

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3611, pp. 867 – 875, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Algorithms of Non-self Detector by Negative Selection
Principle in Artificial Immune System*

Ying Tan and Zhenhe Guo

School of Information Science and Technology,
University of Science and Technology of China,

Hefei 230027, P.R. China
ytan@ustc.edu.cn

Abstract. According to the principles of non-self detection and negative selec-
tion in natural immune system, two generating algorithms of detector are pro-
posed in this paper after reviewing current detector generating algorithms used
in artificial immune systems. We call them as Bit Mutation Growth Detector
Generating Algorithm (BMGDGA) and Arithmetical-compliment Growth De-
tector Generating Algorithm (AGDGA) based on their operational features. The
principle and work procedure of the two detector generating algorithms are
elaborated in details in the paper. For evaluation of the proposed algorithms,
they are tested and verified by using different datasets, and compared to Ex-
haustive Detector Generating Algorithm (EDGA). It turns out that the proposed
two algorithms are superior to EDGA in detection performance and computa-
tional complexities.

1 Introduction

The immune system defends the body against harmful diseases and infections and
plays very important adjustment functions in the whole lifetime of biological crea-
tures. It has many features that are desirable for information security research and
problem solving of complex problems encountered in many engineering fields. Based
on natural immune principles, many algorithms and architectures are proposed [1]-[7]
in many engineering fields. Among them, the non-self recognition interests greatly IT
and computer researchers and stimulates a lot of artificial immune systems (AIS) for
change detection and pattern recognition. Forrest, et.al., [7] proposed the well-known
negative selection algorithm (NSA) as a detector generating algorithm by simulating
the negative selection process of T cells generating in thymus. This paper studies the
detector-generating algorithm carefully, and proposes two-detector generating algo-
rithms based-on non-self detection and negative selection principles from the perspec-
tive of optimizing detector generation. Two algorithms are elaborately described in

* This work was supported by the Natural Science Foundation of China with Grant No.

60273100.

868 Y. Tan and Z. Guo

theory and implementation and completely compared with Exhaustive Detector Gen-
erating Algorithm (EDGA).

2 Negative Selection Principle and Related Algorithms

2.1 Negative Selection Principle and Algorithm

Negative selection is one of important phases of generation and maturation of T cells
in thymus. T-cells with essentially random receptors are generated in thymus. Before
they are released to the rest of body, those T-cells that match self are deleted. This
process is called negative selection process based on which a number of detector
generating algorithms are created in many artificial immune systems (AIS). In 1994,
Forrest, et.al, proposed so-called negative selection algorithm (NSA) inspired by
negative selection principle (NSP) [7]. NSA consists of two stages of censoring and
monitoring. The censoring phase caters for the generation of change-detectors. Sub-
sequently, the system being protected is monitored for changes using the detector set
generated in the censoring stage.

2.2 Current Detector Generating Algorithms

There are a number of detector-generating algorithms with different matching rules
applied for ‘self’ and ‘non-self’ matching methods. Currently, for binary code, there
are mainly three kinds of matching rules, which are perfect matching, r-contiguous
bits matching [2] and Hamming distance matching. Exhaustive detector generating
algorithm (EDGA) is suitable for three matching rules and is used to repeat the NSP
till the number of detectors meets a preset demand or candidate set is vanished. How-
ever, negative selection algorithm with mutation [9] has different evaluating rules in
the negative selection process from EDGA. With r-contiguous bits matching rule, the
related algorithms mainly include Liner Time Detector Generating Algorithm and
Greedy Detectors Generating Algorithm [9][10].

3 Bit Mutation and Arithmetic-Compliment Growth Algorithms

3.1 Growth Algorithm

The main difference between growth algorithm and NSA is the generating method of
candidate detectors. For NSA, each detector candidate in EDGA is randomly selected
from whole candidate space. Thus, after the number of detector candidate space Nr0 is
determined, EDGA randomly selects Nr0 detectors to construct the detector candidate
set R0. Then, the algorithm generates detector set R through negative selection proc-
ess. On the other hand, growth algorithm does not need to maintain a huge detector
candidate set R0. It directly generates the detector set R by utilizing detector mutation
or growth in whole shape space and combining with negative selection process. Its
flow chart is shown in Fig.1.

 Algorithms of Non-self Detector by Negative Selection Principle 869

Fig. 1. Flow chart of detector generation growth algorithm

Growth Algorithm
Step 1. Generating self set S with its number Ns.
Step 2. Generating one detector generating seed which is randomly selected from
the whole shape space.
Step 3. Matching the new detector candidate with S.
Step 4. Experiencing a negative selection process. If the candidate is not
matched with S, then a new one is generated and added into R.
Step 5. If the stop criterion is met, then exit.
Step 6. Mutating the candidate and going to step 3.

