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Preface

This book and its sister volumes, i.e., LNCS vols. 3610, 3611, and 3612, are
the proceedings of the 1st International Conference on Natural Computation
(ICNC 2005), jointly held with the 2nd International Conference on Fuzzy Sys-
tems and Knowledge Discovery (FSKD 2005, LNAI vols. 3613 and 3614) from
27 to 29 August 2005 in Changsha, Hunan, China. In its budding run, ICNC
2005 successfully attracted 1887 submissions from 32 countries/regions (the joint
ICNC-FSKD 2005 received 3136 submissions). After rigorous reviews, 502 high-
quality papers, i.e., 313 long papers and 189 short papers, were included in the
ICNC 2005 proceedings, representing an acceptance rate of 26.6%.

The ICNC-FSKD 2005 featured the most up-to-date research results in com-
putational algorithms inspired from nature, including biological, ecological, and
physical systems. It is an exciting and emerging interdisciplinary area in which
a wide range of techniques and methods are being studied for dealing with large,
complex, and dynamic problems. The joint conferences also promoted cross-
fertilization over these exciting and yet closely-related areas, which had a sig-
nificant impact on the advancement of these important technologies. Specific
areas included neural computation, quantum computation, evolutionary com-
putation, DNA computation, chemical computation, information processing in
cells and tissues, molecular computation, computation with words, fuzzy com-
putation, granular computation, artificial life, swarm intelligence, ants colonies,
artificial immune systems, etc., with innovative applications to knowledge dis-
covery, finance, operations research, and more. In addition to the large number
of submitted papers, we were blessed with the presence of four renowned keynote
speakers and several distinguished panelists.

On behalf of the Organizing Committee, we thank Xiangtan University for
sponsorship, and the IEEE Circuits and Systems Society, the IEEE Computa-
tional Intelligence Society, and the IEEE Control Systems Society for technical
co-sponsorship. We are grateful for the technical cooperation from the Interna-
tional Neural Network Society, the European Neural Network Society, the Chi-
nese Association for Artificial Intelligence, the Japanese Neural Network Society,
the International Fuzzy Systems Association, the Asia-Pacific Neural Network
Assembly, the Fuzzy Mathematics and Systems Association of China, and the
Hunan Computer Federation. We thank the members of the Organizing Com-
mittee, the Advisory Board, and the Program Committee for their hard work in
the past 18 months. We wish to express our heartfelt appreciation to the keynote
and panel speakers, special session organizers, session chairs, reviewers, and stu-
dent helpers. Our special thanks go to the publisher, Springer, for publishing
the ICNC 2005 proceedings as three volumes of the Lecture Notes in Computer
Science series (and the FSKD 2005 proceedings as two volumes of the Lecture
Notes in Artificial Intelligence series). Finally, we thank all the authors and par-
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ticipants for their great contributions that made this conference possible and all
the hard work worthwhile.

August 2005 Lipo Wang
Ke Chen

Yew Soon Ong
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Dongwei Guo
Tian-Tai Guo
Xinchen Guo
Xiu Ping Guo
Yi’nan Guo
Mohamed Hamada
Jianchao Han
Lixin Han
Soowhan Han
Xiaozhuo Han
Fei Hao
Jingsong He
Jun He
Liqiang He
Xiaoxian He
Xiping He
Yi He
Zhaoshui He
Xingchen Heng
Chao-Fu Hong
Chi-I Hsu
Chunhua Hu
Hai Hu
Hongying Hu
Hua Hu

Jianming Hu
Li Kun Hu
Tao Hu
Ye Hu
Bingqiang Huang
Gaoming Huang
Min Huang
Yanwen Huang
Yilun Huang
Siu Cheung Hui
Changha Hwang
Jun-Cheol Jeon
Hyuncheol Jeong
Guangrong Ji
Mingxing Jia
Sen Jia
Zhuang Jian
Chunhong Jiang
Dongxiang Jiang
Jijiao Jiang
Minghui Jiang
Mingyan Jiang
Quanyuan Jiang
Li Cheng Jiao
Liu Jie
Wuyin Jin
Xu Jin
Ling Jing
Peng Jing
Xing-Jian Jing
Tao Jun
Hosang Jung
Jo Nam Jung
Venu K Murthy
Jaeho Kang
Kyung-Woo Kang
Ali Karci
Hyun-Sung Kim
Jongmin Kim
Jongweon Kim
Kee-Won Kim
Myung Won Kim
Wonil Kim
Heeyong Kwon
Xiang-Wei Lai

Dongwoo Lee
Kwangeui Lee
Seonghoon Lee
Seunggwan Lee
Kaiyou Lei
Xiongguo Lei
Soo Kar Leow
Anping Li
Boyu Li
Cheng Li
Dahu Li
Guanghui Li
Guoyou Li
Hongyan Li
Huanqin Li
Jianhua Li
Jie Li
Jing Li
Kangshun Li
Qiangwei Li
Qian-Mu Li
Qingyong Li
Ruonan Li
Shouju Li
Xiaobin Li
Xihai Li
Xinchun Li
Xiumei Li
Xuming Li
Ye Li
Ying Li
Yongjie Li
Yuangui Li
Yun Li
Yunfeng Li
Yong Li
Bojian Liang
Jiuzhen Liang
Xiao Liang
Yanchun Liang
Yixiong Liang
Guanglan Liao
Yingxin Liao
Sehun Lim
Tong Ming Lim



Organization XI

Jianning Lin
Ling Lin
Pan Lin
Qiu-Hua Lin
Zhi-Ling Lin
Zhou Ling
Benyong Liu
Bing Liu
Bingjie Liu
Dang-Hui Liu
Feng Liu
Hehui Liu
Huayong Liu
Jianchang Liu
Jing Liu
Jun Liu
Lifang Liu
Linlan Liu
Meiqin Liu
Miao Liu
Qicheng Liu
Ruochen Liu
Tianming Liu
Weidong Liu
Xianghui Liu
Xiaoqun Liu
Yong-Lin Liu
Zheng Liu
Zhi Liu
Jianchang Lu
Jun Lu
Xiaobo Lu
Yinan Lu
Dehan Luo
Guiming Luo
Juan Luo
Qiang Lv
Srinivas M.B.
Changshe Ma
Weimin Ma
Wenping Ma
Xuan Ma
Michiharu Maeda
Bertrand Maillet
Toshihiko Matsuka

Hongling Meng
Kehua Miao
Teijun Miao
Shi Min
Hongwei Mo
Dhinaharan Nagamalai
Atulya Nagar
Mi Young Nam
Rongrong Ni
Rui Nian
Ben Niu
Qun Niu
Sun-Kuk Noh
Linlin Ou
Mayumi Oyama-Higa
Cuneyt Oysu
A. Alper Ozalp
Ping-Feng Pai
Li Pan
Tinglong Pan
Zhiming Pan
Xiaohong Pang
Francesco Pappalardo
Hyun-Soo Park
Yongjin Park
Xiaomei Pei
Jun Peng
Wen Peng
Yan Peng
Yuqing Peng
Zeng Peng
Zhenrui Peng
Zhongbo Peng
Daoying Pi
Fangzhong Qi
Tang Qi
Rong Qian
Xiaoyan Qian
Xueming Qian
Baohua Qiang
Bin Qin
Zhengjun Qiu
Wentai Qu
Yunhua Rao
Sundaram Ravi

Phillkyu Rhee
Lili Rong
Fuhua Shang
Ronghua Shang
Zichang Shangguan
Dayong Shen
Xisheng Shen
Daming Shi
Xiaolong Shi
Zhiping Shi
Noritaka Shigei
Jooyong Shim
Dongkyoo Shin
Yongyi Shou
Yang Shu
Valceres Slva
Daniel Smutek
Haiyan Song
Jiaxing Song
Jingyan Song
Wenbin Song
Xiao-Yu Song
Yan Yan Song
Tieming Su
Xiaohong Su
P.N. Suganthan
Guangzhong Sun
Huali Sun
Shiliang Sun
Wei Sun
Yuqiu Sun
Zhanquan Sun
Jin Tang
Jing Tang
Suqin Tang
Zhiqiang Tang
Zhang Tao
Hissam Tawfik
Hakan Temeltas
Nipon Theera-Umpon
Mei Tian
Chung-Li Tseng
Ibrahim Turkoglu
Juan Velasquez
Bin Wang



XII Organization

Chao-Xue Wang
Chaoyong Wang
Deji Wang
Dingcheng Wang
Gi-Nam Wang
Guojiang Wang
Hong Wang
Hongbo Wang
Hong-Gang Wang
Jigang Wang
Lin Wang
Ling Wang
Min Wang
Qingquan Wang
Shangfei Wang
Shaowei Wang
Teng Wang
Weihong Wang
Xin Wang
Xinyu Wang
Yan Wang
Yanbin Wang
Yaonan Wang
Yen-Nien Wang
Yong-Xian Wang
Zhanshan Wang
Zheng-You Wang
Zhurong Wang
Wang Wei
Xun-Kai Wei
Chunguo Wu
Fei Wu
Ji Wu
Qiongshui Wu
Qiuxuan Wu
Sitao Wu
Wei Wu
Yanwen Wu
Ying Wu
Chen Xi
Shi-Hong Xia
Guangming Xian
Binglei Xie
Li Xie
Tao Xie

Shengwu Xiong
Zhangliang Xiong
Chunlin Xu
Jianhua Xu
Jinhua Xu
Junqin Xu
Li Xu
Lin Xu
Shuxiang Xu
Xianyun Xu
Xin Xu
Xu Xu
Xue-Song Xu
Zhiwei Xu
Yiliang Xu
Jianping Xuan
Yaofeng Xue
Yuncan Xue
Hui Yan
Qiao Yan
Xiaohong Yan
Bo Yang
Chunyan Yang
Feng Yang
Guifang Yang
Guoqqing Yang
Guowei Yang
Huihua Yang
Jianwei Yang
Jing Yang
Li-Ying Yang
Qingyun Yang
Xiaohua Yang
Xiaowei Yang
Xuhua Yang
Yingchun Yang
Zhihui Yang
Jingtao Yao
Her-Terng Yau
Chaoqun Ye
He Yi
Ling-Zhi Yi
Li Yin
Rupo Yin
Liang Ying

Chen Yong
Eun-Jun Yoon
Xinge You
Changjie Yu
Fei Yu
Fusheng Yu
Guoyan Yu
Lean Yu
Mian-Shui Yu
Qingjun Yu
Shiwen Yu
Xinjie Yu
Mingwei Yuan
Shenfang Yuan
Xun Yue
Wu Yun
Yeboon Yun
Jin Zeng
C.H. Zhang
Changjiang Zhang
Chunkai Zhang
Da-Peng Zhang
Defu Zhang
Fan Zhang
Fengyue Zhang
Hong Zhang
Hong-Bin Zhang
Ji Zhang
Jiang Zhang
Jing Zhang
Li Zhang
Liyan Zhang
Li-Yong Zhang
Min Zhang
Ming-Jie Zhang
Rubo Zhang
Ruo-Ying Zhang
Weidong Zhang
Wei-Guo Zhang
Wen Zhang
Xiufeng Zhang
Yangsen Zhang
Yifei Zhang
Yong-Dong Zhang
Yue-Jie Zhang



Organization XIII

Yunkai Zhang
Yuntao Zhang
Zhenya Zhang
Hai Zhao
Jian Zhao
Jianxun Zhao
Jianye Zhao
Lianwei Zhao
Lina Zhao
Wencang Zhao
Xingming Zhao
Xuelong Zhao
Yinliang Zhao

Zhidong Zhao
Tiejun Zhao
Liu Zhen
Guibin Zheng
Shiqin Zheng
Yihui Zheng
Weicai Zhong
Zhou Zhong
Dongming Zhou
Gengui Zhou
Hongjun Zhou
Lifang Zhou
Wengang Zhou

Yuren Zhou
Zhiheng Zhou
Zongtan Zhou
Chengzhi Zhu
En Zhu
Li Zhu
Wen Zhu
Yaoqin Zhu
Xiaobin Zou
Xiaobo Zou
Zhenyu Zou
Wenming Zuo



Table of Contents – Part I

Neural Network Learning Algorithms

A Novel Learning Algorithm for Wavelet Neural Networks
Min Huang, Baotong Cui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Using Unscented Kalman Filter for Training the Minimal Resource
Allocation Neural Network

Ye Zhang, Yiqiang Wu, Wenquan Zhang, Yi Zheng . . . . . . . . . . . . . . . 8

The Improved CMAC Model and Learning Result Analysis
Daqi Zhu, Min Kong, YonQing Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A New Smooth Support Vector Regression Based on ε-Insensitive
Logistic Loss Function

Yang Hui-zhong, Shao Xin-guang, Ding Feng . . . . . . . . . . . . . . . . . . . . . 25

Neural Network Classifier Based on the Features of Multi-lead ECG
Mozhiwen, Feng Jun, Qiu Yazhu, Shu Lan . . . . . . . . . . . . . . . . . . . . . . . 33

A New Learning Algorithm for Diagonal Recurrent Neural Network
Deng Xiaolong, Xie Jianying, Guo Weizhong, Liu Jun . . . . . . . . . . . . . 44

Study of On-Line Weighted Least Squares Support Vector Machines
Xiangjun Wen, Xiaoming Xu, Yunze Cai . . . . . . . . . . . . . . . . . . . . . . . . 51

Globally Exponential Stability Analysis and Estimation of the
Exponential Convergence Rate for Neural Networks with Multiple
Time Varying Delays

Huaguang Zhang, Zhanshan Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Locally Determining the Number of Neighbors in the k-Nearest
Neighbor Rule Based on Statistical Confidence

Jigang Wang, Predrag Neskovic, Leon N. Cooper . . . . . . . . . . . . . . . . . . 71

Fuzzy Self-organizing Map Neural Network Using Kernel PCA and the
Application

Qiang Lv, Jin-shou Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

An Evolved Recurrent Neural Network and Its Application
Chunkai Zhang, Hong Hu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



XVI Table of Contents – Part I

Self-organized Locally Linear Embedding for Nonlinear Dimensionality
Reduction

Jian Xiao, Zongtan Zhou, Dewen Hu, Junsong Yin, Shuang Chen . . . 101

Active Learning for Probabilistic Neural Networks
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Abstract. Wavelet neural networks(WNN) are a class of neural networks con-
sisting of wavelets. A novel learning method based on immune genetic algo-
rithm(IGA) for continuous wavelet neural networks is presented in this paper. 
Through adopting multi-encoding, this algorithm can  optimize the structure 
and the parameters of WNN in the same training process. Simulation results 
show that WNN with novel algorithm has a comparatively simple structure and 
enhance the probability for global optimization. The study also indicates that 
the proposed method has the potential to solve a wide range of neural network 
construction and training problems in a systematic and robust way. 

1   Introduction 

In recent years, neural networks have been widely studied because of their out-
standing capability of fitting nonlinear models. As wavelet has emerged as a new 
powerful tool for representing nonlinearity, a class of networks combining wavelets 
and neural networks has recently been investigated [1,2,3].It has been shown that 
wavelet neural networks(WNN) provide better function approximation ability than the 
multi-layer perception (MLP) and radial basis function (RBF) networks. However, the 
learning algorithm of WNN is focused on in this field. Learning of WNN consists of 
parameters and structural optimization. The training of the network is still mainly 
based on the gradient-based algorithm, and the local minimum problem has still not 
been overcome [1,4].Recently, the Genetic Algorithm(GA) has been used to train the 
networks [5,6]. Immune genetic algorithm(IGA), which combines the immune and 
GA [7], operates on the memory cells that guarantees the fast convergence toward the 
global optimum, has affinity calculation routine to embody the diversity of the real 
immune system and the self-adjustment of the immune response can be embodied by 
the suppress of production of antibodies. It can avoid the problems which have been 
found in genetic algorithm. 

In this paper, a novel algorithm based on IGA is proposed for training WNN. This 
algorithm adopted multi-encoding to optimize the structure and the parameters in the 
same training process. Simulation results show that WNN with novel algorithm has a 
comparatively simple structure and enhance the probability for global optimization. 
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2   Wavelet Neural Networks for Function Approximation 

Wavelet is a new powerful tool for representing nonlinearity. A function ( )f x can be 

represented by the superposition of daughters  , ( )a b xψ of a mother wavelet ( )xψ . 

Where , ( )a b xψ can be expressed as 

,

1
( ) ( )a b

x b
x

aa
ψ ψ −=  . (1) 

where a R+∈ and b R∈ are, respectively, called dilation and translation parameters.  
The continuous wavelet transform of ( )f x  is defined as 

,( , ) ( ) ( )a bw a b f x x dxψ
∞

−∞
=  . (2) 

where , ( )a b xψ  is conjugate complex of , ( )a b xψ ,and the function ( )f x can be recon-

structed by the inverse wavelet transform 

, 2
( ) ( , ) ( )a b

dadb
f x w a b x

a
ψ

∞ ∞

−∞ −∞
=  . (3) 

The continuous wavelet transform and its inverse transform are not directly imple-
mental on digital computers. When the inverse wavelet transform (3) is discreted, 

( )f x  has the following approximative wavelet-based representation form. 

1

ˆ ( ) ( )
K

k
k

k k

x b
f x w f

a
ψ

=

−
≈ +  . (4) 

where the kw , kb and ka are weight coefficients, translations and dilations for each 

daughter wavelet, and K is the number of network nodes. Introducing the parameter 

f into the network can make the network able to approximate the function with a 

nonzero mean. This approximation can be expressed as the neural network of Fig.1, 
which contains wavelet nonlinearities in the artificial neurons rather than the standard 
sigmoid nonlinearities. 

1w

1

1

( )
x b

a
ψ −

2

2

( )
x b

a
ψ −

( )k

k

x b

a
ψ −

x ˆ ( )f x

kw

2w

f

 

Fig. 1. The structure of wavelet neural networks 



 A Novel Learning Algorithm for Wavelet Neural Networks 3 

 

The network is learned to determine the minimum value of K and corresponding 
parameters of network to meet the training error, which is described as follows: 

2

1

1 ˆ( ( ))
2

J

j j
j

E y f x
=

= −  . 
(5) 

where jy , ˆ ( )jf x are the target output and corresponding network output of the j th 

sample, respectively, and J is the number of training samples. 

3   Immune Genetic Algorithm Based on Multi-encoding for the 
Training of Wavelet Neural Networks 

3.1   Introduction to Immune Genetic Algorithm (IGA) 

IGA is an algorithm based on immune principle. It has the same advantages as other 
stochastic optimization methods possess, but it has the following differences from 
others for instance GA: 

(1) It works on the memory cells, and ensures that it converges on the global opti-
mal solution rapidly. 

(2) It uses the computation of affinity to obtain the diversity of the production of 
antibodies. 

(3) It reflects self-adjusting function of the immune system through proliferating 
and suppressing the emerging of antibodies. 

IGA operation composes of recognition of antigens, establishment of coding 
method, initialization of antibody, computation of affinities and fitness value, prolif-
eration and suppression of antibodies, production of antibodies ,differentiation of 
memory cells and renovation of group. 

3.2   Design of the Algorithm 

Step 1. Recognition of antigens: The immune algorithm recognizes the invasion of 
the antigens which correspond to the input data. In the training problem of WNN, we 
consider the fitness function ( )g x E=  as the antigens. E  is shown in Eq.(5) 

Step 2. Multi-encoding mode: A combined binary system and decimal system is 
adopted to optimize the structure and the parameters of WNN in the same training 
process. A chromosome consists of four segments shown in Fig2. Parameters of 
WNN ( , ,k k kb a w ) are decimal-coded mode and structure of WNN is binary-code 

mode which describes the validity of corresponding hidden node (1 valid , 0 invalid). 
M may be selected by experience. 

1b 2b Mτ Mw1a 2a Ma Mw2w kw1 0 11wMaMb
  

Fig. 2. Structure of chromosome multi-encoding 
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Step 3. Initialization of antibody: In the first iteration, the antibodies are usually 
produced in the space of solution by random method. The chromosomes correspond-
ing to parameter segment are created from the uniform distribution over the range of 
(0,1) and the chromosomes corresponding to structure segment are created randomly 
from a binary string.  

Step 4. Computation of affinities: The theory of information entropy is applied to 
defining affinity here. Suppose there are N antibodies in an immune system, and each 
antibody has M genes. The information entropy of the j th gene is : 

1

( ) log
N

j ij ij
i

H N p p
=

= −  . 
(6) 

where ijp  is the probability of the allele of the i th antibody based on the j th gene. 

For example, if all alleles at j th genes are same, ( )jH N  is equal to zero. So, the 

average information entropy ( )H N  is given as: 

1

1
( ) ( )

M

j
j

H N H N
M =

=  . 
(7) 

The affinity between antibody v and antibody w  is defined as: 

,

1

1 (2)v way
H

=
+

 . 
(8) 

When (2) 0H = , the genes of the antibodies v  and w  are identical. And the value of 

,v way  is between o and 1.  

Similarly, the affinity, vax , between the antibody v  and the antigen is defined by 

vax g= −  . (9) 

where, g  is the value of the fitness function. 

Step 5. Proliferation and suppress of antibodies: The antibodies which will per-
form the next optimization generation are proliferated by crossover and mutation with 
pre-determined probabilities(Pc, Pm). In this paper, multi-encoding mode is adopted. 
Crossover and mutation methods in standard GA are applied for binary-code mode. 
For decimal-coded mode, linear combination crossover method is adopted and muta-
tion operation is defined by  

1( ) ( ) ( 0.5) ( )t t
i i best mx q x q rand g x α+ = + −  . (10) 

where rand is randomly between 0 and 1 ( )bestg x is optimal fitness value until t  

generation. mα is mutation operator and q is mutation gene allele. After the prolifera-

tion, the size of population is N W+ , in which W represent the population of newly 
proliferated antibodies. 
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For each antibody  in the proliferation antibody, if vax  is less than the threshold T  

( 1 2min( , , , )nT ax ax ax= ), the antibody is eliminated.  For each antibody in the 

population, the concentration vC  is calculated by 

*
,

sum of the antibodies

v w
v

v

ay
C =  . 

(11) 

where *
, , ,max( ) max( )v w v w v way ay ayη × ≤ ≤ , η is a changeable parameter between 0 

and 1. The antibody v which has the maximum vC is eliminated. The procedure will 

continue unless the population size becomes N . 

Step 6. Differentiation of memory cells: The antibodies which have high affinities 
with the antigen are added to the memory cells. 

Step 7. Termination criterion: The termination criterion in this paper is the maxi-
mum iteration number I , if the error is less than I , go to step 4 , else the optimiza-
tion procedures stop. 

Step 8. Selection of optimal solution: After the iteration stops, the antibody which 
has the maximum affinity with the antigen in the memory cells is selected as the op-
timal design parameters. 

4   Simulation Results and Analysis 

In this section, to investigate the feasibility and effect of the proposed novel algorithm 
for WNN, one-dimension function approximation is presented. Algorithm is imple-
mented in MATLAB. The selected function is piecewise function defined as fol-
lows[1]: 

0.05 0.5

2.186 12.864 10 2

4.246 2 0
( )

10

sin[(0.03 0.7) ] 0 10

x

x x

x x
f x

e

x x x

− −

− − − ≤ < −
− ≤ <

=
×

+ ≤ ≤

 . 

(12) 

The wavelet function we have taken is the so-called ‘Gaussian-derivative’ function 
21

2( )
x

x xeψ
−

= − .The maximum number of the hidden nodes is set to 15. The WNN 

with only one input node and one output node is employed. The parameters are de-
termined as follows: Pop_size=60, Pc=0.85, Pm=0.01, mα =0.75 0.8η = I  =100. 

200 of sample are drawn Eq.(12). 150 sets of sample are used to train the network, 
and the rest are used to test the network. Through evolution by the proposed algo-
rithm, the wavelet network with seven hidden nodes in the hidden layer is obtained. 
Table 1 shows the results for approximation of the selected piecewise function, and a 
comparison of the approximation performance with other methods is presented in 
Table 2. 
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Table 1. Parameters and structure of wavelet neural networks 

M       1        2       3        4         5        6        7        8 

b     -4.1472   -3.8215   -4.6872   7.5365    6.4635   -2.1653   5.7420   1.2433 

a      6.0528   2.1578    4.8754   3.4237    2.1403    8.7629   2.6135   3.1402 

w     -6.3405   6.9365   -3.9365   9.1669    6.7568    5.2816  -10.000   4.2571 

structure   1       0        0       1         0         0       1       0 

M       9       10       11      12        13       14       15 

b      -1.3405   -6.3472  -3.0614   9.9673    -1.3676   -4.1327  -1.8868 

a      1.4169    0.000    4.1042   5.0197     4.4621   6.1763   2.3473 

w      8.0179   9.9324   -2.8476   -5.1430    1.6230   -6.8178  -4.1979 

structure   0       1        0        1         0        1       1 

Table 2. Comparison of approximation 

Models  Number of hidden node RMS of approximate error  

IGA-WNN 7 0.0435 
GA-WNN 7 0.0523 
WNN(gradient-based) 7 0.0506 
BP 9 0.0637 

5   Conclusion 

This paper adopted the immune genetic algorithm model to solve the learning prob-
lems of WNN, which combines the characteristic of both the immune algorithm and 
the genetic algorithm. Through adopting multi-encoding, this algorithm can optimize the 
structure and the parameters of WNN in the same training process. The structure of the 
wavelet neural network can be more reasonable, and the local minimum problem in 
the training process will be overcome efficiently. Therefore, the wavelet network 
obtained will give a better approximation and forecasting performance. affinity be-
tween antibody v and antibody w  is defined as: 
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Abstract. The MARN has the same structure as the RBF network and has the 
ability to grow and prune the hidden neurons to realize a minimal network 
structure. Several algorithms have been used to training the network. This paper 
proposes the use of Unscented Kalman Filter (UKF) for training the MRAN 
parameters i.e. centers, radii and weights of all the hidden neurons. In our 
simulation, we implemented the MRAN trained with UKF and the MRAN 
trained with EKF for states estimation. It is shown that the MRAN trained with 
UKF is superior than the MRAN trained with EKF. 

1   Introduction 

The radial basis function (RBF) network has been extensively applied to many signal 
processing, discrete pattern classification, and systems identification problems 
because of their simple structure and their ability to reveal how learning proceeds in 
an explicit manner. The MARN is a sequential learning RBF network and has the 
same structure as a RBF network. The MRAN algorithm uses online learning, and has 
the ability to grow and prune the hidden neurons to realize a minimal network 
structure [1]. Fig.1 shows a schematic of a RBF network. 

 

Fig. 1. RAN neural network architecture 
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The RBF neural network is formed by two layers; hidden layer N local units or 
basis function, and a linear output layer. The output is given by 

1

( ) ( ) ( ( ))
N

i i
i

y n w n n
=

= Φ x  
(1) 

where input vector [ ]1 2( )    
T

mn x x x=x , ( )iΦ ⋅ denotes the mapping performed by a 

local unit, and ( )iw n  is the weight associated with that unit. Here n is the time index. 

The basis function is usually selected as Gaussian function 

2 2exp( ( ) ( ) ( ))i i in n nΦ = − − σx c  
(2) 

where ( )i nc  and ( )i nσ  will be referred to as the center and radius, respectively. It 

can be seen that the design of a RBF requires several decisions, including the centers 

( )i nc , the radius ( )i nσ , the number N, and weight ( )iw n . Several training 

algorithms have been used to train RBF network, including gradient descent [1], back 
propagation (BP)[5], and extended Kalman filter (EKF) and so on [5]. Major 
disadvantage of gradient descent and BP methods are slow convergence rates and the 
long training symbols required. The EKF can be used to determine the centers, radius 
and weights, but the method provides first-order approximations to optimal nonlinear 
estimation through the linearization of the nonlinear system. These approximations 
can include large errors in the true posterior mean and covariance of the transformed 
(Gaussian) random variable, which may lead to suboptimal performance and 
sometimes divergence [2]. Using UKF to train the network may have not these 
problems. In MRAN algorithms, the number of neurons in the hidden layer does not 
estimate, the network is built based on certain growth criteria. Other network 
parameters, such as ( ), ( ), ( )i i in n w nσc , can be adapted. In section 2, we explain using 

the EKF for training MRAN network and then present UKF to train the network in 
section 3. Finally, in section 4, we present simulation results of using the EKF and the 
UKF for training the MRAN network. 

2   Training the MRAN with the EKF 

The MRAN network begins with no hidden neuron. As input vector ( )nx  are 

sequentially received, the network builds up based on certain growth and pruning 
criteria [1]. The following three criteria decide whether a new hidden neuron should 
be added to the network 

( ) ( ) ( )− > εx c jn n n  (3) 

min( ) ( ) ( )= − >e n d n y n e  (4) 
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[ ]2

1
min

( ) ( )
( ) = − +

−
′= >

n

i n M
rms

d n y n
e n e

M
 

(5) 

where ( )j nc  is a centre of the hidden neuron that is nearest to ( )nx , the data that 

was just received, ( )d n  is the desire output. 
min min( ), and n e e′ε  are threshold to be 

selected appropriately. M represents the size of a sliding data window that the 
network has not met the required sum squared error specification. Only when all these 
criteria are met a new hidden node is added to the network. The parameters associated 
with it: 

1 1 1( ),   = ( ),   ( ) ( )N N N jw e n n n n+ + += σ = κ −c x x c  (6) 

where κ is an overlap factor that determine the overlap of the response of the hidden 
neuron in the input space. When an input to the network does not meet the criteria for 
adding a new hidden neuron, EKF will be used to adjust the parameters 

1 1 1, , , , , ,
TT T

N N Nw w= σ σc c of the network. The network model to which the EKF can 

be applied is 

1

( 1) ( ) ( )

( ) ( ) ( ( )) ( )

       ( ( ), ( )) ( )

N

i i
i

n n n

y n w n n v n

g n n v n
=

+ = +

= Φ +

= +

x

x

 

(7) 

where ( ) and ( )n v nω are artificial added noise processes, ( )nω is the process noise, 

( )v n is the observation noise. The desired estimate ˆ ( )n can be obtained by the 

recursion 

1

ˆ ˆ( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( ) ( ) ( 1) ( )

( ) ( ) ( ) ( 1) ( )

T

T

n n n e n

n n n n n n n

n n n n n

−

= − +

= − + −

= − − +

k

k P a R a P a

P I k a P Q I

 

(8) 

where ( )nk is the Kalman gain, ( )na is the gradient vector and has the following 

form 

ˆ ( )

( , ( ))
( )T

n

g n
n

=

∂=
∂

x
a  

(9) 
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( )nP is the error covariance matrix, ( )nR and ( )nQ  are the covariance matrices of 

the artificial noise processes ( )nω and ( )v n , respectively. When a new hidden 

neuron is added the dimensionality of ( )nP is increased by 

0

( 1) 0
( )

0

n
n

−
=

P
P

P I
 (10) 

The new rows and columns are initialized by 
0P . 

0P is an estimate of the uncertainty 

in the initial values assigned to the parameters. The dimension of identity matrix I is 
equal to the number of new parameters introduced by adding a new hidden neuron. 

In order to keep the MRAN in a minimal size and a pruning strategy is employed 
[1]. According to this, for every observation, each normalized hidden neuron output 

value ( )kr n is examined to decide whether or not it should be removed. 

2 2

max

( ) ( ) exp( ( ) ( ) / ( ))

( )
( ) ,   1, ,

( )

k k k k

k
k

o n w n n n n

o n
r n k N

o n

= − − σ

= =

x c

 (11) 

where ( )ko n is the output for kth hidden neuron at time n and max ( )o n , the largest 

absolute hidden neuron output value at n. These normalized values are compared with 
a threshold δ and if any of them falls below this threshold for M consecutive 
observation then this particular hidden neuron is removed from the network. 

3   Training the MRAN with UKF 

The EKF described in the previous section provides first-order approximations to 
optimal nonlinear estimation through the linearization of the nonlinear system. These 
approximations can include large errors in the true posterior mean and covariance of 
the transformed (Gaussian) random variable, which may lead to suboptimal 
performance and sometimes divergence [2]. The unscented Kalman filter is an 
alternative to the EKF algorithm. The UKF provides third-order approximation of 
process and measurement errors for Gaussian distributions and at least second-order 
approximation for non-Gaussian distributions [5]. Consequently, The UKF may have 
better performance than the EKF. Foundation to the UKF is the unscented 
transformation (UT). The UT is a method for calculating the statistic of a random 
variable that undergoes a nonlinear transformation [2]. Consider propagating a 
random variable x (dimension m) through a nonlinear function, ( )g=y x . To 

calculate the statistic of y, a matrix  of 2m+1 sigma vectors iχ  is formed as the 

followings: 
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( )
( )

0

0

2
0

( )   1, ,

( )   1, , 2

( )

( ) (1 )

1 (2 2 )       1, , 2

i xx
i

i xx
i L

m

c

m c
i i

m i m

m i m m

W m

W m a

W W m i m

−

χ =

χ = + + λ =

χ = − + λ = +

= λ + λ

= λ + λ + − + β

= = + λ =

x

x P

x P
 (12) 

where x and xxP are the mean and covariance of x, respectively, and 
2 ( )a m mλ = + κ − is a scaling factor. a  determines the spread of the sigma points 

around x  and usually set to a small positive value, typically in the range 
0.001 1a< < . κ is a secondary scaling parameter which is usually set to 0, and β  

is used to take account for prior knowledge on the distribution of x, and 2β = is the 

optimal choice for Gaussian distribution[2]. These sigma vectors are propagated 
through the nonlinear function, 

( )    0, , 2i iy g i m= χ =  (13) 

This propagation produces a corresponding vector set that can be used to estimate the 
mean and covariance matrix of the nonlinear transformed vector y . 

( )( )

2

0

2

0

m
m

i i
i

m
Tc

yy i i i
i

W y

W y y

=

=

≈

≈ − −

y

P y y
 (14) 

From the state-space model of the MRAN given in 7), when an input to the network 
does not meet the criteria for adding a new hidden neuron, we can use the UKF 
algorithm to train the network. The algorithms are summarized below. 
Initialized with: 

[ ]ˆ(0)

ˆ ˆ(0) ( (0)( (0)T

E

E

=

= − −P
 (15) 

The sigma-point calculation: 

( ) ( )( ( ) ( ))

ˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( )

( ) ( ( ), ( ))

ˆ( ) ( ( ), ( ))

n m n n

W n n n n n n

D n g W n n

y n g n n

= + λ +

= + −

=

=

P Q

x

x

 (16) 



 Using Unscented Kalman Filter for Training the MRAN Network 13 

Measurement update equations: 

2

0

2

0

( ) ( ( ) ( ))( ( ) ( )) ( )

ˆ ˆ( ) ( ( ) ( ))( ( ) ( ))

m
c T

yy i i i
i

m
c T

y i i i
i

n W D n n D n n n

n W W n n W n n

=

θ
=

= − − +

= − −

P y y R

P

 (17) 

1( ) ( ) ( )y yyn n n−
θ= P P  (18) 

ˆ ˆ( 1) ( ) ( ) ( )n n n e n+ = + K  (19) 

( 1) ( ) ( ) ( ) ( )T
yyn n n n n+ = −P P K P K  (20) 

The weight vector of the MRAN is update with the above equations. 

4   Experiment Results and Conclusion 

In the experiments, the thresholds min min, , and e e′ ε , respectively, set as 0.22, 0.40, 

and 0.5, the thresholds are chosen largely by trial and error. The other parameters 
were set as M=10 and δ=0.1. The RAN trained by the UKF and the EKF is used to 
estimate a time-series corrupted by additive Gaussian white noise (5db SNR). The 
time-series used is Mackey-Glass chaotic series. In Fig.2 and Fig 3, the dashed is 
clear time series, “+” is the noise time-series, the solid line is the output of the MRAN 
trained with EKF or UKF. We can see that the UKF have superior performance 
compared to that the EKF. After learning, the average number of centers in the hidden 
layer is 9 nodes. 

 

Fig. 2. Estimation of Mackey-Glass time series: EKF 
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Fig. 3. Estimation of Mackey-Glass time series: UKF 

The paper investigated the performance of the MRAN networks. It shows that the 
MRAN-UKF has better performance than the MRAN-EKF, with much less 
complexity. In order to reduce the computer load, we can update the parameters of 
only one hidden neuron instead of all the hidden neurons. This neuron called the 
winner neuron is chosen as the one closet to the new data received. 
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Abstract. An improved neural networks online learning scheme is proposed to 
speed up the learning process in cerebellar model articulation control-
lers(CMAC). The improved learning approach is to use the learned times of the 
addressed hypercubes as the credibility (confidence) of the learned values in the 
early learning stage, and the updating data for addressed hypercubes is propor-
tional to the inverse of the exponent of learned times, in the later stage the up-
dating data for addressed hypercubes is proportional to the inverse of learned 
times. With this idea, the learning speed can indeed be improved. 

1   Introduction 

Speed is very important for the online learning of dynamic nonlinear systems. When 
learning capability is considered, neural networks are always the first candidates to be 
taken into account, especially backpropagation (BP) trained multilayer feed forward 
neural networks. However, owing to the gradient descent nature of BP neural net-
works, the learning process of BP algorithm may need to iterate many times so as to 
converge to an acceptable error level, or even cannot converge at all. Another unsuc-
cessful property of BP algorithm is its distributed knowledge representation capabil-
ity[1-2]. So the BP algorithm can hardly be used for online learning systems. This is 
because that online learning needs to work within real-time constraints, and training 
can only be performed for current patterns. As a result, it is hard to find any success-
ful online BP algorithm examples in practical applications. 

Another kind of learning approaches termed as cerebellar model articulation con-
trollers(CMAC) was proposed in the literature[3-4], in which several advantages 
including local generalization and rapid learning convergence have been demon-
strated[5-6]. It seems to be a good candidate for online learning. However, when the 
conventional CMAC approach still needs several cycles(or called epochs) to con-
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2004021)and the Key Project of Chinese Ministry of Education.( 105088). 



16 D. Zhu, M. Kong, and Y. Yang 

verge[7-8]. Though the conventional CMAC is much faster than BP algorithm, it still 
is not good enough for online learning systems. Several approaches have been pro-
posed to improve the learning performance of CMAC[9-10] recently. For instance, 
the fuzzy concept was introduced into the cell structure of CMAC, it indeed can in-
crease the accuracy of the representation of the stored knowledge. However, the speed 
of convergence still cannot meet the requirement for real-time applications. 

In order to improve the learning speed of CMAC, the learning approach has con-
sidered the credibility of the learned values in the literature[11] . In the conventional 
CMAC learning schemes, the correcting amounts of errors are equally distributed into 
all addressed hypercubes, regardless of the credibility of those hypercubes. Such an 
updating algorithm violates the concept of credit assignment, requiring that the updat-
ing effects be proportional to the responsibilities of hypercubes. From the litera-
ture[11], it is shown that the credit assignment CMAC (CA-CMAC) is faster and 
more accurate than the conventional CMAC. However, in the literature[11]  the times 
of updating for hypercubes can be viewed as the creditability of those hypercubes, 

and the updating data for hypercubes is proportional to 
1)(

1

+jf
, )( jf  is the 

learned times of the j th hypercubes. Notice, that the learning times must include the 

current one to prevent dividing by zero. However in the early learning stage, )( jf  is 

very less, the process of “add one” is unaccepted. 
In this paper, A new improved CA-CMAC(ICA-CMAC) learning scheme is pre-

sented. The updating data for hypercubes is proportional to 
))(exp(

1

jf
 when the 

learned times )( jf =0,1,2 , )( jf >2 the updating data  is proportional to 
)(

1

jf
. 

The example showed that the ICA-CMAC has the best result in learning speed and 
accuracy. 

2   Conventional CMAC and Credit Assigned CMAC 

2.1   Conventional CMAC  

The basic idea of CMAC is to store learned data into overlapping regions in a way 
that the data can easily be recalled but use less storage space. Take a two-
dimensional(2-D) input vector, or the so-called two-dimensional CMAC(2-D-

CMAC),as an example. The input vector is defined by two input variables, 1x and 2x . 

The structure of a 2-D-CMAC is shown in Fig .1. In this example, 7 locations, called 
bits in the literature, are to be distinguished for each variable. For each state variable, 
three kinds of segmentation, or called floors, are used. For the first floor, the variable 

1x  is divided into three blocks, A, B, and C and the variable 2x  is divided into 

blocks a, b, and c. Then, the areas, Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, and Cc are the 
addresses or the locations that store data, Such areas are often called hypercubes. 
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Similarly, hypercubes, Dd, De, Df, Ed, Ee, Ef, Fd, Fe, and Ff  are defined in the sec-
ond floor, and Gg, Gh, Gi, Hg, Hh, Hi, Ig, Ih, and Ii are defined in the third floor. Be 
aware that only the blocks on the same floor can be combined to form a hypercube. 
Thus , the hypercubes, such as ,Ad and Db, do not exist. In this example, there are 27 
hypercubes used to distinguish 49 different states in the 2-D-CMAC. 

The basic concept of CMAC is illustrated in Fig.2. There are two phases of opera-
tions performed in the CMAC algorithm: the output-producing phase and the learning 
phase. First, the output-producing phase is discussed. In this phase, CMAC uses a set 
of indices as an address in accordance with the current input vector(or the so-called 
state) to extract the stored data. The addressed data are added together to produce the 
output. Let the number of floors be m , the number of hypercubes be N, and the num-

ber of total states be n. Then, the output value sy  for the state s ( s =1,……,n) is the 

sum of all addressed data and can be computed as :  

=

=
N

j
jss wCy

1

                                                       (1) 

Where jw  is the stored data of the j th hypercube and sC  is the index indicating 

whether the j th hypercube is addressed by the state s . Since each state addresses 

exactly m hypercubes, only those addressed sC  are 1, and the others are 0, As shown 

in Fig1. let the hypercubes Bb, Ee, and Hh be addressed by the state )3,3(s , Then 

only those three sC , are 1 and the others are 0. 

 

Fig. 1. Structure of a 2-D CMAC                           Fig. 2. Basic operational concept of CMAC 

Whereas the output-producing phase is to generate an output from the CMAC  
table, the learning phase is to update the data in the CMAC table, according to the 
error between the desired output and the obtained output. Traditionally, the error is 
equally distributed to modify the addressed data. Let s  be the considered state and 
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i
jw be the stored values of the j th hypercube after i iterations. The conventional 

CMAC updating algorithm for i
jw  is  

=

−− −+=
N

j

i
jsss

i
j

i
j wCyC

m
ww

1

11 )(
α

                                       (2) 

Where sy is the desired value for the state s  , 
=

−
N

j

i
js wC

1

1 is the produced output of 

the CMAC for the state s  , and  is a learning constant. Note that only those ad-
dressed hypercubes are updated. It has been proved that if  is not greater than two, 
then the CMAC learning algorithm will converge[5-6].  

In the above learning process, the errors are equally distributed into the hypercubes 
being addressed. However, after 1−i  iterations, the original stored data in the 
CMAC table already contain some knowledge about previous learning. However, not 
every hypercubes has the same learning history, hence, those hypercubes do not have 
the same credibility. Disregarding such differences, all addressed hypercubes get 
equal shares for error correcting in (2) .As a result, previous learned information may 
be corrupted due to large error caused by an unlearned state. When the training proc-
ess lasts for several cycles, this situation may actually be “smoothed out”. This is 
evident from successful learning in various CMAC applications, However, when 
online learning is required, and perhaps only one cycle of training can be performed, 
there may not have enough time for smoothing out the corrupted data. Thus, the 
learned results of the updating algorithm may not be acceptable. This can be seen in 
later simulations. 

2.2   Credit Assigned CMAC 

In the conventional CMAC updating algorithm, unlearned hypercubes may produce 
corruption for adjacent hypercubes. Thus, the learned results may not be satisfactory 
in online applications. In order to avoid such corruption effects, the error correction 
must be distributed according to the creditability of the hypercubes. Such a concept is 
often referred to as the credit assignment for learning[12-13]. However, in the CMAC 
learning process, there is no way of determining which hypercube is more responsible 
for the current error, or more accurate than the others. The only information that can 
be used is how many times the hypercubes have been updated. The assumption used 
in the literature is that the more times the hypercube has been trained, the more accu-
rate the stored value is. Hence, the times of updating for hypercubes can be viewed as 
the creditability of those hypercubes. 

With the above assumption, in the literature[11] formula  (2) is rewritten as : 
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Where )( jf  is the learned times of the jth hypercube, and m is the number of ad-

dressed hypercubes for a state. The idea of the updating algorithm is that the effects of 
error correcting must be proportional to the inverse of learning times for the addressed 
hypercubes. Notice, that the learning times must include the current one to prevent 
dividing by zero. In (3) the equal share of error correcting as 1/m in (2) is replaced by 

=

−

−

+

+
m

l

lf

jf

1

1

1

)1)((

)1)((
. With this modification, the learning effects can be 

appropriately distributed into the addressed hypercubes according to the creditability 
of hypercubes. However, it is not the best result, because it did not research how to 
effect learning result by the process of “add one” further.  

3   Improved Credit Assigned CMAC(ICA-CMAC) 

3.1   Credit Assigned 

According to analysis above, in order to prevent dividing by zero, moreover it do not 
affect the learning speed. in the ICA-CMAC, (3) is rewritten as:  
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 (4)      

In (4) not only there is the concept of  reasonable credit assignment, but also the 
situation of “dividing by zero” do not existence. From later simulations, it can be seen 
that the learned results of ICA-CMAC is better than conventional CMAC and CA-
CMAC. 

To illustrate the learning effects of ICA-CMAC, a simple example is considered. 

The target function is 2
2

2
121 )2()2(),( −+−= xxxxd . Let the training data 

be [{(2,0), 2},{(3,0), 2.2361},{(4,1), 2.2361},{(5,2), 3.0000},……]. The CMAC 
shown in Fig.1 is used. First, the state (2,0) addresses three hypercubes, Aa, Ed, and 
Hg. Then, y(2,0)=0 and d(2,0)=2. Since those hypercubes are all unlearned, each 
hypercube gets 1/3 of the error. The weights of Aa, Ed, and Hg all become (2-
0)/3=0.6667; Next, (3,0) addresses Ba, Ed, and Hg, d (3,0)=2.2361 and 
y(3,0)=0.6667+0.6667+0=1.3334. For CMAC, the error is equally distributed into 
those three hypercubes. =(2.2361-1.3334)/3=0.3009. The weights of Ed and Hg 
become 0.9676 and the weight of Ba becomes 0.3009. For CA-CMAC, since Ed and 
Hg are selected the second times, each get 1/4 of the error, and Ba gets 1/2 of the 
error. The weights of Ed and Hg become 0.6667+(2.2361-1.3334)/4=0.8924 and the 
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weight of Ba becomes (2.2361-1.3334)/2=0.4514. For ICA-CMAC, Ed and Hg are 
selected the second times also, from (4), each get 1/(e+2) of the error, and Ba gets 
e/(e+2) of the error. The weights of Ed and Hg become 0.6667+(2.2361-
1.3334)/(e+2)=0.8580 and the weight of Ba becomes (2.2361-1.3334)*e/(e+2)=0. 
5201. Here, it can be found that the error in this step may largely come from the value 
0 stored in Ba. For CMAC, all three hypercubes get the same share of the error. For 
ICA-CMAC, a larger portion of the error goes to the weight of Ba. From the next 
step, it will be evident that the resultant error of ICA-CMAC will be smaller than 
others. Now,(4,1) addresses Ba, Fe, and Hg. d(4,1)=2.2361, y(4,1)=0.3009+0+0.9676 
=1.2685 for CMAC, and y(4,1)=0.4514+0+0.8924=1.3438 for CA-CMAC, and 
y(4,1)=0.5201+0+0.8580 =1.3781 for ICA-CMAC, Obviously, the predicted value in 
ICA-CMAC is more close to the desired value 2.2361 than that in CMAC and CA-
CMAC method. Table 1 shows the errors for the first cycles. It can be found that the 
errors of ICM-CMAC are all lower than others.  

Table 1. learning behavior comparison for CMAC, CA-CMAC and ICA-CMAC 

State (2,0) (3,0) (4,1) (5,2) …… 
d(x1,x2) 2.0000 2.2361 2.2361 3.0000 …… 
CMAC 0 1.3334 1.2685 0.9459 …… 

CA-CMAC 0 1.3334 1.3438 1.1814 …… 
ICA-CMAC 0 1.3334 1.3781 1.3009 …… 

3.2   Adressing Function 

In the original CMAC[3-4], a hashing method is used to reduce the storage space. The 
hashing method is a way of storing data in a more compact manner, but may lead to 
collisions of data, and then may reduce the accuracy of CMAC. In fact, a paper[14] 
exists  that questions the applicability of the use of hash coding in CMAC. In our 
approach, an addressing function is used to simultaneously generate the indices to 
address the required hypercubes[11], This approach is to code all possible hypercubes 
in an array ,which saves a lot of time and memory when compared to simple address-
ing approaches, and will not cause any collisions in data retrieval. 

Take a three dimensional (3-D) CMAC as an example. Suppose that for each di-
mension, there are 1)1( +−∗ nbm locations to be distinguished, where m is the 

number of floors in CMAC and nb is the block number for each floor. In this exam-

ple, each block covers m states and only 3nbmN ∗=   hypercubes are needed to 

distinguish 3)1)1(( +−∗ nbm states. Consider a state s , denoted by 

),,( 321 xxx representing the locations of the state for those three dimensions, respec-

tively, Let the m addressed hypercubes by the state s   be )( js , for j=1,…,m, The 

addressing function is to generate )( js , for j=1,…m,  The addressing function 

),,,()( 321 jxxxFjs = , is  
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if j=1,then i=0, else i=m-j+1; )/)int(( 1 mixax += ;  

)/)int(( 2 mixay += ; )/)int(( 3 mixaz += ;  

1)1(),,,()( 32
321 +∗−+∗++== nbjnbazayaxjxxxFjs . 

When a state is defined, with this addressing function, the addressed hypercubes 
can directly be obtained, Thus, no matter in the output-producing phase, or in the 
learning phase, the required data extraction or data updating can be performed with 
those hypercubes directly. 

4   Simulation Results 

There are two examples to illustrated the learning effects of ICA-CMAC further, the 
two examples are conducted to compare the learning speed of conventional CMAC, 
CA-CMAC, and ICA-CMAC; they are  

)cos()sin()(),( 21
2
2

2
121 xxxxxxy −= 11 1 ≤≤− x   and  11 2 ≤≤− x    (5) 

2)2cos(2)sin(),( 1121
xexxxxy −++= 11 1 ≤≤− x   and  11 2 ≤≤− x       (6) 

For both examples, each variable contains 64 locations. For each variable, 9 floors 
are used, and each floor contains 8 blocks. The total states are 4096= 6464 ∗ , and 

the number of used hypercubes is 889 ∗∗ =576(only 14% of the total states). The 

learning 1=α . The training data is obtained by equally sampling in both variables, 
and the number of the used training data 4096. 

The learning histories for the two examples are illustrated in Fig 3 and Fig 4. The 
ways of evaluating the errors are considered. The total absolute errors (TAE) from the 
first cycle to the 6th cycle, and from the 26th to the 30th cycle are tabulated in tables 2 
and tables 3. 

=

−=
n

s
ss yyTAE

1

)(                                                    (7) 

Where n  is the number of total states, sy is the desired value for the state s , sy  

is the output value for the state s . 

Table 2. Total absolute errors  (TAE) )cos()sin()(),( 21
2
2

2
121 xxxxxxy −=  

 1 2 3 4 5 6 26 27 28 29 30 

CMAC 40.42 33.36 20.57 21.95 15.23 16.28 … 7.08 7.02 6.96 6.89 6.85 

CA-
CMAC 

25.34 15.70 11.27 11.28 9.758 9.868 … 7.34 7.32 7.29 7.27 7.25 

ICA-
CMAC 

20.35 9.001 8.456 8.324 7.925 7.938 … 6.95 6.93 6.92 6.90 6.89 
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Table 3. Total absolute errors  (TAE) 2)2cos(2)sin(),( 1121
xexxxxy −++=  

 1 2 3 4 5 6 26 27 28 29 30 
CMAC 276.0 252. 237. 225. 209. 184.4 … 7.96 7.50 7.04 6.58 6.14 

CA-
CMAC 

175.0 65.7 51.7 44.6 41.0 37.93 … 8.70 8.39 8.09 7.83 7.56 

ICA-
CMAC 

150.6 22.4 16.2 13.9 12.4 11.01 … 4.09 3.96 3.85 3.75 3.66 

 

Fig. 3. TAE of learning histories for )cos()sin()(),( 21
2
2

2
121 xxxxxxy −=  

Online learning schemes are typically used for time-varying systems because those 
schemes can “observe” the changes and then cope with them. When there are changes 
(time-varying parameters ) in the system, errors occur to compensate those changes. 
Those errors are then distributed into hypercubes according to the used update law. 
The error correcting ability of ICA-CMAC is not different from conventional CMAC 
and CA-CMAC for this situation. They may be different only in the distributed 
amount of the errors. Such a distribution in ICA-CMAC is dependent on the learning 
times of hypercubes, and the learning times of hypercubes are approximately the same 
if sufficient learning is conducted. Thus, while facing time-varying systems, there are 
no differences in different CMAC for long time. From those figures and tables, after 
15 cycles, there is a little difference for different neural networks, and all CMAC can 
learn well. 
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Fig. 4. TAE of learning histories for 2)2cos(2)sin(),( 1121
xexxxxy −++=  

But in the early learning stage, the learning results are wholly different. It can be 
observed that the errors of ICA-CMAC are much smaller than others, such as the 
conventional CMAC and CA-CMAC. Thus, we can conclude that ICA-CMAC indeed 
learns faster than conventional CMAC and CA-CMAC in the early learning stage. It 
compensates inappropriate process of “add one” in the design of credibility. 

5   Conclusions 

In the paper, the improved CA-CMAC(ICA-CMAC) learning approach is proposed. 
The updating data for addressed hypercubes is proportional to the inverse of exponent 
of learned times in the early learning stage (the learned times is one or two), in the 
later stage the updating data addressed hypercubes is proportional to the inverse of 
learned times. 

With this idea, the learning speed of ICA-CMAC indeed becomes very faster than 
conventional CMAC and CA-CMAC in the early learning stage. It is very important 
for successful online learning. 
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Abstract. A new smooth support vector regression based on ε-insensitive
logistic loss function, shortly Lε-SSVR, was proposed in this paper, which
is similar to SSVR, but without adding any heuristic smoothing param-
eters and with robust absolute loss. Taking advantage of Lε-SSVR, one
can now consider SVM as linear programming, and efficiently solve large-
scale regression problems without any optimization packages. Details of
this algorithm and its implementation were presented in this paper. Sim-
ulation results for both artificial and real data show remarkable improve-
ment of generalization performance and training time.

1 Introduction

Support Vector Machine (SVM) was first proposed by Vapnik and had been
one of the most developed topics in Machine Learning [1,2,3]. The nature of the
conventional SVM is solving a standard convex quadratic programming (QP)
problem [4], with linear constraints, which depends on the training data set and
the selection of a few of SVM parameters. For a small training set (less than
few hundreds points), the solution of the QP problem can be obtained straightly
by using standard QP packages such as CPLEX and LOQO. However, with the
massive datasets, the memory space will increase with the level of O(m2), where
m is the number of the training points. This indicates that the optimization
techniques mentioned above may be unsuitable to solve the large-scale prob-
lems. Besides the size of training set, the influence of SVM parameters on the
performance is also great [5]. It is true that we do not have any analytical method
for parameter selection. Hence, designing effective SVM training algorithms for
massive datasets with less heuristic parameters will be of momentous practical
significance.

At present, a number of SVM algorithms based on iteration or decomposition
strategies have been extensively developed to handle large datasets, such as
kernel adatron algorithm [6], successive over relaxation algorithm (SOR) [7] and
sequential minimal optimization algorithm (SMO) [8]. Although these methods,
to a certain extent, can decrease the size and the degree of the difficulty of
� This research was supported by the fund of Hi-Tech Research and Development

Program of China (863 Program) No. 2002AA412120.
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QP problem by partitioning datasets and solving small sub-problems iteratively,
most of them still need an optimization package and long CPU time to complete
the whole iterative procedure. Another method in which SVM was solved as
linear programming without any optimization package was proposed in literature
[9] and [10]. In this case, one employed the smoothing techniques to transform
the primal QP to a smooth unconstrained minimization problem, and then used
a fast Newton-Arjmor algorithm to solve it. Although SSVR yielded a great
improvement on training speed, a heuristic smoothing parameter was added
during transformation, this would increase the difficulty of model selection, which
is very important for obtaining better generalization [5,11,12]. In additional, the
squared loss used in SSVR is not the better choice for robust regression either
[13].

In order to avoid SSVR’s disadvantages, a new smooth support vector re-
gression based on ε-insensitive logistic loss function was proposed in this paper.

The paper is organized as follows: Section 2 provides a brief review over
support vector regression. A new smooth support vector regression based on
ε-insensitive logistic loss function is derived in section 3. Section 4 describes
the implementation details based on pure Newton method. Section 5 gives the
experiments results, and the conclusion of the paper lies in the last section.

2 Support Vector Regression

The basic idea in SVR is to map an input data x into a higher dimensional
feature space F via a nonlinear mapping φ and then a linear regression problem is
obtained and solved in the feature space. Therefore, the regression approximation
addresses the problem of estimating a function based on a given data set G =
{(xi, yi)}m

i=1 (xi ∈ Rn is the input vector, yi ∈ R is the desired real-value). In
SVM method, the regression function is approximated by

f(x) = 〈ω, φ(x)〉 + b (1)

where {φi(x)}m
i=1 are the features of inputs, ω and b are coefficients. The coeffi-

cients are estimated by minimizing the regularized risk function:

R(ω) =
1
2
‖ω‖2 + C

m∑
i=1

�Lε(f(xi), yi) (2)

where regularized term 1
2 ‖ω‖

2 is used as a flatness measurement of function (1),
C is a fixed constant determining the tradeoff between the training error and the
model complexity, and Lε(·) is the ε-insensitive loss function defined by Vapnik
[1]:

Lε(f(x), y) = max{|f(x)− y| − ε, 0} (3)

where ε is a prescribed parameter.
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There are two common approaches for regression minimization either the
sum of the absolute discrepancies over samples (

∑
i |f(xi) − yi|ε) or the square

of the discrepancies (
∑

i |f(xi) − yi|2ε). It has been proved that the squared
loss is sensitive to outliers, hence robust regression algorithms often employ the
absolute loss [13].

An introduction of slack variables ξ,ξ∗ leads Eq.(2) to the following quadratic
programming (QP) problem with 2m constraints and n+ 1 + 2m variables:

min
(ω,b,ξ,ξ∗)∈Rn+1+2m

1
2
‖ω‖2 + C

m∑
i=1

(ξi + ξ∗i ) (4)

s.t. 〈ω, φ(xi)〉+ b− yi ≤ ε + ξi
yi − 〈ω, φ(xi)〉 − b ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0 i = 1, · · · ,m

(5)

The classical Lagrange Duality enables above problem to be transformed to
its dual problem with 2m Lagrange multipliers:

min
(α,α∗)∈R2m

1
2

m∑
i=1

m∑
j=1

(αi−α∗
i )(αj−α∗

j )〈φ(xi), φ(xj)〉+
m∑

i=1

α(ε−yi)+
m∑

i=1

α∗
i (ε+yi)

(6)

s.t.
∑m

i=1(αi − α∗
i ) = 0

0 ≤ αi, α
∗
i ≤C i = 1, · · · ,m (7)

Based on the nature of quadratic programming, only a few of coefficients
among αi, α∗

i will be nonzero, and the data points associated with them refer to
support vectors. For computational convenience, the form 〈φ(x), φ(x)〉 in formula
(6) is often replaced by a so-called kernel function with the following form,

K(x, y) = 〈φ(x), φ(x)〉 (8)

And so, all the computations are carried on via kernel function in the input
space. Any function that satisfies Mercer’s Theorem can be used as a kernel
function such as Gaussian kernel K(x, y) = exp(−μ‖x − y‖2) and polynomial
kernel K(x, y) = (xT y + 1)p.

3 Smooth Support Vector Regression

The basic idea in smooth support vector machine consists of converting the
primal QP (Eq. 4&5) to a non-smooth unconstrained minimization problem,
and then using standard smoothing techniques of mathematical programming
[14,15,16] to smooth the problem.

Based on Karush-Kuhn-Tucker optimality conditions, the nonzero slacks can
occur outlier only, i.e. at the solution of QP, we have

ξ(∗) = max{|φ(x)ω + b− y| − ε, 0} (9)

where ξ(∗) denotes ξ and ξ∗.
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As described in [17] we minimize ‖(ω, b)‖2 at the same time, and transform
the primal QP problem to unconstrained minimization problem with n+ 1 +m
variables,

min
(ω,b,δ)∈Rn+1+m

1
2
(‖ω‖2 + b2) + C

m∑
i=1

(|δ|ε)i (10)

where δ = (φ(x)ω + b)− y.
Based on duality theorem we have ω = φ(x)α, α ∈ Rm,redefined (10) as

follows

min
(α,b)∈Rm+1

1
2
(‖α‖2 + b2) + C

m∑
i=1

(|K(xi, x)α+ b − yi|ε) (11)

Given that the objective function of this unconstrained optimization problem
is not smooth as its derivative is discontinuous at δ = ±ε. The Ref. [10] employed
a squared ε-insensitive p function to replace the last term in (11), where the ε-
insensitive p function is defined by

pε(x, β) = p(x− ε, β) = (x− ε) +
1
β

log(1 + e−β(x−δ)) (12)

Based on the squared ε-insensitive p function, redefined (10) as follows

min
(α,b)∈Rm+1

1
2
(‖α‖2 + b2) + C

m∑
i=1

(p2
ε(K(xi, x)α + b− yi, β)) (13)

where β is a smoothing parameter and the Eq.(13) was called as SSVR in [10].
The disadvantages of the SSVR (13) include twofold. Firstly the squared loss

is always sensitive to outliers. Secondly the selection of the smoothing parameter
β is heuristic, which would increase the difficulty of model selection of SVM.

In order to avoid SSVR’s disadvantages, we employed another smooth ap-
proximation, defined as ε-insensitive logistic loss function:

Llog(|δ|ε) = log(1 + e|δ|ε) (14)

We can describe |δ|ε as the form of |δ|ε = ((δ − ε)+ + (−δ − ε)+) (see Fig.1).
So, based on (14) we have following equation to approximate |δ|ε

Llog(δ, ε) = log(1 + eδ−ε) + log(1 + e−δ−ε)− 2log(1 + e−δ) (15)

where the constant term 2log(1 + e−δ) is set so that L(0, ε) = 0 (see Fig.2).
In Fig.2 we can observe that the ε-insensitive logistic loss function provides

a smooth upper bound on the ε-insensitive loss.
Since the additive constants do not change the results of the optimal regres-

sion, the constant is omitted in (15). Redefined (10) as follows,

min
(α,b)∈Rm+1

Ψ(α, b) =
1
2
(‖α‖2 +b2)+C

m∑
i=1

(log(1+eδi−ε)+ log(1+e−δi−ε)) (16)

where δi = K(xi, x)α+ b− yi.
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Fig. 1. Constructing ε-insensitive loss function |δ|ε(second) by (−δ − ε)+ (first) and
(δ − ε)+ (third) with ε = 5
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Fig. 2. Approximating ε-insensitive loss function (real) by ε-insensitive logistic loss
function (dot) with ε = 5

The major properties of this smooth unconstrained optimization problem
(16) are strong convexity and infinitely often differentiability, so we can solve it
by Newton method instead of QP packages used in conventional SVM.

4 Implementation of Lε-SSVR

By making use of the results of the previous section and taking advantage of the
twice differentiability of the objective function of Lε-SSVR (16), we prescribed
a pure Newton algorithm to implement Lε-SSVR.

Algorithm 4.1: Newton Method Algorithm for Lε-SSVR
(i) Initialization: Start with any (α0, b0) ∈ Rm+1, set λ = 1, i = 0 and
e = 1× 10−6;
(ii) Having (αi, bi), go to step (vi) if the gradient of the objective function of
(16) is not more than e, i.e. ∇Ψ(αi, bi) ≤ e; else, go to step (iii);
(iii) Newton Direction: Determine direction di ∈ Rm+1 according to Eq.(17),
in which gives m+ 1 linear equations in m+ 1 variables:

di = −[∇2Ψ(αi, bi)]
−1 · ∇Ψ(αi, bi) (17)
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(iv) Compute (αi+1, bi+1) according to Eq.(18):

(αi+1, bi+1) = (αi, bi) + λdi (18)

(v) Set i = i+ 1 and go to step (ii);
(vi) End

5 Experiments Results

The purpose of the experiments results carried out here is twofold. Firstly it
has to be demonstrated that the algorithm proposed here has better general-
ization capability than SSVR. Secondly it has to be shown that it is really an
improvement over the exiting approach in terms of CPU time.

The simulations were done in Matlab 7.0. Joachims’ package SVM light with
a default working set size of 10 was used to test the decomposition method.
The CPU time of all algorithms were measured on 3.0GHz P4 processor running
Windows 2000 professional.

Example 1. The training data were generated using the sinc function corrupted
by Gaussian noise.Picked x uniformly from [−3, 3], y = sin(πx)/(πx) + ν, where
ν drawn from Gaussian with zero mean and variance σ2. We generated 100
samples for train-set and 50 for test-set from this additive noise model.

We approximated the true function by Lε-SSVR with Gaussian RBF kernel,
C = 100, μ = 0.5, σ = 0.2 and ε = 0.01 . In addition, we also implemented the
SSVR with different smoothing parameters. The simulation results are shown in
Fig. 3. From Fig. 3 we can observe that the SSVR is quite sensitive to the choice
of the smoothing parameter. Table 1 illustrates the number of support vectors,
the train-set RMSE, the test-set RMSE and the time consumption for different
algorithms on sinc function datasets. From Tab.1 we can conclude that the gen-
eralization capability of Lε-SSVR is better than SSVR without compromising
train error and CPU time.
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Fig. 3. Approximating sinc function by Lε-SSVR (left) and SSVR (right) with different
smoothing parameters
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Table 1. Average results (50 trials) on sinc datasets with Root Mean Square Error

Dataset Method SV Num. Train Error Test Error CPU Sec.
Lε-SSVR 75 0.0481 0.0328 0.3

y = sic(x) + ν
SSVR 76 0.0481 0.0386 0.3

Table 2. Average results (100 trials) on two real-word datasets with Mean Square
Error

Dataset Method (C, μ, ε) SV Num. Test Error CPU Sec.
Boston Housing Lε-SSVR 173 8.9 0.89
Train size:481 SMO 173 9.7 2.30
Test size:25 SV M light

(500,1.5,2)
178 8.8 4.90

Abalone Lε-SSVR 1315 2.25 6.74
Train size:3000 SMO 1316 2.23 12.63
Test size:1177 SV M light

(1000,5,3.5)
1317 2.65 88.37

Example 2. In this experiment, we chose the Boston Housing and the Abalone
datasets from the UCI Repository [18]. The data were rescaled to zero mean
and unit variance coordinate-wise. Finally, the gender encoding in Abalone
(male/female/infant) was mapped into {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We used the
same kernel function as Example 1. Table 2 illustrates the training set size, the
number of support vectors, the test-set MSE and the time consumption for dif-
ferent algorithms on two real-word datasets.Here we can conclude that Lε-SSVR
is faster than other algorithms.

6 Conclusion

Based on the absolute loss of ε-insensitive logistic loss function, we have pro-
posed a new smooth support vector regression formulation, which is a smooth
unconstrained optimization reformulation of the conventional quadratic program
associated with an SVR. Taking advantage of this reformulation, we solved SVR
as a system of linear equations iteratively with the pure Newton Method. Com-
pared with SSVR, our new method demonstrated better generalization capability
without compromising the train error and CPU time. We also got the conclu-
sion that the new method is much faster than any other decomposition methods
mentioned in this paper.
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Abstract. In this study, two methods for the electrocardiogram (ECG) QRS 
waves detection were presented and compared. One hand, a modified approach 
of the linear approximation distance thresholding (LADT) algorithm was studied 
and the features of the ECG were gained for the later work.. The other hand, 
Mexican-hat wavelet transform was adopted to detect the character points of 
ECG. A part of the features of the ECG were used to train the RBF network, and 
then all of them were used to examine the performance of the network. The 
algorithms were tested with ECG signals of MIT-BIH, and compared with other 
tests, the result shows that the detection ability of the Mexican-hat wavelet 
transform is very good for its quality of time-frequency representation and the 
ECG character points was represented by the local extremes of the transformed 
signals and the correct rate of QRS detection rises up to 99.9%. Also, the 
classification performance with its result is so good that the correct rate with the 
trained wave is 100%, and untrained wave is 86.6%. 

1   Introduction 

Classification of the ECG using Neural Networks has being a widely used method in 
recent years [1, 2, 3, 6]. The far-ranging adopted method has represented its inimitable 
superiority in the field of signal processing. But the recorded ECG signals with much 
continues small-amplitude noise of various origins, are weak non-smooth, nonlinear 
signals. If inputting the ECG signals into the network directly, the redundant 
information would make the structure of the network much complex. But if only 
inputting the features of the ECG, the data would be reduced much, and this is also 

                                                           
∗ This Work Supported by the Natural Science Foundation of China(No.60074014). 



34 Mozhiwen et al. 

accorded with the processing course of humans that first extracting the features from 
the stimulators and then transmit it up to the centre neural. In general there are two main 
aspects to get the features by analyzing the ECG signals, the single lead method and the 
multi-lead method. Analyzing with multi-lead ECG signals, the information of all leads 
are integrated and the result is always better than that with single lead.In this paper, 
multi-lead signals were adopted in detection of the QRS complex. According to the 
relation that the character points of the ECG were homologous with the local extreme 
points of the ECG signals preprocessed by multi-scale wavelet transform, the character 
points of the ECG were determined and more, many features represent the trait of the 
waves were gained [8]: heart-rate, the QRS complex width, the Q-T. intervals, and the 
amplitudes of all the waves etc. 

In comparison, another ECG detects method: a modified approach of the linear 
approximation distance thresholding (LADT) [4, 10, 11] algorithm was studied. Also with 
multi-lead ECG signals, first the modified fast LADT algorithm was adopted to 
approximate the ECG signals with radials, and thus get the feature vectors representing 
the signals: the slope of the segment, the length. And then, calculate the vectors to 
determine the position of the R peak, and more, get the position of the whole QRS 
complex and its duration and amplitudes. 

All ECG features attained from these two methods were putted separately into a 
RBF network to classification. A part of the features were used to train the network, and 
then all of them were used to examine the performance of the network. As tested, the 
two classification methods both performed well, not only in the training speed, but also 
in the classification result. And as the great feature extraction powers of the wavelet 
transform, it performed better than the LADT method, and the classification 
performance with its result with the trained wave is 100%, untrained wave is 86.6%. 

2   Detection Algorithm 

The detection and the features extraction are the key for ECG analysis. And the 
detection of the QRS complex is the chief problem in the ECG analysis, only when the 
position of the R wave is determined can the other details of the ECG be analyzed.  

In R wave detection, the fast LADT algorithm and wavelet transformation method 
were innovated. 

In recent time, the methods on the QRS detection had flourished: signal filter, 
independent component analysis, wavelet transform, and neural network. Especially 
wavelet transform method has a peculiarity that it has finite-compact support sets in the 
time-scale domain, it can form an orthogonal basis with the translation in the position 
and the alternate of the scale and it has alterable time-scale resolving power, thus it has 
a splendid feature extraction power. 

On the study of the wavelet transformation method[5-7, 9], it is found that with the 
transform using spline wavelet, the zero-crossing points of the modulus maximum pairs 
should be detected. But the detection of zero-crossing points was always encumbered 
by the noise of the ECG signals. And the detection of the modulus maximum pairs is 
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not easy yet. However it is found that the Mexican-hat wavelet has many advantages in 
detecting the R waves and even other waves such as Q and S waves. 

In the study on the LADT, it was found that the fast LADT algorithm has some 
weakness.  

 

 

Fig. 1. Theory of LADT 

The fast LADT Approximation theory is as follow [10, 11]:  
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To get the distance the points on the BAA1  from the line segment AB , a precision 

as the maximum distance σ  was decided, 
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According to (1) (2) (3): 
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thus     |d| < σ   if and only if  2/12 ))/(1(|| taa +< σ , 

viz.       2/12
max ))/(1( tad += σ     (5) 

When the precision σ  is decided, the only thing need to judge the satisfaction of the 
line segment is to calculate the amplitude distance between the point on the ECG 
signals and the corresponding point on the approximating line segment. 

But when determined another endpoint making the radial become a segment, the 
endpoint could not be fixed on the ECG signals, and thus, the start point of the next 
segment could not be on the ECG segment. Further more, as function 9, maxd  is the 
distance threshold, σ  is the precision determined at first, and k  is the slope of the 
approximation segment. It can be seen that the maxd is determined by the k  each 
time. 

       ||)1( 2/12
max kkd σσ ≈+=                                    (9) 

In the instance when the slope of the segment is very big, such as at the R wave 
period, the threshold could be very big too. Especially, when the ECG signal changes 
from the R wave to the base-line, as the slope of the segment approximates the R wave 
is very big, the segment will cross the ECG signal and only a few points can satisfy the 
precision, thus the saw-tooth like approximation appears. The reason is that the 
endpoints of the segment cannot be determined properly.  

In order to amend this disadvantage, we fixed the endpoints on the ECG waves and 
performed the new fast LADT algorithm and got the features of the ECG. As the slope 
and length of each position of the ECG has their peculiarities, we can detect the 
positions of the R waves. 

3   Detection of Waves 

3.1   Detection with Wavelet Transform Method  

When the signals being processed by the wavelet transform, the noise of the signal was 
restrained and the feature information was extruded. As on the scale of 23,24, the high 
frequency noise was well restrained, these two scales were selected out for the 
detection work. As the former theory, the position of the R peak was corresponding 
with the local extreme of the transformed signal on the scale 24, so a threshold could 
judge the R peak, and if any, it could be located in this field as a window.  
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As figure 1, the transform result of the ECG T103 with a spline wavelet:  
 

 

ECG data T103 

 

Transformed with spline wavelet 

 

Transformed with Mexican-hat wavelet 

Fig. 2. Results of two wavelet transformations to ECG 

The position of the R peak is just the obvious peak thus the local extreme of the signals 
transformed with the Mexican-hat wavelet, and then, to determine the position of the R 
peak is to find the local extreme. Then it overcomes the complexity that if transformed 
with spline wavelet, the modulus maximum pairs should be found first, and then 
zero-crossing points of in it should be detected. As the Mexican-hat wavelet was adopted, 
the process of the R detection could be simplified and this also improved the detection 
performance, the correct rate had achieved at 99.9%. 

The process is as bellow: 

(1) Read the ECG signal randomly, transform the signals with the Mexican-hat 
wavelet using the Mallat algorithm and get the signal )(2 nd j

 representing the 
details of multi-scale. 

(2) Select a part of the ECG signals, decided the precisions 
jRth  of the detail 

signals )(2 nd j
 on each scale, and detect the local extremes Mo of )(3

2 nd  

with the threshold 
3Rth  on the scale of 23. 

(3) Modify the local extremes Mo according to the refractory period to Mo1. 
(4) Detect the local extreme of the original signal to get the position of the R peak in 

the field of 10ms corresponding to the local extremes Mo1 and calculate the 
mean time between two R peaks Tm. 

(5) Examine whether the interval of the two R peaks is bigger than 1.7Tm, if it is, 
that means some R peak was failed and then halve the threshold, and detect 
again as former steps and thus get the R peaks 
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3.2   Detection of Other Peaks 

The ECG signals are constituted by a sequence of component-waves separated by 
regions of the zero electrical activity, called iso-electric regions. Under normal 
conditions, the compo- nent-waves repeats themselves in a rhythmic manner with a 
periodicity determined by the frequency of impulse generation at the sino-atrial node. A 
single ECG beat is made up of three distinct component-waves designated as, P, QRS 
and T-waves, respectively. Each compo- nent-wave corresponds to the certain moment 
of the electro-physiological activity. 

The wavelet transform has the quality of time-frequency representation in local 
period, that it has the peculiarity to analysis the time changing signals. In the analysis of 
the ECG signals, the binary wavelet transform method was adopted. As multi-scale 
transform is adopted, when the ECG signal was transformed with multi scales, the 
character points such as Q, S, P and T waves, were just correspond with some local 
extremes of the transformed signals. Thus the waves of the ECG can be all detected and 
the features of the ECG such as the QRS-complex width, P-Q and Q-T intervals, the 
height of each wave etc. Thus the classification about the ECG using neural network 
can be done. The transformed signals in various scales as in figure 2, the top signals is 
the original signal of ECG, and the transformed signals of 21�26 are underneath it in 
turn. 

 

Fig. 3. Multi-scale ECG signal 

Wave Q and S is always with high frequency and low amplitude, that their energies 
are chiefly on these small scales of the transform. Thus they could be detected on these 
scales. The Q wave is a downward wave before the R wave and the S wave is a 
downward wave after the R wave. Thus the local extreme in a certain period (about 
100ms) left to the R peak is corresponding to the Q wave, the local extreme in the 
certain period right to the R peak is corresponding to the S wave. If there is no local 
extremes in these periods, that means the wave Q and wave S is not exist. 

The detection of P wave is very important to ECG analysis, but the amplitude of it is 
small, and the frequency is low too. It is difficult to separate it from the noise. Analysis 
from the figure 1, it can be found that at the position of the P waves and T waves, on 
signals of the scales of 25, 26, there are some distinct waves accordingly. Thus the work 
to detect the wave P and wave T could be achieved respectively on the signals of the 
scales 25, 26. 

 



Neural Network Classifier Based on the Features of Multi-lead ECG 39 

And more, the features of the wave P and wave T are not so obvious as the QRS 
complex, and the boundaries of the wave P and T are misty that the study on wave P and 
T is also not as consummate as it of the QRS complex. But, the P wave, QRS complex, 
T wave come forth by turns, that when the start and end positions were determined, it 
could be conclude that the two most distinctive wave between the successive two QRS 
complex are the wave P and wave T. 

The extraction of the features of the ECG, such as the width of the QRS complex, the 
P-Q and Q-T intervals, need the accurately determining of the start and end point of the 
waves, is a classical problem in the analysis of the ECG signals. The start and end point 
are also corresponding to the local extremes according to its frequency as transformed 
by wavelet. The start point of QRS complex is just the start point of the wave Q; if there 
is no wave Q, it is the start point of wave R. And the end point of the QRS complex is 
the end point of wave S; if there is no wave S, it is the end point of wave R. The start 
point of the QRS complex is corresponding to the sudden slope change point before the 
wave Q on the signal of scale 21, or the sudden slope change point before the wave R if 
the wave Q is not exist. And the end point of the QRS complex is just corresponding to 
the sudden slope change point behind the wave S, or the point behind the wave R, if the 
wave S is not exist. The start and end point of wave P and wave T is just corresponding 
to some local extremes on the scale 25. Thus the start and end point could be determined 
by detecting the character points of the ECG. 

And more, as the start and end points of each waves were determined, the parameters 
significant to indicate the meaning of the ECG, such as the hear-rate, P-R and Q-T 
interval, the QRS complex width, the VAT, the time of a beat, and the amplitude. In the 
analysis of ECG, these parameters are very momentous to estimate the types of the 
ECG signals. 

3.3   Detection with Modified LADT Method  

As the ECG signal was approximated, the slope and the length of the approximating 
line segments can be formed in a vector. This vector contained the information of the 
ECG, can be used to detect the R peak. As in experimentation, two channel ECG 
signals was adopted and 40 sects of signals was picked each channel. Each sect is 3 
seconds long. The process is as follows: 

(1) Approximate the signal sects with the former algorithm, and gain the vectors of 
the slopes and the lengths of the segment. 

(2) Decide the threshold of the slope, for that the R peak is the most sharp part in the 
whole heart beat periodicity; Decide the threshold of the length, for that the R 
peak always is the highest peak and the approximating segment is always the 
longest. And then, get the segments of the R peak. And according the LADT 
theory, the local extreme point of the endpoint of the segments is probably the R 
peak. 

(3) According to the refractory period, remove the peaks falsely detected such as 
too close to another one and get the ultimate position of R peak. 
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When examine with the signals from MIT-BIH, the position of the R peak could be 
detected correctly with the rate better than 99.5%. 

The position of the other waves and their start and end points were be determined 
with the method similar to the method of the wavelet transform. The position of the 
character points are just corresponding to some local extremes of the approximating 
line segments. 

To determine the position of the peak, start and end points of each wave, a different 
method was adopted that with a local coordinate transformation, analysis the potential 
position of those waves. According to the feature of the ECG, the most sharpest 
position is corresponding with the biggest slope line segment, and that the absolute 
value of the first derivative is the biggest. And at the position of the start and end point 
of each wave, the slope of the line segment changes most acutely, that the second 
derivative there is the biggest. And thus, the characters of the waves were obtained. 

4   Classification Experiment 

4.1   Classification Network 

With the high capability of classification from Radial-basis network, the features of the 
ECG were classified in a high dimensions space.  

In the experiment, first step, the multi-scale wavelet transform method was adopted 
separately to detect the R and other waves as well as the modified LADT algorithm. 
Second step, the features of the ECG were extracted according the positions of all the 
waves. Third step, some features of each ECG were picked out randomly to train the 
network. Thus the disease classification knowledge was stored in the conjunctions of 
the network. Then the trained network could be adopted to classify the whole feature 
vectors. Last step, all features were calculated by the RBF network; the output of the 
network is just the result of the classification. 

Accordingly, a multi-layer perception was adopted to classify the ECG signals. But 
as the weight of the conjunction was modified with the negative-grads-descend 
method, when the network was trained with the BP algorithm, the convergence speed 
was low and had the short of local extreme. Thus the time for training must be tens or 
even hundreds times of the training time for the RBF network. Therefore, the ability 
and the learning speed of the RBF network were some better than the BP network.  

Thus this method exerts the excellence of both wavelet transform and neural 
network, gained the feature vectors well and truly, thus presents a high quality classify 
network. 

4.2   Classification Experiment 

To test the classification system present above, some ECG signals from the MIT-BIH 
database from the MIT-BME USA were classified in MATLAB toolbox.  

The RBF network in the system has 20 cells in the input layer, corresponding to the 
features of the two channels ECG; there are 10 cells in the output layer, corresponding 
to the 10 types of selected ECG signals. 40 sects of each disease case were selected 



Neural Network Classifier Based on the Features of Multi-lead ECG 41 

randomly, and analysis them with the wavelet-transform method and the LADT 
method, and thus the features of each case were obtained. Then 20 sects of each case 
were selected randomly to train the network. At last, the trained network to test the 
efficiency of the system classified all sects. 

The classification result was presented in the table 1 and table 2. Table 1 is the result 
of classification with the features extracted with the wavelet transformation. Table 2 is 
the result of classification with the LADT method.  

All the ten ECG signals were elected according to the article [1], signal T100 is 
mostly normal, T105, T108 and T219 have several PVC, T106 and T221 have many 
PVC, T111 and T112 are BBB, T217 has several PVC and FUS, was paced style, T220 
has several APC.  

Table 1. Results of the classification with wavelet and neural network 

Rec. No. Waves 
learned 

Waves 
tested 

Correct rate 
(trained) 

Correct rate 
(untrained) 

T100 
T105 
T106 
T108 
T111 
T112 
T217 
T219 
T220 
T221 

Total/average 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 

100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 

95.2% 
81.0% 
69.2% 
75.0% 
95.0% 
100% 
82.6% 
87.0% 
100% 
81.0% 
86.6% 

Table 2. Results of the classification with LADT and neural network 

Rec. No. Waves 
learned 

Waves 
tested 

Correct rate 
(trained) 

Correct rate 
(untrained) 

T100 
T105 
T106 
T108 
T111 
T112 
T217 
T219 
T220 
T221 

Total/average 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 

100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 

95.2% 
65.4% 
51.9% 
81.0% 

100.0% 
86.4% 
71.4% 
90.5% 
69.6% 
70.8% 
78.2% 
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From the tables above it can be conclude that the features of the ECG of two leads 
were integrated for the classification. It simulates the situation of the real world 
situation that it classified the ECG according to the relations of the amplitude and width 
of each waves with a RBF network. This method exerted the splendid character 
extraction ability and the excellent peculiarity of the network on the classification, 
which managed the classification work to a good level both in speed and the veracity. In 
the experiment, the classification system gave a good performance. To the waves been 
used to train the network, the classification ability is perfect that the correct achieved 
100%. To the waves not used to train the network, the performance is also good that the 
correct rate is 78.2 using the LADT method, with the wavelet-transform method, the 
correct rate is 86.6%, which are both much better than other classified system, and the 
wavelet-transform method is better than the LADT method for its accuracy feature 
extraction ability. 

In order to compare, the experiment with BP network and the wavelet-transform 
method was test accordingly. As the accuracy feature extraction ability of 
wavelet-transform, the correct rate is also very good, but as the speed of the BP is very 
slow, the training time of it is hundreds times of the RBF network. 

5   Conclusion 

In this study, two feature extracting method were compared. First Mexican-hat wavelet 
transform was adopted to detect the character points of ECG for it has the quality of 
time-frequency representation and the ECG character points was represented by the 
local extremes of the transformed signals. In succession, the modified LADT method is 
adopted to detect the character points.  

And with the high capability of classification from Radial-basis network, the 
features of the ECG were classified in a high dimensions space along the theory of the 
ECG diagnose and the situation of ECG diagnose in practice.. This method exerts the 
excellence of both feature extraction methods and neural network, gained the feature 
vectors well and truly, thus presents a high quality classify network. Thus take a new 
idea for the ECG automatic analysis.  
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Abstract. A new hybrid learning algorithm combining the extended Kalman fil-
ter (EKF) and particle filter is presented. The new algorithm is firstly applied to 
train diagonal recurrent neural network (DRNN). The EKF is used to train 
DRNN and particle filter applies the resampling algorithm to optimize the parti-
cles, namely DRNNs, with the relative network weights. These methods make 
the training shorter and DRNN convergent more quickly. Simulation results of 
the nonlinear dynamical identification verify the validity of the new algorithm. 

1   Introduction 

Diagonal recurrent neural network (DRNN) was firstly put forward by Chao-Chee 
Ku, etc [1]. It only has self-feedback connections among the neurons in the hidden 
layer and it has been becoming one of the hottest research topics for it may obtain the 
tradeoff between the training cost and accuracy. 

Chao-Chee Ku, et al applied the dynamical BP algorithm to train DRNN [1]. But 
the dynamical BP algorithm needs to adjust the learning rates. The tuning of the learn-
ing rates is relatively complex and the convergent speed is also very slow. Williams 
R.J. introduced the extended Kalman filter (EKF) algorithm for recurrent neural net-
work (RNN) [2]. Although having high convergent speed, the EKF has low accuracy. 
And he augmented the output variable to the state vector in [2]. Thus, the calculations 
of the covariance of the state vector and the filtering gain, etc are relatively complex. 
de Freitas J.F.G., et al combined the EKF and particle filter to train a multilayer per-
ceptron (MLP) [3]. But MLP is a feed-forward neural network. And DRNN is not a 
static mapping as MLP dose, outputs of DRNN are affected by inputs of both the 
current and the previous time steps. So it is not suitable to train DRNN by the means 
in [3] in each training cycle. 

In this paper, we firstly combine the EKF and particle filter to train DRNN. We use 
an effective method to exactly evaluate the weights of particles, and then the resam-
pling step may be just run to optimize particles with respective network weights. 
Thus, the fast convergent speed of the EKF and the optimization function of particle 
filter are incorporated into training DRNN. The nonlinear dynamical identification 
                                                           
* This work is supported by the National Natural Science Foundation of China, No. 50405017. 
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experiments demonstrate that the new algorithm can effectively be applied to train 
DRNN. 

2   Diagonal Recurrent Neural Network 

The model architecture of DRNN is shown as Fig. 1. Suppose DRNN has P input 
neurons, R recurrent neurons and M output neurons. WI, WD or WO represents input, 
recurrent or output weight vectors respectively. 

Wij
I 

Wj
O

O(t)…
I1 

I2 

IP 
…

sigmoid neuron

Wj
D

=
Delay

Linear neuron

 

Fig. 1. The model architecture of DRNN 

For each discrete time k, Ii(k) is the ith input, Sj(k) is the sum of inputs of the jth re-
current neuron, and Om(k) is the output of the mth output neuron. The mathematical 
model of DRNN can be inferred as [1]: 
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where f(.) is sigmoid function which is often f(x)=1/(1+e−x). From the negative gradi-
ent descent rule, the weight vector of DRNN is updated as follows: 

)/()()1( WJkWkW m ∂∂−=+ η = )/)()(()( WkOkekW m ∂∂+η  (4) 
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where η is the learning rate, Jm represents the function of error, em, of output between 
the plant and DRNN. From the chain rule of deriving the difference, we can have the 
output gradients with respect to input, recurrent and output weights respectively: 

)()(/)( kXkWkO j

O

mjm =∂∂  (5) 
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I

ijm
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3   Particle Filter 

Particle filter uses a set of randomly sampled particles (with associated weights) to 
approximate poster density function (PDF). So particle filter is not affected by the 
non-linear and non-Gaussian problems, now it has been widely applied to robotics, 
computer vision, statistical signal processing and time-series analysis, etc [4]. Sup-
pose Yk={y1,…,yk}, Xk={x1,…, xk} represent the measurements and state sequences up 
to time k respectively. Bayesian recursive estimation includes prediction and updat-
ing: 

11111 )|()|()|( −−−−− = kkkkkkk dxYxpxxpYxp  (8) 

)|(/)|()|()|( 11 −−= kkkkkkkk YypYxpxypYxp  (9) 

where p(xk|xk-1) is the transition density of the state, p(yk|xk) is the likelihood and the 
denominator p(yk|Yk-1) is the normalized constant. 

The analytical solutions to the above integrals are generally hard to be acquired. If 
we can sample particles from PDF, PDF may be approximately represented by these 
particles.  
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=
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where i
kx  is the ith particle with the relative weight i

kw , randomly sampled from the 

PDF. δ(.) is Dirac delta function. 
It is often not possible to directly sample from PDF, but we can approximate PDF 

by sampling from a known proposal distribution, q(.), that is easy to sample. From the 
large number theorem, the randomly sampled discrete particles are convergent to true 
distribution. The weight wk is defined as: 

)|(/)()|()( kkkkkkk YxqYpYxpxw =  (11) 

where q(xk|Yk) is the proposal distribution (function).  
As the states follow a first-order Markov process, we can obtain a recursive esti-

mate of the importance weights [3]: 
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),|(/)|()|( 111 kkkkkkkkk YXxqxxpxypww −−−=  (12) 

To reduce the effect of the degeneracy in the algorithm, Gordon, et al [5] intro-
duced the resmpling step, which evaluates weights of particles and resamples particles 
to eliminate particles with small weights and to multiply particles with large weights. 
Thus, prediction, updating, evaluating and resampling constitute the basic particle 
filter. 

Particle filters require the design of proposal distributions that can approximate 
PDF as well as possible. The optimal proposal distribution requires it to sample from 
the integrals [6] and it is often hard to be implemented in practice. Some suboptimal 
proposals including the prior proposal [5], the EKF proposal [3], etc are presented. 
The prior proposal, )|(),|( 11 −− = kkkkk xxpYxxq , has no considerations of the latest 

measurements and the evaluation of the weight is simplified as evaluating the likeli-
hood, )|(1 kkkk xypww −= . The EKF proposal uses the EKF to update each particle 

and is firstly used to train a MLP [3]. For DRNN is very different from MLP, we 
develop a new hybrid learning algorithm combining the EKF and particle filter to 
train DRNN. 

4   A New Hybrid Learning Algorithm 

For DRNN may memorize previous network states, it is not suitable to simply ap-
praise the performance of DRNN and resample particles in every training cycle. In 
each training cycle, the EKF is used to update network weights of every particle 
(DRNN). When DRNN has been trained after some training cycles, weights of parti-
cles are just exactly evaluated in this certain fixed-length training period. And then, 
the resampling algorithm is run to multiply good particles and reduce bad ones. Thus, 
a new algorithm incorporating fast convergent speed and high accuracy is developed. 

Now the updating of network weights is represented in the form of state space 
model: 

W(k)=W(k-1)+v(k-1) (13) 

y(k)=h(u(k),W(k))+r(k)  (14) 

where the state vector W(k)=[WI(k) WD(k) WO(k)]T contains all network weights. u(k) 
is the input signal, y(k) is the output of DRNN. v(k), r(k) is the uncorrelated white 
Gaussian process, measurement noise respectively.  

Main steps of the new algorithm are described as follows: 

1) Initialize network weights of each particle (DRNN). 
2) In the start training cycle of a fixed-length training cycles, update network weights 
of every particle with the EKF. 

1
ˆˆ

−
− = kk WW  (15) 

11 −−
− += kkk QPP  (16) 
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where Pk is the covariance of the state, Qk, Rk is the covariance of process, measure-
ment noise respectively. Hk is the local linearized measurement matrix which is calcu-
lated as: 

WWkuhH kkk ∂∂= − /)ˆ),(( = WOk ∂∂ /  (20) 

3) When DRNN is trained to the end training cycle of a certain fixed number of train-
ing cycles, weights of particles, that is, performances of DRNNs, are evaluated. The 
weight of ith particle is defined as: 

∏
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where ξij= yj − i
j, L denotes the number of training cycles. j

i is the output of ith parti-
cle (DRNN) and yj is the desired output of the plant in the jth training cycle.  
4) The multinomial resampling algorithm [5] is run to produce new discrete particles 
with optimized network weights. Particles with all relative network weights, which 
have large weights, are multiplied. Particles with small weights are eliminated. After 
resampling, all weights of particles are set as being identical. 
5) If the training error is decreased into the desired error bounds, the training is ended. 
Otherwise, move to the next start training cycle. Repeat step 2), 3), 4) and 5) up to the 
end of training. 

5   Simulations 

In this paper, we adopt the series-parallel identification model to simulate with two 
typical plants [7]. In the simulations, we compare the EKF training algorithm and our 
new hybrid training algorithm (EKF-PF).  

The training accuracy is raised with the increased particles and the shorter length of 
training cycles. But at the same time, the computational cost becomes greatly higher. 
Considering the tradeoff between the computational cost and the accuracy, we set the 
values of all parameters empirically by a great deal of simulations. The covariance of 
process noise, measurement noise is Q=qδij, q=0.0001, R=100 respectively. The initial 
covariance of the state is set as P0=pδij, p=1000. The learning rate is 0.5.  

Example 1: A nonlinear plant is described by the first-order difference equation: 
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Series-parallel identification model has two DRNN, Nf[y(k)] and Ng[u(k)], that are 
to be identified. Nf[y(k)] represents that a DRNN with one network input variable y(k) 
would approximate the function f[.]. Each DRNN has 1 input neuron, 10 recurrent 
neurons and 1 output neuron. The number of particles is 8 and the fixed length of 
training cycles is 8. 

The training input u(k) is chosen as an i.i.d. random signal uniformly distributed in 
the interval [-2, 2]. When trained with only 600 random data, the training error of 
DRNN is convergent into the desired error range. After training, the input test signal 
is u(k)=sin(2πk/25)+sin(2πk/10), where k=1,2,…,100, output of the plant and outputs 
of DRNN trained by the EKF and our new EKF-PF algorithm respectively are shown 
as Fig. 2. 
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 u(k)=sin(2π k /25)+sin(2π k/10)

 

Fig. 2. Outputs of single-input nonlinear plant and the DRNN 

Example 2: A multi-input nonlinear dynamical plant is governed by the following 
form: 
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The training input u(k) is chosen as an i.i.d. random signal uniformly distributed in 
the interval [-1, 1]. The DRNN has 5 neurons, 20 recurrent neurons and 1 output neu-
ron. After training with 600 random data, the input test signal is selected as 
u(k)=sin(2πk/250) for k≤500 and u(k)=0.8sin(2πk/250) + 0.2sin(2πk/25) for k>500. 
Outputs of DRNN trained by the EKF and our EKF-PF respectively and output of the 
plant are shown as Fig. 3.  

As seen from the figures, the DRNN trained by our new algorithm can approximate 
the plant quite accurately.  
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Fig. 3. Outputs of multi-input nonlinear plant and the DRNN 

6   Conclusion 

In this paper, the extended Kalman filter (EKF) and particle filter are firstly combined 
to train diagonal recurrent neural network (DRNN). The new hybrid algorithm not 
only has the fast convergent speed of the EKF, but also has the “survival of the fittest” 
of particle filter. The experiments confirm that the new algorithm is valid. 
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Abstract. Based on rolling optimization method and on-line learning strategies, 
a novel weighted least squares support vector machines (WLS-SVM) are pro-
posed for nonlinear system identification in this paper. The good robust prop-
erty of the novel approach enhances the generalization ability of LS-SVM 
method, and a real world nonlinear time-variant system is presented to test the 
feasibility and the potential utility of the proposed method. 

1   Introduction 

As a novel breakthrough to neural network, Support Vector Machines (SVM), origi-
nally introduced by Vapnik [1] within the frame of the statistical learning theory, has 
been frequently used in a wide range of fields, including pattern recognition [2], re-
gression [3] and others [4], [5]. In this kernel-based method, one starts formulating 
the problem in a primal weight space, but maps the input data into a higher dimen-
sional hypothesis space (so-called feature space) and constructs an optimal separating 
hyper plane by solving a quadratic programming (QP) in the dual space, where kernel 
functions and regularization parameters are chosen such that a regularized empirical 
risk instead a conventional empirical risk is minimized. The solution of this convex 
optimization problem leads to the sparse and robust solutions (or good generalization 
capability) of the model.  

Despite many of these advances, the present SVM methods were basically re-
stricted to static problems. It is known that the use of SVM in a dynamical system and 
control context becomes quite complicated [8], due to the fact that it is a very strin-
gent requirement to solve online for a large-scale QP problem in standard SVM. As a 
reformulation of standard SVM, a least squares version of SVM (LS-SVM) that leads 
to solve linear KKT systems has been extended to dynamical problems of recurrent 
neural networks [6] and used in optimal control [7]. While comparing with neural 
network and standard SVM, LS-SVM based control has many advantages such as: no 
number of hidden units has to be determined for the controller, no centers has to be 
specified for the Gaussian kernel, fewer parameters have to be prescribed via the 
training process, and the linear KKT systems can be efficiently solved by iterative 
methods.  It is well known that it is very convenient and straightforward to construct a 
learning model of static (or time-invariant) problems via LS-SVM, however, noting 
the learning process is off-line, and the train data is selected as a batch before the 
whole process, the present LS-SVM methods were basically restricted when extended 
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to time-variant dynamic system and on-line learning process.  Therefore, a practical 
on-line learning approach based on weighted LS-SVM (WLS-SVM) method is 
mainly elaborated for nonlinear system identification in this paper. 

This paper is organized as follows. In the next section we first give a brief review 
on LS-SVM method, then we focus on a practical approach to construct an on-line 
WLS-SVM method for nonlinear dynamic system modeling. In section 4, a numerical 
experiment is presented to assess the applicability and the feasibility of the proposed 
method. Finally, Section 5 concludes the work done. 

2   Least Squares Support Vector Machines 

Given a training data set D of l  samples independent and identically drawn (i.i.d.) 
from an unknown probability distribution Y)(X,μ on the product space 

YXZ ×= : 

)},(),,({ 111 lln yxzyxzD ===  (1) 

where the input data X is assumed to be a compact domain in a Euclidean space Rd 
and the output data Y is assumed to be a closed subset of R .  

In the case of Least Squares Support Vector Machines (LS-SVM) , function esti-
mation is defined: 

( ) ( )Tf x w x b= Φ +                                             (2) 

One defines the optimization problem. 

eewwewJ TT

ebw 2

1

2

1
),(min

,,

γ+=                       (3) 

s.t. 

( ) , 1, ,T
k k ky w x b e k l= Φ + + =                  (4) 

where e 1×∈ lR denotes the error vector, regularization parameter γ  denotes an arbi-

trary positive real constant.  
The conditions for optimality lead to a set of linear equations: 

       
1

0 1

1

T

Iγ −Ω +
 

α
b

=
y

0
                                 (5) 

where 1 2,[ , , ] ,T
ly y y y=  11 [1, ,1] T

l×=  , 1[ , , ]T
lα α α= , 

( ) ( ) ( , )T
ij i j i jx x K x xΩ = Φ Φ = ,   , 1, ,i j l=   .  
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The resulting LS-SVM model for function estimation becomes: 

1

( ) ( , )
l

k k
k

f x K x x bα
=

= +                 (6) 

where kα , b are the solution to the linear system (5). 

 Due to page limitation, more details of standard SVM and LS-SVM please further 
the reference [1], [8]. 

3   On-Line Weighted LS-SVM Method  

In empirical data-based modeling, learning process of LS-SVM is used to build up 
some general model off-line based on the input and output data-pairs of the system, 
from which it is hoped to deduce the prediction responses of the system that have yet 
to be observed. As we know, the model of the system can be expressed with regard to 
the basis elements of the hypothesis space, and it will obtain “good” generalization if 
the hypothesis space can cover most of the target space. However, the observational 
nature data obtained is frequently finite and sampled non-uniform over the whole 
domain in practical. The hypothesis space, in which we select some function f based 
on the empirical (training) data to construct the model of the nonlinear system, is 
frequently only a subspace of the target space. Hence, the model of the system will 
obtain “bad” generalization capability while using it to predict the response beyond 
the hypothesis space. In order to solve this problem, we have to learn on-line with the 
shifting of the work domain. Inspired by the rolling optimization method in control 
area, we adapt a sliding window method to solve this problem.  

Given a nonlinear system with input and output pairs: 
 

1 1 1 1{( , ), , ( , ), ( , ), ( , ), }i i i i l lx y x y x y x y+ +
dR R∈ ×

            
 (7) 

Let assume the response of system at certain work domain is completely illustrated 
with the past observational data in a sliding window with the length W. 

 i) Recursive Incremental learning method 
When the data points arrive at the system less than W, we propose a recursive in-

cremental algorithm for learning process. The train data set is as follows: 

 1 1{( , ), , ( , ), , ( , )},i i m mx y x y x y m W≤
    

 (8) 

where ,d
i ix R y R∈ ∈ , 1, ,i m= . 

In order to obtain an on-line robust estimate based on the precious LS-SVM, in a 

subsequent step, one can weighted the error variable /k ke α γ=  by weighting fac-

tors kv in (3). 

A similar derivation as the standard LS-SVM can be made. The conditions for op-
timality lead to a set of linear equations: 
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1

1

0

1 1 1

1

1

( , ) 1/

( , )m

K x x v

K x x

γ+ 1

1

( , )

( , ) 1/

m

m m m

K x x

K x x vγ+

 
1

m

b

α

α

=
1

0

m

y

y

    (9) 

For incremental learning process, the sampled points of the train set increase step 
by step with the time, hence the Grammar matrix of kernel Ω , the Lagrange multi-
pliers α  and bias term b in (9) can be identified as the function of the time m.  From 
(9), we obtain  

   
0

1e

1

( )

Te

H m
 

( )

( )

b m

mα
=

0

( )y m
        (10) 

where e1 is the column vector with appreciate dimension of elements “1”, 

1( ) ( , , )T
mmα α α= , ( ) mb m b= , 

and
1

1 1
( ) ( , ) { , , }m i j

m

H m x x diag
v vγ γ

= Ω + , , 1, ,i j m= . 

Rewritten (10), it is easy to deduce           
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(11) 

In order to compute the factors of ( )mα , ( )b m recursively, let define  

1( ) ( )U m H m −=  (12) 

The dimension of matrix in  (12) is m m× . It is known that we can select direct 
inverse method when dimension is small or a Hestene-Stiefel conjugate gradient algo-
rithm for solving the inverse of a large-scale matrix [9]. However, we have to calcu-
late  (12) at every time when a new sample comes to the sliding window, and it leads 
to heavy computation burden of the on-line learning algorithms. Here we select a 
recursive algorithm to solve this problem. 

From (10), we obtain 

1 1 1

1

( , ) 1/
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( , )m
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=
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For the next moment m+1, we get 

( 1)H m + =
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 Substitute (13) in (14), with the symmetric positive definite properties of kernel 
function, we obtain 

( )
( 1)

( 1)T

H m
H m

V m
+ =

+
( 1)

( 1)

V m

h m

+
+

          (15) 

where 
 

1 1 1( 1) [ ( , ), , ( , )]T
m m mV m K x x K x x+ ++ = , 1 1

1

1
( 1) ( , )m m

m

h m K x x
vγ+ +

+

+ = +  

According to the inverse of sub-block matrix computation, it can be deduced that: 
1( 1) ( 1)U m H m −+ = +  

( ) 0

0 0

U m
=      1( ) ( 1)

( 1) ( ) 1
1

TU m V m
B V m U m−+

+ + −
−

 
(16) 

where ( 1) ( 1) ( ) ( 1)TB h m V m U m V m= + − + + is a non-zero scalar factor .  

By substitute (16) in (11), it is easy to deduce the factors of ( 1)mα + , ( 1)b m + .  

Apparently, if the dimension of matrix in  (12) is small enough (for example m=2), 
we can compute its direct inverse easily via the method as mention above. Hence, we 
can learn the new samples recursively based on the previous results.  

ii) First In First Out (FIFO) strategy for on-line modeling  
If the data points arrive at the system beyond the length of sliding window, in order 

to obtain an on-line robust estimate based on the previous WLS-SVM, we have to 
throw off some old samples. For simplification, we assume that the new (last) points 
are more important than the old (first) points, and we adapt First In First Out (FIFO) 
strategy for selecting the train data. In a subsequent step, one can weighted the error 

variable /k ke α γ=  by weighting factors kv , this leads to the optimization  

problem: 

2

, , 1

1 1
( , )

2 2min
i W

T
k k

w b e k i

J w e w w v eγ
+

= +

= +    (17) 
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Such that 

( ) , 1, ,
T

k k ky w x b e k i i W= Φ + + = + +       (18) 

A similar derivation as previous section can be made. The conditions for optimal-
ity leads to a set of linear equations: 
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That is  
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                (20) 

where the diagonal matrix Vγ  is given by 

1

1 1
{ , , }

i i W

V diag
v vγ γ γ+ +

=        (21) 

The resulting WLS-SVM model for robust function estimation becomes: 

* * *

1

( ) ( , )
k

i W

k
k i

f x K x x bα
+

= +
= +                  (22) 

where *

k
α , b* are the solutions to the linear system(20). 

For simplification, let identify these weighted factors k iv −  be a function of time nt  

for nonlinear system: 

( )k i nv g t− =         (23) 

where nt , 1 Wn≤ ≤ is the time that the point arrived in the sliding window of the 

system. We make the last (new) point be the most important and choose wv θ= , and 

make the first (old) point be the least important and choose 1 0v θ= . If we want to 

make it be a linear weighted function of the time, we can select   

( )k i n nv g t at b− = = +          (24) 
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By application of the boundary conditions, we can get  

 0 0 1

1 1

w
k i n

w w

t t
v t

t t t t

θ θ θ θ
−

− −= +
− −

       (25) 

So far, a recursive incremental algorithm based on sliding window for on-line mod-
eling is given as follows: 

(1) Select samples point with the length of sliding window W for modeling.  

(2) Given initial samples 1 1 2 2{( , ), ( , )}x y x y and initial kernel parameters and 

regularization parameters, set m=2; 
(3) Compute U(m), b(m), (m)α , m=m+1; 

(4) Sample new data point{ , }m mx y  and compute the U (m+1) in (16);  

(5) Recursive compute ( 1)b m + , ( 1)mα + ; 

(6) If m W≤ , go to (3); otherwise next 
(7) Modeling via (22) and produce prediction output; 
(8) Optimization the kernel parameters and regularization parameters in (20); 
(9) Add the new data points while discarding the old data with FIFO strategy; 
(10) Go to (7); otherwise exit  

Note it is straightforward for FIFO strategy when the new data points arrive at the 
system are more than one point in step (9). For briefness, only the linear weighted 
function in (25) is considered in this paper. Empirically, we can select the weight 

parameters 1

w

v

v
 from 

1

2
 to 

1

10
. When 1 1

w

v

v
= , it leads to standard LS-SVM with 

sliding windows.  

4   Application Study  

In this section, we construct nonlinear dynamic model with WLS-SVM from a real world 
data set sampled from a water plant with interval 10 minutes. Water treatment system is a 
time-variant nonlinear dynamic system with 40 minutes to 120 minutes delay, the main 
process can be illustrated simply as follows:  the raw water is pumped into the water 
plant, then dosage for coagulation and flocculation, after clarification and filtration treat-
ments, we can obtain the drinking water in the end. The quality of the output water de-
pends on the quality of the raw water (flow, turbidity, temperature, pH, total organic 
carbon (TOC), etc), appropriate coagulate dosage and the purification facilities. Since the 
system involves many complex physical, chemical and biological processes, and it is 
frequently affected by the natural perturbation or occasional pollution in the whole proc-
ess.  It is well known as a challenge work to construct an accurate prediction model of the 
water plant. After selecting the primary variables via conventional methods such as prin-
cipal component analysis (PCA) method, the prediction model of the turbidity of the 
output water is assumed to be the form: 

1 2 3( 1) ( ( ), ( ), ( ), ( ))py k F u k u k u k y k+ =     (26) 
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(d) Testing output of WLS-SVM 

Fig. 1. The identification result of training and testing data via LS-SVM and WLS-SVM 

where u1(k),u2(k), u3(k), y(k) denote the flow of raw water, the  turbidity of raw water, 
coagulation dosage, and the turbidity of the output water, respectively. And yp(k+1)  
is prediction output of  next moment.  

We attempted to construct the model in (26) based on WLS-SVM method as men-
tioned above. The length of sliding window is 30. For comparison, standard LS-SVM 
with batch learning is also presented here. The training data set consists of 300 sam-
ples and another 200 samples in subsequent were used as test data. We compared the 
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results with two popular criteria in control area: the mean square error (MSE) and 
maximal-absolute-error (MAXE). 

The simulation results are illustrated in fig. 1 and table 1. In fig. 1, the solid line 
represent the output of the identification model and the dashed line show the practical 
output of the plant, the modeling error is illustrated at the bottom of the figures with 
dash-dot line.   

Table 1. Comparison results of nonlinear system identifaction  

Method  MSE (train) MAXE (train) MSE (test) MAXE (test) 
LS-SVM 0.0300 1.1436 0.0348 0.6304 
WLS-SVM 0.0154 0.48614 0.0109 0.3999 

In this simulation, although we adopted cross-validate method for optimization on 
the regularization parameter and Gaussian kernel parameter of standard LS-SVM, 
however, the novel approach has greatly outperformed it. Due to on-line learning 
strategies and optimizing the parameters with the shifting of the work domain, it is not 
surprising that the WLS-SVM has better performance and generalization ability than 
the standard LS-SVM based on batching learning. 

5   Conclusions 

In this paper, we proposed a practical way for nonlinear dynamic system identifica-
tion based on WLS-SVM, and an on-line algorithm and rolling optimization strategy 
is discussed.  This work provides a novel approach for nonlinear dynamic system 
modeling, and the experimental results show that the proposed method is feasible. It is 
worth noting that the length of sliding window is user-prescribed before the learning 
process while it has a critical influence on the performance of WLS-SVM associated 
with certain hypothesis space, how to select a suitable sliding window effectively is 
still remain to be further explored for the future work. In general, this on-line least 
squares kernel methodology might offer a better opportunity in the area of control.  
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Abstract. Some sufficient conditions for the globally exponential stabil-
ity of the equilibrium point of neural networks with multiple time varying
delays are developed, and the estimation of the exponential convergence
rate is presented. The obtained criteria are dependent on time delay, and
consist of all the information on the neural networks. The effects of time
delay and number of connection matrices of the neural networks on the
exponential convergence rate are analyzed, which can give a clear insight
into the relation between the exponential convergence rate and the pa-
rameters of the neural networks. Two numerical examples are used to
demonstrate the effectiveness of the obtained the results.

1 Introduction

In recent years, stability of different classes of neural networks with time delay,
such as Hopfield neural networks, cellular networks, bi-directional associative
networks, has been extensively studied and various stability conditions have
been obtained for these models of neural networks [1-34]. The conditions ob-
tained in those papers establish various types of stability such as complete sta-
bility, asymptotic stability, absolute stability and exponential stability, etc. It
should be noted that the exponential stability property is particularly impor-
tant when the exponential convergence rate is used to determine the speed of
neural computation and the convergence to the equilibrium in associative mem-
ory. Thus, it is important to determine the exponential stability and to estimate
the exponential convergence rate for dynamical neural networks.

In general, there are two important notions concerning stability of time-
delay systems discussed in the current literatures. One is referred to as delay-
independent stability [1,3,9,11,12,13,21,31], the other is delay-dependent stabil-
ity. As pointed out in [2,10] that the delay independent stability criteria may
be overly restrictive when the delays are comparatively small. In many practical
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applications, the time delays in the neural networks are time varying, or only
known to be bounded but nothing else [12,13,25]. Therefore, the study of stability
analysis for time varying neural networks has become more important than that
with constant delays [2,10,12]. References [1,15] studied the delay-independent
stability and [12] studied the delay-dependent stability for single time varying
delayed systems, but those papers only concern with stability property, with-
out providing any information on exponential convergence rate of the system’s
states. References [2,7,8] studied the problem of delay-dependent stability for sin-
gle time varying delayed systems. References [22,23,24] studied the exponential
stability and the estimation of exponential convergence rate for neural networks
without time delay. For the case of multiple time varying delays, to the best of
our knowledge, few results have been reported.

In this paper, we present some results ensuring the globally exponential sta-
bility of delayed neural networks with multiple time varying delays dependent
on time delay based on LMI technique, and analyze the effects of time delay and
connection matrices on the exponential convergence rate and give an estimate
of the exponential convergence rate.

2 Problem Formulation and Preliminaries

Consider the following neural networks with multiple time varying delays

du(t)
dt

= −Au(t) +W0g(u(t)) +
∑N

i=1
Wig(u(t− τi(t))) + U, (1)

where u(t) = [u1(t), u2(t), . . . , un(t)]T is the neuron state vector,A = diag(a1, a2,
. . . , an) is a positive diagonal matrix with positive entries, W0 ∈ 	n×n and
Wi ∈ 	n×n (i = 1, 2, . . . , N) are the connection weight matrix and delayed
connection weight matrices, respectively, τi(t) ≥ 0denotes the bounded delay,
τ̇i(t) < 1, i = 1, 2, . . . , N , U = [U1, U2, . . . , Un]T denotes the external constant
input vector, g(u(t)) = [g1(u1(t)), g2(u2(t)), . . . , gn(un(t))]T denotes the neuron
activation function.

Throughout the paper, we need the following notations and preliminaries.
Let BT , B−1, λM (B), λm(B) and ‖B‖ =

√
λM (BTB) denote the transpose,

the inverse, the smallest eigenvalue, the largest eigenvalue, and the Euclidean
norm of a square matrix B. Let B > 0(B < 0) denote the positive (negative)
definite symmetric matrix. Let 0 denote a zero matrix or a zero vector with
suitable dimension. Let u� denote a equilibrium point of system (1). Let ρi =
max {τi(t), t = 0, · · · ,∞}, ρ = max {ρi}, 0 < ηi = 1− τ̇i(t), i = 1, . . . , N .

Assumption 1. The activation function, gj(uj), satisfies the following condition

0 ≤ gj(ξ)− gj(ζ)
ξ − ζ

≤ σj , (2)

for arbitrary ξ, ζ ∈ 	, ξ �= ζ, and for any positive constant σj > 0,j = 1, 2, . . . , n.
Let Δ = diag(σ1, σ2, . . . , σn). Obviously, Δ is a nonsingular matrix.
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Remark 1. Many popular activation functions satisfy the Assumption 1, for
example, sigmoid functions, arctan(u), linear piecewise function 0.5(|u+ 1| −
|u− 1|), and linear function g(u) = u, etc. As can be seen from these functions,
the function under the Assumption 1 may be bounded or unbounded.

Assumption 2. The equilibrium point set of system (1) is a non-empty set
when τi(t) = 0, i = 1, 2, . . . , N .

Lemma 1. For any two vectors X and Y , any matrix M , any positive definite
matrices Q with same dimensions, and any two positive constants m, n, the
following inequality holds,

−mXTQX + 2nXTMY ≤ n2Y TMT (mQ)−1MY. (3)

Lemma 2. Given any real matrices A, B, Q = QT > 0 with appropriate di-
mensions, and any scalar h > 0, the following inequality holds,

ATB +BTA ≤ hATQA+ h−1BTQ−1B. (4)

Lemma 3. For functions g(u) satisfying 0 ≤ g(u)−g(v)
u−v ≤ p, the following in-

equality holds, ∫ u

0

f(s)ds ≤ 1
2
pu2, (5)

where u, v ∈ 	, u �= v, f(x) = g(x+ u)− g(u).

Definition 1. Consider the system defined by (1), if there exist positive con-
stants k > 0 and γ > 0 such that ‖u(t)− u�‖ ≤ γe−kt sup

−ρ≤θ≤0
‖u(θ)− u�‖ , ∀t >

0, then the system (1) is exponential stable, where k is called the exponential
convergence rate.

3 Uniqueness of Equilibrium Point

In this section, we will present a sufficient condition to guarantee the uniqueness
of the equilibrium point of system (1).

Theorem 1. For a given positive constant k, if the following inequalities

Ξ1 = 2kP − PA−AP + PW0Q
−1
0 WT

0 P + 2kΔD

+
∑N

i=1

1
ηi
e2kτi(t)PWiQ

−1
i WT

i P < 0, (6)

Ξ2 = Q0 − 2DAΔ−1 +DW0 +WT
0 D + 2

∑N

i=1
Qi

+
∑N

i=1

1
ηi
e2kτi(t)DWiQ

−1
i WT

i D < 0, (7)

exist P > 0, Qj > 0, j = 0, 1, . . . , N , and positive diagonal matrices D =
diag(d1, . . . , dn), then the system (1) has a unique equilibrium point.
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Proof. We take contradiction method. Suppose that there exist two equilibrium
points u∗ = [u∗1, u

∗
2, . . . , u

∗
n]T and v∗ = [v∗1 , v

∗
2 , . . . , v

∗
n]T , i.e., u∗ �= v∗, satis-

fying system (1). Then we have

−A(u∗ − v∗) +
∑N

i=0
Wi(g(u∗)− g(v∗)) = 0. (8)

Let z̃ = u∗ − v∗, then z̃ �= 0. Let g(u∗)− g(v∗) = g(z̃ + v∗)− g(v∗) = f(z̃), then
f(z̃) satisfies Assumption 1 and f(0) = 0. Thus, (8) can be converted into the
following form

−Az̃ +
∑N

i=0
Wif(z̃) = 0. (9)

That is to say, z̃ �= 0 is the equilibrium point of the following dynamical system,

dz(t)
dt

= −Az(t) +
∑N

i=0
Wif(z(t)). (10)

In the following, we will prove that z̃ �= 0 is not the equilibrium point of
system (10).
We choose Lyapunov function as follows,

V (z(t)) = e2ktz(t)TPz(t) + 2e2kt
∑n

i=1

∫ zi(t)

0

dif(s)ds. (11)

Then the derivative of V (z(t)) along the solution of system (10) is

V̇ (z(t)) ≤ e2ktzT (t)(2kP − PA−AP + 2kΔD)z(t)
+2e2ktzT (t)(PW0 + PW1 · · ·+ PWN )f(z(t))
−2e2ktfT (z(t))DAΔ−1f(z(t)) + 2e2ktfT (z(t))(DW0 +DW1 · · ·DWN )f(z(t))
≤ e2ktzT (t)(2kP − PA−AP + 2kΔD)z(t)

+e2kt(zT (t)
∑N

i=0

e2kτi(t)

ηi
PWiQ

−1
i WT

i Pz(t)

+
N∑

i=0

ηie
−2kτi(t)fT (z(t))Qif(z(t)))

−2e2ktfT (z(t))DAΔ−1f(z(t)) + 2e2ktfT (z(t))(DW0)f(z(t))

+e2kt(fT (z(t))(
∑N

i=1

e2kτi(t)

ηi
DWiQ

−1
i WT

i D)f(z(t))

+
N∑

i=1

ηie
−2kτi(t)fT (z(t))Qif(z(t))), (12)

where τ0(t) = 0 and η0 = 1.
Since ηie

−2kτi(t) ≤ 1, then (12) is equivalent to the following form

V̇ (z(t)) ≤ e2ktzT (t)(2kP − 2PA+ 2kΔD +
∑N

i=0

e2kτi(t)

ηi
PWiQ

−1
i WT

i P )z(t)
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+e2ktfT (z(t))(Q0 − 2DAΔ−1 +DW0 +WT
0 D

+
∑N

i=1

e2kτi(t)

ηi
DWiQ

−1
i WT

i D + 2
N∑

i=1

Qi)f(z(t))

= e2kt(zT (t)Ξ1z(t) + fT (z(t))Ξ2f(z(t))). (13)

Thus, V̇ (z(t)) < 0 if z(t) �= 0 and f(z(t)) �= 0. V̇ (z(t)) = 0 if and only if
z(t) = 0 and f(z(t)) = 0. By Lyapunov theory, z̃ = 0 is the equilibrium point
of system (10), which is a contradiction with (9). Therefore, system (1) has a
unique equilibrium point if conditions (6) and (7) hold. This completes the proof.

4 Globally Exponential Stability

The transformation x(·) = u(·)− u∗ changes system (1) into the following form

dx(t)
dt

= −Ax(t) +W0f(x(t)) +
∑N

i=1
Wif(x(t− τi(t))), (14)

x(t) = φ(t), t ∈ [−ρ, 0),

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the state vector of the system (14),
fj(xj(t)) = gj(xj(t) + u∗j) − gj(u∗j ) with fj(0) = 0, j = 1, 2, . . . , n. φ(t) is
a continuous vector-valued function with the maximum norm ‖φ‖. Obviously,
f(x(t)) satisfies the Assumption 1.

Clearly, the equilibrium point u∗ is globally exponentially stable for system
(1) if and only if the zero solution of system (14) is globally exponentially stable.

Theorem 2. If the conditions in Theorem 1 are satisfied, then the unique equi-
librium point u� of system (1) is globally exponentially stable. Moreover,

‖u(t)− u∗‖ ≤
√

Z

λm(P )
‖φ‖ e−kt, (15)

where Z = λM (P ) +
∑N

i=1 λM (ΔTQiΔ)
1− e−2kτi(0)

k
+ λM (D)λM (Δ).

Proof. Consider the following Lyapunov-Krasovskii functional

V (x(t)) = e2ktxT (t)Px(t) + 2
∑N

i=1

∫ t

t−τi(t)

e2ksfT (x(s))Qif(x(s))ds

+2e2kt
∑n

i=1
di

∫ xi(t)

0

f(s)ds. (16)

The time derivative of the functional (16) along the trajectories of system
(14) is obtained as follows
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V̇ (x(t))

= 2ke2ktxT (t)Px(t) + 2e2ktxT (t)P ẋ(t) + 2
∑N

i=1
e2ktfT (x(t))Qif(x(t))

−2
∑N

i=1
(1− τ̇i(t))e2k(t−τi(t))fT (x(t− τi(t)))Qif(x(t− τi(t)))

+4ke2kt
∑n

i=1
di

∫ xi(t)

0

f(s)ds+ 2e2ktfT (x(t))Dẋ(t)

≤ 2ke2ktxT (t)Px(t) + 2e2ktxT (t)P (−Ax(t) +W0f(x(t))

+
∑N

i=1
Wif(x(t− τi(t)))) + 2

∑N

i=1
e2ktfT (x(t))Qif(x(t))

−2
∑N

i=1
ηie

2k(t−τi(t))fT (x(t− τi(t)))Qif(x(t− τi(t)))

+2ke2ktxT (t)ΔDx(t) + 2e2ktfT (x(t))D(−Ax(t) +W0f(x(t))

+
∑N

i=1
Wif(x(t− τi(t)))) (17)

where we have applied the inequality
∫ xi(t)

0 f(s)ds ≤ 1
2σix

2
i (t) obtained from

Lemma 3.
By Assumption 1, Lemma 2 and Lemma 3, we have from (17)

V̇ (x(t))
≤ e2ktxT (t)[2kP − PA−AP + PW0Q

−1
0 WT

0 P + 2kΔD

+
∑N

i=1

1
ηi
e2kτi(t)PWiQ

−1
i WT

i P ]x(t) + e2ktfT (x(t))[Q0 − 2DAΔ−1

+DW0 +WT
0 D +

∑N

i=1

1
ηi
e2kτi(t)DWiQ

−1
i WT

i D + 2
∑N

i=1
Qi]f(x(t))

= e2kt
{
xT (t)Ξ1x(t) + fT (x(t))Ξ2f(x(t))

}
, (18)

Thus, if condition (6) and (7) hold, V̇ (x(t)) < 0 if x(t) �= 0 and f(x(t)) �= 0.
Besides, for the case f(x(t)) = 0 and x(t) �= 0, or f(x(t)) = x(t) = 0, we
still have V̇ (x(t)) < 0. V̇ (x(t)) = 0 if and only if f(x(t)) = x(t) = f(x(t −
τi(t))) = 0. Therefore, we have V (x(t)) ≤ V (x(0)). Furthermore, V (x(t)) ≥
e2ktλm(P ) ‖x(t)‖2, and

V (x(0)) = xT (0)Px(0) + 2
∑N

i=1

∫ 0

−τi(0)

e2ksfT (x(s))Qif(x(s))ds

+2
∑n

i=1
di

∫ xi(0)

0

f(s)ds

≤ λM (P ) ‖φ‖2 + 2
∑N

i=1 λM (ΔTQiΔ) ‖φ‖2
∫ 0

−τi(0)

e2ksds

+λM (D)λM (Δ) ‖φ‖2

≤ (λM (P ) +
∑N

i=1 λM (ΔTQiΔ) · 1− e−2k·τi(0)

k
+ λM (D)λM (Δ)) ‖φ‖2 ,

(19)
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then we have

‖x(t)‖ ≤
√

Z

λm(P )
‖φ‖ e−kt. (20)

On the other hand, V (x(t)) is radically unbounded, that is V (x(t)) → ∞
as ‖x(t)‖ → ∞. Thus, by Lyapunov theory and Definition 1, it follows that the
origin of (14) is globally exponentially stable, i.e., the unique equilibrium point
u∗ of system (1) is globally exponentially stable. This completes the proof.

Because of the complexity of time varying delay, it is difficult to solve the
inequality (6) and (7) for a given constant k . Therefore, in order to check the
applicability of the results conveniently, we have the following corollary.

Corollary 1. For a given positive constant k , if the following inequalities

Ξ3 = 2kP − PA−AP + PW0Q
−1
0 WT

0 P + 2kΔD

+
∑N

i=1

1
ηi
e2kρiPWiQ

−1
i WT

i P < 0, (21)

Ξ4 = Q0 − 2DAΔ−1 +DW0 +WT
0 D + 2

∑N

i=1
Qi

+
∑N

i=1

1
ηi
e2kρiDWiQ

−1
i WT

i D < 0, (22)

exist P > 0, Qj > 0, j = 0, 1, . . . , N , and positive diagonal matrices D =
diag(d1, . . . , dn), then the system (1) has a unique equilibrium point and it is
globally exponentially stable.

In what follows, Theorem 2 will be particularized for the case of constant
time delay.

Theorem 3. In the case of τi(t) = τi = constant, i = 1, . . . , N , if for a given
positive constant k, there exist P > 0, Qj > 0, j = 0, 1, . . . , N , and positive
diagonal matrices D = diag(d1, . . . , dn), such that

Ξ5 = 2kP−PA−AP+PW0Q
−1
0 WT

0 P+
∑N

i=1
e2kτiPWiQ

−1
i WT

i P+2kΔD < 0,
(23)

Ξ6 = Q0−2DAΔ−1+DW0+WT
0 D+

∑N

i=1
e2kτiDWiQ

−1
i WT

i D+2
∑N

i=1
Qi < 0,

(24)
then the system (1) has a unique equilibrium point and it is globally exponen-
tially stable.

In the case of constant delay, we will discuss the relation between A and k.
For simplicity, we assume Δ = I and P = Qi = D = αI satisfying (23) and (24),
α > 0 is a constant, and let λi = λM (WiW

T
i ), i = 0, 1, . . . , N . Then (23) can be

expressed as

2kI−2AI+α
∑N

i=0
e2kτiλiI+2kI < 0, or 2k+0.5α(N+1)e2kρλmax < λm(A),

(25)
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where λmax = max {λi}. (25) restricts k, ρ, N ,A and Wi in an inequality, from
which we can see that for fixed A and ρ, with the number of delay interconnec-
tion term N increasing, the exponential convergence rate k decreases. Similarly,
for fixed A and N , the increase of time delay will decrease the exponential con-
vergence rate k.

A more conservative estimate of exponential convergence rate may be ob-
tained from (25), i.e.,

Θ7 = 2kI − 2A+ 2kI < 0, or k < 0.5λm(A). (26)

from which we can also conclude that the larger the smallest eigenvalue of A is,
the greater the exponential convergence rate k is.

To estimate the exponential convergence rate k, we must know the upper
bound of time delay τi(t). In this case, we may solve the following optimization
problem {

max(k)
s.t. Corollary 1 is satisfied, ρi is fixed (27)

The solution of (27) determines the maximum exponential convergence rate k ≤
k∗, which is useful in real-time optimization and neural computation. Note that
this is a quasi-convex optimization problem.

5 Numerical Examples

Example 1. Consider the following delayed neural network

ẋ(t) = −Ax(t) +W0g(x(t)) +W1g(x(t− τ1)) + U, (28)

where g(x(t)) = 0.5(|x(t) + 1| − |x(t)− 1|),

A =
[

5 0
0 9

]
, W0 =

[
2 − 1
−2 3

]
, W1 =

[
3 1

0.5 2

]
, U =

[
1
2

]
.

In this case, the results in [1,29] and Theorem 1-2 in [2] cannot be able to
ensure the stability. Take τ1 = 0.2, the maximum exponential convergence rate
is k ≤ 0.83 from (27). When k = 0.8, the parameters in Theorem 3 are

P =
[
0.4641 0.0219
0.0219 0.2518

]
, D =

[
1.3923 0

0 0.7576

]
,

Q0 =
[

1.6975 -0.2231
-0.2231 2.4865

]
, Q1 =

[
2.6343 1.2420
1.2420 2.2424

]
.

The unique equilibrium point is (1.2000, 0.1250).

Example 2. Consider the system (28) except A =
[

9 0
0 9

]
, τ1(t) =

2(1− e−0.5t)
1 + e−0.5t

.

It is easy to observe that ρ1 = 2, η1 = 1 − τ̇1(t) = 0.5. In this case, Corollary
1 holds for appropriate exponential convergence rate, and the estimate of ex-
ponential convergence rate is k ≤ 0.681. As comparison, the Theorem 3 in [2]
can estimate the maximum exponential convergence rate k ≤ 0.2. The unique
equilibrium point is (0.2435, 0.4075).
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6 Conclusions

In this paper, globally exponential stability dependent on time delay and esti-
mation of exponential convergence rate for neural networks with multiple time
varying delays are investigated. The obtained criteria are computationally effi-
cient than those based on matrix measure and algebraic inequality techniques. In
addition, compared with the results based on M-matrix theory and matrix norm,
the stability conditions contain all the information on the connection matrix of
neural networks, therefore, the differences between excitatory and inhibitory
effects on the neural networks have been eliminated. Moreover, the effects of
parameters in the delayed neural networks on the exponential convergence rate
are analyzed. Two numerical examples are presented to illustrate the validity of
the obtained results.

Acknowledgement. This work was supported by the National Natural Science
Foundation of China under grant 60274017 and 60325311.
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Abstract. The k-nearest neighbor rule is one of the most attractive
pattern classification algorithms. In practice, the value of k is usually
determined by the cross-validation method. In this work, we propose a
new method that locally determines the number of nearest neighbors
based on the concept of statistical confidence. We define the confidence
associated with decisions that are made by the majority rule from a finite
number of observations and use it as a criterion to determine the number
of nearest neighbors needed. The new algorithm is tested on several real-
world datasets and yields results comparable to those obtained by the k-
nearest neighbor rule. In contrast to the k-nearest neighbor rule that uses
a fixed number of nearest neighbors throughout the feature space, our
method locally adjusts the number of neighbors until a satisfactory level
of confidence is reached. In addition, the statistical confidence provides
a natural way to balance the trade-off between the reject rate and the
error rate by excluding patterns that have low confidence levels.

1 Introduction

In a typical non-parametric classification problem, one is given a set of n obser-
vations Dn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi are the feature vectors and
Yi are the corresponding class labels and (Xi, Yi) are assumed to be i.i.d. from
some unknown distribution P of (X , Y ) on Rd × {ω1, . . . , ωM}. The goal is to
design a function φn : Rd → {ω1, . . . , ωM} that maps a feature vector X to
its desired class from {ω1, . . . , ωM}. The performance of a classifier φn can be
measured by the probability of error, defined as

L(φn) = P{(X, Y ) : φn(X) �= Y } . (1)

If the underlying distribution is known, the optimal decision rule for minimizing
the probability of error is the Bayes decision rule [1]:

φ∗(X) = arg max
Y ∈{ω1,...,ωM}

P (Y |X) . (2)

� This work is partially supported by ARO under grant DAAD19-01-1-0754. Jigang
Wang is supported by a dissertation fellowship from Brown University.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 71–80, 2005.
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One of the most attractive classification algorithms is the nearest neighbor
rule, first proposed by Fix and Hodges in 1951 [2]. It classifies an unseen pattern
X into the class of its nearest neighbor in the training data. Geometrically, each
labeled observation in the training dataset serves as a prototype to represent all
the points in its Voronoi cell.

It can be shown that at any given point X the probability that its nearest
neighbor X ′ belongs to class ωi converges to the corresponding a posteriori
probability P (ωi|X) as the number of reference observations goes to infinity, i.e.,
P (ωi|X) = limn→∞ P (ωi|X ′). Furthermore, it was shown in [3,4] that under
certain continuity conditions on the underlying distributions, the asymptotic
probability of error LNN of the nearest neighbor rule is bounded by

L∗ ≤ LNN ≤ L∗(2− M

M − 1
L∗) , (3)

where L∗ is the optimal Bayes probability of error. Therefore, the nearest neigh-
bor rule, despite its extreme simplicity, is asymptotically optimal when the
classes do not overlap. However, when the classes do overlap, the nearest neigh-
bor rule is suboptimal. In these situations, the problem occurs at overlapping
regions where P (ωi|X) > 0 for more than one class ωi. In those regions, the
nearest neighbor rule deviates from the Bayes decision rule by classifying X
into class ωi with probability P (ωi|X) instead of assigning X to the majority
class with probability one.

In principle, this shortcoming can be overcome by a natural extension, the k-
nearest neighbor rule. As the name suggests, this rule classifies X by assigning it
to the class that appears most frequently among its k nearest neighbors. Indeed,
as shown by Stone and Devroye in [5,6], the k-nearest neighbor rule is universally
consistent provided that the speed of k approaching n is properly controlled, i.e.,
k → ∞ and k/n → 0 as n → ∞. However, choosing an optimal value k in a
practical application is always a problem, due to the fact that only a finite
amount of training data is available. This problem is known as the bias/variance
dilemma in the statistical learning community [7]. In practice, one usually uses
methods such as cross-validation to pick the best value for k.

In this work, we address the problem of neighborhood size selection. In the
k-nearest neighbor rule, the value of k, once determined by minimizing the es-
timated probability of error through cross-validation, is the same for all query
points in the space. However, there is no a priori reason to believe that the opti-
mal value of k has to be the same for different query points. In general, it might
be advantageous to have the value of k determined locally. The question is: what
criterion should be used to determine the optimal value of k?

In this paper, we propose an approach to neighborhood size selection based
on the concept of statistical confidence. The approach stems from the following
observations. When a decision is made from a finite number of observations, there
is always a certain non-zero probability that the decision is wrong. Therefore,
it is desirable to know what the probability of error is when making a decision
and to keep this probability of error under control. For example, in many appli-
cations, such as in medical diagnosis, the confidence with which a system makes
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a decision is of crucial importance. Similarly, in situations where not every class
has the same importance, one may require different levels of confidence for deci-
sions regarding different classes. Instead of using a fixed value of k throughout
the feature space, in such applications, it is more natural to fix the confidence
level. Based on these observations, we propose a method that locally adjusts the
number of nearest neighbors until a satisfactory level of confidence is reached.

This paper is organized as follows. In section 2 we define the probability of
error for decisions made by the majority rule based on a finite number of ob-
servations, and show that the probability of error is bounded by a decreasing
function of a confidence measure. We then define the statistical confidence as the
complement of the probability of error and use it as a criterion for determining
the neighborhood size in the k-nearest neighbor rule. This leads to a new algo-
rithm, which we call the confident-nearest neighbor rule. In section 3 we test the
new algorithm on several real-world datasets and compare it with the original
k-nearest neighbor rule. Concluding remarks are given in section 4.

2 Probability of Error and Statistical Confidence

One of the main reasons for the success of the k-nearest neighbor rule is the
fact that for an arbitrary query point X, the class labels Y ′ of its k nearest
neighbors can be treated as approximately distributed from the desired a pos-
teriori probability P (Y |X). Therefore, the empirical frequency with which each
class ωi appears within the neighborhood provides an estimate of the a poste-
riori probability P (ωi|X). The k-nearest neighbor rule can thus be viewed as
an empirical Bayes decision rule based on the estimate of P (Y |X) from the k
nearest neighbors. There are two sources of error in this procedure. One results
from whether or not the class labels Y ′ of the neighbors can be approximated
as i.i.d. as Y . The other source of error is caused by the fact that, even if Y ′

can be approximated as i.i.d. as Y , there is still a probability that the empiri-
cal majority class differs from the true majority class based on the underlying
distribution. In this section, we will address the second issue.

2.1 Probability of Error and Confidence Measure

For simplicity we consider a two-class classification problem. Let R ∈ Ω be
a neighborhood of X in the feature space, and p = P (Y = ω1|X) be the
a posteriori probability of the class being ω1 given the observation X. Let
X1, . . . ,Xn ∈ R be n i.i.d. random variables and assume that they have the
same a posteriori probability as X. The n corresponding labels Y1, . . . , Yn can
then be treated as i.i.d. from the Bernoulli distribution Bern(p). According to
the binomial law, the probability that n1 of them belongs to class ω1 (therefore
n2 = n − n1 belongs to ω2) is

(
n
n1

)
pn1(1 − p)n2 . Therefore, the probability of

observing δ more samples from class ω2 than from class ω1 is given by:

[(n−δ)/2]∑
n1=0

(
n

n1

)
pn1(1− p)n−n1 . (4)
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We define the probability

Perr(p; δ;n) =
[(n−δ)/2]∑

n1=0

(
n

n1

)
pn1(1 − p)n−n1 (5)

under the condition that p ∈ (0.5, 1] to be the probability of error for the follow-
ing reasons: since p ∈ (0.5, 1], according to the Bayes decision rule, X should be
associated with the true majority class ω1; however, if n2 − n1 = δ > 0, X will
be classified into class ω2 by the majority rule, therefore leading to an error. In
other words, given p ∈ (0.5, 1], Perr(p; δ;n) is defined to be the probability of ob-
serving δ more samples from class ω2 than ω1. Using simple symmetry argument,
it is easy to check that Perr(1 − p; δ;n) is the probability that one will observe
δ more samples from class ω1 than from ω2 while 1− p ∈ (0.5, 1]. Regardless of
whether p ∈ (0.5, 1] or 1 − p ∈ (0.5, 1], if we let p̄ = max{p, 1− p}, Perr(p̄; δ;n)
is the probability that one observes δ more samples from the true minority class
than from the true majority class.

In practice, p is unknown; hence p̄ is also unknown. Fortunately, it is easy
to show that Perr(p̄; δ;n) is a decreasing function of p̄, which means that it is
bounded above by

Perr(δ;n)max =
1
2n

[(n−δ)/2]∑
n1=0

(
n

n1

)
≈ Φ(−δ − 1√

n
) , (6)

where Φ is the cumulative distribution function (CDF) of a standard Gaussian
random variable. The probability of error Perr(p̄; δ;n) can also be bounded by
applying concentration of measure inequalities.

Let us consider the relationship between Perr(δ;n)max and (δ − 1)/
√
n. Ob-

viously, Perr(δ;n)max is decreasing in (δ − 1)/
√
n because as a cumulative dis-

tribution function, Φ(x) is an increasing function of x. Therefore, the larger
(δ−1)/

√
n, the smaller the probability of error. Equation (6) also quantitatively

tells us how large (δ− 1)/
√
n should be in order to keep the probability of error

under some preset value. For n < 200, we enumerate all possible values of δ and
n and calculate (δ − 1)/

√
n and the corresponding value of Perr(δ;n)max. The

result is shown in Fig. 1.
Since Perr(p̄; δ;n) is the probability that the observation is at odds with the

true state of nature, 1−Perr(p̄; δ;n) is the probability that the observation agrees
with the true state of nature. We therefore define

CFD(p̄; δ;n) ≡ 1− Perr(p̄; δ;n) (7)

to be the confidence (CFD) level. From Eq. (6), it follows that the confidence
level is bounded below by

CFD(δ;n) = 1− Perr(δ;n)max ≈ erf(
δ − 1√
n

) . (8)

The larger (δ − 1)/
√
n, the higher the confidence level. For this reason and for

convenience, we will call (δ − 1)/
√
n the confidence measure.
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Fig. 1. Probability of error as a function of the confidence measure

An alternative way to define the probability of error for a decision that is
made by the majority rule based on a finite number of observations is to use the
Beta prior model for the binomial distribution. Using the same argument, the
probability of error can be defined as

Perr(δ;n) =

∫ 1

0.5
p

n−δ
2 (1− p)

n+δ
2 dp∫ 1

0
p

n−δ
2 (1− p)

n+δ
2 dp

, (9)

which gives the probability that the actual majority class of the posterior prob-
ability distribution differs from the one that is concluded empirically from the
majority rule based on n and δ. Likewise, the confidence level can be defined as

CFD(δ;n) = 1− Perr(δ;n) =

∫ 0.5

0
p

n−δ
2 (1 − p)

n+δ
2 dp∫ 1

0 p
n−δ

2 (1− p)
n+δ

2 dp
. (10)

Numerically, these two different definitions give roughly the same results. More
precisely, compared to the second definition, the first definition of the probability
of error can be better approximated as a function of the confidence measure,
which is easily computable. In addition, for the same values of n and δ, the first
definition also gives a higher probability of error value because it is based on the
worst case consideration.

2.2 Determining the Number of Neighbors in the k-Nearest
Neighbor Rule

In the k-nearest neighbor rule, the only advantage of choosing a large k value is
to reduce the variance of the a posteriori probability estimate. Similarly, as we
have shown, a large k value can potentially lead to a large confidence measure,
and therefore to a small probability of error. Note that at each query point, the
probability of error can be easily computed for different numbers of neighbors.
Therefore, one can choose to increase the number of nearest neighbors k until a
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preset probability of error threshold is achieved. For instance, if the threshold of
the probability of error is set to 5% (which corresponds to 95% confidence level),
one can see from Fig. 1 that there is no need to increase the number of neighbors
once the confidence measure exceeds 3.0. Therefore, the probability of error, or
equivalently the confidence level, provides a mechanism to locally determine the
number of neighbors needed. We will call the modified version of the k-nearest
neighbor rule the confident-nearest neighbor rule.

The main difference between the confident-nearest neighbor rule and the
original k-nearest neighbor rule lies in that the actual value of k at each query
point varies, depending on when the preset confidence threshold is reached, while
in the k-nearest neighbor rule, the value of k, once set, is the same for all query
points in the feature space. According to the first definition of the confidence
level (see Eq. (8)), the confident-nearest neighbor rule reduces to the 1-nearest
neighbor rule when the confidence level is set to 50%.

It should be noted that the confident-nearest neighbor rule differs signif-
icantly from previous methods that have been developed for adapting neigh-
borhoods in the k-NN rule, such as the flexible metric method by Friedman [8],
the discriminant adaptive method by Hastie and Hibshirani [9], and the adaptive
metric method by Domeniconi et. al [10]. Although differing in their approaches,
the common idea underlying these methods is that they estimate feature rele-
vance locally at each query point and compute a weighted metric for measuring
the distance between a query point and the training data. These adaptive metric
methods improve the original k-NN rule because they are capable of producing
local neighborhoods in which the a posteriori probabilities are approximately
constant. However, none of these methods adapts the number of neighbors lo-
cally. In fact, these methods fix the number of neighbors in advance, as in the
k-nearest neighbor rule, which is in direct contrast with our method that locally
determines the number of neighbors. Furthermore, these methods usually need
to introduce more model parameters, which are usually optimized along with the
value of k through cross-validation, and therefore leading to high computational
complexity. It is worth pointing out that our proposed method and previous
adaptive metric methods are complementary in that, the adaptive metric meth-
ods are able to produce neighborhoods in which the a posteriori probabilities are
approximately constant. This constant a posteriori probability property is a key
assumption in our probability of error analysis. In this paper, we focus on locally
adapting the number of neighbors while using the standard Euclidean metric.

3 Results and Discussion

In this section, we present experimental results of our algorithm on several real-
world datasets from the UCI Machine Learning Repository [11]. We used the
leave-one-out method to estimate the classification error of the confident-nearest
neighbor (confident-NN) rule and the k-nearest neighbor (k-NN) rule. In Table
1, for each dataset, we report the lowest error rate achieved by the k-NN rule,
together with the corresponding k value in parentheses, and the lowest error rate
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obtained by the confident-NN rule, together with the corresponding confidence
level and the average nearest neighbor number k̄ in parentheses.

Table 1. Comparison of results

Dataset k-NN (k) Confident-NN (CFD;k̄)

BreastCancer 2.49 (5) 2.78 (75%;2.1)
Ionosphere 13.39 (1) 13.39 (70%;1.0)
Liver 30.43 (9) 31.30 (90%;19.9)
Pima 23.96 (19) 24.61 (90%;20.0)
Sonar 17.31 (1) 16.83 (75%;2.5)

As we can see, in terms of the overall classification accuracy, the confident-
NN rule and the k-NN rule are comparable. However, there are several important
points we would like to make. First, in many applications, the overall error is not
the only important goal. For instance, in medical diagnosis, in addition to the
overall error rate, the statistical confidence with which a decision is made is criti-
cally important. The confident-NN rule, unlike the k-NN rule, locally adapts the
number of nearest neighbors until the desired statistical confidence requirement
is met. Second, in many applications, the cost of misclassifying different classes
might be significantly different. For example, compared to the consequence of
a false alarm, it is more costly to fail to detect a cancer when a patient actu-
ally has one. Therefore, the acceptable confidence level for a non-cancer decision
should be much higher than for a cancer decision. This consideration can be
easily taken into account in the confident-NN rule by setting a higher statistical
confidence level for a non-cancer decision, while the k-NN rule, which is based
on minimizing the overall error rate, does not address this issue naturally.

Using the data from the Wisconsin Breast Cancer dataset, Figure 2 illustrates
how the error rate of the confident-nearest neighbor rule changes as a function of
the confidence level. As can be seen, the error rate does not necessarily decrease
as the confidence level increases. For example, the lowest error rate of 2.78% is
achieved at confidence level 75%− 80%.

The number of nearest neighbors used in the confident-NN rule varies from
point to point, as manifested in the non-integer values of the average nearest
neighbor number k̄ in Table 1. Figure 3 shows the average number k̄ at different
confidence levels. As one can see, more neighbors are used as one increases the
confidence level. However, combining Figs. 2 and 3, it is clear that more neighbors
do not necessarily lead to lower error rates. This is because as one increases the
confidence level requirement, more and more neighbors are needed in order to
satisfy the higher confidence level requirement. However, since the number of
training data is limited, it is not always possible to find a sufficient number of
training samples in the close neighborhood of the query points. Therefore, in
order to satisfy a high confidence requirement, one has to include points that
are farther away from the query points and these points may have very different
a posteriori probability distributions.
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Fig. 2. Leave-one-out estimate of the classification error at different confidence levels
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Fig. 3. Average number of neighbors used at different confidence levels

In the most general pattern classification scenario, classes may overlap in
some regions of the feature space. Without knowledge of the underlying distri-
bution, it is hard to tell whether a training point is actually misclassified by
a classifier, or whether the data point itself is not labeled as the true majority
class. We use the k-NN rule to illustrate this point. We fix the value of k to 5 and
compute the mean confidence level of the misclassified data and the correctly
classified data respectively. The results are reported in Table 2. The numbers in
parentheses are the corresponding standard deviations. As one can see, on all
datasets that have been tested, the misclassified data have significantly lower
confidence levels than the correctly classified data. Since the number of near-
est neighbors used is the same, this is a clear indication that the misclassified
data are lying in the regions where two different classes overlap and attempts
to further reduce the classification error may run into the risk of overfitting the
training data.
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Table 2. Comparison of mean confidence levels of the misclassified and correctly clas-
sified data

Dataset Misclassified Correctly Classified

BreastCancer 83.55 (3.44) 97.07 (0.21)
Ionosphere 85.33 (1.76) 95.04 (0.50)
Liver 76.68 (1.21) 81.17 (0.84)
Pima 79.45 (0.91) 86.13 (0.58)
Sonar 82.16 (2.17) 89.83 (0.96)

Table 3. Trade-off between the reject rate and error rate

Confidence Level (%) Reject Rate Error Rate

50 0 2.49
60 0 2.49
70 3.37 1.67
80 3.37 1.67
90 9.81 0.81
95 9.81 0.81

In many applications, misclassifications are costly. An important result of this
work is the realization that for a given dataset and a given level of confidence,
there is always a limit in reducing the error rate. Therefore, instead of making
decisions regardless of the confidence level, a better alternative would be to reject
patterns with low confidence levels and make a decision only when confidence is
high. Since the misclassified data tend to have lower confidence levels than the
correctly classified data, rejecting patterns with low confidence levels will lead
to a reduction in the error rate on the remaining data. This implies that further
reduction of the overall error rate, while keeping the same confidence level in
making decisions, can be achieved, but at the expense of reducing the size of the
region over which decisions will be made. We illustrate this point on the Breast
Cancer dataset, where the lowest error rate, using the k-nearest neighbor rule, is
achieved when k is set to 5 (see Table 1). In order to assure that every decision
in the k-nearest neighbor rule is made with acceptable confidence, we rejected
the patterns whose confidence levels from their 5 nearest neighbors were below
a specific confidence level. The reject rate and the error rate on the remaining
data for a range of different confidence levels are illustrated in Table 3. As can
be easily seen, the reject rate increases monotonically with the confidence level,
whereas the error rate on the remaining data is decreasing. At the 95% confidence
level, a recognition accuracy of 99% is achieved with a reject rate less than 10%.

4 Conclusion

In this paper, we presented a new method that locally determines the number of
nearest neighbors based on the concept of statistical confidence. We introduced
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two different definitions of the probability of error of decisions made by the ma-
jority rule from a finite number of observations, and showed that the probability
of error is bounded by a rapidly decreasing function of its confidence measure.
The statistical confidence is defined to be the complement of the probability of
error, and it is used as a criterion to determine the number of neighbors needed.

We tested the confident-nearest neighbor rule on several real-world datasets
and showed that it is comparable to the k-nearest neighbor rule. In contrast
to the k-nearest neighbor rule, which uses a fixed number of nearest neighbors
over the whole feature space, our method locally adjusts the number of nearest
neighbors until a satisfactory level of confidence is reached. In addition, the
statistical confidence provides a natural way to balance the trade-off between
the reject rate and the error rate by excluding patterns that have low confidence
levels. We believe that the statistical confidence can be of great importance in
applications where the confidence with which a decision is made is equally or
more important than the overall error rate.
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Abstract. The fuzzy self-organizing map neural network using kernel principal 
component analysis is presented and a hybrid-learning algorithm (KPCA-
FSOM) divided into two stages is proposed to train this network. The first 
stage, the KPCA algorithm is applied to extract the features of nonlinear data. 
The second stage, combining both the fuzzy theory and locally-weight 
distortion index to extend SOM basic algorithm, the fuzzy SOM algorithm is 
presented to train the SOM network with features gained. A real life application 
of KPCA-FSOM algorithm in classifying data of acrylonitrile reactor is 
provided. The experimental results show this algorithm can obtain better 
clustering and network after training can more effectively monitor yields. 

1   Introduction 

The SOM is an unsupervised learning neural network [1]. It provides a mapping from 
a high-dimensional input data space into the lower dimensional output map, usually a 
one- or two-dimensional map [2]. As a result of this process, SOM is widely used for 
the visualization of high-dimensional data. Moreover, a distinguishing feature of the 
SOM is that it preserves the topology of the input data from the high-dimensional 
input space onto the output map in such a way that relative distance between input 
data are more or less preserved [3]. The input data points, located close to each other 
in the input space, are mapped to the nearby neuron on the output map [4]. The SOM 
visualization methods are versatile tools for data exploration. They are widely used in 
data mining as a tool for exploration and analysis of large amounts of data, to 
discover meaningful information from the data [5]. 

There are many research efforts to enhance SOMs for visualization and cluster 
analysis. Some methods focus on how to visualize neurons clearly and classify data 
[6]. Others concentrate on better topology preservation. Most of the methods 
enhancing topology preservation use the squared-norm to measure similarity between 
weight values and data points [7]. So, they can only be effective in clustering 
‘spherical’ clusters [8]. To cluster more general dataset, Wu and Yang (2002) 
proposes an algorithm by replacing the squared-norm with other similarity measures. 
A recent development is to use kernel method to construct the kernel version of the 
SOM (called KSOM training algorithm) [9]. A common ground of these algorithms is 
that clustering is performed in the transformed feature space after the nonlinear data 
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transformation. However, kernel method projects data into the feature space of which 
the dimensions is higher than those of original input space. So, computational 
complexity is increased. In this paper, kernel principal component analysis (KPCA) 
instead of kernel method is introduced to deal with the problem. 

The basic SOM training algorithm is simply presented as an acceptable heuristic, 
but one would naturally require more substantial support. So, Kohonen (1995) derives 
what we term here basic SOM algorithm using the Robbins and Monro (1951) method 
of stochastic approximation. This general approach involves use of the estimated 
weight values at each iteration to provide an approximation to true gradient of the 
distortion index that is defined in Eq. (4)[5]. Such a result is immediately re-assuring, 
in that the algorithm is no longer based merely on a plausible heuristic, and can be 
established, albeit as an approximation, according to certain general principles. 
However, several points still need to be noted. First, the fact is that the basic 
algorithm is derived only by a method of approximation. Second, the algorithm 
belongs to hard partition method. For dealing with above two problems, SOM basic 
algorithm is modified and extended through using fuzzy theory.  

The remainder of this paper is organized as follows. Section 2 describes kernel 
principal component analysis (KPCA) algorithms. In Section 3, the self-organizing 
map (SOM) using fuzzy theory training (FSOM) algorithm is proposed and one-
quality index is defined. To demonstrate the performance of the proposed algorithm, a 
simulated experiment and one real life application on monitoring the yield of 
acrylonitrile reactor is conducted and the performance comparison between SOM 
algorithm and FSOM algorithm is given in Section 4 and Section 5.At last, 
conclusions and discussions are given in Section 6. 

2   Kernel Principal Component Analysis (KPCA) 

In the paper, KPCA algorithm [10] is introduced mainly for following two points. 
First, SOM basic algorithm cannot correctly cluster nonlinear data [11]. Second, 
although traditional KSOM algorithm can deal with nonlinear data, this method does 
increase computational complexity for the sample after transforming being equal to 
the number of samples in dimension. However, KPCA algorithm can make use of 
both the advantages of kernel function and characteristics of PCA algorithm so that it 
may not only deal with nonlinear data but also make the dimension of data and 
complexity of calculation decrease dramatically. 

According to the idea of KPCA algorithm, any sample can be transformed using 
Equation (1) . 

( )
1

,
M

k
k i i

i

y K x xα
=

= . (1) 

Where M is the number of samples, k
ia  is the thi  value of the thk  eigenvector of 

kernel matrix K , ky  is the thk ( k p M= ) value of the sample after 
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transforming, ix  is the thi  original sample, x  is original sample that need to be 

transformed, p  is the sequence number of the first nonzero eigenvalue by ordering 

eigenvalue in accordance with sort ascending .  
The dot product of samples in the feature space is defined as below: 

( ) ( ) ( ),
T

i j i jK x x x x= Φ Φ . (2) 

Where ix jx ( , 1, 2 ,i j M= ) are random samples of data set. 

We use Gaussian’s kernel function, which is defined as: 

( )
2

2, exp
2

i j
ij i j

x x
k K x x σ

−
= = − . (3) 

From above narration, the basic procedures of KPCA algorithm can be summed up 
as following:  

(1) Calculate matrix K according to formulation (3). 
(2) Calculate the eigenvalues and the eigenvectors of matrix K, and 

standardize them. 
(3) Calculate the PC (principal component) matrix transformed according to 

formulation (1). 

(4) Calculate the sum of contribution rates from the first PC to the thk  PC, 
and then carry out reduction of data. 

3   Fuzzy Self-organizing Map (FSOM) 

The traditional SOM basic algorithm belongs to a kind of hard partition methods. The 
aim of the algorithm is that the sets of objects are strictly grouped into clusters [12]. 
However, all objects have not strict attributes and both attributes and characters are 
always fuzzy. For clustering these objects, soft partition is proper [13]. 

3.1   Theory Foundation of SOM Basic Algorithm 

Professor Kohonen presented theory basis that is defined as Eq (4) for his SOM basic 
algorithm in 1995 and 1999. 

       ( )D E p x= . (4) 

 ( ) ( )
1

M

cj j
j

p x h t x w
=

= − . (5) 
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Where E  denotes the expectation operator, x  is input vector, jw  is nerve cell 

weight at coordinate ( )1 2,k k , ( )cjh t  is neighborhood function, ( )1 2,c c c  is the 

coordinate of the winning neuron, M is the number of neuron. The neighborhood 
function is defined as below: 

( )
( )

2

2exp
2

c j

cj

d d
h t

tδ

−
= − . (6) 

Where cd is the position of the winning neuron, jd  is the position of the thj  

neuron ( )tδ  is the variance of the neighboring neurons at time t . ( )tδ  decreases 

with time, in order to control the size of the neighboring neurons at time t. 

( )E p x  is called locally-weighted distortion index (LWDI) and we can see that 

if the neighboring function is erased from the index, the rest of index is the same as 
similar as mathematic equation of k-means algorithm. Therefore, SOM network can 
be explained using following idea. Set M numbers of cluster centers ( M neurons) 
and these centers will be organized like SOM lattice array. According to the main 

principal ( )min( )E p x , these cluster centers are continually updated until a 

certain condition can be met. Now, M  micro-clusters are formed and then we will 
merge the M clusters to gain the final results. In addition, neighboring function has 
the most important influence on the visualization of data clustering. 

3.2   FSOM Algorithm 

Assuming appearance probability of samples to be equal, the LWDI is rewritten to be 
the following form: 

( )
1 1

1 N M
a

ij cj i j
i j

D u h t x w
N = =

= −  (7) 

( )1 1 2 2,xa m h c k c k= × − −  (8) 

2 tm T= − . (9) 

Where ( )1 2,c c  is the coordinate of the winning neuron ( )1 2,k k  is the coordinate 

of the thj  neuron, the effect of m  is as similar as learning parameter of SOM basic 

algorithm. The function ( )1 1 2 2,xh c k c k− − takes the following values. 
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( )0,0 0xh = ( )1,1 0xh = ( )1, 1 0xh − = ( )1,1 0xh − = ( )1, 1 0xh − − =            

( )1,0 0xh = ( )0,1 0xh = ( )0, 1 0xh − = ( )1,0 0xh − =  

and one for all other values of its arguments. This function is introduced mainly for 
strengthening visualization and for making the network gain better topology structure. 

    Where N  is number of samples and the constrained condition is 
1

1
M

ij
j

u
=

= To 

derive the necessary conditions for the minimization of (7), a lagrangian is 

constructed and Eq (7) is modified for existence of derivative jw . 
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 is calculated respectively. 

At last, weight-updated equation and membership-updated equation is expressed as 
below.
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Because 1a −  maybe is zero, membership needs to be modified again. 
Membership equation after modifying is showed in Eq (13).  

3.3   The Basic Process of FSOM Algorithm 

Considering the idea of FSOM algorithm, its detail procedures are listed as follows. 

Step1. Initialize network weights. Select number M  to be initial network weight 
from input vectors. 

Step2. Search the winning neuron for input vectors by using Equation (14). 
  

( ) ( ) ( ) ( ){ }mini win i j
j

X t W t X t W t− = − . (14) 

Step3. Membership calculation. Calculate all membership iju  based on Eq (13)   

Step4. Update network weights by using Eq (11). 
Step5. If iterative number equal to maximum number, then the algorithm is over. 

Otherwise, go to step 2.�

3.4   Network Quality 

For validating effect of algorithm, one criterion, topographic error, is defined in the 
paper. 

Definition 1: Topology Error (TE) 

( )
1

N

k
j

u x

TE
N

==  
(15) 

Where ( )ku x  is 1, if the neurons of the smallest and second smallest distance 

between input vector kx  and the weight vector of the neuron are not adjacent. 

Otherwise, ( )ku x  is zero. The topographic error is used to measure the continuity 

mapping. After the training, the map is evaluated for the topology accuracy, in order 
to analyze how the map can preserve the topology of the input data. A common 
measure that calculates the precision of the mapping is the topographic error over all 
input data. 

4   Simulated Experiments 

To demonstrate the effectiveness of the proposed clustering algorithm, three data sets 
are used in our experiments. The first dataset is iris flower one. The iris flower dataset 
has been widely used as a benchmark dataset for many classification algorithms due 



 Fuzzy Self-organizing Map Neural Network Using Kernel PCA and the Application 87 

to two (iris-versicolor and iris-virginica) of its three (iris-versicolor,iris-virginica and 
iris-setosa) classes are not linearly separable. Each cluster includes 50 data with four 
dimensions. The second dataset is wine one. The dataset is thirteen-dimensional with 
178 data entries positioned into three clusters. The third dataset is Olitos one. It 

consists of four clusters having 120 points each in 25R . 
For clustering above datasets, three steps are performed. First, the features of input 

data are extracted using KPCA algorithm. Second, the features are normalized such 
that the value of each feature in each dimension lies in [0,1]. Third, 8×8 neural 
network is used and using SOM basic algorithm and FSOM algorithm respectively 
clusters three datasets. Table 1 shows elevating index and error rates on average in ten 
independent runs of two algorithms. 

Table 1. The clustering effect and average results of elevating index in three data set 

SOM basic algorithm FSOM algorithm Elevating 
index Iris data 

set 
Wine data 
set 

Olitos data 
set 

Iris data 
set 

Wine data 
set 

Olitos data 
set 

TE       
Principal 
component 

3 6 10 3 6 10 

Number of 
clusters 

3 3 4 3 3 4 

Error rate 6% 8.74% 20.33% 4.667% 7.68% 14.92% 

On an average, the topological errors of the FSOM for the three datasets are 
0.02667,0.05056,0.06667, which are smaller than those of the SOM. The average 
error rates of the FSOM are 4.667%, 7.68%, and 14.92% respectively. They are 
smaller than those of SOM as shown in Table 1. So, we conclude that the FSOM can 
obtain better topology mappings and the lower error rates. 

5   Practical Application 

The fluidized-bed reactor shown in Fig.1 is the most important part of acrylonitrile 
equipment and its yield can directly influence the economic benefit of this equipment. 
In this section, the data of fluidized-bed reactor will be analyzed by using clustering 
technique. The prospective number of cluster is two classes that include optimal class 
and bad class. If the parameters of fluidized-bed reactor are set on the basis of the 
objects of optimal class, then the yield of reactor will be higher, and the SOM 
network after training can monitor fluidized-bed reactor yields. 

In the following sector, two algorithms, SOM algorithm and FSOM algorithm, are 
used to cluster reactor data. The number of data is n=344; clustering number is 244 
and testing number is 100 with 7dimensions.The first step, KPCA algorithm is used to 
extract the features of the dataset. The second step, the features of the reactor data are 
normalized such that the value of each feature in each dimension lies in [0,1]. The 
final step, SOM algorithm and FSOM algorithm is used to analyze the data. Table 2 
shows average elevating indexes and other information in twenty runs of two 
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algorithms respectively. The best clustering structure using SOM algorithm is shown 
in Fig 2. The best clustering structure using FSOM algorithm is shown in Fig 3. 
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Fig. 1. The fluidized-bed reactor 

Table 2. The average results of elevating index in data set of fluidized-bed reactor 

Elevating index SOM basic algorithm FSOM algorithm
Principal component 

Number of cluster 
TE 

Fig. 2. Best clustering structure using SOM algorithm

Fig. 3. Best clustering structure using FSOM algorithm 
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The SOM neural network are divided into high yield filed and low 
yield field by synthetically considering clustering results and the 
corresponding yield in the Fig 2 and Fig 3.From the clustering results based on the 
above division, we will see that the error rate of FSOM algorithm is  and that of 
SOM algorithm is . Using 100 testing data, the testing results of FSOM 
algorithm are better. Therefore, The network using FSOM algorithm can monitor 
reactor yields as shown Fig 3 that show better topological structure. The average 
cluster centers and the average yields are listed in Table 3. 

Table 3. The cluster center and yield of two algorithms 

FSOM algorithm SOM basic algorithm The parameters  
Optimal cluster 
center 

Bad cluster center Optimal cluster 
center 

Bad cluster center 

Pressure( Mpa) 0.7479 0.6813 0.7604 0.7366 

Temperature ( ) 434.0819 429.6533 433.4875 430.2254 

Propylene(NM3/-
H)  

2569.1 2245 2544.7 2349.2 

Air/Propylene 9.4625 7.785 9.4487 8.8897 
Ammonia/Propyl-
ene 

1.1515 1.1594 1.1687 1.151 

Catalyst(KG) 57.795 54.518 56.897 54.4847 
Velocity(M/S) 0.6952 0.5267 0.6669 0.6155 
Yield (%) 79.0355 77.2379 78.3907 78.0120 

The yield corresponding to center of the optimal cluster of FSOM algorithm is 
higher than that of SOM algorithm, as shown in Table 3. So, the optimal cluster 
center of FSOM algorithm can guide how to adjust reactor parameters. In other 
words, if the reactor parameters are set according to this optimal center, then the 
reactor yield will be higher. 

6   Conclusions 

In this paper, distortion index is directly extended through fuzzy theory. So, Network 
quality is enhanced and clustering results is better than that of SOM basic algorithm. 
However, industry data are always nonlinear. For dealing with nonlinear data, KPCA 
algorithm is introduced and it is proper for large data, especially industry data. The 
above experiments demonstrate that better clustering results and topological structure 
can be obtained by using KPCA-FSOM algorithm. The SOM neural network after 
training can be used to monitor reactor yields and cluster centers can guide the 
optimization of parameters. 
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Abstract. An evolved recurrent neural network is proposed which automates 
the design of the network architecture and the connection weights using a new 
evolutionary learning algorithm. This new algorithm is based on a cooperative 
system of evolutionary algorithm (EA) and particle swarm optimisation (PSO), 
and is thus called REAPSO. In REAPSO, the network architecture is adaptively 
adjusted by PSO, and then EA is employed to evolve the connection weights 
with this network architecture, and this process is alternated until the best neural 
network is accepted or the maximum number of generations has been reached. 
In addition, the strategy of EAC and ET are proposed to maintain the behavioral 
link between a parent and its offspring, which improves the efficiency of evolv-
ing recurrent neural networks. A recurrent neural network is evolved by 
REAPSO and applied to the state estimation of the CSTR System. The per-
formance of REAPSO is compared to TDRB, GA, PSO and HGAPSO in these 
recurrent networks design problems, demonstrating its superiority. 

1   Introduction 

Modeling complex dynamic relationships are required in many real world applica-
tions, such as state estimation, pattern recognition, communication and control etc. 
One effective approach is the use of recurrent neural network (RNN) [1]. RNN has 
self-loops and backward connections in their topologies, and these feedback loops are 
used to memorize past information. Therefore, it can be used to deal with dynamic 
mapping problems. But the difficulty is that the training algorithm must take into 
account temporal as well as spatial dependence of the network weights on the map-
ping error.  
    Many types of recurrent networks have been proposed, such as back propagation 
through time (BPTT) [2], real-time recurrent learning (RTRL) [3], and time-
dependent recurrent back propagation (TDRB) [4]. But all of them have several limi-
tations: 1) a complex set of gradient equations must be derived and implemented, 2) it 
is easy to be gets trapped in a local minimum of the error function. One way to over-
come the above problems is to adopt genetic algorithm (GA) or evolutionary algo-
rithm (EA) [5, 6, 7, 8], because GA and EA are stochastic search procedures based on 
the mechanics of natural selection, genetics, and evolution, which make them find the 
global solution of a given problem. In addition, they use only a simple scalar  
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performance measure that does not require or use derivative information. In order to 
farther improve the performance of these algorithms, such as avoiding the permuta-
tion problem and the structural / functional mapping problem, hybridization of genetic 
algorithm (GA) and evolutionary algorithm (EA) with particle swarm optimization 
(PSO), respectively named hybrid PSO+EA and HGAPSO, have been investigated to 
evolve the fully connected recurrent neural network [9, 10]. But all of them have 
following limitations: 1) the appropriate network architecture must be determined, 
and 2) the structure may or may not capable of representing a given dynamic map-
ping. It means that the above problems depend heavily on the expert experience and a 
tedious trial-and-error process. There have been many attempts in designing network 
architectures automatically, such as various constructive and pruning algorithms [11, 
12]. However, “Such structural hill climbing methods are susceptible to becoming 
trapped at structure local optima, and the result depends on initial network architec-
tures.” [13] 
    To overcome all these problems, this paper proposes a new evolutionary learning 
algorithm (REAPSO) based on a cooperative system of EA and PSO, which combines 
the architectural evolution with weight learning. In REAPSO, the evolution of archi-
tecture and weight learning are alternated, which can avoid a moving target problem 
resulted from the simultaneous evolution of both architectures and weights [14]. And 
the network architectures are adaptively evolved by PSO, starting from the parent’s 
weights instead of randomly initialized weights, so this can preferably solve the prob-
lem of the noisy fitness evaluation that can mislead the evolution. Since PSO pos-
sesses some attractive properties comparing with EA, such as memory, constructive 
cooperation between individuals, so no selection and crossover operator exist [15], 
which can avoid the permutation problem in the evolution of architectures. In order to 
improve the generalization ability, the data sets are partitioned into three sets: training 
set, validation set, and testing set. The training set is used to evolve the nodes with a 
given network architecture, and the fitness evaluation is equal to the root mean 
squared error E of RNN. But in evolving the architecture of network, the fitness 
evaluation is determined through a validation set which does not overlap with the 
train set.  
    The rest of this paper is organised as follows. Section 2 describes the REAPSO 
algorithm and the motivations on how to evolve the RNN. Section 2 presents experi-
mental results on REAPSO. The paper is concluded in Section 4. 

2   REAPSO Algorithm 

2.1   Evolutionary Algorithm (EA) 

EA refer to a class of population-based stochastic search algorithms that are devel-
oped from ideas and principles of natural evolution. One important feature of all these 
algorithms is their population based search strategy. Individuals in a population com-
pete and exchange information with each other in order to perform certain tasks. A 
general framework of EA can be described as following: 

1) Initialize the number of individuals in a population, and encode each individual 
in term of real problems. Each individual represents a point in the search space; 
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2) Evaluate the fitness of each individual. Each individual is decided by an evalu-
ating mechanism to obtain its fitness value; 

3) Select parents for reproduction based on their fitness; 
4) Apply search operators, such as crossover and/or mutation, to parents to gener-

ate offspring, which form the next generation. 

    EA are particularly useful for dealing with large complex problems which generate 
many local optima, such as training artificial neural networks. They are less likely to 
be trapped in local minima than traditional gradient-based search algorithms. They do 
not depend on gradient information and thus are quite suitable for problems where 
such information is unavailable or very costly to obtain or estimate.  

2.2   Particle Swarm Optimization (PSO) 

PSO is a population based optimization algorithm that is motivated from the simula-
tion of social behaviour. PSO algorithm possesses some attractive properties such as 
memory and constructive cooperation between individuals, so each individual flies in 
the search space with a velocity that is dynamically adjusted according to its own 
flying experience and its companions’ flying experience. In this paper we propose an 
improved PSO algorithm, which is as follows: 

1) Initialise positions Pesentx and associated velocity v of all individuals (poten-
tial solutions) in the population randomly in the D dimension space. 

2) Evaluate the fitness value of all individuals. 
3) Compare the PBEST[] of every individual with its current fitness value. If the 

current fitness value is better, assign the current fitness value to PBEST[] and 
assign the current coordinates to PBESTx[][d]. Here PBEST[] represents the 
best fitness value of the nth individual, PBESTx[][d] represents the dth compo-
nent of an individual. 

4) Determine the current best fitness value in the entire population and its coordi-
nates. If the current best fitness value is better than the GBEST, then assign the 
current best fitness value to GBEST and assign the current coordinates to 
GBESTx[d]. 

5) Change velocities and positions using the following rules: 
 

]1)[(

][][][][][][

])[][][(

**2])[][

][][(**1][][*][][
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+=

∞∞

                 (1) 

where 0.221 == CC , t and K are the number of current iterations and total gen-
eration. The balance between the global and local search is adjusted through the 

parameter ),( 0 ∞∈ WWW . 

6) Repeat step 2) - 6) until a stop criterion is satisfied or a predefined number of 
iteration is completed.  
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    Because there is not a selection operator in PSO, each individual in an original 
population has a corresponding partner in a new population. From the view of the 
diversity of population, this property is better than EA, so it can avoid the premature 
convergence and stagnation in GA to some extent. 

2.3   REAPSO Algorithm 

In REAPSO, the evolution of RNN’s architectures and weight learning are alternated. 
The major steps of PSOEA can be described as follows: 

1) Generate an initial population of M networks.  
 The direct encoding scheme is applying to encode the architecture of each 

network. The architecture of each network is uniformly generated at random 
within certain ranges. In the direct encoding scheme, a nn ×  matrix 

nnijcC ×= )( can represent a RNN architecture with n nodes, where ijc  in-

dicates presence or absence of the connection from ith node to jth node. 

Here, 1=ijc indicates a connection and  0=ijc  indicates no connection. It 

is shown in Fig. 1. 

 

Fig. 1. The direct encoding scheme of a recurrent neural network. (A), (B) and (C) show the 
architecture, its connectivity matrix, and its binary string representation, respectively 

 The initial weights are uniformly distributed inside a small range. 
2) Use the Extended Training (ET) algorithm to train each network in the popula-

tion on the training set, which is as follows:  
 Choose a network as a parent network, and then randomly generate N-1 ini-

tial individuals as a population where each individual’s initial weights uni-
formly generated at random within certain ranges, but their network architec-
tures are the same as the parent network architecture. And then the parent 
network is added into the population. Here each individual in this population 
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is to parameterise a whole group of g nodes in a RNN, this means that every 
component of each individual represents a connection weight. 

 Employ EA to evolve this population until the best individual found is ac-
cepted or the maximum number of generations has been reached.  

 The best individual that survived will join the network architecture evolu-
tion. 

3) All survived networks form a new population. Evaluate the fitness values of 
every individual in this population. Here the mean squared error value E of 
each network on the validation set represents the fitness evaluation of each in-
dividual. 

4) If the best network found is accepted or the maximum number of generations 
has been reached, stop and go to step 7). Otherwise continue. 

5) Employ the PSO to evolve the network architecture of each individual. Here 
each individual represents the binary string representation of network architec-
ture. 

6) When the network architecture of an individual changes, employ the strategy of 
Evolving Added Connection (EAC) to decide how to evolve its connection 
weights with the ET algorithm. There are two choice: 

 If some connections need to be added to this network, under the strategy of 
EAC, the ET algorithm only evolves the new added connections to explain 
as much of the remaining output variance as possible. In this case the cost 
function that is minimised at each step of algorithm is the residual sum 
squared error that will remain after the addition of the new nodes, and the ex-
isting connections are left unchanged during the search for the best new 
added connections. Compared with the existing connections, the added con-
nections will represent or explain the finer details of this mapping that the 
entire network is trying to approximate between the inputs and outputs of the 
training data. This strategy can decrease the computation time for evolving 
the entire network and prevent destruction of the behaviour already learned 
by the parent. 

 If some connections need to be deleted from a network, EAC strategy can 
remove the connections in the reverse order in which they were originally 
added to the network, then the ET algorithm evolves the connection weights 
of the entire network, but sometimes a few of jump in fitness from the parent 
to the offspring is not avoided. 

 Then go to Step 3). 
7) After the evolutionary process, train the best RNN further with the ET algo-

rithm on the combined training and validation set until it “converges”. 

    In step 7), the generalisation ability of RNN can be further improved by training the 
best RNN with the ET algorithm on the combined training and validation set. The 
logic diagram of coevolution between network architecture and weights is shown in 
Fig. 2.  
    After evolving the architecture of networks every time, the strategy of EAC and ET 
algorithm are used to optimise the connection weights of nodes with a given network 
architecture which has been evolved by PSO. In other words, the purpose of this 
process is to evaluate the quality of this given network architecture and maintain the 
behavioural link between a parent and its offspring.  
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Fig. 2. The logic diagram of coevolution between network architecture and weights 

    In ET algorithm, each individual of the population in EA is to parameterise a whole 
group of g nodes in RNN, this means that every component of each individual repre-
sents a connection weight. Compared with the encoding scheme that each individual 
represents a single node, and then the individuals are bundled together in the groups 
of g individuals, this scheme is simple and easily implemented, and does not need a 
combinatorial search strategy. 

3   Experimental Studies 

In order to evaluate the ability of REAPSO in evolving RNN, it was applied to esti-
mate the state of the CSTR system. 

3.1   Continuous Stirred Tank Reactor System (CSTR) 

Continuous Stirred Tank Reactor System (CSTR) is a chemical reactor system with 
typical nonlinear dynamic characteristics. 

In fig.3, 1,AC  and 1,BC  are the concentration of product A and B in tank 1 respec-

tively; 2,AC  and 2,BC  are the concentration of product A and B in tank 2 respec-

tively; 1T and 2T  are the reaction temperature in tank 1 and 2 respectively; F  is the 

flux from tank 1 to tank 2; α  is the coefficient of feedback from tank 2 to tank 1. On 
the basis of the knowledge of thermodynamics and chemical kinetics, mathematical 
model is obtained: 

),,( 210,2, TTCfC AB =                                                 (2) 

where f  is the dynamic nonlinear function, the inputs are 0,AC , 1T  and 2T , the 

output is 2,BC . 

Employ the PSO to evolve the network architec-
ture of each individual 

The strategy of EAC and ET algorithm are used to optimise 
the connection weights of nodes with a given network 
architecture which has been evolved by PSO 
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Fig. 3. The continuous stirred tank reactor (CSTR) 

    In order to forecast 2,BC  in CSTR system, an evolved RNN is selected. The net-

work inputs are 0,AC , 1T  and 2T , the output is 2,BC . The number of hidden nodes 

is 30. During training, the discrete-time step 2.0=Δt  is used, the root mean square 

error (RMSE) in time interval ]100,0(],( 10 =tt  is calculated by 
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where )(ky ir  is the desired target value at kth time step, and )(kyi   is the output of 

network at the same time, here N=1. And the fitness value is defined to be 
RMSE/1 . 

3.2   Simulation 

To demonstrate the superiority of REAPSO, the performance of REAPSO is com-
pared with TDBR, GA, PSO and HGAPSO. 

We collected about 500 sets of sample data of 0,AC , 1T , 2T  and 2,BC . The sam-

ple data from the site often accompany random measurement noise and gross error, 
and must be processed before they are employed to train the network. For these sets 
of sample data, the first 250 sets of sample data were used for training set, and the 
following 150 sets of sample data for the validation set, and the final 100 examples 
for the testing set.  

    In REAPSO, the population size is 200, 1C = 2C =2.0, )1,0(),( 0 =∞WW , and 

300=K . After 300 epochs off-line learning, the best and averaged RMSEs for the 

50 runs for 2,BC  in the tested 100 date sets are listed in Table 1. Fig. 5 shows the 

desired target values and estimation values of 2,BC . 
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Fig. 4. The desired target values and estimation values of 2,BC  

    To show the effectiveness and efficiency of REAPSO, TDRB, GA, PSO, and 
HGAPSO are applied to the fully connected RNN for the same problem of the state 
estimation of CSTR system.  
    In TDRB, the learning constant η is set to 0.3, the iteration is 10000, and the best 

training result is listed in Table 1.  

    In GA, the population size is 200, and the parents for crossover are selected from 
the whole population instead of from only the elites, and the tournament selection is 
used. The elite strategy is used, where the best individual of each generation is copied 
into the succeeding generation. The crossover probability Pc is 0.4, the mutation prob-
ability Pm is 0.1, and the evolution is processed for 1200 generations. The results after 
50 runs are listed in Table 1.  

In PSO, the population size is 200, the parameters 0.221 == CC , 

)1,0(),( 0 =∞WW , 1200=K . The results after 50 runs are listed in Table 1. 

In HGAPSO, the population size and initial individuals are the same as those used 

in GA and PSO. The parameters of Pc, Pm, 1C , 2C , 0W  and ∞W  are the same as 

those used in GA and PSO, and the evolution is processed for 1200 generations. The 
best and averaged RMSEs for the 50 runs are listed in Table 1. 

From the simulation results, it is illustrated that both the averaged and best RMSEs 
of REAPSO and HGAPSO are obviously smaller than those of GA, PSO and TDRB. 
Although the result of REAPSO is little better than those of HGAPSO, the evolution 
generation of REAPSO is smaller than those of HGAPSO, and REAPSO possesses 
good generalisation ability.  

Table 1. Performance comparisons for different methods of RNN design for the state estima-
tion for CSTR system 

 TDRB 
GA 

(Pc=0.4) 
PSO HGAPSO REAPSO 

RMSE(Ave) - 0.2539 0.1658 0.1083 0.0862 
RMSE(Best) 0.0258 0.2240 0.0253 0.0216 0.0127 
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4   Conclusion 

This paper describes a cooperative system named REAPSO - a hybrid of EA and 
PSO, which combines the architectural evolution with weight learning. It means that 
PSO constructs dynamic architectures without requiring any software redesign, then 
EA is employed to evolve the network nodes with this architecture, and this process is 
automatically alternated. It can effectively alleviate the noisy fitness evaluation prob-
lem and the moving target problem. And no selection and crossover operator exist in 
PSO, which can avoid the permutation problem in the evolution of architectures. In 
addition of these, ET algorithm and EAC strategy, can maintain a closer behavioural 
link between the parents and their offspring, which improves the efficiency of evolv-
ing RNN.  
    REAPSO has been tested in modeling the state estimation of the CSTR system. To 
show the effectiveness and efficiency of REAPSO, the algorithms of TDRB, GA, 
PSO, and HGAPSO applied to the fully connected RNN is used to the same problem. 
The results show that REAPSO is able to evolve both the architecture and weights of 
RNN, and the RNN evolved by REAPSO has good accuracy and generalisation  
ability. 
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Abstract. Locally Linear Embedding (LLE) is an efficient nonlinear
algorithm for mapping high-dimensional data to a low-dimensional ob-
served space. However, the algorithm is sensitive to several parameters
that should be set artificially, and the resulting maps may be invalid in
case of noises. In this paper, the original LLE algorithm is improved by
introducing the self-organizing features of a novel SOM model we pro-
posed recently called DGSOM to overcome these shortages. In the im-
proved algorithm, nearest neighbors are selected automatically according
to the topology connections derived from DGSOM. The proposed algo-
rithm can also estimate the intrinsic dimensionality of the manifold and
eliminate noises simultaneously. All these advantages are illustrated with
abundant experiments and simulations.

1 Introduction

In most machine learning problems, dimensionality reduction is an important
and necessary preprocessing step to cope with high-dimensional data set, such
as face images with varying pose and expression changes [1]. The purpose of
dimensionality reduction is to project high-dimensional data to a lower dimen-
sional space while discovering compact representations of high-dimensional data.
Many methods have been presented to cope with high dimensionality of data
sets and pattern recognition, including geometric preservation, neural network
and genetic algorithms [2], [3], [4], [5]. Two traditional methods of dimension-
ality reduction are Principal Component Analysis (PCA) and Multidimensional
Scaling (MDS). Both of them are linear methods and are widely used, but in
the situation of nonlinear input data, they often fail to preserve the structures
and relationships in the high-dimensional space when data are mapped into a
low-dimensional one [6].

While in these cases, Nonlinear Dimensionality Reduction (NLDR) methods
can achieve better results. Locally Linear Embedding (LLE), first proposed by
Roweis and Saul in 2000 [7], has attracted more and more attention among
such NLDR techniques. LLE reduces the dimension by solving the problem of
mapping high-dimensional data (possibly in a nonlinear manifold) into a single
global coordinate system of lower dimensionality. The most attractive virtues of
LLE are that there are only two parameters to be set, and the computation can
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avoid converging to a local minimum. However, there have yet been very few
reports of application of LLE since it was proposed [8], which, in our opinion
while applying it, may be because the mapping results are quite sensitive to
parameters, and it may be useless when adequate noises were included in the
raw data set.

To tackle the problems, here we introduce features of a novel SOM model
proposed by the co-authors of this paper recently. The model, called Diffus-
ing and Growing Self-Organizing Maps (DGSOM) [9], increases units through
competition mechanism, generates and updates the topology of network using
Competitive Hebbian Learning (CHL) fashion, and uses NO diffusion model with
dynamic balance mechanism to define the neighborhoods of unites and the fine-
tuning manner. Topological connections among neurons generated by DGSOM,
which reflect the dimensionality and structure of input signals, can adapt to the
changes of the dynamic distribution [10]. The new algorithm proposed in this
paper firstly applies DGSOM to reduce the large amount of high-dimensional
input data to a set of data points with connections between neighboring ones to
reflect the structure of the original input data set rationally and efficiently. Sec-
ondly, the resulting neighboring relationships between data points are adopted
directly instead of the neighborhood searching in the original LLE [7], while the
following steps are similar. Experiments will show the impressive performance
of the combined algorithm.

The rest of this paper is organized as follows: Based on the algorithms of
LLE and DGSOM, the unified algorithm is proposed in section 2. Section 3
expatiates on abundant experiments and some theoretical analysis. Conclusions
and discussions are propagated in section 4.

2 Algorithms

2.1 Locally Linear Embedding

Supposing that the original data set consists of N vectors −→Xi(
−→
Xi ∈ RD), the

purpose of LLE is to find N vectors −→Yi(
−→
Yi ∈ Rd) in a low-dimensional space

while preserving local neighborhood relations of data in both the embedding
space and the intrinsic one. The basic algorithm is described as follows [7]:

Step 1: Compute the neighbors of each data point −→Xi, by finding K nearest
neighbors of each point or choosing points within a hypersphere of fixed radius.

Step 2: Compute the weights Wij that best reconstruct each data point −→Xi

from its neighbors. Reconstruction errors are measured by the cost function

ε(W ) =
∑

i

|−→Xi −
∑

j

Wij
−→
Xj |2 (1)

whereWij summarize the contribution of the j-th data to the i-th reconstruction,
and the weight matrix W satisfies two constraints: First, enforcing Wij=0 if −→Xj
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does not belong to the neighbors of −→Xi; Second, the rows of W sum to one:∑
j Wij=1. The weights Wij are obtained by finding the minimum of the cost

function.

Step 3: Compute the vectors −→Yi best reconstructed by the weights Wij . Fix the
weights Wij , and then compute the d-dimensional coordinates −→Yi by minimizing
the embedding cost function

ε(Y ) =
∑
i

|−→Yi −
∑

j Wij
−→
Yj |2 = ‖(I −W )Y ‖2

= Y T (I −W )T (I −W )Y
(2)

This process can be done by finding the bottom d nonzero eigenvectors of a
sparse N ×N matrix (I −W )T (I −W ).

LLE, being a powerful method solving the nonlinear dimensionality reduction
problem, however, still has some disadvantages: Quality of manifold characteriza-
tion is dependent on neighborhood choices and sensitive to noises. Improvements
are on demand to solve the problems.

2.2 Diffusion and Growing Self-organizing Maps (DGSOM)

The newly proposed model DGSOM [9] consists of four mechanisms to make it as
applicable as possible: Growing mechanism for resource competition, Competi-
tive Hebbian Learning (CHL) method and aging mechanism for topology updat-
ing, forgetting mechanism for avoiding data saturation, and diffusion/dynamic
balance mechanism for node adaptation. A detailed account of the four mecha-
nisms is given as follows:

i) Mechanism 1: If one unit holds too many resources, a new unit will be
generated and compete with it for redistribution of resources rationally.

ii) Mechanism 2: Ensure the formation of topology, with making a relation-
ship between the two nearest nodes to the current input.

iii) Mechanism 3: Make the influence of early input signals be forgotten and
prevent the winning times of a particular node from increasing infinitely.

iv) Mechanism 4: Combine the mechanism of topological connection adapta-
tion with the mechanism of NO diffusion to build and keep the balance of the
network.

The DGSOM model does not depend on any transcendental knowledge about
the input distributions because of the growing nature of nodes and connections.
It is not only able to compartmentalize the input space correctly, but also reflect
the topology relations and the intrinsic dimensionality. Though there are many
mechanisms incorporated in DGSOM model, the description of the model itself
is simple and the whole structure of DGSOM algorithm is compact. The detailed
steps of DGSOM algorithm are available by consulting [9].

2.3 The Proposed Self-organized LLE Algorithm

In the new algorithm, we unify DGSOM and LLE algorithms in one framework.
Firstly, before the operation of LLE, large amount of original data samples are
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fed as the input of DGSOM. An obviously reduced number of samples with
topology connections are achieved as the result of DGSOM, which reflect the
intrinsic structure of the manifold adaptively and efficiently.

Secondly, run LLE on the reduced samples. In place of the first step of the
original LLE method, the neighborhood relationships of sample points are de-
fined directly according to the connections generated by DGSOM, e.g., if one
point has connections with four other points in the DGSOM mapping, the four
data points are considered in LLE as the neighborhoods of that point. So the
neighborhood number of every sample may be different from each other, and
achieved automatically, rather than fixed and being set artificially as in the
original LLE.

The third and fourth steps of the unified algorithm are similar to the original
LLE, apart from the fact that weight matrixW ′ is of sizeN×N instead ofN×K.
For the i-th column of W ′, the number of nonzero entries equals to the number
of nearest neighbors of the i-th sample. Finally, the low-dimensional vectors −→Yi

are computed the same way as in Step 3 of the original LLE algorithm.
In our Self-Organized LLE algorithm, D-dimensional samples ui are derived

from DGSOM while the number of which is remarkably reduced. The deviation
between u and the original dataX expressed as E[X−u] is achieving zero asymp-
totically [11] which verifies that the reduced samples are good representations
of the input data set.

3 Experiments and Comparisons

In this section, we will discuss several applications of our Self-Organized LLE
algorithm to the selection of the nearest neighbors, estimation of the intrin-
sic dimensionality and the original data added with noises, through abundant
experiments on the synthesized manifold S-curve and face database.

3.1 Selection of the Nearest Neighbors

Though LLE has very few parameters to be set, they can impact the result
dramatically. One parameter is the number of nearest neighbors K, which is
fixed in some range according to the manifold. Fig.1 shows how LLE unfolds the
S-curve rationally.

However, if K is set too small, the mapping will cause disjoint sub-manifolds
divided from continuous manifold and can not reflect any global properties;
while on the other hand, if K is too large, the whole data set is seen as local
neighborhood and the mapping will lose nonlinear character [8]. Fig.2 illustrates
this problem using the example of S-curve, with K=4 and K=80.

In the new algorithm, numbers of nearest neighbors K are defined auto-
matically according to the topology connections generated by DGSOM. Since
the topology connections can reflect the intrinsic structure of the manifold, this
method of defining the neighborhood is adaptive. Fig.3 is the result of S-curve
with neighborhood relationship between reduced points automatically generated.
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(A) (B) (C) 

Fig. 1. LLE algorithm maps three-dimensional data into two-dimensional embedding
space. Three-dimensional data points (B) are sampled from two-dimensional manifold
(A). Neighborhood-preserving mappings are shown (C), with the color coding reveals
how the data is embedded in two dimensions. (N=2000, K=12, d=2).

(A) (B) 

Fig. 2. For S-curve shown in Fig.1, choose K=4 (A) and K=80 (B). There is obviously
deformation and incorrect color coding either.

Fig. 4 is another example of our method carried on Frey Face Database1. Though
the result of Fig. 4 is similar to that in [7], our algorithm avoids the problem of
setting the number of nearest neighbors K.

3.2 Estimation of the Intrinsic Dimensionality

Considering n-dimensional input data, if the dimension in the embedding space
is m (m � n), then the intrinsic dimensionality of the input data is m. In
the original LLE algorithm, if we don’t know the intrinsic dimensionality as
a prior, it should be established in advance. This problem can be solved by

1 Available at http://www.cs.toronto.edu/ roweis/data.html
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Fig. 3. (A) The reduced samples of S-curve (shown in Fig.1) which number is 82 as the
result of DGSOM, with the nodes in red and topology connections in blue. (B) Map
the reduced samples into a two-dimensional space using the algorithm we proposed.
The black nodes and their connections in (A) and (B) show a single point (represented
by circle) and its neighborhood (represented by diamonds).

Fig. 4. Images of faces mapped into a two-dimensional embedding space, with the
neighborhood defined automatically. In the original data, N=1965, D=560 (each image
has 28¡Á20 pixels). The number of the images is reduced to 92 after running our
algorithm. Representative points are marked by diamond with corresponding faces
next to them. The variability in expression and pose is illustrated clearly along the two
coordinates.
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Fig. 5. The statistical graph of correlation between dimensionality of network and
average of coterminous neighbor nodes. The mean of average of coterminous neighbor
nodes for each node is represented by diamond and the variance by short line.

DGSOM, since the topology of DGSOM will reflect the dimension m rather than
n. The correlation between dimensionality of network and average of coterminous
neighbor nodes of each node in the network is obtained through Monte-Carlo
method [12], shown in Fig.5.

From Fig.5 it can be seen that for one-dimensional network, each node has
about two coterminous neighbor nodes averagely, and for two-dimensional net-
work correspondingly, each node has about four coterminous neighbor nodes
averagely. Then we can establish the intrinsic dimension by calculating the av-
erage coterminous neighbor nodes of the network results from DGSOM. For the
S-curve in Fig 3(A), the average number of coterminous neighbor nodes is 4.1205,
which is in good agreement with the result derived from Fig.5.

3.3 Eliminating Noises

Though the original LLE algorithm is efficient and robust when the data lie
on a smooth and well-sampled single manifold, the embedding result can be
affected and destroyed significantly when noises exist. Fig.6 demonstrates the
result with S-curve distribution with normal distributed random noises (mean=0,
variance=0.05, standard deviation=0.05). The variance and standard deviation
has a critical value 0.05, above which the mapping result will distort terribly.

However, in the unified algorithm, samples from DGSOM can reflect the in-
trinsic distribution of input data in case of noises. To demonstrate this character,
same data set as shown in Fig.6 (B) is fed in the Self-Organized LLE algorithm.
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(A) (B) (C) 

Fig. 6. (A) The original S-curve. (B) S-curve with normal distributed random noises,
(mean=0, variance=0.05, standard deviation=0.05). (C) Mapping result using the orig-
inal LLE, which is not unfolded and disordered in color coding.
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Fig. 7. (A) The network derived from Fig.6 (B) after running DGSOM, reflecting
the intrinsic distribution of S-curve, with the reduced number of samples 155. (B)
Mapping result in the embedding space after the algorithm we proposed, which is
unfolded compared with Fig.6 (C)

The mapping generated by DGSOM and the final result in the embedding space
are illustrated in Fig. 7.

From these experiments and comparisons, some conclusions can be drawn.

4 Conclusions

Self-Organized LLE algorithm, as proposed in this paper for nonlinear dimen-
sionality reduction, is the integration of two new but different kinds of ap-
proaches. The algorithm first applies DGSOM to high-dimensional input data
set, deriving a reduced number of samples with topology connections. Then
instead of the first step of LLE, neighborhood relationship is obtained auto-
matically from the topology mapping generated by DGSOM. Experiments and
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simulations indicate that the integrated algorithm outperforms the original LLE
in following aspects: 1) The number of nearest neighbors is achieved automati-
cally and efficiently rather than being set arbitrarily. 2) It provides an efficient
way of estimating the intrinsic dimensionality. 3) In case of noises, when the
original LLE can not work, our algorithm will still give satisfactory results.
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Abstract. In many neural network applications, the selection of best training set 
to represent the entire sample space is one of the most important problems. Ac-
tive learning algorithms in the literature for neural networks are not appropriate 
for Probabilistic Neural Networks (PNN). In this paper, a new active learning 
method is proposed for PNN. The method was applied to several benchmark 
problems. 

1   Introduction 

In the traditional learning algorithms, the learner learns through observing its envi-
ronment. The training data is a set of input-output pairs generated by an unknown 
source. The probability distribution of the source is also unknown. The generalization 
ability of the learner depends on a number of factors among them the architecture of 
the learner, the training procedure and the training data [1]. In recent years, most of 
the researchers focused on the optimization of the learning process with regard to both 
the learning efficiency and generalization performance. Generally, the training data is 
selected from the sample space randomly. With growing size of the training set, the 
learner’s knowledge about large regions of the input space becomes increasingly 
confident so that the additional samples from these regions are redundant. For this 
reason, the average information per instance decreases as learning proceeds [1, 2, 3].  

In the active learning, the learner is not just a passive observer. The learner has the 
ability of selecting new instances, which are necessary to raise the generalization 
performance. Similarly, the learner can refuse the redundant instances from the train-
ing set [1-5]. By combining these two new abilities, the active learner can collect a 
better training set which is representing the entire sample space well. 

