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Abstract. A spiking neural network (SNN) model trained with spiking-timing-
dependent-plasticity (STDP) is proposed to perform a 2D co-ordinate transfor-
mation of the polar representation of an arm position to a Cartesian representa-
tion in order to create a virtual image map of a haptic input. The position of the 
haptic input is used to train the SNN using STDP such that after learning the 
SNN can perform the co-ordinate transformation to generate a representation of 
the haptic input with the same co-ordinates as a visual image.  This principle 
can be applied to complex co-ordinate transformations in artificial intelligent 
systems to process biological stimuli.   

1   Introduction 

The brain receives multiple sensory data from environments where the different 
senses do not operate independently, but there are strong links between modalities 
[1]. Electrophysiological studies have shown that the somatosensory cortex SI neu-
rons in monkeys respond not only to touch stimulus but also to other modalities. 
Strong links between vision and touch have been found in behavioural [2] and elec-
trophysiological [3] studies, and at the level of single neurons [4]. For example, 
neurons in the somatosensory cortex (SI) may respond to visual stimuli [5] and other 
modalities [6]. Neurons in monkey primary SI may fire both in response to a tactile 
stimulus and also in response to a visual stimulus [5].  

A new interaction between vision and touch in human perception is proposed in  
[7]. These perceptions may particularly interact during fine manipulation tasks using 
the fingers under visual and sensory control [8]. Different sensors convey spatial 
information to the brain with different spatial coordinate frames. In order to plan 
accurate motor actions, the brain needs to build an integrated spatial representation. 
Therefore, cross-modal sensory integration and sensory-motor coordinate transfor-
mations must occur [9]. Multimodal neurons using non-retinal bodycentred reference 
frames are found in the posterior parietal and frontal cortices of monkeys [10-12]. 
Basis function networks with multidimensional attractors [13] are proposed to simu-
late the cue integration and co-ordinate transformation properties that are observed in 
several multimodal cortical areas. Adaptive regulation of synaptic strengths within 
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SI could explain modulation of touch by both vision [14] and attention [15]. Learned 
associations between visual and tactile stimuli may influence bimodal neurons.  

Based on these concepts, a spiking neural network (SNN) model is proposed to 
perform the co-ordinate transformation required to convert a time-coded haptic input 
to a space-coded visual image. The SNN model contains STDP synapses from haptic 
intermediate neurons to the bimodal neurons. In Section 2, the SNN model is pre-
sented. The spiking neuron model and STDP implementation is described in Section 
3. The training approach is described in Section 4. After training, the strength of 
synapses between haptic intermediate neurons and bimodal neurons is obtained. A 
simplified model is provided in this paper to demonstrate that neural networks based 
on integrate-and-fire neurons with STDP are capable of performing 2D co-ordinate 
transformation. The implication for a biological system and applications in artificial 
intelligent systems are discussed in Section 5. 

2   Spiking Neural Network Model for Co-ordinate Transformation 

In order to simulate location related neurons in the somatosensory cortex (SI), sup-
pose that x’ and y’ are single layers of bimodal neurons that represent the Cartesian 
co-ordinates of the output.  A point (X, Y) at the touch area can provide both visual 
and haptic stimuli that reach x’ and y’ bimodal neuron layers through a  visual path-
way and a haptic pathway respectively. Fig.1 shows a simplified SNN model for 
building associations between visual and haptic stimuli. When a finger touches a 
point in the touch area, visual attention focuses on the point and the retinal neurons 
corresponding to this point are activated. These neurons provide the training stimulus 
to x’ and y’ bimodal neuron layers through the visual pathway. When the finger 
touches the point, the arms activate the corresponding neurons in θ and Φ neuron 
layers. These stimuli are fed into haptic pathway. Actually, θ and Φ are based on 
bodycentred co-ordinates, which are polar co-ordinates. The neurons in θ and Φ 
layers transfer haptic location signals to the intermediate layer, and then this inter-
mediate layer transfers the bodycentred co-ordinate to the integrated co-ordinate x’ 
and y’ neuron layers. In the SNN model, x’ and y’ bimodal neurons have a receptive 
field corresponding to the vertical and horizontal lines on the retinal neuron layer 
respectively, and receive haptic stimuli from all the intermediate neurons through 
STDP synapses. These STDP synapses make it possible to learn and transform body-
centred co-ordinate (θ, Φ) to co-ordinate (x’, y’). The co-ordinate (x’, y’) can be 
regarded as integrated co-ordinates in the brain. For simplicity, the synapse strength 
from retinal neuron layer to (x’, y’) neurons is fixed. Under this situation, co-
ordinate (x’, y’) is actually the retina-centred co-ordinate. The transformation is 
equivalent to transformation from a haptic bodycentred co-ordinate to a retina-
centred co-ordinate.  Each neuron in the θ and Φ layers is connected to an intermedi-
ate layer within a vertical field and a horizontal field with fixed synapse strength 
respectively, as shown in Fig.1. 
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Fig. 1. A SNN model for 2D co-ordinate transformation. (X,Y) is co-ordinate for touch area. (a) 
Visual pathway: the retinal neuron layer is represented by 2D layer with 40X40 neurons that 
are connected to x’ and y’ neuron layer with a fixed weights. (b) Haptic pathway:  L1 and L2  
are arms. θ and Φ are arm angles represented by a 1D neuron layer respectively. Each θ neuron 
is connected to the neurons within a corresponding vertical rectangle in the 2D intermediate 
layer.  Each Φ neuron is connected to the neurons within a corresponding horizontal rectangle 
in the 2D intermediate layer. The neurons in the intermediate layer are fully connected to the x’ 
and y’ neuron layers with STDP synapses. These connections are adapted in response to the 
attention visual stimulus and haptic stimulus under STDP rules. 