3.2 Bit Mutation and Arithmetical-Compliment Growth Methods

Here, we design two detector mutation methods of bit mutation and arithmetical-
compliment growth according to different detector mutation rules.

3.2.1 Bits Mutation
This method is similar to bit mutation of Genetic Algorithm. But this algorithm mu-
tates multiple bits of detector candidate, not only one bit. If we let the string length be
l and the maximum number of mutation bits be Nm (Nm =m), then, at one time, the
mutated bits of detector candidate is less than or equal to m.

Bit Mutation Algorithm

Step 1. Set the maximum number of mutation bits Nm.
Step 2. Input detector DetectorM to be mutated.

Randomly
generating one

detector

Self Set (S)

Detector mutation

Adding it to R

Matching
with S

No

Yes

End

Meeting stop
criterion？

Yes

Updating De-
tector set

No

870 Y. Tan and Z. Guo

Step 3. Generate mutation seed MutationBits (its length is same as detector): Nm
bits of MutationBits are randomly generated at range of 1 and l and set to 1, and
others are set to zero.
Setp 4. Detector mutation: an exclusive OR operation performed on the corre-
sponding bits of arrays DetectorM and MutationBits.

Pascal language description of bits mutation algorithm:

Program Bits_Mutation(DetectorM, mN)
var

 MutationBits : Longword; //Mutation seed
 MutationBit : array[1.. mN] of Byte;

begin
 MutationBits := 0;
 For i := 1 to mN do //Generating mutation seed

begin
 MutationBit[i] := Random(l);
 MutationBits := (1 shl MutationBit[i]) or MutationBits;
 end;
 DetectorM:= DetectorM xor MutationBits; //Detector mutation

end;

3.2.2 Arithmetic-Compliment Growth Algorithm
This mutation method consists of two phases. Phase 1 is used to generate mutation
seed and phase 2 is to mutate the detector candidate. The process of generating muta-
tion seed in phase 1 is same as bit mutation method described above except that the
sum of arithmetic-compliment of mutation seed and detector mutation is used as the
detector candidate.

Pascal language description of Arithmetic-compliment growth algorithm:

Program Arithmetical-compliment_growth(DetectorM, amN)

var
 MutationO :Longword; //Mutation seed
 MutationBit :array[1.. amN] of Byte;

begin
 MutationO := 0;
 for i := 1 to amN do //Generating mutation seed

begin
 MutationBit[i] := Random(l);
 MutationO := (1 shl MutationBit[i]) or MutationO;
 end;
 DetectorM := MutationO + DetectorM;

 If DetectorM >= 2l then DetectorM := DetectorM - 2l ;
end;

 Algorithms of Non-self Detector by Negative Selection Principle 871

3.3 BMDGA and AGDGA

Once the proposed two mutation methods are separately applied to the detector muta-
tion part of the growth algorithm in Fig.1, we can obtain two kinds of detector gener-
ating algorithms which are called as bit mutation algorithm (BMDGA) and arithmeti-
cal-complement growth algorithm (AGDGA), respectively.

4 Experiments

4.1 Experimental Goals

There are three main goals for our experiments. They are:

• Validating algorithms’ quality of generated detector set by using detection rate Pc.
• Comparing the algorithm’s complexity to EDGA.
• Setting parameters including Nm and Nam, according to algorithms’ performance.

4.2 Selection of Experimental Parameters

We set two kinds of experiments. One chooses random dataset with string length 8,
16 and 24 bits, respectively. Another experiment is to detect the changes of static
files.

4.3 Random Dataset Experiments

4.3.1 8-Bit Dataset Experiments

0 200 400 600
0

20

40

60

80

100

EDGA

2<=Nm<11 Nm=1

Nr0

D
et

ec
tio

n
R

at
e

P
c
(%

)

0 200 400 600
0

20

40

60

80

100

EDGA
Nam<=16

Nam=30
Nam=40
Nam=50

Nam=60

Nr0

D
et

ec
tio

n
R

at
e

P
c
(%

)

(a) (b)

Fig. 2. Experimental results of Detection rate Pc versus Nr0 when Ns is constant, where Ns =8,
Nr0 increases from 1 to 604, size of test set is 256, and 1000 runs. (a) Curves of Pc versus Nr0

for EDGA and BMGDGA, (b) Curves of Pc versus Nr0 for EDGA and AGDGA.

