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Abstract. According to the principles of non-self detection and negative selec-
tion in natural immune system, two generating algorithms of detector are pro-
posed in this paper after reviewing current detector generating algorithms used 
in artificial immune systems. We call them as Bit Mutation Growth Detector 
Generating Algorithm (BMGDGA) and Arithmetical-compliment Growth De-
tector Generating Algorithm (AGDGA) based on their operational features. The 
principle and work procedure of the two detector generating algorithms are 
elaborated in details in the paper. For evaluation of the proposed algorithms, 
they are tested and verified by using different datasets, and compared to Ex-
haustive Detector Generating Algorithm (EDGA). It turns out that the proposed 
two algorithms are superior to EDGA in detection performance and computa-
tional complexities. 

1   Introduction 

The immune system defends the body against harmful diseases and infections and 
plays very important adjustment functions in the whole lifetime of biological crea-
tures. It has many features that are desirable for information security research and 
problem solving of complex problems encountered in many engineering fields. Based 
on natural immune principles, many algorithms and architectures are proposed [1]-[7] 
in many engineering fields. Among them, the non-self recognition interests greatly IT 
and computer researchers and stimulates a lot of artificial immune systems (AIS) for 
change detection and pattern recognition. Forrest, et.al., [7] proposed the well-known 
negative selection algorithm (NSA) as a detector generating algorithm by simulating 
the negative selection process of T cells generating in thymus. This paper studies the 
detector-generating algorithm carefully, and proposes two-detector generating algo-
rithms based-on non-self detection and negative selection principles from the perspec-
tive of optimizing detector generation. Two algorithms are elaborately described in 
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theory and implementation and completely compared with Exhaustive Detector Gen-
erating Algorithm (EDGA). 

2   Negative Selection Principle and Related Algorithms 

2.1   Negative Selection Principle and Algorithm 

Negative selection is one of important phases of generation and maturation of T cells 
in thymus. T-cells with essentially random receptors are generated in thymus. Before 
they are released to the rest of body, those T-cells that match self are deleted. This 
process is called negative selection process based on which a number of detector 
generating algorithms are created in many artificial immune systems (AIS). In 1994, 
Forrest, et.al, proposed so-called negative selection algorithm (NSA) inspired by 
negative selection principle (NSP) [7]. NSA consists of two stages of censoring and 
monitoring. The censoring phase caters for the generation of change-detectors. Sub-
sequently, the system being protected is monitored for changes using the detector set 
generated in the censoring stage. 

2.2   Current Detector Generating Algorithms 

There are a number of detector-generating algorithms with different matching rules 
applied for ‘self’ and ‘non-self’ matching methods. Currently, for binary code, there 
are mainly three kinds of matching rules, which are perfect matching, r-contiguous 
bits matching [2] and Hamming distance matching. Exhaustive detector generating 
algorithm (EDGA) is suitable for three matching rules and is used to repeat the NSP 
till the number of detectors meets a preset demand or candidate set is vanished. How-
ever, negative selection algorithm with mutation [9] has different evaluating rules in 
the negative selection process from EDGA. With r-contiguous bits matching rule, the 
related algorithms mainly include Liner Time Detector Generating Algorithm and 
Greedy Detectors Generating Algorithm [9][10]. 

3   Bit Mutation and Arithmetic-Compliment Growth Algorithms 

3.1   Growth Algorithm 

The main difference between growth algorithm and NSA is the generating method of 
candidate detectors. For NSA, each detector candidate in EDGA is randomly selected 
from whole candidate space. Thus, after the number of detector candidate space Nr0 is 
determined, EDGA randomly selects Nr0 detectors to construct the detector candidate 
set R0. Then, the algorithm generates detector set R through negative selection proc-
ess. On the other hand, growth algorithm does not need to maintain a huge detector 
candidate set R0. It directly generates the detector set R by utilizing detector mutation 
or growth in whole shape space and combining with negative selection process. Its 
flow chart is shown in Fig.1. 
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Fig. 1. Flow chart of detector generation growth algorithm 

Growth Algorithm 
Step 1. Generating self set S with its number Ns. 
Step 2. Generating one detector generating seed which is randomly selected from 
the whole shape space. 
Step 3. Matching the new detector candidate with S. 
Step 4. Experiencing a negative selection process. If the candidate is not 
matched with S, then a new one is generated and added into R. 
Step 5. If the stop criterion is met, then exit. 
Step 6. Mutating the candidate and going to step 3. 

3.2   Bit Mutation and Arithmetical-Compliment Growth Methods 

Here, we design two detector mutation methods of bit mutation and arithmetical-
compliment growth according to different detector mutation rules. 