3   Spiking Neuron Model and STDP Implementation 

3.1   Integrate-and-Fire Neuron Model  

The integrate-and-fire model is applied to each neuron in the SNN. In a conductance 
based integrate-and-fire model, the membrane potential v(t) is governed by the fol-
lowing equations [16], [17], [18], [19]. 

( )( )
( ( )) ( ( ))

j j
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where cm is the specific membrane capacitance, El is the membrane reversal potential, 
Es is the reversal potential (s∈{i,e}, i and e indicate inhibitory and excitatory synapses 
respectively), wj is a weight for synapse j, and As is the membrane surface area con-
nected to a synapse. If the membrane potential v exceeds the threshold voltage, vth, v 
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is reset to vreset for a time τref and an action potential event is generated. Fig. 2 shows 
that a neuron receives spike trains from three afferent neurons. 
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Fig. 2. Conductance based synapses connections in a SNN 

The valuable gj
s(t) is the conductance of synapse j. When an action potential reaches 

the synapse at tap, the conductance is increased by the following expression. 

( ) ( )j jj j
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Otherwise, the conductance decays as illustrated in the following equation. 
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where qs is the peak conductance. Neuron i integrates the currents from afferent syn-
apses and increases the membrane potential according to Equation (1). In our simula-
tion, the parameters are set as follows.  tj

delay=0. vth =-54 mv. vreset =-70 mv. Ee= 0 mv. 
Ei=-75 mv. qe_max=0.01 µs. qi_max=0.01 µs. qe=0.002 µs. qi=0.002 µs. El=-70 mv. gl 
=1.0 µs/mm2. cm=10 nF/mm2. τe=3 ms. τi=10 ms. Ae=0.028953 mm2. Ai=0.014103 
mm2.  

3.2   STDP Implementation Approach 

In order to perform STDP learning in the SNN, the implementation approach in 
[20],[21] is applied. Each synapse in an SNN is characterized by a peak conductance 
qs (the peak value of the synaptic conductance following a single presynaptic action 
potential) that is constrained to lie between 0 and a maximum value qs_max. Every pair 
of pre- and postsynaptic spikes can potentially modify the value of qs, and the changes 
due to each spike pair are continually summed to determine how qs changes over 
time. The simplifying assumption is that the modifications produced by individual 
spike pairs combine linearly.  

A presynaptic spike occurring at time tpre and a postsynaptic spike at time tpost mod-
ify the corresponding synaptic conductance by  
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qs  qs + qs_max F(∆t) (4) 

where ∆t =  tpost - tpre  and 
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The time constants τ+ and τ- determine the ranges of pre- to postsynaptic spike inter-
vals over which synaptic strengthening and weakening are significant, and A+ and A_ 
determine the maximum amount of synaptic modification in each case. The experi-
mental results indicate a value of τ+ in the range of tens of milliseconds (about 20 
ms). The parameters for STDP are set as follows. 

qs_max =  0.01,  A+ = 0.01,  A- = 0.005, τ+=20 ms, τ-=100 ms. 

The function F(∆t ) for synaptic modification is shown in. Fig. 3. 