The learning task is a mapping operation between a subset x of the input space X 
and a subset y of the output space Y. The student realizes a function X Y:sw(x)=y. 
The subscript w denotes a set of adaptive internal parameters of the student that are 
adjusted during the learning process [1, 6]. The goal of the training process is minimi-
zation of a suitably chosen error function E by adjusting the student’s parameters w. 
The error term is defined as the disagreement of the teacher and the student. The ad-
justment of w is performed until the student makes decisions close to the teacher’s 
ones. The main goal of the training is not to learn an exact representation of the train-
ing data but rather to exact a model of the teacher’s function [1]. The student must be 
able to make good predictions for new samples. This ability is called as generaliza-
tion. In this paper, non-random selection of the training set is considered. The main 
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goal of the selection of the training set by some rules is to improve the learner’s gen-
eralization ability. In Section 2, active learning paradigm was discussed. In Sections 3 
and 4, Probabilistic Neural Networks (PNN) and a new active learning algorithm for 
PNN were proposed. Sample applications of the algorithm were given in the Section 
5; and the results were discussed in the Section 6. 

2   Active Learning  

Figure 1 shows a binary classification problem. Class 1 is represented by circles; class 
2 is represented by rectangles. The black filled circles and rectangles are the training 
set. Left to right hatch area is the teacher’s decision boundary and right to left hatched 
area is the learner’s approximation. The area, which the learner and teacher decides 
different represents the generalization error. The learner classifies all of the training 
data correctly, but there are regions where teacher and learner disagree (Figure 1a). 
The generalization error of the learner can be reduced if it receives additional new 
training instances from the error region (Figure 1b). The selection of the new in-
stances might be done randomly or by some rule. An efficient active learning algo-
rithm must, ideally, minimize both its generalization error and amount of training data 
[7,8]. For classification purposes, it is not necessary to minimize the mean square 
error, but to estimate the correct boundary between the classes, so called decision 
boundary [3]. 

The active learning strategies might be separated into two classes: active sampling 
and active selection. In active sampling, new training instances are constructed or 
generated from the existing training set by using some transformation rules. Selecting 
a concise subset of the entire dataset is called as active selection. There are several 
active selection approaches in the literature. Most of these approaches are separated 
into two groups: those that start with a small subset of the training data and sequen-
tially add new instances, and those that start with a large subset of the training data 
and sequentially remove instances from the training set.  

Plutowski and Halbert [9] propose an algorithm that adds new training instances to 
the training set. A new training instance is added to the training set with the aim to 
maximize the expected decrement in mean square error that would result from adding 
the training instance to the training set and training upon the resulting set. Another 
incremental algorithm was described by [5]. In this algorithm, the network is first 
trained by a training set. An unused pattern xn, which has the maximum error, is found 
and this pattern is added to the training set. Various stopping criterions can be used 
for this algorithm. The Query-By-Committee [1] approach uses a committee of learn-
ers to find a new sample, which has the maximum disagreement among the members 
of the committee. Once this sample is found, it is added to the training set, members 
of the committee are retrained and the entire process is repeated. [2] introduces a 
similar  approach for minimization of data collection. [10] represents an active learn-
ing scheme for parameter estimation in Bayesian networks. The method tries to find 
the sample, which has the minimum risk factor based on Kullback-Leibler divergence 
and adds it to the training set. 
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Fig. 1.  (a) The passive learning. Learner acts as an observer and there are big dissimilarities 
between the teacher’s and learner’s decision boundaries. (b) The active learning. The training 
set is chosen by the learner. 

Pruning of training set can be achieved in a natural way by using Support Vector 
Machines (SVM) [11]. A SVM tries to find hyper planes, which separate the classes 
from one to another by maximizing the margin between these classes. A small num-
ber of the training instances, those so-called support-vectors, suffice to define the 
hyper planes. These support vectors are highly informative training instances. Tong 
and Koller [12] introduced a new algorithm for performing active learning with sup-
port vector machines.   

Another useful algorithm is Repeat Until Bored (RUB) which is introduced by 
Munro [13]. In this algorithm, if the current training sample generates a high error 
(i.e. greater than a fixed criterion value), it is repeated; otherwise, another one is ran-
domly selected. This approach was motivated by casual observations of behavior in 
small children. 

3   Probabilistic Neural Networks (PNN) 

Consider a pattern vector x with m dimensions that belongs to one of two categories 
K1 and K2. Let F1(x) and F2(x) be the probability density functions (pdf) for the classi-
fication categories K1 and K2, respectively. From Bayes’ decision rule, x belongs to 
K1 if (1) is true, or belongs to K2 if (1) is false; 
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where L1 is the loss or cost function associated with misclassifying the vector as be-
longing to category K1 while it belongs to category K2, L2 is the loss function associ-
ated with misclassifying the vector as belonging to category K2 while it belongs to 
category K1, P1 is the prior probability of occurrence of category K1, and P2 is the 
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prior probability of occurrence of category K2. In many situations, the loss functions 
and the prior probabilities can be considered equal. Hence the key to using the deci-
sion rule given by (1) is to estimate the probability density functions from the training 
patterns [14].  

In the PNN, a nonparametric estimation technique known as Parzen windows [15] 
is used to construct the class-dependent probability density functions for each classifi-
cation category required by Bayes’ theory. This allows determination of the chance a 
given vector pattern lies within a given category. Combining this with the relative 
frequency of each category, the PNN selects the most likely category for the given 
pattern vector. Both Bayes’ theory and Parzen windows are theoretically well estab-
lished, have been in use for decades in many engineering applications, and are treated 
at length in a variety of statistical textbooks. If the jth training pattern for category K1 
is xj, then the Parzen estimate of the pdf for category K1 is  
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where n is the number of training patterns, m is the input space dimension, j is the 
pattern number, and  is an adjustable smoothing parameter [14]. 

Figure 2 shows the basic architecture of the PNN. The first layer is the input layer, 
which represents the m input variables (x1, x2, ...  xm). The input neurons merely dis-
tribute all of the variables x to all neurons in the second layer. The pattern layer is 
fully connected to the input layer, with one neuron for each pattern in the training set. 
The weight values of the neurons in this layer are set equal to the different training 
patterns. The summation of the exponential term in (2) is carried out by the summa-
tion layer neurons. There is one summation layer neuron for each category. The 
weights on the connections to the summation layer are fixed at unity so that the sum-
mation layer simply adds the outputs from the pattern layer neurons. Each neuron in 
the summation layer sums the output from the pattern layer neurons, which corre-
spond to the category from which the training pattern was selected. The output layer 
neuron produces a binary output value corresponding to the highest pdf given by (2). 
This indicates the best classification for that pattern [14].  
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Fig. 2. The basic architecture of the PNN. This case is a binary decision problem. Therefore, 
the output layer has just one neuron and summation layer has two neurons. 
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4   Active Learning with Probabilistic Neural Networks   

Since the known active learning strategies require an error measure (i.e. mean square, 
maximum absolute, sum square etc.) or a randomization in the learning phase (i.e. 
initial weight vector of the Multi Layer Perceptron is random), active learning with 
PNN is slightly different from other neural networks such as MLP (Multi Layer Per-
ceptron), RBF (Radial Basis Function Networks), etc. The output of PNN is a binary 
value, not continuous. By using a binary output value, it is hard to develop any useful 
training data selection criteria such as maximum or mean square error. On the other 
hand, learning phase of the PNN takes only one sweep and unlike the MLP, the PNN 
learning is not iterative; if the same training set is used, the learning phase of the PNN 
always produces the same weights. For these reasons a new and useful approach for 
PNN is offered below. 

The first step of the PNN learning is to find an acceptable spread value. The spread 
is found by using a trial-by-error process. When the optimum spread value is found, 
the next step is to find a better training set by using a data exchange algorithm. 

The exchange process starts with a random selected training set. After first training 
process, the test data is applied to the network. A randomly selected true classified 
instance in the training set (I1) is thrown into the test set; a wrong classified instance 
in the test set (I2) is put into the training set and the network re-trained. If I2 is false 
classified, it is marked as a “bad case”, I2 is put into the original location, and another 
false classified test instance is selected and the network retrained. Retraining is re-
peated until finding a true classified I2. When it is found, I1 is considered. If I2 is true 
classified and the test accuracy is reduced or not changed (I1 is false classified), I1 is 
put into the original location and another true classified training instance, say I3, is 
put into the test set and the process is repeated. If the accuracy is improved, the ex-
change process is applied to another training and test pairs. When an instance marked 
as “bad” once, it is left out of the selection process. The process is repeated until 
reaching the maximum training and test accuracy.  

The last step is to find loss functions which give the best accuracy. In general, the 
loss functions are considered equal. However, if the dataset has rare classes, well 
selection of the loss functions improves the accuracy of the network. In this work, the 
MATLAB Neural Network Toolbox was used. The loss functions are adjusted by data 
replication when needed, because of this toolbox does not permit to adjust the loss 
functions. The classes of the training set which have relatively less instances are used 
two or more times in the training set. This operation increases the occurrence prob-
ability Pi (or equally, reduces the loss function Li) of the ith class (see Eq. 1). This 
operation is called as replication. Replication is repeated until finding better test accu-
racy. After the considerable numbers of replication if the test accuracy is not raised, 
the replication is cancelled.  

5   Applications and Results 

The methods described above were tested by using several datasets, which are Glass 
data, Lenses data, Lung data, Wisconsin Diagnostic Breast Cancer (WDBC) data, 
Wisconsin Prognostic Breast Cancer (WPBC) data, Cleveland Heart data, BUPA data 
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and Escheria Coli data. The datasets were taken from UCI Machine Learning Reposi-
tory Database [16]. The simulations were realized by using MATLAB Neural Net-
work Toolbox.  

Glass dataset has 214 instances separated into six classes. Each instance identified 
by nine continuous chemical measures. The biggest class of this dataset includes 76 
instances; the least class has only 9. Escheria coli dataset was taken from Nakai and 
maintained by Horton in 1996. Dataset has 336 instances divided into eight classes. 
Each instance is identified by eight continuous attributes. The biggest class of this 
dataset has 143 instances and the least two classes have only two. Lenses database is a 
complete database; all possible combinations of attribute value pairs are represented. 
The dataset has only 24 instances, which are represented by four discrete attributes. 
Class 1 has 5, class 2 has 4 instances. The remaining 15 instances belong to class 3. 
BUPA Liver Disorder dataset was originally created by BUPA Medical Research Ltd. 
This dataset has 345 instances. Each instance has six attributes which are taken from 
blood tests and a class number which shows if a liver disorder exists or not. All of the 
attributes are real and continuous. BUPA dataset has only two classes. WDBC dataset 
has 359 instances separated into two classes. Each instance has 30 continuous fea-
tures. Features are computed from a digitized image of a fine needle aspiration (FNA) 
of a breast mass. WPBC dataset has 198 instances separated into two classes. Each 
instance has 32 continuous features. First 30 features are computed from a digitized 
image of a FNA of a breast mass. Lung Cancer dataset describes 3 types of pathologi-
cal lung cancers. The Authors give no information on the individual variables. Dataset 
has 32 instances (including 5 missing) which are described by 56 nominal features. 
The last dataset, Speech/Music is not a part of UCI database. It was created by Bolat 
and Kucuk; and first appeared in [17]. Speech/Music dataset has 150 instances di-
vided into two categories. Speech class has 50 speech samples from four different 
males. Music class has 100 samples: 50 instrumental music pieces and 50 music 
pieces with male and/or female singers. Each instance is represented by six continu-
ous values which are means and standard deviations of zero cross rate, RMS energy 
and spectral centroid. Table 1 shows some past usage of the datasets described above. 

Table 1. Recent works based on the datasets used in experiments 

Dataset Network Accuracy 
Glass [18] Bayesian EM 89.6% 
Glass [19] 1-NN 78.8% 
E.coli [20] k-NN 86% 
E.coli [21] PNN 82.97% 
Lens [22] RQuantizer 81.3% 
WPBC [23] 9-NN 81.0% 
WDBC [23] 5-NN 93.3% 
WDBC [24] XCS 96.67%±2.2 
Lung [25] C4.5 86.65% 
BUPA [26] MLP 74.36% 
BUPA [27] Weighted aggregation 67.83% 
BUPA [26] PNN 42.11% 
Speech/Music [17] PNN 84.45% 
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Approximately 70% of the datasets were used as training sets; remaining portions 
were used as test sets. Instances that have missing attributes were deleted from data-
sets. In the first stage of the learning phase, the optimum spread values were found by 
a trial-by-error strategy by using randomly selected training sets. In the second stage, 
the data selection method was applied and the best test accuracies obtained. In the last 
stage, if needed, a data replication process was applied to achieve better accuracies. 
Table 2 shows results of data exchange method with no replication and Table 3 shows 
the results of data exchange with replication. 

Table 2. Training and Test Accuracies (Exchange only) 

Database Training Test 
Glass 98.67% 89.06% 
E.coli 94.60% 90.35% 
Lens 93.33% 75% 
WPBC 100% 84.48% 
WDBC 100% 98.83% 
Lung 100% 87.5% 
BUPA 100% 94.78% 
Speech/Music 95% 97,78% 

Table 3. Training and Test Accuracies (Exchange and Replication) 

Database Training Test 
Glass 100% 95.31% 
E.coli 95.5% 90.35% 
Lens 100% 87.5% 

 

According to the simulation results, it is seen that the good selection of the training 
data boosts the accuracy of the network. Data replication also offers an improvement 
on the classes which have relatively less instance numbers. As an example, test accu-
racy of the class 3 of the Glass dataset was raised from 50% to 100% by repeating the 
training portion of this class three times. It is raised from 66% to 100% for class 6 of 
the Glass dataset with a replication rate of 4. Data replication did not improve the test 
accuracy of the E.coli dataset, but improved the training accuracy a little. Training 
part of the class 6 repeated two times for this dataset. Both training and test accuracies 
of the Lens data were improved by using data replication.  The class distributions of 
the other datasets are not so imbalanced, or accuracies were not improved by adjust-
ing the loss functions. Therefore, the replication was not applied to them. 

For large, real-world inductive learning problems, the number of training examples 
often must be limited due to the costs associated with procuring, preparing, and stor-
ing the training examples and/or the computational costs associated with learning 
from them [28]. Another advantage of this algorithm is that the selection method (data 
exchange) does not change the amount of the training data. The method presented 
here is useful for these kinds of difficult learning tasks. 



 Active Learning for Probabilistic Neural Networks 117 

6   Concluding Remarks  

Generalization performance of a neural network usually depends on the selection of 
instances. This also affects the learning efficiency of the network. Traditional learning 
algorithms generally select the training data randomly from the sample space and the 
learner is a passive observer here. In the active learning, the learner has the ability of 
selecting new instances, which are necessary to raise the generalization performance. 
Similarly, the learner can refuse the redundant instances from the training set. Hence, 
the active learner can collect a better training set which is representing the entire sam-
ple space well. 

There is no active learning algorithm for Probabilistic Neural Networks in litera-
ture. Active learning with PNN is slightly different from other neural networks such 
as MLP, RBF, etc. The main reason of this dissimilarity is that the output of the PNN 
is a binary value, not continuous. By using a binary output value, it is hard to develop 
any useful training data selection criteria such as maximum error. In the other hand, 
learning phase of the PNN takes only one sweep and unlike the MLP, the PNN learn-
ing is not random; if the same training set is used, the learning phase of the PNN 
always produces the same network.  

In this paper, a new active learning method for PNN is introduced. Firstly, a data 
exchange method is considered and, secondly, a data replication is applied to increase 
the performance. A comparative study with benchmark problems is also presented. 
Concerning the results, it is seen that the good selection of the training data boosts the 
accuracy of the Probabilistic Neural Network. Data replication also offers an im-
provement on the classes which have relatively less instance numbers. 
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Abstract. A novel methodology to determine the optimum number of centers 
and the network parameters simultaneously based on Particle Swarm 
Optimization (PSO) algorithm with matrix encoding is proposed in this paper. 
For tackling structure matching problem, a random structure updating rule is 
employed for determining the current structure at each epoch. The effectiveness 
of the method is illustrated through the nonlinear system identification problem. 

1   Introduction 

Radial basis function (RBF) neural networks became very popular due to a number of 
advantages compared with other types of artificial neural networks, such as better 
approximation capabilities, simpler network structures and faster learning algorithm 
[1]. As is well known, the performance of an RBF network critically depends on the 
choice of the number and centers of hidden units. More specifically, most of the 
traditional training methods require from the designer to fix the structure of the 
network and then proceed with the calculation of model parameters. Most natural 
choice of centers is to let each data point in the training set correspond to a center. 
However, if data are contaminated by noise, then over-fitting phenomena will occur, 
which leads to a poor generalization ability of the network. For improving 
generalization performance, some approaches decompose the training into two stages: 
the centers of hidden units are determined first in self-organizing manner (structure 
identification stage), followed by the computation of the weights that connect the 
hidden layer with output layer (parameters estimation stage) [1],[2]. This is a time 
consuming procedure as it requires evaluation of many different structures based on 
trial and error procedure. Another drawback is the centers of hidden units are 
determined only based on local information. It is desirable combined the structure 
identification with parameters estimation as a whole optimization problem. 
However this results in a rather difficult problem which cannot be solved easily by 
the standard optimization methods. An interesting alternative for solving this 
complicated problem can be offered by recently developed swarm intelligent 
strategies. Genetic algorithms (GA), the typical representative among others, have 
been successfully utilized for the selection of the optimal structure of RBF network 
[3],[4]. But GA have some defects such as more predefined parameters, more 
intensive programming burden etc.  
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Particle swarm optimization (PSO) algorithm is a recently proposed algorithm by 
Kennedy and Eberhart, motivated by social behavior of organisms such as bird 
flocking and fish schooling [5],[6] . PSO as an optimization tool, combines local 
search methods with global search methods, attempting to balance exploration and 
exploitation. It is demonstrated that PSO gets better results in a faster, cheaper way 
compared with other methods. Another reason that PSO is attractive is that there are 
few parameters to adjust [6].  

In this paper, we propose a novel methodology to determine the optimum number 
of centers and the network parameters simultaneously based on PSO with  matrix 
encoding. The method gives more freedom in the selection of hidden units’ centers. 
The algorithm starts with a random swarm of particles, which are coded as centers of 
RBF network in the form of matrix. Then, a structure updating operator is employed 
to determine the structural state of all particles at each epoch. The fitness value of 
each particle is calculated based on prediction error criterion. In addition, each 
particle may be grown or pruned a unit for improving diversity. The algorithm is 
terminated after a predefined number of iterations are completed or prediction error 
threshold is met. The particle corresponds to the best fitness value throughout the 
entire training procedure is finally selected as the optimal model. 

This paper is organized as follows. In section 2 we formulate the training of RBF 
network as a whole optimization problem by combined structure identification with 
parameters estimation. The details of proposed algorithm are described in section 3. 
Simulation results are shown in section 4. The results are compared with other 
existing similar algorithm. Finally, the conclusions are summarized in section 5. 

2   Formulation of the Whole Optimization Problem 

RBF networks form a special neural network architecture which consists of three 
layers, namely input, hidden, output layer. The input layer is only used to 
communicate with its environment. The nodes in the hidden layer are associated with 
centers, which character the structure of network. The response from a hidden unit is 
activated through a radial basis function, such as Gaussian function. Finally, the 
output layer is linear and serves as a summation unit. 

Assume that we have a training set of N samples { }, , 1, 2, ,i iy i N=x L  where iy  

is the desired output value corresponding to the network input vector 

[ ]1 2,i dx x x= T
x L with dimension d . The RBF network training problem can be 

formulated as an optimization problem, where the sum of squared errors (SSE) 

between the desired outputs iy and the network predictions iy
∧

 must be minimized 

with respect to both the network structure (the number of units M  in the hidden 
layer) and the network parameters (the hidden unit center locations jc , width jγ  and 

the weights jw , 1, 2, ,j M= L ): 
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The predicted out iy
∧

 depends on the input vector and network parameters as follows: 

( )
1

, 1,2, ,
M

j j ii
j

y w i Nφ
∧

=

= ⋅ =x L , (2) 

where ( )/j j jφ φ γ= −x c  does non-linear transformation performed by the j th 

hidden unit and ⋅  denotes Euclidean norm in dR . The Gaussian function 

( ) ( )2exp / 2r rφ = − is used in our work. 

The whole optimization problem requires minimization of the above error function 
(1). This is rather difficult using the traditional optimization techniques, especially 
due to the presence of the number M . PSO algorithm can be used for solving any 
type of optimization problem, where the objective function can be discontinuous, non-
convex or non-differentiable [6]. 

3   Adaptive Training of RBF Networks Using PSO Algorithm 

PSO algorithm is an adaptive method based on a social-psychological metaphor, a 
population of individuals adapts by backing stochastically toward previously 
successful regions in the search space, and is influenced by the successes of their 
topological neighbors [6]. A swarm consists of many particles, where each particle 
keeps track of its position, velocity, best position thus far, best fitness thus far, current 
fitness. The velocity keeps track of the speed and direction the particle is currently 
traveling. The current position is the most important attribute, which corresponds to a 
potential solution of the function to be minimized. 

For RBF networks implementation, a specially designed PSO algorithm with  
matrix encoding is used to determine the optimum number of hidden units and the 
network parameters simultaneously. The algorithm starts with an initial swarm of 
particles, which represent possible networks structure and associated center locations. 
The centers are determined by current position of particle. The widths are determined 
using a nearest neighbor heuristic discussed later. After the determination of centers 
and widths, the weights between the hidden and the output layer are calculated using 
linear regression. Then the objective function can be computed. New position of 
particles is produced using PSO algorithm after structural updating operation and 
growing or pruning operation. The algorithm terminates after a predefined number of 
iterations are completed or error threshold is met. The particle that has minimum 
fitness is selected as the optimum RBF network. 

The detailed description of the proposed algorithm that follows assumes that 
N input-output samples { }, , 1, 2, ,i iy i N=x L are available, which can be grouped 

into two data sets: the input set X  and the output set Y . The dimension of the input 
vector is d . While only one output variable is used in our paper, the algorithm can be 
easily generalized for more than one output variables. Before the application of the 
algorithm, the training data are processed as follows. 
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3.1   Data Division 

The samples are divided into two subsets ( )1 1,X Y , ( )2 2,X Y of size 1N , 2N , which are 

the training and validation sets. The first subset ( )1 1,X Y  is used in the training 

procedure to calculate the connection weights of the different RBF networks that 
constitute the whole swarm. The second subset ( )2 2,X Y  is also used during the 

training epoch to evaluate the fitness of each particle. This is crucial for the success of 
the proposed algorithm, since it incorporates a testing procedure into the training 
process. This strategy can avoid over-fitting effectively. 

3.2   Data Scaling 

The RBF network to obtain a predicted value at a given input proceeds by doing 
weighted summation using all centers that are close to the given input. Thus the 
performance of network depends critically on the metric used to define closeness. 
This has the consequence that if you have more than one input variable and these 
input variables have significantly different scales, then closeness depends almost 
entirely on the variable with the largest scaling.  

To circumvent this problem, it is necessary to standardize the scale of the input 
variables. When all input variables are of the same order of magnitude, the algorithm 
performs better.  

3.3   Particle Swarm Optimization Algorithm for RBF Networks 

3.3.1    Particle with  Matrix Encoding 
The problem of interest to us consists of how to design a particle as the RBF network 
that performs a desired function. To encode a RBF network, we used the novel matrix 
encoding to represent a particle. L  matrices (particles) of size M d× are created, each 
particle corresponds to a set of centers of RBF network, where M  is maximum 
number of hidden units and d is the dimension of input variables. We employ a 
special label ‘ N ’ to indicate invalid center location. Assumed that the ith particle 

with im  ( )1 im M≤ ≤  hidden units, then position matrix iC  and velocity matrix iV  

can be expressed as follows: 

1 111 12 11 12

21 22 2 21 22 2
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1 2 1 2

i i
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N N N N N N

= =C V

L L
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M M O M M M O M

L L

L L

M M M M M M M M

K K

1, 2i L= L . (3) 
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The rows labeled by ‘ N ’ do not involve any algebraic operation and indicate invalid 
centers location. 

3.3.2   Estimation of Widths and Weights 
For each particle, we can identify the valid centers from the position matrix. Assumed 
that im  hidden units with centers location of the ith  particle are identified, then 

widths i
jγ  are determined using a nearest neighbor heuristic suggested in Moody and 

Darken [7]. That is  

1/ 2
2

1

1
, 1,2, , , 1,2,

p
i i i i
j j l

l

j m i L
p

γ
=

= − = =c c L L , (4) 

where ( )1,2, ,i d
l R l p∈ =c L  are the p nearest neighbors of the center i

jc ( 2p =  in 

our work). Once the locations of centers and widths are defined, the RBF network can 
be seen as a linear model [8], and the weights iw can be calculated either by an 
algebraic single-shot process or by a gradient descent methods as in [9].   By 

introducing the notation ( ) ( )( )( )22
exp / 2i i i

j k j jkφ γ= − −x c and 1 2, , i

i i i i

m
γ γ γ=

T
L , 

we can express the predicted output ( )iy k  given input kx of training data ( )1 1,X Y  as 

( ) ( ) 1
1

, 1,2, , , 1,2,
im

i i
i j j

j

y k w k k N i Lφ
=

= ⋅ = =L L . (5) 

By applying all 1N  training sample to equation (5) and employing matrix 

representation, equation (5) can be rewritten as  

( ) ( )1
, 1, 2i

i i i i L
−

= Φ Φ ⋅ Φ =T Tw y L , (6) 

where iΦ is the 1
iN m× matrix containing the response of hidden layer identified by 

the ith  particle to the 1N  training samples. The calculation of the weights and widths 

completes the formulation of L  RBF networks, which can be represented by the 

triples ( ) ( ) ( )1 1 1 2 2 2, , , , , , , , ,L L LC w C w C wL . 

3.3.3   Fitness Value Estimation 
Fitness value gives an indication how good one particle is relative to the others. For 
alleviating the occurrence of over-fitting phenomena, fitness value estimation is based 
on the prediction error criterion by introducing the validation data ( )2 2,X Y in the 

training procedure. The prediction 1 2, , , L

∧ ∧ ∧
Y Y YL of the L  particles formulated in the 

previous section and the prediction error pred
iSSE are computed as follows: 

2

, 1,2,i
pred iSSE i L

∧
= − =Y Y L . (7) 
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According to fitness estimation (7), we can determine the best personal position 
matrix i

pbestC  of each particle and the best global position matrix gbestC . 

3.3.4    Particles Updating Operations 
During each epoch every particle is accelerated towards its best personal position as 
well as in the direction of the global best position. This is achieved by calculating a 
new velocity matrix for each particle based on its current velocity, the distance from 
its best personal position, as well as the distance from the global best position. An 
inertia weightω , reduced linearly by epoch, is multiplied by the current velocity and 
the other two components are weighted randomly to produce the new velocity matrix 
for this particle, which in turn affects the next position matrix of the particle during 
the next epoch. In summary, the L  particles interact and move according to the 
following equations [10]: 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 21i i i i i
pbest gbestt t c rand t c rand tω+ = × + × ⋅ × − + × ⋅ × −V V C C C C

 
(8) 

( ) ( ) ( )1 1i i it t t+ = + +C C V  (9) 

where ( )rand ⋅ is random number generator between zero and one, 1 20 , 2c c≤ ≤ and 

ω is an inertia weight . 
For implementation of algorithm, we must tackle the structure matching problem, 

i.e. operands in equations (8,9) should have identical hidden units number at any 
epoch. In the spirit of the PSO searching mechanism, a random strategy for 
determining identical hidden units number is used here. It balances the tradeoff 
between the approximation ability and the diversity.  Assumed that the effective 
hidden units of the individual particle, best personal and global best are 

im , i
pbestm , gbestm  respectively. We can determine the current centers number as the 

following equation: 

( ) ( )1 2 1m m rand m m= + ⋅ −  (10) 

where ( )rand ⋅ is random number generator between zero and one, 

( )1 min , ,i i
pbest gbestm m m m= , ( )2 max , ,i i

pbest gbestm m m m= . 

Once the current structure m  is determined, then operands in equation (8) can do 
some transformation. If the rows number of the matrix is greater than m , it will 
collapse (i.e. replace additional rows with ‘ N ’). If the rows number of the matrix is 
less than m , it will expand (i.e. replace additional rows labeled by ‘ N ’ with ‘0’). If 
the rows number of the matrix is equal to m , it keeps fixed. 

Since row labeled by ‘ N ’ does not involve any algebraic operation, Equations 
(8,9) can be calculated after transformation. With the proceeding of optimization 
process,  m  will converge to a constant and corresponding centers of RBF network 
can be identified. It should be noted that updating operation not only communicates 
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the information among the global best position, best personal position and current 
position, but also converges the optimal structure step by step. 

3.3.5    Growing and Pruning 
As mentioned in the description of the section 3.3.4, different structures of RBF 
networks can be determined by updating operation. For faster convergence and 
additional flexibility, we introduce two more operators: growing and pruning of 
hidden units. For simplicity, only one hidden unit is grown or pruned depended on 
growing probability growρ  or pruning probability pruneρ  at one epoch. In order to 

apply these operators, we generate randomly a binary value and a number r  between 
0 and 1 for each particle. If the binary value is 0 and growr ρ> , one additional unit is 

attached to the first row labeled by ‘ N ’. If pruner ρ>  and the binary value is 1, the 

last row unlabeled by ‘ N ’ is replaced with ‘ N ’. 

4   Simulation Results 

The simulation clearly demonstrates the ability of the RBF network trained by PSO to 
learn the dynamics of the unknown system. The system to be identified is described 
by the second-order difference equation [11]: 

( ) ( ) ( ) ( )
( ) ( ) ( )2 2

1 2.5
1

1 1

y t y t y t
y t u t

y t y t

− +
+ = +

+ + −
. (11) 

The equilibrium states of the unforced system are ( )0,0 and ( )2, 2 on the state 

space. If a series-parallel identification model is used for identifying the nonlinear 
system, the model can be described by the equation 

( ) ( ) ( ) ( )( )1 , 1 ,y t f y t y t u t
∧

+ = − , (12) 

where f is an RBF network trained by PSO with three inputs and one output.  

For comparison purposes, we developed an additional number of RBF network 
models using the standard training method, which is based on the k -means clustering 
algorithm. RBF networks trained with the standard procedure require a fixed number 
of hidden units, so in order to make a fair basis for comparison, networks with 
different structures (a.k.a. hidden units number) were developed and evaluated using 
the validation set. The input and output data have been collected in such a way that 
for an initial condition i.i.d random input signal uniformly distributed in the region of 
[-2,2] forces the given system. 

The simulation produced 200 data points which were then separated into two sets: 
100 data were assigned to the training set, 100 to the testing set. The k -means two 
stage training algorithm uses validation set to determine the best structure of RBF 
network within the set [ ]1,2, 50m ∈ L . The algorithm was implemented using the 
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parameters: 35L = , 50M = , 300t = , 0.15,growρ = 0.15,pruneρ = [ ]0.4,0.95ω =  

1 22, 2c c= = .  
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Fig. 1. The evolving process of hidden units 
number and fitness value corresponding to the 
best network structure at each epoch. Left is 
fitness value, right is hidden units number. 
Solid line: fitness value, dashed line: hidden 
units number 

Fig. 2. The prediction error varies with 
clusters number using two stage training 
algorithm, the optimum hidden units 
number is labeled by star 
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Fig. 3. The results of identification obtained from the RBF network based on PSO algorithm 
and k -means two stage training algorithm. Solid line: desired output, dotted line: output of 

RBF network based on PSO training, dashed line: output using  k -means two stage training. 
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Table 1. Comparision of  root mean squared errors (RMSE) and hidden units number of RBF 

network constructed by proposed algorithm and k -means two stage training algorithm 

Training algorithm Hidden units number RMSE of testing 
Proposed algorithm 14 0.11767 

k -means two stage training 36 0.72916 

 

Fig. 1 depicts the evolving process of the hidden units number and fitness value 
corresponding to the best network structure at each epoch. Fig. 2 shows the prediction 
error varies with clusters number using two stage training algorithm and the optimum 
hidden units number is labeled by star ( 36m = ). For testing the identified model, the 

sinusoidal input signal ( ) ( )sin 2 / 25u t tπ= has been applied to both the system and 

the model and generated 200 data. Fig. 3 shows the results of identification obtained 
from the RBF network based on PSO algorithm and k -means . Table 1 illustrates the 
performance of  RBF network based on two methods. It can be seen from Table 1 and 
Fig.3 that the RBF network based on the proposed PSO algorithm has not only 
generated the most parsimonious structure but also provided the most accurate 
outcome.  

5   Conclusions 

In this paper, a novel PSO algorithm with matrix encoding is presented for training 
RBF network models based on input-output data. After encoding a RBF network with 
matrix representation, we employ a structure matching rule to update the structure of 
particles at any epoch. Its main difference with respect to traditional PSO has to do 
with the update of the position of the particle in each of its effective dimensions.  

The superiority of the proposed algorithm over one of the conventional methods 
for training RBF networks was demonstrated through solving benchmark problems of 
nonlinear system identification. The results showed that the RBF networks produced 
by the proposed algorithm possess more parsimonious structure and achieve smaller 
prediction error compared with those obtained using the k -means two stage training 
algorithm. 
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Abstract. Self-Organizing Maps (SOM) is a powerful tool for cluster-
ing and discovering patterns in data. Competitive learning in the SOM
training process focuses on finding a neuron that is most similar to that
of an input vector. Since an update of a neuron only benefits part of the
feature map, it can be thought of as a local optimization problem. The
ability to move away from a local optimization model into a global op-
timization model requires the use of game theory techniques to analyze
overall quality of the SOM. A new algorithm GTSOM is introduced to
take into account cluster quality measurements and dynamically modify
learning rates to ensure improved quality through successive iterations.

1 Introduction

Self-Organizing Maps (SOM), introduced by Kohonen [1], is an approach to
clustering similar patterns found within data [2,3]. Used primarily to cluster
attribute data for pattern recognition, SOMs offer a robust model with many
configurable aspects to suit many different applications.

The training of a SOM does not take into consideration certain advantages
that could be obtained if multiple measures were used in deciding which neuron
to update. Recent research that makes use of dynamic adaptive and structure-
adaptive techniques have been proposed [4,5]. Game theory offers techniques for
formulating competition between parties that wish to reach an optimal position.
By defining competitive learning in terms of finding a neuron that can perform
an action that will improve not only its own position, but also the entire SOM,
we may be able to improve the quality of clusters and increase the efficiency
of the entire process, moving towards a global optimization process from local
optimization found in traditional SOM methods.

This article proposes a new algorithm GTSOM that utilize aspects of game
theory. This allows for global optimization of the feature map. This technique
could be used to ensure that competitive learning results in the modification of
neurons that are truly suitable for improving the training results.

2 A Brief Review of Self-Organizing Maps

At the heart of SOM theory is the concept of creating artificial neurons that are
computational duplicates of biological neurons within the human brain [6]. Arti-
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ficial neural networks follow the model of their biological counterparts. A SOM
consists of neurons with weight vectors. Weight vectors are adjusted according
to a learning rate α that is decreased over time to allow for fast, vague training
in the beginning and specific, accurate training during the remaining runtime.

A SOM model contains three fundamental procedures that are required in
order to discover clusters of data. These procedures are similar to that of the
knowledge discovery in database process [7,8]. The first procedure consists of
all preprocessing tasks that are required to be completed before training can
take place. This includes initializing the weights vectors of each neuron either
randomly or by some other method [9,10]. Another task to be performed is that
of input vector creation. Training data for the SOM must be arranged in input
vectors, where each vector represents a tuple in an information system or other
similarly organized data set.

Fig. 1. The layers of a SOM during the training process

2.1 SOM Training

In order for a SOM to cluster data, it must be trained with suitable training
data. Training a SOM requires the combination of three layers that work in
tandem, where an output of one layer is treated as the input to the next layer,
as shown in Figure 1.

The first layer, denoted as the input layer, consists of a data store to be
formatted into a set of input vectors P . An input vector represents a tuple
within the data set. Each input vector p ∈ P is used as input for the next layer
of a SOM. The second layer, denoted as the competition layer, manages the
competitive learning methods within the SOM [11]. This layer determines which
neuron ni has a weight vector wi with minimum distance (maximum similarity)
to p. From this layer, a winning neuron n∗

i is marked to be updated in the third
layer. The third layer, denoted as the update layer, updates the weight vector
associated with the winning neuron that was used as input. After the updating
of the neuron, the weight vector is more attuned to that of the input vector.

A data set P contains individual tuples of an information system trans-
lated into input vectors, P = {p1, . . . ,pm}. A set of artificial neurons, W =
{n1, . . . , nn}, is arranged in a grid-like topology of fixed dimensionality. Each
neuron in W has a weight vector wi of the same dimensionality as the input
vectors pj .
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Data: A set of m input vectors P = {p1, . . . , pm}
Input: A threshold qm for maximum iterations to be executed.
Output: A feature map A′

for each neuron ni ∈ W do1

initialize wi randomly ;2

end3

while (q ≤ qm) or (∀ pk ∈ P, n∗
i (q) = n∗

i (q − 1)) do4

αq = adjusted αq−1 for iteration q ;5

dq = adjusted dq−1 for iteration q ;6

for each pk ∈ P do7

n∗
i (q) = Compet(pk, W ) ;8

Update w(n∗
i (q), pk, αq) ;9

Update N(Nn∗
i
(q)(dq), pk, αq) ;10

end11

end12

Algorithm 1: The SOM Training Method

Each neuron ni ∈ W has a set of neurons whose proximity is within that
defined by d, a scalar whose value is changed according to an iteration q. There-
fore, for each neuron ni, the neighborhood Ni(d) = {nr, . . . , ns} consists of all
neurons that have connectivity to ni within distance d. The learning rate is used
as a scalar that determines how much a weight vector wi is changed to become
more similar to that of the current input vector.

2.2 Competitive Learning in SOM

To find a neuron ni ∈ W that has a weight vector closest to pk, similarity
measures [12] are observed between each neuron and the input vector.

Once a winning neuron n∗
i has been identified, the weight vector must be up-

dated according to the learning rate αq corresponding to iteration q. In addition,
the neighborhood of that neuron must be updated so that neurons connected to
the winner reflect continued similarity to the new information presented to the
network. In Algorithm 1, this process is done with functions Update w and Up-
date N, functions that update the winning neuron and its neighborhood respec-
tively. The update of a winning neuron and the update of the winning neuron’s
neighborhood is shown in Equation 1 and Equation 2 respectively. Equation 1
is known as the Kohonen rule [6].

w∗
i (q) = w∗

i (q − 1) + α(pk(q)−w∗
i (q − 1)) . (1)

wNi∗(d)(q) = wNi∗(d)(q − 1) + α′(pk(q)−wNi∗(d)(q − 1)) . (2)

The modified learning rate α′ denotes a smaller learning rate that is used on the
neurons in Ni∗(d). We wish to use a smaller learning rate to signify that although
these neurons did not win the competition for the input vector, they do have
some connectivity to the neuron that did. The learning rate α in Equation 1 is
derived from a decreasing polynomial formula [13].
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Algorithm 1 shows the steps taken to train the SOM. The process of updating
a neuron and its neighbors can be thought of as a local optimization procedure.
For any given input vector, the update layer in Figure 1 only adjusts neurons
based on a very small instance of the overall patterns in the full data set.

3 Incorporating Game Theory into SOM Training

Although individual neurons have the ability to improve their situation during
each competition, a collective goal for the entire SOM is not considered. The
transition between local optimization techniques to those of global optimization
must occur in order to solve problems of density mismatch and physical adja-
cency errors. The concept of overall SOM quality must be defined in order to
progress to a state in which properties between overall neuron relationships and
input vectors can be measured.

3.1 Measuring SOM Quality

The competitive layer in the traditional SOM model does not have the ability
to find a neuron which best represents the current input vector as well as having
the ability to improve the quality of neuron placement and density. Improving
quality in a SOM could include an increased ability to create and define better
clusters. In order to determine the quality of a SOM, definitions on what is
considered a high-quality cluster must be discovered. Clusters can be defined in
two ways: by the actual input data that was used to adjust the weight vectors
or by the neurons associated with that data.

With the two abilities to define clusters, two methods of representing clusters
arise. A centroid vector can be used as a representation of the cluster. This vector
could be calculated by taking the average of all weight vectors that the cluster
includes. Second, a neuron whose weight vector is most similar to that of the
average weight vector of all neurons could be given representation status. In
addition to the two methods of representing clusters in a SOM, two methods
can be used in order to find a neuron required in the latter method:

1. If a centroid input vector for a cluster is known, we can simply discover
which neuron that centroid input vector is most similar to.

2. If we wish for the calculations of centroid to be strictly neuron based, we
can find groups of neurons and determine which of those neurons have won
more competitions.

The above methods allow us to measure the overall quality of a SOM. Using
the ability to calculate physical distance between clusters on the feature map as
well as the ability to calculate the density of a particular cluster can enable a
new algorithm to determine which neuron is best suited to be updated. These
quality measures can be used together to see how much a particular neuron, if
updated, can improve the overall quality of the feature map.
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3.2 Game Theory

In order to facilitate global optimization techniques in competitive learning, a
method must be employed that can take into consideration possible improve-
ments of overall SOM quality. Game theory provides a suitable infrastructure
to determine which neurons provide the best increase in feature map quality.
By manipulating the learning rate applied to both the winning neuron and its
neighbors, as well as the size of a neighborhood that should be taken into con-
sideration, a set of strategies with expected payoffs can be calculated.

Game theory, introduced by von Neumann and Morgenstern [14], has been
used successfully in many areas, including economics [15,16], networking [17], and
cryptography [18,19]. Game theory offers a powerful framework for organizing
neurons and to determine which neuron may provide the greatest increase in
overall SOM quality.

In a simple game put into formulation, a set of players O = {o1, . . . , on}, a set
of actions S = {a1, . . . , am} for each player, and the respective payoff functions
for each action F = {μ1, . . . , μm} are observed from the governing rules of the
game. Each player chooses actions from S to be performed according to expected
payoff from F , usually some ai maximizing payoff μi(ai) while minimizing other
player’s payoff. A payoff table is created in order to formulate certain payoffs for
player strategies, which is shown in Table 1.

3.3 Game-Theoretic Competitive Learning in SOM

With the ability to precisely define neuron clusters within a SOM, measures
can be used in order to define overall quality of the network. These measures,
such as the size of clusters, the distance between clusters, and the appropriate
cluster size to represent input can be combined to give a certain payoff value to
a particular neuron, if chosen as a winner. When the competitive phase begins,
a ranking can be associated with each neuron according to its distance from
the input vector. Using the ranked list of neurons, a new competition layer is
constructed in order to determine which neuron and which strategy or action
should be taken. This new model architecture is shown in Figure 2.

The first Competition layer is modified so that instead of determining which
neuron is most similar to the current input vector, the layer now ranks neurons
according to each similarity measure obtained. There is an opportunity here to
include a dynamic, user-defined threshold value t1 that can deter any neurons

Table 1. Payoff table created by second Competition layer

n∗
j (q)

aj,1 . . . aj,r

ai,1 < μi,1, μj,1 > . . . < μi,1, μj,r >

n∗
i (q)

...
... . . .

...
ai,r < μi,r, μj,1 > . . . < μi,r, μj,r >
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Fig. 2. The layers of GTSOM including the addition of another competition layer used
during the training process

that are beyond a certain similarity measure to be included in the ranked set as
shown in Equation 3 and Equation 4:

W ′ = {n∗
1(q), . . . , n

∗
n(q)} , (3)

where ∀n∗
i (q) ∈ W ,

|w∗
i (q)− pi| ≤ t1 , (4)

and 1 ≤ i ≤ n. This allows the user to specify a degree of minimum similarity
desired when having the first competition layer computing which neurons should
enter the second competition layer.

Once a ranked set of neurons has been created, the second competition layer
starts to create competition tables of the form shown in Table 1. A neuron n∗

i

with possible actions S = {ai,1, . . . , ai,r} and payoffs calculated from correspond-
ing utility functions U = {μi,1, . . . , μi,r} competes against neuron n∗

j with the
same action and utility sets. The neuron whose specific action ai,k results in the
greatest overall SOM quality is chosen to be the winner.

With the addition of quality measures, neurons are now ranked in partial
order. For example, a particular neuron n∗

i may have a higher ranking than n∗
j in

terms of a particular similarity measure between itself and the input vector, but
the neuron may not have that same ranking when additional quality measures are
taken into account. The second competition layer must take into consideration
not only similarity to input, but also how much each neuron can increase or
decrease feature map quality. Many different ranking of neurons in W ′ may
occur when more than one measure is used.

There are two possible ways of creating tables to govern the second phase
of competition. First, neurons can be initially paired randomly with each other.
Victors of each “round” move on to the next round, where new tables are created
for the neurons that have been awarded victories. This process proceeds until a
total victory is declared for one neuron. Second, for a set W = {n∗

1(q), . . . , n
∗
n(q)}

of ranked neurons, an n-dimensional payoff table can be created. With n neurons
ranked and entering competition, each with r possible actions, a total of rn cells
must be observed to determine which neuron gives the best quality or utility
value for this iteration.
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3.4 A Strategy to Adjust the Learning Rate

Actions performed by a particular neuron could possibly include parameters
such as adjustable learning rates or adjust neighborhood size. Such actions can
be called strategies to describe an action that can be modified in order to create
new actions. A strategy of adjust the learning rate α can be modified so that
there is an action for an increased adjustment, decreased adjustment, and a no-
change scenario. This strategy can improve clusters by forcing subsequent input
vectors that are similar to the current input to have a greater possibility to be
more similar to a different neuron than it did on a previous iteration in the case
of an increased learning rate. That is, the input vector will have an increased
likelihood to be closer to a different neuron next iteration. A decreased learning
rate will result in a diminished similarity adjustment between the victor and the
current input vector, resulting in negligible change from subsequent iterations.

A set of actions detailing neighborhood size for a particular neuron is useful
when cluster sizes are desired to either grow or diminish. An increased neighbor-
hood size will modify a larger number of neurons to become more similar to the
current input vector. This may result in less dense clusters if desired. In contrast,
a decreased neighborhood size could have an exact opposite effect, decreasing
the size and increasing the density of clusters. If clusters are too far apart, the
density of a particular cluster could be dismissed so that cluster boundaries be-
come closer. Also, if clusters are too compact, the density of some clusters could
be increased in order to increase distance between centroids.

4 GTSOM Implementation

The process of ranking neurons according to similarity, creating payoff tables,
and determining winning neurons is introduced in Algorithm 2. Training will
stop when either of the following three conditions are met on line 4.

1. If a maximum number of specified iterations have been performed.
2. If no neurons have won competitions for new input vectors that were not

won before during previous iterations.
3. If the overall quality of the SOM has reached or moved beyond that of a

user-defined threshold.

A traditional SOM stops when the first two stopping conditions are met. With
the addition of the third condition, training time may be reduced if a certain
quality has been reached. For example, if the desired quality of the feature map
has been reached before qm iterations have been performed, training may stop
ahead of schedule. This threshold may correlate with the number of iterations
that are to be performed or it may represent the desired precision of weight
vectors belonging to individual neurons. A lower threshold will most likely result
in a lower number of iterations performed. As precision increases with respect
to the number of iterations performed (smaller learning rate), a lower number
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Data: A set of m input vectors P = {p1, . . . , pm}
Input: A threshold qm for maximum iterations to be executed.
Output: A feature map A′

for each neuron ni ∈ W do1

Initialize wi randomly ;2

end3

while (q ≤ qm) or (∀ pi ∈ P, n∗
i (q) = n∗

i (q − 1)) or (μ(A) ≥ t2) do4

αq = adjusted αq−1 for iteration q ;5

dq = adjusted dq−1 for iteration q // neighborhood distance ;6

for each pk ∈ P do7

Find set W ′ = {n∗
1(q), . . . , n∗

n(q)} ;8

for each < n∗
i (q), n

∗
j (q) > pair in W ′ do9

Ti,j = (N, Si,j , Fi,j), where10

N = {n∗
i (q), n∗

j (q)},11

Si,j =set of actions for n∗
i (q) and n∗

j (q),12

Fi,j =set of utility functions returning quality of A.13

αq = ±a∗
i , where a∗

i =the action that best improves A. ;14

end15

Choose n∗
q(pi) whose utility function μi has maximum payoff action ai ;16

Update w(n∗
i (q), pk, αq) // update winning neuron ;17

Update N(Nn∗
i
(q)(dq), pk, αq) // update neighborhood of n∗ ;18

end19

end20

Algorithm 2: The Training Method GTSOM

of iterations will result in the algorithm completing with a learning rate above
that of the final desired learning rate.

Lines 7-19 iterate the first and second competition layers for every input
vector in P . Line 8, executing the first competition layer, creates a set of ranked
neurons according to their similarity to the input vector. The third embedded
repetitive structure ranks neurons according to their similarity to the current
input vector. An interesting opportunity arises here when clusters are starting
to be defined. There may be an option to include centroid neurons in this set once
they have been discovered. This leads to the eventuality that no new clusters will
be formed. Another user-defined threshold could be specified if this method is
used, comparable to the maximum number of clusters desired. This also decreases
the number of distance measures to be calculated between the neuron weight
vectors and the current input vector.

The second competition layer is shown in lines 9-15. Using the set of ranked
neurons, tables are created for each neuron pair within W ′. This table Ti,j =
(N,Si,j , Fi,j), the payoff table for neurons ni and nj , includes the neurons them-
selves, a set containing actions Si and Sj for the neurons, and a set containing
utility functions Fi and Fj that returns the quality of the feature map given ac-
tion ai ∈ Si and aj ∈ Sj. Once these tables have been created, the neuron with
the action that provides the greatest increase in feature map quality through
the utility function is chosen as the final winner in the competition process. The
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action is executed (learning rate modification or neighborhood size) and update
procedures are performed.

A large value for t1 may result in increased computation time as it will result
in a larger W ′. Since tables are created and observed for each distinct pair of
neurons within W ′, the similarity threshold must be considered carefully. A value
too small for t1 may result in incomplete competition, where neurons that may
offer valuable actions could be ignored based on their dissimilarity to the current
input vector.

The threshold t2 found on line 4 gives the option of stopping the training
process when a certain overall SOM quality has been reached. Too high of a
threshold, although perhaps representing a high quality preference, may result in
no computational efficiency improvement. This threshold may never be reached
before maximum iterations have occurred. Too low of a threshold could result in
too few iterations being performed. Since the learning rate α is adjusted during
each iteration, it may not get an opportunity to become sufficiently small for
precise weight vector updating.

5 Conclusion

We have proposed a new approach to competitive learning in SOMs. The op-
portunity to create a model to facilitate global optimization of the feature map
requires methods to acquire the overall quality of the feature map. These meth-
ods take the form of measuring distance between clusters, cluster density and
cluster size.

An additional competitive layer has been added to the traditional SOM model
as well as modifying the original competition that results in the proposed GT-
SOM algorithm. A similarity ranking within a user-defined threshold between
neuron weight vectors and input vectors is used as a basis for the creation of
payoff tables between neurons. Payoffs are calculated according to strategy set
containing possible actions for each neuron. Each action results in a numeric
utility or payoff which may improve or diminish SOM quality. Finding the neu-
ron whose action maximizes the quality of the SOM for that iteration is now
possible, enabling neurons to be picked not only on similarity but on strength.
Clusters can be increased or decreased in size or density in order to attempt
to reach a user-defined threshold for overall desired quality of the SOM. Future
research will focus on training result analysis between the traditional SOFM
training method and the proposed GTSOFM training algorithm.
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Abstract. Due to the excellent performance of the HMM(Hidden Markov 
Model) in pattern recognition, it has been widely used in voice recognition, text 
recognition. In recent years, the HMM has also been applied to the intrusion 
detection. The intrusion detection method based on the HMM is more efficient 
than other methods. The HMM based intrusion detection method is composed 
by two processes: one is the HMM process; the other is the hard decision 
process, which is based on the profile database. Because of the dynamical 
behavior of system calls, the hard decision process based on the profile database 
cannot be efficient to detect novel intrusions. On the other hand, the profile 
database will consume many computer resources. For these reasons, the 
combined detection method was provided in this paper. The neural network is a 
kind of artificial intelligence tools and is combined with the HMM to make soft 
decision. In the implementation, radial basis function model is used, because of 
its simplicity and its flexibility to adapt pattern changes. With the soft decision 
based on the neural network, the robustness and accurate rate of detection 
model network, the robustness and accurate rate of detection model are greatly 
improved. The efficiency of this method has been evaluated by the data set 
originated from Hunan Technology University. 

1   Introduction 

IDS (Intrusion Detection System)is a system that attempts to detect intrusions, which 
are defined to be unauthorized uses, misuses, or abuses of computer systems by either 
authorized users or external perpetrators [1]. There are a lot of technologies being 
used as anomaly detection methods, such as the neural network [2-4],the data 
mining[5],the support vector machine[]3[6], and the hidden Markov model [7-10], 
Each kind of  these technologies has shown its advantages to detect novel intrusions, 
but it still has some shortcomings. Therefore, the hybrid architecture is provided. 

War render et al. [7] introduced a simple anomaly detection method based on 
monitoring the system calls used by active, privileged process. It is based on the idea 
that the normal trace of a privileged process has a different pattern to that of the 
anomaly process. This pattern can be expressed by a short sequence of system calls. 
In sequence time delay embedding (STIDE), a profile of normal behavior is built by 
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enumerating all unique, contiguous sequence of a predetermined ,fixed length k that 
occurs in the training data. The method is efficient for sendmail, lpr, ftpd of Unix. But 
the normal database typically includes thousands of short sequences. The process of 
building a normal database is time-consuming. Y.Qiao et al. [9] introduced an 
anomaly intrusion detection method based on the HMM which has three advantages. 
First, the profile database of the HMM method is smaller than that of the STIDE 
method, so the HMM method can detect intrusions more quickly. Second, the HMM 
method can build a nearly complete database with only small parts of normal data. At 
the end, the mismatch rate difference between the normal process and the anomaly 
process of the HMM method is larger than that of the STIDE method. But their 
method also has insufficiency. It needs very large memory to store the database, 
though their method has a compressed profile database compared with that of the 
STIDE method. 

Meanwhile, neural network was widely used to detect intrusions and achieved 
some good results. Debar el al.[11]used a neural network component for an intrusion 
detection system. Susan C.L. and David V.H. [2] used a neural-network based 
intrusion detector to recognize intrusion. In their paper, it describes an experiment 
with and IDS composed of a hierarchy of neural networks(NN) that function as a true 
anomaly detector. The result is achieved by monitoring selected areas of network 
behavior such as protocols, that are predictable in advance. The NNs are trained using 
data that spanned the entire normal space. These detectors are able to recognize 
attacks that are not specifically presented during training. It shows that using small 
detectors in a hierarchy gives a better result than using a single large detector. 

In this paper, a hybrid architecture, which is composed by the hidden Markov 
model and neural network, is developed. The hybrid architecture is designed to 
monitor the system calls used by the active, privileged process. The hybrid 
architecture can greatly reduce the detection time and simplify the design of the 
software. The profile database, which is a key component in the Warrender et al. [7] 
and Y. Qiao et al. [9] method, consumes lots of the system’s rare resources. In our 
method, the profile database will be deleted and the final detection is decided by the 
neural work. So the detection speed will be greatly increased and many computer 
resources are saved. 

The rest of this paper is organized as follows. In Section II, we give a brief 
introduction to the hidden Markov model and neural network. The overall design 
composed of hidden Markov model and neural network is described in Section III. 
Experimental results are shown in Section IV. Section V is the conclusions. 

2   Brief Introduction to the HMM and the Neural Network 

2.1   HMM Theory [12] 

The HMM is a very powerful statistical method of characterizing the observed data 
sample arranged in a discrete-time series. It has the ability to process nonlinear and 
time-variant systems and is viewed as a double-embedded stochastic process. 

Given a form of HMM of the previous section, there are three basic problem of 
interest that must be solved for the model to be useful in real-world applications. 
These problems are the following: 
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Problem 1: Given the observation sequence O=O1O2…OT and a model 
),,( πλ BA= , how do we efficiently compute P(O| λ ), the probability of the 

observation sequence, for the given model? 
Problem 2:Given the observation sequence O=O1O2…OT and a model 

),,( πλ BA= , how do we choose a corresponding state sequence Q=q1q2…qT 

which is optimal in some meaningful sense (i.e., best ”explains” the observations)? 
Problem 3: how do we adjust the model parameters ),,( πλ BA=  to maximize 

P(O| λ ). 
Problem 1 is the evaluation problem, namely given a model and a sequence of 

observations, how do we compute the probability of which the observed sequence was 
produced by the model. We can also view the problem as one of scoring how well a 
given model matches a given observation sequence. The latter viewpoint is extremely 
useful. 

Problem 2 is the one in which we attempt to uncover the hidden part of the model, 
i.e., to find the “correct” state sequence. It should be clear that for all but the case of 
degenerate models, there is no “correct” state sequence to be found. Hence for 
practical situations, we usually use an optimality criterion to solve this problem as 
best as possible. Unfortunately, as we still see, there are several reasonable optimality 
criteria that can be imposed, and hence the choice of criterion is a strong function of 
the intended use for the uncovered state sequence. 

Problem 3 is the one in which we attempt to optimize the model parameters so as 
to best describe how a given observation sequence comes about. The observation 
sequence used to adjust the model parameters is called a training sequence since it is 
used to “train” the HMM. The training problem is the crucial one for most 
applications of the HMM, since it allows us to optimally adapt model parameters to 
the observed training data, i.e., to create best model for real phenomena. 

To solve these problems, Forward-Backward Algorithm, Baum-Welch Algorithm 
and Viterbi Algorithm were developed. Forward-Backward  Algorithm was 
developed to solve the first problem: namely, given the observation sequence 
O=O1O2…OT, and a model ),,( πλ BA= , it was used to efficiently compute 

P(O| λ ),the probability of the observation sequence. Viterbi Algorithm was 
developed to solve the second problem: namely, given the observation sequence 
O=O1O2…OT, and a model ),,( πλ BA= , it was used to choose a corresponding 

state sequence Q=q1q2…qT which is optimal in some meaningful sense. Baum-Welch 
Algorithm was developed to solve the third problem, namely, it was used to adjust the 
model parameters ),,( πλ BA=  to maximize P(O| λ ). In fact, the Baum-Welch 

Algorithm acted as the HMM training algorithm to maximize P(O| λ ). 

2.2   Forward-Backward Algorithm 

Forward-Backward Algorithm consider the forward variable )(itα  defined as 

)|,()( 21 λα itTt SqOOOPi ==  



142 W. Jiang, Y. Xu, and Y. Xu 

 

i.e., the probability of the partial observation sequence, O1O2…Ot, (until time t ) 

and state St at time t ,given the model λ .We can solve for )(itα  inductively, as 

follows: 
I Initialization: 

NiObi ii ≤≤= 1),()( 11 πα  

II Induction: 
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Step I initializes the forward probabilities as the joint probability of state Si  and 
initial observation O1 . The induction step is the heart of the forward calculation. Step 
III gives the desired calculation of P(O| λ ) as the sum of the terminal forward 

variables )( jTα . 

2.3   Neural Networks 

The neural network consists of a collection of processing elements that are highly 
interconnected and transform a set of inputs to a set of desired outputs. The result of 
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the transformation is determined by the characteristics of the elements and the 
weights associated with the interconnections among them. By modifying the  
connections between the nodes, the network is able to adapt to the desired 
outputs[13]. 

A neural network conducts an analysis of the information and provides a 
probability estimate that the data match the characteristics that have been trained to 
recognize. While the probability of a match determined by a neural network can be 
100%, the accuracy of its decisions relies totally on the experience the system gains in 
analyzing examples of the stated problem. 

The neural network gains the experience initially by training the system to 
correctly identify reselected examples of the problem. The response of the neural 
network is reviewed and the configuration of the system is refined until the neural 
network’s analysis of the training data reaches a satisfactory level. In addition to the 
initial training period, the neural network also gains experience over time as it 
conducts analyses on data related to the problem. 

3   The HMM and the Neural Network Based Intrusion Detection 
Model 

3.1   Neural Networks 

The model is composed of two components: the first component is hidden Markov 
model; the other is neural network, as is shown in Fig.1. 

For the hidden Markov model, there are two important algorithms that are key to 
the intrusion detection model, namely the Baum-Welch algorithm and Viterbi 
algorithm. The Baum- Welch algorithm is used to compute the output. We use a 
HMM with 21states to perform the experiment. Data for training the prototype is 
generated by monitoring the system calls used by active, privileged process. 

In the neural network, the number of hidden layers, and the number of nodes in the 
hidden layers, was determined based on the process of trial and error. In our 
experiment, 5-layer and feed-forward BP neural network are used. The first layer, 
second layer and third layer apply a Tausig transfer function to the various connection 
weights. And the fourth layer and fifth layer apply a Sigmoid transfer function (1/(1 + 
exp  (–x))) to the various connection weights. The neural network is designed to 
provide an output value of 0.0 in the output layer when the analysis indicated no 
attack and 1.0 in the output layer in the event of an attack. Data for training and 
testing the prototype is generated by the HMM. 

3.2   Intrusion Detection Method 

Every program implicitly specified a set of system call sequences that it can produce. 
These sequences are determined by the ordering of system calls in the set of the 
possible execution paths. In this model, the system calls are monitoring by a program 
designed by the Hunan technology University and the system call sequences are 
recorded. 
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First, part of the system call sequences are used to training the HMM. To train the 
HMM, the Baum-Welch Algorithm is used. 

Baum-Welch Algorithm[12] 
Here we present the Baum-Welch re-estimation formulas: 
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If we denote the initial model by λ and re-estimation model by 
−
λ consisting of the 

parameters estimated above, then it can be shown that either: 

)|()|( λλ oPoP >
−

 

When the HMM has been trained, all the system call sequences are input to the 
HMM. Through the Viterbi Algorithm, the HMM will output sequences that have n 
different symbols. N is the number of the HMM states and it is greatly less then the 
number of symbols in the original sequences. Those sequences with n different 
symbols can express the intrinsic difference between normal action and intrusion 
behavior more tersely and stably than the original sequences[9]. 

Viterbi Algorithm[11]: 
Viterbi Algorithm is famous algorithm to find I that will maximize )I/P(O, λ . It 

is inductive algorithm in which at each instant you keep the best (i.e. the one giving 
maximum probability) possible state sequence for each of the N states as the 
intermediate state for the desired observation sequence O=O1O2…OT. In this way you 
finally have the best path for each of the N states as the last state for the desired 
observation sequence. Out of these, we select one that  has highest probability. 
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Then it is easily seen that 
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Consequently the problem of optimal state estimation, namely, 
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Now the Viterbi Algorithm can be used a dynamic programming approach for 
minimizing U(i1,i2,…,iT). So the Viterbi Algorithm has four steps: 

i. Initialization 
For Ni ≤≤1  

)),(()()( 11 ObInIni ii −−= πδ 0)(1 =iϕ  

ii. Recursive computation 
For Ti ≤≤1  for Ni ≤≤1  
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iii. Termination 
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iv. Trace back the optimal state sequence 
For t=T-1, T-2,…,1 
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So the 

},,{ 21
∗∗∗∗ = tqqqQ is the optimal state sequence. 

After that, we must determine whether the sequence is normal or not. Due to the 
excellent classification ability, the neural network is used to classify the normal 
sequences and abnormal sequences. The neural network has 51 nodes in the input 
layer and 1 node in the output layer. The neural network’s input is from the HMM’s 
output, but the sequences generated by the HMM are different from each other in 
length. So we use a sliding window of length n (the HMM’s states) with sliding (shift) 
step of 5 to create the neural network’s input sequences. A long sequence is cut into a 
set of short sequences with fixed length n .Then we can get the output symbols(0 or 
1). To determine whether the sequence is normal or not, we must compute the number 
of 0 symbol and symbol respectively. If the percentage of the 0 symbol exceeds the 
threshold we put forward in advance, we may draw a conclusion that the sequence is a 
normal sequence. Otherwise, if the percentage of 1 symbol exceeds the threshold, we 
consider that sequence is an intrusion sequence. 

4   Experiment and Results 

4.1   Experiment Setup 

Our data set comes from the Hunan technology  University and it was considered as 
the benchmark data set widely used in anomaly detection research. Each trace is the 
list of system calls issued by a single process from the beginning of its execution to 
the end .Each file lists pairs of numbers, one pair per line. The first number in a pair is 
the PID of the executing process, and the second is a number representing the system 
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call. The mapping between system calls and actual system call names is given in a 
separate file. In our experiment, mail-sending system call is used as the normal data 
set and syslog-local-1, syslog-local-1, syslog-remote-1,syslocal-remote-2 act as the 
intrusion data. 

The experiment follows these steps: 
First, we use 60 percent of all the data(include normal and abnormal data)to train 

the HMM. 
Second, the data generated by the HMM are used to train the neural network. 
The third, the other40 percent of the data are used to test the model. 
Finally, we must compute the output of the neural network for each sequence. 

Namely, we must compute the percentage of 0 and 1 for each sequence. If the 
percentage of 1 exceeds the threshold, we should mark the sequence as an intrusion 
action. On the other hand, if the percentage of 0 exceeds the threshold, we should 
consider the sequence as a normal action. 

4.2   Experiment Results 

Through the experiment, we can see that our intrusion detection method is useful in 
detecting novel intrusions. 

Table 1. Detection results of normal Process 

   Trace 
 s Percent age of 1 Percent age of 0 Threshold Nor mal rate 

Boun ce 0.2125 0.7875 0.6 0.99 
Boun ce1 0.2864 0.7136 0.6 0.95 
Boun ce2 0.3001 0.6999 0.6 0.96 
Send mail 0.3521 0.6479 0.6 0.95 
Queu e 0.2994 0.7006 0.6 0.97 
Plus 0.3102 0.6898 0.6 0.94 

Table 2. Detection results of abnormal Process 

     Trace 
es 

Percent age of 1 Percent age of 0 Threshold Abnormal rate 

syslog-local-1 0.7107 0.2893 0.6 0.94 
syslog-local-2 0.6993 0.3007 0.6 0.91 
syslog-remote-1 0.7220 0.278 0.6 0.9 
syslog-remote-2 0.7225 0.2775 0.6 0.93 

The table 1 is the detection results of normal process and the table 2 is the 
detection result of the abnormal process. Table1 shows that the combined detection 
model can make detection very accurately. When the threshold is 60 per cent, the 
normal rates are more than 90 per cent and the abnormal rates are less than 10 
percent. Table 2 shows that our detection method is efficient to detect the anomaly 
process. When the threshold is 60 per cent, the detection rates of the abnormal process 
are more than 90 per cent. While the error rates are less than 10 per cent. 
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Table 3. Comparing detection of anomalies 

Traces Bo Gao el al. Our results 

syslog-local-1 45.8% 71.07% 
syslog-local-2 44.6% 69.93% 
syslog-remote-1 53.5% 72.20% 
syslog-remote-2 54.4% 72.25% 

Through the experiment, we find that detection rate will be different when the 
threshold is different. For the normal process, if the threshold is higher, the positive 
error(positive error is that the  normal process is branded anomaly process) rate will 
be higher. But, if the threshold is too lower, the negative error (negative error is that 
the abnormal process is branded normal process) rate will be increased. For the 
anomaly process, the error rate will be different with the threshold also. If the 
threshold is higher, the negative error rate will be increased. Otherwise, if the 
threshold is lower, the positive error rate will be increased. So the choice of the 
threshold is very important to the intrusion detection. For different processes, the 
different thresholds can be utilized to intrusion detection and more accurate detection 
rate can be achieved. 

Table 3 shows the comparison of anomaly detection rate among three methods. The 
results of  Forrest and Bo Gao come from reference[14]. From Table 3, we can see 
that our method greatly increases the anomaly process detection rate[15,16]. 

5   Conclusions 

A combined intrusion detection method based on the HMM and the neural network is 
proposed in this paper. The experiment results showed that our method is efficiently 
to classify the anomaly profile from the normal profile. Comparing with other 
methods based on the HMM only, our method has following advantages. First, it 
needs less storage without the profile database. With the processes being used by 
more and more users, the profile database will be greatly enlarged. So the profile 
database will occupy much storage with the larger and larger and larger profile 
database. Second, the detection speed will be faster than the other HMM based 
methods. When the profile database is very large, the detection speed will be slower 
as the sequence must be compared with all the records in the profile database. In our 
method, if the HMM and the neural network have been trained, the detection speed 
only relates with the neural network and it is constant. 
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Abstract. This paper describes two methods on how to generate differ-
ent neural networks in an ensemble. One is based on negative correlation
learning. The other is based on cross-validation with negative correlation
learning, i.e., bagging with negative correlation learning. In negative cor-
relation learning, all individual networks are trained simultaneously on
the same training set. In bagging with negative correlation learning, dif-
ferent individual networks are trained on the different sampled data set
with replacement from the training set. The performance and correct
response sets are compared between two learning methods. The purpose
of this paper is to find how to design more effective neural network en-
sembles.

1 Introduction

The idea of designing an ensemble learning system consisting of many subsystems
can be traced back to as early as 1958. Since the early 1990’s, algorithms based
on similar ideas have been developed in many different but related forms, such
as neural network ensembles [1,2], mixtures of experts [3,4,5,6], various boosting
and bagging methods [7,8,9], and many others. It is essential to find different
neural networks in an ensemble because there is no improvement by combing the
same neural networks. There are a number of methods of finding different neural
networks including independent training, sequential training, and simultaneous
training.

A number of methods have been proposed to train a set of neural networks
independently by varying initial random weights, the architectures, the learn-
ing algorithm used, and the data [1,10]. Experimental results have showed that
networks obtained from a given network architecture for different initial random
weights often correctly recognize different subsets of a given test set [1,10]. As
argued in [1], because each network makes generalisation errors on different sub-
sets of the input space, the collective decision produced by the ensemble is less
likely to be in error than the decision made by any of the individual networks.

Most independent training methods emphasised independence among in-
dividual neural networks in an ensemble. One of the disadvantages of such a
method is the loss of interaction among the individual networks during learn-
ing. There is no consideration of whether what one individual learns has already
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been learned by other individuals. The errors of independently trained neural
networks may still be positively correlated. It has been found that the combining
results are weakened if the errors of individual networks are positively correlated
[11]. In order to decorrelate the individual neural networks, sequential training
methods train a set of networks in a particular order [9,12,13]. Drucker et al. [9]
suggested training the neural networks using the boosting algorithm. The boost-
ing algorithm was originally proposed by Schapire [8]. Schapire proved that it is
theoretically possible to convert a weak learning algorithm that performs only
slightly better than random guessing into one that achieves arbitrary accuracy.
The proof presented by Schapire [8] is constructive. The construction uses filter-
ing to modify the distribution of examples in such a way as to force the weak
learning algorithm to focus on the harder-to-learn parts of the distribution.

Most of the independent training methods and sequential training methods
follow a two-stage design process: first generating individual networks, and then
combining them. The possible interactions among the individual networks cannot
be exploited until the integration stage. There is no feedback from the integra-
tion stage to the individual network design stage. It is possible that some of the
independently designed networks do not make much contribution to the inte-
grated system. In order to use the feedback from the integration, simultaneous
training methods train a set of networks together. Negative correlation learning
[14,15,16] is an example of simultaneous training methods. The idea of negative
correlation learning is to encourage different individual networks in the ensem-
ble to learn different parts or aspects of the training data, so that the ensemble
can better learn the entire training data. In negative correlation learning, the
individual networks are trained simultaneously rather than independently or se-
quentially. This provides an opportunity for the individual networks to interact
with each other and to specialise.

In this paper, two methods are described on how to generate different neu-
ral networks in an ensemble. One is based on negative correlation learning. The
other is based on cross-validation with negative correlation learning, i.e., bagging
with negative correlation learning. In negative correlation learning, all individual
networks are trained simultaneously on the same training set. In bagging with
negative correlation learning, different individual networks are trained on the
different sampled data set with replacement from the training set. The perfor-
mance and correct response sets are compared between two learning methods.
The purpose of this paper is to find how to design more effective neural network
ensembles.

The rest of this paper is organised as follows: Section 2 describes negative
correlation learning; Section 3 explains how to introduce negative correlation
learning into cross-validation so that the bagging predictors would not be inde-
pendently trained but trained simultaneously; Section 4 discusses how negative
correlation learning generates different neural networks on a pattern classifica-
tion problem; and finally Section 5 concludes with a summary of the paper and
a few remarks.
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2 Negative Correlation Learning

Given the training data set D = {(x(1), y(1)), · · · , (x(N), y(N))}, we consider
estimating y by forming an neural network ensemble whose output is a simple
averaging of outputs Fi of a set of neural networks. All the individual networks
in the ensemble are trained on the same training data set D

F (n) =
1
M
ΣM

i=1Fi(n) (1)

where Fi(n) is the output of individual network i on the nth training pattern
x(n), F (n) is the output of the neural network ensemble on the nth training
pattern, and M is the number of individual networks in the neural network
ensemble.

The idea of negative correlation learning is to introduce a correlation penalty
term into the error function of each individual network so that the individual
network can be trained simultaneously and interactively. The error function Ei

for individual i on the training data set D = {(x(1), y(1)), · · · , (x(N), y(N))} in
negative correlation learning is defined by

Ei =
1
N
ΣN

n=1Ei(n)

=
1
N
ΣN

n=1

[
1
2
(Fi(n)− y(n))2 + λpi(n)

]
(2)

where N is the number of training patterns, Ei(n) is the value of the error
function of network i at presentation of the nth training pattern, and y(n) is
the desired output of the nth training pattern. The first term in the right side
of Eq.(2) is the mean-squared error of individual network i. The second term pi

is a correlation penalty function. The purpose of minimising pi is to negatively
correlate each individual’s error with errors for the rest of the ensemble. The
parameter λ is used to adjust the strength of the penalty.

The penalty function pi has the form

pavei(n) = −1
2
(Fi(n)− F (n))2 (3)

The partial derivative of Ei with respect to the output of individual i on the
nth training pattern is

∂Ei(n)
∂Fi(n)

= Fi(n)− y(n)− λ(Fi(n)− F (n))

= (1− λ)(Fi(n)− y(n)) + λ(F (n)− y(n)) (4)

where we have made use of the assumption that the output of ensemble F (n)
has constant value with respect to Fi(n). The value of parameter λ lies inside
the range 0 ≤ λ ≤ 1 so that both (1 − λ) and λ have nonnegative values. BP
[17] algorithm has been used for weight adjustments in the mode of pattern-
by-pattern updating. That is, weight updating of all the individual networks is
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performed simultaneously using Eq.(4) after the presentation of each training
pattern. One complete presentation of the entire training set during the learning
process is called an epoch. Negative correlation learning from Eq.(4) is a simple
extension to the standard BP algorithm. In fact, the only modification that is
needed is to calculate an extra term of the form λ(Fi(n) − F (n)) for the ith
neural network.

From Eq. (4), we may make the following observations. During the train-
ing process, all the individual networks interact with each other through their
penalty terms in the error functions. Each network Fi minimizes not only the
difference between Fi(n) and y(n), but also the difference between F (n) and
y(n). That is, negative correlation learning considers errors what all other neu-
ral networks have learned while training an neural network.

For λ = 1, from Eq.(4) we get

∂Ei(n)
∂Fi(n)

= F (n)− y(n) (5)

Note that the error of the ensemble for the nth training pattern is defined by

Eensemble =
1
2
(

1
M
ΣM

i=1Fi(n)− y(n))2 (6)

The partial derivative of Eensemble with respect to Fi on the nth training pattern
is

∂Eensemble

∂Fi(n)
=

1
M

(
1
M
ΣM

i=1Fi(n)− y(n))

=
1
M

(F (n)− y(n)) (7)

In this case, we get
∂Ei(n)
∂Fi(n)

∝ ∂Eensemble

∂Fi(n)
(8)

The minimisation of the error function of the ensemble is achieved by minimising
the error functions of the individual networks. From this point of view, negative
correlation learning provides a novel way to decompose the learning task of the
ensemble into a number of subtasks for different individual networks.

3 Cross-Validation with Negative Correlation Learning

Cross-validation is a method of estimating prediction error. Cross-validation can
be used to create a set of networks. Split the data into m roughly equal-sized
parts, and train each network on the different parts independently. When the
data set is small and noisy, such independence will help to reduce the correlation
among the m networks more drastically than in the case where each network is
trained on the full data.
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When a larger set of independent networks are needed, splitting the train-
ing data into non-overlapping parts may cause each data part to be too small
to train each network if no more data are available. In this case, data reuse
methods, such as bootstrap, can help. Bootstrap was introduced as a computer-
based method for estimating the standard error of a statistic s(x). B bootstrap
samples are generated from the original data set. Each bootstrap sample has n
elements, generated by sampling with replacement n times from the original data
set. Bootstrap replicates s(x∗1), s(x∗2), . . . , s(x∗B) are obtained by calculating
the value of the statistic s(x) on each bootstrap sample. Finally, the standard
deviation of the values s(x∗1), s(x∗2), . . . , s(x∗B) is the estimate of the standard
error of s(x). The idea of bootstrap has been used in bagging predictors. In
bagging predictors, a training set containing N patterns is perturbed by sam-
pling with replacement N times from the training set. The perturbed data set
may contain repeats. This procedure can be repeated several times to create a
number of different, although overlapping, data sets.

One of the disadvantages of bagging predictors is the loss of interaction among
the individual networks during learning. There is no consideration of whether
what one individual learns has already been learned by other individuals. The
errors of independently trained neural networks may still be positively corre-
lated. It has been found that the combining results are weakened if the errors of
individual networks are positively correlated. In order to decorrelate the individ-
ual neural networks, each individual neural network can be trained by negative
correlation learning in bagging. In the origianl negative correlation learning, each
neural network is trained on the same training set. In bagging by negative cor-
relation learning, each neural network is trained on the different sampled data
with replacement from the training set.

4 Experimental Studies

This section describes the application of negative correlation learning to the
Australian credit card assessment problem. The problem is to assess applications
for credit cards based on a number of attributes. There are 690 patterns in total.
The output has two classes. The 14 attributes include 6 numeric values and 8
discrete ones, the latter having from 2 to 14 possible values. The Australian
credit card assessment problem is a classification problem which is different
from the regression type of tasks, such as the chlorophyll-a prediction problem,
whose outputs are continuous. The data set was obtained from the UCI machine
learning benchmark repository. It is available by anonymous ftp at ics.uci.edu
(128.195.1.1) in directory /pub/machine-learning-databases.

Experimental Setup. The data set was partitioned into two sets: a training
set and a testing set. The first 518 examples were used for the training set,
and the remaining 172 examples for the testing set. The input attributes were
rescaled to between 0.0 and 1.0 by a linear function. The output attributes of all
the problems were encoded using a 1-of-m output representation for m classes.
The output with the highest activation designated the class.
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Table 1. Comparison of error rates among negative correlation learning (NCL) and
bagging with NCL on the Australian credit card assessment problem. The results were
averaged over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two dif-
ferent combination methods used in negative correlation learning. Mean, SD, Min and
Max indicate the mean value, standard deviation, minimum and maximum value, re-
spectively.

Simple Averaging Winner-Takes-All
Error Rate Training Test Training Test

NCL Mean 0.0679 0.1323 0.1220 0.1293
SD 0.0078 0.0072 0.0312 0.0099
Min 0.0463 0.1163 0.0946 0.1105
Max 0.0772 0.1454 0.1448 0.1512

Bagging with NCL Mean 0.0458 0.1346 0.0469 0.1372
SD 0.0046 0.0111 0.0243 0.0104
Min 0.0367 0.1163 0.0348 0.1105
Max 0.0579 0.1570 0.0541 0.1628

The ensemble architecture used in the experiments has four networks. Each
individual network is a feedforward network with one hidden layer. All the indi-
vidual networks have ten hidden nodes.

Experimental Results. Table 1 shows the average results of negative correla-
tion learning and bagging with negative correlation learning over 25 runs. Each
run of the experiments was from different initial weights. The simple averaging
was first applied to decide the output of the ensemble system. For the simple
averaging, the results of bagging with negative correlation learning were slightly
worse than those of negative correlation learning.

In simple averaging, all the individual networks have the same combination
weights and are treated equally. However, not all the networks are equally im-
portant. Because different individual networks created by negative correlation
learning were able to specialise to different parts of the testing set, only the out-
puts of these specialists should be considered to make the final decision of the
ensemble for this part of the testing set. In this experiment, a winner-takes-all
method was applied to select such networks. For each pattern of the testing set,
the output of the ensemble was only decided by the network whose output had
the highest activation. Table 1 shows the average results of negative correlation
learning and bagging with negative correlation learning over 25 runs using the
winner-takes-all combination method. The winner-takes-all combination method
improved negative correlation learning because there were good and poor net-
works for each pattern in the testing set and winner-takes-all selected the best
one. However it did not improved bagging with negative correlation learning.

In order to see how different neural networks generated by negative correla-
tion learning are, we compared the outputs of the individual networks trained
by negative correlation learning and bagging with negative correlation learning.
Two notions were introduced to analyse negative correlation learning. They are
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Table 2. The sizes of the correct response sets of individual networks created respec-
tively by negative correlation learning (NCL) and bagging with NCL on the testing set
and the sizes of their intersections for the Australian credit card assessment problem.
The results were obtained from the first run among the 25 runs.

NCL Ω1 = 147 Ω2 = 150 Ω3 = 138 Ω4 = 142 Ω12 = 142
Ω13 = 126 Ω14 = 136 Ω23 = 125 Ω24 = 136 Ω34 = 123

Ω123 = 121 Ω124 = 134 Ω134 = 118 Ω234 = 118 Ω1234 = 116
Bagging with NCL Ω1 = 150 Ω2 = 145 Ω3 = 137 Ω4 = 143 Ω12 = 140

Ω13 = 132 Ω14 = 138 Ω23 = 127 Ω24 = 132 Ω34 = 128
Ω123 = 125 Ω124 = 128 Ω134 = 125 Ω234 = 120 Ω1234 = 118

the correct response sets of individual networks and their intersections. The cor-
rect response set Si of individual network i on the testing set consists of all
the patterns in the testing set which are classified correctly by the individual
network i. Let Ωi denote the size of set Si, and Ωi1i2···ik

denote the size of set
Si1 ∩ Si2 ∩ · · · ∩ Sik

. Table 2 shows the sizes of the correct response sets of indi-
vidual networks and their intersections on the testing set, where the individual
networks were respectively created by negative correlation learning and bagging
with negative correlation training. It is evident from Table 2 that different indi-
vidual networks created by negative correlation learning were able to specialise
to different parts of the testing set. For instance, in negative correlation learning
with pave, in Table 2 the sizes of both correct response sets S1 and S3 were
147 and 138, but the size of their intersection S1 ∩ S3 was 126. The size of
S1∩S2∩S3∩S4 was only 116. In comparison, bagging with negative correlation
learning can create rather different neural networks as well.

5 Conclusions

This paper describes negative correlation learning and bagging with negative
correlation learning for generating different neural networks in an ensemble.
Negative correlation learning can be regarded as one way of decomposing a large
problem into smaller and specialised ones, so that each subproblem can be dealt
with by an individual neural network relatively easily. Bagging with negative
correlation learning were proposed to encourage the formation of different neural
networks.

The experimental results on a classification task show that both negative cor-
relation learning and bagging with negative correlation learning tend to generate
different neural networks. However, bagging with negative correlation learning
failed in achieveing the expected good generalisation. More study is needed on
how to make bagging more efficient by negative correlation learning.
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Abstract. New algorithm was devised to speed up the convergence of 
backpropagation networks and the Bayesian Information Criterion was 
presented to obtain the optimal network structure. Nonlinear neural network 
problem can be partitioned into the nonlinear part in the weights of the hidden 
layers and the linear part in the weights of the output layer. We proposed the 
algorithm for speeding up the convergence by employing the conjugate gradient 
method for the nonlinear part and the Kalman filter algorithm for the linear part. 
From simulation experiments with daily data on the stock prices in the Thai 
market, it was found that the algorithm and the Bayesian Information Criterion 
could perform satisfactorily. 

1   Introduction 

Backpropagation (BP) method, discovered at different times by Werbose [1], Parker 
[2], and Rumelhart et al. [3], is a supervised learning technique for training multilayer 
neural networks. The gradient descent (steepest descent) method is used to train BP 
networks by adjusting the weights in order to minimize the system error between the 
known output given by user (actual output) and the output from the network (model 
output). To train a BP network, each input pattern is presented to the network and 
propagated forward layer by layer, starting from the input layer until the model output 
is computed. An error is then determined by comparing the actual output with the 
model output. The error signals are used to readjust the weights in the backward 
direction starting from the output layer and backtracking layer by layer until the input 
layer is reached. This process is repeated for all training patterns until the system error 
converges to a minimum.  

Although the BP method is widely and successfully used in many applications  
[4, 5, 6], there have been several problems encountered. One is its slow convergence, 
with which many iterations are required to train even a simple network [7]. Another 
problem is how to determine the appropriate network structure for a particular 
problem. Generally, trial-and-error is used to determine the structure of a network in 
practice. 
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Normally, the number of nodes in the input and output layers depend upon the 
application under consideration. Moreover, one hidden layer suffices for many 
applications [8, 9]. Therefore, for the appropriate network structure, the remaining 
problem is how to obtain the number of hidden nodes. 

 

 

+1

Hidden Layers

f( ) 
yjk xjk

wjk0wjk1

wjk2
wjkN

xj-1,2

xj-1 N

d*
jk

Error

-

wLk0wLk1

wLk2
wLkN

xL-1 2

xL-1 N

Output Layer

f( )
yLk xLk

-
+
dLk

Error

+1

+

xL-1,1xj-1,1

f -1( ) ok

 
 
 
 

In this paper, we present the algorithm for speeding up the convergence rate of BP 
networks and the method for choosing the optimal network structure. Experimental 
results of our simulation studies are given to assess the performance of these methods. 

In the following section, we present the algorithm for speeding up the 
convergence. In Section 3, the method to determine the optimal network structure 
based upon the Bayesian Information Criterion (BIC) is described. Experimental 
results are presented in Section 4 for demonstrating the capability of the algorithms 
and the BIC. Finally, conclusions are given in Section 5. 

2   Proposed Algorithm for Speeding Up the Convergence 

Even though the original nonlinear problem is reduced to a linear problem that can 
readily be solved using Kalman filter (KF) (See Fig. 1), the KF algorithm still uses error 
signals generated by the BP algorithm to estimate the actual pre-image outputs of the 
hidden layers [10]. Since they are only known at the output layer, the actual pre-image 
outputs are estimated in the same way as in the BP algorithm at the hidden layers. 

By partitioning the nonlinear neural network problem into the nonlinear part in the 
weights of the hidden layers and the linear part in the weights of the output layer, we 
propose a new algorithm obtained by combining the conjugate gradient method and 
the KF algorithm. The conjugate gradient method, which represents a major 
improvement over steepest descent with only a marginal increase in computational 
effort [11], is employed to solve the nonlinear part and the KF algorithm is employed 
to solve the linear part. 

The system error (overall patterns) between the actual and model pre-image 
outputs at the output layer is given as: 

Fig. 1. Linear portions of a neuron in the hidden and output layers (in dotted blocks) [10]  
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where dpk and ypLk are the actual and model pre-image outputs for the kth node in the 
output layer L at the pth training pattern, respectively, M is the total number of 
training patterns (number of data points) and NL is the number of nodes in the output 
layer. Substituting the model pre-image output at the output layer, Eq. 1 becomes 
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where xp,L-2,l is the model output for the lth node in layer L-2 at the pth training pattern. 
Equation 2 is substituted with xp,L-2,l until the input layer. It is noted that the model pre-
image output at the output layer is linear in the weights of the output layer, but still 
nonlinear in the weights of the hidden layers.  

The conjugate gradient method is employed to solve the nonlinear problem in the 
weights of the hidden layers and then the KF algorithm is employed to find the 
weights of the output layer. Minimizing the system error E with respect to the weights 
for the kth node in the output layer results in 
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Equation 3 can be rewritten as  
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Substituting the model pre-image output at the output layer by its expression gives: 
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Changing the summation on the right-hand side to a vector in Eq. 4, we have 
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for i = 0 through NL-1.  
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Then Eq. 5 becomes     LkRwp =      

or     pRw 1−=Lk
     

This results in the proposed algorithm, which can be summarized as follows: 

1. Randomize all weights and biases as well as set the initial value to the inverse 
matrix   R-1, where R is the correlation matrix of the model outputs in the last 
hidden layer. 

2. For each training pattern pair (xp0, op) where xp0 is the input vector and op is the 
actual output vector at the pth training pattern: 

(a) Calculate the model pre-image output ypjk and the model output xpjk starting with 
layer j from 1 and proceeding layer by layer toward the output layer L for every 
node k. In this case, the sigmoid function is selected as an activation function: 
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where Nj is the number of nodes in the jth layer and ρ is the sigmoid slope. 
(b) Calculate the error signals for the weights at the output layer L and backtracking 

layer by layer from L-1 through 1: 
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(c) Calculate the gradient vector for each layer j from 1 through L-1: 
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where t denotes the present iteration number.  
3. Calculate the gradient vector of all training patterns for each layer j from 1 

through L-1:          ( ) ( )
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where M is the total number of training patterns. 
4. Calculate the search direction for each layer j from 1 through L-1: 
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where β t is computed using a form of Fletcher-Reeves [12], Polak-Ribiere [13], 
or Hestenes-Stiefel [14]. 

5. Calculate the learning rate (step size) λt determined by an approximate line search 
to minimize the error function E(wt+λtst)  along the search direction  st at the tth 
iteration. 

6. Update the weight vector for each hidden layer j from 1 through L-1: 
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jk
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t
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7. For each training pattern: 
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(a) Calculate the model pre-image output ypjk and the model output xpjk starting with 
the layer j from 1 through the output layer L. 

(b) Calculate the Kalman gain kpL and update the inverse matrix 1−
pLR  for the output 
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where bL is the forgetting factor of the output layer. 
(c) Calculate the actual pre-image output at the output layer: 
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(d) Update the weight vector at the output layer L: 
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where λL is the learning rate of the output layer. 
8. Repeat steps 2-7 until the system error has reached an acceptable criterion. 

3   Proposed Method for Optimal Network Structure 

Generally, the number of nodes in the input and output layers depend upon the 
application under consideration. In most applications, BP network with one hidden 
layer is used [8, 9]. Thus, the important and difficult problem is how to choose the 
number of hidden nodes. The optimal number of hidden nodes is usually determined 
by trial-and-error, which starts with choosing an architecture of the network based on 
experience and tests the network performance after each training phase. This process 
is continued as long as the network performance increases and stopped whenever the 
network performance begins to decrease.  

Basically, network complexity measures are useful both to assess the relative 
contributions of different models and to decide when to terminate the network 
training. The performance measure should balance the complexity of the model with 
the number of training data and the reduction in the mean squared error (MSE) [15]. 

Since different numbers of parameters may be involved [16], a straight MSE 
cannot be used to compare two different models directly. Instead of the MSE, Akaike 
Information Criterion (AIC) [17] and Bayesian Information Criterion (BIC) [18, 19] 
can be employed to choose the best among candidate models having different 
numbers of parameters. While the MSE is expected to progressively improve as more 
parameters are added to the model, the AIC and BIC penalize the model for having 
more parameters and therefore tend to result in smaller models. Both criteria can be 
used to assess the overall network performance, as they balance modelling error 
against network complexity. The AIC, proposed by Akaike [17], has been extensively  
used. This criterion incorporates the parsimony criterion suggested by Box and 
Jenkins [20] to use a model with as few parameters as possible by penalizing the 
model for having a large number of parameters. The simplified and most commonly 
used form of the AIC is as follows: 

 AIC  =  M ln(MSE) + 2 P                                                   (6) 
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where M is the number of data points used to train the network, MSE is the mean 
squared error, and P is the number of parameters involved in the model. In Eq. 6, the 
first term is a measure of fit and the second term is a penalty term to prevent over-
fitting. When there are several competing models to choose from, select the one that 
gives the minimum value of the AIC. 

Even if it is commonly used, when viewed as an estimator of the model order, the 
AIC has been found to be inconsistent [21]. Another model selection criterion, known 
as the Bayesian Information Criterion (BIC) or the posterior possibility criterion 
(PPC), was developed independently by Kashyap [18] and Schwarz [19]. The BIC 
can be expressed as follows: 

      BIC  =  M ln(MSE) + P ln(M)    
The BIC also expresses parsimony but penalizes more heavily than the AIC models 

having a large number of parameters. As for the AIC, one selects the model that 
minimizes the BIC. It is known that the BIC gives a consistent decision rule for 
selecting the true model. As the BIC is more consistent [21], we propose a new 
method to systematically determine the optimal number of hidden nodes using a 
procedure that gradually increases the network complexity and employs the BIC for 
terminating the training phase. The proposed algorithm can be summarized as 
follows: 

1. Create an initial network with one hidden node and randomize the weights. 
2. Train the network using with a chosen method e.g. the original BP algorithm, or 

the proposed algorithm described in Section 2 until the system error has reached 
an acceptable error criterion. A simple stopping rule is introduced to indicate the 
convergence of the algorithm. It is based upon the relative error of the sum of 

squared errors (SE):           
1)SE(

)(SE1)SE( ε≤−+
t

tt  

where ε1 is a constant that indicates the acceptable level of the algorithm and 
SE(t) denotes the value of SE at iteration t. 

3. Check for terminating the training of the network. A termination criterion is 
suggested based on the relative BIC: 
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where ε2 is a constant that indicates the acceptable level for the structure of the 
network and k denotes the number of hidden nodes. If the relative BIC is less than 
or equal to ε2 or the current BIC is greater than the previous, go to step 4; 
otherwise add a hidden node and randomize the weights then go to step 2. 

4. Reject the current network model and replace it by the previous one, then 
terminate the training phase. 

4   Experiment 

4.1   Data Employed 

The stock market is an important institution serving as a channel that transforms 
savings into real capital formation. It will stimulate economic growth and also 
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increases the gross national product (GNP). In this study, daily data on the stock 
prices and volumes in the Thai market from 1993 to 1996 were used. For the gap from 
Friday to Monday (weekend) and holidays when the stock exchange is closed, the 
data are treated as being consecutive. Three different types of common stocks; 
namely, Bangkok Bank Public Company Limited (BBL) in the banking sector, Shin 
Corporations Public Company Limited (SHIN) in the communication sector, and 
Land and Houses Public Company Limited (LH) in the property development sector, 
were selected.  

The data were obtained from the Stock Exchange of Thailand (SET). In each case, 
the data are divided into a calibration part for training and validation part for testing: 
1993 to 1994 and 1995 to 1996, respectively. Before being presented to the network, 
the data are transformed by a linear (affine) transformation to the range [0.05, 0.95]. 
In this study, the input to the network may consist of the past values of stock price (P) 
and stock volume (V). The stock price at time t+1 is treated as a function of past 
values of stock price at times t, t-1, and t-2 and stock volume at times t, t-1 and t-2 as 
follows: 

                  P(t+1) = ϕ (P(t), P(t-1), P(t-2), V(t), V(t-1), V(t-2)) 
where ϕ stands for “function of”. 

4.2   Experimental Conditions 

To compare the performance of the algorithms, the same initial weights were used. 
During the training process, both the learning rate and temperature learning rate 
constants were set to 0.01 to avoid oscillation of the search path. The momentum and 
temperature momentum constants were chosen to be 0.5 to smooth out the descent 
path. The forgetting factor of 0.99 was found suitable. The temperature of each 
neuron was set at random to lie within a narrow range of [0.9, 1.1]. The sigmoid slope 
was set to 1. An architecture of the 6-1-1 network consisting of 6 input nodes, 1 
hidden node, and 1 output node was selected as the initial network. We employed the 
proposed algorithm as described in Section 3 for training the network to demonstrate 
the determination of the number of hidden nodes. The values adopted for ε1 and ε2 

were 0.0001 and 0.01, respectively. The conjugate gradient method employed the 
approximate line search method with backtracking by quadratic and cubic 
interpolations of Dennis and Schnabel [22] to find the optimal step size. For 
calculating the search direction, the formula of Fletcher-Reeves [12] was used, based 
on preliminary experiments. 

4.3   Performance Criterion 

For measuring the performance of a given model, we employ the efficiency index (EI) 
defined by Nash and Sutcliffee [23]: 
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where ST  =  Total variation, 



164 S. Sureerattanan and N. Sureerattanan 

 yi  =  Actual output, i.e. observed value at time i, 

i

^

y  =  Model output, i.e. forecast value at time i, 

M  = Number of data points. 

4.4   Results 

As mentioned in Section 3, we selected the algorithm described in Section 2 for 
training the network by using the BIC to obtain the optimal structure. The algorithm is 
terminated when the relative BIC is less than or equal to ε2, or the current BIC is 
greater than the previous one. The algorithm is stopped with the structure 6-4-1 (6 
input nodes, 4 hidden nodes, and one output node). Thus the 6-3-1 network is the best 
as shown in Table 1 for all data sets.  

Earlier, Sureerattanan and Phien [24] proposed an algorithm (referred to as 
Algorithm 1) to speed up the convergence of BP networks by applying the adaptive 
neural model with the temperature momentum term to the KF algorithm with the 
momentum term. With the optimal structure obtained from the BIC method, we 
compare between BP, KF, CG (conjugate gradient), Algorithm 1, and the proposed 
algorithm (referred to as Algorithm 2). Figures 2-4 show the learning curve between 
these system error and the iteration numbers for the algorithms during training of 
BBL, SHIN, and LH, respectively. The calculated results of the efficiency index of 
each algorithm are provided in Tables 2 and 3 for training and testing phases, 
respectively. The total computation time of the algorithms for their convergence is 
given in Table 4. It should be noted that the KF algorithm, the CG method (except in 
the case of applying to BBL), Algorithms 1 and 2 converge with small value of the 
system error, but Algorithm 2 required the least computation time when convergence 
is achieved.  

5   Conclusions 

New algorithm to speed up the convergence and a method to determine the optimal 
network structure were presented. The proposed training algorithm can improve its 
convergence speed since the nonlinear problem in the weights of all layers are 
reduced to be nonlinear part in the hidden layers and linear part in the output layer. As 
we know, solving linear problem is less time consume than that of nonlinear problem 
and Kalman filter technique is employed to solve the linear problem. Moreover, the 
algorithm still solves the left nonlinear problem by applying the conjugate gradient  
(CG) method. The potential of CG method can overwhelmingly overcome the 
gradient descent method, used in the original BP algorithm, with a marginal increase 
in computation time [11]. From the above reasons, the training algorithm for solving 
convergence rate is quite effective in the data employed. The experimental results 
show that Algorithm 1 and the proposed algorithm (Algorithm 2) can greatly speed up 
the convergence of BP networks. In fact, they are the fastest algorithms among the 
methods considered, with the proposed algorithm being the best of all. Furthermore, 
the Bayesian information criterion (BIC) can be employed to determine the optimal 
network structure, and the best structure network also gives good performance. 
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Table 1. Computed values of BIC 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 32 63 94 12
5

15
6

18
7

21
8

24
9

28
0

31
1

34
2

37
3

40
4

43
5

46
6

49
7

Iterations

SE

BP
KF
CG
Algorithm 1
Algorithm 2

0

0.5

1

1.5

2

2.5

3

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

42
1

45
1

48
1

iterations

SE

BP
KF
CG
Algorithm 1
Algorithm 2

 
Fig. 2. Learning curve of BBL for BP, 
KF, CG, Algorithms 1 and 2 
 

Fig. 3. Learning curve of SHIN for BP, KF,  
CG, Algorithms 1 and 2 
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Fig. 4. Learning curve of LH for BP, KF, 
CG, Algorithms 1 and 2 
 

 

Table 2. Comparison between BP, KF, CG, Algorithms 1 and 2 for training phase 

BP KF CG Algorithm 1 Algorithm 2 Stock 
company SE EI epoch SE EI epoch SE EI epoch SE EI epoch SE EI epoch 

BBL 0.35 0.98 3253 0.22 0.99 402 5.15 0.72 19 0.21 0.99 224 0.22 0.99 341 
SHIN 0.83 0.94 3251 0.60 0.96 459 0.38 0.97 1822 0.56 0.96 278 0.38 0.97 293 
LH 0.32 0.98 3254 0.18 0.99 416 0.16 0.99 1406 0.19 0.99 342 0.13 0.99 455 

Table 3. Efficiency indices of BP, KF, CG, and Algorithms 1 and 2 for testing phase 

Stock company BP KF CG Algorithm 1 Algorithm 2 
BBL 0.80 0.93 0.27 0.93 0.93 
SHIN 0.95 0.94 0.98 0.96 0.98 
LH 0.94 0.96 0.95 0.96 0.98 

Table 4. Total computation time (in seconds) for BP, KF, CG, Algorithms 1 and 2 

Stock company BP KF CG Algorithm 1 Algorithm 2 
BBL 251 173 3* 100 94 
SHIN 250 217 220 138 77 

LH 251 188 170 152 126 

                                                           
* In this case, the value of SE is slightly high and the algorithm gets struck to local minimum. 

Stock 
company 

6-1-1 6-2-1 6-3-1 6-4-1 

BBL -3310.96 -3431.71 -3593.22 -3579.97 
SHIN -3057.91 -3227.42 -3332.04 -3240.40 
LH -3459.62 -3669.86 -3863.04 -3726.92 
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Abstract. Webpage categorization has turned out to be an important topic in 
recent years. In a webpage, text is usually the main content, so that auto text 
categorization (ATC) becomes the key technique to such a task. For Chinese text 
categorization as well as Chinese webpage categorization, one of the basic and 
urgent problems is the construction of a good benchmark corpus. In this study, a 
machine learning approach is presented to refine a corpus for Chinese webpage 
categorization, where the AdaBoost algorithm is adopted to identify outliers in 
the corpus. The standard k nearest neighbor (kNN) algorithm under a vector 
space model (VSM) is adopted to construct a webpage categorization system. 
Simulation results as well as manual investigation of the identified outliers reveal 
that the presented method works well.  

1   Introduction 

Webpage categorization, which involves assigning one or more predefined categories 
to a free webpage according to its content, has turned out to be one of the very 
important and basic components in web information management, such as web mining, 
web information retrieval, topic identification, and so on. Most webpages are text 
oriented. Thus, auto text categorization (ATC) becomes the main technique used for 
webpage categorization, which is also called text-based webpage categorization [1]. 
ATC has been studied for several years, and a number of efficient machine learning 
approaches have been proposed, such as Bayesian classifiers [2], nearest neighbor 
classifiers [3], decision trees [2], rule learning [4], support vector machines (SVM)[5], 
ensemble learning methods [6], neural networks [7], and so on. However, for Chinese 
webpage categorization as well as Chinese ATC, even though some studies have been 
performed [8], because of the unique properties and difficulties of the Chinese 
language, there still exist a lot of problems. One of the basic and key problems is that a 
good benchmark corpus is still unavailable. A more refined corpus for the research of 
Chinese webpage categorization is urgently needed.  

One of the main difficulties is the existence of the outliers, which are patterns that 
are either mislabeled in the training data, or are inherently ambiguous and hard to 
recognize [9]. It is already known that boosting, a typical ensemble learning method 
                                                           
∗ Corresponding authors. 
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proposed by Schapire [10], is a good method for identifying outliers. In this study, it has 
been adopted to deal with learning outliers. The basic idea of this study is learning the 
outliers in the original corpus at the first step and then eliminating those identified 
outliers to build a refined corpus.  

The k nearest neighbor (kNN) algorithm is a typical memory-based learning 
methodology, where past experiences are explicitly stored in a large memory for 
prediction. Thus, to make an evaluation for this study, a kNN-based webpage 
categorization system is a desirable selection for comparing the performance between 
the original corpus and the refined corpus. Since some of the training samples have 
been eliminated in the refined corpus, the past experience will be reduced, and then the 
learning model trained based on the kNN algorithm could lead to a worse performance 
if those past experiences are truly correct prior knowledge. However, the results 
demonstrate that the learning model trained on the refined corpus outperforms the 
learning model trained on the original corpus.  

The reminder of the paper is organized as follows. In section 2, the boosting-based 
outlier learning process is presented. In section 3, the system description will be 
introduced. In section 4, simulations as well as analyses are given. Section 5 is the 
conclusion.  

2   Learning Outliers via Boosting 
2.1   Outlier Problem 

In machine learning, incomplete data is a big problem. There are many possibilities that  
can cause the training data to be incomplete, such as  mislabeling, biases, omissions, 
non-sufficiency, imbalance, noise, outliers, etc. This paper mainly tackles the outlier 
problem. An outlier is a pattern that was either mislabeled in the training data, or 
inherently ambiguous and hard to recognize. In the course of collecting training data, 
two circumstances can occur, one is the absence of information that may truly represent 
the pattern, while the other is the presence of additional information that may not be 
relevant to the patterns to be recognized. The former addresses the problem of signal 
collection, feature extraction or feature selection, etc., while the latter deals with noise 
and outlier problems. Fig. 1 illustrates an outlier xA in sample space X, where two 
categories of patterns labeled as “*” and “+” respectively are classified by hypersurface 
h(x). 

2.2   Ensemble Learning Methodologies and Boosting  

In recent years, statistical ensemble methodologies, which take advantage of 
capabilities of individual classifiers via some combining strategy, have turned out to be 
an effective way to improve the accuracy of a learning system. In general, an ensemble 
learning system contains two parts: an ensemble of classifiers and a combiner. The key 
issue is how to build an ensemble based on the original training set. Usually, some 
re-sampling or re-weighting technique is adopted to produce several new training data 
sets through which the classifiers are trained to make up an ensemble.  
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Fig. 1.  A demonstration on outlier. Where X is the sample space, h(x) is the hypersurface, xA is an 
outlier  

One of the standard ensemble learning methods is boosting, proposed by Schipire 
in 1990, which represents a family of algorithms [10]. The main idea of boosting lies in 
paying more attention to hard samples in the process of ensemble construction. The 
AdaBoost algorithm, introduced in 1995 by Freund and Schapire [11], solved many of 
the practical difficulties of the earlier boosting algorithms and has become a more 
popular boosting algorithm. In AdaBoost, hard samples are paid more attention by 
receiving larger weights. The basic idea of AdaBoost is as follows. The given training 
set is used to first learn a classifier, where the weight assigned to each training sample is 
the same. Suppose a classifier is obtained and then re-weighting is performed, that is, 
larger weights are assigned to those hard samples that are incorrectly predicted and 
smaller weights to those easy samples that are correctly classified. Lastly, by training 
with the re-weighted samples, a new classifier can be obtained. Repeating the above 
re-weighting procedure T-1 times produces a T-sized AdaBoost ensemble. Using some 
combination strategy, one can then build an AdaBoost ensemble learning system.  

2.3   Learning Outliers via Boosting  

Compared with other methods, the outlier problem is more serious in ensemble 
learning systems [11][12], since the main idea of most ensemble methods is to pay 
attention repeatedly to the hard samples in the training phase, while hard is the inherent 
property of the outliers. Dietterich demonstrated very convincingly that when the 
number of outliers becomes very large, the emphasis placed on the hard examples could 
become detrimental to the performance of AdaBoost [12]. To restrain the harmful 
influence of outliers, Friedman et al suggested a variant of AdaBoost called “Gentle 
AdaBoost” that puts less emphasis on outliers [13]. Rätsch et al gave a regularization 
method for AdaBoost to handle outliers and noisy data [14]. A so-called “BrownBoost” 
algorithm was proposed by Freund that took a more radical approach to de-emphasize 
outliers when they were “too hard” to be classified correctly [15]. To conquer the 
limitation of the sample-based weighting strategy, which was adopted in those 
outlier-solving methods mentioned above, a unit-weighting strategy was proposed in 
our previous studies [9].  
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To tackle the outlier problem in the incomplete training data, two methods may be 
used, i.e. “restrain” and “eliminate”. Those studies mentioned in the above paragraph 
mainly focus on a “restrain” strategy. In this corpus refining study, however, our 
viewpoint in outlier-solving is not to “restrain” but only “eliminate”. In spite of what 
kind of strategy is used for tackling the outlier problem, the first step is to find the 
outliers in the incomplete training samples.  

An AdaBoost-based outlier learning procedure is presented as illustrated in Fig. 2., 
where four subfigures describe a boosting learning process in sequence on a binary 
classification problem. Fig. 2(a) expresses a sample space where two categories of 
patterns are labeled as “*” and “+” respectively. After several iterations, the sample 
space will be divided by a decision boundary of the combined classifier shown as the 
solid black curve in Fig. 2(b), where those samples that are misclassified or near the 
decision boundary are comparatively hard samples and hence get a higher weight, such 
as patterns P1, P4 and N4, etc., where P and N stand for positive and negative 
respectively. The diameters of the circles that have the corresponding samples as their 
centers are proportional to the weights of those patterns. In order to simplify the 
problem, only those relevant samples’ weights (which are mainly “*”-labeled class 
patterns) are illustrated in Fig. 2. As the boosting ensemble-construction process 
continues, the learning system reaches the state shown in Fig. 2(c), where those 
samples such as P1 and P2 that are misclassified by previous ensemble classifiers have  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2.  Illustration of the outlier learning process 
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been correctly classified and thus, their weights decrease. And those samples such as P3 
get higher weights since they are still misclassified by the current component 
classifiers. 

At the same time, the patterns of the other class such as N1 and N3 get higher weights 
since they are now closer to the decision boundary. When reaching the state illustrated 
in Figure 3(d), it can be observed that the decision line moves closer to those samples 
such as P3, but still, they are misclassified. Thus, very large weights are assigned to 
them, and in fact, they are outliers. 

Usually, some criteria will be adopted to stop the learning process as well as fix outliers, 
such as iteration times, weight value level, error rate, etc. Then, when the learning process 
is completed, outliers could be identified according to the selected criteria.  

In this study, the centers for each category are firstly calculated, and then the nearest 
neighbor algorithm is used as weak classifier for the AdaBoost learning process. The 
iteration times is set to 10 for stopping the learning process, and a weight value 
threshold method is adopted for mark the outliers according to formula (1). 

0

1

1 αα <
⋅

=
=

kN

j

jk
ikk

ik w
wN

 ,                                          (1) 

where Nk is the number of webpages in category k, wik is the weight value of ith 
webpage in category k, and 0α  is the predetermined experimental threshold which is 
set to 0.2 in our simulations. In other words, for the ith webpage in category k, if its 
calculated value ikα is less than 2.00 =α , it will be marked as an outlier.   

3   System Description 

3.1   Webpage Representation  

A webpage document written in HTML or XML etc. usually consists of plain text, 
various text fonts and styles, tags, links to other webpages as well as links to image, 
audio and video files, etc. In this study, we ignore all other information carriers and 
only use the text content as the main information for webpage categorization. Thus, a 
preprocessing step must be performed to remove all those other tags but text. However, 
the key issue to the Chinese webpage categorization problem is to transform the text 
document into some kind of representation that is more suitable for learning. We also 
call this process webpage representation, which includes two steps, feature extraction 
and feature selection.  

The most commonly used feature extraction is the vector space model (VSM) [16], 
where a webpage is represented as a vector of terms, each of which may be a single 
Chinese character, a Chinese word or a WordsGroup (WG). Thus, according to the term 
frequency (TF) or other useful information of the text term, we could easily represent 
the webpage as a feature vector. Those terms used to express the documents form a 
dictionary. Usually, for a corpus of webpages to be handled, we would have a 
word-by-document matrix A = (aik), where each element aik is the weight of term i in 
webpage k. The number of rows of the matrix corresponds to the number of terms in the 
dictionary, which is denoted as M, while the number of columns of the matrix 
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corresponds to the number of webpages in the corpus, which is denoted as N. There are 
several ways to determine the value of each element aik; the main goal is to search for a 
more seemly representation for webpages, so that a good learning performance can be 
reached. Two basic principles are usually considered in determining the value of aik: (i) 
the higher the term frequency in a webpage is, the more important it is to the category 
the webpage belongs to, (ii) the higher the term frequency is in all webpages in the 
corpus, the more unimportant it is [17].  

The matrix A is usually sparse because each webpage only can contain a small 
number of terms. Meanwhile, the number of rows of A, M, which is also the size of the 
formed dictionary is typically very large.  As a consequence, webpage representations 
have to face the sparse and high dimensionality problem, which is another key problem 
in webpage categorization tasks. A feature selection procedure therefore becomes very 
important. There are several methods proposed to perform feature selection, such as DF 
Thresholding, information gain (IF), mutual information (MI) and 2χ statistics etc [2]. 

Unlike English and other Indo-European languages, Chinese text does not have a 
natural delimiter between words, which leads Chinese word segmentation to be another 
key issue in Chinese text processing tasks [18]. Thus, two common schemes were 
formed in Chinese web page categorization tasks. One is single Chinese character 
based mode; another is Chinese words based mode. In the Chinese language, the word 
is the basic unit of a concept. Frequently, each word will contain more than one Chinese 
character, although sometimes a single Chinese character will be a word. The former 
scheme avoids the Chinese word segmentation problem but ignores the utilization of 
the word meanings. The latter scheme encounters a more serious sparse and high 
dimensionality problem because there are many more words than individual characters. 
In order to improve the performance while utilizing knowledge of the Chinese 
language, some additional knowledge dictionaries were imported in recent studies, 
such as a thesaurus dictionary, etc. In this paper, a new scheme so-called WordsGroup 
(WG) is adopted which was introduced in our previous studies [19], where knowledge 
of Chinese linguistics was imported according to The Modern Chinese Classification 
Dictionary [20]. In the WG scheme, there are about 49,000 words classified to 3,717 
WordGroups, which are the selected terms for webpage representation. That means a 
webpage can be represented as a 3,717 dimensional vector. In contrast, using two 
traditional schemes, without extra processing, the feature vector dimension will be 
about 6,000 and 10,000, respectively. Thus, the WG scheme becomes a desirable 
representation for webpages and we chose it for our studies because of the following 
two reasons. First, our previous studies have shown that the WG scheme outperforms 
two traditional schemes in webpage categorization problems [19]. Secondly, in this 
scheme, the feature vectors have a fixed and comparably lower dimension such that 
extra processing is not required any more.  

3.2   kNN-Based Webpage Categorization System 

kNN is one of the top-performing methods for the webpage categorization task. The 
procedure for building a kNN-based webpage categorization system is very simple.  In 
the training phase, all feature vectors extracted from the training webpages are stored in 
a large memory. When classifying an input test webpage, the same representation 
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processes are performed on it as during model building. The similarity between the test 
webpage and every stored feature vector are measured by some distance metric such as 
the Euclidean distance or the cosine distance, based on which k nearest neighbors can 
be obtained. By sorting the scores of candidate categories, a ranked list is obtained for 
the test webpage.  

In such a memory-based learning system, more training webpages means more past 
experiences and more prior knowledge from which the system can learn. Thus, a model 
based on the refined corpus could potentially perform worse because it contains less 
training samples. Our purpose is to prove that although the refined corpus has less “past 
experience”, the model trained on it still outperforms the model trained on the original 
corpus. If this case happens, we could conclude that the refined corpus is truly better 
than the original corpus by eliminating outliers in the original corpus, and those 
eliminated outliers could be regarded as error or abnormal “past experience”.   

4   Simulations 
4.1   Original Corpus and the Refined Corpus 

The YQ-WPBENCH-V1.0 corpus is a webpage database for the webpage 
categorization task, which was first collected for an automatic Chinese webpage 
categorization competition hosted by the Computer Network and Distributed Systems 
Laboratory at Peking University in 2003. Thereafter, it was freely provided for research 
on webpage categorization tasks. It contains 12,533 webpages that are to be classified 
into 11 categories, in which 9,905 webpages were randomly selected as the training 
data set and the remaining 2,628 webpages were used for the test data. 

Table 1 shows information regarding the 11 categories of the original corpus, where 
for a fixed category label, its category name, number of training webpages as well as 
number of test webpages are indicated. Apparently the corpus is imbalanced. 

  
Table 1.  Category information of the corpus 

 

Category No. Name of Category Size of Training Set Size of Test Set 

01 Literature and Art 378 97 
02 Journalism 118 17 
03 Commerce and Economy 781 201 
04 Entertainment 1,417 356 
05 Government and Politics 259 76 
06 Society and Culture 987 278 
07 Education 276 79 
08 Natural Science 1,693 443 
09 Social Science 1,567 425 
10 Computer and Internet 792 210 
11 Medical and Health 1,637 446 

Total ----- 9,905 2,628 
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Through elimination of the learned outliers, the refined corpus was obtained. Table 
2 shows the comparison  between the original corpus and the refined corpus. Here, the 
number of outliers also refers to the number of webpages in the original corpus that 
have been eliminated from the corresponding category after outlier learning. From 
Table 2, one can see that altogether 597 webpages were learned as outliers and were 
eliminated from the original 12,533 webpages’ corpus; about 5% of the original 
training webpages were removed.    
Table 2.  The number of webpages in the original corpus and the refined corpus as well as the 
number of identified outliers 

4.2   Performance Comparison 

Measure. The evaluation of the performance of a webpage categorization system is 
based on two aspects: one is the performance on each category, and the other is the 
overall performance. Three commonly used indexes Precision, Recall and F1 have 
been introduced to measure different aspects of the learning performance on each 
category [21]. Given a category labeled as i, assume that there are ni test webpages that 
belong to the category. Also, assume mi is the number of test webpages classified to 
category i by the system, where li test webpages are correctly classified. Three indexes 
are expressed as below. 
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 Precision  ,                                          (2) 
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For evaluating overall performance averaged across categories, there are two 
conventional methods, namely Macro-averaging and Micro-averaging [22]. For the 
former, three indexes Macro-Precision, Macro-Recall and Macro-F1 are determined as 

Original Corpus Identified Outliers Refined Corpus Categor
y No. Training Set Test Set Training Set Test set Training Set Test Set 

01 378 97 14 3 364 94 
02 118 17 8 1 110 16 
03 781 201 16 4 765 197 
04 1,417 356 99 6 1,318 350 
05 259 76 4 4 255 72 
06 987 278 68 13 919 265 
07 276 79 6 0 270 79 
08 1,693 443 118 14 1,575 429 
09 1,567 425 118 19 1,449 406 
10 792 210 29 1 763 209 
11 1,637 446 26 26 1,611 420 

Total 9,905 2,628 506 91 9,399 2,537 
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the global means of the local measures for each category. For the latter, ni, mi and li, are 
first summed up over all i, and then three indexes Micro-Precision, Micro-Recall and 
Micro-F1 can be calculated by substituting these sums into the formulas (2), (3) and 
(4), where now the subscript i should be ignored. There is an important distinction 
between the two types of averaging. Macro-averaging gives equal weight to each 
category, while Micro-averaging gives equal weight to every webpage.  

When evaluating the performance of the system, three indexes are calculated for 
each category based on which overall performance could be obtained. In our 
experiments, each webpage is classified to only one category and therefore, the three 
indexes of Micro-averaging are the same. 

Performance Comparison. Based on the original corpus and the refined corpus, two 
models were trained using the kNN-based categorization system. Their performances 
were compared by predicting webpages in the test set of the original corpus, where all 
measures discussed above are adopted, as shown in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               (a)                                                               (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                               
 

Fig. 3.  Performance Comparison between models trained on the original corpus and the refined 
corpus, where testing webpages are from the test set in the original corpus 
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There are 4 subfigures in Fig. 3, Precision, Recall and F1 value of each category 
between two models were compared in Fig. 3 (a), Fig. 3 (b) and Fig. 3 (c), respectively. 
Fig. 3 (d) shows the overall performance comparison, where the three indexes both 
under Macro-averaging and Micro-averaging are compared. As mentioned above, 
under Micro-averaging, the three indexes are equivalent, so we only report comparison 
results for Micro-F1 of the two models.  

From Fig. 3, one can see that the model trained on the refined corpus did not 
perform worse than the model trained on the original corpus. On the contrary, its 
overall performance was slightly better. According to the analysis made above, most of 
those eliminated samples therefore are truly outliers, they are either error or abnormal 
“past experiences” in the original corpus. In other words, the original corpus for 
webpage categorization was successfully refined.  

To obtain more robust results, the same performance comparisons were performed 
on the test set of the refined corpus, as shown in Fig. 4., where the same conclusion 
could be drawn. Moreover, it is observed from Fig. 4 that the performance  

 

Fig. 4.  Performance comparison between models trained on the original corpus and on the 
refined corpus, where testing webpages are from the test set in the refined corpus 
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improvement is more distinct than that in Fig. 3. This is because the test set in the 
original corpus may still have some outliers, which however may have been eliminated 
in the refined corpus. 

Furthermore, a manual investigation has been performed to check those learned 
outliers. And the investigation results show that eliminated webpages could be divided 
as four kinds: webpages mislabeled or lying on the border between different categories, 
webpages that are out of the defined categories, non-sense webpages as well as some 
regular webpages, where the first three kinds of webpages are truly outliers. Figure 5 
shows the manual investigation results, from which one can see there 83.75% 
eliminated webpages are truly outliers, which further reveals that the presented outlier 
learning process is effective.  

A
72.80%

D
16.25%

B
7.20%C

3.75%

Fig. 5.  The distribution of eliminated outliers, where ‘A’ denotes the webpages mislabeled or 
lying on the border between different categories, ‘B’ denotes the webpages that are out of the 
defined categories, ‘C’ denotes the non-sense webpages and ‘D’ denotes the regular webpages 

5   Conclusion 

In this paper, a machine learning approach was presented to refine a corpus for Chinese 
webpage categorization, where the Adaboost algorithm was adopted to learn outliers in the 
corpus. A kNN algorithm based classifier was integrated in building a Chinese webpage 
categorization system to make an evaluation between the original corpus and the refined 
corpus. Comparative results demonstrate that the model trained on the refined corpus, 
where the learned outliers were eliminated, did not perform worse than the model trained 
on the original corpus. On the contrary, its overall performance was slightly better. One 
explanation is that there exists some abnormal knowledge manifested as outliers in the 
original corpus, which could be successfully identified by the presented outlier learning 
method. Further analysis shows that abnormal knowledge in the original webpage corpus 
could be roughly divided as: non-sense webpages, webpages lying on the border between 
different categories, and webpages that are out of the defined categories. This further 
reveals the effectiveness of the presented outlier learning method for corpus refining. Still, 
among the learned outliers, there exists a small number of regular webpages that are 
misreported as outliers. How to deal with them is the topic of future work. 
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Abstract. Kernel self-organizing map has been recently studied by Fyfe and his 
colleagues [1]. This paper investigates the use of a novel bio-kernel function for 
the kernel self-organizing map. For verification, the application of the proposed 
new kernel self-organizing map to HIV drug resistance classification using mu-
tation patterns in protease sequences is presented. The original self-organizing 
map together with the distributed encoding method was compared. It has been 
found that the use of the kernel self-organizing map with the novel bio-kernel 
function leads to better classification and faster convergence rate… 

1   Introduction 

In analysing molecular sequences, we need to select a proper feature extraction which 
can convert the non-numerical attributes in sequences to numerical features prior to 
using a machine learning algorithm. Suppose we denote by x a sequence and )(xφ  a 
feature extraction function, the mapping using a feature extraction function is 

dR∈→ ):( φSFF . Finding an appropriate feature extraction approach is a non-
trivial task. 

It is known that each protein sequence is an ordered list of 20 amino acids while a 
DNA sequence is an ordered list of four nucleic acids. Both amino acids and nucleic 
acids are non-numerical attributes. In order to analyze molecular sequences, these 
non-numerical attributes must be converted to numerical attributes through a feature 
extraction process for using a machine learning algorithm. The distributed encoding 
method [2] was proposed in 1988 for extracting features for molecular sequences. The 
principle is to find orthogonal binary vectors to represent amino (nucleic) acids. With 
this method, amino acid Alanine is represented by 0000000000 0000000001 while 
Cystine 0000000000 0000000010, etc. With the introduction of this feature extraction 
method, the application of machine learning algorithms to bioinformatics has been 
very successful. For instance, this method has been applied to the prediction of prote-
ase cleavage sites [3], signal peptide cleavage sites [4], linkage sites in glycoproteins 
[5], enzyme active sites [6], phosphorylation sites [7] and water active sites [8]. 

However, as indicated in the earlier work [9], [10], [11] such a method has its in-
herent limit in two aspects. First, the dimension of an input space has been enlarged 
20 times weakening the significance of a set of training data. Second, the biological 
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content in a molecule sequence may not be efficiently coded. This is because the 
similarity between any pair of different amino (nucleic) acids varies while the dis-
tance between such encoded orthogonal vectors of two different amino (nucleic) acids 
is fixed. 

The second method for extracting features from protein sequences is to calculate 
the frequency. It has been used for the prediction of membrane protein types [12], the 
prediction of protein structural classes [13], subcellular location prediction [14] and 
the prediction of secondary structures [15]. However, the method ignores the coupling 
effects among the neighbouring residues in sequences leading to potential bias in 
modelling. Therefore, di-peptides method was proposed where the frequency of each 
pair of amino acids occurred as neighbouring residues is counted and is regarded as a 
feature. Dipeptides, gapped (up to two gaps) transitions and the occurrence of some 
motifs as additive numerical attributes were used for the prediction of subcellular 
locations [16] and gene identification [17]. Descriptors were also used, for instance, to 
predict multi-class protein folds [18], to classify proteins [19] and to recognise rRNA-
, RNA-, and DNA-binding proteins [20], [21]. Taking into account the high order 
interaction among the residues, multi-peptides can also be used. It can be seen that 
there are 400 di-peptides, 8,000 tri-peptides and 16,000 tetra-peptides. Such a feature 
space can be therefore computational impractical for modelling. 

The third class of methods is using profile measurement. A profile of a sequence 
can be generated by subjecting it to a homology alignment method or Hidden Markov 
Models (HMMs) [22], [23], [24], [25]. 

It can be seen that either finding an appropriate approach to define )(xφ  is difficult 

or the defined approach may lead to a very large dimension, i.e., ∞→d . If an ap-
proach which can quantify the distance or similarity between two molecular se-
quences is available, an alternative learning method can be proposed to avoid the 
difficulty in searching for a proper and efficient feature extraction method. This 
means that we can define a reference system to quantify the distance among the mo-
lecular sequences. With such a reference system, all the sequences are quantitatively 
featured by measuring the distance or similarity with the reference sequences. 

One of the important issues in using machine learning algorithms for analysing 
molecular sequences is investigating sequence distribution or visualising sequence 
space. Self-organizing map [26] has been one of the most important machine learning 
algorithms for this purpose. For instance, SOM has been employed to identify motifs 
and families in the context of unsupervised learning [27], [28], [29], [30], [31]. SOM 
has also been used for partitioning gene data [32]. In these applications, feature ex-
traction methods like the distributed encoding method were used. 

In order to enable SOM to deal with complicated applications where feature extrac-
tion is difficult, kernel method has been introduced recently by Fyfe and his col-
leagues [1]. Kernel methods were firstly used in cluster analysis for K-means algo-
rithms [33], where the Euclidean distance between an input vector x and a mean vec-
tor m is minimized in a feature space spanned by kernels. In the kernel feature space, 
both x and m were the expansion on the training data. Fyfe and his colleagues devel-
oped so-called kernel self-organizing maps [34], [35]. This paper aims to introduce a 
bio-kernel function for kernel SOM. The method is verified on HIV drug resistance 
classification. A stochastic learning process is used with a regularization term. 
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2   Methods 

A training data set { }h
1== nnsD , where D

n S∈s  (S  is a set of possible values and || S  

can be either definite or indefinite) and a mapping function which can map a sequence 

to a numerical feature vector is defined as dR∈→ ):( FSF φ , )( nn sx = . In most 

situations, T
21 ))(,),(),(()( ndnnnn ssssx φφφ==  is unknown and possibly, ∞→d . 

This then causes the difficulty in modelling. In using self-organizing map for unsuper-
vised learning of protein sequences, the error function in the feature space F  can be 

defined as 2|| mn wx −=L , where d
m R∈w  is the weight vector connecting the mth 

output neuron. Suppose mw  can be expanded on the training sequences ( mmw Φ= ).  

Note that hR∈m  is an expansion vector and h≤≤≤≤=Φ jdiji 1,1)}({ sφ . The error func-

tion can re-written as mmmnnn Kk T2 +−= KL . Note that ),( jiij ssKK =  is the 

kernel, ),,,( 21 hh nnnn KKK=k  is a row kernel vector and h≤≤= jiij ,1}{KK  a ker-

nel matrix. The error function can be as follows if we use L2 norm regarded as a regu-
larization term 

)2(
2

1 TT
mmmmmnnn Kk λ++−= KL , 

where  λ  is the regularization factor. The update rule is then defined as 
))()(( mnm t IKk λη +−=Δ . In designing the bio-kernel machine, a key issue is 

the design of an appropriate kernel function for analysing protein or DNA sequences. 
Similar as in [9], [10], [11], we use the bio-basis function as the bio-kernel function 

−
=

),(

),(),(
exp),(

ii

iii
i bb

bbbx
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M
MM

K  

where x is a training sequence and ib  is a basis sequence, both have D residues. Note 

that == D
d iddi bx1 ),(),( MM bx  with dx  and idb  and the dth residue in sequences. 

The value of ),( idd bxM  can be found in a mutation matrix [36], [37]. The bio-basis 

function has been successfully used for the prediction of Trypsin cleavage sites [8], 
HIV cleavage sites [9], signal peptide cleavage site prediction [10], Hepatitis C virus 
protease cleavage sites [38], disordered protein prediction [39], [40], phosphorylation 
site prediction [41], the prediction of the O-linkage sites in glycoproteins [42], the 
prediction of Caspase cleavage sites [43], the prediction of SARS-CoV protease 
cleavage sites [44] and the prediction of signal peptides [45]. 

3   Results 

Drug resistance modeling is a wide phenomenon and drug resistance modeling is a 
very important issue in medicine. In computer aided drug design, it is desired to study 
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how the genomic information is related with therapy effect [46]. To predict if HIV 
drug may fail in therapy using the information contained in viral protease sequences is 
regarded as genotype-phenotype correlation. In order to discover such relationship, 
many researchers have done a lot of work in this area. For instance, the original self-
organizing map was used on two types of data, i.e., structural information and se-
quence information [46]. In using sequence information, frequency features were used 
as the inputs to SOM. The prediction accuracy was between 68% and 85%. Instead of 
neural networks, statistical methods and decision trees were also used [47], [48], [49]. 

Data (46 mutation patterns) were obtained from [50]. Based on this data set, bio-
kernel SOM was running using different value for the regularization factor. The origi-
nal SOM was also used for comparison. Both SOMs used the same structure (36 out-
put neurons) and the same learning parameters, i.e. the initial learning rate 
( 01.0=hη ). Both algorithms were terminated when the mean square error was less 

than 0.001 or 1000 learning iterations. 
Fig. 1 shows the error curves for two SOMs. It can be seen that the bio-kernel 

SOM (bkSOM) converged much faster with very small errors. 
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Fig. 1. The error curves for two SOMs. The horizontal axis is the learning iterations and the 
vertical one (logarithm scale) the errors. The numbers within the brackets of bkSOM mean the 
regularization factor values.  

Fig. 2 shows a map of bkSOM, where “n.a.” means that there is no patterns 
mapped onto the corresponding output neuron, “5:5” means that all the five patterns 
mapped onto the corresponding neuron are corresponding to the mutation patterns 
which are resistant to the drug and “0:9” means that all the nine patterns mapped onto 
the corresponding neuron are corresponding to the mutation patterns which are not 
resistant to the drug. 
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Fig. 2. The feature map of bkSOM. 

Table 1 shows the comparison in terms of the classification accuracy, where “NR” 
means non-resistance and “R” resistance. It can be seen that bkSOM performed better 
than SOM in terms of classification accuracy. The non-resistance prediction power 
indicates the likelihood that a predicted non-resistance pattern is a true non-resistance 
pattern. The resistance prediction power therefore indicates the likelihood that a pre-
dicted resistance pattern is a true non-resistance pattern. For instance, the non-
resistance prediction power using SOM is 90%. It means that for every 100 predicted 
non-resistance patterns, 10 would be actually resistance patterns. 

Table 1. The classification accuracy of two SOMs 

SOM bkSOM 
 NR R Precision  NR R Precision 

NR 28 0 100% NR 28 0 100% 
R 3 15 83% R 0 18 100% 
Power 90% 100% 93% Power 100% 100% 100% 

4   Summary 

This paper has presented a novel method referred to as bio-kernel self-organizing map 
(bkSOM) for embedding the bio-kernel function into the kernel self-organizing map 
for the purpose of modeling protein sequences. The basic principle of the method is 
using the “kernel trick” to avoid tedious feature extraction work for protein se-
quences, which has been proven a non-trivial task. The computational simulation on 
the HIV drug resistance classification task has shown that bkSOM outperformed 
SOM in two aspects, convergence rate and classification accuracy. 
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Abstract. In this paper a new learning algorithm, Lever Training Machine 
(LTM), is presented for binary classification.  LTM is a supervised learning al-
gorithm and its main idea is inspired from a physics principle: Lever Principle.  
Figuratively, LTM involves rolling a hyper-plane around the convex hull of the 
target training set, and using the equilibrium position of the hyper-plane to de-
fine a decision surfaces.  In theory, the optimal goal of LTM is to maximize the 
correct rejection rate.  If the distribution of target set is convex, a set of such 
decision surfaces can be trained for exact discrimination without false alarm. 
Two mathematic experiments and the practical application of face detection 
confirm that LTM is an effective learning algorithm. 

1   Introduction 

Target detection is an important research field of computer vision especially with the 
specific subject, e.g. face detection and vehicle detection.  Actually, target detection is 
a binary classification problem, and the goal is to find a binary classifier.  Binary 
classifiers can be sorted into two categories: nonlinear and linear.  The nonlinear 
classifiers, such as neural network [1, 2], and nonlinear SVM [3, 4], are more power-
ful than linear classifier, but they’re computation expensive.  On the other hand, linear 
classifier is the most simple and fast one.  An individual linear classifier is weak, but 
a set of linear classifiers can be constructed to a piecewise linear classifier, which 
combines the advantage of both linear and nonlinear classifiers, and results in a not 
only fast but also powerful classifier. 

Fisher’s LDA [5], SVM [1], and MRC [6], are the examples of linear classifier.  
They train a linear classifier in some optimal manners.  The goal of LDA is to maxi-
mize the Mahalanobis distance of the target and non-target classes.  And the object of 
SVM is maximizing the margin between the two classes.  In the both algorithms, it’s 
assumed that the two classes are linearly separable and equally important [6].  How-
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ever, the assumptions are invalid in many applications.  M. Elad et al. have proposed 
MRC to overcome those limitations.  MRC exploits the property that the probability 
of target is substantially smaller than non-target; the property is common in many 
target detection issues.  And MRC processes nonlinearly separable classes with the 
idea of piecewise linear classifier.  But as pointed by M. Elad, even if MRC is used to 
deal with a convex target set, false alarm may exist in practice [6], because its optimal 
object only considers second moments with neglecting higher ones. 

LTM has been developed to pursue a linear classifier in a more direct and novel 
manner.  The idea of LTM is inspired from Lever Principle in physics.  Its optimal 
goal is to maximize the correct reject rate directly.  Given the training sets of target 
and non-target, LTM trains a decision hyper-plane stage by stage to separate the non-
target data as many as possible from the target set.  Prior the first training stage, LTM 
generates an initial hyper-plane randomly.  In each training stage, LTM aligns the 
hyper-plane to an advantageous position based on Lever Principle, where the hyper-
plane can distinguish more non-target data.  When the hyper-plane keeps the balance, 
the equilibrium hyper-plane is defined as the output linear classifier by LTM. 

If the distribution of target set is convex, a sequence of decision surfaces can be 
found by LTM to exactly discriminate the both training sets without false-alarm.  That 
is confirmed by two mathematic experiments and the practical application of front 
face detection.  Compared with other training algorithms of linear classifier, LTM has 
direct physical meaning and direct optimal goal.  It admits the high probability of 
non-target and is suitable to deal with nonlinearly separable classes. 

In the paper, section 2 describes the theory of LTM in detail.  Section 3 gives two 
mathematic experiments.  The application of LTM to face detection is presented in 
section 4.  The last section makes a conclusion with future perspectives. 

2   Lever Training Machine 

There are two concepts should be reviewed prior to present LTM: linear classifier and 
Lever Principle. 

2.1   Linear Classifier and Lever Principle 

Linear classifier is a simple and fast pattern classification approach.  It can be defined 
by the linear-threshold formula:  

( ) >−⋅= otherwise
dUx

,
, xh 0

0
1  (1) 

where d is the threshold and U is the unit projection vector.  A linear classifier can 
define a hyper-plane, of which U is the unit normal vector.  Likewise a hyper-plane 
corresponds to a linear classifier.  

Lever Principle is a basic physical law and Archimedes stated it vividly: “Give me 
a place to stand and I will move the earth”.  The product of a force F by its effort arm 
L is the moment of F:  

FLM ×=  (2) 
As demonstrated in Fig. 1, the movement state of the plane can be analyzed ac-

cording to Lever Principle.  Each force Fi that acts on the plane will generate a mo-
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ment Mi, where Mi = Li × Fi.  If =
=
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iM

1
0 , the plane will keep the balance.  Other-

wise the plane will rotate, and the direction can be determined with the right-hand 

rule.  The normal vector U of the plane will change in the direction of UM
N

i
i ×

=1

. 

 

Fig. 1. The forces acted on the plane yield a moment sum || M|| that determines the movement 
state of the plane 

The plane can be replaced by a hyper-plane and naturally Lever Principle is intro-
duced to high dimensional space, where the moment of a force is still defined by 
Formula 2.  With the high dimension extension, Lever Principle can be adapted to 
optimize a decision hyper-plane by LTM. 

2.2   Lever Training Machine 

LTM is a supervised learning algorithm.  Given the target training sets X = {xi} 
i=1,2,…M and the non-target training sets Y = {yi}  i=1,2,…N, the purpose of LTM is to find 
a decision hyper-plane to separate non-target data as many as possible from target set. 

LTM is designed for aligning an initial hyper-plane P0 to an optimal decision hy-
per-plane Popt by a serial of training stages.  In the training stage n, LTM modifies the 
hyper-plane Pn to a move advantageous position Pn+1, where Pn+1 can separate more 
non-target data from target set than Pn.  Generally, the dimension of data, e.g. face 
image data and car image data, is typically high, which means that the hyper-plane 
has high degree of freedom.  Therefore it is quite difficult to determine the advanta-
geous direction to rotate the hyper-plane.  Lever principle is adapted to address this 
issue. 

As shown in Fig. 2, P0 is generated randomly as the initial input, U is the unit nor-
mal vector of P0.  Then the fulcrum O of P0 is located by following:  

Step 1. For each xi X, calculate the projection value with formula 3: 
( ) Uxxv iipro ⋅=  (3) 

Step 2. Find the target data with the lowest projection values and those data are 
named as fulcrum data.  Denote the fulcrum data set as Xfulcrum = {xj

fulcrum}i=1,2…M′.  It 
satisfies Xfulcrum ⊂ X, and ∀xi Xfulcrum and ∀xj X-Xfulcrum, νpro(xi) ≤ νpro(xj).  r is de-

fined as the proportion factor, and M
M

X
X fulcrumr ′== .  It is less than 1.0 and usually 

set to 0.1 or less; 

Step 3. Calculate the mean vector of the fulcrum data: =
′

=
′

M

i

fulcrum
iM XC

1

1 ; 
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Fig. 2. Image 1 indicates how to locate the fulcrum O of the hyper-plane P0.  The integral pro-

jection histogram can be expressed as ( ) ( ){ }
X

vUOx,Xx|xvHis <⋅−∈= .  Image 2 shows how to 

calculate the force that is defined in formula 5. 

Step 4. Move C along reverse direction of U until all the target data reach the posi-
tive side of the hyper-plane (x−C)⋅U = 0, here we can move C farther to enhance the 
generalization ability of the classifier.  The final position of C is defined as the ful-
crum O.  Mathematically O is defined by:  

( )( )UgvMvCO min
propro +−−=  (4) 

where ( ){ }xvminv pro
Xx

min
pro

∈
=  and g is the generalization factor.  The generalization abil-

ity of LTM can be strengthened by augmenting g.  
After locating O, P0 is aligned to P0′ : (X−O)⋅U = 0 by moving it onto O.  Then the 

force acted on P0′ is determined by:  

( ) U
y

expyF −=
⊥

2

2

2

1

σσπ
 

(5) 

where, y Y and y  is the vertical component of y-O to P0′ :  
( )( )UUO-y  y ⋅=⊥  (6) 

In LTM, all forces are generated by non-target data, so only non-target data influ-
ence the rotating direction of the hyper-plane.  The definition of force satisfies that the 
longer the y  is, the weaker the force is, as the yellow arrows indicated in Fig. 3.  In 
formula 5,  is named as distance-insensitivity factor.  And the larger it is, the more 
insensitive the power of force is to y . 

The effort arm and the moment of a force can be calculated by formula 7 and formula 
8 respectively:  



 A New Learning Algorithm Based on Lever Principle 191 

 

 

Fig. 3. Training a linear classifier with LTM.  P0 is the initial hyper-plane, and its fulcrum is 
located at O1.  It is moved onto O1 as P0′ indicated, and then rotated to P1 under the effect of 
forces.  The fulcrum of P1 is located at O2.  P1 is moved to O2 and rotated to P2.  The training is 
repeated until the hyper-plane keeps the balance, see PN. 

( ) ⊥= y-O-yy||  (7) 

( )yFyM(y) || ×=  (8) 

Then according to Lever Principle, the normal vector U will change in the direction 

of ( ) UyM
N

i
i ×

=1

.  As shown in Fig. 3, the pose of P0′ is modified to P1 by updating U :  

( ) ×−=
=

+ n

N

i
inn UyMUU

1
1 δ  (9) 

where , named as modification factor, is an empirical value.  If  is too large, U will 
be over modified; if  is too small, U will change very slowly.  Both cases will slow 
down the convergence rate of the training. 

Fig. 3 indicates the training process.  First P0 is generated randomly.  It is aligned 
to P1 in the first training stage, and then P1 is modified to P2 in the second training 
stages.  The training repeats until the moment sum deceases to zero.  As PN illustrated 
in Fig. 3, the hyper-plane keeps the balance, PN is the optimal hyper-plane Popt, it 
defines the optimal linear classifier.  The training process, as above described, can be 
summarized as below: 

Step 1. Generate initial hyper-plane P0: (x-O0)⋅U0 = 0 randomly; Set the stage num-
ber n to 0; 

Step 2. Find the fulcrum On+1 of Pn, and move Pn onto On+1, therefore Pn is updated 
to Pn : (x-On+1)⋅Un = 0; 

Step 3. Calculate the forces acted on Pn  by formula 5: Fi = F(yi), where i=1,2…n; 
Step 4. Calculate the moments of the forces by formula 8: Mi = M(Fi), where 

i=1,2…n; 
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Step 5. If 0
1

≠
=

N

i
iM , update Un to Un+1 by formula 9 and normalize its norm to 1, 

therefore get the new hyper-plane Pn+1: (x-On+1)⋅Un+1 = 0, then return to step 2 with 
increasing n by 1;  Otherwise end the training and output the optimal linear classifier 
defined by the equilibrium hyper-plane. 

The first linear classifier output by LTM is denoted as h1
opt(x).  In the case of the 

convex distribution of target set, if Y1
err = {y|h1

opt(y)=1,y Y} is not empty, Y-Y1
err is 

removed from the non-target training set.  And LTM is applied to the abridged data 
set for the second classifier h2

opt(y).  Then if Y2
err = {y|h2

opt(y)=1,y Y1
err} is not 

empty, Y1
err-Y

2
err is removed and LTM is applied again for the third classifier h3

opt(y).  
The application of LTM is repeated until there are no non-target data remained.  Fi-
nally a sequence of linear classifiers is yielded to construct a cascade classifier, which 
distinguishes all the non-target data. 

2.4   Lever Training Machine in Theory 

In this section, it’s proved that the update strategy of LTM ensures that RN is mono-
tonically increasing, therefore the final output classifier is a local optimal solution that 
maximizes RN. 

 
Fig. 4.  fT and fN are the probability density functions of target and non-target respectively;  RN

+ 
and RN

− is the increase and decrease parts of the correct rejection rates RN respectively with the 
decision line is rotated form Pn to Pn+1;  U n and U n+1 are the unit normal vector of Pn and Pn+1;  
ΔU is the differential value where Un+1=Un+ΔU;  l(O+y||) is the line from point O+y|| to Pn+1 and 
it is vertical to Pn;  y is a non-target sample;  y|| and y⊥ are the parallel and vertical components 
of y−O to Pn respectively 

As demonstrated in Fig. 4, in the training stage n Un is updated to Un+1 where 
Un+1=Un+ΔU.  The differential value of RN is denoted as Δ RN: 

( )
( )

=
∈∈ Pnz,zly

NN dyyfRΔ  
(11) 

where fN is the non-target probability density function, l(z) is the line from point z to 
Pn+1and it is vertical to Pn. 

First we prove that ΔU⊥Un when ||ΔU||−>0.  The angle between U n and U n+1, is 
denoted as θ, then according to cosine low, ||Un+1||

2=||Un||
2+||ΔU||2-2||Un||||ΔU||cosθ.  
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Because ||Un+1||=||Un||=1, cosθ =||ΔU||/2.  Therefore when ||ΔU||−>0, cosθ −>0 and 
θ=π/2.  So when ||ΔU|| is small enough, it is approximative that ΔU⊥Un.  Then l(z) 
can be approximatively expressed as z+εUn�where ε∈[0,(−ΔU)⋅(z−O)] and z∈Pn.  
And the non-target probability density on l(z) approximate to fN(z).  Therefore: 

( ) ( ) ( )⋅−≈
∈Pnz

NN dzzfO-zUR ΔΔ  (12) 

Then we estimate fN with the method of Parzen window, and shoose Gaussian dis-
tribution as the smoothing function. Therefore: 

( ) ( )−=
=

N

i
iN yyyf

1
ϕ  (13) 

where ( )
( )

( )nn

yyexpy 2
222

1
σπσ

ϕ ⋅−= , n is the dimension of data space.  Therefore: 
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( ) ( ) ( )( )

( )
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The direction of vector 
( )

||
i

N

i

y
yexp −

=

⊥

1 2

1
2

2

2
1

2 σπσ

 is the optimal direction that ensure 

ΔRN>0.  Therefore: 

( )
||
i

N

i

y
yexpU −=

=

⊥

1 2

1
2

2

2
1

2 σπσ
δΔ  (15) 

where  is a small positive value to ensure the assumption that ||ΔU|| is small enough.  
The update rule defined by formula 15 equals to that defined by formula 9.  So the 
optimal object of LTM is to maximize the correct rejection rate, when Parzen window 
is used to estimate probability density and Gaussian distribution is chosen as smooth 
function. 

If 
( )

||
i

N

i

y
yexp −

=

⊥

1 2

1
2

2

2
1

2 σπσ

=0 then ΔRN=0, training is over and we get an optimal solu-

tion that maximizes RN.  The classifier output by LTM is not global optimal, it de-
pends upon the initial hyper-plane.  Although the drawback slows the classification 
speed, it doesn’t decrease the correct detection rate.  As long as the non-target data is 
outside the convex hull of the target set, a decision hyper-plane can be found to sepa-
rate it form the target set.  

3   Experiments 

The performance of LTM is evaluated in 2D and 3D Euclidean space respectively.  
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3.1   Experiment in 2D Space 

To illuminate the training process of LTM, the experiment in 2D space is conducted.  
The whole data area is an ellipse centered at point (0, 0) with an x-axis of 300 and a 
y-axis of 200; the target area is a circle centered at point (0, -100) with a radius of 
100.  200 points are sampled randomly at the target area as the target training set; 300 
points are sampled randomly at the non-target area as the non-target training set. 

 

Fig. 5. Training the first classifier with LTM.  The blue sparkle is the fulcrum, and yellow 
arrow stands for force.  The length of arrow varies directly proportional to the force. 

In the experiment, r, , and  are set as 0.1, 0.003, and 120 respectively.  As shown 
in Fig. 5, the line is aligned to the balanced position stage by stage under the effect of 
forces. Fig. 5 (1) shows the line after the 1st training stage, and the norm of moment 
sum || M|| is 368.1; Fig. 5 (2) indicates the line after the 4th training step, and || M|| 
= 1124.9; Fig. 5 (3) shows the line after the 8th training stage, and || M|| = 2114.5; 
Fig. 5 (4) presents the line after the 27th training stage, || M|| is reduced to 0.0011, it 
is small enough and the training is ended.  The first trained classifier distinguishes 
62.0% of the non-target data.  

 

Fig. 6. Training a sequence of linear classifiers. A sequence of linear classifiers is yielded by 
LTM for exact discrimination. 
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As shown in Fig. 6 (1), the non-target data rejected by the first classifier is re-
moved.  LTM is applied to the abridged data set for the second classifier.  The second 
classifier distinguishes 14.7% of the non-target data.  Finally 7 classifiers are trained 
in turn for accurate discrimination without false alarm as indicated in Fig. 6 (2). 

3.2   Experiment in 3D Space 

The second experiment is performed in 3D space.  The whole data area is an ellipsoid 
centered at point (0, 0, 0) with an x-axis of 300, a y-axis of 400 and a z-axis of 500; 
the target area is a sphere centered at (0, -100, 0) with a radius of 100.  200 points are 
gathered at the target area as the target training set; 400 points are gathered at the non-
target area as the non-target training set. 

In this experiment, r, , and  are set as same as the first experiment.  The first de-
cision plane trained by LTM distinguishes 53.5% of the non-target data; the first three 
decision plane trained by LTM reject 90.0% of the non-target data, as shown in Fig. 7 
(1); the first five decision planes output by LTM cut away 96.0% of the non-target 
data.  Totally LTM has trained 9 planes that separate all non-target data from target 
set as illustrated in Fig. 7 (2). 

 

Fig. 7. Training a set of decision planes in 3D space.  Finally 9 decision planes are found by 
LTM to separate target set from non-target set as shown in image 2. 

4   Application of LTM to Face Detection 

Face detection is an important topic in computer vision and in human computer inter-
action.  The task is locating and extracting face region from all kinds of background.  
It is an essential technology in face processing in terms of face recognition, tracking, 
pose estimation, as well as expression recognition [7].  Face detection is a challenging 
task for the great variance of light condition, 3-D pose, and expression etc [7].  Dif-
ferent methods, such as neural networks [2], Bayesian decision [8], SVM [4], MRC 
[6], and Adaboost [9], are used to address the issue of face detection. 

In the paper, LTM is applied to front face detection for a new attempt.  The train-
ing sets include a face set with 5412 front face images, and a non-face set with 23573 
non-face images.  The face set comes from two resources.  The first is the face train-
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ing set of MIT-CBCL [10], which has 2429 images.  And the second is the database 
for Viola’s face detector [9], 2983 front images are selected to our face set.  The non-
face set comes from the non-face test set of MIT-CBCL [10], which contains 23573 
non-face images. All of the images are scaled to 19×19 pixels. The size of training set 
has been doubled by adding the mirror image of each sample, so there are totally 
10824 face training data and 47146 non-face training data. 

 

Fig. 8. Some unit projection vectors of the linear classifiers trained by LTM 

Finally LTM yielded 209 linear classifiers.  Those classifiers separate all the non-
face training data from face training set.  Fig. 9 and Fig. 10 present some results of the 
face detection with our classifier.  Generally speaking, LTM works well in training a 
face detector. 

Interestingly, LTM has the ability of learning holistic features.  The unit projection vec-
tor of the classifier trained by LTM presents some kind of holistic feature of face, as indi-
cated in Fig. 8.  The projection vectors of the classifiers yielded earlier by LTM look like 
human faces, as the first row shown in Fig. 8, while the projection vectors of the classifiers 
yielded later by LTM represent the detail features and the noises of face images, as illus-
trated in the second row of Fig. 8.  These phenomena are similar to PCA and LDA. 

 

 
Fig. 9. Examples of face detection with LTM 

Fig. 10. Examples of face detection with LTM 
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5   Conclusion and Feature Work 
A new learning algorithm, LTM, is introduced in this paper.  LTM has direct physical 
meaning since it is derived from a well-known concept in physics: Lever Principle.  And 
its optimal goal is to maximize the correct rejection rate in theory.  If the distribution of 
target set is convex, a sequence of decision surfaces can be found to exactly discrimi-
nate the both sets without false-alarm.  That is confirmed by two mathematic experi-
ments and by the application of front face detection.  In the application of face detection, 
it performs well with satisfactory result and it illustrates that LTM has the ability of 
learning holistic features. 

However, LTM should be research further to perfect the theory and to promote the 
application.  One of the future works is on non-linear LTM.  LTM can’t deal with the 
case of concave distribution of target set.  The issue can be addressed by a nonlinear 
extension of LTM.  A promising way is to develop nonlinear LTM based on kernel 
method as the same in nonlinear SVM [3, 4], kernel LDA [11] and kernel PCA [12].  
Another future work is on the initial algorithm.  The linear classifier is not global 
optimal, this issue can be improved by modifying the generating algorithm of initial 
hyper-plane.  If the initial hyper-plane is near the global optimal position, it is highly 
likely that the initial hyper-plane will converge to the global optimal solution.  There-
fore a smarter algorithm should be developed to replace the random initial algorithm.  
The third future work is about the generalization ability.  As described in section 2.2, 
the generalization ability of LTM can be improved by increasing the generalization 
factor g.  However, if g is too large, false alarm will be caused even when the distri-
bution of target set is convex.  Therefore how to optimize g is another important issue. 
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Abstract. Based on conventional natural gradient algorithm (NGA) and 
equivariant adaptive separation via independence algorithm (EASI), a novel 
sign algorithm for on-line blind separation of independent sources is presented. 
A sign operator for the adaptation of the separation model is obtained from the 
derivation of a generalized dynamic separation model. A variable step-size sign 
algorithm rooted in NGA is also derived to better match the dynamics of the in-
put signals and unmixing matrix. The proposed algorithms are appealing in 
practice due to their computational simplicity. Experimental results verify the 
superior convergence performance over conventional NGA and EASI algorithm 
in both stationary and non-stationary environments. 

1   Introduction 

Blind signal separation (BSS) is concerned with recovering the original unknown 
sources from their observed mixtures without. The algorithm operates blindly in the 
sense that except for statistical independence, no a  prior information about either the 
sources or the transmission medium is available. BSS algorithms separate the sources 
by forcing the dependent mixed signals to become independent. This method has 
several applications in communications and signal processing. Suppose n unknown 
statistically independent zero mean source signals, with at most one having a Gaus-

sian distribution, contained within ns ℜ∈ pass through an unknown mixing channel 

)( nmA nm ≥ℜ∈ × , such that m mixed signals mx ℜ∈  are therefore observed which 

can be modeled as eAsx += , where me ℜ∈  is the possible contaminating noise 
vector, which is usually ignored for simplicity in this study. The objective of BSS is 
to recover the original sources given only the observed mixtures, using the separation 
model Wxy = , where ny ℜ∉  is an estimate of s to within the well-known permuta-

tion and scaling ambiguities, and mnW ×ℜ∈ is the separation matrix. The crucial as-
sumption with conventional BSS is that the source signals are statistically independ-
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ent. In this paper, we further assume that the sources have unit variance and the num-
ber of sources matches that of the number of mixtures, i.e. nm = , the exactly deter-
mined problem. To recover the source signals, it is frequently necessary to estimate an 
unmixing channel which performs the inverse operation of the mixing process, as 
subsequently used in the separation model. In this paper, we are particularly concern-
ing with a family of sequential BSS algorithms. Fig.1 shows a block diagram of se-
quential BSS. The separating coefficients )(kW  are updated iteratively according to 

some estimate of the independence between the estimated signal components in ( )y k . 

The sensor signal components in )(kx are fed into the algorithm in order to estimate 

iteratively the source signal components, i.e. )(ky . Compared with block (batch)-

based BSS algorithms, sequential approaches have particular practical advantage due 
to their computational simplicity and potentially improved performance in tracking a 
nonstationary environment [2]. The focus of this study is therefore the natural gradi-
ent algorithm (NGA) [1],[7]  and the equivariant adaptive separation via independ-
ence algorithm (EASI)[6]. 

)( kWA
)(ks

)(kx
)( ky

 

Fig. 1. Diagram of sequential blind source separation 

Among important issues affecting the performance of sequential algorithms such as 
equation (1) are the convergence rate and the misadjustment in steady state [3]. A 
fixed step-size can restrict the convergence rate and can lead to poor tracking per-
formance [2]. In contrast, an adaptive step-size can exploit the on-line measurements 
of the state of the separation system, from the outputs and the parameter updates. This 
means, the step-size can be increased for a higher convergence rate, but can be sys-
tematically decreased for reducing any misadjustment of the parameters away from 
their optimum settings. To improve the convergence rate, we consider using a nor-
malization technique (leading to a sign algorithm) together with gradient-based time-
varying step-size (leading to a variable step-size algorithm) in the updating process. 
Both techniques are shown to increase the convergence speed of the algorithm, and 
the sign operation can simultaneously reduce the computational complexity of the 
whole algorithm, additionally introduced by the adaptive step-size. The remainder of 
this paper is organized as follows. A sign algorithm using a normalization technique 
based on the standard NGA algorithm is proposed in section 2. Section 3 is dedicated 
to deriving a variable step-size algorithm for NGA, where the step-size is estimated 
from the input data and the separation matrix. Following both of the section, S-EASI 
algorithm was introduced. Then numerical experiments are presented in section 5 to 
compare the convergence performance of the proposed algorithms with that of the 
conventional NGA. Finally, section 6 concludes the paper. 
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2   Sign NGA (S-NGA)  

Gradient techniques are established and well known methods for adjusting a set of 
parameters to minimize or maximize a chosen cost function [4]. However, simple 
standard gradient descent techniques is usually very slow. On these years, many novel 
gradient algorithms have been proposed and their better performance properties which 
can improve convergence speed have been proved. Here, we expect to propose a new 
sign-algorithm, which is based on NGA. In NGA algorithm, the discrete-time on-line 
updating equation of the separation matrix is denoted as 

)()]([)()1( kWkIkWkW ψμ −+=+  (1) 

where k is the discrete-time index, μ is a positive parameter known generally as the 
step-size, I  is an identity matrix, and )(kψ is given by 

)())(()( kykyfk T=ψ   (2) 

where ))(( kyf  is an odd nonlinear function which acts element-wise on the output 

vector )(ky , and T(.) is the vector transpose operator. 

In this section, we consider using normalization of the output vector )(ky for the 

off-diagonal terms of )(kψ . This thereby results in a sign operation on the elements 

of ψ)(kQ which restricts the norm of the matrix )(kW . Our expectation is that, this 

will lead to faster convergence and better robustness in the adaptation. For mathe-
matical formulation, let us consider a continuous matrix dynamic system 

)())(()(
)(

))(),((
)( kWkykW

kW

kWkyJ
kW

dt

d T Π
∂

∂−= μ   (3) 

where (.)J is a cost function from which NGA is derived, and )(yΠ is a diagonal 

matrix with positive elements. Equation (3) can be deemed as an extension of the 
standard NGA [4], since (1) is a result of Iy =Π )( . By a straightforward differential 

matrix calculation as in [1], we obtain 

)())](()())(()(()[(()(
~

1 kWkykykyfkyIkykW
dt

d T ΠΠ−Π= −μ  (4) 

where ))(( kyf  is a vector of nonlinear activation functions. Defining 

))(()(())((1 kyfkyfky =Π− and )())(( kky μμ =Π , we have 

)())](()())(()[()( kWkykykyfIkkW
dt

d T Π−= μ  (5) 

In parallel with (1), from (5), we have 

))(()())(()( kykykyfk T Π≡ψ   (6) 
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Denote by )( ii yf and iy , ni ,,1= , the entries of )(yf , and y , and by ijπ  the 

elements of Π , )(kψ  can be re-written element-wise as 

ijjiiij yyfk πψ )()( =    (7) 

If ijπ  takes the form of the normalization by 
jy , i.e. 

1−
= jij yπ  then (6) is reduced to 

Tkysignkyfk ))](())[(()( ≡ψ   (8) 

where T
n kysignkysignkysign )]((,),(([))(( 1= , and 

=
<−

>
=

00

01

01

)(

z

z

z

zsign  (9) 

Note that, (8) could be deemed as a degenerate form of the median learning rule 
discussed in [4]. The introduced normalization could potentially lead to faster conver-
gence rate because of the resulting sign activation function of the output data y in-

creasing the magnitude of small values, which could, on the other hand, reduce the 
accuracy of statistics within the adaptation process, leading to inaccurate separation. 
To optimize both the convergence rate and separation performance, we suggest to use 
different normalization schemes for the elements of )(kψ . Particularly, Π  does not 

hold fixed values at its diagonal elements, but these change according to the associa-
tion between ))(( kyf  and )(ky . That is, (7) is re-written in the discrete-time form as 

≠
=

=
jikysignkyf

jikykyf

jii

iii

ij ))(())((

)())((
ψ   (10) 

Using the Kronecker dot product Θ  (element-wise product of matrices), we 
have the following concise expression 

))(()())(()( kykykyfk T ΘΦ≡ψ  (11) 

where ))(( kyΦ  is derived from Π and (10), i.e. the entries of Φ  are denoted as 

≠

=
= −

jiy

ji

j
ij 1

1
ϕ     (12) 

Note that, (11) can also be written as 

))](())(([)]())(([)( kysignkyfoffkykyfdiagk TT +≡Φ  (13) 

where [.]diag and [.]off denote the operation of taking the diagonal elements and off-

diagonal elements of a matrix respectively. 
We call the adaptation procedure of using (11) and (12) the sign natural gradient 

algorithm (S-NGA). Compared with the NGA using (2), the sign algorithm (SA) has 
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reduced computational complexity, i.e. n(n-1) multiplications in (2) are replaced with 
simple sign tests which are easily implementable. However, for each k, the off-
diagonal elements of )(kψ  are not continuous (see equation (10)), this where makes 

the analysis of such an algorithm more difficult than that of (1). However, it is 
straightforward to show the algorithm is Lyapunov stable. Noticing that 

)()( WWWW TT ΠΠ=Π  in (3), where Π represents a diagonal matrix whose 

diagonal entries are the square root of the corresponding diagonal elements of Π , and 
denoting by 

ijijw γ, , and 
ijψ nji ,1, = , the elements of W , WΠ , and 

T
W
J W )( Π∂

∂ , we obtain from (3) that 
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where zero is obtained if and only if 0/)( =dkkdW , which means the solution to 

W W is an equilibrium of (3). 

3   Variable Step-Size Sign NGA (VS-S-NGA) 

It has been shown [2] that, as compared with using a fixed step-size which would 
restrict convergence rate, the algorithm with an adaptive step-size has an improved 
tracking performance for a non-stationary environment, i.e., the value of which is 
adjusted according to the time-varying dynamics of the input signals and the separat-
ing matrix. As another contribution, we therefore derive a gradient adaptive step-size 
algorithm for the NGA algorithm, which adapts the step-size in the form of 

)1()()1()( −=∇=−= kuukJkk μρμμ  (15) 

where ρ  is a small constant, and )(kJ  is an instantaneous estimate of the cost func-

tion from which the NGA algorithm is derived. To proceed, we use an inner product 
of matrices defined as [2], 

 )(, DCtrDC T=  (16) 

where . denotes the inner product, ( ).tr is the trace operator, and nmDC ×ℜ∈,  There-

fore, exploiting (16), the gradient term on the right hand side of (5) can be evaluated 
as 

)1(/)()(/)((

)1(/)(),(/)(|)( )1(

−∂∂×∂=

−∂∂∂∂=∇ −=

kkWkWkJtr

kkWkWkJkJ

T

k

μ

μμμμ   (17) 

[ ] )()())(()(/)( kWkykyfIkWkJ T−−=∂∂   (18) 
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which is the instantaneous estimate of the natural gradient of the cost function of 
)(kJ . From the equation (1), the separating matrix W  at time k  is obtained as 

[ ] )1()1())1(()1()1()( −−−−−+−= kWkykyfIkkWkW Tμ  (19) 

Following the approach from [2] and [5], from the above equation, we have 

[ ] )1()1())1(()1(
)( −−−−=−∂

∂ kWkykyfIk
kW T

μ  (20) 

Using the notation of (2) for )(kψ  in the standard NGA algorithm and denoting we 

have 

[ ] )()()( kWkIk ψ−≡Γ  (21) 

))1()((|)( )1( −ΓΓ−=∇ −= kktrkJ T
kμμμ   (22) 

Hence, an adaptive step-size with the form of (15) can be written as 

))1()(()1()( −ΓΓ+−= kktrkk Tρμμ  (23) 

which can be estimated from the input signals and the separation matrix. (21) has a 
similar form as the equation (7) in [2], which was derived for an equivariant adaptive 
source separation via independence (EASI) algorithm[6]. The separation procedure 
using (1), (2), (21) and (23) represents the proposed variable step-size NGA algorithm 
(VS-NGA). Following a similar procedure as in section 2, see (6) and (11), and as in 
this section, see (18) and (20), it is straightforward to derive an adaptive step-size 
algorithm using different normalization for the off-diagonal elements of )(kψ . In this 

case, )( kψ  takes the form of (11). We represent (1), (11), (21) and (23) the sign ver-

sion of the variable step-size NGA algorithm, i.e., VS-S-NGA for notational  
simplicity. 

4   Sign-EASI 

Cardoso proposed EASI algorithm in 1996. EASI algorithm is a kind of adaptive 
algorithms for source separation which implements an adaptive version of equivariant 
estimation. It is based on the idea of serial updating: this specific form of matrix up-
dates systematically yields algorithms with a simple structure, for both real and com-
plex mixtures, and its performance does not depend on the mixing matrix. So conver-
gence rates, stability conditions and interference rejection levels of EASI algorithm 
only depend on distributions of the source signals. In order to reduce computation 
complexity of the algorithm and obtain a satisfied stability, sign function is applied to 
this kind of algorithm. Firstly, the separating matrix update equation for EASI algo-
rithm is given by 

)(]))(()(

)()(()()([)()1(

kWkyfky

kykyfkykyIkWkW
T

TT +−−+=+ μ  (24) 
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Here we also set a parameter )())(()( kykyfk T=ψ  to substitute ))(( kyf  and )(ky  

in the upper equation, then (24) can be rewritten as: 

[ ] )()()()()()()1( kWkkkykyIkWkW TT ψψμ +−−+=+  (25) 

In order to easily understand and keep consistent with the NGA algorithm, all of the 
parameters in the above equation are defined just as in the section 2, i.e. )(kQ  in the 

(25) takes the same form as in the section 2: 

))](()(([)]())(([)( kysignkyfoffkykyfdiagk TT +≡ψ   (26) 

Therefore, seeing in the section 2, we can omit some middle procedures and directly 
derive the final algorithm what we expect. Equation (25) and (26) are all together 
called the Sign EASI algorithm, namely S-EASI. 

5   Numerical Experiments 

 In the first experiment, we mix a fixed sinusoidal signal  with a randomly selected 
uniform source signal by using a 2-by-2 )2( == nm  matrix ),(0 nmrandnA = , i.e.  

Zero mean, independent white Gaussian noise with standard deviation 0.1 was added 

to the mixtures. A cubic non-linearity (.)f  was used as the activation function. The 

performance index )(PI  [1], as a function of the system matrix WAG = , was used to 

evaluate the proposed algorithm 
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where 
ikg  is the ik-th element of G. The initial value of μ for all the algorithms was 

set to 0.0045, 5102 −×=ρ , and 200 Monte Carlo trials were run for an averaged per-

formance. The same simulation conditions were used for all the algorithms to allow 

fair comparison. Fig.2 shows convergence behavior of the various approaches. From 

Fig.2 , it is found that the proposed sign algorithms have much faster convergence 

speed. For example, for the fixed step size, S-NGA needs approximately 2000 sam-

ples to converge, whereas the conventional NGA needs approximately 3250 samples. 

Note that, we mean the convergence by the PI reduced to 0.02 (corresponding to an 

approximately successful separation). For the adaptive step-size, VS-S-NGA only 

requires approximately 1050 samples for convergence, however, VS-NGA requires 

approximately 1700 samples. It is clear that VS-S-NGA has the fastest convergence 

rate, which is a very promising property for sequential algorithms.Without any change 

of parameters , we continued to realize the second group of simulation with S-EASI 
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and EASI algorithms on the same conditions. Fig.3 showed a compared result be-

tween them. S-EASI arrived its steady convergence near the approximate 1300 sam-

ples, while EASI had to need around 1800 samples to satisfy this requirement. From 

Fig.3, it clearly proved that the convergence rate of the S-EASI algorithm was faster 

than EASI. Here, we only provided the simulation results with a fixed step size. For 

the varying adaptive step-size, we also gained a similar conclusion, but it was not 

very stable. So we still need further experiments to verify it. 

 

Fig. 2. Comparison of convergence rate by performance index in a stationary environment 

 

Fig. 3. Comparison of convergence rate between S-EASI and EASI in a stationary environment 

In the second experiment, the different approaches were examined for a non-
stationary environment. To this end, we use the following time-varying mixing matrix 

Ψ+= 0AA  (28) 
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Fig. 4. Comparison of convergence rate by performance index in a non-stationary environment 

 

Fig. 5. Comparison of convergence rate between S-EASI and EASI in a non-stationary  
environment 

where )1,((. Asizerandnβα +Ψ=Ψ , (.)randn and (.)size  are MATLAB built-in func-

tions, and the initial  is set to a null matrix. 
0A  is the same as in (27). Here  is set to 

0.95 and  to 0.001. Other parameters are the same as those in the first experiment. 
Again, their convergence performances are compared in Fig.4 and Fig.5 respectively. 
For the Fig.4, we observed similar performance improvement gained for the proposed 
approaches in a non-stationary environment. Note that, lower PI generally indicates a 
better separation performance. In both Fig.2 and Fig.4, although we have not ob-
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served much difference between the final separation performance by S-NGA and VS-
S-NGA in terms of PI measurement, the key point is that the reduced complexity 
improves the rate of convergence. The same conclusion on S-EASI algorithm also can 
be made from Fig.3 and Fig.5. 

6   Conclusions 

A new sign and variable step-size natural gradient algorithm for on-line blind separa-
tion of independent sources has been presented, also including a fixed step-size sign 
EASI algorithm. The derivation is based on the gradient calculation of a generalized 
dynamic equation. By applying the sign operation to NGA and EASI, these separation 
algorithms have been found to have much faster convergence rate as compared with 
the conventional natural gradient algorithm and EASI algorithm. The algorithm was 
shown to be Lyapunov stable. Through the results of simulations, we prove both of 
new algorithms can bring us a satisfied convergence rate and reduced computation 
complexity. Although variable step-size sign EASE algorithm need further testing, we 
still derived a variable step-size algorithm for the natural gradient learning which was 
also shown to have faster convergence rate and than using a fixed step-size algorithm. 
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Abstract. Linear Discriminant Analysis (LDA) is one of the most pop-
ular linear projection techniques for feature extraction. The major draw-
back of this method is that it may encounter the small sample size prob-
lem in practice. In this paper, we present a novel LDA approach for
high-dimensional data. Instead of direct dimension reduction using PCA
as the first step, the high-dimensional data are mapped into a relatively
lower dimensional similarity space, and then the LDA technique is ap-
plied. The preliminary experimental results on the ORL face database
verify the effectiveness of the proposed approach.

1 Introduction

In pattern recognition applications, how to obtain the most discriminant features
is a very significant problem. To this end, Linear Discriminant Analysis (LDA)
[2] serves as an important technique for linear feature extraction, the objective
of which is to find the set of the most discriminant projection vectors and map
high-dimensional samples onto a low-dimensional space. In the projective feature
space, all mapped samples will get the maximum between-class scatter and the
minimum within-class scatter simultaneously, and then the test samples from
different classes should be easily classified.

However, small sample size problem is the possible obstacle for applying LDA
whenever the number of samples is smaller than the dimensionality of the sam-
ples, which makes the between-class scatter matrix become singular. In recent
years, many researchers have noticed this problem and tried to solve it using dif-
ferent methods. In [1], the well-known fisherfaces method was proposed, which is
a two step PCA+LDA approach: Principal Component Analysis (PCA)is used
as a preprocessing step for dimensionality reduction so as to discard the null
space of the within-class scatter matrix of the training data set; the potential
problem of this method is that it may result in the loss of some significant dis-
criminatory information in its first step. Contrary to [1], Yu and Yang presented
a direct LDA (D-LDA) algorithm [2] for high-dimensional data set, which has
been proved to be suboptimal in theory [4]. In 2000, Chen et al. proposed the
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LDA +PCA method [5], although this method solves the small sample size prob-
lem, it is obviously suboptimal because it maximizes the between-class scatter
in the null space instead of the original input space.

In this paper, we present a novel LDA approach to deal with the small sample
size problem for high-dimensional data. The main idea is described as follows:
the high-dimensional data are transformed into a relatively lower dimensional
space via similarity analysis, and then the LDA technique is applied. The ex-
perimental results on the ORL face database verify the effectiveness of the pro-
posed approach. The advantages of our approach are two-folds: on one hand,
the original data may be very high dimensional and computing intractable, af-
ter transformed into the similarity space, this problem is avoided; on the other
hand, in the relatively lower-dimensional similarity space, the small sample size
problem for applying LDA is also alleviated.

The rest of the paper is organized as follows: Section 2 gives the detail of
the proposed approach. In Section 3 we describe the database and experiments
carried out and analyze the results. Section 4 presents some conclusions and
future work.

2 The Proposed LDA Approach for High-Dimensional
Data

This novel approach includes two steps. In the first step, all the data in the
original space are mapped into the similarity space via similarity analysis. Sec-
ondly, traditional LDA is applied for feature extraction. More specifically, sup-
pose training samples {x1, x2, . . . , xM}, with class labels {X1, X2, . . . , Xc}, are
given, and each column xi(i = 1, 2, . . . ,M) vector has n dimensions. The dis-
tance (dissimilarity measure) between arbitrary two samples can be expressed
as:

d(i, j) = ‖xi − xj‖2(i = 1, 2, . . . ,M, j = 1, 2, . . . ,M) (1)

which in fact means the Euclidean distance between these two samples in the
original space. The similarity between the two samples is then defined as:

s(i, j) = (
1
e
)

1
r d2(i,j)(i = 1, 2, . . . ,M, j = 1, 2, . . . ,M) (2)

Here r is a positive constant,and it is obvious that s(i, j) ∈ (0, 1],which can be re-
garded as the similarity indicator of the two samples in the original data space.By
calculating all the similarity indicators s(i, j)(i = 1, 2, . . . ,M, j = 1, 2, . . . ,M)
from all the M training samples, a similarity matrix S can be obtained, here,

Sij = s(i, j)(i = 1, 2, . . . ,M, j = 1, 2, . . . ,M) (3)

the class label of every row of Si is the same as that of xi(i = 1, 2, . . . ,M),
then there are M mapped samples and the corresponding similarity space is
M -dimensional, and then the LDA technique can be applied to maximize the
Fisher criterion J(Φ) in similarity space , and then the projection matrix A =
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{Φ1, Φ2, . . . , Φ(c−1)} are obtained(for details, please refer to Ref.[2]). For a test
sample xt , the corresponding similarity vector St = [S(t, 1), S(t, 2) . . . , S(t,M)]
is projected onto the vectors:

f = St ∗A (4)

Strictly speaking, (M + c) samples at least are needed to have a nonsingular
between-class scatter for the similarity vectors [3]; therefore we should rewrite
the Sw matrix:

Sw := Sw + εI (5)

to avoid this problem. Here ε is a small positive constant, I is an M by M
identity matrix.

3 Experimental Results and Analysis

We tested this novel LDA approach on the ORL face database which is available
at http : //www.cam orl.co.uk/facedatabase.html. This database was built at
the Olivetti Research Laboratory in Cambridge, UK. The database consists of
400 different images, 10 for each of 400 distinct subjects. There are 4 female and
36 male subjects. For some subjects, the images were taken at different sessions;
varying the lighting, facial expression and facial details.The size of each image
is 92*112 pixels with 256 grey levels.

In our experiment, five images from each subject are selected at random to
comprise the training set, and the left are the test set (the partition is the same
as in [2]). Therefore, there are equally 200 images in both the training and the
test set. As far as calculating cost is concerned, the size of all the images is resized
to 46*56. We extract the 39 most discriminant vectors by using the proposed
approach and the nearest neighbor classifier in L2 norm sense is adopted. The
results are shown in Table 1, note that our approach is usually better than
the other two methods on other number of training samples. To save space,

Table 1. Face Recognition performance results

Methods Recognition accuracy rate

Fisherfaces 92.5%
D-LDA 90.8%
Proposed approach 93.5%

we do not show all the results here. From Table 1, it can be seen that using
our proposed approach, 93.5% recognition accuracy rate is obtained, and as a
comparison, the fisherfaces method, 92.5% and the D-LDA method, 90.8%. It
should also be pointed out that whether SW is revised or not, the performance of
the proposed approach changes little, and it can be seen that with the M training
samples at hand the small sample size problem is to some extent alleviated .
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The results show that the proposed approach achieves better performance for
face recognition than the fisherfaces method and D-LDA method, the possible
reasons may be as follows: the similarity analysis retains as much information
as possible, in addition, the small sample size problem is alleviated, therefore
the LDA method can be deployed and discriminative features are obtained, and
such features is more suitable for the classification task.

4 Conclusions and Future Work

In this paper, we present a novel LDA approach for high-dimensional data. The
proposed approach is verified effective on the ORL face database. It is also
found in the experiments that the small sample size problem is to some extent
alleviated in the similarity space. In fact, there are several methods to make
the within-class scatter matrix entirely nonsingular in the similarity space, for
example, divide the training set into two parts, first fix the number of one part as
M , and then other training data are also compared with the M samples, hence
more than M training vectors can be obtained, which could be (M + c) and
larger than the dimensions of the similarity space, however, such experiments
are beyond the scope of this short paper. The direction of our future work is to
improve this approach and extend its applicable scope to other larger and real
applications, and we will also test it in our multi-modal biometrics system[6].
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Abstract. To solve the bottleneck of memory in current prediction of protein 
secondary structure program, a chip training algorithm for a Distributed Neural 
Networks based on multi-agents is proposed in this paper. This algorithm 
evolves the global optimum by competition from a group of neural network 
agents by processing different groups of sample chips. The experimental results 
demonstrate that this method can effectively improve the convergent speed, has 
good expansibility, and can be applied to the prediction of protein secondary 
structure of middle and large size of amino-acid sequence. 

1   Introduction 

In recent years, more and more distributed problem-solved methods had been pro-
posed to solve a large-scale computing work, such as the multi-agent system (MAS) 
[1] and parallel virtual machine (PVM) [2]. 

Those can be concluded in a searching method. The distributed computation aims 
to improve searching ability. It can be subdivided into two categories: 

1. The previous experience knowledge to a problem is known, the key to achieve 
the answer is to speed-up the convergence to the optimal solution. The often-used 
method is the hill-climbing algorithm, such as the gradient descent method, simu-
lation anneal method and etc. 

2. There is no any previous experience knowledge of a problem, or there are many 
local optimal solutions in the searching-space. The key to approach the global op-
timal solution is to avoid the interference from local optimum, and reveal the di-
rection to the global optimum. The evolution algorithm such as genetic algorithm 
[3] is availability in this situation. 

Neural network [4] is a computational model, which consists of many simple units 
working in parallel with no central control. BP learning algorithm is successfully to 
train multilayer feed-forward networks, however, there is no guarantee to the global 
optimum, and its convergence speed is often slow especially when the training set is 
very large. The distributed neural network aims improve the training algorithm’s 
performance. Recently, the distributed neural networks achieve new developments on 
image processing and other fields [5].  

                                                           
1 Sponsored by the National Natural Science Foundation of China under Grant No. 60273083. 
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In this paper, a Distributed Neural Networks (DNN) based on MAS is modeled for 
learning from a large-scale data set. And a learning algorithm based on chip training 
is proposed to work on the distributed neural networks, which evolve the global opti-
mum from a group of neural network agents. The experimental results in the predic-
tion of protein secondary structure show that this Distributed Neural Networks with 
Chip Training Algorithm (DNNCTA) can effectively avoid BP network converging to 
local optimum. It is found by comparison that the neural network obtained from the 
DNNCTA can effectively improve the convergent speed. 

2   Agent-Based Cooperative Model 

In distributed applications, some methods have been proposed to adapt to the distrib-
uted environment through changes in the structure of neural network. Jean-Francois 
Arcand researched on ADN [6], which regard the sub-networks as agents, and estab-
lish a whole neural network by combined with those trained sub-networks, but it’s 
just a plan and only some parts has been realized, because it is difficult to combine 
with the agents with different training target. Another distributed neural network 
(DNN) is proposed [7], which built a virtual neural network using the communication 
network. Every computer in the model simulates one or more neural nodes. But the 
training complexity is increased with the size of the virtual neural network; the rap-
idly increased communication among the neural nodes will cause the problem of 
lacking of status consistency and communication disruption [7].  

In this paper, a new DNN model based on multi-agent from another point of dis-
tributed is proposed. It improves the convergent speed through making use of the 
current network resources. The model is build based on a Hybrid Model combined the 
Master-Slave Model [2] with the Node-Only Model [2], every agent in this model is 
peer to peer that can offer computation service and get help from other agents when 
training its sample set. So many distributed agents in different location can process 
the large sample. Those free agents formed a Node-Only Model when there is no 
computation mission as Fig.1 described. They will change to be a Master-Slave 
Model when one of them informs a computation mission as shown in Fig.2. Those 
resources are engaged in computation will be released at the end of the mission, and 
return to be a free agent as a new Node-Only Model waiting for the next mission. 

 

 

Node

Node 

Node Node 

Node

 

Slave Slave 

Slave Slave 

Master 

 

Fig. 1. Node-only model                                     Fig. 2. Master-Slaver Model 
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3   Chip Training Algorithm for Distributed Neural Network 

The Chip Training Algorithm (CTA) is proposed for the above-described distributed 
neural network structure. CTA comes from the considering of chips, sample chips and 
training chips. In the distributed environment, every computing resource is charged by 
an agent that evolved the answer to the question through the competition among the 
agents. Every agent trains the local neural network with its local sample, and provides 
the best results to the master. The master collects its cooperators’ advices, and 
chooses one of them as the answer to the question. 

Thereby, the more resources, the more advices have been provided, and the prob-
ability to the global optimum is increased.  

CTA is implemented as follows: 

Step1.  Set neural network’s structure, mutation rate Pm, the training’s Termina-
tion-Conditions: maximum iteration Times, the expected precision 

Step2.  Collect the information of the current distributed environment, such as the 
available resource number, the cooperate-agent’s state, etc.  

Step3.  Input training set, initiate a computation mission in the current Node-Only 
Model and form a Master-Slave computation environment. 

Step4.  Make partition of training set and distribute it to the cooperators for the 
new mission.    

Step5.  Each agent executes the computation mission using the local data set that 
come from the Master, and returns the result of each phase, a training chip. 

Step6. Master evaluates the results come from its cooperators and check the Ter-
mination-Conditions: 

 If Termination-Conditions = True Then 
  Return the best result  
 Else 
  Evolved the cooperator’s weights set through the Select & Mutate 

operations, which is the starting point in the next phase of cooperate-agents; 
End if 

Step7. Repeat the above steps from step5 to step7. 

4   Simulation Results 

The performance of CTA with the above-described DNN structure is tested on the 
Protein Secondary Structure Prediction (PSSP) problem in the accuracy of conver-
gence, accuracy of prediction and CPU running times. 

The following parameter settings is used in the experiment: sample encoded with 
orthogonal matrix of 20 nodes, all-zero means the blanks at the N- or C-terminal of a 
chain, window Length is 13, the sample chip size is 250, the training chip size is 5 
and the maximum iteration number is 20. The mutation rate Pm is 0.05.The neural 
network is three-layer architecture with 260-12-3 and sigmoid function. The training 
data set contains 2182 samples come from 9 protein sequences, and the test data set 
contains 2043 samples come from 8 protein sequences. 
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Table 1. The average results of three different situations  

Resources False Acceptance 
Rate of Training 

Training Time 
(Sec.) 

False Acceptance 
Rate of Prediction 

1 0.6375 1930.9 0.6329 
2 0.49 692.3 0.5172 
3 0.5159 407.5 0.5089 

The results show that DNNCTA algorithm cost-time is less, as the number of re-
source is more. Because the sample had been proceeded by each cooperate-agent is 
less than the whole training sample set, which is the key to reduce computing time-
cost. And the best result comes from the one with more cooperate-agent in the train-
ing, which indicates that the distributed neural network with CTA method has im-
proved the generalization because it has more chances to approach the global  
optimum. 

5   Summary 

This article has attempted to describe the DNN how to work on a large-scale dataset 
with CTA algorithm. First, a DNN environment must be built to be a dynamic model 
combined the Node-Only Model and Master-Slave Model. Then a training algorithm 
based on the chips is model, which enable the DNN to learn from a distributed envi-
ronment. As demonstrated in the experiments about the PSSP problem, the time-cost 
for training is reduced with the resource’s increasing, and the performance of the 
trained neural network keeps as well as before. This algorithm resolves the memory 
bottleneck problem, and provides a method to build a Computing Grid for NN. 
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Abstract. The problem of construction of smoothing curve is actu-
ally regression problem. How to use SVR to solve the problem of curve
smoothing reconstruction in reverse engineering is discussed in this pa-
per. A modified support vector regression model is proposed. Numerical
result shows that the smoothness of curves fitted by modified method
is better than by the standard SVR, when there are some bad measure
points in the data.

1 Introduction

The freeform curve construction is one of the typical problems in reverse en-
gineering (see [1]-[3]). Essentially speaking, this problem belongs to regression.
But there is a particular requirement; the curve produced have to be smoothing.

In this paper, support vector regression (SVR) (see [4]-[5]) is used to deal with
the above smoothing curve problem. But the standard SVR must be modified
due to the smoothing requirement.

This paper is organized as follows. Section 2 introduces our algorithm: The
smoothing SVR. In section 3 some numerical experiments are given. At last, in
section 4 we give the conclusion.

2 The Smoothing SVR

Suppose the training set is

T = {(x1, y1), (x2, y2), · · · , (xl, yl)} ∈ (R ×R)l (1)

with x1 ≤ x2 ≤ · · · ≤ xl.
The key point of our algorithm is to replace the constant C in the standard

SVR by Ci which depends on the property of the i-th training point, i = 1, · · · , l.
More precisely, our smoothing SVR solves the dual problem:
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min
α,α∗

1
2

l∑
i=1

l∑
j=1

(αi − α∗
i )

TK(xi, xj)(αi − α∗
i )−

l∑
i=1

yi(αi − α∗
i )

+ε
l∑

i=1

(αi + α∗
i )

s.t.
l∑

j=1

(αi − α∗
i ) = 0 (2)

0 ≤ αi, α
∗
i ≤ Ci, i = 1, · · · , l

where α = (α1, α2, · · · , αl)T, α∗ = (α∗
1, α

∗
2, · · · , α∗

l )
T, and K(xi, xj) = (Φ(xi),

Φ(xj)) is the kernel function.
In order to select the penalty factor Ci, i = 1, · · · , l, we first consider the

corresponding curvature Ki introduced in [6]. For i = 2, · · · , l − 1, the absolute
value of Ki is approximated by

|Ki| =
2 sin βi

2

|Pi−1Pi+1|
, (0 ≤ βi ≤ π) (3)

where βi is the included angle between −−−−→Pi−1Pi and −−−−→PiPi+1. And the sign of Ki is
defined as follows: The sign of Ki is positive when the circular arc ̂Pi−1PiPi+1 is
inverted hour; otherwise the sign of Ki is negative. As for K1 and Kl, they are
defined by K1 = K2,Kl = Kl−1 respectively. In this way, we get the sequence of
curvature {Ki}, i = 1, · · · , l.

Now we give the distinguishing criterion of “a bad point” and “a good point”.
Suppose that both P1 and Pl are “good point”. For i = 2, · · · , l−1, consider sign
sequence of the curvature {sign(Kj)|j = 1, · · · , l}. The i-th point Pi is called as
“a bad point” if both the signs of Ki−1 and Ki+1 are different from the sign of
Ki, otherwise Pi is called as “a good point”.

So it is reasonable to select Ci by

Ci =
{
C, If Pi is “a good point”;
C(1−cos(π−βi)

2 )p, If Pi is “a bad point”,
(4)

where βi is the included angle between −−−−→Pi−1Pi and −−−−→PiPi+1, and both p and C

are a positive parameters.
According to the selection (4), the problem (2) is defined. After getting its so-

lution α and α∗, we obtain the decision function as f(x) =
l∑

i=1

(αi−α∗
i )K(xi, x)+

b, where b is determined by KKT conditions.

Algorithm: the smoothing SVR

1. Given a training set

T = {(x1, y1), (x2, y2), · · · , (xl, yl)} ∈ (R×R)l (5)

with x1 ≤ x2 ≤ · · · ≤ xl;
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2. Select ε > 0, C > 0, and a kernel function K(x, x′);
3. According to the above rule, calculate the sign sequence of curvature
{sign(Ki)|i = 1, 2, · · · , l} for training points {Pi|i = 1, 2, · · · , l};

4. For i = 1, · · · , l, decide Pi is “a good point” or “a bad point” by the above
distinguishing criterion;

5. For i = 1, · · · , l, select Ci by

Ci =
{
C, If Pi is “a good point”;
C(1−cos(π−βi)

2 )p, If Pi is “a bad point”,
(6)

where βi is the included angle between −−−−→Pi−1Pi and −−−−→PiPi+1, and both p and
C are positive parameters;

6. Solve the following optimization problem:

min
α,α∗

1
2

l∑
i=1

l∑
j=1

(αi − α∗
i )

TK(xi, xj)(αi − α∗
i )−

l∑
i=1

yi(αi − α∗
i )

+ε
l∑

i=1

(αi + α∗
i )

s.t.
l∑

j=1

(αi − α∗
i ) = 0 (7)

0 ≤ αi, α
∗
i ≤ Ci, i = 1, · · · , l

and get its solution α(∗) = (α1, α
∗
1, · · · , αl, α

∗
l ) of problem;

7. Construct the decision function as

f(x) =
l∑

i=1

(αi − α∗
i )K(xi, x) + b (8)

where b is determined by KKT conditions.

3 Numerical Experiments

Consider the half round curve y = −
√

1− x2, x ∈ [−1, 1]. The inputs are given
by xi = − 11

10 + 1
10 i, i = 1, 2, · · · , 21. And the corresponding outputs are given

by yi = −
√

1− x2
i + ξi, where the noise ξi obeys normal distribution with

Eξi = 0, Eξ2i = 0.1.
Both the standard SVR and our smoothing SVR with Gaussian kernel are

executed, while the parameters of σ,C, ε, p are shown in Fig.1. The regression
curves obtained by two ways are shown in Fig.1(a) and 1(c). We have also
calculated the absolute value of curvature of both regression curves and shown
them in Fig.1(b) and 1(d).

It is easy to see that the absolute value of curvature corresponding to smooth-
ing SVR is flatter than the one corresponding to the standard SVR. So the re-
gression curves obtained by the smoothing SVR is smoother than that obtained
by the standard SVR.
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Fig.1(a) The Regression curves with    
       σ=0.5, C=1000,ε=0.1 

Fig.1(c) The Regression curves with     
       σ=0.5, C=1000,ε=0.05 

Fig.1(b) Absolute value of Curvature with
         σ=0.5, C=1000,ε=0.1 

Fig.1(d) Absolute value of Curvature with 
         σ=0.5, C=1000,ε=0.05 

Fig. 1.

4 Conclusion

This paper is concerned with smoothing fitting in one dimensional space in the
area of reverse engineering of CAD/CAM. We propose a modified support vector
regression by replacing its penalty factor C by Ci depending on the training
point. Preliminary numerical experiments show that this approach is promising.
An interesting problem is, as an extension of the one dimensional case, to study
the corresponding smoothing fit problem in two dimensional space.
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Abstract. Support vector regression (SVR) is a powerful tool to solve regres-
sion problem, this paper proposes a fast Sequential Minimal Optimization 
(SMO) algorithm for training support vector regression (SVR), firstly gives a 
analytical solution to the size two quadratic programming (QP) problem, then 
proposes a new heuristic method to select the working set which leads to algo-
rithm’s faster convergence. The simulation results indicate that the proposed 
SMO algorithm can reduce the training time of SVR, and the performance of 
proposed SMO algorithm is better than that of original SMO algorithm. 

1   Introduction 

Support Vector Machine (SVM)[1] is an elegant tool for solving pattern recognition 
and regression problems, it has attracted a lot of researchers. Training a support vector 
machine requires the solution of a very large quadratic programming (QP) problem. 
Conventional QP methods is not impractical due to its high memory requirement and 
slow computation speed. Platt. J.C.[2] proposed a new algorithm for training classifi-
cation SVM: Sequential Minimal Optimization, or SMO. SMO dramatically reduce 
the computational time of training SVM. Recently Smola and Scholkopf[3] proposed 
an new SMO algorithm for solving the regression problem using SVMs. In this paper, 
we make some improvement to SMO algorithm for SVR. 

2   A Fast SMO Algorithm for SVR �

SVR can transform to the following constraint optimization problem [4]: 

1 1 1 1

1

1
min

2

. . 0, 1,...,

l l l l

i j ij i i i
i j i i

l

i i
i

k y

s t C C i l

α α ε α α

α α

= = = =

=

+ −

= − ≤ ≤ =

 
(1) 

SVR output can be written as:  

0
1

),()( αα +=
=

l

i
ii xxkxf  (2) 
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SMO breaks large QP problem into a series of size two QP problems. The analyti-
cal solution to the size two QP problem must be solved. We refer to [4] to give the 
analytical solution, and correct some mistakes in it.  

We use ijk  denote ),( ji xxk , and rewrite the objective function of Formula (1) as a 

function of two parameters 
ba αα , : 

Lvv

yykkkL

bbaa

bbaabaabbabbbaaaba

′+++

−−++++=

**

22

2

1

2

1
),(

αα

αααεαεαααααα  (3) 

Where 
0

***

,,1

** αααα −−−==
≠=

bjbaiai

l

bajj
ijji kkfkv L′ is a term that is strictly constant 

with respect to ba αα , , ),( ** αii xff = , Note that a superscript * is used above to 

explicitly indicate that values are computed with the old parameters values. 

We let: babas αααα +=+= *** , and substitute it into 3  

* 2 2 * * * * * *1 1
( ) ( ) ( ) ( ) ( )

2 2b b aa b bb b b ab b b b a b b b a b bL s k k s k s s y y s v v Lα α α α α ε α ε α α α α α ′= − + + − + − + − − − + − + +  (4) 

To solve the optimization value of Equation (4) we need to compute its partial de-

rivative with respect to bα : 

* * * * *( ) (sgn( ) sgn( )) ( ) ( 2 )b b b b a b b aa b bb b ab a bL s y y s k k s k v vα α ε α α α α α∂ ∂ = − − + − + − + + − − +  (5) 

Now, by ( ) 0b bL α α∂ ∂ = , we get:  

* * * *( 2 ) (sgn( ) sgn( )) ( 2 )b bb aa ab b a a b b b b aa bb abk k k y y f f s k k kα ε α α α+ − = − + − + − − + + −  (6) 

From formula (6), we can write a recursive update rule for bα in terms of its old 

value: 

))]sgn()(sgn([ ****
bbbaabbb sffyy ααεηαα −−+−+−+=  (7) 

where 1 ( 2 )aa bb abk k kη = + − . While formula (7) is recursive because of the two sgn() 

functions, so we must solve it. If the kernel function of the SVM obeys Mercer’s 
condition, then we are guaranteed that 0η ≥  will always be true. If η is strictly posi-

tive, then Equation (5) will always be increasing. Moreover, if *s is not zero, then it 
will be piecewise linear with two discrete jumps. Putting these facts together means 
that we only have to consider five possible solutions for Equation (7). When 

))sgn()(sgn( ba αα − sets to –2, 0, 2 respectively, we can get three possible solutions, 

the other two candidates correspond to setting 
bα to one of the transitions: 0=bα or 

*sb =α . Try Formula (7) with ))sgn()(sgn( αα −a
equal to –2,0,2. If the new value is 

a zero to Formula (5), then accept that as the new value. If the above step failed, try 
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bα equal to 0 or *s . Accept the value that has the property such that all positive 

(negative) perturbations yield a positive (negative) value for Formula (5). We can get: 
* * *

* * *

* * *

* * *

[ 2 ], 0

[ 2 ], 0
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( ) ( )
0, ( 0 ) 0 ( 0 ) 0
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(8) 

Where * *
i i iE f y= − . We also need to consider how the linear and boxed constraints 

relate to one another. Using: *max( , )L s C C= − − , *min( , )H C s C= + , with L and H 

being the lower and upper bounds, respectively, guarantees that both parameters will 

obey the boxed constraints. To update the SVR threshold 0α according to KKT 

condition, forces the SVR to have aa yf = , the second forces bb yf = we average 

the candidate updates. 
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0α  can be solved by: 

)(5.0 000
ba ααα +=  

In order to accelerating convergence, we propose a new heuristic method to choose 
two Lagrange multipliers. For optimal problem 1 when we only consider its 
equality constraint condition, we may get the following Langrage function: 
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According to [5], Lagrange multiplier λ  equals to the parameter 0α  in formula 

(2), namely: 0λ α= , So we can get  

0
1 1 1 1 1

1

2

l l l l l

i j ij i i i i
i j i i i

L k yα α ε α α α α
= = = = =

= + − +  (9) 

For (9), we solve objective function’s gradient for bα :  

0
1

sgn( ) sgn( )
l

b i ib b b b b
i

L k y Eα α α ε α ε α
=

∂ ∂ = + − + = +  

For an objective function, the bigger its gradient’s absolute value for a variable, the 
bigger its variation when the optimal variable change. So according to this point we 
choose the first optimal variable. For the other optimal variable’s choose, just like 
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Smola’s method, to make the variable’s variation the biggest. According to above 
statement, the strategy to working pair selection is as following: firstly select the first 

variable bα which makes ))sgn(( bbEMax αε+  holding, then choose the second vari-

able aα which makes ( )a bMax E E−  holding.  

