune system involves raising the population size and affinity of 
those lymphocytes that have proven themselves to be valuable by having recognized 
any Ag’s. Any molecule that can be recognized by the adaptive immune system is 
known as an Ag. When an animal is exposed to an Ag, some subpopulation of its B 
cells responds by producing Ab’s. By binding to these Ab’s and with a second signal 
from accessory cells, such as the T cell, the Ag stimulates the B cell to proliferate 
(divide) and mature into terminal Ab secreting cells, called plasma cells. The process of 
cell division (mitosis) generates a clone. B cells, in addition to proliferating and 
differentiating into plasma cells, can differentiate into long-lived B memory cells. 
Memory cells commence to differentiate into plasma cells capable of producing 
high-affinity Ab’s, when exposed to a second antigenic stimulus. The main features of 
the clonal selection theory are [6]: 

i. Proliferation and differentiation on stimulation of cells with Ag’s. The selected 
Ab’s are cloned independently and proportionally to their antigenic affinities, 
generating a repertoire of clones. The higher the antigenic affinity, the higher the 
number of clones generated for each of selected Ab’s. 

ii. Generation of new random genetic changes, expressed subsequently as diverse Ab 
patterns, by a form of accelerated somatic mutation. (a process called affinity 
maturation); the higher the affinity, the smaller the mutation rate. 
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iii. Estimation of newly differentiated lymphocytes carrying low-affinity antigenic 
receptors. 

2.2   Improved Immune Algorithm 

In the implementation of the proposed algorithm, the Ag’s and Ab’s represent the 
optimization problems and their candidate solutions respectively. While the fitness 
functions of the candidate solutions are regarded as the antigenic affinities of the Ab’s. 
The algorithm comprises the following five operators, clonal selection, cell clone, 
hypermutation, receptor editing and elitist preserving.  

Firstly, the clonal selection operation selects the B cells with the highest-affinity Ab 
receptors to be the B memory cells. Secondly, the cell clone process proliferates the 
clonal selected B cells in a small neighborhood to produce the Ab’s with high affinity, 
which can improve the local search capabilities of the algorithm and obtain better 
optimal solution. Thirdly, the hypermutation process is performed dependent on 
receptor affinity. Cells with low-affinity receptors may be further mutated and, as a 
rule, die if they do not improve their clone size or antigenic affinity. In cells with 
high-affinity Ab receptors, however, hypermutation may become inactive, generally in 
a gradual manner. Unlike the CSA, the IIA undergoes hypermutation in a relatively 
large neighborhood to realize the global exploration, which may rescue the solving 
stuck on unsatisfactory local optima. Then, to improve the diversity of the population 
and escape from local optima ulteriorly, receptor editing is performed. Those B cells 
undergone receptor editing delete their low-affinity receptors and developed entirely 
new ones in the feasible region randomly. Finally, the elitist preserving strategy is 
adapted to maintain the convergence of the algorithm in each iteration processing. [7] 

The procedure of the IIA can be described as follows. For the convenience of 
description, no distinction is made between a B cell and its receptor, known as an Ab. 

Step 1: Parameters definition: the radius of the cell clone r, the radius of the 
hypermutation R, the number of the populations, the maximum generation Genmax, the 
initial population At, that composed by M random initial Ab’s, t=0. 
Step 2: t=t+1. 
Step 3: Clonal selection: Select N (N≤M) highest affinity Ab’s from At to compose a 
new set Bt of memory Ab’s. This paper defines N=int (α*M), where α is selection 
probability, and 0<α<1. 
Step 4: Cell clone: IIA generates randomly (M-N) new sets of memory Ab’s Bt

’ in a 
relative small neighborhood around the Ab’s in Bt. Suppose xi,t is an Ab in Bt, Then, the 
new Ab generated randomly is: 
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where r is the radius of cell clone, and r∈ [0,1]; [xi,min, xi,max] is the space of feasible 
region; rand(1-r, 1+r)is a random number between 1-r and 1+r. 
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As shown above, the number of clones is proportional to the antigenic affinity. Then, 
a selecting method is proposed based on the “roulette wheel” strategy in this paper. 
Suppose the antigenic affinities of the N Ab’s in Bt is f(1),f(2),…,f(N) respectively, then 
the probability of a new Ab generated for each of the Ab’s in Bt is: 