3.2.1   Bits Mutation  
This method is similar to bit mutation of Genetic Algorithm. But this algorithm mu-
tates multiple bits of detector candidate, not only one bit. If we let the string length be 
l and the maximum number of mutation bits be Nm (Nm =m), then, at one time, the 
mutated bits of detector candidate is less than or equal to m.  

Bit Mutation Algorithm 

Step 1. Set the maximum number of mutation bits Nm. 
Step 2. Input detector DetectorM to be mutated. 
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Step 3. Generate mutation seed MutationBits (its length is same as detector): Nm 
bits of MutationBits are randomly generated at range of 1 and l and set to 1, and 
others are set to zero. 
Setp 4. Detector mutation: an exclusive OR operation performed on the corre-
sponding bits of arrays DetectorM and MutationBits. 

Pascal language description of bits mutation algorithm: 

Program Bits_Mutation(DetectorM, mN )  
var 

       MutationBits  : Longword;  //Mutation seed 
       MutationBit : array[1.. mN ] of Byte; 

begin 
          MutationBits := 0; 
          For i := 1 to mN  do  //Generating mutation seed 

begin 
        MutationBit[i] := Random( l ); 
        MutationBits := (1 shl MutationBit[i]) or MutationBits; 
          end;  
          DetectorM:= DetectorM xor MutationBits; //Detector mutation 

end; 

3.2.2   Arithmetic-Compliment Growth Algorithm 
This mutation method consists of two phases. Phase 1 is used to generate mutation 
seed and phase 2 is to mutate the detector candidate. The process of generating muta-
tion seed in phase 1 is same as bit mutation method described above except that the 
sum of arithmetic-compliment of mutation seed and detector mutation is used as the 
detector candidate.  

Pascal language description of Arithmetic-compliment growth algorithm: 

Program Arithmetical-compliment_growth(DetectorM, amN )  

var 
        MutationO :Longword;    //Mutation seed 
        MutationBit   :array[1.. amN ] of Byte;    

begin 
       MutationO := 0; 
        for i := 1 to amN  do    //Generating mutation seed 

begin 
          MutationBit[i] := Random( l ); 
         MutationO := (1 shl MutationBit[i]) or MutationO; 
       end;  
        DetectorM := MutationO + DetectorM; 

     If DetectorM >= 2l  then DetectorM := DetectorM - 2l ;  
end;     
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3.3   BMDGA and AGDGA 

Once the proposed two mutation methods are separately applied to the detector muta-
tion part of the growth algorithm in Fig.1, we can obtain two kinds of detector gener-
ating algorithms which are called as bit mutation algorithm (BMDGA) and arithmeti-
cal-complement growth algorithm (AGDGA), respectively.  

4   Experiments 

4.1   Experimental Goals 

There are three main goals for our experiments. They are: 

• Validating algorithms’ quality of generated detector set by using detection rate Pc.  
• Comparing the algorithm’s complexity to EDGA.  
• Setting parameters including Nm and Nam, according to algorithms’ performance. 

4.2   Selection of Experimental Parameters  

We set two kinds of experiments. One chooses random dataset with string length 8, 
16 and 24 bits, respectively. Another experiment is to detect the changes of static 
files.  

4.3   Random Dataset Experiments 

4.3.1   8-Bit Dataset Experiments 
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Fig. 2. Experimental results of Detection rate Pc versus Nr0 when Ns is constant, where Ns =8, 
Nr0 increases from 1 to 604, size of test set is 256, and 1000 runs. (a) Curves of Pc versus Nr0 

for EDGA and BMGDGA, (b) Curves of Pc versus Nr0 for EDGA and AGDGA. 
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Fig. 3. Experimental results when Nr0 is constant and Ns changing from 1 to 256. (a) When Nr0 
=256, the experimental result comparison of EDGA to BMGDGA, (b) When Nr0 =256, the 
experimental result comparison of EDGA to AGDGA. 
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Fig. 4. Experimental results of detection rate versus mutation number, where Ns, Nr0 are con-
stants. To different datasets, Nm is increasing from 1 to 16, and Nam is increasing from 1 to 64. 
(a) Curve of Pc vs. Nm, (b) Curves of Pc vs. Nam. 

4.3.2   16-Bit and 24-Bit Dataset Experiments 

a. 16-bit dataset experiment 
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(a)                                                                    (b)  

Fig. 5. 16-bit dataset experimental results when Ns is constant. (a) Experimental results of 
BMGDGA and EDGA, (b) Experimental results of AGDGA and EDGA. 