3   Simulation and Comparisons 

In this section we will take a concrete example to illustrate the proposed method. The 
fitting function under consideration is as follow: 

xxxy −= )2sin(4)(  

Then we can train SVM by { ( ), ( )}x k y k . We take Gaussian function as kernel, the 

simulating results are as follows: 

Table 1. The running time of original SMO and improved SMO 

Sample number 100 300 500 800 1000 2000 3000 
Iteration 
number 

3964 5935 6533 9557 9852 8938 9668 Im-
proved 
SMO Running 

time 
0.27 0.61 0.81 2.1 2.4 4.81 10.82 

Iteration 
number 

19098 21228 24192 36296 34656 30143 31025 
Origi-

nal SMO Running 
time 

1.0 2.0 2.8 7.0 8.1 16.1 32.0 

Both trained SVM can exactly fit the function, their training and testing error are 
almost the same, but their running time are very different, The proposed algorithm is 
several times faster than the original SMO.  
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Abstract. In most of the clustering algorithms the number of clusters
must be given in advance. However it’s hard to do so without prior
knowledge. The RPCL algorithm solves the problem by delearning the
rival(the 2nd winner) every step, but its performance is too sensitive to
the delearning rate. Moreover, when the clusters are not well separated,
RPCL’s performance is poor. In this paper We propose a RPFCL algo-
rithm by associating a Fuzzy Inference System to the RPCL algorithm
to tune the delearning rate. Experimental results show that RPFCL out-
performs RPCL both in clustering speed and in achieving correct number
of clusters.

1 Introduction

Given a data set D = {xt}N
t=1 in a multi-dimension space, the task of cluster-

ing D is a classical problem in many fields. The k-means[1] and FCM(Fuzzy
C-Means)[2] algorithms are probably the most frequently used algorithms. As
an adaptive version of the k-means algorithm, Competitive Learning(CL)[3] and
FSCL algorithms[4] have their applications when the data set D is large, and
many other algorithms derive from them. In all these algorithms, the number of
clusters k should be preselected, and a wrong guess of it will make the algorithms
perform poorly. Unfortunately, it is hard to choose it sometimes. Some efforts
had been made to tackle this problem in the past decades. A typical example is
the RPCL algorithm[5], in which for each input, not only the winner is modi-
fied to adapt to the input, but also its rival(the 2nd winner) is delearned by a
smaller learning rate. The experiments[5] and other papers[6,7] show that RPCL
algorithm works well in determining the number of clusters for well-separated
clusters, but how to tune the delearning rate in RPCL is still a problem, to our
best knowledge. Xu Lei noted that the delearning rate αr should be much less
than the learning rate αc, otherwise the RPCL algorithm may fail to work[5].
But if αr is too small, the speed of RPCL algorithm is slow. To improve the per-
formance of RPCL, some scholars[6] attempted to change αc, αr after M steps,
but failed to give an appropriate criteria for the selection of M . Some others[7]
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tried to incorporate full covariance matrices into the original RPCL algorithm,
but some parameters are as hard to decide as the number of clusters.

In this paper, we propose a new way to tune the delearning rate in RPCL,
to improve both the clustering speed and its performance for data set with
over-lapped clusters. In RPCL, the learning rate and delearning rate are set
to constants. In fact, the distances of the winner and the rival to the input
datum can help much in determining the delearning rate, for there exist some
fuzzy rules to determine αr such that the rival should be penalized more after
a close competition, otherwise it should remain almost intact. To utilize these
information, we associate a fuzzy inference system to the original RPCL algo-
rithm, then a new improved cluster algorithm, named Rival Penalized Fuzzy
Competitive learning(RPFCL), is proposed.

This paper is organized as follows: In Sect. 2, we propose the RPFCL algo-
rithm by associating a Fuzzy Inference System into RPCL. Simulation result of
the RPFCL is shown in Sect. 3. Finally, we conclude this paper in Sect. 4.

2 RPFCL Algorithm

In order to explain the RPFCL algorithm, let us consider such a situation: sup-
pose there are k tigers in a mountainous area competing for their food, N goats.
When a goat appears, the closest two tigers raise a competition. Obviously, it is
a close competition if the two tigers are as close to the goat as each other, and
the winner(the tiger that is closer to the goat) gets the food and becomes the
host of the domain, while the loser will be driven far away under the threat of
the winner. In the contrary cases, if a tiger is the only one who is close to the
goat, the second closest tiger will almost definitely quit the hopeless competition
and stand still to save its strength.

We imitate the phenomenon above with a fuzzy inference system to ad-
just the delearning rate in RPCL algorithm. Refer to [8] for the details of
fuzzy inference. Here we use language variables “x0: almost equal; x1: fairly
equal; and x2: far from equal” to describe the comparability of the distances
between competitors and the input datum in the universe (0, 1](the range of
u(mc,mr, dt) = ‖mc−dt‖

‖mr−dt‖ , dt ∈ D). We also use other language variables “y0:
serious; y1: moderate; y2: slight” to describe the penalty degree in the universe
(0, αc]. Here, the larger u is, the more equal the distances(‖mc− dt‖, ‖mr− dt‖)
are. Since αr � αc, we regard αr = αc as a very serious punishment. The
membership functions of the language are shown in Fig. 1 and Fig. 2.

The rules in the Fuzzy Inference System for choosing the delearning rate αr

are listed below: Rule 1: if u is x0, then αr is y0; Rule 2: if u is x1, then αr is y1;
Rule 3: if u is x2, then αr is y2. And the formula to calculate the delearning rate
αr in the Fuzzy Inference System is[8]:

αr =
3∑

i=1

xi(u(mc,mr, dt))yi . (1)
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Fig. 1. Membership functions of xi
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Fig. 2. Membership functions of yi

After associating this mechanism to RPCL, we modify the RPCL algorithm into
our RPFCL algorithm, which is consisted of the following three steps.

Step 1: Preselect an enough large number of clusters k, initiate k centers, set
an appropriate αc. Randomly take a sample dt from data set D, calculate c and
r by formula (2).

c = argmin
j

γj‖dt −mj‖ , r = argmin
j,j 
=c

γj‖dt −mj‖ . (2)

Where γj = nj∑k
l=1 nl

, nj is the cumulative number of the times when mj wins
a competition. We name mc the winner, and mr the rival. Here γj , called
conscience strategy[4], reduces the winning rate of the frequent winners, and
thus solves the problem of dead units. We select the first k input data as initial
centers.

Step 2: Update the winner mc and the rival mr by the following formulas,

mt+1
c = mt

c + αc(dt −mt
c) ; mt+1

r = mt
r − αr(dt −mt

r) ,

where αr is given by formula (1).
Step 3: The algorithm will stop after p epochs. one epoch means that all the

input data are scanned once. Here, p should be preselected. A datum closest to
center mj will belong to the cluster represented by mj .

Obviously, if αr is constant, then RPFCL degenerates to RPCL algorithm[5].
So our RPFCL algorithm is an extension of the RPCL algorithm.

3 Simulation Results

Due to the limitation of space, here we present one of the experiments we made.
we choose a sample set same to that in [5], a data set of 4 clusters, each cluster
having 100 samples from 4 Gaussian distributions centered at (−1, 0), (1, 0), (0,
−1), (0,−1). The only difference is that its variance is 0.3 instead of 0.1. We set
the initial number of clusters k = 8, 2 times that of the real number of clusters.
The simulation results of RPCL and RPFCL are shown in Fig. 3-5. Fig. 3 shows
that RPCL fails to select the correct number of clusters even after 1000 epochs.
As shown in Fig. 4 however, if we set αr 10 times larger, the correct number of
clusters may be achieved, but the positions of the centers are not guaranteed. If
the variance of the data is set to 0.4, we find that RPFCL performs as good as
usual; but RPCL fails to work on such data set no matter how large αr is.
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Fig. 3. RPCL: αc = 0.05;
αr = 0.002, simulation re-
sult at 1000th epoch

Fig. 4. RPCL: αc = 0.05,
αr = 0.02, correct cluster
number, wrong centers at
200th epoch

Fig. 5. RPFCL: αc = 0.05,
the result at 10th epoch, ex-
tra centers driven away

4 Conclusion

In this paper, we proposed the RPFCL algorithm by associating to RPCL algo-
rithm a Fuzzy Inference System to tune the delearning rate. Experiments show
that RPFCL algorithm not only clusters in a higher speed than RPCL, but also
works well on overlapped data set. The Fuzzy Inference System is easy to estab-
lish. In our future work, we will further extend the Fuzzy Inference System to
tune the learning rate αc at each step, and create a mechanism to automatically
stop the RPFCL algorithm.
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Abstract. For improving coding efficiency, a new predictive vector 
quantization (VQ) method was proposed in this paper. Two codebooks with 
different dimensionalities and different size were employed in our algorithm. 
The defined blocks are first classified based on variance. For smooth areas, the 
current processing vectors are sampled into even column vectors and odd 
column vectors. The even column vectors are encoded with the lower-
dimensional and smaller size codebook. The odd ones are predicted using the 
decoded pixels from intra-blocks and inter-blocks at the decoder. For edge 
areas, the current processing vectors are encoded with traditional codebook to 
maintain the image quality. An efficient method for codebook design was also 
presented to improve the quality of the resulted codebook. The experimental 
comparisons with the other methods show good performance of our algorithm.  

1   Introduction 

VQ, which has been widely applied in speech and image coding, provides an efficient 
technique for data compression [1]. VQ is defined as a mapping Q  of k -dimensional 
Euclidean space kR  into a finite subset Y of kR . Thus YRQ k →:  where 

}|,,,{ 21
k

iN RY ∈= yyyy is called a codebook, and N  is the codebook size. 
The distortion between the input vector T

kxxx ),,( 21=x and codeword 
T

ikiii yyy ),,( 21=y is usually defined as squared Euclidean distance: 

  2

1

2

2
)(),( il

k

l
lii yxd −=−=

=
yxyx                                      (1) 

The minimum distortion codeword is just the best-matched codeword for the input 
vector. Given vector dimensionality, the larger the codebook size is, the smaller the 
distortion is. However, a large size codebook will obviously result in high bit-rate and 
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long encoding time. To achieve high encoding efficiency, we always try to make the 
codebook size as small as possible while still maintaining almost constant distortion. 
Various VQ schemes had been developed for this aim. The nearest-neighbor search 
algorithms[2] do not introduce extra distortion. However, the bit-rate of these 
algorithms is kN /log2 , which is invariable. To reduce the bit-rate, SMVQ [3], PPM [4] 
and SB_PVQ[5], were also successfully applied in image encoding.  

In the proposed algorithm, these factors, e.g., encoding time, decoded image quality 
and bit-rate, are sufficiently considered. In contrast to other VQ methods, the defined 
image blocks are classified based on variance. Our method sufficiently exploits 
correlation between pixels in intra-blocks and inter-blocks to recover image. 
Codeword candidate scheme is employed to find the corresponding codeword. 
Aiming at the drawbacks of LBG[6], a modified codebook design method, which 
reduces overall distortion, is proposed. Compared with other methods, the new one 
achieves significant improvement in terms of rate-distortion performance while 
maintaining comparable computation complexity.  

2   Block Classification 

Suppose the original image is divided into many sub-blocks, the block size is 44 ×  
and each block represents a 16-dimensional vector. The relationship of adjacent 
image blocks is shown as Fig. 1, where x  denotes the current processing block, u , l  
and n  are the upper, left and upper left neighboring blocks, respectively. Here the 
block x  confined in dashed square box is defined for every x , because the pixel 
information around x  will be utilized in the following prediction. If x  is located in 
the first row and first column of image, x  is just x  itself. The mean and variance of 
x  are defined as (2) and (3).     

u

l x

(4,4)

(1,4)

(2,4)

(3,4)

£¨ 4,4)

(4,1) (4,2) (4,3) (4,4)

(1,1) (1,2) (1,3) (1,4)

n

the defined block x̂

the current processing block

 

Fig. 1.   Block classification 

25

4

1

4

1
,

4

1
4,

4

1
,44,4

ˆ
= ===

+++
= i j

ji
i

i
i

i

x

xlun

m                                     (2) 



  A New Predictive Vector Quantization Method Using a Smaller Codebook 231 

25

)()()()(
4

1

4

1

2
ˆ,

4

1

2
ˆ4,

4

1

2
ˆ,4

2
ˆ4,4

ˆ
= ===

−+−+−+−
= i j

xji
i

xi
i

xix

x

mxmlmumn

v                (3) 

If xv ˆ  is relatively large, this means the pixels in x  have a high fluctuation of 
intensities. Then block x  is not smooth and probably located in edge areas. If xv ˆ  is 
relatively small, then block x  is smooth. If xv ˆ  is less than threshold value xT , x  can 
be considered as smooth block. Otherwise x  is not smooth. 

3   Prediction Method 

In this paper, the input vector is divided into two parts of even column vector evenx  
and odd column vector oddx . evenx  is just the vector that needs be encoded. So a 

44× -dimensional vector is sampled as a 24× -dimensional vector to be quantized, 
and the vector dimensionality is reduced to the half of original ones. 

The correlation between pixels in smooth areas behaves that the pixels can be 
predicted using neighboring ones. If xv  calculated is less than the threshold value  

xT , the current block x  is even sampled to produce evenx . It is quantized with 
24 × -dimensional codebook sC  whose size is sN , and sN  is  smaller than the 

traditional codebook size N . The index of the best-matched codeword for evenx  is 
transmitted to the receiver. In the decoding end, the codeword corresponding to the 
index is chosen from the same codebook to replace evenx . oddx  is predicated using 
neighboring decoded pixels. Combining decoded evenx with oddx forms the 
constructed block, which is called the predication block x . The prediction at the 
receiver is shown as Fig 2, where denotes the decoded pixel of even column 
vector,  denotes the decoding pixel of odd column vector and ×  denotes the decoded 
pixel of odd column vector. For simplicity, the prediction of oddx  only uses 
neighboring pixels of decoded even column vectors. The predication equations are 
described as (4) and (5).  
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Fig. 2.   The prediction of the odd vector 
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From above, we know that some decimated pixels are obtained by averaging their 

available neighboring pixels. Though the block variance need be calculated 
beforehand, this preliminary processing can save much time when a block is not adapt 
to be encoded with the smaller codebook. To maintain encoding quality, the distortion 
between x  and x  is calculated beforehand. Suppose the distortion is greater than the 
predetermined threshold value yT , which means the prediction fails to provide a 
small distortion result. We switch to using traditional VQ coding.  

In the experiment, we find that the best-matched codeword may not reconstruct the 
best-predicted result for the input block, sometimes next-nearest codeword may result 
in better predicted vector for reproduction. Considering the computation complexity 
increased due to more predictions, we select the best and second best codewords from 

sC  as two candidates for obtaining the best prediction. The prediction blocks are 
calculated using the two codewords, respectively. The index of the codeword that 
yields the best prediction is chosen for transmission.  

To distinguish the two different coding types, a flag should be applied to inform the 
decoder as to which codebook of the two is employed for encoding an input block. A 
simple way is to attach a prefix flag-bit ahead of the index of a codeword selected. 
Though this will introduce extra bits, the bit-rate is less than that of traditional VQ if 
N  is far more larger than sN . Assume that the probability of the smooth block is α  
in an image, the associated bit-rate for every pixel is calculated as:  

16

)log1)(1()log1( 22
1

NN
BR s +−++

=
αα                                    (6) 

Compared with the bit-rate of the traditional VQ, we can easily see that given the 
same codebooks, the more smooth the image is, the lower the bit-rate is achieved. 

4   Codebook Design 

The common codebook design is LBG algorithm[6] which is an iterative procedure. In 
LBG algorithm, the quality of the resulted codebook highly depends on the initial 
codebook. The algorithm may probably result in a local optimum with improper 
initial codebook, which in turn affects the performance of codebook. To overcome the 
problem, our method does not generate the codebook at the same time. It is efficient 
for LBG algorithm to generate a small codebook. So the modified algorithm first 
generates a small codebook by the LBG algorithm. The training vectors whose 
associated codeword has maximum average distortion will then be split into more 
codewords by LBG algorithm to reduce overall distortion. In this way, even if the 
initial small codebook is improper, it can adjust and improve the codebook step by 
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step. The steps to design a codebook with S  codewords from a training set 
},,2,1|{ MmX m == x of k -dimensional vectors are described as follows: 

Step 1: Generate a codebook with L  codewords from the training set with LBG 
algorithm, here L  is much smaller than S . For example, L  may be 2,3, or 4.  

Step 2: Calculate the average distortion between every codeword and each training 
vector of the associated cluster. Find the codeword that has the maximum average 
distortion in the codebook and denote the codeword as maxy . The cluster of the 
training vectors associated with maxy is denoted by T .  

Step 3: Employ the LBG algorithm to generate a codebook with L  codewords 
from the training set T . 

Step 4: Replace the codeword maxy with above new L  codewords. Thus the 
number of the codewords in the codebook will be expanded by 1−L  codewords. 

Step 5: If the desired size of the codebook is reached, then stop the iteration. 
Otherwise, go back to Step 2.5    

5   The Proposed Algorithm 

For encoding an image, encoder partitions it into a set of blocks (or vectors) first. The 
blocks are processed from top to bottom and left to right. The encoding steps are 
depicted as follows: 

a): For the current processing block x , xv ˆ  of defined block x̂  is calculated. If xv ˆ  
is less than the threshold value xT , go to the next step, otherwise go to step c.  

b): The even column vector evenx  is produced after sampling from x , and evenx  
is quantized with codebook sC . The best and second best codewords for evenx  are 
searched from sC . Two prediction blocks are produced using the two codewords. 
Then calculate the distortion between x  and two prediction blocks, respectively. The 
index associated with the minimum distortion mind  is marked with p . If  mind < yT , 
p  will take place of x  to be transmitted.  Otherwise, go to the next step. 

c): x  is encoded with traditional codebook C  to maintain the image quality. The 
index q  of the best-matched codeword for x  is searched from C  and q  will take 
place of x  to be transmitted. 

d): To distinguish the different coding types, a one-bit checking flag is appended 
with “0” for coding using codebook C  and “1” for coding using codebook sC . 
Encoder transmits the combination of one “0” bit and the index q  and the 
combination of one “1” bit and index p  to the decoder.  

The decoding procedure is quite straightforward with reference to the encoding 
one. For each input bit-string, there are two branches to describe the decoding steps: 

a): Select the first bit as the check-bit. Suppose the check-bit is “0”, this means the 
traditional VQ is used to process the current block. In this case, the following N2log  
bits are read as an index from the bit-string. The original block is replaced with the 
codeword associated with the index in C . 

b): Suppose the check-bit is “1”, the following sN2log  bits are read as an index 
from the bit-string. We retrieve the even column vector corresponding to the index 
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from sC  and then predict the odd column vector using 4 and 5 . Then combine 
them to recover original input block. 

After all the blocks are reconstructed from top to bottom and left to right, we can 
piece the blocks together to obtain the decoded image. SB_PVQ is improved using 
three amendments in our algorithm. The block classification based on variance 
reduces encoding time. The number of the encoded pixels is the same as that of 
SB_PVQ, while our method can sufficiently utilize the neighboring pixels to recover 
origin block. So it needs less bit-rate than SB_PVQ with the same image quality. We 
also propose a modified codebook design to improve VQ performance. So our method 
is superior to SB_PVQ. 

6   Experimental Results 

Some experiments were conducted to test the efficiency of our proposed method. All 
images in our experiments are of size 512× 512 with 256 gray level. We employ Lena 
and Pepper as our training images, and apply modified LBG algorithm to generate 
both the traditional and lower-dimensional codebooks. The splitting number L  is 
fixed to 4 and the size N  is 256. We compare our algorithm, the traditional VQ, 
SMVQ in encoding time, bit-rate and PSNR. Table 1 lists the experimental results for 
the testing images. In SMVQ algorithm, the size of state codebook fN  is 32. In our 
algorithm, the threshold value xT  is 2000 and yT  is 1000. The threshold values are 
 

Table 1. The results of the proposed algorithm, the traditional VQ, SMVQ for comparison 

SMVQ Our algorithm  
Image 

 

 
Factors 
 

 
VQ 
 fN =32 sN =16 sN =32 sN =64 

 
Lena 

 

Time(s) 
Bit-rate 

PSNR(dB) 

30.27 
0.500 

31.167 

120.18 
0.315 
29.332 

7.18       5.24         6.56 
0.323     0.369       0.415 

29.758   30.102     30.502 

 
Pepper 

 

Time(s) 
Bit-rate 

PSNR(dB) 

30.68 
0.500 

29.476 

120.42 
0.315 
27.951 

8.45       6.23         6.28 
0.324     0.358       0.417 

28.256   28.655     28.962 

 
Boat 

 

Time(s) 
Bit-rate 

PSNR(dB) 

30.49 
0.500 

29.451 

119.72 
0.315 
28.011 

10.56     8.73         9.01 
0.332     0.362       0.419 

28.893   29.121     29.378 

Airplane 
 

Time(s) 
Bit-rate 

PSNR(dB) 

29.78 
0.500 

30.010 

120.03 
0.315 
28.709 

9.07       6.51         7.32 
0.363     0.387       0.430 

29.031   29.687     29.986 

decided by experiments. In fact the bit-rate is variable along with different threshold 
values. When threshold values are relatively large, the bit-rate will be decreased while 
the image quality is reduced. PDE[7] is adopted in all searches of codebooks. From the 
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 experimental results, we can see that the traditional VQ obtain the best-decoded 
image quality at the cost of maximum bit-rate and long encoding time. Though 
SMVQ needs low bit-rate, this algorithm cost so long time to produce state codebook 
for every input vector and the decoded image quality is not satisfied. The proposed 
algorithm not only needs least encoding time, but also outperforms SB_PVQ as a 
prediction method in PSNR and bit-rate. Figure 3 illustrates the rate-PSNR 
performance curves between our method and SB_PVQ with N  is 512. The curves 
show that our method is superior to SB_PVQ in term of rate-PSNR performance. All 
the experiments prove that our method outperforms VQ, SMVQ and SB_PVQ in total 
performance. 

 

Fig. 3. Rate-PSNR curves for our method and SB_PVQ in encoding Lena and Pepper 

7   Conclusion 

For improving image coding quality, increasing encoding speed and reducing bit-rate 
on transmission, a new prediction-based vector quantization method for image coding 
is presented in this paper. In contrast to other VQ methods, the defined image blocks 
are classified based on variance, which can speed up encoding time. Correlation 
between pixels in intra-blocks and inter-blocks is sufficiently utilized to recover 
image. Codeword candidate scheme is employed to find the corresponding codeword 
that can generate better-reconstructed images. Aiming at the drawbacks of LBG, a 
modified codebook design method, which reduces overall distortion and reduces the 
dependence on initial codebook, is proposed to generate efficient codebook. The 
experimental result shows that the proposed encoding outperforms VQ, SMVQ and 
SB_PVQ in total performance. 
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Abstract. In this paper, we propose an improved fuzzy RBF network which 
dynamically adjusts the rate of learning by applying the Delta-bar-Delta 
algorithm in order to improve the learning performance of fuzzy RBF networks. 
The proposed learning algorithm, which combines the fuzzy C-Means 
algorithm with the generalized delta learning method, improves its learning 
performance by dynamically adjusting the rate of learning. The adjustment of 
learning rate is achieved by self-generating middle-layered nodes and applying 
the Delta-bar-Delta algorithm to the generalized delta learning method for the 
learning of middle and output layers. To evaluate the learning performance of 
the proposed RBF network, we used 40 identifiers extracted from a container 
image as the training data. Our experimental results show that the proposed 
method consumes less training time and improves the convergence of learning, 
compared to the conventional ART2-based RBF network and fuzzy RBF 
network. 

1   Introduction 

Recently, RBF networks, which have the characteristics of fast training time, 
generality and simplicity, have been applied to the classification of training data and 
nonlinear system modeling[1]. RBF networks avoid the problems with algorithms 
such as error backpropagation learning algorithm. RBF networks reduces training 
time and prevents training patterns from not being well-classified, which is caused by 
the weights of multilayer perceptrons falling into local minimum[2]. The middle-layer 
of RBF Networks is the clustering layer. That is, the purpose of this layer is to 
classify a given data set into homogeneous clusters. This means that if in the feature 
vector space of input data, the distance between vectors in a cluster is within the range 
of the predetermined radius, the cluster is classified as homogeneous. Otherwise, the 
cluster is classified as heterogeneous[3]. However, clustering within the prescribed 
radius has the risk of selecting wrong clusters. Thus, the determination of middle-
layer has a great effect on the overall efficiency of RBF networks. If learning of a new 
pattern is processed at the state in which learning is completed, that is, at the state in 
which the connection weight is fixed, RBF networks have an effect on prescribed 
weights. This effect leads to the problem of taking a lot of time to retrain a RBF 
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network. It also serves to decrease recognition rate by classifying untrained new 
patterns as the homogeneous pattern when they are entered into the RBF network[4].  

In this paper, we propose a method to improve the learning structure of RBF 
networks. In the proposed learning structure, the connection structure between input 
layer and middle layer is the same as the fuzzy C-Means structure. Though the 
proposed learning structure is a complete connection structure, it compares target 
vector with output vector in the output layer, and thus avoids the problem of 
classifying the new patterns as the previously trained pattern since it adjusts 
connection weight by back-propagating the weight connected with the representative 
class. And the generalized delta method is applied to the representative class of 
middle layer and the output layer nodes in terms of supervised learning. In doing this, 
the rate of learning is dynamically adjusted by the application of Delta-bar-Delta 
method to reduce training time. This paper comparatively analyzes learning 
performance between ART2-based RBF networks, fuzzy RBF networks and the 
proposed learning method in terms of applying them to the identifier extracted from a 
container image. 

2   Related Research 

2.1   ART2-Based RBF Networks  

In the ART2-based RBF networks, the number of middle-layer nodes is determined 
according to the boundary parameter setting in the process of generating the middle 
layer. The boundary parameter is the value of radius that classifies clusters. If the 
boundary parameter is set with a low value, a small difference between the input 
pattern and the stored pattern leads to the generation of new clusters in terms of 
classifying them as different patterns. On the other hand, if the boundary parameter 
has a high value, the input pattern and the stored pattern are classified as the same in 
spite of a big difference between them. Thus, this reveals a problem that recognition 
performance varies depending on boundary parameter setting[5].  

2.2   Fuzzy C-Means-Based RBF Networks 

Fuzzy C-Means-based RBF networks uses the fuzzy C-Means algorithm to generate 
the middle layer. It has a disadvantage of consuming too much time when applied to 
character recognition. In character recognition, a binary pattern is usually used as the 
input pattern. Thus, when the fuzzy C-Means algorithm is applied to the training 
pattern composed of 0 and 1, it is not only difficult to precisely classify input patterns 
but also takes a lot of training time compared to other clustering algorithms[6]. In this 
paper, we use the Delta-bar-Delta algorithm to improve the learning performance of 
fuzzy C-Means-based RBF networks. It reduces the training time by dynamically 
adjust the rate of learning in the process of adjusting the connection weight between 
middle layer and output layer.  
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2.3   Delta-Bar-Delta Algorithm  

Delta-bar-delta algorithm[7], which improved the quality of backpropagation 
algorithm, enhances learning quality by arbitrating learning rates dynamically for 
individual connected weights by means of making delta and delta-bar. The formula of 
making delta is as follows: In this expression, i, j and k indicate the input layer, the 
middle layer and the output layer, respectively. 

ij
ji

ji x
w

E δ−=
∂
∂=Δ  (1) 

jk
kj

kj z
w

E δ−=
∂
∂=Δ  (2) 

The formula of making delta-bar is as follows: 
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The value of parameter β  in formula (4) is the fixed constant between 0 and 1.0. 
The variation of learning rate in terms of the change direction of delta and delta-bar is 
as follows: If the connected weight changes to the same direction in the successive 
learning process, the learning rate will increase. At this point delta and delta-bar has 
the same sign. On the other hand, if the signs of delta and delta-bar are different, the 
learning rate will decrease as much as the ratio of 1- γ  of the present value. 
The formula of the variable learning rate for each layer is as follows: 
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3   Improved Fuzzy RBF Networks 

The middle layer of an RBF network is a layer that clusters training patterns. The 
purpose of this middle layer is to classify the given training patterns into 
homogeneous clusters. If in the feature vector space of training patterns, the distance 
between vectors in a cluster is within the range of the prescribed radius, they belong 
to the same cluster. Otherwise, they belong to the different cluster. Clustering within 
the range of the prescribed radius can select wrong clusters and take them as the input 
value of output layer, thus decreasing the learning performance of RBF networks. 
Since the node of middle layer does not know its target vector in the process of 
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learning, Since the node of middle layer does not know its target node in the process 
of learning, it takes a lot of training time caused by the paralysis resulting from credit 
assignment by which the errors of nodes of output layer is inversely assigned to nodes 
of middle layer. 

In this paper, we propose a learning structure that selects the node with the highest 
membership degree as the winner node in terms of the application of C-Means 
algorithm, and transmit it to the output layer. We also apply the generalized delta 
learning method for learning of the middle and output layer. The Delta-bar-Delta 
algorithm is applied to improve training time. The learning model that we propose is 
depicted in Fig. 1. 

Fig. 1. The proposed learning model 

The proposed learning method for fuzzy RBF networks can be summarized as 
follows. 

1. The connection structure of input layer and middle layer is the same as in the 
fuzzy C-Means algorithm whose output layer is the middle layer of the proposed 
learning structure. 

2. The node of middle layer denotes a class. Thus, though being a complete 
connection structure as a whole, we adopts the winner node method which back-
propagates the weight connected with the representative class in terms of comparing 
the target vector with the actual output vector. 

3. The fuzzy C-Means algorithm selects the node middle layer with the highest 
membership degree as the winner node.  

4. The generalized delta learning method is applied to the learning structure of 
middle layer and output layer in terms of supervised learning.  

5. To improve learning performance, the Delta-bar-Delta algorithm is applied to 
the general delta learning, dynamically adjusting the rate of learning. If the difference 
between target vector and output vector is less than 0.1, it is defined as having 
accuracy. Otherwise, it is defined as having inaccuracy. The Delta-bar-Delta 
algorithm is applied only in the case that the number of accuracies of the entire 
patterns is equal to or greater than the number of inaccuracies. The reason for this is 

Output
Layer

Middle
Layer

Input
Layer

Output
Layer

Middle
Layer

Input
Layer
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to prevent learning from being stagnant or vibrating, arising from premature 
saturation due to competitive steps in the learning process, which in turn make the 
error rate stable. The proposed fuzzy RBF network is given in Fig. 2. 

 

Fig. 2. The proposed fuzzy RBF learning algorithm 

4   Experimental Results and Analysis  

We have implemented our learning algorithm in Visual C++ 6.0 on an Intel Pentium-
IV machine with 2 GHz CPU and 512 MB of RAM. In order to analyze the learning 
performance of our learning algorithm, we chose the classification problem for 40 
number identifiers extracted from a container image, and comparatively analyzed 
ART2-based RBF networks with fuzzy RBF networks in terms of the number of 
repetitive learning and the number of recognitions.  

To extract container identifiers, the method proposed in [8] was applied and 
individual number identifiers were extracted. The edge was detected by applying 
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Canny mask. To eliminate from the detected edge information vertically long noises 
produced by the outer light source when obtaining the image, we applied fuzzy 
inference. After removing the noises, we extracted the domain of identifiers and then 
made them binary-coded. Individual identifiers were extracted by applying the 
contour-tracking algorithm. 

We formed the training pattern by selecting 40 number patterns among the 
normalized patterns extracted from the container image. A training pattern example is 
given in Fig. 3. Table 1 shows the parameters of our learning method used in the 
classification experiment of number identifiers. 

Where, ε is set to 0.1. In table 1, α  denotes the rate of learning, and μ , the 
momentum coefficient κ , γ , β are the Delta-bar-constants. 

 

 

Fig. 3. Example of container number identifier training pattern 

Table 1. Parameters of the fuzzy RBF network 

Parameter 
Learning Method 

α  μ  κ  γ  β  

Fuzzy RBF Network 0.9 0.5 0.05 0.2 0.7 

Table 2. Learning results of each learning method 

  
# of middle 

layer’s nodes 
# of 

Epoch 
TSS 

# of 
recognition 

ART2-based 
RBF Network 

13 950 0.067065 40 

Fuzzy RBF 
Network 

10 822 0.082591 40 

Proposed Fuzzy 
RBF Network 

10 526 0.085005 40 
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In table 2, the Epoch number is the repetitions of learning, and TSS is the sum of 
the square of the total errors. In the ART2-based network and fuzzy RBF network, the 
rate of learning and momentum were set to 0.5 and 0.6, respectively. In the proposed 
fuzzy RBF network, the initial rate of learning was set to 0.5, and we applied the 
Delta-bar-Delta algorithm if the number of accuracies of the total patterns is equal to 
or greater than the number of inaccuracies. The momentum was set to 0.6. 

  Table 2 shows that learning is terminated only in the case where the number of 
inaccuracies is equal to or less than 0. As can be seen from table 2, the proposed fuzzy 
RBF network is improved in terms of learning speed, compared to the ART2-based 
RBF network and the existing fuzzy RBF network. In the ART2-based RBF network, 
the number of nodes of middle layer was increased or decreased according the value 
of the boundary parameter, which is considered to be a problem of the network. In 
table 2, the boundary parameter set to 0.5 proved to be most optimal. 

  In the conventional fuzzy RBF network and the proposed fuzzy RBF network, 
both of which apply the fuzzy C-Means algorithm to the middle layer, they generated 
less middle-layered nodes than the ART2-based RBF network because it generates 
clusters according to the membership degree of nodes of middle layer. The proposed 
fuzzy RBF network dynamically adjusts the rate of learning to reduce the premature 
saturation corresponding to the competitive stage of learning process, thus consuming 
less training time than the conventional fuzzy RBF network. Fig. 4 shows the curve 
that is the sum of the square of errors in the conventional methods and the proposed 
method. 
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Fig. 4. Variance of TSS according to Learning Methods 

As shown in Fig. 4, the proposed method wins the conventional methods in terms 
of the speed of the initial convergence and training time. 
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5   Conclusion 

In this paper, we proposed an improved fuzzy RBF network which dynamically 
adjusts rate of learning by applying Delta-bar-Delta algorithm in order to improve 
learning performance of fuzzy RBF networks. The learning structure of the fuzzy 
RBF network has also been improved. In the proposed learning structure, the fuzzy C-
Means algorithm is applied to the connection structure of input layer and middle 
layer. 

Though the proposed learning structure is a complete connection structure, it 
compares target vector with output vector in the output layer, and thus avoids the 
problem of classifying the new patterns as the previously trained pattern since it 
adjusts the weight by back-propagating the weight connected with the representative 
class. And the generalized delta method is applied to the representative class of 
middle layer and the nodes of output layer in terms of supervised learning. In doing 
this, the rate of learning is dynamically adjusted by the application of Delta-bar-Delta 
method to reduce training time. The proposed method also avoids the problem of 
taking too much training time caused by the paralysis resulting from credit 
assignment by which the errors of nodes of output layer is inversely assigned to the 
nodes of middle layer. This paper comparatively analyzed learning performance 
between ART2-based RBF networks, fuzzy RBF networks and the proposed learning 
method in terms of applying them to the identifier extracted from a container image. 
The experimental results confirmed that the proposed method improved learning 
performance of fuzzy RBF networks. 
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Abstract. In this paper, we propose a universal approach to study dy-
namical behaviors of various neural networks with time-varying delays. A
universal model is proposed, which includes most of the existing models
as special cases. An effective approach, which was first proposed in [1],
to investigate global stability is given, too. It is pointed out that the ap-
proach proposed in the paper [1] applies to the systems with time-varying
delays, too.

1 Introduction

Recurrently connected neural networks have been extensively studied in past
years and found many applications in different areas. Such applications heavily
depend on the dynamic behavior of the networks. Therefore, the analysis of these
dynamic behaviors is a necessary step for practical design of neural networks.
Recently, there are dozens papers discussing recurrent neural networks with de-
lays. For example, see [1,2,3] for constant delays; For time-varying delays, see
[4,5,6] and [8,9,10,11].

It is natural to raise following question: Can we propose a unified
model and an effective approach to investigate all these models in a
universal framework?

The purpose of this paper is to give an affirmative answer to this question.
We consider the following system

dui(t)
dt

= −di(t)ui(t) +
n∑

j=1

∫ ∞

0

gj(uj(t− s))dJij(t, s)

+
m∑

k=1

n∑
j=1

∫ ∞

0

fj(uj(t− τk
ij(t)− s))dKk

ij(t, s) + Ii(t) (1)

where for any t > 0, dJij(t, s), dKk
ij(t, s) are Lebesgue-Stieljies measures with

respect to s for each i, j = 1, · · · , n, k = 1, · · · ,m, and satisfy
∫∞
0
|dJij(t, s)| <∞

and
∫∞
0
|dKij(t, s)| <∞. τ = max1≤i,j≤n τ

k
i,j , τ

k
ij = maxt τ

k
i,j(t).

The initial values are

ui(s) = φi(s) for s ∈ [−∞, 0],

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 245–253, 2005.
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where φij(t) are bounded continuous functions. Some variant of (1) has been
proposed in [12,21] to discuss periodic systems.

In particular, we consider following system

dui(t)
dt

= −diui(t) +
n∑

j=1

∫ ∞

0

gj(uj(t− s))dJij(s)

+
n∑

j=1

∫ ∞

0

fj(uj(t− τij(t)− s))dKij(s) + Ii(t) (2)

where limt→∞ Ii(t) = Ii.
We also consider the following system without delays:

v̇i(t) = −divi(t) +
n∑

j=1

∫ ∞

0

dJij(s)gj(vj(t))

+
n∑

j=1

∫ ∞

0

dKij(s)fj(vj(t)) + Ii (3)

For the convenience, we call g ∈ Lip(G), if |g(x+u)−g(x)|
|u| ≤ G, where G > 0.

2 Main Results

In this section, we will give several theorems and corollaries.
Theorem 1 Suppose that gi ∈ Lip(Gi), fi ∈ Lip(Fi). If for i = 1, · · · , n, there
hold

−ξidi +
n∑

j=1

ξj

{∫ ∞

0

[
Gj |dJij(s)|+ Fj |dKij(s)|

]}
< 0 (4)

Then there is at least a v∗ such that for any solution u(t) of (2), there holds

lim
t→∞u(t) = v∗ (5)

Remark 1 By transforms xi(t) = ξ−1
i ui(t), Ji(t) = ξ−1

i Ii(t), we have

dxi(t)
dt

= −dixi(t) +
n∑

j=1

∫ ∞

0

gj(ξjxj(t− s))dJij(s)

+
n∑

j=1

∫ ∞

0

fj(ξjxj(t− τij(t)− s))dKij(s) + Ji(t) (6)

Therefore, without loss of generality, in the following proof, we assume all
ξi = 1 for i = 1, · · · , n.

Lemma 1 Under the assumptions in Theorem 1, the dynamical system (3)
has at least an equilibrium v∗.
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Proof If gi ∈ Lip(Gi), fi ∈ Lip(Fi), then gi, fi as well as all vi(t), i = 1, · · · , n,
are absolutely continuous and differentiable almost everywhere with respect to
Lebesgue measure. Therefore, for almost t ∈ [0,∞), saying t ∈ S, i = 1, · · · , n,
following equalities hold

dv̇i(t)
dt

= −div̇i(t)

+
n∑

j=1

{∫ ∞

0

dJij(s)g′j(vj(t)) +
∫ ∞

0

dKij(s)f ′
j(vj(t))

}
v̇j(t) (7)

Pick a small constant α > 0, such that

−(di − α) +
n∑

j=1

{∫ ∞

0

[
Gj |dJij(s)|+ Fj |dKij(s)|

]}
< 0 (8)

Let zi(t) = eαtv̇i(t), which is a continuous function. And for every t ∈ S, it =
it(t) is an index such that

|zit(t)| = ||z(t)|| = max
i=1,···,n

|zi(t)|

Then, under (4), it is easy to see that

d|zi(t)|
dt

≤ (−di + α)|zi(t)|+
n∑

j=1

∫ ∞

0

[
Gj |dJij(s)|+ Fj |dKij(s)|

]
|zj(t)|

≤
{

(−di + α) +
n∑

j=1

∫ ∞

0

[
Gj |dJij(s)|+ Fj |dKij(s)|

]}
||z(t)|| ≤ 0

Thus, ||z(t)|| is non-increasing at every t ∈ S. Because S is dense in [0,∞)
and ||z(t)|| is continuous. Then ||z(t)|| is bounded and

||v̇(t)|| = O(e−αt) (9)

By Cauchy convergence principle, there is an equilibrium point v∗ ∈ Rn such
that

lim
t→∞ v(t) = v∗ (10)

and

− div
∗
i +

n∑
j=1

∫ ∞

0

dJij(s)gj(v∗j ) +
n∑

j=1

∫ ∞

0

dKij(s)fj(v∗j ) + Ii = 0 (11)

Lemma 1 is proven.

Remark 2 Proof of existence of v∗ does not depend on any complicated the-
ories (topology degree theorem, fixed point theorem, Lasalle theorem and so
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on), which were adopted in many papers. Moreover, we do not assume that the
activation functions are bounded or continuous differentiable.

Proof of Theorem 1 Suppose u(t) is a solution of (2), v∗ is the equilibrium
given in the Lemma 1.

Pick a small number η > 0 and a sufficient large T1 such that ||I(t)− I|| < η
for all t > T1.

For t > T1, let w(t) = u(t)−v∗, M(t) = sup−∞<s≤t ||w(t)||, and t0 ∈ (−∞, t],
it0 = it0(t0) be an index such that |wit0

(t0))| = ||w(t0)|| = M(t). Then, we have

D+M(t) ≤ −dit0
|wit0

(t0))|+
n∑

j=1

∫ ∞

0

[
Gj |wj(t0 − s))||dJit0

j(s)|

+ Fj |wj(t0 − τit0 j(t)− s))||dK
it0

j(s)|
]

+ η

≤
{
− dit0

+
n∑

j=1

∫ ∞

0

[
Gj |dJit0

j(s)|+ Fj |dKit0
j(s)|

]}
M(t) + η (12)

which means that if

M(t) >
η

dit0
−
∑n

j=1

∫∞
0

[
Gj |dJit0

j(s)|+ Fj |dKit0
j(s)|

] (13)

M(t) is non-increasing. Therefore, there is a constant M , such that ||w(t)|| ≤M .
For any small ε > 0, pick a sufficiently large T , such that

η(t) = ||I(t)− I|| < ηε

4
if t > T (14)

and

M

n∑
j=1

∫ ∞

T

[
Gj |dJij(s)|+ Fj |dKij(s)|

]
<
ηε

4
(15)

Now, denote M1(t) = supt−T≤s≤t ||y(t)||. Let t1 ∈ (t − T, t], it1 = it1(t1) be
an index such that |wit1

(t1))| = ||w(t1)|| = M1(t). By same approach, we have

D+M1(t) ≤
{
− dit1

+
n∑

j=1

∫ T

0

[
Gj |dJit1 j(s)|+ Fj |dKit1 j(s)|

]}
M1(t)

+ M

n∑
j=1

∫ ∞

T

[
Gj |dJit1 j(s)|+ Fj |dKit1 j(s)|

]
+
ηε

4

≤
{
− dit1

+
n∑

j=1

∫ T

0

[
Gj |dJit1 j(s)|+ Fj |dKit1 j(s)|

]}
M1(t) +

ηε

2

Thus, if M(t) ≥ ε, then

D+M(t) < −ηε
2

(16)
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Therefore, there must exists t̄ such that M(t̄) < ε. It is clear that M(t) < ε for
all t > t̄. Because ε is arbitrary, we conclude

lim
t→∞u(t) = v∗ (17)

Theorem 1 is proved.

Theorem 2 Suppose that gi ∈ Lip(Gi), fi ∈ Lip(Fi), Ii(t) = Ii. If for i =
1, · · · , n, there hold

ξi(−di + α) +
n∑

j=1

ξj

∫ ∞

0

eαs

[
Gj |dJij(s)|+ eατijFj |dKij(s)|

]
≤ 0 (18)

Then system (2) has a unique equilibrium point v∗ such that for any solution
u(t) of (2), there holds

||u(t)− v∗|| = O(e−αt) (19)

Proof Suppose u(t) is any solution of the system (2), and let y(t) = eαt[u(t)−
v∗], M2(t) = sup−∞≤s≤t ||y(t)||{ξ,∞}.

If for some t2 ≤ t and some index it2 such that |yit2
(t2)| = ||y(t2)|| = M2(t).

Then by the same arguments used in the proof of Theorem 1, we have

D+M2(t)

≤
{

(−dit2
+ α) +

n∑
j=1

∫ ∞

0

eαs

[
Gj |dJit2 j(s)|+ Fje

ατij |dKit2 j(s)|
]}

M2(t) ≤ 0

Therefore, M2(t) is bounded and

||u(t)− v∗||{ξ,∞} = e−αt||y(t)||{ξ,∞} = O(e−αt) (20)

Corollary 1 Suppose that gi ∈ Lip(Gi), fi ∈ Lip(Fi). If there are positive
constants ξ1, · · · , ξn and α > 0 such that for i = 1, · · · , n,

ξi(−di(t) + α) +
n∑

j=1

ξj

∫ ∞

0

eαs

[
Gj |dJij(t, s)|+ eατijFj |dKij(t, s)|

]
≤ 0(21)

Then the dynamical system (1) is globally exponentially stable. It means that if
u1(t) and u2(t) are two solutions of (1), then

||u1(t)− u2(t)|| = O(e−αt)

In fact, let u1(t) and u2(t) are two solutions of (1). Replacing y(t) by ȳ(t) =
eαt[u1(t)−u2(t)], by the same arguments used in the proof of Theorem 2, Corol-
lary 1 can be obtained directly.
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3 Comparisons

In this section, we will discuss the relationship among the results given in this
paper and those given the references.

Case 1. dJij(s) = aijδ(s), dKij(s) = bijδ(s), where δ(s) is the Dirac-delta
function. In this case, (2) reduces to the system with time-varying delays

dui(t)
dt

= −diui(t) +
n∑

j=1

aijgj(uj(t)) +
n∑

j=1

bijfj(uj(t− τij(t))) + Ii(t) (22)

It is clear that the results obtained in [13] are special cases of Theorem 1. More-
over, the model (2) is much more general than that in [13].

If Ii(t) = Ii, then (2) reduces to

dui(t)
dt

= −diui(t) +
n∑

j=1

aijgj(uj(t)) +
n∑

j=1

bijfj(uj(t− τij(t))) + Ii (23)

In this case, conditions in (18) become

ξi(−di + α) +
n∑

j=1

ξj

{
Gj |aij |+ eατijFj |bij |

}
≤ 0 (24)

Therefore, all stability analysis on the system (22) in [2,3,4,5,6,7,8,9,10,11] and
many others are direct consequences of Theorem 2.

On the other hand, if dJij(t, s) = aij(t)δ(s), dKk
ij(t, s) = bkij(t)δ(s), delayed

system (1) reduces to the system with time-varying delays

u̇i(t) = −di(t)ui(t) +
n∑

j=1

aij(t)gj(uj(t))

+
m∑

k=1

n∑
j=1

bkij(t)fj(uj(t− τk
ij(t))) + Ii(t) (25)

In this case, by the same method to prove Theorem 1, we can prove that under

ξi(−di(t) + α) +
n∑

j=1

ξj

{
Gj |aij(t)|+

m∑
k=1

n∑
j=1

eατk
ijFj |bkij(t)|

}
≤ 0, (26)

for t > 0. Delayed system (25) with time-varying coefficients and delays is glob-
ally exponentially stable. It is clear that the conditions in (26) is more natural
than those given in [18]. Moreover, we do not assume that τk

ij(t) are differen-
tiable.

Case 2. dJij(s) = aijδ(s), dKij(s) = bijkij(s)ds, and τij(t) = 0. Then system
(2) reduces to systems with distributed delays

dui(t)
dt

= −diui(t)+
n∑

j=1

aijgj(uj(t))+
n∑

j=1

bij

∫ ∞

0

fj(uj(t−s))kij(s)ds+Ii (27)
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In this case, we have

Proposition 1 Suppose that gi ∈ Lip(Gi), fi ∈ Lip(Fi). If there are positive
constants ξ1, · · · , ξn and α > 0 such that for i = 1, · · · , n,

ξi(−di + α) +
n∑

j=1

ξj

{
Gj |aij |+

∫ ∞

0

kij(s)dsFj |bij |
}
< 0 (28)

Then the dynamical system (27) has an equilibrium point v∗ and for any solution
u(t) of (27), there holds

lim
t→∞u(t) = v∗ (29)

Furthermore, if

ξi(−di + α) +
n∑

j=1

ξj

{
Gj |aij |+

∫ ∞

0

eαskij(s)dsFj |bij |
}
≤ 0 (30)

Then the dynamical system (27) is globally exponentially stable. It means

||u(t)− v∗|| = O(e−αt)

Therefore, all results in [14,15,16] and many other can be derived from The-
orem 2. It is also clear that the results obtained in [17] under more restrictions
can be derived directly from Theorem 1 in this paper.

Case 3. dJij(s) = aijδ(s) + cijkij(s)ds, dKij(s) = bijδ(s), and fj = gj. Then
system (2) reduces to systems (see [19])

dui(t)
dt

= −diui(t) +
n∑

j=1

aijfj(uj(t)) +
n∑

j=1

bijfj(uj(t− τij(t)))

+
n∑

j=1

cij

∫ ∞

0

fj(uj(t− s))kij(s)ds+ Ii

Thus, the results on stability given in [19] can be derived from Theorem 2.

Remark 3 In proposition 1, we do not assume that∫ ∞

0

s|kij(s)|ds <∞

which was assumed in many papers.

Remark 4 The approach, which was first proposed in [1], used in this paper
is very effective. It does not depend on any complicated theory. Derivations are
simple. Instead, Conclusions are universal. Moreover, this approach applies to
periodic systems with time delays (see [21]).

Remark 5 Theorem 1 and Theorem 2 explore an interesting phenomenon, i.e.,
concerning stability analysis, there is no difference between the delayed systems
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with constant delays and time-varying delays. Therefore, theorems for delayed
systems with constant delays given in [1] apply to the case with time-varying
delays without any difficulty.

Recently, several researchers also investigated stability criteria with Lp(1 ≤
p ≤ ∞) norm (for example, see [3,7]). Therefore, it is necessary to compare
capability of criteria with Lp(1 < p <∞) norm and with L1 norm or L∞. This
comparison was given in a recent paper [20]. It was explored in [20] that criteria
with L1 norm or L∞ are the best. Therefore, the results given with Lp norm can
be derived from Theorems in this paper.

4 Conclusions

In this paper, we study dynamical behaviors of delayed systems with time-
varying delays. A universal model is proposed, which includes most of the exist-
ing models as special cases. An effective approach to investigate global stability
is given, too. It is pointed out that the results and approach proposed in [1]
also apply to the systems with time-varying delays. We also verify the effective-
ness by comparing the results obtained by this approach and those obtained in
literature.
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Abstract. How crucial is the long-distance connections in small-world
networks produced by the semi-random SW strategy? In this paper, we
attempted to investigate some related questions by constructing a semi-
random small-world network through only randomly adding ’long-range
lattice distance connections’ to a regular network. The modified network
model is compared with the most used NW small-world network. It can
be found that, by using the new modified small-worldify algorithm, one
can obtain a better clustered small-world network with similar average
path length. Further more, we numerically found that, for a dynamical
network on typical coupling scheme, the synchronizability of the small-
world network formed by our procedure is no better than that of the
small-world network formed by NW’s algorithm, although the two classes
of network constructed at the same constructing prices and having similar
average path length. These results further confirmed that, the random
coupling in some sense the best candidate for such nonlocal coupling
in the semi-random strategy. Main results are confirmed by extensive
numerical simulations.

1 Introduction

Small-world network is highly clustered networks with small distances among
the nodes. There are many real-world networks that present this kind of connec-
tion, such as the WWW, Transportation systems, Biological or Social networks,
achieve both a strong local clustering (nodes have many mutual neighbors) and
a small diameter (maximum distance between any two nodes). These networks
now have been verified and characterized as small-world (SW) networks. In the
context of network design, the semi-random SW strategy (typically described as
modelling related real networks by the addition of randomness to regular struc-
tures) now is shown to be an efficient way of producing synchronically networks
when compared with some standard deterministic graphs networks and even to
fully random and constructive schemes. A great deal of research interest in the
theory and applications of small-world networks has arisen since the pioneering
work of D Watts and H Strogatz [1]-[23].
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’How crucial is the long-distance connections in such networks produced by
the semi-random SW strategy’, this question is indeed worth reasoning. Recently,
Adilson E. Motter et al., have investigated the range-based attack on connections
in scale-free networks, they found that, the small world property of scale free
networks is mainly due to short range connections [2]. Further more, Takashi
Nishikawa et al., in the same research group, numerically and analytically studied
the synchronizability of heterogeneous networks [22].

In this paper, we will try to investigate some related questions by constructing
a modified version of small-world network through only randomly adding ’long
range connections’ (in the sense of ’lattice-space-distance’) to a regular network.
We will compare the modified model with the most used small-world networks
in nowadays research works introduced by M E J Newman and D Watts[13].

The arrangement of the rest of this paper is as follows: in the following section
2, firstly, we provide a brief summary about the most used NW small-world net-
work algorithms as a preliminary. Then the modified version of small-world net-
workbased on the NW small-worldalgorithm is introduced in section 3. Somebasic
properties of this modified model, such as clustering coefficient, average distance
are discussed. In section 4, numerical investigation of the synchronizability of a
dynamical network under special coupling schemes on different networks are com-
pared with each other. In section 5, brief conclusion concludes the investigation.

2 Mathematical Model of Main Types of Small-World
Networks

In 1998, Watts and Strogatz [5] proposed a single-parameter small-world network
model that bridges the gap between a regular network and a random graph. With
the WS small-world model, one can link a regular lattice with pure random
network by a semirandom network with high clustering coefficient and short
average path length. The original WS model is described as follows:
(I) Initialize: Start with a nearest-neighbor coupled ring lattice with N nodes,
in which each node i is connected to its K neighboring nodes i± 1; i± 2; · · · ; i±
K/2, where K is an even integer. (Assume that N � K � ln(N) � 1, which
guarantees that the network is connected but sparse at all times.)
(II) Randomize: Randomly rewire each link of the network with probability p
such that self-connections and duplicated links are excluded. Rewiring in this
sense means transferring one end of the connection to a randomly chosen node.
(This process introduces pNK

2 long-range links, which connect some nodes that
otherwise would not have direct connections. One thus can closely monitor the
transition between order (p = 0) and randomness (p = 1) by adjusting p.)

A small-world network lies along a continuum of network models between the
two extreme networks: regular and random ones. Recently, M E J Newman and
Watts modified the original WS model. In the NW modelling, instead of rewiring
links between nodes, extra links called shortcuts are added between pairs of nodes
chosen at random, but no links are removed from the existing network. Clearly,
the NW model reduces to the originally nearest-neighbor coupled network if
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p = 0; while it becomes a globally coupled network if p = 1. However, the
NW model is equivalent to the WS model for suciently small p and sufficiently
large N values. The WS and NW small-world models show a transition with
an increasing number of nodes, from a large-world regime in which the average
distance between two nodes increases linearly with the system size, to a small-
world model in which it increases only logarithmically.

Different from the semi-randomly constructing ways used by D. J. Watts,
M. E. J. Newman et al., very recently, F. Comellas and his colleagues show
that small-world networks can also be constructed in a deterministic way. Their
exact approach permits a direct calculation of relevant network parameters al-
lowing their immediate contrast with real world networks and avoiding complex
computer simulations[6]. For example, one of their procedures to create a small-
world network is described below. Starting with a regular nearest neighbored
coupled networks, they construct a deterministic small-world network by select-
ing h nodes to be hubs and then using a globally coupled network to interconnect
those hubs[7]. These approaches also attract much attention of researchers.

In what follows, We will only consider those small-world network created by
semi-random operations (For simplicity, we exclude further comparisons study
with the deterministic small-world networks and this will be done elsewhere in
the future). We will mainly concern on the NW small-world model for com-
parison with our new small-world model, since no matter how many nodes the
networks has, it keeps to be connected during the randomizing procedure (It is
not necessary to assume that N � K � ln(N) � 1 as that in WS model de-
scribed before). This assumption can guarantee the basic condition (connected)
required in our research of these networks synchronizability.

3 The Modified Small-World Network Based on Adding
Long-Lattice-Distance Connections

The aim of constructing such model is to investigate the impaction of long-range
contracts in the NW small-world lattice network. What will happen, if only add
some space long range connection between nodes in a regular lattice during the
same procedure described in NW small-worldify process? This question attracts
our attention much during the research of the synchronization in a circle chain
of chaotic oscillators firstly. We then tried to construct such a related model to
further investigate its characteristics and the effectiveness of just adding long-
range shortcuts to the original lattice. In another words, two main aspects are
highly concerned in the whole investigation: One is, whether such a procedure
can make a ”small-world” network with high cluster coefficient and low average
path length or not. And the other is, what effects will it takes on the dynamical
behaviors of the original lattice after such re-choosing operations?

Aim to these targets, we construct the modified version of the two semi-
random small-world networks by the following two main steps:

(I) Initialize: Start with a nearest-neighbor coupled ring lattice withN nodes, in
which each node i is connected to its K neighboring nodes: i±1, i±2, ···, i±K/2,
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Fig. 1. NW small-world network, where
N = 24, K = 4, p = 0.05435 for illustra-
tion

Fig. 2. Modified SW network, where
D∗(d) = N/4, links 13−17, 19−22 of Fig.1
are unchosen in modified process

where K is an even integer. The nodes are numbered sequentially from 1 to
N (For simplicity, we suppose that N is a multiple of 4), thus, the ”lattice
distance” [8]-[9] between two nodes numbered i and j can be calculate by: di,j =
N/2− ||i− j| − N/2|;
(II) Randomize with re-choosing: Randomly adding connections between
a pair of nodes in the network with probability p, during the whole process,
duplicated links are excluded. Then, we re-choose shortcuts through the following
procedure: Firstly, defining the space distance of arbitrary two nodes as the
”lattice distance” dij defined in (I). Given a setting value D∗(d), where d is
the diameter of the original regular lattice, and D∗(•) represents a function of
d. Only reserving those connections added randomly in the above operations,
which links two nodes and their ”lattice distance” longer than the setting value
D∗(d), if dij is larger than or equal to D∗(d).

Thus, one can obtain a semi-random network after several times of such
modified operations.
Remark I: In NW model algorithm, their process will introduce about pN(N−1)

2
shortcut links between nodes of the original lattice when N is sufficient large. In
our modified algorithm, the number of new links added in the original lattice is
obviously much dependent on the parameter value D∗(d), and it will be certainly
much fewer than the expectation value pN(N−1)

2 in NW small-world network.
This fact is caused by the re-choosing strategy used in the new procedure.
Remark II: Obviously, the parameter D∗(d) can be set on the interval [K

2 ,
N
2 ].

(There are two extremal situations in our modified procedure: if setting D∗(d)
at D∗(d) > N

2 , the re-choosing strategy loses its effect on changing the structure
of the original lattice. If setting at K

2 , it reserves all the edges randomly added
in, and the operation generates the same network as that generated by NW
small-worldify algorithm.)

In the following context, we will further consider some characteristics of the
new type of semi-random networks. With regard of practical usage, we only con-
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Fig. 3. Comparison of the change of average path lengths and clustering coefficients
of M-SW network, where N = 200, ′∗′ and ′�′ represent the average path lengths and
the clustering coefficients of the NW model, ′�′ and ′�′ represent those of the M-SW
model when setting D(·) as N/3, ′�′ and ′�′ represent those of the M-SW model when
setting D(·) as N/4, ′+′ and ′◦′ represent those of the M-SW model when setting D(·)
as N/5, respectively

sider adding 10 percent of possible number of edges to the original K neighbored
lattices. It should be pointed out that, the situation when choosing K = 2 was
not appropriate for our discussion, since in this case the clustering coefficient of
the original lattice is zero. In what follows, we will set K ≥ 4 in all simulations.
In this section, we are especially interested in the long range connections’ effect
on the network characteristics, such as the average clustering coefficients, the
average networks diameter, and the average shortest path length, etc. We will
compare those characteristics with the most used NW models. In all of the nu-
merical experiments shown below, we take the average results of 20 runs at each
parameters setting.

The related two semi-randomized network models are illustrated respectively
as follows (for the straight intuitive purpose, choosing N = 24,K = 4, p ≈
0.05, D∗(d) = N/4; see Figure 1-2).

In Figure 3-4, we give the linear-linear and log-linear scale graphs for the
related changes. We compared the basic characteristics of NW model and the
modified networks. In these figures, the parameter of re-choosing criterion is
set at D∗(d) = 0, and N/4, respectively. For simplicity, we only give p changes
in [0, 0.1]. In these figures, the results are obtained by averaging the results of
20 runs and the step change of p is set at 0.0005. In these graphs, ′∗′ and ′�′

represent the average path lengths and the clustering coefficients of the NW
model, ′�′ and ′�′ represent those of the M-SW model when setting D(·) as N/3,
′�′ and ′�′ represent those of the M-SW model when settingD(·) asN/4, ′+′ and
′◦′ represent those of the M-SW model when setting D(·) as N/5, respectively.

Remark III: We have done large amount of numerical experiments about the
change of C and L about the modified model besides Figure 5-6. All of the
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experiments lead to similar results. The results show that the new networks
behaves as a typical type of small-world network (Networks those with high
average clustering coefficient and short average path length).
Remark IV: It can be seen that: for any given value of p, Cluster Coefficients
C(N, p) clearly increase with the increasing ofD∗(d); but the average path lengths
L increase very slightly with the increasing ofD∗(d) (≤ N/2). For similar average
path lengthL andL

′
, the cluster coefficientsCMNW in the modified model is much

larger than that CNW in the NW small-world models. That is to say, by using the
modified procedure, one can obtain better clustered networks with similar average
path length. (eg., ΔCNNW

ΔNadd
> ΔCNW

ΔNadd
, where ΔC is the changed fraction of cluster

coefficients, δNadd is the changed fraction of added edges.)

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

L(
p)

/L
(0

), 
C

(p
)/C

(0
)

Fig. 4. Figure 3 in log-linear scale

We also studied the ”Probability distribution of the connectivity” of the
modified model for K = 4, p = 0.01. The curves are similar with each other,
but we can see that, the distribution curves are apparently transported from
”right to left”, see Fig.5-6. These two figures are obtained by setting ”added
links fraction” parameter p at p = 0.01 and p = 0.05, respectively.

4 About Different Networks’ Synchronizability

In this section, we begin to discuss the synchronizability of the two types of semi-
random networks: the NW model and the modified small-world model. We will
only consider a network of N identical nodes, linearly coupled through the first
state variable of each node, with each node being an n-dimensional dynamical
subsystem. The dynamics of the whole network are⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋi1 = f1(xi) + c
∑N

j=1 aijxj1

ẋi2 = f2(xi) i = 1, 2, · · · , N.
...

ẋin = fn(xi)

(1)
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Fig. 5. The ”Probability distributionof the
connectivity”of the NWsmall-world model
and the modified NW model for K = 4 ,
p = 0.01, where N = 500, ′∗′ represents
that of NW’s, ′�′, ′�′, ′�′ represent that of
the M-NW models with parameters setting
N/3, N/4, and N/5, respectively
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Fig. 6. The ”Probability distribution of the
connectivity” of the NW small-world model
and the modified NW model for K = 4,
p = 0.05, where N = 500, ′∗′ represents
that of NW’s, ′�′, ′�′, ′�′ represent that of
the M-NW models with parameters setting
N/3, N/4, and N/5, respectively
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Fig. 7. The change of the largest non-zero eigenvalues of M-SW network and NW
network v.s. p, where D∗ = 0: ′∗′, D∗ = N/3: ′�′, D∗ = N/4: ′�′,D∗ = N/5: ′�′, and
the parameter p = Numberadded edges

(N(N−1))/2

where xi = (xi1, xi2, · · · , xin) ∈ Rn are the state variables of node i, fk(0) =
0, k = 1, 2, · · · , n, c > 0 represents the coupling strength, and A = (aij)N×N is
the coupling matrix. If there is a connection between node i and node j, then
aij = 1; otherwise, aij = 0 (i �= j). The diagonal elements of A is defined as

aii = −
N∑

j=1,j 
=i

aij = −
N∑

j=1,j 
=i

aji, i = 1, 2, · · · , N (2)
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Suppose that the network is connected in the sense that there are no isolated
clusters. Then the coupling matrix A is a symmetric irreducible matrix. In this
case, it can be shown that zero is an eigenvalue of A with multiplicity 1 and all
the other eigenvalues of A are strictly negative. Wang X F and Chen G [23] have
proved the following result.

Lemma 1 Consider dynamical network (1). Let λ2 be the largest nonzero eigen-
value of the coupling matrix A of the network. The synchronization state of net-
work (1) defined by x1 = x2 = · · · = xn is asymptotically stable, if

λ2 ≤ −
T

c
(3)

where c > 0 is the coupling strength of (1) and T > 0 is a positive constant such
that zero is an exponentially stable point of the n-dimensional system⎧⎪⎪⎪⎨⎪⎪⎪⎩

ż1 = f1(z)− Tz1
ż2 = f2(z)

...
żn = fn(z)

(4)

Note that system (4) is actually a single cell model with self-feedback −Tz1.
Condition (3) means that the entire network will synchronize provided that

c ≥ −T/λ2 (5)

We now can compare the changes of the largest nonzero eigenvalue of the cou-
pling matrix of our model and the NW model. Figure 7 shows the results. It can
be seen that:

(i) For any given value of N , λ2 decreases with the increasing of number of
added edges;

(ii) Adding the same number of new edges, the value of λ2 increases with the
increasing of D∗(d);

(iii) It is strange that, from Figure 7, we found that the contribution for
synchronization of dynamical networks (1) caused by intentionally adding n
long-lattice-distance connections is almost no difference when randomly adding
n edges to the original regular lattice, when p ∈ [0, 0.01]. If p ∈ [0.01, 0.1], we
found that additional long-lattice-distance connections have not special effects
for improving the synchronization for the dynamical networks (1). It is even
worse than randomly adding the same number of connections to the original
lattice from the viewpoint of considering constructing price. This fact hints us
that, in practice, according to both physical and synchronizing mechanism rea-
sons, we should not constructing too many long-lattice-distance connections to
obtain better synchronization of networks (1), although it will cause more clus-
tered small-world structure as mentioned before. (eg., ΔλMNW

2
ΔNadd

<
ΔλNW

2
ΔNadd

, where
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Δλ2 is the changed fraction of second largest eigenvalue, ΔNadd is the changed
fraction of added connections.)

Remark 3: From the synchronization criterion (3), we can conclude that, al-
though the average path length and clustering coefficients are typical in the
range of small world category, the long-lattice-distance connections seem caus-
ing lower synchronousness of coupled networks described by (1) without some
shorter-lattice-distance connections being added. Thus, the ’short connections’
may have similar and equally important effectiveness with the ’long connections’
behaved for improving the synchronizability of a dynamical network. In a recent
research of Barahona and Pecora [17], they state the small-world property does
not guarantee in general that a network will be synchronizable. Further compar-
ison with the results in [17] will proposed later in another paper.

5 Conclusion

In this paper, we proposed a modified small-world lattice network model based
on the classical small-world models. Some basic characters are discussed based
on numerical experiments with comparison to each other. It can be found that,
by using our modified small-worldify algorithm, one can obtain a better clus-
tered small-world network with similar average path length. The result gives
us some hints: we can construct a small-world lattice with lower physical price
through the proposed modified method. We also discussed the synchronizability
of different networks on certain coupling scheme. The numerical results show
that, the random coupling in some sense the best candidate for such nonlocal
coupling in the semi-random strategy. Main results proposed in this paper are
all confirmed by extensive numerical simulations. As we know, sometimes, λ2

does not guarantee the synchronization and it need more conditions [11], [12].
We will continue our study on the long range for synchronization mechanism in
the near future.
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Abstract. In this paper, a novel mathematical model of neuron-Double Synap-
tic Weight Neuron (DSWN)1 is presented. The DSWN can simulate many kinds 
of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage 
and Hyper Ellipsoid models, etc. Moreover, this new model has been imple-
mented in the new CASSANN-II neurocomputer that can be used to form vari-
ous types of neural networks with multiple mathematical models of neurons. 
The flexibility of the DSWN has also been described in constructing neural net-
works. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-
dimensional space covering, a recognition system of omni directionally oriented 
rigid objects on the horizontal surface and a face recognition system had been 
implemented on CASSANN-II neurocomputer. In these two special cases, the 
result showed DSWN neural network had great potential in pattern recognition. 

1   Introduction 

Neural network models consists of a large number of simple processing units (called 
neuron) densely interconnected to each other through a synaptic interconnection net-
work. In the last decade, the level of interest in Artificial Neural Network (ANNs) has 
been steadily growing. Although software simulation can be useful, designers have 
been induced to face hardware solutions in order to meet the required performance of 
massive computing possibly mission-critical applications. Chip integration, multi-
chips system, wafer scale integration (WSI), and even multi - wafers system are the 
common methods [1], [2]. Despite many models and variations, a common feature for 
most of them is the basic data progressing unit or artificial neuron. In accordance, the 
neural networks’ performance is primarily decided by the basic computation method 
and function of neurons. 

Neural networks are aimed to mimic biological neural networks often attributed by 
learning, adaptation, robustness, association and self-organization. In the beginning of 
1940’s, a classical mathematical model of neuron was presented [3], which was given by 
the formula (1). 

                                                           
* This work was supported by the National Natural Science Foundation of China (No.60135010). 
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where Y is the output vector. f is an activation function (nonlinear function). X is 

the input vector. W is the weight vector and θ  is the activation threshold. 
According to formula (1), the neuron’s output is decided by two factors: one is the 

activation function f , and the other is the radix of the function ( θ−
=

n

i
ii XW

0

), which 

represents the distance from an input point (in the input space) to a decision hyper-
plane (one side is positive, and the other is negative). The equation of the decision 
hyperplane was given by the formula (2). 

θ−
=

n

i
ii XW

0

=0 (2) 

If the activation function is a step function, the neuron constructs a decision hyper-
plane in multi- dimensional input spaces. Then the value of output is equal to one 
when the input point is in one side of this hyperplane. It is zero otherwise. Pattern 
classifier usually used this kind of neural network [4]. 

 Researchers were at all the time purposing to create closed hypersurface to replace 
the hyperplane defined by (2) in multi-dimensional space [5]. The RBF neural net-
work is a supervised feed-forward back-propagation neural net with only one hidden 
layer. While rather than trying to find a boundary between different classes of in-
stances, it forms clusters in the multi-dimensional space with a “center” for each clus-
ter. These clusters are then used to classify different groups of data instances. The 
number of centers and the nonlinear functions used to determine the distance away 
from each center dictate the performance of a RBF neural net[6]. It was testified by 
experiments that in applications of pattern recognition and function fitting, the RBF 
neural network had the better performance than the neural network described by for-
mula (1). 

The mathematical model of RBF neural network is expressed as formula (3): 

))(( 2

0

2 θ
=

−−=
n

i
ii XWfY   (3) 

According to formula (3), if the activation function of neuron is a step function, the 
RBF neuron constructs a hypersphere with iW  as the center and θ  as the radius. 

When the input points fall into the inner of this hypersphere, the output is equal to 
zero. The output is one otherwise. Therefore, RBF neural network can be regarded as 
one of the simplest high-order neural networks. As its performance is better than the 
ones described by formula (1), the superiority of high-order hypersurface neural net-
works is evident. 

This paper intends to create a new mathematical model of neuron with better com-
monality, universal functionality, and easy implementation. The latter text will  
discuss a novel basic algorithm for high-order hypersurface neural networks-Double 
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Synaptic Weight Neuron (DSWN) networks, which is applied in the design of 
CASSANN-II neurocomputer.   

2   Early Research Work on General-Purpose Neurocomputer in  
     Author’s Lab 

A general-purpose neural network hardware should adapt to various neural network 
connections, diverse activation functions, and flexible algorithm models of neurons. A 
kind of its implemented method is to use changeable parameters to represent all vari-
ous factors in a general computing formula. Neurocomputer synchronously calculates 
the general computing formula repeatedly. And those   parameters are adjusted ac-
cording to practical requirement. Thus, a neural network with complex flexible archi-
tecture can be created [7]. For example, CASSANDRA-I neurocomputer, which was 
created in China, 1995, is readily based on general computing formula under men-
tioned: 
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where )1( +tOmi is output state value from the i -th neuron at the moment 

1+t when the m -th example is input. n  is the number of input nodes (i.e. the dimen-
sion of input space) and the maximum neuron number. 

ikF is non-linear function from 

the i -th neuron, whose subscript ik is serial number of non-linear function used by 

the i -th neuron, in function library. mjI is the j -th input value (i.e. the j -th dimen-

sion) in the m -th input pattern. )( tO mg is output state value at the moment t from 

the g -th neuron when the m -th example is input. jiW  is the weight from the j -th 

input node to the i -th neuron. '
giW is the weight from the g -th neuron to the i -th 

neuron. jiS  and '
giS are parameters that determine topological structural model of 

networks. And if jiS  =0, there has no connection between the j -th input node and 

the i -th neuron. If '
giS =0, there has no connection between output of the g -th 

neuron and input of the i -th neuron. On the contrary, there has connection. iθ is the 

threshold of the i -th neuron. iC is scale factor for enlarging dynamic range of calcu-

lation. 
According to formula (4), CASSANDRA-I neurocomputer can calculate feedfor-

ward networks and feedback networks with arbitrary topological architectures. Each 
neuron can random select various activation functions from non-linear function li-
brary. In CASSANDRA-I, there have different thresholds and scale factors. So, it has 
very flexible and adaptable in topological architecture of networks and parameters of 
neuron. However, we can easily see that the neuron of formula (4) is based on math-
ematic model of formula (1). So, it can only calculate “hyperplane” neural networks 
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and the calculation of “hypersurface” neural networks is too hard for it. We can use 
the basic calculation of formula (1) to calculate included angle between vectors. And 
then we can construct Direction-basis function (DBF)   neural network with the radix 
of non-linear function being the included angle. This DBF neural network can imple-
ment the functions of high-order neurons [8]. But the dimension of closed hypersur-
face achieved by it was 1−n dimension and all modules of input vectors were aban-
doned during normalization.  

In the following sections, a new model-DSWN with various functions and flexibil-
ity will be discussed in detail. 

3   The Double Synaptic Weight Neuron (DSWN) with  
     Commonality of Hypersurface 

The basic mathematical model of hypersurface neuron for the neurocomputer must 
satisfy the following conditions [9]: 

(1) The model has functions of the traditional hyperplane neuron and RBF neural 
network. 

(2) The model has the possibility to implement many various hypersurface. 
(3) The model can implement character modification by adjusting minority pa-

rameters. 
(4) The model can easily implement high-speed calculation with hardware meth-

ods. 

According to the conditions, the basic mathematical model of general neuron must 
be with high flexibility include calculations of both formula (1) and (3). A DSWN 
model has been proposed. In this model, the signal for each input node has two 
weights: one is direction weight and the other is core weight. The formula of this 
model is given as follow: 
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where Y is the output of neuron. f is the activation function. θ is the threshold. 

jiW  and '
jiW  are two weights from the j -th input node to neuron. jX is a  input 

value from the j -th input node. n is the dimension of input space. S is a parameter 

for determining the sign of single entry. If S =0, the sign of single entry is always 

positive and if S =1, its sign is the same as the sign of )( '
jijji WXW − . p is a expo-

nent parameter. 

Obviously, if all 'W =0, S =1, p =1, the formula (5) is the same as the formula (1). 

If allW =1, S =0, p =2, the formula (5) is the same as the formula (3). Therefore, the 

formula (5) satisfies the condition (1). 
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If we assume that S =0, this formula defined a closed hypersurface neuron. When 
the radix of function f is fixed to a definite value, the locus of input points is a closed 
hypersurface. And its center is decided by 'W . Its shape can change according to the 
value of p on the assumption that all values of W are equal. The case in three-
dimensional space can be illustrated. The various shapes of this closed hypersurface 
according to the value of p being 1/3, 1/2, 1, 2, 3, 4 are showed in figure1, 2, …, 6, 
respectively. 
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 Fig. 4.                                          Fig. 5.                                         Fig.6.         

 
 
 
 
 
 
 
 
 
 
 

                         Fig. 7.                                                                          Fig. 8. 
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If the weight W has different values, the closed hypersurface will be extended or 
compressed on various directions. If p =2, the hypersphere will be extended or com-

pressed to construct various hyper-sausage or hyper-ellipsoids on different dimen-
sional directions as illustrated in figure 7,8. 

Thus, the formula (5) satisfies the condition (2) and (3). 

4   The General Formula of Neural Network Hardware Based on 
     DSWN Neurons 

The author created general purpose neurocomputer CASSANN–II based on formula 
(5), which is suitable for traditional BP networks, RBF networks, hyper sausage net-
works, hyper ellipsoid networks and various high-order hypersurface neural networks. 

Its general formula is defined as follow: 
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where )1( +tOmi is the output state value from i -th neuron at the moment 1+t  

when the m -th example is input. 
ikF is the output non-linear function of the i -th 

neuron and its subscript ik  is the serial number of non-linear function in function 

library used by the i -th neuron. mjI  is the j -th (i.e. the j -th dimension) input value 

in the m -th input example. jiW and '
jiW are “direction” weight and “core” weight 

from the j -th input node to the i -th neuron, respectively. giW  and '
giW are “direc-

tion” weight and “core” weight from the output of the g -th neuron to the i -th neu-

ron, respectively. p is a exponent parameter (1/3, 1/2, 1, 2, 3, 4). S (0 or 1) is a pa-

rameter for determining the sign of single entry. )(tOmg  is the output value from the 

g -th neuron at the moment t  when the m -th example is input. iθ is the threshold of 

the i-th neuron. iC is a scale factor. iλ  is a scale factor of coordinate of non-linear 

function. 
According to the formula (6), CASSANN–II neurocomputer can simulate arbitrary 

neural network architectures with various neuron features (including hyperplane, 
hypersphere, hyper sausage, various hyper-ellipsoids, hypercube and so on).  
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5   Applications of Biomimetic Pattern Recognition Implemented  
     on CASSANN-II Neurocomputer 

CASSANN-II neurocomputer is composed of DSWN. Based on the theory of Biomi-
metic Pattern Recognition (BPR) [10] and high-dimensional space covering, many 
applications of pattern recognition have been implemented on CASSANN-II neuro-
computer successfully. 

 
 
 
 
 
 
 
 
 

Fig. 9. training set 

 

 

Fig. 10. test set 

The first application of CASSANN-II neurocomputer is a recognition system of 
omni directionally oriented rigid objects on the horizontal surface [10] based on BPR. 
Ignoring the disturbance, the distribution region of a certain class is topologically 
homomorphical to a circle. So Hyper sausage neuron (HSN) networks are used to 
construct the covering sets of different classes. The SVM method with RBF kernel is 
also used as control experiment. The samples for training and test are divided in three 
sample sets. The first one contains 3200 samples of 8 objects (lion, rhinoceros, tiger, 
dog, tank, bus, car, and pumper,Fig.9), while the second one contains another 3200 
samples that are collected later from the same 8 objects. A third one, which comprise 
2400 samples of another 6 objects (cat, pug, zebra, little lion, polar bear and ele-
phant,Fig.10), is used for the false acceptance test. All the samples are mapped into a 
256-dimensional feature space. The HSN networks are constructed according to the 
training samples, which are selected from the first sample set. Under the condition 
that no one sample in the first and second set is misclassified and no one in the third 
set is accepted falsely, the correct recognition rates of BPR and RBF-SVM with dif-
ferent training set are shown in Table 1.  
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Table 1. The results of RBF-SVM and BPR 

RBF-SVM BPR Amount 
of Training 
Samples 

SV Correct rate HSN Correct rate 

338 2598 99.72% 338 99.87% 
251 1925 99.28% 251 99.87% 
216 1646 94.56% 216 99.41% 
192 1483 88.38% 192 98.98% 
182 1378 80.95% 182 98.22% 
169 1307 78.28% 169 98.22% 

 

Another application of CASSANN-II neurocomputer is a face recognition system 
[11]. If the changes of face appearance are considered as disturbance, the distribution 
region is topologically homomorphical to an arc when he turns his face horizontally. 
So the HSN network is very fit to construct the covering set. Ninety-one face pictures 
of 3 persons are used to construct three HSN networks, and 226 face pictures were 
used to test the correct recognition rate of the same class, while 728 pictures were 
used to test the rejection rate of the other classes. The correct recognition rate of the 
same class reaches 97%, while the rejection rate of the other classes is 99.7%. As the 
contrast, the correct recognition rate of the same class reaches 89.82%, while the 
rejection rate of the other classes is 97.94% in K-NN method. [11] 

6   Conclusions 

This paper proposed a novel general-purpose neuron model- DSWN, which can con-
struct both the hyper sausage and some other more complex shapes. At the same time, 
this new model is realized using hardware and implemented in the new CASSANN-II 
neurocomputer. 

Based on the theory of BPR and high-dimensional space covering, a recognition 
system of omni directionally oriented rigid objects on the horizontal surface and a 
face recognition system had been implemented on CASSANN-II neurocomputer. The 
result showed DSWN neural network had great potential in pattern recognition.  
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Abstract. In order to explore the search mechanism of chaotic neural net-
work(CNN), this paper first investigates the time evolutions of four chaotic noise 
models, namely Logistic map, Circle map, Henon map, and a Special 
Two-Dimension (2-D) Discrete Chaotic System. Second, based on the CNN 
proposed by Y. He, we obtain three alternate CNN through replacing the chaotic 
noise source (Logistic map) with Circle map, Henon map, and a Special 2-D 
Discrete Chaotic System. Third, We apply all of them to TSP with 4-city and 
TSP with 10-city, respectively. The time evolutions of energy functions and 
outputs of typical neurons for each model are obtained in terms of TSP with 
4-city. The rate of global optimization(GM) for TSP with 10-city are shown in 
tables by changing chaotic noise scaling parameter γ  and decreasing speed pa-

rameter β . Finally, the features and effectiveness of four models are discussed 
and evaluated according to the simulation results. We confirm that the chaotic 
noise with the symmetry structure property of reverse bifurcation is necessary for 
chaotic neural network to search efficiently, and the performance of the CNN 
may depend on the nature of the chaotic noise.    

1   Introduction 

Recently, many artificial neural networks with chaotic dynamics have been investi-
gated for optimization [2]-[13]. One of the well-known neural networks for combina-
torial optimization problems is the Hopfield neural network (HNN) [1]. The HNN 
model may converge to a stable equilibrium point, but suffers from severe local minima 
due to its gradient descent dynamics. In order to take advantage of both the Hopfield 
network’s convergent dynamics and chaotic dynamics, some network models com-
posed of chaotic elements have been proposed for information processing [2]-[12]. It 
may be useful to combine chaotic neurodynamics with heuristic algorithm, high effi-
ciency of which has already been well confirmed [6] [7][13]. For the purpose of har-
nessing chaos, a kind of chaotic simulated annealing algorithm was derived by ex-
tending the original chaotic neural network to a transiently chaotic neural network by 
introducing the self-feedback connection weight [3]. A more sophisticated adaptive 
annealing scheme was also considered for practical applications, where the network 
dynamics is changed from chaotic to convergent by adjusting some parameters [8]. 
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Wang and Smith presented an alternate approach to chaotic simulated annealing by 
decaying the time step tΔ [5]. In order to combine the best of both stochastic wan-
dering and efficient chaotic searching, Wang et al obtained a stochastic chaotic simu-
lated annealing by adding a decaying stochastic noise in the transiently chaotic neural 
network of Chen and Aihara [3]. The previous approaches are all based on continuous 
HNN. Based on the discrete-time continuous-output Hopfield neural network 
(DTCO-HNN) model, Y. He proposed an approach for the TSP by adding chaotic noise 
to each neuron of the DTCO-HNN and gradually reducing [9][10]. As the chaotic noise 
approaches zero, the network becomes the DTCO-HNN, thereby stabilizing and 
minimizing the energy. 

  In this paper, we harness chaotic behavior for convergence to a stable equilibrium 
point and attempt to clarify the search mechanism of CNN. We obtain three alternate 
CNN through replacing the chaotic noise source (Logistic map) in He’s CNN with 
Circle map, Henon map, and a Special 2-D Discrete Chaotic System. According to the 
computer simulation results of solving the TSP with various approaches, the four CNN 
all can search global optimal solutions, but the GM is different in terms of different 
control parameters. Comparisons of solution quality, optimization performance, effi-
ciency of the chaotic search etc. are discussed to try to gain the understanding of chaotic 
search mechanism. 

2   Chaotic Neural Network Models 

Based on the discrete chaotic neural network proposed [9][10] by Y. He, the effects of 
additive chaotic noise are checked. The chaotic neural network based on in this paper is 
defined as follows:  

)1()()()1( tIvwtu iijiji γηα ++=+  
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1
))(()(

/)( εtuii
ie

tuftv
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==  

)3()()( htzt ii −=η  

where  (i=1, 2, … , n) 
  )(tvi      Output of neuron i ; 

  )(tui      Internal state of neuron i; 

ijw        Connection weight from neuron j  to neuron i , jiij ww = ; 

iI         Input bias of neuron i; 

γ       Positive scaling parameter for the chaotic noise; 
α       Positive scaling parameter for neural inputs; 

)(tiη       Chaotic noise for neuron i; 

ε         Gain of the output function, 0>ε ; 
)(tzi       Chaotic noise source; 

h         Input bias of chaotic noise 
The chaotic noise source )(tzi  can be the Logistic map [10], 

)4())(1)(()()1( tztztatz iii −=+  
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Let )(ta  decay exponentially so that )(tzi is initially chaotic and eventually settles 

to a fixed point *z  and *zh = . 
)5()()1()1( 0atata ⋅+−=+ ββ  

In order to study the dynamics of the chaotic neural network, we firstly investigate 
the time evolutions of the previous Logistic map in this section. In terms of the de-
caying rule (5) ( 5.2,005.0 0 == aβ ) for )(ta  and the initial value of )0(a  (=3.9), )(ta  

is decreased by one step after each of iteration. The time evolution of )(tz  is shown in 

Fig. 1(a) with respect to control parameter )(ta . The other three type of chaotic noise 

source take as follows: 
 

(a) Circle map 
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where ]1,1[ +−∈nV , 01.0=Ω , 50.00 =V . 

)7()1(1 β−=+ nn kk  

where β  is decreasing rate.  
The initial values of k , β  are 0.5=k , 003.0=β , respectively, and k  is de-

creased by one step after each of iteration according to the decreasing rule (7). Fig. 1(b) 
shows the time evolution of nV  according to control parameter k . 

     

 
(a) Logistic map                                      (b) Circle map 

  
(c) Henon map                              (d) a Special 2-D Discrete Chaotic System 

Fig. 1. the time evolutions of chaotic noise within 500 iterations 
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(b) Henon map 
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where 5.0,5.0 00 == yx . 

)9()1(1 nn pp β−=+  

The initial values of ,p β  are p =2.0, 003.0=β , and p  is decreased by one step 

after each of iteration in terms of the decaying rule (8). Fig. 1(c) shows the time evo-
lution of nx  according to control parameter p . 

(c) a Special Two-Dimension (2-D) Discrete Chaotic System [14] 
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where 1.06.11.025.0 ==−== cbaξ 0.00.0 00 == vu . 
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The initial values of β,k  are 0.5=k 0005.0, =β , and k  is increased by one step 

after each of iteration in terms of the rule (11). Fig. 1(d) shows the time evolution of nu  

according to control parameter k .    

3   Application to the TSP    

3.1 The Chaotic Dynamics and Energy Function of the Neural Network for TSP 

In the TSP, the salesman is to visit all n  cities once and only once, returning to his 
starting point after traveling the minimum total distance. The exact solution is easily 
found for the small system size n , but as the number of possible solutions increases 
exponentially with n , it becomes difficult to find the best solution. To verify and il-
lustrate the features and effectiveness of CNN with different chaotic noises for com-
binatorial optimization problems, we apply them to TSP in this section, respectively. 

The formulation for TSP by Hopfield and Tank [1] is adopted. Namely, a solution of 
TSP with n  cities is represented by the outputs of a nn ×  network, with 1=ikv  sig-

nifying that the salesman visits city i  in order k . The chaotic discrete dynamics of the 
neural network for TSP in this paper is defined as follows: 
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where i, k=1, 2, … , n 
)(tikη       Chaotic noise for neuron ki, ; 

  )(tzik       Chaotic noise source; 

h        Input bias of chaotic noise; 
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A computational energy function used to minimize the total tour length while si-
multaneously assuring that all the constraints are satisfied takes the following form: 
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where ini vv =0  and 11 iin vv =+ , A  and B  are the positive parameters corresponding 

to the constraints and the tour length, respectively, and ijd  is the distance between city 

i  and city j . 

Although the dynamics of (12) is discrete, the output ikv  from (13) takes a con-

tinuous value between zero and one. The corresponding energy function of (15) is also 
continuous. Since a solution to TSP requires the states of the neurons to be either zero 
or one, a discrete output is introduced as follows: 
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where )(~ tvi  is nth value of 
n

k ik tv )(  in order to reduce the number of the iteration. In 

the simulations, the continuous energy function CE  using (15) and the discrete energy 

function dE  by replacing ikv  with d
ikv  in (16) are simultaneously calculated. 

In the following studies, a four-city TSP is examined with data originally used by 
Hopfield and Tank  [1], and a ten-city TSP is analyzed with data in [1] with 1000 
randomly generated initial conditions of ]1,1[ −∈iku  and )1,0(∈ikv . The constant 

values of A  and B  are both one in (12) and (15). The asynchronous cyclic updating of 
the neural-network model is employed. A iteration means one cyclic updating of all 
neuron states. The chaotic noise )(tikη  in (14) is assigned to each neuron and they are 

independent of each other. In this paper, the focus of the simulations is on the optimi-
zation performance (the rate of global optimization) with different chaotic noise. So, 
the term )(tzik  in (14) will be replaced with Logistic map (Eq4), circle map (Eq6), 

Henon map (Eq8) and a Special 2-D Discrete Chaotic System (Eq10), respectively. The 
term h  in (14) is adopted the different fixed point *z  according to Eq4, Eq6, Eq8, 
Eq10. The other parameters γβα ,,  are adjusted with the different chaotic noise 

model. 

3.2   Simulations on TSP with 4-City 

The performance of Y. He’method is firstly investigated as a reference for later com-
parison. The same decaying rule for )(ta ( 5.20 =a ) in (5) and the same initial value of 

)9.3)(0( =a are used for all neurons, and )(ta  is decreased by one step after each of 

iteration. Fig. 2 shows the time evolutions of (a) the discrete energy function dE and 
(b) neuron 44v for the four-city TSP with 

004.0,6.0,1.0,003.0,015.0 ===== εγβα h . 
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                 (a)                                       (b)  

Fig. 2. Time evolutions of (a) dE  and (b) 44v  with logistic map as chaotic noise 

Second, the performance of CNN with the circle map is examined in this subsection. 
The same decaying rule for k  in (7) and the same initial value of k  ( 0.5= ) are used 
for all neurons, and k  is decreased by one step after each of iteration. Fig. 3 shows the 
time evolutions of (a) the discrete energy function dE and (b) neuron 34v for the 

four-city TSP with 004.0,024.0,5.0,005.0,05.0 ===== εγβα h . 

Furthermore, the performance of another CNN model is explored, which the chaotic 
noise source is Henon map. The same decaying rule for p  in (9) and the same initial value 

of p  ( 0.2= ) are used for all neurons, and p  is decreased by one step after each of itera-

tion. Fig. 4 shows the time evolutions of (a) the discrete energy function dE and (b) 
neuron 44v for the four-city TSP with 004.0,4.0,5.0,003.0,015.0 ===== εγβα h .  

          
                             (a)                                                              (b) 

Fig. 3. Time evolutions of (a) dE  and (b) 34v  with circle map as chaotic noise 

 
Finally, we check the performance of the CNN with a Special 2-D Discrete Chaotic 

System as chaotic noise. The same increasing rule for k  in (11) and the same initial 
value of k  (=0.0) are used for all neurons, and k  is increased 0.0005 ( 0005.0=β ) by 
one step after each of iteration. Fig. 5 shows the time evolutions of (a) the discrete 
energy function dE and (b) neuron 12v for the four-city TSP with 

004.0,33.2,5.1,05.0 =−=== εγα h . 
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                             (a)                                                          (b) 

Fig. 4. Time evolutions of (a) dE and (b) 44v  with Henon map as chaotic noise 

     
                           (a)                                                             (b)     

Fig. 5. Time evolutions of (a) dE and (b) 12v  with a Special 2-D Discrete Chaotic System as 

chaotic noise          

3.3   Simulations on TSP with 10-City 

For the instance, 1000 simulations were performed for each CNN with different initial 
neuron states. While using logistic map as chaotic noise source, 6.0,015.0 == hα  are 
adopted. The 008.0,06.0 == hα  are used in CNN when using circle map as chaotic 
noise source. The coefficients h,α are fixed to 0.015, 0.18 in CNN with Henon map. 
The coefficients h,α are fixed to 0.02, -2.33 in CNN with 2-D discrete system. The 
rate of reaching the global minimum (GM) and the number of iterations (NI) required 
for the network to converge are presented in Table 1 with different coefficient γ  while 
coefficient β  is bounded to 0.015, 0.003, 0.005 and 0.001, respectively. 

    
Table 1. Simulation results for each γ  

Logistic Map Circle Map Henon Map 2-D Map 
γ  GM NI γ  GM NI γ  GM NI γ  GM NI 
0.1 100% 87 0.09 0%  0.005 34% 50 0.015 100% 95 
0.3 100% 97 0.1 40% 193 0.007 99% 68 0.10 100% 214 
0.6 100% 121 0.15 0%  0.01 100% 186 1.00 100% 261 
0.8 100% 144    0.015 100% 233 5.00 100% 285 
1.0 100% 165    0.02 100% 254 10.0 100% 297 
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Bounded γ  to 0.1, 0.1, 0.01 and 0.1 in each CNN, respectively, Table 2 shows the 

GM and NI on 10-city TSP for each β . 
       

Table 2. Simulation results for each β  

Logistic Map Circle Map Henon Map 2-D Map 
β  GM NI β  GM NI β  GM NI β  GM NI 

0.003 100% 346 0.002 0%  0.002 100% 266 0.0005 100% 368 

0.008 100% 143 0.003 40% 193 0.003 100% 186 0.0008 100% 255 

0.015 100% 87 0.005 0%  0.005 100% 372 0.001 100% 214 

0.05 100% 41    0.01 100% 64 0.003 100% 101 

0.1 100% 31    0.03 0%  0.005 100% 75 

4   Discussion    

4.1   Transient Chaos Scenario    

On the basis of the several numerical studies, the time evolution of typical neuron (Fig 
2 (b), Fig 3(b), Fig 4 (b) and Fig 5 (b)) is analogue to the one of chaotic noise source 
(Fig 1 (a), (b), (c) and (d)), respectively. The time evolutions of typical neurons show 
that the output of each neuron undergoes period-doubling bifurcation routes, which 
lead to neuronal stable state to be 0 or 1 according to the control parameter. Those 
figures show that the initial output of neuron is chaotic between 0 and 1. As the control 
parameter is further decreased, the neuron state switches among smaller scale, and fi-
nally merges into a single stable state, which corresponds to a neuron chaotic attractor. 
The merging process gives rise to the corresponding wandering of the energy among 
local minima, which can be observed in Fig 2 (a), Fig 3 (a), Fig 4 (a) and Fig 5 (a). We 
use the control parameter ( p ) in CNN with Henon map for 4-city TSP to illustrate the 

phenomenon. At the first stage, 95.00.2 >≥ p , the neuron 44v output is chaotic be-

tween 1 and 0, and the corresponding value of discrete energy wanders between 4.00 
and 1.39379724; at the second stage, 70.095.0 >≥ p , the neuron 44v output is pe-

riod-doubling bifurcation, and the corresponding value of discrete energy switches 
between 2.110667 and 1.760779; at the third stage, 45.070.0 >≥ P , the neuron 

44v output is 0, and the corresponding value of discrete energy is the minima 

(1.341768). The simulations confirm that transient chaos takes a key role for the global 
optimization of TSP during the chaotic search of CNN.    

4.2   Parameter Tuning     

Parameter tuning is one of the important issues to improve the performance of such 
kinds of networks. In fact, total performance for finding the best solution strongly 
depends on the set of coefficients in E, bias h, and the decaying rate β  of chaotic noise. 
In section 2, we adjust the decaying parameter β  to control the chaos to equilibrium 
via period-doubling bifurcation in terms of Eq4, Eq6, Eq8, and Eq10, respectively. 
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While incorporating the different chaotic noise into CNN for 10-city TSP, the positive 
scaling parameter γ  and decreasing speed β  should be adjusted to gain the global 
optimization solution. From Table1, Table2, the observations can be made: when β  is 
set to a small value, it uses more steps to converge to a stable state; when γ  is set to a 
large value, it uses more steps to converge to a stable state. The problem to be settled 
for ‘chaotic search’ is the difficulty of choosing good parameter values for 
( γβα ,,,, BA ) that may give rise to efficient ‘chaotic search’. For ‘chaotic search’, it 
may be necessary to adjust the parameters to obtain the symmetric reverse bifurcation 
structure.   

4.3   Efficiency of the Chaotic Search   

In this paper, we intend to clarify the search mechanism of CNN designed to solve 
optimization problems and the role of chaotic noise during the process of chaotic 
search. It is clear that the searching dynamics of the CNN is made up of two combined 
dynamics in Eq12. The first term is the input of neuron. The second term is the input of 
chaotic noise. The second term makes much contribution to the searching dynamics 
because positive scaling parameter α  for neural inputs is small. For example, the Fig5 
(b) represents that neuron 12v undergoes chaos to equilibrium via reverse bifurcation 

for the four-city TSP. The other three models show the same effects. From Table1, 
Table2, the observations can be made: the CNN with circle map has worse effects than 
the other three methods. The numerical simulation implies the ‘better’ the transient 
chaos process is the higher the ‘chaotic search’ capability. As long as the external noise 
is appropriate, the energy function (Eq15) of the CNN could sense the force of additive 
chaotic noise. In this experiment, it is well confirmed that the performance of the CNN 
may depend on the nature of the chaotic noise.   

5   Conclusion   

In this paper, possible functional roles of transient chaos are explored. Chaotic effects 
of four chaotic models are firstly investigated, namely, Logistic map, Circle map, 
Henon map and a Special 2-D Discrete Chaotic System. The time evolutions of each 
chaotic noise model are given in Fig1. Second, based on He’s CNN model, three al-
ternate approaches are obtained by replacing the chaotic noise source of He’s method 
with Circle map, Henon map and a Special 2-D Discrete Chaotic System, respectively. 
While applying them to TSP, we obtain that the time evolutions of the discrete energy 

function dE and typical neuron for the TSP with four-city. All of them are also applied 
to TSP with 10-city, respectively. The GM of 1000 different initial conditions are ob-
tained for each of γ  with fixed β  and for each of β  with fixed γ . The simulation 
results show that the symmetric bifurcation property can improve the efficiency of the 
chaotic search. Applying the chaotic dynamics to larger scale optimization problems 
will be studied in forthcoming papers. The systematic way for determining good pa-
rameter values for ( γβα ,,,, BA ) is the subject of future research. 
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Abstract. This paper presents a novel learning model in qubit neuron according
to quantum circuit and describes the influence to learning with gradient descent
by changing the number of neurons. The first approach is to reduce the number
of neurons in the output layer for the conventional technique. The second is to
present a novel model, which has a 3-qubit neuron including a work qubit in
the input layer. For the number of neurons in the output layer, the convergence
rate and the average iteration for learning are examined. Experimental results are
presented in order to show that the present method is effective in the convergence
rate and the average iteration for learning.

1 Introduction

For quantum computation [1],[2] and neural network [3], a number of approaches have
been studied. A neural network model dealt with the quantum circuit has been devised
for the quantum computation and has been known to exhibit the high capability for
learning [4]. However this model has many neurons placed in the output layer so as to
correspond to the generall quantum circuit. The neuron is the model which rewrites the
computation in quantum mechanics, instead of the real number calculation in neural
network, and takes the structure unlike the actual quantum circuit. For the qubit neuron
according to the quantum circuit, thus the number of neurons is expected to the less
number than in the conventional technique.

In this study, we present a novel learning model in qubit neuron according to quan-
tum circuit and describe the influence to learning with gradient descent by chang-
ing the number of neurons. The first approach is to reduce the number of neurons
in the output layer for the conventional technique. The second is to present a novel
model, which has a 3-qubit neuron including a work qubit in the input layer. For the
number of neurons in the output layer, the convergence rate and the average itera-
tion for learning are examined. Experimental results are presented in order to show
that the present method is effective in the convergence rate and the average
iteration.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 283–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Quantum Computation

2.1 Quantum Bit

The bit expression in quantum computer is presented with a quantum bit (qubit). For the
qubit, the state 0 represents |0〉, and the state 1, |1〉. The qubit |φ〉with the superposition
of two states is shown as follows.

|φ〉 = α|0〉+ β|1〉, (1)

where α and β are the complex number called the probability amplitude.
In the field of quantum mechanics, the probabilities that |0〉 and |1〉 are observed

become the square of the absolute value for α and β, respectively. Here α and β satisfy
the following relation.

|α|2 + |β|2 = 1 (2)

As |0〉 and |1〉 for the qubit are strictly described, these are expressed with the
following matrix.

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
(3)

2.2 Quantum Gate

The quantum circuit is constituted by the quantum logic gate, such as the rotation gate
and the control NOT gate, as shown in Figs. 1 and 2, respectively. For the rotation gate,
the state of 1-qubit is rotated. For the control NOT gate, if the qubit a is |1〉, the output
b’ becomes the reversal sate of the qubit b. Thus the control NOT gate carries out the
XOR operation.

In order to describe the state of qubit, the complex function is used as the quantum
state in the following equation, in which the probability amplitude |0〉 corresponds the
real part and the |1〉, the imaginary part.

f(θ) = eiθ = cos θ + i sin θ, (4)

where i is the imaginary unit
√
−1.

Therefore the quantum state is presented as follows.

|φ〉 = cos θ|0〉+ sin θ|1〉 (5)

θa a’

Fig. 1. Rotation gate for 1-qubit



A Learning Model in Qubit Neuron According to Quantum Circuit 285

a

b b’

Fig. 2. Control NOT gate for 2-qubit

According to the representation of the quantum state, the rotation gate and the con-
trol NOT gate are described. The rotation gate is presented as follows.

f(θ1 + θ2) = f(θ1)f(θ2) (6)

The control NOT gate is expressed as follows.

f
(π

2
γ − θ

)
=
{

sin θ + i cos θ (γ = 1)
cos θ − i sin θ (γ = 0) (7)

where γ is the control variable. γ = 1 implies the reversal state and γ = 0 means the
non-reversal.

2.3 3-Qubit Circuit

Figure 3 shows the 3-qubit circuit. The qubit circuit has the logic state, namely, the
work qubit c has the state of logical operation for qubits a and b, by changing the values
of θ1, θ2, θ3, and θ4. For the qubit c, AND state |a · b〉, OR state |a + b〉, and XOR state
|a⊕ b〉 can be realized in the quantum circuit.

2.4 Qubit Circuit in Neural Network

As the state |1〉 is corresponded to an excitatory state and the state |0〉, an inhibitory
state, the quantum state of neurons is considered as the superposition of the excitatory

a

b

θ 1 θ 2 θ 3 θ 4c c’

Fig. 3. 3-qubit circuit



286 M. Maeda, M. Suenaga, and H. Miyajima

and the inhibitory states. According to Eq. 4, the state of i-th neuron si which receives
inputs from n neurons is presented as follows.

si = f(ui). (8)

Then

ui =
π

2
g(δi)− arg(vi) (9)

vi =
n∑

j=1

f(θji)f(uj), (10)

where g(x) is the sigmoid function in the following equation.

g(x) =
1

1 + e−x
(11)

For the qubit neural network, there exist two variables, the phase variable θ and the
reversal rate variable δ. θ is among neurons and δ is in each neuron. θ and δ corre-
spond to the phase of the rotation gate and the reversal rate of the control NOT gate,
respectively.

3 Learning Model of Qubit Neuron

In this section, a novel learning model of qubit neuron is presented. Figure 4 shows the
network model according to the qubit circuit. xj (j = 1, 2, · · · , m) and x0 (= 0) in the
input layer and yk (k = 1, 2, · · · , n) in the output layer represent neurons. The input-
output properties of neurons in each layer are concretely exhibited as the following
description. For the suffix with the top here, a neuron in the input layer represents I ,
and in the output layer, O.

x 1

x 2

y

Input Layer Output Layer

0

Fig. 4. Model for qubit neuron
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(i) Input-output of neurons in the input layer
The output function of neurons in the input layer is written as follows.

uI
m =

π

2
xm (12)

sI
m = f(uI

m), (13)

where xi has the input {0, 1}. The output function f(x) corresponds to Eq. 4. For the
input 0, the input to the network contains the input of |0〉, since uI

m = 0 holds and the
phase exists on the real axis. For the input 1, the input to the network corresponds to the
input |1〉, because uI

m = π/2 holds and the phase exists on the imaginary axis.
(ii) Input-output of neurons in the output layer
According to Eqs. 8, 9, and 10, the output function of neurons in the output layer is

presented as follows.

vO
k = eiθk−1,ksO

k−1 +
n∑

j=1

eiθj,ksI
j (14)

uO
k =

π

2
g(δk)− arg(vO

k ) (15)

sO
k = f(uO

k ) (16)

where

vO
1 = eiθ0,1ei0 +

n∑
j=1

eiθj,1sI
j (17)

(iii) Final output
The final output is used the probability which is observed the state |1〉. As the imag-

inary part represents the probabilistic amplitude of the state |1〉, the output is the square
of the absolute value in the following equation.

y = Im(sO
n )Im(sO

n ) (18)

For learning in the qubit neuron, the gradient descent is used in this study. The
evaluation function is presented as follows.

E =
1
2

M∑
p=1

(yt
p − yp)2 (19)

where M is the number of sample data, yt
p is the desired output, and yp is the final

output of neurons.
In order to decrease the value of the evaluation function E, θ and δ are updated as

follows.

θ(t + 1) = θ(t) + Δθ(t) (20)

δ(t + 1) = δ(t) + Δδ(t) (21)
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Fig. 5. Dependence of learning constant for conventional model. Number of neurons in output
layer is four.

Subsequently Δθ and Δδ are calculated as follows.

Δθ(t + 1) = −η
∂E

∂θ
(22)

Δδ(t + 1) = −η
∂E

∂δ
(23)

where η is the learning constant.

4 Experimental Results

In the numerical experiments, the phase variable θjk is randomly assigned in [0, 2π)
and the reversal rate variable δk is distributed in [−1, 1] at random for the initial stage.
In order to evaluate the performance of the present model, the network learns the basic
logical-operation XOR. For XOR operation, four kinds of patterns, (x1, x2 : yt) =
{(0, 0 : 0), (0, 1 : 1), (1, 0 : 1), (1, 1 : 0)}, are given to the network every learning. The
results are averages of 500 trials.

Figure 5 shows the dependence of learning constant on the convergence rate and
the average of learning iteration for the conventional model (The number of neurons in

Table 1. Learning in conventional approach

Number of neurons 4 3 2 1
Convergence rate [%] 100 100 97.2 0

Average iteration 63.9 66.8 175.2 —
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Table 2. Learning in present approach

Number of neurons 4 3 2 1
Convergence rate [%] 100 100 99.0 55.8

Average iteration 45.4 47.3 165.8 445.1
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(a) Number of neurons: 3
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(b) Number of neurons: 2

Fig. 6. Number of neurons in output layer is three and two for conventional model

the output layer is four). Figure 6 exhibits the number of neurons in the output layer is
three and two for the conventional model. Here we confirmed that the network cannot
learn for one neuron in the output layer for the conventional model. When the number
of neurons increases, the model exhibits high qualities.

Figures 7 and 8 show the dependence of learning constant on the convergence rate
and the average of learning iteration for the present model. When the number of neurons
increases, the model exhibits high qualities. Especially the present model can learn for
one neuron in the output layer.
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(a) Number of neurons: 4
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(b) Number of neurons: 3

Fig. 7. Dependence of learning constant for present model. Number of neurons in output layer is
four and three.

Tables 1 and 2 summarize the convergence rate and the average iteration for XOR
problem in the conventional model and the present model, respectively. Here the values
are described for the best results in the learning constant. The present method exhibits
high qualities.

5 Conclusions

In this paper, we have presented a novel learning model in qubit neuron according
to quantum circuit and have described the influence to learning with gradient descent
by changing the number of neurons. The first approach was to reduce the number of
neurons in the output layer for the conventional technique. The second was to present
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(a) Number of neurons: 2
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(b) Number of neurons: 1

Fig. 8. Dependence of learning constant for present model. Number of neurons in output layer is
two and one.

a novel model, which had a 3-qubit neuron including a work qubit in the input layer.
For the convergence rate and the average iteration, it has been shown that the present
method is more effective than the conventional method. Finally, we will study more
effective techniques for the future works.
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Abstract. The min-max modular neural network with Gaussian zero-
crossing function (M3-GZC) has locally tuned response characteristic and
emergent incremental learning ability, but it suffers from quadratic com-
plexity in storage space and response time. Redundant Sample pruning
and redundant structure pruning can be considered to overcome these
weaknesses. This paper aims at the latter; it analyzes the properties
of receptive field in M3-GZC network, and then proposes a strategy for
pruning redundant modules. Experiments on both structure pruning and
integrated with sample pruning are performed. The results show that our
algorithm reduces both the size of the network and the response time no-
tably while not changing the decision boundaries.

1 Introduction

The min-max modular (M3) neural network [1,2] is an alternative modular neural
network model for pattern classification. It has been used in real-world problems
such as part-of-speech tagging [3] and single-trial EEG signal classification [4].
The fundamental idea of M3 network is divide-and-conquer strategy: decompo-
sition of a complex problem into easy subproblems; learning all the subproblems
by using smaller network modules in parallel; and integration of the trained
individual network modules into a M3 network.

Using linear discriminant function [5] as the base network module, the M3

network (M3-Linear) has the same decision boundaries as that of the nearest
neighbor classifier (NN) [6]. And M3-Linear is a specialization of M3 network
with Gaussian zero-crossing function (M3-GZC) [7], so M3-GZC can be viewed as
a generalization of nearest neighbor classifier. The most attracting attributes of
� To whome correspondence should be addressed. This work was supported in part by

the National Natural Science Foundation of China via the grants NSFC 60375022
and NSFC 60473040.
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M3-GZC are its locally tuned response characteristic and emergent incremental
learning ability. But it suffers from quadratic complexity in space and time, and
may be inefficient in large-scale, real-world pattern classification problems.

To decrease the storage space and response time of M3-GZC network, two
ways of redundancy pruning can be considered. One is sample pruning, which is
inspired by pruning strategies in NN [8,9,10,11,12,13,14,15]. We have proposed
the Enhanced Threshold Incremental Check algorithm [16] for M3-GZC network
in our previous work. The other way is structure pruning, which is correlative
with detailed network and can not borrow ideas from NN. In this paper we will
analyze the structure of M3-GZC network and propose a pruning algorithm.

The rest of the paper is organized as follows: In Section 2, M3-GZC network
is introduced briefly. In Sections 3 and 4 we analyze the properties of receptive
field and redundant modules in M3-GZC network. In Section 5 pruning algorithm
is described. Experiments are presented in Section 6. Finally, conclusions are
presented in Section 7.

2 Min-Max Modular Network with GZC Function

Let T be the training set for a K-class problem,

T = {(Xl, Dl)}L
l=1 , (1)

where Xl ∈ Rn is the input vector, Dl ∈ RK is the desired output, and L is the
total number of training data.

According to the min-max modular network [1,2], a K-class problem defined
in equation (1) can be divided into K × (K − 1)/2 two-class problems that are
trained independently, and then integrated according to a module combination
rule, namely the minimization principle. Fig.1(a) shows the structure of M3

network to a K-class problem, where Li denotes the number of data belonging
to class Ci.

A two-class problem can be further decomposed into a number of subprob-
lems and be integrated according to the minimization principle and the max-
imization principle. These subproblems can be learned by some base network
modules, such as SVM[17], back-propagation algorithm[3,4], and so on. Suppose
the training set of each subproblem has only two different samples, and the base
network module is Gaussian zero-crossing discriminate function as defined in
equation (2), the corresponding network is called M3-GZC network.

fij (x) = exp

[
−
(
‖x− ci‖

σ

)2
]
− exp

[
−
(
‖x− cj‖

σ

)2
]
, (2)

where x is the input vector, ci and cj are the given training inputs belonging to
class Ci and class Cj (i �= j), respectively, σ = λ‖ci−cj‖, and λ is a user-defined
constant.
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Fig. 1. Structure of M3-GZC network. (a) A K-class problem; (b)Further decomposi-
tion of a two-class problem.

The output of M3-GZC network is defined as follows.

gi(x) =

⎧⎨⎩1 if yi(x) > θ+

Unknown if θ− ≤ yi(x) ≤ θ+

−1 if yi(x) < θ−
(3)

where θ+ and θ− are the upper and lower threshold limits, and yi denotes the
transfer function of the M3 network for class Ci, which discriminates the pattern
of the M3 network for class Ci from those of the rest of the classes.

The structure of M3-GZC network is shown in Fig.1. It is clear that the total
number of modules in a M3-GZC network is

K∑
i=1

K∑
j=1,j 
=i

Li × Lj , (4)

which means quadratic complexity in storage space and response time.

3 Properties of Receptive Field in M3-GZC Network

The receptive field in a M3-GZC network is defined as the input space that can
be classified to one class.

RF = {x|xεRn, ∃i, gi(x) = 1}. (5)

Suppose there are only two samples ci and cj , and we only concentrate on the
receptive field around ci. According to the axiom of norm, the following equation
is satisfied.

‖ci − cj‖ − ‖x− ci‖ ≤ ‖x− cj‖ ≤ ‖ci − cj‖+ ‖x− ci‖. (6)
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(a) (b) (c) (d)

Fig. 2. An illustration of structure pruning. (a) and (b) Receptive fields of a MIN
unit; (c) Modules and final decision boundaries in a M3-GZC network before pruning;
(d)Modules and final decision boundaries in a M3-GZC network after pruning.

So the shortest receptive field radius rmin can be obtained when ‖x − cj‖ =
‖ci− cj‖−‖x− ci‖, while the longest receptive field radius rmax can be achieved
when ‖x− cj‖ = ‖ci − cj‖+ ‖x− ci‖, as depicted in Fig.2 (a).

From equations (2), (3), (5), and (6), we can prove that the relationship
between rmax and ‖ci − cj‖ can be expressed as

rmax = k1‖ci − cj‖, (7)

where k1 is only correlated with λ and θ+.
Proof: Suppose x is on the direction of rmax and on the margin of the recep-

tive field, which means θ+ = fij(x). From equations (2) and (7), we get:

θ+ = exp

[
−
(

k1‖ci − cj‖
λ‖ci − cj‖

)2
]
− exp

[
−
(

k1‖ci − cj‖+ ‖ci − cj‖
λ‖ci − cj‖

)2
]

= exp

[
−
(

k1

λ

)2
]
− exp

[
−
(

k1 + 1
λ

)2
]
. (8)

So k1 is a function of λ and θ+.
Also, we can prove that the relationship between rmin and ‖ci − cj‖ can be

expressed as:
rmin = k2‖ci − cj‖. (9)

where k2 satisfies the following equation.

θ+ = exp

[
−
(

k2

λ

)2
]
− exp

[
−
(

1− k2

λ

)2
]
. (10)

4 Redundancy Analysis

When another sample c′j belonging to class Cj is available, module Mi,j′ will
be established, which determines another receptive field RF2 around ci. Then
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the minimization principle will be used to combine RF2 and the field RF1 that
was previously determined by cj and ci. Since the role of minimization principle
is similar to the logical AND [1], only those fields that contained in both RF1

and RF2 will be the final receptive field RF , as shown in Fig.2 (b). In other
word, if RF2 includes RF1, RF will be equal to RF1. In this case, sample c′j
has no contribution to the final receptive fields around ci, and module Mi,j′ is a
redundant module.

Now the question of under what circumstances RF2 will include RF1 arises.
Here we give a sufficient proposition.

Proposition 1: Suppose sample cj is the nearest sample in class Cj to sam-
ple ci, if sample c′j in class Cj satisfies equation (11), then module Mi,j′ is a
redundant module.

‖ci − c′j‖ ≥
k1

k2
‖ci − cj‖ (11)

The proof is straightforward. From equation (11) we can get k2‖ci−cj′‖ ≥ k1‖ci−
cj‖, which means that rmin of RF2 is larger than rmax of RF1, so RF1 ⊆ RF2,
and module Mi,j′ is a redundant module.

For a k-class classification problem, proposition 1 can be extended to proposi-
tion 2 according to the minimization principle inK-class classification problems[1].

Proposition 2: Suppose sample cj is the nearest sample in class Cj (1 ≤ j ≤
K, j �= i)to sample ci, if sample ck in class Ck (1 ≤ k ≤ K, k �= i) satisfies
equation (12), then module Mi,k is a redundant module.

‖ci − ck‖ ≥
k1

k2
‖ci − cj‖ (12)

5 Pruning Algorithm

For a K-class problem defined in equation (1), according to proposition 2, our
pruning algorithm works as below.

1. Calculate k1 and k2 according to λ and θ+;
2. For each sample (x, d) in T ,

(a) Find the nearest neighbor (x′, d′) in T , d �= d′ and ‖x−x′‖ = MIN{‖x′′−
x‖}, (x′′, d′′)εT , d′′ �= d.

(b) For each sample (x′′, d′′) in T (d′′ �= d), if ‖x′′ − x‖ ≥ k1
k2
‖x′ − x‖, prune

the module based on (x, d) and (x′′, d′′).

The final structure of pruned M3-GZC network is composed of L MIN units,
as shown in Fig.3. Each MIN unit is composed of a center sample and some
neighbors in different classes around it. When a test sample x is presented, if it
is in the receptive field of one MIN unit, then the calculation is completed, and
the output is the same as the class of the center sample. If x is rejected by all
the MIN units, then the output is ‘Unknown’.

Suppose there are Ni neighbors around one center sample, Ni is determined
by the distribution of training samples. The total number of modules in the
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Fig. 3. Structure of pruned M3-GZC network. Nj
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sample i

pruned M3-GZC network is
∑L

i=1 Ni, which is less than that in the original
M3-GZC network:

∑K
i=1

∑K
j=1,j 
=i Li × Lj.

An illustration of our pruning algorithm is depicted in Fig.2 (c) and (d).
Each circle line represents a module in M3-GZC network. The black and grey
areas denote the receptive field of each class, while the white area denotes the
‘Unknown’ output. Form the results, we can see that the decision boundaries
are identical, while 41.7% modules are pruned.

6 Experimental Results

In order to verify our method, we present experiments on three data sets. The
first is an artificial problem and the other two are real-world problems. We also
do the experiments that integrating our method with sample pruning. All the
experiments were performed on a 2.8GHz Pentium 4 PC with 1GB RAM.

6.1 Two-Spiral Problem

We test our structure pruning algorithm on the popular two-spiral benchmark
problem firstly. The data include 192 training samples and test samples respec-
tively (non-overlapping). The parameters of the experiment are given as follows:
λ = 0.5; θ+ = 0.01; θ− = −0.01. The correspond k1 and k2 is 1.073 and 0.497,
respectively. Fig.4 (a) shows the original problem, Fig.4 (b) shows the decision
boundaries before pruning and Fig.4 (c) shows the decision boundaries after
pruning. As we have expected, they are identical, but the number of modules
and response time are greatly reduced, as listed in Table 1.
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(a) (b) (c)

Fig. 4. Results on two-spiral problem. (a) Training samples; (b) Decision boundaries
before pruning; (c) Decision boundaries after pruning. Here black area denotes ‘Un-
known’ output.

Table 1. Experimental results. The upper row in each experiment denotes the pruned
net while the lower row denotes the original net. The unit of ‘Time’ is ms.

Data set Accuracy Unknown False Size Time Size Ratio Speed Up
two-spirals 100% 0.0% 0.0% 2516 18 13.7% 129

100% 0.0% 0.0% 18432 2315
balance 92.0% 0.0% 8.0% 39377 42 31.6% 137

92.0% 0.0% 8.0% 124800 5767
car 57.87% 42.13% 0.0% 126079 1805 37.7% 60

57.87% 42.13% 0.0% 334006 107878
image 84.0% 7.33% 8.67% 11280 449 33.0% 66

84.0% 7.33% 8.67% 34200 29730
Iris 94.67% 1.33% 4.0% 1843 3 49.1% 84

94.67% 1.33% 4.0% 3750 252
optdigits 97.22% 1.45% 1.34% 11454592 10784 89.1% 700

97.22% 1.45% 1.34% 12862520 7548237
glass image 86.0% 2.0% 12.0% 1167989 18817 43.7% 125

86.0% 2.0% 12.0% 2673000 2349796

6.2 UCI Database

In this experiment, our algorithm is tested on five benchmark data sets from the
Machine Learning Database Repository[18]: Balance, Car, Image Segmentation,
Iris and Optdigits. The detailed information of each problem is described in
Table 2. The parameters of each experiments are same as those in the two-spiral
problem, and results are listed in Table 1.
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Table 2. Number of class, dimension, training samples and test samples in UCI
database

Data Set Class Dimension Training Test
balance 2 4 500 125

car 4 6 864 864
image 5 19 210 2100
Iris 3 4 75 75

optdigits 9 64 3823 1797

Table 3. Experimental results of integrating sample pruning and structure pruning.
The upper row in each experiment denotes the net after sample pruning and structure
pruning while the lower row denotes the net only with sample pruning. The unit of
‘Time’ is ms.

Data set Accuracy Unknown False Size Time Size Ratio Speed Up
two-spirals 100% 0.0% 0.0% 794 11 4.31% 208.3

100% 0.0% 0.0% 8192 1268 44.4% 1.82
balance 92.0% 0.0% 8.0% 9878 15 7.92% 384.6

92.0% 0.0% 8.0% 44676 2510 35.8% 2.30
car 62.15% 34.14% 3.70% 31322 645 9.38% 166.7

62.15% 34.14% 3.70% 111138 36392 33.3% 2.97
image 82.0% 9.24% 8.76% 3280 478 9.59% 625

82.0% 9.24% 8.76% 11162 12035 32.6% 2.47
Iris 94.67% 1.33% 4.0% 345 3 9.2% 1.19%

94.67% 1.33% 4.0% 570 125 15.2% 84.0
optdigits 96.05% 2.62% 1.34% 1137798 3714 8.85% 2000

96.05% 2.62% 1.34% 1378048 840613 10.7% 9.0
glass image 85.55% 2.59% 11.86% 46397 16049 1.74% 147.1

85.55% 2.59% 11.86% 176928 151796 6.62% 15.5

6.3 Industry Image Classification

Due to its locally tuned response characteristic and incremental learning ability,
M3-GZC has been used in an industry fault detection project. The purpose of
this project is to choose out eligible glass-boards in an industrial product line,
which is done by trained workers in practice. It is a boring work; workers are easy
to be tired and then make wrong decisions. With the help of M3-GZC network,
workers need only judge the glass-boards that are classified to ‘Unknown’ by
the network. In our experiment, each glass-board image is converted into a 4096
dimension vector, 3420 images are used as training data while 1197 images as
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test data. The parameters are same as those in the two-spiral problem, and
results are listed in Table 1.

From Table 1, several observations can be made. Our pruning method has
no influence on the classification accuracy, but the size and response time can
be decreased notably, by an average of 42.6% and 0.975%, respectively. The
response time is saved much further than the size. This is due to that in the
pruned net it need not calculate all the modules to get the answer, if there is
a MIN unit accepts it, the calculation can be finished. Only those inputs that
the correspond result is ‘Unknown’ will calculate all the modules. But in most
cases, the ‘Unknown’ ratio is very low. So the response time can be cut down
greatly.

6.4 Integrated with Sample Pruning

Experiments of integrating sample pruning (Enhanced Threshold Incremental
Check)[16] and structure pruning are also conducted on the data sets mentioned
above. First we use ETIC to prune redundant samples in each training data set;
then we use our structure pruning algorithm to prune redundant models. The
results are listed in Table 3. We can see that the size and response time are
decreased much further, by an average of 7.28% and 0.49%, respectively.

7 Conclusions

M3-GZC network has the locally tuned response characteristic and emergent in-
cremental learning ability. But it suffers from sample redundancy and module
redundancy. In this paper we have presented a novel structure pruning algorithm
to reduce the redundant modules based on the properties of receptive field in
M3-GZC network. The decision boundaries of the pruned net are identical with
the original network, but the storage and response time requirement decreased
significantly. Experiments on structure pruning and integrated with sample prun-
ing verified the effectiveness of our pruning algorithm. We believe that module
redundancy reflects sample redundancy, our future work is to investigate the
relationship between them and combine them more effectively.
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Abstract. A general procedure for combining binary classifiers for mul-
ticlass classification problems with one-against-one decomposition policy
is presented in this paper. Two existing schemes, namely the min-max
combination and the most-winning combination, may be regarded as its
two special cases. We show that the accuracy of the combination proce-
dure will increase and time complexity will decrease as its main param-
eter increases under a proposed selection algorithm. The experiments
verify our main results, and our theoretical analysis gives a valuable cri-
terion for choosing different schemes of combining binary classifiers.

1 Introduction

The construction of a solution to a multiclass classification problem by combining
the outputs of binary classifiers is one of fundamental issues in pattern recog-
nition research. For example, many popular pattern classification algorithms
such as support vector machine (SVM) and AdaBoosting are originally designed
for binary classification problems and strongly depend on the technologies of
multiclass task decomposition and binary classifier combination. Basically, there
are two methods for decomposing multiclass problems. One is one-against-rest
policy, and the other is one-against-one policy. The former is computationally
more expensive, the latter is more popular in practical application and will be
concerned in this paper.

There are three main combination policies for one-against-one scheme accord-
ing to reported studies. a) the most-winning combination (round robin rule (R3)
learning [1]); b) the min-max combination that comes from one of two stages
in min-max modular (M3) neural network [2]; and c) decision directed acyclic
graph (DDAG) [3]. In comparison with one-against-rest scheme, a shortcoming
of one-against-one decomposition procedure is that it will yield too many binary
classifier modules, precisely the quantity is K(K − 1)/2, that is, the quadratic
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function of the number of classes, K. In the recognition phase, however, it is ob-
served that only a part of binary classifiers will be called to produce a solution
to the original multiclass problem.

In order to improve the response performance of this kind of classifiers, it is
necessary and meaningful to develop an efficient algorithms for selecting neces-
sary binary classifiers in the recognition phase. Therefore, we focus on binary
classifier selection problem under a novel general combination procedure of bi-
nary classifiers proposed in this paper. Here, we will only care the module based
time complexity, which means our work will be independent of the classification
algorithms and then it earns more generality. On the contrary, a related work
in [4] focuses on an optimized combining policy for margin-based classification,
which strongly depends on classification methods used in binary classifiers.

One of our previous work [5] gives a comparison between DDAG combination
and the min-max combination and proves that DDAG can be seen as a partial
version of the min-max combination. With ulterior study in this paper, we may
obtain a more comprehensive understanding of combination of binary classifiers.

The rest of the paper is organized as follows: In Sections 2 we briefly intro-
duce the min-max combination and the most-winning combination for binary
classifiers. In Section 3, a generalized combination procedure is presented and
two equal relations are proved. A selection algorithm is presented for the gen-
eral combination procedure is presented in Section 4. The experimental results
and comments on theoretical and experimental results are presented in Section 5.
Conclusions of our work and the current line of research are outlined in Section 6.

2 Min-Max and Most-Winning Combinations for Binary
Classifiers

Suppose a K-class classification problem is divided with one-against-one task
decomposition, then K(K − 1)/2 individual two-class sub-problems will be pro-
duced.

We use Mij to denote a binary classifier that learns from training samples
of class i and class j, while 0 ≤ i, j < K. The output coding of binary classifier
Mij in the min-max combination is defined as 0 and 1, where 1 stands for its
output of class i and 0 stands for class j. Mij will be reused as Mji in the
min-max combination, and they output contrary results for the same sample.
Thus, though K(K − 1) binary classifiers will be concerned in the min-max
combination, only one half of them need to be trained.

Before combination, we sort all K(K−1) binary classifier Mij into K groups
according to the same first subscript i, which is also regarded as the group label.
Combination of outputs of all binary classifiers is performed through two steps.
Firstly, the minimization combination rule is applied to all binary classifiers of
each group to produce the outputs of K groups. Secondly, the maximization
combination rule is applied to all groups outputs. If the result of the maximiza-
tion procedure is 1, then the label of that group which contribute to such result
will be the class label of combining output, otherwise, the combining output is
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unknown. We name the group which leads to the class label of combining output
as “winning group”, and the others as “ failure groups”.

A min-max combination procedure is illustrated in Fig 1.

M0, 1
M0, 1

M0, 2
M0, 2

M0, K-1

MK-1, 0

MK-1, 1

MK-1,K-2

Output

Fig. 1. Illustration of K-class min-max combination of (K − 1) × K binary classifiers
with K MIN units and one MAX unit

For the most-winning combination of binary classifiers, a direct output coding
is applied. The output of each Mij is just i or j, instead of 0 or 1. And the
combination policy is concise, too. The class label supported by the most binary
classifiers is the combining output of K(K − 1)/2 binary classifiers.

3 A General Combining Procedure for Binary Classifiers

For K(K − 1)/2 binary classifiers produced by one-against-one decomposition
procedure, we present a general combination procedure, named N-voting com-
bination, denoted by V (K,N), where N is an additional parameter. A direct
class output coding is used in the combination, that is, the output of a binary
classifier Mij will just be class i or class j. Combination rule is defined as follows.
If there are at least N binary classifiers support a class label, e.g. class i, and no
more binary classifiers support any other class label, then the combining output
is just class i. Otherwise, the combining output is unknown class.

We will show that N-voting combination V (K,K−1) is equal to the min-max
combination. In fact, if there is a class, e.g. class i, with consistent support of
K − 1 binary classifiers under V (K,K − 1) combination, then this means that
only these binary classifiers, Mij , 0 ≤ j ≤ K − 1, and i �= j, must all support
the same class i. In other words, their output must all be class 1 under coding
method of the min-max combination. These K − 1 binary classifiers just form a
group under the min-max combination. Thus, it must be the group with label i
that wins the combination, which means the combining output is class i under
the min-max combination. On the contrary, if there is one winning group with
a label i, under the min-max combination, then these K − 1 binary classifiers
must support the same class i. Notice that since the classifier Mij has output
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class i, then the symmetrical classifier Mji must output the same result class
i, namely only K − 2 binary classifiers support class j in the group that are
supposed to supported class j as the combining output, which leads to a failure
and means that no more binary classifiers support any other class except for
class i. According to the definition of V (K,K − 1) combination, the combining
output must be class i under V (K,K − 1) combination. So the conclusion that
V (K,K−1) and the min-max combination are equal combinations can be drawn.
What’s more, since the same class label can only be supported by at most K−1
binary classifiers, this comes the fact that the upper bound of N must be K−1.
It is easy to recognize that the supremum of N is K − 1, too.

We also show that V (K, [K/2]+1) combination is equal to the most-winning
combination, where denotation [K/2] means the largest integer below K/2. It is
induced from the following two facts.

a) For convenient description, we name such combination as v(K,N) combina-
tion. If there are just N binary classifiers support a class label, e.g. class i,
and no more binary classifiers support any other class label, then the combin-
ing output is just class i. Otherwise, the combining output is unknown class.
Suppose the set of combining outputs of all defined class labels by v(K,N)
combination is denoted by sN , and the set of combining outputs of all defined
class labels by V (K,N) combination is denoted by SN . For the same test
sets and trained binary classifiers, there must be SN = sK−1∪sK−2∪...∪sN .
Then it is obvious that SN1 ⊆ SN2when N1 > N2, for all 0 ≤ N1, N2 < K.
That is, for the larger N , the corresponding V (K,N) combination will give
the less outputs of defined class labels. The reason is that the condition to
finish a combining output of defined class label is more and more strict as
the value of N increases. Turn to the case of the most-winning combination,
such result can be obtain according to its definition:

Smw = sK−1 ∪ sK−2 ∪ ... ∪ s1, or (1)
Smw = S1.

b) To give a combining output of defined class label under V (K,N) or the
most-winning combination, such condition must be satisfied: after N binary
classifiers are excluded in K(K−1)/2 binary classifiers, the remaining classi-
fiers are divided into K−1 groups, in which the numbers of binary classifiers
all are less than N , that is, the following inequality should be satisfied.

N >
K(K − 1)/2−N

K − 1
. (2)

The solution to the above inequality is N > (K − 1)/2. Consider N must be
an integer, we have N ≥ [(K − 1)/2] + 1, that is, N ≥ [K/2] + 1. This result
suggests

sN = φ, ∀N, 0 < N < [K/2] + 1. (3)
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According to (1) and (3), we obtain

Smw = sK−1 ∪ sK−2 ∪ ... ∪ s[K/2]+1, or (4)
Smw = S[K/2]+1,

and consider all undefined class labels will be output as unknown classes. There-
fore, the equality between V (K, [K/2] + 1) and the most-winning combination
is obvious.

However, the fact that [K/2] + 1 is a lower bound of N is not necessary to
lead to the fact that [K/2] + 1 is the infimum of N just like the case of upper
bound of N . Actually, many sets sN are empty for some N > [K/2] + 1 in
practical classification tasks. To find a larger lower bound of N is still remained
as an open problem.

4 Selection Algorithm for Combining Binary Classifiers

The original N-voting combination needs K(K − 1)/2 binary classifiers to be
tested for a sample before the mostly supported class label is found. But if
we consider the constraint of the value of N , then it is possible to reduce the
number of binary classifiers for testing, which give an improvement of response
performance.

As mentioned in Section 2, K − 1 binary classifiers with the same first sub-
script i are regarded as one group with the group label i. If there exists more
than K −N binary classifiers without supporting the group label in a group for
a given value of N , then it is meaningless for checking the remained classifiers
in the group since this group loses the chance of being a winning one, that is to
say, the remained classifiers in the group can be skipped.

The selection algorithm for N-voting combination V (K,N) is described as
follows.

1. For a sample, let i = 0 and j = 1.
2. Set all counters R[i] = 0, which stands for the number of binary classifiers

rejecting group label i, for 0 ≤ i < K.
3. While i ≤ K, do

(a) While j ≤ K and R[i] ≤ K −N , do
i. Check the binary classifier Mij .
ii. If Mij rejects class label i, then R[i] = R[i] + 1, else R[j] = R[j] + 1.
iii. Let j = j + 1, if j = i, then let j = j + 1 again.

(b) Let i = i+ 1 and j = 1.
4. Compare each number of binary classifiers rejecting the same class to find

the lest-rejected class label as combining output. If all R[i] > K − N , for
0 ≤ i < K, then output unknown class as combining classification result.

It is obvious that the chance of a group to be removed by selection algorithm
will increase as the value of N increases. This means the efficiency of selection
procedure will increase, too. Thus, with the highest value of N , V (K,K − 1),



308 H. Zhao and B.-L. Lu

or the min-max combination, has the best test performance in the combination
series.

Notice that the strictness of voting for a combining output of defined
class label will be increase as the value of N increases from [K/2] + 1 to
K − 1, monotonously. The chance to complete such combination will decrease,
simultaneously. This means the accuracy of V (K,N) combination will de-
crease, monotonously, and the unknown rate will increase, monotonously. Thus,
V (K, [K/2] + 1) or the most-winning combination is of the highest accuracy in
the combination series.

It is hard to directly estimate the performance of N-voting combination selec-
tion algorithm. Here we give an experimental estimation. The number of checked
binary classifiers under V (K,K − 1) or the min-max combination will be

nM = K(αlog(K) + β), (5)

where α and β are two constants that depend on features of binary classifier,
experimentally, 0 < α ≤ 1 and −0.5 < β < 0.5. And the number of checked
binary classifiers under V (K, [K/2] + 1) (or the most-winning policy in some
cases) combination will be

nR = γK2, (6)

where γ is a constant that depends on features of binary classifier, experimen-
tally, 0 < γ < 0.3. According to above analysis, performance of V (K,N) combi-
nation should be between nM and nR.

According to above performance estimation, our selection algorithm can im-
prove the response performance of one-against-one method from quadratical
complexity to logarithmal complexity at the number of binary classifiers in the
best case, namely the min-max combination or 1.67 times at least in the worst
case, namely the most-winning combination policy.

5 Experimental Results

Two data sets shown in Table 1 from UCI Repository[6] are chosen for this
study. Two algorithms, k-NN with k = 4 and SVM with RBF kernel are taken
as each binary classifier, respectively. The kernel parameters in SVM training are
shown in Table 1, too. The experimental results of N-voting combination with
different values of N are shown in Tables 2-5. These tables list the numbers of
checked binary classifiers, which show the performance comparison independent
of running platform.

It is necessary to access 45 and 325 binary classifiers for two data sets re-
spectively for testing a sample without any module selection. while there is only
one half of binary classifiers or less to be checked under presented selection al-
gorithm. This demonstrates an outstanding improvement of test performance.
Consider the generality of N-voting combination, the selection algorithm pre-
sented has actually included selection procedure of the min-max combination
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Table 1. Distributions of data sets and corresponding parameters for SVMs

Data sets #Class Number of Samples Parameters of SVM

Train Test γ C

Optdigits 10 3823 1797 0.0008 8

Letter 26 15000 5000 0.0125 8

Table 2. Performance of Optdigits data set on N-voting combination: k-NN algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

6 98.39 1.61 0.00 25.55

7 98.39 1.61 0.00 26.16

8 98.39 1.61 0.00 24.84

9 98.39 1.61 0.00 20.74

Table 3. Performance of Optdigits data set on N-voting combination: SVM algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

6 99.00 1.00 0.00 24.91

7 99.00 1.00 0.00 25.53

8 99.00 1.00 0.00 24.61

9 98.94 0.78 0.28 20.69

Table 4. Performance of Letter data set on N-voting combination: k-NN algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

14 95.78 4.22 0.00 191.15

15 95.78 4.22 0.00 191.05

16 95.78 4.22 0.00 189.47

17 95.78 4.22 0.00 186.34

18 95.78 4.22 0.00 181.51

19 95.78 4.22 0.00 174.85

20 95.78 4.22 0.00 165.73

21 95.78 4.22 0.00 154.19

22 95.78 4.22 0.00 139.74

23 95.78 4.22 0.00 121.98

24 95.78 4.22 0.00 99.49

25 95.74 4.02 0.24 73.41
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Table 5. Performance of Letter data set on N-voting combination: SVM algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

14 97.18 2.82 0.00 188.77

15 97.18 2.82 0.00 189.02

16 97.18 2.82 0.00 187.45

17 97.18 2.82 0.00 184.54

18 97.18 2.82 0.00 180.00

19 97.18 2.82 0.00 173.62

20 97.18 2.82 0.00 165.33

21 97.18 2.82 0.00 155.04

22 97.18 2.82 0.00 141.46

23 97.18 2.80 0.02 124.68

24 97.16 2.80 0.04 103.26

25 96.80 2.34 0.86 76.27
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Fig. 2. Comparison of theoretical estimation and experimental result of N-voting com-
bination on Optdigits data set under k-NN algorithm, where α = 1.05, β = −0.32 and
γ = 0.247. (a) V (K, K − 1) combination and (b) V (K, [K/2] + 1) combination

and the most-winning combination. If we regard selected V (K, [K/2] + 1) com-
bination as selected the most-winning combination in the worst case, then there
comes nearly 1.7 times improvement at least. If a larger N is taken, then the
speeding is much more. In addition, the accuracy and unknown rate do decrease
and increase, respectively, while the value of N increases just as expected. How-
ever, the decreasing of accuracy or increasing of unknown rate is not outstanding
when N is small enough. This suggests that the most-winning combination is
equal to V (K,N) combination with a value of N which may be many larger
than [K/2] + 1.

By removing samples of the last class continuously from each data set, we
obtain a 3-26 data sets for Letter data and 3-10 data sets for Optdigits data.
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Fig. 3. Comparison of theoretical estimation and experimental result of N-voting com-
bination on Letter data set under k-NN algorithm, where α = 0.87, β = 0.0077 and
γ = 0.275. (a) V (K, K − 1) combination and (b) V (K, [K/2] + 1) combination
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Fig. 4. Comparison of theoretical estimation and experimental result of N-voting com-
bination on Optdigits data set under SVM algorithm, where α = 1, β = −0.3 and
γ = 0.237. (a) V (K, K − 1) combination and (b) V (K, [K/2] + 1) combination
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Fig. 5. Comparison of theoretical estimation and experimental result of N-voting com-
bination on Letter data set under SVM algorithm, where α = 0.92, β = −0.0385 and
γ = 0.27. (a) V (K, K − 1) combination and (b) V (K, [K/2] + 1) combination
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Under selection algorithm, the comparison of the numbers of checked binary
classifiers between experimental results and theoretical estimation under contin-
uous classes are shown in Figs. 3-4. We see that the experimental estimation
value and experimental results are basically identical.

6 Conclusions

A general combination procedure of binary classifiers for multi-classification with
one-against-one decomposition policy has been presented. Two existing schemes,
the min-max combination and the most-winning combination, can be regarded
as its two special cases. For such general combination procedure, we ulteriorly
propose a selection algorithm. An improvement of response performance to the
original combining procedure is demonstrated. The experimental performance
estimation of selection algorithm is given, too. The experiments verify the ef-
fectiveness of the proposed selection algorithm. Our theoretical analysis gives a
valuable criterion for choosing combination policies of binary classifiers. From
the generality of our work, the improvement of response performance with pre-
sented selection algorithm can also be widely applied, especially for multi-class
classification with a large number of classes.
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Abstract. Humans use many different kinds of information from differ-
ent sensory organs in motion tasks. It is important in human sensing to
extract useful information and effectively use the multiple kinds of in-
formation. From the viewpoint of a computational theory, we approach
the integration mechanism of human sensory and motor information.
In this study, the modular structure of auto-encoder is introduced to
extract the intrinsic properties about a recognized object that are con-
tained commonly in multiple kind of information. After the learning, the
relaxation method using the learned model can solve the transformation
between the integrated kinds of information. This model was applied to
the problem how a locomotive robot decides a leg’s height to climb over
an obstacle from the visual information.

1 Introduction

It is supposed that the human recognizes various objects in the real-world by in-
tegrating multiple kinds of sensory information. Consider that the human recog-
nizes a cup to drink water. It has been pointed out that not only visual informa-
tion about the cup but also somatosensory information (e.g., hand configuration
when grasping it) concerns the object’s shape recognition[1]. We hypothesize
that the internal representation of a grasped object is formed in the brain by in-
tegrating visual, somatosensory and other sensory information while the human
repeats such grasping movements.

When the human recognizes a cup, perceived data consists of the intrinsic
property of the cup and the condition of sensing. For example, visual image
changes depending on not only the size or the shape of the cup but also the
direction or the distance from eyes to the cup. Somatosensory information also
changes depending on how human grasps the cup. Consequently, when these dif-
ferent kinds of sensory information are integrated, the relation between them is
many-to-many and the recognition process must include the extraction of intrin-
sic properties of the objects. We focus on the fact that the intrinsic properties
are contained constantly and commonly in multiple kinds of sensory informa-
tion. From this viewpoint, we think that the most important purpose of sensory
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integration is the extraction of the information commonly contained in different
kinds of sensory information, which is called the correlated information[2].

Base on a five-layered auto-encoder[3], we have proposed a neural network
model that integrates different kinds of information and shown that this model
can solve the many-to-many problem by a relaxation method with a penalty
method[4]. In our successive work, the former model has been modified in or-
der to extract the correlated information through the learning process of the
integration[5]. However, these models always require both data integrated in the
learning phase, which is not natural in the biological system.

In this study, a modular structure of auto-encoder is introduced. Each module
corresponds to a kind of information and when the multiple kinds of information
about a recognized object are gained, corresponding modules learn the correlated
relation. Even if only a kind of information is gained, the corresponding mod-
ule can learns to achieve the identity map as a simple auto-encoder. Moreover,
we show that the proposed model can solve a many-to-many problem without
penalty method. This model is applied to the problem how a locomotive robot
decides the leg’s height to climb over an obstacle from the camera data.

2 Architecture of the Neural Network

2.1 Extraction of the Correlated Information

The proposed model consists of the multiple five-layered auto-encoder models
as shown in Fig.1. In this work, we consider the case that two kinds of the
sensory information (x,y) are integrated. Each auto-encoder corresponds to a
sensory modality. The numbers of neurons in the third layer in the every auto-
encoder are set to the intrinsic dimension of the input data. In the learning phase,
each auto-encoder model learns to realize the identity map. Simultaneously, the
several neurons in the third layer of each module, which are called the correlated
neurons(ζ), must learns to have the same value as the correlated neurons in the
other module for the sensory modality that shares the correlated information.
The other neurons in the third layer(ξ, η) are called non-correlated neurons.
The number of the correlated neurons sets to be the same as the dimension
of the correlated information. Consequently, the error functions that must be
minimized in the learning phase are as follows:

Ex =
M∑
i

(xi − x′i)
2 + λ

K∑
i

(ζx
i − ζy

i )2 (1)

Ey =
N∑
i

(yi − y′i)
2 + λ

K∑
i

(ζy
i − ζx

i )2 (2)

Here, M and N are dimensions of the input data and K is the number of the
correlated neurons. x′ and y′ are outputs of the auto-encoders. When only one
kind of the information is gained in the recognition process, the second term in
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Fig. 1. The structure of a neural network model that extracts correlated information
between two different kinds of information

(1) or (2) is omitted. The network learns to minimize the objective functions by
the back-propagation method.

Through the learning of the identity map, arbitrary transformation and its
inverse transformation will be obtained from the input layer to the third layer and
from the third layer to the fifth layer, respectively. When there is the correlated
information between the both kinds of the sensory information and its dimension
is K, the correlated information should be extracted in the correlation neurons
since the correlation neurons in every auto-encoder have the same value for a
recognized object after the learning phase.

Generally, it is difficult to determine the number of neurons in the hidden
layer of the layered neural network. In this work, it is assumed that the intrinsic
dimensions of x and y and the dimension of the correlated information between
x and y are known; therefore, the number of neurons in the third layer in every
auto-encoder can be properly set.

2.2 Relaxation Method for a Many-to-Many Transformation
Problem

As described before, the transformation from a pattern of one kind of sensory
information to a pattern of another kind of sensory information is a many-
to-many transformation problem. A “many-to-many transformation problem”
is an ill-posed problem since many corresponding output patterns exist even
if an input pattern is specified. In the previous study[4], we have shown that
a relaxation computation applying to the learned neural network model can
solve such a transformation problem as an optimization with constraints by
introducing a criterion of the output pattern in order to determine an optimal
solution from many candidates. This relaxation method is equivalent to the
penalty function method in the optimization theory and a different solution also
can be computed by employing a different criterion. However, this relaxation
computation needs a great deal of computation time and it is difficult to choose
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Fig. 2. A schematic of the relaxation method to solve a many-to-many problem

suitable values of some parameters such as a regularization parameter for the
criterion and its decreasing rate.

Generally, the condition of constraints means that both kinds of the informa-
tion are obtained from the same object. In other words, the both sensory data
contains the same correlated information that is the object’s property. In the
case of the proposed model in this study, if ζx = ζy , x

′
and y

′
in the fifth layer

that are computed from ζ are always obtained from the same object. That is,
the constraint is satisfied.

Consequently, when a kind of the sensory data(x) is obtained, the values of
the correlated neurons(ζx) computed from x are copied to the correlated neurons
of the another module(ζy). After that, we may search an output pattern y′ that
optimizes the criterion based on the values of ζy by adjusting η(Fig.2). In this
step, the gradient method can be used to optimize the criterion C(y) as follows:

c
dηk

ds
= −∂C(y′)

∂ηk
(3)

Here, s is relaxation time and c is a positive time constant. After η reaches the
equilibrium state, an optimized pattern y∗ that minimizes the criterion is formed
in the fifth layer.

In this model, the transformation from the sensory data to the coordinates
representing the correlated information is acquired through the learning process.
Since the constraints are always satisfied when ζx = ζy , the transformation
problem can be solved as not the optimization with constraints, but simple
optimization problem. Thus, an adjustment of the regularization parameter and
its decreasing rate in the penalty method is unnecessary and the computation is
expected to be stable. Moreover, since the search space in the third layer become
small, less computational time is expected.

3 Experimental Results

3.1 Integration Task

We confirmed the plausibility of the proposed model by a computer simulation
and an experiment of a real robot, AIBO. We employed the recognition of ob-
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stacle’s heights by integrating the visual information when a locomotive robot
see it by a camera from different distances and the joint angle of the robot’s
leg when it touches the top of the obstacle by its front leg in various postures.
The visual image changes according to the obstacle’s height as the correlated
information and the distance from the obstacle. Instead of the raw image data,
the width and length of the obstacle in the camera image were used as the visual
information in order to reduce the computational cost. Since the AIBO has only
one CCD camera, the width of every obstacle was set to be the same such that
the height of the obstacle and the distance could be calculated from a camera
image. In this experiment, the joint for abduction of the leg was fixed so that
the AIBO’s leg was considered as a 2-link manipulator. The shoulder and elbow
joint angle when the robot touches the top of the obstacle were used as the leg’s
posture data. These angles change according to the height of the obstacle and
the distance from the body to the toe. Thus, it is expected that the height of
the obstacle is extracted in the correlated neurons by integration of the visual
data and leg’s posture of the robot.

3.2 Simulation Experiment

At first, we investigated the proposed model by a computer simulation. Nine
obstacles of width 80.0mm were prepared, heights of which were from 8.0mm to
60.0mm.

It was supposed that the image data was obtained by a camera at the same
height of the center of the obstacle’s side plane. The widths of the side plane in
the camera image, which are inversely proportional to the distance, were set to
be 30, 50, 70, and 90 pixels. Their lengths in the camera image were calculated
from the widths in the camera images of the obstacles and the real proportions
of length to width.

About the joint angle data, eleven elbow angles from -25 to 25 degrees (plus
value means forward flexion) were prepared. Each shoulder angle, which is or-
thogonal to the body at zero degree, was calculated from obstacle’s height and
elbow angle using the kinematics equation.

Thus, 396 data sets, all combination of four image data and eleven posture
data for nine obstacles, were used for training. The number of neurons in the first
and fifth layer was two in each auto-encoder model. The number of correlated
neurons and the non-correlated neurons in the third layer was one, respectively.

Figure3 shows the activities of the correlated neurons in each module when
the training data were fed to the model after the sufficient learning. The both
values of correlated neurons have almost same for an obstacle and increase mono-
tonically with the height of the obstacle. These results indicate that the corre-
lated neurons extract the height of the obstacles without a supervised signal
about the height information.

Using the learned model, the adequate posture of the robot’ leg was com-
puted from the image data by the proposed method. In this simulation, (4) was
employed as the criterion.

C(y) = y2
s + y2

e (4)
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Fig. 3. Activities of correlated neurons in the vision and posture module in the simu-
lation

Fig. 4. Estimated postures and optimized postures for each obstacle in the simulation

Here, ys and ye means the shoulder and elbow angle. The results of the estima-
tion of leg’s posture from the every training data of image module, which was
obtained at the different distance, are shown in Fig.4. Dotted lines indicate the
optimized leg’s postures by Optimization Toolbox of MATLAB. The postures
estimated from the different image data for the same obstacle are almost same
and very close to the optimized postures, too. These results indicate that the pro-
posed model can extract the correlated information and solve the many-to-many
problem with less computational cost.

3.3 Robot Experiment

We tested the proposed model by a real robot. AIBO(RS-210A) made by SONY
Corporationwas employed in this experiment. Nine rectangular parallelepiped ob-
stacles, width and height of which were the same as those of the obstacles in the
simulation were prepared. AIBO has a CCD camera the size of which was 176 by
144pixels. In order to extract the size of the obstacle in the camera image easily, the
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Fig. 5. Activities of correlated neurons in the vision and posture module in the robot
experiment

Fig. 6. Estimated postures of AIBO. (a) Obstacle of the height 145mm was estimated
from an image data taken at about 100mm away. (b) Obstacle of the height 535mm
was estimated from an image data taken at about 200mm away

side planes of these obstacles were painted in pink. At first, AIBO was put at about
100, 200, 300, and 400mm away from the obstacle. When AIBO detected the pink
area from the front of the side plane and looks at its center, the robot took each ob-
stacle’s image three times. The length and width were computed by counting the
number of the pixels of the length and width of the pink region. After that, in order
to prepare the leg’s posture data for the learning, the sitting robot was put near
the obstacle. The elbow joint of the former leg was fixed at seven angle patterns
from -24 to 24 degrees by PID controller and when a touch sensor on the leg’s toe
became on during the shoulder was swung down, the shoulder and elbow angles
of the former leg were measured by a potentio-meter for every obstacles. However,
some postures for some obstacles were too high for AIBO to touch the top of the
obstacles. In such cases, network learning was executed only for the vision module.
Since twelve image patterns and seven leg’s posture patterns were prepared for nine
obstacles, 756 combinations of the image data and leg’s posture data were used to
train the proposed model. However, 216 sets were trained by only image data be-
cause of lack of the posture data. The network configuration was the same as that
in the simulation.
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After the sufficient network learning, the neuron activation patterns formed in
the correlation neurons are shown in Fig.5. The values of ζ for the same obstacle
but different visual data or posture data are almost same and monotonically de-
creased with the height of the obstacle. Although deviation is larger than that in
the simulation experiment because of the sensory noise and quantization error, the
correlated neuron seems to be acquired the information of the obstacle’s height.

After the learning, AIBO took the image data from several distances from
the obstacles and the adequate postures to their heights were computed by the
proposed relaxation method when (4) was employed as the criterion. AIBO could
raise its leg as high as the obstacle(Fig.6).

4 Conclusion

A neural network model that extracts correlated information between different
kinds of information has been proposed. The proposed model uses an auto-encoder
architecture and, therefore, a supervised signal for internal representation is unnec-
essary. Although we used the simple back-propagation method to train this net-
work, other learning methods to realize the identity map can be applied.

We have also proposed the new relaxation computation to solve the many-
to-many transformation problem using the gradient descend method without
the penalty method. The simulation result shows that the proposed method can
reduce the iteration number and is not so sensitive to the values of parameters
in the gradient method.

Comparing the previously proposed model[5], this model is difficult to learn
by back-propagation method. The second terms of the objective functions of
learning((1) and (2)) can decrease by depression of the range of the correlated
neuron activity. Therefore, the case in which ζx and ζy always have the constant
value for every obstacle and the identity map is not realized is a local minimum
in the learning process. Fine adjustment of λ in (1) and (2) and the learning
rate by trial-and-error is necessary to escape the local minimum.

The critical problem in our neural network model is how many neurons should
be set for the correlated neurons and other neurons in the third layer. To de-
termine an adequate number of neurons for the hidden layer in an auto-encoder
model, several methods have been proposed[6,7]. In our model, even if the to-
tal number of neurons for the third layer can be decided, the more important
problem is how to divide the neurons in the third layer into the correlated and
non-correlated neurons. In the present stage, we have no method to decide an ad-
equate number of neurons for each subset in the third layer. This is an important
task for the future.
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Abstract. Learning problem has three distinct phases, that is, model 
representation, learning criterion (target function) and implementation 
algorithm. This paper focuses on the close relation between the selection of 
learning criterion for committee machine and network approximation and 
competitive adaptation. By minimizing the KL deviation between posterior 
distributions, we give a general posterior modular architecture and the 
corresponding learning criterion form, which reflects remarkable adaptation and 
scalability. Besides this, we point out, from the generalized KL deviation 
defined on finite measure manifold in information geometry theory, that the 
proposed learning criterion reduces to so-called Mahalanobis deviation of 
which ordinary mean square error approximation is a special case, when each 
module is assumed Gaussian. 

1   Introduction 

Committee machines have been frequently employed to improve results in 
classification and regression problems [1-10]. Among the key issues are how to 
design the architecture and scale of the networks; how to make best use of a limited 
data set; how the results of the various component networks should be combined to 
give the best estimate; and how to make each component adaptive etc. In this paper 
we address the last two issues, which are closely related to the learning criterion 
adopted, through minimization of generalized Kullback-Leibler (KL) divergence.  

This paper is organized as follows; the first section discusses influences of learning 
criterion on approximation and adaptation; the second section introduces the 
generalized information divergence and KL divergence in information geometry; the 
necessity of posterior average over all components is in section three; the fourth 
section describes construction of committee machine using the cost function derived 
from KL divergence between posterior distributions, and then gives a general form of 
learning criterion, which not only makes committee machine give best approximation 
but also  have good adaptation; the following section points out that the learning 
criterion given in section four reduces to so-called Mahalanobis divergence of which 
ordinary mean square error approximation is a special case, when each module is 
assumed Gaussian. The last one is conclusion. 
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2   Influences of Learning Criterion on Approximation and 
     Adaptation 

2.1   Learning Criterion and Approximation 

It’s well known that learning problem is to construct a learning machine using given 
training data set under a certain learning criterion such that the machine approximates 
the underlying rule reflected by the data set as best as possible. Learning problem 
includes three distinct phases [11,12]:model representation that is available 
computing resource or model representation ability such as Generalized Linear Model 
(GLIM) and various Nonlinear Regression Models the learning criterion used to 
measure the quality of learning results like Square Sum of Error (SSE) and Likelihood 
Function (ML) and the implementation algorithm Like the Gradient Descent, 
etc As a general nonlinear approximation model neural network has powerful 
representation ability; and the dynamic committee machine, which is nonlinear 
combination of nonlinear functions like Mixture of Experts (ME) and Hierarchical 
Mixture of Experts (HME), can represent almost usual statistical models, although 
models with same representation power, such as Projection Pursuit Regression Model 
(PPR) and Multilayer Perceptron (MLP) with single hidden layer, may show different 
learning effects due to different learning criterion. 

The most frequently used learning criterion is to minimize SSE and its variants that 
are R -error norm when R = 2. It has proven that MSSE is to make the network 
approximate the conditional expectation of the target, whose effect equivalent to 
taking same variance but mean which is the Gaussian distribution of input function as 
the input-output conditional probability model. On the other hand, ML of the joint 
probability can be reduced to MSSE when the target variables are Gaussian; however, 
ML is no longer effective on some distributions [13]. Of course, we need not assume 
Gaussian distribution when take SSE as learning criterion, but the results may deviate 
from the best one if not. Another usual learning criterion is the cross entropy 
measuring the difference between two distributions, to minimize cross entropy is 
equivalent to minimizing KL (MKL) divergence. Cross entropy is the function of 
relative error of network output, but SSE is related to absolute error of network 
output. Both MSSE and MKL approximate the conditional expectation of network 
output [1]. 

2.2   Learning Criterion and Adaptation 

If back propagation is used to train a single, multiplayer network to perform different 
subtasks on different occasions, there will generally be strong interference effects that 
lead to slow learning and poor generalization. Using committee machine with 
appropriate learning criterion can efficiently solve this problem. In this system 
different module inputs correspond to different regions of input space which is 
realized by gate network; and we expect that, if the output is incorrect, the weight 
changes are localized to these modules and gating network. So there is no interference 
with the weights of other modules that specialized in quite different cases. The 
modules are therefore local in the sense that the weighs in one module are decoupled 
from the weights in other modules. In addition they will often be local in the sense 
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that each module will be allocated to only a small local region of the possible input 
vectors. This is determined by the learning criterion adopted. For example, if we use 
the following learning criterion 

2|| || .c c c c
i i

i

E d p o= −  (1) 

where cE is the final error on case c , c
io is the output vector of module i on case 

c , c
ip is the proportional contribution of module i  to the combined output vector, 

and cd is the desired output vector in case. So, to minimize cE , each local module 
must make its output cancel the residual error that is left by the combined effects of 
all the other modules. When the weights in one module change, the residual error 
changes, so the error derivatives for all the other local modules change. This strong 
coupling between the modules causes them to cooperate nicely, but tends to lead to 
solutions in which many modules are used for each case. It is possible to encourage 
competition by adding penalty term to the objective function to encourage solutions in 
which only one module is active, but a simpler remedy is to redefine the error 
function so that the local modules are encouraged to compete rather than cooperate. 
We imagine that the gating network makes a stochastic decision about which single 
module to use on each occasion. Now the error is the expected value of the squared 
difference between the desired and actual output vectors. 

2 2|| || || || .c c c c c c
i i i

i

E d o p d o= − = −  (2) 

Notice that in this new learning criterion, each module is required to produce the 
whole of the output vector rather than a residual. As a result, the goal of a local 
module on a given training case is not directly affected by the weights within other 
local modules. There is still some indirect coupling because if some other module 
changes its weights, it may cause the gating network to alter the responsibility that get 
assigned to the modules. If both the gating network and the local modules are trained 
by gradient descent in this new learning criterion, the system tends to devote a single 
module to each training case. Whenever a module gives less error than the weighted 
average of the errors of all the modules its responsibility for that case will be 
increased, and whenever it does worse than the weighted average its responsibility 
will be decreased. 

Jacobs in his paper [5] gave the following learning criterion based on the above 
mentioned learning criterion, which showed better performance in the simulations: 

21
ln exp( || || ).

2
c c c c

i i
i

E p d o= − − −  (3) 

To see why this learning criterion works better, it is helpful to compare the 

derivatives of the two with respect to the output c
io of a module. The resultant 

derivatives of equation (2) and (3) are both R -error norm when R =1 multiplied by a 
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new weighting term, for the former the weighting term is c
ip but the weighting term 

for the latter not only takes into account how well module i does relative to other 
modules but also adapt the best-fitting module the fastest. This feature is very useful 
especially in early training. 

3   Information Divergence and Information Geometry 

Information geometry [14,15] emerged from investigating the natural differential 
geometric structure possessed by families of parameterized probability distributions, 
aiming to show information processing capability of systems. A point on the manifold 
denotes a distribution. Amari introduces α -connection with single parameter and 

proved that exponential family corresponds to 1α = mixture family to 

1α = − and they are dually flat. An important divergence on statistical manifold is 

α -divergence orδ -divergence Dδ
1

2

αδ −= .For the set 
~

P of all positive finite 

probability measures the divergence of any two points ,q p is Dδ [16] 

1 1( , ) [ (1 )] [ (1 ) ], (0,1).D q p q p q pδ δ
δ δ δ δ δ δ− −= − + − − ∈  (4) 

Therefore the KL divergence with respect to 
~

P is 

0 1
( , ) lim ( , ) lim ( , ) ( ln ).

q
KL q p D p q D q p q p

pδ δδ δ→ →
= = = − +  (5) 

Obviously when = 1q and =1p , the above equation reduces to ordinary KL 

divergence. Like the norm in function space, information divergence enables us 
consider a set of finite measures as some well-behaved space, not only a set of points. 

4   Posterior Averages 

The main reason of using committee machine is that when we select only one best 
model and discard the others, we lost all those knowledge contained in the discarded 
models, because the selected model only contain a fraction of the whole probability 
mass. This means that the selected model can explain the observations well, but may 
not explain future data due to the parameters of the model very sensitive to parameter 
values. On the other hand, Probability theory tells us that the optimal generalization is 
the one resulting from a Bayesian approach. A neural network (either deterministic or 
stochastic) can be regarded as a parameterized model ( | , )p y x H denoted 

as | ,y x Hp in the following, where x is the input, y is the output and H is the model 

structure including weights. In the Bayesian framework, knowledge is contained in 
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the conditional probability distributions of the models. Each model can be seen as a 
hypothesis, or explanation. We can use Bayes theorem to evaluate the conditional 
probability distributions for the unknown quantities y given the set of observed 

quantities x . Bayesian rule states that prior becomes posterior after another set of 
observations and suggests an iterative and “gradient ascend” procedure. 

If in some sense over-fitting is caused by selecting only one model, then it’s 
necessary to average over all possible models to gain good generalization. However, 
the most usual case is to combine models using softmax function of gating network as 
a priori distribution, it doesn’t explicitly reflect the features of each model, and use 
MSSE or ML as learning criterion; in addition, as we show that the learning criterion 
should avoid too strong coupling, otherwise lose scalability. 

5   Construction of Committee Machine 

As we know that KL divergence can be used to measure the misfit between two 

distributions. The true posterior distribution |y xp  is approximated with the |y xq  by 

minimizing the KL divergence 

| |
| | | |

| ,

( , ) ln lny x x y x
y x y x y x y x

y x x y

q p q
D q p q dy q dy

p p
= =  

                                  
|

|
,

ln ln .y x
y x x

x y

q
q dy p

p
= +  

 

(6) 

Since the term xp is a constant over all the models, we can define a cost function 

( )xC y , which we are required to minimize to obtain the optimum approximating 

distribution 

|
| | |

|

( ) ( , ) ln ln .y x
y y x y x x y x

y x

q
C x D q p p q dy

p
= − =  (7) 

It is easy to see that the cost function gives an upper bound for ln xp− . In the 

following we denote ( | , )q y x H by | ,y x Hq  and ( | )p x H by ,x Hp , use the same 

notation as with probability distribution, that is, ( )HxC y  means 

| ,
| , | , | | ,

, |

( | ) ( , ) ln ln .y x H
y y x H y x H x H y x H

x y H

q
C x H D q p p q

p
= − =  (8) 
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where H stands for a model. Obviously since this cost function yields the lower 

bound for |ln x Hp , and
| |

|
|

x H H x H H
H x

x x H H
H

p p p p
p

p p p
= = . It is natural that we may use 

( | )yC x H  to approximate |H xp , that is 

'

'

| .'

exp[ ( | )]

[ ( | )]
y H

H x
y H

H

C x H p
A p

C x H p

− ⋅
= →

− ⋅
 (9) 

In fact we have the following theorem 

Theorem 1.  Assume | 1H x
H

p = . If |H xp A= , that is, the posterior about model 

structure H and the posterior about output y satisfies the relation |H xp A= , then 

, |y H xq  is the best approximation for , |y H xp , or , ( )y H xC  is minimized with respect 

to |H xp . 

Proof:  Without losing any generality, we have 

, | | | , .y H x H x y x Hq Q q= ⋅  (10) 

Now the cost function can be written as 

, | | | ,
, ( ) , | | | ,

, , , |

ln lny H x H x y x H
y H x y H x H x y x H

H Hx y H H x y H

q Q q
C q dy Q q dy

p p p
= =  

            
|

| ln ( | ) .H x
H x y

H H

Q
Q C x H

p
= ⋅ +  

(11) 

Minimizing , ( )y HC x  with respect to ,H xQ  under the constraint | 1H x
H

Q = , it is 

easy to evaluate that when 

'

, '

exp[ ( | )]
.

exp[ ( | )]
y H

H x
y H

H

C x H p
Q

C x H p

− ⋅
=

− ⋅
 (12) 

, ( )y HC x with respect to |H xQ  arrives at its minimum value which is 

, ( ) | ln exp[ ( | )] .y H Q y H
H

C x C x H p= − − ⋅  (13) 

This completes the theorem. 
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ME and HME as typical examples of modular networks, we know that all modules 
receive the same input.  The gating network typically receives the same input as the 
expert networks, and it has normalized outputs as a prior probability to select the 
output from each expert to form the final weighted output. The dynamical role of 
gating network according to input can be considered as a division of input space and 
is crucial to ME and HME, typically the output (combination proportion or activation 
function) of gating network is a softmax function of inner product of input and 
weights of the gating network. 

On the other hand, from the above theorem and the poof procedure we can see the 
posterior about the structure H of a single model can be represented in terms 

of , ( ) |y H QC x , or a group of N models (with different structures, with the same 

structure but different initial parameter values or be trained with different learning 

algorithms). So, if we want to use a part of those models that minimize , ( ) |y H QC x , 

obviously each of them may be viewed as a module (or an expert), then these selected 

modules can be combined with the posterior about structure |H xQ  as the mixing 

proportion. Using a posterior not a prior has some advantages: the division of input 
space may be more precise; it seems more reasonable that the combination proportion 
is determined not only by input but also by module, this makes possible to coordinate 
different tasks according to different features of each module. Here we don’t discuss 
how to do model selection and implementation algorithm. For present task, we 
assume there are N modules, then the goal of learning or the learning criterion is to 
minimize equation (13). It’s important to see that this learning criterion has the same 
form as the learning criterion in subsection 1.2. In fact, we will show that the latter is 
the special case of the former from information geometry point. 

6   Committee Machine with Gaussian Regression Models 

We suppose there have N trained modules and each module with single output unit, 

and the corresponding regression model is: ( , )k k k ky f x w ε= + , where sub-

index k stands for a module in the hybrid networks, kε is Gaussian noise with zero 

mean and variance kσ ; also assume the corresponding true model is Gaussian with 

mean μ and varianceσ ; therefore, the input-output relation of each module can be 

represented as the following conditional probability distribution 

2
| , 2

1 1
exp ( ( , )) .

2 2
y x w k k kk k

k k

p y f x w
πσ σ

= − −
 (14) 

It’s an exponential family. Obviously minimizing equation (13) is equivalent to 

minimizing ( | )
ky k HC x H p  for each module or minimizing the product of 

corresponding KL divergence and a prior | , | ,( , )
k k ky x H y x H HD q p p . The following 

theorem [17] is useful for our present task. 
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Theorem 2. Let { }( | ), 1,2k k kp N h kμ ∈ be two Gaussian distributions. Denote 

1
1 2

21 2
0 1 2 1

1 2

( , ) : , ( | ) : exp .
(1 ) 2

h h h
d h h d h

h h

δ δ

μ μ
δ δ

−

= = −
+ −

 
(15) 

Then the δ -divergence is given by 

1 2 0 1 2 1 1 2

1
( , ) [1 ( , ) ( | )].

(1 )
D p p d h h d Vδ μ μ

δ δ
= − −

−
 (16) 

where (0,1)δ ∈ 1 1 1
1 2( ) [(1 ) ]V h hδ δ− − −= + − . From section 2, the extreme case 

1δ =  corresponds to the ordinary KL divergence. Let 1δ → , then 

( )
1

2
(1 )

1 2
2 1 1 1 2

0 1 2
1 2 2 1

1

1
( , ) exp

21 (1 )

h h h h h
d h h

h h h h
h

δδ δ

δ

−−
−−= →−− −

 

(17) 

therefore as 1δ → and use 1ln 1x x− ≈ − we have 

22 2 2
0 1 1 2

1 1

1 1 1
ln ln 1 , ln ( ) .

1 2 1 2

h h h
d d

h h
μ μ

δ δ
− → − + − − → −

− −
 (18) 

Hence we have 

21 2
1 0 1 2 1 2

2 1

1 1
(ln ln ) ln 1 ( ) .

1 2

h h
D d d h

h h
μ μ

δ
→ − + → + − + −

−
 (19) 

From equation (14), the mean and variance for module k is ( , )k kf x w  and kσ  

respectively, and the assumptions for real model, we have KL divergence for module 
k  

1 2
1

1
ln 1 ( ) .

2
k k

k
k

D f
σσ σ μ

σ σ
−≈ + − + −  (20) 

Notice that if kσ σ= , then the learning criterion is written as 

1 2
,

1
( ) | ln exp ( ) .

2ky H Q H k k
k

C x p fσ μ−= − − −  (21) 
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In fact, the content in the square brackets is equivalent to so-called Mahalanobis 
divergence between two distribution masses [18]. If use the desired output given by 
data samples as the instantaneous value of μ , now the content in the square brackets 

becomes equivalent to the Mahalanobis divergence between samples in one mass and 

another mass. Furthermore, if assume kσ  is constant and
kHp , 1...k N= is softmax, 

then the obtained learning criterion is the same as learning criterion (3). it can be 
trained by stochastic gradient methods. In this sense, learning criterion (3) is just a 
special case of our framework. 

If models are not Gaussian then it’s not easy to get explicit form of KL divergence. 
However, when model is of general exponential family, Amari in his paper [19] has 
proven that by introducing suitable hidden variables, combination of multi 
exponential families is an exponential family. Generally, since the true distribution is 
unknown, the choice of “target” poses a logical dilemma in itself. It is usually chosen 
according to some asymptotic properties. Paper [20] explored Bayesian inference 
using information geometry and suggested using the empirical distribution or the 

MLE for approximation under KLD =1  for exponential family manifold.  Another 

implicit implementation algorithm is so-called em algorithm [19], which is equivalent 
to EM algorithm in most cases. 

7   Conclusion 

This paper focuses on the close relation between the selection of learning criterion for 
committee machine and network approximation and competitive adaptation. By 
minimizing the KL deviation between posterior distributions, we give a general 
posterior modular structure and the corresponding learning criterion form, which 
reflects remarkable adaptation and scalability. Besides this, we point out that, from 
the generalized KL deviation defined on finite measure manifold in information 
geometry theory, the proposed learning criterion reduces to so-called Mahalanobis 
deviation of which ordinary mean square error approximation is a special case, when 
each module is assumed Gaussian. Our future work is to find an appropriate 
incremental learning implementation algorithm. 
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Abstract. The radial basis function(RBF) neural networks have been widely 
used for approximation and learning due to its structural simplicity. However, 
there exist two difficulties in using traditional RBF networks: How to select the 
optimal number of intermediate layer nodes and centers of these nodes?  This 
paper proposes a novel ART2/RBF hybrid neural networks to solve the two 
problems. Using the ART2 neural networks to select the optimal number of in-
termediate layer nodes and centers of these nodes at the same time and further 
get the RBF network model. Comparing with the traditional RBF networks, the 
ART2/RBF networks have the optimal number of intermediate layer nodes ,  
optimal centers of these nodes and less error. 

1   Introduction 

Radial Basis Function (RBF) networks are powerful computational tools that have 
been used extensively in the areas of systems modeling and pattern recognition. The 
difficulties of applying RBF networks consist in how to select the optimal number of 
intermediate layer nodes and centers of these nodes. In general, it is desirable to have 
less nodes networks that can generalize better and are faster to train. This calls for an 
optimal number of intermediate layer nodes and optimal positioning of intermediate 
layer nodes i.e., the location of centers.  

This paper proposes a novel ART2/RBF hybrid neural networks. Using the ART2[1] 
neural networks to select the optimal number of intermediate layer nodes and centers 
of these nodes at the same time and solves the two difficulties in traditional RBF 
networks effectively.  

The rest of this paper is organized as follows. Section 2 gives a brief introduction to 
the traditional RBF networks. Section 3 provides a brief introduction to the ART2 
networks. Section 4 introduces the principle of the ART2/RBF hybrid neural net-
works. Simulation results are presented and discussed in Section 5. Finally, conclu-
sion is given in Section 6. 
                                                           
* This work was supported by the National Natural Science Foundation of China under Grant 

60374056,60405009,50307011. 
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2   RBF Neural Networks 

The RBF feedforward neural networks achieve a nonlinear mapping as following: 

=
−+=

n

i
iin cXWWxf

1
0 )()( ϕ  (1) 

nRX ∈  is the input vector. )(•ϕ  is the radial basis function which achieve a map-

ping: RR →+ . •  is the euclidean norm. iW  is the weight. ic  is the center of the 

intermediate layer ith  node. n  is the number of centers. Select the radial basis func-
tion as Gaussian function. Then, a  RBF networks can be expressed as 

=

−
−=

n

i i

i
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When ic  is known, we can use the following formula to determine 2
iσ  

22 1

∈
−=

iX
i

i
i cX

M θ
σ  (3) 

iM  is the sample number of iθ  class. Finally, we can use the least square method to 

solve iw .We can see that the difficulties of the RBF networks consist in how to select 

the optimal number of intermediate layer nodes and centers of these nodes. 

3   ART2 Neural Networks 

ART2 is a class of adaptive resonance architectures which rapidly self-organize pat-
tern recognition categories in response to arbitrary sequences of either analog or bi-
nary input patterns. It can not only rapidly recognize the learned pattern but also 
fleetly adapt a new object which has not been learned formerly. The number of all 
winning neuron in 2F  layer is the clustered categories number. 

The algorithm of the ART2 neural networks was completely described in reference 
[1]. We can see that the classification precision is determined by the vigilance pa-
rameter ρ (0< ρ <1) and  higher ρ  corresponds to finer categories.We can deter-

mine how fine the categories will be by adjusting the vigilance parameter ρ . 

4   ART2/RBF Hybrid Neural Networks 

The ART2/RBF hybrid neural networks can select the optimal number of intermediate 
layer nodes and centers of these nodes at the same time and further get the RBF net-
work model.  
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Its learning algorithm is as following: 

(1)Using the ART2 neural networks to cluster input sample data under a vigilance 
parameter , the number of all winning neuron in 2F  layer is the clustered categories 

number  and the number is the optimal number of  RBF networks’ intermediate layer 
.The top-down weights of these winning neuron are the centers of the nodes of RBF 
networks’ intermediate layer. 
(2)Using the least square method to get weights between the RBF networks’ interme-
diate layer and  output layer can get the model of RBF networks. 

If the RBF networks’ model requires higher accuracy, we should increase the vigi-
lance parameter ρ  and repeat (1)and (2) up to satisfying the demand. 

The ART2/RBF hybrid networks can adaptively get the intermediate layer of RBF 
networks. When we want to get the different nonlinear model under different input 
and output sample data, the networks can adaptively get the intermediate layer node’s 
number and centers according to the required precision and input sample. 

5   Simulation Research 

Suppose input sample data is { }Nixi ,,1, = ,output sample data is { }Niyi ,,1, = , 

the trained neural networks model is )(•f ,then the approximation error can be gotten 

with the following formula. 

=
−=
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i
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2

1
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In traditional RBF networks, people usually adopt trial-and-error method to deter-
mine the number of intermediate layer nodes. The traditional method of selecting 
centers of intermediate layer nodes can be adopted as k-means clustering algorithm[2] 
,Konhonen self-organizing map[3] ,Orthogonal least square learning algorithm[4]. This 
paper compares the three methods’ the performances with the  ART2/RBF networks’ 
by a nonlinear system identification example. 

Example: The nonlinear identification object is as following: 

)cos()8sin(6.1)( 2 xxxxy = ]2,0[∈x  (5) 

Training input sample set : 2:005.0:0=x ,training output sample set )(xy can be 

gotten according to the formula (5).The number of training sample is 401. 
Traditional RBF networks adopt the trial-and-error method to determine the num-

ber of intermediate layer nodes and use above three method to select centers of these 
nodes. 

The ART2/RBF hybrid neural networks adopt ART2 networks to select the optimal 
number of intermediate layer nodes and centers of these nodes at the same time. 

The parameters of ART2 networks are  
93.0,15.0,8.0,13.0,4,4,35,2 ======== ρθdcbaNM  . 
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All kinds of algorithm’s performances are as table 1. 

Table 1. Four kinds of algorithm’s performances 

Algorithm the Number of 
Centers 

Clustering Measuring 
and Norm 

Error 

k-means cluster-
ing  

16 Euclidean distance 0.01 0.4563 

Konhonen  
self-oganizing 
Map  

16 Euclidean distance 0.01 0.4143 

orthogonal least 
square  

16 Euclidean distance 0.01 0.3837 

ART2/RBF 26 Euclidean distance 0.01 0.1309 

    Observing the simulation results in table 1,we can conclude that the ART2/RBF 
hybrid networks can achieve the optimal number of intermediate layer nodes and less 
approximation error than the traditional RBF networks. 

6   Conclusion 

This paper proposes a novel ART2/RBF hybrid networks which can adaptively get 
the intermediate layer node’s number and centers according to the required precision 
and input sample. This networks structure solves the difficulties of applying RBF 
networks.  Simulation results also show the validity of this networks. 
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Abstract. This paper deals complex number procedure neural networks and its 
learning algorithm. The conception and mathematic description of complex 
number procedure neurons are proposed based on traditional complex number 
neuron and procedure neuron. Feed-forward complex number neural networks 
models are considered. Grads-descent learning algorithm is deduced according 
to the supervising learning, and its learning procedure consists of two parallel 
procedures, the real part and imaginary part. An application example is given 
which show that the complex procedure neural network is suitable for signal 
processing problem. 

1   Introduction 

Generally, traditional neural networks deal with real number data. Neuron state, in-
put/output and weight are all real, which limits its application. Early in 1990s, in the 
time of neural networks, people began to pay attention to complex number procedure 
neural networks (CNNN). In 1990, Gordon extended BP algorithm to complex num-
ber weights [1]. In 1991, Benvenuto applied CNNN in signal sorting [2]. In 1992, 
Kechriotis used CNNN in simulating equilibrium as non-linear channels [3]. Later, 
CNNN were employed in designing FIR digital filters [4] and recognizing non-linear 
time series model [5], etc.  

Procedure neural network is the extension in time domain of traditional neural 
network, which takes the effect that time factor causes to the system into account, 
whose inputs are time functions and output is a space vector. Many forms of proce-
dure neural networks and application have been proposed [6, 7]. 

This paper proposes a model of complex number procedure neural networks 
(CNPNN) in section 2. The third section deals with CNPNN learning and in the forth 
part an application example is given for signal processing problem.  

2   Complex Number Feed-Forward Procedure Neural Networks 

The difference between real procedure neuron and CNPNN is that the inputs, outputs 
and weights of procedure neuron are all complex number. And its aggregation opera-

                                                           
1  This paper is supported by Zhejiang Province Nature Science Foundation of China 

(No. ). 
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tion includes not only multi-input aggregation on complex number space, but also 
accumulation on time procedure. The structure of a single complex number procedure 
neuron can be showed in Fig.1. 

 

 

 

 

 

 

 
Fig. 1. Model of complex number procedure neuron 

 

Where x1(t), x2(t),…,xn(t) [0, T] are vectors of input complex number function of 

procedure neuron, and 

xk(t)= xRk (t)+ ixIk (t), k=1,2,…,n,      (1) 

where xRk (t) and xIk (t) are xk(t) real part and imaginary part respectively, which are 

all real functions; w1(t), w2(t),…,wn(t) [0, T] are complex number weight functions, 

also take the form as formula (1). 

Complex number procedure neurons can constitute many forms of CNPNN ac-

cording to their organization and topology structure. In this paper, we consider a 

CNPNN(Fig. 2) whose weight function can be extended by a set of basis function B(t).  

 

 

 

 

 

 

 

 

 

Fig. 2. Procedure neural networks of expansion of basis function 

 

Where L is the number of basis function and 
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The output of complex number procedure neural networks is as following. 

)d)()((
0

=
T

ttKtAfy       (4) 

Where f is activation function of neuron. Functional K should be defined according 
to practical need.  

3   Learning Algorithm  

The learning algorithm of CNPNN can be deduced by supervised algorithm of real 
number procedure neural network. Suppose 

  IR ˆˆˆ yiyy +=       (5) 

is the desire output of complex procedure neural networks. Define the error function 
of complex number procedure neural network as  
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1
yyyyyyyyyyyyyyE −−+=−−=−=     (6) 

According to grads-descent learning algorithm, the rules of iterative learning of 
networks weights can be deduced. 

4   Application Example 

Given a series of complex number function yn(t)=an(t)*cos(t)*sin(n) 
+i*bn(t)*sin(t)*cos(n) , each of which is sampled on [- , ], tk=(k-180/K), k=0,1,…,K-
1. And choosing an(t)= 15t2, bn(t)= 1.8t, K=360 n=1,2,…,8. The image of the func-
tion is shown. Using the network parameters of CNPNN trained on [- , ] as the 
simulation function test on 

−
4

5
,

4

3 ππ , we get the original and predictive images as 

in Fig.3 and Fig.4, separately.  
 

  
            Fig. 3. Original image of {yn}                    Fig. 4.  Predictive image of {yn} 
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5   Conclusions 

CNPNN extends the traditional procedure neural network to the complex number 
field, which many typical problems, such as the signal processing, can be solved di-
rectly by single networks. Although the fashion of the CNPNN is a little complicated 
and the calculation complexity is doubled, the area and ability of solving problems 
has been highly extended.  
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Abstract.  Urban traffic system is a complex system in a random way, it is nec-
essary to optimize traffic control signals to cope with so many urban traffic 
problems. A multi-layer chaotic neural networks involving feedback (ML-
CNN) was developed based on Hopfield networks and chaos theory, it was ef-
fectively used in dealing with the optimization of urban traffic signal timing. 
Also an energy function on the network and an equation on the average delay 
per vehicle for optimal computation were developed. Simulation research was 
carried out at the intersection in Jiangmen city in China, and which indicates 
that urban traffic signal timing’s optimization by using ML-CNN could reduce 
25.1% of the average delay per vehicle at intersection by using the conventional 
timing methods. The ML-CNN could also be used in other fields. 

1   Introduction 

With the development of productivity, traffic jam is becoming a tougher and tougher 
problem in modern cities. It is necessary to develop a kind of high efficiency traffic 
signal controller with intelligent technologies for better and efficient urban traffic 
control. It is known that Chaos phenomenon exists in various dynamical systems. 
Urban traffic system has a typical chaotic characteristic. Chaos theory should be a 
kind of effective methods to deal with the problem. There is a Hopfield network 
which is a ripe one and fit for optimization especially. Yet it can’t be used for solving 
complex traffic problems because it is single-layer. Thus here, a ML-CNN using the 
basic theory of both chaos theory and Hopfield network will be put forward in this 
paper. It can be used to optimize traffic control signal timing on a single intersection.  

In recent years, a lot of research has been carried out on chaotic neural networks 
(CNN). Zhenya He (2002) developed a Multistage Self-Organizing Algorithm Com-
bined Transiently CNN for Cellular Channel Assignment; Cao Zhitong, Jacob (2003) 
used the Nagumo-Sato model to construct a chaotic CNN; Ohta, Masaya(2002) pro-
posed a CNN with reinforced self-feedbacks; Lipo Wang(2004) proposed a noise 
CNN for solving combinatorial optimization problems. And so on. 
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2   Multi-layer Chaotic Neural Networks Involving Feedbacks 

Combining Hopfield network with chaos map, a ML-CNN was put forward here, the 
ML-CNN has a characteristic of escaping from a local minimum of the energy func-
tion, so that it can find a global minimum more easily as compared with the Hop-
field’s model. 

As an example, fig.1 shows a ML-CNN’s framework that can be used in an inter-
section with a standard four signal phases. Compared with Hopfield networks, several 
major characteristics of the networks consist of: (i) it is a three-layer network includ-
ing an input layer, an output layer and a hidden layer; (ii) all the outputs in the output 
layer are returned to the input layer; (iii) the hidden layer consists of many chaos 
neurons with self-feedback.  

As shown in fig.1, 1g ~ 5g represent respectively the effective green time of the 
signal phase 1, 2, 3, 4 and the cycle time; 1s ~ 4s represent respectively the saturation 
flows of the signal phase 1, 2, 3, and 4; and 5s ~ 12s represent respectively actual 
average vehicle flows of traffic flow 1, 2 in the signal phase 1, 2, 3, and 4.  

The outputs in the output layer are a linear combination of the hidden layer’s out-
puts, which can be expressed as follows, 
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Several output models of the hidden layer’s can be expressed as follows,  
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Some output models of the input layer’s can be expressed as follows, 
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   12~1=i  . (5) 

where, t is discrete time step ( ,2,1,0=t ); ix and iy are respectively the output 
and the internal state variable of the ith chaotic neuron in hidden layer; iu is the out-
put of the ith neuron in input layer; iz is the self-feedback’s dynamic weight of  the 
ith neuron in hidden layer; jiβ , ijω and jiρ  are respectively the weights between the 
ith neuron in hidden layer and jth neuron in output layer, the jth neuron in output layer 
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and ith neuron in hidden layer, the jth neuron in output layer and ith neuron in input 
layer; iI is the ith neuron’s input deviation in hidden layer;ε  is a gradient parameter 
of )(txi ; k is a neuron’s attenuation factor in hidden layer; α is a scaling fac-
tor; β is the attenuation factor of )(tzi ; τ and λ are all dimension uniform factors. 

As shown in the equation (4), 0)( →tzi , when 0→t , and the network will be-
come a discrete feedback neural networks without chaotic self-feedback’s neurons 
and converge at a steady balance point, and then we get the optimization.  

jiβ

jiρ

ijω
iz

1g 5g4g3g2g

1s 12s5s4s3s2s

 
Fig. 1. Multi-layer chaotic neural networks involving feedback 

3   Energy Function 

It is a key to define energy function in chaotic neural networks involving feedback. 

3.1   Delay Model 

The Webster equation, shown below (when degree of saturation is smaller than 97%), 
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where, d is the average delay per vehicle(s/veh), c the cycle time(s), λ the propor-
tion of a cycle than effectively green for the phase under consideration (i.e., g/c), 
q the flow(vehicles per h), s the saturation flow (vehicles per second of green), x the 
degree of saturation (i.e., sqx λ/= ). 

Robertson retained Webster’s first term for uniform vehicle arrivals but replaced 
the last two terms using the terms below (when degree of saturation is larger than 
97%), 
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where, 32 DD + is the added delay because of vehicle random variety; 

)/60).(/2(( Txz υ= ,υ is the approach volume(veh/h), T the period length. 

3.2   Energy Function 

The energy function includes the total delay and some restriction conditions of the 
cycle’s and the effective green time. The energy function is in this form, 
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where, m is the numbers of phase, in  approach number of the ith phase, ijd the 
average delay per vehicle of the jth lane in the ith phase within a cycle (s/veh), c  the 
cycle length (s), minc  and maxc  the upper limit and the lower limit of cycle length 
(s), ig  the effective green time of the ith phase (s), ming and maxg  the upper limit 
and the lower limit of the effective green time (s), iI  losing time of the ith phase, iA  

)22,,1,0( += mi  the punishment coefficient. 

4   Simulation Research and Conclusion 

The object simulated is an intersection in Jiangmen city in China, whose traffic is 
controlled by four phases, and each phase includes two various traffic flows, turning 
right isn’t controlled. Simulation is done respectively by vehicle actuated control, 
adaptive control and ML-CNN method under the same traffic condition. Suppose: the 
upper limit of cycle length is 120s, the lower limit 47s, the upper limit of green time is 
60s, the lower limit 10s, the yellow time is 1s. Table1 shows the simulation result, 
which shows that it can reduce the total delay at intersection by using ML-CNN for 
timing optimization. 

Urban traffic signal timing optimization based on ML-CNN can reduce25.1% of 
the average delay per vehicle at intersection based on the conventional timing means, 
and can improve the traffic efficiency. It is a key to fix restriction conditions that have 
a huge influence on optimization results. The ML-CNN can also been used in other 
fields.  Consider that ML-CNN can effectively be used in a single intersection, we 
believe that it could also be used in area traffic control. 
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Table 1. Simulation result. “*”ML-CNN; “**”vehicle induce control; “***” adaptive control; 
”#”the reduce of average delay per vehicle of ML-CNN compared with vehicle induce control; 
“##” the reduce of average delay per vehicle of ML-CNN compared with self-optimization 
control (This table has been abridged) 

                                     7:45       9:55       12:50      14:10      15:10      18:25 
~8:00     ~10:10   ~13:05    ~14:25    ~15:25     ~18:40 

Cycle length (s)                   89          95           53            90           88           60 
Green time in phase1 (s)     11          10           10            10           10           10 
Green time in phase2 (s)     23          31           14            27           30           18 
Green time in phase3 (s)     17          20           10            20           18           10 
Green time in phase4 (s)     31          27           12            26           22           15 
Average delay(s/veh) *        67          70           48            76           62           53 
Average delay(s/veh) **       86          87           67            95           88           78 
Reduce(%) #                     22.1       19.5        28.4         20.0        29.5        32.0 
Average delay(s/veh) ***      91          96           68            92           81           76 
Reduce(%) ##                    26.3       27.1        29.4         17.4        23.4        30.2 
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Abstract. The problem of direct adaptive neural control for a class of nonlinear 
systems with an unknown gain sign and nonlinear uncertainty is discussed in 
this paper. Based on the principle of sliding mode control and the 
approximation capability of multilayer neural networks (MNNs), and using 
Nussbaum-type function, a novel design scheme of direct adaptive neural 
control is proposed. By adopting the adaptive compensation term of the upper 
bound function of the sum of residual and approximation error, the closed-loop 
control system is shown to be globally stable, with tracking error converging to 
zero. Simulation results show the effectiveness of the proposed approach. 

1   Introduction 

In recent years, robust adaptive control of nonlinear systems has received much 
attention[1-8]. Typically, these methods use neural networks as approximation models 
for the unknown system nonlinearities[2-7].Using the approximation capability of 
radial basis function neural networks, which are the linear function of adjustable 
output weights, a stable adaptive controller was proposed in [2].In order to improve 
the approximation of radial basis function neural networks, an adaptive neural 
network control with variable variance parameters was proposed in [3]. But the 
approximation errors were assumed to be bounded in [2,3].Based on multilayer neural 
networks, the adaptive controllers proposed by [4-6] ensured tracking error 
converging to residual set only. A direct adaptive controller was developed based on 
multilayer neural networks and sliding mode control technique in [7],but the 
approximation error was assumed to be bounded in stability analysis (See 
equation(26)).Using the approximation capability of the second–type fuzzy system, 
which is the nonlinear function of adjustable parameters, the design scheme of a 
stable adaptive fuzzy controller was proposed in [8].The projection algorithm was 
adopted for the parameter estimation in [8].However, the control gain signs were 
assumed to be known in [1-8].By using Nussbaum –type function, two control 
schemes were presented for a class of strict-feedback nonlinear systems with 
unknown virtual coefficients signs in [9,13]. 

In this paper, a new design scheme of adaptive neural controller for a class of 
nonlinear systems with an unknown gain sign is proposed. The design is based on the 



346 W. Jiang, Y. Xu, and Y. Xu 

 

principle of sliding mode control and the approximation capability of multilayer 
neural networks. By utilizing the robust adaptive control and Nussbaum function, an 
adaptive law is derived to adjust the gain of sliding mode control term to adaptively 
compensate for the residual and the approximation error of MNNs. By theoretical 
analysis, the closed-loop neural control system is proved to be stable and the tracking 
errors asymptotically converge to zero. 

2   Problem Statement and Basic Assumptions 

Consider the neural adaptive control problem for a class of nonlinear systems in the 
following form: 
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where x=(x1 x2 … xn)
T�Rn is the state vector, u is the control input, f is the 

unknown continuous function, g is the unknown continuous function control gain, y is 
the system output, d denotes external disturbance. 

The control objective is to force the system output y to follow the specified 
trajectory yd. Therefore we should design a neural network control u(t) such that y-yd 
converges to zero. 

Define xd, e and a filtered tracking error s as follows: 
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where ini
n

i Cc −−
−= λ1
1 ,i=1,…, λ  is a positive constant, specified by the designer. 

Lemma 1[6] Let s be defined by (2), then 

1)  if s =0, then limt  e1=0; 
2)  if |s| c, e(0) c, then e(t) c ∀ t o; 

3)  if |s| c, e(0) c, then ∃ T =(n-1)/ λ , ∋ ∀ t T, e(t) c, 

where c>0, c={ e(t)| |ej| 2j-1 λ j-nc, j=1,…,n}. 
From(1),(2),we have 
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In order to design adaptive neural network control, we make the following 
assumptions: 
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. 
In order to copy with the unknown control gain sign, the Nussbaum gain technique 

is employed in this paper. A function N(ς ) is called a Nussbaum-type function if it 

has the following properties: 
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Lemma 2[12]:Let V(·) and ς (·)be smooth function defined on [0,tf] with V(t) 0, 

∀ t [0,tf), and N(·)be an even smooth Nussbaum-type function. If the following 
inequality holds: 
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3   Adaptive Neural Network Controller Design 

Let 
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with compact subst μΩ  to be specified later. Let h(z,W,V) be the approximation 

of the three-layer neural networks on the compact zΩ  to h(z),i.e. 

h(z,W,V)=WT S(VT
−
z  (5) 
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T, 
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where W*, V* are ideal NN weights and )(zε is the NN approximation error. 
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Let ||·||F denote the Frobenus norm, ||·|| denote the 2-norm and ||·||1 denote the 1-
norm,  i.e. 
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where
^

K  is the estimation of K at time t, )
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Choose the adaptive law as follows: 
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where 0>ΓW , 0>ΓV and 0>ΓK  are gain matrices which determine the rate 

of adaptation. 
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4   Stability Analysis 

Define a smooth scalar function 
|)(|2

2
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s
Vs = . 

Differentiating Vs with respect to t and applying(3),(4)and(7),we obtain 
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Theorem Consider the nonlinear systems (1) with the control law defined by 

(2),(5),(12)and (13).Let the weights 
^

W , 
^

V and sliding mode gain 
^

K  be adjusted by 
the adaptation law determined by (14)-(16) and let the assumptions 1)-5) be true. 
Then, for any bounded initial conditions, all the signals in the direct adaptive control 

system will remain bounded; moreover, the tracking error )(1 te  will asymptotically 

converge to zero, i.e. 
(1) The overall closed-loop neural control system is globally stable in the sense 

that all of the closed –loop signal are bounded, and the state vector 
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Substituting(12)and (14)-(17)into(19), we have 
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Therefore we know that 
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]1)())([sgn( are bounded on [0,tf).Similar to the discussion in 

[12],we know that the above conclusion is true for tf= .It is easy to show that
∞
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2s dt 

exists. From(18), we have that 
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, ∞∈ LtK ||)(||
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^

.According to assumption 1) and 

(18),we have that ∞∈ Ls . Since a continuous function is always bounded on a 

compact set, using(3),we have that )(
.

ts  is bounded and )()(2/)(
.