1

( )
( ) ;               1, 2, ,

( )
N

i

f k
p k k N

f i
=

= =
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Define S (0) =0, then 
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Generate (M-N) random numbers evenly distributed between 0 and 1, ξs∈U (0, 1), s 
=1,2,…,M-N.  If S(k-1)<ξs<S(k), then select Ab k as a new Ab generated randomly in 
the neighborhood around the “mother Ab”, whose radius is r. According to this method, 
generate M-N new Ab’s. So, the higher the antigenic affinity, the higher the number of 
clones generated for each of the selected Ab’s, which means the algorithm has more 
chance to explore new Ab with higher affinity in a small neighborhood of the elitist. In 
a word, the cell clone is a process to search for the local optimum. 
Step 5: Hypermutation: Cell clone is merely a process to search for the local optimum. 
However, to prevent from unexpected local optima, and meanwhile, to obtain the 
ability to search for the global optimum, IIA undergoes the process of hypermutation, 
in which random genetic changes are introduced into each of the Ab’s in a large 
neighborhood. Suppose xi,t is an Ab in Bt, Then, the new Ab after mutation is: 
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(4) 

where R is the radius of cell clone, generally. R is larger than the radius of cell clone r; 
rand(1-R, 1+R) is a random number between 1-R and 1+R. The process of 
hypermutation generates a set Bt

” composed of N new Ab’s.  
Step 6: Compose a new Ct of the new Abs generated by the cell clone and 

hypermutation processes. Then ' ''
t t tC B B= ∪ , and M is the number of the new Abs. 

Step 7: Receptor editing: To improve the diversity of the population and escape from 
local optima ulteriorly, receptor editing is performed in IIA. Those B cells replace the d 
lowest affinity Ab’s from Ct by the d new Ab’s in set Dt. Where d=int (µ*M); µ is the 
editing probability, and 0<µ<1. 
Step 8: Elitist preserving: The B cells replace the lowest affinity Ab’s from Dt by the 
Ab’s with the highest affinity in set At, and form a new set At+1 of Ab’s. The algorithm 
maintains its convergence based on elitist preserving. 
Step 9: If the termination condition is satisfied, then the iteration processing stops, else, 
go to step 2. 



 An Improved Immune Algorithm and Its Evaluation of Optimization Efficiency 899 

 

2.3   Parameters Setting 

Studies of IIA for function optimization have indicted that good performance requires 
proper values of the parameters. A low probability of selection may result in 
convergence to local optima. On the contrary, a high probability of selection may result 
in poor speed of convergence. Typical values of selection probability are in the range 
0.4~0.5. The value of the editing probability can not be too large either. Although a 
high probability of selection may improve the diversity of the algorithm, it can decrease 
the efficiency of convergence. Based on the experience, typical values for selection 
probability are in the range 0.1~0.2. 

The radius of hypermutation R and the values of the radius of clone selection r 
determine the ability to converge in the global solving space and explore the optimum 
in the local neighborhood. They are both set according to the optimization problems. 
Generally, R is ten to fifty times of r. The value of r decreases linearly as follows: 

      
m ax m in

m ax
m ax

r r
r r G en

G en

−
= − × , 

 

(5) 

where Genmax is the maximum generation set in IIA, and Gen is the current generation. 
On the early stage of the searching process, the value of r is set to be relatively large 

to maintain the global search capability. Then, on the latter stage, the solutions 
gradually move close to the optimum, therefore, small value of r is needed to realize 
local searching. This method to determine the value of r does improve the performance 
of the IIA. 

3   Evaluation Criterion of Optimization Efficiency  

In order to evaluate IIA’s convergence speed and degree of instability, this paper 
presents two indices, “Average truncated generation” and “Distribution entropy of 
truncated generation”. Thereafter, they are unified as a monolithic criterion. 