872 Y. Tan and Z. Guo

Ns

D
et

ec
tio

n
R

at
e

P
c
(%

)

50 100 150 200 250
55

60

65

70

75

80

85

90

Nm=1, 16

EDGA

1<=Nm<=8

50 100 150 200 250
60

70

80

90

100

EDGA
Nam=1,8

Nam=20
Nam=30

Nam=40

Nam=50

Nam=60

Ns

D
et

ec
tio

n
R

at
e

P
c
(%

)

(a) (b)

Fig. 3. Experimental results when Nr0 is constant and Ns changing from 1 to 256. (a) When Nr0
=256, the experimental result comparison of EDGA to BMGDGA, (b) When Nr0 =256, the
experimental result comparison of EDGA to AGDGA.

5 10 15
30

40

50

60

70

80

90

100

8bits Data Set,Ns=8,Nr0=128

16bits Data Set,Ns=128,Nr0=128

16bits Data Set,Ns=128,Nr0=256

16bits Data Set,Ns=128,Nr0=400

D
et

ec
tio

n
R

at
e

P
c
(%

)

Mutation Number Nm

10 20 30 40 50 60
60

70

80

90

100

8bits Data Set,Ns=8,Nr0=256

16bits Data Set,Ns=128,Nr0=128

16bits Data Set,Ns=128,Nr0=256

16bits Data Set,Ns=128,Nr0=400

D
et

ec
tio

n
R

at
e

P
c
(%

)

Mutation Number Nam
(a) (b)

Fig. 4. Experimental results of detection rate versus mutation number, where Ns, Nr0 are con-
stants. To different datasets, Nm is increasing from 1 to 16, and Nam is increasing from 1 to 64.
(a) Curve of Pc vs. Nm, (b) Curves of Pc vs. Nam.

4.3.2 16-Bit and 24-Bit Dataset Experiments

a. 16-bit dataset experiment

 Algorithms of Non-self Detector by Negative Selection Principle 873

0 2 4 6 8
0

20

40

60

80
5<Nm<29

EDGA
Nm=1,40

Nr0

D
et

ec
tio

n
R

at
e

P
c
(%

)

0 2 4 6 8
0

20

40

60

80

100

EDGA

Nam=1,64
Nam=128
Nam=160
Nam=192
Nam=256

Nr0

D
et

ec
tio

n
R

at
e

P
c
(%

)

(a) (b)

Fig. 5. 16-bit dataset experimental results when Ns is constant. (a) Experimental results of
BMGDGA and EDGA, (b) Experimental results of AGDGA and EDGA.

Table 1. Computational complexity comparison for 16-bit dataset

Algorithm Parameters setting
Computational
time (ms)

Note

EDGA 0rN =65536， SN =2048 730

0rN =65536， SN =2048 mN =8 594.5 10 runs
BMGDGA

0rN =65536， SN =2048 mN =4 585 10 runs

0rN =65536， SN =2048 amN =4 584.5 10 runs
AGDGA

0rN =65536， SN =2048 amN =200 909.5 10 runs

Notice: experimental platform: Intel Pentium 993M CPU, 256M memory and Windows Me.

b. 24-bit dataset experiment

Table 2. Computational complexity comparison for 24-bit dataset

Algorithm Parameters setting Detection rate
Computational
time (ms)

EDGA SN =2048, 0rN =65536, tN =65536 0.3787231445 731.5

mN =1 0.3834533691 534.2

mN =16 0.3952026367 538
BMGDG
A

SN =2048

0rN =65536

tN =65536 mN =24 0.4139709472 547

amN =1 0.4036712646 534

amN =256 0.3980255126 899.1 AGDGA

SN =2048

0rN =65536

tN =65536 amN =512 0.4000701904 1252.66

874 Y. Tan and Z. Guo

4.3.3 Discussions
To BMGDGA, the detection rate Pc is not lower than EDGA’s under all circum-
stances, and when mN =l/2, the detection rate reaches the best. Its computational com-

plexity is also superior to EDGA’s, with almost same memory space. So the overall
performance of proposed BMGDGA is better than EDGA.

To AGDGA, when 2[1,]amN l∈ , its detection rate Pc is all, superior to EDGA’s.

With the increasing of Nam, Pc and computational complexity are increasing. When
Nam is less than l, its computational complexity is less than EDGA’s. With the increas-
ing of Nam, the computational complexity slowly exceeds EDGA’s a bit. However,
their space complexities are almost same. Therefore the overall performance of pro-
posed AGDGA is also better than EDGA.