2 tstsdttds =  is 

also bounded. Therefore, )(2 ts  is uniformly continuous on [0, .According to 

Barbalat’s lemma, it is easy see that limt |s(t)|=0.From (2), we obtain that 
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  with λ >0. This means that limt |e1(t)|=0. 

5   Conclusions 

Based on Nussbaum function property and multilayer neural networks, a new direct 
adaptive control scheme for a class of nonlinear systems with an unknown gain sign 
and nonlinear uncertainties has been presented in this paper. The adaptive law of the 
adjustable parameter vector and the matrix of weights in the neural networks and the 
gain of sliding mode control term are determined by using a Lyapunov method. The 
developed controller can guarantee the global stability of the resulting closed –loop 
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system in the sense that all signals involved are uniformly bounded and the 
asymptotic convergence of the tracking error to zero. Since the direct adaptive control 
technology is used, the controller singularity is avoided in our proposed  controller 
design. 
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Abstract. The performance of Self Organizing Map (SOM) is always influ-
enced by learn methods. The resultant quality of the topological formation of 
the SOM is also highly dependent onto the learning rate and the neighborhood 
function. In literature, there are plenty of studies to find a proper method to im-
prove the quality of SOM. However, a new term "stiffness factor" has been pro-
posed and was used in SOM training in this paper. The effect of the stiffness 
factor has also been tested with a real-world problem and got positive  
influence.  

1   Introduction 

Kohonen’s Self-Organizing Map (SOM) is a neural network which projects the high 
dimensional input space to one or two-dimensional array in nonlinear fashion [1, 2]. 
The codebook vectors (neurons) connected in a lattice structure in a two dimensional 
plane which forms the resultant topology provide insights about possible relationships 
among the data items. This idea is inspired from the structure of the cortical map of 
the brain. Although various disciplines use the SOM model in order to find solutions 
to broad spectrum of problems, however, there is not so much clue about the how the 
resultant maps are supposed to look after training or what kind of learning parameters 
and a neighborhood functions have to be used according to the nature of data itself. In 
literature, there are plenty of studies to determine the optimum learning rate and 
neighborhood function [3,4,5,6]. 

Although a lot of effort has been made to analyze the organization of the topology 
of SOM, the delineation of data dependent learning rate and neighborhood function is 
a cumbersome task. The introduction of a hit term in order to improve the topological 
quality concerning data statistics for two dimensional topographical SOM has been 
defined by Germen [7] for rectangular lattice. Here in this paper, the same hit term is 
used to track the density localizations of data points in multi dimensional space, how-
ever much more adequate method the, "stiffness factor", has been proposed to use it in 
training. The main insight of this term is, decreasing the fluctuations of the neurons in 
lattice, if those get much hit ratio than the others. In Newtonian physic, the mass with 
higher density attracts the others to it. Similarly the “stiffness factor” simulates this 
phenomenon, and the statistical characteristic of data can be conserved in topology.  

In this paper, I address the SOM algorithm and the proposal for the novel term 
“stiffness factor” and its usage with the learning rate and neighborhood function is 
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given in section 2. The results of the proposal are examined in Section 3. In Section 4 
there is a brief conclusion. 

2   SOM Algorithm and the Stiffness Factor  

In Kohnen's SOM, the learning is an iterative procedure defined as: 

 ( )( ) ( 1) ( ) ( , , ) ( ) ( 1)
i i i

M k M k k c i k k M kα β= − + ⋅ ⋅ Λ − −  (1) 

Here ( )
i

M k denotes the modified neuron and ( )kΛ  shows the training data presented 

in the iteration step k. The subscript i is used to show the Neuron index in the planar 
lattice. The ( )kα  and ( , , )c i kβ  are used to denote the learning rate and the neighbor-

hood function parameters around the Best Matching Unit (BMU) where the index 
value is c and found as :  

 arg min ( ) ( )
i

i

c k M k= Λ −  (2) 

The learning rate usually gets value 1 at he beginning and diminishes gradually 
during the training phase in order to first find the global localizations and then do 
local adjustments. Similarly the size of the neighborhood function shrinks with the 
lapse of time and the training is done in two phases: first with large neighborhood 
radius, and then fine tuning with small radius. 

The automatic formation of the topologically correct mapping is the direct conse-
quence of the localization of the BMU and its direct influence onto the other neurons 
around the neighborhood of it determined by the neighborhood function. In learning 
process, if a number of excitations of a  particular neuron is more than the others, it is 
possible to deduce that the weights of that neuron points out the much denser localiza-
tion in the training data. If those particular neurons' weights are changed as much as 
the weights of neurons which didn’t get so many hits, will cause the loss of this in-
formation. However in conventional approaches, this phenomenon doesn’t be taken 
into the consideration.  

Here in this paper, a new term has been proposed to effect the change of weights of 
a neuron according to its past number of hits. The hit term will be used to explain that 
the neuron is “on” (selected as BMU) at an instant. The main idea of stiffness factor is 
increasing the inertia of a neuron proportionally with the number of hits during train-
ing. Although it seems quite reasonable to count the hits per neuron and use the pro-
portions of the hit rates between BMU and the updated neuron during training, it can 
easily be prove that, this technique causes twists and butterfly effects which have to 
be avoided [2]. In order to get rid of this problem, the planar movement of the up-
dated neuron into the direction of BMU, should have to be less than the other neurons' 
movements which are located around the close vicinity of BMU. The motivation 
behind the stiffness factor is finding an updating scheme which takes BMU hits into 
consideration without affecting the twist-free organized topology. The method which 
is proposed in this work is first finding the closest neurons as "impact neurons" 
Mn(Mi) for the updating neuron Mi in planar lattice "in the direction" of BMU. Here 
either one impact neuron or two impact neurons are selected according to the topo-
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logical locations of the updated neuron Mi(k) and BMU Mc(k). The Fig. 1 explains this 
idea. In the figure, possible three different updated neurons Mi, Mj, Mk and their im-
pact neurons Mn1(Mi) for Mi, Mn1(Mk) and Mn2(Mk) for Mk and Mn1(Mi) for Mi has been 
shown.  

 
x

y

MiMn1(Mi)

Mj

Mn1(Mj)

BMU

Mk

Mn1(Mk)

Mn2(Mk)

 

Fig. 1. Different impact neurons for different updated neurons 

 
    The Impact Neurons' Mn(Mi) topological indexes are calculated as: 
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(3) 

After finding the Impact Neurons, the average impact hit ratio has to be found. If 
there is only one neuron as an Impact Neuron, the impact hit can be calculated as: 

( ) ( ( ))
impact n

Hit k h M k=  otherwise ( )1 2
( ) ( ( ) ( ( ) / 2

impact n n
Hit k h M k h M k= +  

where h(Mn) represents the number of hits of the neuron Mn.  
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By using the hit ratio of the Impact Neurons, the Stiffness Factor is defined as: 

 ( , , )
( ( ))

impact

impact i

Hit
c i k

Hit h M k
σ =

+
 (4) 

Using the calculated stiffness factor, the weight is updated with the formula: 

 ( )( ) ( 1) ( ) ( , , ) ( , , ) ( ) ( 1)
i i i

M k M k k c i k c i k k M kα β σ= − + ⋅ ⋅ ⋅ Λ − −  (5) 

3   Experimental Results 

The new stiffness factor parameter is used with the conventional learning rate and 
neighborhood parameters and a considerable improvement in the final topology has 
been obtained. In order to analyze the contribution of the proposed parameter, Aver-
age Quantization Error (AQE) is used. This is measured using average quantization 
error between data vectors and their corresponding BMU's.  

In the experiment, two-dimensional 10x10 neuron map is trained with two dimen-
sional data. The neurons are connected in a rectangular lattice. The training set con-
sisted of 10,000 samples with a normal distribution of Mean = 0, and Standard Devia-
tion = 5. The training set is randomly sampled 10,000 times. Fig. 2 shows the AQE 
comparisons of training the map when the stiffness factor is applied after training 
steps of 1000 and 5000 data. The resultant maps and the data have been shown in Fig. 
3. Here it is observed that, the Stiffness Factor has considerable positive influence on 
the final maps.  

The effect of the Stiffness Factor also has been tested with a real-world problem in 
order to classify the power-quality data. At the end of the experiments a considerable 
improvement on the classification borders of SOM has been observed.  
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Fig. 2. Average Quantization Error comparisons of Stiffness Factor effects 
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Fig. 3. Effects of Stiffness Factor on the final topologies 

4   Conclusion 

During the training period of SOM, the stability of the weights of a neuron has been 
increased directly in proportion with the number of getting hits. While updating a 
neuron, according to the relative positions of it and the BMU, the impact neurons are 
found.  According to the average hits, the hit ratio (i,c,k) parameter has been defined 
and used with different learning rate and neighborhood function parameters. It has 
been observed that this novel parameter has an improving effect for different kind of 
SOM parameters from the point of view of the quality of resultant topology. 

Another asset of this hit ratio term is, it can easily be applied with conventional pa-
rameters, which are used in SOM training. This term enforces the power of self-
organization idea and data dependent topological formation of the net. 
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Abstract. This paper proposed a novel self-adaptive wavelet network model for 
Regression Analysis. The structure of this network is distinguished from those of 
the present models. It has four layers. This model not only can overcome the 
structural redundancy which the present wavelet network cannot do, but also can 
solve the complicated problems respectively. Thus, generalization performance 
has been greatly improved; moreover, rapid learning can be realized. Some 
experiments on regression analysis are presented for illustration. Compared with 
the existing results, the model reaches a hundredfold improvement in speed and 
its generalization performance has been greatly improved. 

1   Introduction 

Wavelet networks that has been proposed recently by Zhang, Benveniste, Pati and 
Krishnaprasad [1]~[3] are a class of neural networks consisting of wavelets. The 
wavelet network provides a unique and efficient representation of the signal. At the 
same time, it preserves most of the advantages of the RBF network. The wavelet neural 
network has shown its excellent performance in many fields and now it has been widely 
used [1][2][3][6][7]. According to the theory of Multiresolution, Baskshi B R and 
Stepphanopoulous proposed a novel orthonormal wavelet network model and 
corresponding learning algorithm [4]. In the network, the hidden layer replaces the 
sigmoid active function by wavelet function and Scaling function. 

Since the present wavelet networks successfully preserve most of the advantages of 
the RBF network, few researches are focused on the structure of wavelet network. In 
fact, as to the whole signal, the orthogonal wavelet based network can be constructed 
and it is not redundant. However, as to some parts of signal, only some of neurons are 
useful, and the others are redundant. If the structure of the present wavelet network is 
changed properly, the various advantages of RBF network can be preserved and at the 
same time, the redundancy can be overcome effectively.  

In this paper, a novel self-adaptively wavelet network and algorithm are proposed. 
Some experiments on Regression Analysis problems have been done to verify the 
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performance (learning speed and generalization performance) of the model. Comparing 
the experimental results with the ones that are published in references [1] ~ [3] show 
that the model can reach better generalization performance and can reach a 
thousandfold improvement in speed. 

2   A Novel Wavelet Network 

Throughout this paper, let R , Z  and N  denote the set of real, all integers and natural 
numbers respectively. As everyone knows, the construction of wavelet is associated 
with multi-resolution analysis (MRA) developed by Mallat and Meyer.  

Suppose function )()( 2 RLt ∈ϕ  satisfied +∞

∞−
= 1)( dttϕ , )(xϕ  can span multi- 

resolution analysis (MRA) of )(2 RL , which is a nest sequence of closed subspaces jV  

in )(2 RL . +∞=
−∞=− n

n
mm nt )}2(2{ 2/ ϕ  or +∞=

−∞=
n
nnm t)}({ ,ϕ  are the bases of mV . )(tϕ  known as 

the scaling function (the ‘father wavelet”), specifically, there exists a function 

)(tψ (the “mother wavelet”) and +∞=
−∞=−= n

n
mm

nm ntt )}2(2)({ 2/
, ψψ  which are the bases 

of space 
mW . Space 

mV  is related to 
mW  by 

mmm WVV ⊕=+1
. 

It induces a decomposition of )(2 RL  

m
Jm

J WVRL ⊕
≥

=)(2                                                    (1) 

The above discussions suggest a scheme for decomposing a 2L  function )(tf , 

namely, 

>

><+><=
n nJm

nmnmnJ tftnJftf
,

,,, )(,)(),(,)( ψψϕϕ                 (2) 

Without loss of the generality, for the analyzed signal )(tf , a following two-hidden 

layer wavelet network is set up, which has realized a RR d →  mapping. Its structure 
is as Fig.1. 

 

Fig. 1. Four layer wavelet network  
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As shown in Fig.1, the novel wavelet network has two hidden layers. The 
first-hidden layer consists of 

1N  ” ϕ  neurons”, 2N  “ψ  neurons” and d  neurons 

quantizers. d  is the dimension of the input data. Each neuron quantizer consists of two 

sigmoidal neurons called typeA −  neuron and typeB −  neuron respectively. 

typeA −  Neuron and typeB −  neuron of thj −  quantizer are denoted as neuron 
)( jA  and neuron )( jB  respectively. The output of thj −  quantizer is denoted as 

)()( j
p

j
p BA

Ο+Ο  dj ≤≤1 . All of the neurons in the input layer are linked with all of the 

”ϕ  neurons” and “ψ  neurons”. But the thi −  input neuron is just linked with the 

thi −  quantizer. di ,...,1= . The second layer has dL neurons ( L is arbitrarily plus 

integral value). The neurons of the first hidden layer link to all of the neurons of the 
second hidden layer. 

Definition 1: For a −d dimension signal f , suppose 

}...|{ 21 dLL fffff ⊕⊕⊕==Γ
Δ

, Let if  denotes the i -th sub-signal of f  that is 

divided continuously into dL  equidistant shares according to the support of each 
dimension. 

As to the distinct samples ),( ii tx , where dT
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without loss of the generality, suppose the support of signal is d],0[ α , a plus vector 

W can be chosen randomly. It can separate them into dL  groups according to the 
support of each dimension. 
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The training of novel wavelet network mainly consists of two phases: (1) 
Determination of weights and biases of neural quantizers. (2) Determination of weights 
and bias of the “ϕ  neurons” and “ψ neurons”  

2.1   Determination of Weights and Biases of Neural Quantizers 

As shown in Fig.1, the weights which link the inputs with the neuron )( pA and neuron 
)( pB  can be chosen as WTw pA p ⋅=)( and WTw pB p ⋅−=)( . The pT , 

dp ≤≤1 can be set as following: 
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The biases )( pA
b  and )( pB

b  of neuron )( pA  and neuron )( pB  are simply analytically 

calculated as 
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For any input ix  within input vector group )(qGroupV , dLq ,...,1= , only the 

q th-neuron’s input are almost zero while one of the inputs of other neurons is almost 

one in the second-hidden layer. 

2.2   Determination of Weights and Bias of the “ϕ  neurons” and “ψ neurons” 

According to the theory of the wavelet, the weight and bias of the “ϕ  neurons” and 

“ψ neurons” can be determined as the reference [4]. 

3   Experimental Results 

The scaling function )(2 xN  and wavelet )(2 xψ are selected as the activating function 

of the 1N  ”ϕ  neurons” and
2N  “ψ  neurons” of the first hidden layer in the model of 

the paper respectively. 
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Then the same non-liner functions in the reference [2][3] are chosen as the 
approximate functions. To assess the approximation results, a figure of merit is needed. 
We select the same figure of merit in the [2]. 

For the input datum n
iiin txT 1)},{( ==  and the network output iMt , . 
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The computing environment as following: Intel P4 1.7G CPU, 256M RAM, and 
MATLAB 6.5. At first, the functions that are chosen by the reference [2][3] are chosen 
to do the experiments and compare the results with those that are shown in the reference 
[2][3]. 

Function 1: 

≤<−+

≤≤−
<≤+−

=
− 15.0)4212sin(10

5.04.0,46.4292.84

4.00,996.872.43

21 xxxe

xx

xx

y
x

 

Model Hidden Neurons Epochs RMSE Of Testing Time(s) 

Zhang [2] 7 10000 0.05057 1100 
Pati [3] 31 800 0.024 101.7 

BP 7 10000 0.13286 1150 
Our WN 41 1 0.0013 1.8600 

Function 2: 

]1,0[,)510sin()(400 22 ∈−+−−= yxxyxyxz  

Model Hidden Neurons Epochs RMSE Of Testing Time(s) 
Zhang [2] 49 40000 0.03395 21300 
Pati [3] 187 500 0.023 500 
BP 225 40000 0.29381 95640 
Our WN 217 1 0.0085 3.2180 
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From the datum, both the generalization performance and the learning speed of the 
network in this paper are more ascendant than those of the previous wavelet network 
models. 

4   Summery 

In this paper, a novel model and a rapid algorithm of wavelet neural network are 
described. For the more rational and effective structure is adapted in the model, 
Comparing with the present wavelet network, this model not only has a hundredfold 
improvement in speed, but also obtains better generalization performance. For future 
work, to investigate the model in some real world large-scale applications are of great 
interest. 
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Abstract. Reliable prediction of sales can improve the quality of business 
strategy. In this research, fuzzy logic and artificial neural network are integrated 
into the fuzzy back-propagation network (FBPN) for printed circuit board 
industry. The fuzzy back propagation network is constructed to incorporate 
production-control expert judgments in enhancing the model’s performance. 
Parameters chosen as inputs to the FBPN are no longer considered as of equal 
importance, but some sales managers and production control experts are 
requested to express their opinions about the importance of each input 
parameter in predicting the sales with linguistic terms, which can be converted 
into pre-specified fuzzy numbers, aggregated and corresponding input 
parameters when fed into the FBPN. The proposed system is evaluated through 
the real life data provided by a printed circuit board company. Model evaluation 
results for research indicate that the Fuzzy back-propagation outperforms the 
other three different forecasting models in MAPE.  

1   Introduction 

Sales forecasting is a very general topic of research. When dealing with the problems 
of sales forecasting, many researchers have used hybrid artificial intelligent 
algorithms to forecast, and the most rewarding method is the application integrating 
artificial neural networks (ANNs) and fuzzy theory. This method is applied by 
incorporating the experience-based principal and logic-explanation capacity of fuzzy 
theory and the capacity of memory and error-allowance of ANNs, as well as self 
learning by numeral data. 

This research focuses on the sales forecasting of printed circuit board (PCB) and 
modifies the fuzzy back-propagation network system (FBPN) proposed by 
Chen[2003], to select variables with a better and more systematic way from expert 
experience, with the purpose of improving the forecasting accuracy and using this 
information to help managers make decisions.  

2   Literature Review 

Although the traditional sales forecasting methods have been proved effective, they 
still have certain shortcomings. (Kuo, 2001, Tang, 2003, Luxhøj, 1996) As claimed 
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by Kuo[1998], the new developed Artificial Intelligent (AI) models have more 
flexibilities and can be used to estimate the non-linear relationship, without the limits 
of traditional Time Series models. Therefore, more and more researchers tend to use 
AI forecasting models to deal with problem.  

Fuzzy theory has been broadly applied in forecasting. (Chen, 1999, Hwang, 1998, 
Huarng, 2001) Fuzzy theory is first combined with ANNs by Lin and Lee[1991], who 
incorporated the traditional fuzzy controller and ANNs to a network structure to 
proceed appropriate non-linear planning of unplanned control systems based on the 
relationship of input and output through the learning capacity of ANNs. Following 
them, many researchers started doing different relative research based on the 
combination of fuzzy theory and ANNs. Fuzzy theory combining with ANNs is 
applied in different areas and has positive performance. (Xue, 1994, Dash, 1995, 
Chen, 2003, Kuo, 1998) 

3   Methodology 

There are three main stages in this research and the first stage is the variables 
selection stage. This stage is to select many possible variables, which may influence 
PCB product sales amount. In order to eliminate the unrelated variables, Stepwise 
Regression Analysis (SRA) and Fuzzy Delphi Method (FDM) were used to choose 
the key variables to be considered in the forecasting model. The second stage is the 
data preprocessing stage and Rescaled Range Analysis (R/S) was used to judge the 
effects of trend from serial observation values appearing as the time order. If the 
effect of trend is observed, Winter’s method will be applied to remove the trend effect 
and reduce the forecast error. The third stage is the FBPN forecasting stage, which 
was developed to forecast the demand of PCB sales amount in this research and will 
be described in details in the following section. After being compared with other three 
forecasting models, the superior model will be recommended to the decision makers. 
The details of each stage will be described as follows: 

3.1   Variable Selection Stage 

In this stage, fewer factors were considered in order to increase the efficiency of 
network learning. Many researchers have used several methods to select key factors in 
their forecast system. (Chang, 2000, Kaufmann, 1988, Lin, 2003 and Hsu, 2003) In 
this research, the following two methods were used to determine the main factors that 
would influence the PCB sales amount.  

1. SRA (Stepwise Regression Analysis) 

Stepwise regression procedure determines the set of independent variables that most 
closely determine the dependent variable. This is accomplished by the repetition of a 
variable selection. At each of these steps, a single variable is either entered or 
removed from the model. For each step, simple regression is performed using the 
previously included independent variables and one of the excluded variables. Each of 
these regressions is subjected to an ‘F-test’. If the variable small F value, is greater 
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than a user defined threshold (0.05), it is added to the model. When the variable large 
F value, is smaller than a user defined threshold (0.1), it is removed from the model. 
This general procedure is easily applied to polynomials by using powers of the 
independent variable as pseudo-independent variables. The statistical software SPSS 
for Windows 10.0 was used for stepwise regression analysis in this research. 

 

Data Preprocessing Stage

Variables Selection Stage

Data collection

SRA FDM

  1.Market demand domain 
  2.Macroeconomics domain  
  3.Industrial production domain

R/S analysis

Trend Effect?

Winter s
 method

no

yes

FBPN Forecasting Stage

Fuzzy input

Defuzzy

R/S analysis to find the effects of 
trend

Winter s method to remove the 
trend effect

Choose key variables

Translate the input signal, which 
generated by experts, to the 
fuzzy term

General BPN moodel

Defuzzification the output 
signals to the forecasting value

Error measurement

End Training

Weights 
Adjustment

 

Fig. 1. Architecture of Three Main Stages in the Research 

2. FDM (Fuzzy Delphi Method) 

The modified procedures of the proposed FDM for the search are listed as follows: 

Step 1:  
Collect all the possible factors that may affect the PCB product sales 

quantity. The domain experts select the important factors and give each a fuzzy 
number. This is the first questionnaire survey. 
Step 2: 

Formulate the questionnaire, which is a set of IF-THEN rules. 
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Step 3: 
Fuzzify the questionnaires that are returned by the domain experts and 

determine the following indices: 

(1). Pessimistic (Minimum) index 

n
AnAA

A
+++= 21  (1) 

where Ai  means the pessimistic index of the thi −  expert and n  is the 

number of the experts. 
(2). Optimistic (Maximum) index 

n

uuu
u AnAA

A
+++= 21  (2) 

where Aiu  means the pessimistic index of the thi −  expert. 

(3). Average (Most appropriate) index 
For each interval AiAi u+ , calculate the midpoint, 2/)( AiAiAi um += , 

then find n
AnAAA mmm /1

21 )( ×××=μ . 

Step 4: 

Therefore, the fuzzy number ),,( LRA σσμ= , which represents the mean, 

right width, and left width, respectively, for an asymmetric bell shaped function 
that can be determined through the above indices: 

3
AAR μσ −=  (3) 

3
AAL u μσ −=  (4) 

Step 5: 
Formulate the next questionnaire with the above indices and conduct the 

survey. 
Step 6: 

Repeat 3 to 5. Use the following formulas as the stopping criteria to confirm 
that all experts have the consentaneous importance of each factor. 

=
=

1

0
])[,][(),(

α
αααδδ dBABA  

αααααββ
α

dBABA uULL

=
−+−−=

1

012 )][][()][][()(
2

1  

(5) 

where A  and B  are the fuzzy numbers, ][A  and ][B  denote the membership 

function of fuzzy numbers. The α -cut of the fuzzy number is defined as 

{ }RxxAxA ∈≥= ,][][ αα  for 10 ≤< α . The distance between the two fuzzy 
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numbers is ),( BAδ . 1β  and 2β  are any given convenient values in order to 

surround both 0][ =αA  and 0][ =αB .  

3.2   Data Preprocessing Stage 

When the seasonal and trend variation is present in the time serious data, the accuracy 
of forecasting will be influenced. This stage will use R/S analysis to detect if there is 
this kind of effects of serious data. If the effects are observed, Winter’s exponential 
smoothing will be used to take the effects of seasonality and trend into consideration. 

1. R/S analysis (Rescaled Range Analysis) 

For eliminating possible trend influence, the rescaled range analysis, invented by 
Hurst (1965), is used to study records in time or a series of observations in different 
time. Hurst spent his lifetime studying the Nile and the problems related to water 
storage. The problem is to determine the design of an ideal reservoir on the basis of 
the given record of observed discharges from the lake. The detail process of R/S 
analysis will be omitted here.  

2. Winters Exponential Smoothing 

In order to take the effects of seasonality and trend into consideration, Winter’s 
exponential smoothing is used to preliminarily forecast the quantity of PCB 
production. According to this method, three components to the model are assumed: a 
permanent component, a trend, and a seasonal component. Each component is 
continuously updated using a smoothing constant applied to the most recent 
observation and the last estimate. Luxh[1996] and Mills[1990] compared Winter’s 
Exponential Smoothing with other forecasting methods, like ARIMA, and all showed 
that the Winter’s method had a superior performance. In this research we assume 

1.0=α , 1.0=β  and 9.0=γ .  

3.3   Fuzzy Neural Network Forecasting Stage 

There are three main layers, input layer, hidden layer and output layer, and two 
training stages in our FBPN. In the feedforward stage, FBPN use the data on hand to 
forecast the PCB sales amount, and the forecasting error will be recalled to adjust the 
weights between layers in the backprooagation of error stage. The details will be 
described in the following: 

Step0. Initial weights between layers are randomly generated. 
Step1. While stopping condition is false, do step 2-11. 
Step2. For each training pair, do step 3-8. 
Feedforward stage: 
Step3. Each input unit jI , which was generated by many experts, receives input 

signal )()(
~

ii xs  and broadcasts this signal to all units in the hidden layer. 
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Where )(
~

is  is the fuzzy membership function, which is supported by the 

experts, and 
)( ix  is the normalized input signal. 

Step4. Sum the weighted input signals of each hidden unit.  
Step5. Apply the translation function to compute its output signals.  
Step6. Sum the weighted input signals of each output unit.  
Step7. Apply the translation function to compute its output signals.  
Step8. Defuzzify the output signals to the forecasting value, and compute its 

MAPE. 
Backpropagation of error stage: 
Step9.Compare the forecasted output with the actual sales amount and compute 

the error term between hidden layer and output layer. Next, calculate its 
weight correction term, (used to update connection weights latter). Finally, 
calculate its bias correction term, and update weights and biases. 

Step10. Compute its error information term for hidden nodes. Then, update the 
information term of each hidden node. 

Step11.Calculate its weight correction term between hidden layer and input layer. 
Then, calculate its bias correction term. Finally, update weights and biases. 

 
Generate the initial weights of the network

Input layer node receives fuzzy input signal

Feedforward stage

Defuzzification the output signals

Compute the MAPE of forecasting

Backpropagation of error stage

Translate and compute the forecasting

Computes the error information term

Update all weights and biases

Satisfy stopping 
condition?

Stop Network Training 

no

yes

 

Fig. 2. The detailed flow diagram of FBPN 
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The configuration of the FBPN is established as follows: 

 number of neurons in the input layer: 5 
 number of neurons in the output layer: 1 
 single hidden layer 
 number of neurons in the hidden layer: 5 
 network-learning rule: delta rule 
 transformation function: sigmoid function 
 learning rate: 0.1 
 learning times: 30000 

4   Experimental Results 

The data in this research are from an electronic company in Taiwan from 1999/1 to 
2003/12. Monthly sales amount is considered as an objective of the forecasting 
model. This research develops a FBPN for sales forecasting in PCB industries and we 
will compare this method with other traditional methods such as Grey Forecasting 
(GF), Multiple Regression Analysis (MRA) and Back-propagation network  
(BPN), etc.  

Mean average percentage error (MAPE) was applied as a standard performance 
measure for all four different models in this research. After the intensive experimental 
test, the MAPEs of four different models are 15.04%, 8.86%, 6.19% and 3.09% (as 
shown in table 1). Among that, the grey forecasting has the largest errors, and then 
MRA, BPN, and the least is FBPN. 

Table 1. Comparisons among Four Different Forecasting Models 

 MAPE Improvement Rate 
GF 15.04% 74.95% 
MRA 8.86% 65.21% 
BPN 6.19% 50.08% 
FBPN 3.09% - 

 

As can be seen in fig 3, the GF has a significant up and down in the beginning and 
it also over estimate the data up to the end.  Thus the overall MAPE is high. As for 
MRA, the tendency is formed and the up and down is minor compared with GF. The 
overall MAPE is around 0~20% and it is also a little higher.  Traditional BPN model 
is in a stable situation and the overall MAPE is smaller than MRA and it is around 
0~10%.  The same situation exist for FBPN although in the beginning it has a larger 
error however it converge quickly and the overall MAPE is still around 0~10%.  
Especially, it performs very well in the end since it is very close to the real data.  
Therefore, the FBPN performs the best among others. 
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Fig. 3. The MAPE Values for Four Different Forecasting Models 

According to the various criteria, i.e., encompassing test, MAPE, and forecasting 
accuracy, the best model among these four different models is FBPN with a MAPE of 
3.09% and accuracy of 97.61%. Therefore, we can claim that by combining the fuzzy 
theory and BPN the hybrid model can be applied in forecasting the sales of PCB 
industry and the result is very convincing and deserve further investigation in the 
future for applications in other areas. 

Although, the GF and MRA is very powerful when the data is very scarce and they 
claim that with only four data points and they can be applied to forecast the future 
result.  However, after intensive experimental test, these two methods did not perform 
very well especially for those non-linear and highly dynamic data.  As for the fuzzy 
Delphi back-propagation model since it can include the opinion from various experts 
in PCB sales and production department.  It seems the assignment of different weight 
to the factor really improve the forecasting errors and perform much better than other 
models. 

5   Conclusions  

The experimental results in section 4 demonstrated the effectiveness of the FBPN that 
is superior to other traditional approaches.  The FBPN approach also provides another 
informing tool to the decision maker in PCB industries. In summary, this research has 
the following important contribution in the sales forecasting area and these 
contributions might be interested to other academic researchers and industrial 
practitioners: 

1. Feature Selections:  
To filter out significant factors from a series of input variables, the FDM is 

superior to the SRA method. FDM will collect the opinion from various experts and 
assign different weights to these variables according to their experiences in this field.  
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Therefore, it is very easy to extract important factors from these various variables. In 
contrary, gradual regression analysis may come out with a combination of various 
variables which is mutually correlated.  However, the effect of these selected 
variables may not significant enough to be included in the final inputs. The errors for 
input from fuzzy Delphi is 12.88% and errors from SRA is 13.87%. It is obvious to 
see that FDM is more effective for applications. 
2. The effect of tendency:  

When take tendency effect into consideration, the overall errors are decreased. 
Tendency and seasonality are included in the time series data and these two factors 
will affect the accuracy of the forecasting method dramatically.  This research applies 
the Winters trend and seasonality exponential smoothing model to forecast the 
sales and then convert this data as an input to the BPN model. After the training 
procedure, the final errors, no matter it is from FDM or SRA, are decreased 
significantly. Errors from gradual regression analysis decreased from 13.84% to 
7.15% and FDM from 12.88% down to 6.19%%.  This shows the significance of 
including Winters trend and seasonality exponential smoothing model in the 
model. 
3. Comparisons of different forecasting models: 

This research applies three different performance measures, i.e., encompassing test, 
forecasting errors and accuracy of forecasting to compare the FBPN with other three 
methods, i.e., GF, MRA and BPN. The intensive experimental results show the 
following: 1. In encompassing test, FBPN and BPN models are superior to GF and 
MRA. 2. As for MAPE, FBPN has the smallest MAPE and it is only 3.09%. 
Therefore, FBPN model by combining FDM and BPN model is a very powerful and 
effective forecasting tool that can be further applied in other field of applications 
since expert’s opinion can be incorporated into the model. 
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Abstract. This paper presents an evolutionary artificial neural network (EANN) 
to the prediction of the BF hot metal silicon content. The pareto differential 
evolution (PDE) algorithm is used to optimize the connection weights and the 
network’s architecture (number of hidden nodes) simultaneously to improve the 
prediction precision. The application results show that the prediction of hot 
metal silicon content is successful. Data, used in this paper, were collected from 
No.1 BF at Laiwu Iron and Steel Group Co.. 

1   Introduction 

In blast furnace (BF) ironmaking process, hot metal silicon content is important both 
for quality and control purposes [1]. Not only is silicon content an significant quality 
variable, but also reflects the internal state of the high-temperature lower region of the 
blast furnace, so its accurate prediction can greatly help to control the thermal state of 
a BF, which is one of the significant factor ensuing the BF stable operation. 

The multi-layer neural network is emerging as an important tool to predict the sili-
con content of hot metal [2,3], while BP algorithm suffers the disadvantage of being 
easily trapped in a local minimum and another problem with BP is the choice of a 
correct architecture. Evolutionary approach is used over traditional learning algo-
rithms to optimize the architecture of neural networks. However, most of the research 
undertaken in the EANN literatures does not emphasize the trade-off between the 
architecture and the generalization ability of the network. With the trade-off, the 
EANN problem is actually a Multi-objective Optimization Problem. The PDE algo-
rithm [4] was designed for vector optimization problems. So the PDE algorithm will 
be used to evolve the weights and the networks architecture simultaneously here. 

2   An Artificial Neural Network Based on the PDE Algorithm 

A three-layer feed forward neural network is selected in this paper. Now we have a 
multi-objective problem with two objectives; one is to minimize the error and the 
other is to minimize the number of hidden units. Our chromosome is a class that con-
tains one matrix and one vector P The matrix is of dimension (I+O)×(H+O), 
where I, H and O are the number of input, hidden and output units respectively. Each 
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element ij   � is the weight connecting unit i and j, where i=0,…,(I-1) is the input 
unit i, i=I,…,(I+O-1) is the output unit I-I, j=0,…,(H-1) is the hidden unit j, 
j=H,…,(H+O-1) is the output unit j-H. The vector is of dimension H, where Ph is a 
binary value used to indicate if hidden unit h exists in the network or not. Then we 
can apply PDE to our neural network as follows: 

Step1: Create a random initial population. The elements of the weight matrix
are assigned random values according to a Gaussian distribution N(0, 1). The ele-
ments of the binary vector P are assigned the value with probability 0.5 based on a 
randomly generated number according to a uniform distribution between (0, 1); oth-
erwise 0. 

Step2: Evaluate the individuals in the population and label those who are non-
dominated. If the number of non-dominated individuals is less than 3 repeat the fol-
lowing until the number of non-dominated individuals is greater than or equal to 3: 

Find a non-dominated solution among those who are not labeled. Label this solu-
tion as a non-dominated. 

Step3: Delete all dominated solutions from the population. 
Step4: Select at random an individual as the main parent a1, and two individuals, 

a2, a3, as supporting parents. 
Step5: Crossover: With some probability, do 

31 2(0,1)( )child
ih ih ih ihN αα αω ω ω ω← + −  , (1) 
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Otherwise 

1achild
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And with some probability, do 

31 2(0,1)( )aa achild
ho ho ho hoNω ω ω ω= + −  . (4) 

Otherwise 

1achild
ho hoω ω=  . (5) 

Each weight in the main parent is perturbed by adding to it a ratio, F  N(0,1), of the 
difference between the two values of this variable in the two supporting parents. 

Step6: Mutation: with some probability Uniform (0, 1), do 

(0, _ )child child
ih ih N mutation rateω ω= +  , (6) 
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ho ho N mutation rateω ω= +  , (7) 
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Step7: Apply BP to the child. 
Step8: If the child dominates the main parent, place it into the population. 
Step9: If the population size is not completed, repeat step 4-8. 
Step10: If the termination conditions are not satisfied, repeat step 2-9. 

In the following, we will outline the performance of this method on predicting sili-
con content in hot metal. 

3   Practical Applications to Hot Metal Silicon Content Prediction 

In this section, firstly, we select six key variables (see Table1) affecting the hot metal 
silicon content [Si] as the input nodes of our neural network. 

Table 1. Input variables 

VC(t/h) PI(m3/min.kPa) PC(t/h) BT(oC) [Si]n-1(%) BQ(m3/min) 
Charging 
mixture 
velocity 

Permeability 
index 

Pulveized
coal 

injection

Blast 
temperature 

Last [Si] Blast 
quantity 

Secondly, two important criterions used in practice are considered here to evaluate 
our method: the hit ratio J: 

p
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NP is the total predicted tap numbers; another criterion which indicate consistency of 
the method Perr: 

p p
2 2

1 1

e rr ( ) /
N N

j j j
j j

P x x x
= =

′= −  , (10) 

where xj  is the predicted value and xj the observed value. According to the proposed 
method, we varied the crossover probability from 0 to 1 with an increment of 0.1. 
Mutation probability is varied from 0 to1 with an increment of 0.05. The maximum 
number of hidden units is set to 12, the population size 20, the learning rate for BP 
0.03. A total of 1000 patterns were used in optimizing our model. The optimal ANN 
obtained after 100 generations evolution was tested through another 50 sets of data. 
When crossover probability is 0.8 and mutation probability is 0.1, we got the opti-
mum solution. The results are shown in Fig. 1. The hit ratio J is calculated to be 88% 
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and Perr is in the magnitude of 10-2 (0.0286), which is helpful for operator to make 
right decision to operate blast furnace. 

 

Fig. 1. The silicon content comparison between predicted and real data 

Lastly, according to a conventional evolutionary approach [2,3,5], we will need to 
run the algorithm (e.g. BP algorithm) a number of times with different weights while 
varying the number of hidden units to select the optimum neural network. This is not 
an efficient way to solve the problem. The proposed method evolves the weights and 
the networks architecture simultaneously. Therefore, in terms of the amount of com-
putations, it is much faster than the traditional methods which run for a fixed architec-
ture and could be effectively used for online control of hot metal silicon content. 

4   Conclusions 

In this paper, we introduced an evolutionary multi-objective approach to artificial 
neural networks. It not only preserves the advantages of genetic algorithm, but also 
overcomes some disadvantages of previous approaches by considering the trade-off 
between the architecture and the generalization ability of the network. However, more 
work is needed in evaluating the performance of the proposed method and extend the 
selection of input variables can enhance the quality of prediction further. 
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Abstract. This paper presents a simulation of a biological olfactory neural 
system with a KIII set, which is a high-dimensional chaotic neural network. The 
KIII set differs from conventional artificial neural networks by use of chaotic 
attractors for memory locations that are accessed by, chaotic trajectories. It was 
designed to simulate the patterns of action potentials and EEG waveforms 
observed in electrophysioloical experiments, and has proved its utility as a 
model for biological intelligence in pattern classification. An application on 
recognition of handwritten numerals is presented here, in which the 
classification performance of the KIII network under different noise levels was 
investigated. 

1   Introduction 

In recent years, the theory of chaos has been used to understand the mesoscopic 
neural dynamics, which is at the level of self-organization at which neural populations 
can create novel activity patterns [1]. According to the architecture of the olfactory 
neural system, to simulate the output waveforms observed in biological experiments 
with EEG and unit recording, the KIII model, which is a high dimensional chaotic 
network, in which the interactions of globally connected nodes lead to a global 
landscape of high-dimensional chaotic attractors, was built.  

In this paper we present two application examples of the KIII network for 
recognitions of image patterns and handwriting numerals [2].  

2   Chaotic Neural Model Based on Olfactory System 

The central olfactory neural system is composed of olfactory bulb (OB), anterior 
nucleus (AON) and prepyriform cortex (PC). In accordance with the anatomic 
architecture, KIII network is a multi-layer neural network model, which is composed 
of heirarchichal K0, KI and KII units. Fig.1 shows the topology of KIII model, in 
which M, G represent mitral cells and granule cells in olfactory bulb. E, I, A, B 
represent excitatory and inhibitory cells in anterior nucleus and prepyriform cortex 
respectively. 
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3   Application on Image Pattern and Handwriting Numeral  
     Recognitions 

Pattern recognition is an important subject of artificial intelligence, also a primary field 
for the application of Artificial Neural Network (ANN). KIII network is a more accurate 
simulation of the biological neural network than conventional ANN.  

 

Fig. 1. Topology of the KIII network (Adapted from Chang & Freeman [3].) 

Derived from the study of olfactory system, the distributed KIII-set is a high 
dimensional chaotic network, in which the interactions of globally connected nodes lead 
to a global landscape of high-dimensional chaotic attractors. After reinforcement 
learning to discriminate classes of different patterns, the system forms a landscape of 
low-dimensional local basins, with one basin for each pattern class [4]. The output of 
the system is controlled by the attractor, which signifies the class to which the stimulus 
belonged [5].  

3.1   Classification of Image Patterns 

In this article, we used the KIII model to classify image patterns. The parameters 
involved in our simulation in this paper were taken from the document [3]. 

First, the KIII model learned the desired patterns --- the 8*8 binary bitmap image of 
circle and isosceles triangle. Both patterns were learned for three times in turn.  
Second, the novel input images need to be preprocessed before classification: image 
segmentation, image zooming, edge detection, etc. Finally, we input the preprocessed 
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patterns in the R layer of the KIII model and simulate its output, as well as calculate the 
categories of the input patterns. Only if the difference between the Euclid distances from 
the novel input pattern to the two kinds of stored patterns reaches the pre-defined 
threshold, the classification can be viewed as valid and persuasive.  

Taking Fig. 2 as an example, Table 1 contains the final result of classification. 

 
Fig. 2. Example image 
patterns to be classified 

object
Euclid

distance to the 
circle pattern

Euclid
distance to 
the triangle

pattern

Central
point of the

object

Triangle 0.3559 7.3113 [152,318]
Circle 6.6196 1.9795 [322,111]

3.3   Classification of Handwriting Numerals 

Automatic recognition of handwriting characters is a practical problem in the field of 
pattern recognition, and was here selected to test the classification performance of the 
KIII network. The test data set contains 200 samples in 20 groups of handwritten  
 

Table 2. Classification Result – Using KIII 

Correct Incorrect Failure Reliability (  
Pattern 

KIII KIII KIII KIII 
Linear 
filter 

Perceptron Hopfield 

 0 196 3 1 98.49 74.50 100� 59.79 
1 185 10 5 94.87 55.85 89.5� 78.89 
2 192 4 4 97.96 71.0� 53.68 78.42 
3 177 12 11 93.65 35.5� 67.37 79.87 
4 179 11 10 94.21 39.44 44.13 41.99 
5 181 7 12 96.28 48.73 49.36 21.17 
6 191 1 8 99.48 83.5� 69.95 89.23 
7 189 7 4 96.43 58.59 51.59 64.0 
8 174 9 17 95.08 76.53 46.88 87.93 
9 186 9 5 95.38 64.06 63.5� 64.29 

Total 1850 73 77 96.20 60.99 64.84 66.76 
Rate 
(%) 92.5� 3.65� 3.85 96.20 � �  

Table 1. Image classification result 
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numeric characters written by 20 different students. One group included 10 characters 
from zero to nine. In this application, a 64-channel KIII network was used with system 
parameters as reference [3]. Every character in the test data was preprocessed to get the 
1x64 feature vector and to place a point in a 64-dimensional feature space. Thus the 64 
features are given as input to the KIII network as a stimulus pattern in the form of a 
1x64 feature vector. 

As can be seen in the Table 2, while a high overall reliability of 96.20% was gained 
using KIII, the reliability of the linear filter, the perceptron and the Hopfield network 
was merely around 60%. Obviously, the KIII model shows its excellence in practical 
pattern classification. 

4   Discussion 

Derived directly from the biological neural system, KIII network gives a more 
complicated and more accurate model in simulating the biological neural system in 
comparison with conventional ANN. The KIII model has good capability for pattern 
recognition as a form of the biological intelligence. It needs much fewer learning trials 
than ANN when solving problems of pattern recognition. Although when considering 
the processing speed, the KIII network still could not replace the conventional ANN for 
solving practical problems, it is surely a promising research for building more intelligent 
and powerful artificial neural network when the speed is increased by implementing the 
KIII in analog VLSI [6]. 
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Abstract. This paper incorporates robustness into neural network modeling and 
proposes a novel two-phase robustness analysis approach for determining the 
optimal feedforward neural network (FNN) architecture in terms of Hellinger 
distance of probability density function (PDF) of error distribution. The pro-
posed approach is illustrated with an example in this paper. 

1   Introduction 

Generally, the feedforward neural network (FNN) architecture consists of an input 
layer, an output layer and one or more intervening layers, also referred to as hidden 
layers. The number of nodes in the input and output layers can be determined by the 
practical problems. But it is difficult to determine the number of hidden layers and 
their hidden units per hidden layer. Usually, a three-layer FNN with sufficiently many 
neurons in a single hidden layer has been proven to be capable of approximating any 
Borel measurable functions in any accuracy [1]. A focus, thus, is how to determine 
the hidden neurons in a single hidden layer of FNN modeling and applications. 

In the past, many researchers have proposed a variety of methods, such as the up-
start algorithm [2] and pruning method [3], to try to determine the number of hidden 
nodes in a neural network. These methods, however, are not perfect. For example, the 
algorithms in [2] are likely to disrupt the approximated solution already found. A 
common problem with the above-mentioned methods is that they do not consider the 
model robustness – this is one of the important considerations in modeling. A solution 
that uses a local robustness property is proposed in [4], but such an analytical ap-
proach is only suitable for local robustness problems. Here we extend the method and 
propose a two-phase robustness analysis procedure to determine the optimal FNN 
architecture. Here “robustness” of the models can be defined in such a way as fol-
lows. The set of selected models should be robust in the sense that they are indifferent 
to radical change of a small portion of the data or a small change in all of the data [4]. 
Here we use Hellinger distance (HD) between probability density functions (PDF) of 
error distribution as a model selection criterion. HD can be calculated as 
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bution PDF of FNN approximation for each candidate’s architecture is computed 
using the method described by [5]. In this study, we choose the HD between PDFs as 
the robustness evaluation criterion to determine the optimal FNN model architecture. 

The rest of the study is organized as follows. Section 2 presents the proposed two-
phase robustness analysis approach. To demonstrate the efficiency of the proposed 
approach, a simulated study is given in Section 3. Section 4 concludes the paper. 

2   The Proposed Double Robustness Analysis Approach 

2.1   Intrapolated Phase 

For convenience, the FNN model within the range of error goal is called as “initial 
model”, robust FNN model based on in-sample data set is called as “medial model”; 
and the robust FNN model based upon out-of-sample data set is called as “final 
model”. This phase contains three steps based upon in-sample data set as follows: 

Step 1. Initially, we build a class of network with different hidden nodes, and train 
the network over the entire training data set (with an increasing number of hidden 
neurons) in order to learn as many associations as possible. Within the error goal 
range, some FNN models with different architectures (i.e., initial models) are ob-
tained. Assume that these initial models have the same input and output nodes and 
different hidden nodes in the single hidden layer. 

Step 2. For every “initial model”, we change the size of the in-sample data set to 
check the HD values. If the HD values are unstable, then the corresponding model is 
discarded, and the models with small fluctuations (i.e., medial models) are retained. 
Note that we use standard deviation of HD as a measurement of stability. 

Step 3. If the HD values of all “medial models” are not stable, then go to Step 1 
and select more initial models over again. If we obtain some robust models from Step 
2, then go to the next phase. 

Since we only check the robustness of the FNN model in terms of the in-sample 
data set in this phase, we further check the robustness of FNN model using the out-of-
sample data set in order to improve the generalization of the FNN model. 

2.2   Extrapolated Phase 

The main extrapolated phase procedure of this phase includes the following steps. 

Step 1. As for every “medial model” from Step 3 in the previous phase, we apply 
the “medial model” to the out-of-sample data set. Thus, the approximated error series 
between actual values and approximated values can be obtained. 

Step 2. When changing the size of the out-of-sample data set, different HD values 
of every “medial model” are achieved.  
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Step 3. If the HD values show little fluctuation, then the models (i.e., final models) 
are transferred to Step 4, otherwise this model is excluded. If all “medial models” are 
discarded, then go to Step 1 in the first phase. 

Step 4. If the HD values of a certain model are stable, then the model is identified 
as the “true” model. Accordingly, this model’s architecture is the optimal one. If there 
are several “final models”, we select the FNN architecture with minimal standard 
deviation as the optimal FNN architecture.  

To illustrate the efficiency of the approach, an experiment is performed. 

3   Simulations 

In order to test the efficiency of the proposed approach, a problem of predicting the 
JPY/USD exchange rate series is considered. The JPY/USD data used are daily and 
are obtained from Pacific Exchange Rate Service (http://fx.sauder.ubc.ca). The entire 
data set covers the period from 1 January 2000 until 31 December 2003 with a total of 
1121 observations. For convenience, we take daily data from 1 January 2000 to 31 
August 2003 as in-sample data sets (999 observations), which are used for the first 
phase, and meanwhile we take the data from 1 September 2003 to 31 December 2003 
as out-of-sample data sets (122 observations), which are used for the second phase. In 
this experiment, the neural network architecture has the form of “4-x-1”. 

First of all, according to the predefined error goal (The predefined error NMSE < 
0.15), several candidate models (i.e., “initial models”) for in-sample data set with 
different hidden neurons (x) are generated based on NMSE, as shown in Table 1. 

Table 1. NMSE of the JPY/USD predictions with different FNN architectures 

JPY (x) JPY(5) JPY(8) JPY(9) JPY(10) JPY(11) JPY(13) JPY(14) JPY(15) JPY(16) JPY(17) 

NMSE 0.109 0.118 0.125 0.119 0.135 0.127 0.139 0.133 0.136 0.139 

Subsequently, we test the robustness of candidate network architectures by chang-
ing the size of the in-sample data set. The results are shown in Table 2. 

Table 2. Robustness testing of FNN architecture for JPY predictions with in-sample data 

Criterion Data 
size 

JPY 
(5) 

JPY 
(8) 

JPY 
(9) 

JPY 
(10) 

JPY 
(11) 

JPY 
(13) 

JPY 
(14) 

JPY 
(15) 

JPY 
(16) 

JPY 
(17) 

999 0.145 0.081 0.612 0.228 0.265 0.097 0.187 0.393 0.158 0.377 

989 0.133 0.085 0.089 0.219 0.696 0.101 0.181 0.456 0.166 0.548 

979 0.147 0.079 1.258 0.227 1.021 0.093 0.195 0.558 0.159 0.551 

969 0.151 0.072 0.556 0.226 0.891 0.114 0.182 0.987 0.161 0.972 

959 0.144 0.083 0.157 0.233 0.338 0.087 0.193 0.118 0.155 0.547 

HD 

Stdev. 0.0067 0.0050 0.4666 0.0050 0.3328 0.0101 0.0063 0.3162 0.0041 0.2214 
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From Table 2, we find that JPY (9), JPY (11), JPY (15) and JPY (17) are discarded 
in view of HD criterion. Therefore, some “medial models” can be obtained. 

Finally, we apply “medial models” to out-of-sample data sets in order to check the 
robustness of “medial models”. The results obtained are given in Table 3. 

Table 3. Robustness testing of FNN models for JPY predictions with out-of-sample data 

Currency Criterion Data size JPY(5) JPY(8) JPY(10) JPY(13) JPY(14) JPY(16) 

122 0.074 0.072 0.140 0.073 0.123 0.125 

117 0.081 0.081 0.109 0.081 0.141 0.058 

112 0.088 0.077 0.162 0.093 0.155 0.156 

107 0.078 0.069 0.145 0.084 0.102 0.116 

102 0.084 0.078 0.158 0.077 0.093 0.163 

JPY HD 

Stdev. 0.0054 0.0048 0.0209 0.0076 0.0259 0.0417 

Table 3 shows that JPY(5), JPY(8) and JPY(13) are robust. According to previous 
procedure, we select JPY(8) as an optimal model from the smallest standard devia-
tion. In such a way, an optimal FNN architecture is determined using a two-phase 
robustness analysis approach. 

4   Conclusions 

In this study, we present a novel and efficient approach for determining the optimal 
feedforward neural network architecture in terms of model robustness. The proposed 
approach includes two phases: intrapolated phase and extrapolated phase. Relying on 
the two-phase robustness analysis approach, an optimal FNN architecture can be 
obtained. In the meantime, a simulated experiment demonstrates the efficiency and 
feasibility of the proposed approach. 
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Abstract. The problem of stochastic robust stability analysis for Markovian 
jump neural networks with time delay has been investigated via stochastic sta-
bility theory. The neural network under consideration is subject to norm-
bounded stochastic nonlinear perturbation. The sufficient conditions for robust 
stability of Markovian jumping stochastic neural networks with time delay have 
been developed for all admissible perturbations. All the results are given in 
terms of linear matrix inequalities. 

1   Introduction 

The stability analysis for neural networks has received considerable attentions in 
recent years [1]. When the parameters of neural network are subject to random abrupt 
changes and stochastic nonlinear perturbations, the neural network can be modeled as 
stochastic jumping time-delayed systems with the transition jumps described as finite-
state Markov chains [2]. These parameters changes may deteriorate the stability as 
well as the systems performance of the neural networks. 

In this paper, we will investigate the problem of stochastic robust stability analysis 
for Markovian jump neural networks with time delay. The sufficient conditions for 
the robust stability of the neural networks will be developed. Based on stochastic 
Lyapunov theory, stable criteria for the neural networks are presented in terms of 
linear matrix inequalities (LMIs) [3, 4]. In section 2, the system model is described. 
Some necessary assumptions are given. In section 3, the robust stochastic stable crite-
ria are developed. Finally, conclusions are provided in section 4. 

2   Systems Descriptions 

Consider the Markovian jump stochastic neural network with time delay, which can 
be represented in the form of vector state space as follows: 

( ) { ( ( )) ( )dx t A t x tθ= − 1( ( )) ( )A t x tθ τ− − ( ( )) [ ( )]B t x tθ σ+  

1( ( )) [ ( )]}B t x t dtθ σ τ+ − ( ( )) ( ( ), ( )) ( )C t f x t x t dw tθ τ+ − . 
(1) 

                                                           
1 This work was supported by Chinese Nature Science Foundation (60473129). 
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where ( ) nx t R∈  is the state vector of the neural network, ( )x t τ−  is the delayed 

state vector of the neural networks with the time delay 0τ ≥ . ( )w t  is standard Wie-

ner process, and ( ( ), ( ))f x t x t τ−  is stochastic nonlinear perturbation, [ ( )]x tσ  is 

the activation function. { ( ), 0}t tθ ≥  is a time homogeneous Markov process with 

right continuous trajectories taking values in a finite set {1, , }S N=  with station-

ary transition probabilities: 

( )
P{ ( ) | ( ) }

1 ( )
ij

ij

t t i j
t t j t i

t t i j

π ο
θ θ

π ο
Δ + Δ ≠

+ Δ = = =
+ Δ + Δ =

. 
(2) 

where 0tΔ > , 
0

lim ( ) / 0
t

t tο
Δ →

Δ Δ = , and 
1,

N

ii ij
j j i

π π
= ≠

= − . Here 0ijπ ≥  is the 

transition rate from mode i  at time t  to mode  j i≠  at time t t+ Δ  for ,i j S∈ . 

( ( ))A tθ , 1( ( ))A tθ , ( ( ))B tθ , 1( ( ))B tθ , ( ( ))C tθ  are known real constant 

matrices of appropriate dimensions for all ( )t Sθ ∈ . In the sequel, we denote the 

parameter matrices ( ( ))A tθ , 1( ( ))A tθ , ( ( ))B tθ , 1( ( ))B tθ , ( ( ))C tθ  as iA , 

1iA , iB , 1iB , iC  when ( )t iθ = . 

Though out this paper, we assume that the activation function [ ( )]x tσ  and the 

perturbation function ( ( ), ( ))f x t x t τ−  satisfy the following conditions: 

(A.1) If there exist positive constant diagonal matrix K ,  such that 

1 2

1 2

( ) ( )
0

x x
K

x x

σ σ−< ≤
−

, 1 2,x x R∀ ∈ , 1 2x x≠ . (3) 

(A.2) There exist positive constant matrices M  and 1M , such that 

( ( ), ( )) ( ( ), ( ))Tf x t x t f x t x tτ τ− − ≤ ( ) ( )T Tx t M Mx t  

1 1( ) ( )T Tx t M M x tτ τ+ − − .  
(4) 

3   Main Results 

In this section, robust stability criteria for Markovian jumping neural networks with 
time delay and stochastic nonlinear perturbation are given. 

Theorem 1. Consider the Markovian jumping stochastic neural networks with time 

delay (1), if there exist matrices 0iX > , 0W > , 0S > , 1 0S >  and constants 

0jρ > ( 1, 2j = ), satisfying the LMIs 
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then the neural network (1) is robust stochastic stable for all admissible perturbations. 

Proof. Let the mode at time t  be i , that is ( )t i Sθ = ∈ , and introduce a Lyapunov 

functional as 

( ( ), ) ( ) ( ) ( ) ( )
tT T

i it
V x t i x t Px t x s R x s ds

τ−
= + . (7) 

From (7), it is easy to obtain 
2 2

1 2 30 ( ) ( ( ), ) ( ) ( )i i ix t V x t i q x tε ε ε τ≤ ≤ ≤ + , 

where 1q ≥ , 1 min ( )i iPε λ= , 2 max ( )i iPε λ= , 3 max ( )i iRε λ= .  For simplicity, we 

denote ( )x t  and ( )x t τ−  as x  and xτ . 

By using Ito’s formula, the weak infinitesimal operator of the Lyapunov functional 
along the solution of system (1) is 

1

( , )

( , ) ( , )

N
T T T T T

i i ij j i i
j

T T
i i i

LV x i x Px x Px x P x x R x x R x

f x x C PC f x x

τ τ

τ τ

π
=

= + + + −

+
 

T T T
i i i ix A Px x P A x≤ − − 1

1 1
T T T T

i i i i ix A W A x x PWPx x R xτ τ
−+ + +  

1( ) ( )T x S xσ σ−+ 1
1( ) ( )T T T T

i i i i ix PB SB P x S x x R xτ τ τ τσ σ−+ + −  

1 1 1
T T

i i i ix PB S B Px+
1

( , ) ( , )
N

T T
i ij j

j

f x x f x x x P xτ τρ π
=

+ + . 

 

 

 

(8) 

In view of inequality (6), and by using Schur complement, we have 
T
i i i iC PC Iρ≤ . (9) 



 Stochastic Robust Stability Analysis for Markovian Jump Neural Networks 389 

 

    Hence 

( , ) T T T
i i i iLV x i x A Px x P A x≤ − − 1

1 1
T T T

i i i ix A W A x x PWPxτ τ
−+ +  

1T Tx K S Kx−+ 1
1

T T T T
i i i ix PB SB Px x K S Kxτ τ

−+ +  

1 1 1
T T

i i i ix PB S B Px+ 1 1
T T T T

i ix M Mx x M M xτ τρ ρ+ +  

1

N
T T T

i i ij j
j

x R x x R x x P xτ τ π
=

+ − + . 

 
 

 
(10) 

    Let 
1 1

1 1 1 1 1
T T T

i i i iR A W A K S K M Mρ− −= + + . (11) 
    Then, we have  

( , ) T
iLV x i x x≤ Ξ . (12) 

where 
1 1 1

1 1 1
T T T T

i i i i i i i i iA P P A A W A PWP K S K K S K− − −Ξ = − − + + + +  

1 1 1 1 1
1

N
T T T T

i i i i i i i i i i ij j
j

PB SB P PB S B P M M M M Pρ ρ π
=

+ + + + + . (13) 

    Pre- and post-multiply (13) with 1
i iX P−= . By the Schur complement, 0iΞ <  

holds if and only if inequality (5) holds. It is easy to obtain ( , ) 0LV x i < ,  that is, 

the Markovian jumping stochastic neural networks with time delay are robust stable 
for all the admissible perturbations. 

This completes the proof.                                                                                           

4   Conclusions 

In this paper, the problem of robust stability analysis for Markovian jumping neural 
networks with stochastic nonlinear perturbations and time delay is investigated. The 
stability criteria are given in terms of linear matrix inequalities for all admissible 
pertubantions. 
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Abstract. With the changing of the stimulus frequency, there are a lot
of firing dynamics behaviors of interspike intervals (ISIs), such as quasi-
periodic, bursting, period-chaotic, chaotic, periodic and the bifurcations
of the chaotic attractor appear alternatively in Hodgkin-Huxley (H-H)
neuron model. The chaotic behavior is realized over a wide range of
frequency and is visualized by using ISIs, and many kinds of abrupt un-
dergoing changes of the ISIs are observed in deferent frequency regions,
such as boundary crisis, interior crisis and merging crisis displaying al-
ternately along with the changes changes of external signal frequency,
too. And there are many periodic windows and fractal structures in ISIs
dynamics behaviors. The saddle node bifurcation resulted collapses of
chaos to period-12 orbit in dynamics of ISIs is identified.

1 Introduction

The bifurcation and crisis of neural system have been an object of major at-
tention since the beginning of the study of chaos theory. As we all known, the
neural systems have strong nonlinear characters, and are usually able to display
different dynamics according to system parameters or external inputs in ISIs
sequences. When these parameters are slightly modified, the system’s dynamics
usually experience also little modification, except when these changes occur in
the vicinity of a critical point, in which case an abrupt qualitative change or
transition in the dynamics occurs [1-3]. These transitions, for example, may be
from periodic to chaotic, from chaotic to chaotic, and their inverse transitions
[4].

And, the numerical evidence and theoretical reasoning has proved that there
is a chaos-chaos transition in the neuron, in which the change of the attractor
size is sudden but continuous, different from general discontinues chaos-chaos
transitions, and which occurs in the Hindmarsh-Rose model of a neuron. This
transition corresponds to different neural dynamics, i.e. the chaotic dynamics of

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 390–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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bursting and spiking dynamics [3]. The crisis resulted from homoclinic bifurca-
tion and the chaos collapsing to a period-3 orbit in the dynamics of a quadratic
Logistic map neuron have also been studied [5,6]. Xie et al introduced periodic
orbit theory to characterize the dynamical behavior of aperiodic firing neurons,
and considered that bifurcations, crises and sensitive dependence of chaotic mo-
tions on control parameters can be the underlying mechanisms [7], and there are
many chaotic activities have been observed in experimental studies of electroen-
cephalogram(EEG) signals and neuronal ISIs sequence [8-10].

The transitions between different dynamic behaviors of ISIs sequence of H-H
neuron model under external periodic stimulus and the saddle-node bifurcation
are studied in this work, which is relevant both to the theory of nonlinear dy-
namics and to biophysics.

2 The Hodgkin-Huxley (H-H) Neuron Model

The equations that describe the H-H neuron model have been derived from a
squid giant axon. These equations can describe the spiking behavior and refrac-
toriness of real neuron very well, so that this kind of model is employed in this
work. The H-H model for the action potential of a space clamped squid axon is
defined by the four-dimensional vector field [11]⎧⎪⎪⎨⎪⎪⎩

u̇ = Iext − [120m3h(u + 115) + 36n4(u− 12) + 0.3(u + 10.6)]
ṁ = (1−m)Ψ(u+25

10 )−m(4exp( u
18 ))

ṅ = 0.1(1− n)Ψ(u+10
10 )− n(0.125exp( u

80 ))
ḣ = 0.07(1− h)Ψ( u

20 )− h( 1
1+exp( u+30

10 )
)

, (1)

where
Ψ(x) =

x

exp(x)− 1
(2)

and variables u, m, n, and h represent membrane potential, activation of a sodium
current, activation of a potassium current, and inactivation of the sodium cur-
rent. There is also a current parameter Iext that is an external periodic signal
current into the space-clamped axon in this work, i.e.

Iext = Ishift + sin(2πf0t), (3)

where Ishift = 10μA/cm2, being the amplitude of current shift, and f0 = 1/3
Hz being the basic stimulus frequency in this work.

Recalling that the H-H convention for membrane potential reverses the sign
from modern conventions, and so the voltage spikes of action potentials are
negative in the H-H model. When improved models for the membrane potential
of the squid axon have been formulated, the H-H model remains the paradigm for
conductance-based models of neural systems. From a mathematical viewpoint,
varied properties of the dynamics of the H-H vector field have been studied.
Nonetheless, we remain far from a comprehensive understanding of the dynamics
displayed by this vector field.
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In this work, the ordinary differential equations (1) is integrated by using
double precision fourth-order Runge-Kutta method, with integration time step
0.01, the rest membrane potential equals to 0 mV.

3 Bifurcations and Crises of ISIs

In this work, the H-H neuron model has been simulated numerically in the ab-
sence of noise, using the ISIs as a state variable. The ISIs are registered by
the membrane potential crossing a threshold (at 60 mV) with positive deriva-
tive (Poincaré surface of section). The controlled frequency of stimulus ranges
f ∈ [0.01, 10]f0. There are a lot of firing dynamic behaviors of ISIs, such as
quasi-periodic, bursting, period-chaotic, chaotic and periodic appears alterna-
tively with the changing of the stimulus frequency f(see Fig.1). Associating with
our previous works [1,2], we could conclude that the time scale of the external
signal (including periodic and chaotic) play an important role in transition of
neural information.

One typical detailed bifurcation diagram of ISIs is shown in Fig.2a represent-
ing a classical route to chaos through a inverse period doubling cascade located
at f ≈ 2.9128f0, 2.9155f0, and 2.935f0 respectively. Inside the chaotic regions,
we observed several periodic windows located at 2.9071f0, 2.9102f0, 2.9104f0,
and 2.911f0, all of which are opened by a saddle-node bifurcation and closed by
a global bifurcation, namely being an interior crisis (see section 4). At the same
time, several other typical crises occur as the stimulus frequency varies. The first

Fig. 1. Scattered ISIs sequences for stimulus frequency f = 1.35f0 represents qusi-
periodic firing (a), 2.9f0 is bursting (b), 2.9114f0 is period-3 chaotic (c), 3.4685f0 is
chaotic (d), 5.1f0 is period-2 (e), and 6.0f0 is period-1 (f), respectively
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type is boundary crisis, resulted from the attractor colliding with an unstable pe-
riodic orbit that was on the basin boundary before the crisis, a chaotic is suddenly
destroyed as the parameter passes through its critical value (e.g., f ≈ 2.9104f0).
The second type is merging crisis, two or more chaotic attractors, simultaneously
colliding with a period orbit (or orbits) on the basin boundary which separates
them, and merging to form one chaotic attractor (e.g., f ≈ 2.9080f0, 2.9087f0,
and 2.9114f0). The last type is interior crisis, i.e., the periodic orbit with which
the chaotic attractor collision is in the interior of its basin result in the size of
the attractor in phase space suddenly change (e.g., f ≈ 2.9055f0). Certainly,
here, we just list a few of cases as examples.

Fig. 2. Detailed bifurcation diagrams of ISIs and its part enlargement, the bifurcation
parameter f being increased with step 0.0001f0 (a), and bifurcation diagram of Logistic
map xj+1 = rxj(1 − xj), r ∈ [4 ∼ 2.8] (b)

The pattern of bifurcation diagram of ISI shown in Fig.2a is being very similar
to that of the Logistic map xj+1 = rxj(1 − xj), its bifurcation diagram shown
in Fig.2b. Both of them have similar pattern in return map, e.g., the first return
map of them with single one-hump structure. In some cases, the single one-hump
is replaced by two one-hump pattern corresponding to two chaotic attractors,
and so on. For an example, The shape of the 12th return map (shown in Fig.3
b-e) of ISIs is four curves with multiple extremum, each of which is similar to
that of the third iterate of Logistic map.
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4 Saddle-Node Bifurcation

In this section, we aim at one of the numerous bifurcation processes collapse of
chaos to a period-12 orbit in the H-H spiking dynamics, which emerges around
f = 2.9103f0, the bifurcation diagram of ISIs of H-H model shown in Fig.3
suggests that saddle-node, period doubling and other common basic bifurcations
which underlie ISIs of H-H neuronal dynamics as Logistic map.

Seen from bifurcation diagram shown in Fig.3a, when stimulus frequency
locates within f = 2.9102f0, four period-3 orbit are embedded in four chaotic
attractors, and their shapes of 12th return map ISIn+12 = F (12)(ISIn) are sim-
ilar to that of the third iterate of Logistic map respectively, shown in Fig.3b-e.
Appearance of period-3 is due to three saddle-node bifurcations, giving birth to
three stable and three unstable orbits out of chaos. This phenomena can easily
be seen with graphical method. As we all know, period-3 orbit correspond to
three fixed point of the 12th return map (shown in Fig.3) in this work. Fixed
point ISI∗ of the system ISIn+12 = F (12)(ISIn) can be defined as a point of
intersection of curves ISIn+12 = F (12)(ISIn) and ISIn+12 = ISIn (cf., Fig.3),
and its stability of ISI∗ is defined by⎧⎪⎨⎪⎩

|dF 12(x)
x | < 1

|dF 12(x)
x | = 1

|dF 12(x)
x | > 1

, (4)

where x represents ISIs. Fixed point ISI∗ is stable, neutral or unstable if con-
dition Eq.(4) is satisfied respectively.

After stimulus frequency f is slightly greater than 2.91049f0, the map F (12)

has no stable fixed points and its state wanders within chaotic attractor as shown
in Fig.3b. As f keeps decreasing, the map of F (12) is simultaneously tangent to
ISIn+12 = ISIn at f ≈ 2.91049f0 in 12 saddle-node bifurcation points, all
of them being neutral fixed points produced by 12 saddle-node bifurcations as
shown in Fig.3c, and then, these points split into to six stable and six unstable
fixed points as shown in Fig.3d. The stability of stable fixed points keep up to
the extremum of the parabolic passed through ISIn+12 = ISIn, they loose their
stability via period-doubling bifurcations as shown in Fig.3e.

With f decreasing further, the system undergoes period-doubling cascade and
around the critical point f = 2.9101f0 it becomes chaotic. At last, this periodic
windows is closed by interior crisis (see Fig.3a). Due to the fractal structure of
the bifurcation, there are a larger number of f , and with their chaotic attractors
the system lives on collapse, producing stable periodic orbits, such as periodic
windows locating at f = 2.9071f0, f = 2.90932f0, and f = 2.9011f0.

5 Conclusions

The study of transitions between different dynamic behaviors in neural systems
is an issue of major interest for biophysicist. Chaos-chaos transitions will help
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Fig. 3. The detailed bifurcation diagram of ISIs, the bifurcation parameter f is in-
creased with step 0.00001f0 (a), The 12th return map of ISIs for f = 2.9107f0 (b),
f = 2.91049f0 (c), f = 2.91043f0 (d), f = 2.91012f0 (with a partly enlargement)(e);
the insets schematically show the emergence and disappearance of fixed points via
saddle-node bifurcations with different inputs, rectangle, black and empty circles cor-
respond respectively to neutral, stable and unstable fixed points (marked by ’N’, ’S’,
’U’)

us to understand how the neural system is able to give quick responses to the
different external or internal stimulus, and neuronal potential computational
and learning properties. The observation of bifurcations and cries in this work
is relevant to the theory of nonlinear dynamics and chaos, and to biophysics,
particularly to neurobiology.

Acknowledgments

We thank the supporting of the Natural Science Foundation of Gansu Province



396 W. Jin et al.

(Grant No.Z02200401) and the National Natural Science Foundation of China
(Grant No.10432010).

References

1. Jin W.Y., Xu J.X., Wu Y., Hong L.: Rate of afferent stimulus dependent syn-
chronziation andcoding in coupled neurons system. Chaos, Solitons and Fractals
21 (2004) 1221-1229.

2. Jin W.Y., Xu J.X., Wu Y., Hong L.: An alternating periodic-chaotic ISI sequence of
H-H neuron under external sinusoidal stimulus. Chinese Physics 13 (2004) 335-340.
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Abstract. An algorithm of Dynamic Decay Adjustment Radial Basis Function 
(RBF-DDA) neural networks is presented. It can adaptively get the number of 
the hidden layer nodes and the center values of data. It resolve the problem of 
deciding RBF parameters randomly and generalization ability of RBF is im-
proved. When is applied to the system of image pattern recognition, the ex-
perimental results show that the recognition rate of the improved RBF neural 
network still achieves 97.4% even under stronger disturbance. It verifies the 
good performance of improved algorithm. 

1   Introduction 

RBF neural networks is one kind of feed forward neural networks. It has the advan-
tage of simple structure, powerful ability of approximation of overall situation and 
quick simple training method [1,2]. So, it has been broadly applied to prediction, 
signal process, pattern recognition and so on [3].  

At present, generally, the method of the design of RBF neural networks can be 
grouped into two categories, first, is the random selection of the data centers of the 
hidden layer nodes, e.g., OLS algorithm, and ROLS algorithm [4]. The advantages of 
it include easier completing and fixing the number of hidden layer nodes during the 
weighted value is learning. But it can’t design the networks with smallest structure. 
Second is the positions of data centers are adjusted dynamic. The advantage of it is 
that it can fix the extended constant of each hidden node according to the distance 
between cluster centers. The defects are that it also can’t fix the number of hidden 
layer nodes of the networks and the speed of cluster process is slower [5,6]. So, find-
ing the reasonable method that can fix the number of cluster and corresponding data 
centers is a problem of top concern for the design of RBF neural networks. 

In order to tackle the problem above, an improved method of adjusting data cen-
ters based on dynamic decay is presented. The method overcomes the defects that 
mainly depend on prior knowledge to design parameters in the former algorithm. It 
can adaptively fix the number of hidden layer nodes and the center values of Gaus-
sian function. So it greatly increases the speed and accuracy of the networks. At the 
same time, the improved networks is applied to the system of image pattern  
recognition. 
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2   The Structure and Principle of RBF Neural Networks 

RBF neural networks with topological structure is of feedforward neural networks. It 
is made up of input layers, hidden layers and output layers. The function of hidden 
layer nodes respond to the input signal only in local area. Only when the input signal 
is near to the center area of the effective function, the hidden layer nodes will pro-
duce higher output. The Gaussian function is selected as the radial basis function in 
hidden layers 

)
2

exp( 2

2

i

icx
G

δ
−

−=
   

mi ,,2,1= . (1) 

In the formula, x is a input vector; ic  is the data center of ith node’s function in 

hidden layers. iδ  means the width of the function nearby the center point. m  shows 

the number of the hidden layer nodes, that is, the number of data center of the effec-
tive functions; icx −  is the norm of the vector, shows the edclidean distance be-

tween x  and ic . 

The output layers are linear mapping of the output data of the hidden layers when 
the sum function is used as the effective function of output layers the output are 

=
=

m

i
iikk xRwy

1

)(
   

pk ,,2,1= . (2) 

In the formula, p - the number of the output nodes, ikw  - the output weighted 

value of the hidden layers of the radial basis networks. 
There are three parameters to be processed in the RBF neural networks, that is, the 

data center of Gaussian function in the hidden layers, the width corresponding to the 
data center of Gaussian function and the weighted values between the hidden layers 
and the output layers. The most important parameter of the three is the data center of 
Gaussian function in the hidden layers. When the data center is fixed, the width of the 
radial basis function is fixed according to the following expression 

Mdii 2=δ . (3) 

In the formula, id  - the largest distance between the ith data center and other data 

centers; M -the number of data centers. After fixing the data center and Gaussian 
function’s width, we can use methods of least square to fix the weighted value, be-
cause the relation between the hidden layers and the output layers is linear. 

3   The Optimized Design of DDA Algorithm 

German scholar–Berthold proposed a changeable structure dynamic RBF networks 
model [7]. The topological structure of the network is adjusted dynamic in the learn-
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ing process, which is based on DDA technology. According to the space distribution 
of the learning samples, the number of the hidden layer nodes, the data center and 
width of Gaussian function are adjusted dynamic in the learning course [8].  

First, to adjust the range of width of RBF neural networks, set two parameters, that 
is, activated threshold value α  and suppressed threshold value β . When the RBF 

neural networks is training, α and β will make sure that all learning samples fall into 

the range of width of the Gaussian function, that is, when a sample is inputted, if it is 
in the coverage of the data center jc , it will meet the following formula 

α≥− )( ji cxG
 

β≤− )( ji cxG . (4) 

In the formula: G  - the output of RBF neural networks, Mjk ∈, . M - the number 

of the hidden layers nodes. jk ≠ . 

The former algorithm of dynamic decay adjustment radial basis function networks 
mainly depends on the prior knowledge to design parameters. In order to conquer the 
defect of the former algorithm, the improved algorithm of RBF – DDA is proposed 
in this paper. Because the new algorithm can adaptively fix the number of RBF hid-
den layer nodes and the center value of the Gaussian function, it can largely increase 
the algorithm is as follows: 

1. Initialize parameters: α and β , set the step length to ρ , and the time of circula-

tion. One parameter varies with step length ρ , the other is fixed. 

2. Select one from the input samples randomly as the initial data center ic , set the 

width of Gaussian function randomly 1θ ,set parameter T, and order 1=T ; 

3. Input the second sample ),( 22 yx , calculate the output of the hidden layers 

)( ji cxG − , if α≥− )( ji cxG , then the sample ),( 22 yx falls into the coverage of 

the data center ic ; if β≤− )( ji cxG , sample ),( 22 yx  will be the second data 

center, The width of Gaussian function- 2θ  meets the formula: β≤− )( ji cxG . 

4. Assume that the number of the fixed data center is M .  For inputted training sam-
ple ),( ii yx randomly, calculate its output at each data center of the Gaussian func-

tions, if max α≥− ))(( ji CxG , Mj ,,2,1= then the sample ),( ii yx falls into the 

coverage of data center of the Gaussian whose output is highest. If 

max )( ji cxG − ≤ β , then the input sample ( ii yx , ) will become another new data 

center , 1+MC  , whose Gaussian function’s width meet maximal 

max )( 1+− jj cxG ≤ β ; 

5. Order the fixed deta centers, adjust the of each data center ,adjust the width of each 
data center , make all adjoined data centers meet the formula: 

)( ji cxG − ≤ β ,then jump(4), When all data centers don’t change, jump(6). 
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6. According to the fixed parameters, construct the RBF neural networks, 
 calculate the error sum of squares of the output of the networks, that 

is, −= 2)()( ii YyTE , 1+= TT ;The changeable parameter increases one step 

,jump(2).When the times of circulation is satisfied, jump (7). 
7. Find out the value of the changeable parameter corresponding to the minimum of 

E, then fix the value. When the minimum of E is less than required error, jump (8); 
else another parameter varies with step length ρ ,jump (2); 

8. Fix α  and β , construct the RBF neural networks, output the values, the algorithm 

ends. 

4   Simulating Experiment 

Ship recognition has attracted much attention of researchers who study on pattern 
recognition. For testing the effectiveness of the improved algorithm, we take ship-
base as the subject of study, and build the mathematical model of it. 

4.1   Build the Mathematical Model 

First, recognize the subject, A-type ship that is one of the ship-base with thirty ships. 
It is shown in Fig. 1. The moment invariants of the template are shown in Table 1. 

 

Fig. 1. The A-type ship template 

Table 1. The moment invariants of the A-type ship template 

1φ  2φ  3φ  4φ  5φ  6φ  7φ  

1.181 0.406 1.256 1.006 0.696 0.624 0.122 

As the input of the network, the moment invariants of A - type ship are trans-
formed to a 17 × column vector. The corresponding expectation output is a 130×  
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column vector. The code of the corresponding ship is 1, and the others are 0. The 
corresponding output is 

T
SY ] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0[= . (5) 

Likewise, adopting this coding rule, we can get the inputs and expectation outputs 
of the 29 types left. Because the value of normal random noise is between –1 and 1 
randomly, we add the noise which is between 0 and 0.4 , to the 30 groups of sam-
ples. It effectively simulates the actual data with disturbance. When the number of 
hidden layer nodes of the RBF network and the data center are fixed, a system of 
linear equations is formed from the input layers to the output layers in the RBF neu-
ral networks. Thus we can get the output weighted values by the methods of least 
square. 

In addition, the outputs may not necessarily be a vector solely consisting of 0 and 
1.So we adopt the competition rule, the element with the highest output value will 
win the competition. While the others will fail. To the network in this paper, we set 
the element with the highest output value to 1,and others to 0. 

4.2   The Analysis of the Experimental Results 

We respectively test random noise with the disturbance 0.1,0.2,0.3,0.4. As fig.4 
shows, the vertical axis shows the error sum of square of the output vector and the 
horizontal axis shows the number of tested data. As Fig. 2 shows, when the distur-
bance is lower, for example 0.1,0.2,the output can track the expectation value ex-
actly. As Fig. 2(a) and 2(b) show, when the disturbance is higher, for example 
0.3,0.4,the output can’t track the expectation value exactly, that is, the fault recogni-
tion appears. It is shown in Fig. 2(c) and 2(d). 

 
(a) The error sum of square with the disturbance 0.1 
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(b) The error sum of square with the disturbance 0.2 

 
(c) The error sum of square with the disturbance 0.3 

 
(d) The error sum of square with the disturbance 0.4 

Fig. 2. The error sum of square of the actual output and the expectation value with the different 
disturbance 
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To understand the recognition ability of the improved algorithm, we give the curve 
which shows the recognition rate varies with the disturbance .It is shown in Fig.3. 

  

Fig. 3. The recognition rate of the improved algorithm varies with the disturbances 

As fig.3 shows, when the disturbance is under 0.24, the system can recognize the 
input data correctly. With the increasing of the disturbance, the recognition rate be-
gins to decline. The recognition rate is still 97% above although the disturbance is 0.4. 
Experimental results show the improved RBF neural networks have better perform-
ance. Powerful recognition ability even in stronger disturbance is obtained. 

5   Conclusions 

An optimized RBF-DDA neural networks algorithm is proposed in this paper. The 
optimized networks can adaptively fix the number of the hidden layer nodes and the 
data center of Gaussian function. It conquers the defect that parameters to be fixed 
mainly depend on prior knowledge in the original algorithm. In order to test the per-
formance of optimized algorithm, it has been applied to curve fitting and ship pattern 
recognition. The experimental results prove that the learning rate and recognition 
accuracy of the optimized RBF-DDA neural networks is greatly improved. 

References 

1. A. Jonathan Howell, Hilary Buxton. Learning identity with radial basis function networks. 
Neuro computing (1998)20:15~34 

2. Fu, X. J., Wang L.p.: A GA-Based Novel RBF Classifier with Class-Dependent Features. 
Proc. 2002 IEEE Congress on Evolutionary Computation (CEC 2002), vol.2(2002) 1890-
1894 

3. Panchapakeasan, C.; Palaniswami, M; Palph, D.; Manzie, C.:Effects of moving the center’s 
in an RBF network. IEEE Trans. Neural Networks 13(2002) 1299-1307 

4. Orr M J L. Regularization in the selection of radial basis function centers[J]. Neural Com-
putation (1995)7:606-623 

5. La Poutre, H.; Kok, J.N.; Unsupervised clustering with spiking neurous by sparse temporal 
coding and multiplayer RBF networks. IEEE Trans. Neural Networks 13 (2002) 426-435 



404 G. Li et al. 

6. Pablo Zegers and Malur K. Sundareshan. Trajectory Generation and Modulation Using Dy-
namic Neural Networks. IEEE Transactions on Neural Networks, Vol. 14, NO. 3, May 
2003.520-533 

7. Berthold Michael R.Diamond Jay. Boosting the performance of RBF networks with dy-
namic decay adjustment In: Proceeding of Advances in Neural Information Processing Sys-
tem .Cambrige MA:MIT Press.1995:521-528 

8. Jin Lianwen, Xu Bingzheng. Handwritten Chinese Character Recognition with RBF-DDA 
Neural Networks[J], Journal of South China University of Technology (Natural Science), 
1997,25(9):97-101 



Global Exponential Stability of Cellular Neural
Networks with Time-Varying Delays�

Qiang Zhang1,2, Dongsheng Zhou2, Haijun Wang2, and Xiaopeng Wei1

1 University Key Lab of Information Science & Engineering,
Dalian University, Dalian, 116622, China

2 School of Mechanical Engineering,
Dalian University of Technology, Dalian, 116024, China

zhangq26@126.com

Abstract. The problem of global exponential stability of cellular neural
networks with time-varying delays is discussed by employing a method
of delay differential inequality. A simple sufficient condition is given for
global exponential stability of the cellular neural networks with time-
varying delays. The result obtained here improves some results in the
previous works.

1 Introduction

In recent years, the stability properties of cellular neural networks (CNNs) and
delayed cellular neural networks (DCNNs) introduced by Chua et al. [1]-[2] have
been extensively studied and many global asymptotic stability and global ex-
ponential stability criteria for cellular neural networks with constant or time-
varying delays have been proposed[3]-[14]. In this paper, by making use of a
delay differential inequality, we present a new sufficient condition which guar-
antees global exponential stability of the unique equilibrium point of cellular
neural networks with time-varying delays. Since it does not assume the delay
to be differentiable, this condition is less conservative than some given in the
earlier works. An example is illustrated to show the applicability of the result
obtained here.

2 Preliminaries

The dynamic behavior of a continuous time cellular neural networks with variable
delays can be described by the following state equations:

x′i(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijfj(xj(t− τj(t)))

+Ii, i = 1, 2, · · · , n. (1)

or equivalently
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no. 60403001.) and China Postdoctoral Science Foundation (grant no.200303448).

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 405–410, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



406 Q. Zhang et al.

x′(t) = −Cx(t) +Af(x(t)) +Bf(x(t− τ(t))) + I (2)

where x(t) = [x1(t), · · · , xn(t)]T ∈ Rn, f(x(t)) = [f1(x1(t)), · · · , fn(xn(t))]T ∈
Rn,f(x(t − τ(t))) = [f1(x1(t − τ1(t))), · · · , fn(xn(t − τn(t)))]T ∈ Rn. A = {aij}
is referred to as the feedback matrix, B = {bij} represents the delayed feedback
matrix,while I = [I1, · · · , In]T is a constant input vector and time delays τj are
bounded nonnegative functions satisfying 0 ≤ τj(t) ≤ τ for all j = 1, 2, · · · , n.
The activation function fi, i = 1, 2, · · · , n satisfy the following condition

(H) Each fi is bounded continuous and satisfies

|fi(ξ1)− fi(ξ2)| ≤ Li |ξ1 − ξ2|

for each ξ1, ξ2 ∈ R.
This type of activation functions is clearly more general than both the usual

sigmoid activation functions in Hopfield networks and the piecewise linear func-
tion(PWL): fi(x) = 1

2 (|x+ 1| − |x− 1|) in standard cellular networks [1].
Assume that the system (1) is supplemented with initial conditions of the

form
xi(s) = φi(s), s ∈ [−τ, 0], i = 1, 2, · · · , n.

in which φi(s) is continuous for s ∈ [−τ, 0].
Due to the boundedness of the activation function fi, by employing the well-

known Brouwer’s fixed point theorem, we can easily obtain that there exists an
equilibrium point of Eq.(1). Besides, the uniqueness of the equilibrium point can
be derived from the global exponential stability established below.

Suppose that (1) has a unique equilibrium x∗ = (x∗1, x
∗
2, · · · , x∗n). Denote

||φ− x∗|| = sup
−τ≤s≤0

[
n∑

i=1

|φi(s)− x∗i |2
]1/2

We say that an equilibrium point x∗ = (x∗1, x
∗
2, · · · , x∗n) is globally exponen-

tially stable if there exist constants ε > 0 and M ≥ 1 such that

||x(t)− x∗|| ≤M ||φ− x∗||e−εt, t ≥ 0

Let y(t) = x(t)− x∗, then Eq.(1) can be rewritten as

y′i(t) = −ciyi(t) +
n∑

j=1

aijgj(yj(t)) +
n∑

j=1

bijgj(yj(t− τj(t))) (3)

where gj(yj) = fj(yj+x∗j)−fj(x∗j ), j = 1, 2, · · · , n. It is obvious that the function
gj(·) also satisfies the hypothesis (H).

To prove the stability of the equilibrium point x∗ of Eq.(1), it is sufficient to
prove the stability of the trivial solution of Eq.(3).

Definition 1. [15] Let the n×n matrix A = (aij) have non-positive off-diagonal
elements and all principal minors of A are positive, then A is said to be an M-
matrix.
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The following lemma will be used to study the global exponential convergence
of (1).

Lemma 1. [16] Let x(t) = (x1(t), x2(t), · · · , xn(t))T be a solution of the differ-
ential inequality (4).

x′(t) ≤ Ax(t) +Bx(t), t ≥ t0 (4)

where
x(t) = ( sup

t−τ≤s≤t
{x1(s)}, sup

t−τ≤s≤t
{x2(s)}, · · · , sup

t−τ≤s≤t
{xn(s)})T

A = (aij)n×n, B = (aij)n×n. If :
(H1) aij ≥ 0 (i �= j), bij ≥ 0, i, j = 1, 2, · · · , n,

∑n
j=1 xj(t0) > 0;

(H2) The matrix −(A+B) is an M-matrix.
then there always exist constants λ > 0, ri > 0 (i = 1, 2, · · · , n) such that

xi(t) ≤ ri

n∑
j=1

xj(t0)e−λ(t−t0). (5)

3 Stability Analysis

Theorem 1. If there exist positive constants αi > 0 (i = 1, 2, · · · , n) such that

Ξij = −

⎛⎝⎡⎣−2ci + 2
n∑

j=1

L2
j

⎤⎦ δij +
αi

αj

(
a2

ij + b2ij
)⎞⎠

n×n

is an M-matrix, where δij =
{

1, i = j
0, i �= j

, then the equilibrium point x∗ of system

(1) is globally exponentially stable.

Proof. Let zi(t) = 1
2αiy

2
i (t), calculating the z′i(t) along the solution of (1) as

follows:

z′i(t) = αiyi(t)y′i(t)

= αiyi(t)

⎧⎨⎩−ciyi(t) +
n∑

j=1

aijgj(yj(t))

+
n∑

j=1

bijgj(yj(t− τj(t)))

⎫⎬⎭
= −ciαiy

2
i (t) +

n∑
j=1

αiyi(t)aijgj(yj(t))

+
n∑

j=1

αiyi(t)bijgj(yj(t− τj(t)))
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≤ −ciαiy
2
i (t) +

n∑
j=1

αiLj |yi(t)||aij ||yj(t)|

+
n∑

j=1

αiLj|yi(t)||bij ||ȳj(t)|

≤ −ciαiy
2
i (t) +

1
2

n∑
j=1

αi

(
L2

jy
2
i (t) + a2

ijy
2
j (t)

)
+

1
2

n∑
j=1

αi

(
L2

jy
2
i (t) + b2ij ȳ

2
j (t)

)

=

⎡⎣−ci +
n∑

j=1

L2
j

⎤⎦αiy
2
i (t) +

1
2

n∑
j=1

αia
2
ijy

2
j (t)

+
1
2

n∑
j=1

αib
2
ij ȳ

2
j (t)

=
n∑

j=1

⎧⎨⎩
⎡⎣−2ci + 2

n∑
j=1

L2
j

⎤⎦ δij + a2
ij

αi

αj

⎫⎬⎭ 1
2
αjy

2
j (t)

+
n∑

j=1

{
αi

αj
b2ij

}
1
2
αj ȳ

2
j (t)

=
n∑

j=1

⎧⎨⎩
⎡⎣−2ci + 2

n∑
j=1

L2
j

⎤⎦ δij + a2
ij

αi

αj

⎫⎬⎭ zj(t)

+
n∑

j=1

{
αi

αj
b2ij

}
zj(t)

Let Ξ1 =

([
−2ci + 2

n∑
j=1

L2
j

]
δij + a2

ij
αi

αj

)
, Ξ2 =

(
αi

αj
b2ij

)
, then the above

inequality can be rewritten as

D+z(t) ≤ Ξ1z(t) +Ξ2z(t)

According to Lemma 1, if the matrix Ξ = −(Ξ1 + Ξ2) is an M-matrix, then
there must exist constants λ > 0, ri > 0 (i = 1, 2, · · · , n) such that

1
2
αminy

2
i (t) ≤ zi(t) =

1
2
αiy

2
i (t)

≤ ri

n∑
j=1

zj(t0)e−λ(t−t0)

= ri

n∑
j=1

1
2
αj ȳ

2
j (t0)e−λ(t−t0)
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≤ 1
2
riαmax

n∑
j=1

ȳ2
j (t0)e−λ(t−t0)

Thus, we have

y2
i (t) ≤ αmax

αmin
ri

n∑
j=1

ȳ2
j (t0)e

−λ(t−t0)

that is,

||xi(t)− x∗i || ≤
(
αmax

αmin
ri

)1/2

||xi(t0)− x∗i ||e−λ(t−t0)/2

This implies that the unique equilibrium point of Eq.(1) is globally exponentially
stable.

Remark 1. In [12]-[14], some results on the global asymptotic stability of Eq.(1)
are presented by constructing Lyapunov functional. Different from our results,
all of their results require that the delay function τ(t) be differentiable. Thus,
compared with the results presented here, their conditions are more restrictive
and conservative.

4 An Example

In this section, we will give an example to show the applicability of the condition
given here.

Example 1. Consider cellular neural networks with variable delays

x′1(t) = −c1x1(t) + a11f(x1(t)) + a12f(x2(t))
+b11f(x1(t− τ1(t))) + b12f(x2(t− τ2(t))) + I1

x′2(t) = −c2x2(t) + a21f(x1(t)) + a22f(x2(t))
+b21f(x1(t− τ1(t))) + b22f(x2(t− τ2(t))) + I2

(6)

where the activation function is described by PWL function: fi(x) = 1
2 (|x+1|−

|x− 1|).Obviously, this function satisfies (H) with L1 = L2 = 1.
In (6), taking a11 = 0.5, a12 = −0.1, a21 = 0.3, a22 = −0.2; b11 = 0.5, b12 =

0.1, b21 = −0.1, b22 = 0.1; c1 = 2.3, c2 = 2.04; τ1(t) = τ2(t) = |t+ 1| − |t− 1|. i.e.,

C =
[
2.3 0
0 2.04

]
, A =

[
0.5 −0.1
0.3 −0.2

]
, B =

[
0.5 0.1
−0.1 0.1

]
. Let α1 = α2 = 1, we can

easily check that the matrix in Theorem 1 above

Ξ =
[

0.1 −0.02
−0.1 0.03

]
is an M-matrix. Hence, the equilibrium point of Eq.(6) is globally exponentially
stable.
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5 Conclusions

A new sufficient condition is given ensuring the global exponential stability of
cellular neural networks with variable delays by using an approach based on
delay differential inequality. The result established here extends some in the
previous references.
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Abstract. Stochastic resonance (SR) effect has been discovered in non-
dynamical threshold systems such as sensory systems. This paper presents a 
network simulating basic structure of a sensory system to study SR. The neu-
ronal network consists of two layers of the Hodgkin-Huxley (HH) neurons. 
Compared with single HH model, subthreshold stimulating signals do not 
modulate output signal-noise ratio, thus a fixed level of noise from circum-
stance can induce SR for the various stimulating signals. Numeric experimental 
results also show that noises do not always deteriorate the capability of the de-
tection of suprathreshold input signals. 

1   Introduction 

Stochastic resonance (SR) [1, 2] is a counter intuitive nonlinear phenomenon wherein 
transmission or detection of a signal can be enhanced by addition of a non-zero level 
noise. The effect has been discovered in bistable dynamical systems [3] and non-
dynamical threshold systems [4].  

Neural sensory systems are typical non-dynamical threshold systems [5, 6], thus 
they have been studied to understand how biological sensory systems utilize SR to 
improve their sensitivity to external inputs. Although many simulation studies on 
neuron model and neuronal network model have been carried out to investigate SR [7, 
8], and the results indicate that the optimal intensity of noises must be altered with the 
different stimulating signals. The intensity of background noises depends on the aver-
age energy of random noises, so it is approximately constant. This is a limitation for 
neural systems to utilize external noises to detect changeful signals based SR. Collins 
et al. [8] investigated the dynamics of the ensemble of FitzHugh-Nagumo (FHN) 
model and concluded that noises positively affect the FHN model without controlling 
the intensity of noises, which means that the optimal intensity of noises is not neces-
sary to be adjusted with the change of the stimulating signals. However, the model of 
Collins et al. adopted a summing network of excitable units, which includes only one-
layer so that the effect on the next layer of the network was ignored. 

In this paper, a two-layer network, differing from one-layer network in afore-
mentioned papers, has been used to simulate the sensory systems. This neuronal  
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network consists of the Hodgkin-Huxley (HH) model that is physiologically closer to 
real neuron than the FHN model [9]. Compared with the single HH model, SR in the 
two-layer network has a wider range of optimal intensity of noises for subthreshold 
input signals, while the noises do not deteriorate the capability of the detection of the 
suprathreshold input signals which is consistent with the result Collins obtained [8]. 

2   Model Description 

2.1   Hodgkin-Huxley Model of Single Neuron 

The HH neuronal model is a useful paradigm that accounts naturally for both the 
spiking behavior and refractory properties of real neurons [10], which is described by 
four nonlinear coupled equations: one for the membrane potential V and the other 
three for the gating variables: m, n, and h as following: 

3 4
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where the ionic current includes the usual sodium, potassium, and leak currents; the 
parameters gNa, gK and gL are the maximal conductance for the ions, sodium and po-
tassium, and the leakage channels; VNa, VK and VL are the corresponding reversal po-
tentials; m (V) h (V),n (V) and m(V), h(V), n(V) represent the saturated values and 
the relaxation times of the gating variables, respectively. The values of parameters are 
listed in the appendix of this paper. 

I1 sin(2 fst) is a periodic signal with I1 and f s being the amplitude and the fre-
quency of the signal respectively. I0 is a constant stimulus being regarded as the sim-
plest modulation to the neuron. (t) is the Gaussian white noise, satisfying < (t)> = 
0 < (t1) (t2)> = 2D (t1-t2), D is intensity of noises. 

2.2   Two-Layer HH Neuronal Network Model  

Fig.1 shows the structure of the two-layer HH neuronal network model. The first layer 
network consists of N parallel neurons represented by n11 n12 …n1N . The second 
layer has one neuron represented by n2 and act as the output part of network. The total 
network has an analogical structure of sensory systems, in which the first layer can be 
considered as the part of the reception and transmission of external stimulus and con-
verges on the neuron of the second layer. 
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Fig. 1. The structure of the two-layer network 

The input signal I of the first layer consists of the periodic stimulating signals I1 
sin(2 fst) and constant stimulating signals I0. The former denotes the external stimu-
lating signals including detection information and the latter is regarded as the average 
effect of the internal environment in sensory systems. Each neuron in the first layer is 
subjected to the external input noises represented by 1 2,……, N , which are as-
sumed as an independent or uncorrelated Gaussian white noise. The neuron of the 
second layer receives all outputs of the neurons in the first layer and the same internal 
environment stimulating signals I0. The neurons in the first layer are parallel con-
nected with the second layer through a synapse. The synaptic current of the neuron n1i 

is described as [11]: 
                                        ( ) ( )[ ( ) ]i i i

syn syn synI t g t t V t Vα= − − −   ,                              (5) 

where ττα /)/()( tett −= , gsyn is the maximal value of synaptic conductance, Vi
syn is 

the synaptic potential between the neuron n2 and the neuron n1i. The parameters  and 
ti represent the characteristic time of excitatory postsynaptic potential and the firing 
time of the neuron n1i, respectively. The corresponding values of the parameters are: 
gsyn= 2mS/cm2; Vi

syn= 0mV (i=1, 2…N), representing the excitatory connection be-
tween two layers; =2ms; ti denoting the time when action potentials arrive at the 
maximal value. The total synaptic currents Isyn(t) added on the second layer can be 
written as: 

                                               
1

( ) (1 / ) ( )
N

i
syn syn

i

I t N I t
=

= .                                     (6) 

3   Results and Discussion 

In this section, we will discuss the single neuron case and the two-layer HH network 
case. The relevant equations of two cases are solved by using a second-order algo-
rithm suggested in Reference [12] and the integration step is taken as 0.02ms.The 
results of two cases are measured through the output signal-noise ratio (SNR). This 
SNR is defined as 10log10(G/B) with G and B representing the height of the signal 
peak and the mean amplitude of background noise at the input signal frequency f s in 
the power spectrum respectively.  
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Calculating the SNR, we simplify firstly the firing pulse sequences into the stan-
dard rectangle pulse sequences (the amplitude of each pulse is 1mV and the width is 
2ms), and then obtain the power spectrum density (PSD) by summing the results from 
the Fast Fourier Transform (FFT) of the pulse sequences. In single neuron case the 
summation is done 100 times and in network case 10 times. For the two cases, we pay 
attention to the relation between the intensity of input signals and noises when sto-
chastic resonance phenomenon occurs. 

3.1 Results for Single HH Neuron  

Firstly, let us consider the output performance of single neuron model in the presence of 
the aforementioned input signal and the external Gaussian white noise. When single 
neuron is subjected to the subthreshold input signal (e.g., the amplitude of the signal I1 is 
1 and the threshold of the neuron is about I1=1.4 .) and the noise (the inten-
sity of the noise ranges between 0 and 50), the corresponding characteristics of SR are 
shown in Fig.2, i.e., the output SNR first rises up to a maximum around D=2 and then 
drops as D increases. On the contrary, if the stimulating signals  (e.g., in fig.2 the ampli-
tude of signal I1 is 1.5 ) is larger than the threshold, then SR disappears. Though 
SR occurs for the subthreshold stimulating signals, the bell shaped curve of SR is narrow 
and the optimal intensity of the noise is restricted within small range. Fig. 3 shows that 
change of stimulating signals exerts influence on the output SNR in present of fixed 
intensity of noises (D=2). It can be found that the optimal intensity of noises would be 
adjusted as the nature of the signal to be detected changes, i.e., the optimal detection 
capacity is modulated by the different stimulating signals. 

Based on the central limits theorem, the integration of a variety of noises existing 
in environment can gain the Gaussian white noise with the steady variance repre-
sented by the intensity. Similarly, the noise imposed on neurons can be view as Gaus-
sian white noise with a fixed intensity. Therefore, the simulation results have been 
thought to add a limitation when SR is used to detect changeful signal.  

 

 

Fig. 2. The output SNR of single neuron varying with the intensity of noises D for I1 =1  
(subthreshold) and I1 =1.5  (suprathreshold), respectively. The rest parameters: I0 

=1μA/cm2, f=50Hz. 
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Fig. 3. The output SNR of single neuron varying with the amplitude of the subthreshold signal. 
I1 The rest Parameters: I0 =1 , f = 50hz, D = 2. 

3.2   Results for Two-Layer HH Neuronal Network 

Secondly, we investigate the two-layer network described in section 2.2. The first 
layer of the network has N neurons parallel coupling to a neuron of the second layer. 
N neurons are subject to the common sinusoidal signal and independent noise.  

Fig. 4 shows the output SNR versus the intensity of noises D in the case of N=1, 
N=50 and N=100. Three curves exhibit the typical characteristic of SR: first a rise and 
then a drop. Differently, the optimal intensity of noises in the case of N=50 and 
N=100 varies from 1 to10 and has much wider range than that in the case of N=1. 
This means that the range and the amplitude of optimal output SNRs (the SNR corre-
sponding to the optimal intensity of noises) increase with the number of neurons in 
first layer.  

 

 

Fig. 4. The output SNR of network varying with the intensity of noises D for N 1, 50 and 100, 
respectively. The rest parameters: I1 =1μA/cm2, I0 =1μA/cm2, f=50Hz. 



416 J. Liu, Z. Lou, and G. Li 

 

Fig. 5. The output SNR of network varying with the amplitude of periodic signal I1 for N 1, 50 
and 100, respectively. The rest parameter: D=2, I0 =1μA/cm2, f=50Hz.  

Fig.5 shows output SNR versus amplitude of stimulating signals I1 in the presence 
of the fixed intensity of noise D=2. The amplitude of signals I1 varies from 0.2 to 1.5 
and is lower than that of the subthrehold signals. The intensity of noises D is during 
the range of the optimal intensity of noises of fig.4. In contrast with the case of N=1, 
the output SNRs in the case of N=50 and N=100 has almost constant values when I1 
varies from 0.5 to 1.5. Clearly, the SNR is not necessary to change with the signals 
when the noise is fixed. It is suggested that the ability of sensory systems to detect a 
certain range of weak (subthreshold) signals can be optimized by a fixed level of 
noise, irrespective of the nature of the input signal if such a network is considered as 
the basic structure of information processing in sensory systems. It is worth noting 
that the two-layer network based on HH model is more close to the real nature of 
sensory neuronal systems which exhibits that neurons of previous layer converge at 
the synapse of a neuron of next layer though the same results as Collins et al. can be 
obtained. It is convergence of the neurons that decreases the negative effect of noise 
on the synapse and ensures the rationalization of SR effect.   

It is also worth noting that how the output SNR of the network varies with the in-
tensity of noises when the amplitude of stimulating signals exceeds the firing thresh-
old of neuron (i.e., the suprathreshold case). Fig.6 shows the output SNR versus the 
amplitude of stimulating signals I1 in the presence of two fixed intensities of noises 
D=2 and D=0 respectively. In order to indicate the different output characteristic 
between the subthreshold and the suprathreshold, we simulate the output SNR in the 
present of the stimulating signals without noise (i.e., D=0). Obviously, the su-
prathreshold case can be illustrated by occurrence of the nonzero output SNR. It need 
be emphasized that noiseless case can use the concept of SNR because the output 
from many neurons of the first layer can induce the randomized input of the second 
layer. According to noiseless case, a vertical line in Fig.6 illustrates the position of the 
threshold. For the stimulating signal with the intensity of noise D=2, two curves show 
that the cooperative effect of many neurons can improve the output SNR in the case 
of the suprathreshold stimulating signals.  
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Fig. 6. The output SNR of network varying with the amplitude of periodic signal I1 for N= 50 
and 100, D=0 and 2, respectively. The rest parameter:  I0 =1μA/cm2, f=50Hz. 

 

Fig. 7. The output SNR of network varying with the intensity of noises D for N 1, 50 and 100, 
respectively. The rest parameter: I1 =1.5μA/cm2, I0 =1μA/cm2, f=50Hz. 

Fig.7 shows the output SNR versus the intensity of noises D in the case of N=1, 
N=50 and N=100 for the suprathreshold stimulating signals (e.g., a signal amplitude I1 
takes 1.5μA/cm2.). Two curves representing N=50 and N=100 demonstrate that many 
neurons in the first layer can improve the output performance in contrast with the case 
of N=1.This implies that many neurons employ a certain collective effect on the syn-
apse of one neuron.    

Let us to analyze the mechanism that noise can enhances transmission of informa-
tion. According to the essence of SR, noises and signals have a cooperative and com-
petitive effect on the system. For single neuron in the case of the subthreshold input 
signals, randomicity of noises exerts great influence on the outputs thus the optimal 
intensity of SR is prone to change. For the two-layer HH network, many neurons of 
the first layer can produce the summation effect on the synapse of the neuron of the 
second layer, which can decrease the randomicity and increase the probability of 
signal transmission. Consequently, the output SNR of the network can be improved.   
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4   Conclusion 

Based on the HH neuron model and a two-layer network, the effect of noises on the 
sensory systems is discussed. For single neuron, the optimal intensity of noises must 
adapt to the stimulating signals. It is noted that the intensity of noises has a linear 
relation with the standard deviation of stochastic noises. The fluctuation of back-
ground noises is approximately stationary stochastic process with constant standard 
deviation, so its intensity hardly changes. This limits the application of SR. However, 
for the cooperative effect of a set of neurons, the fixed level of noise can induce SR 
while the stimulating signals varying within a certain range. According to these re-
sults, the two-layer network can be considered as one of basic structure of signal de-
tection in sensory systems. It is further proved that the collective behavior of a set of 
neurons can restrain the noises by analyzing the suprathreshold cases for the networks 
with different quantities of neurons. 
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Appendix: Detailed Parameters of HH model  

Detailed values of parameters are as follows: 
VNa=50mV VK= -77mV VL= -54.4mV gNa=120mS/cm2 gK=36mS/cm2

gL=0.3mS/cm2 Cm=1μF/cm2  
x (V)=ax/(ax+ bx) x(V)=1/(ax+bx) with x=m,h,n  

( 40 ) /100.1( 40) /(1 )V
ma V e − −= + − ( 65 ) /184 V

mb e − −=
( 65 ) / 200.07 V

ha e − −= ( 35) /101/(1 )V
hb e − −= +

( 55) /100.01( 55) /(1 )V
na V e − −= + − ( 65) /800.125 V

nb e − −=  
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Abstract. A spiking neural network (SNN) model trained with spiking-timing-
dependent-plasticity (STDP) is proposed to perform a 2D co-ordinate transfor-
mation of the polar representation of an arm position to a Cartesian representa-
tion in order to create a virtual image map of a haptic input. The position of the 
haptic input is used to train the SNN using STDP such that after learning the 
SNN can perform the co-ordinate transformation to generate a representation of 
the haptic input with the same co-ordinates as a visual image.  This principle 
can be applied to complex co-ordinate transformations in artificial intelligent 
systems to process biological stimuli.   

1   Introduction 

The brain receives multiple sensory data from environments where the different 
senses do not operate independently, but there are strong links between modalities 
[1]. Electrophysiological studies have shown that the somatosensory cortex SI neu-
rons in monkeys respond not only to touch stimulus but also to other modalities. 
Strong links between vision and touch have been found in behavioural [2] and elec-
trophysiological [3] studies, and at the level of single neurons [4]. For example, 
neurons in the somatosensory cortex (SI) may respond to visual stimuli [5] and other 
modalities [6]. Neurons in monkey primary SI may fire both in response to a tactile 
stimulus and also in response to a visual stimulus [5].  

A new interaction between vision and touch in human perception is proposed in  
[7]. These perceptions may particularly interact during fine manipulation tasks using 
the fingers under visual and sensory control [8]. Different sensors convey spatial 
information to the brain with different spatial coordinate frames. In order to plan 
accurate motor actions, the brain needs to build an integrated spatial representation. 
Therefore, cross-modal sensory integration and sensory-motor coordinate transfor-
mations must occur [9]. Multimodal neurons using non-retinal bodycentred reference 
frames are found in the posterior parietal and frontal cortices of monkeys [10-12]. 
Basis function networks with multidimensional attractors [13] are proposed to simu-
late the cue integration and co-ordinate transformation properties that are observed in 
several multimodal cortical areas. Adaptive regulation of synaptic strengths within 
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SI could explain modulation of touch by both vision [14] and attention [15]. Learned 
associations between visual and tactile stimuli may influence bimodal neurons.  

Based on these concepts, a spiking neural network (SNN) model is proposed to 
perform the co-ordinate transformation required to convert a time-coded haptic input 
to a space-coded visual image. The SNN model contains STDP synapses from haptic 
intermediate neurons to the bimodal neurons. In Section 2, the SNN model is pre-
sented. The spiking neuron model and STDP implementation is described in Section 
3. The training approach is described in Section 4. After training, the strength of 
synapses between haptic intermediate neurons and bimodal neurons is obtained. A 
simplified model is provided in this paper to demonstrate that neural networks based 
on integrate-and-fire neurons with STDP are capable of performing 2D co-ordinate 
transformation. The implication for a biological system and applications in artificial 
intelligent systems are discussed in Section 5. 

2   Spiking Neural Network Model for Co-ordinate Transformation 

In order to simulate location related neurons in the somatosensory cortex (SI), sup-
pose that x’ and y’ are single layers of bimodal neurons that represent the Cartesian 
co-ordinates of the output.  A point (X, Y) at the touch area can provide both visual 
and haptic stimuli that reach x’ and y’ bimodal neuron layers through a  visual path-
way and a haptic pathway respectively. Fig.1 shows a simplified SNN model for 
building associations between visual and haptic stimuli. When a finger touches a 
point in the touch area, visual attention focuses on the point and the retinal neurons 
corresponding to this point are activated. These neurons provide the training stimulus 
to x’ and y’ bimodal neuron layers through the visual pathway. When the finger 
touches the point, the arms activate the corresponding neurons in θ and Φ neuron 
layers. These stimuli are fed into haptic pathway. Actually, θ and Φ are based on 
bodycentred co-ordinates, which are polar co-ordinates. The neurons in θ and Φ 
layers transfer haptic location signals to the intermediate layer, and then this inter-
mediate layer transfers the bodycentred co-ordinate to the integrated co-ordinate x’ 
and y’ neuron layers. In the SNN model, x’ and y’ bimodal neurons have a receptive 
field corresponding to the vertical and horizontal lines on the retinal neuron layer 
respectively, and receive haptic stimuli from all the intermediate neurons through 
STDP synapses. These STDP synapses make it possible to learn and transform body-
centred co-ordinate (θ, Φ) to co-ordinate (x’, y’). The co-ordinate (x’, y’) can be 
regarded as integrated co-ordinates in the brain. For simplicity, the synapse strength 
from retinal neuron layer to (x’, y’) neurons is fixed. Under this situation, co-
ordinate (x’, y’) is actually the retina-centred co-ordinate. The transformation is 
equivalent to transformation from a haptic bodycentred co-ordinate to a retina-
centred co-ordinate.  Each neuron in the θ and Φ layers is connected to an intermedi-
ate layer within a vertical field and a horizontal field with fixed synapse strength 
respectively, as shown in Fig.1. 
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Fig. 1. A SNN model for 2D co-ordinate transformation. (X,Y) is co-ordinate for touch area. (a) 
Visual pathway: the retinal neuron layer is represented by 2D layer with 40X40 neurons that 
are connected to x’ and y’ neuron layer with a fixed weights. (b) Haptic pathway:  L1 and L2  
are arms. θ and Φ are arm angles represented by a 1D neuron layer respectively. Each θ neuron 
is connected to the neurons within a corresponding vertical rectangle in the 2D intermediate 
layer.  Each Φ neuron is connected to the neurons within a corresponding horizontal rectangle 
in the 2D intermediate layer. The neurons in the intermediate layer are fully connected to the x’ 
and y’ neuron layers with STDP synapses. These connections are adapted in response to the 
attention visual stimulus and haptic stimulus under STDP rules. 

3   Spiking Neuron Model and STDP Implementation 

3.1   Integrate-and-Fire Neuron Model  

The integrate-and-fire model is applied to each neuron in the SNN. In a conductance 
based integrate-and-fire model, the membrane potential v(t) is governed by the fol-
lowing equations [16], [17], [18], [19]. 

( )( )
( ( )) ( ( ))

j j
s

m l l s
sj

w g tdv t
c g E v t E v t

dt A
= − + −  (1) 

where cm is the specific membrane capacitance, El is the membrane reversal potential, 
Es is the reversal potential (s∈{i,e}, i and e indicate inhibitory and excitatory synapses 
respectively), wj is a weight for synapse j, and As is the membrane surface area con-
nected to a synapse. If the membrane potential v exceeds the threshold voltage, vth, v 
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is reset to vreset for a time τref and an action potential event is generated. Fig. 2 shows 
that a neuron receives spike trains from three afferent neurons. 

wj gj
s(t)

wn gn
s(t)

w1 g1
s(t)

v(t)

Neuron j=1

Neuron j

Neuron j=n

Neuron i

 

Fig. 2. Conductance based synapses connections in a SNN 

The valuable gj
s(t) is the conductance of synapse j. When an action potential reaches 

the synapse at tap, the conductance is increased by the following expression. 

( ) ( )j jj j
s ap s ap sdelay delayg t t dt g t t q+ + = + +  (2) 

Otherwise, the conductance decays as illustrated in the following equation. 

( ) 1
( )

j
js
s

s

g t
g t

dt τ
= −  (3) 

where qs is the peak conductance. Neuron i integrates the currents from afferent syn-
apses and increases the membrane potential according to Equation (1). In our simula-
tion, the parameters are set as follows.  tj

delay=0. vth =-54 mv. vreset =-70 mv. Ee= 0 mv. 
Ei=-75 mv. qe_max=0.01 μs. qi_max=0.01 μs. qe=0.002 μs. qi=0.002 μs. El=-70 mv. gl 
=1.0 μs/mm2. cm=10 nF/mm2. τe=3 ms. τi=10 ms. Ae=0.028953 mm2. Ai=0.014103 
mm2.  

3.2   STDP Implementation Approach 

In order to perform STDP learning in the SNN, the implementation approach in 
[20],[21] is applied. Each synapse in an SNN is characterized by a peak conductance 
qs (the peak value of the synaptic conductance following a single presynaptic action 
potential) that is constrained to lie between 0 and a maximum value qs_max. Every pair 
of pre- and postsynaptic spikes can potentially modify the value of qs, and the changes 
due to each spike pair are continually summed to determine how qs changes over 
time. The simplifying assumption is that the modifications produced by individual 
spike pairs combine linearly.  

A presynaptic spike occurring at time tpre and a postsynaptic spike at time tpost mod-
ify the corresponding synaptic conductance by  
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qs  qs + qs_max F(Δt) (4) 

where Δt =  tpost - tpre  and 

exp( / ), 0
( )

exp( / ), 0

A t if t
F t

A t if t

τ
τ

+ +

− −

Δ Δ >
Δ =

− Δ Δ ≤
 (5) 

The time constants τ+ and τ- determine the ranges of pre- to postsynaptic spike inter-
vals over which synaptic strengthening and weakening are significant, and A+ and A_ 
determine the maximum amount of synaptic modification in each case. The experi-
mental results indicate a value of τ+ in the range of tens of milliseconds (about 20 
ms). The parameters for STDP are set as follows. 

qs_max =  0.01,  A+ = 0.01,  A- = 0.005, τ+=20 ms, τ-=100 ms. 

The function F(Δt ) for synaptic modification is shown in. Fig. 3. 

 

Fig. 3. Synaptic modification 

4   Learning and Simulation Results 

This network can be trained using an unsupervised approach. When a finger touches a 
point in the touch area, the haptic stimulus triggers (θ, Φ) stimuli that are fed into the 
haptic pathway. At the same time, the visual attention focuses on the tip of the finger 
and this position signal is transferred to (x’, y’) neuron layer through the visual path-
way. The STDP synapses between intermediate layer and (x’, y’) neuron layer are 
trained under STDP rules. The finger randomly touches different points for a Poisson 
distribution period with a mean of 20ms. The STDP synapses from the intermediate 
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layer to (x’, y’) neurons can adapt synapse strength in response to the stimulus and 
form a weight distribution for association between haptic and visual training stimuli. 
By repeating the finger touching within the whole touch area randomly, the weight 
distribution is adapted in response to the haptic and visual stimuli and reaches a stable 
state after 800s training time. The weight distribution is shown in Fig. 4. The stimuli 
are represented by Poissonian spike trains whose firing rate is drawn from a Gaussian 
distribution. The centre of the stimulus corresponds to the finger position within the 
touch area. 

Learning t=0s t=100s t=400s t=800s
A. Weight distribution of STDP synapse from intermediate layer neurons to y’-Neuron 29.

Learning t=0s t=100s t=400s t=800s
B. Weight distribution of STDP synapse from intermediate layer neurons to y’-Neuron 40.  

Fig. 4. Change of weight distribution during STDP learning. During the learning process, the 
weight distribution is recorded each 100s time interval. The distributions at moment 0, 100, 
400, and 800s are shown in row A for y’-neuron 29 and row B for y’-neuron 40. Colour yellow 
indicates maximal weights. 

In our experiments, 40 neurons are employed to encode θ and Φ layers respec-
tively. 1600 neurons are applied to the 2D intermediate layer and training layer re-
spectively. 80 neurons are applied to x’ and y’ layers respectively. After training, (x’, 
y’) neurons can respond to both visual and haptic stimuli. When the visual pathway is 
blocked, (x’, y’) neurons respond only to haptic stimulus at the correct position, i.e. 
(θ, Φ) layers and the intermediate layer can perform a co-ordinate transformation 
from the bodycentred co-ordinate (θ, Φ) to co-ordinate (x’, y’). If two Poisson proce-
dure spike trains with bell-shaped distributions are fed into the (θ, Φ) layers respec-
tively, the responses of (x’, y’) neurons, representing the result of the co-ordinate 
transformation, are shown in Fig.5.  
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y’=0 

x’=0 

y’=40

y’=-40 

x’=40 

=0 x’=-40

T=8000ms

=360

=360

=0
T=8000ms 

T=8000ms

T=8000ms  

Fig. 5. Co-ordinate transformation from bodycentred co-ordinate (θ, Φ) to co-ordinate (x’, y’). 
One Poisson spike train stays at θ = 180° for 8000ms. Another  Poisson spike train stays for 
200ms in sequent positions at Φ=0°, 9°, 18° , …360°.  The changes of (θ, Φ) correspond to the 
finger moving along a circle with radius L.  The output x’ = L (Sin(θ) – Cos(Φ)), y’=L(Cos(θ) 
+ Sin(Φ)).  

5   Conclusion 

In the presented SNN model, the network is trained by the arm angles of the haptic 
stimuli position fed to the input layer, and a position signal, which is regarded as a 
supervising signal, fed to the output layer via the visual pathway. The strength of the 
synapses between the intermediate layer and output layer is trained under the STDP 
learning paradigm. A firing rate encoding scheme is applied in the network. The input 
stimulus is represented by Poissonian spike trains whose rates are drawn from a two-
dimensional Gaussian distribution at the input layer and a one-dimensional Gaussian 
distribution at the output layer. The conceived network is able to perform a 2D coor-
dinate transformation by learning the Cartesian coordinates (x, y) from the angular 
positions of the haptic stimulus. The network is more robust and provides better noise 
immunity than classical neural networks as even if some of the neurons do not work, 
the network can still perform the transformation function.  The model can provide a 
biologically plausible approach for designing artificial intelligent systems. 
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Abstract. This work presents a model of minimal time-continuous target-cell
specific use-dependent short-term synaptic plasticity (STP) observed in the pyra-
midal cells that can account for both short-term depression and facilitation. In
general it provides a concise and portable description that is useful for predicting
synaptic responses to more complex patterns of simulation, for studies relating
to circuit dynamics and for equating dynamic properties across different synap-
tic pathways between or within preparations. This model allows computation of
postsynaptic responses by either facilitation or depression in the synapse thus
exhibiting characteristics of dynamic synapses as that found during short-term
synaptic plasticity, for any arbitrary pre-synaptic spike train in the presence of
realistic background synaptic noise. Thus it allows us to see specific effect of the
spike train on a neuronal lattice both small-scale and large-scale, so as to reveal
the short-term plastic behavior in neurons.

1 Introduction

Among the various hallmarks in brain science, memory and learning are the most re-
searched because they transmute a brain into a mind. Learning & memory demands
the exploration of two levels of modeling computation in neural systems: level of in-
dividual synapses & spiking neurons, and the network level i.e., overlap of neurons in
ensembles and the dynamics of synaptic connections. The signalling between neurons is
central to the functioning of the brain, but we still do not understand how the code used
in signalling depends on the properties of synaptic transmission [1]. Generally neurons
communicate with each other primarily through fast chemical synapses. Such synapses
have action potential (AP) generated near the cell body that propagates down the axon
where it opens voltage-gated Ca2+ channels. The entering Ca2+ ions trigger the rapid
release of vesicles containing neurotransmitter, which is ultimately detected by recep-
tors on the postsynaptic cell [2]. Short-term synaptic plasticity refers to this change in
the synaptic efficacy on a timescale that is inverse to the mean firing rate and thus of
the order of milliseconds (ms) [3]. The experimental observation that forms the basis of
the short-term plasticity [2] lies in the fact that the transmission of an action potential
across a synapse has influence on the postsynaptic potential (PSP) induced by the sub-
sequent spikes [3]. One of the vital features of short-term plasticity is the dependence
of the steady-state amplitude on stimulation frequency (Table 1). Also the amplitude of
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Table 1. Popular types of short-term plastic behavior

Type Onset Decay
Fast Facilitation 1-5 spikes 10-100 ms
Fast Depression 1-10 spikes 100 ms - 1 s
Slow Depression > 10 spikes > 1 s
Augmentation 1-10 spikes 1-5 s
Post-tetanic Potentiation (PTP) > 10 spikes > 5 s

the postsynaptic response is proportional to the probability that a synapse transmits a
given presynaptic spike. Refs. [4, 5, 6] have shown that the synaptic transmission prob-
ability for a presynaptic spike train of frequency r is approximately proportional to 1

r
for r > 10− 20 Hz.

Typically, the synapses of most artificial neural networks are static, in the sense that
the single value characterizing it remains fixed except on short timescales. The model
implemented here adds to our understanding of how neural circuits process complex
temporal patterns. It is the balance between the facilitation & depression of the synaptic
strength in short time scales, that determine the temporal dynamics and the basis for
each computation in the synapse.

2 Computational Model

To acquire the coarse grained character of the neuronal dynamics, we compute the post-
synaptic current (PSC) using a detailed compartmental model of a hippocampal neuron
(based on the data from ModelDB [7]) depicting the phenomenological model of pyra-
midal neocortical neurons [1]. The NEURON model (basic network structure depicted
in Fig. 1) formalism used in this work broadly describes the data on short-term plastic-
ity [4, 1, 5, 6, 2] and, at the same time, is compact enough to be incorporated easily into
network models. STP, in particular depression & facilitation strongly influence neuronal
activity in cerebral cortical circuits. Facilitation & depression mechanisms in a synapse
are quite interconnected as stronger facilitation will lead to higher utilization of synap-
tic efficacy which subsequently leads to stronger depression. When receiving high fre-
quency input, as during a presynaptic burst, a depressing synapse will only transmit the
onset of the signal efficiently. Synapses which are facilitating, on the other hand, will
transmit the signal with increasing strength, until a maximum is reached some 30-300
ms after burst onset.

Synaptic short-term plasticity is shown through the proper quantification of features
of the action potential activity of the presynaptic neurons and populations transmitted
in pyramidal cells and interneurons [1, 5, 6, 4, 2]. Refs. [1, 5] & [6] have also shown the
derivation of mean-field dynamics of neocortical networks to understand the dynamic
behavior of large neuronal populations. This work facilitates description of neuronal
dynamics by calculating the postsynaptic current (PSC) generated by a neuronal lattice
with a particular firing rate in response to both deterministic & Poisson spike trains.
It is important to note that the coupling strength between two neurons depend on: no.
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Fig. 1. The neural network in NEURON

of release sites (n), probability of release of a vesicle following a presynaptic action
potential (AP) (p) & some measure of postsynaptic response to a single vesicle (q).

We start with a simple implementation to display STP behavior of a dynamic synapse
by producing three sub-models with the synapses implemented with conduction changes
rather than current sources [5] because real synapses are associated with conductance
changes. The models concentrate on:

1. Layer V pyramidal neuron interaction to show the effect of depression
2. Layer V pyramidal neuron to an inhibitory interneuron interaction to show the ef-

fects of facilitation
3. Layer V pyramidal neuron to an inhibitory interneuron interaction with different

model dynamics to show the effect of facilitation & early depression

It is vital to be aware of the fact that it is experimentally quite difficult to isolate the
response of a single synapse, and the data have become available just very recently [8].
The results are quite startling. Those single synapses (synaptic release sites) in the Cen-
tral Nervous System (CNS) exhibit a binary response to each spike from the presynaptic
neuron - either the synapse releases a single neurotransmitter filled vesicle or it doesn’t
respond at all. In the case when a vesicle is released, its content enters the synaptic cleft
and opens ion channels in the postsynaptic membrane, thereby creating an electrical
pulse in the postsynaptic neuron. To capture this realism, the model incorporates both
deterministic & probabilistic model for the dynamic synapses.

2.1 Model Mechanism

Deterministic Dynamic Synapse Model: The deterministic dynamic synapse model
is based on the idea of finite amount of resources available for transmission. Each presy-
naptic spike, at time tsp activates a fraction of resources (USE , utilization or synaptic
efficacy). This then inactivates within few milliseconds (time constant of τin ) and re-
covers about 1 second later (time constant of τrec ). The important biochemical reac-
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tions, including second-messenger systems, synaptic release, and enzymatic cascades
are partly described by the following kinetic equations:

dx

dt
=

z

τrec
− USEx(tsp − 0)δ(t− tsp)

dy

dt
= − y

τin
+ USEx(tsp − 0)δ(t− tsp)

dz

dt
=

y

τin
− z

τrec
, (1)

where x, y & z are the fractions of resources that are recovered, active and the inactive
respectively. The PSC (Is(t)) is proportional to the fraction of resources in the active
state (ASEy(t)). The parameter ASE is the absolute synaptic strength, which is de-
termined by activating all the resources. USE determines the dynamics of the synaptic
response [5]. The fraction of synaptic resources available for transmission is determined
by the following differential equation,

dR

dt
=

(1 −R)
τrec

− USE .R.δ(t− tsp). (2)

The amplitude of the postsynaptic response at time tsp is a dynamic variable given by
the product PSR (Postsynaptic Response) =ASE ∗R(tsp).

The chemical kinetics represented by (1) doesn’t include facilitating mechanism
which is only evident in synapses between the pyramidal neurons and inhibitory in-
terneurons. Short-term facilitation is through the introduction of a facilitation factor. It
increases by the advent of each spike and in the same time decays in between the spikes.
Hence for this change, we need to assume that USE is not fixed but rather increased by
a certain amount due to each presynaptic spike. This running value of USEis referred to
as U1

SE . Generally, an increase in USE would mean an accumulation of calcium ions
caused by spikes arriving in the presynaptic zone. If we take an example of a simple
kinetic scheme, in which an AP causes a fraction of USE calcium channel to open, that
later closes with a time constant of τfacil, the fraction of opened calcium channel is
then determined by the current value of U1

SE . The final kinetic equation then becomes

dU1
SE

dt
= − U1

SE

τfacil
+ USE(1− U1

SE)δ(t− tsp). (3)

USE determines the increase in the value of U1
SE due to each spike and coincides with

the value of U1
SE reached upon the arrival of the first spike [5]. The iterative expression

for the value of U1
SE reached upon the arrival of the nth spike, which determines the

response according to (1) is:
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U
1(n+1)
Se = U

1(n)
SE (1− USE) exp(−δt/τfacil) + USE

EPSCn+1 = EPSCn(1 − USE)e−δt/τrec

+ASE .USE(1− e−δt/τrec), (4)

where δt is the time interval between nth and (n + 1)thspikes. If the presynaptic neu-
ron releases a regular spike train (as that shown in the first stage of the simulation) at
frequency r, then USE reaches a steady state value, as shown in (5). Hence in this ki-
netics, U1

SE becomes a frequency-dependent variable, and USE is treated as the kinetic
parameter characterizing the activity-dependant transmission of this particular synapse.
It is evident that USE is responsible for determining the contribution of facilitation in
generating subsequent synaptic responses. Smaller values of USE display facilitation
but this is not observed for higher values of USE .

USE

1− (1− USE) exp(−1/rτfacil)
. (5)

We know that there are an infinite number of ways by which a neuronal population
can fire relative to each other. These are usually Poisson processes. The equations for
regular spike activities can be adjusted for Poisson processes as under:

d 〈x〉
dt

=
1− 〈x〉
τrec

−
〈
U1

SE

〉
〈x〉 r(t)

d
〈
U−

SE

〉
dt

= −
〈
U−

SE

〉
τfacil

+ USE(1 −
〈
U−

SE

〉
)r(t)〈

U1
SE

〉
=
〈
U−

SE

〉
(1− USE) + USE. (6)

Here, r(t) denotes the Poisson rate of the spike train for the neuron at time t.
〈
U−

SE

〉
is the average value of U1

SE just before the spike. Depressing synapses are described
by (6) with fixed value of U1

SE . To make the model simpler it is assumed that the
inactivation time constant τin is faster than the recovery time τrec . This assumption is
made to adjust the biological data found in pyramidal interneuron synapses. To find the
postsynaptic current, we simply use:

d 〈y〉
dt

= −〈y〉
τin

+
〈
U1

SE

〉
〈x〉 r(t). (7)

To account for the timescales that are slower than τin, (7) can be reduced to

y = rτinU
1
SE 〈x〉 . (8)

Probabilistic Dynamic Synapse Model: The probabilistic model (accounts for the
inter-trial fluctuations) is based on the deterministic model — the probability of a vesi-
cle at release site, Pv is similar to the fraction of resources available,R in the determin-
istic model.The probability of release of docked vesicle in the former is also analogous
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to the fraction of available resources in the latter. The kinetics of the probabilistic model
is represented by

dPv

dt
=

(1 − Pv)
τrec

− USE .Pv.δ(t− tsp)

Pr(tsp) = USE .Pv. (9)

Pr(tsp) represented the probability of release for every release site [9].

Mean-Field Network Dynamics: Though this study facilitates computation of the
postsynaptic responses of facilitating and depressing synapses for any arbitrary presy-
naptic spike train, it becomes challenging when the need of mean-field equations for de-
scribing the neocortical dynamics of large networks arises. The firing rates of a closed
population of neurons with two sub-populations of cortical pyramidal excitatory & in-
hibitory interneurons, where each of the population can be considered as a cortical col-
umn having neurons with similar receptive field (RF) properties [5] can be formulated
using (10) & (11).

τe
dEr

dt
= −Er + g(

∑
r′
Jee

rr′yee
r′−Jei

rr′yei
rr′ + Ie

r ), (10)

τi
dIr
dt

= −Ir + g(
∑
r′
J ie

rr′yie
r′ − J ii

rr′yii
rr′ + Ii

r), (11)

Er(Ir) is the firing rate of the excitatory or the inhibitory sub-population located at r,
g(x) is the response function which is assumed to be monotonously increasing,
Jee

rr′ is the absolute strength of the synaptic connection between excitatory neurons
located at r and r′ times the average number of such connections per postsynaptic
neuron, and
Ie
r (Ii

r) is the external input to the excitatory (inhibitory) population.

2.2 Model Dynamics and Implementation

The NEURON implementation is based on the synchrony generation model [5, 6]. The
basic scheme is:
1) x→ y (Instantaneous, spike triggered) & the increment here is u ∗ x. Here, x is the
fraction of “synaptic resources” that has “recovered” (fraction of transmitter pool that
is ready for release, or fraction of postsynaptic channels that are ready to be opened,
or some joint function of these two factors) & y is the fraction of “synaptic resources”
that are in the “active state”. This is proportional to the number of channels that are
open, or the fraction of maximum synaptic current that is being delivered.

2) y
τ1→ z, z is the fraction of “synaptic resources” that are in the “inactive state”.
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Fig. 2. Relationship of resource pool to that of the spike amplitude

3) z
τrec→ x, where x+ y+ z = 1. The synapses represent a conductance change. Active

state y is multiplied by a synaptic weight to compute the actual synaptic conductance
(or current, in the original form of the model). Additionally, facilitation term u that gov-
erns fraction of x, is converted to y on each synaptic activation. It should be noted that
u is incremented before x is converted to y. If u is incremented after x is converted to
y then the first synaptic activation after a long interval of silence will produce smaller
and smaller postsynaptic effect as the length of the silent interval increases, eventually
becoming vanishingly small.

4) → u (Instantaneous, spike triggered). This happens before x is converted to y. In-
crement is U ∗ (1 − u) where U and u both lie in the range 0 - 1.

5) u
τfacil→ (Decay of facilitation).

This implementation for NEURON offers the user a parameter u0 that has a default
value of 0 but can be used to specify a nonzero initial value for u. When τfacil = 0,
u is supposed to equal U . Note that the synaptic conductance in this mechanism has
the same kinetics as y i.e., decays with time constant τ1. This mechanism can receive
multiple streams of synaptic input and each stream keeps track of its own weight and
activation history.

3 Result

This model illustrates a viable means to account for the dynamic changes in the post-
synaptic response resulting from the timing of pre-synaptic inputs under a constrained
synaptic transmission i.e., an amount of neurotransmitter is used each time the pre-
synaptic cell is stimulated, it then recovers with a particular rate & probability, binding
the amount of neurotransmitter to post-synaptic receptor, resulting in a PSR.
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Fig. 3. Different values of USE for the deterministic model

Fig. 4. Post-synaptic response is proportional to available resources

The amplitude of the spike is dictated by the amount of resources available. After
a spike has occurred, the resources follow the same recovery equation, increasing the
pool available for the next spike as shown in Fig.2. USE is analogous to the probability
of release in the quantal model of synaptic transmission. A comparison of this is made
in Fig.3. The PSR on the other hand, is directly proportional to the amount of available
resources (Fig.4).

The probabilistic model on the other hand, accounts for the trial-to-trial fluctuations
in observed synaptic responses. Each release site has at most one vesicle available for
release with a release probability of USE . A comparison of the probabilistic value to
that of the deterministic one can be noted in Fig. 5 for different number of vesicles.
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Fig. 5. Comparison of deterministic & probabilistic model. A0 is the no. of vesicles

4 Discussion

This theoretical study looks into a simplistic view of single responses from neocor-
tical synapses & their usage in encoding temporal information about the presynaptic
spikes.Typically information is potentially represented by a combination of two mech-
anisms. Rate coding allows the information to be conveyed by the average firing rate
of pre-synaptic input. The problem with this type of coding is that it is possible for
completely different distributions of spikes to result in the same mean firing rate. On
the other hand, in temporal coding the information is conveyed by the timing of the pre-
synaptic input. The PSR is influenced by the interspike interval (ISI). In all these effort,
it is seen that the secondary dynamics of the network is quite rightfully portrayed by
short-term plasticity. This work also captures the short-term activity-dependent changes
in the amplitudes of the PSR that characterize different types of synaptic connections.
Probabilistic models (classical quantal) were used for studying the behavior of single
synapses whereas, the deterministic ones were generally used during the study of big
neuron population. In fact, in the big networks having probabilistic transmission does
not qualitatively change the behavior of the network.Variability of quantal response am-
plitudes of single CNS synapse is taken into consideration and hence we assume that
the PSR to the release of each vesicle (q) is not a constant value but has a Gaussian
distribution with mean μ and variance σ2.

The model captures the fact that the common induction protocol with repeated pair-
ings of pre- and post- synaptic spikes in a specific temporal relation does not change the
scaling factors i.e., the weights or the synaptic efficacy of the amplitudes of the Excita-
tory Post Synaptic Current (EPSP), but rather the synaptic release probabilitiesU for the
first spike in the spike train. An increase of this parameterU will increase the amplitude
of the EPSP for the first spike but it tends to decrease the amplitudes of the following
EPSPs. The typical manifestation of this short-term, adaptation mechanism is the rapid
decrease in the successive values of EPSPs induced by a fast, regular pre-synaptic train,
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until a stationary value of the EPSP is reached. After no pre-synaptic spikes occur for
about 1 second, the full, maximum EPSP is ‘recovered’. The functional significance of
this study remains to be clarified in future. The temporal coding capability of dynamic
synapse in the model supports evidences of temporal code for information processing
in the neocortex. The model draws attention towards the quantification of features in
AP activity of the presynaptic neurons and in the same time allows us to instigate fur-
ther analysis by deriving novel mean-field equations for understanding the dynamics of
large neocortical networks.
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Abstract. To realize mutual association function, we propose a
hippoca- mpus-neocortex model with multi-layered chaotic neural net-
work (MCNN). The model is based on Ito et al.’s hippocampus-cortex
model (2000), which is able to recall temporal patterns, and form long-
term memory. The MCNN consists of plural chaotic neural networks
(CNNs), whose each CNN layer is a classical association model pro-
posed by Aihara. MCNN realizes mutual association using incremental
and relational learning between layers, and it is introduced into CA3
of hippocampus. This chaotic hippocampus-neocortex model intends to
retrieve relative multiple time series patterns which are stored (experi-
enced) before when one common pattern is represented. Computer sim-
ulations verified the efficiency of proposed model.

1 Introduction

The experimental studies on physiological and anatomical suggest that memory
functions of brain are executed in neocortex and hippocampus [1,2,3,4]. Although
the mechanism of learning and memory is not understood completely, the process
of memorization can be considered roughly as: sensory receptor→ sensory mem-
ory (in primary cortex) → short-term memory (in neocortex) → intermediate-
term memory (in a dialogue between the hippocampus and the neocortex) →
long-term memory (in neocortex) [1,3,4,7]. Based on the knowledge of facts in
nature, Ito et al. proposed a hippocampus-neocortex model for episodic memory
[5,6], and a hippocampus-cortex model for long-term memory [7]. Meanwhile,
as chaotic phenomena are observed in neurons activity, there have been many
chaotic neural networks were proposed for decades [8,9,10,11,12,13,14,15,16]. For
chaotic memory systems, especially, there also exit chaotic neural networks
(CNN) given by Aihara and his fellows [10,11], transient-associative network
(TCAN) given by Lee [14], advaced Aihara’s models and their applications
[12,13,16], and so on. These models provide auto-associative function, recall in-
put patterns as short-term memory.

Though all facts of neocortex, hippocampus and the communication between
them are understood poorly, recent researches show the important role of hip-
pocampus in the formation of long-term memory in neocortex [3,4]. Here, we
assume there is a chaotic circuit in CA3 of hippocampus, and improve Ito et

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 439–448, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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al.’s model [7] using a multi-layered chaotic neural network (MCNN)[16]. The
new chaotic model provides one-to-many retrieval of time-series patterns by its
incremental and relational learning between chaotic neural network (CNN) lay-
ers. So it is able to realize mutual association which exists in the humans brain
but the mechanism is not understood yet.

2 Model

2.1 Model of Ito et al. [7]

The original hippocampus-cortex model of Ito et al. is presented by Fig. 1 [7].
The signal flow of the system is: input patterns (Input layer)→ sensory memory
(Cortex 1) → short-term memory (Cortex 2) and intermediate-term memory
(DG) → Hebbian learning (CA3) → decoding (CA1) → long-term memory
(Cortex 2). The long-term memory are stored in Cortex 2 at last, and as output
of system,the stored temporal patterns are recalled when one of the patterns is
represent as input. We repeated computer simulation of this model and obtained
the same results as Ref. [7]. When we presented an input pattern which was
stored in two different time-series patterns, however, the system failed to retrieve
two temporal patterns correctly. The reason could be considered that energy of
internal state function dropped at a convergence point corresponding to the
input pattern.

Input

Cortex 1

Cortex 2

DG

CA3

CA1

Association  Cortex Hippocampus

Fig. 1. Structure of hippocampus-
cortex model proposed by Ito et al.

(2000)

Input

Cortex 1

Cortex 2

DG

    CA3
(MCNN)

CA1

Assotiation  Cortex Hippocampus

Fig. 2. Structure of a chaotic model
of hippocampus-neocortex proposed
here

Meanwhile, there are many other remarkable approaches of theoretical stud-
ies for associative memory [10,11,14]. Classical chaotic neural models are able
to retrieve stored time-series patterns by external stimulus. However, the re-
trieval is a dynamical short-term memory. Considering the ability of exchanging
short-term memory into long-term memory function of hippocampus [1,2,3,4],
here we introduce a multi-layered chaotic neural network (MCNN) [16] into
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Wij
12

Wij
21

CNN 1 Layer

CNN 2  Layer

CNN 2
  L

ay
er

C
N

N
 1  Layer

Output  Layer  

(a) (b)

Fig. 3. Proposal structure of CA3 layer model: (a) Multi-layered chaotic neural network
(MCNN); (b) Connections between MCNN layers

conventional hippocampus-cortex model to realize mutual association of differ-
ent time-series patterns (one-to-many retrieval). The new chaotic hippocampus-
neocortex model is expected to form long-term memory in neocortex.

2.2 MCNN [16]

For real neurons active far more complicatedly than artificial neurons construc-
tured with simple threshold elements, chaotic neural models are proposed also
[10,11]. To realize mutual association function, for instance, the formation of con-
ditional reflex (Ivan Pavlov), we proposed to combine multiple classical CNN
layers as an associative model MCNN (Fig. 3). In MCNN , neurons on each
CNN layer and between the layers connect each other completely, and the dy-
namics is as follows:

xi(t+ 1) = f (yi(t+ 1) + zi(t+ 1) + γ · vi(t+ 1)) (1)
yi(t+ 1) = kryi(t)− αxi(t) + ai (2)

zi(t+ 1) = kfzi(t) +
n∑

j=1

wijxj(t) (3)

vi(t+ 1) = kevi(t) +
n∑

j=1

W ∗
ij

´x(t) (4)

where xi(t): output value of ith neuron at time t, n: number of input, wij : con-
nection weight from jth neuron to ith neuron, yi(t): internal state of ith neuron
as to factory, zi(t): internal state of ith neuron as to reciprocal action, vi(t):
internal state of ith neuron as to reciprocal action from another layer, α: thresh-
old of ith neuron, kf , kr, ke: damping rate, ai: item given by the summation
of threshold and external input, γ: the rate of effectiveness from another layer,
W ∗

ij : connection weight from jth neuron of another layer to ith neuron, x∗j (t):
output value of jth neuron of another layer at time t. The connection weight wij

is define as:
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wij =
1
m

m∑
p=1

(2xp
i − 1)(2xp

j − 1) (5)

where, xp
i : ith element of pth stored pattern(0 or 1), m: number of stored pat-

terns. The input-output function is as follows:

f(x) =
1− exp (−x/ε)
1 + exp (−x/ε) (6)

where, ε is a constant.
When a new pattern is input to MCNN , an additive storage is executed on

each CNN layer through ai (i = 1, ..., n). After states of the system store the
pattern, Hebb learning, Δwij , is executed as:

Δwij =
1
m
xixj (7)

here, m is a number of the stored patterns.
The connection weights,W 12

ij andW 21
ij relate patterns between what stored in

different layers of MCNN . Using relational Hebbian learning, a 2-layerMCNN ,
for example, stores the time-series patterns as:

ΔW 12
ij = β · x1

ix
2
j , ΔW

21
ij = β · x2

i x
1
j (8)

, where, β is the learning rate, x1
i is output value of ith neuron of CNN1, x2

i is
output value of ith neuron of CNN2.

2.3 Chaotic Model of Hippocampus-Neocortex

Hippocampus is considered availably an exchange organ between short-term
memory and long-term memory [3,4]. Long term potentiation (LTP ), phenom-
ena observed in CA3 layer of hippocampus especially, maybe give the key of
long-term memory formation. Here, we propose a chaotic model of hippocampus-
neocortex by introducing MCNN into CA3 of Ito et al. model (Fig. 2). Neurons
on each layer of MCNN accept signals from DG, then provide output of sparse
representation from its Output layer to CA1. The dynamics of this model will
be described in this section.

Association Cortex. The dynamics of association cortex (Left of Fig. 1) is
described as same as Ito et al. model [7] :

Ii(t) =
{

1 · · · excitatory
0 · · · inhibitory (9)

xcx1
i (t) = Ii(t) (10)

xcx2
i (t) = f

(∑N

j=0
wcx2·cx2

ij xcx2
j (t− 1)

+ wcx2·cx1xcx1
i (t) + wcx2·c1(t)xc1

i (t)− θcx
)

(11)
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here, Ii(t) : ith input number, xcx1
i (t): output of ith neuron in CX1, xcx2

i (t):
output of ith neuron in CX2, wcx2·cx2

ij : weight of connection from jth to ith
neuron in CX2 (variable), wcx2·cx1: weight of connection from CX1 to CX2
(fixed), wcx2·c1: weight of connection from CA1 to CX2 (fixed), xc1

i (t): output
of ith neuron in CA1 in hippocampus, θcx: threshold, N : number of neurons in
CX1 and CX2, f : step function.

The learning of connection weights in CX2 is according to Hebb rule:

Δwcx2·cx2
ij = αhc · xcx2

i (t)xcx2
j (t− 1) (12)

where αhc is a learning rate.

Hippocampus

– DG
Competition learning is executed in this layer. The input from association
cortex is exchanged into internal states (pattern-encoding).

k = argmax
i

N∑
j=0

wdg·cx2xcx2
j (t) (13)

xdg
i (t) =

{
random · · · initial
f
(∑N

j=0 w
dg·cx1
ij xcx1

j − θdg
)
· · · usual (14)

The learning rule of connection weight from CX2 to DG wdg·cx2
ij is,

Δwdg·cx2
ij = βhc · xdg

i (t)xcx2
j (t) (15)

. Here, βhc is a constant, αhc < βhc.
– CA3

Feedback connections exist in CA3, and they result association function like
Hopfield model. Ito et al. noticed in this respect, however just presented the
dynamics of CA3 by a step function only. We suppose chaotic memorization
phenomena exist in CA3, and apply MCNN which provides mutual asso-
ciation on CA3 layer. By learning of CA3 (self-feedback connections), the
intermediate patterns are formed.

k = argmax
i

n∑
j=0

wc3out·cnn1
ij (2xcnn1

j (t)− 1) (16)

or

k = argmax
i

n∑
j=0

wc3out·cnn2
ij (2xcnn2

j (t)− 1) (17)
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xc3out
i (t) =

{
1 · · · (i = k)
0 · · · (i �= k) (18)

where,
wc3out·cnn1

ij : weight of connection from jth neuron of CNN1 layer
to ith neuron of Output layer in CA3

wc3out·cnn2
ij : weight of connection from jth neuron of CNN2 layer

to ith neuron of Output layer in CA3
xcnn1

i (t) : output of ith neuron of CNN1 layer in CA3 (given by 1-4)
xcnn2

i (t) : output of ith neuron of CNN2 layer in CA3 (given by 1-4)
xc3out

i (t) : output of ith neuron of Output layer in CA3.

For time-series patterns are stored in MCNN alternatively, CNN1 layer
and CNN2 layer are excitative alternately, Eq. 16 and Eq. 17 are adopted
alternatively. This structure intends to result mutual association like suc-
cessful behavior of bidirectional associative memory model (BAM).
The rule of learning of self-feedback connection weights is

Δwc3·c3
ij = βhc · xc3

i (t)xc3
j (t− 1). (19)

Here, βhc is as same as DG, n is number of neurons in hippocampus.
– CA1

Internal states in hippocampus is decoded into output patterns. The input
from association cortex performs as a teacher signal.

xc1
i (t) = f

⎛⎝ n∑
j=0

wc1·c3
ij xc3

j (t) + wc1·c1xcx1
j (t)− θc1

⎞⎠ . (20)

From CA3 to CA1, connections wc1·c3
ij learn according to

Δwc1·c3
ij = βhc · xc1

i (t)xc3
j (t). (21)

3 Computer Simulation

3.1 One-to-Many Time-Series Patterns

We define One-to-many time-series patterns retrieval as : there is a same pat-
tern exists in different time-series patterns, and by representing the pattern to
associative memory model (proposed chaotic model of hippocampus-neocortex,
at here), all patterns in the different time-series are recalled as output of system.
Fig. 4 shows input patterns in two time-series, where the first pattern is common
Pattern A, are used in our computer simulation. Each time-series (T ime Series
A and T ime Series B) includes 4 orthogonal patterns. An input pattern is pre-
sented temporally to model, and with more than 1 interval, it is classified to be
from different time-series (Fig. 5).
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3.2 Simulation Process

The purpose and process of computer simulation of proposed model is described
as follow:

– Input time-series patterns whether and how to be processed in model: To
Cortex 1 layer, external stimulus is time-series patterns described in last
section. DG transforms sensory pattern into internal state in hippocampus.
CA3(MCNN) compresses the signals of DG, stores internal states in dy-
namical networks and outputs in simple forms. CA1 decodes the signals from
Output layer of MCNN(CA3).

Pattern

A

Pattern

B

Pattern

C

Pattern

D
Pattern

A

Pattern

E

Pattern

F

Pattern

G

Tim
e Serie

s A

Time Series B

1

2

3

4

6

7

8

5

TIME

Fig. 4. Time-series patterns for one-to-many retrieval

– Long-term memory whether and how to be formed in model: To repeat
to input a holding pattern, which is a common pattern exists in different
time-series, to form intermediate term memory in CA3 and Cortex 2, and
long-term memory becomes to be stored in Cortex 2 at last. The repetition
stimulation can be considered as long-term potentiation (LTP ) like-hood
phenomenon which is observed in brain.

– One-to-many time-series patterns retrieval result: After different time-series
patterns are presented, and a common pattern represented, whether pro-
posed chaotic model retrieves all patterns or not.

3.3 Parameters

Parameters of proposed model in simulation is given as follow:
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N = 50 : number of neurons in association cortex
n = 30 : number of neurons in hippocampus

wcx2·cx1
ij = 1.0 : weight of connection from Cortex 1 to Cortex 2
wcx2·c1

ij = 1.0 : weight of connection from hippocampus to Cortex 2
αhc = 0.0015 : learning rate in association cortex
βhc = 1.0 : learning rate in hippocampus
θc3 = 0.5 : threshold of neuron in CA3 layer
θc1 = 0.5 : threshold of neuron in CA1 layer
S = 0.07 : maximum correlation between random patterns
θdg = 5.5 : threshold of neuron in DG
ε = 0.15 : slope of sigmoid function
γ = 0.3 : influential rate from other CNN layer in CA3

3.4 Result and Analysis

Fig. 5 shows memory storage processes and retrieval results of proposed model in
computer simulation.There were three kinds of patterns retrieved in 86 iterations
when orthogonal patterns were presented as order as Fig. 4 showed. The rate of
different result is as:

– result in case 1 (Fig. 5): T ime Series A stored as a long-term memory
and retrieved when common patern presented. The process of encoding and
decoding was also shown in the Fig. 5.

– result in case 2 (Omitted): T ime Series B stored as a long-term memory
and retrieved when common pattern presented.

– result in case 3 : (B(Omitted): T ime Series patterns stored confusedly,
and failed to retrieval correct time-series pattern when common pattern pre-
sented. The reason of confusion can be observed on TIME A stage in CA3
(Output layer of MCNN), where same situation occured for different time-
series patterns signals from DG.

The ratio of these different kinds of retrieval is shown in Tab. 1. We also repeated
computer simulation of Ito et al. model using the same time-series patterns (Tab.
1). T ime Series B could not be stored as long-term memory for confusion with
T ime Series A which was input before.

Table 1. Simulation result: retrieval rate for one-to-many time-series patterns

Kind of retrieval case 1 (T imeSeriesA) case 2 (T imeSeriesB) case 3 (Failed)
Convetional Model 0.0 0.0 100.0
Proposed Model 60.0 6.0 34.0

unit : (B[%]
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Fig. 5. Simulation result in case 1 (T ime Series A is retrieved)
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4 Conclusion

A chaotic hippocampus-neocortex model is proposed. By combining conventional
chaotic neural networks, a multi-layered chaotic neural network (MCNN) is in-
troduced into a conventional hippocampus-cortex. The proposed model is able to
not only convert short-term memory to long-term memory, but also realiz mutual
memorization and association for one-to-many time-series patterns. Computer
simulation verified the efficiency of proposed model.
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(No.15700161).
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Abstract. In most neural network models, neurons are viewed as the only com-
putational units, while the synapses are treated as passive scalar parameters 
(weights). It has, however, long been recognized that biological synapses can 
exhibit rich temporal dynamics. These dynamics may have important conse-
quences for computing and learning in biological neural systems. This paper 
proposes a novel stochastic model of single neuron with synaptic dynamics, 
which is characterized by several stochastic differential equations. From this 
model, we obtain the evolution equation of their density function. Furthermore, 
we give an approach to cut the evolution equation of the high dimensional func-
tion down to the evolution equation of one dimension function. 

1   Introduction 

In most neural network models, synapses are treated as static weights that change 
only with the slow time scales of learning. It is well known, however, that synapses 
are highly dynamic and show use-dependent plasticity over a wide range of time 
scales [1]. Moreover, synaptic transmission is an inherently stochastic process: a spike 
arriving at a pre-synaptic terminal triggers the release of a vesicle of neurotransmitter 
from a release site with a probability that can be much less than one. The diverse 
types of synaptic plasticity and the range of timescales over which they operate sug-
gest that synapses have a more active role in information processing. Long-term 
changes in the transmission properties of synapses provide a physiological substrate 
for learning and memory, whereas short-term changes support a variety of computa-
tions [2]. In this paper, we present a novel stochastic model to descript the single 
neuron model which considers the synaptic dynamics. This stochastic dynamics 
model is characterized by several stochastic differential equations, from which we get 
the evolution equation of density function. Moreover, we reduce the density function 
of high dimension to one dimension.  
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2   Models and Methods 

2.1   The Integrate-and-Fire Model Neurons and Synaptic Dynamics 

The integrate-and-fire (IF) model was introduced long ago by Lapicque (1907). Due 
to its simplicity, it has become one of the canonical spiking renewal models, since it 
represents one of the few neuronal models for which analytical calculations can be 
performed. It describes basic sub-threshold electrical properties of the neuron. It is 
completely characterized by its membrane potential below threshold. Details of the 
generation of an action potential above the threshold are ignored. Synaptic and exter-
nal inputs are summed until it reaches a threshold where a spike is emitted. The gen-
eral form of the dynamics of the membrane potential v(t) in IF models can be written 
as 

1

( )
( ) ( ) ( )

N

k e n
kv

dv v t
S t I t I t

dt τ =

= − + + + ;   0 1v≤ ≤ , (1) 

where vτ is the membrane time constant, Sk is the synaptic current, N is the number of 

synaptic connections , Ie is an external current directly injected in the neuron, In is the 
fluctuating current aroused by noise and  assume it is a Gaussian random process 

( ) ( )n v vI t tσ ξ= , (2) 

where ( )v tξ  is a Gaussian random variable satisfying ( ) 0v tξ< >=  and 

( ) ( ) ( )v vt t t tξ ξ δ′ ′< >= − , and vσ characterizes the amplitude of the noise.  The trans-

membrane potential, v, has been normalized so that v = 0 marks the rest state, and v = 
1 the threshold for firing. When the latter is achieved v is reset to zero.  

The postsynaptic currents have a finite width that can be of the same order of mag-
nitude or even larger than the membrane time constant. An accurate representation of 
synaptic inputs consists of an instantaneous jump followed by an exponential decay 
with a time constant sτ . The realistic models of the synaptic current can be described 

by the following equation: 

( )
( ) ( )k k

k sp

s

dS S t
J t t t

dt
δ

τ
= − + − , (3) 

where ( )kJ t  is the efficacy of synapse k in mV (amplitude of the postsynaptic poten-

tial), tsp is occurring time of the firing of a pre-synaptic neuron, the sum over i corre-
sponds to a sum over pre-synaptic spikes of each synapse. In reality, ( )kJ t act in ac-

cordance with complex dynamics rule. In recent in vitro studies it was found that the 
short-term synaptic dynamics in the neocortex are specific to the types of neurons 
involved. For example, pyramidal-to-pyramidal connections typically consist of de-
pressing synapses, whereas pyramidal-to-interneuron connections typically bear fa-
cilitating synapses [3], [4], [5]. We use the phenomenological model by Markram et 
al. [4] to simulate short-term synaptic plasticity: 

(1 ( ))
( ) ( ) ( )k k

k k sp
r

dD D t
F t D t t t

dt
δ

τ
−= − − , (4) 
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and 

( ( ))
(1 ( )) ( )k k

k sp
f

dF U F t
U F t t t

dt
δ

τ
−= + − − , (5) 

where Dk is a ‘depression’ variable, [0,1]kD ∈ , Fk is a ‘facilitation’ variable, [0,1]kF ∈ , 

U is a constant determining the step increase in Fk, rτ is the recovery time constant, 

and fτ is the relaxation time constant of facilitation. The product DkFk is the fractional 

amount of neurotransmitter available at time t. Each firing of a presynaptic neuron, 
occurring at time tsp, decreases the ‘depression’ variable Fk by DkFk, and increases the 
‘facilitation’ variable w by U(1 – Fk). The amplitude of the postsynaptic response 
(PSR) ( )kJ t  at time tsp is therefore a dynamic variable given by the product  

( ) ( ) ( )k k kJ t AF t D t= , (6) 

where A is a constant representing the absolute synaptic efficacy corresponding to the 
maximal PSR obtained if all the synaptic resources are released at once. 

2.2   Diffusion Approximation  

Neurons usually have synaptic connections from tens of thousands of other neurons. 
Thus, even when neurons fire at low rates, a neuron receives a large amount of spikes 
in an interval corresponding to its integration time constant. If we assume these inputs 
are Poissonian and uncorrelated and the amplitude of the depolarization due to each 
input is small, we can use the diffusion approximation [6]. The equations (3), (4) and 
(5) can be approximated by  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k

k

k k
S k k k k k k

s

S k k k k k

dS S t
t S t J t J t t

dt

t J t J t t

η λ λ ξ
τ

η λ λ ξ

= − + = − + +

= +
, (7) 

and  

(1 ( )) (1 ( ))
( ) [ ( ) ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( )

dk k k
k k k k k k k k

r r

d
k k k k k k k k

dD D t D t
t F t D t F t D t t

dt

t F t D t F t D t t

η λ λ ξ
τ τ

η λ λ ξ

− −≈ − = − +

= +
, (8) 

and  

( ( )) ( ( ))
( ) (1 ( )) (1 ( )) ( )

( ) (1 ( )) (1 ( )) ( )

fk k k
k k k k k k

f f

f
k k k k k k

dF U F t U F t
t U F t U F t t

dt

t U F t U F t t

η λ λ ξ
τ τ

η λ λ ξ

− −≈ + = + − + −

= − + −
, (9) 

where kλ is the mean intensity of the kth synaptic input, ( )k tξ  is a gaussian random 

variable satisfying ( ) 0k tξ< >=  and ( ) ( ) ( )k k kkt t t tξ ξ δ δ′ ′′ ′< >= − . We can prove ( )s
k tη , 

( )d
k tη and ( )f

k tη  share identical first and second order statistics with Is, Dk, and Fk. Dk is 

taken as an example. Considering a small time interval t , since tsp obey Poissonian 
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distribution, ( ) ( ) ( )
t t

k k spt
F t D t t t dtδ

+
′ ′ ′ ′−  equal to ( ) ( )k kF t D t  with probability kt , and 

equal to zero with probability (1 )kt , then we have 

0 0

( ) ( ) ( ) ( )
lim ( ) ( ) lim

t t t t d
k k sp kt t

k k kt t

F t D t t t dt t dt
F t D t

t t

+ +
< > < >

= = ,
 

(10) 

and  
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0
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(11) 

From equation (1), (2), (7), (8) and (9), we can write out their Ito stochastic differen-
tial equations: 

0
1

1

1
( ( ) ( ) ( )) ( ) ( )

1
( ) ( ) ( )

N

e k v v v v
kv

N

v e k
kv

dv v t I t S t dt t dt K dt dW t
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σ ξ σ
τ

τ

=

=

= − + + + = +
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, (12) 

and 
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( ) ( )
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k k k k k k k k S S k
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, (13) 

and 
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and 
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. (15) 

The Fokker-Planck equation of equations (12)~(15) is given by[7] 
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where ( , , , )vρ S D F is the joint distribution density function, 1 2( , ,..., )NS S S=S , 

1 2( , ,..., )ND D D=D , 1 2( , ,..., )NF F F=F .  

2.3   Reduce to One Dimension 

The dimension of joint distribution density ( , , , )vρ S D F  is huge, and is discommodi-
ousness for us to analyze its performance. Sometimes, we are more interesting the 
density evolution of membrane potential v, so, in what following, we discuss how to 
get the density evolution equation of membrane potential v. 

Due to  

2 1( , , , ) ( , , | ) ( )v v vρ ρ ρ=S D F S D F , (17) 

and  

2 ( , , | ) 1v d d dρ =S D F S D F , (18) 

substituting (17) into (16) yields: 
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. (19) 

Integrating with , ,S D F in (19) two side and using equation (18) we can get  

2 2
1

1 12
( ) ( )

2
v

vP
t v v

ρ σρ ρ∂ ∂ ∂= − +
∂ ∂ ∂

, (20) 

where 

2v vP K d d dρ= S D F . (21) 

Because ( ) ( 1,..., )k t k Nξ = are uncorrelated, then we have 

2 3
1

( , , | ) ( , , | )
N

k
k k k

k

v S D F vρ ρ
=

= ∏S D F . (22) 

Moreover, we can assume 

3 4( , , | ) ( , , )k k
k k k k k kS D F v S D Fρ ρ≈ . (23) 
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From (13), (14) and (15), we can get the Fokker-Planck equation of 4 ( , , )k
k k kS D Fρ , 
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Since  
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substituting (25) into (24) yields: 
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Integrating with kS in (26) two side and using normalization condition we can get  
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Because of s d  and s f , we can assume [8] 
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(28) 

Then from (26), (27) and (28), and omitting the small terms of high order, we obtain 
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If we adopt the adiabatic approximation [8], 6 0
k

t

ρ∂ =
∂

, we have 
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2k k
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S S
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K
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ρ σ ρ∂ ∂= − +
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. (30) 

From (12), (21), (22), (23) and (25), we have 
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If we have solved the value of vP from (27), (30) and (31), substituting it in (20), we 

can immediately get the probability density evolution equation of the membrane po-
tential v.  

3   Conclusion 

In this paper we have presented a novel model to descript the single neuron model 
using the stochastic differential equations. The model has considered the synaptic 
dynamics. We adopt the diffusion approximation and get the Ito stochastic differential 
equations from which we can obtain the Fokker-Planck equation to descript the evolu-
tion of joint distribution density function. However, the dimension of joint distribu-
tion density, ( , , , )vρ S D F , is huge and is discommodiousness for us to analyze it.   For 
obtaining the evolution equation of the density function of membrane potential v, we 
adopted the adiabatic approximation and other approaches to approximation. Tis 
model is useful for us to analyze the behavior of neural system, such as neural coding, 
oscillations and synchronization. 
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Abstract. Spiking Neural Networks (SNNs) use inter-spike time coding to pro-
cess input data. In this paper, a new learning algorithm for SNNs that uses the
inter-spike times within a spike train is introduced. The learning algorithm uti-
lizes the spatio-temporal pattern produced by the spike train input mapping unit
and adjusts synaptic weights during learning. The approach was applied to clas-
sification problems.

1 Introduction

Spiking Neural Networks (SNN) can be considered as the third generation of ANNs,
after multi-layer perceptron neural networks and neurons which employ activation func-
tions such as sigmoid functions [10]. The latter two types of neural networks use syn-
chronized analog or digital amplitude values as inputs. SNNs do not require a synchro-
nizing system clock (although they may use a local synchronizing signal) and utilize
input inter-spike time data to process information. An SNN is composed of spiking
neurons as processing units which are connected together with synapses. A spiking
neuron receives spikes at its inputs and fires an output spike at a time dependent on the
inter-spike times of the input spikes. Thus, SNNs use temporal information in coding
and processing input data. Synaptic spike inputs with only one spike per each input
synapse during a given time window are called spatio-temporal inputs. A synaptic input
which consists of a sequence of spikes with various inter-spike intervals (ISIs) during
a given time window is called a spike train. The ISI times within a spike train has a
much larger encoding space than the rate code used in traditional neural networks [11].
Accordingly, the processing efficiency of SNNs can be higher than traditional rate code
based ANNs for most applications.

Learning how to recognize the temporal information contained in spike trains is
the main goal of this research. The literature is scant regarding this area of research.
Some SNN learning models have been proposed in the past which make it possible to
process spike trains in close to real-time [8], [9], [12], [13]. However, these models used
recurrent networks and a large number of synapses which needed a relatively long time
to map and process input spike trains. In this paper, a new learning algorithm for spiking
neurons which use spike trains inputs is proposed. This learning algorithm utilizes the
input spike mapping scheme, described in [1],[2], and input synapses with dynamically
changeable weights.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 456–465, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Spiking Neural Network

The spiking neuron model employed in this paper is based on the Spike Response Model
(SRM) [6] with some modifications. Input spikes come at times {t1...tn} into the input
synapse(s) of a neuron. The neuron outputs a spike when the internal neuron membrane
potential xj(t) crosses the threshold potential ϑ from below at firing time tj = min{t :
xj(t) ≥ ϑ}. The threshold potential ϑ is assumed to be constant for the neuron.

The relationship between input spike times and the internal potential of neuron j
(or Post Synaptic Potential (PSP)) xj(t) can be described as follows:

xj(t) =
n∑

i=1

Wi.α(t− ti), α(t) =
t

τ
e1−

t
τ (1)

i represents the ith synapse,Wi is the ith synaptic weight variable which can change the
amplitude of the neuron potential xj(t), ti is the ith input spike arrival-time, α(t) is the
spike response function, and τ represents the membrane potential decay time constant.

In this paper, the α(t) function is approximated as a linear function for t << τ . It
then follows that the internal neuron potential Equation 1, can be re-written as:

xj(t) =
t

τ1

n∑
i=1

Wi.u(t− ti); t� τ1 (2)

u(t) is the Heaviside function and τ1 = e
τ .

3 Mapping-Learning Scheme for Spiking Neural Networks

A one-to-one correspondence between input spike trains and output spike firing times is
necessary for the learning algorithm proposed in this paper. By selecting an appropriate
set of synaptic weights for a neuron, a particular spike train or a set of spike trains which
belong to the same class can be distinguished by the output firing time of the neuron
because of the one-to-one correspondence between the input and output. The combined
mapping-learning organization is shown in Figure 1.

Learning is performed in two stages: (1) The mapping stage is composed of neural
mapping units (MUs) as shown in Figure 1. This stage was described in [1],[2] and it
is used for mapping the input spike train(s) into unique spatio-temporal output patterns.
The one-to-one relationship between the inputs and outputs of the mapping stage was
proved in Appendix A of [2]. (2) The learning stage consists of several learning units
(LUs) as shown in Figure 1. The learning stage receives the spatio-temporal output
pattern produced by the mapping stage. Each learning unit is composed of sub-learning
units as shown in Figure 2(A). Each sub-learning unit (e.g LUA1) takes inputs from one
mapping unit (MU) as shown in Figure 2(B). As shown in Figure 2(B), the outputs t1
and t2 from the mapping unit are input into the sub-learning unit ISI blocks. The ISI
block performs the same function as the ISI block used in the mapping units used in
[1],[2]; the learning unit ISI block input synaptic weights are assigned using Wi = β.ti
and Wi = β

ti
for the ISI1 and ISI2 blocks respectively. It should be noted that in a
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learning unit there are 2n ISI blocks where n is the number of input spike trains. A
one-to-one mapping between inputs and outputs is also necessary in the learning unit.
The tr reference time input shown in Figure 2(A) is used as a local reference signal
for the combined mapping-learning organization shown in Figure 1. The coincidence
generation (CG) neurons in a sub-learning unit perform the function of aligning their
output spike times. When all CG neurons in an LU fire simultaneously, the coincidence
detection (CD) neuron fires.

Past learning algorithms for spiking neural networks such as back-propagation
(SpikeProp) [4], self-organizing map (SOM) [15], and radial basis function (RBF) [14]
used synaptic weights and delays as well as multiple sub-synapses as the learning pa-
rameters. The learning algorithm proposed in this paper can perform learning in one
step and utilizes only synaptic weights for learning. Hence, the proposed algorithm is
simpler than past approaches and more practical to implement in hardware.

3.1 The Learning Algorithm

The spatio-temporal patterns generated by the ISI1 and ISI2 blocks in the mapping
stage, described in [1],[2], are used as inputs for the learning stage where a supervised
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learning method is used to classify input patterns. Clustering of input patterns which
belong to the same class is achieved by setting the synaptic weights for a learning unit
(LU) so that its output fires at approximately the same time for as many input spike
trains as possible that belong to the same class.

The supervised learning algorithm works as follows:

1. Choose an input pattern vector (say PA) at random from the set of Pl = (PA, PB ,
....) pattern vectors to be used for the learning phase. Each pattern Pl consists of
the spatio-temporal outputs generated by the mapping stage. The randomly chosen
pattern PA is used to assign weights to all the ISI blocks in a learning unit. This
learning unit will represent the class to which pattern PA belongs. Once the weights
have been assigned, they are temporarily fixed. The weights selected for the initial
input pattern works as a center vector which can later be modified slightly to ac-
commodate more than one input pattern; in this manner, similar input patterns can
then be clustered together and fewer learning units will be needed.

2. Another input pattern (say PB) belonging to the same class as pattern PA chosen in
step 1 above is selected. This new pattern is applied to the learning unit for PA and
the output of the ISI blocks times for PB {tout1, tout2, ..., tout2n} are compared
against the output times for PA{t∗out1, t

∗
out2, ....t

∗
out2n}. This new pattern (PB) is

assigned to the learning unit (e.g. learning unit for PA) with which each of the
output times differ by less than ε.

|t∗out1− tout1| ≤ ε , |t∗out2− tout2| ≤ ε , ..... and |t∗out2n− tout2n| ≤ ε (3)

ε is a small error value determined empirically. If the error is larger than ε for any
one of the error conditions in Equation 3 , a new learning unit is added as is done
in incremental learning.

3. Steps 1 and 2 are repeated for all the remaining input patterns in the learning set
Pl.

In this learning scheme, all input spike train samples used for learning must be known
a priori. However, the total number of learning units (clusters) which will be needed for
classification with clustering cannot be known a priori. It may be possible to cluster m
input patterns belonging to one class into a single learning unit (cluster) or as many as
m learning units may be needed.

This learning scheme is similar to the algorithm proposed in [14] but without the
need for synapse delays. This could help to make the model more practical for an IC
circuit design implementation. Furthermore, each synapse in the model is not composed
of multiple sub-synapses as proposed in [3], [14] and this leads to a reduction in com-
plexity.

The proposed learning algorithm produces locally optimal input clustering because
the input patterns for a given class are sequentially chosen at random; the consequence
of this is that a larger neural network than necessary may result.

3.2 Learning Unit Output Time Uniqueness

A one-to-one relationship between inputs and outputs for each of the learning units
must be achieved in order to guarantee that each learning unit outputs a spike at a time
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Fig. 3. Two Different Input Patterns Producing an Identical Output Time

which is different from the output times corresponding to other inputs. This one-to-
one relationship will be shown using one MU and one sub-learning unit. When a new
pattern (e.g. pattern PB with MU output times tB1 and tB2 ) is input into a sub-learning
unit within an LU which had its synaptic weights fixed during the learning of pattern
PA,the following will result: ({tAout1, t

A
out2} �= {tBout1, t

B
out2}, where tout is the output

firing time of an ISI block. This can be proved by contradiction:
Assume that PB produces the same tout1 or tout2 as PA. For the moment, tout1 and

tout2 will not be distinguished and they will simply be referred to as tout.
Then the internal neuron potentials xj(t) (Equation 2) for PA and PB at time tout

can be written as follows:
2∑

i=1

WA
i .u(t− tAi ) =

2∑
i=1

WA
i .u(t− tBi ) (4)

WA
i ’s are the synaptic weights which have been fixed for the learning unit PA. Two

different input patterns PA and PB producing an identical output at time tout can occur
only if the neuron internal potential xj(t) for one of the input patterns becomes equal
to the other input pattern’s neuron internal potential (at tB2 ) and then both increase at
identical rates until crossing the threshold potential ϑ at time tout as shown in Figure 3.

For the ISI1 block, WA
i = β.tAi ; Equation 4 can be rewritten as follows:

tA1
tA2

=
u(t− tB2 )− u(t− tA2 )
u(t− tA1 )− u(t− tB1 )

(5)

For the ISI2 block, WA
i = β

tA
i

; thus Equation 4 can be rewritten as follows:

tA1
tA2

=
u(t− tA1 )− u(t− tB1 )
u(t− tB2 )− u(t− tA2 )

(6)

Equations 5 and 6 can have a solution only if tA1 = tA2 which cannot happen because 2
distinct spikes output times from the mapping unit are assumed1. In other words, if the
ISI1 block outputs a spike at the same tout time for both PA and PB , the ISI2 output
times will be not equal and vice versa.

1 tA
1 = tA

2 can happen only if an input spike train consists of only two spikes at times 0 and 1
when the input spike train time window size is assumed to be equal to 1.
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3.3 Firing of Only One Learning Unit

Assume that patten PA was learned by the learning unit A(LUA) and that patten PB

was learned by the learning unit B (LUB). Assume that the sub-learning units LUA1
and LUB1 get inputs from the same mapping unit (MU). If pattern PA is input into both
LUA1 and LUB1, the neuron internal potentials for LUA’s ISI1 or ISI2 and LUB’s ISI1
or ISI2 will increase according to equation 2. If tAout1 = tBout1 = tout1 and tAout2 =
tBout2 = tout2 are assumed, the following relationship will be established:

2∑
i=1

WA
i .u(t− tAi ) =

2∑
i=1

WB
i .u(t− tAi ) (7)

The only way for LUA1 and LUB1 to produce an output spike at the same tout1(tout2)
time is to have the following condition satisfied:

2∑
i=1

WA
i =

2∑
i=1

WB
i (8)

Thus, if the condition specified by Equation 8 is not satisfied by any one of the sub-
learning units, only one of the learning units will respond to an input pattern. The learn-
ing algorithm has to include a checking phase to guarantee that the condition specified
by Equation 8 is not satisfied.

3.4 Coincidence Detection Neuron

In order to have only one learning unit fire for a given input pattern, output times of
the CG neurons in the sub-learning units (Figure 2(A)) have to be made coincident by
changing the input synaptic weight values of the coincidence generation (CG) neurons.
The coincidence detection neuron (CD), shown in Figure 2(A), uses the exponential
response function (Equation 1) of a spiking neuron.

The outputs of the ISI1 and ISI2 blocks of each sub-learning unit (Figure 2(A)) fire
at certain times according to the assigned synaptic weight centers. The other patterns
which have been joined to the same learning unit cause the outputs to fire at times which
are close to the ones corresponding to the center pattern. The coincidence detection
neuron threshold value ϑ is adjusted so as to allow some fuzziness in the input spike
times.

3.5 Local Reference Time

In section 3.2 it was proved that the output combination {tout1, tout2} for the ISI1 and
ISI2 blocks will be unique for each sub-learning unit; however, the relative time |tout1−
tout2| should also be considered for all the sub-learning units of different learning units
(LUs). In other words, two different sub-learning units in two different learning units
can fire at different output times, tout1 and tout2, but the relative time |tout1 − tout2|
may be the same; this would lead to two (or more) learning units firing outputs for the
same input pattern. Thus, a reference time (bias) tr input is necessary to differentiate
these outputs as shown in Figure 2(A). This reference time tr is the time when the first
input spike arrives at one of the mapping stage inputs.
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4 Simulations

4.1 Realization of the XOR Function

Due to its nonlinearly separable input characteristics, a two-input exclusive OR (XOR)
function has often been used to test the function approximation or classification capa-
bility of a neural network [7]. The XOR problem has non-linearly separable classes.
One of these classes is represented by x1x2 inputs 00 and 11. The other class is rep-
resented by x1x2 inputs 01 and 10. The logical inputs ”0” and ”1” are represented by
spikes at times 0 and 0.1 respectively in Table 1. The spike time can be defined with
any appropriate unit of time (e.g. ms, ns).

For a spiking neural network, the inputs x1x2 = 00 and x1x2 = 11 are not dis-
tinguishable in the time domain because the inputs are not referenced to a clock. Thus,
in order to distinguish the x1x2 = 00 and x1x2 = 11 cases, a third reference (bias)
input x0 = 0 is used as shown in Figure 4. Thus, the logical input x1x2 = 00 and
x1x2 = 11 can for example be distinguished in the time domain as ”0sec, 0sec, 0sec”
and ”0sec, 0.1sec, 0.1sec” respectively.

As describes in section 3.4, each learning unit in conjunction with a coincident de-
tection neuron generates a spike when the appropriate spatio-temporal pattern is input.

Final output

Learning
units

x0
x1

x2

Coincidence
detection
neurons

0
0
0

0
1
1

0
1
0

0
0
1

Fig. 4. Spiking neural network for XOR function. Details of learning unit also shown.

Table 1. XOR Input spike times (including the bias) and output times

Input Patterns Coincident firing time Final output time

0 0 0 1.464 4
0 0 0.1 1.910 2
0 0.1 0 1.910 2
0 0.1 0.1 3.013 4
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The XOR neural network organization is shown in Figure 4. The final output neuron,
shown in Figure 4, is used to represent the XOR output value in the time domain (e.g.
output time = 2 corresponds to the logical output ”1”).

4.2 Classification of Spike Trains

The robustness of the learning algorithm was tested using a set of randomly generated
spike trains as inputs. These spike trains were generated by adding noise to the original
spike trains. Noise consisted of input spike shifts in time or addition/deletion of spikes
within a spike train. These types of noise are realistic since a correct spike sequence
can be altered by short-lived interferences. Spike time skews were produced by adding
Gaussian white noise (GWN) to the spike train, or by time shifting one or two spikes in
a spike train randomly. The deletion/addition of spikes was also done randomly.

The spike trains used in the simulations were generated using Poisson distributed
inter-spike intervals [5] at a low frequency. By injecting various amounts of GWN into
a spike train, noisy time shifted versions of the original spike trains could be generated
as shown in Figure 5, where spike train number 1 is the original spike train for each
class.

Each of the generated spike trains shown in Figure 5 was used as an input to the
mapping stage (shown in Figure 1). The spatio-temporal pattern output from the map-
ping stage was then used as an input to the learning stage. The mapping stage used
multiple mapping units with different β values in the range of [0.25, 1.0] in order to
increase the input dimension of the learning stage.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
0

2

4

6

Sp
ik

e 
Tr

ai
n 

N
um

be
r

Sp
ik

e 
Tr

ai
n 

N
um

be
r

Time (S)

Sp
ik

e 
Tr

ai
n 

N
um

be
r

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
0

2

4

6

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
0

2

4

6

5

Class #1

Class #2

Class #3

Fig. 5. Three classes of input spike trains. The original spike train for each class is spike train
number 1 and the other five trains are noisy versions of it.
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Table 2. Input spike train classification, clustering, and final output times

Class No. Learning unit # # Learning patterns # Test patterns Final output time

1 1 5 5 4.0
2 1 -

2 3 4 3 5.0
4 2 2

3 5 4 3 6.0
6 2 2

After generating the noisy versions of each of the original spike trains, all the pat-
terns including the noisy patterns were used as a learning set. The closer the noisy
versions were to the original spike train, the likelihood of being able to use an already
assigned learning unit increased.

The learning and input pattern clustering simulation results are shown in Table 2.
For example, for the three classes a total of six clusters were needed. For input class 1,
learning unit 1 was used for clustering five input patterns and learning unit 2 was used
for clustering one input pattern. Similar clusterings were possible for classes 2 and 3 as
shown in Table 2.

After the learning phase was completed, additional noisy spike trains for each of the
three classes were used to test the neural network. These additional noisy spike trains
are called test patterns in Table 2. The testing phase spike trains were generated with
the same range of noise used during the learning phase. For example, for input class
3, three input patterns were recognized by learning unit 5 and two input patterns were
recognized by learning unit 6. Similar test patterns recognition were possible for classes
1 and 2 as shown in Table 2.

A final output neuron (refer to Figure 1) is used to represent the final output time
value for each of the three classes as shown in Table 2.

5 Conclusions

Spiking neural networks can be used to process time domain analog real world signals
once these signals have been converted into spike trains. A new learning algorithm for
spiking neural networks was proposed. After learning, the resulting spiking neural net-
work could classify input spike trains. Simulations have shown that incremental learn-
ing for classification learning of input spike trains with noise could be achieved by either
adding learning units or clustering. The learning algorithm is relatively simple when
compared with other neural networks learning algorithms such as back-propagation.
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Abstract. Several new conditions for exponential convergence of DNN
were proposed in this paper. These conditions guarantee the existence
and uniqueness of equilibrium of DNN with certain different activation
functions. To demonstrate the differences and features of the new criteria,
some remarks are presented.

1 Introduction

There are a great of research activities associated with different stability prop-
erties of neural NN(see, for example,[1,2,3,4,5,6,7]). However, most of the early
work just discussed the asymptotic stability and exponential stability without
delayed parameters. During the last few years, a large number of papers ad-
dressed the problems of exponential stability with delay parameters([4,5]).

In this paper, we provide two new results for exponential convergence of
equilibrium of DNN with different activation functions, and activation functions
herein may not be bounded.

2 Preliminaries

We consider the following delayed neural networks(DNN):

dx(t)
dt

= −Dx(t) +Ah(x(t)) +Bh(x(t − τ)) + U (N)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ IRn is the state vector, D = diag(d1,
d2, · · · , dn) is a positive diagonal matrix, A = (aij)n×n and B = (bij)n×n are the
n× n matrices, h(x) = (h1(x1), h2(x2), · · · , hn(xn))T : IRn −→ IRn denotes the
neuron activation vector function, and U = (u1, u2, · · · , un)T ∈ IRn is a constant
vector, while τ > 0 is the delay parameter.

A continuous function, h : IR −→ IR is said to be of class H(α) if (i) h is an
increasing function; (ii) there exists a positive constant α > 0 such that for any

� This work is supported by the Natural Science Foundation of China under grant
10271035 and by the Foundation of HIT under grant 2002.53.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 466–469, 2005.
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ρ ∈ IR there exist two numbers qρ > 0 and aρ > 0 satisfying |h(θ) − h(ρ)| ≥
qρ|θ − ρ|α whenever |θ − ρ| ≤ aρ. For example, h(ρ) = ρ, h(ρ) = arctan(ρ), and
h(ρ) = [1− exp(−λρ)]/[1 + exp(−λρ)](λ > 0) are all in H(1).

We define GL as class of globally Lipschitz. Note that H(α) ∩ GL �= φ, for
example, h(ρ) = arctan(ρ) ∈ H(1) ∩ GL.

An equilibrium x∗ is a constant solution of (N), i.e., it satisfies the algebraic
equation −Dx∗ +Ah(x∗) +Bx∗ + U = 0.

Definition 1. (N) is said to be exponentially convergent if it has a unique equi-
librium x∗ and there exist two constants M > 0 and β > 0 such that for any
initial continuous function ϕ(t)(−τ ≤ t ≤ 0), there exist a solution x(t, ϕ) in
[0,+∞) of (N) and T (ϕ) > 0 satisfying ||x(t, ϕ) − x∗|| ≤Me−βt (t ≥ T (ϕ)).

Lemma 1. If h ∈ H(α), then for any ρ0 ∈ IR, one has

lim
|ρ|→∞

∫ ρ

ρ0

[h(θ)− h(ρ0)]dθ = +∞.

3 Main Results

Theorem 1. Suppose hi ∈ H(α)(i = 1, 2, · · · , n) and there exists a positive
diagonal matrix P = diag(p1, p2, · · · , pn) such that PA+ATP + (PB)(PB)T +
I < 0. Then the system (N) is exponentially convergent.

Proof. We first prove that the system (N) has a unique equilibrium. Let V (x) =
Dx− (A+B)h(x)− U, then x∗ is an equilibrium iff V (x∗) = 0. We can rewrite
V (x) as the form V (x) = Dx−(A+B)f(x)+V0 , where f(x) = h(x)−h(0) ∈ IRn

and fi ∈ H(α) satisfying fi(0) = 0, V0 = −(A+B)h(0)−U ∈ IRn. Construct the
open subset Ωr = {x ∈ IRn : ||x|| < r} for some r > 0 and the homotopyH(λ, x)
defined as H(λ, x) = λDx + (1 − λ)V (x), x ∈ Ωr = {x : ||x|| ≤ r},λ ∈ [0, 1].
By computing, we have

fT (x)PH(λ, x) = fT (x)PDx − (1− λ)fT (x)P (A +B)f(x) + fT (x)PV0

≥
n∑

i=1

pidi|fi(xi)|
[
|xi| −

|(PV0)i|
pidi

]
.

(1)

Since fi ∈ H(α), then there exist M > 0 and b > 0 such that |fi(xi)| ≥
M when |xi| ≥ b, i = 1, 2, · · · , n. Let a = max

1≤i≤n

|(PV0)i|
pidi

. For every index

set Q ⊂ {1, 2, · · · , n}, the function fQ =
∑
i∈Q

pidi [|fi(xi)| − a] is continuous on

ΩQ = {xi ∈ IR|Q| : |xi| ≤ a, i ∈ Q}, then it can attain to the minimum. Let
l = min

1≤i≤n
pidiM, μQ be the minimum of fQ on ΩQ, and μ = min{μQ : Q �

{1, 2, · · · , n}}. Thus, if r > max{n(a +
|μ|
l

), nb} and ||x|| =
(

n∑
i=1

|xi|2
) 1

2

= r,

then there exist two index sets Q1 and Q2 such that

|xi| ≤ a when i ∈ Q1, |xi| > a when i ∈ Q2, Q1 ∪Q2 = {1, 2, · · · , n}.
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On the other hand, we can find an index i0 in Q2 such that |xi0 | ≥
r

n
. From (1),

we obtain

fTPH ≥
∑
i∈Q1

ki +
∑
i∈Q2

ki ≥ pi0di0M

[
|xi0 | − a− |μ|

ρ

]
> 0,

where ki = pidi|fi(xi)| [ |xi| − a] . Then, we get that for x ∈ ∂Ωr = {x ∈
IRn : ||x|| = r} and λ ∈ [0, 1], fT (x)PH(λ, x) > 0, which implies that
H(λ, x) �= 0. By topological degree theory, it following that deg(H(0, x), Ωr, 0) =
deg(H(1, x), Ωr, 0), i.e., that deg(V (x), Ωr , x) = deg(Dx,Ωr, 0) = sgn|D| �= 0.
Thus, V (x) = 0 has at least one solution in Ωr. We obtain easily that (N) has
a unique equilibrium.

Next we will prove that the global existence of solutions of (N). We can easily
see that local existence of the solutions of (N) with initial values ϕ(t)(−τ ≤ t ≤
0) Let x∗ be the unique equilibrium and y(t, ϕ̃) = x(t, ϕ) − x∗, where x(t, ϕ) is
the local solution of (N), ϕ̃(t) = ϕ(t) − x∗, then y(t, ϕ̃) is the local solution of
(N1):

dy(t)
dt

= −Dy(t) +Ag(y(t)) +Bg(y(t− τ)), (N1)

where g(y) = (g1(y1), g2(y2), · · · , gn(yn))T and gi(yi) = hi(yi + x∗i ) − hi(x∗i ).
Since PA+ATP + (PB)(PB)T + I < 0, we can choose a small δ > 0, such that
PA + ATP + (PB)(PB)T + eδτI < 0 and δ < min{di : 1 ≤ i ≤ n}. Construct
the following functional

V ≡ V (t, y(t)) = eδt

[
2

n∑
i=1

pi

∫ yi(t)

0

gi(θ)dθ

]
+
∫ t

t−τ

gT (y(θ))g(y(θ))eδ(θ+τ)dθ.

(2)

By the assumption on hi, there exist r0 > 0 and M0 > 0 satisfying

gi(0) = 0 and |gi(θ)| ≥M0|θ|α if θ ∈ [−r0, r0], i = 1, 2, · · · , n. (3)

By computing the derivative V̇ (t) of V along the solution y(t, ϕ̃), we obtain
V̇ (t) ≤ 0. This implies that V (t) ≤ V (0), Hence

2
n∑

i=1

pi

∫ yi(t,ϕ̃)

0

gi(θ)dθ ≤ V (0)e−δt. (4)

According to the Lemma 1, it implies that yi(t, ϕ̃) are bounded. Therefore,
by virtue of the continuation theorem, we can conclude that y(t, ϕ̃) exists on
[0,+∞), then, x(t, ϕ) is also.

Moreover, by (4), we have lim
t→∞ yi(t, ϕ̃) = 0. Thus, there exists a time constant

T , such that yi(t, ϕ̃) ∈ [−r0, r0], t ≥ T. Let p = min
1≤i≤n

pi, then by (2) and (4), we

have max1≤i≤n |yi(t, ϕ̃)| ≤
[

α+1
2pM0

V (0)
]α+1

e−
δ

α+1 t This means that the system

(N) is exponentially convergent. ��
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Remark 1. Forti([2], B = 0) and Joy([3]) obtained that the 0-solution of system
(N1) is asymptotically convergent. However, in general case, the system (N) is
not equivalent to the system (N1). In Theorem 1, the functions gi are stronger
than that given in [2,3], but the results are also stronger.

If hi ∈ GL, then they satisfy that |hi(ρ)− hi(ρ′)| ≤ μi|ρ− ρ′| (∀ρ, ρ′ ∈ R). Let
Γ = diag(μ1, μ2, · · · , μn).

Theorem 2. If hi ∈ H(α)
⋂
GL, and assume further that there exists a positive

diagonal matrix P and β > 0 such that

−2PDΓ−1 + PA+ATP +
1
β

(PB)(PB)Γ + βI < 0 (∗)

then the system (N) is exponentially convergent.

Remark 2. The proof is similar to that of Theorem 1 and omitted.The asymp-
totic convergence of 0-solution of (N1) is proved in [1,5] based on the stronger
conditions of Matrix inequality. In our Theorem 2, the matrix inequality (∗) is
less restrictive than with [1,5].

4 Conclusion

In this paper, some conditions for existence and uniqueness of equilibrium and
its exponential convergence are derived. The results herein impose constraints
on the inter connection matrix of the neural networks independently of delay
parameter. Our Theorems show that the properties of activation functions play
the key role in the convergence of neural networks.
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Abstract. This paper proposes a neural network for saddle point prob-
lems(SPP) by an approximation approach. It first proves both the exis-
tence and the convergence property of approximate solutions, and then
shows that the proposed network is globally exponentially stable and
the solution of (SPP) is approximated. Simulation results are given to
demonstrate further the effectiveness of the proposed network.

1 Introduction

Saddle point problems(SPP) provide a useful reformulation of optimality con-
ditions and also arise in many different areas, such as game theory, automatic
control, function approximation, and so on(see e.g., [1]). Recently, many neural
networks have been constructed for optimization problems(see e.g., [2,3,4,5]).
Among them, Ye [2] proposed a neural network for unconstraint minimax prob-
lems, and proved its stability under some convexity assumptions; both Gao [3]
and Tao [4] focused on quadratic minimax problems, and established several neu-
ral networks in assuming that the matrices in the models are positive definite.
All these models solve minimax problems by searching the saddle points of the
objective functions. The aim of this paper is to develop a new neural network to
solve general constrained saddle point problems by an approximation approach.
Without any additional assumptions, the proposed network can exponentially
solve (SPP), including those the existing ones can not solve(see e.g., Sect. 4).

Let
U = {x ∈ IRn : ai ≤ xi ≤ bi, i = 1, 2, · · · , n} ,

V = {y ∈ IRm : cj ≤ yj ≤ dj , j = 1, 2, · · · ,m} ,

for −ai, bi,−cj, dj ∈ IR ∪ {+∞}, and let f : IRn+m → IR ∪ {±∞} satisfying f
is twice continuously differentiable on some open convex set D1×D2(⊃ U × V )
and is a saddle function on U × V (i.e., for fixed (x, y) ∈ U × V , both f(·, y) and
−f(x, ·) are convex on U and V respectively). Let g = (g1, g2, · · · , gl1) : IRn →
IRl1 , p = (p1, p2, · · · , pl2) : IRm → IRl2 , with both −gi and −pj proper convex on
U and V and twice continuously differentiable on D1 and D2 respectively. And

� Supported by the National Key Basic Research Project (973 Project)(2002cb312205),
the Grant of the NSF of China(10471114), and the Grant of the NSF of Fujian
Province, China (A04100021).
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let
Ω1 = {x ∈ U : g(x) ≥ 0, h(x) ≡ A1x− b1 = 0} ,
Ω2 = {y ∈ V : p(y) ≥ 0, q(y) ≡ A2y − b2 = 0} ,

where A1 ∈ IRk1×n, A2 ∈ IRk2×m with rank(A1) = k1 < n, rank(A2) = k2 < m,
b1 ∈ IRk1 and b2 ∈ IRk2 . Then we have the following saddle point problem:

(SPP)

⎧⎨⎩Find a point (x∗, y∗) ∈ Ω1 × Ω2, such that (x∗, y∗) is a
saddle point of f(x, y) on Ω1 ×Ω2, that is,
f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), ∀(x, y) ∈ Ω1 ×Ω2 .

(1)

Throughout this paper, we assume that (SPP) has a solution and satisfies
the Slater condition(see e.g., [1, p325]). Let ‖·‖ be the Euclidean norm, IRn

+ =
{x ∈ IRn : xi ≥ 0, i = 1, 2, · · · , n}, ∇xf(x, y) = (∂f(x, y)\∂x1, ∂f(x, y)\∂x2, · · ·,
∂f(x, y)\∂xn)T , and [·]+ = max{0, ·}. A vector x ∈ IRn will be the column form,
and xT denotes its transpose.

2 Convergence of Approximate Solutions

In this section, we will show some results about the approximate solutions,
which are the theoretical key links in the construction of the network.

For simplicity, let u = (xT , ξT , ηT )T ,v = (yT ,λT , μT )T ,z = (uT , vT )T , U1 =
U × IRl2

+ × IRk2 , U2 = V × IRl1
+ × IRk1 , Ω = D1 × IRl2+k2 ×D2 × IRl1+k1 .

Let ψ(u, v) = ψ1(u) − ψ2(v), where ψ1(u) and ψ2(v) are uniformly convex
and twice continuously differentiable on IRn+l2+k2 and IRm+l1+k1 respectively.
For example, we can take ψ(u, v) = 1/2 ‖u‖2 − 1/2 ‖v‖2.

Let L be the ”Lagrange function” of (SPP) defined by

L(u, v) = f(x, y)− λT g(x)− μTh(x) + ξT p(y) + ηT q(y), ∀(u, v) ∈ Ω .

And for every k ∈ IN, let Lk(u, v) ≡ L(u, v)+1/kψ(u, v). Then, for every k ∈ IN,
we have the following saddle point problem associated with (SPP):

(SPPk)
{

Find a point (u∗k, v
∗
k) ∈ U1 × U2, such that

(u∗k, v
∗
k) is a saddle point of Lk(u, v) on U1 × U2.

Lemma 1. [1] Let C ⊂ IRn be closed and convex. Then u∗ ∈ C is equal to the
projection PC(u) of u on C if and only if [u− u∗]T [u∗ − v] ≥ 0, ∀v ∈ C.
Lemma 2. Suppose that C ⊂ IRn, D ⊂ IRm are closed and convex. Then

PC×D(z) = (PC(x)T , PD(y)T )T , ∀z = (xT , yT )T ∈ IRn+m .