 

Fig. 3. Synaptic modification 

4   Learning and Simulation Results 

This network can be trained using an unsupervised approach. When a finger touches a 
point in the touch area, the haptic stimulus triggers (θ, Φ) stimuli that are fed into the 
haptic pathway. At the same time, the visual attention focuses on the tip of the finger 
and this position signal is transferred to (x’, y’) neuron layer through the visual path-
way. The STDP synapses between intermediate layer and (x’, y’) neuron layer are 
trained under STDP rules. The finger randomly touches different points for a Poisson 
distribution period with a mean of 20ms. The STDP synapses from the intermediate 
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layer to (x’, y’) neurons can adapt synapse strength in response to the stimulus and 
form a weight distribution for association between haptic and visual training stimuli. 
By repeating the finger touching within the whole touch area randomly, the weight 
distribution is adapted in response to the haptic and visual stimuli and reaches a stable 
state after 800s training time. The weight distribution is shown in Fig. 4. The stimuli 
are represented by Poissonian spike trains whose firing rate is drawn from a Gaussian 
distribution. The centre of the stimulus corresponds to the finger position within the 
touch area. 

Learning t=0s t=100s t=400s t=800s
A. Weight distribution of STDP synapse from intermediate layer neurons to y’-Neuron 29.

Learning t=0s t=100s t=400s t=800s
B. Weight distribution of STDP synapse from intermediate layer neurons to y’-Neuron 40.  

Fig. 4. Change of weight distribution during STDP learning. During the learning process, the 
weight distribution is recorded each 100s time interval. The distributions at moment 0, 100, 
400, and 800s are shown in row A for y’-neuron 29 and row B for y’-neuron 40. Colour yellow 
indicates maximal weights. 

In our experiments, 40 neurons are employed to encode θ and Φ layers respec-
tively. 1600 neurons are applied to the 2D intermediate layer and training layer re-
spectively. 80 neurons are applied to x’ and y’ layers respectively. After training, (x’, 
y’) neurons can respond to both visual and haptic stimuli. When the visual pathway is 
blocked, (x’, y’) neurons respond only to haptic stimulus at the correct position, i.e. 
(θ, Φ) layers and the intermediate layer can perform a co-ordinate transformation 
from the bodycentred co-ordinate (θ, Φ) to co-ordinate (x’, y’). If two Poisson proce-
dure spike trains with bell-shaped distributions are fed into the (θ, Φ) layers respec-
tively, the responses of (x’, y’) neurons, representing the result of the co-ordinate 
transformation, are shown in Fig.5.  
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Fig. 5. Co-ordinate transformation from bodycentred co-ordinate (θ, Φ) to co-ordinate (x’, y’). 
One Poisson spike train stays at θ = 180° for 8000ms. Another  Poisson spike train stays for 
200ms in sequent positions at Φ=0°, 9°, 18° , …360°.  The changes of (θ, Φ) correspond to the 
finger moving along a circle with radius L.  The output x’ = L (Sin(θ) – Cos(Φ)), y’=L(Cos(θ) 
+ Sin(Φ)).  

5   Conclusion 

In the presented SNN model, the network is trained by the arm angles of the haptic 
stimuli position fed to the input layer, and a position signal, which is regarded as a 
supervising signal, fed to the output layer via the visual pathway. The strength of the 
synapses between the intermediate layer and output layer is trained under the STDP 
learning paradigm. A firing rate encoding scheme is applied in the network. The input 
stimulus is represented by Poissonian spike trains whose rates are drawn from a two-
dimensional Gaussian distribution at the input layer and a one-dimensional Gaussian 
distribution at the output layer. The conceived network is able to perform a 2D coor-
dinate transformation by learning the Cartesian coordinates (x, y) from the angular 
positions of the haptic stimulus. The network is more robust and provides better noise 
immunity than classical neural networks as even if some of the neurons do not work, 
the network can still perform the transformation function.  The model can provide a 
biologically plausible approach for designing artificial intelligent systems. 



 Adaptive Co-ordinate Transformation Based on a STDP Learning Paradigm 427 

Acknowledgement  

The authors gratefully acknowledge the valuable discussions on 1D co-ordinate trans-
formation model with Dr. Andrew Davison and Dr. Yves Frégnac from UNIC (Unité 
de Neurosciences Intégratives et Computationnelles, Centre National de la Recherche 
Scientifique, France). The authors also acknowledge the financial and technical con-
tribution of the SenseMaker project (IST-2001-34712), which is funded by the EC 
under the FET life like perception initiative. 

References 

1. Marisa Taylor-Clarke, Steffan Kennett, Patrick Haggard, Persistence of visual-tactile en-
hancement in humans, Neuroscience Letters, Vol. 354, No.1, Elsevier Science Ltd,  (2004) 
22–25.  