4.4 Change Detection of Static Files

We conduct three experiments with two algorithms to validate their detection abilities
for the change of static files, and compare to EDGA. First of all, we compare two
different files by using the algorithms. We select two files of ‘FTP.exe’ and
‘Ping.exe’ and define ‘Ping.exe’ as self (S). The experimental results of anomaly
number are listed in the first sub-column of Anomaly number column of Table 3.
Secondly, they are used to detect the change of programs. Here the protected program
files are compiled in Delphi environment and some simple functions are added into
the program files to form the changed program. The experimental results of anomaly
number are listed in the second sub-column of Anomaly number column of Table 3.
The third is anomaly detection of the file infected by a virus, where we define a be-
nign file ‘*.exe’ as protected file and detect its changing when infected by Fun Love
virus. The experimental results of anomaly number are listed in the third sub-column
of Anomaly number column of Table 3. Experimental results are all compared to
EDGA and listed in Table 3 for convenience.

Table 3. Experimental results of anomaly numbers for file comparison (first sub-column of last
column), program change detection (second sub-column of last column), and anomaly detection
of file (third sub-column of last column).

Algorithms

Parameters setting Anomaly number

EDGA Detector length l =16bits 3775.2 4138.5 469.3

mN =1 3389.5 4018.3 455.2

mN =10 3724.8 4551.8 467.1 BMGDGA
Detector
length

l =16bits
mN =16 3709.6 4229.2 466.7

amN =1 3718.2 4281.1 473.1

amN =128 4073.7 4429.5 483.4 AGDGA
Detector
length

l =16bits
amN =256 4540.8 5512.8 555.7

 Algorithms of Non-self Detector by Negative Selection Principle 875

It can be seen from the experimental results that we can obtain the same results
as random dataset experiments. To BMGDGA, when mN =1, the quality of detector

set generated by this algorithm is worst. When mN =l/2~ l, the performance of

BMGDGA is almost same to EDGA. To AGDGA, when amN =1, its performance

reaches EDGA. As amN increases, the detection performance is also increasing. It

turns out from our experiments that it is possible to detect the changes of static files
with these two algorithms.

5 Conclusions

This paper proposes two novel detector-generating algorithms based on negative
selection principle of immune system. Extensive experimental results show that they
all have better performances than current EDGA. Under all circumstances, the
AGDGA’s detection rate is always higher than EDGA. As the increase of the number
of mutation bits, the detection rate

cP increases and the computational complexity

also increases. In summary, the proposed algorithms outperform EDGA in both detec-
tion performance and computational complexity.

References

1. D'haeseleer, P.: An Immunological Approach to Change Detection: Theoretical Results.
Proceedings of the 9th IEEE Computer Security Foundations Workshop, IEEE Computer
Society Press (1996).

2. D'haeseleer, P., Forrest, S., Helman, P.: An Immunological Approach to Change Detec-
tion: Algorithms, Analysis and Implications. Proceedings of the IEEE Symposium on Se-
curity and Privacy, IEEE Computer Society Press (1996).

3. D'haeseleer, P.: A Change Detection Method Inspired by the Immune System: Theory, Al-
gorithms and Techniques. Technical Report CS95-06, The University of New Mexico, Al-
buquerque, NM, 1995.

4. D'haeseleer, P.: Further Efficient Algorithms for Generating Antibody Strings. Technical
Report CS95-03, The University of New Mexico, Albuquerque, NM, (1995).

5. Somayaji A., Hofmeyr S., Forrest S.: Principles of a Computer Immune System. 1997
New Security Paradigms Workshop (1998) 75-82.

6. Forrest S., Hofmeyr S., Somayaji A., Longstaff T.A.: A Sense of Self for Unix Processes.
In Proceedings of 1996 IEEE Symposium on Computer Security and Privacy (1996).

7. Forrest S., Perelson A.S., Allen L., Cherukuri R.: Self-Nonself Discrimination in a Com-
puter. In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy,
Los Alamitos, CA: (1994).

8. Kim J., Bentley P.: Immune Memory in the Dynamic Clonal Selection Algorithm. In Pro-
ceedings of ICARIS’02, (2002).

9. Ayara M., Timmis J., de Lemos R., de Castro L., Duncan R.: Negative Selection: How to
Generate Detectors. In Proceedings of ICARIS’02, (2002).

10. Singh S.: Anomaly Detection Using Negative Selection Based on the r-contiguous Match-
ing Rule. In Proceedings of ICARIS’02, (2002).

	Introduction
	Negative Selection Principle and Related Algorithms
	Negative Selection Principle and Algorithm
	Current Detector Generating Algorithms

	Bit Mutation and Arithmetic-Compliment Growth Algorithms
	Growth Algorithm
	Bit Mutation and Arithmetical-Compliment Growth Methods
	BMDGA and AGDGA

	Experiments
	Experimental Goals
	Selection of Experimental Parameters
	Random Dataset Experiments
	Change Detection of Static Files

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