Table 1. Computational complexity comparison for 16-bit dataset 

Algorithm Parameters setting 
Computational 
time (ms) 

Note 

EDGA 0rN =65536， SN =2048 730  

0rN =65536， SN =2048 mN =8 594.5 10 runs  
BMGDGA 

0rN =65536， SN =2048 mN =4 585 10 runs 

0rN =65536， SN =2048 amN =4 584.5 10 runs 
AGDGA 

0rN =65536， SN =2048 amN =200 909.5 10 runs 

Notice: experimental platform: Intel Pentium 993M CPU, 256M memory and Windows Me. 

b. 24-bit dataset experiment 

Table 2. Computational complexity comparison for 24-bit dataset 

Algorithm Parameters setting Detection rate 
Computational 
time (ms) 

EDGA SN =2048, 0rN =65536, tN =65536 0.3787231445 731.5 

mN =1 0.3834533691 534.2 

mN =16 0.3952026367 538 
BMGDG
A 

SN =2048 

0rN =65536 

tN =65536 mN =24 0.4139709472 547 

amN =1 0.4036712646 534 

amN =256 0.3980255126 899.1 AGDGA 

SN =2048 

0rN =65536 

tN =65536 amN =512 0.4000701904 1252.66 
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4.3.3   Discussions 
To BMGDGA, the detection rate Pc is not lower than EDGA’s under all circum-
stances, and when mN =l/2, the detection rate reaches the best. Its computational com-

plexity is also superior to EDGA’s, with almost same memory space. So the overall 
performance of proposed BMGDGA is better than EDGA. 

To AGDGA, when 2[1, ]amN l∈ , its detection rate Pc is all, superior to EDGA’s. 

With the increasing of Nam, Pc and computational complexity are increasing. When 
Nam is less than l, its computational complexity is less than EDGA’s. With the increas-
ing of Nam, the computational complexity slowly exceeds EDGA’s a bit. However, 
their space complexities are almost same. Therefore the overall performance of pro-
posed AGDGA is also better than EDGA. 

4.4   Change Detection of Static Files 

We conduct three experiments with two algorithms to validate their detection abilities 
for the change of static files, and compare to EDGA. First of all, we compare two 
different files by using the algorithms. We select two files of ‘FTP.exe’ and 
‘Ping.exe’ and define ‘Ping.exe’ as self (S). The experimental results of anomaly 
number are listed in the first sub-column of Anomaly number column of Table 3. 
Secondly, they are used to detect the change of programs. Here the protected program 
files are compiled in Delphi environment and some simple functions are added into 
the program files to form the changed program. The experimental results of anomaly 
number are listed in the second sub-column of Anomaly number column of Table 3. 
The third is anomaly detection of the file infected by a virus, where we define a be-
nign file ‘*.exe’ as protected file and detect its changing when infected by Fun Love 
virus. The experimental results of anomaly number are listed in the third sub-column 
of Anomaly number column of Table 3. Experimental results are all compared to 
EDGA and listed in Table 3 for convenience. 

Table 3. Experimental results of anomaly numbers for file comparison (first sub-column of last 
column), program change detection (second sub-column of last column), and anomaly detection 
of file (third sub-column of last column). 

 
Algorithms 
 

Parameters setting Anomaly number 

EDGA Detector length l =16bits 3775.2 4138.5 469.3 

mN =1 3389.5 4018.3 455.2 

mN =10 3724.8 4551.8 467.1 BMGDGA 
Detector 
length 

l =16bits 
mN =16 3709.6 4229.2 466.7 

amN =1 3718.2 4281.1 473.1 

amN =128 4073.7 4429.5 483.4 AGDGA 
Detector 
length 

l =16bits 
amN =256 4540.8 5512.8 555.7 
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It can be seen from the experimental results that we can obtain the same results 
as random dataset experiments. To BMGDGA, when mN =1, the quality of detector 

set generated by this algorithm is worst. When mN =l/2~ l, the performance of 

BMGDGA is almost same to EDGA. To AGDGA, when amN =1, its performance 

reaches EDGA. As amN  increases, the detection performance is also increasing. It 

turns out from our experiments that it is possible to detect the changes of static files 
with these two algorithms. 

5   Conclusions 

This paper proposes two novel detector-generating algorithms based on negative 
selection principle of immune system. Extensive experimental results show that they 
all have better performances than current EDGA. Under all circumstances, the 
AGDGA’s detection rate is always higher than EDGA. As the increase of the number 
of mutation bits, the detection rate 

cP  increases and the computational complexity 

also increases. In summary, the proposed algorithms outperform EDGA in both detec-
tion performance and computational complexity. 
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