Definition 1: Truncated generation 
A global numerical optimization can be formulated as solving the following objective 
function: 

      ( )max ,    1,2, , ,    . . f x i n st a x b
i i i i

= ≤ ≤K  . 
(6) 

Based on one of the possible strategies (such as different mutation probability and 
selection probability), when the computing accuracy ε (ε = fmax – f) is reached. The final 
generation is defined as the truncated generation. If the computing accuracy would not 
be reached until the predefined maximum generation Genmax, then the truncated 
generation is defined as Genmax. 

Definition 2: Average truncated generation 
Assume that the algorithm is performed for L runs, and Ti is defined as the truncated 
generation of the i th run, then the set T is composed of the Ti as follows: 

{ }0 ,   ,   1,2, ,maxT T T Gen T Z i Li i i
+= < ≤ ∈ = K .  
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Arranging the elements in the set T according to their magnitudes, then a new set 

{ }' ' ' ' ,  1,2, , 1,1T T T T i K K Li i i= < = − ≤+ K  can be derived. Given { }0 ,  ,  1,2, ,C C C L C Z i Ki i i
+= < ≤ ∈ = K  

and , ,  1,  1,2, ,
CiP p p p i Ki i iL

⎧ ⎫⎪ ⎪= = = =∑⎨ ⎬
⎪ ⎪⎩ ⎭

K , when the algorithm reaches its computing 

accuracy ε (ε = fmax – f) under the guidance of strategy S, the average truncated 
generation is defined as follows: 

         ( )
1

',
K

i

T S T p
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Definition 3: Distribution entropy of truncated generation 
The distribution entropy of truncated generation can be defined as follows: 
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when the algorithm reaches its computing accuracy ε (ε = fmax – f) based on strategy S. 
The definition of K and Pi is same as that defined in definition 2. The distribution 
entropy of truncated generation represents the measure of uniformity that the 
distribution of the truncated generation have and the stability of the algorithm. 

According to the above definitions, the average truncated generation is used to 
evaluate the average convergence speed of the optimization algorithm for several 
independent runs. The distribution entropy of truncated generation is used to evaluate 
whether the convergence of the algorithm is stable. The lower its degree, the more 
stable the convergence of the algorithm. This paper unified the two indices as a 
monolithic criterion on the plane (T, H) to evaluate the optimization efficiency of the 
proposed algorithm based on different strategies [8]. Then on the plane (T, H), the 
closer point to the origin represents the higher the optimization efficiency.  

4   Experiment Results 

In this paper, four benchmark functions are given as follows, which are widely used to 
test the efficiency of the optimization algorithms. 
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To demonstrate the superiority of the proposed IIA approach, simulation results for 
the above benchmark functions have been compared with various techniques available 
in literature, namely, standard genetic algorithm (SGA), clonal selection algorithm 
(CSA) and particle swarm optimization algorithm (PSO). 

The maximal generation is set to Genmax =100 for all four algorithms and the 
population size is set to be 100. The computing accuracy is set to be 10-5.To avoid any 
hazardous interpretation of optimization results, related to the choice of particular 
initial population, we performed the simulation 200 times for each function, starting 
from different populations randomly generated in the search space. The rest running 
parameters of the algorithms are chosen to be those by which the best performance 
could be obtained.  