Theorem 1. Take ψ(u, v) = 1/2 ‖u‖2 − 1/2 ‖v‖2. Then (u∗k, v
∗
k) is a solution

of (SPPk) if and only if (u∗k, v
∗
k) satisfying⎧⎪⎪⎨⎪⎪⎩

x∗k = PU [(1− α/k)x∗k − α(∇xf(x∗k, y
∗
k)−∇g(x∗k)T λ∗

k −∇h(x∗k)Tμ∗
k)] ,

y∗k = PV [(1− α/k)y∗k + α(∇yf(x∗k, y
∗
k) +∇p(y∗k)T ξ∗k +∇q(y∗k)T η∗k)] ,

ξ∗k = [(1− α/k)ξ∗k − αp(y∗k)]+, λ∗
k = [(1− α/k)λ∗

k − αg(x∗k)]+ ,
1/kμ∗

k + h(x∗k) = 0, 1/kη∗k + q(y∗k) = 0 ,

(2)

where α > 0 is a constant, u∗k = (x∗k
T , ξ∗k

T , η∗k
T )T , v∗k = (y∗k

T ,λ∗
k

T , μ∗
k

T )T .
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Proof. By Lemma 1 and Lemma 2,

(2) ⇐⇒ u∗
k = PU1 [u

∗
k − α∇uLk(u∗

k, v∗
k)], v∗

k = PU2 [v
∗
k + α∇vLk(u∗

k, v∗
k)] ,

⇐⇒ (u − u∗
k)T∇uLk(u∗

k, v∗
k) ≥ 0, (v − v∗

k)T∇vLk(u∗
k, v∗

k) ≤ 0, ∀u ∈ U1, v ∈ U2,
⇐⇒ Lk(u∗

k, v∗
k) ≤ Lk(u, v∗

k), Lk(u∗
k, v) ≤ Lk(u∗

k, v∗
k),∀u ∈ U1, v ∈ U2 ,

⇐⇒ (u∗
k, v∗

k) is a solution of (SPPk) . 
�

Lemma 3. [6] If ϕ : IRn → IR is continuously differentiable. Then
i) ϕ(x) is uniformly convex if and only if ∇ϕ(x) is strongly monotone,i.e., there
exits a constant c > 0, such that

(x− y)T [∇ϕ(x) −∇ϕ(y)] ≥ c ‖x− y‖2 , ∀ x, y ∈ IRn ; (3)

ii) if ϕ(x) is uniformly convex, then {x ∈ IRn : ϕ(x) ≤ γ} is a closed bounded
convex set for every γ ∈ IR, and ϕ(x) has a unique global minimum on every
nonempty closed convex set C ⊂ IRn.

Lemma 4. [7] Suppose that C ⊂ IRn is closed and convex, and T : C → IRn

is continuous and strongly monotone. Then there exists a unique point x∗ ∈ C,
such that (x − x∗)TT (x∗) ≥ 0, ∀ x ∈ C.

Theorem 2. For ψ(u, v) = ψ1(u)−ψ2(v) given as above, the followings are true
i) (SPPk) has a unique solution (u∗k, v

∗
k), for every k ∈ IN;

ii) if (SPP) has a solution, then (u∗k, v
∗
k) converges to a point (u∗, v∗), as k →∞,

such that (x∗, y∗) is a solution of (SPP) and λ∗, μ∗, ξ∗, η∗ are the corresponding
Lagrange multipliers, where u∗ = (x∗T , ξ∗T , η∗T )T , v∗ = (y∗T ,λ∗T , μ∗T )T .

Proof. i) Let G(u, v) = (∇uL(u, v)T ,−∇vL(u, v)T )T , Gk(u, v) = (∇uLk(u, v)T ,
−∇vLk(u, v)T )T . By Lemma 3, there is c > 0, such that (3) holds for both ψ1 and
ψ2. Noting that G(u, v) is monotone, we obtain Gk(u, v) is strongly monotone
on U1 × U2. By Lemma 4, there is a unique point (u∗k, v

∗
k) ∈ U1 × U2, such that

(u− u∗k)T∇uLk(u∗k, v
∗
k)− (v − v∗k)T∇vLk(u∗k, v

∗
k) ≥ 0 , (4)

for all (u, v) ∈ U1 × U2. Then

(4) ⇐⇒ (u − u∗
k)T∇uLk(u∗

k, v∗
k) ≥ 0, (v − v∗

k)T∇vLk(u∗
k, v∗

k) ≤ 0, ∀u ∈ U1, v ∈ U2,
⇐⇒ Lk(u∗

k, v∗
k) ≤ Lk(u, v∗

k), Lk(u∗
k, v) ≤ Lk(u∗

k, v∗
k), ∀ u ∈ U1, v ∈ U2 ,

⇐⇒ (u∗
k, v∗

k) is a saddle point of (SPPk) .

ii) Denote Ω∗ ≡ {(u, v) : (u, v) is a saddle point of L(u, v) on U1 × U2}. Then
Ω∗ is a closed convex set [8]. Suppose (SPP) has a solution (x, y)(i.e., (1) satisfies
for x∗ = x, y∗ = y). Then x is a solution of the following convex programming:{

min f(x, y)
s.t. g(x) ≥ 0, h(x) = 0, x ∈ U .

By Kuhn-Tucker saddlepoint Theorem [1], there are λ ∈ IRl1
+,μ ∈ IRk1 , such that

f(x, y)− λT g(x) − μT h(x)≤f(x, y) − λ
T
g(x) − μT h(x)≤f(x, y) − λ

T
g(x) − μT h(x),
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for all x ∈ U,λ ∈ IRl1
+, μ ∈ IRk1 . Similarly, there are ξ ∈ IRl2

+ ,η ∈ IRk2 , such that

f(x, y)+ξ
T
p(y)+ηT q(y) ≤ f(x, y)+ξ

T
p(y)+ηT q(y) ≤ f(x, y)+ξT p(y)+ηT q(y),

for all y ∈ V, ξ ∈ IRl2
+ , η ∈ IRk2 . Adding the above two inequalities, we obtain

that Ω∗ is a nonempty closed convex set.
Since ψ1(u) and ψ2(v) are uniformly convex, by Lemma 3 ii), there exists a

point (u∗, v∗) ∈ Ω∗, such that

ψ1(u∗) + ψ2(v∗) < ψ1(u) + ψ2(v), ∀ (u, v) ∈ Ω∗ \ {(u∗, v∗)} , (5)

and W ≡ {(u, v) ∈ U1 × U2 : ψ1(u) + ψ2(v) ≤ ψ1(u∗) + ψ2(v∗)} is a nonempty
bounded closed convex set. Since (u∗k, v

∗
k) is a solution of (SPPk), we have

Lk(u∗k, v) ≤ Lk(u∗k, v
∗
k) ≤ Lk(u, v∗k), ∀(u, v) ∈ U1 × U2 . (6)

Substituting (u, v) by (u∗, v∗) in (6), and noting L(u∗, v∗
k) ≤ L(u∗, v∗) ≤ L(u∗

k, v∗),
we get ψ1(u∗k) + ψ2(v∗k) ≤ ψ1(u∗) + ψ2(v∗). That is, (u∗k, v

∗
k) ∈W, ∀k ∈ IN.

We claim that (u∗k, v
∗
k) converges to (u∗, v∗). If not, by taking a subsequence,

we can assume that (u∗k, v
∗
k) → (u, v) ∈ W \ {(u∗, v∗)}. Letting k → ∞ in (6),

we have (u, v) ∈ Ω∗, which contradicts (5).
Noting L(u∗, v) ≤ L(u∗, v∗), ∀v ∈ U2, and letting y = y∗, we obtain

(λ∗ − λ)T g(x∗) + (μ∗ − μ)Th(x∗) ≤ 0, ∀λ ∈ IRl1
+ , μ ∈ IRk1 .

Letting λ = λ∗, we get (μ − μ∗)Th(x∗) ≥ 0, ∀μ ∈ IRk1 . Thus h(x∗) = 0. Letting
μ = μ∗,λ = 0, we get λ∗T g(x∗) ≤ 0. For every i, letting μ = μ∗, λi = λ∗

i + 1,
λj = λ∗

j (j �= i), we get gi(x∗) ≥ 0, λ∗
i gi(x∗) ≥ 0. Thus, we obtain h(x∗) = 0,

g(x∗) ≥ 0,λ∗T g(x∗) = 0. Similarly, we get q(y∗) = 0, p(y∗) ≥ 0, ξ∗T p(y∗) = 0.
For each (x, y) ∈ Ω1 × Ω2, noting L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗), ∀u ∈

U1, v ∈ U2, and letting λ = 0, μ = 0 and ξ = 0, η = 0 respectively, we get
f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), which completes the proof. ��

3 Neural Network Model with Globally Exponential
Stability

In this section, we will construct a neural network model for (SPP) and will
show the globally exponential stability for the proposed network. Especially,
take ψ(u, v) = 1/2 ‖u‖2−1/2 ‖v‖2. Then by Theorem 1 and Theorem 2, we have
the following dynamic system as a neural network model to solve (SPP):

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝
x
ξ
η
y
λ
μ

⎞⎟⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎜⎝

x− x̃

ξ − ξ̃
α/kη + αq(y)

y − ỹ

λ− λ̃
α/kμ+ αh(x)

⎞⎟⎟⎟⎟⎟⎟⎠ , (7)
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where k ∈ IN, α > 0 are constants, x̃ = PU [(1−α/k)x−α(∇xf(x, y)−∇g(x)T λ−
∇h(x)Tμ)], ξ̃ = [(1 − α/k)ξ − αp(y)]+, ỹ = PV [(1 − α/k)y + α(∇yf(x, y) +
∇p(y)T ξ +∇q(y)T η)], λ̃ = [(1− α/k)λ− αg(x)]+.

It can be easily seen that model (7) has one-layer structure, and the pro-
jection operators PU (·),PV (·) and [·]+ can be easily implemented by piecewise-
activation functions(see e.g., [9]). Thus, the complexity of (7) depends only on
∇xf(x, y),∇yf(x, y),∇g(x),∇p(y),g(x), and p(y) in the original problem.

Theorem 3. For any initial point in U1 × U2, the solution of (7) will converge
to the unique solution (u∗k, v

∗
k) of (SPPk) exponentially. Moreover, for k large

enough, (x∗k, y
∗
k) is an approximate solution of (SPP), and λ∗

k, μ
∗
k, ξ

∗
k, η

∗
k are the

corresponding approximate Lagrange multipliers, where u∗k = (x∗k
T , ξ∗k

T , η∗k
T )T ,

v∗k = (y∗k
T ,λ∗

k
T , μ∗

k
T )T .

Proof. By Lemma 2, (7) is equivalent to dz/dt = PU1×U2 [z−αGk(z)]− z, where
z = (uT , vT )T and Gk(z) ≡ Gk(u, v) is defined in the proof of Theorem 2 i).
Since Gk(u, v) is strongly monotone, by Theorem 2 and [5, Thm 2], we completes
the proof. ��

4 Simulation Examples

In this section, two illustrative examples are given to compare model (7) with
the existing one in [3]. The simulations are conducted in MATLAB.

Example 1. Consider (SPP) with f(x, y) = xy on IR × IR, Ω1 = U = IR, Ω2 =
V = IR. This problem has a unique saddle point (0, 0). For initial point (x0, y0) ∈
IR2, the solution of model (7) for it is x(t) = e−t(x0 cos t − y0 sin t), y(t) =
e−t(y0 cos t+ x0 sin t), which converges to (0, 0) exponentially. To make a com-
parison, the solution of model in [3] for this problem is x(t) = −y0 sin t+x0 cos t,
y(t) = x0 sin t+ y0 cos t, which doesn’t converge whenever (x0, y0) �= (0, 0).

Example 2. Consider (SPP) with f(x, y) = 1/2x2
1 − x1 + x2(y2 − 1) + 3x2y3 −

1/2y2
1 + 2y1, Ω1 = U = {x ∈ IR2 : −5 ≤ xi ≤ 5, i = 1, 2}, and Ω2 = V =

{y ∈ IR3 : −2 ≤ yj ≤ 4, j = 1, 2, 3}. This problem has infinite saddle points
{(x, y) ∈ IR2 × IR3 : x1 = 1, y1 = 2, x2(y2 + 3y3 − 1) = 0,−5 ≤ x2 ≤ 5,−2 ≤
y2 ≤ 4,−2 ≤ y3 ≤ 4}.

We first use model (7) to solve this problem. All simulation results show
that it converges to one saddle point of the problem. As an example, Fig. 1 (a)
shows that the trajectories of (7) converge to (0.9901,−0.0011, 1.9802,−0.1089,
−0.3267) with the initial point (4.4,−4.1,−1.5,−1.0, 2.5) for α = 1, k = 100.

Then we solve this problem by the model in [3]. But, Fig. 1 (b) shows that
this model with the initial point (4.4,−4.1,−1.5,−1.0, 2.5) is not stable.

Thus, from the above simulation results, we can conclude that the proposed
network (7) is feasible and has a good stability performance.
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Fig. 1. (a) Transient behavior of (7) for Example 2 with k = 100, α = 1. (b) Transient
behavior of the model in [3] for Example 2.

5 Conclusion

A neural network model with globally exponential stability is constructed for
(SPP) after showing both the existence and the convergence property of approx-
imate solutions. In contrast to the existing ones, the proposed network requires
no additional assumptions and has globally exponential stability automatically.
The simulation results demonstrate further its effectiveness.
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Abstract. Implementing of intersection operation and union operation in fuzzy 
reasoning is explored by three Integrate-And-Fire (IAF) neurons, with two neu-
rons as inputs and the other one as output. We prove that if parameter values of 
the neurons are set appropriately for intersection operation, firing rate of the 
output neuron is equal to or is lower than the lower one of two input neurons. 
We also prove that if parameter values of the neurons are set appropriately for 
union operation, the firing rate of the output neuron is equal to or is higher than 
the higher one of the two input neurons. The characteristic of intersection op-
eration and union operation implemented by IAF neurons is discussed. 

1   Introduction 

Fuzzy logic is considered as one of the information processing mechanisms of the hu-
man brain. Fuzzy set theory was proposed to model this mechanism. Numerous success-
ful application systems based on fuzzy set theory are reported. Computation of fuzzy 
systems is based on mathematical framework of fuzzy set theory, while the computation 
of fuzzy system in the brain is accomplished by neurons. Though many neuron-fuzzy 
systems have been proposed, the purpose of these systems is to encode fuzzy rules in 
artificial neural networks and to tune parameters of fuzzy systems with learning ability 
of artificial neural networks. Few systems that integrate fuzzy logic and neural network 
with biological plausible neurons are proposed. We have found a fuzzy-like phenome-
non in an autoassociative memory with dynamic neurons [3]. In this work, we explore 
to implement the reasoning of fuzzy systems with Integrate-And-Fire (IAF) neurons.  

2   Fuzzy Reasoning in Fuzzy Systems 

Fuzzy systems are usually expressed by fuzzy rules that take a form as follows: 

Rule 1: if 
1X  is 1A  and 

2X  is 1B  then y  is 
1C , 

Rule 2: if 
1X  is 2A  and 

2X  is 2B  then y  is 
2C , … 

Where 
1X  and 

2X  are input linguistic variables, y  is an output linguistic variable, 

1A , 2A , 1B , 2B ,
1C  and 

2C  are fuzzy sets that are defined by membership functions. 
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When crisp inputs )0(1x  and )0(2x  are supplied to the system, firing strengths of Rule1 

(
1α ) and Rule2 (

2α ) are computed by: 

)))0(()),0((min( 211 11
xx BA μμα =

             (1) 

)))0(()),0((min( 212 22
xx BA μμα =

       (2) 

Where ))0(()),0(()),0(()),0(( 2121 2211
xxxx BABA μμμμ  are calculated by the 

membership functions of the fuzzy sets 1A , 1B , 2A  and 2B  respectively. Based on the 

firing strengths of rules, membership function of the fuzzy set of the output due to the 
i th rule is figured out: 

))(,min()(' yy
ii CiC μαμ =             (3) 

The overall membership function of the fuzzy set of the output is given by: 

),max()( ''

21 CCC y μμμ =
            (4) 

The fuzzy set of output described by the membership function of )( yCμ  will be 

defuzzied to obtain a crisp value of the output.  Lee [1] gave a diagrammatic represen-
tation of the fuzzy reasoning approach discussed in this section. 

3   Fuzzy Reasoning Implemented by IAF Neurons 

As explained in section 2, min operation is commonly used for fuzzy intersection 
operation and max operation is commonly used for fuzzy union operation. We discuss 
how to implement the two operations by IAF neurons in this section. We name fuzzy 
intersection operation implemented by IAF neurons fuzzy intersection-like operation, 
and name fuzzy union operation implemented by IAF neurons fuzzy union-like opera-
tion.  

A simplified version of models of IAF neuron [2] is used in this paper: 

)(
)(

txI
dt

tdx
i

i λ−=                  (5) 

Where ix  is the state variable of i th neuron, I  is the external input, λ  is the pa-

rameter of dissipation. When 1=ix , the i th neuron fires and ix  jumps back to 0. 

When a given neuron fires, it emits a spike and pulls other neurons by an amount of ε : 

))(,1min()(1)( ε+== + txtxtx jji            (6) 

As shown in Fig. 1, assume that the firing rates of neuron 1 and Neuron 2 corre-
spond to the degrees of membership of two fuzzy sets respectively, the firing rate of 
neuron 3 is the result of fuzzy intersection-like operation of neuron 1 and neuron 2.  
Let neuron 1 and neuron 2 receive constant input 

1I  and 
2I  respectively and let 

21 II > . Neuron 1 and neuron 2 will fire periodically with period 
1T  and 

2T  (
21 TT < ). 
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The spikes of Neuron 1 and Neuron 2 are fed to Neuron 3. If the parameters of IAF 
neurons are carefully set, the number of spikes generated by neuron 3 is equal to or is 
smaller than the number of spikes in S2 (see Theorem 1 and Fig. 1).  

Theorem 1: If the parameters of neuron 3 in Fig.1 is so set that spike sequence of 
S1 itself can not make neuron 3 fire, then the number of spikes generated by neuron 3 
is equal to or is smaller than the number of spikes in S2. 

Proof: Suppose that the number of spikes in S3 is larger than that in S2. As spike 
sequence S1 itself can not make neuron 3 fire, there are no spikes generated by neu-
ron 3 before the first spike of S2, and there is at most one spike generated by neuron 3 
after the last spike of S2. Therefore, there must exist two spikes of S3 that is between 
two spikes of S2. There are two cases (see Fig. 1). When neuron 3 generates a spike, 
the state of the neuron resets to zero. Therefore, in these two cases, the spike that is 
marked by thick line must be generated by neuron 3 under the stimulation of spike 
sequence of S1 only. This contradicts with the assumption of the theorem.                  

 

Fig. 1. Figure for the proof of theorem 1. (a) Three neurons  (b) Case 1  (c) Case 2. 

As we know, firing rate is defined by a temporal average over many spikes of a 
single neuron. Since degree of membership to a fuzzy set is between 0 and 1, we used 
a normalized firing rate ( FR ) in this work: 

sequencesspikeofspikesofnumbertheofboundupper

sequencespikeinspikestheofnumberthe
FR =   (7) 

Theorem 1 tells us if the parameter values of neuron 3 are satisfied with the as-
sumption, the firing rate of neuron 3 ( 3FR ) is equal to or is lower than that of neuron 
2 ( 2FR ). Stated in other way, )2,1min(3 FRFRFR ≤ . 

Theorem 2: The parameters of the neuron 3 in Fig. 2 are so set that it does not fire 
with none spikes from neuron 1 and neuron 2. If the spike interval in S1 is larger than 
T  in Fig.2, then the firing rate of neuron 3 is equal to or is higher than that of neuron 
1.  

Proof: As the neuron 3 does not fire with none spikes from neuron1 and neuron 2 
and the spike interval in S1 is larger than T  in Fig .2, every spike generated by neu-
ron 1 will trigger a spike of neuron 3 if 02 =I . Therefore the firing rate of neuron 3 is 

equal to or is higher than that of neuron 1 if we set 02 >I .                                             
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Fig. 2. Figure for the proof of theorem 2. (a) Three neurons. (b) Parameter set of neuron 3. 

Theorem 2 tells us if the parameter values of neuron 3 are satisfied with the as-
sumption, )2,1max(3 FRFRFR ≥ . 

4   Discussion 

The analysis shows that the firing rates of neuron 1 ( 1FR ), neuron 2 ( 2FR ) and neu-
ron 3 ( 3FR ) satisfy )2,1min(3 FRFRFR ≤  for fuzzy intersection-like operation, and 

)2,1max(3 FRFRFR ≥  for fuzzy union-like operation. As for the calculation of the 

firing strength of Rule 1, min operation is )))0(()),0((min( 211 11
xx BA μμα = . While 

fuzzy intersection-like operation is )))0(()),0((min( 211 11
xx BA μμα ≤ . On the other 

hand, from the viewpoint of a probabilistic theory, suppose the probabilities for the 
event 1A  and 1B  are ))0(( 11

xAμ  and ))0(( 21
xBμ  respectively, and suppose that the 

two events are independent, the firing strength of Rule 1 is ))0((*))0(( 21 11
xx BA μμ .  

Since )))0(()),0((min())0((*))0(( 2121 1111
xxxx BABA μμμμ < , fuzzy intersection-

like operation seems to be a compromise between the intersection operation of fuzzy 
set theory (min operation) and that of a probabilistic theory. Similarly, fuzzy union-
like operation seems to be a compromise between the union operation of fuzzy set 
theory and that of probabilistic theory. 
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Abstract. Spike trains are treated as exact time dependent stepwise
functions called response functions. Five variables defined at sequential
moments with equal interval are introduced to characterize features of re-
sponse function; and these features can reflect temporal patterns of spike
train. These variables have obvious geometric meaning in expressing the
response and reasonable coding meaning in describing spike train since
the well known ’firing rate’ is among them. The dissimilarity or distance
between spike trains can be simply defined by means of these variables.
The reconstruction of spike train with these variables demonstrates that
information carried by spikes is preserved. If spikes of neuron ensem-
ble are taken as a spatial sequence in each time bins, spatial patterns of
spikes can also be quantified with a group of variables similar to temporal
ones.

1 Introduction

How neurons represent, process and transmit information is of fundamental in-
terest in neuroscience [1]. It is accepted that neural information processing relies
on the transmission of a series of stereotyped events called action potentials, or
spikes. Temporal recordings of firing events provide inter-spike-interval (ISI) se-
ries. It is expected that aspects of the processed information are encoded in the
form of structures contained in the ISI series. The basic biophysics that underlie
the generation of these action potentials (spike) is well established. However, the
features that convey information are not well understood.

An emerging view in neuroscience is that sensory and motor information is
processed in a parallel fashion by populations of neurons working in concert
[2-4]. Encouraged by this progress many laboratories are investing considerable
effort into the development of recording techniques and spike-sorting algorithms
that permit simultaneous recording of the activity of multiple neurons [5]. In this
context, a fundamental and long-standing question is the type of neural codes
used by the population of neurons to represent information in trains of action
potentials [1, 6]. The firing rate of spike trains is a candidate for such a neural
code [7]; however it is possible that spike timing rather than firing rates plays a
significant role in this task [8]. It remains a controversial issue, partly because
there are few mathematical methods for directly and quantitatively assessing the
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temporal structure in spike trains [9]. A key factor in distinguishing among these
theories is the temporal precision of individual action potentials. Many existing
methods are either qualitative, or limited to examining lower-order structure.
Moreover, quantitative techniques used in conjunction with cross-correlations
such as the shift predictor can overestimate the number of expected synchronous
spikes due to slow rate co-variations which are known to exist [10-12]. In spite
of that, and as it was very clearly pointed out by some authors [1, 13, 14],
this distinction cannot be pushed too far because both concepts are intrinsically
related and the mere introduction of time discretization certainly blurs their
differences. Therefore, it is important to measure this precision and to develop
new methods to describe population spike trains.

In general£stimuli are time dependent, responses represent dynamic char-
acteristics of stimuli by temporal structures of spike, which are not continuous
functions of time. This makes it difficult to relate the time history of stimulus
to the temporal patterns of spikes. Therefore, to search how neural responses
varying with different stimuli, many researchers turn to measure the statistical
signification of temporal structures in spike trains or to determine how much
information about stimulus parameter values is contained in neural responses
by means of information theory [15]. For example, to investigate the encoding
meanings of spike timing and temporal structures or patterns, series expansion
approximation method [16], information distortion method [17] and other meth-
ods have been used [18-22]. These works show that both the temporal patterns
of a spike train and the measurement of dissimilarity between ISI series are im-
portant for extracting the information from a neuronal response. However, how
to express the varied time histories of temporal patterns and the distance is
remained in unsolved.

Taking into account the above considerations, we have developed a way to
quantify the temporal and spatial structures of spikes. As we shall explain below,
the key feature of this novel method is to express spike trains as stepwise function
called response function regarding the dynamic characteristics of spike trains.
Several characteristics of the spike train are readily apparent by means of a group
of temporal pattern variables deduced from response function, which are defined
at sequential moments with equal time interval. Varied temporal patterns of spike
train can be uniquely indicated and the time dependent distance between spike
trains can also be conveniently defined with these variables. And moreover, these
variables may have simple interpretation with neural coding. A tight correlation
between dynamic stimuli and cell responses can be expected to set up.

2 Response Function

A recorded spike train can be characterized simply by a stepwise function called
response function, the count of spikes fired before time t shown as Fig.1.

It is a monotonic function of time, but has various temporal structures or
patterns and exactly reflects the information elicited from stimulus. In geometric
viewpoint, a segment of curve can be characterized with its increment, tangent,
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Fig. 1. Spike train expressed as a stepwise function of time

curvature, area surrounded with time axis and other geometric quantities. In
neuroscience viewpoint, these aspects may contain coding meanings. Therefore,
the temporal pattern variables are introduced basing on geometric quantities of
the response function.

3 Variables for Characterizing the Response Function

The first variable is the increment of response function, namely, the spike count
of spikes within time interval Tj = tj − tj−1, j = 1, 2, . . .:

q(tj) = n(tj)− n(tj−1) (1)

The averaged firing rate over can be expressed as:

r(tj) =
q(tj)
Tj

(2)

It gives the well known rate code or tuning curve of spike train. Evidently,
averaged firing rate only reflects part features of the spike train. One cannot tell
timing and the order of spikes, namely, the temporal patterns of ISI series. To
express the temporal pattern more accurately, we introduced the area surrounded
by response function n(t) and time axis in each interval Tj = tj − tj−1 :

γj =
∫ Tj

Tj−1

n(t)dt (3)

For illustrating, we divide it into two parts: rectangular and stepwise one shown
as Fig.2. The area of rectangular part equals to n(tj−1)Tj and another part is:

γ(tj) =
q(tj)−1∑

i=1

ISI(i) · i+ q(tj)(tj − tjq(Tj)) (4)

Where represents the order of spikes fired in time interval Tj ; tjq(Tj) is the firing
moment of last spike and ISI(i) is the ith ISI in the same interval.

The response function can be roughly approached by such a sequence of rect-
angular. Adding stepwise parts, the response function is approximated further
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Fig. 2. Area of response function

shown as Fig.2. Variable γ(tj) defined with ISIs and the order of spikes also
partly reflects the temporal pattern of spike train. It has statistical meaning,
but we prefer to consider it in the view point of functional; it is a functional
of response function defined in interval Tj . The coding meaning this variable
is that it indicates whether spikes taken placed during gather around moment
tj . For given spike number, the smaller the area γ(tj), the closer to moment
the spikes are. Therefore, more information could be extracted. Suppose that is
uniformly 16 times of the minimum of ISIs expressed with ISImin , and that
each ISI is an integer multiple of ISImin , the total number of possible spike
trains is 216 . The count of spikes q(tj) within Tj can only distinguish 17 kinds
of these possible spike trains, and the area γ(tj) can differentiate 137 kinds of
them. Using both of these variables, more possible spike trains can be differenti-
ated. The third variable is deduced from the approximate slope of the response
function:

s(t) =
n(t+!t)− n(t)

!t (5)

It shows whether a spike fires during sufficiently small !t around time t. For
large!t it gives an averaged firing rate. Here we take!t varied as !ti = ISI(i)
, and have:

s∗(t) =
1

ISI(i)
(6)

Averaging above variable over interval Tj leads:

s(tj) =
q(tj)−1∑

i=1

1
ISI(i)

(7)

This variable shows whether the spikes are close to each other in interval Tj .
Since it has the dimension 1/sec, therefore it can be taken as another firing rate.
Geometrically, it is the averaged slope of the dashed lines in each time interval
Tj shown as Fig.2, where dashed lines connect the ’saw teeth’ of the response
curve. The coding meaning is that this variable can be used as a ’bursting’ index
of spikes; the maximum of s(tj) , smax(tj) = (q(tj)− 1)/ISImin , indicates
that all the spikes fire with the smallest ISImin ; while the minimum of s(tj)
, smin(tj) = (q(tj)− 1)2/Tj means that all spikes are separated uniformly. The
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next one is originated from the ’curvature’ of response curve which is formally
defined as:

k∗ = [
1

ISI(i+ 1)
− 1
ISI(i)

]/[ISI(i+ 1) + ISI(i)] (8)

Since the sign of k∗ depends on the ratio ISI(i+1)/ISI(i) , we use the following
variable to measure the averaged ’curvature’ of the response curve over Tj :

k(tj) =
q(tj)−2∑

i=1

i · ISI(I + 1)
ISI(i)

(9)

It has the code meaning that the ISI increases/decreases. The last one is relevant
to the weight center of the area defined by Eq.(4):

C(tj) =
q(tj)−1∑

i=1

1
2
ISI(i) · i2 (10)

Its code meaning cab be interpreted as the symmetric degree of ISIs within the
interval.

4 The Degree of Reflecting Spike Train

The latter four variables are defined by ISIs and their order; therefore reflect
the temporal structures of ISI series in each time interval Tj . Whether these
variables characterize the spike train can be examined by reconstructing the
spike train with them. In the case of each ISI being integer multiple of the
minimum ISI, taking T as 16 times of the minimum ISI, all possible spike trains
can be uniquely reconstructed with these variables. For q(tj) = 1 or q(tj) = 15 ,
the possible spike trains are 16, spike trains can be exactly reconstructed only by
γ(tj) . When q(tj) = 8 , there are 12870 possible spike trains, the most variety
case, but spike trains can still be exactly reconstructed.

For general cases, ISI varies arbitrarily within a given range. Spike trains
cannot be reconstructed exactly. If suppose a spike only takes several possible
positions in time bin!t = ISImin, for example, each ISI is an integer multiple of
one nth of ISImin, reconstruction can still be carried out. The large the number
n, the higher the precision is. Here we took n=2 to reconstruct a stochastic spike
trains with the following procedures: (A) Finding the minimum ISI!t = ISImin

for a give ISI series, and dividing the time span of the spike train into sequential
intervals T = 16ISImin ; (B) Calculating the original values of the group of
variables for each intervals Tj with formulae (1), (4), (7), (9) and (10); (C)
Placing q(tj) spikes into Tj by keeping ISIs being integer multiple of ISImin/2
and being greater than or equal to ISImin ; (D) Calculating the values of the
group of variables for all of possible spike trains; and finding the spike train that
yields the most approximate values of the group variables comparing to those
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Fig. 3. Reconstruction of a spike train: upper panel is the given spike train and values
of the four variables defined at moments shown as dashed lines; lower panel is the
reconstructed spike train and values of the four variables

of original spike train. The given and reconstructed stochastic spike trains are
shown in Fig. 3.

The validity of reconstruction means that an ISI series is equivalent to these
variables defined at sequential moments. Therefore, the analysis on ISI series
can be done by dealing with these variables.

5 As a Measurement of Dissimilarity Between Spike
Trains

To determine whether a set of ISI series depends systematically on a set of
stimuli, it is important to quantify the similarity (or dissimilarity) of two spike
trains. Dissimilarity helps characterize neural variability and coding [9]. The
distance between spike trains can be defined with this group of variables. At
first all the variables except the spike count are scaled to 0-1 by the following
equations:

γs(tj) = γ(tj)/γq
max(tj) (11)

ss(tj) = s(tj)/sq
max(tj) (12)

ks(tj) = k(tj)/kq
max(tj) (13)

Cs(tj) = C(tj)/Cq
max(tj) (14)

Where gammas(tj) , ss(tj) , ks(tj) and Cs(tj) are scaled variables; γq
max(tj)

,sq
max(tj) , kq

max(tj) and Cq
max(tj) are the maximum values of γ(tj) ,s(tj) , k(tj)

and C(tj) , respectively, among possible spike trains corresponding to spike count
q(tj). While spike count q(tj) is scaled as:

qs(tj) = q(tj)/(T/ISImin) (15)
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Fig. 4. Distances between spike train s1 and s2, s3, s4 and s5, respectively

Here, we take T = 16ISImin and have: qs(tj) = q(tj)/16 . Then the Euclidean
distance between two groups of scaled variables is defined as the distance of
corresponded spike trains. The following example gives distances between one
spike train and other four, respectively, shown as Fig.4.

It can be seen that this measurement can conveniently express the varied
distance along with time. These variables quantitatively give the temporal pat-
terns of a spike train at discrete moments; it can be expect to relate the varied
temporal patterns to the dynamic stimuli.

6 Spatial Patterns

Typically, many neurons respond to a given stimulus, and stimulus features
are therefore encoded by the activities of large neural populations. In studying
population coding, we must examine not only the firing patterns of individual
neurons, but also the relationships of these firing patterns to each other across
the population of responding neurons. A group of similar variables are used to
quantify the spatial patterns of neurons, along sequential time bin containing
only one spike at the most for each neuron.

To quantify the spatial patterns of spikes, neurons are numbered as i =
1, 2, 3 . . .N ; here we take N=16. Their spikes can be represented by a spatial-
temporal function n(i, t), the count of fired neurons whose number is less than
or equal to i, during time bin !t shown as Fig.5.

This spatial pattern varies with time. For given time bin !t < ISImin the
spatial pattern can be represented by five variables similar to (1), (4), (7), (9)
and (10):
q(t): Count of fired neurons during !t;

γ(t) =
q(t)−1∑

i=1

ISS(i) · i+ q(t)(16 −Ni) (16)
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Fig. 5. Response function of neurons, a stepwise function of ’spatial position’ (neuron’s
number) for each time bin
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�− γ(t) ◦ − C(t) ∗ − s(t) �− k(t)

Fig. 6. Time dependent spatial patterns of 16 neurons. Upper panel are 16 stochastic
spike trains. Middle and lower panels gives the values of four pattern variable.

s(t) =
q(t)−1∑

i=1

1
ISS(i)

(17)

k(t) =
q(t)−2∑

i=1

i · ISS(i+ 1)
ISS(i)

(18)

C(t) =
q(t)−2∑

i=1

1
2
ISS(i) · i2 (19)
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Where ISS is taken as the spatial interval of spikes, namely, the number difference
between adjacent fired neurons; Ni is the largest number of fired neurons.

In Fig.6 the time history of spatial patterns of 16 neurons is shown.

7 Conclusions

In conclusion we have shown a method to quantify spike trains with a group
of variables based on characterizing exact temporal structures of ISI series. The
code meaning of these variables can be reflected by one of them, the firing rate
that plays equal role as other variables; though the potential use of other vari-
ables have not been verified. Moreover, since spike train can be reconstructed
with these variables, the works of dealing with spike trains can be transformed
to treating a group of data defined at sequential moments. Consequently, the
distance between spike trains can be simply defined with Euclidean distance be-
tween two groups of variables. If these variables are regarded as discrete time
history of neural response, this quantification leads to a potential way of relating
spike trains to dynamic stimuli for searching what aspects of stimulus are en-
coded in the spike train. A group of similar variables can also be used to quantify
the spatial patterns of spike trains for neuron population.
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Abstract. In this paper we propose a new stochastic nonlinear evolution model 
that is used to describe activity of neuronal population, we obtain dynamic image 
of evolution on the average number density in three-dimensioned space along 
with time, which is used to describe neural synchronization motion. This paper 
takes into account not only the impact of noise in phase dynamics but also the 
impact of noise in amplitude dynamics. We analyze how the initial condition and 
intensity of noise impact on the dynamic evolution of neural coding when the 
neurons spontaneously interact. The numerical result indicates that the noise 
acting on the amplitude influences the width of number density distributing 
around the limit circle of amplitude and the peak value of average number 
density, but the change of noise intensity cannot make the amplitude to 
participate in the coding of neural population. The numerical results also indicate 
that noise acting on the amplitude does not affect phase dynamics.  

1   Introduction 

In 1960s, Winfree started his famous theoretical investigation of phase resetting with his 
studies on circadian rhythms [1,2], he showed that an oscillation can be annihilated by a 
stimulus of a critical intensity and duration administered at a critical initial phase. Haken 
expanded the theory when he researched the synergetics of the brain [3,4]. P. A. Tass 
researched Parkinson’s disease by the theory of phase resetting [5-8]. Taking into account 
the noise background within brain, P. A. Tass developed a stochastic approach to phase 
resetting dynamics. There is abnormal frequency of the action potential in Parkinson’s 
disease. For this reason Tass only considered the curative effect of the frequency in his 
model. And Tass proposed a stochastic nonlinear model of phase dynamics for the 
therapy of Parkinson’s disease, the amplitude of population of neuronal oscillators is 
dealt with as a limit circle, namely, amplitude of the action potential is a constant. In this 
paper, we will apply Tass’s model to the research of cognition and propose a new model 
what base on early our research [9-14]. There are many special structures in nerve nets, 
for instance, lateral inhibition, presynaptic inhibitory and presynaptic facilitation [15]. 
Compared with other structures of neurons, the amplitude and the frequency of the action 
potential of the postsynaptic neuron change stochastically. Furthermore, the background 
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noise in the brain impact on both amplitude and frequency because phase and amplitude 
are inseparable in the analysis of wave. Though action potential of one neuron does not 
attenuate when it transmits in the axon, we should consider the impact of the amplitude 
on the neural coding when we investigate one or more neural functions of the population 
composed of abundant neurons for the reason of complicated structures and impacts of 
some uncertain factors. Neural information is transmitted through a couple of cortex 
areas in the brain information processing, the output of the layer may be the initial 
condition of the next layer, therefore, it is great important to take into account the impact 
of the initial condition on the neural coding. In this paper, we numerically analyze the 
neural coding in the case of different noise intensity and different initial conditions 
according the stochastic nonlinear dynamic model of the neural population and obtain 
some important results what can be explained in biological sense. 

2   Derivation of Stochastic Model Equation 

Setting the amplitude and the phase of N oscillators under the random noise 
independently are jjr ψ, (j 1,2,…… N). The dynamics of phase and the amplitude 

obey the following evolution equations, 
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We assume that in equation (1) all oscillators have the same eigenfrequency , and 
the oscillators’ mutual interactions are modeled by the term ),,( kjkj rrM ψψ − , which 

model the impact of the kth on the jth oscillator. 
kj ψψ −  is the difference of their phase. 

)( jrg  is a nonlinear function of the amplitude. For the sake of simplicity the random 

force, )(tF
ij

i=1,2 is modeled by Gaussian white noise, which is delta-correlated with 

zero mean value[1]:  
where 

jkδ  denotes the Kroneker delta. 

According to Eq. (1) and (2) one obtains the Fokker-Plank equation about probability 
density f : 
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where ),,,,,,( 2121 trrrff NNΨΨΨ= f  is function of the phases and the 

amplitudes of oscillators, which evolve along with time. By introducing the abbreviation 
),,(),,,( kjkjkjkj rrMrr ψψ −+Ω=ΨΨΓ  and the average number density 
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where R denotes the probability when the amplitude 
jr  of every oscillator equals R, ψ  

denotes the probability when the phase 
jψ  of every oscillator equals ψ . Inserting (4) 

into Eq. (3), and then the Fokker-Plank equation with average number density is given by 
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)RR( ′′−ψψM  is a π2 -period function, it can be expanded as the sum of 

progression by Fourier transform. We define nonlinear function of amplitude and the 
mutual interaction term as follows: 
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As in Tass’s reference we assume 
mC 0 in function (6)

mK  denote the  coupling 

coefficient among neurons. The first term of average number density to be transformed in 
term Fourier is given by 
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0
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=dRtRn
R

, 
0R  is the upper limit of the amplitude, 

0R 2 in 

this paper. 

3   Impact of Noise Intensity on Neural Coding 

For the sake of research of noise impact on the dynamics of amplitude, in the case of 
spontaneous activity, the parameters are chosen as follows: 

,21 =K ,0432 === KKK π2,4.01 =Ω=Q , 

initial condition is given by 

 += 1)(0,,0()0,,( RnRn ψ )sin01.0 ψ  .           9  

We choose two different noise intensity: 12 =Q 1.02 =Q . The equation (5) is 
numerically calculated by difference method and the four groups of figures are obtained 
as follows: 
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                                  a                                                                b  

Fig. 1. n about the amplitude change along with time (a) 12 =Q (b) 1.02 =Q  

The limit circle R=1 of the amplitude is confirmed by Eq. (2) and function (7). The 
distribution of average number density on the amplitude broadens when the intensity 

2Q  of Guassian white noise was larger, the larger the intensity 
2Q  is, the wider the 

distribution of average number density is around the limit circle. The distribution will 
be a narrow band peak when the noise intensity 

2Q  is small enough. Though the noise 

intensity 
2Q  are different in Fig.1, probability of the amplitude of action potential 

centralize around the limit circle, namely, tend to the R=1, in other words, change of 
noise intensity 

2Q  cannot change the configuration of the distribution and the 

amplitude does not participant in the population coding expect the noise is enough 
strong to change the original distributing (Fig.1) around the limit circle. This agrees 
with the conclusion in reference [7]. 

    

                                      a                                 b  

Fig. 2. The figure of ),,( tRn ψ at T=7.351s: (a) 12 =Q  (b) 1.02 =Q  

Though noise intensities are different in Fig.2.(a) and Fig.2.(b), the wave crests locate 
at the same phase at the time T=7.351s. But their peak values are different, one is 1.8787 
when 12 =Q , the other is 4.3528 when 1.02 =Q . It shows that the stronger the noise acting 

on the amplitude is, the wider the distributing of average number density on the amplitude 
is, and the smaller the peak value of the wave is.  

The stochastic fluctuant range of the amplitude changes on the limit circle R=1, the 

amplitude fluctuates in 0.82~1 in the case of 12 =Q (Fig.3.(a)), but  amplitude fluctuates 
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in 2.1~2.5 in the case of 1.02 =Q . It shows that noise intensity impacts the average number 

density’s evolution course in the case of same initial condition. 

    

                                      a                                                                   b  

Fig. 3. The evolution figure of average number density on the limit circle: (a) 12 =Q ,  (b) 
1.02 =Q , q(t)=n(0,1,t) 

    

                                     a                                                                   b  

Fig. 4. Firing density on the limit circle. (a) 12 =Q , (b) 1.02 =Q , ),1,0()( tntp =  

According to the relation of the average number density and the fire density in Tass’s 
reference, Fig.4 denotes that the neuron fires when the phase of the jth neuron equals 0. 
According function (4) what is the definition of the average number density, amount of 
firing neurons at time t is given by ),,()( trntp ρ= . )(tp  is a macrovariable which 

corresponds to observable typically measured in experiments. Experimentalists are not 
able to measure the firing behavior of a large cluster of neurons; they can only assess 
amount of firing neurons, i.e. how many neurons fire at time t. For this reason the fire 
density )(tp  is introduced. It indicates that researching the phase resetting dynamics of 

the neural oscillators on the limit circle is feasible, in other words, the noise 
2Q  acting on 

the amplitude does not impact on the neuron’s phase dynamics. 
According to the numerical results, we can observe that noise in evolution of the 

amplitude has some affection on the probability distributing of the amplitude. The 
average number density diminishes on the limit circle when noise intensity acting on the 
amplitude augments (Fig.3.). A. G. Leventhal [16] pointed out that the energy of the noise 
within brain augment because the content of GABA diminishes. Our result indicates that 
the firing density of neurons diminishes on the limit circle of amplitude (Fig.4.). 
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4   The Impact of Initial Condition on Neural Coding 

In order to investigate how the initial condition impacts on the neural coding, we choose 
the case of one coupling parameter 01 ≠K  to discuss. The result is also the same with 

others coupling structures. The parameters are setting as 
,0432 === KKK ,21 =K ,4.01 =Q π2=Ω , 2.02 =Q . One obtains two groups of 

figures after computing numerically Eq. (5). 

   

                   a                                                                  b  

  

c  

Fig. 5. The figure of ),,( tRn ψ at T=7.351s: the initial condition is 
(a) )sin05.01)(0,,0()0,,( ψψ += RnRn   (b) )2sin05.01)(0,,0()0,,( ψψ += RnRn  
(c) )2sin05.0sin05.01)(0,,0()0,,( ψψψ ++= RnRn  

We compare the three evolution results of the average number density at T=7.351s 
under case of the stable state. From Fig.5.(a) and Fig.5.(c), one can know that the two 
figures of the average number density are same though their initial conditions are 
different. From Fig.5.(b), one can know that the average number densities of the neural 
oscillators are same at T=7.351s when they are at the same amplitude and different 
phases, the average number density will keep this figure from now on. The result shows 
that the initial condition what only contain higher-ordered harmonics terms does not 
make the average number density change stochastically along with time finally. 
Fig.6.(b) can approve the conclusion, the coupled structure of the neural population 
determines its cognitive capability.  
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                                   a                                                                    b  

  

c  

Fig. 6. n about the phase evolutes along with time on the limit circle: 
(a) )sin05.01)(0,,0()0,,( ψψ += RnRn  (b) )2sin05.01)(0,,0()0,,( ψψ += RnRn    (c) 

++= ψψ sin05.01)(0,,0()0,,( RnRn )2sin05.0 ψ  

Comparing Fig.6.(a) with Fig.6(c), their steady states are the same, namely, their 
periods and the shapes of waves are the same. The result indicates that the higher rank 
in the initial condition only impacts on the course of transition of the evolution of the 
average number density, namely that it does not impact on the result of evolution. The 
different types of synapses increase the complexity when the neurons transmit 
information. The neural population which has lower-ordered coupling structure can not 
recognize higher-order initial condition, that is why the neurons can filtrate some 
information they does not need when they are dealing with information. 

5   Conclusion 

In this research, we propose a stochastic nonlinear dynamic model which is used to 
describe the phases and the amplitudes of neurons evolve along with time when neural 
population actives. We first describe the dynamic evolution course in three-dimensioned 
space by introducing the average number density ),,( tRn ψ . 

The result of numerical analysis indicates that the larger the noise intensity 
2Q  is, the 

wider the distributing is. But the configuration of the distributing is not changed, 
namely, the probability distributing of the amplitude centralize around the limit circle 
R=1, it is the same with Tass’s supposition. The noise on the amplitude has no effect on 
the neural coding. It indicates change of noise acting on the amplitude does not change 
the character of the phase dynamics on the limit circle. For the sake of simplicity, we 
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will not take into account the noise’s impact on the amplitude in our later research, but 
it will lose a part of coding information. 

The result of numerical analysis also indicates that different initial conditions have 
distinct impact in the dynamic evolution of the average number density. The evolution 
course is the coding course. The initial condition and the coupled structure among 
neurons determine the coding result. It may be explained that the output of the former 
layer is the initial condition of the later layer. Though the third initial condition contain 
two-ordered harmonic term, the evolution result only has one peak as result of the first 
initial condition, namely, it does not impact   result of neural coding. It indicates that 
neural coding is mostly dominated by the structure of the system because the neural 
system does not have this ability of coding. Though the initial condition has been 
changed, it does not impact result of coding.  

In this paper we research the neural oscillators’ mutual interactions and the dynamic 
evolution when neuronal active spontaneously and obtain the result that amplitude 
dynamics impacts on the neural coding. We will introduce how the stimulate influences 
on the neural coding in the other paper.  

Project “Phase resetting of neural dynamic system and brain information 
processing” (30270339) supported by National Natural Science Foundation of China 
(NSFC) 
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Abstract. Till now, the problem of neural coding remains a puzzle. The intrin-
sic information carried in irregular neural spikes sequence is not known yet. But 
solution of the problem will have direct influence on the study of neural infor-
mation mechanism. In this paper, coding mechanism of the neural spike se-
quence, which is caused by input stimuli of various frequencies, is investigated 
based on analysis of H-H equation with the method of nonlinear dynamics. The 
signals of external stimuli -- those continuously varying physical or chemical 
signals -- are transformed into frequency signals of potential in many sense or-
gans of biological system, and then the frequency signals are transformed into 
irregular neural coding. This paper analyzes in detail the neuron response of 
stimuli with various periods and finds the possible rule of coding. 

1   Introduction 

In a paper published in Science[1], Gilles Laurent remarked: “Studying a neural coding 
requires asking specific questions, such as the following: What information do the 
signals carry? What formats are used? Why are such formats used? Although superfi-
cially unambiguous, such questions are charged with hidden difficulties and biases.” 
   Till now, it is still not clear what meaning these irregular neural pulse sequences is. 
   The coding mechanism of the neural discharge spikes sequence caused by the input 
signals (pulse) of various frequencies is analyzed in this paper using the method of 
nonlinear dynamics. For a neural system, when sensory organs are sensing the exter-
nal continuous signals of physical or chemical, the first step taken is to transform 
these analog signals into the frequency signals of neural response[2], and then the 
frequency signals are transformed into irregular neural pulse sequence. What is the 
rule of transmission like? Or how does neuron encode the frequency information? 
This is the key issue to be discussed in this paper. 

2   Circle Maps of Neurons 

The main task of neural coding study is to explore how irregular neural pulse se-
quence varies with the input signal. Once the variation rule is discovered, the rule of 
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signal variation in the neural system can be made clear, and finally the mechanism of 
neural coding can be found. For this, circle maps can be used as a helpful tool [4]. 

First, let’s consider the response signal of a neuron stimulated by a pulse with con-
stant frequency. In the paper, the classical H-H equation, shown in equation (1), is 
adopted to describe the potential variation of a neuron. Several decades passed, basic 
structure of the equation remains unchanged, though many persons contribute various 
modifications to it [3]. For generality, we take this function as the research target. 
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The parameter list used in the emulation is shown in Table 1. 
From the emulation, it is found that an irregular pulse sequence (response signal) 

will come out if a sequence of neural pulses with equal intervals (stimulus signal) is 
imposed on a neuron: 

Input signal takes the form of periodical square wave with amplitude of 20mA/cm2 
and width of 1ms. The width selection of input pulse signal depends on the general 
width of potential of neural system. Period of sequence of stimulus input is 5ms.  

Runge-Kutta method with variable step size is applied to the numerical solution of 
H-H equation. In detail, routine ode45 of Matlab is chosen, while the relative error 
range sets to 1e-6, and the absolute error range sets to 1e-9. Meanwhile, the minimal 
time step period falls into the range from 1e-8 to 1e-7, and the maximal time step pe-
riod falls into the range from 0.01 to 0.1. 
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Table 1. Parameters list in formula (1) 

Parameter Value Unit 

C  1 uF cm-2 

Kg  36 mS cm-2 

Nag  120 mS cm-2 

lg  0.3 mS cm-2 

KE  -71.967 mv 

NaE  54.98 mv 

lE  -49 mv 

T  6.3 

restV  -59.805 mv 

Take the time when one action potential reaches its peak as the time point of the 
potential, the interval between current time point and the nearest preceding one is 
referred to as period of response pulse. Then the period of response pulse is quite 
irregular. We extract the circle maps of the signal according to the period of input 
signal [4]. 

For a given initial condition, we get a phase sequence: 

{ i}= 1 2 3…… n . (3) 

where i  takes relative value. 
From sequence (3), we obtain the following equation (4) 

n+1= n . (4) 

Since there is no explicit function in it , we are unable to obtain the concrete form 
of function , however, its curve can be drawn based on equation (3), as shown in 
Fig.1. 

It can be seen from Fig. 1 that the relation between n and n+1 forms a regular func-
tion. 

From the point of circle maps theory, this is a monotonic increasing function. If the 
initial phase 1 is given, 2 can be determined according to Fig.1. Through similar 
deduction, a phase sequence is obtained consequently, the phase rule of which coin-
cides with that of actual neural impulses. This rule forms the solid base for us to un-
derstand the mechanism of neural coding. 

Next, we will analyze the pulse sequence using circle maps method. 
 
 



502 Z. Hong, F. Lu-ping, and T. Qin-ye 

 

�

Fig 1. The circle maps of responses of the neuron, when the period of input stimulus is 2.6ms. 
Relative coordinates  = i/  are used, where  is the period of the input stimulus. 

3   Symbolic Dynamics of Circle Map 

Symbolic dynamics analysis can be performed with the help of circle map. For it is a 
monotonic increasing maps function, without descending part, what we should do is 
to extract the symbol periodically[4]. According to the calculated pulse sequence 
above, the distance between the ith pulse and the i+1th pulse is almost as lengthy as 5 
to 6 periods of input pulse. To simplify, pulse within 5 periods is defined as L, and 
pulse within 6 periods is defined as R. For generality, when input frequency increases, 
pulse within 5-6 periods may expand to range of 6-7 or 7-8 periods. The approach of 
extracting symbol remains the same. 

{Si}= S1S2 S3……Sn……  , where   Si= R or L. (5) 

Then, one specific initial phase value 1 can determine one pulse sequence and then 
one phase sequence { i}. Similarly, one symbol sequence {Si} can be determined, 
which can be orderly arranged based on initial phase value 1. And its rule is shown as 
following: 

Sequencing method for a symbol sequence is achieved with comparison one by 
one. Assume there are two sequences:  

A=a1a2a3…..an      

B=b1b2b3….bn  . 
(6) 
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Firstly, the 1st symbols (a1 & b1) is compared as follows: 
If a1=R, and b1=L 

R>L 

This indicates that the phase of the 6th period( 1=a1) is larger than that of the 5th pe-
riod ( 1=b1). 

In the case of more than two symbols, we have 
(a1a2a3……….aiai+1  &  b1b2b3----------bibi+1) 

L < R . 
(7) 

where =a1a2a3……ai =b1b2b3-------bi. (8) 

It is unnecessary to know the value of every initial phase 1. Once symbol sequence 
corresponding to each of the initial phases is given, the relative value of each initial 
phase is determined. This is so-called sequencing rule of symbolic dynamics. 

4   Principle of Frequency Coding in Neuron 

Next, we will study the variation of output phase sequence under the condition of 
sequence of impulse with various frequencies as input. 

Actually the sequencing rule demonstrated in equation (7) reflects the ordering by 
initial phases. Now the question is: when the frequency of input pulse changes, does 
the output symbolic sequence order in terms of frequency? From the point of sym-
bolic dynamics, it is an ordering problem by parameters. Therefore, the impact on the 
curve of function ( n) , shown in Fig.1, which is posed by the variation of input 
frequency, can be assessed according to equation (1).  

The stimulus signals, depicted in the group figures of Fig.2, arranging from top to 
down and from left to right, have periods ranging from 1.1ms to 2.5ms and pulse 
width of 0.1ms. From Fig.2, it can be seen that the function curve of circle maps shifts 
right as the frequency of stimulus descends. In the figure, the function combines two 
part, L( n) in the left and R( n) in the right. When R( n) moves to the end, L( n) 
will replace it and at the same time a new L( n) is formed. Refer to the changes be-
tween the 1st small figure and the 2nd small figure from the left in the second row, it 
can be seen that the changes behaves regularly. It seems that the 2nd small figure from 
the right in the bottom row of Fig.2, which contains only several points, does not 
match with its surrounding figures. Actually this is due to drawing techniques. The 
small figure serials of Fig.2 are not depicted point by point according to phase angle 
calculated one by one originating from the initial phase angle. On the contrary, each 
point is determined by Poincaré maps after a stimulus sequence with a certain fre-
quency is given. For its property of ergode, we can obtain almost all the points of the 
curve.  

Some figures contain only several points, due to the occurrence of periodical solu-
tion under the specific frequency. Thus, Poincaré maps produces limited number of 
points, while the ordering rule remains unchanged. 
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Fig. 2. Variant  and corresponding frequence map 

Because they are all monotonic increasing functions, and the movement and fre-
quency of ( n) are changed monotonously, it is discernable that under certain initial 
condition, the yielded phase sequence changes monotonously too.  

After pulse sequences with various frequencies are assigned to equation (1), sym-
bols are extracted with the same approach (see Section 3) in the subsequent computer 
experiment. 

Table 2 is obtained using the above method. Within the permission range of stimu-
lus frequencies, the period of system response pulse varies from 5  to 6 . Therefore 
the symbol sequence of the system response can be described simply with two sym-
bols. Symbol 0 (or L) represents that the pulse period is 5 , whereas symbol 1(or R) 
represents that the pulse period is 6 . 

Table 2 exhibits that symbol sequence becomes smaller when the period increases 
(frequency decreases). 

In column 5 and column 6 of table 2, period changes from 2.64 to 2.65. Though it 
is obvious that the frequency descends, the corresponding 10 symbols are identical, 
therefore there is no way to distinguish which symbol sequence is bigger. However, 
the change can be observed in the case of 20 symbol sequence. It reveals that the 
more lengthy one symbol sequence is, the higher resolution is. 

In Fig.2, we notice that system has an approximate periodical solution when the 
stimulus period is as long as 2.4ms. Meanwhile, the right part of the circle maps func-
tion is to be replaced with the left part in the movement process of the circle maps 
function caused by the variation of stimulus period, i.e. the system evolves to the  
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critical condition, in which the new left branch emerges. As circle maps function 
changes around the critical zone, the scope of distance between two stimulus periods, 
where two consecutive system responses occur, changes accordingly, requiring more 
symbols to implement the symbolization of system response. Fig.3 illustrates the 
symbol sequence of system response at the time when stimulus period ranges from 
2.3ms to 2.5ms; symbol 0 indicates that the distance between two stimulus periods 
where two consecutive system responses occur is equal to 5; symbol 1 indicates that 
the distance between two stimulus periods where two consecutive system responses 
occur is equal to 6; symbol 2 indicates that the distance between two stimulus periods 
where two consecutive system responses occur is equal to 7. The ordering rule coin-
cides with that of two-symbol sequence. In Table 3, the ordering relation of the sym-
bol sequence is demonstrated, i.e. symbol sequence decreases also once the stimulus 
frequency decreases. 

If symbolization of system response is implemented in a much wider scope of 
stimulus period variation, more symbols are required. Generally, we can exploit any 
element in the symbol set to express the symbol sequence of system response. 

={ 1 2 3…… n}.  (9) 

  For example, table 2 is the case of n=2, in other words, the symbol set contains only  

Table 2. The symbol sequence of the system response orbit as the period of the stimulus ranges 
from 2.6ms to 2.7ms, with step 0.1ms. Here, 0 and 1 correspond to L and R in the symbol 
sequence. 

Period of Stimu-
lus ms  

Corresponding Symbol 
Sequence (10 symbols) 

Corresponding Symbol  
Sequence (20 symbols) 

2.6 1010101101 10101011010101010110 
2.61 1010101010 10101010101011010101 
2.62 1010101010 10101010101010101010 
2.63 1010101010 10101010100101010101 
2.64 1010010101 10100101010101010010 
2.65 1001010101 10010101010010101010 
2.66 1001010100 10010101001010010101 
2.67 1001010010 10010100101001010010 
2.68 1001001010 10010010100100101001 
2.69 1001001001 10010010010010010100 
2.7 0100100100 01001001001001001001 

two symbols, representing distances between impulses equal to 5 or 6 periods respec-
tively, with i= 0 or i= 1 (L or R) in equation (9). 

In Table 3, n equals to 3, indicating the symbol set comprises of 3 symbols, which 
represents 5,6 or 7 periods of pulse interval respectively, and i is equal to 0,1, or2. 
If the scope of stimulus frequency expands further, i varies in the wider range of 
period, having more change of symbols (see equation (9) ). 
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Table 3. The symbol sequence of the system response orbit as the period of the stimulus ranges 
from 2.3ms to 2.5ms, with step 0.2ms. Here the frequency scope of the stimulus extends 
beyond the range, which requires 3 symbols for representation, rather than 2 symbols, with i 
=0,1 or 2. 

Period of 
Stimulus (ms) 

Corresponding Symbol 
Sequence (10 symbols) 

Corresponding Symbol 
Sequence (20 symbols) 

2.30 2111121111 21111211112111211112 
2.32 1211111211 12111112111112111112 
2.34 1211111111 12111111112111111112 
2.36 1121111111 11211111111111111121 
2.38 1111211111 11112111111111111111 
2.40 1111111111 11111111111111111111 
2.42 1111111111 11111111111111110111 
2.44 1111111011 11111110111111111011 
2.46 1111011111 11110111111011111101 
2.48 1110111101 11101111011111011110 
2.50 1101111011 11011110111011101111 

5   Discussion 

According to the above analysis, we have the following points. 

1) Though the output response of neuron, stimulated by various frequencies, is 
quite irregular, it becomes regular under the analysis using method of circle 
maps and symbolic dynamics. Measures of frequency signal can be determined 
from symbol sequences. It is also the process of frequency detection for a neural 
system, various sensory organs change analog signal to frequency signal, and 
then to chaotic orbits (a sequence of irregular pulses). So, what is discussed in 
the paper is the general procedure of neural information process. 

2) This method can be used to distinguish the seemingly messy neural pulses and 
then order them. If these orbits which are able to be ordered are assembled to-
gether, an orbit space can be constructed. In addition, this orbit space is an or-
derly one. We think information processing involving neural system can be de-
veloped in orderly space. In order space, some operations can be performed, 
which provide the foundation for further study on neural information processing. 

3) If H-H function can reflect the real-world neuron’s electric activity in qualitative 
fashion [3], the above analysis is suitable for the real-world neuron’s activity. 
Even if there are some discrimination between H-H function and the real situa-
tion, if only the curve shapes of function L( n) and R( n) in Fig.1 are changed, 
and if function monotonicity is not changed, then no influence will be imposed 
on the extraction of symbol. Therefore the above outcomes still take effect. If 
any change happens on monotonicity, some modification is required for the 
above analysis 
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Because of page limitation, we will end our discussion here. Actually this analysis 
is capable to disclose the information coding mechanism of various sensory organs. In 
another paper, the information process mechanism of olfactory neural system will be 
introduced.
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Abstract. We study the synchronization phenomena in a pair of Hindmarsh-
Rose(HR) neurons with chemical coupling. We find that excitatory synaptic 
coupling pushes two neurons towards antisynchrony, and weak or moderate in-
hibitory synaptic coupling pushes two neurons towards antisynchrony too, but 
sufficiently strong inhibitory synaptic coupling pushes two neurons towards 
synchronized periodic oscillations without spikes. And synchronization patterns 
can’t be changed even if the intrinsic frequency of individual cell is changed by 
modulating external input current. Investigating the effect of synapse on ISIs bi-
furcation structures shows that whether excitatory synapse or inhibitory syn-
apse, both remarkably influence ISIs structures. That is, the chemical coupling 
between neurons wholly distorts the neuronal information.  

1   Introduction 

Synchronization of nonlinear oscillators has been widely study recently [1-5]. Espe-
cially, the affection of electrical and chemical coupling on synchrony of coupling 
neurons has attracted lots of attention.  

In Ref. [3], the experimental studies of synchronization phenomena in a pair of 
biological neurons interacted through electrical coupling were reported. In Ref. [4], 
the synchronization phenomena in a pair of analog electronic neurons with both direct 
electrical connections and excitatory and inhibitory chemical connections was stud-
ied. Traditionally, it has been assumed that inhibitory synaptic coupling pushes neu-
rons towards antisynchrony. In fact, If the time scale of the synapses is sufficiently 
slow compared with the intrinsic oscillation period of the individual cells, inhibition 
can act to synchronize oscillatory activity [5].  

In this paper, we investigate dynamics of network of two HR neurons with chemi-
cal synapses, the models used were given in Ref. [6]. The results show that excitatory 
synapses can antisynchronize two neurons and enough inhibition can foster phase 
synchronization. And the synchronization patterns of two coupled neurons can’t be 
changed with intrinsic frequency of individual cell being changed by modulating 
external input current,   

Investigating the effect of chemical synapse on ISIs bifurcation structure[7] of 
chemical coupling HR neurons shows that the ISIs bifurcation structures are wholly 
changed by chemical synapse.   
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2   Hindmarsh-Rose Models with Electrical and Chemical Synaptic 
     Connections    

Consider two identical HR models with reciprocal synaptic connections. The differen-
tial equations of the coupled systems are given as[6]� 
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Where jiji ≠== ,2,1,2,1   

In the simulation, let 56.1,006.0,0.4,0.5,0.1,0.3,0.1 −=χ====== rsdcba , 

0.3=dcI , dcI denotes the input constant current. The last term of the first formulation 

is synaptic current of coupling system, se  is the strength of the synaptic coupling, and 

4.1=cV  is synaptic reverse potential which is selected so that the currents injected 

into the postsynaptic neuron are always negative for inhibitory synapses and positive 
for excitatory synapses. Since each neuron must receive an input every time the other 
neuron produces a spike, we set 01.00 =Y  and 85.00 =X  [6]. In numerical simula-

tion, the double precision fourth-order Runge-kutta method with integration time step 
0.01 was used, the initial condition is (0.1,1.0,0.2,0.1,0.2,0.3). In each realization, the 
data for n<104 are ignored to avoid transients. 

3   Synchronizing Two HR Neurons with Synaptic Connection  

The chemical synapse is excitatory for 0>se  and is inhibitory for 0<se . The results 

show that two neurons will be irregular oscillation with small excitatory coupling 
strength, and will be in full antisynchrony for enough excitatory coupling strength, 
such as Figs.1(a,b). It is interesting that these results do not agree with those of Ref. 
[4], and are contrary to traditional view. 

Investigating the synchrony course of two neurons with inhibitory synapses 
shows that two neurons oscillation are irregular for small coupling intensity, and the 
phase difference between two neurons increase gradually with coupling strength in-
creasing, till 45.0−=se  at which the phase difference between two neurons are big-

gest, see Fig.1c, which means that two neurons are full antisynchrony. Continuing to  
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increase intensity of inhibitory coupling, the phase difference between two neurons 
will decrease, till 9.0−=se , when two neurons are full synchronous periodic oscilla-

tion without spikes, such as Fig.1d. In Ref. [8], the intrinsic oscillation frequency of 
the individual cell was increased by increasing external stimulating current, and the 
systems with inhibitory coupling can evolve to synchronous state. In our paper, 
numerical results show that the synchronization patterns of membrane potential and 
synaptic current of two coupling neurons haven’t been changed even if the intrinsic 
oscillation frequency of individual cell has been changed with changing external input 
current.  

 

  
 

Fig. 1. ( a, b) Time courses of membrane potential of two neurons for excitatory synapse, two 
neurons are irregular activity for 03.0=se , period 1 antisynchrony for 3.0=se , respectively; 
(c,d) Time courses of membrane potential of two neurons with inhibitory synapse., two neurons 
are full antisynchrony for es=-0.45,  two neurons are full synchrony periodic oscillation for  
es=-0.9  

4   The Effect of Chemical Coupling on ISIs Bifurcation Structure 

The neuronal information proceeding and coding are mainly based on ISIs. Figs.2 
(b,c) show ISIs bifurcation diagrams of coupled HR neurons with es=0.3 and es=-0.5, 
respectively. Compared with fig.2a, it is obvious that ISIs structures are remarkably 
different from those of individual HR neuron without coupling. The difference of ISIs 
structures between individual HR neuron and coupled HR neuron means that the 
coupled neurons undergo entirely different firing patterns from those of individual 
neuron without coupling under the same parameter values; that is, the neuronal infor-
mation is wholly distorted by the chemical coupling between neurons. 
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Fig. 2. (a) Bifurcation diagram of ISIs vs the external current Idc in single HR neuron without 
coupling;  (b,c) ISIs bifurcation diagram vs external input current Idc for es=0.3 and es=-0.5, 
respectively 

5   Conclusion 

In this paper, we investigate synchronization patterns of two HR models with chemi-
cal coupling. The results show that excitatory synapses can antisynchronize two neu-
rons, and weak or moderate inhibitory synaptic coupling can antisynchronize two 
neurons too, but strong inhibitory synapse can foster phase synchrony of two neurons. 
And the synchronization patterns of membrane potential and synaptic current of two 
coupling neurons haven’t been changed even if the intrinsic oscillation frequency of 
individual cell has been changed with changing external input current. The ISIs bifur-
cation structures are wholly changed by chemical synapse.  That is, the chemical 
coupling between two neurons wholly distorts the neuronal information. 
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Abstract. This paper deals with the estimation of the linear and the
nonlinear quantile regressions using the idea of support vector machine.
Accordingly, the optimization problem is transformed into the Lagrangian
dual problem, which is easier to solve. In particular, for the nonlinear
quantile regression the idea of kernel function is introduced, which al-
lows us to perform operations in the input space rather than the high
dimensional feature space. Experimental results are then presented which
illustrate the performance of the proposed method.

1 Introduction

Quantile regression introduced by Koenker and Bassett[6] is gradually envolving
into an ensemble of practical statistical methods for estimating and conducting
inference about models for conditional quantile functions. Quantile regression
is an increasingly popular method for estimating the quantiles of a distribution
conditional on the values of covariates. Regression quantiles are robust against
the influence of outliers and, taken several at a time, they give a more com-
plete picture of the conditional distribution than a single estimate of the center.
Just as classical linear regression methods based on minimizing sum of squared
residuals enable one to estimate a wide variety of models for conditional mean
functions, quantile regression methods offer a mechanism for estimating models
for the conditional median function, and the full range of other conditional quan-
tile functions. By supplementing the estimation of conditional mean functions
with techniques for estimating an entire family of conditional quantile functions,
quantile regression is capable of providing a more complete statistical analysis
of the stochastic relationships among random variables. The introductions and
current research areas of the quantile regression can be found in Koenker and
Hallock[9], Yu et al.[15].

In this paper we present the estimation methods of linear and nonlinear
quantile regression by utilizing support vector machine(SVM). The SVM, firstly
developed by Vapnik and his group at AT&T Bell Laboratories, is being used as
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a new technique for regression and classification problems. SVM is gaining pop-
ularity due to many attractive features, and promising empirical performance.
SVM was initially developed to solve classification problems but recently it has
been extended to the domain of regression problems. SVM is based on the struc-
tural risk minimization(SRM) principle, which minimizes an upper bound on
the expected risk unlike ERM minimizing the error on the training data. By
minimizing this bound, high generalization performance can be achieved. In
particular, for the SVM regression case SRM results in the regularized ERM
with the ε-insensitive loss function. The introductions and overviews of recent
developments of SVM regression can be found in Vapnik[12][13], Gunn[4], Smola
and Schölkopf[11], Cristianini and Shawe-Taylor[2], Kecman[5], and Wang[14].

The minimization problem associated with linear quantile regression is in
essence the linear programming(LP) optimization problem, which is based on
simplex algorithm or interior point algorithm. The current state of algorithms
for nonlinear quantile regression is far less satisfactory. The widely used algo-
rithm is interior point algorithm. Nonlinear quantile regression poses new al-
gorithmic challenge. Refer to Koenker and Park[8] and Koenker and Hallock[9]
for the algorithms. Training an SVM requires the solution of a quadratic pro-
gramming(QP) optimization problem. Thefore, both the linear and the nonlinear
quantile regressions by SVM require solving QP problem to get estimates.

The purpose of this paper is to present the estimation methods of the linear
and the nonlinear quantile regressions using SVM. The rest of this paper is
organized as follows. In Section 2 we present the estimation methods of quantile
regression using SVM. In Section 3 we perform the simulation studies through
examples. In Section 4 we give the conclusions.

2 Quantile Regression via SVM

Conditional quantile estimation has long been studied in the literature. Most
commonly used approach is quantile regression introduced by Koenker and
Basset[6]. In this section we derive the linear and the nonlinear quantile re-
gression methods by implementing the idea of SVM. Consider a random sample
{xi, yi}n

i=1 with input vector xi ∈ Rd and output variable yi ∈ R. Here the
output variable yi is related to the vector xi of covariates, possibly including a
constant 1.

2.1 Linear Quantile Regression

In the linear quantile regressin model introduced by Koenker and Bassett[6] the
quantile function of the response yi for a given xi is assumed to be linearly
related to the input vector xi as follows

Q(θ|xi) = β(θ)txi for θ ∈ (0, 1), (1)

where β(θ) is the θ-th regression quantile and its estimator is defined as any
solution to the optimization problem,
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min
β

n∑
i=1

ρθ(yi − β(θ)txi) for θ ∈ (0, 1), (2)

where ρθ(·) is the check function defined as

ρθ(r) = θrI(r ≥ 0) + (θ − 1)rI(r < 0).

We now describe how to implement the idea of SVM for the linear quantile
regression. Since quantile regression is in principle based on absolute deviation
loss, to derive quantile regression using the idea of SVM, we should adopt the
procedures of the case ε = 0 in a standard SVM. In order to follow the basic
idea of quantile regressions, we express xi as xi = (1,xt

i)
t. We use the same

notation for the resulting new vectors to avoid the abuse of notation. Then, we
can express the linear quantile regression problem by the formulation for SVM.

minimize
1
2
‖w‖2 + C

n∑
i=1

(θξi + (1− θ)ξ∗i ) for θ ∈ (0, 1), (3)

subject to

⎧⎨⎩yi −wtxi ≤ ξi
wtxi − yi ≤ ξ∗i
ξi, ξ

∗
i ≥ 0

.

where the θ-th regression quantile β(θ) is expressed in terms of w. The constant
C > 0 determines the trade off between the flatness of f and the amount up to
which deviations larger than 0 are tolerated. We construct a Lagrange function
as follows:

L =
1
2
‖w‖2 + C

n∑
i=1

(θξi + (1− θ)ξ∗i )−
n∑

i=1

αi(ξi − yi + wtxi)

−
n∑

i=1

α∗
i (ξ

∗
i + yi −wtxi)−

n∑
i=1

(ηiξi + η∗i ξ
∗
i ). (4)

We notice that the positivity constraints αi, α
∗
i , ηi, η

∗
i ≥ 0 should be satisfied.

After taking partial derivatives of equation (4) with regard to the primal vari-
ables (w, ξi, ξ∗i ) and plugging them into equation (4), we have the optimization
problem below.

max
α,α∗−

1
2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )x
t
ixj +

n∑
i=1

(αi − α∗
i )yi (5)

with constraints αi ∈ [0, θC] and α∗
i ∈ [0, (1− θ)C].

Solving the above optimization problem with the constraints determines the
optimal Lagrange multipliers, α̂i, α̂∗

i , the θ-th regression quantile estimators
and the θ-th quantile function predictors of the input vector x are obtained,
respectively as follows:

ŵ =
n∑

i=1

(α̂i − α̂∗
i )xi and Q̂(θ|x) =

n∑
i=1

(α̂i − α̂∗
i )x

t
ix. (6)

Here, ŵ and Q̂(θ|x) depend implicitly on θ through α̂i and α̂∗
i depending on θ.
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2.2 Nonlinear Quantile Regression

In the nonlinear quantile regression model the quantile function of the response
yi for a given xi is assumed to be nonlinearly related to the input vector xi ∈ Rd.
To allow for the nonlinear quantile regression, the input vectors xi are nonlin-
early transformed into a potentially higher dimensional feature space F by a
nonlinear mapping function φ(·). Here, similar to SVM for nonlinear regression,
the nonlinear regression quantile estimator cannot be given in an explicit form
since we use the kernel function of input vectors instead of the dot product of
their feature mapping functions. The quantile function of the response yi for a
given xi can be given as

Q(θ|xi) = β(θ)tφ(xi) for θ ∈ (0, 1), (7)

where β(θ) is the θ-th regression quantile. Then, by constructing the Lagrangian
function with kernel function K(·, ·), we obtain the optimal problem similar to
the linear quantile regression case as follows

max
α,α∗−

1
2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi,xj) +
n∑

i=1

(αi − α∗
i )yi (8)

with constraints αi ∈ [0, θC] and α∗
i ∈ [0, (1− θ)C]. Solving the above optimiza-

tion problem with the constraints determines the optimal Lagrange multipliers,
α̂i, α̂

∗
i , then the θ-th quantile function predictor given the input vector x can be

obtained as

Q̂(θ|x) =
n∑

i=1

(α̂i − α̂∗
i )K(xi,x). (9)

Likewise the linear case, Q̂(θ|x) depend implicitly on θ through α̂i and α̂∗
i de-

pending on θ.

3 Illustrative Examples

We illustrate the performance of the proposed quantile regression methods based
on support vector machine(QRSVM) through the numerical studies for θ =
0.1, 0.5, and 0.9. In Example 1, we illustrate the estimation and the prediction
performance of regression quantiles and quantile functions for the linear case.
In Example 2, we illustrate the prediction performance of quantile functions for
the nonlinear case.

Example 1. In this example we illustrate how well QRSVM performs for the
linear quantile regression case. We generate 100 training data sets to present the
estimation performance of regression quantiles obtained by QRSVM. In addition,
we generate a training data set and 100 test data sets to present the prediction
performance of these quantile functions. Each data set consists of 200 x’s and
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200 y’s. Here x’s are generated from a uniform distribution U(0, 1) and y’s are
generated from a normal distribution N(1 + 2x, x2), that is, y’s are generated
from the heteroscedastic error model.

The θ-th quantile function of y for a given x can be modelled as

Q(θ|x) = β(θ)tx for θ ∈ (0, 1),

where x = (1, x)t and β(θ) = (1, 2+Φ−1(θ))t with the θ-th quantile of a standard
normal distribution, Φ−1(θ). Then true regression quantiles for θ = 0.1, 0.5 and
0.9 are given as (1, 0.718448)t, (1, 2)t, and (1, 3.281552)t, respectively. Since C
should be prespecified, we choose C = 10 using 10-fold cross validation method
for θ = 0.5. Then we use this C for the other θ values. Solving (5) with C = 10
we obtain the optimal Lagrange multipliers, α̂i, α̂

∗
i , which lead to the regression

quantile estimators,

β̂(θ) =
n∑

i=1

(α̂i − α̂∗
i )xi.

To illustrate the estimation performance of regression quantiles by QRSVM,
we compare QRSVM with the conventional quantile regression(QR) method
based on FORTRAN of Koenker and D’Orey[7] by employing the average and
the standard error of the regression quantile estimators.

Table 1. Averages and Standard Errors of the Regression Quantile Estimator

θ = 0.1 θ = 0.5 θ = 0.9
Average SE Average SE Average SE

β0(θ) QRSVM 0.99250 0.02867 1.00338 0.01814 1.01745 0.03400
QR 0.99046 0.03178 1.00190 0.01752 1.01240 0.02965

β1(θ) QRSVM 0.72260 0.18464 1.98883 0.12134 3.20556 0.18784
QR 0.73199 0.19076 1.99731 0.11933 3.23370 0.18006

Table 1 shows averages and standard errors of 100 regression quantile esti-
mators obtained by both QRSVM and QR. As seen from Table 1, QRSVM and
QR have almost same estimation performance for regression quantiles, and both
methods provide reasonable regression quantile estimators of which values are
very close to the true values of regression quantiles.

We now illustrate the prediction performance of the quantile functions ob-
tained by both QRSVM and QR. We employ the fraction of variance unex-
plained(FVU), which is given by

FV U =
E(f̂(xi)− f(xi))2

E(f(xi)− f̄(x))2
,

where f̂(xi) is the predicted value of the function for a given xi, f(xi) is the
true value of the function for a given xi, and f̄(x) is the average of true values
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of the function for x1, · · · ,xn. Note that the FVU is the mean squared error for
the estimate f̂(x) scaled by the variance of the true function f(x). We evaluate
the FVU by replacing the expectations with the average over a set of 200 test set
values. With estimates of regression quantiles obtained from the training data
set, we obtain the estimates of quantile functions for each of 100 test data sets,
and 100 FVUs.

Table 2 shows the averages and the standard errors of the 100 FVUs obtained
by QRSVM and QR for the quantile function predictors. As seen from Table
2, QRSVM provides the exact same prediction performance as QR when θ =
0.1, 0.5, and 0.9. This implies that QRSVM performs as well as the conventional
QR for these particular data sets.

Table 2. Averages and Standard Errors of 100 FVUs

Method θ = 0.1 θ = 0.5 θ = 0.9
Average QRSVM 0.198387 0.011188 0.009566

QR 0.204571 0.010958 0.009423
SE QRSVM 0.025195 0.001247 0.001296

QR 0.025748 0.001240 0.001359

Example 2. In this example we illustrate how well QRSVM performs for the
nonlinear quantile regression case. Similar to the linear case, we generate a train-
ing data set and 100 test data sets to present the prediction performance of these
quantile functions. Each data set consists of 200 x’s and 200 y’s. Here x’s are
generated from a uniform distribution U(0, 1), and y’s are generated from a nor-
mal distribution N(1+ sin(2πx), 0.1). The θ-th quantile function of y for a given
x can be modelled as

Q(θ|x) = 1 +
√

0.1Φ−1(θ) + sin(2πx), for θ ∈ (0, 1),

where x = (1, x)t and Φ−1(θ) is the θ-th quantile of a standard normal distri-
bution. True quantile functions are given as Q(0.1|x) = 0.871845 + sin(2πx),
Q(0.5|x) = 1 + sin(2πx) and Q(0.9|x) = 1.128155 + sin(2πx) for θ = 0.1, 0.5,
and 0.9, respectively. The radial basis function kernel is utilized in this example,
which is

K(x, z) = exp(− 1
σ2

(x− z)t(x− z)).

To apply QRSVM to the nonlinear quantile regression, C and σ should be pre-
specified. First, we determine C = 300 and σ = 1 using 10-fold cross validation
method for θ = 0.5. Then we use these parameter values for the other θ values.
According to our simulation studies, QRSVM is not sensitive to the choice of C.
The important parameter that does require careful consideration is the kernel
parameter σ. With these values of σ and C, the optimal Lagrange multipliers,
α̂i, α̂

∗
i , can be obtained by solving (8) based on the training data set, which lead
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to the θ-th quantile function predictor of the output y for a x of test data set,
defined by

Q̂(θ|x) =
n∑

i=1

(α̂i − α̂∗
i )K(xi,x),

where x = (1, x)t and xi’s are the input vectors of the training data set.
With the optimal Lagrange multipliers obtained based on the training data

set, we obtain quantile function predictors for 100 test data sets, and 100 FVUs.
Table 3 shows averages and standard errors of 100 FVUs obtained by QRSVM
for θ = 0.1, 0.5, and 0.9. We can see QRSVM works quite well for prediction.

Figure 1 shows the true quantile function(solid line) for one of 100 test data
sets and the quantile function predictor(dotted line) obtained by QRSVM given

Table 3. Averages and Standard Errors of 100 FVUs obtained by QR SVM

θ = 0.1 θ = 0.5 θ = 0.9
Average 0.04858 0.03738 0.04852

SE 0.02999 0.02788 0.02901
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Fig. 1. True Quantile Function and Quantile Function Predictors obtained by QRSVM.
The scatter is 200 artificial sample points (xt, yt) of testing data set with xt’s gener-
ated from a uniform distribution U(0, 1), and yt’s generated from a normal distribution
N(1 + sin(2πx), 0.1). True quantile function(solid line) and the quantile function pre-
dictor(dotted line) for θ = 0.1, 0.5 and 0.9, respectively, are superimposed on the
scatter.
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test input data for θ = 0.1, 0.5 and 0.9, respectively. We can see that QRSVM
works reasonably well for the nonlinear quantile regression.

4 Conclusions

Quantile regression is an increasingly popular method for estimating the quan-
tiles of a distribution conditional on the values of covariates. In this paper,
through two examples - the linear and the nonlinear quantile regressions - we
have shown that the proposed QRSVM derives the satisfying solutions and is
attractive approaches to modelling the input data and quantile functions of out-
put. In particular, we can apply this method successfully to the case that the
linear quantile regression model is inappropriate. Here, we do not need to assume
the underlying input structure for the nonlinear quantile regression model. We
think this is the first paper presents an algorithm which performs well for both
the linear and the nonlinear quantile regressions.

According to Koenker and Hallock[9], the simplex algorithm associated with
LP problem for quantile regressions is highly effective on problems with a modest
number of observations. But for large data sets the simplex approach eventually
becomes considerably slow. For large data sets recent development of interior
point methods for LP problems are highly effective. By the way, the proposed
quantile regression method should use a time-consuming numerical QP optimiza-
tion as an inner loop. We can overcome this problem by implementing straight-
forwardly sequential minimal optimization(SMO) developed by Platt[10], Flake
and Lawrence[3] to train SVM regression for particularly large data sets. SMO
breaks the large QP problem into a series of smallest possible QP problems.
SMO is a fast training algorithm for SVM and is being implemented in some
popular training software for SVM, for example LIBSVM developed by Chang
and Lin[1].
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Abstract. A doubly regularized likelihood estimating procedure is in-
troduced for the heteroscedastic censored regression. The proposed pro-
cedure provides the estimates of both the conditional mean and the
variance of the response variables, which are obtained by two stepwise
iterative fashion. The generalized cross validation function and the gen-
eralized approximate cross validation function are used alternately to
estimate tuning parameters in each step. Experimental results are then
presented which indicate the performance of the proposed estimating
procedure.

1 Introduction

Minimizing a sum of squares of errors is well known to correspond to the
maximum likelihood estimation for the regression model where the errors are
assumed to be independently normally distributed with constant variance
(homoscedastic). The least squares support vector machine(LS-SVM, Suykens
and Vanderwalle[9]) and the kernel ridge regression(Saunders et al.[8]) provide
the procedures for the estimation by minimizing a regularized sum of squares of
errors which perform the nonlinear regression using a linear model, conducted in
a higher dimensional feature space induced by a Mercer kernel(Mercer[6]). The
least squares method and the accelerated failure time model to accommodate the
censored data seem appealing since they are familiar and well understood. Koul
et al.[5] gave a simple least squares type estimation procedure in the censored
regression model with the weighted observations and also showed the consistency
and asymptotic normality of the estimator. Zhou[12] proposed an M-estimator
of the regression parameter based on the censored data using the weights Koul
et al.[5] proposed. By introducing the weighting scheme of Zhou[12] into the
optimization problem in LS-SVM, Kim et al.[3] obtained the estimate of the
conditional mean in the nonlinear censored regression model.

In this paper we introduce a regularized likelihood based approach which
can take the heteroscedasticity and the randomly right censoring into account
to estimate both the mean function and the variance function simultaneously.
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The rest of this paper is organized as follows. In Section 2, we introduce the
doubly regularized likelihood estimation for the heteroscedastic kernel regression
model. In Section 3, we introduce the regularized likelihood estimation for the
censored kernel regression model. In Section 4, we present the estimating proce-
dure for the heteroscedastic censored kernel regression. In Section 5, we perform
the numerical studies through examples. In Section 6, we give the conclusions
and remarks.

2 Doubly Regularized Kernel Regression

Let the given data set be denoted by {xi, yi}n
i=1, with xi ∈ Rd and yi ∈ R. For

this data set, we can consider the heteroscedastic regression model

yi = μ(xi) + εi i = 1, 2, · · · , n, (1)

where xi is the covariate vector including a constant 1, εi is assumed to be
independently normally distributed with mean 0 and variance σ2(xi) and μ and
σ2 are functions to be estimated. The negative log likelihood of the given data
set can be expressed as(constant terms are omitted)

L(μ, σ) =
1
n

n∑
i=1

{ (yi − μ(xi))2

2σ2(xi)
+

1
2

log σ2(xi) }. (2)

Due to the positivity of the variance we write the logarithm of σ2(xi) as g(xi),
then the negative log likelihood can reexpressed as

L(μ, g) =
1
n

n∑
i=1

{(yi − μ(xi))2e−g(xi) + g(xi) }. (3)

The conditional mean is estimated by a linear model, μ(x) = ω′
μφμ(x), con-

ducted in a high dimensional feature space. Here the feature mapping func-
tion φμ(·) : Rd → Rdf maps the input space to the higher dimensional fea-
ture space where the dimension df is defined in an implicit way. It is known
that φμ(xi)′φμ(xj) = Kμ(xi,xj) which are obtained from the application of
Mercer[6]’s conditions. Also g is estimated by a linear model, g(x) = ω′

gφg(x).
Then the estimates of (μ, g, ωμ, ωg ) are obtained by minimizing the regularized
negative log likelihood

L(μ, g, ωμ, ωg) =
1
n

n∑
i=1

{(yi − μ(xi))2e−g(xi) + g(xi) }+ λμ‖ωμ‖2 + λg‖ωg‖2,(4)

where λμ and λg are nonnegative constants which control the trade-off between
the goodness-of-fit on the data and ‖ωμ‖2 and ‖ωg‖2. The representation theo-
rem(Kimeldorf and Wahba[4]) guarantees the minimizer of the regularized neg-
ative log likelihood to be

μ(x) = Kμαμ and g(x) = Kgαg, (5)
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for some vectors αμ and αg. Now the problem (4) becomes obtaining (αμ , αg)
to minimize

L(αμ, αg) = (y −Kμαμ)′D(y −Kμαμ) + 1′g + nλμαμ
′Kμαμ

+ nλgαg
′Kgαg, (6)

where D is a diagonal matrix with the ith diagonal element e−g(xi) and g is a
(n× 1) vector with the ith element g(xi) and 1 is a (n× 1) vector with 1’s.

3 Censored Kernel Regression

Consider the censored linear regression model for the response variables ti’s and
the covariate vector xi including a constant 1,

ti = μ(xi) + εi, i = 1, · · · , n, (7)

where εi is an unobservable error assumed to be independent with mean 0 and
constant variance. Here the mean is related to the covariate vector linearly,
which can be expressed as μ(xi) = x′

iβ with the regression parameter vector of
the model, β. Let ci’s be the censoring variables assumed to be independent and
identically distributed having a cumulative distribution function G(y) = P (ci ≤
y). The parameter vector of interest is β and ti is not observed but

δi = I(ti<ci) and yi = min(ti, ci), (8)

where I(·) denotes the indicator function. In most practical cases G(·) is not
known and needs to be estimated by the Kaplan-Meier estimator(Kaplan and
Meier[2]) or its variation, Ĝ(·). The problem considered here is that of the es-
timation of β based on (δ1, y1,x1),· · ·,(δn, yn,xn). Koul et al.[5] defined a new
observable response ỹi with weights θi as

ỹi = θiyi where θi =
δi

1− Ĝ(yi)
(9)

and showed ỹi has the same mean as ti and thus follows the same linear model as
ti does. And the estimate of β is obtained by minimizing the objective function

L(β) =
1
n

n∑
i=1

(ỹi − x′
iβ)2.

By introducing the feature mapping function φμ(·) for the kernel regression,
the estimate of μ(xi) can be obtained as

∑n
j=1 Kμ(xi,xj)

√
θjαj , where αj ’s are

obtained by minimizing

L(α) = (y −KμΘα)′(y −KμΘα) + nλα′Kμα, (10)

where α = (α1, · · · , αn)′ andΘ is a diagonal matrix with the ith diagonal element√
θi defined in (9).



524 J. Shim and C. Hwang

4 Algorithm for Heteroscedastic Censored Kernel
Regression

For the censored regression, (9) becomes

L(αμ, αg) = (y −KμΘαμ)′D(y −KμΘαμ) + 1′g + nλμαμ
′Kμαμ

+ nλgαg
′Kgαg, (11)

where μ is the conditional mean of the response t , g is the logarithm of variance
of the response t and y is the observed vector defined in (8). The estimates of μ
and g are obtained via two stepwise iterative procedures.

Fixing the values of g, (11) reduces to

L(αμ) = (y −KμΘαμ)′D(y −KμΘαμ) + nλμαμ
′Kμαμ, (12)

The solution to (12) is

μ̂ = Aμy = (ΘKμΘ + nλμD
−1)−1Θy. (13)

In this step the values of λμ and other tuning parameters ν included in the
kernel Kμ can be chosen by minimizing the generalized cross validation function
(Wahba[10]):

GCV (λμ, ν) =
n−1y′D1/2(I −Aμ)2D1/2y

[n−1tr(I −Aμ)]2
. (14)

To estimate g(ti) = log σ2(xi) which is the logarithm of variance of response
ti, we use uncensored data set {x∗

i , y
∗
i }n∗

i,j=1, in this step. Fixing μ, αg∗ is esti-
mated by minimizing the objective function with uncensored data

L(αg∗) = 1′(D∗z +Kg∗αg∗) + n∗λgαg∗′Kg∗αg∗, (15)

where z is a (n∗ × 1) vector with ith element (y∗i − μ̃∗
i )

2 , μ̃∗ is the current
estimate of μ(xi, and D∗ is the diagonal matrix defined in (6) corresponding to
uncensored data. αg∗ is obtained by Newton Raphson method,

αnew
g∗ = αold

g∗ −H−1G, (16)

where G and H are the gradient vector and Hessian matrix with respect to αg,
respectively. The values of λg and other tuning parameters υ included in the
kernel Kg∗ = {φg(x∗

j)′φg(x∗
j)}n∗

i=1 can be chosen by minimizing the generalized
approximate cross validation function(Xiang and Wahba[11]) :

GACV (λg, υ) = 1′(D∗z +Kg∗αg∗) +
tr(Ag∗)

1 + tr(D∗Ag∗)
(z − diag(D∗))′D∗z,(17)

where Ag∗ = (D∗ + 2n∗λgKg∗)−1 is the influence matrix of (15). Then g corre-
sponding to whole data can be obtained as

g = Kgαg∗ , (18)

where Kg = {φg(xi)′φg(x∗
j )} for i = 1, · · · , n, j = 1, · · · , n∗.



Doubly Regularized Kernel Regression with Heteroscedastic Censored Data 525

5 Experimental Results

We illustrate the performance of the proposed estimating procedure through the
real data set and the simulated data set.

Stanford heart transplant data set(Miller and Halpern[7]) consists of 152
patient with complete recorded who survived at least 10 days. There were 55
censored observations. Let the response variable be the base 10 logarithm of the
survival time of patient and consider the polynomial kernel with degree 2 in
this data set. Figure 1 shows the observed values against the ages of patient at
transplant. The solid line is the estimate of the conditional mean of response
variable, the dashed lines are the estimates of the confidence interval(μ ± σ).
The estimate of conditional mean behaves similar to the estimate of Buckley and
James[1] which are proved to be reliable on this data set( Miller and Halpern[7]).
In Figure 1 the heteroscedastic model and the homoscedastic model do not
present much difference on estimating of the conditional mean. In Figure 1(a)
difference can be seen on younger ages and older ages for the estimate of the
confidence interval. The observations are distributed more densely for older ages,
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Fig. 1. (a)(left): Scatter plots of log10 survival times(days) versus age at trans-
plant(year) and estimates of the conditional mean(μ) and the confidence interval(μ±σ)
by the heteroscedastic censored kernel regression. Patients deceased are denoted by ′ · ′

and the alive by ′ + ′. (b)(right): by the homoscedastic censored kernel regression.
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Fig. 2. (a)(left): Scatter plots of y versus x and the conditional mean(μ) and the
confidence interval(μ ± σ) of true values. The uncensored data are denoted by ′ · ′

and the censored by ′ + ′. (b)(right): estimates of the conditional mean(μ) and the
confidence interval(μ ± σ) by the heteroscedastic censored kernel regression.

this leads the estimate of the confidence interval for older ages to have smaller
widths than younger ages.

Consider the heteroscedastic censored nonlinear regression model for the re-
sponse variables ti’s of the form,

ti = μ(xi) + εti , i = 1, · · · , n.

The response variable and the censoring variable given x can be modelled as t =
μ(x)+εt and c = μ(x)+εc, respectively. We set the true value of the mean of both
variables given the covariate x as μ(x) = 1 + sin(2πx). 100 of x’s are generated
from a uniform distribution, U(0,1), 100 of (εt, εc)’s are generated from normal
distributions, N(0, x2) and N(0, (x + cc)2), respectively. cc is chosen for 20%
censoring proportion. The radial basis function(RBF) kernels are considered for
the simulated data set. Figure 2 shows the conditional mean and the confidence
interval given x. The confidence interval becomes to have larger width as x
increases since the variance of error is set to x2. The estimate of the conditional
mean behave similarly as the true value. For the confidence interval, the estimate
has slightly larger width on small values x’s but it approaches to the true value
as x increases.
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6 Conclusions and Remarks

In this paper, we introduce the estimating procedure for the heteroscedastic cen-
sored regression model using a doubly regularized kernel regression approach.
Through the examples we showed that the proposed method derives the satis-
fying solutions and is attractive approaches to modelling the data of inputs. By
choosing appropriate value of tuning parameters simultaneously, it can used a
good tool for explaining not only the heteroscedastic data but also randomly
right censored data.
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Abstract. The Support vector machines derive the class decision hyper planes 
from a few, selected prototypes, the support vectors (SVs) according to the 
principle of structure risk minimization, so they have good generalization abil-
ity. We proposed a new prototype selection method based on support vectors 
for nearest neighbor rules. It selects prototypes only from support vectors. Dur-
ing classification, for unknown example, it can be classified into the same class 
as the nearest neighbor in feature space among all the prototypes. Computa-
tional results show that our method can obtain higher reduction rate and accu-
racy than popular condensing or editing instance reduction method. 

1   Introduction 

For classification problems, complete statistical knowledge regarding the conditional 
density functions of each class is rarely available, which precludes the application of 
the optimal Bayes classification methods, while the nearest neighbor(NN) rule and its 
extension to k neighbors (or k-NN rule) have been in practice one of the most widely 
used non-parametric classifiers. The advantage of NN rule lies in that it combines its 
conceptual simplicity with the fact that its asymptotic error rate is conveniently 
bounded in terms of the optimal Bayes error [1]. However, the main problems of the 
NN rules lie that it is computationally expensive and the storage requirement is large 
for large problems because it stores all the training examples in memory and distances 
between new instance and all the training points is required to be computed to find the 
nearest neighbor in classifying process; and it is intolerant to noisy instance and ir-
relevant attributes. Many researches on prototype selection have been done in order to 
reduce the training set, reduce the effect of noise on accuracy, and obtain the same 
classification ability as using the whole training set [2-4]. 

Two different families of prototype selection methods exist in the literature. First, 
the condensing or reducing algorithm aims at selecting the minimal subset of proto-
types that lead to the same performance as using the whole training set. Second, edit-
ing algorithm eliminates noisy examples from the original set and “cleans” possible 
overlapping among classes. The recent condensing algorithm is Minimal Consistent 
Set(MCS) method proposed by Dasarathy[5] and Dasarathy conjectured MCS was the 
minimal training-set consistent subset, but the counter-examples to this claim have 
been found by Kuncheva and Bezdek[6]. The difficulty of condensing algorithm is 
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that the noisy examples are preferred to be selected into prototype set, which harms 
the accuracy of result classifier. For editing algorithms, it is observed that the asymp-
totically optimal edited NN-rule, such as well known Multi-edit algorithm, can lead to 
arbitrarily bad classification result if the number of prototypes is not large enough 
compared to the intrinsic dimension of feature space[7]. Furthermore the editing algo-
rithm can’t reduce the training set effectively. Dasarathy[7] found that the synergy 
exploitation of condensing and editing algorithm could make the best result on bal-
ance of instance reduction with classification accuracy. So an effective prototype 
selection algorithm should be able to both remove the noise and overlapping out of 
prototype set and obtain an as small as possible prototype set. 

The support vector machine (SVM) is a new kind of learning machine proposed by 
Vapnik in 1995[8]. It is derived from statistical learning theory and VC-dimension the-
ory [9-12], and has become another research hotspot following neural network. The 
remarkable advantage of SVM is that it is induced according to the principle of struc-
tural risk minimization, so it performs good generalization ability, especially for small 
sample problems. The decision surface of SVM is parameterized by a set of support 
vectors and a set of corresponding weights, which indicates that support vectors have 
the key patterns to define the decision boundaries. So it is possible to develop new pro-
totype selection base on support vectors. Vishwanathan and Murty[15] proposed data 
reduction method using multi-category proximal SVM, but it simply selected the sup-
port vectors with Langrage multipliers larger than 0 and less than the bound. They only 
indicated that it is feasible to select prototypes for NN with SVM and didn’t compare 
the performance with common instance reduction method.  

In order to select prototypes based on support vectors, we should obtain SVM first, 
why not use SVM to classify new examples? LeeCun et al. [16] found that the classifi-
cation speed of SVM is substantially slower than that of neural networks, especially for 
large problems. That is because too many support vectors is required to express the 
decision boundary and increase the complexity of decision function. To address this 
problem, Burges[13-14] proposed simplified SVM, which used a new reduced vector 
set to approximate the decision rule decided by all the support vectors so as to reduce 
the complexity of SVM and assure the loss in generalization performance is acceptable, 
and in some cases, the reduced vector set can be computed analytically. But Burges’ 
method is too complex.  

This paper is organized as follows. In section 2, the different importance in deciding 
classification hyper planes between 3 types of support vectors was analyzed. In section 
3 we introduced our prototype selection method based on support vectors. Computa-
tional results are presented in section 4 to compare performance of our method with that 
of common instance reduction methods. Section 5 concludes our work. 

2   Support Vectors and Decision Hyper Planes of SVM 

Suppose that there exists a given training set ( ){ }
1

,
l n

i i i
y X R

=
∈ ×x , where 

nX  de-

notes the space of input vectors. Let  be the deviation between ( )if x
 and iy . The 

optimization problem solved by support vector machine is[17] 
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( )Φ ⋅  is the map from input space into feature space, and it is decided by the kernel 

function ˆ( , )k x x . The Lagrangian for this problem is 

2

1 1 1

1
[1 ( ( ) )]

2

n n n

i i i i i i i
i i i

L w C a y w x bξ ξ πξ
= = =

= + + − − ⋅Φ − −
 . 

(2) 

The Karush-Kuhn-Tucker(KKT) optimal conditions are given by[17] 

1

( )i i i
i

w a y x
=

= Φ
 , 

(3) 

0i i
i

a y =
 

(4) 

0,i iC a iπ− − = ∀
 

(5) 

[1 ( ( ) )] 0,i i i ia y w x b iξ− − ⋅Φ − = ∀
 

(6) 

0,i i iπ ξ = ∀
 

(7) 

0, 0,i ia iπ≥ ≥ ∀
 

(8) 

According to the above KKT optimal conditions, we can obtain  

0 ,    i f   0

0 ,    i f   0 <

0 ,  i f  

i

i i

i

a

a C

a C

ξ
=

= <
≥ =  

(9) 

The separating hyper planes and the distribution of training examples in feature space 
are similar to that in figure 1. 

For a training example ix , if its corresponding Lagrange multiplier ia  is equal to 

upper bound of C, such as 5x , this training example must lie between H1 and H-1 or 

lie among the training examples of other class. Obviously, this example should be 
dealt with carefully because it seems like noise or ‘dangerous’ example that may 

bring on overlapping. If its corresponding Lagrange multiplier ia  is 0, we can see 

that it can’t contribute on the decision of separating hyper plane from (3), so this 
example should be excluded from prototype set because the class information con-

tained in it is redundant. If its corresponding Lagrange multiplier 0< ia <C, this ex-
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ample must lie on the hyper plane H1 or H-1, and this example plays most important 
role in deciding the separating hyper plane, so it is top-priority prototype candidate. 

 

Fig. 1. The separating hyper planes and distribution of training examples in feature space 

So, we can find that the support vectors with Lagrange multipliers smaller than C 
are representative examples and contain most classification information and this 
throws light on developing new prototype selection method. We also observe that the 
support vectors with Lagrange multipliers equal to C are ‘dangerous’ examples and 
they should be dealt with carefully. In all, by using the classification information 
contained in support vectors, we can develop new effective prototype selection meth-
ods for nearest neighbor rules. 

3   Our Prototype Selection Method Based on Support Vectors 

In this section, we will introduce our method according to the introduction in section 
2. Suppose that there exists a given training set ( ){ }

1
,

l n
i i i

T y X R
=

= ∈ ×x . At first, 

we will choose proper kernel function ˆ( , )k x x  and parameter C, and then training set 
T is used to learn the SVM. After the SVM is learned, the support vector set noted as 
S is obtained. 

We only select those support vectors on the right side near H0 as prototype candi-

dates, so we defined prototype candidate set cP  as 

is output of SVM{ | ( ) 0 , ( ) }c i i i i iP y f S f= × > ∈x x ,x x  (10) 

The process to obtain cP  is both condensing and editing process. Deleting non-

support vectors is an condensing process, which can condense prototype set effec-
tively, and excluding support vectors lying among examples of other class can avoid 



532 Y. Li et al. 

 

error or overlapping examples’ being selected as prototypes. For the SVM performs 
good generalization ability, and it can select out most representative examples from 
training set, so prototype selection based on support vectors may obtain better gener-
alization ability than other instance reduction methods. 

Prototype candidate set cP  can be used as prototype set, but it may not be the 

smallest prototype set. In order to obtain minimal set, the condensing process is im-

plemented on cP . Because there is no noise and overlapping in cP , simple condens-

ing or deleting process is adequate. Here we use the rule of Drop2 [2] to condense 

cP . The rule is 

Remove the instance if at least as many of its associates in the original training set 
would be classified correctly without it. 

In Drop2, the distance between two examples should be computed. Because we use 
the hyper planes of obtained SVM to condense and edit the training set and the hyper 
planes are linear in feature space, we should use the distance between two examples 
in feature space. The advantage of selecting prototypes in feature space is obvious.  

First, in feature space, the hyper planes are linear. For linear class boundary, fewer 
points are required to express it than that of nonlinear one, which makes it possible to 
condense the prototype candidates as small as possible. In another aspect, we can deal 
with nonlinear and linear SVM with uniform method. The linear SVM can be seen as 
a special case with kernel function ( , )i j i jk x x x x= ⋅ . 

Let the Euclidean distance between ix  and jx  in feature space is ( )H
ijd , if the ker-

nel function is ( , )i jK x x ,we can obtain: 

2( ) 2

22

( ) ( ) ( )

( ) ( ) 2 ( ) ( )

( , ) ( , ) 2 ( , )

H
ijd

K K K

= Φ − Φ

= Φ + Φ − Φ Φ

= + −

i j

i j i j

i i j j i j

x x

x x x x

x x x x x x

 
(11) 

Because the number of prototype candidates is much smaller than the size of train-
ing set T, small voting parameter k in Drop2 [2] is adequate and large k may mistake 

unrelated examples as neighbors. By applying Drop2 on the cP , we can obtain the 

result prototype set sP . 

For an unknown example, we compute the distance between it and all the members 

of sP  in feature space, and classify it into the class of its nearest neighbor in sP . 

4   Computational Results 

In this section, experiments are done to illustrate the performance of our method on 3 
benchmark data sets from UCI Repository of machine learning databases [19]. They 
are Johns Hopkins University Ionosphere database, Wisconsin Breast Cancer Data-
base(WBC) and Wisconsin Diagnostic Breast Cancer(WDBC) database. There are 
351 instances described by 34 continuous predictor attributes and one binary class 
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attribute in Johns Hopkins University Ionosphere database. For Wisconsin Breast 
Cancer Database, 463 instances are used and they are described by 9 continuous pre-
dictor attributes and one binary class attribute. There are 569 instances described by 
30 predictor attributes and one binary class attribute in Wisconsin Diagnostic Breast 
Cancer database.  

Experiment 1 is done to illustrate the performance of our method in prototype se-
lection for nearest neighbor rules. It is compared with other popular prototype selec-
tion methods Drop4, Drop5 and MCS. Drop4 and Drop5 are editing algorithms; MCS 
is training-set-consistent condensing algorithm. These popular algorithms and our 
method are respectively applied to the same data set in order to compare the perform-
ance and 10-fold cross validation method is used to obtain average performance. 
Keerthi’s improved SMO algorithm [18] is used to train SVM with training set. The 
comparison result is shown in table 1.  

Table 1. Comparison result between our method and other condensing and editing algorithms 

 Ionosphere WBC WDBC  

Reduction 
rate 

8.04% 4.05% 5.39% 
Drop4 

Accuracy 83.43% 92.61% 94.91% 

Reduction 
rate 

8.23% 6.15% 5.21% 

Drop5 

Accuracy 76.29% 90.87% 93.51% 

Reduction 
rate 

16.36% 14.1% 10.33% 
MCS 

Accuracy 85.71% 88.91% 93.68% 

Reduction 
rate 

5.47% 2.13% 1.46% 
Our 

method 
Accuracy 87.14% 94.57% 95.61% 

The comparison result shows that our method obtains higher reduction rate and 
higher classification accuracy than those of other popular editing and condensing 
methods. This indicates that our method is superior to current condensing or editing 
prototype selection method. It also indicates that SVM can help to improve the reduc-
tion rate and accuracy when it is used to develop new prototype selection method. 

For the SVMs in experiment 1 on three data sets, we list the average number of 
support vectors of SVM and the average size of result prototype set based on corre-
sponding SVM in table 2. 
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Table 2. size of support vectors and prototypes 

 Ionosphere WBC WDBC 

Number of support vectors 132 83.9 103.9 

Number of prototypes 17.3 8.9 7.9 

As we can see in table 2, a small portion of support vectors are selected as proto-
types and used to classify new examples. The number of support vectors is much 
larger than the size of prototype set, and more support vectors will make the decision 
function of SVM more complex, as a result, the speed in classification phase will be 
slow, which is substantial for large problems. So our method supplies new method to 
simplify the classification of SVM. 

5   Conclusion 

In this paper, SVM is used to select prototypes in order to obtain higher reduction rate 
and classification accuracy for nearest neighbor rule. Because all the support vectors 
can decide the classification boundary, so non-support vectors can be excluded from 
prototype set. As to the support vectors lying among examples of other class, they 
may result in overlapping and should be excluded from prototype set in order to im-
prove generalization performance. 

The training set is used to train a SVM, and then those support vectors on the right 
side of H0 in figure 1 will be selected into prototype candidate set. In order to obtain 
smaller prototype set, the prototype candidate set is condensed with Wilson’s Drop2 
instance reduction rule to obtain the resulting prototype set. For an unknown example, 
the distances in feature space between it and all the member of prototype set are com-
puted and it is classified as the class of its nearest neighbor in the prototype set. 

Experiment results show that our method is an effective prototype selection 
method and it can obtain higher reduction rate and classification accuracy than those 
of popular editing and condensing algorithms. It combines the condensing process 
and editing process so as to obtain better performance. The comparison between the 
number of support vectors and the number of prototypes indicates that our method can 
simplify support vector decision rule, but it should be improved so as to obtain same 
generalization ability as that of SVM. 
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Abstract. The kernel minimum squared error estimation(KMSE)
model can be viewed as a general framework that includes kernel Fisher
discriminant analysis(KFDA), least squares support vector machine(LS-
SVM), and kernel ridge regression(KRR) as its particular cases. For con-
tinuous real output the equivalence of KMSE and LS-SVM is shown in
this paper. We apply standard methods for computing prediction inter-
vals in nonlinear regression to KMSE model. The simulation results show
that LS-SVM has better performance in terms of the prediction inter-
vals and mean squared error(MSE). The experiment on a real date set
indicates that KMSE compares favorably with other method.

1 Introduction

In forecasting tasks the prediction interval gives the range in which you could
have a certain level of confidence of finding an individual value of the predicted
output for a given input value. Truly reliable prediction systems require the pre-
diction to be qualified by a confidence measure such as prediction or confidence
interval. This important issue has received little systematic study. However, this
has been paid attention in neural information processing and chemical engineer-
ing communities.

Chryssolouris [1] has derived a technique to quantify the confidence inter-
vals for the prediction of neural network models by adopting a variant of the
linearisation methodology. Shao et al. [7] have proposed a novel method of com-
puting confidence bounds on predictions from a neural network with determined
structure. De Veaux et al. [3] also have proposed a method of computing pre-
diction intervals for neural networks and compared them with prediction inter-
vals based on multivariate adaptive regression splines using generalized additive
model (MARS/GAM). Yang et al. [13] have suggested a method of estimating
confidence bound for neural networks for the purpose of the prediction of rock
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porosity values from seismic data for oil reservoir characterization. Seok et al.
[6] have presented a Bayesian approach to computing the prediction intervals for
support vector machine(SVM) regression and shown SVM regression achieves
better performances than the neural networks and MARS in predicting inter-
vals. There are some other literatures related to this issue.

SVM, originally introduced by Vapnik, solves the weak point of neural net-
work such as the existence of local minima in the area of statistical learning
theory and structural risk minimization(Vapnik [11]). One of its prominent ad-
vantages is the idea of using kernels to realize the nonlinear transforms with-
out knowing the detailed transforms. According to this idea, other authors pro-
posed a class of kernel-based algorithms, such as the kernel Fisher discriminant
analysis(KFDA)(Mika et al. [4]), the least squares support vector machine(LS-
SVM)(Suykens and Vandewalle [9] , Suykens et al. [10]), and the kernel ridge
regression(KRR)(Saunders et al. [5]).

Xu et al. [12] have generalized the conventional minimum squared error
method to yield a new type of nonlinear learning machine, by using the kernel
idea and adding different regularization terms. They have named the proposed
learning machines as KMSE algorithm. KMSE algorithm adopts the idea of ker-
nel function of SVM which is one of the most influential developments in the
machine learning.

KMSE model can be viewed as a general framework that includes KFDA,
LS-SVM, and KRR as its particular cases. Suykens et al. [8] have proposed a
large scale algorithm for LS-SVM by implementing a Hestenes-Stiefel conjugate
gradient algorithm for solving the linear equation system. A large scale algorithm
for KMSE can be derived without any difficulty by using this idea.

In this paper we discuss a method to compute prediction intervals by applying
standard methods for computing prediction intervals in nonlinear regression to
the KMSE for regression tasks. The simulation results show that LS-SVM has
better performance in terms of the prediction intervals and MSE. The experiment
on a real date set indicates that LS-SVM compares favorably with MARS/GAM.

The rest of this paper is organized as follows. Section 2 gives an overview
of LS-SVM and KMSE. Section 3 discusses briefly how to compute prediction
intervals for KMSE model. Section 4 illustrates the method with a computer
generated data and a real data from a polymer process.

2 LS-SVM and KMSE

Let the training data set D be denoted by {(xk, yk), k = 1, . . . , n}, with each
input xk ∈ Rd and the output yk ∈ R. It is commonly assumed that

y = f(x,α∗) + ε, (1)

where ε is independently and identically distributed with zero mean and α∗ is
the true value of parameters.

Assume a nonlinear function ϕ(x) : Rd → Rh maps the input space to
a so-called higher dimensional feature space. It is important to note that the
dimension h of this space is defined only in an implicit way.
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2.1 LS-SVM

The LS-SVM, a modified version of SVM in a least squares sense, has been
proposed for the classification and the regression by Suykens and Vanderwalle
[9]. The LS-SVM model for function estimation has the following representation
in feature space

f(x) = wtϕ(x) + b with w ∈ Rh, b ∈ R,

where superscript t represents the transpose of a vector. Given a training set D
we define now the following optimization problem to get optimal w and b

min
w,b,e

T (w, e) =
1
2
wtw + γ

1
2

n∑
k=1

e2k (2)

subject to the equality constraints

yk = wtϕ(xk) + b+ ek, k = 1, · · · , n. (3)

The cost function with squared error and regularization corresponds to a form
of ridge regression. We construct the Lagrangian

L(w, e) = T (w, e)−
n∑

k=1

αk{wtϕ(xk) + b+ ek − yk}, (4)

where αk’s are Lagrange multipliers. The conditions for optimality ∂L
∂w = 0 ,

∂L
∂b = 0, ∂L

∂ek
= 0 and ∂L

∂αk
= 0 yield the linear equation

[
0 1t

1 K + γ−1I

] [
b
α

]
=
[

0
y

]
(5)

with y = (y1, . . . yn)t, 1 = (1, . . . , 1)t, α = (α1, . . . , αn)t and where

Kkl = K(xk,xl), k, l = 1, . . . , n
= ϕ(xk)tϕ(xl)

is a kernel function obtained from the Mercer’s condition. Several choices of the
kernel function are possible. Here w and ϕ(x) are not calculated. The resulting
LS-SVM model for function estimation becomes

f(x) =
n∑

k=1

αkK(x,xk) + b, (6)

where αk’s and b are the solution to the linear system.
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2.2 KMSE

The KMSE, a new type of nonlinear learning machine based on kernel idea,
has been proposed for the classification and the regression by Xu et al. [12]. In
the feature space we build a linear estimate whose weight vector and bias are
denoted by w and b. From the theory of reproducing kernels we can construct
an expansion for w in the form

w =
n∑

k=1

αkϕ(xk), (7)

where αk ∈ R, k = 1, 2, . . . , n. Using the kernel function defined above, we can
define the objective function in the feature space as follows.

M(α, b) =
1
2
(y −Ktα− b1)t(y −Ktα− b1). (8)

Note that solution matrix of (8) is always singular and the estimates obtained
from (8) tends to be overfitted. In order to avoid this problem, additional regu-
larization term can be added. There exist two usual regularization terms: αtα in
KFD and wtw in SVM, LS-SVM and KRR. We construct different regularized
objective functions, that is,

Mi(α, b) =
1
2
μis+M(α, b), i = 1, 2. (9)

where μi’s are positive regularization parameters and s = αtα, i = 1, s =
wtw, i = 2.

Minimizing these objective functions, we obtain two sets of linear equation,[
KKt + μ1I K1

(K1)t n

] [
α
b

]
=
[
Ky
1ty

]
, i = 1 (10)

and [
K + μ2I 1
(K1)t n

] [
α
b

]
=
[

y
1ty

]
, i = 2. (11)

Xu et al. [12] have shown that KMSE is equivalent to KFDA and LS-SVM
for classification problem. For continuous real output the equivalence of LS-SVM
and KMSE can be shown easily. From (11) we obtain the following two equations,

(K + μ2I)α + 1b = y (12)
1t(Ktα + 1b) = 1ty. (13)

Now eliminating 1b from (12) and (13), we obtain

μ21tα = 0. (14)

Comparing (5) to (12) and (13) with μ2 = γ−1, the equivalence follows
immediately.

In this paper we denote α = (αt, b)t and K = [K 1] and the two KMSE
estimates with the solutions of (10) and (11) by f1(x) and f2(x), respectively.
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3 Prediction Interval Estimation

De Veaux et al. [3] have developed a method estimating prediction intervals for
neural networks trained by weight decay by implementing standard methods for
computing prediction intervals in nonlinear regression. This method can be easily
applied to KMSE model for regression tasks. We will briefly state the resulting
prediction interval in what follows. The calculation is much simpler than that
for neural networks since the estimated regression function is linear with regard
to parameters.

The 100(1− β)% prediction interval for input x0 is f(x0)± c, where c is

c = tn−p

1− β
2
s (1 + f t

0(F
tF + μiI)−1FtF(FtF + μiI)−1f0)1/2. (15)

Here tn−p

1− β
2

is 100(1 − β
2 )th percentile of t-distribution with n − p degrees of

freedom, p is the number of parameters and

s2 =
n∑

k=1

(yk − fi(xk))2/(n− p).

Given x0, the vector f0 is given by

f0 =
[

∂f(x0;α∗)
∂α∗

1

∂f(x0;α∗)
∂α∗

2
· · · ∂f(x0;α∗)

∂α∗
n+1

]t

. (16)

F is Jacobian matrix given by

F =

⎡⎢⎢⎢⎢⎢⎣
∂f(x1;α̂)

∂α̂1

∂f(x1;α̂)
∂α̂2

· · · ∂f(x1;α̂)
∂α̂n+1

∂f(x2;α̂)
∂α̂1

∂f(x2;α̂)
∂α̂2

· · · ∂f(x2;α̂)
∂α̂n+1

...
...

...
...

∂f(xn;α̂)
∂α̂1

∂f(xn;α̂)
∂α̂2

· · · ∂f(xn;α̂)
∂α̂n+1

⎤⎥⎥⎥⎥⎥⎦

t

. (17)

Replacing α∗ in (16) by α̂, we can get the desired prediction interval. De Veaux
et al. [3] have shown that this method is effective on a wide range of problems.

4 Illustrative Examples

In this section we illustrate the behavior of the prediction intervals of KMSE
model through a computer generated data and a real data from a polymer pro-
cess in De Veaux et al. [3]. In Example 1, we evaluate the prediction interval
estimation method for f1 and f2. In Example 2, we will verify KMSE model by
applying the procedure to the polymer process data in De Veaux et al. [3].

Example 1. In this example we illustrate how well the prediction interval es-
timation method performs for a computer generated data. Similar to the exam-
ples in Shao et al. [7] and Yang et al. [13], the sine function y = sin(x) + ε is
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Fig. 1. Sine function estimates and prediction intervals of f1(left) and f2(right), for
SNR=10% and three inputs case. Circle: training data points. Solid line: target func-
tion. Dashed line: function estimates. Dotted line: 90 % prediction intervals.

used as a test function to evaluate the prediction interval method. In order to
investigate how the unnecessary inputs affect the confidence intervals and esti-
mations we perform an experiment using the three inputs x1 = −x, x2 = x2 and
x3 = 1/(x+4) and the output y = sin(x)+ ε. The noise ε is normally distributed
with zero mean and a standard deviation up to 30% of the standard deviation
of the data(SNR). The SNR is short for the signal-to-noise ratio.

In this paper, we adopt radial basis function(RBF) kernel

K(x,y) = exp(−‖x− y‖
σ2

).

The 10-fold cross validation is used to choose kernel parameter σ and reg-
ularization parameters μi, i = 1, 2. We use the effective number of parame-
ters(Vapnik(1998)) for p in (15). That is,

p =
n+1∑
k=1

λk

λk + μi
, i = 1, 2,

where λk’s are eigenvalues of KtK and μi’s are regularization parameters in (9).
We first examine how the estimated prediction intervals behave when three

input variables are used and the test data extrapolate the training data. The
50 training data points are unevenly distributed between −π and π. The 100
test data points are evenly distributed between −π and π+π/2. The results are
shown in Fig. 1. The prediction intervals tend to be large in the extrapolation
area. However, compared with the results of Yang et al.(2000), these intervals
are appreciably smaller.

Next we examine when the density of training data varies. The 70% of train-
ing points are generated from [−π, 0) and 30%’s are from [0, π]. The results
are shown in Fig. 2. We can see from Fig. 2 that the difference of the prediction
intervals in the low and high density areas is negligible. In fact, we observe that
the sizes of the prediction intervals in the low and high density areas are almost
equal. We also observe that the shapes of the prediction intervals of f1 and f2

are not significantly different.
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Fig. 2. Sine function estimates and prediction intervals of f1(left) and f2(right), for
SNR=20% and three inputs case. 35 training data points from [−π, 0) and 15 from
[0, π], Circle: training data points. Solid line: target function. Dashed line: function
estimates. Dotted line: 90 % prediction intervals.
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Fig. 3. Average coverage as a function of sample size. Circle: f1, Star: f2. Left:
SNR=10% and one input case. Right: SNR=30% and three input case. Solid line:
Average coverage. Dashed line: Average coverage plus/minus its standard deviation.

To compare the prediction intervals of f1 and f2, and to investigate the per-
formance of the prediction intervals we also compute the average of coverage, the
average of size and the standard deviation of them. In addition, we compute the
average of s2 to see the performance of f1 and f2. Using 100 trials, these statis-
tics are computed for training sample size n = 20, 50, 100, 200, 400, 600, 800, 1000,
1200 when SNR= 10%, 20%, 30%, and one or three input variables are used.
Since all of the results have similar trend, we will show some of them. The results
are shown in Fig. 3, Fig. 4 and Fig. 5.

As seen from Fig. 3, the average coverage becomes close to the desired 90 %
coverage if the size of the training set is larger than 50. Moreover, the standard
deviation of the coverage is stable.

As seen from Fig. 4, the average size of prediction intervals converges to 0.24
when SNR= 10% and one input variable is used. In this case, the average size for
f2 is appreciably smaller than that for f1. We also observe that the average size
converges to 0.47 regardless of the number of input variables when SNR= 20%.
But, this result is not shown in Fig. 4. It tends that the average size depends on
the observation noise level rather than the number of input variables.
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Fig. 4. Average size of prediction intervals as a function of sample size. Circle: f1, Star:
f2. Left: SNR=10% and one input case. Right: SNR=30% and three inputs case. Solid
line: Average size. Dashed line: Average size plus/minus its standard deviation.
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Fig. 5. Average MSE of f1 and f2 as a function of sample size. Circle: f1, Star: f2.
Left: SNR=10% and one input case. Right: SNR=30% and three inputs case. Solid
line: Average MSE. Dashed line: Average MSE plus/minus its standard deviation.

We can see from Fig. 5 that the average MSE of f1 and f2 converges to 0.018
and 0.022, respectively, for the case of SNR= 10% and one input variable. When
SNR= 30% and three input variables are used, each average MSE converges to
0.02 and 0.03, respectively. Therefore we could say that the performance of f2

is better than that of f1.

Example 2. In this example we will verify KMSE model by applying the proce-
dure to the polymer process data in De Veaux et al. [3]. We also compare these
models with MARS/GAM introduced in De Veaux et al. [2]. This data set is
from polymer process with 10 inputs (x1, . . . , x10) and a single response variable
y. Because the data are proprietary, no other information on the variables is
available. The data set consists of 61 observations and is available via FTP site.
De Veaux et al. [2] have shown that nonlinear regression methods are superior
to linear methods for this polymer process data set. Here we choose σ = 1.8
and μ1 = 6.1× 10−6 for f1 and σ = 1.6 and μ2 = 0.0025 for f2 based on 6-fold
cross validation. Same values of parameters are chosen for MARS/GAM as in
De Veaux et al. [3].
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Fig. 6. Prediction intervals for f1, f2 and MARS/GAM . Dot: real data. Circle:
MARS/GAM estimates. Star : f1 estimates. Plus: f2 estimates. Dashed line: f1 predic-
tion intervals. Solid line: f2 prediction intervals. Dotted line: MARS/GAM prediction
interval.

Figure 6 shows two standard error prediction intervals for f1, f2 and MARS/
GAM of De Veaux et al. [3]. As seen from Fig. 6, the prediction intervals for f2 are
slightly smoother at almost every point. The average size of prediction intervals
is 0.2627 for f1, 0.2098 for f2 and 0.2341 for MARS/GAM. This experiment
indicates that f2, i.e., LS-SVM compares favorably with f1 and a sophisticated
non-parametric model, MARS/GAM, for regression modelling.

5 Conclusion

The objective of this paper is twofold. The first is to compare two KMSE esti-
mates f1 and f2 in terms of the prediction capability through simulation study.
The second is to compare these estimates with MARS/GAM based on a real data
from a polymer process, which in general works better than neural networks.

The simulation results show that f2 has better performance in terms of the
prediction intervals and MSE. The experiment on a real data set indicates that
f2, i.e., LS-SVM compares favorably with MARS/GAM. To conclude, we rec-
ommend LS-SVM as a technique for regression modeling.
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Abstract. The type of kernel function has a great important influence on the 
performance of support vector machines (SVMs); however, there is no theo-
retical guidance to choose a good kernel. To solve classification problem, Amari 
presented a method of modifying kernel based on information geometry theory. 
In the paper, we first review the classical formulation of regression problem, then 
propose an approach to constructing the kernel function in support vector re-
gression machines from information-geometrical viewpoint, and point out its 
difference with the method that Amari used in support vector classification 
machines. Finally some simulation results show the effectiveness of the proposed 
method. 

1   Introduction 

The theory of support vector machines (SVMs) is a new promising machine learning 
technique proposed by Vapnik [1][2][3]. SVMs employ the structural risk minimiza-
tion (SRM) principle, which has been shown to be superior to the traditional empirical 
risk minimization (ERM) principle employed in conventional learning algorithms (e.g. 
neural networks)[4]. SRM minimizes an upper bound on the generalization error as 
opposed to ERM, which minimizes the error on the training data. It is this difference 
that equips SVMs with a greater ability to generalize, which is the goal in statistical 
learning. SVMs were developed to solve the classification problem, but they have been 
successfully extended to the domain of regression problems [5][6][7]. 

SVMs are linear learning machines in the parameter space but it is easily extended to 
nonlinear learning machines by mapping the space S of the input data into a 
high-dimensional (even infinite-dimensional) feature space F through a nonlinear 
function φ . It is interesting that we need not know the nonlinear function φ explicitly; 
we only need the dot product of input data, which is available from the kernel func-
tion K , which generates φ . By choosing different kinds of kernels, different kinds of 
SVMs learning machines can be got such as polynomial, multi-layer preceptor and 
radial basis function (RBF) learning machines. 

It is important to choose a good kernel that is fit for practical problem when training 
SVMs because the performance of SVMs largely depends on the kernel; however, there 
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is no general theoretical guidance how to choose a kernel function. Chen et al. intro-
duced a construction procedure for sparse kernel modeling based on an approach of 
directly optimizing model generalization capability [8]; Amari presented a method of 
modifying a kernel based on the information geometry theory [9][10] and applied the 
method to solve classification problem. In this paper, under the illumination of the 
method of Amari, we propose a method of modifying the kernel function, which is 
applied to solve regression problem. 

2   Classical Formulation of Regression Problem 

Given the training data set {( , )| 1,2, , }, ,n
k k k kD x y k l x R y R= = ∈ ∈L , of input kx  and associ-

ated targets ky , the goal of regression problem is to fit a flat function ( )f x which ap-

proximates the relation inherited between the data set points and it can be used later on 
to infer the output y  for a new input data point x .  

Suppose the function ( )f x  is expressed as: 

( ) , ( )f x x bω φ=< >+  : nR Fφ → , Fω∈ , b R∈  (1) 

where ><, is dot product of vector, b is a bias term, and φ  is a nonlinear map which 

mapping the input x into a high-dimensional feature space F , thus a linear regression in 
high-dimensional feature space is corresponding to a nonlinear regression in 
low-dimensional input space. 

According to SRM principle, that function ( )f x  is flat in the case of Eq. (1) means 
that one seeks the minimization of the following expression: 

+
=

l

k
kk yxfLC

1

2
)),((2

1 ω  (2) 

where )(⋅L  is a loss function, C is a constant. 

Many forms for the loss function can be found in the literature: e.g. linear, huber and 
quadratic loss function, etc. In this paper, Vapnik’s loss function is used, which is 
known as ε -insensitive loss function and defined as: 

−−= ε)(
0

))(,( xfyxfyL     
otherwise

yxf ε<−)(  (3) 

Thus, the regression problem can be written as a convex optimization problem: 
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0ε >  is a predefined constant which controls the noise tolerance, the constant 0C> de-
termines the trade-off between the flatness of f and the amount of tolerable deviations, 
which is larger than ε . 

Through introducing a Lagrange function, the optimization problem (4) and (5) can 
be solved in their dual formulation, which is expressed as follows: 

 

* *

* *

, 1

1 1

1 ( )( ) ( ), ( )2

                       ( ) ( )

max imize
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subject to    
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αα  (7) 

The optimal value of kα , *

kα can be obtained by solving the dual problem (6), (7), 

accordingly, the ω can be described by:  

−=
=

l

k
kkk x

1
)()( * φααω  (8) 

thus,           +><−=
=

l

k
kkk bxxxf

1
)(),()()( * φφαα  (9) 

and the value of b can be computed according to the Karush-Kuhn-Tucker (KKT) 
conditions. Equation (9) is so-called support vector machines regression expansion. 

It can be seen clearly from Eq. (9) that we only need the dot product of input data 
instead of computing the value of ω and ( )xφ . We introduce kernel instead of 

nonlinear mapping, i.e. >=< )(),(),( '' xxxxK φφ , then Eq. (9) is rewritten as follows: 

+−=
=

l

k
kkk bxxKxf

1
),()()( *αα  (10) 

where kernel ),( 'xxK are arbitrary symmetric functions, which satisfy the Mercer 

condition[11].  
As stated before, the choice of kernel has a great influence on the performance of the 

SVMs though there are no theoretical guidance how to choose a kernel function. In the 
following paper, we will analyze the geometrical structure of kernel from viewpoint of 
information geometry, then propose a method of constructing the kernel in 
data-dependent way, which can improve the performance of suppose vector regression 
machines. 
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3   Construction of Kernel Based on Information Geometry 

3.1   Geometrical Structure of Kernel from Information-Geometrical Viewpoint 

Let’s give the definition of submanifold and embedding before analyzing the geomet-
rical structure. 

Definition 1.  M is a submanifold of W , if the following conditions (i), (ii) and (iii) 
hold, where W and M are manifolds, M is a subset of W , and 

],,[][ 1 ni ςςς L= , ],,[][ 1 ma ζζζ L= are coordinate systems for W and M , respec-

tively, Wn dim= , Mm dim= .  

(i) The restriction M
iς of each iς  is a ∞C (infinitely many differentiable) 

function on M . 

(ii) Let p
i
a a

i

B )(
ζ
ς

∂

∂
= (more precisely, pa

i

M )(
ζ

ς

∂

∂
) and nn

aaa RBBB ∈= ],,[ 1
L . 

Then for each point p  in M , },,{ 1 mBB L are linearly independent (hence 

nm ≤ ). 
(iii) For any open subset V of M , there exists U , an open subset of W , such that 

UMV ∩= . 

These conditions are independent of the choice of coordinate systems [ ]iς , [ ]aζ . 
And, conditions (ii) and (iii) mean that the embedding WM →:ι defined by 

Mppp ∈∀= ,)(ι , is a ∞C mapping. 

Now let us look back nonlinear map φ , which mapping the input space into a 

high-dimensional feature space (see Fig. 1.). From the viewpoint of information  
geometry [12], the mapping φ  defines an embedding of the space S  of the input data 

 

Fig. 1. The nonlinear function φ  maps the input space into a high-dimensional feature space 

into a high-dimensional feature space F as a submanifold. When F  is a Euclidean or 
Hilbert space, a Riemannian metric is thereby induced in the space S . 
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Denote by ijg the Riemannian metric in space S of input x , we obtain [9][10][12]: 

>
∂

∂

∂

∂
=< )(),( x

x
x

x
g

ji
ij φφ  (11) 

and Riemannian distance:        .         

jiij dxdxgds =2  (12) 

Considering ' '( , ) ( ), ( )K x x x xφ φ=< > , Eq. (11) can be rewritten as follows: 

xxxxK
xx
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= '
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),(  (13) 

Conveniently, the summation sign over indices of i and j is omitted in Eq. 
(11-13), this notation is known as Einstein’s convention. 

Let ( ) det ( )ijg x g x= , it is clear that ( )g x  represents how a local area is magnified in 

F  under the mapping φ . So we call it the magnification factor. And this is the theo-

retical basis of our idea constructing the kernel in data-dependent way. 

3.2   Constructing the Kernel in Data-Dependent Way 

Based on the above analysis, in order to improve the forecasting precision in regression 
problems, special nonlinear map φ  (or the related kernel K ) can be constructed such 
that ( )ijg x is reduced around the neighboring areas of hyperplane: ( )y f x b ε− − = , which 

is contrary to the method of Amari in classification problems. This idea can be im-
plemented by a conformal transformation of the kernel: 

),()()(),( '''* xxKxDxDxxK =  (14) 

with a positive function )(xD . It is easy to prove that the kernel *K satisfies the 

Mercer condition. 
From Eq. (13), we obtain 

),()()(2)()()()( 2* xxKxDxDxDxDxgxDijg iijiij ++=  (15) 

where ii xxDxD ∂∂= )()( and xxxxxKxxK ii =∂∂= '
' ),(),( . 

However, the positions where the neighboring areas of hyperplane locate are un-
known, so we use empirical knowledge that support vectors (SVs) are mostly located 
around the area and choose )(xD to have the small values at SVs positions. 
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Taking the above analysis into consideration, we choose )(xD as follows: 

−=
∈SVsi

iixx
exD

22

)(
τ

 (16) 

where the parameter iτ  is given by 

ii xx −= αα
τ max  (17) 

The maximum in Eq. (17) runs over N  SVs αx that are nearest to ix .  

To summarize, the method that training SVMs regression in data-dependent way is: 
first, choose a kernel, train SVMs and record the information of SVs, then modify kernel 
according to equations (14), (16) and (17), finally train SVMs with the modified kernel. 

4   Simulation Experiment 

In this section, some experimental results on the SVMs regression are introduced. In 

the first experimental, the data set comes from the function: noisexy += 2 , 

where noise comes from a normal distribution with mean zero, variance one and stan-
dard deviation one. Fig.2. shows the result of applying the proposed SVMs algorithm 
for function regression and illustrates the good performance. Here Gaussian RBF is 
used as the primary kernel function. 

 

Fig. 2. Function regression using SVMs algorithm 

While Fig.3. shows the simulation result of modeling the following data set 
[13][14]: X=[1.0, 3.0, 4.0, 5.6, 7.8,10.2, 11.0, 11.5, 12.7] and Y=[-1.6, -1.8, -1.0, 1.2, 
2.2, 6.8, 10.0, 10.0, 10.0]. The same parameters are used in order to compare the result 
with [13][14]. The predictive value of Y is got as Y=[-1.4997, -1.6997, -1.1007, 
1.3002, 2.0998, 6.9002, 9.6753, 10.0998, 9.9001] with mean squared error 0.02064. It 
shows the proposed means is effective compared with [13][14]. 
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Fig. 3. Predictive result using SVMs regression algorithm 

As is indicated in the above two pictures, the proposed method is effective and can 
improve the performance of the SVMs regression. 

5   Conclusions 

In the paper we have briefly reviewed the classical formulation of regression problem, 
and studied a novel approach to constructing kernel function in data-dependent way 
based on information geometry theory. The kernel function is modified by using the 
information of SVs, in the way that is contrary to the idea of Amari in classification 
problems, in order to improve the performance of support vector regression machines, 
simulation results show the effectiveness of the method. 
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Abstract. In recent years, support vector machines (SVMs) have be-
come a popular tool for pattern recognition and machine learning. Train-
ing a SVM involves solving a constrained quadratic programming prob-
lem, which requires large memory and enormous amounts of training
time for large-scale problems. In contrast, the SVM decision function is
fully determined by a small subset of the training data, called support
vectors. Therefore, it is desirable to remove from the training set the data
that is irrelevant to the final decision function. In this paper we propose
two new methods that select a subset of data for SVM training. Using
real-world datasets, we compare the effectiveness of the proposed data
selection strategies in terms of their ability to reduce the training set size
while maintaining the generalization performance of the resulting SVM
classifiers. Our experimental results show that a significant amount of
training data can be removed by our proposed methods without degrad-
ing the performance of the resulting SVM classifiers.

1 Introduction

Support vector machines (SVMs), introduced by Vapnik and coworkers in the
structural risk minimization (SRM) framework [1,2,3], have gained wide accep-
tance due to their solid statistical foundation and good generalization perfor-
mance that has been demonstrated in a wide range of applications.

Training a SVM involves solving a constrained quadratic programming (QP)
problem, which requires large memory and takes enormous amounts of train-
ing time for large-scale applications [4]. On the other hand, the SVM decision
function depends only on a small subset of the training data, called support
vectors. Therefore, if one knows in advance which patterns correspond to the
support vectors, the same solution can be obtained by solving a much smaller
QP problem that involves only the support vectors. The problem is then how
to select training examples that are likely to be support vectors. Recently, there
has been considerable research on data selection for SVM training. For example,
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Wang is supported by a dissertation fellowship from Brown University.
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Shin and Cho proposed a method that selects patterns near the decision bound-
ary based on the neighborhood properties [5]. In [6,7,8], k-means clustering is
employed to select patterns from the training set. In [9], Zhang and King pro-
posed a β-skeleton algorithm to identify support vectors. In [10], Abe and Inoue
used Mahalanobis distance to estimate boundary points. In the reduced SVM
(RSVM) setting, Lee and Mangasarian chose a subset of training examples using
random sampling [11]. In [12], it was shown that uniform random sampling is
the optimal robust selection scheme in terms of several statistical criteria.

In this paper, we introduce two new data selection methods for SVM training.
The first method selects training data based on a statistical confidence measure
that we will describe later. The second method uses the minimal distance from
a training example to the training examples of a different class as a criterion
to select patterns near the decision boundary. This method is motivated by
the geometrical interpretation of SVMs based on the (reduced) convex hulls.
To understand how effective these strategies are in terms of their ability to
reduce the training set size while maintaining the generalization performance, we
compare the results obtained by the SVM classifiers trained with data selected
by these two new methods, by random sampling, and by the data selection
method that is based on the distance from a training example to the desired
optimal separating hyperplane. Our comparative study shows that a significant
amount of training data can be removed from the training set by our methods
without degrading the performance of the resulting SVM classifier. We also find
that, despite its simplicity, random sampling performs well and often provides
results comparable to those obtained by the method based on the desired SVM
outputs. Furthermore, in our experiments, we find that incorporating the class
distribution information in the training set often improves the efficiency of the
data selection methods.

The remainder of the paper is organized as follows. In section 2, we give a
brief overview of support vector machines for classification and the correspond-
ing training problem. In section 3, we present the two new methods that select
subsets of training examples for training SVMs. In section 4 we report the exper-
imental results on several real-world datasets. Concluding remarks are provided
in section 5.

2 Related Background

Given a set of training data {(x1, y1), . . . , (xn, yn)}, where xi ∈ IRd and yi ∈
{−1, 1}, support vector machines seek to construct an optimal separating hy-
perplane by solving the following quadratic optimization problem:

min
w,b

1
2
〈w,w〉 + C

n∑
i=1

ξn (1)

subject to the constraints:

yi(〈w, xi〉+ b) ≥ 1− ξi ∀i = 1, . . . , n , (2)
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where ξi ≥ 0 for i = 1, . . . , n are slack variables introduced to handle the non-
separable case [2]. The constant C > 0 is a parameter that controls the trade-off
between the separation margin and the number of training errors. Using the
Lagrange multiplier method, one can easily obtain the following Wolfe dual form
of the primal quadratic programming problem:

min
αi,i=1,...,n

1
2

n∑
i,j=1

αiαjyiyj〈xi, xj〉 −
n∑

i=1

αi (3)

subject to

0 ≤ αi ≤ C ∀i = 1, . . . , n and
n∑

i=1

αiyi = 0 . (4)

Solving the dual problem, one obtains the multipliers αi, i = 1, . . . , n, which give
w as an expansion

w =
n∑

i=1

αiyixi . (5)

According to the Karush-Kuhn-Tucker (KKT) optimality conditions, we have

αi = 0⇒ yi(〈w, xi〉+ b) ≥ 1 and ξi = 0
0 < αi < C ⇒ yi(〈w, xi〉+ b) = 1 and ξi = 0

αi = C ⇒ yi(〈w, xi〉+ b) ≤ 1 and ξi ≥ 0 .

Therefore, only αi that correspond to training examples xi which lie either on
the margin or inside the margin area are non-zero. All the remaining αi are zero
and the corresponding training examples are irrelevant to the final solution.

Knowing the normal vector w, the bias term b can be determined from the
KKT conditions yi(〈w, xi〉 + b) = 1 for 0 < αi < C. This subsequently leads to
the linear decision function f(x) = sgn(

∑n
i=1 αiyi〈x, xi〉+ b).

In practice, linear decision functions are generally not rich enough for pattern
separation. To allow for more general decision surfaces, one can apply the kernel
trick by replacing the inner products 〈xi, xj〉 in the dual problem with suitable
kernel functions k(xi, xj). Effectively, support vector machines implicitly map
training vectors xi in IRd to feature vectors Φ(xi) in some high dimensional
feature space IF such that inner products in IF are defined as 〈Φ(xi), Φ(xj)〉 =
k(xi, xj). Consequently, the optimal hyperplane in the feature space IF represents
a nonlinear decision functions of the form

f(x) = sgn(
n∑

i=1

αiyik(x, xi) + b) . (6)

To train a SVM classifier, one therefore needs to solve the dual quadratic
programming problem (3) under the constraints (4). For a small training set,
standard QP solvers, such as CPLEX, LOQO, MINOS and Matlab QP routines,
can be readily used to obtain the solution. However, for a large training set, they
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quickly become intractable because of the large memory requirements and the
enormous amounts of training time involved. To alleviate the problem, a number
of solutions have been proposed by exploiting the sparsity of the SVM solution
and the KKT conditions.

The first such solution, known as chunking [13], uses the fact that only the
support vectors are relevant for the final solution. At each step, chunking solves
a QP problem that consists of all non-zero Lagrange multipliers αi from the last
step and some of the αi that violate the KKT conditions. The size of the QP
problem varies but finally equals the number of non-zero Lagrange multipliers.
At the last step, the entire set of non-zero Lagrange multipliers are identified and
the QP problem is solved. Another solution, proposed in [14], solves the large
QP problem by breaking it down into a series of smaller QP sub-problems. This
decomposition method is justified by the observation that solving a sequence of
QP sub-problems that always contain at least one training example that violates
the KKT conditions will eventually lead to the optimal solution. Recently, a
method called sequential minimal optimization (SMO) was proposed by Platt
[15], which approaches the problem by iteratively solving a QP sub-problem of
size 2. The key idea is that a QP sub-problem of size 2 can be solved analytically
without invoking a quadratic optimizer. This method has been reported to be
several orders of magnitude faster than the classical chunking algorithm.

All the above training methods make use of the whole training set. However,
according to the KKT optimality conditions, the final separating hyperplane is
fully determined by the support vectors. In many real-world applications, the
number of support vectors is expected to be much smaller than the total number
of training examples. Therefore, the speed of SVM training will be significantly
improved if only the set of support vectors is used for training, and the solution
will be exactly the same as if the whole training set was used.

In theory, one has to solve the full QP problem in order to identify the sup-
port vectors. However, it is easy to see that the support vectors are training
examples that are close to decision boundaries. Therefore, if there exists a com-
putationally efficient way to find a small set of training data such that with high
probability it contains the desired support vectors, the speed of SVM training
will be improved without degrading the generalization performance. The size
of the reduced training set can still be larger than the set of desired support
vectors. However, as long as its size is much smaller than the size of the total
training set, the SVM training speed will be significantly improved because most
SVM training algorithms scales quadratically on many problems [4]. In the next
section, we propose two new data selection strategies to explore the possibility.

3 Training Data Selection for Support Vector Machines

3.1 Data Selection Based on Confidence Measure

A good heuristic for identifying boundary points is the number of training ex-
amples that are contained in the largest sphere centered at a training example
without covering an example of a different class.
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Centered at each training example xi, let us draw a sphere that is as large as
possible without covering a training example of a different class and count the
number of training examples that fall inside the sphere. We denote this number
by N(xi). Obviously, the larger the number N(xi), the more training examples
(of the same class as xi) will be scattered around xi, the less likely xi will be close
to the decision boundary, and the less likely xi will be a support vector. Hence,
this number can be used as a criterion to decide which training examples should
belong to the reduced training set. For each training example xi, we compute
the number N(xi) and sort the training data according to the corresponding
value of N(xi) and choose a subset of data with the smallest numbers N(xi) as
the reduced training set. It can be shown that N(xi) is related to the statistical
confidence that can be associated with the class label yi of the training example
xi. For this reason, we call this data selection scheme the confidence measure-
based training set selection.

3.2 Data Selection Based on Hausdorff Distance

Our second data selection strategy is based on the Hausdorff distance. In the
separable case, it has been shown that the optimal SVM separating hyperplane
is identical to the hyperplane that bisects the line segment which connects the
two closest points of the convex hulls of the positive and of the negative training
examples [16,17]. The problem of finding the two closest points in the convex
hulls can be formulated as

min
z+,z−

‖z+ − z−‖2 (7)

subject to
z+ =

∑
i:yi=1

αixi and z− =
∑

i:yi=−1

αixi , (8)

where αi ≥ 0 satisfies the constraints
∑

i:yi=1 αi = 1 and
∑

i:yi=−1 αi = 1.
Based on this geometrical interpretation, the support vectors are the training

examples that are vertices of the convex hulls that are closest to the convex hull
of the training examples from the opposite class. For the non-separable case, a
similar result holds by replacing the convex hulls with the reduced convex hulls
[16,17]. Therefore, a good heuristic that can be used to determine whether a
training example is likely to be a support vector is the distance to the convex
hull of the training examples of the opposite class. Computing the distance from
a training example xi to the convex hull of the training examples of the opposite
class involves solving a smaller quadratic programming problem. To simplify
the computation, the distance from a training example to the closest training
examples of the opposite class can be used as an approximation. We denote the
minimal distance as

d(xi) = min
j:yj 
=yi

‖xi − xj‖ , (9)

which is also the Hausdorff distance between the training example xi and the set
of training examples that belong to a different class. To select a subset of training
examples, we sort the training set according to d(xi) and select examples with
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the smallest Hausdorff distances d(xi) as the reduced training set. This method
will be referred to as the Hausdorff distance-based selection method.

3.3 Data Selection Based on Random Sampling and Desired SVM
Outputs

To study the effectiveness of the proposed data selection strategies, we compare
them to two other strategies. One is random sampling and the other is a data
selection strategy based on the distance from the training examples to the desired
separating hyperplane.

The random sampling strategy simply selects a small portion of the training
data to form the reduced training set uniformly at random. This method is
straightforward to implement and requires no extra computation. The other
data selection strategy we compare our methods to is implemented as follows.
Given the training set and the parameter setting, we solve the full QP problem
to obtained the desired separating hyperplane. Then for each training example
xi, we compute its distance to the desired separating hyperplane as:

f(xi) = yi(
n∑

j=1

αjyjk(xi, xj) + b) . (10)

Note that Eq. (10) has taken into account the class information and training
examples that are misclassified by the desired separating hyperplane will have
negative distances. According to the KKT conditions, support vectors are train-
ing examples that have relatively small values of distance f(xi). We sort the
training examples according to their distances to the separating hyperplane and
select a subset of training examples with the smallest distances as the reduced
training set. This strategy, although impractical because one needs to solve the
full QP problem first, is ideal for comparison purposes as the distance from
a training example to the desired separating hyperplane provides the optimal
criterion for selecting the support vectors.

4 Results and Discussion

In this section we report experimental results on several real-world datasets from
the UCI Machine Learning repository [18]. The SVM training algorithm was
implemented based on the SMO method. For all datasets, Gaussian kernels were
used and the generalization error of the SVMs was estimated using the 5-fold
cross-validation method. For each training set, according to the data selection
method used, a portion of the training set (ranging from 10 to 100 percent) was
selected as the reduced training set to train the SVM classifier. The error rate
reported is the average error rate of the resulting SVM classifiers on the test sets
over the 5 iterations. Due to the space limit, only results on three datasets will
be presented.

Note that when the data selection method is based on the desired SVM
outputs, the SVM training procedure has to be run twice in each iteration. The
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Table 1. Error rates of SVMs on the Breast Cancer dataset when trained with reduced
training sets of various sizes

Percent Confidence Hausdorff Random SVM

10 34.26 5.44 5.44 33.38
20 4.12 7.65 5.15 4.56
30 3.53 5.59 4.71 3.97
40 3.82 5.44 5.00 3.68
50 3.82 5.44 5.00 3.82
60 3.97 5.15 4.41 3.97
70 3.97 4.85 4.12 3.97
80 4.12 4.85 4.26 3.97
90 3.82 4.56 4.41 3.82
100 3.82 3.82 3.82 3.82

first time a SVM classifier is trained with the training set to obtain the desired
separating hyperplane. Then a portion of the training examples in the training
set is selected to form the reduced training set based on their distances to the
desired separating hyperplane (see Eq. (10)). The second time a SVM classifier
is trained with the reduced training set.

Given a training set and a particular data selection criterion, there are two
ways to form the reduced training set. One can either select training examples
regardless of which classes they belong to or select training examples from each
class separately while maintaining the class distribution. It was found in our
experiments that selecting training examples from each class separately often
improves the classification accuracy of the resulting SVM classifiers. Therefore,
we only report results in this case.

Table 1 shows the error rates of SVMs on the Wisconsin Breast Cancer
dataset when trained with the reduced training sets of various sizes selected by
the four different data selection methods. This dataset consists of 683 examples
from two classes (excluding the 16 examples with missing attribute values). Each
example has 8 attributes. The size of the training set in each iteration is 547 and
the size of the test set is 136. The average number of support vectors is 238.6,
which is 43.62% of the training set size.

From Table 1 one can see that a significant amount data can be removed
from the training set without degrading the performance of the resulting SVM
classifier. When more than 10% of the training data is selected, the confidence-
based data selection method outperforms the other two methods. Its performance
is actually as good as that of the method based on the desired SVM outputs.
The method based on the Hausdorff distance gives the worst results. When the
data reduction rate is high, e.g., when less than 10 percent of the training data
is selected, the results obtained by the Hausdorff distance-based method and
random sampling are much better than those based on the confidence measure
and the desired SVM outputs.

Table 2 shows the corresponding results obtained on the BUPA Liver dataset,
which consists of 345 examples, with each example having 6 attributes. The sizes
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Table 2. Results on the BUPA Liver dataset

Percent Confidence Hausdorff Random SVM

10 42.90 39.71 39.13 63.19
20 44.06 38.55 33.33 62.90
30 41.16 33.62 33.33 51.01
40 40.00 33.62 30.43 45.80
50 40.00 33.62 31.30 42.61
60 35.94 32.75 32.75 42.32
70 33.91 33.33 32.17 37.68
80 31.01 31.88 32.46 32.46
90 31.59 30.72 33.04 31.30
100 31.30 31.30 31.30 31.30

Table 3. Results on the Ionosphere dataset

Percent Confidence Hausdorff Random SVM

10 26.29 35.71 16.29 33.14
20 21.43 25.71 11.14 22.57
30 18.57 24.00 8.57 6.86
40 11.43 24.00 8.00 6.00
50 7.43 21.43 7.14 5.71
60 6.00 18.86 7.14 5.71
70 5.71 16.00 6.57 6.00
80 5.14 10.29 6.00 6.00
90 6.00 6.57 6.00 5.71
100 5.71 5.71 5.71 5.71

of the training and test sets in each iteration are 276 and 69, respectively. The
average number of support vectors is 222.2, which is 80.51% of the size of the
training sets. Interestingly, as we can see, the method based on the desired
SVM outputs has the worst overall results. When less than 80% of the data is
selected for training, the Hausdorff distance-based method and random sampling
have similar performance and outperform the methods based on the confidence
measure and the desired SVM outputs.

Table 3 provides the results on the Ionosphere dataset, which has a total of
351 examples, with each example having 34 attributes. The sizes of the training
and test sets in each iteration are 281 and 70, respectively. The average number
of support vectors is 159.8, which is 56.87% of the size of the training sets. From
Table 3 we see that the data selection method based on the desired SVM outputs
gives the best results when more than 20% of the data is selected. When more
than 50% of the data is selected, the results of the confidence-based method are
very close to the best achievable results. However, when the reduction rate is
high, the performance of random sampling is the best. The Hausdorff distance-
based method has the worst overall results.
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An interesting finding of the experiments is that the performance of the
SVM classifiers deteriorates significantly when the reduction rate is high, e.g.,
when the size of the reduced training set is much smaller than the number of
the desired support vectors. This is especially true for data selection strategies
that are based on the desired SVM outputs and the proposed heuristics. On the
other hand, the effect is less significant for random sampling, as we have seen
that random sampling usually has better relative performance at higher data
reduction rates. From a theoretical point of view, this is not surprising because
when only a subset of the support vectors is chosen as the reduced training set,
there is no guarantee that the solution of the reduced QP problem will still be
the same. In fact, if the reduction rate is high and the criterion is based on
the desired SVM outputs or the proposed heuristics, the reduced training set
is likely to be dominated by ’outliers’, therefore leading to worse classification
performance. To overcome this problem, we can remove those training examples
that lie far inside the margin area since they are likely to be ’outliers’. For the
data selection strategy based on the desired SVM outputs, it means that we can
discard part of the training data that has extremely small values of the distance
to the desired separating hyperplane (see Eq. (10)). For the methods based on
the confidence measure and Hausdorff distance, we can similarly discard the part
of the training data that has extremely small values of N(xi) and the Hausdorff
distance.

Table 4. Results on the Breast Cancer dataset

Percent Confidence Hausdorff Random SVM

10 5.74 7.94 5.88 4.56
20 4.26 5.59 4.71 4.71
30 4.12 5.44 4.71 4.71
40 4.12 5.15 4.85 4.56
50 4.26 5.74 5.15 4.26
60 4.12 5.15 4.56 4.41
70 3.97 5.29 4.26 4.26
80 3.82 5.29 4.41 4.26
90 3.82 4.71 4.41 4.12
100 3.82 3.82 3.82 3.82

In Table 4 we show the results of the proposed solution on the Breast Cancer
dataset. Comparing Tables 1 and 4, it is easy to see that, when only a very small
subset of the training data (compared to the number of the desired support vec-
tors) is selected for SVM training, removing training patterns that are extremely
close to the decision boundary according to the confidence measure or accord-
ing to the underlying SVM outputs significantly improves the performance of
the resulting SVM classifiers. The effect is less obvious for the methods based
on the Hausdorff measure and random sampling. Similar results have also been
observed on other datasets but will not be reported here due to the space limit.
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5 Conclusion

In this paper we presented two new data selection methods for SVM training.
To analyze their effectiveness in terms of their ability to reduce the training data
while maintaining the generalization performance of the resulting SVM classi-
fiers, we conducted a comparative study using several real-world datasets. More
specifically, we compared the results obtained by these two new methods with
the results of the simple random sampling scheme and the results obtained by the
selection method based on the desired SVM outputs. Through our experiments,
several important observations have been made: (1) In many applications, signif-
icant data reduction can be achieved without degrading the performance of the
SVM classifiers. For that purpose, the performance of the confidence measure-
based selection method is often comparable to or better than the performance of
the method based on the desired SVM outputs. (2) When the reduction rate is
high, some of training examples that are ‘extremely’ close to the decision bound-
ary have to be removed in order to maintain the generalization performance of
the resulting SVM classifiers. (3) In spite of its simplicity, random sampling per-
forms consistently well, especially when the reduction rate is high. However, at
low reduction rates, random sampling performs noticeably worse compared to
the confidence measure-based method. (4) When conducting training data se-
lection, sampling training data from each class separately according to the class
distribution often improves the performance of the resulting SVM classifiers.

By directly comparing various data selection schemes with the scheme based
on the desired SVM outputs, we are able to conclude that the confidence measure
provides a criterion for training data selection that is almost as good as the
optimal criterion based on the desired SVM outputs. At high reduction rates, by
removing training data that are likely to be outliers, we boost the performance of
the resulting SVM classifiers. Random sampling performs consistently well in our
experiments, which is consistent with the results obtained by Syed et al. in [19]
and the theoretical analysis of Huang and Lee in [12]. The robustness of random
sampling at high reduction rates suggests that, although an SVM classifier is
fully determined by the support vectors, the generalization performance of an
SVM is less reliant on the choice of training data than it appears to be.
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Abstract. Regularized Least-Squares Classification (RLSC) can be regarded as 
a kind of 2 layers neural network using regularized square loss function and 
kernel trick. Poggio and Smale recently reformulated it in the framework of the 
mathematical foundations of learning and called it a key algorithm of learning 
theory. The generalization performance of RLSC depends heavily on the setting 
of its kernel and hyper parameters. Therefore we presented a novel two-step ap-
proach for optimal parameters selection: firstly the optimal kernel parameters 
are selected by maximizing kernel target alignment, and then the optimal hyper-
parameter is determined via minimizing RLSC’s leave-one-out bound. Com-
pared with traditional grid search, our method needs no independent validation 
set. We worked on IDA’s benchmark datasets using Gaussian kernel, the results 
demonstrate that our method is feasible and time efficient. 

1   Introduction 

It is until recently that Poggio and Smale pointed out that “ ’classical’ square loss 
regularization network works also very well for binary classification [1]”, and they 
described a key algorithm(KA) of learning theory in [1]. KA is based on the mathe-
matical foundations of learning [2], which differs greatly from the formulation of 
support vector machines [3]. KA is originated from Regularized Least-Squares Classi-
fication (RLSC, we confuse KA and RLSC in this paper, and use RLSC to stress it is 
a classification problem) presented by Rifkin and Poggio in [4] and [5], and has the 
same computational formula with Kernel Ridge Regression and Gaussian Process 
though from different motivations, and is akin to LS-SVM [6] and PSVM [7] since 
they all use square loss and solve linear equation. However, RLSC’s generalization 
performance depends heavily on the setting of its kernel and hyper parameters, which 
is usually tuned by time-consuming grid search on an n-fold cross-validation. 
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Enlightened by Chapelle and Vapnik et al.’s parameter selection method [8] for 
SVMs and Cristianini et al.’s idea of kernel target alignment [9], we present in this 
paper a novel two-step approach for optimal parameters selection for RLSC: firstly 
the optimal kernel parameters are selected by maximizing kernel target alignment, 
and then the optimal hyper parameter is determined via minimizing RLSC’s leave-
one-out bound. 

We begin by briefly introducing RLSC to set a base for further discussion, then 
outline the kernel target alignment method for kernel parameters selection, followed 
by the leave-one-out (loo) bound of RLSC with application to select hyper-parameter. 
Next, we formulate our RLSC-AlignLoo model selection method, and apply it to 13 
IDA benchmark datasets, and ended with a conclusion. 

2   Regularized Least-Squares Classification 

Given a training set 1( , )m
i i ix y =  with , i ix X y Y∈ ∈ , and X  is a closed subset of nR , 

Y R⊂ , a key algorithm described in [1] takes the following steps to find a predictive 
function :f X Y→ . 

1. Choose a symmetric, positive definite function ( ') ( , ')xK x K x x= , which is continuous 

on X X× . For example, a Gaussian kernel is 2( , ') exp( || ' || /(2 ))K x x x x σ 2= − − . 

2. Let :f X Y→  to be  

1
( ) ( )

m

i x ii
f x c K x

=
=  

(1) 

where 1( ,..., )T
mc c c=  (superscript T denotes transpose ), and 

( )m I K c yγ + =  (2) 

where I  is identity matrix, K is an m m×  positive definite matrix with elements 

( , )ij i jK K x x= , and y is the vector 1( ,..., )T
my y , hyper-parameter γ  is a positive, real 

number.  
The derivation of KA or RLSC is to minimize the following regularized risk func-

tional,  

2 2
K

1

1
min ( ) ( ( )) || ||

K

m

reg i if H
i

R f y f x f
m

γ
∈ =

= − +  
(3) 

where || ||Kf  is the norm of KH  - the RKHS defined by the positive kernel K.  

When considering classification, that’s RLSC, we take {1, 1}iy ∈ −  and get the de-

cision function by imposing a sign function to (1).  
The details of KA or RLSC’s formal formulation and theories can be referred from 

[1, 2, 4, 5]. 
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3   Kernel Target Alignment for Kernel Parameters Selection 

The basic idea of kernel target alignment is that the universal kernel gives trivial re-
sults in learning task, and the ideal kernel is specialized, or rather, aligns the target 
labels well [9]. The quantity alignment is used to measure the degree of match be-
tween two kernels or a kernel and a target. 

Definition Alignment The alignment of a kernel 1k  and a kernel 2k  is the quantity 

1 2
1 2

1 1 2 2

,
( , )

, ,
P

P P

k k
A k k

k k k k

< >=
< > < >

 (4) 

where P is the distribution generating the data.  
The value of the alignment is in all real problems impossible to estimate, however, 

it can be empirical estimated once given a sample, 1( , )m
m i i iS x y == . We will use the 

following definition of inner product between gram matrices: 

1 2 1 2
, 1

, ( , ) ( , )
m

F i j i j
i j

K K K x x K x x
=

< > =  (5) 

corresponding to the Frobenius inner product. 

Definition Emperical Alignment The empirical alignment of a kernel 1k  with a ker-

nel 2k  is the quantity 

1 2
1 2

1 1 2 2

,ˆ( , )
, ,

F

F F

K K
A k k

K K K K

< >=
< > < >

 (6) 

As a special case, we consider 2
TK yy= , where y is the vector of labels for the 

sample, then 

,ˆ( , )
, ,

T
T

T T

K yy
A K yy

K K yy yy

< >=
< >< >

 (7) 

A crucial property of the alignment for practical application is that it can be relia-

bly estimated from its empirical estimate ˆ( )A S . 

Theorem The sample based estimate of the alignment is concentrated around its 
expected value. For a kernel with feature vector of norm 1, we have that 

( :| ( ) ( ) | )mP S A S A y ε δ− ≥ ≤ , where ( ) 8ln(2 / ) /C S mε δ= , 

for a non-trivial function C(S) and value A(y). 
The alignment has been used for transduction based learning and kernel selection in 

[9], and we will explore its capability for selecting kernel parameters by maximizing 
the alignment between the kernel and the labels of y. 
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4   RLSC’s Loo Bound for Hyper-Parameter Selection 

Loo bound allows us to estimate the generalization error of a learning machine when 
there are no independent validation sets. Jaakkola and Haussler introduced an interest-
ing class of simple loo bound [10] for kernel classifiers. Rifkin [4] proved that their 
bound is valid for RLSC, and that the number of loo errors is bounded by 

| : 0 |i i j ij
i j

x y c K
≠

≤  (8) 

This bound can be computed directly given ic . However, a simple geometric con-

dition underling RLSC leads to a more elegant bound. Here, we present a simpler 
deduction for the loo bound than the deduction given in [5]. Combining (1) and (2), 
we get ( ( )) /i i ic y f x mγ= − . Using this, and considering 1,  i iy y mγ= > 0 , we can 

eliminate ic  from the bound, the number of loo errors for RLSC is then bounded by 

( )
   | : ( ( ) ( ) ) 0 |

 = | : ((1 ) ( ) ) 0 |

 = | : ( ) ( ) 0 |

 = | : ( ) |
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i i
i i i ii

ii i
i i i ii

i i ii i ii

ii
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ii

y f x
x y f x K

m

K y
x y f x K

m m

x y m K f x K

K
x y f x

m K

γ

γ γ
γ

γ

−
− ≤

+ − ≤

+ − ≤

≤
+

 (9) 

Note that once we have set the optimal kernel parameters, we can use this bound to 
tune hyper-parameter γ . 

5   RLSC-AlignLoo Model Selection Approach 

RLSC-AlignLoo Model Selection Approach: Combining the kernel target align-
ment method and RLSC’s loo bound, we put forward our method as follows: 

1.  Preprocess input data 1{ , }m
i i iS x y == , let iy  be 1 or -1, and { }iX x=  zero mean 

and standard derivation 1. 
2.  Select the optimal kernel parameters which maximize the alignment defined in (7). 

As an example, for Gaussian  kernel, we first compute the corresponding Gram 
matrix K for each σ 2  in its 1-dimensional search list, and calculate the alignment 

( , )TA K yy  by (7), then we get the optimal σ 2  which maximizes the alignment A. 

3.  Select the optimal γ  which minimizes the loo error. First calculate the Gram ma-

trix K using the optimal σ 2  got in step 2, and then for each available γ , train the 

model by (2) and get ( )f x  by (1), then we get the loo bound for this γ  by (9). The 

optimal γ  is the one minimizing the loo bound. 
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4. Retrain RLSC using the optimal σ 2  and γ , get 1( )c K m I yγ −= + . 

5.  Test on new input data tx X∈ , using 
1

( ) ( ( , ))
m

i i
i

f x sign c K x x
=

= . 

Implementation Issues: we find that empirical kernel target alignment can be effi-
cient computed, 

, ( ) (( ) ) ,T T T T TK yy trace K yy trace Ky y y Ky y Ky< >= = =< >=  (10) 

2, (( ) ) ( ( ) )= (yy ) = T T T T T T T Tyy yy trace yy yy trace y y y y m trace m< >= = ⋅  (11) 

Note that for Gaussian  kernel, ( , )i iK x x  is always 1, so the loo bound becomes 

simply | : (1 ) ( ) 1 |i i ix m y f xγ+ ≤ . 

6   Experiments 

We work our approach on the IDA dataset [11], introduced by Rätsch et al., which is 
a suit of two-class recognition problems with pre-divided partition of training and 
testing sets with emphasis on evaluating the model performance by eliminating the 
discrepancy generated from data division. We use the parameters grid, lnσ 2 = {-
10:1:10} and lnγ = {-15:1:5}, for both RLSC grid search and AlignLoo model selec-
tion. Like [11], we use the first 5 training/testing datasets for parameters tuning for 
RLSC’s grid search. However, there is no need for us to do so for RLSC-AlignLoo 
because we can determine the optimal parameters based only on training data. As a 
result, we select an optimal parameter pair for each training/testing division in the 
AlignLoo approach. 
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Fig. 1. Left: The alignment of a Gaussian  kernel to the target labels of dataset Twonorm varies 

against the choose of different kernel width σ 2 . Empirical observations show that the curve is 

unimodal and peaks at the optimal σ 2 . Right: The Loo bound for RLSC built on dataset 
Twonorm changes along with its selection of hyper-parameter γ . Empirical observations dem-

onstrate the curve usually contains a flat segment sharing the same minimal Loo bound, which 
depicts the range of optimal γ , and we take the middle one in practice. 
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Fig. 2. The contour of the accuracy of the parameter grid on dataset Thyroid. All the optimal 

parameter-pairs of (σ 2 , γ ) obtained by RLSC AlignLoo algorithm on each division are plotted 

with blue stars, obviously, they overlap heavily and are located near the optimal point (the red 
diamond) achieved by grid search on 5-fold CV. 
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Fig. 3. The mesh plot of the accuracy of the parameter grid on dataset Thyroid. The optimal 
point achieved by grid search on 5-fold CV is indicated specially. 
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Table 1. A brief description of IDA data set and the time cost on each data set for model selec-
tion through RLSC grid search and RLSC-AlignLoo method. Time cost for RLSC Grid is the 
time consumed on searching on a 21×21 grid using 5-fold CV, and for RLSC-AlignLoo is the 
time consumed on a single division, which covers time span for searching 21+21 point. 

No. Dataset Dimension 
Train 
size 

Test size Divisions 
RLSC Grid 

(Minute) 
RLSC-AlignLoo 

(Second) 
1 Banana 2 400 4900 100 79.6 1.88 
2 Breast Cancer 9 200 77 100 8.7 0.24 
3 Diabetes 8 468 300 100 81.6 2.55 
4 Flare Sonar 9 666 400 100 149.8 6.68 
5 German 20 700 300 100 258.6 7.19 
6 Heart 13 170 100 100 6.4 0.14 
7 Image 18 1300 1010 20 1410.2 40.30 
8 Ringnorm 20 400 7000 100 162.8 1.57 
9 Splice 60 1000 2175 20 1009.7 20.21 

10 Thyroid 5 140 75 100 3.2 0.11 
11 Titanic 3 150 2051 100 10.7 0.19 
12 Twonorm 20 400 7000 100 179.1 1.69 
13 Waveform 21 400 4600 100 147.3 1.75 

Table 2. The mean test cost (with standard derivation) on each data set of RLSC grid search 
and RLSC AlignLoo with a comparison with methods of RBF Network, SVM and AdaBoost, 
etc. The mean cost is the average of the costs on the 100 or 20 divisions of each set. The bold-
faced text indicates a maximum performance is achieved by this approach. 

No. RBF-
Network 

AdaBoost 
RBF 

LP_Reg- 
AdaBoost 

QP_Reg- 
AdaBoost 

AdaBoost 
_Reg 

SVM RBF RLSC Grid 
RLSC-
AlignLoo 

1 10.76±0.42 12.26±0.67 10.73±0.43 10.90±0.46 10.85±0.42 11.53±0.66 10.41±0.44 11.01±0.62
2 27.64±4.71 30.36±4.73 26.79±6.08 25.91±4.61 26.51±4.47 26.04±4.74 25.43±4.03 25.60±4.26
3 24.29±1.88 26.47±2.29 24.11±1.90 25.39±2.20 23.79±1.80 23.53±1.73 22.99±1.69 23.70±1.93
4 34.37±1.95 35.70±1.79 34.74±2.00 36.22±1.80 34.20±2.18 32.43±1.82 33.48±1.79 35.86±1.82
5 24.71±2.38 27.45±2.50 24.79±2.22 25.25±2.14 24.34±2.08 23.61±2.07 24.61±2.29 26.81±2.91
6 17.55±3.25 20.29±3.44 17.49±3.53 17.17±3.44 16.47±3.51 15.95±3.26 16.61±3.95 17.03±3.45
7 3.32±0.65 2.73±0.66 2.76±0.61 2.67±0.63 2.67±0.61 2.96±0.60 2.84±0.53 3.15±0.95
8 1.70±0.21 1.93±0.24 2.24±0.46 1.86±0.22 1.58±0.12 1.66±0.12 2.44±0.16 2.58±0.24
9 9.95±0.78 10.14±0.51 10.22±1.59 10.11±0.52 9.50±0.65 10.88±0.66 10.91±0.81 12.95±0.90

10 4.52±2.12 4.40±2.18 4.59±2.22 4.35±2.18 4.55±2.19 4.80±2.19 4.21±2.12 5.24±2.48
11 23.26±1.34 22.58±1.18 23.98±4.38 22.71±1.05 22.64±1.20 22.42±1.02 22.55±1.13 23.12±1.46
12 2.85±0.28 3.03±0.28 3.17±0.43 2.97±0.26 2.70±0.24 2.96±0.23 2.39±0.12 2.47±0.20
13 10.66±1.08 10.84±0.58 10.53±1.02 10.07±0.51 9.79±0.81 9.88±0.43 9.54±0.46 10.43±0.92

The time costs of the two approaches are presented in table 1, the test costs in table 
2, and the parameter setting in Fig. 1, Fig. 2, and Fig. 3. We can see RLSC-AlignLoo 
is much faster than RLSC grid search, although the accuracy is not as good as grid 
search, yet still comparable with other methods. This discrepancy is generated from 
their utilization of different empirical criteria for parameters selection. Further study 
shows it is possible for RLSC-AlignLoo to enhance its accuracy by decreasing search 
step around the point maximizing the alignment, and the additional time cost is little. 
For example, we get a mean test cost of 22.38±1.00 for 100 training/testing division 
of dataset Titanic. This is of cause valid for RLSC Grid, but the time cost will be too 
expensive to pay. 
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We find that the kernel parameters optimized by kernel target alignment are very 
stable against different division of the dataset, as showed in Fig. 2, which gives a 
footnote for the theorem in section 3 that the empirical alignment is a good approxi-
mation to its true alignment. We find that the Loo bound is tight in addition, as 
showed in Fig. 1(right), the expected Loo bound is 8, and 8 divided by sample size 
400 corresponds to a 2% Loo error rate bound on this division, and according to table 
2, the averaged error rate on 100 divisions is 2.47%. 

7   Conclusion 

We present a novel 2-step approach for parameter selection for RLSC or KA. Firstly 
optimal kernel parameters are selected by maximizing the kernel target alignment, 
and subsequently optimal hyper-parameter is determined by minimizing the loo 
bound. This 2-step separation greatly reduced the time complexity for model selec-
tion. Generally speaking, the AlignLoo method is also applicable for those kernel-
based classifiers having been found a generalization bound. 
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Abstract. A new strategy of modelling of chaotic systems is presented. First, 
more information is acquired utilizing the reconstructed embedding phase 
space. Then, based on the Recurrent Least Squares Support Vector Machines 
(RLS-SVM), modelling of the chaotic system is realized. We use the power 
spectrum and dynamic invariants involving the Lyapunov exponents and the 
correlation dimension as criterions, and then apply our method to the Chua`s 
circuit time series.  The simulation of dynamic invariants between the origin 
and generated time series shows that the proposed method can capture the dy-
namics of the chaotic time series effectively. 

1   Introduction 

Building the model of a dynamical system by the time series analysis has been an 
important issue. Various techniques for modelling and predicting nonlinear time se-
ries are developed in past years, there are many traditional methods associated with 
time series analysis such as linear regression and ARIMA models [1]. Some new 
methods have been proposed  recently as well, such as local linear mode [2], recon-
structed embedding phase [3]and wavelets [4]. In recent years, many researcher ad-
dressed the nonlinear time series analysis with the artificial neural networks [5,6,7].  

In this paper, a new method combining Recurrent Least Squares Support Vector 
Machines (RLS-SVM) with reconstructed phase space is developed for chaotic time 
series reconstruction. The strategy is that more information is extracted from high 
dimension reconstructed phase space, and then modelling of system is realized by 
RLS-SVM. Support Vector Machines(SVM) have become a subject of intensive study 
and have been applied successfully to classification tasks  as optical character recog-
nition (OCR)  [8,9,10]. Least squares (LS) version of SVM can greatly simplify the 
problem since its solution is characterized by a linear system [11]. To deal with prob-
lems where iterative operations are necessary, Recurrent Least Squares Support Vec-
tor Machines (RLS-SVM)  [12] was developed. 
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2   Embedding Phase Space of Dynamical System 

Deterministic dynamical systems describe the time evolution of a system in some 
phase space mR⊂Γ .  For simplicity it is assumed that the phase space is a finite 
dimensional vector space. A state is specified by a vector mRx ∈ . Then the 
dynamics can be described by an explicit system of m first-order ordinary differential 
equations [13] 

( ) ( )( )ttt
dt

d
xfx ,= , R∈t  (1) 

or in discrete time tnt Δ=  by maps of form 

( )nn xfx =+1    (2) 

A time series can be thought of as a sequence of observations 
{ } ( ) Tnn Nnhs ,...,2,1== x  performed with some measurement function, where 

TN is the number of data points. Since the sequence{ }ns  in itself does not properly 
represent the multidimensional phase space of the dynamical system, some techniques 
are employed to unfold the multidimensional structure using available data. Takens 
embedding theorem guarantees the reconstruction of a state space representation from 
a scalar signal alone [14]. A delay coordinate function Φ is defined by 

                                 ( )nn xs Φ=  

( ) ( ) ( )[ ]nnmn hhh
dd

xxx ,,...,)1( ττ −−−=  

                      ( )[ ]nnmn sss
dd
,,...,1 ττ −−−=  

(3) 

where ns  are vectors in a new space namely the embedding phase space are formed 
from time-delayed values of the scalar measurements. The number m of elements is 
called the embedding dimension, the time dτ  is generally referred to as the time delay 
or lag. So the trajectory matrix S  can be constructed in m-embedding dimensions as  
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where ).1( −−= mNN T Takens state that if the sequence { }ns  does consist of 
scalar measurements of the state of a dynamical system, then under certain genericity 
assumptions, the time delay embedding provides a one-to-one image of the original 
set{ }x , provided m is large enough. For almost all dτ and for some m , Takens 
embedding theorem ensures that there is a smooth map :f RR →m  such that  

 ( ) ( )( )nnmnn sssfs
ddd
,,...,11 τττ −−−+ = ( )nf s=  (5) 



Modelling of Chaotic Systems with Recurrent Least Squares Support Vector Machines 575 

 

where the number m of elements is called the embedding dimension, the time dτ  is 
generally referred to as the time delay or lag. There is a large literature on the “opti-
mal” choice of the embedding parameters m and  dτ  [15,16,17] . 

The problem of remodeling becomes equivalent to the problem of estimating the 
unknown function f in the embedding phase space.  

To compare different dynamic modeling methods, rules such as correlation dimen-
sion and Lyapunov exponents were proposed because of their ability to describe the 
global properties of the attractor. In addition, the power spectrum is a conventional 
method to analyze the time series and it can indicate if the dynamical system is peri-
odic, quasiperiodic or chaotic. Chaotic and stochastic systems are easily distinguish-
able from periodic or quasiperiodic systems for they have rich broadband power spec-
tra, as well as widely varying phase spectra. It was not possible to distinguish the 
chaotic system from the stochastic system before the advent of the chaotic theory.  

It is proven that the Lyapunov exponent is a useful dynamic invariant to character-
ize the chaotic dynamic system. The Lyapunov exponent measure the rate at which 
nearby orbits converge or diverge. It is the time constant that is the expression for the 
distance between two nearby orbits. If it is negative, then the orbits converge in time, 
and the dynamical system is insensitive to initial conditions. However, if it is positive, 
then the distance between nearby orbits grows exponentially in time, and the system 
exhibits sensitive dependence on initial conditions. Thus very different time series can 
be produced from the same dynamic system even if the initial condition is different in 
a slight scale. There are as many Lyapunov exponents as there are dimensions in the 
state space of the system, but the largest is usually the most important since it indi-
cates the chaotic degree of the dynamic system. Formally, the Lyapunov exponent is 
defined by Wolf et al: [18] given an n-dimensional phase space, the long-term evolu-
tion of an infinitesimal sphere is monitored. As the sphere evolves, it will turn into an 
n-ellipsoid. The i-th one-dimensional Lyapunov exponent is then defined in terms of 
the length of the resulting ellipsoid’s principal axis. 

( )
( )0

log
1

lim 2

i

i

ti p

tp

t∞→
=λ  (6) 

The Lyapunov spectrum is then formed by the set ( )nλλλ ,..., 21 , where iλ are ar-

ranged in decreasing order.The difference between strange attractors and purely sto-
chastic (random) processes is that the evolution of points in the phase space of a 
strange attractor has definite structure. The correlation integral provides a measure of 
the spatial organization of this structure, and is given by 

( ) ( ) ( ) ( )( )∑
≠

∞→
−−Θ

−
=

ji
N

jir
NN

rC ss
1

1
lim  (7) 

where Θ is the Heaviside function. Grassberger and Privacies found that, for a strange 
attractor, ( ) νrrC ∝ for a limited range of r  [19]. The powerν is called the correla-
tion dimension of the attractor. Thus, we can plot the ( ) rrC loglog −  graph to  
identify an attractor. 
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In addition to above invariants, the Poincar´e map is another parameter to charac-
terize the chaotic system . Since a chaotic system never revisits the same state, it will 
trace out contours on the Poincar´e map. However, unlike a purely random process, 
these contours will have definite structure and will graphically indicate the presence 
of the responsible attractor. 

3   Recurrent Least Squares Support Vector Machines and Learnin  
     Algorithm              

The foundations of Support Vector Machines (SVM) have been developed since 
1990[9]. Suykens and Vandewalle proposed the Recurrent Least Squares Support 
Vector Machines(RLS-SVM) to deal with problems requiring iterative operations. In 
following section, we formulated our algorithm based on the RLS-SVM and recon-
structed phase space: 

1. Generate a time series ix , Ni ,...,2,1= , where N is the number of the data 
points. 

2. Choose optimal m , dτ (scale with discrete sample units) for ix  
3. Constructed the phase trajectory matrix: 
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4.  build training data 
                   

( ) ( )

( ) ( )

( ) ( ) ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−+−−−+−−−+

−−+−−+

−−−−−

− τττ

ττ

τττ

mNnmmNnmmNn

nmnmn

nmnmn

mN
sss

sss

sss

dd

dd

dd

21

2111

21

1

0

X

X

X

,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+

+

− mNn

n

n

mN s

s

s

Y

Y

Y

11

0

 (9) 

Given initial condition ii ss =ˆ  for mi ,...2,1= , the prediction problem is given 
by: 

( ) ( )( )kkmkk sssfs
ddd

ˆ,ˆ,...,ˆˆ 11 τττ −−−+ =  

( )[ ]( ) bsssw kkmk
T

dd
+= −−− ˆ,ˆ,...,ˆ 1 ττ

ϕ  

(10) 

where ( ) hnm RR →⋅ :ϕ  is a nonlinear mapping in future space, hnw R∈  is the 
output weight vector and R∈b is bias term. Choose the ( )⋅ϕ  and estimate the func-
tion ( )⋅f by using training data  
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5.  Generate the pis +  by performing the iterative process, where lp ,...,2,1= , l is 
the length of reconstruction time series.  

In literature [12], Suykens and Vandewalle proposed that the eq.(10) can be con-
vert into optimal problems which can be described as follows. 

( ) ∑
+

+=

+=
mN

mk
k

T

ew
ewwewJ
1

2

, 2

1

2

1
,min γ  (11) 

Subject  to  ( ) bwes kk
T

kk +−=− ++ esϕ11 , mNmk ++= ,...,1  (12) 

where  

kkk sse ˆ−= , ( )[ ]kkmkk sss
dd
,;...;1 ττ −−−=s , ( )[ ]kkmkk eee

dd
;;...1 ττ −−−=e and γ is 

an adjustable constant. The basic idea of mapping function ( )⋅ϕ  is to map the data 

s into a high-dimensional feature space, and to do linear regression in this space. 
To resolve the optimal function eq(11) and (12), we define the Lagrangian function 

( ) ( ) ( )[ ]bwehewJebwL kk
T

kk

mN

mk
mk −−−−×+= ++

+

+=
−∑ esϕαα 11

1

,;,,  (13) 

where iα  are Lagrange multipliers. 

The resulting recurrent simulation model is described as follows [12] 

( ) ( )[ ]( ) bsssKs kkmkl

mN

ml
mlk ddd

+= −−−

+

+=
−+ ∑ ˆ,ˆ,...,ˆ, 1

1
1 ττ τ

α z  (14) 

where lll esz −=  
The mapping function ( )⋅ϕ  can be paraphrased by a kernel function ( )⋅⋅,K  be-

cause of the application of Mercer’s theorem[9], which means that 

( ) ( ) ( )j
T

iji xxxxK ϕϕ=,  (15) 

with radial basis function (RBF)  kernels one employs.  

( ) ⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ −
−=

22
exp,

σ
ji

ji

xx
xxK  (16) 

4   Simulation and Results 

In the following procedure, we use the data of the Chua`s circuit[20] are as follows: 
( )[ ]

⎪
⎩

⎪
⎨
⎧

−=
+−=

−=

yz

zyxy

xhyx

β

α
 (17) 
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With  piecewise linear characteristic 

( ) ( )( )11
2

1
101 −−+−+= xxmmxmxh  (18) 

A double scroll attractor generated by taking 9=α , 286.14=β , 

710 −=m , 721 =m . A trajectory has been generated for initial condition 

[ ]1.0;0;1.0 −  by using a Runge–Kutta integration rule. 

The reconstructed embedding phase space has been discussed in the Sect.2. The 

choice of the embedding dimension m and time delay dτ is the first problem we 

faced. Cao proposed a method to determine the minimal sufficient embedding dimen-
sion that  used improved false nearest neighbor method [16]. The time delayed mutual 
information was suggested by Fraser and Swinney [17] as a effective tool to 

determine a reasonable dτ , A certain value of τ correspond to the minimum value of 

mutual information is a good candidate for a reasonable time delay. For the model 
structure, we estimated the embedding dimension of the Chua’s circuit by the Cao’s 
algorithm. In our simulation, we have not controlled dτ , the delay parameter of the 

Takens’ embedding, so the sampling gives by default 1=dτ .  

The time series was divided into two subsets referred to the training and test sub-
set: the training subset consists of 1000 time entries and the test subset consists of 
1500 entries. In order to solve the constrained nonlinear optimization problem (11), 
(12), SQP has been applied. 

First we resort to estimation of the dynamical invariants of motion from the pre-
dicted model. The Poincar´e maps for the time series were drawn in Fig.1, where the 
original attractor (Fig. 1a) is compared with the reconstructed one (Fig. 1b). The simi-
larity of the two graphs suggests that the two time series represent two distinct trajec-
tories on the same attractor. 

Figure 2 shows the spectrum of the original and reconstructed time series. The 
spectrum of the reconstructed time series seems to follow very closely the spectrum of 
the original time series, only with minor differences in the fine detail of the spectrum. 
Although these plots lead us to believe that the dynamics have been reasonably cap-
tured, we would like to quantify numerically the matching between the dynamics of 
the two systems. That is the reason we propose to compute the correlation dimension 
and the largest Lyapunov exponent. 

The correlation dimension and the largest Lyapunov exponents were computed us-
ing the Grassberger’s algorithm[19] and the Wolf’s algorithm [18] respectively. In 
Figure 3, the correlation integral map (CIM) and its slope are depicted both for the 
original and reconstructed time series. The value of the correlation dimension is de-
fined as the slope of the CIM curves for at least 3 consecutive embeddings. In this 
case the correlation dimension for the predicted time series is 1.975, and the correla-
tion dimension for the time original time series is 1.894. Figure 4 shows that largest 
Lyapunov exponent of reconstruction time series is able to follow ones of original 
time series with a very small error. 
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Fig. 1. Poincar’e maps:(a) original system (b) RLS-SVM 
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5   Conclusion  

Reconstructed embedding phase space combined with RLS-SVM have the ability to 
capture the dynamics of nonlinear dynamical systems as was demonstrated for the 
system of Chua’s circuit. This opinion is based on the fact that the invariants of the 
original and generated time series are very similar.  

References 

1. Brillinger, D.R.: Time series, Data Analysis and Theory , McGraw-hill, New York (1981). 
2. Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series, Phys. Rev. Lett. 59 (1987) 

845 
3. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis,Cambridge Univ. Press, Cam-

bridge (1997) 
4. Meyer, Y., Ryan,  R. D.: Wavelets: Algorithms and Applications, Philadelphia: Society for 

Industrial and Applied Mathematics(SIAM). (1993) 
5. Han, M., Xi, J., Xu, S., Yin, F.L.: Prediction of chaotic time series based on the recurrent 

predictor neural network. IEEE Trans. Signal Processing, 52 (2004) 3409-3416 
6. Wang, L.P., Teo, K.K., Lin, Z.: Predicting time series using wavelet packet neural net-

works. Proc. IJCNN 2001, 1593-1597 

-4 -2 0 2
-15

-10

-5

0

ln(r)

ln
[C

(r
)]

(a)

-4 -2 0 2
-15

-10

-5

0

ln(r)

ln
[C

(r
)]

(b)

-4 -2 0 2
0

10

20

30

40

50

ln(r)

C
or

re
la

tio
n 

D
im

en
si

on

(c)

-4 -2 0 2
0

10

20

30

40

50

ln(r)

C
or

re
la

tio
n 

D
im

en
si

on

(d)

m=2 

m=11 

m=2 

m=11 

1.975 1.894

Fig. 3. Correlation dimension of Chua’s 
circuit estimates for embedding dimen-
sions 2~11.(a) Correlation Integral Map 
(CIM) for original time series. (b) CIM 
for series generated from proposed 
method.(c) Slope (correlation dimension) 
estimate of CIM for original time se-
ries.(d) Slope estimate of CIM for pro-
posed generated time series 

0 100 200 300 400 500
0

0.05

0.1

0 100 200 300 400 500
0

0.05

0.1

iteration time

Ly
ap

un
ov

 e
xp

on
en

t

iteration time

0 100 200 300 400 500
0

0.05

0.1

iteration time

Fig. 4. Estimation of largest Lyapunov 
exponent for original (real line) and 
generated (dotted line) time series of 
Chua’s circuit.(a)m=2, (b)m=4, 
(c)m=6 



Modelling of Chaotic Systems with Recurrent Least Squares Support Vector Machines 581 

 

7. Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural 
networks, fuzzy logic, and fractal theory. IEEE Trans. Neural Networks, 13 (2002) 1395-
1408 

8. Kecman,V.: Learning and Soft Computing: Support Vector Machines, Neural Networks 
and Fuzzay Logic Models, The MIT Press,  Cambridge, MA(2001) 

9. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York  (1995)  
10. Wang, L.P. (Ed.): Support Vector Machines: Theory and Application. Springer, Berli  

Heidelberg  New York (2005) 
11. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least 

Squares Support Vector Machines, World Scientific, (2002) 
12. Suykens , J.A.K., Vandewalle, J.: Recurrent Least Squares Support Vector Machines. 

IEEE Trans. on Circuits and System-I: Fundamental Theory and Applications, 47 (2000) 
1109-1114 

13. Kaplan, D.,  Glass, L.: Understanding nonlinear dynamics. Springer, New York (1995). 
14. Takens, F.: Detecting strange attractors in fluid turbulence, In D. Rand and L.S.Young, 

editors, Dynamical systems and turbulence. Springer-Verlag, Berlin (1981) 366-381 
15. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for 

phase-space reconstrution using a geometrical construction.  Phys. Rev. A , 45 (1992) 
3403 

16. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar 
time series. Phys. D, 110  (1997) 43-50 

17. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual 
information. Phys. Rev. A , 33 (1986) 1134 

18. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from 
a time series. Phys. D, 16 (1985) 285–317 

19. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Letters, 50 
(1983) 346–349 

20. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits 
Syst, 33 (1986) 1072–1118 

 



 

L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3610, pp. 582 – 591, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Least-Squares Wavelet Kernel Method for Regression 
Estimation 

Xiangjun Wen, Xiaoming Xu, and Yunze Cai 

Automation Department, Shanghai Jiaotong University, Shanghai, 200030, China 
{Wenxiangjun, xmxu, yzcai}@sjtu.edu.cn  

Abstract. Based on the wavelet decomposition and reproducing kernel Hilbert 
space (RKHS), a novel notion of least squares wavelet support vector machine 
(LS-WSVM) with universal reproducing wavelet kernels is proposed for ap-
proximating arbitrary nonlinear functions. The good reproducing property of 
wavelet kernel function enhances the generalization ability of LS-WSVM 
method and some experimental results are presented to illustrate the feasibility 
of the proposed method. 

1   Introduction 

As a new type of network inspired by the neural network and wavelet decomposition, 
the wavelet networks proposed by Qinghua Z. [1] has been considered as an alterna-
tive to the feed forward neural network. It can greatly remedy the weakness of both 
wavelets and neural networks and has been widely used in the fields of classification 
and approximation with great success [2]. Despite many of these advances, however, 
wavelet networks find the solution by minimizing an empirical risk (usually a mean 
square error) with gradient-based training method such as back-propagation, and they 
often suffer from the existence of multiple local minima. Presently, Support Vector 
Machine (SVM) originally introduced by Vapnik [3] has been proved to be a power-
ful alternative to neural network. In this kernel-based method, one maps the input data 
into a higher dimensional space (so called feature space) and constructs an optimal 
separating hyper plane in this feature space. Kernel functions and regularization pa-
rameters are chosen such that a regularized empirical risk is minimized.  

In fact, kernels (in particular Mercer or reproducing kernels) play a crucial role 
during the process of solving the convex optimization problem of SVM. Generally, 
kernels can be considered as choosing an efficient data representation of prior infor-
mation for a certain classification or approximation problem. How to choose a kernel 
function with good reproducing properties (generalization ability) is a key issue of 
data representation, and it is closely related to choose a specific reproducing kernel 
Hilbert space (RKHS). Noting that kernel methods like wavelet networks also rely on 
similar basis functions and their behaviors should be closely related. It is a valuable 
issue whether a better performance could be obtained if we combine the wavelet de-
compositions with kernel method. Actually it has caused great interest of many re-
searchers in the last few years. In particular, linear splines have been proposed for 
generating the inner product kernels and solving the function estimation and data 
compression problems [4]. A reproducing wavelet kernel spanned by Daubechies-2 
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orthogonal wavelets has also shown promising results on classification problem of 
some benchmark datasets [5]. Presently, an admissible support vector (SV) kernel 
based on continuous wavelet function with translation invariant and positive proper-
ties is introduced by Li Z. [6], and this approach can give a little better results while 
comparing with Gaussian kernel both on pattern recognition and regression problem.  
However, it is very difficult to decompose a translation invariant kernel into the prod-
uct of two functions and prove it as SV kernel that satisfies the Mercer condition. Our 
purpose is to take advantage of the wavelet approximation and the kernel method as 
mentioned above. By this mean, our approach is quite similar since we aim at con-
structing universal wavelet kernels in RKHS for practical use. Due to the fact that it is 
a very stringent requirement to solve a large-scale quadratic programming problem, 
we proposed a least squares version of Support Vector Machine based on reproducing 
wavelet kernels and develop a framework for regression estimation in this paper. 

The rest of the paper is organized as follows. In the next section we first give a 
brief review on LS-SVM method for function estimation. Then in section 3 we focus 
on a practical approach to construct the universal wavelet kernels in RKHS. In section 
4, numerical experiments are presented to assess the feasibility of the proposed 
method. Finally, Section 5 concludes the work done. 

2   LS-SVM for Function Estimation 

Given a training data set D of l  samples independent and identically drawn (i.i.d.) 
from an unknown probability distribution Y)(X,μ on the product space 

YXZ ×= : 

)},(),,({ 111 lln yxzyxzD ===  (1) 

where the input data X is assumed to be a compact domain in a Euclidean space Rd 
and the output data Y is assumed to be a closed subset of R . By some nonlinear 
mapping ( )Φ ⋅ , input X is mapped into a feature space in which the learning machine 

(algorithm) selects a certain function f.  
In the case of Least Squares Support Vector Machine (LS-SVM), function estima-

tion in RKHS is defined: 

( ) ( )Tf x w x b= Φ +                                             (2) 

One defines the optimization problem. 

eewwewJ TT

ebw 2

1

2

1
),(min

,,

γ+=                       (3) 

s.j. 

( ) , 1, ,T
k k ky w x b e k l= Φ + + =                  (4) 

where e 1×∈ lR denotes the error vector, regularization parameter γ  denotes an arbi-

trary positive real constant.  
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The conditions for optimality lead to a set of linear equations: 

       
1

0 1

1

T

Iγ −Ω +
 

α
b

=
y

0
                                   (5) 

where 1 2,[ , , ] ,T
ly y y y=  11 [1, ,1] T

l×=  1[ , , ]T
lα α α= .  

The resulting LS-SVM model for function estimation becomes: 

1

( ) ( , )
l

k k
k

f x K x x bα
=

= +                 (6) 

where kα , b are the solution to the linear system (5). ( , )K ⋅ ⋅ is a positive define ker-

nel function which satisfied Mercer condition [7]. 

    ( , ) ( ) ( )T
i j i jK x x x xϕ ϕ=    llk ,,1, =          (7) 

In the novel approach, ( , )K ⋅ ⋅ is a reproducing wavelet kernel constructed in the 

RKHS, which will be discussed in detail in section 3. 

3   Reproducing Wavelet Kernel Method 

3.1   Wavelet Frame as Universal Approximants in RKHS  

RKHS is a Hilbert space in which all the point evaluations are bounded linear func-
tional. The interest of RKHS arises from its associated kernel functions. According to 
wavelet theory, the frame establish general conditions under which one can recon-
struct a function f in RKHS from its inner product with a family of elements function 
[9], [10]. In this subsection, we assume that the reader is familiar with RKHS theory 
and the relevant theory of wavelet analysis. Due to page limitation, we have to briefly 
review some important conclusions on RKHS theory and wavelet frame that we will 
use in this paper. 