2. Spence, C., Pavani, F., Driver, J., Crossmodal links between vision and touch in covert en-
dogenous spatial attention, J. Exp. Psychol. Hum. Percept. Perform. 26 (2000) 1298–1319. 

3. Eimer M., Driver, J., An event-related brain potential study of crossmodal links in spatial 
attention between vision and touch, Psychophysiology, 37 (2000) 697–705. 

4. Graziano, M.S.A., Gross, C.G., The representation of extrapersonal space: A possible role 
for bimodal, visual–tactile neurons, in: M.S. Gazzaniga (Ed.), The Cognitive Neurosci-
ences, MIT Press, Cambridge, MA, (1994) 1021–1034. 

5. Zhou, Y.D., Fuster, J.M., Visuo-tactile cross-modal associations in cortical somatosensory 
cells, Proc. Natl. Acad. Sci. USA 97 (2000) 9777–9782. 

6. Meftah, E.M., Shenasa, J., Chapman, C.E., Effects of a cross-modal manipulation of atten-
tion on somatosensory cortical neuronal responses to tactile stimuli in the monkey, J. Neu-
rophysiol. 88 (2002) 3133–3149. 

7. Kennett, S., Taylor-Clarke, M., Haggard, P., Noninformative vision improves the spatial 
resolution of touch in humans, Curr. Biol. 11 (2001) 1188–1191. 

8. Johansson, R.S., Westling, G., Signals in tactile afferents from the fingers eliciting adap-
tive motor-responses during precision grip, Exp. Brain. Res. 66 (1987) 141–154. 

9. Galati, Gaspare-Committeri, Giorgia - Sanes, Jerome N. - Pizzamiglio, Luigi, Spatial cod-
ing of visual and somatic sensory information in body-centred coordinates, European 
Journal of Neuroscience, Vol.14, No.4, Blackwell Publishing, (2001) 737-748. 

10. Colby, C.L. & Goldberg, M.E., Space and attention in parietal cortex. Annu. Rev. Neuro-
sci., 22 (1999) 319-349. 

11. Gross, C.G. & Graziano, M.S.A. Multiple representations of space in the brain. Neurosci-
entist, 1 (1995) 43-50. 

12. Rizzolatti, G., Fogassi, L.& Gallese, V. Parietal cortex: from sight to action. Curr. Opin. 
Neurobiol., 7 (1997) 562-567. 

13. Deneve S., Latham P. E. and Pouget A., Efficient computation and cue integration with 
noisy population codes, Nature Neuroscience, 4 (2001) 826-831.  

14. Taylor-Clarke M., Kennett S., Haggard P., Vision modulates somatosensory cortical proc-
essing, Curr. Biol. 12 (2002) 233–236. 

15. Iriki, A., Tanaka, M., Iwamura, Y., Attention-induced neuronal activity in the monkey 
somatosensory cortex revealed by pupillometrics, Neurosci. Res. 25 (1996) 173–181.  

16. Christof Koch, Biophysics of Computation: Information Processing in Single Neurons. 
Oxford University Press, (1999). 



428 Q. Wu et al. 

17. Peter Dayan and Abbott, L.F.. Theoretical Neuroscience: Computational and Mathematical 
Modeling of Neural Systems. The MIT Press, Cambridge, Massachusetts, (2001). 

18. Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: Single Neurons, pula-
tions,Plasticity. Cambridge University Press, (2002). 

19. Müller, E. Simulation of High-Conductance States in Cortical Neural Networks, Masters 
thesis, University of Heidelberg, HD-KIP-03-22, (2003). 

20. Song, S., Miller, K. D., and Abbott, L. F. Competitive Hebbian learning though spike-
timing dependent synaptic plasticity. Nature Neuroscince, 3 (2000) 919-926. 

21. Song, S. and Abbott, L.F. Column and Map Development and Cortical Re-Mapping 
Through Spike-Timing Dependent Plasticity. Neuron 32 (2001) 339-350. 

22. Joseph E. Atkins, Robert A. Jacobs, and David C. Knill, Experience-dependent visual cue 
recalibration based on discrepancies between visual and haptic percepts, Vision Research, 
Volume 43, Issue 25, (2003) 2603-2613. 


	Introduction
	Spiking Neural Network Model for Co-ordinate Transformation
	Spiking Neuron Model and STDP Implementation
	Integrate-and-Fire Neuron Model
	STDP Implementation Approach

	Learning and Simulation Results
	Conclusion
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.33333
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.33333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