Figure 1 shows convergence characteristic of F1 obtained using the four 
optimization algorithms respectively. The ‘fitness’ shown in the Figure are the average 
values of the optimal individual in each generation during the 200 runs of each 
algorithm. It is clear for the figure that the solution obtained by IIA converges to higher 
quality solutions at earlier iterations (about 15 iterations) rather than the other three 
algorithms. Similar results can be obtained for F2 to F4. 
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Fig. 1. Optimization procedure with four algorithms  

Table 1. Comparison of optimal results for different methods 

IIA CSA SGA PSO  
func 

Best Average Best Average Best Average Best Average 

F1 0 0 0 2.62e-10 0 1.11e-2 9.97e-10 3.90e-3 

F2 5.57e-9 9.21e-5 1.50e-6 8.05e-4 2.57e-7 3.25e-3 2.61e-8 6.45e-4 

F3 0 6.23e-21 0 2.90e-3 1.37e-4 1.26e-2 3.78e-6 5.15e-4 

F4 0 0 0.58 1.26 0.79 2.65 0.57 0.94 
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Table 2. Comparison of iteration for different methods 

IIA CSA SGA PSO  
func 

Best Average Best Average Best Average Best Average 

F1 11 15 23 58 41 92 59 96 

F2 13 48 18 94 79 97 32 57 

F3 50 61 27 82 100 100 100 100 

F4 45 52 100 100 100 100 100 100 

Table I and II summarizes the optimal results and convergence iterations of the best 
and average solutions as obtained by different methods when applying to the all four 
benchmark functions over 200 runs. These results show that the optimal solutions 
determined by the IIA lead to lower optimal value than that found by other methods, 
which confirms that the IIA is well capable of determining the global or near-global 
optimum solution. It can also be seen that IIA performs better than other methods in 
convergence speed. 

The phenomenon sufficiently incarnates the characteristics of IIA as follows: 

i. Clonal selection and elitist preserving operations both preserve the high-affinity 
Ab’s. This feature makes IIA maintain its convergence.  

ii. IIA select high-affinity Ab’s to undergo cell clone operation in small 
neighborhoods, by which the fine search around a local minimum is performed. 

iii. Hypermutation are operated in a large neighborhood. Therefore, IIA can improve 
its global search capabilities. 

5   Evaluation of IIA’s Optimization Efficiency   

This paper performs the F1 optimization task to evaluate the optimization efficiency of 
IIA based on a monolithic criterion defined in section 4, which is combined by the two 
proposed indices “Average truncated generations” and “Distribution entropy of 
truncated generations”. The results are compared with that of CSA. 

Meanwhile, the effects of parameters r and R on the optimization efficiency are also 
evaluated in the following descriptions. 

The population size of each algorithm is set to be 100. The IIA and CSA are both 
processed for 100 generations (Genmax =100) and repeated for 200 runs. The computing 
accuracy is 10-5. During IIA operation, the radius of cell clone is set to be rmax=0.1, 
rmin=0.05, and the radius of hypermutation is R=20, rmin=1. 

5.1   Selection Probability α 

To evaluate the optimization efficiency in relation to α, we fix µ=0.2. And α is assumed 
as the following values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} respectively. On the 
plane (T, H) shown in Fig.2, each point represents the result obtained by the 
optimization algorithm when taking corresponding parameter pair (α, µ). 
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Fig. 2. Optimization efficiencies with various selection operators 

From Fig.2, we can see that with the increase of α, the optimization efficiency rises 
gradually to the maximum when α=0.4, and then decreases.  

5.2   Editing Probability µ 

In order to study how µ effects on the optimization efficiency, α is fixed to be 0.4, while 
µ takes various values {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45} respectively.  

Fig.3 shows the similar results to those in Fig.2: The optimization efficiency rises 
gradually to the maximum when µ=0.2, and then decreases, with the increase of µ. 

Moreover, both in Fig.2 and Fig.3, each point in the left plane (T, H) is closer to the 
origin than the corresponding one in the right plane, which demonstrate that with the 
proper parameters, the proposed algorithm have higher optimization efficiency than 
CSA. 

 

Fig. 3. Optimization efficiencies with various editing operators 
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6   Conclusions 

This paper proposes an improved immune algorithm based on clone selection principle. 
IIA contributes mainly to introducing two new operators, cell clone and elitist 
preserving, meanwhile, modifying the hypermutation operator. Therefore, the parallel 
global and local searching capabilities can be obtained. Simulation results for some 
benchmark functions show that IIA greatly outperforms the algorithms SGA, PSO and 
CSA. 
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