A kernel may be characterized as a function from X X×  to R (usually 
dX R⊆ ). Let H be a 2 ( , )L X μ Hilbert space of functions on some domain X, 

where μ is a measure, that means, for every x X∈ , there exists x HΓ ∈ , such that 

( ) , ,xf x f f H=< Γ > ∀ ∈                                    (8) 

where < , >⋅ ⋅  denotes the inner product in H. let ,x y X∈ , and  set 

, =K(x,y)x y< Γ Γ > . Then the kernel K is called the reproducing kernel for H. 

Frequently, the kernel K is defined directly as an inner product function, which satis-
fies the Mercer conditions as follows. 

Lemma 1[7]: Supposed any continuous symmetry function 2 2( , )K x y L L∈ ⊗  is 

positive (define) kernel ⇔  
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2 2
( , ) ( ) ( ) 0

L L
K x y g x g y dxdy

⊗
≥    

2 2, 0, ( )g L g g u du∀ ∈ ≠ < ∞         
(9) 

The kernel that satisfies this Mercer condition is also called as an admissible support 

vector (SV) kernel. It belongs to functional space 2 ( )L X X×  and represents an 

implicitly nonlinear map from the input space to the feature space. 
For further perspective of RKHS, an important kernel operator is given as follows: 

Definition 1: (Carleman operator) Let },{ Xxx ∈Γ=Γ  be a family of 
2 ( , )L X μ functions$ the associated Carleman operator S is  

 S: 
2

2

(.)(.) ( )(.) (.),

X

L X

L R

f g Sf f fdμ

→

→ = =< Γ > = Γ
   (10) 

That is to say 2, ( ) , .x L
x X g x f∀ ∈ =< Γ >  this class of integral operators is 

known as Carleman operators. Note the bijective restriction of operator S is conven-
ient to factorize as follows: 

    X
iT

RSSLLS →→→ )Im()ker(/: 22       (11) 

where )ker(/2 SL  is the quotient set, T is the bijective restriction of S and i the 

canonical injection. When X is a compact set R or when 2 ( )x L R RΓ ∈ × , S is a 

Hilbert-Schmidt operator [11]. Since the positive kernel is compact, the kernel opera-
tor admits a countable spectrum and thus the kernel can be decomposed. A Carleman 

operator S can map all possible 2L  functions into the set of point-wise valued func-

tions XR , and it can be built from a family xΓ  of 2 ( , )L X μ  functions and a linear 

mapping. 

In wavelet theory, a frame is a set of functions { }i i Iφ ∈  of 2 ( )L R  that satisfied the 

following condition  

   2 2 2
min max|| || | , | || ||i

i I

c f f c fφ
∈

≤ < > ≤     (12) 

with  min max0 c c≤ ∞ ,  for  all function f in 2 ( )L R . It is known that when 

min max 1c c= = , frame elements consist of an orthonormal basis of 2 ( )L R . In gen-

eral, wavelet frame can be seen as the extensions of canonical orthonormal basis of 
2 ( )L R . 

We are interested in some approximation function 2( ) L (R)xφ ∈  consists of a 

denumerable family satisfying the frame property in RKHS with the form:  
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1

2( ) {det( ) ( ) : ,d
k k k kx A a x t t Rφ = Ψ − ∈  

         ( ), , }d
k k kA diag a a R k Z+= ∈ ∈     

(13) 

where ,k kt a  denote the arbitrary translation vectors and arbitrary dilation vectors 

specifying the diagonal dilation matrixes Ak. Noting these family functions (13) is 
proposed as universal approximants from continuous wavelets to orthonormal wave-
lets [1], let select to construct our reproducing wavelet kernels in this paper.  

Based on Carleman operator in (10), it is possible to build reproducing wavelet 

kernel function from any finite set of wavelet frames in )(2 RL . Generally, there 

exists following proposition. 

Proposition 1: Any finite set of wavelet frames of )(L2 R endowed with inner 

product spans a RKHS, and its reproducing kernel is 

2(.)(.),),(
LyxyxK >ΓΓ=<  (14) 

where 2(.) ( )x L RΓ ∈  is a family of functions indexed by x X∈ (X being any sub-

set of R), which acts as the evaluation functional in x . 

Since )(2 RL  is a Hilbert space endowed with inner product 2,
L

< ⋅ ⋅ > , such that  

2

2 ( ),|| ||
L

L Rφ φ∀ ∈ < ∞               (15) 

where φ  represents any finite set of wavelet frame elements function in )(2 RL . Let 

us define an indexed family of function 2(.) ( )x L RΓ ∈  indexed by Xx∈  and a 

linear mapping S: 

S:  

2

2

(.)so that X, 

        g(x) S (x) (.), (.)

X

x L

L R

g xφ

φ φ
Δ

→
→ ∀ ∈

= = < Γ >

 (16) 

We can decompose 2 ( ) ( )L R Ker S M= ⊕ and we obtain  

T:   
Im( )

(.)

M S

g T Sφ φ φ
→

→ = =
     (17) 

where T is a bijective restriction of Carleman operator S. Let us de-

fine H Im( )S
Δ
= and endow with the following inner product: 

Hgg ∈∀ 21,         21 2 1 2 1 2, , ,H L
g g T Tφ φ φ φ< >=< > =< >     (18) 

Hence, H is a RKHS with reproducing kernel K as follows: 



 Least-Squares Wavelet Kernel Method for Regression Estimation 587 

 

  2( , ) (.), (.)x y L
K x y =< Γ Γ >          (19) 

Consider the family }{ ie as an orthonormal basis of 2L (R) and iφ  be a wavelet basis 

of L2(R)( i denote a multi index). One can write: 

=Γ
ji

ijjix ex
,

, (.))((.) φα         (20) 

where jijji c ,, δα =  is the coefficients combining the orthonormal basis }{ ie of 

L2(R) with wavelet basis jφ of L2(R), and cj is a coefficient depending on the consid-

ered wavelet jφ .  

So far, we can construct a wavelet kernel in RKHS as follows: 

  )()(),(
,,

,, yxyxK n
nji

jnjji φφαα=      (21) 

For a common multidimensional wavelet kernel function, we can write it as the 
product of one-dimensional (1-D) wavelet function according to tensor products the-
ory proposed by N. Aronszajn [8].  

),(),(
1

ii

d

i
d yxKyxK

=
∏=                       (22) 

Due to page limit, we just sketch the key idea behind these concepts and present 
here with a brief discussion. A complete study of the properties of reproducing kernel 
operator and theoretical analysis of the wavelet frame goes beyond the scope of this 
paper, for a thorough discussion of building RKHS with kernel operator and wavelet 
frame the reader is further referred to [11], [9], [10].  

3.2   Practical Construction of Wavelet Kernel  

Let (x)ϕ be a mother wavelet, and let a and t denote the dilation and translation fac-

tor, respectively, ,a t R∈ , then according to wavelet theory 

2
, 0 0 0( ) ( ) ( )

j
j

i j kx x a a x ktφ ϕ ϕ− −= == −                                       
(23) 

where 0 0a ,t R∈ , Zkj, ∈ , i denote a multi index. It is know that when the func-

tion ( )xϕ  satisfies the necessary condition (admissibility of the mother wavelet and 

suitable parameters with a0, t0 such as  a0=2, t0=1) will lead to wavelet frames [9]. 
For practical kernel construction, one has to define a mother wavelet function ϕ  

and select suitable parameters according to the problem at hand. In this paper, consid-
ering we only use a subset of orthonormal wavelet basis. Moreover, we set coeffi-
cients in (20) so that the kernel in RKHS can be written as follows: 
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max

min

, ,

1
( , ) ( ) ( )

2

j

j k j kj
j j k

K x y x yϕ ϕ
=

=      (24) 

where j, k are the dilation and translation parameters of a mother wavelet function 

)(xφ respectively, minj and maxj  are the minimum and maximum dilatations, re-

spectively. 

4   Simulation Results 

In this section, we validate the performance of wavelet kernels with two simulation 
experiments, the approximation of a nonlinear function and the identification of a 
nonlinear dynamic system. 

1) Approximation of a single-variable nonlinear function.  
In this experiment, let choose a Mexican hat function 

2
2( ) (1 ) exp( )

2

x
f x x= − −           (25) 

over the domain [-10 10]. 
For comparison, we show the result with our LS-WSVM based on reproducing 

wavelet kernels spanned by different wavelet frames with Daubechies, Symmlets and 
Coiflets [10], and with the wavelet network [1]. We have a uniformly sampled exam-
ple of 300 points, 100 of which are taken as training samples and others for test. We 
compared the results with two criteria, the normalized root of mean-square-error 
(NRMSE) and maximal-absolute-error (MAXE). The simulation results are listed in 
table 1. We can see that our LS-WSVM based different reproducing wavelet kernels 
gives better approximation results than wavelet network. (Due to space limitation, the 
figures obtained in this experiment are omitted) 

Table 1. Approximation results of Mexican hat function 

Method NRMSE(train) MAXE(train) NRMSE(test) MAXE(test) 
Daubechies 0.0152 0.0237 0.0238 0.0408 
Symmlets 0.0233 0.0251 0.0233 0.0251 
Coiflets 0.0482 0.0426 0.0457 0.0482 
Wavenet 0.0949 0.0581 0.0951 0.0581 

With parameters:  Daubechies, Symmlets and Coiflets with 3 vanishing moment, jmin=2,jmax=3, 
gam=571;wavelet network (Wavenet) with 9 wavelons. 

2) Application of nonlinear black-box system identification 
The plant is assumed to be of the form [12]: 

)]1(),(),2(),1(),([)1(
^

−−−=+ kukukykykyfky  (26) 

where the unknown function f  has the form  
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We generated 200 samples {u (k), y (k)} by using the random input signal uni-
formly distributed in the interval [-1 1] with the form:  

)250/2sin(u(k) kπ= , 150≤k , Otherwise 

)25/2sin(2.0)250/2sin(8.0u(k) kk ππ += . 
(28) 

The training data set consists of 100 samples and the other 100 were used as test 
data. Let compare the results with two popular criteria in control area, MAXE (32) 
and root of mean-square-error (RMSE). For simplify, only the reproducing kernel 
spanned by Dubieties wavelet is considered in this experiment. The simulation results 
are illustrated in table 2. In figure 1, the solid lines represent the approximation and 
the dashed lines show the function f.  

Table 2. Comparison of several algorithms 

Method RMSE(train) MAXE(train) RMSE(test) MAXE(test) 
Wavenet 0.0476 0.1948 0.0663 0.3908 
LS-SVM 0.00067 0.0972 0.0037 0.1295 
LS-WSVM 1.06e-12 4.76e-12 0.0021 0.1754 

With   parameters: Wavelet network: 16 wavelons. LS-SVM: Gaussian kernel, =17.83, =0.3;LS-
WSVM: Daubechies wavelet with 4 vanishing moment, jmin=-4,jmax=4, =17.83 
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(a) The train output 
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(b) The test output 

Fig. 1. Identification results of nonlinear system via LS-WSVM 
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So far, we have compared the identification results obtained by wavelet network, 
LS-SVM with Gaussian kernel and LS-WSVM with reproducing wavelet for nonlin-
ear system, respectively. In this simulation, we adopted cross-validate method for 
optimization on regularization parameter and kernel parameter of LS-SVM and LS-
WSVM. Generally, two kernel methods have greatly outperformed the wavelet net-
works. Most of all, LS-WSVM based on reproducing wavelet kernel has better per-
formance and generalization ability than LS-SVM based on the Gaussian kernel. It is 
because our reproducing wavelet kernel based on wavelet decomposition is not only 
orthonormal (or approximately orthonormal, whereas the Gaussian kernel is correla-
tive or even redundancy), but also suitable for local signal analysis and signal-noise 
separation for multiresolution analysis, it is not surprising that our LS-WSVM give 
better approximation results on function estimation and show good generalization 
ability on dynamic system identification. 

5   Conclusions 

In this paper, we discussed a practical way to construct wavelet kernel in RKHS and 
given a brief proof. This work provides a new approach for function estimation and 
nonlinear system identification, and some numerical experiments show that the pro-
posed method is feasible. In general, the novel methodology inspired by wavelet net-
works and SVM might offer a new opportunity in the area of automatic control and its 
application still remain to be further explored for the future.   
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Abstract. A new Fuzzy Support Vector Machines ( λ —FSVMs) based on 
λ —cut is proposed in this paper. The proposed learning machines combine the 
membership of fuzzy set with support vector machines. The λ —cut set is in-
troduced to distinguish the training samples set in term of the importance of the 
data. The more important sets are selected as new training sets to construct the 
fuzzy support vector machines. The benchmark two-class problems and multi-
class problems datasets are used to test the effectiveness and validness of λ —
FSVMs. The experiment results indicate that λ —FSVMs not only has higher 
precision but also solves the overfitting problem of the support vector machines 
more effectively. 

1   Introduction 

Support vector machines (SVMs) are new machine learning methods, evolving from 
the statistical learning theory. They embody the principle of the structural risk mini-
mization. Owe to their higher generalization ability and better classification precision, 
SVMs can solve the overfitting problem effectively and can be applied to a number of 
issues [1]. Now more and more researches focuses on SVMs as well as the pattern 
recognition and neural network. SVMs play a more and more important role in classi-
fication and regression fields. At present, SVMs have already been applied succes-
sively to the problems ranging from hand-written character recognition, face detec-
tion, speech recognition to medicine diagnosis [2]. 

SVMs for pattern classification are based on two-class classification problems. 
Unclassifiable regions exist when SVMs are extended to multi-class problems. In 
SVMs, two questions must be paid attention to. One is how to extend two-class prob-
lems to multi-class problems. There are many methods to solve this problem, such as 
one-against-one, ones-against-all and DAGSVMs [3,4]. In order to reduce unclassifi-
able regions, Inoue and Abe presented Fuzzy Support Vector Machines (FSVMs) [5]. 
They defined the decision functions according to the membership functions in the 
directions orthogonal to the hyperplane. The other is how to solve the overfitting 
problem, which is caused by treating every data point equally during training. Han-
Pang Huang and Yi-Hung Liu presented other FSVMs [6]. The performance of SVMs 
has been enhanced through assigning each training data a membership degree. 

SVMs are very sensitive to those training data points, which are far away from 
their own class center. These points, including the outliers and noises, are sparse [7].   
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There are two important features about the outliers. Firstly, the outliers are greatly 
separated from the main body. Secondly, the number of outliers is much less than the 
number of elements in the main body [8]. We can detect and then discard the outliers 
by ODM (Outliers Detection Method). The merit of using the ODM is that it can 
perform the detection in 1-D space so that we can observe the distribution of the train-
ing data points along an axis [6]. But ODM also give birth to other problems such as 
how to deal with the outliers in the case of a large number of them. Because a great 
deal of useful information will lose simultaneously when all the outliers are discarded.  

The aim of this paper is to seek a new method by which the number of training 
data and the total running time can be reduced and overfitting problem can be 
avoided. We develop a new FSVMs, λ —FSVMs based on λ —cut, through con-
verse method in which the outliers are regarded as the more important data. The best 
performance is obtained by selecting suitable parameter λ . 

We explain FSVMs in section 2 and λ —FSVMs in section 3 respectively. We 
compare λ —FSVMs with FSVMs on benchmark data in section 4. Conclusions are 
drawn finally. 

2   Fuzzy Support Vector Machines 

The training set S  

{( , ) | ( , ) , { 1,1}, 1, 2,..., }d
i i i i iS x y x y R R y i l= ∈ × ∈ − =   

can be linearly separated by a maximum margin classifier named hyperplane (1). 

0Tw x b+ =  (1) 

Where w  is a vector, b is a scalar, they can be obtained by the constrained optimiza-
tion problem [1]. 

FSVMs proposed in [6] solved the overfitting problem by introducing the member-
ship degrees iu for every data, which are defined as 

*

*
1

max

i

i

j
j

x x
u

x x
ε

−
= − +

−
 (2) 

Where *x  is the center of class. The w and b of FSVMs are determined by the con-
strained optimization problem 

, 1 1

1
min  ( )

2

l l
T

i j i j i j i
i j i

W y y x xα α α α
= =

= ⋅ −  (3a) 

1

s.t. 0
l

i i
i

yα
=

= , 0 i iCα μ≤ ≤ 1, 2,...,i l=  (3b) 

Some classification problems are non-linearly separable. Namely, in low dimen-
sional space, they are not linearly separable, but they can be classified in higher di-
mensional space. Such as 0-1 task, these four points can’t be separated linearly in 
two-dimensional space, but they can be separated linearly in three-dimensional space 



594 S. Xiong, H. Liu, and X. Niu 

 

if they are mapped into three-dimensional space. The key to the success of kernel 
functions lies in the special types of mapping which obeys Mercer’s theory and offers 
an implicit mapping into feature space. That means we needn’t to know and calculate 
the formula of the mapping. The decision function in the higher dimensional space is 

( ) { ( , ) }
i

i i i
x SVs

g x sign y K x x bα
∈

= +  
(4) 

where iα is determined by the problem 

, 1 1

1
min  ( ) ( , )

2

l l

i j i j i j i
i j i

W y y K x xα α α α
= =

= −  (5a) 

1

s.t. 0
l

i i
i

yα
=

= , 0 i iCα μ≤ ≤ 1, 2,...,i l=  (5b) 

3   λ —FSVMs Based on λ —Cut 

3.1   Extraction of the More Important Samples 

In order to construct λ —FSVMs, the membership functions in this paper are defined 
as 

* *

* *

min

max min

i jj
i

j j
jj

x x x x
u

x x x x

− − −
=

− − −
 (6) 

The training set becomes a fuzzy set 

{( , , )| , { 1, 1}, [0,1],1 1,2,..., }d
f i i i i i iS x y u x R y u l= ∈ ∈ − + ∈ =   

The membership degrees iu of fuzzy set fS are defined through the relative impor-

tance of the samples. Each class of the fuzzy set fS is divided into two subsets by 

λ —cut. One consists the more important samples, and the other consists the less 
important ones. The λ —cut is defined as (7) 

Definition. Suppose A  is a fuzzy subset of domain U . The set (7) is named λ —cut. 

{ | ( ) , , [0,1]}AA x u x x Uλ λ λ= ≥ ∈ ∈  (7) 

Parameter λ is an empirical value. For example, if assigning λ =0.5, we regard the 
samples with membership degree 0.5iu ≥ as the more important one and discard the 

samples with 0.5iu < . 

3.2   Forming λ —FSVMs 

The main point of λ —FSVMs is to preserve the more important data and discard the 
less important ones. The idea comes from the fact that the different training data have 
different roles in training. The points close to the hyperplane are decisive, such as 
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SVs, the other points are less important and may bring negative effects to SVMs. In 
Fig. 1, the points marked ‘x’ are regarded as the more important ones, and are consid-
ered to have more opportunity to be SVs. Those points marked ‘y’ are regarded as the 
less important ones and can be discarded. 

 

Fig. 1. The λ —cut of one class in the training set. The center and radii are the center of class 
and λ respectively. 

Algorithm. λ —FSVMs on the training set including class1 and class2. 

Step 1. Searching the centers of two classes 
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Step 2. Defining the membership degree of each sample in its own class. 

1
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Step 3. Fuzzifying the training set. 

1 1 1 1 1 1 1 1{( , , )| , 1, [0,1],1 1,2,..., }d
f j j j j j jS x y u x R y u j l= ∈ =+ ∈ =  

2 2 2 2 2 2 2 2{( , , )| , 1, [0,1],2 1,2,..., }d
f j j j j j jS x y u x R y u j l= ∈ =− ∈ =  

 

Step 4. Cutting fuzzy set 1 2f f fS S S=  with parameter λ , where 

1 2{ , ,..., }mλ λ λ λ= , 1, 2,...,i m=  

1 1 1 1 1{( , , ) | }
if j j j j iS x y u uλ λ= ≥ , 2 2 2 2 2{( , , ) | }

if j j j j iS x y u uλ λ= ≥  

Step5. Forming iλ —FSVMs on iλ —cut 1 2i i if f fS S Sλ λ λ=  

Step6. Verifying the performances of iλ —FSVMs ( 1,2,...,i m= ), and selecting 

the best λ —FSVMs. 
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In step 4, the parameter iλ  belongs to the interval [0,1]. The larger iλ means the 

smaller training set, and the smaller one means the larger one contrarily. If we cut out 
too many samples, they will lose a great deal of information. Generally, iλ focuses the 

interval [0,0.5]. In step 5, we construct m iλ —FSVMs on different iλ —cut. 

3.3   Geometrical Interpretation of λ —FSVMs 

As mentioned above, we mainly select the more important data set whose elements lie 
outside of the ball. The idea mainly derives from the fact that the mostly reality data 
obey normal distributions. Another distributions, such as uniform distributions, can be 
conversed into normal one. To compare the performance of λ —FSVMs with that of 
FSVMs clearly, the linearly separable two-class problem is discussed in two-
dimensional space. In case of nonlinearly separable problem, λ —FSVMs is formed 
by mapping the input data into the feature space using kernel methods. In this experi-
ment, two-class training data are generated by two normal distributions, 

1 [1,1]u = , 2 [5,5]u = , 1 2

1 0.3

0.3 1

−
Σ = Σ =

−
. Obviously, the two-class problem is 

linearly separable. The hyperplane of FSVMs is showed in Fig. 2 (a). In Fig. 2 (b), the 
two hyperplanes of two kinds FSVMs are identical. The training set using the pro-
posed method includes 43 data points when 0.5λ = . 

 

Fig. 2. Fig. (a) indicates the original data and their classification hyperplane. Fig. (b) indicates 
Two hyperplanes on the entire training data and the training data extracting from the original 
data respectively. 

4   Comparison of λ —FSVMs and FSVMs 

To verify the performance of λ —FSVMs, experiments were performed using some 
benchmark data in machine learning databases [9]. These data (see table 1) include 
two-class problem and multi-class problems. In the table, INPUT represents the num-
ber of the features, CLASSES represents the number of classes, Ntr and Nts denote 
the numbers of training and testing data respectively. λ —FSVMs are formed using 
different λ —cut. FSVMs are formed on the entire training set. For data sets, includ-
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ing WDBC (Wisconsin Diagnostic Breast Cancer), thyroid, iris and wine, two-third 
data are selected as training data and the rest as testing data at random. The same 
optimization method [10] is used in all the experiments.  

Table 1. Benchmark data specification 

DATA IUPUT CLASSES Ntr Nts 
WDBC 
Thyroid 

Iris 
Wine 
Image 

30 
5 
4 

14 
19 

2 
3 
3 
3 
7 

379 
143 
99 

118 
210 

190 
72 
51 
60 

2100 

 

Fig. 3. The relationship between the size of training set and the classification accuracy. The last 
point in each curve denotes the accuracy of FSVMs. The remaining denote λ —FSVMs when 
λ ={0.2,0.15, 0.1,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02, 0.01}. 

As for the selection of parameter, because we mainly discuss the influence that the 
parameter λ  imposes on the proposed FSVMs, we select the constant C  using the 
method in [11] to make the maximal accuracy of FSVMs. In all the tables, poly i de-
notes the polynomial kernel when order d i= , and RBF j  denotes the RBF kernel 

when width jσ = . 
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For two-class problems, Fig.3 shows the relationship curves between λ —cut and 
the classification accuracy on benchmark data WDBC. Horizontal axis denotes the 
number of training data of the proposed FSVMs though λ —cut when λ ={0.2,0.15, 
0.1,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02, 0.01}, and the vertical axis denotes the 
accuracy of different λ —FSVMs. In Fig. 3 (b) and Fig. 3 (c), the overfitting problem 
emerges. We can obtain better classifier than FSVMs constructed on the entire train-
ing set. In table 2, Tr and Svs denote the number of training data and support vectors 
respectively, Tr(%) and Ts(%) denote the training and testing accuracy respectively, 
T(s) denotes the total run time including training and testing. The table lists the com-
parison of λ —FSVMs and FSVMs on WDBC for different kernels with the same C.  
The best classifier is not FSVMs but λ —FSVMs when 0.09λ = for dot product 
kernel. There are only 267 training data points, including 28 support vectors. For 
some kernels, such as RBF5, the training accuracy reaches 100%, but the testing ac-
curacy is low. Why, we think: Firstly, the classification problem is approximately 
linearly separable, dot and poly2 kernels result in the same classification accuracy. 
Secondly, it may be caused by the distribution of the entire two-class data. The testing 
data, which are far from its class center, are easier to be misclassified by hyperplane 
formed on the training set before being divided into the testing set. Thirdly, the width 
of RBF adapts to the training set but not the testing set. 

Table 2. Performance of λ —FSVMs on WDBC for different kernels and C=5000 

Kernel Classifiers λ  Tr Svs Tr(%) Ts(%) T(s) 

Dot 
λ —FSVMs 

FSVMs 
0.09 

- 
267 
379 

28 
29 

100 
100 

94.737 
94.737 

0.219 
0.437 

Poly2 
λ —FSVMs 

FSVMs 
0.04 

- 
346 
379 

32 
32 

100 
100 

94.737 
94.737 

0.515 
0.61 

Poly3 
λ —FSVMs 

 
FSVMs 

0.04 
0.03 

- 

346 
361 
379 

29 
29 
29 

99.736 
100 
100 

94.211 
93.684 
93.684 

0.672 
0.703 
0.859 

Poly4 
λ —FSVMs 

FSVMs 
0.03 

- 
361 
379 

27 
27 

100 
100 

93.684 
93.684 

0.781 
0.828 

Poly5 
λ —FSVMs 

FSVMs 
0.03 

- 
361 
379 

27 
27 

100 
100 

92.105 
92.105 

0.782 
0.875 

RBF5 
λ —FSVMs 

FSVMs 
0.01 

- 
379 
379 

379 
379 

100 
100 

62.632 
62.632 

29.797 
29.797 

RBF10 
λ —FSVMs 

FSVMs 
0.03 

- 
361 
379 

346 
362 

100 
100 

88.947 
88.947 

21.875 
26.516 

RBF15 
λ —FSVMs 

FSVMs 
0.03 

- 
361 
379 

306 
313 

100 
100 

88.947 
88.421 

10.844 
11.828 

RBF20 
λ —FSVMs 

FSVMs 
0.03 

- 
361 
379 

251 
256 

100 
100 

90.526 
90.526 

6.265 
6.969 
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Table 3. Performance of λ —FSVMs and FSVMs for benchmark data for different kernels 

Data 
Parameter 

Kernel 
Classifiers λ  trN  Tr (%) Ts (%) 

C=5000 
Dot 

λ —FSVMs 
FSVMs 

0.04 
- 

130 
143 

100 
100 

94.444 
94.444 

C=5000 
Poly4 

λ —FSVMs 
FSVMs 

0.4 
- 

23 
143 

81.818 
66.667 

77.778 
67.13 

Thyroid 

C=5000 
RBF35 

λ —FSVMs 
FSVMs 

0.1 
- 

116 
143 

94.406 
94.406 

93.056 
93.056 

C=5000 
Dot 

λ —FSVMs 
FSVMs 

0.3 
- 

55 
99 

100 
100 

96.078 
96.078 

C=5000 
Poly4 

λ —FSVMs 
FSVMs 

0.3 
- 

55 
99 

100 
100 

96.078 
96.078 

Iris 

C=5000 
RBF20 

λ —FSVMs 
FSVMs 

0.1 
- 

82 
99 

100 
100 

98.693 
98.693 

C=5000 
Dot 

λ —FSVMs 
FSVMs 

0.04 
- 

110 
118 

100 
100 

100 
100 

C=5000 
Ploy2 

λ —FSVMs 
FSVMs 

0.04 
- 

110 
118 

100 
100 

100 
100 Wine 

C=5000 
RBF20 

λ —FSVMs 
FSVMs 

0.04 
- 

110 
118 

100 
100 

83.333 
83.333 

C=5000 
Dot 

λ —FSVMs 
FSVMs 

0.01 
- 

188 
210 

96.095 
97.524 

90.667 
90.581 

C=5000 
Poly 2 

λ —FSVMs 
FSVMs 

0.002 
- 

203 
210 

97.524 
97.524 

89.781 
89.781 Image 

C=5000 
RBF20 

λ —FSVMs 
FSVMs 

0.05 
- 

207 
210 

96.476 
96.476 

83.562 
83.562 

As for the multi-class problems, to reduce the unclassifiable regions for pairwise 
classification, Decision Directed Acyclic Graph (DDAG) is proposed in [4]. Pontil 
and Verri [12] proposed to use rules of a tennis tournament to resolve unclassifiable 
regions. Not knowing their work, Kijsirikul and Ussivakul [13] proposed the same 
method and called it Adaptive Directed Acyclic Graph (ADAG). There are three dif-
ferent structures of DDAG for the three-class problems. When the number of classes 
is more than three, the set of ADAGs is included in the set of DDAG. The number of 
different ADAGs for an n –class problem is given in [14]. In our experiments, we use 
integration of one against one and DDAG strategies, and randomly select five diffeent 
structures when the number of classes exceeds three. Namely, for n –class problems, 

( 1)
2

n n −
 FSVMs are constructed, and the class of unknown data is decided by 

DDAG.  Table 3 lists the best results for each kind kernel function, including the 
number of training data, average training and testing accuracy. In most cases, the 
accuracy rates of the proposed FSVMs are greater than or equal to those methods by 
the conventional FSVMs. The number of training data is reduced in the former. 
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5   Conclusions 

In this paper, we present λ —FSVMs based on λ —cut. By computer simulations 
using five benchmark data sets, we demonstrate the superiority of our method. Firstly, 
the overfitting problem can be avoided in λ —FSVMs. Secondly, as for the training 
data points, which obey normal distributions or are compact, λ —FSVMs can find 
the best results rapidly. Thirdly, in λ —FSVMs, the larger margin of the training data 
leads to a larger parameter λ  and faster running speed. Owe to selecting an array of 
parameter λ , we must construct many different λ —FSVMs and run the program 
recurrently, it will cost more running time. The proposed method can be used to many 
classification problems, such as digit recognition, text classification and face detec-
tion, which need a large scale training data. 
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Abstract. Kernels are employed in Support Vector Machines (SVM) to map the 
nonlinear model into a higher dimensional feature space where the linear learn-
ing is adopted.  The characteristic of kernels has a great impact on learning and 
predictive results of SVM.  Good characteristic for fitting may not represents 
good characteristic for generalization.  After the research on two kinds of typi-
cal kernels---global kernel (polynomial kernel) and local kernel (RBF kernel), a 
new kind of SVM modeling method based on mixtures of kernels is proposed.  
Through the implementation in Lithopone calcination process, it demonstrates 
the good performance of the proposed method compared to single kernel. 

1   Introduction 

Support Vector Machine (SVM) is a kind of machine learning algorithm proposed by 
V. N. Vapnik, which is based on Statistical Learning Theory (SLT) [1].  It works ac-
cording to the principle of structural risk minimization (SRM) rather than the princi-
ple of empirical risk minimization (ERM) of large samples and has good generaliza-
tion capability [2]. 

SVM for nonlinear modeling is to construct a nonlinear mapping to a high dimen-
sional feature space where the linear learning machine is adopted.  The nonlinear 
mapping functions are called Kernels--- ),( ji xxK , which should satisfy the Mercer’s 

condition. 
In the high dimensional feature space, the optimization problem is: 
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When constructing the Lagrangian and transforming this optimization problem into 
the dual problem, the optimal solution can be presented as follows: 
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where, α , 'α  are Lagrange multipliers and subject to: 
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With the kernel ),( ji xxK , the optimal solution (3) becomes: 
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The nonlinear fitted model is obtained as: 
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The characteristic of the nonlinear fitting model (7) is mainly determined by the 
type of the kernels. So it shows that the selection of suitable kernels for different 
identification systems is very important[4]. To solve the modeling problem of Litho-
pone calcination process, the modeling performance of SVM with different kernels is 
analyzed, which is related to the global and local features of the kernels [6].  In the 
second section, the mapping characteristic of two typical global (polynomial) and 
local (RBF) kernels is described, then a new kind of SVM modeling method based on 
mixtures of kernels is proposed in the third section, which not only has a good fitting 
accuracy, but also can prevent it from the fluctuation of the prediction outputs caused 
by the local kernel. 

Lithopone calcination process is the key part for controlling the product quality.  
Measures such as adjusting the temperature and the rotational speed and providing 
suitable reaction conditions can be taken to improve the product quality.  However, 
there still exist some unfavorable factors such as the high temperature of the calcina-
tion kiln, the varied inner flow field, limited monitoring points and the closeness of 
the kiln.  So it’s very difficult to set up a model for this kind of process [5,8].  The SVM 
modeling method based on mixtures of kernels provides an effective way to solve 
such problem with good fitting and prediction ability. 

2   Global Kernels and Local Kernels 

Kernels used by SVM can be divided into two classes: global and local kernels.  In 
global kernels, points far away from the test point have a great effect on kernel values.  
While, in local kernels, only those close to the test point have a great effect on kernel 
values [6].  The polynomial kernel in (8) and the radial basis function (RBF) kernel in 
(9) are two typical global and local kernels.  Figure 1 shows their mapping features. 

q
ii xxxxK ])[(),( 1+⋅=                                                                              (8) 
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(a)  polynomial kernel                                                (b)   RBF kernel 

O----the test point 

Fig. 1. Mapping features of polynomial and RBF kernels 
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In polynomial kernel, the kernel parameter q  is the operation degree of polyno-

mial to be used.  From figure 1 (a), even if various values of q  are selected, only the 

points of the set x  whose distances are far enough from the test point have an effec-
tive influence on the kernel values, and the further the distance, the greater the influ-
ence.  In contrast, in the [0,1] range of RBF kernel values, the points adjacent to the 
test point have a great influence on the kernel values.   
 

                         Table 1. Errors of SVM fitting and prediction with different kernels 

RBF  Kernel polynomial  Kernel 

Fitting errors Prediction errors Fitting errors Prediction errors σ
 MAXE ME MAXE ME 

q  
MAXE ME MAXE ME 

15 2.5799 0.2541 16.6614 1.3259 1 2.8729 0.3756 4.4951 0.3280 

5 1.2725 0.0268 25.4790 3.9555 1.2 5.6834 1.0732 7.4620 0.7997 

1 0.001 0.001 Diverging 1.4 10.4147 1.2555 9.2617 1.4503 

 

This feature is also demonstrated on fitting and prediction performances.  For 
this aim, the data about the temperature and the rotational speed of a lithopone calci-
nation process in Guangzhou of China are collected, which are sampled at every five 
minutes.  After eliminating abnormal data and smooth treatments [7], 400 of them are 
kept, the former 200 are used for learning study and the latter 200 are for prediction 
ones. 

Parameters of SVM are defined as: 0010.=ε , 1000=C .  For different kernels 
and kernel parameters, the errors of fitting and prediction of SVM are shown in table 
1.  It can be seen that when using RBF kernel, the good fitting performance of SVM 
can be achieved.  However, with the decrease of σ , both the maximum of absolute 
errors (MAXE) and the mean of absolute errors (ME) decrease rapidly, which leads to 
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a poor prediction performance.  When σ  is reduced to 1, the prediction output starts 
diverging. On the other hand, when polynomial kernel is used, the fitting accuracy of 
SVM is not as good as the RBF kernel, but it has a stable prediction and the fluctua-
tion is relatively small. 

3   Simulation 

3.1   Mixtures of Kernels 

From the above analysis, it is obvious that RBF kernel (local kernel) can provide a 
good fitting performance for SVM; while polynomial kernel (global kernel) can re-
strain the fluctuation and keep a stable prediction.  In addition, these two kernels have 
simple formats and are easy to calculate.  On this basis, a new kind of SVM modeling 
method based on mixtures of kernels is proposed, which is expressed as: 

rbfpolymix KKK )( ρρ −+= 1                                                                  (10) 

where, polyK  denotes polynomial kernel and rbfK  denotes RBF kernel.  ρ  (con-

stant) is the optimal mixed coefficient to control the effects of these two kernels 
(0 ≤ ρ ≤ 1). 

By using the same data as the former section, the SVM modeling analysis is con-
ducted with the mixtures of kernels.  Parameters of SVM are defined as: 0010.=ε , 

1000=C , ρ =0.95.  The fitting and prediction errors of SVM are shown in table 2.      

                    Table 2. Fitting and prediction errors of SVM with mixed kernel 

Fitting errors Prediction errors σ , q  
MAXE ME MAXE ME 

σ =15, q =1 2.3556 0.1930 4.7776 0.3368 
σ =5, q =1 0.5846 0.0071 4.9166 0.3883 
σ =1, q =1 0.001 0.0001 4.8381 0.3882 
σ =15, q =1.2 3.4343 0.7351 8.0927 0.9530 
σ =15, q =1.4 3.9600 0.9909 9.7702 1.4563 

 
Compared with table 1, if decreasing the value of σ  from 15 to 1 ( q =1), the fit-

ting and prediction errors are both lower than those of SVM with RBF kernel.  Espe-
cially for prediction, the MAXE and ME decrease greatly.  In other words, adding 
polynomial kernel can effectively restrain the fluctuation of the prediction output 
caused by RBF kernel.  At the same time, adding RBF kernel can perfectly improve 
the fitting accuracy of SVM, which can’t be done by polynomial kernel. 

Figure 2 shows the fitting and prediction outputs of the rotational speed with three 
kinds of kernels---RBF, polynomial and mixed kernels. 

In figure 2(a), using RBF kernel, the fitting performance is satisfactory.  But the 
fluctuation of the prediction output is larger.  At some sampled points, the rotational 
speed even reaches to zero value, which is not true in practical applications.  Figure 2 
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(b) gives a relatively stable prediction output with polynomial kernel.  In figure 2(c), 
both fitting and prediction performances are improved.  The actual value and fitting 
value in the fitting curve almost coincide.  The prediction error is not more than 
5r/min.  So, with mixed kernel, SVM has better modeling performance. 

 

 
(1) Fitting output                                      (2) Prediction output 

(a) RBF kernel (σ =5) 
 

 
(1) Fitting output                                        (2) Prediction output 

                                                     (b)   polynomial kernel ( q =1) 

 

 
(1) Fitting output                                           (2) Prediction output 

                                           (c)   mixed kernel (σ =5, q =1) 

       1---actual value   2---fitting (prediction) value 

                           Fig. 2. Fitting and prediction outputs with different kernels 
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3.2   The Function of ρ  

In mixtures of kernels, the contribution of two kernels is adjusted by ρ .  For exam-

ple, when ρ  is close to 1, the contribution of polynomial kernel to the mixed kernel 

is very large while RBF kernel is very small. 
By applying the mixed kernel to SVM for the same modeling analysis, its perform-

ance is investigated.  The kernel parameters are given as σ =15, q =1 and σ =5, q =1 

respectively.  The mixed coefficient ρ  is varied between 0 and 1.  The fitting and 

prediction errors of SVM are shown in table 3. 

 
Table 3. Fitting and prediction errors of SVM with varied ρ  

Fitting errors Prediction errors σ ,  q  ρ  
MAXE ME MAXE ME 

ρ =0.95 2.3556 0.1930 4.7776 0.3368 
ρ =0.8 1.7005 0.0546 4.8605 0.3592 
ρ =0.5 0.4166 0.0049 4.9046 0.3921 

σ =15, 
 q =1 

ρ =0.2 0.001 0.001 4.9058 0.3975 
ρ =0.95 0.5846 0.0071 4.9166 0.3490 
ρ =0.8 0.001 0.001 4.9229 0.3960 

σ =5, 
q =1 

ρ =0.5 0.001 0.001 4.9230 0.3575 

 
With fixed σ  and q , the value of ρ  is varied from 0.95 to 0.2.  The fitting errors 

decrease while the prediction errors increase, which demonstrates the reaction of RBF 
and polynomial kernels.  When the kernel parameter σ  decreases to less than 5, the 
adjusting ability of σ becomes weak.  For example, when ρ ≤ 0.8, the fitting per-

formance of SVM cannot be improved any more.  Also from table 3, we can see that 
if adding polynomial kernel to the mixed kernel, even with small value of ρ , SVM 

still has a stable prediction.  This shows the good restraining ability of polynomial 
kernel. 

4   Conclusions 

Through analysis on mapping characteristics of two kernels--- polynomial and RBF 
kernels, a new kind of SVM modeling method based on mixtures of kernels is pro-
posed.  polynomial kernel can effectively restrains the fluctuation of prediction out-
puts.    On the other hand, RBF kernel can provide a good way to improve the fitting 
accuracy.  Simulations demonstrate the good performance of the proposed method in 
modeling analysis compared to any single kernel. 

Polynomial and RBF kernels are two typical global and local kernels.  Further 
work will discuss whether other kernels can be used for constructing mixed kernels. 
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Abstract. Support Vector Machine (SVM) has been applied in many 
classification systems successfully. However, it is restricted to work well on the 
small sample sets. This paper presents a novel parallel reduced support vector 
machine. The proposed algorithm consists of three parts: firstly dividing the 
training samples into some grids; then training sample subset through density 
clustering; and finally classifying the samples. After clustering the positive 
samples and negative samples, this algorithm picks out such samples that locate 
on the edge of clusters as reduced sample subset. Then, we sum up these reduced 
sample subsets as reduced sample set. These reduced samples are then used to 
find the support vectors and the optimal classifying hyperplane by support vector 
machine. Additionally, it also improves classification precision by reducing the 
percentage of counterexamples in kernel object ε-area. Experiment results show 
that not only efficiency but also classification precision are improved, compared 
with other algorithms. 

1   Introduction 

Support vector machine is a kind of classifier’s studying method on statistic study 
theory [1,2]. This algorithm derives from linear classifier, and can solve the problem 
of two kind classifier, later this algorithm applies in non-linear fields, that is to say, 
we can find the optimal hyperplane (large margin) to classify the samples set. SVM 
can use the theory of minimizing the structure risk to avoid the problems of excessive 
study, calamity data, local minimal value and so on. For the small samples set, this 
algorithm can be generalized well [3]. 

Support vector machine (SVM) has been successfully used for machine learning 
with large and high dimensional data sets. This is due to the fact that the 
generalization property of an SVM does not depend on the complete training data but 
only a subset thereof, the so-called support vectors. Now, SVM has been applied in 
many fields as follows: handwriting recognition [4], three-dimension objects 
recognition, faces recognition [5], text images recognition, voice recognition and so 
on. However, because of the high cost of kernel function’s computation, the training 
time is long. According to this, the samples set should be small in order to reduce the 
cost of training time. When the samples set is too large, we need find a new algorithm 
to reduce the number of this set, at the same time, these samples in the new set can 
represent the original samples set sufficiently.  
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For the given samples set {(x1, y1), …,(xm,ym)}, xi∈Rn, yi∈{+1,-1}, m is the samples 
number, n is the number of input dimension. In order to find the optimal hyperplane 
to classify this data set precisely, SVM use the decision-making function: 
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αi is the Lagrange factor, and b is the threshold. 
The kernel function k(xi, x) must be satisfied with the condition of Mercer. When 

we define the kernel function k(xi, x), we also define the mapping from input to 
character’s space. Training a SVM can be regarded as to solve a problem of 
protruding quadratic programming:  
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k(xi, x) is the kernel function, marking ),( jijiij xxkyyD = , D is a m×m matrix. 

According to the above description, for the developing number of samples, the 
matrix D will be increased at the speed of m2. If the dimension of x is n, the cost of 
one time computation of kernel function is O(n), the time complexity of SVM is 
O(nm2). When n is big, the cost of one time computation of kernel function is big; 
therefore, the number of samples limits the training speed of SVM.  

In order to accelerate the training speed, the method of random selecting from 
samples set was proposed at first, the selected samples are usually below 10 percent 
of original samples, then, we can use these selected samples to solve the classifier 
problem; however, the random selected samples can not represent the original 
samples set precisely, the result of hyperplane is bad. Later, the researchers solve this 
problem with two methods. The first one is that we can reduce the training sample set 
by clustering before we find the support vectors and the optimal hyperplane, the other 
one is that we can use parallel algorithm to accelerate the training speed. We will 
introduce the development of these two methods as follows.  

For the first method of clustering, paper [6] first proposed the concept of reduced 
support vector machine. Later, paper [7] proposed a classifier algorithm of reduced 
support vector machine on unsupervised clustering (RSVM-UC) which uses the 
center samples to represent each cluster, and makes these samples become the 
reduced training samples. But this algorithm has its own disadvantage. It can only get 
spheric clusters. It is not valid to use the cluster’s center to represent this whole 
cluster. The result of classifier is not good at times. 

For the method of parallel dealing with the training procedure, paper [8] proposed 
a new method to select the support vectors through the analysis of the distance matrix 
D. It can parallel reduce the matrix D through divide D into several submatrixs. But 
this method need also compute the matrix D, in fact, the time complexity of 
computation is also O(nm2) and not decreased. 

In the year of 2002, Zhang Ling and Zhang Bo propose a new theory about SVM 
[9]. If we select the edge samples of the two kind sample’s intersection to find the 
support vectors, the result of this method is similar with the result of SVM directly. 
That is to say, we can only use these edge samples to reduce the redundant samples in 
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original training sample set. In the procedure of classifying, we can also find that the 
most import samples for classifier are the edge samples in a dense samples cluster, the 
shape of these samples is not normal; according to this, this paper proposes a new 
classifier algorithm of reduced support vector machine on density clustering (RSVM-
DC). It can use density clustering to find the cluster’s edge samples to represent all 
samples in this cluster. At the same time, it can also increase the selected samples 
through controlling the percent of counterexample in a kernel object’s ε-area. This 
algorithm can solve classifier problem more efficiently and more precisely.  

For solving the problem of training the large scale sample set, we also find that we 
can parallel find particular reduced samples and delete the redundant samples on 
RSVM-DC. With this method, the training procedure can be run faster. For this 
reason, we propose a new parallel reduced support vector machine. This algorithm 
can parallel reduce the sample set and select the edge samples as a reduced sample set 
after dividing the original training sample set into several subsets. The reduced 
sample set is much smaller than the original training sample set. Then, the reduced 
samples can be regarded as new training samples to find the support vectors. In 
section 2, we propose the classifier algorithm of reduced support vector machine on 
density clustering (RSVM-DC); in section 3, we propose the parallel reduced support 
vector machine (PRSVM-DC) and its mended algorithm named mended parallel 
reduced support vector machine (MPRSVM-DC); in section 4, we do the experiment 
to compare with other algorithms of SVM; finally, in section 5, we draw the 
conclusion.  

2   The Algorithm of Extracting the Edge Samples on the Basis of 
Density Clustering 

Definition 1: For a given object x∈Rn, the field of sphere whose radius is ε with the 
center of x is named ε-area. 

Definition 2: In an object’s ε-area, if the number of objects around this object is 
MinPts θ or more, we name this object kernel object. 

Definition 3: There are φ objects in the ε-area of object mi. For these objects, mi 
belongs to the kind of v, v∈{+1, -1}; if there are φv(φv≥θ) objects belonging to the 
kind of v and φv/φ≥η, η is a given parameter which means the percent of this kind in 
mi ε-area, we name mi approximate kernel object. 

Definition 4: A point p is directly approximate density-reachable from a object q 
with respect to ε, MinPts if:1) p belongs to the q ε-area; 2) q should be a approximate 
kernel object. 

Definition 5: A object p is approximate density-reachable from a object q with 
respect to ε and MinPts if there is a chain of objects p1,…,pn, p1=q, pn =p such that 
pi+1 is directly approximate density-reachable from pi. 

The theory of density clustering is described as clustering through examining every 
object ε-area in the samples set. If there are more than θ objects in object p ε-area, and 
φv/φ≥η, we can found a new cluster around the center p; then, we can continuous find 
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the approximate density-reachable object , so that the shape of the cluster can be 
arbitrary; when there is no object can be joined this cluster, we can select another 
object which is not used. If each object is used, this procedure is over.  

In order to select the object which has the feature of cluster edge, we can use the 
above method to do as follows: when an object p is not a approximate density-
reachable object, the feature of this object shows that it is the edge object of this 
cluster, then, we can save this object to the new sample set until the end of procedure 
of extracting samples. We can describe the algorithm of reduced training samples on 
Density Clustering as follows: 

Algorithm (1): 

1) Give the values of ε, MinPts θ and η; 
2) Select a non-used object at random from the samples set; 
3) Judge the kind of this object, according to the value of ε, MinPts θ and η; we can 

estimate whether this object is approximate kernel object, if not, jump to (5); 
4) Sign the object with used object, select a non-used object in its ε-area, jump to 

(3); 
5) Join this object to the new selected samples set S, Sign it with used object, judge 

whether there is a non-used object, if there is a non-used object, jump to (2). 

For the algorithm (1), if we use the space index to run density clustering, the time 
complexity is O(nmlogm). As we make the edge samples represent the whole original 
samples set, algorithm (1) has the characters as follows: (1) it can describe the 
abnormal shape of cluster; (2) it can increase the selected sample’s number through 
controlling the percent η of counterexamples. In section 4, the experiments describes 
that the precision can be improved as we increase the value of η. If we compare this 
algorithm to the reduced algorithm of unsupervised clustering (RSVM-UC), the 
algorithm (1) is better.   

After we get the reduced training sample set, the redundant samples has been 
deleted. Then we can regard this reduced sample set as new training set to get the 
support vectors. We give the reduced support vector machine on Density Clustering 
(RSVM-DC) as follows: 

Algorithm (2): 

1) Give the training samples set Z, the values of ε, MinPts θ and η; 
2) Use the algorithm (1) to get the reduced sample set S; 
3) Regard the reduced sample set S as the new training sample set, using SVM, 

find the optimized classifier hyperplane. 
4) For an object x, we can use the equation (1) to tell which kind it is. 

For this algorithm, ε, MinPts θ and η are experimental parameters. Generally, 
firstly we select a small sample set Dr from whole training sample set at random, 
Dr={x1,x2,…,xr}, r<<m, then we find the minimal distance dij* between xi in Dr and 
the object xj in the whole training sample set, dij*=min{dij}(1≤j≤m), and get the value 

of da, ∑
=

=
r

i
ija drd

1
*/1 . The value of ε can be given between twice value of da and 
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treble value of da. If there are Ni samples in the object xi’s ε-area, ∑
=

=
r

i
iNr

1

/1θ . 

When we want to get the high accuracy of classifier, the value of η can be given 
between 0.5 and 1. However, when we want to get the high efficiency of classifier, 
the value of η can be given between 0 and 0.5. 

For the algorithm of RSVM-DC, we also use the space index to run density 
clustering. The time complexity is O(n(mlogm+l2)), l<<m, the cost of time is close to 
RSVM-UC. However, because RSVM-DC make the edge samples of each cluster 
represent whole cluster, these objects can describe the shape and character of clusters 
more precisely. Then, we find that the reduced training sample set of RSVM-DC is 
better than the reduced training sample set of RSVM-UC, and the result of RSVM-
DC will be more precisely. More important, if we divide the whole sample set into 
several sample sets, we can use algorithm (1) to reduce the scale of sample set parallel 
because of the feature of edge of samples. According to RSVM-DC, the parallel 
reduced SVM is described in section 3.  

3   The Reduced Parallel Support Vector Machine on Density 
Clustering 

3.1   The Reduced Parallel Support Vector Machine on Density Clustering 

According to the different attributes of training samples, if we divide the whole 
training sample set into several subsets by partitioning the values of sample’s 
attributes and the intersection of these subsets is nothing, we can only care about the 
inner samples and the edge samples within a subset. Then, we can find that the 
relationship of different subsets focuses on the relationship of edge samples among 
them. For this reason, after we find the support vectors within a subset, we need also 
save those edge samples near to the other subsets. We can add these support vectors 
of subsets and the edge samples to a new reduced training sample set, and use this set 
to find the support vectors of whole training sample set. Therefore, finding the edge 
samples within a subset is the key to parallel reduce the training samples. For the 
above algorithm (1), we can find that the reduced samples of this algorithm can 
contain the particular samples which reflect the classifier information and the edge 
samples within a subset, because of this, we can use algorithm (1) to reduce the 
training samples parallel. For the above introduction, we propose a novel parallel 
reduced support vector machine on density clustering (PRSVM-DC). We describe the 
parallel reduced support vector machine on density clustering (PRSVM-DC) as 
follows: 

Algorithm (3): 

1. According to the values of training sample set’s attributes, divide the set D into 
subsets D1,D2,…,DL; 

2. R’=∅; 
3. For i=1 to L pardo (deal with sample set Di parallel) 
4. Begin 
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a. Use algorithm (1) to select particular edge samples from set Di as 
training subset Ri’; 

b. Lock(R’);  
 
c. R’=R’+R i’;  
d. Unlock(R’); 

5. End. 
6. According to the new reduced training sample set R’, we can get the support 

vectors and the optimal hyperplane for whole training sample set. 

For the algorithm of PRSVM-DC, we also use the space index to run density 
clustering, E=max{|Di|, 1≤i≤L}, the time complexity of getting reduce sample set R is 
O(nElogE), E<<m, and the time complexity of the algorithm (3) is O(n(ElogE+b2)), 
b<<m, b is the number of reduced samples. Comparing with the time complexity of 
RSVM-UC and RSVM-DC, the algorithm (3) can accelerate speed of classifier more. 
At the same time, because the algorithm (3) selects the edge samples, the precision of 
this algorithm can be warranted in an appropriate range. In section 4, the result of 
experiment can approve that the speed of classifier can be accelerate deeply. 

3.2   The Mended Parallel Reduced Support Vector Machine 

If the number of one kind cluster is too many, we find that there are many samples 
which are not important for classifying, therefore, we propose mended algorithm for 
algorithm (3). 

As the figure 1 shows, the solid round represents the kind of +1, and the solid 
rectangle represents the kind of -1. After using algorithm (3), we can get the samples 
as the figure 1 shows. Then, we can get the support vectors within a subset, these 
support vectors locate at the real line H+ and H-, and there are many redundant 
samples near to these two real lines. We need delete these redundant samples to 
decrease the scale of reduced training set. We can define the value c, if the distance 
between a sample and H+ or H- is less than c such as the sample between the real line 
H+ and 1+c or the real line H- and 1-c in figure 1, this sample is redundant. At the 
same time, we need save the samples at edge of this subset. So, after we reduce the 
training sample set again, we can get the reduced samples as figure 2 shows. 

          
                             Fig. 1.                                                              Fig. 2. 

We describe the mended parallel reduced support vector machine on density 
clustering (MPRSVM-DC) as follows: 
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Algorithm (4): 

1. According to the values of training sample set’s attributes, divide the set D into 
subsets D1,D2,…,DL;   

2. R’=∅; 
 

3. for i=1 to L pardo (deal with sample set Di parallel) 
a. Begin 
b. If |Di

+|>2 and |Di
-|>2 then 

i. Begin  
ii. Use algorithm (1) to select particular edge samples as 

reduced sample set Si;  
iii. According to set Si, find the support vectors and optimal 

hyperplane H by SVM; 
iv. Give the value of c, save the support vectors, and delete 

the sample which the distance from H is less than c, 
finally, we get the new training sample subset Ri’;     

v. End 
c. Else Use algorithm (1) to select particular edge samples as training 

subset Ri’ directly ; 
d. Lock(R’);  
e. R’=R’+R i’;  
f. Unlock(R’); 
g. End. 

4. According to the new reduced training sample set R’, we can get the support 
vectors and the optimal hyperplane for whole training sample set. 

For this algorithm (4), we use a method to reduce the training sample set again, c is 
an experimental parameter. Generally, the value of c is less than the half of minimal 
width of a subset, c<1/2width(Di). It can assure that the edge samples of this subset 
are held. This algorithm is applicable for the subset whose training samples locate 
near to the classifier’s hyperplane mostly.   

For the algorithm of MPRSVM-DC, we also use the space index to run density 
clustering, E=max{|Di|, 1≤i≤L}, the time complexity of getting reduce sample set S is 
O(nElogE), E<<m, and the time complexity of the algorithm (4) is O(n(ElogE+i2)), 
i<<m, i is the number of reduced samples. Comparing with the time complexity of 
PRRSVM-DC, the algorithm (4) can reduce the training samples again after PRSVM-
DC’s reducing, so i<b, the time complexity of MPRSVM-DC is less than the time 
complexity of PRSVM-DC. In section 4, the result of experiment can approve that 
MPRSVM-DC can improve the PRSVM-DC’s speed. 

4   Experiments and Results 

We select three general sample sets to experiment, (1) rectangle circling sample set, 
(2) Adult Data [12] whose number is big. We experiment these 2 samples sets as the 
following introduction. 
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For set (1), the experiments are done on an Intel P4 PC (with a 2.0GHZ CPU and 
512MB memory) running Microsoft Windows 2000 Professional, Matlab6.5. 

The samples of set (1) have proportional spacing. This set contains two quadrate 
circle sample subsets whose kind is -1 and two quadrate circle sample subsets whose 
kind is +1. The number of samples in this set is 921. As the figure 3 shows, the symbol 
signed + represents the kind of positive, the symbol signed * represents the kind of 
negative. The positive samples have 153 samples, and the negative samples have 768 
samples. 

We use RSVM-UC [7] to classify the set (3), and the clustering radius is 0.1. Then, 
the centers of +1 kind and -1 kind are the same as the point (1.6, 1.6); if we give the 
value 0.4 to the incision radius R, we can get the reduced sample set as the figure 4 
shows. We can find that this method is not suitable for SVM classifier. 

For density clustering, we give the value 0.1 to clustering radius, Minpts θ is 4. We 
can get the result as the below show in figure 5. There are 464 samples after this 
experiment. The positive reduced sample set has 80 samples, and the negative reduced 
sample set has 384 samples. We make these samples become new reduced training 
samples, then, we can get a hyperplane for the SVM classifier as bold real line in figure 
18. The result of this method is available. 

For the parallel reduced support vector machine, we divide the training samples into 
four subsets D1, D2, D3 , D4 as figure 6 shows. If we give 0.1 to ε and 4 to Minpts θ, 
after we use PRSVM-DC to reduce the training samples, we can get the result as the 
figure 7 shows. For the reduced result, there are 89 positive samples and 400 negative 
samples. Obviously, when we use the algorithm of PRSVM-DC, the computing scale of 
training set is decreased to 1/4 of RSVM-DC, the time complexity is less than RSVM-
DC.  

For the above dividing method, we use the MPRSVM-DC. If we give 0.4 to c, after 
we use MPRSVM-DC to reduce the training samples again, we can get the result as the 
figure 8 shows. In the reduced result, there are 49 positive samples and 200 negative 
samples. Obviously, when we use the algorithm of MPRSVM-DC, the computing scale 
of training set is decreased to 1/4 of RSVM-DC, the time complexity is less than 
PRSVM-DC. The result of this method is available. 

After we use the reduced SVM to reduce the training samples, we can get support 
vectors and optimal hyperplane. As the figure 9 shows, the bold real line represents the 
optimal hyperplane, and the points near to the bold real line are the support vectors. 

For the set (3), the experiment is done on an Intel P4 PC (with a 2.0GHZ CPU and 
512MB memory) running Microsoft Windows 2000 Professional, Microsoft VC++6.0 
compiled language. The adult data set is the report of census. Every data has 14 
attributes. After transforming the value of each attribute between 0 and 1, we have the 
data set which has six numerical value attributes. The number of this data set is 32561. 
The set can be trained for forecasting whether man’s income is over 50,000$. The 
kernel function of SVM is the Gauss function that is 

10)2/exp(),( 222
2121 =−−= σσxxxxk . In this set, there are two kinds of 

family’s income. One kind is over 50,000$, the number of this kind of data is 7841. The 
other kind is below 50,000$, the number of this kind of data is 24720. Besides training 
data set, we have a testing data set and the scale of this set is 16281. The testing set 
examines whether the network structure that has been trained can be generalized. For 
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running PRSVM-DC and MPRSVM-DC, the training sample set is divided into four 
subsets by the attribute of age. The four subsets are D1(age<30), D2(30≤age<40), 
D3(40≤age<50) and D4(age≥50). The subset D1 has 9711 samples, the subset D2 has 
8631 samples, the subset D3 has 7175 samples and the subset D4 has 7062 samples. 

 

       Fig. 3.                                       Fig. 4.                                       Fig. 5. 

 

      Fig. 6.                                       Fig. 7.                                        Fig. 8. 

 

     Fig. 9. 

Table 1 is the comparison of computation and precision among SVM algorithms. 
There are 6 kind algorithms as follows: SVM, SVM after selecting 1 percent of 
samples set at random, RSVM-UC, RSVM-DC, MPRSVM-DC and PRSVM-DC. 
From the analysis of the data in table 1, the experiment of RSVM-UC and RSVM-DC 
is done with different parameters. For RSVM-UC, the number of selected samples 
can be increased by increasing the value of R, and the precision can also be increased; 
For RSVM-DC, the selected samples set can be increased by improving the value of 
η, that is to say, when the number of counterexample in a kernel object’s ε-area is 
decreased, we can get more edge vectors, and the precision can be increased. From 
the result of this experiment, we can see: if we only use SVM to classify, the 
computation times of kernel are too many. However, if we use other five kind 
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algorithms, the computation times can be decreased from 109 to 107. When we use the 
random algorithm, the precision is low; when the number of new selected samples for 
RSVM-DC is close to RSVM-UC, the precision of RSVM-DC is better than RSVM-
UC; when their precisions are similar, the number of new selected samples for 
RSVM-DC is smaller than RSVM-UC, and the speed of classifier can be accelerated 
greatly by using RSVM-DC. When we compare RSVM-DC with PRSVM-DC, the 
time cost of PRSVM-DC is less than RSVM-DC because of parallel running, and the 
scale of PRSVM-DC’s training sample set is smaller than RSVM-DC’s. When we 
compare PRSVM-DC with MPRSVM-DC, because MPRSVM-DC can reduce the 
result of PRSVM-DC again, the time cost of MPRSVM-DC is less than PRSVM-DC. 
As the table 1 shows, the result of MPRSVM-DC can not only accelerate the speed of 
SVM but also assure the precision in a available range.  

Table 1. The comparison of computation and precision among Reduced SVM algorithms 

 Training 
samples 
number 

Reduced 
samples 
number 

The Times of 
Kernel 
Function 

Accuracy 

SVM 32561 1060218721 91.89% 
SVM(Random 1%) 326 106276 37.29% 
RSVM-UC(r=0.16, 
R=0.18) 

1212 1468944 73.44% 

RSVM-UC(r=0.16, 
R=0.2) 

1572 2471184 80.09% 

RSVM-DC(ε =0.2, θ=8, 
η=0) 

259 67081 85.37% 

RSVM-DC(ε =0.2, θ=8, 
η=0.8) 

884 781456 90.39% 

RSVM-DC(ε =0.18, 
θ=9, η=0) 

457 208849 87.55% 

RSVM-DC(ε =0.18, 
θ=9, η=0.8) 

 
 
 

32561 

1243 1545049 93.43% 

9711(D1) 69 
8613(D2) 131 
7175(D3) 95 

PRSVM-DC(ε =0.2, 
θ=8, η=0) 

7062(D4) 77 

 
372 

 
138384 

 
85.40% 

9711(D1) 230 
8613(D2) 462 
7175(D3) 375 

PRSVM-DC(ε =0.18, 
θ=9, η=0.8) 

7062(D4) 360 

 
1427 

 
2036329 

 
93.24% 

9711(D1) 47 
8613(D2) 63 
7175(D3) 72 

MPRSVM-DC(ε =0.2, 
θ=8, η=0, c=0.2) 

7062(D4) 69 

 
251 

 
63001 

 
84.91% 

9711(D1) 53 
8613(D2) 77 
7175(D3) 95 

MPRSVM-DC(ε =0.18, 
θ=9, η=0.8, c=0.2) 

7062(D4) 160 

 
385 

 
148225 

 
92.98% 
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5   Conclusion 

For the classifier of SVM, this paper proposes an efficient classifier algorithm of 
parallel reduced support vector machine on density clustering (PRSVM-DC) and it’s 
mended algorithm named MPRSVM-DC. After dividing the whole training sample 
set into several subsets, these two algorithms can use the edge samples to represent 
the samples of subset, parallel decreasing the number of training samples, accelerating 
the speed of training procedure. At the same time, these two algorithms can also 
assure the highly precision. In high dimension space, the cost for kernel function is 
high; through parallel decreasing the number of samples, we can decrease the 
computation times of kernel function, and increase the efficiency of classifier. When 
we face the large scale training set, the PRSVM-DC can give an available way to 
solve the classifier problem. 
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Abstract. Support vector machines (SVMs) have been successfully used in 
solving nonlinear regression and times series problems. However, the applica-
tion of SVMs for reliability prediction is not widely explored.  Traditionally, 
the recurrent neural networks are trained by the back-propagation algorithms. In 
the study, SVM learning algorithms are applied to the recurrent neural networks 
to predict system reliability. In addition, the parameter selection of SVM model 
is provided by Genetic Algorithms (GAs). A numerical example in an existing 
literature is used to compare the prediction performance. Empirical results indi-
cate that the proposed model performs better than the other existing approaches. 

Keywords: Recurrent neural networks, Support vector machines, Genetic algo-
rithms, Reliability prediction. 

1   Introduction 

Modeling and forecasting of reliability is a crucial issue in manufacturing systems. In 
most situations, the reliability of manufacturing systems changes with time. Therefore, 
the changes can be treated as a time series process. However, it is difficult to predict the 
variability of reliability with time. The difficulty arises from assumptions of the failure 
distributions and a lack of suitable reliability models. The forecasting techniques of 
reliability include lifetime distribution, Markov models, parts count and parts stress, and 
fault tree analysis. Due to the general nonlinear function mapping capabilities, artificial 
neural networks have received increasing attentions in time series forecasting. However, 
the literature on the application of artificial neural networks to reliability forecasting is 
very limited. Liu et al. [1] showed that feed-forward multilayer perceptron networks are 
able to identify the failure distribution as well as estimate the distribution parameters. Su 
                                                           
* Corresponding author. 
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et al. [2] proposed an ICBPNN forecasting model (input- combined back-propagation 
neural networks) which combines time series with neural networks techniques to predict 
engine reliability. They reported that the ICBPNN outperformed ARIMA models and 
BPNN models in terms of forecasting accuracy. Amjady and Ehsan [3] proposed a 
neural-network-based expert system to evaluate the reliability of power systems. The 
presented systems were able to conquer certain difficulties such as low accuracy, com-
plex modeling and heavy computations. Ho et al. [4] presented a comparative analysis 
of neural networks and autoregressive-integrated- moving average (ARIMA) techniques 
in forecasting repairable systems. Their experimental results showed that both recurrent 
neural networks and multilayer feed-forward neural networks are superior to ARIMA 
approach in terms of forecasting accuracy. Xu et al. [5] applied feed-forward multilayer 
perceptron (MLP) neural networks and radial basis function (RBF) neural networks to 
forecast engine systems reliability. Those researchers compared neural network tech-
niques with the ARIMA approach. Sensitivity analysis of neural networks was per-
formed and appropriate architectures of neural networks were determined.   

Originally, SVMs were developed for pattern recognition problems. Recently, with 
the introduction of Vapnik’s -insensitive loss function, SVMs have been extended to 
solve nonlinear regression estimation problems and successfully in dealing with forecast-
ing problems in many fields. Tay and Cao [6] used SVMs in forecasting financial time 
series. Their numerical results indicated that SVMs are superior to a multi-layer back-
propagation neural network in financial time series forecasting. Cao and Gu [7] presented 
a dynamic SVM model (DSVMs) to deal with non-stationary time series problems. Their 
experiment results showed that the DSVMs outperform standard SVMs in forecasting 
nonstationary time series. In the same year, Tay and Cao [8] proposed a C-ascending 
SVMs to model nonstationary financial time series. Their experimental results showed 
that C-ascending SVMs with the actual ordered sample data consistently perform better 
than standard SVMs. Cao [9] used the SVM experts for time series forecasting. A two-
stage neural network architecture is contained in the generalized SVM experts. The nu-
merical results indicated that the SVM experts are able to achieve the better generaliza-
tion in comparison with the single SVM models. Wang et al. [10] applied SVMs to pre-
dict air quality. Their experimental results showed that SVMs outperformed the conven-
tional Radial Basis Function networks. Mohandes et al. [11] applied SVMs to the predic-
tion of wind speed. Their experimental results indicated that the SVM model outper-
formed the multilayer perceptron neural networks in terms of root mean square errors. 
Pai and Lin [12] used SVMs to forecast production values of machinery industry in Tai-
wan. They reported that SVMs perform better than the seasonal ARIMA model and 
general regression neural networks model.  

In addition to the feed-forward neural networks, links may be established within 
the layers of a neural network. These types of networks are called recurrent neural 
networks (RNNs). The main concept of RNNs is that every unit is considered as the 
output of the network and provides the adjusted information as input in furthermore 
training process [13]. RNNs are widely used in time series forecasting. Jordan [14] 
proposed a recurrent neural network model (Figure 1) for controlling robots. Elman 
[15] presented a recurrent neural network model (Figure 2) to deal with linguistics  
problems. A recurrent network model (Figure 3) was proposed by Williams and 
Zipser [16] to solve nonlinear adaptive filtering and pattern recognition problems. 
These three models mentioned above all consist of MLP with one hidden layer 
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         Fig. 1. Jordan networks [14]                               Fig. 2. Elman networks [15] 
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    Fig. 3. Williams and Zipser networks [16]           Fig. 4. The architecture of SVMG model 

    In Jordan networks, a feedback loop is from the output layer with past values to an 
additional input, namely “context layer”. Then, output values from the context layer 
are fed back into the hidden layer. In Elman networks, the feedback loop is from the 
hidden layer to the context layer. In Williams and Zipser networks, nodes in the hid-
den layer are full connected with each other. Both Jordan and Elman networks have 
an additional information source from the output layer or the hidden layer. Hence, 
these models mainly are based on the past information to capture detailed pattern of 
information. Williams and Zipser networks have much more information source from 
the hidden layer and back into themselves. Therefore, Williams and Zipser networks 
are more sensitive while model implemented [17]. Jordan networks and Elman net-
works are suitable for time series forecasting [18,19]. In this study, the Jordan net-
work is used as a base to construct the recurrent SVM models. 

Traditionally, recurrent neural networks are trained by back-propagation algo-
rithms. In this study, support vector machines with genetic algorithms (SVMG) are 
used as training algorithms in recurrent neural networks, namely Recurrent Support 
Vector Machines with Genetic Algorithms (RSVMG), to obtain weights between  
nodes. Then, the proposed RSVMG model is applied in forecasting system reliability. 
A numerical example in an existing literature [2] is employed to examine the forecast-
ing performance of the proposed model. 
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2   Recurrent Support Vector Machines with Genetic Algorithms  

2.1   Support Vector Machines with Genetic Algorithms 

Proposed by Vapnik [20,21], the SVM are based on the structured risk minimization 
(SRM) principle. The SVM seeks to minimize an upper bound of the generalization 
error instead of the empirical error in the other neural networks. In addition, the SVM 
models generate the regress function by applying a set of high dimensional nonlinear 
functions. The nonlinear function is formulated as follows. 

bxwxfy i +== )()( ψ . (1) 

where )( ixψ  is called the feature, which is nonlinear mapped from the input space x. 

The w and b are coefficients estimated by minimizing the regularized risk function Eq. (2): 
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and C and ε  are prescribed parameters. In Eq. (2), ),( ydεΓ  is called ε -insensitive 

loss function. The d and y are actual value and forecasting value, respectively. The 
loss is equal to zero if the forecasted value is within the ε -tube (Eq. (3)). The second 

term, 2
2

w , is used as a measure of function flatness. Therefore, C is used as the 

trade-off between the empirical risk and the model flatness. Both C and ε  are pa-
rameters determined by users. Two positive slack variables ξ and *ξ , which represent 
the distance from actual values to the corresponding boundary values of ε -tube, are 
introduced. Then, Eq. (2) is transformed into the following constrained form: 
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with the constraints: 
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This constrained optimization problem is solved by the following primal Lagran-
gian form: 
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Eq. (5) is minimized with respect to primal variables w, b, ξ , and *ξ , and maxi-

mized with respect to nonnegative Lagrangian multipliers iα , *
iα , iβ , and *

iβ . Fi-

nally, by applying Karush-Kuhn-Tucker conditions for regression, Eq. (4) results in a 
dual Lagrangian form as Eq. (6). 
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with the constraints: 
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In Eq. (6), the Lagrange multipliers satisfy the equality 0* * =ii ββ . After calculat-

ing the Lagrange multipliers iβ  and *
iβ , an optimal desired weight vector of the re-

gression hyperplane is 
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It is shown that minimizing function has the following form 
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Here, ),( ixxK is called the Kernel function. The value of the Kernel is equal to the 

inner product of two vectors x  and ix  in the feature space )(xψ  and )( ixψ , i.e., 

)(*)(),( ii xxxxK ψψ= . Any function that satisfies Mercer’s condition [22] can be used 

as the Kernel function. In this study, the Gaussian function, ( )22
2--exp σixx , is used 

in the SVMs. 
Three free parameters (σ , ε  and C) influence the performance of SVM models 

a lot. Unfortunately, there is lacking of structural approaches to obtain appropriate 
parameters. Hence, the genetic algorithms (GAs) are employed to determine the pa-
rameters in SVM model. 

The architecture of the proposed SVMG model is illustrated in Figure 4. The fol-
lowings are procedures for conducting the SVMG model. 

Step 1 Initialization: Construct randomly the initial population of chromosomes. The 
three free parameters σ , C, and ε  should be first encoded into binary format, 
represented by a “chromosome” composing of “genes”. 

Step 2 Evaluating fitness: Evaluate the fitness of each chromosome. The random 
initial chromosomes, σ , C, and ε , first used to forecast, and the forecasting 
error calculated in a moment. In this study, the negative value of the root mean 
square error measure (-RMSE) is used as the fitness function in GAs. The fit-
ness function is shown as Eq.(9),          

Fitness function = 
=

−−
N

t
tt yd

N 1

2)(
1

. (9) 

where, N is the number of forecasting periods; td  is the actual reliability 

value at period t; and ty  is the forecasting reliability value. 

Step 3 Selection: Select mating pair, #1 parent and #2 parent, for reproduction. Parent 
selection is a procedure that two mating chromosomes from the parent popula-
tion based on their fitness function. Chromosomes with higher fitness function 
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            have higher probabilities to generate offspring to the next generation. The 
roulette wheel selection principle [23] is used to select chromosomes for re-
production. 

Step 4 Crossover and mutation: Create new offspring by crossover and mutation 
operations. Then next generation forms a population for the next generation, 
and number of generation increase one. To perform crossovers, chromosomes 
are paired randomly. Single-point-crossover principle is employed. Segments 
of paired chromosomes between two determined break-points are swapped. 

Step 5 Next generation: Form a population for the next generation. 
Step 6 Stop conditions: If the number of generation is equal to a given scale, then the 

best chromosomes are presented as a solution, otherwise go back to Step 2. 

For simplicity, suppose there are 4 bits in a gene. A chromosome contains 12 bits 
(Figure 5). Furthermore, supposed the boundaries for σ , C, and ε  are 2, 10, and 0.5 
respectively. Before the crossover, values of three parameters in #1 parent are 0.625, 
1.875, and 0.28125 correspondingly. For #2 parent, the three values are 1.5, 6.25, and 
0.21875. After crossover, the three values are 0.5, 1.25, and 0.46875, for #1 offspring. 
For #2 offspring, the three values are 1.75, 6.875, and 0.03125. Mutations are per-
formed randomly by converting a “1” bit into a “0” bit or a “0” bit in to a “1” bit. The 
rates of crossover and mutation are determined by probabilities. In this investigation, 
the probabilities are set to 0.5 and 0.1 for crossover and mutation correspondingly. 
Figure 6 shows the framework of the SVM model combined with GAs to calculate 
free parameters in SVM model. 

before crossover

0 1 1 0 0 0 1 1 1 0 0 1

1 1 0 0 1 0 1 0 0 1 1 1

Parent 1

Parent 2

Crossover Point=1

Parameter Parameter C Parameter 

0

1 1 0

0

0 1 1

1

0 0 11

1 0 0

1

0 1 0

0

1 1 1Offspring 1

Offspring 2

Parameter Parameter C Parameter 

after crossover

 

Fig. 5. A simplified example of parameter representation 

2.2   Recurrent Support Vector Machines with Genetic Algorithms 

In this investigation, the Jordan network is used as a recurrent neural network frame-
work. Figure 1 shows the architecture of a Jordan network [14]. All neurons in one 
layer are connected with all neurons in the next layer except the context layer. A con-
text layer is special case of a hidden layer. Interactions only happen between neurons 
of the hidden layer and the context layer. For a Jordan network with p inputs, q hid-
den and r output neurons, the output of the n th neuron, )(tfn , is [24-28]: 
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where iW  are weights between the hidden and the output layer; )(tiϕ  is the output 

function of hidden neurons, which is computed as 
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where ijv are weights between the input and the hidden layer; ikvw are weights between 

the context and the hidden layer with delay k periods; s is the total numbers of the 
context layer of past output data. 

Back-propagation is a procedure to obtain gradients for adapting weights of a neu-
ral network. Back-propagation algorithm presents as follows. First, the output of the n 
th neuron in Eq.(11) is rewritten as 

))()(()( ttxhtf T
n φ=  (12) 

where )(⋅h  is nonlinearity function of )(txT and )(tfn ; [ ]TP
T txtxtx )(),...,()( 1=  is the 

input vector; [ ]TP ttt )(),...()( 1 φφφ =  is the weight vector, then, a cost function is pro-

posed to be the instantaneous performance index, 
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where [ ]TP tdtdtd )(),...,()( 1=  is the desired output. 

Secondly, the instantaneous output error at the output neuron and revised weight 
vector in the next moment are presented as Eq.(14) and Eq.(15) respectively. 
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where η  is the learning rate. 
Third, the gradient ))(( tJ φφ∇  can be calculated as  
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where )(⋅′h  is the first derivation of the nonlinearity )(⋅h . Finally, the weight is re-
vised as 

)())()(()()()1( txttxhtett T φηφφ ′+=+  (17) 

Figure 6 is the architecture of the proposed RSVMG model. The output of 
RSVMG ( )(

~
tfn ) is shown as Eq (18). 
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Fig. 6. The architecture of RSVMG model 

Then, Eq.(18) replaces the Eq.(1) in the SVMG algorithms to run the loop of 
SVMG in searching values of three parameters. Finally, the forecasting values )(

~
tfn  

are calculated by Eq. (18).  

3   A Numerical Example 

A numerical data in the work of Su et al. [2] are reprinted in Table 1. The data con-
tains the number of vehicle damages (at), the number of damages repaired (bt), and 
the period reliability ratio (rt). In this study, various models are applied to forecast the 
period reliability ratio. To compare forecasting performance of the proposed models 
with the models of Su et al. [2], the data division principle is the same as the work of 
Su et al. [2]. The data are divided into two sets, namely the training data set and the 
testing data set. Totally, there are 36 numbers of data. The numbers of data are 24 and 
12 for the training data set and the testing data set respectively. Then, a rolling-based 
forecasting procedure is conducted and only one-step-ahead forecasting policy is 
considered. To achieve better forecasting performance, different numbers of input 
data are used to forecast output values. In this example, six models with different 
numbers of input data are employed to forecast output values. The model with the 
minimum testing RMSE value is selected as the most suitable model for this example.  

Table 2 shows the forecasting results of SVMG and RSVMG models. It is indi-
cated that the best forecasting results occur when the numbers of input data are 21 and 
22 for SVMG and RSVMG models respectively. The most suitable parameters of 
SVMG and RSVMG models are obtained to forecast the reliability growth. Table 3 
shows the RMSE values of different models. It is observed that SVMG and RSVMG 
models outperform ARIMA, BPNN and ICBPNN models. In addition, the RSVMG 
model results in better predictive performance than the SVMG model. 

In addition, the sensitivity analysis of three parameters of RSVMG model is per-
formed. In the parameter analysis process, those RSVMG parameters are fixed to exam-
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ine the change of RMSE values when the third parameter varies. It is indicated that 
smaller RMSE values cab be obtained only when the parameter is sensitive in this exam-
ple. For example, the change of parameters C and ε  can not improve the solutions. 
However, changing the values of σ  can improve the forecasting accuracies, that RMSE 
can be reduced from 0.00212 to 0.00175 by moving σ  from 10.469 to 18.42. 

Table 1. The repair data of a repairable system in automobile industry (Su et al. [2]) 

Pe-
riod 

Number 
of vehicle 
damages 

(at) 

Number of 
damages 
repaired 

(bt) 

Period 
reliability 

ratio 
= ttt abr

Pe-
riod 

Number 
of vehicle 
damages 

(at) 

Number of 
damages 
repaired 

(bt) 

Period 
reliability 

ratio 
= ttt abr  

1 440 0 0.000000 19 1,444 225 0.007382 
2 1,080 0 0.000000 20 1,734 186 0.005774 
3 1,002 16 0.006344 21 1,700 354 0.010439 
4 1,448 20 0.005038 22 1,355 566 0.016049 
5 1,743 15 0.002626 23 1,980 224 0.006014 
6 1,201 56 0.008100 24 1,384 519 0.013435 
7 2,025 6 0.000671 25 1,276 400 0.010023
8 2,298 70 0.006229 26 2,063 374 0.008911
9 1,665 24 0.001860 27 2,319 508 0.01147

10 2,008 40 0.002683 28 1,772 326 0.007078
11 1,128 78 0.004863 29 1,976 548 0.011408
12 1,372 230 0.013211 30 896 310 0.006335
13 1,696 199 0.010416 31 774 541 0.010884
14 2,106 184 0.008674 32 1,278 545 0.010689
15 1,772 120 0.005221 33 1,766 265 0.005024
16 2,319 70 0.002767 34 865 349 0.006509
17 2,006 199 0.007287 35 665 395 0.007277
18 1,725 94 0.003238 36 386 589 0.010774

Table 2. Forecasting results and parameters of SVMG and RSVMG models 

SVMG RSVMG 
Parameters Parameters No. of 

input σ  C ε  
Testing 
RMSE  

No. of 
input σ  C ε  

Testing 
RMSE  

5 106.48 638.44 0.00361 0.00251 5 30.472 1048.3 0.003354 0.022060
10 46.933 152.78 0.00345 0.00293 10 37.200 1629.7 0.003734 0.002150
15 58.902 294.69 0.00631 0.00252 15 28.001 139.16 0.000300 0.002203
19 45.658 289.73 0.00811 0.00238 19 25.331 1555.2 0.001057 0.002435
20 236.58 682.33 0.00386 0.00253 20 3.1859 1769.2 0.001176 0.002551
21 208.55 183.48 0.00444 0.00229 21 0.3257 1016.6 0.000431 0.002159
22 167.91 466.07 0.00517 0.00235 22 10.649 2718.2 0.000706 0.002117

4   Conclusions 

Predicting reliability is one of the most crucial issues in manufacturing systems. The 
SVMG and RSVMG neural networks are presented in the study to predict system 
reliability successfully. SVM learning algorithms are embodied in the traditional 
recurrent neural network structure. It is demonstrated that the proposed SVMG and 
RSVMG models are able to reach lower prediction errors compared with other fore-
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Abstract. A modified sequential minimal optimization (SMO) algorithm for 
support vector machine (SVM) regression is proposed based on Shevade’s 
SMO-1 algorithm. The main improvement is that a modified heuristics method 
is used in this modified SMO algorithm to choose the first Lagrange multiplier 
when optimizing the Lagrange multipliers corresponding to the non-boundary 
examples. To illustrate the validity of the proposed modified SMO algorithm, a 
benchmark dataset and a practical application in predicting the melt index of 
high-pressure low-density polyethylene (HP-LDPE) are used; the results dem-
onstrate that this modified SMO algorithm is faster in most cases with the same 
parameters setting and more likely to obtain the better generalization perform-
ance than Shevade’s SMO-1 algorithm. 

1   Introduction 

Since the theory of support vector machine (SVM) was proposed by Vapnik [1], it has 
achieved much more development because it has many advantages such as terse ex-
pression, intuitionistic geometry explanation and excellent generalization perform-
ances [2]. In fact, the SVM is trained by solving a quadratic programming (QP) prob-
lem, which commonly uses traditional optimization algorithms such as interior point 
algorithm and reduced gradient algorithm. It takes a long time and much memory 
requirement to train SVM with traditional optimization algorithms when the training 
set is very large, which prevents its practical application [3]. In order to simplify the 
training of SVM and reduce its calculation complexity, decomposition algorithm was 
firstly proposed by Osuna [4], which is an efficient training method. Among various 
decomposition algorithms, the main differences are in the size of working set and its 
choosing method. Sequential minimal optimization (SMO) proposed by Platt [5] is a 
more efficient method for training SVM at present. The basic idea of the SMO algo-
rithm is that a very large QP problem is broken into a series of smallest possible QP 
problems, which involve two Lagrange multipliers because the Lagrange multipliers 
must obey a linear equality constraint. These small QP problems are solved analyti-
cally, which avoids a time-consuming numerical QP optimization as an inner loop; 
and the amount of memory required for SMO is linear in the training size, which 
allows SMO to handle very large training set. For these excellent performances, 
Smola and Scholkopf [6, 7] proposed a SMO algorithm for training SVM regression, 
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which is an extension of Platt’s SMO. The paper [8] pointed that the use of a single 
threshold value is an important source of inefficiency in Smola and Scholkopf’s SMO 
algorithm for SVM regression and derived modified SMO algorithms by employing two 
threshold parameters, as SMO-1 and SMO-2, which perform significantly faster for its 
modified KKT optimality conditions, cache strategy and efficient parameter updating 
process. But Shevade’s SMO-2 algorithm is not always convergent, so only Shevade’s 
SMO-1 algorithm is concerned in this paper.  

In general, above-mentioned SMO algorithms use the same heuristic method [5] to 
choose the first Lagrange multiplier. In this method, the cost of CPU time mainly con-
centrates on the non-boundary examples [8] and the first Lagrange multiplier is chosen 
from this subset in turn, which causes such a problem that the change of the first se-
lected Lagrange multiplier may not maximize the change of the objective function in all 
the possible candidates for the first Lagrange multiplier. In this paper, a new method for 
the choice of the first Lagrange multiplier is proposed to improve the efficiency of 
Shevade’s SMO-1 algorithm. 

The paper is organized as follows. Section II gives a brief overview of SVM regres-
sion. Section III describes the modified SMO algorithm for SVM regression. Section IV 
givens a simulation study by using a benchmark dataset. Section V applies the proposed 
modified SMO algorithm to build the quality prediction model of high-pressure low-
density polyethylene (HP-LDPE). Finally, section VI gives some conclusions. 

2   Overview of SVM Regression 

In SVM regression, the input data set x  is first mapped into a high dimensional fea-
ture space by using some fixed (non-linear) mapping function φ  and then a linear 

model is constructed in this space [1, 9]. Using mathematical notation, the linear 
model (in the feature space) ( )f x  is given by 

( ) ( )Tf x x bω φ= +                                                  (1) 

where b  is the bias term. In this way, the linear regression in high dimensional fea-
ture space is corresponding to the non-linear regression in low dimensional feature 
space. In order to enhance the robustness of the SVM regression, a new type of loss 
function called ε -insensitive loss function was proposed by Vapnik [1, 9] and it is 
characterized by omitting the training errors less than ε  and reducing the complexity 
of functional. The SVM regression is formulated as minimization of the following 
functional: 
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where 0C >  determines the trade off between the flatness of f and the amount up to 

which deviations larger than ε  are tolerated. And 
iξ and *

iξ  called slack variables are 
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introduced to cope with the non-strict constraints. In this paper, Eq.(2) is called the 
primal problem of the SVM and its Lagrangian is represented as 

*

1 1

* * * *

1 1

1
( ) ( ( ) )

2

     ( ( ) ) ( )

l l
T T

i i i i i i
i i

l l
T

i i i i i i i i
i i

L C x b y

y x b

ω ω ξ ξ α ω φ ε ξ

α ω φ ε ξ η ξ η ξ

= =

= =

= + + − + − + +

− − − + + − +

                      (3) 

where 0α ≥  and * 0α ≥  are Lagrange multipliers. Classical Lagrangian duality en-
ables the problem Eq.(3) to be transformed to its dual problem, which is given by: 
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The minimum with respect to ω  and b  of the Lagrangian, L , is given by 
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Hence from Eq.(3), Eq.(4) and Eq.(5), the dual problem is: 
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where ( , ) ( ) ( )T

i j i jk x x x xφ φ=  is called kernel function. And the solution of Eq.(1), or 

the output of the SVM regression can be expressed as 
*

1

( ) ( ) ( , )
l

i i i
i

f x k x x bα α
=

= − +                                           (7) 

3   SMO for SVM Regression 

For easy to do derivation, referring to [10], let *
i i iλ α α= −  and *

i i iλ α α= + . Then 

Eq.(6) and Eq.(7) can be rewritten as: 

1 1 1 1

1

1
maximize

2

0
subject to

1, ,

l l l l

i j ij i i i
i j i i

l

i
i

i

k y

C C i l

λ λ ε λ λ

λ

λ

= = = =

=

− − +

=

− ≤ ≤ =

                               (8) 
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1

( ) ( , )
l

i i
i

f x k x x bλ
=

= +                                                 (9) 

where ijk  is the abbreviation of kernel function ( , )i jk x x  and satisfies ij jik k= . 

3.1   Analytic Solution for the Optimization Sub-problem 

The SMO algorithm divides a large QP problem into a series of QP problems with 
two variables, which can be solved analytically. Let these two variables have indices 
u  and v , so uλ  and  vλ  are the two unknowns. From paper [10], we know that  vλ  

can be updated recursively by 

* * *1
( (sgn( ) sgn( )))v v v u u v u vy y f fλ λ ε λ λ

η
= + − + − + −                         (10) 

where ( 2 )vv uu uvk k kη = + − , sgn() is signum function, *
uf  and *

vf  are computed by 

Eq.(9). The superscript *  used above indicates that the value is computed with the old 
parameter values. 

3.2   Optimality Conditions for SVM Regression 

To improve the efficiency of SMO algorithm, an accurate and quick judgment of 
whether a Lagrange multiplier violates the optimality conditions is very crucial. 

In Smola and Scholkopf’s SMO algorithm for SVM regression based on a single 
threshold parameter b , which needs to be update after each successful optimization 
step. For using only one single threshold, this inefficient SMO algorithm has two 
shortcomings: 1) Sometimes the value of b  cannot be calculated (for example, all the 
support vectors lie out of the margin of the -tube ). In this situation, b  is simply 
chosen as the midpoint of the interval [ , ]low upb b ; 2) For the reason that b  is updated 

based on the current two Lagrange multipliers used for joint optimization, while 
checking whether the remaining examples violate the optimality conditions or not, it 
is quite possible that a different, shifted choice of b  may do a better job. To solve 
these problems, a modified SMO-1 algorithm employed two threshold parameters for 
regression is propose in [8]. With the same idea, we derive the optimality conditions 
based on the parameter λ  below. 

The Lagrangian for the dual problem Eq.(8) is 

1 1 1 1 1

1
( ) ( )

2

l l l l l
T

D i i i i i i i i
i i i i i

L y C Cω ω λ ε λ β λ δ λ τ λ
= = = = =

= − + + − + − −                      (11) 

Let 
( )T

i i iF y xω φ= −                                                 (12) 

So the KKT conditions for the dual problem are 
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0

( ) 0, 0,

( ) 0, 0,

iD
i i i

i i

i i i i

i i i i

L
F

C C

C C

λ
ε β δ τ

λ λ
δ λ δ λ
τ λ τ λ

∂∂
= − + + − + =

∂ ∂
+ = ≥ ≥ −
− = ≥ ≤                                (13) 

These conditions are also referred as optimality conditions, and which can be sim-
plified by considering the following five cases: 

,         

,  0

( ) ,            0

,     0

,           

i i

i i

i i

i i

i i

F C

F C

F

F C

F C

β ε λ
β ε λ

ε β ε λ
β ε λ
β ε λ

− ≤ − = −
− = − − < <

− ≤ − ≤ =
− = < <
− ≥ =

                                   (14) 

Based on Eq.(14), we define the following five index sets at a given λ : 

0 { : 0 }a iI i Cλ= < <  

0 { : 0}b iI i C λ= − < < 1 { : 0}iI i λ= = 2 { : }iI i Cλ= = − 3 { : }iI i Cλ= =  and let 

0 0 0a bI I I= . We also define iF  and iF  as: 

0 2

0 1

if 

if 
i b

i
i a

F i I I
F

F i I I

ε
ε

+ ∈
=

− ∈
                                           (15) 

and 

0 3

0 1

if 

if 
i a

i
i b

F i I I
F

F i I I

ε
ε

− ∈
=

+ ∈
                                           (16) 

Using these definitions, the conditions mentioned in Eq.(14) can be rewritten as: 

0 1 2

0 1 3

i

i

F i I I I

F i I I I

β
β

≥ ∀ ∈

≤ ∀ ∈
                                            (17) 

Let us define  

0 1 3

0 1 2

min{ : }

max{ : }

up i

low i

b F i I I I

b F i I I I

= ∈

= ∈
                                        (18) 

Then it is easily to see that the optimality conditions will hold at some λ  if  

low upb b≤                                                        (19) 

From paper [8], we know that, at optimality, β  and b  are identical. So in the rest 

of this paper, β  and b  will denote one and the same quantity. 

In numerical solution, it is usually not possible to achieve optimality exactly, so the 
condition Eq.(19) can be replaced by an approximate optimality conditions [8] as 

2low upb b r≤ +                                                    (20) 

where r  is a positive tolerance parameter and the care is needed in its choosing, see 
[11] for a related discussion. So an index pair ( , )u v defines a violation at λ  if one of 

the following two sets of conditions holds: 

0 1 2 0 1 3

0 1 3 0 1 2

,   and 2  (a)

,   and 2  (b)

u v

u v

u I I I v I I I F F r

u I I I v I I I F F r

∈ ∈ > +

∈ ∈ < −
                         (21) 
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When ( , )u v  satisfied Eq.(21) then a strict improvement in the dual objective func-

tion can be achieved by optimizing only the Lagrange multipliers corresponding to 
the examples u  and v . 

3.3   The Choice for the First Lagrange Multiplier 

From Platt, Smola and Shevade’s heuristic choice method for the first Lagrange mul-
tiplier, we found a disadvantage, which is that, in fact, the first Lagrange multiplier is 
chosen randomly; the change of the first selected Lagrange multiplier may not maxi-
mize the change of the objective function in all its possible candidates. In this paper, a 
new modified heuristic method for the choice of the first Lagrange multiplier is pro-
posed to improve the efficiency of Shevade’s SMO-1 algorithm. 

The gradient of the dual problem’s Lagrangian, Eq.(11), with respect to Lagrange 
multiplier vλ  is given by: 

1

sgn( )

      sgn( )

l

i iv v v v v
iv

v v v v

L
k y

F

λ ε λ β δ τ
λ

ε λ β δ τ
=

∂ = − + + − +
∂

= − + + − +

                               (22) 

Since the larger the absolute gradient value, the more change the objective function 
with respect to vλ , we can choose such a Lagrange multiplier in its candidates as the 

first Lagrange multiplier, which can maximize the absolute value of Eq.(22). When 
the first Lagrange multiplier is chosen in the outer loop, we determine whether the 
selected Lagrange multiplier violates the optimality conditions; then if violates, the 
second Lagrange multiplier can be chosen hand in hand [8]; for example, let lowi  and 

upi  be indices so that: 

0 1 2

0 1 3

max{ : }

min{ : }
low

up

i low i

i up i

F b F i I I I

F b F i I I I

= = ∈

= = ∈
                                   (23) 

If 2v lowF b r< − then there is a violation and in that case choose lowu i= ; if the first 

selected Lagrange multiplier doesn’t violate any optimality conditions, it should be 
deleted from the candidates set and go to the next loop. 

For that the cost of CPU time mainly concentrates on the non-boundary examples 
and choosing the first Lagrange multiplier vλ  to maximize sgn( )v v v vF ε λ β δ τ+ + − +  

also needs much CPU time. To be efficient, the proposed choice method for the first 
Lagrange multiplier is used only to alter 0,i i Iλ ∈ . From Eq.(13), we know that 

00, 0  ( )i i i Iδ τ= = ∈  and because the value of β  needs not to be calculated after every 

optimality step, β  in (27) is also omitted to speed up the SMO algorithm. So when 

optimizing the Lagrange multipliers corresponding to the non-boundary examples, the 
first Lagrange multiplier vλ  can be chosen to satisfy the following functional: 

0

sgn( ) max sgn( )v v i i
i I

F Fε λ ε λ
∈

− + = − +                                  (24) 
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4   Simulation Study 

In this section, we compare the performance of our modified SMO algorithm against 
Shevade’s SMO-1 algorithm for SVM regression on Boston housing dataset, which is 
a standard benchmark for regression algorithm and can be available at UCI Reposi-
tory [12]. These two algorithms are run using Matlab6.5 on a P4 2.4GHz Windows 
XP Professional machine. In this study, the RBF kernel 

2 2( , ) exp( 2 )i j i jK x x x x σ= − −                                      (25) 

is used. 

Table 1. Comparison results between the modified SMO and Shevade’s SMO-1 when 10C =  

Modified SMO Shevade’s SMO-1 
 r  

( )t s  Generalization 
error (MSE) 

( )t s  Generalization 
error (MSE) 

1 0.05 215.39 0.016399 368.844 0.015352 
2 0.07 152.406 0.017393 167.937 0.015831 
3 0.10 53.015 0.015048 90.266 0.018345 
4 0.13 35.5 0.014692 46.282 0.018756 
5 0.15 26.265 0.016933 31.453 0.016463 
6 0.18 25.422 0.016649 20.11 0.019198 
7 0.20 18.719 0.018655 23.375 0.017871 

 

To Boston housing dataset, the dimension of the input is 13 and the size is 506. In 
the simulation study, the input data as well as the output are all scaled in the intervals 
[-1,1]. 406 data is used as the training set and the other 100 data is used as the testing 
set. From simulation, we found that these two algorithms are not insensitive to differ-
ent choice of C . So the values, 1.3σ = , 0.025ε =  and 10C =  are used.  

From Table 1, we can see that our modified SMO algorithm is faster than 
Shevade’s SMO-1 algorithm in most cases. And the minimal generalization mean 
square error (MSE) is 0.014692, which is obtained by using our modified SMO algo-
rithm. 

5   Practical Application in Quality Prediction of HP-LDPE 

5.1   Description of Industrial Background 

High pressure low-density polyethylene (HP-LDPE) is produced by subjecting ethyl-
ene to a large amount of pressure, which is one of the highest-yield, lowest priced and 
most widely used general-purpose plastics in the world. Each product is produced 
under specified standard conditions, which means to control melt flow index, density 
and molecular weight distribution of low-density polyethylene. The melt flow rate 
measures the viscosity of the polyethylene resin in its molten state. It is a parameter 
relating to the average molecular weight of the resin chains of polymer extruded 
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through a standard size orifice under specified conditions of pressure and temperature. 
The greater the lengths of its molecules, the greater the molecular weight and the 
greater the difficulty in extruding the resin through the standard orifice, the result: 
resins of greater viscosity are measured by a lower melt flow rate. And the greater the 
viscosity, the lower the melt index. 

So melt index is the prediction of tensile strength, toughness and stress crack resis-
tance and can be used to predict the quality of the end product. According to the 
analysis of technological mechanisms, the melt index is related with 21 variables, 
which are: first reference peak in temperature, corresponding tags are 

212 ~ 212TI A TI E (oC);); second reference peak in temperature, corresponding tags 
are 217 ~ 217TI A TI E (oC); front die heads pressure of extruder, corresponding tag is 

521PI (Mpa); back die heads pressure of extruder, corresponding tag is 
522PI (Mpa); reactor entrance pressure, corresponding tag is 210PI (Mpa); front 

pressure of pulse valve, corresponding tag is 212PI (Mpa); flow rate of fed air, corre-
sponding tag is 310FI A (m3/h); flow rate of catalyzer at the second feeding point, 
corresponding tag is 332FI (kg/h); flow rate of catalyzer at the first feeding point, 
corresponding tag is 334FI (kg/h); flow rate of propane, corresponding tag is 

322FI A (kg/h); propane content, corresponding tag is 141AI A (%); electromotor 
current of extruder, corresponding tag is 520II (A) and rotary speed of electromotor, 
corresponding tag is 520SI (rpm). All 21 variables can be measured and recorded on-
line.  

5.2   Quality Prediction Model 

As mentioned above, the quality of HP-LDPE is determined essentially by the melt 
index. But the on-line measurement of melt index value is very difficulty, so a model 
for predicting the melt index on-line would be useful. In this section, the melt index 
will be studied. 

By using method combined correlation analysis and technological mechanisms to 
analyze the input variables, the melt index is mainly affected by the following nine 
measurable variables: 

212TI B 217TI B 52PI 522PI 210PI 310FI A 334FI 520II 520SI ; 
So its model structure is represented as: 

( 212 , 217 , 521, 522, 210, 310 , 334, 520, 520)MI gTI BTI BPI PI PI FI AFI II SI=                    (26) 

where MI  represents the melt index of HP-LDPE, ()g  is the complex multivariable 

non-linear function. 
Then the proposed algorithm is used to establish the system. 99 data points with 

nine variables mentioned above are collected in different operating states, 59 data 
points of which are used as training data set, while the other 40 points are used as 
testing data set. All data points are scaled in the intervals [-1,1]. For the reason of 
comparison, we also built soft sensing model based on Shevade’s SMO-1 algorithm 
besides the proposed SMO algorithm. For these two models, RBF kernel, Eq.(25), 
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Fig. 1. HP-LDPE data: CPU time (in second) as a function of r  
 

and the values 0.9σ = , 0.01ε =  are used. From simulation, we found that our modi-
fied SMO algorithm always has better performance than Shevade’s SMO-1 algorithm 
with different choice of C . Fig.1 shows the performance of these two algorithms with 
different choice of r . From Fig.1, we can see that these two algorithms are not insen-
sitive to 10 or 50C = , in fact, which is true to other choices of C . 

Table 2. Comparison results between the modified SMO and Shevade’s SMO when 10C =  

Modified SMO Sheave’s SMO-1 
 r  

( )t s  Generalization 
error (MSE) 

( )t s  Generalization 
error (MSE) 

1 0.02 2.062 0.028693 3 0.02844 
2 0.03 1.766 0.029308 2.297 0.027721 
3 0.04 1.468 0.029684 1.828 0.028516 
4 0.05 1.281 0.030068 1.765 0.028802 
5 0.06 1.156 0.02804 1.937 0.031696 
6 0.07 1.078 0.027122 1.484 0.032216 
7 0.08 1.032 0.028936 1.219 0.028792 
8 0.09 1.281 0.030939 1.172 0.028389 
9 0.10 0.891 0.027427 1.109 0.03046 

10 0.11 0.781 0.027038 0.969 0.025209 
11 0.12 0.844 0.026783 1.312 0.025197 
12 0.13 0.765 0.02749 0.953 0.027849 
13 0.14 0.734 0.026387 0.938 0.029687 
14 0.15 0.766 0.027388 0.907 0.026671 
15 0.16 0.641 0.024311 0.828 0.025875 
16 0.17 0.61 0.033891 0.765 0.034331 
17 0.18 0.609 0.027593 0.687 0.03007 
18 0.19 0.484 0.023278 0.609 0.025682 
19 0.20 0.578 0.026217 0.797 0.028925 
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From Table 2, we also can see that in most cases, the modified SMO algorithm 
proposed in this paper is faster than Shevade’s SMO-1 algorithm and the minimal 
generalization error (MSE) is 0.023278, which is also obtained by using our modified 
SMO algorithm. 

6   Conclusion 

In this paper, a new modified SMO algorithm is proposed based on Shevade’s SMO-1 
algorithm. Against Shevade’s SMO-1 algorithm, the proposed SMO algorithm has 
two differences: the first is that the Lagrange multiplier α  is replaced by λ ; the 
second is that a modified heuristics method is used to choose the first Lagrange mul-
tiplier when optimizing the Lagrange multipliers corresponding to the non-boundary 
examples. In section V and section VI, a benchmark data set and a practical applica-
tion are given to illustrate the validity of the proposed algorithm. The results demon-
strate that this new SMO algorithm are faster in most cases with the same parameters 
setting and more likely to gain the better generalization performance than Shevade’s 
SMO-1 algorithm. 
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Abstract. This paper proposes a method of automatic gait recognition using 
Fourier descriptors and independent component analysis (ICA) for the purpose 
of human identification at a distance. Firstly, a simple background generation 
algorithm is introduced to subtract the moving figures accurately and to obtain 
binary human silhouettes. Secondly, these silhouettes are described with Fourier 
descriptors and converted into associated one-dimension signals. Then ICA is 
applied to get the independent components of the signals. For reducing the 
computational cost, a fast and robust fixed-point algorithm for calculating ICs is 
adopted and a criterion how to select ICs is put forward. Lastly, the nearest 
neighbor (NN), support vector machine (SVM) and backpropagation
neural network (BPNN) classifiers are chosen for recognition and this
method is tested on the small UMD gait database and the NLPR gait database.
Experimental results show that our method has encouraging recognition  
accuracy. 

1   Introduction 

The demand for automatic human identification systems is strongly increasing in 
many important applications, especially at a great distance and it has recently gained 
great interest from the pattern recognition and computer vision researchers for it is 
widely used in security-sensitive environments, surveillance, access control and smart 
interfaces such as banks, parks and airports. Biometrics is a new powerful tool for 
reliable human identification and it makes use of human physiology or behavioral 
characteristics such as face, iris, fingerprints and hand geometry for identification. As 
a new behavioral biometric, gait recognition aims at identifying person by the way he 
or she walk. Compared with the first generational biometrics such as face, finger-
prints, speech and iris which are widely applied in some commercial and low applica-
tions, gait has some prominent advantages of being non-contact, non-invasive, unob-
vious, low resolution requirement and it is the only perceivable biometric feature for 
human identification at a great distance till now though it is also affected by some 
factors such as drunkenness, pregnancy and injuries involving joints. Unlike face, gait 
is also difficult to conceal and has great potential applications in many situations 
especially for human identification at a great distance. 
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Although gait recognition is a new research field, there have been some studies and 
researches in recent literatures [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] and [11]. 
Currently, gait recognition approaches are classified two main classes, namely holis-
tic-based methods [2], [3], [6], [7], [8], [10] and [11] and model-based methods [5] 
and [9]. Model-based methods aim to model human body by analysis of the parts of 
body such as hand, torso, thigh, legs, and foot and perform model matching in each 
frame of a walking sequence to measure these parameters. As the effectiveness of 
model-based techniques, especially in human body modeling and parameter recovery 
from a walking sequence, is still limited (e.g. tracking and locating human body accu-
rately in 2D or 3D space has been a long-term challenging and unsolved problem 
though there are much progresses in the past years even if some researcher have put 
forward many human tracking approaches), the disadvantages of model-based ap-
proaches is typically computational complexity because the movement of human 
body is non-rigid, therefore most existing gait recognition methods are holistic-based. 
Hence, like other holistic-based algorithms, we can consider gait being composed of a 
sequence of body poses and recognize it by the similarity of these body poses and 
silhouettes with low computational cost. Based on this assumption, this paper pro-
poses an automatic gait recognition method for human identification using Fourier 
descriptors and independent component analysis, which achieves high recognition 
accuracy results. The method proposed in the paper can be mainly divided into three 
procedures including human motion detection, feature representation and gait recog-
nition. The main advantages of our approach in this paper are as bellow: (1) based on 
Fourier descriptors and ICA, we make a meaningful attempt to human identification 
through gait information. (2) One-dimensional signals are applied to represent the 
changing of moving silhouettes which can decrease computational cost effectively. 
(3) Three classifiers namely nearest neighbor (NN), support vector machine (SVM) 
and back propagation neural network (BPNN) are applied for recognition and experi-
mental results are compared with the three different classifiers. (4) It is easy to im-
plement and has better recognition accuracy. The remainder sections of this paper are 
organized as follows: in the next Section, gait feature extraction is proposed while 
Sections 3 gives the final experimental results and recognition accuracy. At last, Sec-
tion 4 concludes this paper and put forward future research direction of this field. 

2   Gait Feature Extraction 

Before training and recognition, each gait sequence involving a walking figure is 
converted into a sequence of signals which are from Fourier frequency components at 
this preprocessing stage. This procedure mainly involves background modeling, hu-
man motion segmentation and feature representation using Fourier descriptors and 
feature extraction of one-dimensional signals.  

2.1   Segmentation of Human Motion 

Human segmentation is the first step of our method and plays a key role in the whole 
gait recognition system. To extract the silhouettes of walking figures from the back-
ground, a simple motion detection approach using the median value is adopted to 
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construct the background image from a small portion of video sequence including 
moving objects. Let P  represents a sequence including N  frames. The resulting 
background ),( yxp  can be computed as formulas (1):  

)],(,),,(),,([),( 21 yxpyxpyxpmedianyxp N=  (1) 

The value of ),( yxp  is the background brightness to be computed in the location of 

pixel ),( yx  and median  represents its median value. Here median value is taken rather 

than mean value of the pixel intensities over N  frames, because mean value will be 
distorted by the large change in pixel intensities when the person moves past that 
pixel while the median is unaffected by spurious values, and the computational cost of 
median value is also lower than the least median square value used in literature [2]. 
The assumption made in this step is that the person does not stand still over the 
frames which are analyzed as in that case the background extraction will classify the 
person as a part of background and there is just only one moving person in our scene.  

It should be noted that there do not exist a perfect image segmentation algorithm to 
segment the sequence images effectively up to the present. Here we adopt traditional 
histogram method to segment the foreground. For each image, the changing pixels 
can be detected by a suitable threshold T decided by traditional histogram and then 
we can easily obtain human silhouette through formulas (2): 

1=xyD .  ( Tyxpyxpabs i ≥− )),(),(( ) Ni ,,2,1=  (2) 

It also should be noted that this process is independent for each color component 
channels (i.e. Red, Green and Blue) in each frame of gait image .For each given pixel, 
if one of the three components accords with formulas (2), it will be determined as a 
foreground pixel. After that, there still exist some noises in the foreground, so mor-
phological operators such as erosion and dilation are used to further filter spurious 
pixels and fill some small holes in human bodies. Two examples of background sub-
traction can be seen in Fig.1 from (a) to (h). Two separate databases are selected here 
as the data set for our gait experiments.  

             
(a)                           (b)                           (c)                          (d) 

             
                  (e)                            (f)                            (g)                        (h)  
 
Fig. 1. Examples of background extraction from a sequence. (a), (b) (c) and (d) are from one 
gait database [4], (e), (f), (g) and (h) are from another database [1]. (a) and (e) are original 
images, (b) and (f) are the background images extracted through median method, (c) and (g) are 
the difference images, (d) and (h) are the silhouettes after morphological processing. 
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2.2   Representation of Human Silhouette Using Fourier Descriptors 

An important factor affecting gait recognition is how to represent human silhouettes 
and extract the feature. To let our method be insensitive to changes of color and tex-
ture of clothes, we only use the binary silhouette. There existing some feature extrac-
tion methods proposed by early researchers, two typical methods are principal com-
ponent analysis (PCA) [12] and [13] and Hidden Markov Models (HMM) [14] and 
[15]. In the above step, we have already obtained each human’s boundary. Fourier 
descriptors have long been established and proved as a good method for representing 
a two-dimensional shape’s boundary and its major advantage is that when represent-
ing a shape in Fourier domain, its frequency component can be easily obtained. The 
general features of the shape are located in the lower frequencies while the details 
features are located in the higher frequencies. Now, we apply Discrete Fourier de-
scriptors to describe human silhouettes. First, each counter is set in the complex plane 
and its centroid is set as the origin complex. Each point on the counter can be repre-
sented by a complex number

iii yjxs ×+= , )1,,2,1,0( −= Ni  where N is the number of 

counter points. We select the same number of points to represent each counters and 
unwrap each counter counterclockwise from the top of the counter and convert in into 
a complex vector ],,,[ 110 −Nsss . Therefore each gait sequence is transformed into a 

sequence of complex vectors with the same dimensions and the value of N  in our 
experiment is 512 after re-sampling the boundary points. For a M -length vector, 
Fourier descriptors can be easily obtained through Fourier transform as formulas (3): 

M

ni
jM

i
in es

M
a

π2

1

1 −

=
= ,  for 1,1,0 −= Mi  (3) 

So Fourier descriptors used for recognition can be represented as formulas (4): 
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a

a
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F M −=  (4) 

Given n classes for training and each class represents a sequence of one subject’s 
gait. Let 

jiF ,
 be the jth feature signals in class i and 

iN  is the number of such signals 

in the ith class. The total numbers of training sequences is 
sNNNN +++= 21
and 

the whole training set can be represented into ],,,,,[ ,1,2,12,11,1 1 sNiN FFFFFF = . Consid-

ering there may be different number points in different person’s silhouette, we choose 
a fixed length of points for using discrete Fourier transform (here re-sampling 512 
points in each binary silhouette for fast Fourier Transform). After Discrete Fourier 
transform, there still exists a large number of points in human silhouette. As we know, 
most energy of human silhouettes is concentrated in low frequency and we can ignore 
the high frequency as that does not contain much energy. For computational conven-
ience, we only select 50 points of lowest frequency components for the least loss of 
silhouettes. 
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2.3   Training and Feature Extraction 

At this stage, we will extract and train gait feature using ICA. The concept of ICA can 
be seen as a generational of principal component analysis (PCA) and its basic idea is 
to represent a set of random variables using basis functions, where the components 
are statistically independent or as independent as possible [16].  

Let us denote the observed variables 
ix  as a vector with zero-mean random vari-

able T
mxxxX ),,,( 21= , the component variables 

is  as a vector T
nsssS ),,,( 21= with 

the model AS  

ASX =  (5) 

Where A  is unknown nm×  matrix of full rank, called the mixing or feature matrix. 
The columns of A  represent gait features and 

is signal the amplitude of the ith  feature 

in the observed data x . For reducing computational cost, an algorithm named FastICA 
[17] using a fix-point iteration algorithm finding the local extrema of the kurtosis of a 
linear combination of the observed variables is introduced. Applying FatstICA on gait 
extraction, the random variables will be the training normalized frequency rate of gait 
images. We select thirty contour images for each class to construct the matrix X and 
make use of the fixed-point algorithm to calculate matrices A  and S . Let '

ix  be a dis-

tance vector of one contour image, we can construct a training distance set 
},,,{ ''

2
'
1 nxxx  with m  random variables which are assumed to be linear component of 

n  unknown ICs, denoted by ''
2

'
1 ,,, nsss . The relationship between X and S  can be 

modeled as ASX = . For this relationship, each vector '
ix  can be represented by a linear 

combination of
nsss ,,, 21
 with weighting 

inii aaa ,,, 21
.Therefore, the feature matrix 

A  can be considered as the features of all the training images. 
According to the ICA theory, the matrix S contains all the independent components, 

which are calculated from a set of training distances. The matrix AS can reconstruct 
the original signals X .To reduce the computational cost, we select some ICs from A  
in the way that the ratio of the within-class scatter and between-class scatter is mini-
mized [18]. The method is proposed as follows. 

If the matrix X contains n individual persons and each person has m  frames images, 

ija represents the entry at the ith row and the jth column. The value
jSB , which is called 

as the mean of within-class distance in the jth column, is then given by  

= = =
+−+− −
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The value
jSI , which is called as the mean of between-class distance in the jth col-

umn: 

= =
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where 
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In this paper, we employ the ratio of within-class distance and between-class dis-
tance to select stable mixing feature from A .The ratio

jγ is defined as 

j

j
j SI

SB
=γ  (9) 

From the definition
jγ , the smaller

jγ is, the better the classifier will be. Using (9), 

we choose the smallest
jγ  and select the top k ( nk < ) column features from A and S .  

3   Recognition and Experimental Results 

Gait recognition is a traditional pattern classification problem which can be solved by 
measuring similarities between the training database and the test database. The classi-
fication process is carried out through three different methods, namely the nearest 
neighbor (NN), support vector machine (SVM) and classifier derived from the ICs. 
NN classifier is a very simple classifier and we use the Euclidean distance to evaluate 
the discriminatory of two gait sequences. Support vector machine classifiers have 
high generalization capabilities in many tasks especially in the object recognition 
problem. SVM is based on structural risk minimization, which is the expectation of 
the test error for the trained machine [19], [20], [21] and [22]. The risk is represented 
as )(αR , α being the parameters of the trained machine. Let n being the number of 

trained patterns and 10 ≤≤η , with probability η−1 , the following bound on the ex-

pected risk holds: 

l

hlh
RR emp

)4/log()1)/2(log(
)()(

ηαα −++≤  (10) 

)(αempR  is the empirical risk and h is the VC dimension. SVM tries to minimize the 

second term of (10), for a fixed empirical. Here our SVM classifier is a 2-class classi-
fier and there are two options for us: one is using N  SVMs ( N  being the number of 
classes) while another is separating one class from the rest or using 2/)1( −NN  SVMs 

one for each pair of class. We select the first option in our experiments because it is 
less complex.  

Neural network classifier [23], [24] and [25] is a very useful classifier which is 
widely used in multiple class classification. Generally, BPNN has multiple layers, we 
can simple it into three layers i.e. input layer, hidden layer and output layer. The out-
put is the recognition result which is the true class of human sequences and input is 
the feature of the test sequence. After extracting ICs from the training phase, the se-
quences are stored into the template database. When we input the test sequence, ICs 
are also need to be extracted. Then we can design a back propagetion Neural Network 
algorithm which is adopted to train and recognize. Given s classes for training, if the 
training sequence number is i , the ith output node is expected to be one while others 
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are zeros. When we input the test sequence, the node which has the maximal value 
will be recognized the corresponding class. 

Two famous public gait databases, namely University of Maryland database 
(UMD) and Chinese National Laboratory of Pattern Recognition (NLPR) database, 
are chosen to evaluate the capability of the proposed method. Here UMD database 
adopted is Portion of the whole database, here we use a small database including six 
persons and one sequence for each person, the walking direction is just perpendicular 
with our vidicon ocular. (It is just a part of the whole large UMD gait database). 
NLPR database includes 20 subjects and four sequences for each views angle and 
have three angles, namely laterally (0 ), obliquely (45 ) and frontally (90 ).Table 1, 2 
and 3 give the experiment results separately using different classifiers on the two 
datasets as follows: 

 

Table 1. The recognition results using the NN classifier 

UMD database 
(6 persons, 1 view) 

NLPR database 
(20 persons, 3 views) 

 

90 ICs selected Using all ICs 300 ICs selected Using all ICs 
Rank 1 100% 100% 75.0% 75.0% 
Rank 5 100% 100% 85.0% 85.0% 

Rank 10 100% 100% 90.0% 90.0% 
 

Table 2. The recognition results using the SVM classifier 

UMD database 
(6 persons, 1 view) 

NLPR database 
(20 persons, 3 views) 

 

90 ICs selected Using all ICs 300 ICs selected Using all ICs 
Rank 1 100% 100% 82.5% 81.9% 
Rank 5 100% 100% 87.6% 86.1% 

Rank 10 100% 100% 92.1% 89.6% 
 

Table 3. The recognition results using the BPNN classifier 

UMD database 
(6 persons, 1 view) 

NLPR database 
(20 persons, 3 views) 

 

90 ICs selected Using all ICs 300 ICs selected Using all ICs 
Rank 1 100% 100% 84.6% 84.1% 
Rank 5 100% 100% 89.4% 88.6% 

Rank 10 100% 100% 95.1% 92.3% 
 

From the above three tables, we can find that BPNN classifier is the best classifier 
used in gait recognition rather than another two classifiers and NN classifier is the 
worst, but here we still use NN classifier as it is very simple and it can save a large of 
computational time for our recognition which is very important for gait recognition 
system. SVM is a new classifier as it has strong generalization and it is very suit for 
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2-class classification, so if we apply gait to distinguish the gender of the walkers, 
SVM classifier is the first choice. Otherwise, BPNN is our best choice as it has the 
best recognition accuracy though there is some difficult in its recognition speed. 

4   Conclusion and Future Work 

This paper has proposed a simple gait recognition method based on human silhouettes 
using Fourier descriptors and independent components analysis. From the analysis, 
we have found the independent components which are transformed from the fre-
quency components have much better discriminatory capability than other gait fea-
ture. Besides these, the median background extraction method is better than the mean 
method and has less computational cost than the least mean square method. To pro-
vide a general approach to automatic human identification based on gait in real envi-
ronments, much still remains to be done in the future. Although our recognition accu-
racy is comparatively high and encouraging, we still can not conclude much about 
gaits. Further evaluation on a much larger and most varied database is still needed. 
We are building up such a gait database with more subjects, more sequences with 
more different views and more variation in conditions such as the walkers wear dif-
ferent clothes in different seasons. The lack of general gait database, especially mul-
tiview in the gait database, is another limitation to most current gait recognition algo-
rithms. Our proposed method is just recognizing human through one view separately, 
i.e. perpendicularity, along and oblique with the direction of human walking, in real 
environment, the angle between the walker’s direction and the camera is unpredict-
able, generally speaking, a useful experiment which can determine the sensitivity of 
the features from different views should be put forward and that can provide us a 
more conviction results. Another method of solving this problem is to store more 
training sequences taken from many multiple views and then classify them. Now we 
are building such a large gait databases consists of multiviews and work for solving 
this problem. At last, seeking better maturity measures, designing more sophisticated 
classifiers, extracting more effect feature, proposing better gait detection and segmen-
tation algorithms and combination of holistic-based and model-based methods de-
serve more attention in future work. 
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Abstract. Ordinal regression is complementary to the standard machine learning 
tasks of classification and metric regression which goal is to predict variables of 
ordinal scale. However, every input must be exactly assigned to one of these 
classes without any uncertainty in standard ordinal regression models. Based on 
structural risk minimization (SRM) principle, a new support vector learning 
technique for ordinal regression is proposed, which is able to deal with training 
data with uncertainty. Firstly, the meaning of the uncertainty is defined. Based on 
this meaning of uncertainty, two algorithms have been derived. This technique 
extends the application horizon of ordinal regression greatly. Moreover, the 
problem about early warning of food security in China is solved by our 
algorithm. 

Keywords: Uncertainty, Ordinal regression, Quadratic Programming, Early- 
warning. 

1   Introduction 

Problems of ordinal regression arise in many fields, e.g., in information retrieval and in 
classical statistics. They can be related to the standard machine learning paradigm as 
follows [1]. In ordinal regression, we consider a problem which shares properties of both 
classification and metric regression. A variable of the above type exhibits an ordinal 
scale and can be thought of as the result of coarse measurement of a continuous 
variable. The ordinal scale leads to problems in defining an appropriate loss function 
for our task. Similar to Support Vector methods a learning algorithm can be derived for 
the task of ordinal regression based on large margin rank boundaries. Maximizing the 
margin leads to a quadratic programming problem which can be solved from its dual 
problem [2]-[5]. 

However, there is some limitation which restricts its applications. For example, it is 
required that every input xi must be exactly assigned to one of these classes with full 
certainty. But sometimes this requirement is too restrictive to be used in practice. A 
new technique is proposed which is able to deal with the training data with uncertainty 

                                                           
1 This paper is sponsored by China National Science Foundation under grant No. 90412009. 
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in this paper. Firstly, the meaning of the uncertainty is defined. Based on this meaning 
of uncertainty, two algorithms have been derived. This technique extends the 
application horizon of ordinal regression greatly. 

2   Ordinal Regression Based on SRM 

Let xi
j be the set of training examples where j=1,···,k denotes the class number, and 

i=1,···,ij is the index within each class. Let l= i ij be the total number of training 
examples. The geometric interpretation of this approach is to look for k-1 parallel 
hyper-planes represented by vector w Rn and scalars b1 ··· bk-1 defining the 
hyper-planes (w, bi) such that the data are separated by dividing the space into equally 
ranked regions by the decision rule f(x)=min{r: w·x-br  

According to the structural risk minimization principle of 2-classes learning, the 
margin to be maximized is the one defined by the closest pair of classes. Formally, let 
(w, bq) be the hyper-plane separating the two pairs of classes which are the closest 
among all the neighboring pairs of classes. Let w, bq be scaled such the distance of the 
boundary points from the hyper-plane is 1, i.e., the margin between the classes q,q+1 is 
2/||w||.Thus, the fixed margin policy for ranking learning is to find the directionw and 
the scalars 1 1, , kb b such that w·w is minimized subject to the separability constraints. 
So the primal QLP formulation of the OSVR can be obtained based on SRM and the 
dual problem can also be deduced according to KKT conditions [2]. 

3   Uncertainty Support Vector Method for Ordinal Regression 

It is assumed in the OSVR technique that each input xi belongs to one class exactly. But 
in many cases, there exists some uncertainty. The input xi may not exactly belong to any 
one, but belongs to one class with a certain probability. The uncertainty can be 
described by probability. More precisely, it is allowed that xi belongs to one class with 
probability zi

j (i=1,···,ij, j=1,···,k). Obviously, the cases zi
j= +1 or -1 correspond 

respectively the standard OSVR technique. The cases zi
j=0 mean that there is no any 

information at the input xi and therefore it should be neglected. 
Suppose that we are given a triplet set S1={( x1, z1

1,···, z1
k) ,···, ( xl, zl

1,···, zl
 k)} where 

zi
j [0,1] are the probability with which the input xi belongs to j class respectively. 

First consider the case in which all zi
j are rational numbers. Let their common 

denominator be p. Then we have zi
j= qi

j /p, where qi
j, p are nonnegative integers and qi

j 
< p. Therefore, if the input xi

j is taken repeatedly p times, it is reasonable to expect that 
the input xi

j belongs to j class for qi
j times. Thus, corresponding to the triplet set S1, we 

have the training set S2={( x1
1, q1

1) ,···, ( xl
1, ql

1) ,···, ( x1
k, q1

 k) ,···, ( xl
 k, ql

 k) }. For the 
training set S2, we have the following quadratic programming problem 
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Here the constant C in [2] is replaced by the constant C /p since the qi
j examples 

are considered as one unit. However, this problem is rather complicated. It is easy to 
know that we need only to solve the following simpler problem 

* 1
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                    (2) 

So, for a triplet set S2, when all zi
j are rational numbers, we have proposed a 

reasonable approach. It can be proved that this observation can be obvious to extend to 
the general case in which zi

j is real numbers in [0, 1]. For the triplet set S1, where the 
input xi belong to j-class with probability zi

j, the optimization problem is 

* 1

1 * 11
2

, , ,

1 * 1 * 1 1

1

min ( ) ( )

s.t. 1 , 0, 0,

1 , 0, 0,

, 1, , 2.

j j
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i i i i

w b i j

j j j j
ji i i i

j j j j
ji i i i

j j

w w C z z

w x b for z

w x b for z

b b j k

                 (3) 

For the sake of presenting the dual functional in a compact form, we will introduce 
some new notations. Let X j be the n ij matrix whose columns are the data points xi

j 
(i=1,···,ij). Let  j be the vector whose components are the Lagrange multipliers i

j 
(i=1,···,ij) corresponding to class j. Likewise, let j be the Lagrange multipliers i

j 
corresponding to class j+1. Let μ=( 1,···,  k-1, 1,···, k-1) be the vector holding all i

j and 
i
j Lagrange multipliers, and let μ1=(μ1

1,···, μk-1
1)T= ( 1,···, k-1)T and μ2=(μ1

2,···, μk-1
2)T= 

( 1,···, k-1)T the first and second halves of μ. Note that μj
1=  j is a vector, and likewise so 

is μj
2= j. Let 1 be the vector of 1’s, and finally, let Q =[-X1, ···, -Xk-1, X2, ···, Xk ]n N be the 

matrix holding two copies of the training data, where N=2l-i1–ik. 

The dual problem of problem (3) is 

1
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Q Q
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Suppose we are given a classification problem with uncertainty which is represented 
by a triplet set S1. According to the standard OSVR technique and the above two 
propositions, it is reasonable to establish a classification algorithm. If a nonlinear 
function f(x) is required, we map the input space X into a high-dimensional feature 
space F: {z= (x)| x X}. Corresponding to the optimization problem (6), it is easy to 
get the following dual optimization problem. 

1

1 2

max ( )

s.t. 0 , 1, ,( 2) ,

1 1 , 1, , 1.

N
T T

i
i

i i

j j

Q Q

z C i k l

j k

                    (5) 

where 1 1 2
( 2)

, , , , ,k k
n k l

Q X X X X  and 1( ( ), , ( ))j jj
n llX x x .  

When k=2, i.e., we have only two classes thus the ranking learning problem is 
equivalent to the 2-class classification problem with uncertainty, and the dual 
functional reduces equivalent to the dual form of the SVM with uncertainty. The 
criteria function involves only inner-products of the training examples, thereby making 
it possible to work with kernel-based inner-products. From the dual form one can solve 
for the Lagrange multipliers μi and in turn obtain w the direction of the parallel 
hyper-planes. The scalar bq can be obtained from the support vectors, but the remaining 
scalars bj cannot. Therefore an additional stage is required which amounts to a Linear 
Programming problem on the original primal functional but this time w is already 
known. 

4   Experiments 

For the problem of food security early warning in China, our aim is to predict the 
degree of warning of grain production by classification. The degree has been classified 
to two classes, one is warning (+1) and the other is no warning (-1). One is warning (-1) 
and the other is no warning (+1). According to [6] and [7], the input is selected as a 
7-dimensional vector x=(x1,···,x7), where x1 is the government expenditure index for 
agriculture, x2is the expenditure index for capital construction, x3is the science & 
technology promotion funds index, x4is the total power index of agriculture machinery, 
x5is the irrigated area index, x6is the power index of irrigated machinery, x7is the rain 
price index.  

These vectors include the data of 25 years from 1980 to 2004 which are listed in 
Table 1. From 1980 to 2003, each year has a degree of warning. For some years such as 
1982 and 1985, the decision maker assigned them to either the positive class or the 
negative class. But for some years such as 1980, he could not decide which class to be 
classified exactly. At last, he concluded that- these years belonged to the positive class 
with probability zi

+, and to the negative class with probability zi
-. These data are also 

listed in the last two columns of Table 1. 
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Table 1. 

Based on the training data from 1980 to 2003 given in Table 1 and using Algorithm 
UOSVR with k=2 and C=0.1, we obtain the decision function: f(x)=0.002 x1-0.0052 
x3+0.001 x4+0.0003 x5-0.0026 x7+0.554. 

For 2004, x2004=(14.38,19.25,10.375,8.654,1.9276,9.467,8.083)T, then 
f(x2004)=0.4834. So, this year belongs to the positive class, which means we predict its 
degree of warning is no warning. In fact, this result is reasonable. 

5   Conclusion 

A new support vector learning technique is proposed, which is able to deal with training 
data with uncertainty. Moreover, the problem about early warning of food security in 
China is solved by our algorithm. 
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Abstract. This paper presents briefly an incremental learning method based on 
SVM for online sketchy shape recognition. It can collect all classified results 
corrected by user and select some important samples as the retraining data 
according to their distance to the hyper-plane of the SVM-classifier. The 
classifier can then do incremental learning quickly on the newly added samples, 
and the retrained classifier can be adaptive to the user’s drawing styles. 
Experiment shows the effectiveness of the proposed method. 

1   Introduction 

Sketching is a natural and informal interaction mode. But its ambiguity and 
uncertainty make the deduction of users’ intents very difficult. It will be more helpful 
if the sketchy shape can be online recognized and converted into the user-intended 
regular shape and user can realize errors or inappropriateness earlier with the online 
immediate feedback. Though numerous researches have been achieved, the poor 
efficiency of recognition engines is always frustrating, especially for the newly added 
users. This is because that the styles of sketching vary with different users, even the 
same user at different times. Therefore, adaptive sketchy shape recognition should be 
required [1], where recognition engine should incrementally be trainable and 
adaptable to a particular user’s sketching styles. 

In this paper, we will present an incremental learning method based on SVM 
(Support Vector Machine) for adaptive sketchy shape recognition. In Section 2, our 
proposed strategy and experiments are described in detail. Conclusions are given in 
the final Section. 

2   Adaptive Sketchy Shape Recognition Based on SVM Classifier 

In a broad sense, adaptive sketchy shape recognition means that the recognition 
engine should be adjustable to fit the variations of user’s sketchy shapes dynamically. 
Accordingly, the classifier should be able to analyze the incremental samples for 
user’s drawing styles and be retrained with the newly added samples obtained.  
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2.1   Our Strategy for Online Adaptive Sketch Recognition 

Our framework for adaptive sketchy shape recognition is shown in Fig. 1. The 
processes can be summarized as three stages as following: raw stroke processing and 
feature extraction, online sketchy shape recognition based on SVM classifier, newly 
important samples selection and incremental training of SVM classifier.  

The raw strokes pre-processing is firstly used to eliminate the noise caused by input 
conditions and the inputting sketchy shapes are treated as the composition of some 
continuous connected strokes. Feature extraction is then applied to obtain the feature 
vectors of sketchy shapes based on our modified turning function [1]. 

In succession, online sketchy shape recognition is done by means of the trained or re-
trained SVM classifier. The SVM classifier is constructed using many binary SVM 
classifiers, where a Radial Basic Function kernel [2] is used and the training process is 
the same as in SVMTorch [3]. Additionally, the recognized results must undergo 
rectification so that the sketchy shapes are easy to be evaluated by user [1].  

Although the recognition precisions of SVM classifier could be very high, it still may 
not be suitable for a specific user’s drawing styles, and user would correct some results 
of recognition. Accordingly, we design a strategy to collect the samples evaluated by 
user, select some important samples as incremental training data of classifier until the 
results of classifiers are satisfactory or enough training samples are obtained, and retrain 
the SVM classifier with the newly added samples obtained, which are named 
respectively as “sample collection”, “sample selection” and “incremental training” as 
shown in Fig. 1. 

For example, it is quite often that a user draws a triangle very quickly such that the 
angle is not very obvious and the system may recognize it as a quadrangle or ellipse as 
shown in Fig. 2 (a)(b)(c), and quadrangle and pentagon as ellipse by mistake, as 
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Fig. 1. Framework of adaptive sketch recognition based on SVM incremental learning 
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Fig. 2. Example of the adaptive sketch recognition based on SVM incremental learning 
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shown in Fig. 2 (d). By our strategy, user can correct these errors immediately and the 
system will collect all these samples. After several samples are corrected, the system 
will do incremental learning on these newly samples, and the new classifier is 
adaptive to recognize correctly them, as is shown in Fig. 2 (e)(f)(g)(h). 

2.2   Principle of Our SVM Incremental Learning Algorithm 

The main idea of SVM is to construct a nonlinear kernel function to map the data 
from the input space into a possible high-dimensional feature space and then 
generalize the optimal hyper-plane with maximum margin between the two classes.  

Given a set of n training samples: )},(,),,{( 11 nn yxyx , where ix  denotes a vector 

(samples) in a d-dimensional space and }1,1{ −+∈iy  represents the class to which ix  

belongs. The equation of the optimal hyper-plane separating the two classes can be 
expressed by 0=+ bwx , where w  denotes the normal of the hyper-plane, b  denotes 
the offset. The normal of the optimal hyper-plane w  proved by Vapnik [4] can be 
expressed by a linear combination of the training samples as in Eq. (1):  

i

n

i
ii xyw

=

=
1

α , Ci ≤<α0  (1) 

The objective of training is to obtain each sample’s α  value. In most cases, the 
sample space is not linearly separable. A mapping Φ  is usually used to transform 
non-linearly the input samples into a high dimensional feature space so as to make 
these samples linearly separable. In other hand, the generalization property of an 
SVM does not depend on all the training data, but only Support Vectors (in short, 
SVs). The optimal hyper-plane can then be expressed as: 

( ) 0, =+
∈

bxxKy i
SVx

ii

i

α , where, Ci ≤< α0  and ( ) )()(, yxyxK ΦΦ=  (2) 

Accordingly, we develop a new incremental learning algorithm by inserting an 
evaluating process in the training of SVM incremental learning. The training would 
only preserve the Support Vectors at each incremental step and then add them instead 
of all historic data to the training sets collected in the evaluating step. Denoting the 
training process of SVM as Train(), the process of evaluating all newly added samples 
as Evaluate(), the initial and incremental training samples as IS and INS respectively, 
the temporary training samples as NS and working data as WS, the process of our 
algorithm can be briefly described as: (1). Γ=Train(IS), WS=ISSV; (2). Γ=Train(WS), 
WS=WSSV; (3). NS=Evaluate(INS), WS=WS∪NS; (4). Retraining - Repeat (2) and 
(3) until the results of SVM classifiers are satisfactory. 

2.3   Selection of Retraining Samples for SVM Incremental Learning 

For our strategy for adaptive sketchy shape recognition, the core is how to select some 
important samples as incremental training data of SVM classifier. According to the 
principle of our SVM incremental learning described in section 2.2, the candidate 
training samples are determined by estimating their distance from the hyper-plane as 
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expressed in Eq. (2), and the coefficients αi can be obtained from solving the 
following optimization problem: 

( ) ( )

≥=

ΦΦ−=

=

= =

0,0:sconstraint Subject to

2
1

)( :Minimize

1

1 1,

i

l

i
ii

l

i

l

ji
jijijii

y

xxyyw

αα

αααα
, 

(3) 

    The distance between the sample x  and the hyper-plane can then be defined as [1]: 

|),(|)(),( 0
∈

+=+Φ⋅=
SVx

iii

i

bxxKybxwwxd α  (4) 

During sample selection, a threshold of distance must be selected. Intuitively, there 
is a conflict between the precision and the speed if a constant distance threshold is 
used to choose the important samples. Hence, a dynamic threshold is considered in 
our strategy. In the beginning of incremental learning, a larger threshold value is used 
such that the precision can be a little higher while the time is still acceptable. As the 
number of added training data increases in later incremental learning steps, the 
selection process should judge the importance of every newly sample more carefully 
with a smaller threshold in order to avoid substantial increase of the number samples 
necessary for retraining of the SVM classifiers. In another aspect, if want to adapt to a 
new user, a large threshold value can be used to adapt him quickly. Using this 
dynamic threshold method, we can obtain higher precision with shorter training time.  

2.4   Experiment and Performance Evaluation 

To validate the performance of our proposed strategy, we have done experiments of 
four algorithms (the repetitive learning [4], Syed et al’s [5], Xiao et al’s [6] and ours) 
based on a 5-class sketchy shape dataset (including triangle, quadrangle, pentagon, 
hexagon, and ellipse) using one-against-one classifier structure [1]. We collected 
1367 sample shapes drawn with pen/tablet and 325 samplers drawn with mouse, and 
we can have 40 samples for each sample by using a 20-dimension feature vector and 
after transformation. We select randomly 20210 samples of the pen/tablet to form a 
test set, TS1, and use 12000 samples of the mouse style to form another test set, TS2. 
Then, we randomly select samples from the remained samples of the pen/tablet style 
to form 39 incremental training sample sets. The first 6 incremental training sets have 
100, 100, 120, 150, 300, 700 samples, respectively, and each of the rest 33 sets has 
1000 samples. The remained samples of the mouse style form a sample set with 1000 
samples, and it is then added into the incremental learning process as the last training 
set. All experiments are done on an Intel PC (with a 2.4GHz CPU and 256MB 
memory) running on Microsoft Windows XP Professional.  

Fig. 3 shows the performance comparison among the four algorithms. For each 
algorithm, we use the same 40 incremental training sample sets to train them 
incrementally and record the incremental training time in Fig. 3 (a). After each 
incremental training step, we test it using the two test sets, TS1 and TS2, respectively, 
and record their classification precisions. Fig. 3 (b) shows the curves of the precisions 
using test set TS1 (results of the precision on TS2 are similar with on TS1 and omitted 
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here). We can see from Fig. 3 that our method can do well in reducing the training 
time with very little loss of precision. These prove that our strategy for online 
adaptive sketchy shape recognition is feasible. 
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(a) Training time comparison  (b) Precision comparison (on TS1) 

Fig. 3. Performance evaluation among the four algorithms using 1-1 classifier structure 

3   Conclusion 

By utilizing the advantages of our modified SVM incremental learning algorithm, this 
paper presents a strategy of adaptive sketchy shape recognition, which can collect the 
samples evaluated by user during his/her drawing and select some important samples 
as incremental training data of classifier. This strategy can incrementally adapt the 
settings of classifier to users’ accustomed styles, not only for the patterns they are 
originally trained for. Experiments show its efficiency for user adaptation. However, 
main limitation of our method is that it can only be suited for simple shape drawn by 
some continuous strokes.  
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Abstract. This short paper proposes a face recognition scheme, wherein
features called eigenspectra are extracted successively by the fast Fourier
transform (FFT) and the principle component analysis (PCA) and clas-
sification results are obtained by a classifier called kernel-based nonlinear
representor (KNR). Its effectiveness is shown by experimental results on
the Olivetti Research Laboratory (ORL) face database.

1 Introduction

Feature extraction and classification are two key elements of a face recognition
system. The PCA and the linear discriminant analysis (LDA) are two popular
algorithms for feature extraction [1]. Since an LDA-based method aims at dis-
criminative features while a PCA-based one at representative ones, it is widely
believed that the former outperforms the latter, and thus much attention was
paid to LDA or its variations [2]. However, some practical applications in face
recognition show that this is not always true [3]. In addition, LDA-based algo-
rithms suffer from the so-called ”small sample size problem” when the number
of samples is far smaller than the dimensionality of samples [1].

Generally face features are not linearly separable and thus we need a suitable
nonlinear classifier. In some popular methods, such as the Parzen classifier and
a nonlinear support vector machine (SVM) classifier [4],[5], the solution is repre-
sented by f(x) =

∑M
j=1 ajk(x, xj) + b, where {xj}M

j=1 is a subset of the training
feature vectors, b a constant number, and k an associated kernel function. The
coefficient set, {aj}M

j=1, is determined by the nature of the problem. For example,
when Vapnik’s ε-insensitive cost function is adopted, it is obtained by the SVM
approximation scheme, in which a nonlinear programming problem needs to be
solved [5]. Recently, we proposed a classifier of the above representation called
a kernel-based nonlinear representor (KNR) [6]. Its coefficient set is determined,
in a closed form, by the classifier’s capability in feature representation.

Practically, the performance of a face recognition system subjects to varia-
tions in viewpoint, age, pose, expression, lighting condition, etc., and thus no

� Supported by the Key Project of Chinese Ministry of Education (No.105150). Thanks
to Prof. H. Ogawa of Tokyo Institute of Technology for helpful discussions.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 660–663, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Eigenspectra Versus Eigenfaces: Classification with a KNR 661

single algorithm is likely to be the solution to all the above problems. The most
successful systems will probably blend several algorithms to achieve satisfac-
tory performance. In this standpoint, we propose a face recognition scheme and
demonstrate its effectiveness by experimental results on the ORL face database.

2 Proposed Face Recognition Scheme

The presented face recognition scheme includes three key elements: Preprocess-
ing based on pixel averaging and energy normalization, feature extraction suc-
cessively conducted by the FFT and the PCA, and classification with a KNR.

2.1 Preprocessing and Feature Extraction

In preprocessing, a face image is down-sampled by pixel averaging; in fact, sup-
posing that there is an N0×M0 image g0, and the pixel averaged one is an N1×M1

image g, then g(n, m) =
∑

(x,y)∈Sn,m
g0(x, y)/D for 1 ≤ n ≤ N1, 1 ≤ m ≤ M1,

where Sn,m is a set of D pixels in a selected block. To reduce the image bright-
ness effect, we further normalize g into a new version represented by I = g/‖g‖,
where ‖g‖ is the Frobenius norm of g.

To obtain compact, representative, and robust features, we adopt the dis-
crete Fourier transform (DFT) and the PCA algorithms since they are relatively
simple to implement. In DFT realization, the FFT algorithm is adopted. Before
FFT, each preprocessed image is row concatenated to form an N1M1-dimensional
vector, z. Let w denotes the N1M1-point FFT of z, then its dimension may be
reduced to one half according to symmetry properties of the DFT, and thus we
obtain the spectra vector h = [|w(0)| |w(1)| · · · |w(L)|]T , where T denotes the
transpose of a vector or a matrix and L = (N1M1/2 − 1) for even N1M1 and
(N1M1/2− 0.5) for odd N1M1. According to the shift invariant property of the
DFT, h is spatially insensitive to face sway within the image plane.

Let C denotes the covariance matrix of the training spectra vectors, then
its eigenvectors associated with the N(N � L) largest eigenvalues constitute a
transform matrix P , and x = PT h is named an eigenspectra vector. For each
subject, the training eigenspectra vectors are adopted to train a KNR classifier.

2.2 Classification with a KNR

KNR is a key element in our scheme and thus it should be briefly reviewed.
Specifically, assuming that a desirable classifier f0 is defined on an N -dimensional
pattern feature space CN , and it is an element of a reproducing kernel Hilbert
space H which has a kernel function k. Generally f0 is unknown but its M
sampled values are known beforehand and they constitute a teacher vector y,
where y = Af0 and A is the sampler. We assume that y is an element of the
M -dimensional space CM . In the viewpoint of an inverse problem, a certain
inverse operator X of A is to be found, so that f = Xy becomes an optimal
approximation to f0.
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In KNR, the distance between f and f0 is minimized by setting X = A+,
the Moore-Penrose pseudoinverse of A [6]. Since A+ = (A∗A)+A∗, with A∗

the adjoint operator of A, and A relates to k by A =
∑M

i=1 ei ⊗ Ψi , where
Ψi = k(x, xi) denotes a sampling function and Ψi its complex conjugate, {ei}M

i=1

the standard basis of CM , and ⊗ the Neuman-Schatten product defined by
(ei ⊗Ψi)f =<f,Ψi >H ei, with < ·, · >H the inner product on H , for a given
pattern class, its KNR can be represented by f(x) =

∑M
i=1 aik(x, xi), where

a = [a1 a2 . . . aM ]T = K+y, K is the kernel matrix determined by k and the
M training feature vectors [6].

3 Face Recognition Experiments

We adopt the ORL face database that contains 40 distinct subjects with 10
frontal face images per subject. For a KNR classifier, the Gaussian kernel is
adopted and the simple formula of Eq.(9) in Ref.[4] is used to estimate the
kernel width. The Euclidean distance classifier is utilized for comparison.

We randomly select five images per subject for training, and the remained
ones for test. Ten different runs for different feature dimensions are performed.
For each dimension, classification error rates are averaged over the ten runs and
the forty subjects. Fig.1 depicts the results. It shows that generally the higher
the feature dimension is, the lower the classification error rate becomes. When
feature dimension is higher than 20, error rates become lower than 3.8% and
10.2% respectively for a KNR and the Euclidean distance classifiers. For the two
classifiers, the best results are 3.0% and 7.8%, respectively, at dimension 70.

Fig. 1. Error rates of KNR and Euclidean distance classifiers vs. feature dimension

We fix the feature dimension to 70 to study training size effect on recognition
rate. Two to eight images per subject are randomly selected for training, and
the rest ones for test. The averaged recognition rates, together with those of
applying the above two classifiers directly to eigenfaces obtained by PCA from
the preprocessed images, are listed in Table 1. It shows that recognition rates
increase with training size. Once more, a KNR classifier outperforms the Euclid-
ean distance classifier, and it obtaines over 97% recognition rate when more than
five images per subject are used for training. Table 1 shows that the proposed
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Table 1. Recognition rates (percent) of KNR and Euclidean distance classifiers vs.
training size, on 70-dimensional eigenspectra and eigenfaces

Training images per subject 2 3 4 5 6 7 8
KNR Eigenspectra 87.5 94.0 94.8 97.0 97.9 98.3 97.8

classifier Eigenfaces 79.7 87.5 90.6 92.4 95.1 96.2 96.5
Euclidean Eigenspectra 86.7 89.9 90.6 92.2 93.8 94.4 94.8
classifier Eigenfaces 79.7 84.3 86.3 87.6 90.2 90.5 91.4

scheme are better than some other prospective methods on the same face data-
base, such as the direct LDA (around 94.0%) [2], the Discriminant Waveletface
plus Nearest Feature Space classifier (96.1%) [7], and sub-PCA plus simlarity or
distance classifier (around 96.5%) [8].

4 Conclusions

A new scheme involving the eigenspectra of a face image and a KNR classifier
was proposed for face recognition. The closed-form solution of a KNR avoids
the quadratic programming procedure of a nonlinear SVM and the converging
problem of some traditional neural networks. Experimental results on the ORL
face database showed relatively satisfactory performance of the proposed scheme.
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Abstract. In this paper, a neural network model and its associate learn-
ing rule are developed for sequential blind extraction in the case that the
number of observable mixed signals is less than the one of sources. This
approach is also suitable for the case in which the mixed matrix is non-
singular. Using this approach, all separable sources can be extracted one
by one. The solvability analysis of the problem is also presented, and
the new solvable condition is weaker than existing solvable conditions in
some literatures.

1 Introduction

In recent several years, blind separation of independent sources from their mix-
tures has been an important subject of research in communications [1], medical
signal processing [2], speech signal processing [3], and image restoration [4], et al
[5-8]. Blind signal separation (BSS) deals with the problem of recovering inde-
pendent signals using only the observed mixtures. These techniques are referred
to as ”blind” for the acoustic transfer functions from the sources to the mi-
crophones are unknown, and there are no reference signals against which the
recovered source signals can be compared. The objective of BSS is to recover
sources from their mixtures without the a prior knowledge of the sources and
the mixing channels.

In general, depending on the approaches for recovering original sources from
instantaneous mixtures, the results can be classified into the simultaneous sepa-
ration approach [5] and the extraction approach [6]. In the separation approach,
all separable sources are separated simultaneously, whereas the sources are ex-
tracted one by one in the extraction approach. Simultaneous separation, if pos-
sible, is, of course, desirable. In some ill-conditioned cases, simultaneous blind
separation cannot be achieved, but sequential blind extraction can be done since
sequential blind extraction technique requires weaker solvability conditions than
simultaneous blind separation as introduced in [7]. The common presumption is
that the signals are emitted from the point sources placed in the far field. In the
blind signal separation problem, the array parameters are generally unknown.
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Performance is often independent of inaccuracies in the array manifold as well as
sensor displacement. A general overview and references on blind equalization can
be found in literature [8]. A simplest case of all BSS methods is the instantaneous
and linear mixture of signals. Generally, separating linear mixtures of signals is
a problem that frequently arises in multiuser communication systems. Typical
examples are the extraction of incoming signals from the outputs of an array
of sensors or the recovery of transmitted symbols from the outputs of a bank
of matched filters in code division multiple access (CDMA) systems. Consider
a general linear case of instantaneous mixing of m sources with n observable
mixtures

x(t) = As(t), (1)

where s(t) = (s1(t), · · · , sm(t))T is an m-dimensional vector of mutually in-
dependent unknown sources with zero means; x(t) = (x1(t), · · · , xn(t))T is an
n-dimensional vector of mixed signals; and A = [aij ]n×m is an unknown constant
matrix known as the mixing matrix, n ≤ m. The task of blind extraction is to
recover the sources one by one from the available mixtures x1(t), · · · , xn(t).

Literatures [6,7] were to focus on the case of instantaneous mixtures, where
the algorithms of blind extraction have been developed for n ≤ m. In this paper,
a new blind separation method based on neural network model and its asso-
ciate learning rule are developed for sequential blind extraction in the case with
singular matrix A. This approach is also suitable for the case in which A is
nonsingular. The solvability analysis of the problem is also discussed.

2 Solvability Analysis

In this section, we discuss the solvability of blind extraction model (1).
Theorem. If there exists constant # �= 0 such that

rank(A) = rank(A�), (2)

where

A =

⎛⎝a21 · · · an1

· · · · · · · · ·
a2m · · · anm

⎞⎠ , A� =

⎛⎜⎜⎝
a11 − # a21 · · · an1

a12 a22 · · · an2

· · · · · · · · · · · ·
a1m a2m · · · anm

⎞⎟⎟⎠ ,

then one of the source signals can be extracted from the mixed signals.
Proof. Since rank(A) = rank(A�), there exist b12, · · · , b1n such that⎧⎪⎪⎨⎪⎪⎩

b12a21 + · · ·+ b1nan1 = a11 − #,
b12a22 + · · ·+ b1nan2 = a12,
· · ·
b12a2m + · · ·+ b1nanm = a1m;

i.e., AT b1 = #, where b1 = (1,−b12, · · · ,−b1n)T is an n-dimensional vector,
# = (#, 0, · · · , 0)T is an n-dimensional vector. Choose n-dimensional vectors
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b2, · · · , bn. Let B = (b1, · · · , bn)T , y(t) = Bx(t) = BAs(t), then y1(t) = #s1(t);
i.e., a signal corresponding to y1(t) is extracted.

Corollary 1. If there exist k2, k3, · · · , kn such that

a1j =
n∑

i=2

kiaij , j = 2, 3, · · · ,m, a11 �=
n∑

i=2

kiai1,

then one of the source signals can be extracted from the mixed signals.
Proof. Choose # = a11−

∑n
i=2 kiai1, then # �= 0 and condition (2) is satisfied.

According to Theorem, one of the source signals can be extracted from the mixed
signals.

Remark. For example, the following mixed matrices satisfy the above condi-
tion (2). ⎡⎣3 2 2

1 1 1
2 1 1

⎤⎦ , [
2 1 1
1 1 1

]
.

Corollary 2. If the mixed matrix A is nonsingular, then one of the source
signals can be extracted from the mixed signals.

Proof. A is nonsingular implies thatm = n and rank(A) = n−1, Then in view
of (a12, a13, · · · , a1n)T is an n− 1 dimensional vector, there exist α2, α2, · · · , αn

such that a1j =
∑n

i=2 αiaij , j = 2, 3, · · · , n. And a11 �=
∑n

i=2 αiai1, otherwise
a1j =

∑n
i=2 αiaij , j = 1, 2, · · · , n. Then rank(A) ≤ n − 1, which contradicts to

the conclusion of A being nonsingular. Choose # = a11 −
∑n

i=2 αiai1, then # �= 0
and condition (2) is satisfied. According to the above Theorem, one of the source
signals can be extracted from the mixed signals.

3 Blind Extraction Algorithm

In the following, the algorithm for a blind extraction from the mixed sources is
introduced.

Let y1(t), y2(t), · · · , yn(t) are the outputs of the neural network, which is
defined as follows ⎧⎪⎪⎨⎪⎪⎩

y1(t) = x1(t)− b12x2(t)− · · · − b1nxn(t)
y2(t) = x2(t)− b21y1(t)
· · ·
yn(t) = xn(t)− bn1y1(t),

(3)

If the mixed signals satisfy the solvability condition (2), then the task of blind
extraction is to look for b12, · · · , b1n, b21, · · · , bn1 such that y1 and yj, (j =
2, 3, · · · , n) are statistically independent; i.e., a signal corresponding to y1(t)
is extracted. In view of E(y1(t)yj(t)) = E(y1(t))E(yj(t)), (j = 2, 3, · · · , n),

E(y1(t)(x2(t)− b21y1(t))) = E(y1(t))E(y2(t)) = 0,
· · · ,
E(y1(t)(xn(t)− bn1y1(t))) = 0.
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The connection weights b12, · · · , b1n, b21, · · · , bn1 in (3) are adjusted. If y1(t) �=
0, then y1(t) is one estimate of source signal s1(t). The first time extraction
task is finished, and the next extraction should be continued based on the new
mixtures of y2(t), · · · , yn(t). If y2(t) �= 0, then y2(t) is one estimate of the source
signal s2(t). Thus the second time extraction task is finished. Thus all separable
sources can be extracted one by one in the light of this procedure if the separable
conditions can be satisfied.

4 Concluding Remarks

In this paper, a general approach was proposed for sequential blind extraction of
instantaneously mixed sources in the case that the number of observable mixed
signals is less than the one of sources. This method, also referred to as the one
based on neural network model and its associate learning rule, is also suitable
for the case in which the mixed matrix is nonsingular. Using this approach,
all separable sources can be extracted one by one. Some sufficient solvability
conditions are also given that are weaker than existing solvable conditions in
literature [6].
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Abstract. Accurate employee turnover prediction plays an important role in 
providing early information for unanticipated turnover. A novel classification 
technique, support vector machines (SVMs), has been successfully employed in 
many fields to deal with classification problems. However, the application of 
SVMs for employee voluntary turnover prediction has not been widely ex-
plored. Therefore, this investigation attempts to examine the feasibility of 
SVMs in predicting employee turnover. Besides, two other tradition regression 
models, Logistic and Probability models are used to compare the prediction ac-
curacy with the SVM model. Subsequently, a numerical example of employee 
voluntary turnover data from a middle motor marketing enterprise in central 
Taiwan is used to compare the performance of three models. Empirical results 
reveal that the SVM model outperforms the logit and probit models in predict-
ing the employee turnover based on job performance. Consequently, the SVM 
model is a promising alternative for predicting employee turnover in human re-
source management.  

1   Introduction 

In general, employee turnover can be divided into two types, namely involuntary turn-
over and voluntary turnover. Involuntary turnover is often defined as the movements 
across the membership boundary among an organization, over which the employee only 
conducts slight affections. On the other hand, voluntary turnover is defined as the 
movements across the membership boundary among an organization, over which the 
employee conducts heavy affections [1]. Mobley [2] first proposed the structure models 
regarding employee turnover. Based on the developed voluntary turnover structure, job 
satisfaction links to the initiate actual voluntary turnover indirectly [3]. In addition, the 
organizational commitment is treated as intervening variables to explain the stay inten-
tions or employee turnover [4]. Recently, job performance has become one of the most 
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important factors which influence the decision of employee turnover. The relationships 
between performance and turnover can be divided into four categorizations, a positive 
relationship, a negative relationship, no relationship and non-linear relationship [5]. 
Schwab [6] indicated that high performance employees are more likely to leave. Jackof-
sky [7] showed that low job performance appears high voluntary turnover. Therefore, 
the turnover displays a non-linear relationship to job performance. Trevor et al. [8] 
found that high performance employees would be less likely to leave than lower per-
formance ones. Vecchio & Norris [9] concluded the correlations between turnover and 
job performance are negative. Morrow et al. [1] proved that the negative relationship 
between the turnover and job performance is statistical significant. Williams & Living-
stone [10] showed that the poor performance employees in the marketing department of 
any organization tend to leave easily.  

The voluntary turnover prediction problems can be treated as discrete choice prob-
lems. The logistic regression model presented by McFadden [11] is one of the most 
popular discrete choice models in practical application [12]. Besides, logit models 
have also been employed in commercial affairs forecasting [13]. However, independ-
ence of irrelevant alternatives (IIA) property limits the application of logit models 
[14]. To relax IIA restriction of the logit model, multinomial probability regression 
model, namely probit model, allows a free correlation structure among each discrete 
choice alternative. Dow & Endersby [15] compared the performance of the multino-
mial logit model and the multinomial probit model in the voting analysis.  

Recently, based on statistical learning algorithms, an emerging technique called 
support vector machines (SVMs) [16] has been widely employed for pattern classifi-
cation and regression problems. However, the application of SVMs for employee 
voluntary turnover prediction has not been widely explored.  

In this investigation, SVM model, logit model and probit models are employed to 
compare the prediction performance of employ turnover. The rest of this article is 
organized as follows. Section 2 briefs three prediction models. Section 3 addresses a 
numerical example taken from a motor marketing enterprise in Taiwan to compare 
prediction results of three models. Finally, conclusions are made in section 4. 

2   Prediction Models 

2.1   Support Vector Machines in Classification 

SVMs derive a class decision by determining the separate boundary with maximum 
distance to the closest points, namely support vectors (SVs), of the training data set. 
By minimizing structural risk rather than empirical risk, SVMs could efficiently avoid 
a potential misclassification for testing data. Therefore, SVM classifier has superior 
generalization performance over that of other conventional classifiers. 

Given a training data set { }N

iii yxD 1, == , where n
ix ℜ∈  is the i-th input vector with 

known binary output label { }1,1 +−∈iy . Then, the classification function is given by  

bxwxfy i
T

ii +== )()( ϕ . (1) 

where mn ℜ→ℜ :ϕ  is the feature mapping the input space to a high dimensional fea-
ture space. The data points become linearly separable by a hyperplane defined by the 
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pair ( mw ℜ∈ , ℜ∈b ) [16]. The optimal hyperplane that separates the data is formu-
lated as Eq. (2). 

[ ] Nibxwy

ww

i
T

i ,...,11)(toSubject

2)(Minimize
2

=≥+

=Φ

ϕ
. (2) 

where w  is the norm of a normal weights vector of hyperplane. This constrained 
optimization problem is solved using the following primal Lagrangian form:  

[ ]
=

−+−=
N

i
i

T
ii bxwywbwL

1

2
1))((

2

1
),,( ϕαα . (3) 

where iα are the Lagrange multipliers. Applying the Karush-Kuhn-Tucker conditions, 
the solutions of the dual Lagrangian problem , 0

iα , then determine the parameters 

0w and 0b of the optimal hyperplane. Then, the decision function is given by Eq. (4): 

( ) NibxxKybxwxd
N

i
iiii

T
i ,...,1,),(sgn)(sgn)( 0

1

0
00 =+=+=

=
αϕ . (4) 

Here, K(x,xi) is called the kernel function and should satisfies Mercer’s condition [16]. 
In addition, its value is equal to the inner product of two vectors x and xi in the feature 
space )(xϕ and )( ixϕ , i.e., )(*)(),( ii xxxxK ϕϕ= . In this investigation, the Gaussian 
radical basis function, −− 22

2exp σji xx , is used in the SVMs classifier model. 
To deal with overlapping classes, the concept of a soft margin is applied for the 

SVM classifier. The width of the soft margin is controlled by a penalty parameter C 
that determines the trade-off between maximizing the margin and minimizing the 
training error. Small values of C result in insufficient stress on fitting the training 
data. On the other hand, too large C leads to the over-fitting of the training data. 
Therefore, the selection of two positive parameters, σ  and C, of a SVM model is 
important to the classification accuracy. The procedure for selecting two parameters is 
conducted as follows. Step 1. Set a fixed value of the parameter C. Then, adjust the 
value of σ  till a maximum of prediction accuracy is achieved. The finalized σ  value 
is denoted as σ ′ .Step 2. The value of σ  is set at σ ′ . Then, adjust the value of C to 
achieve a maximum prediction accuracy. The finalized C is defined as C′ . Finally, the 
suitable values of parameters σ  and C are determined as σ ′  and C′ . 

2.2   Logit and Probit Models 

Logit and probit models are used to predict two discrete alternatives, for example, fail 
or non-fail. Without the preliminary normality assumption of all explanatory variables 
and with the capability of incorporating nonlinear factors, both logit and probit mod-
els are popular in the social science area [17,18]. The following is a brief of logit and 
probit models. 

Assume that the state Si for each observation appears absolute certainty in the dis-
crete choice models. Thus, the Si is equal to one when an alternative is selected. On 
the other hand, the Si equals to zero if an alternative is not chosen. The decision vari-
able S is a dependent variable in logistic function, represented as Eqs. (5) and (6), 
respectively, 

( ) ))exp(-(11))exp((1)exp(fail-non 1 iiii xxx,SP βββ +=+==  (5) 
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( ) ))exp(1(1fail 0 ii x,SP β+==  (6) 

where xi is the explanatory variable for decision makers and i  is the coefficients of 
the logit model. 

Eqs. (5) and (6) are then estimated by maximum likelihood estimation (MLE). The 
values of variables coefficients, i , are represented as the log odds ratio and obtained 
by estimated probability. Finally, the prediction values of decision variable Si  is ei-
ther non-fail (Si=1) or fail (Si=0). Instead of using the logit function, a cumulative 
standard normal distribution functional form is employed in probit model. Therefore, 
when the alternative is selected, the Si  is equal to one. On the contrary, the Si equals 
to zero if the alternative is not chosen. The probit model can be expressed as Eq. (7) , 

( ) ( )ii xSP βΦ=  (7) 

where )(⋅Φ  is the cumulative standard normal distribution function; xi is the explana-
tory variable, and  i  is the coefficient of the probit model. The remaining procedure 
for estimating i  is the same as that of logit model.   

3   A Numerical Example 

3.1   Data Set and the Measurement of the Prediction Performance 

An empirical data regarding employee turnover and job-performance is given by Hui-
Lien Motor marketing Co. The Hui-Lien Motor marketing Co. is located in central 
Taiwan with 300 million NTD annual business volumes and more than 200 marketing 
specialists since 1992. The data contains totally 132 marketing specialists. The job-
performance was evaluated by motor marketing volumes and the voluntary turnover 
statuses in 2003. For the measurement of prediction accuracy, some indices, such as 
Cox & Snell R2 [17], Nagelkerke R2 [18], McFadden R2 [11], classification table, and 
model Chi-square test [19] are often used. However, the core of this study is to predict 
employees’ stay or leave in an organization by the job-performance. Therefore, the 
measurement of prediction accuracy is the most important. The classification table is 
employed to compare the total prediction accuracy of three models. 

3.2   Experimental Results 

The data set is divided into two parts, namely the modeling data set (from 1st em-
ployee to 100th employee) and the testing data set (from 101st employee to 132nd em-
ployee). The modeling data set is used to train models. The testing data set is applied 
to estimating model performance for future unseen data. The Maximum likelihood 
estimation procedure is employed to determine the free parameters for both logit and 
probit models. Table 1 shows these coefficients i  for logit and probit models. For 
both models, the explanatory capability is over 50% level. In addition, the two esti-
mated coefficients 0  and 1  are statistical significant.  

For the SVM model, set the value of the parameter C  at 1. Then, adjust the value 
of σ  till a maximum prediction accuracy is obtained, the finalized σ  value equaled 
to 0.001, therefore, set the σ value as 0.001. Secondly, adjust the value of C. The 
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4   Conclusions 

The accurate employee turnover prediction plays an important role in early detection 
of unanticipated turnover of an organization. Therefore, a suitable model for predict-
ing turnover is vital. In this investigation, the SVM classifier is used to examine the 
feasibility in predicting the employee turnover. Two other discrete choice models, 
namely logit model and probit model, are employed to compare the prediction accu-
racy. A numerical data set of employee turnover is used for the numerical experiment. 
The simulation results reveal that SVM model outperform the logit model and probit 
model. Therefore, the SVM model is a valid alternative in dealing with employee 
turnover prediction problems. In the future, some other factors, such as job-
satisfaction, organization commitment, and abnormal absenteeism of employee can be 
included in the SVM model to predict the employee turnover. In addition, developing 
a structured way in determining free parameters of SVM model could be another 
direction for future research. 
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Abstract. As feature extraction techniques, Kernel Principal Compo-
nent Analysis (KPCA) and Independent Component Analysis (ICA) can
both be considered as generalization of Principal Component Analysis
(PCA), which has been used for palmprint recognition and gained satis-
factory results [3], therefore it is natural to wonder the performances of
KPCA and ICA on this issue. In this paper, palmprint recognition using
the KPCA and ICA methods is developed and compared with the PCA
method. Based on the experimental results, some useful conclusions are
drawn, which fits into the scene for a better picture about considering
these unsupervised subspace classifiers for palmprint recognition.

1 Introduction

Biometrics has been attracting more and more attentions in recent years. Two
possible biometric features, hand geometrical features and palmprint features,
can be extracted from hand. Hand geometrical features such as finger width,
length, and the thickness are adopted to represent extracted features, but these
features frequently vary due to the wearing of rings in fingers, besides, the width
of some fingers may vary during pregnancy or illness. Palmprint features have
several advantages over such physical characteristics [1]: (1)low-resolution imag-
ing; (2)low intrusiveness; (3)stable line feature and (4)high user acceptance.

Some work on palmprint recognition has been reported in the literature[1-
6]. In all this research, the primary focus of attention is on points and lines
[2], texture analysis[1][5][6] or second-order statistics features [3][4]. The main
contribution of this paper is to consider two novel unsupervised palmprint rep-
resentation methods using KPCA and ICA, and compare it with PCA method
on the same data set. It should be noted that InfoMax algorithm of ICA was de-
ployed for palmprint recognition in [7], however, FastICA algorithm of ICA has
been recommended for identity tasks [8], as is adopted in our paper, besides, the
topic of this paper is on the use of unsupervised subspace methods for palmprint
recognition, therefore the supervised fisherpalms method [4] is not considered.
Experimental results show that both ICA and KPCA significantly outperform
PCA on the palmprint recognition task, in addition, ICA performs best among
the three unsupervised methods. We also provide some possible reasons for this.
� Corresponding author.
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2 Palmprint Representation Using Unsupervised
Subspace Analysis

PCA is a popular feature extraction method, in this paper,the eigenpalm method
is used as a benchmark, for details, please refer to Ref.[3].

KPCA is designed for nonlinear dimension reduction method and gained
great success in face recognition [10],which is extended to palmprint recognition
in this work.

ICA is a technique for extracting statistically independent variables from a
mixture of them. Usually, two different architectures of ICA are adopted for
feature extraction [8].The FastICA algorithm of both architectures are used for
palmprint representation,which are ICA-Arch.1 and ICA-Arch.2 in this paper.

3 Experiment and Results Analysis

3.1 Database

This work is carried on the newly released PolyU Palmprint Database [9]. There
are 100 different palms in this database, and six samples from each of these palms
were collected in two sessions, where 3 samples were captured in either session.
Since the images contain not only the palmprints, but also other parts of the
palm and background, a coordinate system is used to align different palmprint
images for further processing [5], for examples, see Fig.1(a).

3.2 Experimental Results and Analysis

In the experiment, the images are resized to 60*60 due to computing consid-
eration, and all the palmprint images are divided into two parts, two images
of every palm from each session are regarded as the training set, the left com-
prise the test set. After histogram equalization on the palmprint images, PCA,
KPCA and ICA are used to extract the features, and then Nearest Neighbor
strategy (L2 norm) and Cosine Angle are adopted to give the final decisions. In
our experiment, KPCA is with the radial basis kernel functions.

Due to PCA ahead, the dimension of basis images of ICA-Arch.2 are reduced
so much that the basis images can’t be provided, and Fig. 1(c)(d) shows the basis
images of PCA and ICA-Arch.1. The PCA algorithm is developed in our Lab and
the ICA algorithm deployed is the FastICA package(http:/ww.cis.hut.fi/projects
/ica/fastica/). In ICA-Arch.1, considering the computing cost, PCA is firstly
applied to the data to obtain an eigenpalm space of dimensions m (here m was
set to be 100 considering the representative ability of PCA), which was also
adopted in [7]. The FastICA algorithm is then applied to the eigenpalms to get
resulting basis images as independent as possible. The goal of ICA-Arch.2 is to
find statistically independent coefficients for the input images, thus the source
separation is performed on the pixels. In our work, ICA is performed on the PCA
coefficients (here m was set to be 100) rather than directly on the raw images
to reduce the computing cost as in [8]. Table 1 shows the performance results.
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a c d b 

Fig. 1. Three palmprint images(a), palmprint images after histogram equalization(b),
three eigenpalms(c), three ICs(Arch.1)(d)

From Table 1, we can see that choice of distance measures for ICA-Arch.1
matters little and it performs better when L2 norm is used, which have not been
reported before. When using cosine angle measure, ICA-Arch.2 performs better,
as [8] recommended. It should also be pointed out that the two architectures of
the FastICA algorithm perform as well as each other with a recognition accuracy
rate of 96.5%, and the recognition accuracy using KPCA method is as high
as 96.0%, which are obviously more efficient than the accuracy rate of 91.5%
using PCA method. In the experimental results, both KPCA and ICA methods
outperform the PCA methods.The possible reasons are as follows: for KPCA,
through nonlinear mapping using kernel functions, the original space is mapped
into an arbitrarily large dimensional space, through which it would be reasonable
for us to expect that the distribution of the different persons’ palmprint images
in he feature space are more sparsely separated, and can be more easily classified;
and more importantly, the representation in traditional eigenpalms method in
based on second order statistics of palmprint images set, and does not consider
high order statistical dependencies such as the relationships among three or more
pixels, however, for palmprint recognition, much of the important information
may be contained in these relationships among the pixels, and such information
is deployed by KPCA and ICA methods, which is robust and more suitable for
classification tasks.

Table 1. Recognition accuracy performance results

Methods L2 norm Cosine angle

PCA 91.5% 91.0%
KPCA 96.0% 93.0%
ICA-Arch.1 96.5% 96.0%
ICA-Arch.2 94.0% 96.5%
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4 Conclusions and Future Work

In this paper, palmprint recognition using KPCA and ICA methods are devel-
oped, and compared with traditional PCA method. In this work, the KPCA
method and ICA method significantly outperforms the traditional eigenpalms
method in term of recognition accuracy rate under the PolyU palmprint
database. Possible reasons are provided for this. Unlike structural features and
statistical features, algebraic features are stable and easy to extract, PCA, KPCA
and ICA are such features, however, KPCA and ICA take higher order corre-
lations into account, which has obvious advantages over the traditional PCA
method.Our future work would include investigation other kernel methods for
palmprint recognition, and we are also interested in multi-modal biometrics
which is our ongoing project [11].
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Abstract. In order to get good hyperparameters of SVM, user needs to conduct 
extensive cross-validation such as leave-one-out (LOO) cross-validation. Alpha 
seeding is often used to reduce the cost of SVM training. Compared with the 
existing schemes of alpha seeding, a new efficient alpha seeding method is 
proposed. Through some examples, its good performance has been proved. 
Interpretation from both geometrical and mathematical view is also given. 

1   Introduction 

Support vector machines (SVMs) [1] have been proven to be very effective methods 
in the fields of data classification and pattern recognition. In order to get optimal 
parameter settings, user normally needs to conduct time-consuming cross validation 
during the SVM training. The hyperparameters which give the minimum estimation 
of generalization error such as leave-one-out (LOO) error are selected as the optimum 
alternatives. Seeding successive SVM training with the results of previous trainings, 
called alpha seeding [3], is proved to be an efficient method for computing LOO 
error. What’s more, [4] gives a thorough research on reducing the time of computing 
LOO error. In this paper, aiming at exploring good seeding method to expedite the 
computation of LOO, several new alpha seeding schemes are analyzed on detail.  

Traditionally, a SVM learns from a set of l N-dimensional example vector xi, and 
their associated classed yi, i.e. (x1,y1),…,(xl,yl) RN×{-1,1}. By using a function ø to 
map xi into a higher dimensional space, we often solve it from the dual formulation: 

(0.5 )min T TQ e
α

α α α−  s.t. 0Ty α = , 0 , 1,..., .i C i lα≤ ≤ =  (1) 

where Q is an l×l positive semi-definite matrix with Qij=yiyj (xi)
T (xj), and e is the 

vector with all 1 elements. Usually we call K(xi,xj) (xi)
T (xj) the kernel function. 

After (1) is solved, 
1

( )
l

i i i
i

y xω α φ
=

=  is obtained.  The kth example is classified by  

( ) ( , )k k i i i k
i

O x b y K x x bω φ α= − = − , where b is the lagrange 

multiplier according to the equality constraint in (1). The kth example is considered as 
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misclassified in training if ykOk<0. 
Tuning the hyperparameters such as C and  in the RBF kernel function is usually 

done by minimizing an estimate of generalization error such as LOO errors [1]. LOO 
error is defined: For a given k, let Pk denote the modified primal problem in which the 
kth example is omitted, and let Dk be dual problem corresponding to Pk, given by (1) 
with the kth example is omitted. Let ( k

’,bk
’) denote the solution of Pk and 

define ' ' '( )k k k kO x bω φ= − the output of the kth example generated using the 

solution of  ( k
’,bk

’). After obtaining Ok
‘for every k in a similar way, the LOO error 

can be obtained as 'card{ : 0}k kLOO k y O= < ,where card denotes cardinality.  

LOO error is an unbiased estimator of true generalization error. However, 
computing it is time-consuming for Dk has to be solved many times. 

2   A New Alpha Seeding Method 

It is known that conventional quadratic programming algorithm has to be solved by 
using specially designed iterative decomposition techniques. It has been proved that 
the update rule of the iterative decomposition techniques is Newton. Alpha seeding is 
just an effective technique which can give better initialization of alpha for all the 
algorithm. It is first explored in [3] and can amortize training costs. According to the 
results of the experiments, Lee [4] proposed a more effective alpha seeding method 
than that in [3]. The following formula plays an important role in the decomposition 
method for solving (1) 

( ) ( , )i i j j j j
j

F K x x y yα α= −  (2) 

Form the view of efficiently computing (2), when new alpha ‘ is obtained, the 
following formula should be used to efficiently compute Fi(

‘): 

'

' '

:

( ) ( ) ( , )( )
j j

i i i j j j j
j

F F K x x y
α α

α α α α
≠

= + −  
(3) 

Avoiding many unnecessary computations in [3], another alpha seeding scheme 
which only change a few variables is proposed in [4]. Both of the methods redistribute 
it to in-bound alphas (ie. those greater than 0 and less than C). In order to get a better 
scheme, three modified schemes are proposed and compared with the one in [4].The 
first one is some like the one in [4], however, a maximum possible amount is first 
allocated to the index that is bottom most in the list. The second one is like the 
following: compute K(xi,xj) for all i such that i k, i =0 and yi=yk, and sort these 
indexes in decreasing order of K(xi,xj), then, all the value of k is given to the one in 
the top list. In the third one, which is some like the second one, all the value is given 
to the one in the bottom list. Obviously, the latter two schemes of redistributing k are 
simpler than the one in [4] and the first one. For our initial experiments to report in 
this paper we selected Australian (A), diabetes (D) and heart (H) problem, since a lot 
of related work with these datum have been published [2]. All tests were performed 
on an AMD PC 1600+ with 256M of RAM. Table 1 contains some initial results of 
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experiments where T denotes the time cost for computing LOO and ITs denote the 
total iterative number of computing LOO with =0.5, =0.001 for RBF kernel.  

Table 1. Results of different alpha seeding schemes 

             

From table 1, it is easy to get the following results: 

1) More iterations always take more computation time.  
2) Alpha seeding scheme in [4] doesn’t always give better results than the scheme 

1, which means redistributing k to the nearest neighbors doesn’t guarantee better 
performance than redistributing it to some other vectors. Then, if the value of k is 
read to be redistributed to the in-bound ones, the sorting process is needless.  

3) Another point can be seen from the table 1 is that the scheme 2 always performs 
better than the others with costing less time and less iterations.  

First, they can be interpreted from a simple geometrical view. Suppose point A is a 
support vector point which is to be omitted, and point B is its nearest non-support 
vector point whose alpha is zero, and point C is its nearest support vector point whose 
alpha is 0< k<C.   After A is omitted, B is a nice alternative which will become a new 
support vector and the possibility of C becoming a new miss-classified point is not 
great. In fact, the scheme 2 just means to give the value of k to its nearest non-
support vector like point B which will turn into a new support vector possibly.   

 Second, from the view of computation, the cost associated with the computation of 
(3) with the latter two schemes is smaller than the first two when is redistributed, 
because they only involve in changing one alpha variable. In Newton algorithm, 
better initial solution often leads to less iterations. However, it is difficult to prove 
which scheme will provide better initial solution mathematically. Equation (4) is the 
object function which is derived from (1) using the decomposing method.  

2 2
1 2 1 2 11 1 22 2 1 2 12 1 2 1 1 1 2 2 2( , ) 0.5 0.5 constK K y y K y yζ α α α α α α αα αν αν ζ=− − + + + + + +  (4) 

where   
3

l

i j j ij
j

y Kν α
=

= , 
3 , 3

1

2

l l

const i i j i j ij
i i j

y y Kζ α α α
= =

= − + , and 1, 2denotes the two 

selected variables to do iterations in the decomposition algorithm. Let min denote the 
final value after training all the examples. If a non-support vector is selected (ie. 2 

=0), it can be rewritten as: 

2
min 1 2 2 22 2 2 2 2( , ) 0.5 constK yζ ζ α α α α α ν ζ= = − + + +  (5) 

Scheme in [4] Scheme 1 Scheme 2 Scheme 3 
Set C 

ITs T(s) ITs T(s) ITs T(s) ITs T (s) 

100 2064669 98.09 2062743 97.72 2050795 97.29 2055153 97.65 A 
1 166236 23.20 165906 23.15 165677 22.94 166731 23.12 

100 9766220 327.1 9660592 324.0 9654127 322.9 9781485 328.3 
D 

1 98514 15.77 98829 15.92 96060 15.41 96561 15.67 
100 71131 2.94 69829 2.91 69669 2.88 69656 2.87 

H 
1 35492 1.86 35538 1.88 35194 1.82 35077 1.81 
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It’s known the vectors whose alpha equals zero give no contribution to min. When 2 
is to be omitted (ie. 2

’=0), the object function will become '
1 2( , ) constζ α α ζ= . 

If is redistributed with the first two schemes, it is difficult to judge which object 
value is smaller because both of them will change a lot of items in the equation (5). 
And this implies that the process of sorting K(xi,xj) may not assure good selection if 
we want redistribute the value to the in-bound alphas. A simple approximation can be 

induced according to scheme 2 if a non-support vector is very close to 2:
'

1 2α α= , 

1 2( ) ( )x xφ φ≈ , 
1 2( , ) ( , )i iK x x K x x≈  for all i. Then, the object function turns into 

' ' ' '2
1 2 1 11 1 1 1 1 min( , ) 0.5 constK yζ α α α α α ν ζ ζ= − + + + ≈ . In other words, the value of object 

function after redistributing  will be very possible near to a small value of   min if 
scheme 2 is taken in alpha seeding method, although it may not be the optimum. This 
means that the possibility of producing a better initial solution with scheme 2 is very 
great correspondingly. 

3   Conclusions  

On the base of the existing alpha seeding schemes, a new alpha seeding scheme is 
proposed in this paper. Through some benchmark examples, performance of this 
method is proved to be more effective than the existing methods. What’s more, our 
scheme is simpler for only involving in changing one alpha. Trying to understand the 
nature of the alpha seeding better, some initial mathematic interpretation based on the 
value of object function is also discussed. 
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Abstract. In this paper we study location of multiple acoustic sources by blind 
source separation (BSS) method, which based on canonical correlation analysis 
(CCA). The receiving array is a sparse array. This array is composed of three 
separated subarrays. From the receiving data set, we can obtain the separate 
components by CCA. After a simple correlation, time difference can be ob-
tained, and then compute the direction of arrival (DOA) of different acoustic 
sources. The coordinate of different acoustic sources can be obtained at last. 
The important contribution of this new location method is that it can reduce the 
effect of inter-sensor spacing and other factors. Simulation result confirms the 
validity and practicality of the proposed approach. Results of location are more 
accurate and stable based on this new method. 

1   Introduction 

Multiple acoustic sources location is of great interest to many applications, such as 
hearing aids, fault location and target tracking etc. In real environments, multiple 
acoustic sources are inevitable. The main problem of this topic is how to separate 
different sources only by the receiving signals and complete the location for different 
acoustic sources. Naturally, we consider about apply blind source separation (BSS) 
method to the problem. There are many BSS methods for this problem [1][2]. Con-
sider about the simplicity and practicality, we propose a new location estimation 
method based on canonical correlation analysis (CCA), which is an important 
method of multivariate statistical since it was proposed by H.Hotelling [3]. The main 
character of CCA is it can find the basic vectors from two sets of variables, similarly 
to our ears. There are detail descriptions of CCA in [4][5], which has been applied in 
some preliminary work [6][7][8] in recent years. CCA was applied to seek the corre-
late components of the data from double receiving sensors. After a general correla-
tion of the two canonical components, we can obtain the time difference and then the 
estimation value of DOA, location will be completed at last. 

The organization of this paper is as follows: In Section 2, we formulate the issue of 
multiple acoustic sources location and describe the problem to be solved. In Section 3, 
we present the location algorithm. Simulations conducted in Section 4 show the effec-
tiveness of the algorithm, and finally is the conclusion. 
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2   Problem Formulation 

The receiving model is shown as Fig.1, which includes three groups of receiving 
sensors 1 2 3, ,r r r . Each receiving sensor includes two separated receiving units. 

2r

1r

3r

( )1 1 1,s x y

( )2 2 2,s x y

D

D
1θ

2θ

1φ 2φ

x

y

l

1R

2R

3R

4R

 

Fig. 1. Signal receiving model 

If a source is considered to be far from the array, the source can be said to ap-
proximately lie on a line connecting the source to the center of each receiving sensor 
pair. The model of each receiving sensor pairs can be described as: 

( ) ( ) ( )t t t= ⋅ +r A s n  (1) 

where ( )tr  are the receiving signals. A  is a mixing matrix. ( )ts  are the acoustic 
source signals. ( )tn  are noise signals. The key problem of location based time differ-
ence is how to eliminate or reduce the affect of noise, interference and mixing signals 
to time difference estimation by correlation and DOA estimation, which is the main 
problem that this paper wants to solve. 

3   Location Algorithm 

The location algorithm includes three steps: First is blind separation by CCA and 
then obtain the time difference by a correlation. At last we can complete the computa-
tion of location by the time difference and corresponding DOA estimation. 

The main difference between CCA and the other statistical methods is that CCA is 
closely related to mutual information [6]. Consider two sets of input data 1 2, , , px x x  
and 1 2, , , qy y y , p q≤ , The two sets of data can be written as combination of some 
pairs of variables iξ  and iη , which can be described as follows: 
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1 11 1 1 1 11 1 1

1 1 1 1

...
p p q q

p p pp p p p pq q

a x a x b y b y

a x a x b y b y

ξ η

ξ η

′ ′ ′ ′= + + = + +

′ ′ ′ ′= + + = + +
 (2) 

where ′ ′x , y  are the standardization value of x, y respectively. Mutual independent 

variables can be obtained by the method of canonical correlation. Canonical correla-
tion variable and coefficients can be obtained by the follow steps:  

Step1: computing the correlation of the two sets of variables as: 

= xx xy

yx yy

 (3) 

Setp2: Computing the canonical correlation coefficients ir . Firstly, we compute 

two matrices L  and M , where 1 1 1 1,− − − −= xx xy yy yx yy yx xx xyL M = , secondly, 

we compute the eigenvalue iλ  of matrix L  and M . 

Step3: Computing the canonical variables iξ  and iη .  

Time difference is based on the correlation of the canonical variables iξ  and iη . 
Then the separate time difference can be obtained by: 

( ){ }ˆarg max , 1...4i iR i
τ

τ τ= =

         

 (4) 

Where ( )ˆ
i

R τ  is the correlation function of canonical variables. The estimation of 

DOA is relatively simple. sinD D θΔ = , sinc D Dτ θΔ = Δ = , where 340.29 /c m s=  
is the velocity of sound, DOA can be obtained as: 

( )( )arccos c Dθ τ= ⋅ Δ  (5) 

From  Eq.(5) we can see that the precision of DOA is limited by the distance be-
tween the phase centers of the subarrays and the time difference estimation precision. 
As the defined coordinate in the Fig.1, we can obtain 1 2,R R  as: 

( ) ( ) ( ) ( )1 1 1 1 2 1 1 1sin 180 45 sin , sin 45 sinR l R lφ φ θ θ φ θ= ⋅ − − − = ⋅ + −  (6) 

3 4,R R  are similar calculation as 1 2,R R , the position of acoustic sources 1 2,s s can 

be written as: 

1 1 1 1 1 1

2 3 2 2 3 2

cos , sin 2

cos , sin 2

x R y R D

x R y R D

θ θ
θ θ

= = +
= = + +

 (7) 
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4   Simulations 

The background of the experiments is assumed as: there are three separated re-
ceiving sensors as in Fig.1. The distance between the phase centers of the subarrays 
is 0.3D m= , two acoustic sources come from different direction and the sampling 
frequency is 8000Hz , time differences are set as 1 2 3 43, 2, 4, 3τ τ τ τ= = = = . Blind 
separation by CCA was conducted at first, which is the basic of high precision time 
difference estimation. The separated source details are shown in Fig. 2. Then a 
cross correlation is conducted. The correlation results are shown as in Fig.3. 
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          Fig. 2. Blind separation details by CCA                   Fig. 3. Correlation results 

From the correlation results, time difference of different acoustic source can be 
obtained as: 1 2 3 43, 2, 4, 3τ τ τ τ= = = = , which is corresponding with the experi-

ments setting. Then 1 2 1 225.1736 , 16.4737 , 34.5517 , 25.1736θ θ φ φ= = = =  can be 

obtained and 1 2 3 42.5605, 2.4493, 2.6386, 2.4644R R R R= = = = . Then the positions 

of different acoustic sources are: ( )1 2.3173,1.2391s  and ( )2 2.5303,0.8982s  as the 

coordinate in Fig.1.  

5   Conclusion 

In this paper, we have investigated the fundamental limitations in multiple acoustic 
source location. We propose a novel location method by BSS, which based on 
CCA. This method can effectively overcome the contradictory of phase ambiguity 
and signal correlation and will play an important role in military and civilian affairs. 
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Abstract. An approach for short-term load forecasting by combining
self-organizing map(SOM) and support vector machine(SVM) is pro-
posed in this paper. First, historical load data of same type are clustered
using SOM, and then daily 48-point load values are vertically predicted
respectively based on SVM. In clustering, factors such as date type,
weather conditions and time delay are considered. In addition, influences
of kernel function and SVM parameters on load forecasting are discussed
and performance of SOM-SVM is compared with pure SVM. It is shown
that normal smoothing technique in preprocessing is not suitable to be
used in vertical forecasting. Finally, the approach is tested by data from
EUNITE network, and results show that the approach runs with high
speed and good accuracy.

1 Introduction

Short-term electrical load forecasting is an essential part of Energy Management
System(EMS). The key to electrical load forecasting lies in the improvement of
accuracy. Recently SVM based short-term load forecasting method is very at-
tractive. During the investigation of SVM forecasting model, it is found that
how to choose typical samples is worth further discussing. But clustering meth-
ods presented in most papers are too simple. Only date type was considered by
totally ignoring weather conditions and time lag [1,2,4]. Moreover, paper [1,2]
reported the results of 48-point load values for only a day, and paper [3,4] of-
fered the results of a certain time instant load for consecutive days. All the above
approaches can’t show good generalization ability.

In this paper, a new algorithm combining SOM and SVM is proposed for load
prediction. First, SOM is employed in clustering to find training samples that
are similar to the predicted day in date type and weather conditions with the
consideration of time delay; second, SVM is applied to vertically predict daily
48-point load values respectively.

This paper consists of four sections. In section 2, the new short-term load
predicting method SOM-SVM is presented. Section 3 gives simulation results
and discussions. Finally section 4 offers the conclusions.
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2 SOM-SVM Based Short-Term Load Forecasting

2.1 Clustering Analysis of Predicted Day Based on SOM

To implement clustering of the predicted day, historical data are selected as
follows: 1) 48-point load data of 5 months previous to the predicted day; 2) 48-
point load data of a respective month previous to and posterior to the predicted
day of last year; 3) 48-point load data of a respective half month previous to and
posterior to the predicted day of the year before last.

Date type is classified according to following aspects: i) profile of load curve;
ii) magnitude of load; iii) weather information; iv) date type. Of the above
four factors, i and ii are unknown for the predicted day, whereas the latter two
conditions are already known. So the paper employs iii and iv in clustering.
Furthermore, power load system has time delay. As a result, four parameters,
composed of temperature of the previous day and this day(normalized), date
type of the previous day and this day, are considered in SOM.

2.2 Forecasting 48-Point Load Values Respectively Based on SVM

Extracting the features from samples is of vital importance. Input vectors are
chosen to be: 1) load values of predicted time instant k of the previous 7 days
obtained by averaging the data of time instant k-1, k and k+1; 2) average load
value of predicted time instant k of the previous 7 days; 3) temperature of the
predicted day; 4) year type of the predicted day (the year before last: 1; last
year: 2; this year: 3). To sum up, the input vectors are 11-dimension, and the
output is the load value of time instant k. Daily 48-point load values are pre-
dicted respectively. We adopt ε-insensitive loss function with polynomial kernel
K(xi, x) = ((x · xi) + 1)dand Gaussian kernel K(xi, x) = exp(− ||x−xi||2

2σ2 ).

3 Simulation Results and Discussions

This approach has been tested in forecasting daily 48-point load values from
981201 to 981215 according to daily temperature and 48-point load data from
970101 to 981130 supplied by EUNITE network [5].

3.1 Selection of Kernel Function and Parameters C and ε

Mean absolute percent error (MAPE) is chosen as evaluation indicator, described
as MAPE = 1

n

∑n
i=1 |

a(i)−f(i)
f(i) | , where n = 48, a(i) is the actual load and f(i)

is the forecasted load.
Polynomial kernel and Gaussian kernel are taken respectively. We find that

Gussian kernel has better results than those of polynomial kernel. Furthermore,
the performance is related to the different σ in Gussian kernel case, that is,
very low σ(1–10) can result in overfittting and very high σ(300-700) can lead to
underfitting. The suitable value of σ is within 75-150.
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Fig. 1. Actual and forecasted load for 981208-981212 using SOM-SVM

Table 1. Comparison results of DWT(Horizontally)-SOM-SVM,DWT(Vertically)-
SOM-SVM,SOM-SVM and Pure SVM(Gussian kernel,σ = 100,C = 10000,ε = 0.01)

Date MAPE/%
DWT(H)-SOM-SVM DWT(V)-SOM-SVM SOM-SVM Pure SVM

981203 2.53 2.36 2.48 2.12
981204 2.52 3.67 2.55 2.72
981205 3.11 4.84 2.95 3.61
981206 3.28 5.30 3.28 2.62
981207 2.49 5.36 2.67 2.67
981208 2.23 1.96 2.04 2.96
981209 2.20 2.08 2.28 1.80
981210 2.36 2.64 2.34 3.26
981211 2.13 2.99 2.04 2.30
981212 2.16 2.26 2.15 2.01
Average 2.50 3.35 2.48 2.61

It is also suggested that C and ε can also affect the accuracy when using
Gussian kernel(σ = 100). Very low C(100-1000) causes underfitting, while very
high C(50000-100000) produces overfitting. In the same way, overfittting can
occur when ε is too low(0.0001-0.001) and reversely underfitting arises when ε is
too high(0.05-0.1). So the performance is the best when C = 10000 and ε = 0.01.
Fig.1 gives the predicted curve of 981208-981212(Gussian kernel,σ = 100,C =
10000,ε = 0.01).

3.2 Influence of Data Smoothing on Load Prediction Accuracy

In papers [1,3,4], historical data were preprocessed by smoothing as ordinary
signal. But as shown in Tab.1, performance with usual horizontal smoothing
such as discrete wavelet transform (DWT) before prediction is a little worse
than or similar to the one without using smoothing. Discussions are stated as
follows:

(1) Due to highly fluctuation of load curve, daily 48-point load values are
not estimated as ordinary regression with time t to be one of input vectors, but
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vertically predicted by constructing models respectively. Therefore, the ordinary
horizontal smoothing doesn’t work in this case.

(2) The result of vertically smoothing before SOM-SVM isn’t good at all.
Smoothing mainly removes the shock component of total load. Shock load usu-
ally accounts for 1-2 percent of total load. The result that average MAPE of
DWT(V)-SOM-SVM is higher than that of SOM-SVM by almost 1%, shown in
Tab.1, exactly explains this point. Forecasting accuracy can certainly be wors-
ened if the objectively existing portion of power load is ignored.

3.3 Role of SOM Clustering to SVM

The training time of pure SVM is 25s for each time instant, yet that of SVM-
SOM is composed of SOM clustering and SVM forecasting for each time instant,
the former and the latter cost 3s, 500ms respectively (PC: 2.0Ghz, 500M). Ap-
parently, in contrast to pure SOM the speed of SOM-SVM is greatly accelerated.
And Tab.1 shows that the accuracy of SOM-SVM is better than pure SVM. In
brief, SOM-SVM is better than pure SVM both in speed and accuracy with the
interference of different type day eliminated by SOM clustering.

4 Conclusions

The proposed short-term load predicting technique in this paper based on SOM-
SVM is tested by data supplied by East-Slovakia Power Distribution Company.

The main conclusions are summarized as follows:
(1) Since shock load certainly exists, ignoring it will affect the forecasting

performance for sure. Therefore whether to smooth load data before SVM based
forecasting is an open problem.

(2) The proposed SOM-SVM method can incorporate the advantages of SOM
and SVM. As a result, the method has high speed and good accuracy.

(3) Choosing different kernel functions and SVM parameters can directly
influence forecasting accuracy.
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Abstract. Many problems in pattern classifications involve some form of di-
mensionality reduction. ISOMAP is a representative nonlinear dimensionality 
reduction algorithm, which can discover low dimensional manifolds from high 
dimensional data. To speed ISOMAP and decrease the dependency to the 
neighborhood size, we propose an improved algorithm. It can automatically se-
lect a proper neighborhood size and an appropriate landmark set according to a 
stress function. A multi-class classifier with high efficiency is obtained through 
combining the improved ISOMAP with SVM. Experiments show that the clas-
sifier presented is effective in fingerprint classifications. 

1   Introduction 

Dimensionality reduction is an important task in pattern classifications. Its purpose is 
to discover compact representations of the original data. Two classical methods of 
dimensionality reduction are PCA and MDS. Both methods are guaranteed to find the 
true structure of data lying on or near a linear subspace of the high dimensional space. 
However, these linear algorithms cannot in essence discover complex nonlinear mani-
fold structure [1]. Recently, several algorithms [1], [2], [3] have been developed to 
perform dimensionality reduction of low dimensional nonlinear manifolds embedded 
in a high dimensional space. ISOMAP is one of representative techniques, which has 
been applied to pattern classifications. Nevertheless, ISOMAP not only badly depends 
on the neighborhood size but also has higher time and space complexity. 

In this paper, we put forward an improved ISOMAP (IISOMAP) with respect to 
flaws of ISOMAP. The algorithm combined with support vector machines (SVM) 
yields an efficient multi-class classifier. We apply it to fingerprint classifications and 
obtain better results. 

                                                           
1 This work was supported by Natural Science Foundation of Hebei province of China (No. 

603037 and No. E2005000024) and supported by Science-Technology Development Project 
of Tianjin of China (No. 04310941R). 
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2 IISOMAP: An Improved ISOMAP 

ISOMAP generalizes MDS to nonlinear manifolds. It is based on replacing Euclidean 
distances with an approximation of the geodesic distances on the manifold. The algo-
rithm is summarized as follows: (i) Determine neighborhoods for each point. (ii) Es-
timate the geodesic distances between all pairs of points. (iii) Find low dimensional 
coordinates by applying MDS on the pairwise distances. Details can be referred to [1]. 

In ISOMAP, the complexity of estimating the geodesic distances is Ο(kN2logN). 
The MDS eigenvalue calculation has complexity Ο(N3) for involving a full N×N ma-
trix. LMDS [4] greatly speed up by solving a sparse eigenvalue problem, which only 
preserves the geodesic distances between each point and some landmark points. 

The key is to select a better landmark set because randomly selected landmark sets 
cannot often represent the true topology of the original data and leads to worse results. 
To evaluate quantitatively landmark sets, we use the stress function (SF) 

)),(/()|),(),(|(
1

2

1

2

≤<≤≤<≤

−=
nji

M
nji

mM jidjidjidSF  , (1) 

where dM(i,j) is the geodesic distance in the input space, dm(i,j) is Euclidean distance 
in the embedded space and n is the number of landmark points.  

We randomly choose 8 landmark sets (LS1-8) with 20 data points each from Swiss 
roll data set with 1000 samples (Fig. 1(a)). The values of SF are given in Table 1. The 
results prove that the smaller the value of SF is, the better the selected landmark set is. 
For example, the result in Fig. 1(b) is much better than that in Fig. 1(c). 

Table 1. Values of SF for different landmark sets 

Landmark sets LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 
Values of SF 0.0181 0.0192 0.0186 0.0173 0.0213 0.0161 0.0297 0.0184 

 

                  

(a) Swiss roll data set                 (b) Result for LS6                     (c) Result for LS5 

Fig. 1. Low dimensional embeddings from ISOMAP for various landmark sets 

It is important to select a proper neighborhood size k in ISOMAP because too large 
or too small neighborhoods cannot reveal the true structure of the manifold. The equa-
tion (1) can also be used to determine a proper neighborhood size. The criterion is 
also that the smaller the value of SF is, the better the low dimensional embedding is. 
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We acquire an improved ISOMAP by using the stress function to automatically se-
lect a neighborhood parameter and a landmark set. The algorithm is as follows. 

1) Determine the neighborhood size k. For a given range of k, ISOMAP is executed 
on a randomly selected landmark set for each k at first. Then we compute the values 
of SF for each k and chose the k with the smallest SF as the neighborhood parameter. 

2) Select the landmark set. Firstly, for m random landmark sets, we calculate the 
geodesic distances between landmark points and other points. Secondly, each land-
mark set is mapped into the embedded space with ISOMAP. Lastly, we figure out the 
values of SF on each set. The set with the smallest SF is taken as the last landmark 
set. 

3) Obtain the low dimensional coordinates of the whole data set with the selected 
neighborhood size k and landmark set in previous steps. 

In IISOMAP, we suppose that each landmark set contains n data points, where n 
<< N. The time complexity of computing the geodesic distance matrix is Ο(knNlogN) 
while MDS runs in Ο(n2N) time. Both are much smaller than those of ISOMAP. 

3    Multi-class Classifier Based on IISOMAP and SVM 

Single-class classifiers can be constructed using the single-class SVM with hyper-
planes, which find an optimal separating hyperplane passing through the origin in the 
feature space. The decision function is [5] 

−=
i

iikxf )),(sgn()( ρα xx  , (2) 

where xi is a support vector; αi is Lagrange coefficient of the support vector and ρ is a 
constant. The kernel function k(x,x’) is usually a Gaussian function. 

For multi-class classification problems, a multi-class classifier needs to combine 
all single-class classifiers trained for each class with a suitable way. Here, we directly 
use the output of the original decision functions to obtain a multi-class classifier. To 
do this, the equation (2) should be changed to a real value function. To classify sam-
ples, testing objects feed into each single-class classifier firstly. We say the object in 
the class, which has the largest value of the decision functions, namely, 

kifoutput i
i

,...,1)(maxarg == . (3) 

The above multi-class classifier combined with IISOMAP yields a new multi-class 
classifier. In this classifier, samples are classified after being projected to low dimen-
sional spaces with IISOMAP.  

4    Experiments for Fingerprint Classifications 

The classifier was tested on FingerCode [6] preprocessed fingerprints from NIST-4 
Database containing 4000 images. We divided it into two subsets with 2000 samples 
each, one as the training set and another as the testing set. All experiments have been 
run on a PC with 2.0GHz CPU. IISOMAP was implemented in MATLAB6.5. 
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The 192-dimensional data was reduced to a 6-dimensional embedding with 
IISOMAP for k=18 and n=30. Single-class classifiers were trained with LIBSVM [7]. 
Fingerprint data were classified four classes (W, R, L, AT). Table 2 gives compari-
sons between with dimensionality reduction and without dimensionality reduction. 

An accuracy of 91.5% is achieved for four-class classification by rejecting 1.8% of 
data. Apparently, the accuracy with dimensionality reduction is close to that without 
dimensionality reduction. However, the time and space efficiency of the former is 
greatly superior to that of the latter. Here, the time cost of IISOMAP is ignored. 

Table 2. Comparisons of training time, testing time and accuracy for classifications 

 Training 
time (s) 

Testing 
time (s) 

Accuracy for 
classifications 

Without dimensionality reduction 16.612 15.421 93.8% 
With dimensionality reduction 1.608 1.016 91.5% 

5    Conclusions 

An efficient multi-class classifier is proposed to handle high dimensional data in pat-
tern classifications. Firstly, the original data are projected to a low dimensional space 
with IISOMAP. Then objects are classified with the SVM classifier. IISOMAP 
greatly decreases the dependency to the parameter and the computing complexity by 
automatically determining a neighborhood size and a landmark set. The application in 
fingerprint classifications demonstrates that the efficiency of training and testing is 
improved and memory requirements are reduced under without loss of the accuracy. 
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Abstract. A variable structure control (VSC) scheme for linear MIMO systems 
based on support vector machine (SVM) is developed. By analyzing the charac-
ters of linear MIMO system, a VSC scheme based on Exponent Reaching Law 
is adopted to track desired trajectory. Then one input of the system is trained as 
the output of SVM, while sliding mode function, differences and other inputs of 
the system are trained as the inputs of SVM. So one VSC input of the black-box 
system could be obtained directly by trained SVM after other inputs of the sys-
tem are selected manually, and recognition of system parameters is avoided. A 
linear MIMO system is used to prove the scheme, and simulation results show 
that this scheme has high identification precision and quick training speed. 

1   Introduction 

The design of controller for uncertain systems with extraneous disturbances has been 
concerned for a long time. One method to resolve the problem is variable structure 
controller [1-3]. The VSC system is a special kind of nonlinear controller character-
ized by a series of discontinuous control actions that change the control system struc-
ture upon reaching a set of switching surfaces. The most important property of the 
VSC system is that sliding motion on the switching surface is ensured. 

SVM is an elegant tool for solving pattern recognition and function regression 
problems [4-6]. It has attracted a lot of researchers from the neural network and 
mathematical programming community, for the main reason is its ability to provide 
excellent generalization performance. There is only one global minimal point when 
SVM is training, rather than partial minimal points in neural networks, and its operat-
ing speed is much higher than that of the latter. Moreover, SVM can track arbitrary 
curves with arbitrary precisions, which means it can be easily used in the recognition 
of linear and nonlinear systems. 

A VSC scheme for MIMO systems based on SVM is proposed in this paper. After 
the exponent reaching law is introduced, the MIMO system is transferred to MISO 
system, and then SVM is adopted to get the control algorithm. At last, a linear MIMO 
system is adopted to prove that the scheme is effective. 

This paper is organized as follows: In section 2, VSC algorithm and exponent 
reaching law is introduced; then SVM is proposed, while its regression function is 
mainly concerned in 3. In the next section, the algorithm is proposed. In 

4, the scheme is proved in simulation. At last, the conclusions are drawn. 
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2   Variable Structure Control for MIMO systems 

Consider the following discrete black-box MIMO system: 
)()()1( kBxkAyky +=+                                                       (1) 

where +∈ Zk  denotes the sample step, [ ]T
m kxkxkxx )(...)()( 21=  and 

[ ]T
n kykykyy )(...)()( 21= denote the input and output matrix respectively, while 

{ }njiRaA ij ,...,2,1, =∈=  and { }mjniRbB ij ,...,2,1,...,2,1 ==∈=  

Suppose 
)()()( kykdke −=                                                    (2) 

)()( kecks T=                                                           (3) 

where [ ] Rkdkdkdkd T
n ∈= )(...)()()( 21

 denotes the desired output, while 

[ ] Rkekekeke T
n ∈= )(...)()()( 21

 and [ ] Rcccc T
n ∈= ...21

are difference 

and the parameter of switching surface respectively. 
By adopting Exponent Reaching Law 

)(sgn)()1()1( ksksks ετδτ −−=+                              (4) 

and consider (1), (2) and (3), the control algorithm can be obtained: 
)(sgn)()1()1()()()( 000 kskskcdkdDkxBkeA ετδτ −−=++++        (5) 

where 0>τ , 0>ε  and 0>δ  are sampling period, reaching speed and approaching 
speed respectively, and what is more, 01 >−δτ , and 

[ ]n
T aaaAcA 002010 ...==  

[ ]n
T bbbBcB 002010 ...==  

[ ]n
T dddAcD 002010 ...=−=  

3   Support Vector Machine Regression 

Suppose that the training samples are ( )ii yx , , ki ,....,2,1= ,{ }RyRx i
n

i ∈∈ , , the 

object is to solve the following regress problem: 
bxxfy +⋅== ω)(                                                   (6) 

where ⋅  denotes inner product, and b  is bias. 

Vapnik [4] suggested the use of −ε insensitive loss function where the error is not 
penalized if the loss function is less than ε . Using the error function together with a 
regularizing term, the optimization problem solved by the support vector machine can 
be formulated as: 
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           (7) 

The constant 0>C  determines the tradeoff between the smoothness of f  and the 

amount up to which deviations are larger than ε  are tolerated.  
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Referring to Lagrange multipliers and KKT conditions, the optimal regression 
equation can be obtained as following: 

=

+=
nsv

i
ii bxxf

1

)( α                                            (8) 

where 
ix  are the support vectors, and nsv  is the number of support vectors, while 

iα  

is the coefficients, b  is the threshold value. 

4   The Scheme of SVC Based on SVM Regression 

There can always find )1(00 mjb j ≤≤≠  that can turns (5) into: 
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It can be seen that )(kx j
 is the linear combination of X . Suppose that: 

)(kxY j=  

[ ]Tnmjj kdkxkxkxkxkeksX )()(...)()(...)()()1( 111 +−+=  

Regard ( )YX ,  as samples, and then the scheme of SVC based on SVM can be 

obtained. The output Y can be acquired through the model that is trained by SVM.  

5   Simulation 

Considering the following MIMO system: 
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Fig. 1. The figure shows that the outputs track the desired trajectory, and outputs converge in 
about 15 sample steps. and the stable differences are less than 0.1% 
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The initial states are [ ] [ ] [ ]TTT yyyy 32)0()0( 212010 == , and the sample time 

1.0=T . In order to ensure the convergence of states, choose [ ]Tc 11−=  and 

)(7.0 ks=ε  [2]. Suppose that the states track object [ ]Td 11= . The simulation 

result is shown in Fig.1  

6   Conclusion 

By employing a system input as the output of the linear kernel SVM, this system 
input turns into the output of SVM. Then the exponent reaching law is adopted to 
predict the sliding mode function for the next sample time. By combing them, a VSC 
controller based on a SVM identification algorithm is bring forward.  Simulation 
result shows that the scheme is effective.  

References 

1. Wei-Bing Gao: Discrete-Time Variable Structure Control Systems, Vol. 42. IEEE Trans-
actions On Industrial Electronics (1995)117-121. 

2. Chang-Lian Zhai. Zhi-Ming Wu: Variable Structure Control Method for Discrete Time 
Systems, Vol. 34. Journal of Shanghai Jiaotong university(2000) 719-722. 

3. Tarek M. M. Nasab: A New Variable Structure Control Design with Stability Analysis for 
MIMO Systems (2000) 785-788 

4. Vapnik V: The nature of statistical learning theory, Springer, NY (1995) 
5. Matilde Sanchez-Fernandez, Jeronimo Arenas-Garcia: SVM Multiregression for Nonlinear 

Channel Estimation in Multiple-Input Multiple-Output Systems, Vol. 52. IEEE transac-
tions on signal processing(2004) 2298-2307 

6. P.M.L.Drezet, R.F.Harrison: “ Support vector machines for system identification,” in  
UKACC International Conf. on control, UK(1998)668-692. 



Global Convergence of FastICA: Theoretical
Analysis and Practical Considerations�

Gang Wang1,2, Xin Xu1,3, and Dewen Hu1,∗

1 College of Mechatronics and Automation,
National University of Defense Technology,

Changsha, Hunan, 410073, P.R.C.
2 Telecommunication Engineering Institute, Air Force Engineering University,

Xi’an, Shanxi, 710077, P.R.C.
3 School of Computer, National University of Defense Technology,

Changsha, Hunan, 410073, P.R.C.
dhu@nudt.edu.cn

Abstract. FastICA is now a popular algorithm for independent com-
ponent analysis (ICA) based on negentropy. However the convergence
of FastICA has not been comprehensively studied. This paper provides
the global convergence analysis of FastICA and some practical consid-
erations on algorithmic implementations. The exhaustive equilibria are
obtained from the iteration first. Then the global convergence property is
given on the 2-channel system with cubic nonlinearity function, and the
results can also be generalized to the multi-channel system. In addition,
two practical considerations, e.g. the convergence threshold for demixing
matrix and independence restriction for sources, are evaluated and the
influence on the separation solutions is illustrated respectively.

1 Introduction

As a class of data processing methods originated from blind signal separation,
independent component analysis (ICA) has been widely applied in blind source
separation (BSS) and feature extraction. For various algorithms of ICA, a fun-
damental problem both in theory and in practice is to ensure an arbitrary initial
demixing matrix or vector converge to the stable equilibrium [1,2]. And some
researches have been contributed, such as the global and local convergence anal-
ysis on the information-theoretic ICA [1], the stability of the general blind source
separation methods [2], and the monotonic convergence analysis for fixed-point
algorithm [3].

Apart from the cost function for the multi-unit algorithm and stochastic
(or natural) gradient optimization involved in the above literatures, FastICA
is essentially a one-unit algorithm of maximization nonGaussianity and an ap-
proximate Newton’s iteration approach [4,5,6]. Hyvärinen et al. elucidated the
derivation of FastICA and offered the local stable proof in [6]. Recently Liu et al.
discussed the availability of performing ICA in the proof of one-bite-matching
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conjecture in [7] where the cost function involved is negentropy with cubic non-
linearity, and in [8] the global convergence for the kurtosis-based FastICA with
circular distributed sources is addressed in ICA’s application in CDMA. So far
the general global convergence analysis or proof has not been provided. Here we
will investigate the important issue and provide the global convergence analysis
for equilibrium and stability for separation solution. Also two practical consid-
erations are illustrated to evaluate the influence of convergence threshold and
independence restriction on the separation solution respectively.

2 Preliminaries

FastICA is a fast fixed-point algorithm based on approximate negentropy [4].
The iteration for demixing vector w is as follows

w ← E{zg(wT z)} − E{g′(wT z)w}, w ← w/||w||, (1)

where z is the prewhitened form of mixture x, g(·) the differential of a certain
nonquadratic function G(·), and ”’” the differential symbol [5]. If g(·) is cubic
nonlinear, (1) is specialized as

w ← E{z(wT z)3} − 3w, w ← w/||w||. (2)

For the ambiguities of ICA and simplicity, sources are assumed of 0-mean
and 1-variance [7]. To investigate the relations between the restoration signals y
(y=Wx) and s, relation matrix Q (Q=WA) is introduced. And (1) and (2) can
be rewritten as (3) and (4) accordingly

q ← E{sg(qT s)} − E{g′(qT s)q}, q ← q/||q|| (3)

in which q = (q1, q2, · · ·, qn)T is an element in Q and

qi ← qi
3kurt(si), for i = 1, 2, · · ·, n, (4)

where kurt(si) denotes the standard kurtosis of si. Therefore the performance
investigation on w can be transformed to the q-parameter space.

3 Equilibrium and Global Convergence Analysis

3.1 Exhaustive Equilibria

From (1) the following result for the equilibrium is obtained directly.

Theorem 1. The fast fixed-point iteration (1) converges only when it satisfies

E{zg(w(k0)T z)} − E{g′(w(k0)T z)w(k0)} = cw(k0), (5)

where k0 is a certain positive integer, c nonzero constant, and w(k0) the equilib-
rium.
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Proof. Denote w̃(k0) = cw(k0), then (1) can be rewritten as

w(k0 + 1)← w̃(k0)
‖w̃(k0)‖

=
cw(k0)

‖cw(k0 + 1)‖ =
cw(k0)
|c|‖w(k0)‖

. (6)

For the unit-variance constrain on w(k), (6) can be expressed as

w(k0 + 1)← w(k0)
‖c‖ =

{
w(k), c > 0
−w(k), c < 0 . (7)

Formula (7) shows that w(k0) satisfies the convergence condition for demixing
vector defined in [4], and thus w(k0) is the equilibrium of (1). #

For the case of cubic nonlinear function, (6) can be simplified as

qi(k0 + 1) = cq3
i (k0)kurt(si), for 1 ≤ i ≤ n. (8)

Further researches show that the equilibria in (5) essentially correspond to the
extreme points of the constrained cost function L(q) = J(q)+λ(1−qT q) where λ
denotes the Lagrange factor, or directly those of J(q) in the q-parameter space.

3.2 Global Convergence Analysis

First focus on the global convergence on the 2-channel system with cubic non-
linear function. The exhaustive equilibria for q can be obtained from (8) directly
as solutions

A1-A4: (0,±1) and (±1, 0),
and when the condition of kurt(s1)kurt(s2) > 0 is satisfied, additional solutions

B1-B4:
(
±
√

kurt(s2)
kurt(s1)+kurt(s2) ,±

√
kurt(s1)

kurt(s1)+kurt(s2)

)
and

(
±
√

kurt(s2)
kurt(s1)+kurt(s2) ,∓

√
kurt(s1)

kurt(s1)+kurt(s2)

)
also exist.

For simplicity, first assume kurt(s1)kurt(s2) > 0 and then evaluate the global
convergence of q in the first quadrant. Denote α(i) = q1(i)/q2(i), for i = 0, 1, · · ·,
and the following equation can be obtained from (8)

α(k) =
q1(k)
q2(k)

=

(
α(0) ·

(
kurt(s1)
kurt(s2)

)1/2
)3k−1

. (9)

It means that

i) solution B1 corresponding to α(0) ·
(

kurt(s1)
kurt(s2)

)1/2

= 1 is the critical and
unstable point;

ii) when α(0) ·
(

kurt(s1)
kurt(s2)

)1/2

> 1, α(k) → ∞ and q(k) → (1, 0);

iii) while 0 < α(0) ·
(

kurt(s1)
kurt(s2)

)1/2

< 1, α(k) → 0, and q(k) → (0, 1).
Analogical analysises for the initialization on the unit circle show the stabil-

ity of solutions A1-A4 and B1-B4 are unstable equilibria. The relation between
initialization and the separation solutions is depicted in Fig.1. Line l1 and l2
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Fig. 1. Relation between initialization and equilibrium for q

separate the unit circle into four arcs as c1, c2, c3 and c4, and the initial points
in each of the four arcs would converge to the stable equilibria (1,0), (0,1), (-1,0)
and (0,-1) respectively.

In the case of kurt(s1)kurt(s2) < 0, solutions B1-B4 do not exist. The con-
vergence analysis is simplified and similar results can also be given.

For the m-channel system, the linear representation y = q1s1 + q2s2 + · · ·+
qmsm can be rewritten as y = q1s1+ q̂2ŝ2 in which q̂2ŝ2 = q2s2+···+qmsm. Thus
the convergence and stability analysis in the m-dimension can be implemented
in a new 2-dimension space since the basic assumptions, such as independence
and nonGaussianity, are also satisfied. Therefore the results on the 2-channel
system can also be naturally generalized to an m-channel case since s1 can be
arbitrarily substituted by any other element in s.

4 Two Practical Considerations

Despite of the outstanding performance, the classical ICA is really an idea model
and in most cases the basic restrictions cannot be strictly satisfied. Here two
illustrations are given to evaluate the influence on the separation solution and
convergence results when the some of idea assumptions are broken. The first is
about the convergence threshold and the second the independence assumption.

Example 1: The idea convergence condition that q(k+1) equals q(k) or −q(k)
is implemented by assuming a small positive convergence threshold ε. And when
‖q(k + 1) − q(k)‖2 < ε or ‖q(k + 1) + q(k)‖2 < ε the iteration stops. In a 2-
channel system, assume kurt(s1) = 1, kurt(s2) = 1.934, ε = 0.01 and initialize
q 2000 times uniformly sampled on the unit circle. Perform the iteration with
cubic nonlinear function. Fig.2 (a) shows the spurious equilibria for q, and the
detail around the spurious in the first quadrant is provided in Fig.2 (b). The star
symbols stand for spurious solutions and square symbols initial points, and all
the points are essentially around the theoretical unstable equilibrium B1 given
in section 3.2.

Analysises show that about 2 percents initial points convergence to the spu-
rious equilibria. While for the multi-channel system, the existence of spurious
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Fig. 2. (a). The influence on separation solution when ε = 0.01; (b). The detail around
the spurious in the first quadrant.
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Fig. 3. (a). Original sources s1 and s2; (b). Spurious independent components.

equilibrium cannot be neglected when more sources are to be recovered. In BSS
for a 20-channel system, the existence of spurious equilibrium is in the probabil-
ity about 1− (1− 0.02)20 ≈ 0.4.

Example 2: Two sources estimated by FastICA are introduced as Fig.3 (a), in
which s1 is a unit square signal and s2 quasi-sawtooth. It shows that they are
orthogonal but dependent since the corrcoef between s4

1 and s4
2 is 0.2207 but

not zero. Perform FastICA with nonlinear activation function g(x) = tan(x) on
x = As where mixing matrix A is randomly selected. The results show that q
may convergence to the point of (1,0) or (-1,0) corresponding to the source s1,
or to the spurious solutions of (0.3472,-0.9378) or (-0.3472,0.9378), and the the
corresponding spurious independent components are depicted in Fig.3 (b).

Denote f1 = ŷ = q1s1 + (1 − q2
1)

1/2s2 and f2 = ỹ = q1s1 − (1 − q2
1)

1/2s2.
Fig.4 depicts the function of kurt(ŷ) and kurt(ỹ) versus q1 respectively. Symbols
of point stand for the initialized points which would converge to (1,0) or (-1,0)
(symbols of circle), while symbols of star to (0.3472,-0.9378) or (-0.3472,0.9378)
(symbols of square).

The above two illustrations show the influence on the separation solution
when the idea assumptions are broken. By performing the fast fixed-point it-
eration original sources may be recovered in a certain probability, and spurious
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solutions cannot be excluded at all. Especially in BSS, we cannot ensure the inde-
pendence even orthogonality, thus whether the recovered signals are the original
sources should be doubted when little prior knowledge is available.

5 Conclusions

This paper investigates the global convergence of FastICA, and provides the
influence on the separation solution when some idea assumptions are broken.
Though ICA has been elucidated well in theory and demonstrated an efficient
method in various applications, the practical blind separation or extraction per-
formance is doubted for the severe restriction on basic model. Further researches
on the independence restriction are to be carried out.
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Abstract. In this paper, a support vector machine (SVM) with linear kernel 
function based nonparametric model identification and dynamic matrix control 
(SVM_DMC) technique is presented. First, a step response model involving 
manipulated variables is obtained via system identification by SVM with linear 
kernel function according to random test data or manufacturing data. Second, an 
explicit control law of a receding horizon quadric objective is gotten through 
the predictive control mechanism. Final, the approach is illustrated by a simula-
tion of a system with dead time delay. The results show that SVM_DMC tech-
nique has good performance in predictive control with good capability in keep-
ing reference trajectory. 

1   Introduction 

Model predictive control (MPC) was first developed in the 1970s. And MPC is an 
optimization-based control algorithm in which a dynamic process model is used to 
predict and optimize process performance. The most popular MPC techniques are 
Model Algorithmic Control (MAC) [1] and Dynamic Matrix Control (DMC) [2]. DMC 
is based a nonparametric model, whose coefficients can be obtained directly from unit 
step response test without assuming a model order. It is a fact that in practice carrying 
out a unit step response test is always high-cost and time-consuming. The goal of this 
paper introduces a new method based on SVM with linear kernel function to obtain 
system’s step response coefficients not by step response test data but manufacturing 
data or other test data.  For more detail about SVM, see reference [3].  

2   SVM Based Nonparametric Model with Step Response 
     Coefficients 

Assume system can be represented as follows: 

)]1(,,),1(),([ˆ))(ˆ)1(ˆ +−Δ−ΔΔ==+ NkukukufIfky km    (1) 

Where f̂ is a function with SVM architecture, )1(ˆ +kym is the output of SVM model. 

According to training data pair ),,1}(,{ dsyI ss = , )1( += syys generated from 
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manufacturing data or other test data, support values iα  and threshold β  can be 

gotten through learning. So the model predictive output at time k  is: 

βα +⋅=+
=

nsv

i
kiim IIky

1

' )()1(ˆ    (2) 

dnsv ≤ is the number of support vector, '
iI  is the support vector from sI . Where 

)1()()1()2()()1( '''' +−Δ++−Δ+Δ=⋅ NkuNIkuIkuIII iiiki  

So 

β++−Δ++−Δ+Δ=+ )1()1()()1(ˆ 21 Nkuwkuwkuwky Nm    (3) 

 

=
==

nsv

i
iii NiIw

1

' ,,1α : SVM based model step response coefficients 

3   SVM_DMC  

Assume MPN ≥≥ , P is the prediction horizon, M is control horizon. When Mj ≥ , 

assume control value after this time unchangeable. j -step-ahead predictive output is: 

β+−+Δ++−+Δ+−+Δ=+ )()2()1()(ˆ 21 Njkuwjkuwjkuwjky Nm    (4) 

    Reference trajectory is taken as  

=
−+=+

)()(

)1()()(

kyky

yakyajky

r

sp
j

r
j

rr   Pj ,2,1=    (5) 

 

ra : Tuning factor related with the control system’s robustness and convergence  

)( jkyr + : Reference value at sample time jk +  

 Introducing feedback correction, 

)()(ˆ)(ˆ kehjkyjky jmp ++=+   Pj ,2,1=    (6) 

)()()( kykyke m−= : Predictive model ’s output error at time k  

jh : Error correct coefficients.  

Let 
 

T
ppp Pkykykyk )](ˆ,),2(ˆ),1(ˆ[)1(ˆ +++=+pY

T
mmm Pkykykyk )](ˆ,),2(ˆ),1(ˆ[)1(ˆ +++=+mY  

T
rrr Pkykykyk )](,),2(),1([)1( +++=+rY  
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    Minimize the objective function with receding horizon 

)()()]1()1(ˆ[)]1()1(ˆ[)( kkkkkYkkJ TT URUYYQY rprp ΔΔ++−++−+=  (8) 

],.,[ 21 Pqqqdiag=Q  ],.,[ 21 Mrrrdiag=R  

    Take derivation of )(kUΔ , and set 0
)(

=
Δ∂

∂
k

J

U
, there is 

])()1()1([)()( 1 BhLYQRQU T −−−−++=Δ − kekkWWWk r
T  (9) 

    And only the first computed change in the manipulated variable is implemented. 

4   Simulation  

Consider a dead time delay system for which it is specified that 24=N  and sT 2=  
described as below [4]: 

)13)(110(
)(

6

++
=

−

ss

e
sG

s

 (10) 

Use a series of a series of uniform random numbers between [-1,1] to generate 200 
training data pairs. Select C =10000 and ε =0.01. Set 

9.0=spy 5=P , 2=M , ]1,1,1,1,1[diag=Q , 0R = , 9.0=ra  and assume system is 

zero initial state. 
    Figure 1 gives the results of system’s multi-step-ahead SVM_DMC. We can see 
system output can trace the reference trajectory well and quickly after the dead time. 
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Fig. 1. Result of SVM_DMC with 5=P  2=M  

5   Conclusions 

DMC provides a robust scheme which is directly applicable, and useful, in the field of 
industrial control. The algorithm introduced in this paper puts forward a new ap-
proach to obtain system’s impulse response coefficients without special step response 
test. According to manufacturing data, using SVM to identify system’s nonparametric 
model and do DMC is feasible.  
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Abstract. It is well-known that the major task of the SVM approach lies in the 
selection of its kernel. The quality of kernel will determine the quality of SVM 
classifier directly. However, the best choice of a kernel for a given problem 
is still an open research issue. This paper presents a novel method which 
learns SVM kernel by transforming it into a standard semi-definite program-
ming (SDP) problem and then solves this SDP problem using various existing 
methods. Experimental results are presented to prove that SVM with the kernel 
learned by our proposed method outperforms that with a single common kernel 
in terms of generalization power. 

1   Introduction 

In recent years, support vector machines (SVMs) have received considerable attention 
because of their superior performance in pattern recognition and function regression 
[1]. The basic principle of SVMs is to find an optimal separating hyperplane so as to 
separate two classes of patterns with maximal margin [1]. However, it is well-known 
that the major task of the SVM approach lies in the selection of its kernel. Choosing 
different kernel functions will produce different SVMs [2] and will result in different 
performances. The existing kernels include linear kernel, polynomial kernel, radial 
basis function kernel and many hybrid kernels [6]. Much work has been done on how 
to learn the SVM kernels, but the best choice of a kernel for a given problem is still an 
open research issue. In this paper, we will present a novel method to learn the SVM 
kernels. 

This paper is organized as follows: In Section 2, we briefly review the fundamen-
tals of SVM and Semi-Definite Programming. In Section 3, we illustrate how to learn 
the SVM kernel with Semi-Definite Programming. In Section 4, experimental results 
are presented to illustrate the proposed method in this paper. Finally, conclusions are 
given in Section 5. 

2   The Fundamentals of SVM and Semi-definite Programming 

In this section, we will concisely review the basic principles of SVM and Semi-
Definite Programming. For more details, the interested scholars can refer to [1], [4]. 
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Suppose we have some training examples },...,1),,{( liyx ii = . Each training ex-

ample d
i Rx ∈ , d being the dimension of the input space, belongs to a class labeled 

by ,1}1{−∈iy . The SVM approach can be considered to minimize the following 

quadratic programming (QP) problem: 
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    The optimal classification hyperplane can be solved as 

])),([()(
1

bxxKysignxf ii

l

i
i +=

=
α . (3) 

     If the kernel function K is determined, we can use various methods to solve the 
above QP problem and obtain the optimal classification hyperplane. 

Semi-definite programming [4] mainly deals with the optimization of convex func-

tions over the convex cone }0,|{ ≥=∈= × XXXRXP Tpp  of symmetric positive 

semi-definite matrices, or subsets of this cone. From [5] we know that every positive 
and symmetric matrix is a kernel matrix and conversely every kernel matrix is sym-
metric and positive definite. So the above convex cone P can be viewed as a search 
space for possible positive definite kernel matrices in this paper. We expect to specify 
a convex cost function that will enable us to learn the optimal SVM kernel matrix 
from P using semi-definite programming, Because of the convexity, this approach 
allows us to avoid problems with local minima. 

Semi-Definite Programming (SDP) can be defined as 

bAx

FxFxFxFts

xc

nn

T

x

=
≥+++= 0)(..

min

110 . 

 

(4) 

Where pRx ∈ and ppT
ii RFF ×∈= . 0)( ≥xF (called a linear matrix inequality, LMI) 

restricts )(xF to be contained in the positive semi-definite cone P .  Notice that the 

objective is linear in the unknowns x , and that both the LMI and the equality con-
straint are linear in x . 
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Many tools have been devised to solve SDP problems such as SeDuMi, SDPT3 
and so on. Once being transformed into a standard SDP problem, the learning prob-
lem of SVM kernel can be solved easily and efficiently. In next section, we will give 
the detailed transforming procedure.

3   Learning SVM Kernel Matrix with SDP 

The most important issue in combining the SDP and the learning of SVM kernel is 
how to transform the learning of SVM kernel into a standard SDP problem. Then we 
can use various existing tools such as SeDuMi to solve the SDP problem efficiently. 
Inspired by hard margin classification problem [5], we will give the detailed deriva-
tion of how to transform the learning problem of SVM kernel into a standard SDP 
problem. The only difference between our derivation and the derivation of hard mar-
gin classification problem is that it adds an extra constraint. 

In (2) if we consider K as variable too, it can be written as 

0,0:)(2max)( =≤≤−= yCKGeKW TTT ααααα
α

. (5) 

Where e  is the l-vector of ones, )(KG is defined by iijiij yyxxkKG ),()( = . 

    Then inspired by hard margin classification problem, the goal of learning the SVM 
kernel is to solve the following problem. 
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    In order to express (6) as a SDP, we write (6) as 
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(7) 

    Now we will transform (7) into a standard SDP problem. Firstly, we define the 
Lagrangian of the maximization problem (2) by 

αλαααααλα TTTTT yCuvKGeuvL 2)(22)(2),,,( +−++−= . (8) 

    At the optimum, we have 

)()(0 1 yuveKG
L λα
α

+−+==>=
∂
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    We obtain that for any t>0, the constraint tKW ≤)( is true and only if there exist 

0, ≥uv and λ such that 

tyuveKGyuve T ≤+−++−+ − )()()( 1 λλ . (10) 

or equivalently such that 



 Learning SVM Kernel with Semi-definite Programming 713 

 

0
)(

)(
≥

+−+
+−+

tyuve

yuveKG
Tλ

λ
. (11) 

holds. Stacking all constraints in one single LMI, (7) can be expressed as a standard 
SDP (4): 
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In practice, we commonly consider K as a linear combination ii

m

i
KK

=
=

1
μ  for a 

fixed set },,,{ 21 mKKK , for the consideration can reduce the complexity of space 

search. Now (12) can be written as 
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(13) 

    Thus the learning problem of SVM kernel is transformed into a standard SDP prob-
lem. In next section, we will give some experimental results to show the advantages 
of our method for learning SVM kernel. 

4   Experimental Results 

To illustrate our proposed method of the paper, we design some experiments to com-
pare the performances (classification margin and test error) of SVM learned by our 
proposed method and by commonly existing kernels, respectively. The commonly 

existing kernels include a polynomial kernel d
j

T
iji xxxxk )1(),(1 +=  for kernel ma-

trix 1K  , a RBF kernel )2/)()(exp(),( 2
2 σji

T
jiji xxxxxxk −−−= for kernel ma-

trix 2K  and a linear kernel j
T
iji xxxxk =),(3  for kernel matrix 3K . In order to reduce 

the complexity of space search, we use ii i KK
=

= 3

1
μ as initial “bad guesses” of the 

kernel matrix *K . The parameters d for 1K  and σ  for 2K  are determined in advance. 



714 S. Yang and S. Luo 

 

In experiment, two synthetic datasets and two standard benchmark datasets from 
the UCI repository are used. The two synthetic datasets are produced by a Gaussian 
random generator. The first one includes 500 two-dimension data points which can be 
classified into 2 classes and the second is made up of 500 data points which can be 
classified into 5 classes. The two benchmark datasets are breast cancer dataset and 
sonar dataset, respectively. The breast cancer dataset includes 286 instances which 
can be classified into 2 classes and the sonar dataset includes 208 instances which can 
be classified into 13 classes. We use the one-against-all method to construct the SVM 
multi-class classification [7] for the classification of the second and fourth datasets. 
Each dataset was randomly partitioned into 60% training and 40% test sets. We re-
peated the random partition 10 times on each dataset. The experimental results are 
summarized in Table 1 below. 

Table 1. Margin and test error rate(TER) for SVMs trained and tested with the initial kernel 

matrices 321 ,, KKK  and  with the optimal kernel matrix *K , learned using semi-definite 

programming (13). A dash means that no general margin classifier could be found. (N is the 
number of instances and C is the number of classes). 

1K                   2K                     3K                      *K  

Synthetic dataset 1    d=2   σ =0.5  N=500   C=2 
Margin                                0.112                  0.189                   0.132                   0.522 
TER                                    0.0%                   0.0%                    1.2%                   0.0% 

Synthetic dataset 2    d=2   σ =0.1  N=500   C=5 
Margin                                0.024                  0.108                       -                      0.289 
TER                                    4.5%                   7.5%                                               1.7% 

Breast cancer            d = 2 σ =0.5   N=286   C=2 
Margin                                0.009                  0.134                       -                     0.289 
TER                                    2.8%                   4.1%                                              1.7% 

Sonar                        d = 2 σ =0.1   N=208   C=13 
Margin                                0.036                  0.190                    0.005                0.355 
TER                                    7.5%                   9.4%                     10.6%               6.7% 

From Table 1, we can notice that not every iK  can construct a linearly separable 

classifier of the training data. The results really show us that the SVM using the ker-

nel *K  has better performance than these using any of the components iK . The better 

performance includes a larger margin and a smaller test error rate. We can also learn 
SVM kernel by using training examples as well as by using test examples, and it will 
produce better performance.  

5   Discussions 

In this paper we have proposed a novel method for learning a SVM kernel according 
to the given dataset, which learns a SVM kernel by transforming it into a standard 
Semi-Definite Programming (SDP) problem. This method is motivated by two facts. 
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The first fact is that every symmetric, positive definite matrix can be considered as a 
kernel matrix and vice versa. The second fact is that SDP mainly deals with the opti-
mization of convex cost functions over the convex cone of positive semi-definite 
matrices (or convex subsets of this cone). Combining the two facts, a powerful 
method for learning the SVM kernel with SDP is provided. Experimental results on 
synthetic datasets and standard benchmark datasets prove the power of our novel 
approach to SVM kernel learning. In fact, nearly all problems which can be solved by 
kernel methods can be transformed into a standard SDP problem, so that we can ob-
tain the most suitable kernel according to the corresponding problem by our proposed 
method. 
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Abstract. Based on KKT condition and Lagrangian multiplier method a 
weighted SVM regression model and its on-line training algorithm are 
developed. Standard SVM regression model processes every sample equally 
with the same error requirement, which is not suitable in the case that different 
sample has different contribution to the construction of the regression model. In 
the new weighted model, every training sample is given a weight coefficient to 
reflect the difference among samples. Moreover, standard online training 
algorithm couldn’t remove redundant samples effectively. A new method is 
presented to remove the redundant samples. Simulation with a benchmark 
problem shows that the new algorithm can quickly and accurately approximate 
nonlinear and time-varying functions with less computer memory needed. 

1   Introduction 

Support vector machine (SVM) [1] is a new machine learning method and has been 
used for classification, function regression, and time series prediction, etc [2-3]. 
Current SVM regression (SVR) training algorithms mostly are off-line, but several 
on-line SVR algorithms have been researched [4-5]. These on-line algorithms all 
consider every sample with the same importance to the construction of the SVR 
model. But in practical application, different sample has different importance. 
Moreover, current online algorithm can’t remove redundant samples effectively. This 
paper will introduce a weighted SVR online training algorithm. Then a valid 
algorithm based on weight coefficient is proposed to remove redundant samples. 
Simulation is used to evaluate the performance of the new training algorithm. 

2   Weighted SVM Regression Model 

SVM function regression can be expressed as: Given a training sample set: 

T= },2,1,,{ liyx ii = , N
i Rx ∈ and Ryi ∈ , a regression function can be construct: 

bxWxf T += )()(  (1) 
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on a feature space F. W is a vector in F, and )(x  maps the input x to a vector in F.W 

and b can be obtained by solving the following optimization problem: 
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where iρ is weight vector to sample ix . According to Lagrange Multipliers and 

Karush-Kuhn-Tucker conditions, training samples can be separated into three sets: 
The Error Support Vectors set E: })(,|{ ερθ ≥== iii xhCiE ; 

The Margin Support Vectors set S: })(,0|{ ερθ =<<= iii xhCiS ;          

The Remaining Support Vectors set R: })(,0|{ εθ ≤== ii xhiR  

(3) 

Definitions of coefficient difference iθ and margin function )( ixh see reference [5]. 

The border of set S and E is variable. It varies with the new sample added into 
training set. In sector 3 a simple method to update iρ is introduced. The main idea of 

the algorithm is that: when a sample cx is added to sample set, gradually change cθ  

and )( cxh  until cx enter into one of three sets, and during the process some other 

samples are updated from one of set S,R,E to another because they are influenced 
by cx .Formulae used in the algorithm see reference [5].  

3   Method of Removing a Redundant Sample 

For online SVM algorithm, the number of training sample increases with time, so we 
must remove redundant samples. Standard online SVM algorithm removes a 
redundant sample straightly after updating it into set R. Because some samples 
currently in set R may change into set S in future, it will bring error to SVM model. A 
new method is proposed here. Assume num_sp is max number of samples we wish to 
keep in training set, CxC ii ρ=)( , i is sample index according to the order they are 

added into training set and cur_i is the index of the sample added into training set 
currently. Then )( ixC  can be computed as: 

<−−−
=

else

num_spiicurifC
num_sp

iicurnum_sp
xC i

0

)_(
)_(

)(  (4) 

Whenever a new sample is added, cur_i changes. So )( ixC  will change accordingly. 

It can change some samples from set S into E if their iθ s are larger than or equal 

to )( ixC .Decremental algorithm processes this case. When )( ixC of sample ix  
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changes into 0, the value of iθ will be zero constantly. This means that sample ix will 

not influence the SVM model, so it can be removed from training set safely. 

4   Online Training Algorithm 

Weighted On-line SVM training algorithm includes two sub-algorithm: incremental 
and decremental algorithm. The detailed incremental algorithm is as following: 

1) Set cθ =0; If ε≤)( cxh , assign cx to set R, terminate. 

2) Increase or decrease cθ according to the sign of )( cxh− , update b, iθ , Si ∈ , and 

)( ixh , cREi ∈ , until cx enters into set S or E:  

If ε=)( cxh , then add cx into set S, terminate; 

If Cc =θ  or C− , then add cx  into set E, terminate; 

If some sample changes  from one of  set  R, S, E into another, update matrix R. 
3) Repeat step 2).   
The detailed decremental algorithm is as following: 
1) If Exc ∈ , remove it out of E; If Sxc ∈ , remove it out of S, update matrix R; 

2) Increase or decrease cθ according to the sign of )( cxh , update b, iθ , Si ∈ , and 

)( ixh , cREi ∈ , until cx enters into set E: 

If )( ic xC=θ , change cx into set E, terminate; 

If some sample changes from one of set R,S,E into another, update matrix R; 
3) Repeat step 2).     
The whole process of online training algorithm is as below: 
1) Construct a pair of new data },{ cc yx , use incremental algorithm to add it into 

training set, and ecompute )( ixC of all samples according to (4). 

2) For samples ix , if )(|| ii xC≥θ , use decremental algorithm to change it into set 

E, if 0)( =ixC , remove it out of training set. 

3) Update model (1),construct a new data },{ cc yx , and go to step 1). 

5   Simulation 

A benchmark nonlinear system [6] is described as:  

)(
)(1

)()001.01(
)1( 3

2
ku

ky

kyk
ky +

+
∗+=+  (5) 

Algorithm parameters are: 20=C , 0001.0=ε . Kernel function is RBF one.The 
algorithm runs 200 time step. Weighted vector is computed by (4). Sumulation results 
are shown in figure 1. We can see that on-line SVM regression algorithm can quickly 
approximate the system model with high precision. Also when system model varies, 
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on-line SVM regression can modify SVM model rapidly. For 200 training samples, 
average error between system output y and predicting output ym is: 

D= |))()(|
200

1 200

1
m

=

−
i

iyiy =0.003 8. (6) 

 
 

 
 
 
 
 
 
 
 

 
 

Fig. 1. Input (left) and output response (right) of weighted online algorithm 

6   Conclusion 

Weighted SVM regression algorithm improves modeling precision with every sample 
given a weight coefficient. The new algorithm removes any sample with a zero value 
of weight coefficient, which will construct a more smooth system model. The next 
work is to analyze generalization ability of the SVM model, and to research the 
convergence and the rate of convergence of the algorithm. 
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Abstract. An online gradient method for BP neural networks is pre-
sented and discussed. The input training examples are permuted stochas-
tically in each cycle of iteration. A monotonicity and a weak convergence
of deterministic nature for the method are proved.

1 Introduction

BP neural networks have wide applications (see e.g. [6], [9]). Our aim in this note
is to investigate the convergence of an online gradient method for the training
of the weights. We are concerned with a three layers BP neural network with
structure p− n− 1. The neural network is supplied with a given set of training
examples

{
ξj , Oj

}J

j=1
⊂ IRp× IR. Assume that g : IR → IR is a given activation

function of the hidden layer, and that f : IR → IR is a given activation function
of the output layer. We denote by V = (vij)n×p the weight matrix connecting
the input and the hidden layers, and write

vi = (vi1, vi2, · · · , vip)T , 1 ≤ i ≤ n.

The weight vector connecting the hidden and the output layers is denoted by

w = (w1, w2, · · · , wn)T .

We also define

G(x) = (g(x1), g(x2), · · · , g(xn))T , for x ∈ IRn,

and
ψj = G(V ξj), j = 1, · · · , J, (1.1a)
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ψm
j = G(V mξj), j = 1, · · · , J, m = 0, 1, · · · . (1.1b)

For an input training vector ξj , the output of the hidden neurons is ψj , and the
final output of the network is

ζj = f(w · ψj), j = 1, · · · , J. (1.2)

Let Ej(t) (t ∈ IR) denote an error function which is a certain kind of mea-
surement of the error Oj − ζj . A simple and popular choice is

Ej(w · ψj) =
1
2
(
Oj − ζj

)2
=

1
2
[
Oj − f(w · ψj)

]2
. (1.3)

The total error function usually is specified as

E(W ) =
J∑

j=1

Ej(w · ψj) =
J∑

j=1

Ej(
n∑

i=1

wig(vi · ξj)), (1.4)

where the weight matrix W = (w, V ).
The purpose of network learning is to obtain W ∗ such that

E(W ∗) = min E(W ). (1.5)

A often used method solving this kind of problem is the gradient method. The
engineering community often prefers using the so-called online gradient method
(OGM). For simplicity of analysis, we can choose the training examples in a fixed
order (OGM-F). We can also choose

{
ξj
}

in a special stochastic order (OGM-SS)
as follows: For each batch m = 0, 1, · · · , let

{
ξm1, ξm2, · · · , ξmJ

}
be a stochastic

permutation of the set
{
ξ1, ξ2, · · · , ξJ

}
. Starting from any initial guess W 0, we

proceed to refine it iteratively by the formula

wmJ+j = wmJ+j−1 +!m
j wmJ+j−1, (1.6a)

vmJ+j
i = vmJ+j−1

i +!m
j vmJ+j−1

i , (1.6b)

where

!m
j w = −ηmE′

mj(w · ψmj)ψmj , (1.7a)

!m
j vi = −ηmE′

mj(w · ψmj)wig
′(vi · ξmj)ξmj , (1.7b)

Emj(t) is the error function of the input example ξmj , and the learning rate ηm

changes its value after each cycle of training.
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2 Preliminary Lemmas

We will need the following assumptions in our discussions:

(B1) | g(k)(t)| ≤ C, k = 0, 1, 2, t ∈ IR;

(B2) Ej(t) ≥ 0, |E(k)
j (t)| ≤ C, k = 1, 2, 1 ≤ j ≤ J, t ∈ IR;

(B3)
∥∥wk

∥∥ ≤ C, k = 1, 2, · · · , where ‖·‖ is the Euclidean norm on IRn;

(B4) The learning rate { ηm} is given by

1
ηm

=
1

ηm−1
+ β, m = 1, 2, · · · , (2.1)

where the initial learning rate η0 and the parameter β are positive constants to
be specified later in (3.19) and (3.20) respectively.

For convenient notation, we introduce

wm
d = w(m+1)J − wmJ , (2.2)

vm
id = v

(m+1)J
i − vmJ

i , i = 1, 2, · · · , n, (2.3)

ψm
jd = ψ

(m+1)J
j − ψmJ

j , j = 1, 2, · · · , J. (2.4)

The proofs of Lemma 1-4 below are omitted because they can be proved
easily or be found in [5].

Lemma 1. Let { ηm} (m ≥ 1) be given in (2.1), then there holds

ηm =
η0

1 + mβη0
; (2.5)

τ

m
≤ ηm <

λ

m
, τ =

η0

1 + βη0
> 0, λ =

1
β

> 0; (2.6)

0 < ηm < ηm−1 ≤ 1; (2.7)
ηm+1

ηm
>

1
2
. (2.8)

Remark 1. When (3.20) below holds, we can simply choose τ in (2.6) as τ =
η0/2.

Lemma 2. Assume that an > 0, that
∑∞

n=1
a2

n

n converges, and that there exists
a positive constant μ such that

|an+1 − an| <
μ

n
,

then
lim

n→∞ an = 0.
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Lemma 3. Assume that an ≥ 0, bn > 0 and lim
n→∞

an

bn
= s, then for all positive

integer n, there exists a constant C > 0 such that

an < Cbn.

Lemma 4. Assume that Conditions (B1) is valid, then there holds∥∥ψm
j

∥∥ ≤ C; (2.9)∥∥ψm
jd

∥∥ ≤ C
n∑

i=1

‖vm
id‖ . (2.10)

3 Several Theorems on Error Functions

For k = 1, 2, let us write

∥∥∥∥∥∥
J∑

j=1

Δm
j wmJ

∥∥∥∥∥∥
k

= σm
k, 1,

n∑
i=1

∥∥∥∥∥∥
J∑

j=1

Δm
j vmJ

i

∥∥∥∥∥∥
k

= σm
k, 2,

J∑
j=1

∥∥Δm
j wmJ

∥∥k
= σm

k, 3,

n∑
i=1

J∑
j=1

∥∥Δm
j vmJ

i

∥∥k
= σm

k, 4.

The proofs to the following two theorems are straightforward and similar to
the corresponding results in [3], and thus are omitted.

Theorem 1. Assume that Conditions (B1)-(B3) are valid, then there exists a
positive constant γ independent of m and ηm such that

E
(
W (m+1)J

)
≤ E

(
WmJ

)
− 1

ηm

(
σm

2, 1 + σm
2, 2

)
+ γ

(
σm

2, 3 + σm
2, 4

)
. (3.1)

From (3.1) we know that for any integer m ≥ 0, if

1
ηm

(
σm

2, 1 + σm
2, 2

)
≥ γ

(
σm

2, 3 + σm
2, 4

)
, (3.2)

then
E
(
W (m+1)J

)
≤ E

(
WmJ

)
. (3.3)

Generally, the left-hand-side of (3.2) is greater than zero for m = 0. In this
case, we can always choose a small enough constant δ ∈ (0, 1) and require the
initial learning rate η0 to satisfy

0 < η0 < δ (3.4)

such that (3.2) holds. In the sequel, we want to prove (3.2) by an induction on
m. After doing that, the important estimate (3.3) will follow from (3.1).
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Theorem 2. Assume that Conditions (B1)-(B3) are valid. If (3.2) holds for an
integer m ≥ 0, then there exists a constant γ1 > 0 such that

max

⎧⎨⎩‖wm
d ‖

2 ,

(
n∑

i=1

‖vm
id‖
)2
⎫⎬⎭ ≤ γ1

(
σm

2, 1 + σm
2, 2

)
. (3.5)

Theorem 3. Assume that Conditions (B1)-(B4) are valid. If (3.2) holds for an
integer m ≥ 0, then we have

1
ηm+1

(
σm+1

2, 1 + σm+1
2, 2

)
≥ γ

(
σm+1

2, 3 + σm+1
2, 4

)
. (3.6)

Proof. Let ξ(m+1)j = ξmij (1 ≤ j ≤ J ), where {i1, i2, · · · , iJ} is a stochastic
permutation of the subscript set {1, 2, · · · , J}. According to (1.7a) and the mean
value theorem, we get

!m+1
j w(m+1)J =

ηm+1

ηm
!m

ij
wmJ − ηm+1E

′′
mij

(
tmij

) (
wm

d · ψ
(m+1)J
mij

)
ψmJ

mij

− ηm+1E
′′
mij

(
tmij

) (
wmJ · ψm

mijd

)
ψmJ

mij

− ηm+1E
′
mij

(
w(m+1)J · ψ(m+1)J

mij

)
ψm

mijd, (3.7)

where tmij is a value between wmJ · ψmJ
mij

and w(m+1)J · ψ(m+1)J
mij

.

From (3.7), (B2), (B3), (2.9), (2.10) and (2.7), we derive that

∥∥∥!m+1
j w(m+1)J

∥∥∥ ≤ ηm+1

ηm

∥∥∥!m
ij

wmJ
∥∥∥+ Cηm ‖wm

d ‖+ Cηm

n∑
i=1

‖vm
id‖ . (3.8)

This together with (2.7) gives∥∥∥!m+1
j w(m+1)J

∥∥∥2

≤
(

η2
m+1

η2
m

+ C1ηm

)∥∥∥!m
ij

wmJ
∥∥∥2

+ C1ηm

⎡⎣‖wm
d ‖

2 +

(
n∑

i=1

‖vm
id‖
)2
⎤⎦ , (3.9)

where C1 = max {2C, C(1 + 2C)}.

We conclude from (3.9) and (3.5) that

σm+1
2, 3 ≤

(
η2

m+1

η2
m

+ C2ηm

)
σm

2, 3 + C2ηmσm
2, 4, (3.10)

where γ1 is the constant that appears in Theorem 2, and C2 = (1 + 2γ1J
2)C1.
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Combining (3.7), (B2), (B3), (2.9), (2.10) with (2.7) gives

σm+1
1, 1 ≥ ηm+1

ηm
σm

1, 1 − C3ηm

(
‖wm

d ‖+
n∑

i=1

‖vm
id‖
)
. (3.11)

Note that for any nonnegative numbers x, y and z, if x ≥ y − z, then

x2 ≥ y2 − 2yz. (3.12)

Using (3.11), (3.12) and (3.5), we get

σm+1
2, 1 ≥

(
η2

m+1

η2
m

− C4ηm+1

)
σm

2, 1 − C4ηm+1σ
m
2, 2, (3.13)

where C4 = 2(1 + γ1)C3.
Similarly as (3.10) and (3.13), we have

σm+1
2, 4 ≤

(
η2

m+1

η2
m

+ C5ηm

)
σm

2, 4 + C5ηmσm
2, 3, (3.14)

σm+1
2, 2 ≥

(
η2

m+1

η2
m

− C6ηm+1

)
σm

2, 2 − C6ηm+1σ
m
2, 1. (3.15)

By (3.13) and (3.15)

1
ηm+1

(
σm+1

2, 1 + σm+1
2, 2

)
≥ 1

ηm+1

(
η2

m+1

η2
m

− C7ηm+1

)(
σm

2, 1 + σm
2, 2

)
, (3.16)

where C7 = max{2C4, 2C6}.
It follows from (3.10), (3.14) and (3.2) that

γ
(
σm+1

2, 3 + σm+1
2, 4

)
≤ 1

ηm

(
η2

m+1

η2
m

+ C8ηm

)(
σm

2, 1 + σm
2, 2

)
, (3.17)

where C8 = max{2C2, 2C5}.
Write

β0 = 4 (C7 + C8) , (3.18)

and choose η0 and β satisfying

0 < η0 < min{ 1
β0

, δ}, (3.19)

β0 ≤ β ≤ 1
η0
. (3.20)

When m = 0, according to (2.5), (3.20), (3.19) and (3.18), we have

β

(
η1

η0

)2

=
β

(1 + βη0)
2 ≥

β0

4
= C7 + C8.
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When m > 0, by (2.8), (3.20) and (3.18), we obtain

β

(
ηm+1

ηm

)2

≥ C7 + C8. (3.21)

So, (3.21) is valid for any nonnegative integer m.
By (2.1), we see that inequality (3.21) is equivalent to

1
ηm+1

(
η2

m+1

η2
m

− C7ηm+1

)
≥ 1

ηm

(
η2

m+1

η2
m

+ C8ηm

)
. (3.22)

Thus, from (3.16), (3.17) and (3.22) we can easily conclude (3.6). This completes
the proof. ��

Theorem 4. Assume that Conditions (B1)-(B4) are valid, then

∞∑
m=1

1
m

∥∥Ew

(
WmJ

)∥∥2
< ∞, (3.23)

∞∑
m=1

1
m

∥∥Evi

(
WmJ

)∥∥2
< ∞, i = 1, 2, · · · , n. (3.24)

Proof. Using an induction argument based on Theorem 3, we get

1
ηm

(
σm

2, 1 + σm
2, 2

)
− γ

(
σm

2, 3 + σm
2, 4

)
≥ 0, m = 1, 2, · · · . (3.25)

For any positive integer M , summing (3.25) over m = 1, 2, . . . , M , and combining
(3.1) with Condition (B2), we have

M∑
m=1

[
1

ηm

(
σm

2, 1 + σm
2, 2

)
− γ

(
σm

2, 3 + σm
2, 4

)]
≤ E

(
W J

)
. (3.26)

Let M → ∞, then

∞∑
m=1

[
1

ηm

(
σm

2, 1 + σm
2, 2

)
− γ

(
σm

2, 3 + σm
2, 4

)]
< ∞. (3.27)

According to (1.7a), (1.7b), (B1)-(B3), (2.9) and (2.6),

∞∑
m=1

γ
(
σm

2, 3 + σm
2, 4

)
< C

∞∑
m=1

η2
m < C1

∞∑
m=1

1
m2

< ∞.

So ∞∑
m=1

1
ηm

σm
2, k < ∞, k = 1, 2. (3.28)
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According to (1.4), (1.7a) and (1.7b), we obtain

Ew(W ) =
J∑

j=1

E′
mj(w · ψmj)ψmj = − 1

ηm

J∑
j=1

!m
j w, (3.29)

Evi(W ) =
J∑

j=1

E′
mj(w · ψmj)wig

′(vi · ξmj)ξmj = − 1
ηm

J∑
j=1

!m
j vi. (3.30)

From (2.6),
1

mηm
≤ 1

τ
. (3.31)

Using (3.29), (3.30), (3.31) and (3.28), we have that for i = 1, 2, · · · , n

∞∑
m=1

1
m

∥∥Ew

(
WmJ

)∥∥2
=

∞∑
m=1

1
mηm

(
1

ηm
σm

2, 1

)
≤ 1

τ

∞∑
m=1

1
ηm

σm
2, 1 < ∞,

∞∑
m=1

1
m

∥∥Evi

(
WmJ

)∥∥2 ≤
∞∑

m=1

1
mηm

(
1

ηm
σm

2, 2

)
≤ 1

τ

∞∑
m=1

1
ηm

σm
2, 2 < ∞.

This completes the proof. ��

4 The Main Results for OGM-SS

In this section, we present our two main results for OGM-SS.

Theorem 5. Assume that Conditions (B1)-(B4) are valid, then

E
(
W (m+1)J

)
≤ E

(
WmJ

)
, m = 1, 2, · · · . (4.1)

Proof. Inequality (4.1) is a direct consequence of (3.1) and (3.25). ��

Theorem 6. Assume that Conditions (B1)-(B4) are valid, then

lim
m→∞

∥∥Ew

(
WmJ+j

)∥∥ = 0, j = 1, 2, · · · , J, (4.2)

lim
m→∞

∥∥Evi

(
WmJ+j

)∥∥ = 0, j = 1, 2, · · · , J ; i = 1, 2, · · · , n. (4.3)

Proof. By (3.29), the expression of the Hessian matrixes Eww(W ) and Ewvi(W )
are

Eww(W ) =
J∑

j=1

E′′
mj(w · ψmj)ψmj (ψmj)

T
, (4.4)

Ewvi(W ) =
J∑

j=1

[
E′′

mj(w · ψmj)ψmj

(
wig

′(vi · ξmj)ξmj
)T
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+ E′
mj(w · ψmj)

(
0, · · · , g′(vi · ξmj), · · · , 0

)T (
ξmj

)T
]
. (4.5)

From (4.4), (4.5), (B1)-(B3) and (2.9), we obtain

‖Eww(W )‖ < C, (4.6)

‖Ewvi(W )‖ < C. (4.7)

Using (2.2), (1.6a), (1.7a) and (2.3), (1.6b), (1.7b), we have

wm
d = −ηm

J∑
j=1

E′
mj(w

mJ+j−1 · ψmJ+j−1
mj )ψmJ+j−1

mj , (4.8)

vm
id = −ηm

J∑
j=1

E′
mj(w

mJ+j−1 · ψmJ+j−1
mj )wmJ+j−1

i g′(vmJ+j−1
i · ξmj)ξmj . (4.9)

Thus, we conclude from (4.8), (4.9), (B1)-(B3), (2.9) and (2.6) that

‖wm
d ‖ <

C

m
, (4.10)

‖ vm
id‖ <

C

m
. (4.11)

Note that Eww (W ) and Ewvi (W ) are actually the Fréchet derivatives of the
nonlinear mapping Ew : IRn×(p+1) → IRn. So by Lemma 3, (4.10) and (4.11),
we derive∥∥∥∥∥Ew(W (m+1)J)− Ew(WmJ )− Eww(WmJ )wm

d −
n∑

i=1

Ewvi(W
mJ )vm

id

∥∥∥∥∥
= o

⎛⎝√√√√‖wm
d ‖

2 +
n∑

i=1

‖ vm
id‖

2

⎞⎠ < C

√√√√‖wm
d ‖

2 +
n∑

i=1

‖ vm
id‖

2
<

C1

m
. (4.12)

Therefore, we have by (4.12), (4.6), (4.7), (4.10) and (4.11) that∣∣∣∥∥∥Ew(W (m+1)J )
∥∥∥− ∥∥Ew(WmJ)

∥∥∣∣∣ ≤ ∥∥∥Ew(W (m+1)J )− Ew(WmJ)
∥∥∥

≤
∥∥∥∥∥Ew(W (m+1)J )− Ew(WmJ )− Eww(WmJ )wm

d −
n∑

i=1

Ewvi(W
mJ)vm

id

∥∥∥∥∥
+
∥∥Eww(WmJ )wm

d

∥∥+
n∑

i=1

∥∥Ewvi(W
mJ)vm

id

∥∥ <
C2

m
. (4.13)

According to Lemma 2, Theorem 4 and (4.13), we get

lim
m→∞

∥∥Ew(WmJ )
∥∥ = 0. (4.14)
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Similarly as (4.13), we have

∣∣∥∥Ew(WmJ+j)
∥∥− ∥∥Ew(WmJ)

∥∥∣∣ <
C3

m
, j = 1, 2, · · · , J. (4.15)

But ∥∥Ew(WmJ+j)
∥∥ <

∥∥Ew(WmJ)
∥∥+

C3

m
, (4.16)

so
lim

m→∞
∥∥Ew(WmJ+j)

∥∥ = 0, j = 1, 2, · · · , J.

We can similarly prove (4.3). This completes the proof. ��
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Abstract. In this paper, a new constructive algorithm for wavelet neu-
ral networks (WNN) is proposed. Employing the time-frequency local-
ization property of wavelet, the wavelet network is constructed from the
low resolution to the high resolution. At each resolution, a new wavelet
is initialized as a member of wavelet frames. The input weight freez-
ing technique is used and the Levenberg-Marquardt (LM) algorithm, a
quasi-Newton method, is used to train the new wavelet in the WNN.
After training, the new wavelet will be added to the wavelet network if
the reduction of the residual error between the desired output and WNN
output is greater than a threshold. The proposed algorithm is suitable
to situations when the wavelet library is very large. The simulations
demonstrate the effectiveness of the proposed approach.

1 Introduction

Wavelet transforms have emerged as a means of representing a function in a
manner which readily reveals properties of the function in localized regions of
the joint time-frequency space. The idea of using wavelets in neural networks
has been proposed in [2,3,4,12,13,15,18,22,23,24,25]. The application of wavelet
bases and wavelet frames are usually limited to problem of small dimension.
The main reason is that they are composed of regularly dilated and translated
wavelets. The number of wavelets in a truncated basis and frame drastically
increases with the dimension, therefore, constructing and storing wavelet bases
or frames of large dimension are of prohibitive cost [25].

Some research have been done on reducing the size of the WNN to handle
large dimensional problem. In [3], magnitude based method is used to eliminate
of wavelets with small coefficients. In [8], the residual based selection (RBS)
algorithm is used for the synthesis of wavelet networks. In [20], an approach
for on-line synthesis of wavelet network using recursive least square training
is proposed. A new wavelet will be added to the network when the training
error becomes stable. The whole network is trained after each new wavelet is
added. The optimal number of wavelets is determined by a Bayesian Informa-
tion Criteria(BIC)[16]. In [25], wavelet network is constructed by some selected
wavelets from a wavelet basis (or wavelet frame) by exploring the sparseness of

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 730–739, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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training data and using techniques in regression analysis, so that problems of
large dimension can be handled. The orthogonal least square (OLS) algorithm
is used to select the wavelets. The computational cost of these algorithms is
expensive when there are a number of wavelets in the wavelet library. In [21],
an orthogonalized residual based selection (ORBS) algorithm is proposed for
wavelet neural networks.

For feedforward neural networks, many research has been done on construc-
tive algorithms, which start with a minimal network and dynamically construct
the final network [9]. These algorithms include the dynamic node creation [1],
the cascade correlation algorithm [6], projection pursuit regression [7], resource-
allocating network [14] and the self-organizing neural network [19].

Wavelet neural network is a special class of feedforward neural network. The
most useful property of wavelet transform is the time-frequency localization. It
is shown in [5] that the denumerable family

W(α, β) := {α k
2 ψ(αkx− βl) : k, l ∈ ZZ}

constitutes a frame of L2(IR) for suitable choices of the parameters (α, β), where
α and β are the translation and dilation parameters. The translation simply shifts
the wavelet function on the time domain. The dilation means the resolution, that
is, the wavelet with larger (smaller) dilation can represent the higher (lower)
frequency component of the signal.

In this paper, a new constructive algorithm is proposed for the wavelet neu-
ral networks. Employing the time-frequency localization property of wavelet, the
wavelet network is constructed from the low resolution to the high resolution.
The dilation range can be determined according to the “band-width” of the func-
tion and the approximation accuracy. At each resolution, a wavelet with regularly
initialized translation parameters is trained until the local minimum is reached.
The input weight freezing technique is used and the Levenberg-Marquardt (LM)
algorithm is used to train the new wavelet in the WNN. It will be added to
the wavelet network if the reduction of the residual error between the desired
output and WNN output is greater than a threshold. The proposed algorithm is
suitable to situations when the wavelet library is very large.

2 Preliminaries

In [24], wavelet network is first introduced as a class of feedforward networks com-
posed of wavelets for approximating arbitrary nonlinear functions. The wavelet
network structure proposed in [24] is shown as follows:

g(x) =
ml∑
i=1

wiψ(DiRi(x + ti)) + g0, (1)

where x ∈ IRn, the translation parameter ti ∈ IRn, Ri ∈ IRn×n, i = 1, · · ·ml,
Di = diag{di}, di ∈ IRn

+, g0 ∈ IR, the wavelet function ψ : IRn → IR is multidi-
mensional, which can be chosen as tensor product of one dimensional wavelet or
radial wavelet.
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In [3,13,25], wavelet network is constructed by some selected wavelets from
a wavelet basis (or wavelet frame). The structure is shown as follows:

f(x) =
∑

j

∑
k

cj,kψj,k(x) =
J1∑

j=−J1

K1∑
k1=−K1

· · ·
Kn∑

kn=−Kn

cj,k1,···,knψj,k(x), (2)

where x ∈ IRn, k = [k1, · · · , kn] ∈ ZZn.
In [23], wavelet network is constructed by orthogonal scaling function accord-

ing to the theory of multiresolution analysis. The wavelet network structure is
shown as follows:

f(x) =
∑

k

ckϕM,k(x) =
K1∑

k1=−K1

· · ·
Kn∑

kn=−Kn

ck1,···,knϕM,k(x) (3)

where x ∈ IRn, k = [k1, · · · , kn] ∈ ZZn.
In [18,22], multiresolution neural networks composed of the scaling and

wavelet functions are constructed based on the multiresolution analysis theory
of orthonormal wavelets. The structure is shown as follows:

f(x) =
∑

k

cm,kϕm,k(x) +
∑

j

∑
k

dj,kψj,k(x)

=
∑

k

cm,kϕm,k(x) +
∑
j≥m

∑
k1

· · ·
∑
kn

dj,k1,···,knψj,k(x) (4)

where x ∈ IRn, k = [k1, · · · , kn] ∈ ZZn.
The WNNs in (2), (3) and (4) have the linear-in-parameters structures. In

practice, it is impossible to count infinite frame or basis terms in (2), (3) and (4).
However, arbitrary truncations may lead to large errors. In this paper, a con-
structive algorithm will be proposed for these linear-in-parameter WNN, which
can be described in an united form as follows:

f̂(x) =
M∑
i=1

wiψi(x) (5)

or in a compact form

f̂ = Φw (6)

where Φ = [ψ1, · · · , ψM ], ψi is the ith wavelet and/or scaling function, w =
[w1, · · · , wM ]T . M is the number of selected wavelet basis or frame.

In this paper, we assume that the WNN has only one linear output unit.
Extension to multiple output units is straightforward. For simplicity, wavelet
basis will be used hereafter for wavelet frame(non-orthogonal wavelet) or wavelet
basis (orthogonal wavelet).



A Constructive Algorithm for Wavelet Neural Networks 733

3 Orthogonalized Residual Based Constructive (ORBC)
Algorithm

For large dimensional problem, the number of the basis in the wavelet library
may be very large. The heavy computational cost may make the basis selection
algorithms in [8,21,25] not feasible in practice. In this section, a new constructive
algorithm is proposed for WNN, which starts with no wavelet in the WNN and
adds new wavelets with adjustable translation and fixed dilation. The process
stops until a satisfactory solution is found.

Now we describe the problems involved in the constructive algorithm.

A. Initialization:
In constructive algorithms for feedforward neural networks, there is no guideline
on how to initialize the new neuron, which is therefore randomly initialized. In
our constructive algorithm for the WNN, the dilation and translation parame-
ters of the new wavelet can be initialized as the member of a frame. The dilation
range can be determined according to the “band-width” of the function and the
approximation accuracy.

B. Computation complexity:
There are two training ways for constructive algorithms. A simple-minded ap-
proach is to train the whole network completely after the addition of each hidden
unit [17,20]. The exact computational requirement depends on the particular
nonlinear optimization algorithm used, but most algorithms will require heavy
computation when the number of the weights is large. The computational re-
quirement may not be a major concern at the early stage when the network
size is small, however, the network will eventually grow to such a size that com-
plete retraining will have serious scale-up problem, especially when more efficient
methods like Newton’s method are to be used. Another approach is to train only
the new hidden units[10,11]. The weights feeding into the hidden units already
existing in the network are kept fixed (input weight freezing), and only the
weights connected to the new hidden units and the output units will be trained.
The number of weights to be optimized, and the time and space requirements for
each iteration, can thus be greatly reduced. This input weight freezing technique
is also used in our constructive algorithm.

C. Training algorithm:
Instead of using standard backpropagation training algorithm, which is known
to have poor convergence rate, Levenberg-Marquardt (LM) algorithm, a quasi-
Newton method, is used to train the new wavelet in WNN. The LM algo-
rithm converges much faster than BP algorithm. A potential drawback of the
quasi-Newton method is that it requires the heavy computational cost and high
memory requirement. This limits the application of quasi-Newton methods to
small or medium size problems[17]. However, since we only need to train the
translation parameters of the new added neuron with fixed dilation parame-
ter, memory and computation intensive the problems of quasi-Newton meth-
ods are not so serious when applied to a construction algorithm for WNN. If
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tensor product is used to the multidimensional wavelet, that is, for x ∈ IRn,
ψ(x) := ψ(x1, x2, · · · , xn) =

∏n
i=1 ψ(xi), then for n dimensional problem, there

are only n translation parameters to be trained. Note also that with the con-
structive approach, not one, but a sequence of optimization problem instances
need to be solved. It is therefore imperative that a method with fast convergence
rate be used. In view of this, the Levenberg-Marquardt (LM) algorithm is chosen
for our wavelet network construction algorithm.

A WNN with i− 1 wavelets implements the function given by

ŷi−1(x) =
i−1∑
j=1

wjψj(x) (7)

where ψj(x) represents the function implemented by the jth wavelet. Moreover,
ri−1(x) = y(x) − ŷi−1(x) is the residual error function for the current network
with i− 1 wavelets. Addition of a new wavelet proceeds in two steps:
1) Input training: Find wi and ψi such that the resultant linear combination
of ψi with the current network, i.e., ŷi = ŷi−1 + wiψi, gives minimum residual
error.
2) Output training: Keeping ψ1, ψ2, · · · , ψi fixed, adjust the values of
w1, w2, · · · , wi so as to minimize the residual error. The output training is used
to ensure that the residual ri = y − ŷi remains orthogonal to the subspace
spanned by ψ1, ψ2, · · · , ψi. This minimization can be performed by computing
the pseudo-inverse or orthogonal parameter estimation method described later
in this section.

Suppose the dilation is in the range from d0 to d1, where d0 and d1 are inte-
gers which represent the minimum and maximum resolution level respectively.
For simplicity, assume that the dilations of all dimension for each wavelet are
equal, that is, di1 = · · · = din = di. At first stage, no wavelet is added to the
network. Let the dilation of the new wavelet d = d0, and the translation param-
eters Θ = [θ1, θ2, · · · , θn]T are regularly initialized as integer numbers. The LM
algorithm is then used to train the translation parameter to reduce the residual.
When the minimum is reached, check the reduction of the error function. If the
reduction of the residual error between the desired output and WNN output is
greater than a threshold, then add the wavelet to the network, otherwise, reini-
tialize and retrain a new wavelet at the current resolution. If no more wavelets
can be added to the network at the current resolution, increase the dilation by
one. If a wavelet is added to the network successfully, it is orthogonalized to
the previously selected wavelet to calculate the optimal weight. Then keep the
dilation unchanged and reinitialize and retrain a new wavelet. Since the new
wavelet is trained to minimize the residual, and the output training is used to
ensure that the residual remains orthogonal to the subspace spanned by the
existing wavelets, the proposed method is called orthogonalized residual based
constructive (ORBC) algorithm, which can be summarized as follows:
Given N pairs of training sample, {(x(1), y(1)}, {x(2), y(2)}, · · · , {x(N), y(N)}.
Set the desired output y = [y(1), y(2), · · · , y(N)]T .
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Step 1: Set the output of the WNN ŷ0 = 0, the residual r0 = y; the dilation
d = d0(minimum resolution); Set the number of wavelet i = 1.
Step 2: Input training. The translation parameters Θ = [θ1, θ2, · · · , θn]T are reg-
ularly initialized as integer numbers, where n is the dimension of the wavelet,
which equals to the input dimension of the WNN. Set

φ = [ψ(1), ψ(2), · · · , ψ(N)]T

where ψ(t) =
∏n

j=1 ψ(2dxj(t) + θj). Let

ŷi = ŷi−1 + wφ

ri = y − ŷi = ri−1 − wφ

with w = (φT φ)−1φT ri−1.
The best Θ may be selected to minimize the cost function

Vi(Θ) = rT
i ri = (ri−1 − wφ)T (ri−1 − wφ)

= rT
i−1ri−1 − (φT φ)−1(φT ri−1)2 (8)

The LM algorithm is used to solve the optimization problem in (8) to find the
Θ∗ where the minimum is reached.
Step 3: Output training. If Vi−1 − Vi(Θ∗) < λVi−1, the wavelet is rejected, go
to step 4; otherwise, Θ is accepted and set Ti := [ti1, · · · , tin]T = Θ∗, di := d
and φi := [ψi(1), · · · , ψi(N)], where ψi(t) =

∏n
j=1 ψ(2dixj(t) + tij). Then φi is

normalized as vi = φi/
√

φT
i φi. Suppose i − 1 wavelets have been obtained and

orthonormalized as q1, q2, · · · qi−1. The new obtained vi is orthogonalized to the
previous wavelet as follows:

pi = vi − ((vT
i q1)q1 + · · ·+ (vT

i qi−1)qi−1) (9)

qi = pi/
√

pT
i pi (10)

w̄i = qT
i y (11)

αii =
√

pT
i pi (12)

αki = vT
i qk (13)

and set

ŷi = ŷi−1 + w̄iqi

ri = ri−1 − w̄iqi

If rT
i ri < ε, the approximation accuracy is reached, go to step 6; Otherwise, set

i := i + 1.
Step 4: If there is no more wavelet can be added at the current resolution, go to
step 5; otherwise, go to step 2 to reinitialize and retrain a new wavelet at the
current resolution.
Step 5: Change the dilation parameter d := d+1, if d < d1(maximum resolution),
go to step 2; otherwise, go to step 6.
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Step 6: Set M := i(the number of wavelets). Compute

[w1, · · · , wM ]T = A−1[w̄1, · · · , w̄M ]T (14)

where A is an upper triangular matrix defined as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
α11 α12 · · · α1,M

0 α22 · · · α2,M

0 0
. . .

...
... · · · · · · αM−1,M

0 · · · 0 αMM

⎤⎥⎥⎥⎥⎥⎥⎦ , (15)

and its components αij are given in (12)-(13). Calculate the output of the WNN
ŷM as

ŷM =
M∑
i=1

wivi . (16)

4 Numerical Examples

Example 1: System identification
The plant to be identified is governed by the difference equation

y(i + 1) = f(y(i), u(i)) = 1.5y(i)/(1 + y2(i)) + 0.3 cos(y(i)) + 1.2u(i) (17)

The WNN is used to identify the system. The input and output of the WNN are
{y(i), u(i)} and ŷ(i + 1) respectively, that is

ŷ(i + 1) = f̂(y(i), u(i)) (18)

Three different wavelet basis selection algorithms are first used to construct
the WNN. Also N = 150 random training patterns with y(i) ∈ [−2, 2] and
u(i) ∈ [−1.5, 1.5] are used to train and construct the WNN. The wavelet function
is also taken as the “Gaussian-derivative”. The number of candidate wavelet in
the wavelet library W is 611.

The basis selection procedures are stopped when the mean square error (mse)
of the training data is less than ε = 1.0e− 3. The number of basis selected by
OLS, RBS and ORBS are 14, 24, 21 respectively; If ε = 1.0e− 4, the number of
basis selected by OLS, RBS and ORBS are 26, 160, 45 respectively, as shown in
Table 1.

Next, orthogonal residual based constructive algorithm is used to construct
the WNN to identify the system. The dilation range is [−3, 4]. There are 21
and 31 wavelets required to construct the WNN for approximation accuracy
ε = 1.0e− 3 and ε = 1.0e− 4 respectively.

After the WNNs are constructed, the input u in (19) is used to test the
identification performance of WNN. The mse for checking data are also shown
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Table 1. Comparison of the different constructive algorithms for Example 1

MSE of MSE of
Algorithms ε # of wavelets training data checking data

OLS 1.0e-3 14 9.8892e-4 2.2608e-3
RBS 1.0e-3 24 9.2959e-4 7.0420e-4

ORBS 1.0e-3 21 9.9685e-4 6.0685e-4
ORBC 1.0e-3 21 6.5134e-4 2.9840e-4
OLS 1.0e-4 26 8.6799e-5 7.3171e-4
RBS 1.0e-4 160 1.7136e-4 9.0593e-4

ORBS 1.0e-4 45 9.2801e-5 7.6161e-4
ORBC 1.0e-4 31 9.6805e-5 2.0160e-4

0 100 200 300 400 500 600 700 800
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1. The simulation result of ORBC algorithm for Example 1

in Table 1. It is obvious that the generalization performance of ORBC is better
than other algorithms. The outputs of the plant (solid line) as well as the WNN
(dashed line) are shown in Figure 1.

u(i) =
{

sin(2πi/250); for i ≤= 500
0.8 sin(2πi/250) + 0.2 sin(2πi/25); for 500 < i ≤ 800 (19)

Remark: Notice that in this two dimensional example, there are 611 regularly
dilated and translated wavelets in the wavelet library. From the basis selection
results, it can be seen that many of them are redundant and only a small part
of them are required. For large dimensional problems, the RBS, OLS and ORBS
algorithms are impractical to be implemented due to the huge number of can-
didate wavelets in the wavelet library. ORBC is suitable to large dimensional
problems since the input dimension has little effect on the new wavelet training
algorithm.
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5 Conclusion

In this paper, a constructive algorithm (ORBC) is proposed for wavelet neural
networks. A wavelet with regularly initialized translation parameters is trained
and added to the wavelet network to reduce the residual. Input weight freezing
is applied during the training process, and quasi-Newton algorithm is used to
train the translation parameter(s) of the new wavelet node. Since the input
dimension has little effect on the new wavelet training algorithm, the proposed
ORBC algorithm is suitable to large dimensional problems.

References

1. Ash, T.: Dynamic node creation in backpropagation networks. Connection Science
1 (1989) 365-375

2. Bernard, C.P., Slotine, J.J.E.: Adaptive control with multiresolution bases. Pro-
ceedings 36th CDC, San Diego, USA (1997) 3884-3889

3. Cannon, M., Slotine, J.J.E.: Space-frequency localized basis function networks for
nonlinear system estimation and control. Neurocomputing 9 (1995) 293-342

4. Chen, J., Bruns, D.D.: WaveARX Neural network development for system iden-
tification using a systematic design synthesis. Ind. Eng. Chem. Res. 34 (1995)
4420-4435

5. Daubechies, I.: Ten Lectures on Wavelets. Philadephia, PA: SIAM Press, (1992)
6. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. Ad-

vances in Neural Information Processing(2), D.S. Touretzky, (Ed.), San Mateo,
CA: Morgan Kaufmann, (1990) 524-532

7. Hwang, J.N., Lay, S.R., Maechler, M., Martin, D., Schimert,J.: Regression modeling
in backpropagation and project pursuit learning. IEEE Trans. on Neural Networks
5 (1994) 324-353

8. Kan, K.-C., Wong, K.-W.: Self-construction algorithm for synthesis of wavelet net-
works. Electronic Letters 34 (1998) 1953-1955

9. Kwok, T.-Y., Yeung, D.-Y.: Constructive algorithms for structuer learning in feed-
forward neural networks for regression problems. IEEE Trans. on Neural Networks
8 (1997) 630-645

10. Kwok, T.-Y., Yeung, D.-Y.: Objective functions for training new hidden units in
constructive neural networks. IEEE Trans. on Neural Networks 8 (1997) 1131-1148

11. Li, C.J., Kim, T.: A new feedforward neural network structural learning algo-
rithm:Augmentation by training with residuals. Journal of Dynamic Systems,
Measurement, and Control 117 (1995) 411-415

12. Mukherjee, S., Nayar, S.K.: Automatic generation of RBF networks using wavelets.
Pattern Recognition 29 (1996) 1369-1383

13. Pati, Y.C., Krishnaprasad, P.S.: Analysis and synthesis of feedforward neural net-
works using discrete affine wavelet transformation. IEEE Trans. on Neural Net-
works 4 (1993) 73-85

14. Platt, J.: A resource-allocating network for function interpolation. Neural Com-
putation 3 (1991) 213-225

15. Sanner, R.M., Slotine, J.J.E.: Structurally dynamic wavelet networks for adaptive
control of robotic systems. Int. J. Control 70 (1998) 405-421

16. Schwartz, G: Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464



A Constructive Algorithm for Wavelet Neural Networks 739

17. Setiono, R., Hui, L.C.K.: Use of a Quasi-Newton method in a feedforward neural
network construction algorithm. IEEE Trans. on Neural Networks 6 (1995) 273-
277

18. Sureshbabu, A. and Farrell, J.A.: Wavelet-based system identification for nonlinear
control. IEEE Trans. on Automatic Control 44 (1999) 412-417

19. Tenorio, M.F., Lee, W.T.: Self-organizing network for optimum supervised learning.
IEEE Trans. on Neural Networks 1 (1990) 100-110

20. Wong, K.-W., Leung, A. C.-S.: On-line successive synthesis of wavelet networks.
Neural Processing Letters 7 (1998) 91-100

21. Xu, J., Ho, D.W.C.: A basis selection algorithm for wavelet neural networks. Neu-
rocomputing 48 (2002) 681-689

22. Yang, Z.J., Sagara, S., Tsuji, T.: System impulse response identification using a
mutiresolution neural network. Automatica 33 (1997) 1345-1350

23. Zhang, J., Walter, G.G., Lee, W.N.W.: Wavelet neural networks for function learn-
ing. IEEE Trans. on Signal Processing 43 (1995) 1485-1497

24. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. on Neural Networks 3
(1992) 889-898

25. Zhang, Q.: Using wavelet wetwork in nonparametric estimation. IEEE Trans. on
Neural Networks 8 (1997) 227-236



Stochastic High-Order Hopfield Neural Networks

Yi Shen1, Guoying Zhao1, Minghui Jiang1, and Shigeng Hu2

1 Department of Control Science and Engineering,
Huazhong University of Science and Technology,

Wuhan, Hubei, 430074, China
2 Department of Mathematics,

Huazhong University of Science and Technology,
Wuhan, Hubei, 430074, China

Abstract. In 1984 Hopfield showed that the time evolution of a sym-
metric Hopfield neural networks are a motion in state space that seeks out
minima in the energy function (i.e., equilibrium point set of Hopfield neu-
ral networks). Because high-order Hopfield neural networks have more
extensive applications than Hopfield neural networks, and have been dis-
cussed on the convergence of the networks. In practice, a neural network
is often subject to environmental noise. It is therefore useful and inter-
esting to find out whether the high-order neural network system still
approacher some limit set under stochastic perturbation. In this paper,
we will give a number of useful bounds for the noise intensity under which
the stochastic high-order neural network will approach its limit set. Our
result cancels the requirement of symmetry of the connection weight ma-
trix and includes the classic result on Hopfield neural networks, which is
a special case of stochastic high-order Hopfield neural networks. In the
end, A example is given to verify the effective of our results.

1 Introduction

Much of the current interest in artificial networks stems not only from their
richness as a theoretical model of collective dynamics but also from the promise
they have shown as a practical tool for performing parallel computation [1].
Theoretical understanding of neural networks dynamics has advanced greatly in
the past fifteen years [1-11]. The neural networks proposed by Hopfield can be
described by an ordinary differential equation of the form

Ciẋi(t) = − 1
Ri

xi(t) +
n∑

j=1

Tijgj(xj(t)) + Ii, i = 1, 2, · · · , n. (1)

on t ≥ 0. The variable xi(t) represents the voltage on the input of the ith
neuron, and Ii is the external input current to the ith neuron. Each neuron
is characterized by an input capacitance Ci and a transfer function gj . The
connection matrix element Tij has a value +1/Rij when the non-inverting output
of the jth neuron is connected to the input of the ith neuron through a resistance
Rij , and a value−1/Rij when the inverting output of the jth neuron is connected

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 740–749, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to the input of the ith neuron through a resistance Rij . The parallel resistance
at the input of each neuron is defined by Ri = (

∑n
j=1 |Tij |)−1. The nonlinear

transfer function gi is sigmoidal function. By defining

bi =
1

CiRi
, aij =

Tij

Ci
, ci =

Ii

Ci
,

network (1) can be rewritten as

ẋi(t) = −bixi(t) +
n∑

j=1

aijgj(xj(t)) + ci, i = 1, 2, · · · , n. (2)

We mentioned above that the nonlinear transfer function gi(u) is sigmoidal,
saturation at ±1 with maximum slope at u = 0. To be more precise, let us state
the properties of gi below:

(1) gi(u) is strictly increasing, −1 < gi(u) < 1 and gi(0) = 0;
(2) ġi(u) increases on u < 0, reaches its maximum βi := ġi(0) at u = 0 and

then decreases on u > 0;
(3) g̈i(u) is bounded, g̈i(u) > 0 for u < 0, g̈i(0) = 0 and g̈i(u) < 0 for u > 0, ;
(4) gi(u) approaches its asymptotes ±1 very slowly such that∫ ±∞

0

uġi(u)du = ∞. (3)

Let us now define a C2-function U : Rn → R by

U(x) =
n∑

i=1

bi

∫ xi

0

uġi(u)du− 1
2

n∑
i,j=1

aijgi(xi)gj(xj)−
n∑

i=1

cigi(xi). (4)

Let x(t) be a solution to the symmetric network (2) (i.e., aij = aji, 1 ≤ i, j ≤ n).
It is easy to get

U̇(x(t)) = −
n∑

i=1

ġi(xi(t))(−bixi(t) +
n∑

j=1

aijgj(xj(t)) + ci)2. (5)

Recalling the fact that ġi(xi) > 0, we see that

U̇(x(t)) < 0, (6)

unless U̇(x(t)) = 0 iff −bixi(t) +
∑n

j=1 aijgj(xj(t)) + ci = 0 for all 1 ≤ i ≤ n.
Owing to the nonpositive property of U̇(x(t)), the solution to symmetric network
(2) will approach the set M0 (where M0 is called the equilibrium point set of
network (2)).

M0 := {x ∈ Rn : −bixi +
n∑

j=1

aijgj(xj) + ci = 0, 1 ≤ i ≤ n}. (7)
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This is the main result in Ref.[1].
If we consider second-order nonlinear interaction term, the network (2) be-

comes

ẋi(t) = −bixi(t) +
n∑

j=1

aijgj(xj(t)) +
n∑

j=1

n∑
k=1

dijkgj(xj(t))gk(xk(t)) + ci,

i = 1, 2, · · · , n. (8)

where dijk are the second-order connection weights, the definition of gi()̇ is seen
in the afore assumption. Network (8) is called the high-order Hopfield network
which have more extensive applications than the Hopfield network [2-7]. In [12],
we have proved that the asymmetric networks (8) converge to the equilibrium
set M1.

M1 := {x ∈ Rn : −bixi +
n∑

j=1

aijgj(xj) +

n∑
j=1

n∑
k=1

dijkgj(xj)gk(xk) + ci = 0, 1 ≤ i ≤ n}. (9)

However, network is often subject to environmental noise, then the stochastically
perturbed neural network is described by a stochastic differential equation

dxi(t) = [−bixi(t) +
n∑

j=1

aijgj(xj(t)) +
n∑

j=1

n∑
k=1

dijkgj(xj(t))gk(xk(t))

+ci]dt +
m∑

l=1

σil(x(t))dwl(t), i = 1, 2, · · · , n. (10)

Here w(t) = (w1(t), ..., wm(t))T is an m-dimensional Brownian motion defined on
a complete probability space (Ω, F, {Ft}t≥0, P ) with a natural filtration {Ft}t≥0

(i.e. Ft = σ{w(s) : 0 ≤ s ≤ t}), and σ : Rn −→ Rn×m, i.e. σ(x) = (σij(x))n×m

which is called the noise intensity matrix. The question is: does the solution of
the network (10) under stochastic perturbation still approach M1 or a different
limit set? The main aim of this paper is to give a positive answer. We will give
several bounds for the noise intensity matrix under which the solution of the
stochastic network will approach a limit set which is in general different from
M1. Throughout this paper we always assume that σ(x) is locally Lipschitz
continuous and satisfies the linear growth condition. It is therefore known ( Mao
[13]) that given any initial value x0 ∈ Rn, network (10) has a unique global
solution on t ≥ 0 and we denote the solution by x(t; x0).

For convenience, we always assume that the stochastic high-order networks
(10) satisfy the following condition (H).

(H) there exists a positive diagonal matrix P = diag(p1, · · · , pn) such that

piaij = pjaji, pidijk = pjdjik = pkdkji, ci ≥ 0, i, j, k = 1, 2, · · · , n,
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In the sequel, set

Fi(x) = −bixi +
n∑

j=1

aijgj(xj) +
n∑

j,k=1

dijkgj(xj)gk(xk) + ci. (11)

Meanwhile, define energy function by

V (x) =
n∑

i=1

pibi

∫ xi

0

uġi(u)du− 1
2

n∑
i,j=1

piaijgi(xi)gj(xj)

−1
3

n∑
i,j,k=1

pidijkgi(xi)gj(xj)gk(xk)−
n∑

i=1

picigi(xi). (12)

2 Stochastic High-Order Neural Networks

The diffusion operator L associated with the network (10) is defined by

L =
n∑

i=1

Fi(x)
∂

∂xi
+

1
2

n∑
i,j=1

(σσT (x))ij
∂2

∂xi∂xj
,

where (σσT (x))ij =
∑n

k=1 σikσjk, Fi(x) is defined as (11).
For the C2-function V defined by (12) and (H), we compute

∂V (x)
∂xi

= −piFi(x)ġi(xi),

∂2V (x)
∂x2

i

= −piFi(x)g̈i(xi), +pi[bi − aiiġi(xi)−
n∑

k=1

diik ġi(xi)gk(xk)

−
n∑

k=1

dikiġi(xi)gk(xk)]ġi(xi),

and if i �= j, then

∂2V (x)
∂xi∂xj

= −pi[aij ġj(xj) +
n∑

k=1

dijk ġj(xj)gk(xk) +
n∑

k=1

dikj ġj(xj)gk(xk)]ġi(xi).

Therefore,

LV (x) = −
n∑

i=1

piġi(xi)F 2
i (x)− 1

2

n∑
i,j=1

(σσT (x))ijpi[aij ġj(xj)

+
n∑

k=1

dijk ġj(xj)gk(xk) +
n∑

k=1

dikj ġj(xj)gk(xk)]ġi(xi)

+
1
2

n∑
i=1

(σσT (x))ii{−piFi(x)g̈i(xi) + piġi(xi)bi}. (13)
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In the case when there is no stochastic perturbation, i.e. σ = 0, we have pointed
out in section 1 and Ref [12] that LV ≤ 0 and the solution to the network
will approach the set M1 = {x ∈ Rn : LV (x) = 0}. The question is: does
the stochastic perturbation change this property? It does, of course, for some
type of stochastic perturbation, but it may still preserve the property for a
certain class of stochastic perturbation. For example, recalling the property that
xig̈i(xi) ≤ 0, xi ∈ R, 1 ≤ i ≤ n. and the boundedness of g̈i, ġi and gi, we
observe that the sum of the second and third terms on the right-hand side of
(13) is bounded by h|σ(x)|2 for some constant h > 0. Hence

LV (x) ≤ −
n∑

i=1

piġi(xi)F 2
i (x) + h|σ(x)|2.

If σ(x) is sufficiently small, for instance

|σ(x)|2 ≤ 1
h

n∑
i=1

piġi(xi)F 2
i (x).

we should have LV (x) ≤ 0. In this case, does the solution to the network still
approach the set {x ∈ Rn : LV (x) = 0} ? The following theorem describes the
situation.

Theorem 2.1. Assume that the condition (H) is satisfied, if LV (x) ≤ 0 for all
x ∈ Rn, and define

M = {x ∈ Rn : LV (x) = 0 and Hl(x) = 0, 1 ≤ l ≤ m} (14)

where

Hl(x) = −
n∑

i=1

piσil(x)ġi(xi)Fi(x) (15)

then

(A1)

M �= ∅. (16)

(A2) Define d(x; M) = min{|x− y| : y ∈ M}, i.e., the distance between x ∈ Rn

and the set M. Then for any initial value x0 ∈ Rn, the solution x(t; x0)of
network (10) has the property that

lim inf
t→∞ d(x(t; x0); M) = 0, a.s. (17)

that is, almost every sample path of the solution to the network will visit
the neighborhood of M infinitely many times.
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(A3) If for any x ∈M, there is a neighborhood Γx of x in Rn such that

V (y) �= V (x) for y ∈ Γx y �= x, (18)

then for any initial value x0 ∈ Rn, the solution x(t; x0) of network (10) has
the property that

lim
t→∞x(t; x0) ∈M, a.s. (19)

that is, almost every sample path of the solution to the network will converge
to a point in M.

The proof of theorem 2.1 is omitted due to the restriction of the space.
However, the following key lemma 2.2 is required in the proof of the theorem
2.1.

Lemma 2.2. If LV (x) ≤ 0 holds, then for any initial value x0 ∈ Rn, the solution
of the network (10) has the properties that

− μ ≤ lim
t→∞V (x(t; x0)) < ∞, a.s. (20)

and ∫ ∞

0

[−LV (x(t; x0)) +
m∑

l=1

H2
l (x(t; x0))]dt < ∞, a.s. (21)

where H2
l (x) have been defined by (15) above and

μ =
1
2

n∑
i,j=1

pi|aij |+
1
3

n∑
i,j,k=1

pi|dijk |+
n∑

i=1

pici.

The proof is omitted here.

3 Conditions for LV ≤ 0

Theorem 2.1 shows that as long as LV ≤ 0, the nonempty set M exists and the
solutions of the neural network under stochastic perturbation will approach this
set with probability 1 if the additional condition (18) is satisfied. It is therefore
useful to know how large stochastic perturbation the neural network can tolerate
without losing the property of LV (x) ≤ 0. Although we pointed out in the
previous section that there is some h > 0 such that

LV (x) ≤ −
n∑

i=1

piġi(xi)F 2
i (x) + h|σ(x)|2.

we did not estimate the h. If we know more precisely about h, we can estimate
the noise intensity, for instance,

|σ(x)2 ≤ 1
h

n∑
i=1

piġi(xi)F 2
i (x).

to guarantee LV ≤ 0.
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In section 1 we have listed the properties of functions gi. Let us now introduce

γi = max{|g̈i(xi)| : 0 ∧ (
−αi + ci

bi
) ≤ xi ≤

αi + ci

bi
}, 1 ≤ i ≤ n. (22)

where αi =
∑n

j=1 |aij |+
∑n

j,k=1 |dijk|. The following lemma explains why γi are
defined in the way above.

Lemma 3.1. We always have

− g̈i(xi)Fi(x) ≤ (αi + ci)γi, 1 ≤ i ≤ n,

for all xi ∈ R, here, Fi(x) is defined as (11). The proof is omitted here.

Theorem 3.2. If

1
2
|σ(x)|2{ max

1≤i≤n
[pi(αi + ci)γi + pibiġi(xi)− λmin(PA)|ġi(xi)|2] + dn2}

≤
n∑

i=1

piġi(xi)F 2
i (x),

where d = maxi,j,k pi|dijk + dikj |βiβj , A = (aij)n×n, then LV (x) ≤ 0. The proof
is omitted here.

In the case when λmin(PA) ≥ 0 we may use the following easier criterion for
LV (x) ≤ 0.

Corollary 3.3. If PA is a symmetric nonnegative-definite matrix and

|σ(x)|2 ≤ 2
h

n∑
i=1

piġi(xi)F 2
i (x).

holds for all x ∈ Rn, where

h = max
1≤i≤n

[pi(αi + ci)γi + pibiβi] + dn2. (23)

here, d = max1≤i,j,k≤n pi|dijk + dikj |βiβj , then LV (x) ≤ 0. (Recall that βi =
ġi(0) which was defined in section 1.)

In the case when λmin(PA) < 0 we may also have the following easier criterion
for LV (x) ≤ 0.

Corollary 3.4. If λmin(PA) < 0 and

|σ(x)|2 ≤ 2
h̄

n∑
i=1

piġi(xi)F 2
i (x).

holds for all x ∈ Rn, where

h̄ = max
1≤i≤n

[pi(αi + ci)γi + pibiβi + |λmin(PA)|β2
i ] + dn2. (24)

here, d = max1≤i,j,k≤n pi|dijk + dikj |βiβj , then LV (x) ≤ 0.
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4 Example

In this section, an examples will be given to show the validity of our results. we
let the number of neurons be two in order to make the calculations relatively
easier but the theory of this paper is illustrated clearly. In what follows we will
also let w(·) be a one-dimensional Brownian motion.

Example1. Consider a two-dimensional stochastic neural network

dxi(t) = [−bixi(t) +
2∑

j=1

aijgj(xj(t)) +
2∑

j=1

2∑
k=1

dijkgj(xj(t))gk(xk(t))

+ci]dt +
2∑

k=1

σi(x)dw(t), i = 1, 2. (25)

where b1 = 3, b2 = 4, a11 = a12 = 2, a21 = a22 = 1, c1 = c2 = 0, d111 =
d122 = 1, d112 = d121 = −1, d211 = − 1

2 , d222 = 1, d212 = d221 = 1
2 , gi(xi) =

2
π arctan(xi), i = 1, 2, and σ(x) is locally Lipschitz continuous and bounded.
Compute

ġi(u) =
2

π(1 + u2)
and g̈i(u) = − 4u

π(1 + u2)2
, i = 1, 2.

Clearly,

βi =
2
π

and
∫ ±∞

0

uġi(u) = ∞, i = 1, 2.

Moreover, by definition γi (see (22)), we have γi = 3
√

3
4π , i = 1, 2. Since |g̈i(u)|

reaches the maximum at u = ± 1√
3
. Noting that PA is nonnegative-definite, and

taking p1 = 1, p2 = 2, we may apply corollary 3.3 compute by (23)

h = max
1≤i≤2

[pi(αi + ci)γi + biβipi] + dn2 =
9
√

3 + 16
π

+
64
π2
.

Therefore, if

σ2
1(x) + σ2

2(x) ≤ 2
h

2∑
i=1

piġi(xi)F 2
i (x), (26)

where Fi(x) is defined as (11). then LV (x) ≤ 0. The right-hand side of (26)gives
a bound for the noise intensity. As long as smaller than the bound, by theorem
2.1, there is a nonempty set M such path of the solution of network (25) will
visit the neighborhood of infinitely many times. It is therefore easy to see that
the set M defined (14) is contained by the following set: K0 = {x ∈ R2 : Fi(x) =
0, 1 ≤ i ≤ 2}.

It is not difficult to show that K0 = (0, 0)T , i.e. K0 contains only one point
in R2. Since M is nonempty and M ⊆ K0, we must have M = K0 = (0, 0)T . It is
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not difficult to show that (0, 0)T is the unique minimum point of energy function
V (x) in this example (i.e., it is the unique equilibrium of the network (25)). We
can therefore conclude by theorem 2.1 that all of the solutions of network (25)
will tend to (0, 0)T with probability 1 as long as (26) is satisfied. Note that this
conclusion is independent of the form of the noise intensity matrix σ(x) but only
requires that the norm of σ(x) be bounded by the right-hand side of (26). In
other words, we obtain a robustness property of the neural network.

5 Concluding Remarks

To close our paper, let us have some further discussions on the way in which
noise is introduced into the high-order Hopfield network. It is known that noise
has been introduced into the high-order Hopfield network so that the network
can avoid getting trapped into a local minima and hence the time evolution of
the network is a motion in state space that seeks out its global minima in the
system energy function. In such the high-order stochastic Hopfield network, the
units are stochastic and the degree is determined by a temperature analogue
parameter. The stochastic units are actually introduced to mimic the variable
strength with which real neurons fire, delays in synapses and random fluctuations
from the release of transmitters in discrete vesicles. By including stochastic units
it becomes possible with a simulated annealing technique to try and avoid getting
trapped into local minima. By making use of a mean-field approximation the
Hopfield network again evolves into a deterministic version, and one can then
instead apply mean-field annealing to try and avoid local minima. In the present
paper, the introduced high-order Hopfield network is that with continuous-valued
transfer functions, but with added terms corresponding to environmental noise.
The noise here is not that which is added into the network on purpose to avoid
local minima as mentioned above, but it is the environmental noise which the
network cannot avoid. Our contribution here is to present some interesting results
on the amount of noise that can be tolerated in the high-order Hopfield neural
network while still preserving its limit set or experiencing at least another limit
set.
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Abstract. As a special type of Self-Organizing Maps, the Dynamic Cell Struc-
tures (DCS) network has topology-preserving adaptive learning capabilities that
can, in theory, respond and learn to abstract from a much wider variety of com-
plex data manifolds. However, the highly complex learning algorithm and non-
linearity behind the dynamic learning pattern pose serious challenge to validating
the prediction performance of DCS and impede its spread in control applications,
safety-critical systems in particular.

In this paper, we improve the performance of DCS networks by providing
confidence measures on DCS predictions. We present the validity index, an esti-
mated confidence interval associated with each DCS output, as a reliability-like
measure of the network’s prediction performance. Our experiments using artifi-
cial data and a case study on a flight control application demonstrate an effec-
tive validation scheme of DCS networks to achieve better prediction performance
with quantified confidence measures.

1 Introduction

Often viewed as black box tools, neural network models have a proven track of record of
successful applications in various fields. In safety-critical systems such as flight control,
neural networks are adopted as a popular soft-computing paradigm to carry out the
adaptive learning. The appeal of including neural networks in these systems is in their
ability to cope with a changing environment. Unfortunately, the validation of neural
networks is particularly challenging due to their complexity and nonlinearity and thus
reliable prediction performance of such models is hard to assure. The uncertainties (low
confidence levels) existed in the neural network predictions need to be well analyzed
and measured during system operation. In essence, a reliable neural network model
should provide not only predictions, but also confidence measures of its predictions.

The Dynamic Cell Structures (DCS) network is derived as a dynamically grow-
ing structure in order to achieve better adaptability. DCS is proven to have topology-
preserving adaptive learning capabilities that can respond and learn to abstract from a
much wider variety of complex data manifolds [1,2]. The structural flexibility of DCS

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 750–759, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Predicting with Confidence - An Improved Dynamic Cell Structure 751

network has gained it a good reputation of adapting faster and better to a new region. A
typical application of DCS is the NASA Intelligent Flight Control System (IFCS). DCS
is employed in IFCS as online adaptive learner and provides derivative corrections as
control adjustments during system operation. Within this application, it has been proven
to outperform Radial Basis Function (RBF) and Multi-Layer Perceptron network mod-
els [3]. As a crucial component of a safety critical system, DCS network is expected to
give robust and reliable prediction performance in operational domains.

Our research focuses on validating and improving the prediction performance of
DCS network by investigating the confidence for DCS outputs. We present the Valid-
ity Index, as a measure of accuracy imposed on each DCS prediction. Each validity
index reflects the confidence level on that particular output. The proposed method is
inspired by J. Leonard’s paper on the validation of Radial Basis Function (RBF) neural
networks [4]. Leonard developed a reliability-like measure called validity index which
statistically evaluates each network output. Different from the pre-defined static RBF
network structure, the DCS progressively adjusts (grows/prunes) its structure including
locations of neurons and connections between them to adapt to the current learning data.
Thus, unbiased estimation of confidence interval is impossible to obtain through S-fold
cross-validation due to constraints of time and space. Yet, DCS emphasizes topological
representation of the data, while RBF does not. By the end of DCS learning, the data
domain is divided into Voronoi regions. Every region has a neuron as its centroid. The
“locality” of DCS learning is such that the output is determined by only two particular
neurons, the best matching unit and the second best matching unit. Intuitively, if the
Voronoi region of a neuron does not contain sufficient data, it is expected that the accu-
racy in that region will be poor. Based on the “local error” computed for each neuron,
our approach provides an estimated confidence interval, called the Validity Index for
DCS outputs.

The paper is organized as follows. The architecture of DCS network and its learning
algorithm are described in Section 2. The concept of validity index and its statistical
computation are presented in detail in Section 3. In Section 4, we further illustrate the
validity index in DCS networks by presenting the experimental results using an artificial
data set. Section 5 describes a case study on a real-world control application, the IFCS,
and presents experimental results on the validity index in DCS using flight simulation
data. In the end, conclusions are discussed in Section 6.

2 The Dynamic Cell Structures

The Dynamic Cell Structure (DCS) network can be seen as a special case of Self-
Organizing Map (SOM) structures. The SOM is introduced by Kohonen [5] and further
improved to offer topology-preserving adaptive learning capabilities that can, in theory,
respond and learn to abstract from a much wider variety of complex data-manifolds.
The DCS network adopts the self-organizing structure and dynamically evolves with
respect to the learning data. It approximates the function that maps the input space. At
last, the input space is divided into different regions, referred to as the Voronoi regions
[1,2,6]. Each Voronoi region is represented by its centroid, a neuron associated with
its reference vector known as the “best matching unit (BMU)”. Further, a “second best
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matching unit (SBU)” is defined as the neuron whose reference vector is the second
closest to a particular input. Euclidean distance metric is adopted for finding both units.
The set of neurons connected to the BMU are considered its neighbors and denoted by
NBR.

The training algorithm of the DCS network combines the competitive Hebbian
learning rule and the Kohonen learning rule. The competitive Hebbian learning rule
is used to adjust the connection strength between two neurons. It induces a Delaunay
Triangulation into the network by preserving the neighborhood structure of the feature
manifold. Denoted by Cij(t), the connection between neuron i and neuron j at time t
is updated as follows:

Cij(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 (i = BMU) ∧ (j = SBU)
0 (i = BMU) ∧ (Cij < θ)

∧(j ∈ NBR \ {SBU})
αCij(t) (i = BMU) ∧ (Cij ≥ θ)

∧(j ∈ NBR \ {SBU})
Cij(t) (i, j �= BMU)

where α is a predefined forgetting constant and θ is a threshold preset for dropping
connections.

The Kohonen learning rule is used to adjust the weight representations of the neu-
rons which are activated based on the best-matching methods during the learning. Over
every training cycle, let Δwi = wi(t+1)−wi(t) represent the adjustment of the refer-
ence vector needed for neuron i, the Kohonen learning rule followed in DCS computes
Δwi as follows.

Δwi =

⎧⎨⎩
εBMU (m − wi(t)) (i = BMU)
εNBR(m−wi(t)) (i ∈ NBR)

0 (i �= BMU) ∧ (i /∈ NBR)

where m is the desired output, and 0 < εBMU , εNBR < 1 are predefined constants
known as the learning rates that define the momentum of the update process. For ev-
ery particular input, the DCS learning algorithm applies the competitive Hebbian rule
before any other adjustment to ensure that the SBU is a member of NBR for further
structural updates.

The DCS learning algorithm is diplayed in Figure 1. According to the algorithm,
N is the number of training examples. Resource values are computed at each epoch
as local error measurements associated with each neuron. They are used to determine
the sum of squared error of the whole network. Starting initially from two connected
neurons randomly selected from the training set, the DCS learning continues adjusting
its topologically representative structure until the stopping criterion is met. The adapta-
tion of lateral connections and weights of neurons are updated by the aforementioned
Hebbian learning rule and Kohonen learning rule, respectively. The resource values of
the neurons are updated using the quantization vector. In the final step of an iteration,
the local error is reduced by inserting new neuron(s) in certain area(s) of the input space
where the errors are large. The whole neural network is constructed in a dynamic way
such that in the end of each learning epoch, the insertion or pruning of a neuron can be
triggered if necessary.
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Fig. 1. A brief description of the DCS learning algorithm

It should be noted that while the DCS network is used for prediction, the computa-
tion of output is different from that during training. When DCS is in recall, the output
is computed based on two neurons for a particular input. One is the BMU of the input;
the other is the closest neighbor of the BMU other than the SBU of the input. In the
absence of neighboring neurons of the BMU, the output value is calculated using the
BMU only.

3 The Validity Index in DCS Networks

As a V&V method, validity check is usually performed through the aide of software
tools or manually to to verify the correctness of system functionality and the confor-
mance of system performance to pre-determined standards. The validity index proposed
by J. Leonard [4] is a reliability-like measure provided for further validity checking. Va-
lidity index is a confidence interval associated with each output predicted by the neural
network. Since a poorly fitted region will result in lower accuracy, it should be reflected
by poor validity index and later captured through validity checking.

Given a testing input, the validity index in DCS networks is defined as an estimated
confidence interval with respect to the DCS output. It can be used to model the accuracy
of the DCS network fitting. Based on the primary rules of DCS learning and certain
properties of final network structure, we employ the same statistical definition as for
confidence intervals and variances for a random variable to calculate the validity index
in DCS. The computation of a validity index for a given input x consists of two steps: 1)
compute the local error associated with each neuron, and 2) estimate the standard error
of the DCS output for x using information obtained from step 1). The detail description
of these two steps are as follows.
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1. The final form of DCS network structure is represented by neurons as centroids of
Voronoi regions. Since the selection of the best matching unit must be unique, only
those data points whose BMU are the same will be contained in the same region.
Therefore, all Voronoi regions are non-overlapping and cover the entire learned
domain. The data points inside each region significantly affect the local fitting ac-
curacy. The local estimate of variance of the network residual in a particular region
can be calculated over these data points contained in the region and then be associ-
ated with its representative neuron. More specifically, the local estimate of variance
s2i associated with neuron i can be computed as:

s2i =
1

(ni − 1)

ni∑
k=1

Ek,

where ni is the number of data points covered by neuron i and Ek is the residual
returned from the DCS recall function for data point k.
In Section 3, we show that the adjustment by competitive Hebbian learning rule
concerns connections only between the BMU and its neighbors. The further update
of weight values by Kohonen learning rule is performed only on the BMU and its
neighbors as well. Consequently, training data points covered by the neighboring
neurons of neuron i make proportional contributions to the local error of neuron i.
Considering such contributions, we modify the computation of the local estimate
of variance, now denoted by s

′2
i , as follows.

s
′2
i =

s2i +
∑

j∈NBR Cijs
2
j

1 +
∑

j∈NBR Cij
.

As a result, the influence of all related data points is taken into account accordingly
based on connections, referred to as Cij , between the BMU and its neighbors. It
should be noted that since the DCS networks are often adopted for online learning,
no cross-validation is allowed. Hence, the residual calculated for each data point is
in fact a biased estimate of the expected value of residual due to the fact that each
data point itself contributed to its own prediction. Nonetheless, under the assump-
tion that there is no severe multi-collinearity and relatively few outliers exist in the
data, the probability that the deviation from the expected value will be significant
is very low and thus can be ignored.

2. Recall that the output produced by DCS is determined by the BMU and its closest
neighbor (CNB) of the given input. Thus, the local errors associated with these
two neurons are the source of inaccuracies of fitting. We use the standard error, a
statistic that is often used to place a confidence interval for an estimated statistical
value. Provided with the local estimate of variance for every neuron from step 1),
we now define the 95% confidence limit for the local prediction error estimate with
respect to neuron i as:

CLi = t.95

√
1 +

1
ni
s′i,

where t.95 is the critical value of the Student’s t-distribution with ni − 1 degrees
of freedom. The 95% confidence interval for the network output y given a testing
input is thus given by:
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(y − (CLi + CLj)
2

, y +
(CLi + CLj)

2
),

where i = BMU and j = CNB with respect to the input x.

Now we slightly modify the DCS training algorithm in order to calculate the validity
index. Note that because all needed information is already saved at the final step of
each training cycle, without any additional cost required, we simply calculate s

′2
i for

each neuron after the learning stops. When the DCS is in recall for prediction, the
validity index is computed based on the local errors and then associated with every DCS
output. In order to complete the validity check, further examination needs to be done
by software tools or system operators. In the case of a control application, a domain
specific threshold can be pre-defined to help verify that the accuracy indicated by the
validity index is acceptable.

4 An Example with Artificial Data

In order to demonstrate the validity index in DCS network model as an improvement of
the network prediction, we present an example using an artificial data set. The DCS is
trained on a single-input, single-output function as seen in [4]:

f(x) = 0.2 sin(1.5πx+ 0.5π) + 2.0 + ε,

where ε is a Gaussian noise.
We sample x’s from the interval [−1, 1] randomly. Therefore, at least initially, there

exist regions where the learning data points are not as dense as in the others. We then
obtain two different DCS network models by varying the stopping criterion. Figure 2
illustrates the validity index for these two DCS models, one with 13 neurons and the
other with 27 neurons, shown as plot (a) and plot (b), respectively. By comparing the
prediction performance of these two models using the validity index, which is shown as
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Fig. 2. Examples of validity index for a DCS model. (a): The model with 13 neurons. (b): The
model with 27 neurons.
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confidence band in both figures, we can conclude that the DCS network model shown
in Figure 2 (b) has better prediction performance. Furthermore, we can observe that
regions with sparse learning data have low confidence levels.

5 A Case Study

We investigate the prediction performance of DCS networks for the Intelligent Flight
Control System (IFCS). The IFCS is an example of adaptive flight control application
for NASA F-15 aircraft. As the post-adaptation validation approach, the validity index
is a major component of our validation framework for IFCS [7].

5.1 The Intelligent Flight Control System

The Intelligent Flight Control System (IFCS) was developed by NASA with the primary
goal to “flight evaluate control concepts that incorporate emerging soft computing al-
gorithms to provide an extremely robust aircraft capable of handling multiple accident
and/or an off-nominal flight scenario” [8,9].

The diagram in Figure 3 (a) shows the architectural overview of NASA’s first gen-
eration IFCS implementation using Online Learning Neural Network (OLNN). Figure
3 (b) shows the user interface of an experimental IFCS simulator [10]. The control con-
cept can be briefly described as follows. Notable discrepancies from the outputs of the
Baseline Neural Network and the Real-time Parameter Identification (PID), either due
to a change in the aircraft dynamics (loss of control surface, aileron, stabilator) or due
to sensor noise/failure, are accounted by the Online Learning Neural Network.

(a) (b)

Fig. 3. (a): The Intelligent Flight Control System and (b): NASA-WVU F-15 Simulator

The primary goal of OLNN is to accomplish in-flight accommodation of discrep-
ancies. The critical role played by the OLNN is to fine-tune the control parameters and
provide a smooth and reliable control adjustments to system operation. When OLNN
performs adaptation, its behavior has a direct consequence on the performance of the
flight control system. In such a safety-critical application, it is necessary to understand
and assure the prediction performance of the OLNN.
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Our previous research provides a validation framework for validating the OLNN
learning. It consists of a novelty detection tool to detect novel (abnormal) conditions
entering the OLNN, and online stability monitoring techniques to investigate the NN’s
stability behavior during adaptation [7,11,12]. Although learning can be closely moni-
tored and analyzed, when the system is in operation, it is probable that the predictions of
the OLNN will become unreliable and erroneous due to extrapolation. Therefore, pro-
viding a reliability-like measurement with respect to each particular output can further
enforce safety of the system in operation. In IFCS, the neural network that implements
the OLNN component is the Dynamic Cell Structure (DCS).

5.2 Experimental Results

With the aide of the high-fidelity flight control simulator, we are able to test our ap-
proach for adaptive flight control through experimentation in simulated environments.
The online neural networks in IFCS learn on the environmental changes and accommo-
date failures. They generate derivative corrections as compensation to the PTNN output
(see Figure 3). We use validity index to evaluate the accommodation performance and
validate the predictions of the DCS network. In our experiment, we simulate the online
learning of a DCS network on a failure mode condition and compute the validity index
in real-time.

We simulate the online learning of the DCS network under two different failure
mode conditions. One is the stuck-at-surface type of failure. The simulated failed flight
condition in this case is the aircraft¡s stuck left stabilator, which is simulated to stuck
at an angle of +3 degree. The other is the loss-of-surface type of failure. This simulated
failure has 50% of surface loss at the left stabilator. In each run, the DCS network
updates its learning data buffer at every second and learns on the up-to-date data set of
size 200 at a frequency of 20Hz. We first start the DCS network under nominal flight
conditions with 200 data points. After that, every second, we first set the DCS network
in recall mode and calculate the derivative corrections for the freshly generated 20 data
points, as well as their validity index. Then we set the DCS network back to the learning
mode and update the data buffer. While updating the data buffer, we discard the first
incoming 20 data points and add the freshly generated 20 data points to maintain the
buffer size, i.e., 200. The DCS network continues learning and repeats the recall-learn
procedure.

Figure 4 and Figure 5 show the experimental results of the simulations on these two
failures, respectively. Plot (a)’s show the final form of the DCS network structure at
the end of the simulation. As a three-dimensional demonstration, the x-axis and y-axis
represent two independent variables, α and β, respectively. The z-axis represents one
derivative correction, ΔCzα. The 200 data points in the data buffer at the end of the
simulation are shown as crosses in the 3-D space. The network structure is represented
by circles (as neurons) connected by lines as a topological mapping to the learning data.
Plot (b)’s present the validity index, shown as error bars. The x-axis here represents
the time frames. In both simulations, the failure occurs at the 100th data frame. We
compute the validity index for the data points that are generated five seconds before
and five seconds after the failure occurs. In total, Plot (b) illustrates the validity index
for 200 data points.
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Fig. 4. A stuck-at-surface failure simulation in real-time (20Hz). (a): The final form of DCS
network structures. (b): Validity Index shown as error bars for each DCS output.
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Fig. 5. Testing on loss-of-surface failure simulation data in real-time. (a): The final form of DCS
network structures. (b): Validity Index shown as error bars for each DCS output.

A common trend revealed in both figures by the validity index is the increasingly
larger error bars after the failure occurs. Then, the error bars start shrinking while the
DCS network starts adapting to the new domain and accommodating the failure. After
the failure occurs, the change (increase/decrease) of the validity index varies. This de-
pends on the characteristics of the failure as well as the accommodation performance
of the DCS network. Nevertheless, the validity index explicitly indicates how well and
how fast the DCS network accommodates the failures.

6 Conclusions

Known for its structural flexibility, DCS networks are adopted in safety-critical systems
for online learning in order to quickly adapt to a changing environment and provide re-
liable outputs when needed. However, DCS network predictions cannot be constantly
trusted because locally poor fitting will unavoidably occur due to extrapolation. We pro-
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pose the validity index in DCS for validating its prediction performance as an improve-
ment to DCS network models. The implementation of validity index is straightforward
and does not require any additional learning. Experimental results were obtained by
running tests on failure flight data collected from the IFCS simulator. The computed
validity index effectively indicates poor fitting within regions characterized by sparse
data. It demonstrates that the validity index is a feasible improvement to DCS and can
be applied to validate the DCS performance by predicting with confidence.
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Abstract. In this study, we propose this new algorithm that generates
score function in ICA (Independent Component Analysis) using entropy
theory. To generate score function, estimation of probability density func-
tion about original signals are certainly necessary and density function
should be differentiated. Therefore, we used kernel density estimation
method in order to derive differential equation of score function by orig-
inal signals. After changing the formula to convolution form to increase
speed of density estimation, we used FFT algorithm which calculates
convolution faster. Proposed score function generation method reduces
estimation error, it is density difference of recovered signals and original
signals. Also, we insert constraint which is able to information maximiza-
tion using smoothing parameters. In the result of computer simulation,
we estimate density function more similar to original signals compared
with Extended Infomax algorithm and Fixed Point ICA in blind source
separation problem and get improved performance at the SNR (Signal
to Noise Ratio) between recovered signals and original signals.

1 Introduction

Independent component analysis is a useful method to separate original sig-
nals from linear mixtures. This method is used to solve blind source separation
problem, which can find original signals from observed signals. Typically, source
separation is to find a minimized contrast function which is related to source den-
sities. These contrast functions are based on maximum likelihood, information
maximization and mutual information[1][2][3][4]. Despite many ICA algorithms,
we have tried to separate with more accurately estimated signals with inaccu-
rate signals because they do not know the source distribution[8][9][10]. Gener-
ally, density of source relates with score function and ICA learning in maximum
likelihood estimation which assumes the fixed density function. Therefore, it
is important to score function generation based on density estimation so that
estimated signals are similar to original signals.

In this study, we focus on two points; one is score function generation and
the other is controlling of smoothing parameters in kernel density estimation.
In latter, entropy maximization of density estimator is an effective constraint in
score function generation.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 760–768, 2005.
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2 Maximum Likelihood Estimation Setting in ICA

In ICA definition, s is independent sources with size. x is mixture signals by
mixing matrix A, where A is mixing and nonsingular matrix with size. Also it
is full rank matrix[5].

x = As (1)

W matrix is separating matrix that successfully recovers the original sources.

u = Wx (2)

And where u is recovered signals. Eq.3 defines as objective (contrast) function
using negative log-likelihood function with unknown matrix . If these condition
would be, it will be global minimum of objective function[6].

L(W ) = −
n∑

i=1

log p(x) = −n log | detW | −
n∑

i=1

m∑
j=1

log fj(u
(j)
i ) (3)

And p(x) = |detW |f(Wx) is defined then fj(u
(j)
i ) denotes its marginal den-

sity. Natural gradient or relative method is adopted to minimize global objec-
tive function in updating weights. The updating equation is L(W ) in updating
weights. The updating equation is

W = W − η(E[ϕ(u)uT ]− I)W (4)

Where η is constant learning rate, E is expectation operator and I is the
m×m identity matrix. In Eq.6, ϕ(u) is score function which is called nonlinear
function with minimized objective function, it is a set of nonlinear function m×1
size vector

ϕ(u) = [ϕ1(u), ..., ϕm(u)]T (5)

If the density function f(u) can be estimated from finite data set, the score
function is defined as Eq.6 through their negative log-derivatives.

ϕ(u) = −[log f(u)]′ = −f ′(u)
f(u)

(6)

3 Design of Score Function Using Kernel Density
Estimate

3.1 SFG (Score Function Generation) Algorithm

Kernel density estimation is a method that calculates the probability density
function[7][8][10]. This is a nonparametric density estimation which is possible
to differential equation[11]. Therefore, we generate a score function using KDE
(Kernel Density Estimate) method. KDE is defined as follow:

f(u) ∼= f̃(c) =
1

nh

n∑
i=1

K

(
c− ui

h

)
(7)
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K(z) =
1√
2π

exp−z2/2 (8)

If we are differentiated about c using Eq.7 and Eq.8, it appears in a form
such as Eq.9, because the output dimension of density has c vector size. Also
Eq.9 can be omitted on n and π because of constant value.

ϕ(u) ∼= ϕ̃(c) =
f ′(c)
f(c)

=

1
h2

n∑
i=1

(c− ui) exp
(
− (c−ui)

2

2h2

)
n∑

i=1

exp
(
− (c−ui)2

2h2

) (9)

In eq 9, n is number of samples and c also is the center of kernels. ui is
recovered signals in ICA learning. h, usually a positive value, and the width in
each kernel is called bandwidth or smoothing parameter. We have to change
above equation to convolution form because density estimation using kernel,
this is which is time consuming. Since convolution is product form in frequency
domain, we use Fast Fourier Transform for changing density function to fre-
quency domain. In other words, use FFT for computing convolution to reduce
computation time.

We can generate FFT form that use Eq.9, and this expressed in Eq.10 and
11, where G is Gaussian kernel and G′ is value that differentiate Gaussian kernel.
F corresponds to f(u). If H defines as measured histogram, it is expressed as
follows

F ≡ ifft(fft(H) ∗ fft(G)) (10)

F ′ ≡ ifft(fft(H) ∗ fft(G′)) (11)

Computational complexity of score function using FFT-convolution is de-
creased by O(nlogn). Hence, SFG algorithm reduces the time complexity for
creating score function. In practical choice, we test with 100 number of c and
constant value in set h, described as [7] and [8]. Next section presents a constraint
of score function with entropy maximization.

3.2 SFG Algorithm with Entropy Maximization

Bell and Sejnowski proposed a simple learning algorithm for feedforward neural
network that blindly separates linear mixtures x of independent sources s us-
ing information maximization[2][5]. The joint entropy at the outputs of neural
network is

H(y1, ...ym) = H(y1) + .....+ H(ym)− I(y1, ....., ym) (12)

where H(yi) are the marginal entropies of the outputs and I(y1, ...., ym) is
their mutual information. Generally, H(y) is joint entropy, sum of marginal
entropies. Each of marginal entropy can be written as

H(yi) = −E[log p(yi)] (13)
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The nonlinear mapping between the output density p(yi) and source estimate
density p(ui) can be described by the absolute value of the derivative with respect
to ui

p(yi) = p(ui)/|
∂yi

∂ui
| (14)

According to derivative of joint entropy is now

∂H(y)/∂W = ∂(−I(y))/∂W − ∂

m∑
i=1

E[log p(yi)]/∂W (15)

In other words, the mutual information I(y) will be minimized when joint
entropy H(y) is maximized. In this case the error term vanishes and the maxi-
mum of joint entropy H(y) can be found by deriving H(y) with respect to W .
Consequently, relation of the gradient of H(y) and W is as follows

∂H(y)/∂W = ∂(−E[log |J |])/∂W (16)

where such entropy can be expressed in terms of p(y) and input density p(u)
can be described by the Jacobian matrix[9].

p(y) = p(u)/J(u), J = |∂ϕ(u)/∂u| (17)

Entropy H(y) that has to be maximized with respect to density function is
defined as

H(y) = H(u) + E[lnJ ] (18)

The main idea is to estimate densities function first using joint entropy maxi-
mization then takes their gradient descent equation for estimating score function.
Therefore, we need an adaptive estimator of the source densities. That is, find-
ing of the minimized objective function is to compute Eq.6 for performing max-
imum entropy of density estimation, where k is number of kernel. Constraint
that generates adaptive score function has to be considered. Such constraints
are expressed as Eq.15 and 18. Generally, kernel method in density estimation is
used to transform n dimensional space to k dimensional space. To design kernel
density estimator for entropy maximization, we assume that h defines vector as
[h1, ..., hk] . So, gradient descent method can be applied for updating using mod-
ified smoothing parameter h. And also c is called to reference vector, it consist
of c = [c1, ..., ck]. Initial values of c are equal to value of δ in δk = c1 + (k − 1)δ
, δ is the distance between of center points. As a described Eq.6, we can write a
differential equation of to Eq.19.

ϕ̃(u) ∼=
f ′(c)
f(c)

=
1
n

n∑
i=1

1
hk

exp(− 1
2h2

(c− ui)2), f ′(c) = (∂f(c)/∂c) (19)

At the ICA learning, a separating matrix W and smoothing parameter h is
to maximize joint entropy H(y). The results of the equation are as the following

Δ(W, h) = η
∂H(y)
∂(W, h)

=
∂H(u)
∂(W, h)

+
∂E(ln J)
∂(W, h)

(20)
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Consequently, we could find an optimization solution using gradient descent
on smoothing parameter h, where α is learning rate of h

Δh = α
∂H(y)

∂h
=

∂H(u)
∂h

+
∂E(lnJ)

∂h
(21)

If sample points are n and smoothing parameter h is vector that consists of
h = [h1, ..., hk], we must transform the number of sample and the number of
kernel. Therefore, the following equation has to be differentiated by vector c. So
we was simplified some of the notation for easier computation.

K1 = exp(− 1
2h2

k
(c− uj)2)

K2 = (c− uj) exp(− 1
2h2

k
(c− uj)2)

K3 = (c− uj)2 exp(− 1
2h2

k

(c− uj)2)
K4 = (c− uj)3 exp(− 1

2h2
k
(c− uj)2)

K5 = (c− uj)4 exp(− 1
2h2

k
(c− uj)2)

(22)

K1, K2, K3, K4 and K5 can be transformed to convolution form. According
to the defined Eq.17, Eq.18 and Eq.19, a new kernel density estimator to update
suitable value of h as

∂(ϕ(u))/∂u ∼= ∂(ϕ̃(c))/∂c

=
([

n∑
i=1

K1− 1
h2

k
K3

] [
n∑

i=1

K1
]
−
[

n∑
i=1

K2
] [

n∑
i=1

− 1
h2

k
K2

])
/

[
n∑

i=1

K1
]2 (23)

We can adopt a gradient descent method using the defined above equation
to find Δh

Δh ∼= ∂J/∂h = (∂(ϕ̃(c))
∂c )/∂h

=

(
(P1) /

[
n∑

i=1

K1
]2
)
−
(

P2/

[
n∑

i=1

K1
]4
)
−
(

P3/

[
n∑

i=1

K1
]4
)

(24)

where P1, P2 and P3 are defined as follows

P1 =
[

n∑
i=1

1
h3

k
K3− 1

h3
k
K5

] [
n∑

i=1

K1
]
−
[

n∑
i=1

K1− 1
h3

k
K3

] [
n∑

i=1

1
h3

k
K3

]
P2 =

([
n∑

i=1

1
h3

k
K4

] [
n∑

i=1

− 1
h2

k
K2

]
+
[

n∑
i=1

K2
] [

n∑
i=1

2
h3

k
K2− 1

h5
k
K4

])[
n∑

i=1

K1
]2

P3 =
([

n∑
i=1

K2
] [

n∑
i=1

− 1
h2

k
K2

])
2 [K1]

[
n∑

i=1

1
h3

k
K3

]

In Eq.24, it will be chosen as an updating quantity of smooth parameter h.
However, this updating rule leads to unlimited growth of parameter h. We may
overcome this problem by saturation or normalization this learning rule. The
updating quantity for smoothing parameter and generalized Hebbian Learning
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rule are similar. Hence, a convenient form that can normalize the smoothing
parameter is described by the following equation

Δhm
j (t + 1) = hm

j (t) + α(Δhm
j (t)/

k∑
j=1

Δhm
j (t)) (25)

3.3 Algorithm Summary

In ICA, matrix W after learning has a property that log-likelihood is stabilized
with respect to objective function. Therefore, we can derive the following condi-
tion, where L(W )(t) is observed at the log-likelihood of current time, and is the
observed log-likelihood at t− 1 .

||L(W )(t) − L(W )(t−1)|| ≤ ε (26)

If the difference of L(W ) is smaller than ε, we interpret it as stable. Thus,
SFG algorithms can be switched.

1. Step 1. Initialize W matrix

2. Step 2. Compute score function generation with entropy maximiza-
tion using Eq.25

3. Step 3. Update W (t) using Eq.4

4. Step 4. If ||L(W )(t) − L(W )(t−1)|| ≤ ε then go to Step 5
Else go to Step 2.

5. Step 5. Compute the score function using Eq.9

6. Step 6. Update W (t + 1) using Eq.4

7. Step 7. Go to Step 5.

4 Computer Simulations

To estimate performance about proposed SFG algorithm, we tested with 3 source
signals which have distribution such as Fig.1. This algorithm is implemented
in Matlab language. The first signal is similar to Gaussian distribution, second
signal is super-Gaussian distribution having heavily kurtosis and the third signal,
skewness is positive tail.

We used matrix A to make mixed signals.

A =

⎡⎣−1.5937 −0.39989 0.71191
−1.441 0.69 1.2902
0.57115 0.81562 0.6686

⎤⎦ (27)

SFG algorithm performs first updating smoothing parameters to maximize
entropy and then log-likelihood judges whether it is stabilized or not. Fig.2
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Fig. 1. Distribution of three source signals

Fig. 2. Smoothing parameters h of source signal 1

displays update of smoothing parameters in SFG algorithm for entropy maxi-
mization. The number of kernel is 100. And also learning rate sets η = 0.02 and
α = 0.05. We can know that each smoothing parameters that is updated by
gradient descent method are converged by constant values.

SNR = 10 log10

⎛⎝ m∑
j=1

s2
j/

m∑
j=1

(ŝj − sj)2

⎞⎠ (dB) (28)

Fig.3 shows on SNR between estimated signals and original signals, where
signal with super-Gaussan distribution has good performance in Fixed Point
ICA and Extended Infomax algorithm. Such performance appears because use
a fixed score function that has super-Gaussian distribution similar to original
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Fig. 3. SNR of SFG, Extended Infomax Algorithm and Fixed Point ICA

source signal at each algorithm. However, SFG algorithm had better performance
compare with other methods, even when the third signal was almost perfectly
separated.

5 Conclusion

The difference between the source densities and estimated densities, known as
errors, will exists because MLE is calculated with score function, which uses
fixed densities in ICA. Therefore, new algorithm is required to reduce these er-
rors. We propose SFG algorithm using KDE for solving this problem. To reduce
the computation time, we present an equation of score function to convolution
form using FFT. Also, we suggest SFG algorithms, which are able to maxi-
mize entropy. This Algorithm is new density estimator with constraint and this
is focused on controlling smoothing parameters. As a conclusion of computer
simulation, smoothing parameters are converged by constant value and SFG
algorithm displayed better performance comparing with existent algorithm.
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Abstract. A new criterion on exponential stability of the equilibrium
point for a class of discrete cellular neural networks (CNNs) with delay
is established by Lyapunov-Krasovskii function methods. The obtained
result shows a relation between the delayed time and the corresponding
parameters of the network. A numerical example is given to illustrate
the efficiency of the proposed approach.

1 Introduction

CNNs were first introduced in [1]. CNNs with delay (DCNNs) proposed in [2]
have been found applications in many areas, and, recently, have been extensively
studied (e.g, see [3]–[11]). For DCNNs, many authors have studied their global
exponential stability ([6], [7]). The exponential stability is very important since
the exponential convergence rate will determine the speed of neural computa-
tions. Also, it is not only theoretically interesting but also practically important
to determine the exponential stability and estimate the exponential convergence
rate for DCNNs in general. There have been many works devoted to the qual-
itative analysis of discrete CNNs (see, e.g., [8]–[11] and the references therein).
However, to the best of our knowledge, there are few study concerning the global
exponential stability for discrete DCNNs.

In this paper, we study the global exponential stability and estimate the
exponential convergence rates for discrete CNNs with constant time delays. A
new criterion on the global exponential stability of an equilibrium point for
discrete DCNNs is established in terms of linear matrix inequality (LMI), which
can be solved numerically by efficient LMI toolbox. Finally, a numerical example
is given to illustrate the efficiency of the proposed approach.

2 Statement of the Problem and Main Result

The dynamic behavior of a discrete DCNN can be described by

y(k + 1) = Cy(k) +Ag(y(k)) +Bg(y(k − d)) + u. (1)

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 769–772, 2005.
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where y(k) = [y1(k), . . . , yn(k)]T ∈ Rn, g(y(k)) = [g1(y1(k)), . . . , gn(yn(k))]T ∈
Rn are the state and the output (or g(x) the activation function of the neurons)
vectors respectively. Assume g(·) is bounded and g(0) = 0. yi is the state of
neuron i, and n is the number of neurons. d is the transmission delay, A and B
are the interconnection matrices, u = [u1, . . . , un]T is the constant input vector,
and C = diag[c1, · · · , cn], |ci| < 1. Assume the activation functions satisfying:
For each i ∈ {1, . . . , n} and given Mi > 0, gi : R→ R is in a finite sector (see [4]
for details), that is, gi satisfies 0 ≤ gi(ui)−gi(vi)

ui−vi
≤Mi for any ui, vi ∈ R, ui �= vi.

Let M = diag[M1, . . . ,Mn].
As usual, y∗ is said to be an equilibrium point of system (1) for a given u if

it satisfies Cy∗ +Ag(y∗) +Bg(y∗) + u = y∗.
By the boundedness of g(·), it is straightforward to show (e.g., by using

Brouwer fixed point theorem) that (1) has at least one equilibrium point (see
[4]). In the following, we will shift the equilibrium point y∗ of system (1) to the
origin for the given u. Taking the transformation x(·) = y(·)− y∗, we substitute
x(·) + y∗ for y(·) in system (1) to imply

x(k + 1) = y(k + 1)− y∗ = Cx(k) +Af(x(k)) +Bf(x(k − d)). (2)

where f(x(k)) = g(y(k))− g(y∗) and f(x(k − d)) = g(y(k − d))− g(y∗).

Remark 1. Obviously, it is easy to obtain f(0) = 0, f2
i (xi(t)) ≤ M2

i x
2
i (t) and

xi(t)fi(xi(t)) ≤ Mix
2
i (t). Moreover, this type of functions is more general than

the usual activation functions which are continuous, differentiable and monoton-
ically increasing (used in [3], [5]).

Definition 1. If there exist an α : 0 < α < 1 and γ(α) > 0 such that ‖x(k)‖ ≤
γ(α)αk sup−d≤l≤0 ‖x(l)‖ for k ∈ Z+, then system (2) is said to be exponentially
stable, where the α called the degree of exponential stability.

We shall establish anew sufficient criterion on the exponentialdelay-dependent
stability of an equilibrium point for DCNNs in the following Theorem.

Theorem 1. Consider (2) with given delay d. If there exist a positive constant
β > 1 and positive definite matrices P,Q satisfying the following inequality⎡⎣ Φ11 0 MATP + CP

0 −β−2d−2Q MBTP
PAM + PC PBM −P

⎤⎦ < 0, (3)

where Φ11 = −β−2P +β−2Q+CPAM +MATPC, then system (2) is expo-
nentially stable with the degree β−1 of exponential stability. Moreover, ‖x(k)‖ ≤

αk

√
λM (P )+λM (Q) α2−α2d+2

1−α2

λm(P ) ‖φ‖. where α = β−1 and ‖φ‖ = sup−d≤l≤0 ‖x(l)‖.

Proof: By the assumption, in order to show that the origin of (2) is exponentially
stable, we can take the following Lyapunov-Krasovskii function:

V (x(k)) =
∑d

i=1 β
2(k−i)xT (k − i)Qx(k − i) + β2kxT (k)Px(k), P > 0, Q > 0

(4)
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where β > 1. The difference of this function along the solution of (2) is given by

ΔV = V (x(k + 1))− V (x(k)) ≤ β2(k+1)πTΞπ

where π =: [xT (k) xT (k − d)]T and Ξ =
[
Ξ11 Ξ12

Ξ21 Ξ22

]
with

Ξ11 =: CPC +MATPC + CPAM +MATPAM − β−2P + β−2Q
Ξ12 =: CPBM +MATPBM
Ξ21 =: MBTPC +MBTPAM
Ξ22 =: MBTPBM − β−2d−2Q.

Thus, by using Schur complement formula (see [12] for details) with respect to
(3), we obtain Ξ < 0. This shows that ΔV ≤ β2(k+1)πTΞπ < 0 and hence
V (x(k)) ≤ V (x(0)) for any k ∈ Z+. On the other hand,

V (x(0)) ≤ λM (P )‖φ‖2 + λM (Q)‖φ‖2
∑0

i=−d β
2i

=
(

λM (P ) + λM (Q)
β2d − 1

β2d+2 − β2d

)
‖φ‖2

where ‖φ‖ = sup−d≤l≤0 ‖x(l)‖. Moreover, V (x(k)) ≥ β2kλm(P )‖x(k)‖. So,

β2kλm(P )‖x(k)‖ ≤ V (x(k)) ≤ V (x(0)) ≤
(
λM (P ) + λM (Q) β2d−1

β2d+2−β2d

)
‖φ‖2.

Let α = β−1, we have 0 < α < 1 and ‖x(k)‖ ≤ αk

√
λM (P )+λM (Q) α2−α2d+2

1−α2

λm(P ) ‖φ‖.
This guarantees that (2) is exponentially stable by Definition 1. �

Remark 2. For a given β > 1, (3) is an LMI, which can be solved numerically
by LMI Toolbox. Therefore, to solve the matrix inequality, we can first search
linearly β > 1, then we can solve numerically the LMI for this β.

3 A Numerical Example

Consider system (2) with the following parameters: C =
[
−0.1 0

0 0.1

]
, A =[

−0.1 1
0.2 0.1

]
, B =

[
0.5 0.4
0.15 0.5

]
. Taking d = 10, by searching linearly, the LMI

(3) is feasible when β = 1.220 to obtain P =
[

35.0291 −6.0597
−6.0597 93.4260

]
, Q =[

26.1137 7.0860
7.0860 63.9254

]
. At this case, α = 0.8197 is the exponential convergence

rate. In fact, if only 1 < β < 1.220, the LMI (3) is feasible and hence the equilib-
rium point of (2) is globally exponentially asymptotically stable. Furthermore,
β = 1.220 is corresponding to the fastest speed of exponential convergence with
the degree α = 0.8197 of exponential stability.

Taking d = 5, by searching linearly, the LMI (3) is feasible when β = 1.437.
In this time, α = 0.6959 is the exponential convergence rate. Similarly, if only
1 < β < 1.437, the LMI (3) is feasible and hence the equilibrium point of (2) is
globally exponentially asymptotically stable.
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Remark 3. For a given exponential convergence rate α (corresponding to β), we
can obtain the maximum admissible delay through the condition (3) using linear
searching. For example, taking β = 1.1 (i.e., α = 0.9091) in the above example,
the maximum admissible delay is d = 22, that is, the LMI condition is feasible
when d ≤ 22, otherwise it is infeasible. From this example, the exponential
convergence rate increases as the delay increases.

4 Conclusions

We have established a sufficient condition on global exponential stability for
discrete CNN in terms of LMI. The new result concerning global exponential
stability for discrete neural networks presented simultaneously an estimation of
the exponential convergence rate. Moreover, a relation between the delayed time
and the corresponding parameters of the network was established.
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Abstract. A new type of local connection neural network is proposed in this 
paper. There is a called K-type activation function in its hidden layer so as to 
have less computation compared with other local connection neural network. 
First the structure and algorithm of the proposed network are given. Then the 
function of network and its properties are analyzed theoretically. The proposed 
network can be used in the function approximation and modeling. Finally, 
numerical applications are used to verify the advantages of proposed network 
compared with other local connection neural networks. 

1   Introduction 

Artificial neural network is a kind of distributed and concurrent network for 
information processing. Since the eighties of the 20th century, great progress has been 
made in artificial neural network theory[1]-[3]. Neural networks have been used in the 
non-linear system modeling and design of controller, pattern classification and 
recognition, associative memory and computing optimization, etc. If classified from 
general structure, artificial neural networks can be divided into feed-forward networks 
and feedback networks. BP network is the typical example of the former, and Hopfield 
network is that of the latter. However if classified from the point view of connection 
mode, artificial neural networks can also be divided into the global neural networks and 
local neural networks. BP network that is used widely in control field is a typical global 
network. Though it has the advantage of global approximation to the function, this kind 
of network has relatively slow learning speed. However if only part or even one weight 
is influenced by each of inputs/outputs, we call the networks ‘local neural networks’. 
These networks have the faster learning speed, which is important to real-time control. 
Therefore, these networks are extensively used Generally speaking, local neural 
networks can be divided into two categories according to their fundamental functions. 
One category consists of Cerebellar Model Articulation Controller (CMAC), B-spline 
and Radical Basis Function (RBF) networks. Approximation of function and system 
modeling are their main functions. The other category consists of Adaptive Resonance 
Theory (ART) and Adaptive Competitive Network. They are used in pattern 
classification and recognition. 
___________________________________ 

* The project supported by National Natural Science Foundation of China (No. 50375148). 
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This paper proposes a new type of local connection neural network-K-type local 
connection neural network (shorted by KLCNN). Compared with other common local 
neural networks, the proposed network has the advantages of less computational cost, 
higher precision in function approximation and better generalization capability. The 
paper first analyzes the structure, algorithm and character of KLCNN, then verifies its 
properties through application of function approximation in system modeling. 

2    Structure and Property of KLCNN 

The property of a neural network is determined by three parts: network structure, 
activation function in network and weights update algorithm through network training. 
Several common local connection networks are similar in the structure and weight 
training algorithm. They all have common three-layer network structure and use δ  
algorithm to update the weights. Thus the difference in performance of these networks 
lies in their different activation functions. In details, RBF networks have better 
performance in analyticity and generalization capability. CMAC and B-spline 
networks spend less computational time. In order for the novel network to acquire the 
advantages of above networks, square-reciprocal formation is chosen here as the 
activation function in its hidden layer. The input-output relation of the hidden layer is  

   ))(*(
)(*1

1
)(

2 ijj
ijj

ji pKf
pK

pa ω
ω

−=
−+

=            (1) 

in Equ. (1), jp is the input vector of network. ijω is the weight between jth input node 

and ith node in hidden layer. )( ji pa is the output of ith node in hidden layer caused by 

input jp . K is parameter that shows the span of the function. We call it K-type local 

neural network because there is only a parameter K in which it is needed be regulated. 

Equ. (1) also shows that, when q groups of r-dimension input-vectors k
jp    

( k�1,2,…,q; j=1,2) are put into K-type network, the network calculates the distance 

)( ijjp ω−  between input vector k
jP  and the weight vector ijω  in the layer, and uses 

this distance as the input of activation function. Then the input is squared, then added 
with 1 and finally divided by 1. The result is the output of K-type network. 

K-type neural network is built with K-type function and the common structure of 
local neural network. The network has the three-layer forward structure. The first layer 
is the input-layer to receive the input vector. The second layer is the hidden layer with 
K-type function as active function. The third one is the linear output layer. The final 

output iy of K-type local network can be obtained as 
=

=
s

i
iii wy

1
α .Similar with other 

local networks, the weights in different layers are modified in their own layers. 
Through training, the ijω in hidden layer is equal to input vector or average of vectors. 

The weights in output layer are modified through δ  method: 

aaapkwkw T
iijjii /)(*)()1( ωη −+=+ , In which, η is the learning rate, k is times of 
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learning, ia  is output of hidden layer, a is normalized vector of ia , jp  and ijω  is 

input vector of network and weight in hidden layer. 
As it is known, the property of local connection is determined by the activation 

function in hidden layer. Among the common local networks, CMAC and B-spline 
networks have advantages in less amount of calculation. However, Compared with the 
B-spline function, Gaussian primary function is smoother, and its derivatives of any 
higher order exist. Thus, RBF neural network not only has excellent approximation 
ability, but also has generalization capability. But compared with the CMAC and 
B-spline neural networks, RBF needs to adjust more connection weights when trained. 
The K-type network proposed here is hoped to acquire the advantage of above three 
networks. Fig. 1 shows the curves of first derivatives of K-type function and that of 
RBF function. It is seen that K-type function has the following property. 

(1) Positive-definite character and symmetrical character 
In case of K > 0, it is obvious that output of K-type function is above zero constantly. 
The function is positive and definite. Also the figure of function has the character of 
bilateral radial symmetry. Thus the K-type function meets the require of non-negative 
output as to any input. 

(2) Convergence character 
Convergence character ensures the stabilization of function. The integral value of 
K-type function in real number field can be obtained  

dx
CXK

xa
j

j
∞

∞−

∞

∞− −+
=

2)(*1

1
)( = KCXKtg j

∞

∞−

− − )(1  

= KXKtg
∞

∞−

−1  = ∞<Kπ                   (2) 

In Equ. (2), K is positive constant. It is shown that K-type function satisfies the 
convergence character. As to the limited input, the function will not be divergent. Also 
by adjusting the lateral extensional coefficient K, the integral value of K-type function 
can be set optionally in constant field. 

Fig. 1. Comparison of the curves of first derivative of K-type function and that of RBF function 

1

0
5-5

0.5

0
p -ω

da d(         )p -ω

K-type function

RBF function
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(3) Sequence analyticity 
K-type network is the first derivative of arctan function. It is proved that derivatives of 
any order of arctan function are existent and continuous. Thus, derivatives of any order 
of K-type function exist. And K-type function has excellent ability of generalization as 
that of RBF function. 
(4) Less computational cost 
Compared with other local networks, KLCNN avoids the complex exponential 
calculation in RBF function, doesn’t use basic spline to have differential calculation, 
and also needs not to create the legend space with large dimension as CMAC networks. 
Therefore, K-type neural network has obvious advantage in calculation amount. 

3   Comparison of Numerical Applications and Their Analysis 

In this application, KLCNN will be used to model a DC electric machine, which is 
effected by nonlinear fiction. In order to achieve high precision, the model structure 
with three-order delay is used. Input data is 4-dimision vector P = [u (k)�y (k-1)�y 
(k-2)�y (k-3)], 4 components of which are the input of system in k, and output of 
system in k-1,k-2,k-3. The control system used to collect input and output signal 
includes a Pentium 200 computer, 12 bit A/D and D/A transition set in the computer. 
Input signal is PRBS signal. Then 500 sampling data are gotten with sampling period of 
10ms in 5 seconds. RBF, ART-2, CMAC, and B-spline network are also used to model 
this system, in contrast with KLCNN. Their structures of network (number of nodes in 
hidden layer) and corresponding error of network are respectively recorded in Table 2, 
Table 3 and Table 4. Table 1 is the modeling result of KLCNN. It is obvious in these 
tables that the modeling performance of ART2 is the best. However, ART-2 network 
have to be rebuilt and be added an output layer [2], which will make the network 
complex. Among the other local neural networks, KLCNN has the best performance. 
RBF ranks the second. CMAC ranks the last. From the above analysis of the result of 
function approximation and system modeling, K-type neural network has the best 
performance in the respect of calculation cost and system modeling, compared with 
several common local networks. 

Table 1. The modeling result for electric-machine with KLCNN 

Model No. 1 2 3 4 5 6 7 
Node No. 15 18 24 27 30 35 38 

Error 3.16 2.53 2.51 2.49 2.45 1.59 1.23 

Table 2. The modeling result for electric-machine with RBF 

Model No. 1 2 3 4 5 6 7 
Node No. 19 24 26 29 34 46 52 

Error 3.45 3.11 2.94 2.77 2.69 2.49 2.06 
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Table 3. The modeling result for electric-machine with ART-2 

Model No. 1 2 3 4 5 6 7 

Guard value 0.975 0.981 0.983 0.985 0.990 0.994 0.995 

Node No. 10 11 14 15 20 31 32 
Error 2.57 2.47 2.43 2.36 2.18 2.12 2.03 

Table 4. The modeling result for electric-machine with CMAC 

Model No. 1 2 3 4 5 6 7 
C value 15 20 25 30 40 50 70 

Error 2.69 2.68 2.68 2.67 2.67 2.65 2.57 

4   Conclusion 

A new type of local connection neural network-K-type local connection neural network 
is proposed in this paper. From theoretical analysis and comparison of applications, 
KLCNN has several advantages over other common local networks. With little amount 
of calculation, KLCNN can achieve high degree of preciseness. At the same time, it has 
good generalization capability. Thus a new way is proposed in this paper for fast design 
and efficient application of local neural networks. 
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Abstract. In this paper, we review a visual approach and propose it for 
analysing computer-network activity, which is based on the use of unsupervised 
connectionist neural network models and does not rely on any previous 
knowledge of the data being analysed. The presented Intrusion Detection 
System (IDS) is used as a method to investigate the traffic which travels along 
the analysed network, detecting SNMP (Simple Network Management 
Protocol) anomalous traffic patterns. In this paper we have focused our 
attention on the study of anomalous situations generated by a MIB 
(Management Information Base) information transfer.  

1   Introduction 

IDS are hardware or software systems that monitor the events occurring in a computer 
system or network, analysing them to automatically identify security problems.  

Connectionist models have been identified as a very promising method of 
addressing the ID problem due to two main features [1]: their generalisation 
capability and their ability to classify patterns. Up to now, there have been several 
attempts to apply Artificial Neural Networks (ANN) (such as Self-Organising Maps 
[2], Elman Network [3]) to the network security field [4, 5].  

Our IDS is based on a neural Exploratory Projection Pursuit (EPP) architecture. 
The aim of EPP [6, 7, 8, 9] is to reveal possible interesting structures hidden in the 
high-dimensional data so that a human can investigate the projections by eye. 

2   A Novel Unsupervised Neural IDS Model 

We can classify our IDS as a network-based [1] one because the data for the traffic 
analysis is obtained from the packets travelling along the whole network. This data 
can be extracted from the captured packets headers by using a network analyser.  

We have developed a system for detecting anomalous traffic patterns; these include 
proper attacks and dangerous situations without being an attack.  

The novel IDS model is structured as follows: 

− 1st step.- Network Traffic Capture: setting up one of the network interfaces as 
“promiscuous” mode, it can capture all the packets traveling along the network. 

− 2nd step.- Data Pre-processing: the captured data is pre-processed (see Section 
3). 
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− 3rd step.- Data Classification: once the data has been captured and pre-
processed, the connectionist model presented below is used to analyse the data 
and to identify the anomalous patterns. 

− 4th step.- Result Display: this visualization tool displays data projections high-
lighting anomalous situations clearly enough to alert the network administrator, 
taking into account aspects as the traffic density or “anomalous” directions. 

The Data Classification and Result Display steps performed by this IDS model are 
based on the use of a neural EPP architecture called Cooperative Maximum 
Likelihood Hebbian Learning (CMLHL) [10, 11]. It was initially applied to the field 
of Artificial Vision to identify local filters in space and time [10, 11]. It is based on 
the neural architecture called Maximum Likelihood Hebbian Learning (MLHL) [8, 9]. 
The final neural model (CMLHL) can be described as follows: consider an N-
dimensional input vector, x , and an M-dimensional output vector, y , with 

ijW being 

the weight linking input j  to output i  and let η  be the learning rate.  

Feed forward: ixWy
1j

jiji ∀=
=

N

,  .  (1) 

Lateral activation  passing: ( ) ( )[ ]+−+=+ Ayb(t)yty ii 1 . (2) 

Feedback: 
=

−=
M

i
iijjj yWxe

1

 . (3) 

Weight change: ( ) 1||.. −=Δ p
jjiij eesignyW η  . (4) 

We use the standard MLHL with lateral connections. These lateral connections 
[10, 11] have been derived from the Rectified Gaussian Distribution [12] and applied 
to the negative feedback network [13]. The resultant net [10, 11] can find the 
independent factors of a data set but do so in a way which captures some type of 
global ordering in the data set. 

3   Real Intrusion Detection Scenario Specific Data Set 

Among all the implemented network protocols, there are some of them that can be 
considered quite dangerous for the network security. Among those, we have focused 
our effort in the study of SNMP because an attack based on this protocol may 
severely compromise the network security.  

In the short-term, SNMP was oriented to manage nodes in the Internet community 
[14] and the MIB can be defined as a database which contains information about 
some elements or devices that can be network-controlled. The data set used in this 
work contains a transfer of some information contained in a SNMP MIB. This kind of 
transfer is considered a quite dangerous situation because a person having some free 
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tools, some basic SNMP knowledge and the community password (in SNMP v. 1 and 
v. 2) can come up with all sorts of interesting and sometimes useful information.  

In the Data Pre-processing step the system selects packets based on UDP (User 
Datagram Protocol). In this step, the system also performs a data selection and only 
the following 5 variables (extracted from the packet headers) are used: timestamp 
(the time when the packet was sent), protocol (we have codified all the protocols 
contained in the data set), source port (the port number of the source host which sent 
the packet), destination port (the port number of the destination host where the 
packet is sent) and size (total packet size in Bytes).  

4   Experimental Results, Conclusions and Future Work 

Through a simple visual analysis of the figure Fig. 1.a, it is easy to identify several 
packet groups. Two of them (Groups 1 and 2 in Fig. 1.a) are different from other 
groups related to normal traffic as it is explained below. The packets belonging to 
each protocol contained in the data set are identified and visualized in the same group 
in Fig. 1.a, except in the case of SNMP packets (this case is explained later). 

 

  
Fig. 1.a. Data projection displayed by the our 
neural IDS model 

Fig. 1.b. Best Maximum Likelihood Hebbian 
Learning projection 

After an analysis (labeling and studying most of the represented points) of the 
packets belonging to Groups 1 and 2 (Fig. 1.a) we have identified several features: 

− These Groups are related to the SNMP MIB transfer mentioned above. They 
contain packets sent and received during the transfer embedded in the data set. 
All the packets belonging to SNMP are contained in one of these two groups. 

− Group 1 contains all the traffic going from destination to source, while Group 2 
contains all the traffic in the other way (from source to destination). 

− Each group extends over two main axes: one related to the packet size and the 
other related to the timestamp. 

We have labeled Groups 1 and 2 (Fig. 1.a) as anomalous ones due to two 
combined issues: the high temporal concentration of packets, and because they are 
made up of different size packets, situation related to the MIB information transfer.  

Group 2 time 

size 

Group 1 Group 3 
Group 4 Group 5

Group 6 

Group 1 

Group 2 
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This IDS model has been previously used to identify a SNMP port sweep [5] and it 
worked properly, identifying the anomalous situation in a very clear way. 

We have applied different ANN such as Principal Component Analysis (PCA) [15, 
16] or MLHL (Fig. 1.b) to the same data set. PCA is not able to detect the anomalous 
situation contained in the data set, because it shows the “anomalous” packets in the 
same way in which the rest of the traffic is shown. Fig. 1.b shows how MLHL is 
capable of detecting the anomalous situation (Groups 1 and 2) but it is not detected as 
clearly as by using CMLHL (Fig. 1.a).  

As conclusions, there are some issues to highlight: The visualization tool can show 
the packets grouped by their protocol and only the network administrator has the 
authority to decide whether a situation classified as anomalous is dangerous or not. 

Future work will have the following work lines: the application of grid 
computation [17] in both Data Classification and Result Display steps and the use of 
distributed systems based on agents and multiagents and the exchange of information. 
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Abstract. In this paper, based on the theory of nonseparable wavelet, a novel 
nonseparable wavelet model has been proposed. The structure of the model is 
distinguished from that of wavelet network (RBF structure). It is a four-layer 
structure, which helps overcome the structural redundancy. In the process of the 
training of the network, in the light of the characteristics of nonseparable 
wavelet, a novel method of setting the initial value of weight has been proposed. 
It can overcome the shortcoming of gradient descent methodology that it makes 
the convergence of the network slow. Some experiments with the novel model 
for function learning will be shown. Comparing with the present wavelet 
networks, BP network, the results in this paper show that the speed and 
generalization performance of the novel model have been greatly improved. 

1   Introduction 

The idea of using wavelets in neural networks has also been proposed recently by 
Zhang, Benveniste, Pati, and Krishnaprasad [1][2][3]. The basic idea is to replace the 
neurons by “wavelons,” i.e., computing units obtained by cascading an affine transform 
and a multidimensional wavelet. For the multidimensional signal, multidimensional 
“wavelons” have to be constructed in the present wavelet network models. The most 
commonly used method is the tensor product of univariate wavelets [1][2][3]. This 
construction leads to a separable wavelet that has a disadvantage of giving a particular 
importance to the horizontal and vertical directions [8]. 

At present, the nonseparable wavelet becomes the focus of the wavelet theory [7][8]. In 
the process of dealing with the multidimensional problems, the characteristics of 
nonseparable wavelet are better than ones of tensor product. It is reasonable that in the 
wavelet networks, if better neurons are selected, better results may be obtained. 

Since the present wavelet networks successfully preserve most of the advantages of 
the RBF network, so far, in the field of wavelet network, most researches are focused 
on various models based on the development of the wavelet theory and learning 
algorithms. Nevertheless, few researches are focused on the structure of wavelet 
network. In fact, as to the whole signal, the orthogonal wavelet based on network can be 

                                                           
* This work was supported by the National Science Foundation of China (Grant No.60375021) 

and the Science Foundation of Hunan Province (Grant No.00JJY3096) and the Key Project of 
Hunan Provincial Education Department (Grant No.04A056) 
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constructed and it is not redundant. However, as to some parts of the signal, only some 
of neurons are useful, and the others are redundant. If we properly change the structure 
of the present wavelet network, the various advantages of RBF network can be 
preserved and at the same time, the redundancy can be overcome effectively. 

In this paper, a novel nonseparable wavelet network model and a novel method of 
setting the initial value of weight have been proposed. Some experiments with the 
novel model for function learning will be shown. Comparing with the present wavelet 
networks [1][2][3] and BP network, the results in this paper show that the speed and 
generalization performance of the novel model have been greatly improved. 

2   The Novel Nonseparable Wavelet Network 

Throughout this paper, let R , Z  and N  denote the set of real, all integers and natural 

numbers respectively. The d -D MRA (multiresolution analysis) with a dilation matrix 

D  is a ladder of closed subspaces{ }
ZjjV

∈
which approximates )(2 dRL and satisfies 

)(......}0{ 2
101

dRLVVV →⊂⊂→ −
;

jj VDxfVxf ⊂⇔⊂ − )()( 1
 

0V∈∃ φ s.t. the set dZk

m kxD
∈

− )}({φ is an orthonormal basis for mV  

    The function )(xφ is called scaling function.  

    The above discussions suggest a scheme for decomposing a )(2 dRL  

function )( xf : For some integer M and any 0>ε , there exists an M  sufficiently 

large such that 

εϕϕ <><−
n

nMnM xfxf )(,)( ,,
  Where the norm is the 2L  norm.           (1)  

    Without loss of the generality, a following two-hidden layer wavelet networks is set 

up. It has realized a RR d →  mapping. Its structure is as Fig.1. 

 

Fig. 1. Four-layer nonseparable wavelet network 
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As shown in Fig.1, the novel wavelet network has two hidden layers. The 
first-hidden layer consists of N  ”ϕ  neurons” and d  neurons quantizers; d  is the 

dimension of the input data. Each neuron quantizer consists of two sigmoidal neurons 
called typeA −  neuron and typeB −  neuron respectively. typeA −  Neuron and 

typeB −  neuron of thj −  quantizer are denoted as neuron )( jA  and neuron )( jB  

respectively. The outputs of thj −  quantizer for each neuron are denoted as 

)()( j
p

j
p BA

Ο+Ο  dj ≤≤1 . All of the neurons in the input layer link to all of the ”ϕ  

neurons”, but the thi −  input neuron just links to the thi −  quantizer; di ,...,1= . 

The second layer has dL neurons ( L is arbitrarily plus integral value). The neurons of 
the first hidden layer link to all of the neurons of the second hidden layer.                           

Definition 1: For a −d dimension signal f , suppose }...|{ 21 dLL fffff ⊕⊕⊕==Γ
Δ

, 

Let if  denote the i -th sub-signal of f  that is divided continuously into dL  

equidistant shares according to the support of each dimension. 

As to the distinct samples ),( ii tx , where dT
idiii Rxxxx ∈= ],...,,[ 21  

and Rti ∈ , since all the given ix  are distinctive, without loss of the generality, 

suppose the support of signal is d],0[ α , a plus vector W can be randomly chosen. 

They can be separated into dL  groups according to the support of each dimension. 
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According to the above discuss, we know that i
i fGroupV ⊆)(  

The training of novel wavelet networks mainly consists of two phases: (1) 
determination of weights and bias of the “ϕ  neurons” and (2) determination of weights 

and biases of neural quantizers. 

2.1   Determination of Weights and Bias of the “ϕ  Neurons” 

As the theory of the wavelet, the weight ( iw ) that joins the inputs and the i -th neuron 

Ni ≤  in the first hidden layer and the bias ib of the i -th neuron ( Ni ≤ ) in the first 

hidden layer can be determined as reference [1]~[3]. The weights that join the “ϕ  

neurons” and the second hidden layer can be determined by the Gradient descent 
methodology that has been widely used in the learning algorithms of the neural 
networks, wavelet networks, e.g., back propagation (BP) algorithm and its variants. But 
the parameters of the network are updated gradually in each iteration, the learning is 
apparently time consuming. In fact, if a reasonable initial value of the weight can be set, 
we can effectively overcome the shortcoming of gradient descent methodology. 
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For 2- D nonseparable case, some definitions and notations [4] are made as below:  
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For some samples, the corresponding approximate value of )]([ cqMf j +−  can 

always be obtained, which is regarded as the initial value of weights of the network. [4] 
proves that for all the )()( Ω∈ NCxf )(ΩNC denotes the space of N -order 

differentiable function that is finite support  
jN
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2.2   Determination of Weights and Biases of Neural Quantizers 

As show in Fig.1, the weights of connections linking the inputs to neuron )( pA and 

neural )( pB  can be chosen as WTw pA p ⋅=)( and WTw pB p ⋅−=)( . The pT , 

dp ≤≤1 can set as following: 
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    The biases )( pA
b  and )( pB

b  of neuron )( pA  and neuron )( pB  are simply 

analytically calculated as 
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    For any input ix  within input vector group )( qGroupV , dLq ,...,1= , only the 

q th-neuron’s input are almost zero while one of the inputs of other neurons is almost 

one in the second-hidden layer. 

3   Experimental Results 

The nonseparable scaling function is selected from the [8] as the activating function of 
the former N neurons of the first hidden layer in our model. Then we choose the same 
non-liner functions in the reference [1]~[3] are chosen as the approximate functions. 
Additionally, some other non-liner functions are chosen to do the experiments of 
approximate functions. To assess the approximation results, a figure of merit is needed. 
We select the same figure of merit in the [2] 
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The computing environment as following: Intel P4 1.7G CPU, 256M RAM and 
MATLAB 6.5.  

Function 1[1][2][3] ]1,0[,)510sin()(400 22 ∈−+−−= yxxyxyxz  

Function 2 

]1,0[,)10))2/)1(12.5(2cos(10)2/)1(12.5((
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Table 1 

Model Number of samples Hidden 
Neurons 

Epochs RMSE Of 
Testing 

Time(s) 

Zhang [2] 400×400 49 40000 0.03395 21300 
Pati [3] 400×400 187 500 0.023 500 
BP [3] 400×400 225 40000 0.29381 95640 
Our 
model 

256×256 1024 1 0.0198 7.9360 
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Table 2 

Functions Number of 
samples 

Hidden 
Neurons 

Epochs RMSE Of 
Testing 

Time(s) 

Function 2 512×512 1792 1 0.0117 15.9850 
Function 4 512×512 1792 1 0.0485 15.8720 

From the datum, our model also suits the function with the high degree of leaping.  

4   Conclusions 

In this paper, a novel four-layer nonseparable wavelet network for function learning is 
described. Some of the experiments on function learning had been done. Compared 
with the result of the reference [1]~[3], the model obtains better generalization 
performance and has remarkable improvement in speed. At present, multidimensional 
nonseparable wavelets are far from being well understood. However, the topic that 
nonseparable wavelets relate with neural network is very attractive. For future work, to 
investigate nonseparable wavelet networks in some real-world large-scale applications 
would be of great interest.   
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Abstract. This study proposes a novel method that can recognize illusory con-
tour figures by using a neural network model referenced on the mechanism of 
feature extraction found in a visual cortex domain. A common factor in all such 
illusory contour figures, such as the Kanizsa triangle is the perception of a sur-
face occluding part of a background, i.e. illusory contours are always accompa-
nied by illusory surfaces. In this paper, we propose a neural network model that 
predicts the shape of illusory surfaces based on features of the visual cortex 
domain. This model employs an important two-stage process of the Induced 
Stimuli Extraction System (ISES) and Illusory Surfaces Perception System 
(ISPS). The former system extracts the induced stimuli for the perception of il-
lusory surfaces, and the latter forms the illusory surfaces from the induced 
stimuli. The proposed model is demonstrated on a variety of Kanizsa-type illu-
sory contour displays. The results of the experiment shows that the proposed 
model is successful not only in extracting the induced stimuli for the perception 
of illusory contours, but also in perceiving the illusory surface figures from the 
induced stimuli. 

1   Introduction 

It is common to emphasize the importance of image contours because of their rela-
tionship to object boundaries and surface discontinuities in the scene (e.g., Marr, 
1982). Often, object boundaries and surface discontinuities exist as luminance 
changes in the image, but this is not always the case. Although we frequently perceive 
clear perceptual boundaries between image regions, the physical bases for these per-
cepts might be very slight. Schumann (1904) described the first experiments with 
stimuli in which contours are perceived without intensity gradients (See Fig.1). This 
class of figures was virtually forgotten until fifty-five years later when Kanizsa (1955) 
created a series of new, and more powerful variants of this type of figure which he 
called "quasi-perceptive margin figures" and which have since been called "illusory 
contour",  "subjective contour", and "anomalous contour" figures. These kinds of 
illusory contour figures are shown in Fig.1. The Kanizsa square in (a), the distorted 
triangle in (b), the foot in (c) and the vertical boundary and circle in (d) is all defined 
by boundaries that are not made explicit. In recent years attention has been increas-
ingly devoted to illusory contours (e.g., Gurnsey & Humphrey & Kapitan, 1992). The 
Kanizsa-type illusory contours (Fig. 1(a), (b) and (c)) and offset grating contours 
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(Fig.1 (d) and (e)) are among the most commonly studied illusory contours. Our ex-
perimental model deals with the Kanizsa-type illusory contour.  

Fig. 1. Some examples of illusory contour Figures. The Kanizsa square in (a), the foot in (b), 
the distorted triangle in (c), the vertical boundary and circle in (d) and the square boundary and 
wave in (e) are all defined by boundaries that are not made explicit 

    Many computational models have been proposed to describe the formation of illu-
sory contours, including Ullman(1976), Heitger & von der Heydt(1993), Grossberg & 
Mingolla(1985) and Grossberg(1994), and Guy & Medioni(1992), Kellman & Ship-
ley(1995) Williams and Hanson(1994), Williams & Jacobs(1995), Brady & Grim-
son(1982) and Nitzberg & Mumford(1990). Unlike these computational models, we 
proposed a neural network model for perceiving illusory surfaces including depth 
sensations based on the mechanism of feature extraction found in a mammal's visual 
pathway. This mechanism is proposed by Hubel & Wiesel's paper.  
    Our model can be divided into two systems which are described as neural networks 
with multiple layers: (1) the Induced Stimuli Extraction System(ISES) for the percep-
tion of illusory contours including depth information and (2) the Illusory Surfaces 
Perception System(ISPS). The induced stimuli extraction system(ISES) extracts the 
induced stimuli needed for the perception of occluded surfaces from illusory contours, 
except for the inducers(background images), which in turn hide parts of the pattern. 
The illusory surfaces perception system(ISPS) forms the illusory surfaces, which must 
always be seen to be above the plane of the inducers, from the induced stimuli. Each 
system composes neural network architecture with multiple layers. 

2   The Visual Cortex Domain Model 

2.1   Induced Stimuli Extraction System (ISES) 

The ISES extracts the induced stimuli needed for the perception of surfaces from 
illusory contours, except for the inducers, which in turn hide parts of the pattern. This 
system consists of six layers: image acquisition, contraction extraction by LGN, sim-
ple visual features extraction, visual feature restoration, Induced stimuli extraction 
and image enhancement. In the image acquisition we remove the process of color 
classification and simply convert a color image to a binary one because the color 
classification in virtual contour figures is not of great significance. The contrast ex-
traction by LGN detects low-level features such as contrast using spatial filtering.  
The simple visual features extraction detects the presence of simple visual features, 
such as lines and edges of a particular orientation. This filter corresponds to a simple 
cell receptive field found in the mammal’s visual system. The visual feature restora-

   
(a)                (b)                 (c)                   (d)                   (e) 
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tion responds to stimuli such as lines and edges of a particular orientation without the 
exact location of the stimulus. This filter corresponds to a complex cell receptive field 
found in the mammal’s visual system. The Induced stimuli extraction extracts induced 
stimuli from the illusory contour figures using hypercomplex cells that are light-dark 
stimuli containing corners, curves and broken lines. The hypothetical arrangement of 
complex cells can implement an end-stopped hypercomplex receptive field. Image 
enhancement recovers the weaken or reduced stimuli. A set of two dimentional 
Gaussian filters is used. For removing unnecessory noises, the system performed 
image operation with input image.  

2.2   Illusory Surfaces Perception System (ISPS) 

The ISPS forms the illusory surfaces, which must always be seen to be above the 
induced stimuli. This system consists of 4 layers: Response Extraction between the 
induced stimuli, Response Restoration, Illusory surface extraction and Image Smooth-
ing. Response extraction between the induced stimuli detects responses between the 
induced stimuli of the ISES. A set of asymmetrical two-dimensional three Gaussian 
filters for eight preferred orientations is used. This filter corresponds to a simple cell 
receptive field found in mammal’s visual cortex domain[4]. Response restoration 
recovers responses between the induced stimuli using a set of two-dimensional Gaus-
sian filters for eight orientations. This filter corresponds to a complex cell receptive 
field. Illusory surface extraction forms illusory surface from the extracted stimuli 
using image operation and feedback process. The output of this layer repeats to input 
image of ISPS until removing the gap between the induced stimuli and forming 
surface. For image improvement image smoothing performs.  

3   Experimental Results 

In order to show the performance of the model, experiments have been carried out 
using various Kanizsa-type illusory contour figures. The color classification in per-
ceiving occluded surfaces from illusory contours is not of great significance.  

     

 

 

Fig. 2. Original Images 

    Then, for simplification, we remove the process of color classification, and simply 
convert a color image to a binary one. Examples of the experiments are shown in 
Fig.2, Fig.3, and Fig. 4. In most of the cases, illusory surfaces including depth sensa-
tion can be extracted. These results show that the performance of the model is suffi-
ciently general.  
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Fig. 3. Images of Induced Stimuli Extraction System 

      

Fig. 4. Output Images of the Illusory Surface Perception System 

4   Conclusion 

A novel approach for the perception of occluded surface from Kanizsa-type illusory 
contour figures is proposed using the mechanism of feature extraction in visual cortex 
domain. Our model consists of two-stage coherent processing systems with multiple 
layers: the ISES and the ISPS. By the processing steps of each system the former 
system extracts the induced stimuli for the perception of illusory surfaces and the 
latter forms the illusory surfaces from the induced stimuli. The proposed model is 
demonstrated on a variety of Kanizsa-type illusory contour displays. The results of the 
experiment showed that the proposed neural network model was successful not only 
in extracting the induced stimuli for the perception of illusory contours, but also in 
perceiving the illusory surface from the induced stimuli.  
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Abstract. In this paper, in aid of ANN ensemble, a supervised online learning 
strategy continuously achieves omnidirectional information accumulation for 
3D object cognition from 2D view sequence. The notion of similarity is 
introduced to solve the paradox between information simplicity and accuracy. 
Images are segmented into homogeneous region for training, correspondent to 
distinct model views characteristic of neighboring generalization. Real-time 
techniques are adopted to expand knowledge until satisfactory. The insert into 
joint model views is only needed in case of impartibility. Simulation 
experiment has achieved encouraging results, and proved the approach effective 
and feasible. 

1   Introduction 

Cognitive science is an interdisciplinary study of intelligence and mind, embracing 
philosophy, psychology, artificial intelligence, neuroscience, brain theory, linguistics, 
and anthropology. Computer vision provides the most enhancements to intelligent 
cognition, where pattern recognition plays a main role. Most approaches in object 
recognition can be categorized as geometry-based and appearance-based. The former 
explicitly stores volume or surface representation relying on 3D geometry. The latter 
directly compares and matches 2D images rather than 3D objects by similarity 
measure based on intensity, geometry, topology or their combination, results in 
significant reduction in dimensionality [1, 2]. Recently, Artificial Neural Networks 
(ANN) is also increasingly widely used in object recognition [1, 3]. 

3D object recognition from 2D view sequence can be treated as human vision 
simulation within an intelligent machine, which should emphasize most on knowledge 
cognition one by one, rather than optimal interface classification simultaneously [1,3]. 
Because of the paradox between information simplicity and accuracy in typical view 
selection, proper and sufficient sample set is too difficult to fully determine in 
advance, so the best way is to acquire solution step by step. Based on the notion of 
similarity, in aid of ANN ensemble with multiple weights, we present a supervised 
online learning strategy to achieve complete object geometrical coverage gradually 
and continuously, learning characteristic model views as few as possible, with old 
knowledge partly replaced and updated by the new one. 
                                                           
1  The National 863 Natural Science Foundation of P. R. China (2001AA635010) fully 

supported this research. 
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2   Similarity Measure for Simplicity and Accuracy Tradeoff 

Multiple-angle views offer overall object cognition. With high dimensional manifold 
as topology nature and homologous connectivity law as pre-acquired knowledge, an 
optimal spatial geometrical coverage is intended to establish for each object [3, 4]. 
However, simplicity and accuracy is a pair of paradox. Based on similarity measure, 
strategies such as model view generation and online learning are introduced in order 
to balance the competing aims. Similarity, or correlation among view points, is the 
key in separability. Different similarity metrics are employed to measure distance. 
Due to each metric nature and relative shape weighting, model view generation results 
in different prototypes or characteristic view. Besides object identity, similarity metric 
also gives initial pose estimation, which is essential to knowledge expansion on how 
to effectively combine newly increased samples with already cognized data.  The 
selection of proper similarity metrics still need to pay more attention to in the future.  

3   Model View Generation  

Let there be N 3D objects NNn OOOOO ,,,,,, 121 − , each composed of M 2D images 

sampling the viewing sphere, N
M

n
m III ,,,,1

1 , with n
mI  denoting the m th image of nO , 

so the whole image database consists of MN •  images. Instead of training the full set 
of images, a model view learning procedure is introduced to employ few views, each 
representing a moderate range of possible appearances. Preprocessed images are 
clustered into groups. Members in each group are then generalized to form a view 
characteristic of the neighbors. On the assumption of sampling sufficiency, model 
views are reasonably selected on principle, such as homologous continuity, local 
monotonicity, cluster distinctiveness and separability, which are imposed to maintain 
successful recognition [1, 2]. A pair of cluster boundaries could be derived in an 
iterative scheme. Model view is what minimizes the distance to all others in a cluster. 
Cluster number depends on object complexity as well as similarity metric sensitivity.  

4   Neural Networks Architecture  

General neuron models with m weights can be denoted as 
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in multiple weights neural networks (MWNN). Neurons can be considered to be an 
(n-1)-dimensional hyper plane or curved surface in an n-dimensional space form high 
dimensional geometry analysis [3, 4]. Neurons like hyper sausages are chosen. Let 
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The input-output transfer function is  

)),((),;( 2121 xxxdxxxf φ=  (4) 

)(⋅φ is threshold function, nRx ∈ input vector, and nRxx ∈21, two centers. Neural networks 

consist of an input layer, a single hidden layer and an output layer of linear weights. 

5   ANN Ensemble Online Learning  

Online and real-time techniques are adopted in order to regrow and develop 
knowledge. ANN ensemble is first set up, one object an individual neural network. 
Training set in small size, with transition in explicitly temporal order, is used for 
object geometrical shape formation. Parallel neural networks organize samples into 
view categories, whose output converges at object nodes, a clear response to spatial 
occupation. For test inputs belonging to a learned object, maximal outputs should 
always come from corresponding object neural networks. So a series of comparison 
are made to validate whether requirements are met at certain level and to decide 
whether spatial coverage needs to be improved and adjusted. If tested images could be 
justified as their counterparts by existing system, there is no need to modify and the 
images can be released or skipped. Otherwise, they will insert into original training 
set until satisfactory. In this way, with learning on and on in ensemble, entire 
information will eventually be constructed in space, and what is acquired previously 
in other objects could not be affected. Results of multiple images from the same 
object were input into a working memory for evidence accumulation over time to 
improve effect, where each occurrence of a view category increases corresponding 
node’s activity and the maximally active node is used to predict or judge the object. 

In fact, a ii ϖω /  problem is solved here. With )(xd  the decision function and N the 

class number, if ijNjxdxd ji ≠=≤>      ,,,2,1,0)(,0)( , then ix ω∈ . Spatial geometrical 

coverage V inclusive of embedding set I , is nearly close to the combination of all 
cases with arbitrary point in multidimensional manifold in set I as the center and a 
constant k as the radius, i.e., topological product between set I and n-dimensional 
hyper sphere [3, 4]. In practice, topological setV  is defined as below. When indefinite 
superposition region encounters, views are inserted further in order to subdivide. 
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6   Simulation Experiment and Performance Analysis 

Image database consists of images covering a sphere surrounding sorts of objects, 
keeping spatial relationships intact. Based on global similarity, a model view learning 
procedure is involved. Training sets were formed with different distances between 
adjoining views. Images from both trained and untrained objects were taken for error 
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`test, trained ones also for correct rate calculation. Some preprocessing was done in 
advance before formal operation to extract feature. View information was transformed 
into an invariant presentation under translation, rotation and scale by log-polar. With 
shift parameters exactly recorded down, an optional inverse transform could be taken 
to revert into initial state. Object recognition was performed in aid of neural networks 
ensemble with neurons similar to hyper sausages. Training recognition rates were all 
100%. With proper parameters, error rate (mistaken recognition) for images from 
unlearned object could be 0%, i.e., unknown objects were rejected without incorrect 
recognition. For test samples from learned objects, with various fraction between 
images at trained visual angle and all, average correct rate in BP, RBF and MWNN 
ensemble are shown as Fig. 1. Training time in MWNN ensemble is much faster. 

 

Fig. 1. Recognition rate 

7   Conclusions  

Information representation depends on similarity metrics and scales. Learning tends to 
be endless when in pursuit of details. Object spatial shapes are first cognized one by 
one by model views. If superposition between objects occurs, new views will be 
inserted to distinguish more subtly. In the recycling course, instead of global learning, 
only local modification is involved to pursue subtlety until solution is satisfactory. 
Encouraging results for feasibility test were achieved in simulation experiment.  
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Abstract. The traditional ITS have considered the learners as a knowl-
edge receiver. The recent development of teachable agent make it possi-
ble to provide the learner with an active role as a knowledge constructor
and to take initiatives to persist in learning. In order to make an adap-
tive teachable agent that responds intelligently for individual learner,
it should reflect the individual differences in the level of cognition and
motivation, and its ongoing changes. For the purpose of developing indi-
vidualized teachable agent, it is proposed to a student model based on
the correlation among three dimensions: individual differences, learner
responses, and learning outcome. A correlation analysis among the log
data, questionnaire scores, and learning measurements was conducted.
We delineated the relationships among three dimensions, learner re-
sponses (mouse-click pattern, duration & frequency at particular task,
individual choice etc), individual characteristics (metacognitive aware-
ness, self-efficacy, learning goal, and performance goal), and learning out-
comes (interest and comprehension) during interacting with the teach-
able agent. The results suggest that certain type of learner responses or
the combination of the responses would be useful indices to predict the
learners’ individual characteristics and ongoing learning outcome.

1 Introduction

The researchers in the field of cognitive science and learning science suggest that
the teaching activity facilitates not only deeper understanding of the learning
material but also enhances motivation to learn [1] [2]. Teaching activity consisted
of sub-activities such as memory and comprehension, knowledge reorganization,
explanation, demonstration, questioning, answering, and evaluation, and so on.
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These sub-activities lead to elaboration, organization, inference, and metacog-
nition, In terms of motivational aspects, students’ motivation can be attained
by allowing the learner to a tutor role which gives a responsibility, a feeling of
engagement, and situational interest to persist in learning [3].

One way of providing the learner with an opportunity for the active engage-
ment in learning is to give them a tutor role. [4] developed the new concept of
intelligent agent called Teachable Agent (TA). Teachable agent is the computer
program in which students teach the computer agent based on the instructional
method of ’learning by teaching’. TA provides student tutors with an active role
so that they can have positive attitude toward the subject matter [5].

Although TA is developed to enhance cognitive ability of learners, the effects
of the system are not the same for the all learners. Traditional TA did not reflect
individual differences in cognitive ability and motivation. The identical interface
regardless of the individual differences might be not only less effective in cogni-
tive aspects of learning but also less interesting in terms of motivational aspects
of learning. There-fore, individualization is the key concept in developing TA to
respond adaptively to individual learner, which reflects the individual differences
in the level of cognition and motivation, and its ongoing changes.

The new generation of ITS (Intelligent Tutoring System) would be developed
into an adaptive system to maximize the motivation to learn and to optimize the
learning by Varying the level of information and affordance to each user. Then,
the important questions are what kind of individual differences might play a
critical role in learning and motivation, and how to measure those individual
differences even if they are identified.

2 User Interface for Measuring Individual Characteristics

The recent development of teachable agent provides the learner with an active
role as a knowledge constructor and focuses on the individualization. Individual-
ized agent provides differential interface and responses adaptively depending on
the characteristics of user and its behaviors. The aim of the ’individualized agent’
is not only to maximize the learner’s cognitive functions but also to enhance the
interests and motivation to learn. To develop adaptiveness of the agent, it is
necessary to assess each user’s specific cognitive and motivational characteristics
and ongoing response pat-terns during learning.

As the first step of developing individualized teachable agent, the individual
characteristics of the learner were measured through the questionnaires. Four
variables of individual difference in metacognition and motivation were selected
because both the level and type of motivation play a significant role in the
persistence and efforts in learning [6]. Among various motivational factors, self-
efficacy, learning goal orientation, and performance goal orientation were used in
this study. Metacognitive awareness including planning, monitoring, and evalua-
tion was measured since elementary school students may lack of this skill though
it is a critical factor for their learning.

Then, various interfaces (see figure 1) were developed to measure the indi-
vidual characteristics of the user through the previously developed TA, KORI
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Fig. 1. Summary of Interface Design for Measuring Individual Characteristics

(KORea university Intelligent agent, see details in [5]). It was expected that the
user response pattern through the KORI would be correlated with the results of
the questionnaires.

In order to measure the level of user self-efficacy, users were required to pre-
dict the KORI’s future performance score. If the users were highly self-efficacious,
they would expect higher level of performance than the low efficacy users since
they all knew that KORI’s performances would be determined by the users’
behavior. Another interface for measuring self-efficacy was the frequency and
duration for exploring the learning resources. The icon of learning resource was
presented on the right side of the screen so the users can access whenever they
want to know the basic and additional knowledge. High self-efficacy users were
expected to refer to the learning resources more frequently and longer.

The second individual characteristic is the metacognitive ability. Among the
four sub-factors of the metacognition, only the planning and monitoring were
focused. In order to measure the user’s planning ability, the system asked the
user to make a lesson plan before teaching the KORI (see Figure 2). The key-
words for basic learning concepts were displayed on the left side of the screen.
The user typed the concept to teach, specific teaching activities, and plans in
the blank. The quality or duration of lesson plan was expected to reflect the
planning ability of the user. The learner’s monitoring ability was measured by
the prediction of KORI’s future performance score. It was also expected that the
predicted KORI test score might provide useful information about the learner’s
monitoring ability if the predicted score and the actual performance score were
compared.

The third individual characteristic was learning goal orientation. To get the
ongoing measurement of learning goal orientation, the learning resource menu
was used. Since the system displays the learning resource menu all the time in
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Fig. 2. Lesson Plan to Teach KORI

concept teaching stage (see Figure 3), the frequency and duration for exploring
the learning resources might be a good indicator of the learning goal orientation.
If the users are highly learning goal oriented, they would want to know more
about the learning materials. The last individual characteristic, the performance
goal orientation, was measured through the total amount of teaching time for
KORI. If the users are highly performance goal orientated, they are expected to
spend less time in teaching KORI because they tend to show off their superior
intellectual ability to another person by getting the task done quickly.

We also measured the ongoing interests of the user indirectly through the
using pat-tern of learning resource and response to the interruption. If the user
has high interests in teaching KORI, she may want to click the learning resource
more frequently, explore the resources more deeply, and spend longer time. In
addition, another interface for measuring user’s interests is to make an inter-
ruption while the user is teaching KORI. For instance, the KORI sometimes
interrupts the user’s teaching by displaying her sleepy face and falling asleep
suddenly. If the users are highly interested in teach-ing and concentrate on the
teaching activity, it might be difficult for them to detect the minor changes in
KORI’s face and to take longer time to detect the changes than uninterested
users.

The teaching activity can be used as a good index for the user’s level of com-
prehension. Thus the ongoing level of comprehension can be measured through
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Fig. 3. Concept Teaching

the ratio of selecting the correct propositions and deleting the wrong propositions
in the concept teaching stage in Fig. 3.

3 Analysis of User Response Pattern

In order to establish the relationships among user characteristics and response
patterns and to extract the algorithm among variables, we measured the individ-
ual characteristics, collected log data of interaction with the KORI, and analyzed
the relationship among these.

Twelve 5th graders (8 males and 4 females) participated in the student mod-
eling. All of the participants took the 30 minutes lesson on the ’Rock Cycle’
which is about the three kinds of rocks and their transformation. Next, partici-
pants filled in questionnaires on individual characteristics including self-efficacy,
goal orientations, and metacognition. And then, they interacted with the KORI
during 30 - 40 minute. During this period, the log data were recorded auto-
matically and participant’s behaviors were videotaped. After teaching KORI,
participants completed the interest questionnaire and comprehension test.

A correlation analysis among the log data, questionnaire scores, and learning
outcomes was conducted (see Figure 4). We delineated the relationship among
three dimensions, learner responses (mouse-click pattern, duration & frequency
at particular task, individual choice etc), individual characteristics (metacogni-
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Fig. 4. Correlation Matrix among Individual Characteristics and Learner Responses

tive awareness, self-efficacy, learning goal, and performance goal), and learning
outcomes (interest and comprehension) during KORI teaching.

The self-efficacy scores showed a strong correlation with the difference be-
tween the predicted and actual performance score (r = .766, p ¡ .01), indicating
that the higher self-efficacy users are morel likely to predict KORI’s performance.
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The self-efficacy scores were moderately correlated with the duration of explor-
ing the learning re-sources (r = .340), the ratio of selecting the correct concepts
(r = .345), and the ratio of deleting the incorrect concept (r = .381).

Individual learner’s metacognitive awareness was highly correlated with both
predicted score of KORI performance and exploring of the learning resources.
The negative correlation was found between the metacognition scores and the
predicted score of the KORI performance (r = -.429) and between the metacog-
nition and the duration of predicting the KORI’s performance (r = -.372). How-
ever, learner’s metacognition was positively correlated with both the difference
between the predicted and actual performance score (r = .710, p ¡ .01) and the
duration of exploring the learning re-sources (r = .382).

Learner’s goal orientation scores were also correlated with various log data.
The learning goal orientation was negatively correlated with both the predicted
score of the KORI performance (r = -.490) and the duration of predicting the
KORI’s performance (r = -.518). However, learning goal orientation was pos-
itively correlated with both the difference between the predicted and actual
performance score (r = .687, p ¡ .05) and the duration of exploring the learning
resources (r = .409).

The performance goal orientation scores showed a strong negative correla-
tion with the duration of predicting the KORI’s performance (r = -.856, p ¡
.01). However, the correlation between the performance goal orientation and the
difference between the predicted and actual performance score (r = .334).

In the motivational learning outcomes, the interest rating scores were nega-
tively correlated with both the duration of predicting the KORI’s performance
(r = -.403) and the responses to interruption (r = -.423). On the contrary, the
interest rating scores showed positive correlation with the duration of teaching
planning (r = .524), the difference between the predicted and actual performance
score (r = .529), the frequency and duration of exploring the learning resources
(r = .406, r = .572 respectively).

On the cognitive aspect of the learning outcome, learner’s comprehension
test scores were positively correlated with several teaching variables. The com-
prehension test score were highly correlated with the ratio of selecting the correct
concepts (r = .724, p ¡ .01) and the ratio of deleting the incorrect concept (r
= .371). In addition, the duration of concept teaching including both selection
and deletion of propositions was positively correlated with the comprehension
test scores (r = .360), and the duration of the concept map teaching was also
correlated with the comprehension test scores (r = .404). The difference between
the predicted and actual performance score was also significantly correlated with
comprehension test scores (r = .686, p ¡ .05). And the duration of exploring the
learning resources also showed a moderate correlation (r = .397).

The results suggest that certain type of learner responses or the combina-
tion of the responses would be useful indices to predict the learners’ individual
characteristics and ongoing learning outcome. In particular, since the difference
between the predicted and actual performance score, the duration of exploring
the learning resources, and the duration of predicting the KORI’s performance
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are highly correlated with most of the variables, these user responses can be
regarded as the best indices for measuring the individual difference and learning
outcomes.

4 Conclusion

Individualization is the key concept in developing computer assisted learning sys-
tem and intelligent tutoring agent. The ultimate goal of developing the learning
agent is to make an adaptive agent respond intelligently for individual learner,
which reflects the individual differences in the level of cognition and motiva-
tion, and its ongoing changes. Traditional measurements in learning systems
include assessing individual differences by standardized test or questionnaires
at the beginning or at the end of the learning session. This study proposed
a new type of dynamic assessment for individual differences and ongoing cog-
nitive/motivational learning outcomes through the computation of responses
without measuring them directly. In near future, various physiological indices
such as temperature of fingers, eye-movement, facial expression, and brainwaves
combined with the response pattern are likely to be used to measure individual
differences or learning outcomes. However, for the time being, it is essential to
develop the algorithm of learner response pattern during learning.

Collecting and classifying the indirect log data of the learner that are cor-
related with the individual differences and learning outcome, and constructing
a student model consisted of the structure of nodes may be an useful method-
ology to understand the learner’s dynamic change during the specific learning
situation.
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Abstract. The purpose of this study is to investigate the application of sample 
entropy (SampEn) measures to electrophysiological studies of single and dual 
tasking performance. The complexity of short-duration (~s) epochs of EEG data 
were analysed using SampEn along with the surrogate technique. Individual 
tasks consisted of an auditory discrimination task and two motor tasks of 
varying difficulty. Dual task conditions were combinations of one auditory and 
one motor task. EEG entropies were significantly lower in dual tasks compared 
to that in the single tasks. The results of this study have demonstrated that 
entropy measurements can be a useful alternative and nonlinear approach to 
analyzing short duration EEG signals on a time scale of seconds. 

1   Introduction 

Research has shown that multiple task performance is of considerably lower quality 
than when corresponding tasks are performed individually.[1] Whilst traditionally this 
has been investigated using behavioural methods [2], more recently 
electrophysiological techniques have been employed as they have been shown to 
provide additional insights into mechanisms of cognitive processing.[3] However, 
because of limitations in the analytical techniques, it has been difficult to conclusively 
distinguish the sometimes-subtle changes in the 125 electroencephalogram (EEG). 

There were investigations which not only provided evidence for nonlinearity in 
EEG time series but indicated that it has a high-dimensional structure.[4] Estimating 
chaotic characteristics of a high-dimensional dynamic system is difficult. Another 
approach to measurement of nonlinear trends in EEG is quantification of complexity 
from the point of view of information theory.  To this end, short and noisy EEG data 
can be analyzed with the help of entropy measurements such as approximate entropy 
(ApEn) and SampEn.[5] Lower entropy values have been proposed to indicate greater 
signal regularity corresponding to situations in which communication pathways in a 
network are poorly developed or system components operate in relative isolation.  To 
date the application of SampEn to analyse ERP data has not been explored.  
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In the present study, SampEn together with the method of surrogate data was 
introduced, for estimating complexity or irregularity of short EEG time series 
collected from participants in both single and dual task conditions.  It has been 
proposed that cognitive control mechanisms are required to orchestrate performance 
of more than one task at a time [6]. If this is the case then it is expected that the 
entropy values should be changed in the multiple task condition compared with the 
single task condition. 

2   Method 

None of the participants (aged between 18 and 45 years) were taking medication, 
have a history of head injury, substance abuse, or any significant medical or 
psychiatric problems. The experimental stimuli and participants behavioural 
responses were controlled and collected using the Superlab (SL, Cedrus Corporation, 
Phoenix, USA) software programme. 

2.1   Experimental Tasks 

Auditory Single Task (AST): The auditory ‘oddball’ paradigm consisted of 
presentation of two tones of 1kHz and 2kHz, with probabilities of 0.8 and 0.2, non- 
target and target stimuli respectively. Participants responded to the rare stimuli by 
pressing a pre-designated key, ignoring the frequent stimuli.  Motor Task 1 and 2: The 
tasks consisted of participant executing the motor tasks when the rare vibration 
occurred. Dual Tasks: Two dual task experiments were designed combining the above 
single ‘oddball’ auditory and motor tasks: auditory and motor task 1 (ADT1) and 
auditory and motor task 2 (ADT2). The stimuli were presented pseudorandomly to 
ensure that there were no consecutive presentations of target stimuli. Randomisation 
was carried out using Minitab software. 

2.2   Data Acquisition 

Brain potentials of 26 electrodes sites positioned according to the International 10-20 
system were recorded using a Scan electrophysiological acquisition system 
(Neuroscan Medical Systems, Virginia, USA). All channels were amplified with a 
gain of x150 and bandpass filters of 0.01 – 100Hz were employed. The signals were 
digitised using a 16-bit analogue-to-digital converter and sampled at 500Hz.   

2.3   Sample Entropy and Surrogate Data 

The improved algorithm of ApEn, SampEn statistics, agree much better than ApEn 
statistics with the theory of random numbers with known probability characteristics, 
over a broad range of operating conditions and maintain relative consistency where 
ApEn statistics do not.  The mathematical details of the SampEn are referred to the 
reference [5].  In the present study, 30 computations of the surrogate algorithm were 
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generated, and SampEn was calculated.  Following this the mean, SD and SampEn 
were calculated, for each 30-member surrogate ensembles, and compared with 
SampEn for the original time series. The null hypothesis was rejected at a significance 
level of 0.05.[4] 

2.4   Statistics 

All the data are expressed as the mean ± SEM.  Analysis of variance (ANOVA) was 
used for statistical analysis of the data, allowing within and between task comparisons 
to be made and significant differences are presented when P < 0.05. 

3   Results 

The group values of SampEn for the original data from Fp1 position ranged from 0.19 
to 0.30. Comparatively, all these data were significantly lower (P < 0.05) than that of 
the surrogate data group, in which the entropy values are from 0.37 to 0.60.  
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Fig. 1. Comparison of single and dual task rare auditory stimuli. The entropy of ERPs signals in 
24 electrodes was found significant differences between AST and ADT1. 

Fig 1 gives the SampEn for rare tone stimuli in the AST and the ADT1 (n=13) in 
24 electrodes, from left to right which are Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, 
FC4, T3, C3, C4, T4, CP3, CPz, CP4, T5, P3, P4, T6, O1, Oz and O2. It can be seen 
that the entropy values in the AST condition were significantly higher than that of the 
ADT1 condition (P < 0.05). There were only two electrodes, Cz and Pz, in which the 
SampEn didn’t detect significant difference between the two tasks. 
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Fig. 2. Comparison of single and dual task rare auditory stimuli. The entropy data of ERPs 
signals in 23 electrodes were detected significant differences between AST and ADT2. 

The data in Fig 2 compares the rare auditory stimuli of the AST condition and the 
ADT2 (n=14) in 23 electrodes, from left to right which are Fp2, F7, Fz, F8, FC3, FCz, 
FC4, T3, C3, Cz C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz and O2. The 
SampEn measurements were significantly high for the single task performance 
compared with the dual task performance (P < 0.05 – 0.001) in all presented 
electrodes. However, there were still three electrodes, Fp1, F3 and F4, in which the 
entropy measurement didn’t detect significant difference between them. 

4   Discussions 

The primary aim of the present study was to investigate the potential application of 
SampEn statistics to analyze short ERP data. Various investigations have shown that 
applying nonlinear dynamical methods to EEG data provides new information about 
the complex dynamics of underlying neuronal networks [7]. Within this physical-
mathematical framework a variety of measures e.g correlation dimension and Largest 
Lyapunov exponents allow characterization of different static and dynamic properties 
of a time series  However, in a strict sense, well-known problems in extracting 
nonlinear measures from short, noisy and non-stationary data, generated from 
potentially high-dimensional systems, would excluded the use of these measures to 
characterize EEG dynamics. 

SampEn does not test for a particular model for ERP dynamics, such as 
deterministic vs. stochastic; instead, SampEn is used to differentiate among data sets 
on the basis of pattern regularity in the time series. However, the model of surrogate 
data can be used as a formal test, for individual subjects, for quantifying statistical 
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significance of the rejection of a particular null hypothesis for comparisons between 
the original time series and dynamic models [4] In the present study, the original time 
series for each fetus was compared with its surrogate data. The results indicated that 
there were correlations in the original time series that could not be accounted for by 
the linear autocorrelation function. 

Complexity measurements have been correlated with fluctuations of complex 
nonlinear variability in a variety of physiological challenges and pathological 
conditions. The data (Fig.1 and 2) show a clear difference of the degree of complexity 
or irregularity between the auditory single task performance and the auditory dual 
task performance with motor1 or motor2 in most part of the brain cortex. The results 
further suggest that the neural information transmission or communication in the 
subjects who performed auditory dual tasks in either with motor1 or motor2 could be 
more isolated or impaired compared to that in the subjects who only performed 
auditory single task.  

In conclusion, the findings of this study have demonstrated that entropy 
measurements could be alternative nonlinear approaches for analyzing short-term 
ERP signals.  The methods further show promise as a quantitative measure of 
nonlinear dynamic systems behaviour and its psychological change, such as single or 
dual tasks challenges, where the validity of traditional nonlinear dynamical 
approaches such as correlation dimension and Lyapunov exponent measurements 
have been challenged its validity, recently.  
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Abstract. Chaos theory was applied to analysis of the time series of plethys-
mograms under various human physio-psychological conditions. It found that 
the largest Lyapunov exponent could be used to characterize physio-
psychological status. A visual representation method based on constellation 
graphs was developed to indexing temporal changes in the largest Lyapunov 
exponent. Changes of constellation angles were found to clearly characterizing 
variations of physio-psychological status in a series of experiments. 

1   Introduction 

Most biological systems that exist in the natural world are believed to be complex 
systems with chaotic fluctuations. Chaotic systems appear to be very complex and to 
behave in a random and unstable manner. But in fact they are systems that change 
according to simple deterministic rules. The fingertip pulses are easier and less re-
strictive in measurements in comparing with the other biological signals such as ECG 
(electroencephalography) and EEG. The generating system of fingertip pulse 
(plethysmograms) can be described by chaotic dynamics [1]. Recently there were a lot 
of investigations showing the effectiveness of the chaotic analyzing of plethysmogra-
phy in relating physio-psychological changes. The effect of work load on fingertip 
pulsations was studied. Plethysmography was also employed to examine physio-
psychological changes of firm employers working on morning, midday and evening. 
We measured fingertip pulse waves and investigated the changes in chaotic invariants 
for different age groups. The study of physio-psychological changes caused by de-
cline in communication skill with aging demonstrated the effectiveness of the plethys-
mography.  

In this paper chaos analysis was performed on the measured fingertip pulse waves 
(plethysmograms). The largest Lyapunov exponents of the time series were com-
puted.  Especially we concentrated on the temporal changes in the largest Lyapunov 
exponent, in relating to indexing physio-psychological status and mental toughness, 
on the basis of experimental results. In addition, a visually representation of the tem-
poral changes was proposed based on constellation graphic method. 



812 O.-H. Mayumi and T. Miao 

2   Measurement, Analysis and Visual Representation Methods  

2.1   Method of Measurement   

Fingertip pulses were measured using a photoplethysmography sensor (CCI BC2000) 
in the following manner. The subjects were allowed to become accustomed to their 
surroundings for at least 10 minutes in a room maintained at 25ºC. They were allowed 
to sit comfortably in a chair with both hands placed in a relaxed manner on a desk (at 
a height that was comfortable for writing). The subjects kept their eyes open while 
measurements were made on the left index finger for a minimum of 60 sec to a maxi-
mum of 180 sec. The signals were A/D converted. Digital data sampled at a frequency 
of 200 Hz with resolution of 12 bits was recorded on a computer. 

2.2   Method of Chaos Analysis and Calculation of the Largest Lyapunov  
        Exponent  

For the time series data x(i), with i=1,…, N obtained from the fingertip pulses, the 
phase space was reconstructed using the method of time delays. Assuming that we 
create a d-dimensional phase space using a constant time delay , the vectors in the 
space are generated as d-tuples from the time series and are given by 

       )}({)))1((),...,(()( ixdixixi k=−−= τX  (1) 

where ))1(()( τ−−= kixixk , with k=1,...,d. To reconstruct the phase space cor-

rectly, the parameters of delay ( ) and embedding dimensions (d) should be chosen 
optimally [4]. In time series data recorded from human finger photoplethysmograms, 
we chose the parameters =50 ms and d=4, as in references [1] and [2].  
In the reconstructed phase space, one of the important measures of complexity is the 
largest Lyapunov exponent 1λ . If )(tX  is the evolution of some initial orbit )0(X  in 

the phase space, with time, then        

||

|)(|
ln

1
limlim

01 ε
δλ ε

ε

t

tt

X
→∞→

=  (2) 
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vectors )0()0( εε XX −= . We estimate 
1λ  using the algorithm of Sano and Sawada 

method [3], where 1λ  describes the divergence and instability of the orbits in phase 

space. 
Chaotic analysis of finger photoplethysmograms was performed. The largest 

Lyapunov exponents ( 1λ ) of were calculated for a basic window of 8,000 points (40 

sec). For a longer measured data, temporal changes in 1λ  was obtained by sliding 

window approach in which the basic window was sequentially shifted in a step of 200 
points (1 sec). Accordingly sequentially estimations of 1λ  was determined for each 

window. 
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Figure 1 presents a plethysmogram obtained from a 180sec measurement together 
with its temporal changes in the largest Lyapunov exponent achieved in the sliding 
window method. 

 

Fig. 1. Plethysmograms (upper) and its temporal changes of 1λ  (bottom) 

2.3   Representation Method Through Constellation Graphs  

This study developed constellation graphs method to visually describe the temporal 
variations of the Lyapunov exponents. In these constellation graphs, the numerical 
data of time variations was converted into variations of angles with minimum=0° and 
maximum=180°. The vectors of the same length were joined together and depicted on 
a semicircular graph. The maximum and minimum values could be set automatically 
or manually from the values of the Lyapunov exponents. Each line on the graph 
represents the data of one measurement. The smaller the value of the Lyapunov expo-
nent, the closer the vector is to the bottom right of the constellation graph. As the 
value increases, the line shifts to the left in the graph. The line is straighter when the 
standard deviation is smaller and kinkier, while bent for a larger one. 

3   Experiments and Constellation Graphic Representation Results   

We have conducted a series of experiments using measurements of fingertip pulse 
waves. The experiments were described in details elsewhere. Informed consent was 
obtained from all the subjects on all experiments. This paper reviews the results by 
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using constellation graphic representation of the temporal changes in the largest 
Lyapunov exponents which characterize the changes in physio-psychological status.  

3.1   Changes in Physio-psychological Status Caused Due to Work Load 

In the experiment, a Kraeplin’s test was performed for 15 minutes. In order to exam-
ine the effects of work load due such test, the pulse waves were measured under the 
resting condition before and after the test, for 1 minute each time.   

Figure 2 shows the constellation graphic representation of the temporal changes in 
the largest Lyapunov exponents for two subjects (both are males, one in his 20’s and 
the other in his 40’s). 2 replicate measurements were made for each subject. There 
were 4 trials comprising 8 measurements in total. Figure shows the results before (4 
green lines) and after (4 orange lines) the tests. A tendency shifting towards the left 
was found due to the Kraeplin’s test that is concerned a task involving brain activities 
and work.  

 

Fig. 2. Constellation graphic representation of Lyapunov exponents before and after brain 
work.  Orange lines: after the work, and green lines: before the work. 

It was noted that the subjects commented that their consciousness activities became 
clearer after the Kraeplin’s test.  

3.2   Changes in Physio-psychological Index in Firm Employees During a  
        Working Day (Morning, Midday and Evening) 

Subjects were 8 employees aged 26 to 34. Measurements were made, for 3 minutes at 
the time: soon after the employee reached at their office (in the morning), about 1 
hour after lunch (midday), and finished work (in evening), respectively. 

Fig.3 shows the representation results for "morning" indicated by blue lines, "mid-
day" by red ones, and "evening by green ones, respectively, for 8 subjects correspond-
ing No.1 to No.8. In the constellation graphs, the physio-psychological condition is  
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better when the line is closer to the left and poorer when it is closer to the right. The 
average angles of the constellation lines for subject No.1 exhibited the order being 
"morning" > "midday" > "evening", showing a normal physio-psychological changes 
from morning to evening. While No. 2 had a reversed order, although the overall tread 
(angles) was larger. No. 3 had similar tread to No.2. No. 4 had larger angles at mid-
day. No. 5 was relatively better at midday compared to morning or evening. No. 6 
was in a good condition in the morning and evening but not at midday. No. 7 showed 
the same trend as No. 5 but had more subtle changes. No. 8 was fine in the morning, 
slightly sluggish at midday and not in a good condition in the evening. 

 

Fig. 3. Constellation graphs during a working day (morning, midday and evening) 
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3.3   Changes Caused by Decline in Communication Skill with Ageing 

Subjects were 179 persons including 139 females and 40 males, aged 65 to 100 with 
mean of 83.4. Photoplethysmograms were recorded for 3 minutes together with the 
measurements of body temperature, systolic and diastolic blood pressure and pulse 
rate.  For estimating the communication skill of aged persons, we used Activities of 
Daily Living (ADL) indices recorded by health care professionals who were looking 
after the subjects in an old people’s house. The communication skill was assigned to 
one of the three levels. a: Be able to communicate normally; b: Be able to communi-
cate to some extent; and c: Hardly or disable communicate. 

As shown in Figure 4, the constellation angles of the largest Lyapunov exponents 
decreased obviously with the decline in communication skills.   

 

Fig. 4. Constellation graph and communication skills 

4   Discussions 

This study showed that the temporal changes of Lyapunov exponents of the time 
series, which was used as a physio-psychological index, could be taken as a promising 
method to measure of metal toughness. Mental toughness here is defined as the 
adaptability to external environment, communication skill and a certain level of flexi-
bility (divergence). Human beings have the capability to skillfully avoid various 
changes, contacts and assaults of the external environment. In some cases, they deal 
with them, cope with them, and maintain their lives while expressing themselves. In 
analogs to the phenomena that the decline in biological immunity will results in sick, 
the mental toughness may well signify “spiritedness,” which has been so far described 
vaguely. “Spiritedness” could not be quantified until now. Our investigations in the 
studies may give some insight into the problem.  
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5   Conclusions 

Chaos theory was applied to analysis of the time series of plethysmograms under 
various human physio-psychological conditions in a series of experiments. It found 
out that the temporal changes in the largest Lyapunov exponent correlated well with 
changes of physio-psychological status. A visual representation method based on 
constellation graphs was developed to indexing the temporal variations. Especially the 
changes of constellation angles were found to clearly characterizing variations in 
mental/physical status.  In concretely, changes in physio-psychological status caused 
due to work load had a corresponding increase of the constellation angles. Changes in 
physio-psychological index in firm employees during a working day were explained 
by the constellation graphs. Changes caused by decline in communication skill with 
ageing corresponded to a decreased constellation angles.  

In our earlier studies, we found that the Lyapunov exponent decreased in aged per-
sons with severe dementia. We also plan to advance the research on changes in mental 
toughness with growth from birth to early childhood. 
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Abstract. In order to build a human-computer interface that is sensitive to a 
user's expressed emotion, we propose a neural network based emotion estimation 
algorithm using heart rate variability (HRV) and galvanic skin response (GSR). In 
this study, a video clip method was used to elicit basic emotions from subjects 
while electrocardiogram (ECG) and GSR signals were measured. These signals 
reflect the influence of emotion on the autonomic nervous system (ANS). The 
extracted features that are emotion-specific characteristics from those signals are 
applied to an artificial neural network in order to recognize emotions from new 
signal collections. Results show that the proposed method is able to accurately 
distinguish a user’s emotion. 

1   Introduction 

Throughout history, humans have made tools to help themselves. Among these tools,  
none has been greater than the computer. Thanks to the development of computers, 
humans could be released from complex, difficult work. As computers have evolved at 
a high speed, human life has changed significantly. However, at present the evolution is 
facing its limit because users now require a more intelligent system that responds to 
human emotions. Unlike the existing services dependent on computers, newly required 
services should be fit to the user's taste by considering the user's emotions. To achieve 
this purpose, a new computing system must have the ability to detect human emotions. 
This study focuses on such a computing system. We are especially interested in ANS 
(autonomic nervous system) signals during emotion changes and in developing a 
detection algorithm by analyzing ANS changes to establish this computing system. 
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Since the ANS cannot be controlled artificially, the ANS is used to monitor changes in 
emotion. In this study, we chose ECG (electrocardiogram) and GSR (galvanic skin 
resistance) as parameters to measure the ANS. Also, since the number of subjects was 
limited, it seemed meaningless to generalize the detection algorithm to fit well for every 
subject. Emotion occurs very differently according to the situation, personality, and 
growth environment of a person. Furthermore, emotions change from day to day within 
a specific individual.[9] Therefore, is impossible and meaningless to obtain a statistical 
output from hundreds of subjects.  Instead, we measured two parameters from six 
subjects and analyzed the results. Then, we established a proper reactance model sent 
from the ANS, and adapted it to the subjects. Subsequently, using the developed 
algorithm we may be able to estimate the user’s emotion. In conclusion, we can receive 
individually-tailored services by emotion estimation using only ANS data. 

2   Methods 

2.1   Classification of Emotions 

Most literature references about emotions agree that emotions are complex and are a 
combination of physical and cognitive factors. The physical aspect is also referred to as 
bodily or primary emotions, while the cognitive aspect is referred to as mental 
emotions.[8] Because humans’ emotions change continuously, it is difficult to 
distinguish emotion using a standard value. Also, emotion can be analyzed qualitatively, 
but quantitative analysis is impossible. In this scheme, emotions are defined in a multi-
dimensional space of emotion attributes. A popular concept uses a valence-arousal plane 
(Fig. 1). Valence defines whether the emotion is positive or negative, and to what 
degree. Arousal defines the intensity of emotion, ranging from calm (lowest value) to 
excited (highest value).[8] We defined four emotions shown in the valence-arousal 
plane (Fig. 1). 

 
(a): Sad,  (b): Calm pleasure,  (c): Interesting pleasure,  (d): Fear 

Fig. 1. Valence-Arousal Plane 
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2.2   Experimental Sequence 

The entire process of the emotion estimation system is shown in Figure 2. 
Psychological emotion was induced with various video clips. At the end of all 
experiments, subjects evaluated their degree of valence-arousal. To assess the two 
dimensions of valence and arousal, we used the Self-Assessment Manikin (SAM), an 
effective rating system devised by Lang. In this system, a graphic figure depicts 
reaction values along each dimension[2]. However, SAM estimations are not always 
in agreement with the physiological change induced by emotions. Pass through upside 
process and collected data trains the neural network. Using the trained neural 
network, we could presume emotion. 

 
(a): Inducing emotion, physiological analysis, neural network training 

(b): Estimating sequence using the trained neural network 

Fig. 2. Diagram of the emotion estimation system 

2.3   Subjects and Materials 

The entire experiment was conducted at the Medical College of Severance. Subjects 
consisted of three healthy males and three healthy females. We measured three times 
in a day, for three consecutive days per week, for three weeks. A MP150 (BIOPAC 
SYSTEM, U.S) was used to measure both the ECG and GSR. ECG signals result 
from activities in the ANS and HRV (heart rate variability), which is an important 
factor to estimate the emotion that results from ECG signals. Since HRV is highly 
sensitive to noise, the sampling rates of ECG and GSR were 1000 Hz and 250 Hz, 
respectively (GSR is not as sensitive to noise). The electrodes were not removed from 
the body during data collection except in specific circumstances (eating a meal, using 
the restroom, etc). Thus, we could measure the vital signals in any state, including 
normal state, almost continually. Since the subjects stayed in the same environment 
during stimulus and while resting, they were not influenced by environmental 
changes. The materials used for experiments were video clips. Some were used to 
induce a pleasant emotion, while other ones were used to induce an unpleasant 
emotion. We did not select which movie to show the subjects due to variations in 
taste. The subjects were shown video clips similar to the television programs they 
watch at home. The subjects filled out a form after they watched each video clip, 
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which required a full explanation of their emotional state during the video. Figure 3 
shows a portion of the form.  

 

 

Fig. 3. Emotion assessment using Self-Assessment Manikin (SAM) 

2.4   Method of Analysis 

The signals emitted from the human body are non-stationary. As a result, ANS 
activities are affected during emotion changes. Even when a human is in the same 
emotional state, the non-stationary signals are displayed differently. Thus, we 
measured three times in a day (morning, afternoon, and evening) in order to ensure 
the independence to time and subordination to emotion. HRV has been an important 
factor in the study of both stress and emotions. We also used HRV in the time and 
frequency domains to analyze the ECG. The HRV was obtained during a given time 
and we compared the ANS activities in each emotional state, and then estimated the 
relationship between emotion and the ANS. To detect QRS peaks, we applied the 
algorithm suggested by Tompkins & Hamilton.[4] Task forces of The European and 
North American Societies of Cardiology suggest proper times to detect HRV, one of 
which is a short-term (5 minutes) measurement and the other is a long-term 
measurement (24 hours).[1][3] Following this recommendation, we measured for 24 
hours then divided the results into 5 minute intervals. Using the short-term data, we 
calculated the SDNN, RMSSD, HR, and LF/HF [1].  

 ECG and GSR measurements reflect reactions of the ANS, particularly the 
sympathetic nervous system. When a weak current flows through the two electrodes 
on the fore finger and the middle finger, changes in skin resistance occurs thus  
changing the GSR value. This indicated that changes occurred in the ANS. If the 
emotion of the subject changes and excites the sympathetic nervous system, sweat is 
secreted from the sweat gland, which increases GSR values.  

2.5   Learning and Estimation Using the Neural Network 

Numerous advances have been made in the development an intelligent system and 
some have been inspired by biological neural networks. Researchers from many 
scientific disciplines are designing neural networks to solve problems in pattern 
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recognition, prediction, optimization, associative memory, and control.[10] The  
multi-layer perception (MLP) neural network structure was used in this study. The 
goal of this study was to define the type of physiological data that is appropriate to 
train the neural network. We distinguished the nuance of emotion, which is analyzed 
physiologically using the neural network. 

3   Results 

From the significant amount of data evaluated by SAM, we selected data suitable to 
distinguish an emotion. If subjects did not feel emotions promptly in SAM, we did not 
apply the data to the experiment. Physiological interpretation was calculated in the 
time and frequency domains.  We analyzed whether emotion was caused or followed 
by physiological interpretation.  

Figure 4 shows the analyzed value that changed according to the emotion type in 
the time domain. As indicated, when the emotion is fear (d), SDNN and RMSSD 
increase more than in other emotions. However, in this case the mean HR decreased, 
indicating that activity of the sympathetic nervous system increases more than activity 
 

 
SDNN (ms)   RMSSD (ms)   Heart rate (number/1 min) 

a, b, c, d: Reference Fig. 1. 

Fig. 4. Statistically-analyzed parameters in the time domain 

Table 1. Frequency domain values of HRV and GSR Activity 

 A b c d 
LF/HF 2.196 2.587 2.743 2.635 
GSR 938.35 706.33 643.2 612.45 

a, b, c, d: Reference Fig. 1. 
 
 the parasympathetic nervous system. Table 1 indicates that the autonomic nervous 
system was evaluated by HRV in the frequency domain and displays the activity 
degree of GSR. Fear and interested state (c and d, respectively) demonstrated a LF/HF 
ratio relatively lower than sad and calm pleasure (a and  b, respectively). However, 



 Neural Network Based Emotion Estimation 823 

 

we could not show a statistical significance for emotion using these physiological 
values. We trained the neural network to estimate four kinds of emotion. Table 2 
shows the accuracy of emotion classification using HRV and GSR parameters. Total 
accuracy was 80.2% and the fear (d) estimation rate was the highest.  

 
Table 2. Accuracy of emotion classification using neural network 

 

a, b, c, d: Reference Fig. 1 

4   Discussion and Conclusion 

It is very difficult to analyze human emotion. Currently, several research groups are 
studying emotion and human body response through various methods. We analyzed 
the relationship between emotion and the autonomic nervous system by HRV and 
GSR signal. We found an accuracy rate of 80.2%. This study demonstrates the high 
accuracy in emotion estimation using the neural network. However, it is impossible to 
analyze emotions that change in real-time. Therefore, a more delicate algorithm is 
needed to detect real-time emotional changes.  
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Abstract. From the last decade, modeling of cognitive agents have
drawn great attention and provide a new paradigm for addressing funda-
mental questions in cognitive science. In this paper, a logical model for
reasoning about cognitive agent’s three attitudes Belief, Capability and
Promise is proposed. A formalization is provided based on the modal
logic to specify and analyze dependencies between the three attitudes.
By adopting a set of constraints that describe how the three attitudes
are related to each other, we can draw a number of properties of the
model. To show the potential applications of the model, we apply the
BCP model to a decision-making example in trading agent competition
for supply chain management(TAC SCM). The logical model proposed
here provides a rigorous semantic basis for modeling cognitive agent and
reasoning about multi-agent interactions.

1 Introduction

Cognitive agents and multi-agent interactions play a significant role when build-
ing distributed sophisticated systems. There has been much interest in the use
of logic for developing formal theories of agents, such as Intention logic[1], BDI
logics[2], KARO framework[3] and LORA logic[4]. These logics give agents a
substantial base in theory as well as a number of implemented systems that are
used for challenging applications such as air-traffic control and manufacturing
systems.

When formalizing the properties of cognitive agents, the first fundamental
problem is to determine which combination of attitudes is appropriate to mod-
eling the agents’ cognitive states and functional components. By considering a
type of complex systems, we discuss the necessity of the three attitudes,i.e. belief,
promise and capability. These systems commonly take on such characteristics as:

(1) There are a great deal of events from both the outside and the inside of the
system when the dynamic environment evolves.
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(2) In order to achieve the goal, there must be special components for cognitive
agents to perform corresponding actions.

(3) Before cooperation, the participants must make an agreement in some way,
for example negotiating a contract, even orally.

We are motivated to investigate how to modeling such agent-based systems.
Given characteristic (1), cognitive agents need an informative component to
keep the states of the systems and the environments, called belief. The agent
updates its belief when it perceives the changes of the environment. When taking
characteristic (2) into account, it is necessary for agents that there is a functional
component, called capability, to carry out their plans and bring the plans to
success. The agent cannot always do what it intends to because it must have
the required capabilities. Considering characteristic (3), a model about promise
must be built to establish cooperation relationship between participants during
the interaction processes. As pointed out in [5], there may not be a unique
agent model suitable for all applications, since different domains have different
characteristics and thus different requirements regarding rational behavior.

In this paper, a logical model for reasoning about the agent’s Belief, Capa-
bility and Promise(abbreviated as BCP) is proposed. We use modal logic, which
provides an intuitively acceptable, uniform formalization of intensional notions,
to model cognitive agent and multi-agent interactions. Following the expression
of traditional epistemic logic that Biφ means agent i believes φ, we will add two
modal operators Pij and Cij to the logic. The standard Kripke-style semantics
for Bi and Pij is combined with almost-standard neighbourhood semantics[6] for
Cij to interpret the well-formed formulas(wff ). The intended meaning of Pijφ
is that agent j makes a promise to agent i that j would like to achieve φ, while
Cijφ means agent i considers that agent j has the capability to perform action
φ1. In large scale multi-agent systems, the decision-making processes, based on
the individual belief, are commonly impacted by whether the cooperating agents
would like to make promises to accept the tasks and whether they can fulfill the
tasks. Thus, the individual agent is required to be able to reason about other
agents’ promises and capabilities to decide whether they can accept and accom-
plish new tasks most effectively in the BCP logic. To tie the three operators
up, we place a number of constraints on them. Also, a trading example between
the supplier agent and the purchasing agent in the trading agent competition
for supply chain management(TAC SCM)[8] is presented to show the potential
applications of the logical model.

The remainder of the paper is organized as follows. In section 2, a brief
literature review about the three attitudes of agents is firstly given. Then we
provide the syntax, semantics and axioms of the BCP logic, with some properties
of capability and promise operators. A reasoning and decision-making example
in TAC SCM is illustrated in section 3. In section 4, related works are compared
and distinguished in detail. Section 5 concludes with a discussion and indicates
the future work.
1 Be similar to [7], we will not distinguish between actions and facts, and the occur-

rence of an action will be represented by the corresponding fact holding.
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2 The Logical Model

2.1 Literature Review

Belief expresses the agent’s information about the world, which is formalized
with possible worlds semantics. The modal logic system weak − S5n is often
chosen as logic of belief. Despite a number of disadvantages, such as the log-
ical omniscience problem, possible worlds are still the semantics of choice for
researchers[2][3][4].

Capability, onwhichwewillplace strong emphasis, is one of thenecessary condi-
tions for agents to interact, cooperate and accomplish tasks successfully. The very
beginning of the research on capability can be cast back to Ryle’s book[9], in which
the author argued the key difference between stupidity, that is, not knowing how,
and ignorance, not knowing that. However, there was little considerable work on
capabilityuntil the late1980s.Singh[10] introducedanabstract conceptKnowHow
to characterize the agent’s capability from the view of external system designers.
He suggested that it is not sufficient for an agent to be capable of performing some-
thing, moreover the agent must have the knowledge required to form the complete
plans before acting. The famous KARO[3] framework tried to deal with the notion
of knowledge, ability, result and opportunity. In KARO, dynamic and epistemic
logic were combined into one modal system and the ability was considered to be
a positive explanatory factor in accounting for the agent’s performing an action.
Padgham[11] extended the well-known BDI architecture by adding Cap operator
in order to eliminate mismatch between theory and practice for actual systems.
A style of commitment was defined to enrich the existing formal models in [11],
which allowed a self-aware agent to modify its goals and intentions when its ca-
pabilities changed. Fisher [12] incorporated more flexible motivational attributes,
such as ability and confidence, then introducedABCmodel. Themain advantage of
the ABC modeling is that it provided a simple but flexible foundation for a formal
development method.

The study of promise is relatively absent in literature. The intuition meaning
of promise employed here is that it is a declaration made by the agent assuring
that it will be under an obligation to keep the contract persistently. Liau[13]
proposed a logic of belief, information acquisition and trust (BIT) with some
variant axioms. The BIT logic is formulated by using a modal logic approach
which is similar to the model we defined here, the main difference is that we
additionally introduce the capability and promise operators in order to present
capabilities and promises for cognitive agents respectively.

Although such three notions have been separably explored in the literature,
there has been very little work on combining them as a whole framework and
studying the relationship between them. This is the central issue of what we will
do in the BCP logic in the following sections.

2.2 The Logic BCP

The logic BCP is a standard modal logic, extended with operators characterizing
agents’ capability and promise. Thus, considering a set A = {1, ..., n} of agents



828 X. Zhao and Z. Lin

and a set Φ0 of atomic propositions, then the set of the well-formed formulas(wff )
Φ of the BCP logic is the least set containing Φ0 and closed under the following
formation rules:

– if ϕ and ψ are in Φ, then ϕ ∧ ψ is also in Φ
– if ϕ is in Φ, so are ¬ϕ,Biϕ,Cijϕ, Pijϕ, 1 ≤ i �= j ≤ n

The operators ∨,⊃,≡,*,⊥ are defined as usual.
We combine standard Kripke-style semantics for Bi, Pij , with almost-

standard neighbourhood semantics[6] for Cij to interpret the wffs in Φ. Formally,
a BCP model is a tuple M = 〈W,π,R(Bi)1≤i≤n , R(Cij)1≤i�=j≤n , R(Pij)1≤i�=j≤n〉,
where

– W is a none-empty set of possible worlds,
– π : Φ0 → 2W is a truth assignment mapping each atomic proposition to the

set of worlds in which it is true,
– RBi ⊆W ×W is a serial, transitive and Euclidean relation on W , mapping

each an agent’s doxastic world to its belief-accessible worlds,
– RCij ⊆W × 2W is a relation between W and the power set of W ,
– RPij ⊆W ×W is a binary relation on W .

Informally,RBi(w) denotes the sets of worlds that are indistinguishable for
agent i according to its belief. More specially, in actual world w, agent will
consider w

′
is possible if w

′ ∈ RBi(w). The attributes of relation RBi ensure
the agent’s belief to be provided with properties such as consistency, positive
introspection and negative introspection. RPij (w) denotes the sets of worlds
that agent i considers possible according to the promises from agent j. It means
that, in actual world w, agent i gets a promise from j that w

′
is possible if

w
′ ∈ RPij (w). The idea of RCij modeling is that each possible world in W

has associated it with a collection of subsets of W . It is natural to identify
a proposition with a set of possible worlds in W , thus for any Z ⊆ W , Z ∈
RCij(w) means that agent i considers agent j has the capability according to
the proposition corresponding to Z.

The satisfaction relation between wffs and a pair of M ,w, consisting of a
model M and a world w in M , is defined inductively as follows:

– M,w |= ϕ iff w ∈ π(ϕ), ϕ ∈ Φ0,
– M,w |= ¬ϕ iff M,w � ϕ,
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ,
– M,w |= Biϕ iff for all u ∈ RBi(w),M, u |= ϕ,
– M,w |= Cijϕ iff for some Z ∈ RCij(w) for all u ∈ Z,M, u |= ϕ,
– M,w |= Pijϕ iff for all u ∈ RPij (w),M, u |= ϕ.

Until now, the relations RBi , RCij and RPij are still independent. In such
model, an agent’s belief can’t be updated with what other agents promise to it
and changes of other agents’ capabilities. This scenario can’t reflect our original



Modeling Belief, Capability and Promise for Cognitive Agents 829

motivations, therefore is not what we want. Indeed, agents need to interact, col-
laborate and negotiate to pursue common-goals and self-interests in large scale
multi-agent systems. The decision-making processes, based on the individual be-
lief, are impacted by whether the cooperating agents would like to make promises
to accept the tasks and whether they can fulfill the tasks. During the processes
of interactions and cooperations, an agent would update its belief, and establish
the relationships with those capable agents, whose promises can build on. In
such system, the individual agent might be required to be able to reason about
other agents’ promises and capabilities to decide whether they can accept and
accomplish new tasks most effectively. Thus we are more interested in the model
satisfying the following conditions:

Con1: RCij (w) �= ∅
Con2: ∅ /∈ RCij (w)
Con3: RCij (w) =

⋂
u∈RBi (w)R

Cij (u)
Con4: for all Z ∈ RCij(w), if RBi ◦RPij (w) ⊆ Z, then RBi(w) ⊆ Z

According to the Con1 and Con2 conditions, we shall say that an agent is
capable of doing something at least, as well as performing actions that are not
contradictory. The Con3 condition indicates that an agent is self-aware of its
attitude towards other agents’ capabilities, whereas the Con4 condition ties the
three operators up and means that if agent j promises agent i that it will make
a goal to be true and agent i also considers that agent j has the capability to
achieve the goal, then agent i will believe the goal to be true.

The logic BCP includes the following set of axioms and rules of inference:

P: All tautologies of propositional calculus
B1: [Biϕ ∧Bi(ϕ ⊃ ψ)] ⊃ Biψ
B2: ¬Bi⊥
B3: Biϕ ⊃ BiBiϕ
B4: ¬Biϕ ⊃ Bi¬Biϕ
P1: [Pijϕ ∧ Pij(ϕ ⊃ ψ)] ⊃ Pijψ
P2: ¬Pij⊥
C1: Cij*
C2: ¬Cij⊥
C3: Cijϕ ≡ BiCijϕ
C4: BiPijϕ ∧ Cijϕ ⊃ Biϕ
R1: From ϕ and ϕ ⊃ ψ infer ψ
R2: From ϕ infer Biϕ and Pijϕ
R3: From ϕ ⊃ ψ infer Cijϕ ⊃ Cijψ

In logical terms, the B1-B4 axioms correspond to the KD45 modal opera-
tor Bi. The B1 axiom formalize that Bi satisfies the K-axiom indicating that
agents’ beliefs are closed under logical consequence. Moreover Bi satisfies the
consistency, positive introspection and negative introspection axioms relating to
the serial, transitive and Euclidean properties of the RBi . The P1 and P2 axioms
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exhibit the KD dimension of the BCP logical model for the Pij operator. The
P1 axiom denotes that if agent j makes a promise of goal ϕ to agent i, mean-
while it also gives all logical consequence of ϕ. We use the P2 axiom to eliminate
the possibility of agent making contradictory promises. The C1-C4 axioms cor-
respond to Con1-Con4 conditions respectively. We should emphasize here that
the C4 axiom ties the three attitudes of cognitive agents up. The agent’s belief is
affected by what other agents promise to it and changes of other agents’ capabil-
ities. More specially, if agent j promises agent i to perform an action, meanwhile
agent i considers that agent j has the capability to carry out the action, then
agent i will also believe the action could be done. The R2 rule is instance of
the rule of necessitation which states that valid wff is believed and promised in
advance. The R3 rule indicates that if an agent is considered to be capable of
performing a wff, then the consequence of the wff is all the same.

The sound and complete axioms are summarized in the following theorem,

Theorem 1. The axiomatic system BCP is sound and complete.

Due to space limitations here we omit the proof of the theorem, which can
be gained by the standard technique of canonical model construction in modal
logic[6].

2.3 Properties of Capability and Promise

Given the BCP logic, we can draw some useful properties of Capability and
Promise operators. For instance, the following formulas are valid in BCP logic:

1. Cij(ψ ∧ ϕ) ⊃ Cijψ ∧ Cijϕ
2. Bi(Pijψ ∧ Pik¬ψ) ⊃ ¬(Cijψ ∧ Cik¬ψ)

Although the first formula is valid, the converse, i.e. Cijψ∧Cijϕ ⊃ Cij(ψ∧ϕ),
is not. For example, let’s consider an agent j that is designed for helping a
handicapped person i. It is possible for i to consider that j can go either upstairs
to serve a cup of milk, or downstairs to fetch an express parcel, depending on
the order of the person. But this does not mean that i believes that j has the
capability to accomplish the two tasks at the same time.

The second formula implies how agents deal with the inconsistent promises to
a certain extent. The intuitive meaning is that if agent i believe that it gets contra-
dictory promises from two agents, i does not believe the two agents simultaneously
have the capability of performing the contradictory actions to keep their promises.

Although many valid formulas with intuitive meanings can be deduced from
the BCP logic like this, there are still some other none-valid ones worth while
further consideration, e.g. Pijϕ ⊃ BiPijϕ and BiPijϕ ⊃ Pijϕ. We exclude the
two formulas from the set of axioms in BCP logic on account of the inherent
insecurity in Electronic Commerce. It’s commonly required that the information
must be credible and undeniable during the whole online trading processes. When
agent i receives a promise from agent j , if it can not excluded the possibility that
someone pretending to be j has made the promise, then it does not necessarily
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believe that it has received the promise from j. Thus we do not have Pijϕ ⊃
BiPijϕ. On the other hand, since someone pretending to be j may make a
promise to i and cause i wrongly believe that it indeed received the promise
from j, BiPijϕ ⊃ Pijϕ does not necessarily hold, either. Nowadays, message
digesting is combined with digital signatures to provide credible and undeniable
transactions, which prevent an agent from claiming that it was really someone
else who pretended to do something. Then when i receives promises with j’s
digital signature, it can believe this is indeed sent by j. When it believes j has
made him the promise by recognizing the digital signature of j, it is impossible
that it was counterfeit by another. If we want to capture the desired requirement
for such domain, we can introduce the following schema,

BiPijϕ ≡ Pijϕ

into the BCP logic. The system, composed of the BCP logic and the above
axiom, can also be proved to be sound and complete.

In fact, we can introduce diverse axiom schemas into the BCP logic to char-
acterize multi-agent interactions and cooperations in different application do-
mains, meanwhile preserving the soundness and completeness results. For exam-
ple, agent j is said to be cooperated with agent i, if it would like to promise
anything it believes to other agents, i.e. iff the following schema is valid:

Bjϕ ⊃ Pijϕ.

3 Illustrative Cases

We show the trading agent competition for supply chain management(TAC
SCM)[8] as an example of complex system in real life to show the potential
applications of the logical model.

Agents that represent their roles in a supply chain perform negotiations with
other agents to achieve a common objective. Agents should hold the belief about
the information flowing across the supply chain. When making sourcing strategy,
the agent has better to affirm that the supplier agent will be provided with
sufficient supply capability and will keep its promises to offer materials on time.

TAC SCM provides a competition stage for researchers interested in both
artificial intelligence agents and supply chain management. In the game, agents
are bidding for supplies and consumer orders as well as planning production and
shipment of the end products. Trades with the suppliers, as well as with the cus-
tomers, are negotiated through a request-for-quotes (RFQ) mechanism. If the
supplier can satisfy the order specified in the RFQ in its entirety, the supplier
will make promises to the agent meanwhile an offer is sent as a response. One
of the more difficult problems in the game is to make sure that the supplies
are available at the time they are needed for production. Although the suppli-
ers make promises based on its fixed capacity production per day, their actual
production capability is determined by a random walk. Thus, when the supplier
produces less than it planned, it delays the deliveries to the agents. It may be
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necessary for an agent to maintain a model of promise and capability for the
supplier in order to compete better.

Let us consider the agent i and the supplier j, whereas ϕ and ψ denote
respectively the facts “delivering the requested quantity specified in the RFQ”
and “delivering on the due date”. It is one of the possible instances that agent
i, when planning production and delivery, will not always believe ϕ∧ψ only for
the sake of the supplier j makes the promise ϕ ∧ ψ to it. Agent i should bear
in mind that it has to stand in competition with the opponents for the limited
production capacity of the supplier. Thus it may not believe that ψ is true. But
from its historical trading experience, it may consider that the supplier j has
the capability to deliver the materials partially on the due data. Then, from
BiPij(ϕ ∧ ψ), Cijϕ and Bi¬ψ, agent i may have the following reasoning:

1. BiPij(ϕ ∧ φ) ⊃ BiPijϕ ∧BiPijφ
2. BiPijϕ ∧ Cijϕ ⊃ Biϕ
3. BiPij(ϕ ∧ φ) ∧ Cijϕ ∧Bi¬φ ⊃ Biϕ

At the same time, this reasoning example shows that agent i can even accept
the promise of supplier partially whereas its portion is in contradiction with
agent i’s belief.

In the preceding discussion, we have mentioned that some formulas are valid
whereas their converses are not. Let us dwell on this further with the following
example in TAC SCM games. Let ϕ and ψ denote the facts “delivering the
requested quantity specified in the RFQ” and “delivering on the due date”,
respectively. But the delivered quantity depends upon the different strategies
of the supplier(i.e. the Likelihood of the agent that sent the RFQ). Thus it
is possible for the agent i to consider that the supplier j has the capability
to achieve either ϕ or ψ depending upon j’s strategy, but this does not mean
that i believes the supplier j can satisfy the order entirely on the due date, i.e.
Cijϕ∧Cijψ ⊃ Cij(ϕ∧ψ) is not valid. On the other hand, if agent i is convinced
of both ϕ and ψ, it will believe that j has the capability to satisfy the order
either in quantity or on the due date, i.e. Cij(ϕ ∧ ψ) ⊃ Cijϕ ∧Cijψ is valid.

4 Related Works

In this section, we briefly compare two related work that are most correlative to
our logical model.

Shoham presented the agent-oriented programming (AOP) [7] framework em-
phasizing on an interpreted programming language. He proposed a set of mental
state components, such as obligation and capability. Just as Shoham indicated
that specific mental properties were requisite for different applications, the se-
lection of mental categories is not objectively right. In this paper, we describe
a logical model incorporating agents’ belief, capability and promise, by consid-
ering a type of multi-agent based complex systems. The addition of the later
two modalities and constraints placed on them characterizes the interactions be-
tween cooperation agents appropriate, and as a result, enriches the existing agent
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models. Although McCarthy has debated that all statements including modali-
ties should be viewed in context, both the BCP logic and the AOP framework
ignore the topic of context sensitivity, which is worthy of future investigations.

[14] proposed a logic to reason about perceptions and belief. The logic con-
tains three modalities: B stands for belief, P for actual perception, whereas C
for the sets of perceptions agent can perceive. Similar to ours, the modalities of
[14] use the standard and the neighborhood semantics in modal logic. Various
agent types are defined to capture the diverse characters of the application do-
main. Their formalization deals only with a single agent. Moreover the capability
[14] introduced merely refers to perception capability. Capability delivered in the
BCP logic is an abstract, high-level ability of agents, and not limited to any kind
of special abilities. Also, the axioms proposed here, such as C4 axiom, provide
a means of formalizing the decision-making processes of cognitive agents.

Previously, we have developed applications based on multi-agent system by us-
ing these attitudes of cognitive agents, for instance belief and capability. For full
details, the reader is referred to [15][16]. In this paper, we depict a formal framework
to model belief, capability an d promise for cognitive agent. In so doing, we seek to
provide a bridge between the formality and the practical work (see future work).

5 Conclusions and Future Work

This paper is aiming to present a logical model for reasoning about belief, capa-
bility and promise of cognitive agents using a modal logic approach. The possi-
ble relations among the three attitudes of the agents are explored with intuitive
meanings. A reasoning example is presented to show how the logical model is
applied in an actual agent competition game.

Although the logical model provides a kind of rigorous semantic basis for
specifying multi-agent interactions, it is still a preliminary work. There are sev-
eral possible directions for future investigations.

Firstly, the attitudes of agents are studied in a static environment. A promising
direction for future work is to extend the model to involve the temporal aspect.

Secondly, in order to characterize multi-agent interactions in different appli-
cation domains, there are other forms of relations between the three attitudes
that one would like to impose on the logic model. This requires additional con-
straints to be placed on the three operators. These additional constraints may
capture diverse assumptions about the application domains and enrich the ex-
isting models.

Lastly, a potential application of the logical model is to incorporate with
the contract net protocol (CNP) [17]. In essence, Contract Net allows tasks to
be distributed among a group of agents. The self-interested agents may delude
its manager to get some bids to maximize their profits, even if they cannot
accomplish some tasks on time. In this case, the manager may need to reason
about the capability of its bidders to avoid an unexpected delay of its task. The
underway research direction would attempt towards bridging the gap between
fundamental theories and practical systems.
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Abstract. This paper presents a framework for expressing free-hand sketching 
in 3D for conceptual design input. In the framework, sketch outlines will be 
recognized as formal rigid shapes first. Then under a group of gestures and 
DFAs’(deterministic finite automata) control, the framework can express user’s 
free sketching intents freely. Based on this framework, we implemented a 
sketch-based 3D prototype system supporting conceptual designs. User can eas-
ily and rapidly create 3D objects such as hexahedron, sphere, cone, extrusion, 
swept body, revolved body, lofted body and their assemblies by sketching and 
gestures. 

1   Introduction 

Sketch-based modeling by standard mouse operations became popular in the past 
decade. Instead of creating precise, large-scale objects, a sketching interface provides 
an easy way to create a rough model to convey the user's idea quickly. There is a 
growing research interest on using freehand drawings and sketches as a way to create 
and edit 3D geometric models.  

One of the earliest sketching systems was Viking [4]. In Viking, the user draws 
line segments, and the system automatically generates a number of constraints which 
then must be satisfied in order to re-create a 3D shape. Later works include SKETCH 
[5], Quick-Sketch[1],Teddy [2] and GIDeS[3]. The SKETCH is intended to sketch a 
scene consisting of simple primitives, such as boxes and cones. Quick-Sketch is a 
computer tool oriented to mechanical design. It consists of a 2D drawing environment 
based on constraints. It is also possible to generate 3D models through modeling ges-
tures. The Teddy system is designed to create round objects with spherical topology. 
The GIDeS permits data input from a single-view projection or from several dihedral 
views. When creating object from a single-view perspective, the system uses a simple 
gesture alphabet to identify a basic set of modeling primitives such as prisms, pyra-
mids, extrusion and revolution shapes, among others. 

This paper describes a framework to express user’s sketching intents using an in-
tuitive and efficient way. Based on this framework, we have implemented a prototype 
system called PENCIL to support conceptual design. 
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2   System Framework 

For industrial designers, the ability to rapidly create 3D objects by sketching 2D out-
lines with uncertain types, sizes, shapes, and positions is important to innovative de-
sign process. This uncertainty, or ambiguity, encourages the designer to explore more 
ideas without being burdened by concerns for inappropriate details. Leaving a sketch 
un-interpreted, or at least in its rough states, is key to preserving this fluency. 

It’s found that conceptual design can usually be split into four steps: 2D sketching, 
sketch editing, solid/surface body creating and body editing. We use these steps to 
construct the framework. Figure 1 shows the workflow of the framework. 

 

Fig. 1. The workflow of the framework 

The workflow is a Deterministic Finite Automata. The initial state is marked as 
“Init” and the finishing state is marked as “Body environment”. The DFA is driven by 
user’s sketching message. When user sketches an object on a plane, the DFA goes to 
“Draw 2D sketches” state, and the sketched outlines will be recognized as rigid geo-
metric shapes. In this state, user can continuously sketch the profile of a 3D 
solid/surface body. When switching to “Body environment”, the system will receive a 
Creating Body Message (CBM). Here CBM is not a menu or icon message and it will 
be explained later in another DFA. “Body environment” can be driven to another two 
states by message: Creating Sketch Message (CSM) or Selecting Body Message 
(SBM). After a CSM message, the current state will be driven back to “Draw 2D 
sketches”. After a SBM message, a selection action will be done. Because the frame-
work allows multi-body selection, it means that “Body selection” state can be rolled 
back to receive other SBM messages. When selection is done, user can sketch specific 
editing gestures. The result of gesture recognition will drive the DFA to the “Body 
editing” state. From “Body editing” to “Body environment”, the framework needs 
End Gesture (EG) message. Here it’s a right click message. 



 PENCIL: A Framework for Expressing Free-Hand Sketching in 3D 837 

 

When current state is “Draw 2D sketches”, we can drive it to “Sketch selection” 
state. It means we can edit the sketches after sketch selection. The editing operations 
are also controlled by the predefined gestures. 

3   Creating Basic 3D Bodies 

To rapidly create 3D objects, the framework provides a natural and convenient way to 
create some basic 3D solid/surface geometries: hexahedron, cone, extruded body, 
revolved body, swept body, lofted body, and body from silhouettes. 

 

Fig. 2. The DFA of creating basic 3D bodies 

The creation of these basic 3D geometric bodies is controlled by another DFA. 
Figure 2 shows the state converting diagram of this DFA. 

 Hexahedron 
The first and second lines are projected to the initial screen plane. The third line is 

projected onto a plane which is perpendicular to the initial screen plane and passes the 
joint point, and share the same axis with the view plane. 

 Cone 
The profile is projected to the initial screen plane. The peak is projected to a plane 

which is perpendicular to the initial screen plane and passes the geometric center of 
the profile and shares the axis with the view plane. 

 Extrusion 
The profile is projected to the initial screen plane. The extrude axis is projected to 

a plane which is perpendicular to the initial screen plane and passes the start point of 
extrude axis and shares the axis with the view plane.  
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 Swept Body 
The profile is projected to the initial screen plane. The sweep path is projected to 

the plane which is perpendicular to the initial screen plane and passes the start point 
of the sweep path and shares the axis with the view plane.  

 Revolved Body 
Both revolve axis and revolve profile are projected to the initial screen plane.  

 Lofted Body 
The basic loft profile is projected to the initial screen plane. The loft centerline is 

projected to a plane that is perpendicular to the initial screen plane, that passes the 
start point of the centerline and shares the axis with the view plane. Loft planes are 
generated by projecting the sketched axes using a similar process for loft path genera-
tion 

 Body from Silhouette Lines 
The silhouette is projected to the initial screen plane. The outer line is projected to 

a plane which is perpendicular to the initial screen plane and passes the start point of 
the outer axis line, and shares the same axis with the view plane. 

4   Conclusion 

In this paper, we presented a framework to illustrate how to express user’s free-hand 
sketching intents in a straightforward manner. We implemented a prototype system 
PENCIL based on this framework. Using PENCIL, user can quickly and easily create 
complex 3D models, and later import them into CAD systems for detailed constrain-
ing and dimensioning to finish the model. 

References 

1. Eggli L., Hsu C., Brüderlin B.D., Elber G.: Inferring 3D Models from Freehand Sketches 
and Constraints. Computer-Aided Design, 29(2), 101-112,1997. 

2. Igarashi T, Matsuoka S, Tanaka H.: Teddy: A sketching interface for 3D freeform design. In 
Computer Graphics Proceedings, Annual Conference Series, ACM  SIGGRAPH, Los Ange-
les, California, 1999. 409-416. 

3. Pereira J., Jorge J., Branco V., Nunes F.: Towards calligraphic interfaces: sketching 3D 
scenes with gestures and context icons. WSCG. Conference Proceedings, Skala V. Ed, 
2000. 

4. Pugh, D.: Designing Solid Objects Using Interactive Sketch Interpretation. In Computer 
Graphics (1992 Symposium on Interactive 3D Graphics), 25, 2, (1992) 117~126. 

5. Zeleznik R.C, Herndon K.P and Hughesp J.F.: SKETCH: An interface for sketching 3D 
scenes[A]. In Computer Graphics Proceedings, Annual Conference Series, ACM  
SIGGRAPH, New Orleans, Louisiana, 1996. 163-170. 



L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3610, pp. 839 – 843, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Blocking Artifacts Measurement Based on the Human 
Visual System1 

Zhi-Heng Zhou and Sheng-Li Xie 

College of Electronic & Information Engineering, South China 
University of Technology, Guangzhou, 510641, China 

crenna@21cn.com 

Abstract. The block-based DCT image compression methods usually result in 
discontinuities called blocking artifacts at the boundaries of blocks due to the 
coarse quantization. A measurement of blocking artifacts based on Human 
Vision System (HVS) is proposed. This method separates the blocking effects 
from the original edges in the image by an adaptive edge detection based on local 
activity and luminance masking. The blocking artifacts in the non-edge area and 
on the edge are calculated separately. The weighted sum is regarded as the 
evaluation result. Simulation results show that the proposed measurement is 
robust for different kind of images, and has the general performance of image 
quality evaluation metric. 

1   Introduction 

The block-based discrete cosine transform (BDCT) scheme is a foundation of many 
image and video compression standards including JPEG, H.263, MPEG-1, MPEG-2, 
MPEG-4 and so on. But, usually blocks are coded separately and the correlation among 
spatially adjacent blocks is not taken into account. It may cause block boundaries being 
visible in the decoded image. Many numerical metrics for blocking artifacts have been 
proposed, such as PSNR, MSDS [1][2] and PS-BIM [3]. In this paper, a blocking 
artifacts metric based on human vision system (HVSBM) is proposed.  

2   Measurement of Blocking Artifacts 

In order to separate the blocking artifacts from true edges, we first use Sobel operator to 
detect the edges. Given a pixel jif ,  on the border of the current block, we have its local 

gradient components 

1,11,1,1,11,11,1 22 +−++−+−−−+ −+−+−= jijijijijijix ffffffg  

1,11,11,1,1,11,1 22 −+++−+−−+− −+−+−= jijijijijijiy ffffffg                 (1) 
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And then the magnitude and angular direction of the gradient at coordinate ),( ji  are 

22
, yxji ggG +=     )(tan 1

, xyji gg−=θ                          (2) 

Blocking artifacts are often mistaken as true edges. But the artificial edges are 
usually weak edges. If we give a big enough threshold 0T , then only true edges will be 

extracted. According to human vision system theories, the visibility of edges is due to 
background activity and luminance [4][5]. So, we construct an alterable threshold 

01 T
m

T ⋅−= σ
                                             (3) 

where σ  and m  are the local variation and mean values of pixel jif ,  and its eight 

neighboring pixels, respectively. σ  corresponds to the local activity, and m  
corresponds to the local luminance. If TG ji >, , then jif ,  is an edge point, otherwise it 

is a non-edge point. 
We take two horizontal adjacent blocks as example to specify our method. In fact, 

blocking artifacts will cause discontinuity not only in the non-edge area but also on the 
edge. So, we use 1D  and 2D  to define the blocking artifacts these two parts 

respectively 

( )2
1,,1 −−= jiji ffD                                             (4) 

( )2,,,2 )( jijiji ffD θ−=                                          (5) 

where )( ,, jijif θ  is the adjacent pixel of jif ,  along the edge direction ji,θ , as shown in 

Fig.1. 

     
            (a)                                                                     (b) 

Fig. 1. (a) Definition of 1D  and 2D  (b) Definition of )( ,, jijif θ  

In order to select )( ,, jijif θ , the angle of the edge is rounded to the nearest one of 8 

directions: 2arctg− , 4π− , 21arctg− , 0 , 21arctg , 4π , 2arctg , 2π . We look jif ,  

on as the origin of the right-angle coordinate system as shown in Fig.1 (b). If 0, >jiθ , 

)( ,, jijif θ  locates at the first or third quadrant, otherwise )( ,, jijif θ  locates at the 

second or fourth quadrant. 
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And then we can measure the blocking artifacts on the pixel jif ,  by HVSBMD  

0)2,()2,()( ,,2,,1, ⋅=>+⋅≠>⋅+⋅≤= πθπθλ jijijijijiHVSBM TGIDTGIDTGID

    (6) 
where λ  is an adjusting parameter between two parts. If condition A is satisfied, then 

1)( =AI . Otherwise, 0)( =AI . Similarly, we can measure the blocking artifacts 

between two vertical adjacent blocks. 
The third term of (6) corresponds to the event that a vertical edge happens to exactly 

locate at the horizontal adjacent blocks border. We cannot take it as blocking artifact, so 
it will not be included in the calculation.  

According to the masking effect theory, human eyes are very sensitive to the 
blocking artifacts in the non-edge area, rather than that on the edge. We define λ  as 

TG ji,1

1

+
=λ                                              (7) 

where jiG ,  is the magnitude of the edge, which also reflects the activity of the 

surrounding background and T is obtained by (3). 

3   Simulations and Results 

In general, the lower value of PSNR, the greater severity of the blocking effects. But 
extended MSDS [1][2] and the proposed HVSBM are on the contrary. 

Table 1. Comparison of different metrics (o and d stand for original and decoded image) 

Metrics Lena 
0.216bpp 

Peppers 
0.207bpp 

Fishingboat 
0.244bpp 

Barbara 
0.232bpp 

Test 
0.08bpp 

PSNR 29.92 (d) 30.22 (d) 27.74 (d) 7.94 (d) 30.28 
(d) 

Extended 
MSDS 

1639.7 
(o) 
5693.5 
(d) 

1881.4 
(o) 
4666.6 
(d) 

4760.7 
(o) 
9262.9 
(d) 

5269.9 
(o) 
21666 
(d) 

4326.5 
(o) 
3686.9 
(d) 

PS-BIM 0.6358 
(o) 
0.4658 
(d) 

0.5974 
(o) 
0.4774 
(d) 

0.7025 
(o) 
0.5064 
(d) 

0.8784 
(o) 
0.5770 
(d) 

1.8933 
(o) 
1.2361 
(d) 

HVSBM 1551.2 
(o) 
2506.1 
(d) 

1402.9 
(o) 
2289.8 
(d) 

2750.5 
(o) 
3743.7 
(d) 

1880.8 
(o) 
6059.5 
(d) 

648.8 
(o) 
652.8 
(d) 

We want to verify that if the proposed metric has the general performance of the 
image quality metric. In the simulations, we set 1000 =T . Table 1 shows the 

comparison of PSNR, extended MSDS [1][2], PS-BIM [3] and the proposed HVSBM 
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using different kinds of images. Because of the low bit rates, the severity of blocking 
effects in the JPEG decoded image should be greater than that of original image. In 
table 1, the results of HVSBM have proved this. Another fact found in Table.1 is that 
PS-BIM does not work as said in its paper. The lower value of PS-BIM, the greater 
severity of blocking artifacts is taken to be. Fig.2 shows the results of applying 
HVSBM to different images with different bit rates. It can be shown that in general, the 
line of HVSBM goes down as bit rates goes up. So, HVSBM achieves consistent results 
for all these images. In order to verify the performance of different metrics on 
distinguishing true edges from blocking artifacts, we design a “Test” image as shown in 
Fig.3. It can be found that the blocking artifacts appear around the edges in “Test” 
image. The numerical comparison is shown in the last column of Table.1. We find that 
extended MSDS do not work in this case. And the proposed metric still works well as 
usual. 

     

 

Fig. 2. HVSBM versus bit rates for different images     Fig. 3. “Test” image coded at 0.08 bpp 

4   Conclusions 

This paper presents a measurement for blocking artifacts based on Human Vision 
System. This method separates the blocking effects from the original edges in the 
image by an adaptive edge detection based on local activity and luminance masking. 
Simulation results show that the proposed measurement is robust for different kind of 
images, and has the general performance of image quality evaluation metric. 
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Abstract. This study simulates a lexical decision task in Korean by
using a feed forward neural network model with a back propagation
learning rule. Reaction time is substituted by a entropy value called
‘semantic stress’. The model demonstrates frequency effect, lexical status
effect and non-word legality effect, suggesting that lexical decision is
made within a structure of orthographic and semantic features. The test
implies that the orthographic and semantic features can be automatically
applied to lexical information process.

1 Introduction

This study proposes a connectionist model to explain the process of word recog-
nition. To simplify the model, the simulated condition is limited to a task to
decide whether a string of letters given is a word or not (lexical decision task:
LDT). The results show several lexical effects that have been repeatedly iden-
tified in the literature, giving validity to the proposed model. The model is
evaluated to have implications on the understanding of the architecture of hu-
man word recognition, input and output representations, learning algorithm, and
comparison methods of simulation data with human data.

2 The Lexical Effects

Before proposing the model, it is necessary to point out the lexical effects shown
in the study. These effects have been repeatedly reported in numerous preced-
ing experiments and are firmly established as characteristics of human lexical
processing.

First of all, the recognition speed of a certain word increases along with the
frequency of the word in the language. This is called word frequency effect and
thought to occur at the lexical access level. The effect implicates that words are
directly represented in the mental lexicon in order of the number of times they
appear in the practical usage of the language [1].

� The research presented in the paper is supported by the BK21 grant(H0041800).
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Secondly, lexical status effect refers to a phenomenon where words are recog-
nized faster than pseudo-words are. While words can be identified in the mental
lexicon, pseudo-words cannot because they are not registered in it [2]. The effect
is also a criterion of the lexical decision task.

Non-word legality effect of the orthography combination occurs when it takes
longer to reject legal non-words than illegal non-words. Legality is given when
a non-word is produced according to the orthographic combinations rules. This
effect implies that orthographic rules exist in combining letters to produce a
word and that we are tacitly aware of them[3].

Finally, it takes longer to reject the non-words that look similar to real words
in terms of the combination of letters than the non-words that do not. This is
word similarity effect and implicates that the lexical decision is carried out based
on the orthographic combination rules and the lexical entity itself [4].

3 The Proposed Computational Model

3.1 Network Configuration

A three layer feed-forward neural network is used with 67 orthographical input
units, 250 hidden units, and 120 semantic output units which are fully connected.
A dot product function is used for the input function and a sigmoid function for
the output function.

Input structure The Korean writing system ‘HanGeul’ is an alphabetic script
where several letters make a syllable. Even though, there is not yet a perfect
input structure[5,6] if, in HanGeul, the input data is restricted to monosyllables,
there is a possible structure that can express every monosyllable without any
generalization problem or overlapping problem.

Therefore, the input structure is constructed on the basis of the HanGeul’s
letter combination property to have a CVC or CV structure and a fixed letter
position. As a HanGeul monosyllabic word only contains less than three letters
within a syllable and each letter has its own position in a syllable, the input
structure can be composed of 67 binary units which is 19 units for the first
position, 21 units for the second position, and 27 units for third position. This
input structure could not only express every letter combination but also avoid
making any generalization problem or overlapping problem.

Output structure Consisting 120 binary units the exact meanings of each
word is not represented in the semantic output structure. However, each word
meaning has the category common features while having its own characteris-
tic features. In detail, fifty randomly created semantic outputs are used as the
category prototypes, where the probability activated in each unit is Pp=0.1.
Under these fifty prototypes, ten exemplars are made each, and the probability
activated in each dimension under the prototypes is Pe = 0.05, producing 500
exemplars. The average number of the activated units for each exemplar word
is 16.8(std. 3.56, min 6, max 27).
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4 Training

4.1 Training Data

The training data is selected from the Sejong corpus(http://www.sejong.or.kr).
Along with usage frequency values, 498 monosyllabic common nouns are selected.
These raw frequencies are compressed on the basis of the logarithm function to
save computational resources as in (1).

P = K log (N + 2) . (1)

In (1), P is the compressed frequency, K is a constant that is set to 0.2065
(where P of the highest frequency word is 0.93), and N stands for the raw
frequency of the word[7]. The training regime is divided into a series of epochs
and P is a chance for each word to be presented. For an example, if P is 0.9, the
word would be trained 9 times during the total 10 times of training. From 500
randomly generated semantic outputs, two are randomly excluded to match the
number of orthographic inputs.

4.2 Training Procedure

The matched orthographical inputs and semantic outputs are trained considering
the compressed frequency with a back-propagation algorithm that uses a cross
entropy value as an error term. Using LENS as a simulator, the learning rate
is 0.1, the momentum 0.9, and Doug’s momentum is used [8]. In the case of
overtraining, the best trained point is determined[9]. On the base of frequency
effect, the highest correlation between the semantic stress and the compressed
frequency values is selected as the best trained point(the 3950th trained state,
r=0.738 (p<0.01), total error 536.85, error for one input 0.630 in average).

5 Experiment

5.1 Methods

For the experiment, two non-trained data sets are used. One set has 100 non-
words where letter combinations existed in the Korean language usage, and the
other set has another 100 non-words, where letter combinations do not exist in
the Korean language usage.

The output values from the semantic layer are analyzed with semantic stress
values [10]. The semantic stress value(Sj ) is a kind of entropy value which reflects
the error value based on the output value(sj ) shown in (2). It is showed that the
value could be a good criterion to replace the reaction time reported in human
experiments where time factor could not be considered[7,11]. That is, higher error
value implicates longer reaction time, and lower error value implicates shorter
reaction time.

Sj = sj log2 (sj) + (1− sj) log2 (1− sj)− log2 (0.5) . (2)
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5.2 Results

To simulate frequency effect, the correlation between the compressed frequency
and semantic stress has to be statistically significant. The results show that the
correlation coefficient between the compressed frequency and semantic stress
values is 0.738 (p<0.01) (Fig. 1.). Therefore, it could be indicated that the
model simulates frequency effect.
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Fig. 1. Semantic stress values and compressed frequency values at the 3950th epoch

As a word set 200 words from the trained data set are randomly selected and
as a non-word set 100 words each from the non-trained data set are chosen. If
the semantic stress values from the word set show higher values than the non-
word set, it can be inferred that the model shows lexical status effect. Moreover,
checking the errors between the two conditions can tell the performance degree
of the lexical decision task. Results show that the two conditions are significantly
different(t[345.65]=30.587, p<0.01, where 0.937 for the word condition and 0.847
for the non-word condition in average). What is more, if the decision criterion β
is set to 0.905, the error rate in the word condition is 0.95(19/200) and the error
rate in the non-word condition is 0.65(13/200), which are not big error rates and
resemble the human data. Therefore, it could be said that the proposed model
simulates the lexical status effect and performs the lexical decision task naturally
(Fig. 2.).

In the present study the non-word legality effect and the word similarity
effect are regarded as the same, considering that the matter is the legality in
the letter combinations[12]. To know whether the model simulates the effect,
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Fig. 2. Distribution of the semantic stress values of word and non-word

semantic stress values of the two non-word data sets should be compared. The
results show that the illegal non-words has the semantic stress value of 0.854
and the legal non-words has the semantic stress value of 0.84 in average which is
statistically significant(t[198]=3.0, p<0.01). Thus, it can be concluded that the
model simulates non-word legality effect (or word similarity effect).

6 Conclusions

The frequency effect is explained by the correlation between semantic stress val-
ues and compressed frequency values which is caused by the learning procedure.
Moreover it reveals that the frequency effect occurs by the difference of the
experience on words in the real world.

The lexical status effect is simulated by the difference of the semantic stress
values between the word condition and the non-word condition which comes
from the difference between the strength of the two conditions. Since the word
condition is learned by the network, the strength(the connection values) of the
letter combination is strong, whereas the non-word condition is not learned by
the network so the strength of the letter combination is weak. This implies that
there is a letter combination rule in words and though we do not know the
explicit rule of it, we learn it tacitly by learning the word itself.

Non-word legality effect or word similarity effect could be explained by the
interruption or competition of the word combinations. Letter combinations that
are used in words have strong weight values. However, eventhough non-words
with legal combinations resemble the letter combination of the word’s letter
combination they do not have the exact combination. This leads to unclear out-
put and make low semantic stress values. On the other hand, the non-words
that use illegal letter combinations do not resemble the word’s letter combina-
tion. Consequently, illegal combination non-words are less interrupted by the
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weight values that were made by the words in the learning procedure leading
higher semantic stress values.

The present model also shows that the process of lexical decision occurs
with a structure with orthographic and semantic feature unlike several former
studies[7]. However, the model only could simulate monosyllabic words which
did not reflect the variety of the language usage. Therefore, further study should
be taken using novel input structures. Moreover, delicate networks which could
deal with time should be proposed to simulate time concerned effects like word
context effect.
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Abstract. The purpose of this study is to examine the Neuroanatomical
areas related with onomatopoeia and phainomime word recognition. Us-
ing the block-designed fMRI, whole-brain images (N=11) were acquired
during lexical decisions. We examined how the lexical information initi-
atesbrain activation during visual word recognition. The onomatopoeic
word recognition activated the bilateral occipital lobes and superior mid-
temporal-gyrus, whereas the phainomime words recognition activated
left SMA and bilateral cerebellum as well as bilateral occipital lobes.
Regions more activated for the phainomime word than onomatopoeia
included left SMA and bilateral cerebellum. Regions more activated for
the onomatopoeia than phainomime word included left superior and mid-
temporal gyri. The word recognition for onomatopoeia plus phainomime
word showed activation on bilateral middle and superior temporal gyrus,
right supramarginal gyrus, left middle temporal gyrus, left middle occip-
ital gyrus, and right occipital gyrus. This is the first fMRI research to
analyze onomatopoeia and phainomime word.

1 Introduction

Onomatopoeia is a figure of speech in which the sound of word is imitative
of the sound of behaviors or appearances of objects. By comparison between
Korean and Japanese, Katsuta (2001) concluded that onomatopoeia and phain-
omime words have special linguistic characteristics. Phonetically they exchange
consonant and vowel sounds. In form, many onomatopoeia and or phainomime
words were made by duplication, and derived from an adjective or a verb by
adding an affix. Korean language has abundant expressions for onomatopoeia
and phainomime words [2][4]. Especially Korean has 2196 phainomime words
which have more than two syllables [4]. Recent brain imaging researches showed

� The research presented in the paper is supported by the KRF grant(2004-074-
HM0004).
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different activation between motion-related stimulus and sound-related stimu-
lus. Pulvermueller(1999) proposed that some action verbs will activate parts of
the motor cortex, whereas animal nouns will activate parts of the visual cor-
tex. Posner and DiGirolamo(1999) said that brain activation depends on the
semantic and task context of words. Reading or hearing a word activates lin-
guistic representations as well as associated nonlinguistic information. Relative
to non-spatial words, dorsal route of spatial processing (superior occipital and
parietal regions) was activated by prepositions [6]. Pictures and verbal descrip-
tions showed bilateral activation of superior occipito-parietal areas that reflect
the spatial processing required for the task and activation of the right inferior
temporal gyrusfrom complex images [7]. Joe & Nancy. (2000) suggested brain
regions like medial temporal/medial superior temporal cortex (MT/MST) were
activating during the visual analysis of motion. Kourtzi et al (2000) explained
that perceptual analysis involved in the inference of motion from still images in-
volved high level perceptual inferences. Naoyuki et al. (2003) reported an fMRI
experiment demonstrating that visualization of onomatopoeia, an emotion-based
facial expression word significantly activates both the extrastriate visual cortex
near the inferior occipital gyrus and the premotor (PM)/ supplementary motor
area (SMA) in the superior frontal gyrus. In this study we will investigate brain
activity for onomatopoeia and phainomime word presentation.

2 Method

Subject, Stimulus and Procedure. Eleven right-handed undergraduate stu-
dents free of medical or neurological problems volunteered to the Experiment.
The Experiment consists of three sessions and each session has 9 blocks: 4 ac-
tivation blocks(30 words, 10 non-words) and 5 control blocks(36 word, 14 non-
words). Each block lasts 30 seconds. Usual words were selected as control stim-
ulus. Lexical judgments were required to avoid habituation effects during fMRI
scanning. For analysis, we subtract the parts involving the process of lexical
decision from whole activation.

Acquisition of Magnetic Resonance Images and Data Analysis. A 1.5T
magnetic resonance imaging system (GE) was used. Before acquiring fMRI,
anatomical images were acquired (TR/TE 3000/64msec, matrix 256X256, slice
thick 5mm, no slice gap, FOV 24 X 24cm). The EPI-BOLD technique was used
for acquiring the fMRI of 20 axial slices. A dummy scan of 4 phases (for 12
seconds) was also obtained for correcting any inappropriately high signals be-
fore equilibrium state. Parameters for acquiring images are as follows: 3000msec
for TR, 64msec for TE, flip angle of 90 degrees, a 64X64 matrix size, slices
5mm thick without separation, and a resolution of 3.75 X 3.75 X 5 mm. The
data were analyzed with the SPM. Individual data were conjuncted and ultimate
functional imaging was obtained through overlapping brain maps (acquired with
the significant level (p<0.0001) or (p<0.00001) ) to standardized T1 image.
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3 Results

In our study, following regions were activated by onomatopoeia: Bilateral poste-
rior lobes of cerebellum, bilateral fusiform gyrus (BA19), bilateralinferior frontal
gyrus (BA47), Left middle and superior temporal gyrus (BA41, BA42), Right
superior occipital gyrus (BA19). Especially onomatopoeia was associated with
common cognitive processes like bilateral fusiform gyrus (BA19), right middle
temporal occipital gyrus (BA19) and left transverse temporal gyrus. Fusiform
gyrus is considered with face-related information [3]. BA 19 activation from our
results showed that the onomatopoeia activated sound module which was related
to facial expressions. Brain regions activated by phainomime word were Bilateral
posterior lobes of cerebellum, Bilateral inferior temporal gyrus (BA20), Bilateral
inferior frontal gyrus (BA47), Left middle temporal gyrus, Left precentral gyrus
(BA6), left occipital lobe (BA19). Brain regions activated by onomatopoeia and
phainomime words were Bilateral middle and superior temporal gyrus (BA41,
BA42, BA29), Right supramarginal gyrus, Left middle temporal gyrus (BA21),
Left middle occipital gyrus (BA19), Right occipital gyrus (BA18). The results
indicated that word properties determine the brain activation in different ways.

4 Discussion

Brain activation for onomatopoeia, phanomime words and onomat-
opoeia plus phanomime words Kourtzi et al. (2000) found stronger fMRI ac-
tivation within medial temporal/medial superior temporal cortex
(MT/MST) during viewing static photographs with implied motion. Anthony &
Carl (2000) explained that “apparent motion” activated BA 9/46 and “Mental
rotation” activated BA 8, 19, 39. Our results showed activation on at BA 19 by
onomatopoeia. Image formation of onomatopoeia was modulated by BA19. Even
by the word presentation of onomatopoeia, subjects associate the onomatopoeia
with movement. Our results suggest that superior temporal gyrus (BA41, BA42),
inferior frontal gyrus (BA47) and fusiform gyrus (BA19) are involved in high-
level recognition of onomatopoeia. In our study, phainomime word presentation
activated BA19. In our study, phainomime word showed motion-sensitive fMRI
activation. Our study showed that phainomime word activated motor cortex as
Pulvermuller (1999) proposed. Subjects associate the phainomime word with
movement even by the word presentation. We found that brain activations for
onomatopoeia plus phainomime words are not the sum of the activation for ono-
matopoeia and phainomime words. According to our neuroanatomical analysis,
we may categorize Korean words for sound or motion imitated words for three
different groups.

Common and Specific Areas. Analysis of word presentations revealed some
common brain activations: Bilateral posterior lobes of cerebellum, bilateral in-
ferior frontal gyrus (BA47), Left middle and superior temporal gyrus (BA41,
BA42), bilateral superior occipital gyrus (BA19). The same brain regions were
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Fig. 1. Brain regions (a) only activated by onomatopoeia, (b) only activated by phain-
omime word, and (c) activated by onomatopoeia plus phainomime word

activated by different function of the word presentation. From this result we
can analogize those common regions consist of several sub-regions. For Specific
cortical areas, we found significantly different brain activations between recogniz-
ing onomatopoeia and phainomime words. Sound Specific Areas were Bilateral
fusiform gyrus, right middle temporal occipital gyrus (BA19), Left transverse
temporal gyrus and Motion Specific Areas were Left precentral gyrus (BA6),
Right cingulate, frontal sub-gyral. Regions that were similarly involved in the
onomatopoeia words, the phainomime words, and onomatopoeia plus phain-
omime words, were associated with common cognitive processes. Regions that
were especially involved in one of those suggested functional specialization. Fur-
ther fMRI research about different type of word presentation should be continued
to conceptualize the pathway for detailed language mechanism.
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Abstract. This paper investigates the cooperative aspects of selective attention 
in which primary (or bottom-up) information is dynamically integrated by the 
secondary (top-down or context) information from different channels, and in 
which the secondary information provides a criterion of what should be many 
target candidates  We present a computational model of selective attention that 
implements these cooperative behaviors. Simulation results, obtained using still 
and video images, are presented showing the interesting properties of the model 
that are not captured by only competitive aspects of selective attention.  

1   Limited Capacity and Competition 

Due to the intricate and manifold nature of visual attention, it has been investigated by
 a wide spectrum of approaches that leads controversial issues, on which there is still 
much debate - early vs. late selection (the issue of ‘where the selection process occurs
 in information processing stages’), spatial vs. object based (the issue of ‘whether atte
ntion is located in spatial position or objects’), bottom-up vs. top-down driven (the iss
ue of ‘the direction of information flow’ that constrains the selection process) etc.  

Regardless of the controversy surrounding each issue, they are all linked by a com-
mon assumption of why attention is needed. The common assumption of the necessity 
of attention is the limited amount of computational resource that is available for a given 
task or process. That is, the basic purpose of attention is to avoid a possible information 
overload in order to protect a mechanism of limited capacity. The assumption was 
originally conceptualized by Broadbent [1]. In his theory, which is known as filter the-
ory, only a small portion of the incoming information is passed through selective filter 
and is identified, but other information is shut out from further analysis. 

From the limited resource assumption, Desimone and Duncan [2] suggested an in-
fluential theory of visual attention on the basis of behavioral and neural studies. Ac-
cording to them, the receptive field (RF) can be viewed as critical visual processing 
resource for which objects in the visual filed must compete because the information 
available about any given object will decline as more and more objects are added to 
RFs. Therefore, a cell’s activity is degraded if more than one stimulus falls into an RF 
in comparison with the activity evoked by a single stimulus presented within the RF. 
Furthermore, Kastner et al. [3] argued that multiple objects in a restricted RF interact 
in a mutually suppressive way. That is, the multiple object in an RF compete to get 
limited processing resource for neural representation, and this competition results in 
the degraded responses of the cell if more than one object is presented in one RF.  
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A possible solution to resolve the degraded neural activity is to selectively en-
hance an object and suppress others through the competition. However, cells in a 
competition are not equally selectable. Some cells are more likely to win, and others 
are not. This means that the competition biased toward information that is currently 
relevant to behaviors.   

2   Competition in Computational Models 

This section introduces computational models of selective attention in terms of the f
low of information processing and selection process. These two dimensions shed lig
ht on how competitive mechanism is implemented in computational models.  

2.1    Processing Stages 

Roughly speaking, any computational model for visual attention has two distinctive pr
ocessing stages. This distinction is due to the assumption of resource limitation that di
vides information processing stages into the preattentive and attentive stages.  

In preattentive processing, 3 assumptions are commonly made in many computa-
tional models: 1) preattentive processing is unlimited in capacity; 2) information is 
processed in a bottom-up and massively parallel manner; 3) information processing is 
independent. Therefore, for a given stimulus, different features such as color, inten-
sity, orientation, and movement, are extracted by different processing channels in a 
parallel way as in, for example, Itti’s saliency based model [4, 5].  

At this stage, two different mechanisms are widely used for processing a given fea-
tures. First, a multi-resolution mechanism is used to obtain an image representation 
from a coarse spatial scale to a finer spatial scale, with the zoom lens metaphor em-
bedded in the mechanism [6, 7]. The information carried by different spatial scales 
can be used for different purposes. In Deco’s model, the coarsest level of spatial reso-
lution is utilized to find the location of an interesting object in a priority map, whereas 
detailed spatial resolution is used to identify what object is [6]. Second, a center-
surround mechanism is used to achieve the contrast within a channel. In computer 
vision, this mechanism is widely used for detecting local edge in an image. In general, 
it is assumed that there is homogeneity within an object or a part of an object and 
discontinuity between objects or parts when detecting a local edge. The homogeneous 
parts of the image nullify the response of a center-surround filter. Conceptually, the 
center-surround mechanism for edge-detection is the same as that for bottom-up sali-
ency detection in which attention is directed to a unique object among similar objects.  

After the preattentive stage, it is followed by an attentive process that can be char-
acterized by a serial process in which only one item is processed at a time. In this 
stage, features obtained from different channels are combined to construct a saliency 
map. Even though saliency can be defined at many different levels from a feature to a 
semantic level, saliency in most current models is defined at the feature level. The 
important factor in guiding bottom-up attention is feature contrast rather than absolute 
feature values.  

Once a saliency map has been constructed, a location has to be selected for the de-
ployment of an attentional window. A ‘winner-take-all’ (WTA) network is commonly 
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used to determine the allocation of attention [4, 5]. In the network that receives input 
from a saliency map, only one unit is allowed to be active at a given time, and others 
are suppressed, so that serial processing is accomplished. In other word, biased com-
petition is accomplished through the WTA network. In order to prevent reallocation 
of attention to this winning location, it is excluded from the saliency map after proc-
essing.  

2.2    Selection Process 

Depending on where selection process occurs, and which level of information is se-
lected, computational model can be discriminated into two classes of models - early 
and late selection models. First of all, most current computational models are based 
on early selection. Since, in those models, selection is accomplished by saliency cal-
culated from the center-surround feature contrast, the selected location does not 
meaningfully correspond to the location of an object. Rather, it simply corresponds to 
the location where it gives the strongest contrast.  

Furthermore, in those models, top-down knowledge is directed to the early stage of 
information processing, that is, before or soon after the feature extraction process. In 
contrast, a few models have implemented a late selection. For instance, in Sun and 
Fisher’s model, the feature elements such as color, intensity, and orientation are 
grouped into more meaningful perceptual units (objects) before attentive process 
operates [7]. 

Regarding a competition mechanism, the early vs. late selection has implications 
for important issues. If we admit that the RF can be viewed as a critical visual proc-
essing resource for which objects in the visual field must compete, the logic behind a 
RF property that shows increased size along visual pathways means: 1) a cell in a 
higher processing stage that has a relatively larger RF size has a greater chance of 
having more objects fall inside its RF that a cell in a lower layer; 2) if one moves to 
higher stage of the visual hierarchy, the competition for processing resource will be 
stronger; and thus 3) stronger attentional modulation effects will be found at higher 
stages, compared with lower stages. This also means that attentional effect increases 
from a lower stage to higher stage, rather than being attenuated from a lower stage to 
a higher stage. Also, this means that is attention is object-based rather than feature-
based.  

3    Is the Competition Enough? Necessity of Cooperation 

The biased competition hypothesis implies that neurons at a given processing stage 
take part in an inevitable war to get resources. The relationship among neurons is 
considered as mutually exclusive and there seem to be little chance for cooperation to 
solve the limited resource problem, since competition is the main mechanism of the 
selection process. As noted previously, the concept of competition is embedded in 
WTA network in which units are mutually interconnected and are inhibited by each 
other. In those models, only one neuron corresponding to a location or an object in a 
given visual stimulus is selected at a time.  
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In spite of the fact that the limited resource assumption provides the logical basis 
for inevitability of competition, the same logic can be equally applied to the necessity 
of cooperation. That is, the limited resource assumption may also require the coopera-
tion of different brain areas or neural channels which may help to reduce the burden 
of processing in various ways. The cooperative information from other brain areas 
does not simply contribute the enhancement or suppression of neural activities at a 
given processing stage. It provides general criteria for what or where are selected in a 
task. Top-down knowledge and contextual information provide critical criteria that 
allow a system to selectively process current information.  

Moreover, neurophysiological evidence is given Rainer et al. [8], who recorded 
cell activity in the prefrontal cortex of a monkey during a ‘delayed-matching-task’. In 
the task, the monkey was required to find a target object in a stimulus scene contain-
ing many objects, and remember its location until a test stimulus was given. They 
found that the activity of the neurons in the cortex reflected the target location alone 
and was maintained during the delay. This result suggested that the relevant neural 
activity corresponding to a target was maintained during the delay and was involved 
in selection of the location where a matching object would be given. That is, remem-
bering only target location (or cued location) reduces the severe limitation of the ca-
pacity of working memory.   

4    Integration of Cooperative Information 

The argument that the ‘cooperative mechanism of visual attention is critical for the 
selection process on current information’ leads to another question - how does the 
cooperative mechanism work for selection of a location or object? Basically, we 
argue that the information from other processing channels provides a context or bias 
to a network that receives incoming neural activities. This context or bias helps the 
network to interpret the incoming neural signal by setting a criterion for whether the 
signal is relevant or irrelevant to the current behavior or information processing.  

Recently, Spratling [9] investigated differentiated roles of apical and basal den-
drites of a pyramidal cell. A typical pyramidal cell has two separate dendritic arbors 
that receive different information sources. The two set of dendrites of a pyramidal 
cell may suggest that the dendrites receive information from distinctive sources - 
feedforward information to the basal dendrite and feedback information to the api-
cal dendrite. Spratling [9] speculated that distal and proximal dendrites of pyrami-
dal cells acts as separate compartments and contribute to different functional roles 
for information processing. Since apical inputs have weaker effects on the output 
activity than basal inputs, the apical dendrite is considered to take a role in modula-
tion of responses of the cell. That is, for such neurons, sensory-driven, feedforward 
information is applied to the basal dendrite while top-down and feedback informa-
tion arrives at the apical dendrites.  

Interestingly, Treue et al. [10] showed that the attentional modulation effect on 
sensory selectivity is multiplicative. They measured the tuning curve of direction-
selective neurons in middle temporal (MT) visual areas of a monkey while the ani-
mal was attending to moving random dot patterns guided by a spatial cue. The re-
sult showed that attention increased the response to all attended stimuli by the same 
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proportion (‘multiplicative modulation’) along the different degrees of the orienta-
tion, without the width of the tuning curve. Reynold et al. [11] systemically investi-
gated this relationship between the amount of attentional modulation and stimulus 
strength as they manipulated a range of luminance contrast. They showed that the 
attentional modulation effect on V4 neurons to a low contrast stimulus is larger than 
that to a high contrast stimulus. These results are compatible with our models in 
which the multiplication between two inputs from different information sources, 
and the amount of attentional modulation effect, varies with the strength of the 
inputs. 

5    Interactive Spiking Neural Network 

5.1   Structure of ISNN 

Based on this conceptual framework, we have developed an Interactive Spiking 
Neural Network (ISNN) using a leaky Integrate-and-Fire (IF) neural network [12]. 
A simple example of the structure of the ISNN is given in Fig. 1. The network con-
sists of bottom-up input units xB, top-down input units xT and output unit o. The 
output unit o receives two kinds of weighted inputs - bottom-up input and multipli-
cation between both inputs - at time t. The multiplication has an important non-
linear property that correlates the two inputs. The net value for the j-th output unit 
is given by : 
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where B and T stand for the bottom-up and top-down inputs, n and m are the di-
mensions of the bottom-up and top-down inputs, and w and u are the bottom-up and 
multiplicative weights, respectively. The constants  and  determine the amount 
of influence driven by bottom-up and top-down inputs on the net value. If = 1 
and  = 0, the value netj is determined by only bottom-up inputs. If 0 <  <1 and 

=1- , the value netj is determined by both to a variable degree.  
The second term in Eq. (1) can be considered as a correlation between two input 

sets because when two inputs are consistent, it produces a certain amount of gain, 
but when two inputs are inconsistent, it causes a cost to the network.   

Another nonlinearity is implemented with a sigmoid function that may corre-
spond to the processing at the level of the soma. The sigmoid function has desirable 
properties; the output of the function will not be zero or one. So, the amount of 
activation driven by netj is given by: 
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In the IF model, a postsynaptic spike occurs if the summation of postsynaptic po-
tential produced by the succession of input signals reaches a threshold. Convention-
ally, the model is described with a circuit that consists of a capacitor C in parallel 
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with a resistance R driven by a current I(t). The trajectory of the membrane poten-
tial can be expressed in the following form.  

 

Fig. 1. A simple example of ISNN structure. The model has bottom-up xB and top-down input 
units xT , and output units o. The bottom-up connection w links bottom-up units and output 
units, and the multiplicative connection u links the two input units and output units. Therefore, 
an output unit receives two kinds of inputs - one driven by only bottom-up and the other driven 
by multiplication of both inputs. The output unit produces a spike if the membrane potential of 
the unit reaches a threshold. The interspike interval is used to measure the response of the unit. 
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where mτ is the membrane time constant of a neuron. The equation means the mem-

brane potential V at time t + dt is the sum of the potential V at the previous time t, 
the amount of ongoing current and the amount of decay.  

If we limit our consideration to the special case of a cell firing a train of regu-
larly spaced post synaptic potentials, we may write the voltage trajectory of the 
membrane potential in the following form by putting the leaky IF model with the 
sigmoidal activation together :  

)/1exp(1
)/exp(1

)(
m

m
jj k

kn
ytV

τ
τ

−−
−−=  (4) 

where the amplitude yj decays exponentially with the membrane time constant m 
and regularly spaced time 1/k. A postsynaptic spike will be generated if the voltage 
of membrane potential Vj is equal to or larger than a threshold Vth.  

)/1exp(1
)/exp(1

)(
m

m
jj k

kn
ytV

τ
τ

−−
−−≤  (5) 



 Cooperative Aspects of Selective Attention 861 

 

From the equation above, the interspike interval n/k is determined :  
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5.2   Learning Equation 

In order to derive the learning equation here, we simply define an ‘error’ as the differ-
ence between actual spike interval and desired spike interval. Thus, 
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where d
jT is the j-th desired spike interval and l is the number of output units. Since 

we want to find the weight values which minimize the error function, we can differen-
tiate the error function w.r.t. the weight parameters.  
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Similarly, we can apply the learning rule for the secondary connection uirj 
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The preparation of manuscripts which are to be reproduced by photo-offset re-
quires special care. Papers submitted in a technically unsuitable form will be returned 
for retyping, or canceled if the volume cannot otherwise be finished on time. 

5.3   Properties of ISNN 

In order to provide an insight to the properties of an ISNN, pilot experiments were 
carried out. In these experiment, two simple patterns (‘x’ and ‘+’) that consisted of 3 
by 3 pixels with red and blue colors. The pattern ‘x’ is associated with red color, 
whereas the pattern ‘+’ is associated with blue color. The network had 9 bottom-up 
units which corresponded to 3 by 3 pixels, 3 top-down units which corresponds to the 
rgb values of each pattern, and two output units which corresponds to the patterns. 
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The desired interspike intervals were set to 10 ms for a corresponding pattern and 100 
ms for a non-corresponding pattern.  

       
                        (a)                                                               (b) 

Fig. 2. a) Stimulus b) Interspike intervals with different constant values  and  

After training, the performance of the network was measured by flipping the pixels 
randomly and varying the constant values. The result is shown in Fig 2. The perform-
ance of the network is dramatically changed by introducing additional information 
(color input). As the  value is larger and lager, it produced shorter interspike inter-
vals if two kinds of inputs are associated. This means additional information (color) is 
helpful to resolve ambiguities caused by primary input (patterns). However, this is not 
a whole story. The additional information would interfere with the network's perform-
ance if it is not consistent with the shape patterns, and this produces longer interspike 
intervals.  

 
Fig. 3. General model architecture of selective attention. The model consists of 3different sub-
modules that each form a different map -- bottom-up, top-down, and integration map. 
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6.   Model of Selective Attention 

We introduce some assumptions that are used as a blueprint for constructing a compu-
tational model of selective attention. First, preattentive features including skin color, 
facial features, and ellipse shape are treated as bottom-up information. Second, top-
down knowledge is utilized by extracting a cue from the stimulus itself, representing 
spatial distance between a cue and a possible target. So, the short distance, the larger 
top-down input is assigned. Third, both bottom-up and top-down inputs are integrated 
to construct an integration map via ISNN. Fourth, the attentional allocation is ordered 
by the consistency of the two inputs.  

To illustrate this, consider a situation in which you have to find your friend in a 
crowded street. If you know where he/she is waiting or what color clothes he/she is 
wearing, it will be much easier to find this friend. That is, knowledge about a target 
such as its probable location, physical attributes, context etc. guides us by providing a 
clue to indicate where a target may appear.  

  
(a) (b) 

 

  
                                       (c)                                                          (d) 

Fig. 4. The attention trajectories varied by different values of  and . The task for the model is 
to find the person who is wearing blue color t-shirts. (a)  =1.0,  =0.0 (b)  =0.6,  =0.4 (c)  
=0.5,  =0.5 (d)  =0.4,  =0.6. Even a small amount of  is enough to change the trajectory of 
attention. Adding more to  produced a strong tendency that the trajectories of attention are 
attracted closely to the location of a cue color (blue) region.  

Fig 3 shows the general structure of the selective model. The model can be divided 
into 3 main processing sub-modules - top-down module, bottom-up module and inte-
gration module. The original input is given in a form of digitized images. From the 
original input image some bottom-up features including skin color, facial features 
(aspect ratio and symmetry), and ellipse shape are extracted in order to construct 
bottom-up and top-down map. The combination of features into a single bottom-up 
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map is accomplished by a set relation between feature regions defining whether fea-
tures share a specific region or not. Then, bottom-up input values obtained each fea-
ture map are assigned to a corresponding region of target candidate. On the other 
hand, top-down input values are calculated with Gaussian distance between a cue-
color (or motion) segmented region and a region of target candidate. Therefore, a set 
of bottom-up and top-down inputs for a region of target candidate is obtained, and 
used to generate output interspikes (more detail see [12, 13]).  

The attentional window is allocated in ascending order from the target candidate 
with the shortest interspike interval to the target to the longest interspike interval calcu-
lating from ISNN. In a sense the first location where an attentional window is allocated 
meets the highest consistency between target properties and indication by a cue.  

7   Simulations 

The performance of the model was investigated by manipulating amount of bottom-up 
and top-down influence, and cue conditions. Still and video images obtained from 
natural environment such as a street, campus and laboratory were used as input im-
ages. The first simulation showed that how attentional trajectories are modulated by 
the interaction between bottom-up and top-down inputs. The second simulation con-
cerned the attentional shift from one face to another and maintenance of attention on a 
target face guided by a motion cue.  

7.1   Top-Down Influence on the Modulation of Attentional Trajectories 

The top-down influence on the modulation of attentional trajectories was investigated 
by assigning different values of  and . If =1.0 and  =0.0, then the attentional 
trajectory is totally dependent on the bottom-up input. However, as the value of  is 
increased, the influence of top-down input on determination of the trajectory is 
stronger. Accordingly, the constant values of  and  were changed to (1.0, 0.0) 
(0.6, 0.4), (0.5, 0.5), (0.4, 0.6).  

One of the results was presented in Fig 4. The task for the model is to find the per-
son who is wearing blue color t-shirts. The attentional trajectories were dynamically 
changed with different values of  and , since the higher values of constant  
force the model to attend to the target candidate at the location of cued color by in-
creasing the correlation gain of the net value, whereas it detains attendance to the 
location where no cue color indicates by little gain or more interference.  

7.2   From One Face to Another 

In this simulation video images (5 images per a second) were used to test the per-
formance of the model. The task for this simulation is to find the person who is wav-
ing his hand. The motion information obtained from the difference between images at 
two time frames (t-1 and t) was utilized as a cue. The first locations where an atten-
tional window was allocated were marked with the yellow circle. As shown in Fig 5, 
the attention of the model was maintained at the person’s face during he was waving 
his hand, and then move again to the face of the other person who was waving his 
hand as well. Interestingly, the locus of attention stays on the location of a particular 



 Cooperative Aspects of Selective Attention 865 

 

face by the motion cue, then shifts to the other face indicated by it. The results im-
plied that the knowledge of a cue actively involves in the attentional control to engage 
attention to a particular location, and to shift to other locations.  

 

Fig. 5. Sustaining and shifting attention guided by a motion cue. The task for the model is to 
find the person who is waving his hand. The model’s attention is focused on the face of the 
person waving his hand as shown in each column, and when that person stops waving his hand 
and a second person starts, the model again shifts its focus to the second person’s face.  

8   Conclusion 

In summary, we demonstrated cooperative aspects of selective attention using a com-
putational model in which two input streams (bottom-up and top-down) cooperate and 
integrate. The cooperative and integrative aspect of the model not only provides selec-
tion criteria for which current incoming information is relevant or not, but also dy-
namically modulates the information through a multiplicative correlation mechanism 
by enhancing relevant information or suppressing irrelevant information. In this con-
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text, the limited capacity assumption was criticized because of a logical deficiency in 
supporting the necessity of selective attention as well as in implementing a selection 
mechanism.  
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Abstract Selective attention works throughout the whole process of vision in-
formation processing. Existing attention models concentrate on its role in fea-
ture extraction in initial stage, but ignore role of attention in other stages. In this 
paper, we extend attention to middle stage, especially in guiding perceptual 
grouping. Selective attention functions in two aspects. One is to select the most 
salient primitive as grouping seed. The other is to organize groups and decide 
their pop-out sequence. Compared with traditional attention models, our model 
judges primitive salience according to global properties rather than local ones. 
And focus of attention shifts in unit of perceptual object rather than spatial re-
gion. These two improvements boost the model’s grouping quality and more fit 
to high stage of vision information processing. Experiments and quantitative 
analysis testify our model’s good performance in certain class of images. 

1   Introduction 

Attention works throughout all processing stages in vision, starting from feature bind-
ing (initial stage)[1], through perceptual grouping (middle stage) [2], to complex tasks 
like recognition and accessing information in memory (high stage)[3]. Attention 
mechanism in initial stage has been well studied, but its role in other two stages has 
by far been mainly researched in psychology and biology domain.  

Among attention models in initial stage, the most representative Itti’s model [4] 
built a saliency driven system based on feature binding theory [1]. His model closed 
to human vision in many ways except that attended location was circular spatial re-
gion and focus shifted among fixation points without considering integrity of objects. 
Rybak’s fovea-periphery model [5] simulated retinal imaging theory and organized in 
concentric circles with increasing radii representing multi-scale analysis. His model 
measured saliency by contrast and orientation of edges, so it essentially simulated 
attention in initial vision stage, though applied in recognition. Other space-based 
models share the same drawback with these two models – focus of attention is organ-
ized in unit of circular spatial region. This does not accord with human vision com-
pletely. In neurobiology view, after passing middle stage, an image is separated into 
figure and ground and figure is further organized into objects, so attention is organ-
ized in unit of object [6]. In this way, object-based model is more adapted to middle 
and high vision stages. 
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While attention works throughout all vision stages, grouping typically performs in 
middle stage. Input to grouping is initial visual features like edges and patches. Out-
put is perceptual objects waiting for advanced processing. Existing grouping algo-
rithms confront two main obstacles. First, grouping algorithms mostly describe rela-
tions with graph structure, but graph cut is generally NP-hard problem which can be 
solved with finite cost only under specific constraints. Second, graph-based structure 
inclines to describing local relations, especially relations between a pair of primitives, 
but global relations are more salient and reliable in vision perception [7,8]. In order to 
solve the former obstacle, researchers try various approaches to fasten convergence 
including dynamic programming [9], SA [10]. As to the later, researchers select more 
reliable local relations by statistic decision strategies like MAP, ML and evidence 
accumulation [7]. 

Distinct from previous work, we propose a selective attention guided grouping 
model. Attention functions in both selecting the most salient primitive from global 
view and reducing solution space to save computational cost. The two strategies just 
solve the two obstacles in traditional grouping algorithms. What’s more, attention 
organizing in this way forms an object-based model, which adapts to middle and high 
vision stage.  

 In this paper, we’ll introduce global relation extraction first, and then detailed 
grouping algorithm is given together with role of attention. Experiments are carried 
out to demonstrate efficacy of the model and results are analysed. Direction of future 
work is discussed in conclusion. 

2   Global Relation Extraction 

We select closure and parallelism as estimation for global salience. These criterions 
originate in psychology which found human vision organizes information obeying 
several laws. Gestalt psychologists summarized these laws including proximity, paral-
lelism, symmetry, good continuation and closure[6]. With these laws, local scattered 
primitives are organized into global structure reflecting topological relations and 
having explicit scenery sense. 

2.1   Closure   

Closure is a global topological property held by object contours. A closed contour means a 
finite number of edges forming a sequence with head and tail connected. The edges are 
got from Canny Edge Detector. Outputs of Canny record edges with magnitude of con-
trast, orientation, position and length. Traditional methods judging closure usually use 
similarity of region features like color, intensity or texture, but occlusion, shadow or other 
reasons often parse the region enveloped by a closed contour into sub-regions with dis-
similar region features. So taking similarity of region features as measure for closure may 
lead to untrue result. Better measure is topological relations among edges.  

2.1.1 Topological Relations as Measure for Closure 
Similar to descriptions adopted by Elder [8], three possible topological relations, 
namely smoothness, sharp turning and gap caused by occlusion, are considered to 
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happen to edges belonging to the same closed contour. Thus possibility of any two 
edges belonging to the same closed contour is computed by 

)( 21eep = )()|()()|( 22211121 rpreeprpreep + + )()|( 3321 rpreep  (1) 

where )( 21eep denotes probability of a closed contour passes edge 1e and 2e  succes-

sively without any intermediate edge. 1r , 2r and 3r  denote smooth connection, sharp 

turning and gap respectively. As to each situation, (1) can be transformed to posterior 

probability 
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As 1r , 2r and 3r are necessary but not adequate condition for 1e and 2e  belonging to the 

same closed contour, the complete probability formula of ir is 
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where 21ee denotes 1e and 2e not belonging to the same contour. Replace )( irp in (2) 
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We set )(/)( 2121 eepeep to be 5, for only 6 nearest neighbors are considered for each 

edge. Approximately, among these 6 pairs formed by 1e and one of its 6 nearest 

neighbors, the number of edges within the same contour to number of edges not 

within the same contour is 1:5. Proximity prox
ir and good continuation cont

ir  are meas-

ures for ir  
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prox
ir is defined as distance between closest ends of 1e and 2e divided by shorter 

length of the two edges. cont
ir is defined as difference of the two edges orientation. 

And their conditional probabilities are all modeled by Gaussian function but with 
different variance. When edges are in the same group, under smoothness condition, 
distance and orientation difference both ought to be small, so 8/11 =proxσ , 

18/1 πσ =cont .Under sharp turning condition, distance is small but orientation differ-

ence is big, so 8/12 =proxσ , 2/2 πσ =cont .Under gap condition, distance is big but orien-

tation difference is small, so 2/13 =proxσ , 18/3 πσ =cont . When edges are not within the 

same group, ir is also measured by proximity and good continuation 



870 Q. Zou, S. Luo, and J. Li 

 

)|()|()|( 212121 eerpeerpeerp cont
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At this time distance and orientation difference are stochastic, so they are uni-

formly distributed, i.e. π/1)|( 21 =eerp cont
i , Rreerp prox

i
prox

i =)|( 21 where R = },max{ NM of 

an NM * image. This means distance is proportional to density of edges in an image.  
Probability of any pair of edges belonging to the same closed con-

tour ijp = )( jieep forms element of a square matrix P . We call it relation matrix. It is 

sparse for only relations between an edge and its 6 nearest neighbors are considered.  

2.1.2   Grouping Seed 
We define the grouping seed to be the most salient edge, that’s the edge most proba-
bly lying on closed contours, equivalently the edge with greatest probability of closed 
contours passing it  
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where E is the most salient edge, jCC is a closed contour of length j . Contour length 
means the number of edges constituting the closed contour. tol denotes the total num-
ber of edges in an image. All closed contours passing ie  can be regarded as forming 

one contour with infinite length, if closed contour be regarded as recurrent sequence. 
So sum of probabilities of all closed contours passing ie  is equal to the probability of 

an infinite length contour passing ie .  
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Denotes n
iip  as the i th diagonal element of n order power of relation matrix nP , 

then n
iip  represents probability of n -length closed contours passing ie [11]. So prob-

ability of an infinite length closed contour passing ie is n
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According to theory in matrix analysis [12], for a positive real matrix P  

xxP n

n

~)/(lim •=
∞→

λ  (10) 

where xx ~,  are right and left eigenvectors of P corresponding to the largest eigenvalue 

λ .For symmetric matrix, xxT ~= ( Tx denotes transpose of x ). As only relative magni-
tude of salience is to be decided, (9) divided by a constant will not affect selection of 
the most salient edge. 
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where ix and ix~ are the i th elements of x and x~ . Now the largest element of eigenvec-

tors corresponding to the largest eigenvalue of relation matrix marks the most salient 
edge in global view.  

2.1.3   Closed Contour 
Taking the most salient edge as grouping seed, starting from the seed, we search for a 
closed path on which product of all probabilities between adjacent edges is maximal. 
Such a path corresponds to a closed contour. This can be expressed as 

u
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where SC  is salience of closed contour CC . ie , je , se ,…, ve are sequential adjacent 

edges of CC . ijp denotes )( ji eep as defined before. u is length of CC . Extracting u or-

der root is to avoid salience decreasing with contour length. For more edges form a 
contour, more number of ijp joins the product, but notice 0 < ijp <1. Above maximizing 

problem can be transformed into minimizing problem, if |log| SC  is taken 

SC |log|  ( )+•••++−= ivjsji ppp
u

logloglog
1

min| ie , je , se ,…, CCev ∈  (13) 

Finding a sequence with minimum sum of relations between adjacent edges is 
equivalent to find the shortest path in relation matrix. Shortest path problem can be 
easily solved by classic algorithms [8].  

 Compared with greedy search starting from random edge, our strategy is more sav-
ing. Selecting the most salient edge as grouping seed avoids much worthless search. 
And restricting within 6 nearest neighbors reduces search space. These two strategies 
are inspired from selective attention which decides resource preferentially provided to 
important information and satisfies proximity principle.  

2.2   Parallelism    

Parallelism is defined as 

∈∈
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 (14) 

where CC  is the set of edges forming a closed contour. 5CC denotes subset of CC  and 

each edge in 5CC  is within o5  orientation difference to at least one edge in CC . 

)( ielen  is the length of ie . Obviously, SP is between 0 and 1. When reaches 1, the 

contour is an absolutely parallel structure like rectangle or parallelogram. Most man-
made objects are parallel structure, so parallelism is advantageous to detect artificial 
objects in natural scenery.  
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3   Grouping Algorithm 

Importance of groups is defined as 

SPSCH βα +=  (15) 

where α  and β are weights of closure and parallelism. They are set by global amplifi-
cation strategy[4]. After a closed contour emerges, inhibition of return[13] rises, which 
means once an object has been attended, it will never be listed into further search 
scope. So all relations between edges on the emerged contour are removed. Then 
global relations are extracted from the remaining elements and new closed contour 
emerges. Repeat like this until remaining primitives cannot form a contour. Compute 
importance for every closed contour and rank them decreasingly, then groups pop out 
sequentially with each corresponding to closed contour of an object. 

Algorithm complexity mainly comes from closure computation including relation 
matrix plus grouping seed plus closed contour, i.e. )()()( 3 NoNoNo ++ in worst situa-

tion and )()log()( 2 NoNNoNo ++ in optimal situation, where N denotes edge number 
of the whole image. Parallelism computation complexity is )(no  where n denotes 
edge number in a contour. Parallelism complexity can be ignored especially 
when N >> n .  

4   Experiment Result 

We ran the model on a PC with 2.4G Pentium IV CPU and 256M memory. Some 
images and grouping results of mini-cut [14], a typical graph based method, used for 
comparison come from [16]. We experiment on 24 images of 4 classes. 6 natural ob-
ject in outdoor background, 6 natural object in indoor background, 6 man-made object 
in outdoor background and 6 man-made object in indoor background. Images are 
320*240. It takes about 17 seconds to produce the first group.Fig.1 is a grouping 
example of natural object in indoor background. We can see grouping results accord 
with human perception, almost each corresponding to a meaningful object, for global 
relation of closure plays key role. 

 

     

(a)                                 (b)                                  (c)                               (d) 

Fig. 1. a grouping example: (a) source; (b) 1-4 most salient groups with 3 denoting eyes and 4 
denoting face; (c) 5-8 most salient groups with 7 denoting eyes and 8 denoting mouth; (d) all 
salient groups. 
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We evaluate performance of the model by two indexes: missβ  is the ratio of edges 

belonging to closed contours but missed in grouping, and falβ  is the ratio of edges not 

belonging to the same group but falsely detected as in the same group. 
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where
iGN is  the number of edges in detected group iG ,

jON is  the number of edges in 

true group jO . An image made up of true groups is called ground truth.
ji OGN ∩ is the 

number of detected group edges lying in truth group. olN is the number of overlapping 

blocks between detected groups and truth groups. Both β  should be as small as pos-
sible to boost grouping accuracy. Table 1 list comparison of index β among different 
models. Mini-cut is representative for graph based grouping methods and Itti’s model 
is representative for space-based attention models. We can see in all situations, per-
formance of our model, which uses global relation and is guided by attention, is better 
than mini-cut using local relation. Large false ratio of Itti’s model is due to local fea-
ture based spatial attention. Focus is organized in unit of circular region (second col-
umn in Fig.2). Circular regions accord with true groups in low probability leading to 
large β . Miss ratio of Itti’s model is even greater and hardly meaningful to measure 
grouping quality. So they are omitted from the table.  

Table 1. comparison of missβ / falβ  among our model, Itti’s model and mini-cut model 

algorithm natural obj. outdoor natural obj. indoor m-m obj. outdoor m-m obj. indoor 
ours       0.26 / 0.14       0.37 / 0.24      0.39 / 0.32      0.35 / 0.42 
Itti’s           --  / 0.42          --  / 0.57         --  / 0.39         --  / 0.63 

mini-cut       0.37 / 0.46       0.40 / 0.48      0.52 / 0.39      0.41 / 0.55 
 

More examples are shown in Fig. 2. Grouping effect on natural object in outdoor 
background (first row in Fig.2) is good, especially when the object strongly contrasts  

 

      
 

       

Fig. 2. left column: ground truth [16], second column: Itti’s attention model. circle marks at-
tended region, line with arrow marks focus shift trajectory, third column: grouping result of 
mini-cut [16], right column: grouping result of our algorithm 
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to background. In this situation, integrated closed contour of object is extracted de-
spite cluttered background. Mini-cut cannot segregate background noise from object 
contour. Itti’s model ignores integrality of perceptual object though it does detect the 
most salient locations. However, grouping effect on some man-made objects in out-
door background, especially those remote images taken from aerial, is relatively bad 
(second row in Fig.2). Low resolution of this image class may account for the bad 
effect. But man-made objects with parallel structure outstand clearly due to global 
relation of parallelism. On the whole, grouping effect of our model is closer to that 
perceived by human than other two models. It further proves grouping relying on 
global relations is more suitable for simulating attention in middle vision stage. 

Our model may fail when object boundary are weak so that Canny Edge Detector 
cannot offer enough information to extract global relations. In this situation, either 
some object contour is missed (first row in Fig.3), or the contour fails to converge to a 
closed sequence (second row in Fig.3). As the latter occurs, performance of our model 
nears to or even worse than that of mini-cut.  

  

               

(a)                                      (b)                                      (c) 

                            

(d)                                     (e)                                        (f) 

Fig. 3. our model failure (a) source of sailboats image; (b) Canny result; (c) grouping result of 
our model. One of the sailboats is missed; (d) ground truth of collarlemur image [16]; (e) 
grouping result of our model. Contour of the collarlemur is not closed and integrated due to 
occlusion; (f) grouping result of mini-cut [16]. 

Although we put our model, Itti’s model and mini-cut into the same assembly for 
comparison, they are applied to different domains. Space-based attention, such as 
Itti’s model, is fit for feature binding phase. It is effective when the goal is to find 
salient locations but not the whole perceptual object. Focus of space-based attention 
can be used for seed in detection of ROI (region of interest). While results of object-
based attention, such as our model, can be directly taken as results of figure-ground 
segmentation and object detection. Global relations like closure is important for 
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grouping object contours. On the other hand, closure restricts scope which the group-
ing algorithm applies to. Precondition is that the image should contain objects with 
explicit closed contours. Mini-cut almost imposes no conditions on images. From this 
point, mini-cut can be used for grouping on more complex images. Our model exhib-
its its superiority only within certain class of images.  

5   Conclusion 

We implement a selective attention guided perceptual grouping model. The global 
topological relations produce groups of high quality. Attention mechanism decides 
salience measure in global view and limits solution space to reduce complexity. These 
are main obstacles of graph-based grouping methods. Experiments on four classes of 
images testify the model’s efficacy on certain class of images. And plausibility of 
object-based attention in middle and high vision stages is also proved. 

Using more precise descriptions of global relation to boost grouping quality is rec-
ognized by more and more researchers. In this paper, we exploit statistics, specifically 
eigenvector to discover global structure embedded in local elements. Recently, mani-
fold and topology are reported to approach essence of global relations more closely 
[15]. Unifying these tools into grouping framework to design more robust algorithms 
is our future work. It is also noticed that our model cannot guarantee convergence in 
strong occlusion. To borrow ideas from other closure extraction methods, such as 
Mahamud proposed directionality of edges [11], may be attempted. Besides, complex-
ity of our model is under improvement to be applied into larger real images.  

Acknowledgements 

The research is supported by: National Natural Science Foundations (No. 60373029) 
and Doctoral Foundations of China(No. 20020004020) 

References 

1. Tresman, A. M. and Gelade D.: A Feature Integration Theory of Attention. Cognit. Psy-
chol. 12(1): 97-136, 1980 

2. Shepard R.: Toward a Universal Law of Generalization for Psychological Science. Sci-
ence, 237: 1317-1323, 1987  

3. Salinas, E. and Sejnowski, T.J.: Correlated neuronal activity and the flow of neural infor-
mation. Nature Review Neuroscience. 2: 539-550, 2001 

4. Itti L.: Models of Bottom-Up Attention and Saliency, In: Neurobiology of Attention, Itti 
L., Rees G. and Tsotsos J.K. Ed. 576-582, San Diego, CA: Elsevier, 2005 

5. Rybak I.A., Gusakova V.I. and Golovan A.V., etc.: A model of attention-guided visual 
perception and recognition. Vision Research, 38: 2387–2400, 1998 

6. Palmer, S.E.: Modern theories of Gestalt perception. Understanding Vision. Humphreys 
G. W. ed. Blackwell, 1992 

7. Amir A. and Lindenbaum M.: A generic grouping algorithm and quantitative analysis. 
IEEE Trans. Pattern Analysis and Machine Intelligence, 20(2): 168-185, 1998 



876 Q. Zou, S. Luo, and J. Li 

 

8. Elder J. H. and Zucker S. W.: Computing Contour Closure. Proc. Fourth European Conf. 
Computer Vision, 399-412, 1996 

9. Sha’ashua A. and Ullman S.: Grouping Contours by Iterated Pairing Network. Neural In-
formation Processing Systems (NIPS) vol. 3, 1990. 

10. Herault L. and Horaud R.: Figure-Ground Discrimination: a combinational optimization 
approach. IEEE Trans. Pattern Analysis and Machine Intelligence, 15(9): 899-914, 1993 

11. Mahamud S., Williams L. R., Thornber K. K., and Kanglin Xu: Segmentaion of multiple 
salient closed contour from real images. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 25(4): 433-444, 2003 

12. Wang Z. R. and Shi R. C.: Matrix analysis. Beijing institute of technology Press, 1989 
13. Klein, R. M.: Inhibition of return. Trends in Cognitive Science. 4: 138–147,  2000. 
14. Soundararajan P. and Sarkar S.: An in-depth study of graph partition measures for percep-

tual organization IEEE Trans. Pattern Analysis and Machine Intelligence, 25(6): 642-660, 
2003 

15. Seung H.S. and Lee D.D.: The Manifold Way of Perception. Science, 290(5500): 268–
269, 2000 



Visual Search for Object Features

Predrag Neskovic and Leon N. Cooper

Institute for Brain and Neural Systems and Department of Physics,
Brown University, Providence, RI 02912, USA
pedja@@brown.edu, Leon Cooper@@brown.edu

Abstract. In this work we present the computational algorithm that
combines perceptual and cognitive information during the visual search
for object features. The algorithm is initially driven purely by the bottom-
up information but during the recognition process it becomes more con-
strained by the top-down information. Furthermore, we propose a con-
crete model for integrating information from successive saccades and
demonstrate the necessity of using two coordinate systems for measur-
ing feature locations. During the search process, across saccades, the
network uses an object-based coordinate system, while during a fixation
the network uses the retinal coordinate system that is tied to the loca-
tion of the fixation point. The only information that the network stores
during saccadic exploration is the identity of the features on which it has
fixated and their locations with respect to the object-centered system.

1 Introduction

When we look at the world around us, we perceive it as highly detailed, full
colored and stable. However, our eyes neither process visual information with
uniformly high resolution nor are they motionless. The only region of the visual
scene that is processed with high resolution is that which is very close to the
fixation point. The acuity and color sensitivity of retinal cells rapidly decreases
with distance from the fovea, the region of the retina that corresponds to only
about the central 2 degrees of the viewed scene. In order to overcome this lim-
itation of the optical structure of the eyes, our visual system uses saccades to
reposition the fovea over different locations and thus obtain locally high resolu-
tion samples of a visual scene. The question is then what information is retained
during saccadic exploration and how detailed is that information? It has been
shown in numerous experiments that our visual system is fairly insensitive to
visual changes in an image across a saccade, a phenomenon called change blind-
ness [1]. As a consequence, it has been proposed [2] that because the “world is
its own memory”, the visual system does not need to store visual information
from fixation to fixation. On the other hand, the visual memory theory of Hen-
derson and Hollingworth [3] posits that a relatively detailed scene representation
is built up in memory over time and across successive fixations. The question
then becomes: how do we piece together information from different fixations?
According to composite sensory image hypothesis the sensory images from con-
secutive fixations are spatially aligned and fused in a system that maps a retinal
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reference frame onto a spatiotopic frame [4]. However, numerous psychophysical
and behavioral data from vision and cognition literature have provided evidence
against this hypothesis [5].

Another important question, related to saccadic exploration of the pattern,
is what criterion our visual system uses when it select the location on which it is
going to fixate - the target location? Is this process driven purely by bottom-up
information (by the salient properties of the pattern), or by top-down informa-
tion (our expectations) or by a combination of the two? It has been known for a
long time [6,7] that more informative scene regions receive more fixations and
thus informative regions are most likely candidates for being target locations.
What is not known is how to define the informative region. Again, one can use
only perceptual information (bottom-up), or cognitive information (top-down)
or a combination of the two. Experimental evidence suggests that while initial
fixations are controlled by bottom-up information, the subsequent fixations are
influenced by cognitive expectations [8]. However, how exactly and when (at
what stages during the recognition process) these two sources of information
interact with each other is still an open question.

In this work we address the previous questions and present the algorithm for
searching for object features that combines perceptual and cognitive information.
More specifically, the selection of the target feature is initially driven purely by
bottom up information but during the recognition process becomes more con-
strained by the top-down information. Furthermore, we propose a concrete model
for integrating information from successive saccades. We show that the only in-
formation that is necessary to retain across fixations, in order to segment and rec-
ognize an object, is the location and identity of some of the features on which the
system has fixated. We demonstrate that our model can also be utilized for build-
ing a real-world recognition system. To this end, we constructed a working system
and tested it on the difficult task of searching for letters in handwritten words.

The paper is organized as follows: In section 2 we describe the feature-based
object representation and the architecture of the network that integrates infor-
mation from different regions of the pattern. In section 3 we show a detailed
algorithm for searching for object features and the mechanism that the system
uses to resolve conflicting configurations. We illustrate the results of our algo-
rithm when applied to real-world dataset of cursive script in section 4. Final
remarks and summary are given in section 5 .

2 Object Representation

In our model, an object is represented as a collection of features of specific classes
arranged at specific locations with respect to one another [9,10]. Detecting an
object is then equivalent to detecting constituent features and estimating their
locations. The main problem in detecting individual features is that information
contained in the local region of an image is often ambiguous and therefore can
be interpreted in many different ways. Human visual system, overcomes this
ambiguity by incorporating contextual information. During fixation on a par-
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ticular region of the object, we use contextual information, such as locations
and identities of surrounding features, to help determine identity of the fixated
region. Similarly, information from the previous fixations is used as contextual
information to help determine identity of the region around the current fixation.

Feature Detectors. Let us assume that we have N feature detectors, each
selective to a feature of particular class. For example, if an object is a face then
features can be the nose, the mouth and the eyes. If an object is a word then
features can be the letters from the alphabet, N = 26. If we denote with xi the
location of the pattern over which the feature detector is positioned, then the
output of the feature detector, di(xi), is proportional to the confidence that the
local region around xi represents the feature of class i, where i = 1, ..., N . The
closer in appearance the region is to the feature that the detector is selective to,
the higher is the output of that feature detector.

Simple Units (SUs). Let us now choose one region of the pattern and as-
sume that it represents a specific feature, say a letter “a” of the word “act”. In
order to incorporate contextual information, we construct a set of units, called
simple units, that capture the locations and identities of surrounding features.
The sizes and distribution of the receptive fields of the (surrounding) simple
units are designed in the following way. The receptive field of the simple unit
that is selective to the letter “c” is constructed so that it can capture all possible
variations in location of the letter “c” given the location of the letter “a”. We
will denote this unit as SU(2|1). The simple unit that is selective to the letter
“t”, SU(3|1), is further away from the central unit and its size is larger than
the size of the SU(2|1) since the variations in feature sizes and locations accu-
mulate. In general, both the sizes and the overlapping of the receptive fields of
simple units become progressively larger with the distance from the central unit.
However, the surrounding SUs that are nearest neighbors to the central SU do
not overlap with the central SU and therefore the order is preserved within the
local neighborhood around the fixation point.

If we denote with Rji the receptive field of the simple unit that is selective to
the jth feature, and xj is the location of the jth feature, then the simple unit fires
if the feature is detected (its value is above some threshold, dj(x) > threshold)
and is located within the unit’s receptive field (xj ∈ Rji). In our implementation,
we set the threshold to a very small value close to zero. We will denote with
symbol y the location of a feature with respect to the location of the fixation
point and with symbol x the location of a feature with respect to a coordinate
system that is fixed to an object, e.g. a specific object feature. The activation
of the simple unit, whose center is at distance yj = xj − xi with respect to the
fixation point xi, is calculated as

sji(yj) = sji(xj |xi) = max
xj∈Rji

[dj(xj)], (1)

Complex Units (CUs). Although each simple unit processes only local
information, combination of all the simple units associated with a given cen-
tral feature provides contextual information. Since feature detection and loca-
tion estimation is much less reliable for features that are further away from the
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fixation point compared to features that are closer we weigh the contribution
of each simple unit differently. The weighing factor in our implementation is
set to be inversely proportional to the size of the simple units receptive field,
ωji = 1/(size of Rji). In this way, the contribution of simple units that are
closer to the fixation point (those that have smaller receptive fields) is larger
compared to simple units that are further away. The output of a complex unit,
associated with the ith object feature is given as

ci(x) = di(xi) ·
1

N − 1

N∑
j=1,j 
=i

ωji · sji(xj |xi), (2)

where di(xi) is the activation of the feature detector positioned over the i-
th object feature, and N represents the number of object features. For a given
object, there are as many complex units as there are features.

The receptive fields of all the simple units that belong to the same complex
unit form complex unit’s receptive field. Since the receptive fields of the simple
units closer to the central SU are smaller than the receptive fields of those that
are further away, the complex unit captures with high accuracy only the locations
of the features that are close to the fixation point. As a consequence, a complex
unit can determine only whether surrounding features are correctly positioned
with respect to the central feature but not whether they are correctly positioned
with respect to one another.

Object Units. In order to capture different regions of an object with high
resolution and in order to correctly estimate locations of the features with respect
to one another, the system has to probe the pattern at different locations. We call
these exploratory movements of the system saccades. At the top of the processing
hierarchy are the object units, one unit representing each object. The outputs
of all the complex units are supplied to the object unit and they are combined
in the following way

o(x) =
N∑

i=1

ci(x) (3)

where x = (x1, · · ·,xN) is a particular configuration of selected features. An ob-
ject unit, therefore represents an object regardless of any specific point of view or
fixation point. This hierarchical representation consisting of different collections
of simple units, complex units and an object unit comprises a neural network-like
architecture that we use to represents each object from a library of objects.

In summary, simple units provide local information about presence of spe-
cific features within specific regions; complex units integrate information from
different regions, given a specific fixation location, whereas object units integrate
information from different fixations. In order to accomplish this task of integrat-
ing information across fixations, the system has to use two different coordinate
systems. One system is tied to the fixation point, the retinal coordinate system,
while the other system is object-based and can be centered on any object fea-
ture. In the following section we will see how the system combines these two
coordinate systems during the visual search for object features.
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3 The Search Algorithm

In this section we present the algorithm that combines perceptual and cognitive
information during the process of searching for object features. In order to sim-
plify description, we will assume that an object is a word and that features are
letters. However, the algorithm is general and can be applied to any other object
consisting of different features. Instead on operating on the pattern, the network
operates on the detection matrix that represents sensory input and consists of
the outputs of feature detectors (in this case letter detectors) whose receptive
fields overlap and completely cover the pattern. Therefore, a row of the detection
matrix represents a class of the letter and a column corresponds to the position
of the letter within the pattern.

We will call the letter on which the system fixates the central letter, the
corresponding location within the matrix the central column, and the (simple)
unit that is positioned over the central letter the central unit. All the simple
units that are surrounding the central unit are called the surrounding units and
they provide contextual information. In the following, we will assume that a
particular dictionary word is given and the task of the recognition system (the
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Fig. 1. The complex unit CU1 represents the word “act” from the perspective of
the letter “a”. The detection matrix corresponds to the pattern representing the word
“act”. The central letter is the letter “a” from the 7-th column. The simple unit selec-
tive to the letter “c” selects the letter “c” from the 12-th column, and the simple unit
representing the letter “t” selects the letter “t” from the 11-th column. The segmenta-
tion of the pattern determined by the complex unit CU1 is “atc”, which is obviously
incorrect segmentation.
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network) is to select elements from the detection matrix that correspond to the
letters of the given word and thus segment a pattern into letters.

The recognition process starts by selecting the most prominent letter from
the pattern, the element from the detection matrix that has the highest value.
If we think of the detection matrix as the saliency map then this procedure
is equivalent to winner-take-all mechanism proposed by Koch and Ullman [11].
Note that at this stage the feature selection is purely a bottom-up process. Let us
now assume that the selected letter, the central letter, is one of the letters of the
given dictionary word. All complex units (more specifically their central units)
are then positioned over this letter and we say that the system fixates on the
central letter. However, not all the complex units will be equally activated and
only those complex units whose central unit is selective to the central letter will
fire. For example, if the given dictionary word is “again” and the network fixates
on the letter “a” then two complex units will have central units that are selective
to this letter: the complex unit CU(1) with surrounding simple units selective
to letters “-gain”, and the complex unit CU(3) with surrounding simple units
selective to letters “ag-in”. Which of those two complex units would have higher
activation would depend on the presence of the letters to which each complex
unit (and the corresponding simple units) is selective. If the network finds the
letters “-gain” at expected locations then the unit CU(1) becomes activated. On
the other hand if the network finds the letters “ag-in” at expected location then
the unit CU(3) becomes activated. The complex unit with highest activation
then segments the pattern by choosing the letters that activate it the most.
We will call this segmentation a tentative segmentation. Unfortunately, due to
often high overlapping of the simple units’ receptive fields, this segmentation can
be incorrect in the sense that selected letters are not at correct locations with
respect to one another, as illustrated in Figure 1.

The only way to assure that the selected letters are correctly positioned
with respect to one another is if the network fixates on each of them since the
ordering is preserved only locally, for the nearest neighbor simple units. We will
call the letters that are correctly positioned with respect to one another the
active letters. Similarly, we call the complex unit with highest activation, for a
given fixation, the active complex unit. The first letter on which the network
fixates therefore becomes the first active letter. The network then selects the
target letter and the location within the pattern on which it is going to fixate.
The target letter is selected by one of the simple units of the active complex
unit. More specifically, the new fixation point becomes the location of the letter
that is selected by the simple unit that has the highest activation. In this way,
the network combines top-down information (expectation about the location of
the letter) with bottom-up information that is provided by letter detectors.

The question is now what information about the pattern, given the cur-
rent fixation, is stored in the short term memory? The only information that
is retained across fixations is the location of each active letter and its identity.
Information about locations of active letters is important for the network so it
does not in the future make fixations on the same locations. In effect, in this
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Fig. 2. The complex unit CU2 represents the word “act” from the perspective of the
letter “c”. The detection matrix corresponds to the pattern representing the word “act”.
The detection matrix corresponds to the pattern representing the word “act”. The central
letter is the letter “c” from the 9-th column. The central unit of the complex unit CU2 is
selective to the letter “c” and is located over the letter detector that has detected the letter
“c” with confidence 0.7. The active letters are the letters “a” and “t”. The location of the
active letter “a” is within the receptive field of the corresponding simple unit selective to
the letter “a”, but the location of the active letter “t” is not within the expected region
which is the receptive field of the simple unit selective to the letter “t”. We say that the
central unit is in conflict with active letter “t”.

way we implement an inhibition of return mechanism which is necessary so that
the network doesn’t enter an endless loop. The locations of the active letters are
measured with respect to some point within the object, for example the location
of the first active letter can be used as the center of the coordinate system. It
is important to note that the spatial arrangement of the receptive fields of the
simple units (that belong to the same complex unit) is fixed (with respect to
each other), but the position of the complex unit over the detection matrix is
not. With each selection of the new target letter, the network is repositioned
so that all the central units (of all the complex units) are placed over the tar-
get letter. If the active letter falls within the receptive field of the simple unit
that is selective to this letter, then the simple unit does not process information
using Eq. 1 but instead immediately chooses the active letter and outputs the
confidence with which the active letter is detected.

As we have mentioned earlier, one of the consequences of the “fovea-like”
distribution of the receptive fields of the simple units is that feature ordering is
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preserved only with respect to the fixation point. This means that the central
letter is not always at the correct location with respect to one or more active
letters, as illustrated in Figure 2. If this situation occurs, then the network
probes the local neighborhood around the central letter and tries to find a letter
of the same class as the central letter but whose location is not in conflict with
active letters. This small repositioning of the network is similar to microsaccades
performed by the eyes during the visual search.

If the network finds a new (central) letter that is not in conflict with active
letters, then this letter is added to the group of active letters and the network
continues to search for remaining letters. Otherwise, if the network cannot find a
letter that is not in conflict with existing active letters then it suppresses either
the central letter or the active letters that are in conflict with the central letter.
This is done by comparing the values of the object unit for those two scenarios: a)
when the existing active letters are accepted and the central letter is rejected, and
b) when the active letters that are in conflict with the central letter are rejected
and the central letter, together with active letters that are not in conflict with
the central letter, are accepted. The first configuration we call the old value of
the object unit while the second configuration we call the new value of the object
unit. In order to calculate the new value (without the conflicting active letters)
the network has to fixate on all the active letters that are not in conflict with
the central letter since previous fixations on those active letters (previous values
of corresponding complex units) did not include the current central letter. This
means that for the network the landscape of activations of feature detectors,
the pattern, appears differently as a consequence of exploring the pattern and
accumulating new information. The central letter is accepted (and conflicting
active letters suppressed) only if the new object unit value is strictly greater
than the old object unit value. Once the network accepts or rejects the central
letter, it continues to search for the new target letter until all letters of a given
dictionary word are discovered.

The visual search for object features, when it is not known in advance what
object the pattern represents, does not significantly differ from the previously de-
scribed algorithm for searching the features of the known object. We will again fo-
cus on handwriting recognition and assume that a pattern represents an unknown
dictionary word. The network first selects the most prominent letter from the de-
tection matrix but this time, instead of using only the complex units of one object
unit, the central letters of the complex units of all the object units (all dictionary
words) are positioned over this letter. The complex unit that has the highest ac-
tivation propagates its output to the corresponding object unit that becomes the
active object unit. The word that is represented with this active object unit now
imposes the structure on the pattern in the sense that the network starts to search
for the letters of only the active object unit. In this way, the algorithm reduces to
the previously described procedure for searching for the features of a given object.
Since the network always searches for the letters of the dictionary word that is asso-
ciated with object unit that has the highest value, it might happen that during the
search process the network switch from searching for the letters of one dictionary
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word to searching for the letters of some other dictionary word. The visual search
is completed when all the letters of the active dictionary word are found and the
object unit’s value is above some threshold value.

4 Implementation and Results

We tested the search algorithm on a database of online cursive words where the
features were letters and objects were dictionary words. The letter detectors were
designed using the weight sharing neural network [12] and the receptive fields
of simple units were designed using pairwise probabilities of letter locations as
described in [9]. In addition to 26 letters from the alphabet, we introduced the
features that denote the beginning and end of the word so our alphabet effectively
consists of 28 symbols. The beginning and end features are important in order to
provide context for one letter words or words that can at the same time be part
of longer words such as the word “act” that is also part of the words “actual”,
“activation”, “fact”, “exact”, and etc.

The only way to verify the accuracy of the search algorithm is to compare
the segmentation obtained with our algorithm to groundtruthed data - where
the location of every letter of every dictionary word is known. However, since the
pre segmented data is not available for this database, another possibility is to
compare the recognition rates of our algorithm to recognition rates of some of the
best recognition algorithms. We constructed two systems for recognition of online
cursive script. One based on Hidden Markov Model (HMM), which is the state-of-
the-art model for handwriting recognition, and the other based on the Interactive
Parts (IP) model [13]. The objective function for the IP model is exactly the
same as the one that we use in this paper except that in the IP model only the
first neighbor interactions are considered. This reduced contextual information
has important consequences since the model then becomes much more tractable
and one can use dynamic programming in order to exactly solve the objective
function.

Both the HMM and the IP model give comparable results and they are
slightly better compared to our results. The recognition accuracy of our system
varies from around 65% to over 90% for different writers, depending how clearly
the words are written. On average, the accuracy of our system is about 4%
lower compared to HMM and IP models. However, we should emphasize that the
recognition rate depends not only on the correct segmentation of the pattern but
also on the way the output of the letter detectors are combined - the connections
between the units of the network and therefore the recognition accuracy is just
one way of testing the performance of the search algorithm.

5 Summary

In this work we presented the computational algorithm that combines both per-
ceptual and cognitive information during the process of searching for object
features. Our algorithm, as suggested by numerous experiments [8], is initially
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driven purely by bottom up information but during the recognition process be-
comes more constrained by the top-down information. The network that per-
forms the search algorithm utilizes contextual information on two levels. During
a fixation, the locations and identities of surrounding features provide context
while during the search process contextual information is represented through
the locations and identities of visited (active) features.

We showed that in order to capture variations in feature locations, the recep-
tive fields of the units (the simple units) become progressively larger as well as
their overlap. Therefore, the network can estimate with high resolution only the
locations of features that are close to the fixation point. In order to estimate the
locations of all the features with high resolutions, and thus ensure that features
are correctly positioned with respect to one another, the network has to make
saccadic movements. As a consequence of the foveal distribution of the recep-
tive fields, some of the features that activate simple units may be incorrectly
positioned with respect to one another. We described a detailed mechanism for
resolving conflicting configurations and showed that in some situations the net-
work benefits from making microsaccades.

We also demonstrated the necessity of using two coordinate systems for mea-
suring feature locations. During the search process, across saccades, the network
uses an object-based coordinate system that is centered at any feature/location
of the object while during a fixation the network uses the retinal coordinate
system that is tied to the location of the fixation point. The only information
that the network stores during saccadic exploration is the identity of the active
features, on which it has fixated, and their locations with respect to the object-
centered system. This information allows the network to effectively implement
inhibition of return mechanism and therefore enhance processing by withdrawing
attention from previously attended locations.

We tested the search algorithm on real world data of online cursive script and
achieved very high recognition rates. The performance of the system favorably
compares even to the state-of-the-art system for handwriting recognition. We
believe that in addition to providing an insight into information processing by
the human visual system, one of the major strengths of our algorithm is that
it demonstrates that some mechanisms of the human vision can be successfully
used in constructing an efficient system for real-world applications.
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Abstract. This paper deals with agent based decision support system
for patient’s right diagnosis and treatment under emergency circum-
stance. The well known reinforcement learning is utilized for modeling
emergency healthcare system. Also designed is a novel interpretation of
Markov decision process providing clear mathematical formulation to
connect reinforcement learning as well as to express integrated agent
system. Computational issues are also discussed with the corresponding
solution procedure.

1 Introduction

The objective of this paper is to combine the agent based decision support system
with ubiquitous artifacts and make it more intelligent so that it can help the
doctors to acquire on time correct diagnosis and select appropriate treatment
choices. An attempt is given to supervise the dynamic situation by using agent
based ubiquitous artifacts and to find out the appropriate solution for emergency
circum-stances providing correct diagnosis and appropriate treatment in time.
As per the work done by M. Hauskret, H. Fraser[7], the reason for using the
RL (Reinforcement Learning) agent based on MDP (Markov Decision Process)
model is that it needs less number of parameters and it also gives approximation
method to make trade off between accuracy and speed, in turn, solving the
complex number of cases in less time compare to the existing system.

The idea of interface agent has been derived from the concept of [4] although
the functional architecture is different but the conceptual idea is similar to our
work. The implementation of reinforcement learning agent approach has been
utilized in the previous work [7] using the model of partially observable Markov
decision process [POMDP]. The concept of ubiquitous healthcare system using
agent technology has studied in [2]. All of the existing works have focused on the
exploitation of ubiquitous system for the betterment of healthcare system. Our
idea is to develop integrated emergency system using agent based approach.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 888–892, 2005.
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2 Reinforcement Learning Agents

Reinforcement learning (RL) is based on interaction with an environment, from
the consequences of action, rather than from explicit teaching [5]. RL could
be characterized by a mathematical framework of Markov decision processes
(MDPs). Main elements of Reinforcement learning is states s, actions a and
rewards r. The reinforcement learning agent (RL-agent) is connected to his en-
vironment via sensors. In every step of interaction the agent receives a feedback
about the state of the environment (st+1) and the reward (rt+1) of its latest
action at. The agent chooses an action (at+1) representing the output function,
which changes the state (st+2) of environment. The agent gets a new feedback,
through the reinforcement signal (rt+2).

3 Scenario of Reinforcement Learning Agent at
Emergency Circumstances

When a high risk patient, far from medical facilities, gets some perilous occur-
rence in their body the ubiquitous devices attached to their body sends some
signals to the hospital knowledge base server.

This signal sends the patient profile to the HIS (Hospital Information Server).
Knowledge about the patient will be accumulated by the RL-agent (named as
decision maker agent) from the HIS database [1]. The RL-agent compares the
patient current status with his existing diagnosis history, RL-agent search for
the related physician his scheduling, and sends the patients profile to the related
departments. On the bases of this crucial data the decision maker agent, based on
reinforcement learning approach, make inference of the data and provide entire
data history of the patient with best alternate action(diagnosis and treatment) to
the related department with minimal time cost. In this scenario, decision maker
agent uses some model based on previous patient’s profile, to collect the patient
data; however this paper only deals with the processing of decision maker agent
based on RL approach.

4 Markov Decision Process

An MDP is defined by a set of states S, and actions A, Reward R, and transition
probabilities T.

V ∗(s) = max
a

(R(s, a) +ΣT (s, a, s′)V ∗(s′)), ∀s ∈ S (1)

V ∗(s) = max
π

E(
∞∑

t=0

rt) (2)

R(s, a) =
∑
s′∈S

P (s′|s, a)R(s, a, s′) (3)
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The objective of this model is to find out the optimized action to maximize the
reward or cost in a finite horizon (2).

Due to the computation complexities of the pure MDP model we use Bell-
man’s value function recursively; it (1) calculates the total reward value by
adding all the suboptimal values (3).

5 Formulations to a Reinforcement Learning Problem

r=Reward, p=Transition probability, a=Action, S=State
Decision Epochs: [Finite time horizon]
T={1,2,,N}, N ≤ ∞
States: [Patient Condition: Serious, Normal]
S={S1, S2}
Actions: [Medication, No action]-
As1 {a1,1, a1,2}, As2 = {a2,1}
Rewards: [Cost]
rt(S1, a1,1) = r1,1; rt(S1, a1,2) = r1,2; rt(S2, a2,1) = r2,1;r N(S1)=0;rt(S2)=0;
If N ≤ ∞
Transition Probabilities: [Effect of diagnosis and treatment]
pt(S1|S1, a1,2) = p1,2,1; pt(S1|S2, a2,1) = p2,1,2;
pt(S2|S1, a1,1) = p1,1,3; pt(S2|S1, a1,2) = p1,2,4;
pt(S2|S2, a2,1) = p2,1,5

Expected Reward/Cost:
rt(S1, a1,1)= rt(S1, a1,1, S1) pt(S2|S1, a1,1)
+rt(S1, a1,1, S2)pt(S2|S1, a1,1)

S1 S2 

a1,1

a1,2

a1,1 a2 1 
{r,p} 

{ r, p } 

{ r, p } 
{ -r, p } 

Fig. 1. Symbolic representation of Markov Decision Process

5.1 Finding the Best Policy or the Minimum Cost Function Using
DP (Dynamic Programming) Approach

Choose an arbitrary policy loop
Π := Π ’
compute the value function of policy : solve the linear equations
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V π(s) = R(s, π(s)) +Σs′∈ST (S, π(S), S′)V π(S′) (4)

improve the policy at each state:

Π ′(s) := arg min
a

(R(S, a) +Σs′∈sT (s, a, s′)V π(s′)) (5)

until Π = Π ’
Denote a policy asΠ , whereΠ=action selected in current state. Where V π(s)

and π’(s) are optimal value and control function. We can take Π ’ as any random
policy and V π(s) is reward value starting from current state and following the
Π policy. Now we can define another greedy policy in terms of Π ’(s) and make
iteration of the value function V π(s) function until Π = Π ’ .

6 Conclusions and Future work

This paper presents and describes a Reinforcement Learning agent based model
used for information acquiring and real time decision support system at emer-
gency circumstances. Markov decision process is also employed to provide clear
mathematical formulation in order to connect reinforcement learning as well as
to express integrated agent system. This method will be highly effective for the
real time diagnosis and treatment of high risk patient during the emergency
circumstances, when they are away from the hospital premises. Further pursu-
ing will be to develop some prototype, and simulate the testing data, planning
modules, and find out the actual outcome of this approach.
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Abstract. This paper aims to tackle two fundamental problems faced
by multiple object recognition systems: invariance and transformation es-
timation. A neural normalization approach is adopted, which allows for
the subsequent incorporation of invariant features. Two new approaches
are introduced: dynamic inputs (DI) and attraction force analysis (AFA).
The DI concept refers to a cloud of inputs that is allowed to change its
configuration in order to latch onto objects thus creating object-based
reference frames. AFA is used in order to provide clouds with trans-
formation estimations thus maximizing the efficiency with which they
can latch onto objects. AFA analyzes the length and angular proper-
ties of the correspondences that are found between stored-patterns and
the information conveyed by clouds. The solution provides significant in-
variance and useful estimations pertaining to translation, scale, rotation
and combinations of these. The estimations provided are also consider-
ably resistant to other factors such as deformation, noise, occlusion and
clutter.

1 Introduction

One of the fundamental elements of any image understanding system is the
ability to recognise multiple cluttered objects under any combination of trans-
formations. Systems that have this ability are called multiple object recognition
(MOR) systems. This paper presents a neural approach that addresses arguably
the two most fundamental sub-components of any MOR system: invariance and
transformation estimation. Invariant object recognition refers to the ability of
recognizing objects regardless of variations such as position, orientation and size.
Transformation estimation, on the other hand, refers to the ability of making
estimates of the very same transformations that the invariance property ignores:
e.g. the cat is rotated 45◦.

The overall context of this paper lies mainly within biological neural net-
works (BNN), although the proposed approaches can also be applied outside of
this context. According to Wiskott [1], BNN approaches relevant to invariance
and transformation estimation can be divided into two general categories: 1)

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 893–902, 2005.
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normalization and 2) invariant features. Normalization refers to the application
of a particular set of transformations on a reference frame until it is aligned
with an image object. Work on normalization by neural systems started as far
back as 1947 in a landmark paper by Pitts and McCulloch [2]. Other more re-
cent approaches include: Shifter Circuits [3], Dynamic Routing Circuits [4], the
Dynamic Link Architecture [5] and others. The invariant feature approach, in
general, pertains to the extraction of certain discriminating characteristics from
objects and the utilization of these characteristics for the classification process.
These discriminating characteristics are nevertheless invariant to the desired
transformations. Some examples from the literature are: the Neocognitron [6],
neural traces and temporal sequences [7], slow feature analysis [8], and others.

A synthesis of the normalization and invariant-feature approaches should be
fruitful if indeed it combines the advantages of both. Unfortunately, the integra-
tion is not as straightforward as expected (see [1] for details). Thus, devising a
normalization approach that integrates easily with invariant features forms the
underlying motivation for the current work: dynamic inputs (DI) and attraction
force analysis (AFA).

2 Dynamic Inputs

The term dynamic inputs refers to the inputs of a neural network and to their
dynamic/mobility properties: i.e. the inputs of a neural network are allowed to
move around an image thus changing what the network “sees” (what a network
sees is here onwards referred to as an input-vision). Figure 1 illustrates two
input-visions, one originating from a scaled-up and shifted cloud (on the left),
and the other one originating from a scaled-down and rotated cloud (on the
right).

In the most general concept of dynamic inputs, each input behaves semi-
autonomously (conditioned by the image, the neural network’s knowledge and
other inputs), such that the cloud’s global behaviour results in various transfor-
mations. This will eventually lead to the cloud latching onto an image object thus

Cloud 1 Input-Vision 1

Top

Cloud 2 Input-Vision 2

Top

Fig. 1. Two examples of clouds and their corresponding input-visions. Each cloud
consists of 100×100 inputs and is here represented by its borders. The top of the cloud
is indicated by “top”. The left-hand example exhibits a scaled-up and shifted cloud,
while the right-hand example illustrates a scaled-down and rotated cloud.
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Fig. 2. This figure illustrates the difference between exploration and latching. Explo-
ration is the process by which a cloud gradually gets closer (in relation to various
transformations) to a target-object. Latching corresponds to the final step of the ex-
ploration process, when a cloud assumes the exact configuration of the target-object
and after which more complex classification processes can be applied.

allowing a subsequent more complex classification process to then take place. In
AFA, a specialized version of the above concept is used. Here, the inputs, instead
of being semi-autonomous, behave in a global fashion. The process of latching
onto an image object can require some exploration on the part of a cloud (see
Figure 2). AFA is used in order to provide clouds with transformation estima-
tions, thus minimizing the amount of exploration required before latching. At
least two main categories of AFA can be distinguished: one that uses raw bright-
ness values as inputs (AFA-raw) and the other, which can be extended from the
first, and that uses neural invariant features as inputs (AFA-NIF). This paper
concentrates on AFA-raw.

3 AFA-Raw

AFA-raw functions with a very simple artificial neural network (ANN) consisting
of a single subtractive layer where each pattern is stored in a set of connections
projecting from all inputs onto the pattern’s output node. The two main proper-
ties that distinguish this architecture from a simple “template matcher” are: 1)
the existence of transparent pixels (these are ignored when matching patterns)
and 2) the possibility of performing “single matches”. Classification of a whole
pattern is performed by selecting the output with the lowest activation (i.e. the
output that represents the smallest difference between the connection weights
and the input pattern). On the other hand, classification of a single match is
performed by considering a single input and activating all the output classes
that match the corresponding brightness value at the correct position.

In AFA-raw, each pattern is stored as a fixed-size 2-dimensional matrix.
AFA-raw overlaps1 a stored-pattern and the current input-vision and searches for

1 Recall that the dimensions of a stored-pattern and an input-vision are by definition
equivalent. The superposition of both patterns might be easier to visualize if you
imagine that the input-cloud (on the left of Fig. 3) is actually the stored-pattern
that you are hovering over the test image.
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Fig. 3. The detection of correspondences. On the left, a cloud partially overlaps a
tree, resulting in the input-vision on the right of the figure. When stored-patterns and
input-visions are placed one on top of the other (here they are placed side-by-side in
order to facilitate visualization), correspondences can be found, which provide useful
information regarding transformations: in this case, translation in a 0◦ direction, since
the correspondences found are all characterised by that angle. Only a small fraction of
the total number of possible correspondences has been depicted here.

every pixel-to-pixel correspondence between the two, subsequently analyzing the
resulting vectors in terms of angles and lengths in order to perform classification
and transformation estimation. A correspondence refers to a vector between a
pixel in a stored-pattern and a matching pixel in an input-vision (see Figure
3), where a match, in the strictest sense, means that the brightness values of
both pixels are the same. Correspondences, being vectors, are characterized by
a length and an angle.

Figure 4 shows the basic angles and lengths that are used as the basis for
estimating transformations. Some definitions are necessary at this point:

1. a cyclop corresponds to a pixel in a stored-pattern
2. an attractor corresponds to a pixel in an input-vision
3. origin refers to the geometrical center of a stored-pattern or input-vision
4. a cyclop-attractor angle corresponds to the angle of a correspondence relative

to the main axes of a stored-pattern
5. an origin-cyclop-attractor angle corresponds to the angle between the origin-

to-cyclop vector and the origin-to-attractor vector

Cyclop-attractor angles provide information pertaining to translation: if the
angle between a cyclop and an attractor is 75◦ and assuming that there is a “true
correspondence”2 then this means that the stored object is likely to be shifted in
a 75◦ direction within the input-vision (see Figure 4(c)). Origin-cyclop-attractor
angles provide information about rotation or whether scaling is required. If an
origin-cyclop-attractor angle is for instance 90◦, and assuming that it is based on
a true correspondence, then this increases one’s confidence that the pattern in the
input-vision is rotated 90◦ relative to its stored representation (see Figure 4(d)).

2 A “true correspondence” involves the correct pattern and the correct feature: e.g.
“a dog ear corresponding with a dog ear” as opposed to “a dog ear corresponding
with a horse tail”.
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Fig. 4. The angles used by AFA-raw and what they convey. Two fundamental angles
are illustrated: 1) the cyclop-attractor angle which provides translation information and
2) the origin-cyclop-attractor angle that provides information on rotation and scaling.
The figure also depicts the use of octants.

If the angle is around 0◦ then this indicates that scaling is required. The relative
lengths of near-0◦ origin-to-cyclop vectors and near-0◦ origin-to-attractor vectors
provide information about the direction of required scaling (i.e. scaling up or
down): if the origin-to-attractor vector is longer than the origin-to-cyclop vector
then this indicates that the pattern in the input-vision is likely to be scaled up
relative to the stored-pattern; the reverse case indicates that the input-vision is
likely to be scaled down (see Figure 4(e)).3

In order to facilitate the analysis of all the information that can be gathered
from the above vectors, AFA-raw is divided into three main stages: 1) histogram
generation, 2) histogram selection and 3) analysis of the selected histogram.

The histogram generation phase produces three types of histograms: 1) one
for cyclop-attractor angles, 2) another one for origin-cyclop-attractor angles and
3) a final one for the relative lengths of origin-to-cyclop and origin-to-attractor
vectors. In order to facilitate histogram generation and subsequent analysis, the
angular space of correspondences is divided into octants (i.e. eight slices of 45◦:
see Figure 4). Each octant count is incremented when a correspondence is found
that belongs to that octant.

In the second AFA-raw phase, a winning histogram needs to be selected4

for subsequent analysis. This selection is done by finding the most significant

3 Note that further information can be extracted for more general cases, and that we
are confining ourselves to more constrained cases partly because neural architectures
that implement the approach are more easily derived, which serves our demonstration
purposes better.

4 Each stored-pattern can lead to a distinct histogram set.
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histogram. Basic AFA-raw considers the histogram with the most significant
peak to be the most significant histogram, where the most significant peak cor-
responds to the largest histogram bar in either the cyclop-attractor histogram
or the origin-cyclop-attractor histogram.

Once a winning histogram has been chosen, AFA-raw analyzes it in order
to compute transformation estimations. Basic AFA-raw is concerned with esti-
mating translation, scale and rotation transformations. This is accomplished by
a set of rules and calculations, that attempt to extract and analyze prominent
peaks.

4 Performance

Since effective transformation estimations imply effective discriminations and in-
variances (unless an incorrect classification coincidentally leads to a valid trans-
formation estimation), the presentation is centered primarily on estimations. It
is important to distinguish two main types of estimation: 1) the “direction” of
the transformation (e.g. shift 45◦, scale up and rotate clockwise) and 2) the
“amount” of the transformation (e.g. shift 20 pixels, scale to 60 pixels and ro-
tate 110◦). Most of the presentation focuses on the most difficult estimation: i.e.
amount. When amount-estimation fails, not all is lost, since direction-estimation
is still likely to succeed and the resulting information is sufficient to significantly
accelerate the speed of latching. All results are based on AFA-raw using three
stored-patterns with dimensionality 15x15 (i.e. cat, dog and tree).

The first performance map (see Figure 5) shows how translation estimation
varies for different cloud positions, whilst its scale and rotation are fixed with
correct5 values. The main feature to notice is the broad region of significant
positional improvement. The white external region is a result of a “refusal to
estimate” when AFA-raw has no information to work on: for exploratory clouds
a combination of stochastic, history and goal based factors can be used in con-
tradiction to this static response. The map allows one to conclude that AFA-raw
can be considerably resilient to translation.

The next pair of performance graphs (see Figure 6) illustrates how AFA-raw
performs when the scale of the cloud changes and the position and orientation
are fixed and correct. Various observations can be made: 1) most estimations lead
to more than 60% improvement, 2) scaling-up (i.e. when clouds are smaller than
a target-object) appears to be somewhat more unstable than scaling-down, 3)
the scaling-up graph exhibits an interesting pattern of increasing and decreasing
improvements vaguely similar to a bell-shape, 4) a small minority of estimations
lead to worse scales and these tend to be close to the target scale and 5) direction-
estimation succeeds most of the times when amount-estimation underperforms.
It should also be noted that when a cloud is significantly scaled-down, insufficient
information is available to form reliable estimates, which can be seen at the
leftmost portion of the scaling-up graph where several data points are placed
5 The size and orientation of the cloud are the same as the size and orientation of the

target-object.
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Fig. 5. Illustration of AFA-raw’s performance regarding estimations of translation.
Each small square represents a different cloud-center. Brightness values represent po-
sitional improvement: black represents an improvement of 100%, where a cloud’s new
position coincides with the target-object’s position, white represents no improvement
and different gray values represent different degrees of intermediate improvement. The
figure has labeled one particular cloud and its respective center, which shows that in
spite of possessing limited information (it can “see” only a small part of the left-hand
side of the tree) it can still estimate quite accurately.
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Fig. 6. The effect of a cloud’s scale on scale estimation. A tree target-object was used
to conduct the tests. The x-axis represents the ratio between the test-cloud’s scale and
the target-object’s scale. When this ratio is smaller than 1 (left-hand graph) this means
that the cloud is scaled-down relative to the object and conversely, when this ratio is
larger than 1 (right-hand graph) this means that the test-cloud is scaled up relative to
the target-object. The y-axis represents a cloud’s actual scale improvement relative to
its best possible improvement (actual/best).

at the 0% improvement level. In spite of the exceptions to perfect estimation
encompassed by some of the above observations, the graphs show that AFA-
raw, as it is, provides useful scale estimations.
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Translation Error Map
rotations

-40 pixel shift +40 pixel shift

Rotation Error Map
rotations

Shifted Cloud Positions Object Centre Shifted Cloud Positions

Fig. 7. AFA-raw’s performance when faced with combinations of translations and ro-
tations. As before, a tree target-object was used. The top bar represents translation
errors while the bottom one represents rotation errors. The x-axis of each bar repre-
sents the cloud’s horizontal position relative to the target-object (the cloud’s vertical
position always coincides with the target-object’s vertical position). The y-axis of each
bar represents cloud orientations: from top to bottom 0◦, 90◦, 180◦ and 270◦. Pixel
brightness is proportional to the error and has been normalized to cover the whole
range of grayscale values.

The subsequent maps (see Figure 7) illustrate how AFA-raw performs when
faced with combinations of translations and rotations. As can be seen in the
figure, estimation of rotation is more resilient than translation estimation. Re-
garding translation estimations, the following observations can be made: 1) at
0◦, estimations are quite robust throughout a considerable shift range (here, be-
tween –40 and +40 pixels), 2) at 90◦, 180◦ and 270◦ estimations deteriorate in
general and 3) a darker central region indicates that shifts closer to the target
center (regardless of the orientation) tend to lead to better estimates. Regarding
rotation estimations, it seems that estimation is for the most part reliable for
all orientations and most shifts: it only starts to break down when the cloud is
shifted near +/– 40 pixels. These results indicate that AFA-raw is both resistant
to rotation by itself and also, albeit less strongly, to combinations of translations
and rotations.

The next two maps (see Figure 8) exemplify how AFA-raw performs when
faced with combinations of translations and scales. Regarding translation errors,
in the left-hand map, the following observations can be made: 1) in general, lower
scales allow better estimations and 2) the map exhibits a vague pyramidal shape
with larger errors inside and lower errors outside (an equation based on a simple
shift/scale ratio should be able to define this shape). In spite of these particular-
ities, the map shows that on average, AFA-raw can estimate translations in spite
of scale and translation combinations. In relation to the scale estimation map,
the following observations can be made: 1) scale 5 provides insufficient informa-
tion and thus the error is high across all shifts, 2) errors tend to increase with
shift and 3) the map contains a vague circular shape with lower errors inside.
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Fig. 8. Illustration of AFA-raw’s performance when faced with combinations of trans-
lations and scales. The map on the left represents translation errors while the map on
the right represents scaling errors. The x-axis represents shifts covering a range from
–30 to +30 pixels (with a step of 5) while the y-axis represents different scales starting
at 5 at the top and ending at 105 at the bottom (with a step of 10). Note that the
target-object’s scale is 53 pixels. Brightness values are proportional to the error and
have been normalized to the complete range of grayscale values. Each map also depicts
its min and max error values (e.g. the max error in the translation map is 62).

Again, on average the map shows that scale estimation is quite resilient in spite
of these transformation combinations.

Though less accurately, AFA-raw is still capable of estimating in the case of
triplet combinations of translation, scale and rotation.

Though AFA-raw does not estimate jumbling-noise6, occlusion and clutter
variations, it is nevertheless robust to these factors, and it can still perform
translation, scale and rotation estimations in spite of them. The same applies to
deformation, but less significantly.

5 Conclusion

AFA-raw’s main strength lies in its ability to estimate translations, scales and
rotations and its robustness to occlusion, clutter and jumbling-noise. A modu-
larity related advantage consists of the possibility of providing AFA-raw with
diverse preliminary recognition systems. AFA is also particularly suitable for
multiple object tracking (MOT) and image segmentation solutions.

One of AFA-raw’s main limitations lies in its weak illumination invariance,
which should however be addressable by using illumination invariant features.

It was stated in the introduction that the motivational context for this work
lay in the integration of neural normalization and invariant features. The AFA-

6 Jumbling refers to the swapping of nearby pixels.
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raw approach explained here extends naturally into the AFA-NIF approach, and
therefore the work provides a step toward the above integration.
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Konen, W.: Distortion invariant object recognition in the dynamic link architecture.
IEEE Transactions on Computers 42-3 (1993) 300–311

6. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: A neural network model for a
mechanism of visual pattern recognition. IEEE Trans. on Systems, Man, and Cy-
bernetics 13 (2000) 826–834
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Abstract. Although the basic sparse coding model has been quite suc-
cessful at explaining the receptive fields of simple cells in V1, it ignores an
important constrain: perception task. We put forward a novel sparse cod-
ing model, called task-oriented sparse coding (TOSC) model, combining
the discriminability constrain supervised by classification task, besides
the sparseness criteria. Simulation experiments are performed using real
images including class of scene and class of building. The results show
that TOSC can organize some significant receptive fields with distinct
topological structure which will favor the classification task. Moreover,
the coefficients of TOSC notablely improve the classification accuracy,
from the 53.5% of pixel-based model to 86.7%, in the case of none dis-
tinct damage on the performance of reconstruction error and sparseness.
TOSC model, complementing the feedback sparse coding model, is more
consistent with biological mechanism, and shows good potential in the
feature extraction for pattern classification.

1 Introduction

At any given moment, our visual systems are receiving vast amounts of infor-
mation about the environment in the form of light intensities. How the brain
makes sense of this flood of time-varying information and forms useful internal
representations for mediating behavior remains one of the outstanding mysteries
in neuroscience. In recent years, a combination of experimental, computational,
and theoretical studies have pointed to the existence of a common underlying
principle involved in sensory information processing, commonly referred to as
’efficient coding’ or ’sparse coding’, namely that information is represented by a
relatively small number of simultaneously active neurons out of a large popula-
tion.

Aiming to reveal underlying relationships between the environmental infor-
mation and internal representation of the visual cortex, Olshausen and Field [1]
introduced a learning algorithm for sparse coding. It was shown that, by seek-
ing sparse code for natural images, the network could develop a set of receptive
� This paper is supported by National Natural Science Foundation of China No.
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fields similar to those simple cells found in the striate cortex (V1). Though such
network successfully captures sparse nature of the input data, it is a feedforward
model and it ignores one primary constraint on the visual system: task. The
tasks faced by the organism are likely to be an even more important constraint.
That is to say, sparse coding states only that information must be represented
sparsely, it does not say anything about what information should be represented.

Many biological evidences showed that there are many recurrent horizon-
tal connections from higher areas to the primary visual cortex, i.e, Top-down
feedback commonly exists in the visual system. Vinje and Gallant [2,3] have
demonstrated that neurons in V1 produce sparse responses when stimulated
with natural image sequences. Moreover, when the same neurons are stimulated
only within their classical receptive fields, the responses are much more dense or
evenly distributed over time. Thus, it would appear that context sparsifies the
responses of V1 neurons. Martin [4] argued that cortical responses should be de-
termined mostly by cortical input (feeding back from the higher area or the same
level) and not by thalamic inputs (representing the input stimuli). Furthermore,
Douglas [5] put forward a recurrent model. According to Barlow’s theory [6]: the
neurons in the higher area always attempt to form neural representations with
higher degrees of specificity, so we can reason that it is necessary to form sparse
code with feedback of task.

In this paper, we investigate a new supervised model, called here task-
oriented sparse coding (briefly as TOSC) model, which evolves the informa-
tion representation being consistent with the biological finding and valuable in
practice. Based on Olshausen’s sparse coding scheme [1], TOSC model incorpo-
rates an additional constraint, named discriminability, so as to form the neural
representation which is more valuable for pattern classification. The main contri-
bution of TOSC is that it probes into what information should be represented
under feedback of perception tasks, correspondingly, efficient coding model just
states that information must be represented efficiently.

In the following section, we explain the details of our TOSC model. Section
3 shows the simulation results obtained by the present model using real natural
images. The related findings of TOSC model are discussed in section 4. At last,
section 5 concludes the present work.

2 Task-Oriented Sparse Coding Model

2.1 Linear Image Synthesis Model

The starting point is from Olshausen [1]. A perceptual system is exposed to a
series of small image patches, drawn from one or more large images, just like
the classical receptive field(CRF) of neurons. Imagine that each image patch,
represented by the vector I (numbered row-wise), has been formed by the linear
combination of N basis functions. The basis functions form the columns of a fixed
matrix, A. The weighting of this linear combination is given by a vector, s. Each
component of this vector has its own associated basis function, and represents
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a response value of a neuron in vision system. The linear synthesis model is
therefore given by:

I(x, y) = As =
∞∑

i=1

si ∗ ai(x, y) (1)

In a cortical interpretation, the s model the responses of (signed) simple cells,
and the column of matrix A closely related to their CRF’s.

This model can be represented by a simple neural network, where x is an
n-dimensional vector denoting the input to the network, si denotes the activity
of the i-th neuron, and ai (the i-th column of the A) is an n-dimensional vector
composed of the connection weights between the i-th neuron and the input.

The goal of sparse coding is to find a set of ai that forms a complete code
(that is, spans the image space) and results in coefficients being as statistically
independent as possible over an ensemble of natural images. The reason for
statistical independence have been elaborated else where [9], but it can be sum-
marized briefly as providing a strategy for extracting the intrinsic structure in
visual signal.

2.2 Sparse Coding Model

In an influential paper, Olshausen and Field [1] applied two criteria to seek the
optimal basis vector and the coefficients. One of the criteria is how well the code
describes the input. It can be measured by the squared error between the input
and its reconstruction by the network:

Error(x, y) =
∑
x,y

[I(x, y)−
∑

i

siai(x, y)]2 (2)

As an additional criteria for sparse coding, Olshausen and Field proposed the
’sparseness’ cost for seeking sparse codes. The sparseness cost function is given
by

Sparseness(s,A) =
∑

i

S(
si

σi
) (3)

where S(x) is a nonlinear function such as |x|, exp(−x2), and log(1 + x2). The
cost sparseness favors the codes which consist of minimal number of non-zero
coefficients. As a result, the network seeks the coefficients which are statistically
independent each other over an ensemble of input data. In the case that the
data contains some forms of higher-order statistical structure as found in natural
images, it can be captured by using this sparseness cost function.

So the search for a sparse code can be formulated as an optimization problem
by constructing the following cost function to be minimized:

E(s,A) =
∑
x,y

[I(x, y)−
∑

siai(x, y)]2 + λs

∑
i

S(
si

σi
) (4)
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2.3 Discriminability Constrain

In order to code the sensory visual information supervised by the pattern classi-
fication task, it is necessary to incorporate a constraint for the classification task.
Intuitively, it is very important for the coded coefficients to be good for classifi-
cation, so the coefficients (or neuron responses) produced by the sparse coding
model can be easily utilized by the higher neurons which process such task. Lin-
ear discriminant analysis, using within-class scatter and between-class scatter to
choose coordinate for transformation, is broadly used for pattern classification.
We investigate a somewhat similar approach, and incorporate the ’discriminabil-
ity’ cost function which constrains the neuron activities to be more valuable for
classification.

Supposed that X1 = {I1
1 , I

1
2 , . . . , I

1
N1} and X2 = {I2

1 , I
2
2 , . . . , I

2
N2} repre-

sent the pattern sets, here we only consider the two-class classification. And Ij
i =

[s1, s2, . . . , sn], where sk(1 ≤ k ≤ n) is the coefficient produced by sparse coding
model. N1 and N2 are the number of patterns in class X1 and X2.

The sparse coding model transforms the input stimuli into code coefficient
vectors, I. We define the distance between two coefficient vectors as below:

D(I1, I2) =

√√√√ n∑
i=1

(s1i − s2i )
2 (5)

Within-class distance measures the distance between a coefficient vector and
the center of class which includes the vector. The formula is

DW = D(Ij
i , m̃j) (6)

where m̃j is the center of the class j. On the contrary, between-class distance
measures the distance between a coefficient vector and the center of class which
excludes the vector. The equation is

DB = D(Ij
i , m̃j̃) (7)

where m̃j̃ represent the center of the excluding class.
In order to make the patterns be correctly classified, we expect: 1) the within-

class distance is smaller, so the class is more compact in the N -dimensional coef-
ficient space; 2) the between-class distance is greater, thus the interval between
the class 1 and class 2 is bigger. That is to say, we should maximize the between-
class distance in the same time minimize the within-class distance. So we make
a tradeoff to optimize a ratio. The ratio is given by

DR =
DW

DB
(8)

When we look into the Eq.8 we can find that its derivative for coefficient s is
too complex to optimize. So we smartly transform the magnitude of the ratio
by logarithm. The transformed ratio is as below:
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Dis(s) = ln(DR2) = ln
( n∑

i=1

(sj
i − m̃j)2

)
− ln

( n∑
i=1

(sj
i − m̃j̃)

2
)

(9)

As a result, the model produces an N-dimensional coefficient space in which
the coefficients in the same class tightly locate in a subspace and are apart from
the other class.

2.4 Learning

Learning is accomplished by minimizing the total cost function:

E(s,A) = Error(s,A) + λsSparseness(s,A) + λdDis(s) (10)

where λs and λd are positive weights. The function to be minimized, E(s,A) , is
the sum of three terms: the first term computes the reconstruction error, which
forces the basis functions, A, to span the input space; the second term incurs
a penalty on the coefficient activities, which encourages sparse representation;
and the third term calculates the discriminability which drives the coefficients
to be more efficient for pattern classification.

The process for minimizing E(s,A) can be divided into two nested stages.
In the inner stage, E is minimized with respect to the si for a batch of pattern,
holding the A fixed. In the outer stage (i.e, on a long timescale, over many
image presentations), E is minimized with respect to the A. The inner stage
minimization over the si can be performed by conjugate gradient method, so
the si are determined by the differential equation:

∂E

∂si
= −2bi +

λs

σ
S′(

si

σ
) + λd

( 2(sj
i − m̃j)

n∑
i=1

(sj
i − m̃j)2

−
2(sj

i − m̃j̃)
n∑

i=1

(sj
i − m̃j̃)

2

)
(11)

where bi =
∑

x,y

(
I(x, y)−

∑
j siai(x, y)

)
ai(x, y). According to Eq.11, the si are

drived by a sum of three terms. The first term takes a spatially weighted sum
of the current residual image using the basis function ai(x, y) as the weights.
The second term applies the derivative of sparseness. Especially, the third term
incurs a movement which makes the si near the center of the included class and
apart from the excluded class.

The outer stage minimization over the A may be finished by simple gradient
descent method. The learning rule for it is given by

Δai(x, y) = η{si[I(x, y)−
∑

j

sjaj(x, y)]} (12)

where η is the learning rate. In the neural network view, ai are updated by
Hebbian learing between the outputs coefficients, sj , and the resulting residual
image.
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Because there is no closed-form solution for the si in terms of the input
I(x, y), so si is calculated by recurrent computation similar to an analysis/synthesis
loop [7]. An intuitive interpretation for this algorithm is that in the inner stage,
the gradient of ’sparseness’ sparsifies the distribution of s by differentially re-
ducing the value of small coefficients more than great coefficient, at the same
time, the gradient of ’discriminability’ makes the coefficient near to homoge-
neous center and apart from the unhomogeneous center. Then, the ai learn on
the error induced by the sparseness criteria and discriminability criteria, result-
ing in a basis function set which can tolerate sparseness and discriminability in
the condition of minimizing mean square reconstruction error.

3 Simulation

In order to confirm that the model is capable of coding the input pattern with
good discriminability for classification task, besides sparseness. We tested it on
a number of natural images including two classes: scene and building, shown in
Fig.1. There are one hundred scene images and one hundred building images,
with seventy for training and thirty for testing.

a b 

Fig. 1. Samples of the images used in the simulation. (a) scene images; (b) building
images.

3.1 Preprocess and Experimental Conditions

The natural images are color images, because here the model just focuses on the
gray images, so we first change the color images into gray images.

These data in the raw form will pose potential problems. First, the vari-
ance along the low-frequency eigenvectors will be much lager than the variance
along the high-frequency eigenvectors. It will be troublesome for gradient descent
techniques searching for coefficient in this space. Second, the highest spatial fre-
quencies in most images will typically be corrupted by noise. Furthermore, the
energy present in the corners of the 2D frequency domain is an artifact of work-
ing on a rectangular sampling lattice, because there is a higher sampling density
along the diagonals than along the vertical or horizontal. For these reasons, we
sphere the data by equalizing the variance in all directions [8], accomplished by
filtering with a circularly symmetric ’whitening filter’ with frequency response,
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W (f) = f , thereby attenuating the low frequencies and boosting the high fre-
quencies so as to yield a roughly flat amplitude spectrum across all spatial-
frequencies. Then, a lowpass filter is used to cut out the energy at the highest
spatial frequencies and also in the corners of the 2D Fourier plane. At last, the
combined whitening/lowpass used to preprocess the data is given by

R(f) = W (f)L(f) = fe−(f/f0) (13)

where f0 = 200 cycles/picture and n is experimented with 4. Atick [9] have
shown that such a whitening filter corresponds well to the response properties
of retinal ganglion cells.

Training data were obtained by extracting 12 ∗ 12 image patches at random
from the preprocessed images. The network was trained so as to acquire efficient
codes for above data by minimizing the cost Eq.10. The parameters s and d
were set to 0.01 and 0.5, respectively, and s(x) = log(1 + x2) was chosen as the
function for Eq.3.

A set of 144 basis functions was initialized to random values and was updated
according to Eq.12. The learning rate η was gradually decreased during learning
with a initial setting of 3.0. In order to speed up the learning, we first calculated
the sparse codes as Eq.4 for the images set of scene and building, respectively,
and initialized the center of the scene and building with the mean of the sparse
codes of scene and building.

3.2 Results

Basis functions. A stable solution was usually arrived at after about 10,000
updates. The result is shown in Fig.2. The vast majority of basis functions have
become well localized, oriented and broken into different spatial-frequency bands,
just like the functions of SC model. However, there are quite a few basis func-
tions which have geometric structure, usually appearing in the building images,
such as horizontal line, vertical line. The functions labeled with arrow shows
some typical examples. This result should not come as a surprise, because the
cost function of TOSC model includes sparseness criteria, so it can get most
sparseness characteristics. Furthermore, the cost function also combines the dis-
criminability criteria, which shifts the responsibility for coding such structure
that is most discriminable from this class to the other class. For example, the
horizontal structure is one of the most distinct feature in the building image, and
it is another case for the scene image, so it is not accidental for the geometric-like
basis functions.

It should be noted that the preprocessing steps mentioned above do not affect
the overall, qualitative appearance of the basis function (i.e., localized, oriented,
and geometric-like functions). It just decreases the time required for learning.

Sparseness and reconstruction error. Sparse representation is a ubiquitous
and most important property of primary sensory cortical areas. It produces a
more simple flattened representation of the curved manifold structure of data,
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Fig. 2. The set of 144 basis functions learned by the TOSC. All have been normalized
to fill the grey scale, but with zero always represented by the same grey level. The
functions labeled by arrow are typical geometric-like structure.

furthermore, it is energy efficient [11,12]. In this section we measure the sparse-
ness of the TOSC model.

Fig.3 demonstrates the output coefficients computed by efficient models to a
given input pattern. Though the sparseness of TOSC model is somewhat worse
than SC model, it is notablely better than the pixel-based model. That is to
say, TOSC preserves the sparseness characteristic. We can have a deeper look
into the sparseness values calculated by the Eq.3 from Table.1. We can readily
get that the sparseness cost rate is about 10%, and the maximum and minimum
don’t have great change. So we can conclude that TOSC model doesn’t greatly
destroy the sparseness of the neural representation.

The reconstruction error is measured by the squared error between the input
and its reconstruction by the efficient codes, as the Eq.2. Because we combine
the sparse coding model with additional constrain, discriminability, simulating
the feedback in the visual neural system, we compare our task-oriented sparse
coding model (TOSC) with the sparse coding model (SC) about reconstruction
error.

Table 1. Sparseness value of the sparse coding model (SC) and task-oriented sparse
coding model (TOSC)

Mean sparseness Maximum sparseness Minimum sparseness
TOSC 10.4504 29.1280 0.1003
SC 9.3770 28.2394 0.0704
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Fig. 3. Outputs computed in response to a given input pattern. Bottom plot is the
raw pixel values; middle plot is the coefficients of the SC model; and the top one is the
coefficients of TOSC model.

Table 2. Reconstruction errors of the sparse coding model (SC) and task-oriented
sparse coding model ((TOSC)

Mean error Maximum error Minimum error
TOSC 0.1085 0.3413 0.0040
SC 0.1002 0.3209 0.0032

Table.2 shows that TOSC has a small increase for the reconstruction error,
but the increase extent is very little, for example, the increasing rate for mean
error is just 8.3%. The loss of reconstruction error can be well interpreted: in the
cost function of Eq.10, the additional term of ’discriminability’ certainly influ-
ences the reconstruction error compared with SC without this term. In practice,
it is acceptable if the reconstruction is under certain tolerance. After all, the
purpose of efficient coding is not for optimal compression.

Classification accuracy. We examine the information representation of the
model in term of the discrminability in this section. 100 image patches (12 ∗ 12)
were chosen from the test images for scene and building, respectively. Note that
because the information in the center of image is always representative and
important, the tested image patches are extracted from the center part.

Discriminability is the most characteristic differing TOSC model from SC
and other efficient coding model. The classification scheme experimented here is
similar to Bayesian decision which is extensively used for classification. Supposed
that every tested pattern was represented by I = [s1, s2, . . . , sn],where sk(1 ≤



912 Q. Li, D. Lin, and Z. Shi

k ≤ n) are the coefficients produced by the efficient coding model. And the
center of the scene (represented by C1) is labeled as m1, m2 for building (C2).
The classification function is given by

I ∈
{
C1 if D(I,m1) ≤ D(I,m2)
C1 if D(I,m2) ≤ D(I,m1)

(14)

so every pattern can be classified according to this scheme. Then, the classi-
fication accuracy can be measured by this equation:

Accuracy =
the number of correctly classified pattern

total pattern number
(15)

In order to demonstrate the classification performance of TOSC, we compare
the TOSC model with SC model and pixel-based (BP) model. In pixel-based
model every preprocessed pixel value is regarded as the coefficient, in other word,
every raw pixel value forms the coefficient code.

Table.3 demonstrates that the classification performance of BP model is a
little better than random selection, which has 50% probability. SC model im-
proves the classification performance compared with BP model, because SC
model broadly tunes to some stimulus dimensions (e.g., spatial-frequency), or
other local feature (e.g., position and orientation), obviously, SC coefficients
capture some sparse image structure and have a good discriminability in some
extent compared with the raw data. Excitingly, TOSC model notablely en-
hances the classification accuracy. It implies that the discriminability term in
the cost function guides the codes for the stimulus dimensions which have good
discriminability, besides the sparseness. It seems to be qualitatively consistent
with the physiological finding [2,3,4].

Table 3. Comparison of the classification accuracy

TOSE SC PB
Accuracy 86.7% 69.8% 53.5%

4 Discussion

A substantial literature exists on the efficient coding of visual sensory infor-
mation [1,14], which bridges the statistics of the natural images and the neu-
ral representation in the primary visual cortex. Most of them are feedforward
Hebbian/anti-Hebbian algorithms based on the idea of finding independent com-
ponents or sparse structures. Interestingly, they can self-organize the visual re-
ceptive fields, such as simple cell in V1, and have the same selection for location,
orientation and spatial frequency. However, the transformation from retina to
V1 is clearly much more complex than the efficient models, and it involves a
back-propagation of information from, or within, the output layer or higher
layer [13].



Task-Oriented Sparse Coding Model for Pattern Classification 913

The visual cortex, like any other part of the neocortex, is primarily a two-
dimensional sheet of neurons and connections. At any location on the corti-
cal sheet, there are many lateral connections from the same sheet or upper
sheet [15].

Lateral connections may play a direct role in forming visual representation.
Miikkulainen [16] showed that the inhibitory lateral connections encode the cor-
relation of activity in the map and perform redundancy reduction. Kurtosis mea-
sures of the activities before and after lateral interaction showed that the settled
activity after lateral interaction is sparser than before the lateral interaction.
The lateral connections facilitate the feature extraction and binding.

It is natural to try to imagine a mechanism capable of performing such a
back-propagation, simulating the lateral connections, so the neural representa-
tion can not only reflect the statistics of the natural images which represent the
input stimuli, but also the cortical feedback which always represents the higher
perception tasks or prior knowledge. However, since it is difficult to identify the
parameters of our efficient coding models with ’true’ biophysical parameters, we
prefer to imagine that potentially real biophysical processes occur in local spatial
media where the feedforward and the feedback of information are tightly func-
tionally coupled, and where some microscopic and dynamic analogue of Eq.11
may operate. In TOSC model, the reconstruction error and sparseness in Eq.10
are the typical feedforward information, and the term of discriminability is the
feedback mechanism which is controlled by the perception task.

5 Conclusion

We have put forward a novel sparse coding model, called task-oriented sparse
coding (TOSC) model, based on the notion that visual cortex is trying to pro-
duce an efficient representation, in terms of extracting the structure with good
discriminability, besides the sparse structure in the stimuli. The receptive fields
that emerge from TOSC have some topological structures representing the most
distinct features of certain class, which is consistent and valuable for the classifi-
cation task. Furthermore, the coefficients of TOSC haven’t distinctly damaged
the performance of reconstruction error and sparseness, but notablely improved
the classification accuracy, from the 53.5% of pixel-based to 86.7% of our TOSC.
To our knowledge, TOSC is the first efficient coding model to produce the neu-
ral representation acted by the classification task. It has a good potential in
feature extraction for pattern classification.
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Abstract. This paper proposes a Gabor-based PCA method using Whiten 
Cosine Similarity Measure (WCSM) for Face Recognition from One training 
Sample per Person. Gabor wavelet representation of face images first derives 
desirable features, which is robust to the variations due to illumination, facial 
expression changes. PCA is then employed to reduce the dimensionality of the 
Gabor features. Whiten Cosine Similarity Measure is finally proposed for 
classification to integrate the virtues of the whiten translation and the cosine 
similarity measure. The effectiveness and robustness of the proposed method 
are successfully tested on CAS-PEAL dataset using one training sample per 
person, which contains 6609 frontal images of 1040 subjects. The performance 
enhancement power of the Gabor-based PCA feature and WCSM is shown in 
term of comparative performance against PCA feature, Mahalanobis distance 
and Euclidean distance. In particular, the proposed method achieves much 
higher accuracy than the standard Eigenface technique in our large-scale 
experiment.   

1   Introduction 

The importance of research on face recognition is fueled by both its scientific 
challenges and its potential applications. Face recognition is a challenging problem as 
there are numerous varying factors such as illumination conditions, facial expression, 
aging, accessory, capture devices, etc., which affect the appearance of an individual’s 
facial features. The typical approach in handling these variations is to use large and 
representative training sample sets. However, many real-life face recognition 
applications could only offer one training sample per person. In such situation, the 
performance of most of the face recognition methods would be degraded 
dramatically. 

In the past, several studies were performed to address the problem of one training 
sample per class. Wu et al. [1] proposed a (PC)2A method, which is an extension of 
the Eigenface Technique. It performs Principal Component Analysis (PCA) on 
horizontal and vertical projection images. Martinez [2] proposed a local Eigenface-
based method for face recognition with a single sample per class. Huang et al. [3] 
used a component-based Linear Discriminant Analysis (LDA) method to solve the 
one training sample problem. Chen et al. [4] proposed an Adaptive Principal 
Component Analysis (APCA) method, which first applies PCA to construct  
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a subspace for face representation; then warps the subspace according to the  
within-class covariance and between-class covariance of sample to improve class 
separability. 

Instead of focusing on the feature extraction and learning stage as above methods, 
our works attach importance to the image representation and the similarity measures 
of the face recognition system. This paper presents a Whiten Cosine Similarity 
Measure (WCSM) for Gabor-based PCA method to enhanced face recognition 
performance. To demonstrate the effectiveness and robustness of our proposed 
method, we have employed a rigid evaluation methodology: training on a natural 
gallery image and testing on various probe images across illumination conditions, 
directions of illumination, facial expressions, and accessories. The superiority of the 
Gabor-Based PCA features and WCSM has been successfully demonstrated through 
the test on the CAS-PEAL face database [5] with 1040 subjects, by comparing with 
PCA features, Euclidean distance and Mahalanobis distance.  

2   Gabor-Based PCA Using Whiten Cosine Similarity Measure 

This section details the Gabor-based PCA method using Whiten Cosine Similarity 
Measure. First, Gabor wavelet representation of face images derives desirable 
features, which is robust to variations due to illumination, facial expression changes 
[10], and high frequency noise. Second, PCA works on the Gabor wavelet 
representation and derives low-dimension discriminating features using one natural 
sample per class. Finally, Whiten Cosine Similarity Measure is proposed for the 
classification stage to integrate the virtues of the whiten translation and the cosine 
similarity measure. 

2.1   Gabor Features for Face Representation 

2D Gabor wavelet representation in computer vision was first utilized by Daugman in 
1980s [7]. Recently, the Gabor wavelet representation becomes popular in face 
recognition community for its significantly superior performance over intensity image 
representation [8][9][10][11].   

To extract information about facial appearance, the face image was convolved with 
a multiple spatial resolution, multiple orientation set of Gabor filters. Gabor filter can 
capture salient visual properties such as spatial localization, orientation selectivity, 
and spatial frequency characteristics. Specially, Gabor filters are defined as follow: 

( )2 2 2
2, ,

2
2, 2

, 2
( )

k z ik zk
z e e e

μ υ μ υ
σμ υ σ

μ υψ
σ

− −= −  (1) 

where ,
i

u v vk k e μφ= , max
v

vk k f= gives the frequency,  8μφ μπ= , [ )0,μφ π∈ gives 

the orientation, and ( , )z x y= . Note that, in equation (1), v controls the scale of the 

Gabor filters, which mainly determines the center of the Gabor filter in the frequency 
domain; μ controls the orientation of the Gabor filters. This can be observed 

intuitively from the visualization of the real part of the Gabor filters. The parameters 
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for the Gabor filters are as follows: 2σ π= , max / 2k π= , 2f = , five 

scales {0,1,2,3,4}v ∈  and eight orientations {0,1,2,3,4,5,6,7}μ ∈ . These Gabor 

kernels form a bank of 40 different filters and exhibit desirable characteristics of 
spatial frequency, spatial locality, and orientation selectivity. 

In our experiments, the Gabor representation for face images is derived as follow: 

1) Masked images are derived by first using the centers of two eyes as control 
points for alignment, and then masking them then to yield 65×75 images. 2) 
Histogram equalization is then used to smooth the distribution of grey values for the 
non-masked pixels, making the masked images insensitive to overall level of 
illumination conditions. Examples of original image and normalized masked image 
are shown in Fig.1. 3) The normalized masked image is convolved with the 40 Gabor 
filters and the magnitudes of the complex-value filter responses are sampled at 156 
points on settled facial grid and combined into a 6240 dimension Gabor-based feature 
vector to form the Gabor representation for a face image.  

 

 

Fig. 1. Example of facial image during the derivation of Gabor representation. Left: the original 
image. Middle: the normalized masked image. Right: the settled grid for sampling Gabor 
features. 

2.2   PCA for Discriminating Gabor-Based Feature Exaction in “One Training  
        Sample per Class” Scenario 

PCA generates a set of orthonormal basis vectors, known as principal components, 
which maximize the scatter of all the training samples. Let 1 2[ , ,..., ]Mx x x=X  be the 

normalized representation set of the original images with unity norm and zero-mean. 
Each ix  represents a normalized vector with dimensionality N, 

1 2
( , ,..., )

N

T
i i i ix x x x= , 

( 1,2,..., )i M= . The covariance matrix of the normalized representation set, or total 

scatter matrix, is defined as 

1

1 1M
T T

X i i
i

x x
M M=

= = XX  (2) 

and the eigenvector and eigenvalue matrices ,  are computed as: 

X =  (3) 

where N N
X

×∈ ℜ . The first m  leading eigenvectors define a matrix PCAU  
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[ ]1 2, ,...,PCA m= Φ Φ ΦU  (4) 

For a normalized test pattern x , Nx ∈ℜ , the PCA features of x  are derived as 
follow: 

T
PCAu x= U  (5) 

The PCA subspace, PCAU , characterizes the distribution of face difference between 

any two face images in the training set [15]. Therefore, in the usual scenario, in which 
the training set has multiple samples per class, the projection matrix PCAU  will capture 

the variation from illumination, expression, and accessory change. Consequently, the 
points projected in the PCA subspace will not be clustered well. A straightforward 
way to solve the above problem is to maximize the between-class scatter while 
minimizing the within-class scatter. Fisherface method [12] is proposed based on this 
idea. 

However, there is only one training sample per class available in our experiments, 
Fisherface method cannot work. Fortunately, all training face images are captured in 
the natural expression and illumination under controlled situation, PCA does not 
suffer from the within-class translation any more. In this scenario, most the variation 
retained by PCA is the between-class scatter, indicating PCA can extract the 
discriminating features. Accordingly, we could expect an acceptable performance on 
PCA-based face recognition in this scenario when using appropriate image 
representation and similarity measure. 

2.3   Whiten Cosine Similarity Measure for Classification 

When a face image is presented to the Gabor-based PCA classifier, the augmented 
Gabor feature vector of the image is first calculated as detailed in Section 2.1, and the 
low dimensional Gabor-based PCA features, u , is derived using (5). The next step is 
the whitening transformation and it counteracts the fact that Mean-Square-Error 
(MSE) principle underlying PCA preferentially weights low frequencies. u is subject 
to the whitening transformation and yields yet another feature set : 

w u= Γ  (6) 

where 1/ 2 1/ 2 1/ 2
1 2{ , ,..., }mdiag λ λ λ− − −Γ = and m m×Γ ∈ℜ . 

The high dimensional components are equalized by the whitening transformation. 
Therefore, the classifier can make full use of the discriminating power of whole 
feature space, instead of preferring the leading components with large eigenvalue. 
However, noise contained in the high frequency components is magnified 
synchronously, which will deteriorate the recognition results. To compensate for the 
magnified whiten noise, the cosine similarity measure is employed, due to its rotation 
and dilation invariance properties. We define the cosine similarity measure combined 
with the whiten transformation as Whiten Cosine Similarity Measure (WCSM): 
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Let 0 , 1,2,...,ku k L= , be the prototype for class kω after the PCA projection. The 

classifier applies, then, the nearest neighbor rule for classification using Whiten 
Cosine Similarity Measure WCSMδ  

0 0( , ) min ( , )WCSM k WCSM j k
j

u u u u uδ δ ω= → ∈  (8) 

The image feature vector, u , is classified as belonging to the class of the closest 

prototype, 0
ku , using WCSMδ . 

In addition, The Euclidean distance and Mahalanobis distance measure are 
employed to evaluate the efficiency of WCSM combined with Gabor-based PCA 
features. The Euclidean distance is the most popular similarity measure for subspace 
face recognition, since most researches use it to evaluate the algorithm; Mahalanobis 
distance measure is also sometime used, and some researchers report that it 
outperform Euclidean distance [10] [11]. The Mahalanobis distance is measured with 
respect to a common covariance matrix for all classes in order to treat variations along 
all axes as equally significant by giving more weight to components corresponding to 
smaller eigenvalues [12]. Note that the weighting procedure of the Mahalanobis 
distance is performed by the whitening transform. Therefore, the Mahalanobis 
distance would suffer from the magnified whitening noise. 

3   Experiments and Analysis 

We assessed the feasibility and performance enhancement power of the WCSM for 
Gabor-Based PCA method on face recognition task, using a data set from CAS-PEAL 
database [5], which contains 99,594 images (30,871 images is publicly available) of 
1040 individuals with varying Pose, Expression, Accessory, Lighting (PEAL), and 
aging. Specially, we used a subset of 6609 frontal images in CAS-PEAL database 
corresponding to 1040 subjects, which is used to form a gallery set and two probe 
sets. 

3.1   Evaluation Methodology and Dataset 

Many face recognition algorithms have been developed and excellent performances 
are also reported when sufficient number of representative is available. The origin 
idea of these algorithms is to make the within-class variance in the training set 
invariant to recognition. However, if the training set cannot cover all the variance in 
the probe set, the effort to suppress the within-class variance might, on the contrary, 
deteriorate the performance, which might be always the case in the real-life 
applications. Consequently, we consider evaluation the algorithm using one training 
sample per person is meaningful for the face recognition community. To further avoid 
the sample selection problem, we use the natural image, which is acquired under 
natural illumination, facial expression, and accessory, to training and as gallery. The 
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rest of the dataset, which varies in illumination, facial expression, and accessory, is 
used to be the probe. In particular, the CAS-PEAL dataset is divided into three parts: 
gallery (training) set, Pretty Variation Probe, and Grand Variation Probe. 

The gallery set, also the training set, contains 1040 fontal images acquired under 
natural illumination and facial expression corresponding to 1040 subjects. The gallery 
set is also used for training, with a single sample per class; The probe set is divided 
into two subsets: Pretty Variation Probe (PVP) and Grand Variation Probe (GVP). 
Fig. 2 shows some typical examples used in our experiments. 

Pretty Variation Probe contains 2274 frontal images (unseen during training) 
acquired under variable illumination and facial expressions. We assume PVP cover 
the similar variations as the FERET database [13]. The Eigenface method achieve 
about 80% recognition rate.  

In order to cover more challenge variations and avoid the possible performance 
limit (100%) on the PVP, Grand Variation Probe is constructed to cover the variations 
accessory wears and directions of illumination, consisting of 3295 frontal images. We 
assume GVP cover the similar variations as the AR database [14], but with much 
more gallery subjects. The Eigenface method only achieves accuracy around 27%. 

 

 
Fig. 2. Some example CAS-PEAL images used in our experiments. (a) The gallery set, also the 
training set. It contains 1040 fontal images acquired under natural illumination and facial 
expression corresponding to 1040 subjects. (b) Pretty Variation Probe. It contains 2274 frontal 
images (unseen during training) acquired under variable illumination and facial expressions. (c) 
Grand Variation Probe. It contains 3295 frontal images (unseen during training) acquired under 
variable directions of illumination and accessory wears. 

3.2   Experiments on Pretty Variation Probe 

For comparison purpose, we first apply PCA method on pretty variation probe and the 
comparative face recognition performance of the three similarity measures in shown 
in Fig.3 using three thin curves. We found that 1) the high dimension features make 
little effect on the performance of Euclidean distance, which testifies the theorem that 
PCA derives features that preferentially weight low frequencies and 2) by use whiten 
transformation to counteract the above theorem, Mahalanobis distance measure 
reaches its peak accuracy (84.39%) with around 140 features. However, its accuracy 
then drops with further increase of dimensionality, similar to the results reported by 



 Robust Face Recognition from One Training Sample per Person 921 

 

Wang [15]. The reason is that the high dimensional components with small 
eigenvalues are significantly magnified in whitening. Since these dimensions tend to 
contain more noise than structural signal, they will deteriorate the recognition results 
and 3) WCSM also suffer from the magnified noise caused by the whiten 
transformation, however, the accuracy of the WCSM drops less dramatically than the 
Mahalanobis distance, indicating cosine similarity measure is less sensitive to the 
whiten noise. 
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Fig. 3. Face recognition performance of the PCA (thin curves) and Gabor-based PCA (thick 
curves) method on the Pretty Variation Probe using the three different similarity measures: 
Whiten Cosine Similarity Measure (star mark), Mahalanobis distance (triangle mark), and 
Euclidean distance (square mark). The horizontal axis indicates the number of feature used, and 
the vertical axis represents the correct face recognition rate. 

To further improve face recognition performance, we combine the Gabor wavelet 
representation and the PCA method. Fig.3 shows face recognition performance of the 
Gabor-based PCA method using the three distance measures using thick curves. 
Comparing the thick curves with the thin curves, we found that 4) the face recognition 
performance improves by the large margin (about 10%) for all the three similarity 

measures, which qualifies the Gabor representation as a discriminating representation 
method and 5) Mahalanobis distance measure drops less drastically when using Gabor 
wavelet representation instead of the intensity images. Meanwhile, the accuracy of 
WCSM ascends slowly with increase of dimensionality. This finding indicates Gabor 
wavelet has the ability to suppress the high frequency noise, which will be magnified 
by whitening and then deteriorate the performance. In addition, WCSM using Gabor-
based PCA features performs better than the Mahalanobis distance, which show again 
that the WCSM is more robust to the whiten noise.  
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3.3   Experiments on Grand Variation Probe 

Grand Variation Probe captures more challenge variations than PVP set. Each class 
has different variations of illumination directions and accessories, as show in Fig. 
2(c), which would damage the PCA-based face recognition algorithms [12]. As one 
would expect, the Eigenface method, which uses Euclidean distance, only achieves 
27% accuracy. Fig.4 shows the face recognition performance of PCA and Gabor-
based PCA using the three similarity measures. Besides the findings in the same testes 
on PVP, our results on Grand Challenge Probe newly reveal that (i) the performance 
gap derived by different similarity measures is enlarged when grand variations is 
presented in the probe. In particular, WCSM outperforms the other two similarity 
measures by over 20% when using the same features and (ii) Although the 
Mahalanobis distance suffers from the whiten noise, it also outperform the Euclidean 
distance, which suggests the whiten transform is significant when grand variation is 
presented. This finding is consistent with that reported by Moghaddam and Pentland 
[16], Sung and Poggio [17], and Liu [10][11] and (iii) WCSM using PCA features and 
Gabor-based PCA features both perform better than the other four methods. This 
finding strongly indicates the robustness of WCSM over Mahalanobis and Euclidean 
distance. In addition, the findings 3), 4), and 5) in the section 3.2 are enhanced in this 
series of experiments. 
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Fig. 4. Face recognition performance of the PCA (thin curves) and Gabor-based PCA (thick 
curves) method on the Grand Variation Probe using the three different similarity measures: 
Whiten Cosine Similarity Measure (star mark), Mahalanobis distance (triangle mark), and 
Euclidean distance (square mark). 
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By combining the discriminating power of the Gabor representation and WCSM, 
the face recognition performance is boosted drastically. The Gabor-based PCA 
method using WCSM achieve 78% accuracy, outperforming the Eigenface method  
by 50%. 

4   Conclusion 

We have shown that using WCSM combined with Gabor-based PCA feature can 
outperform the Eigenface method [6] by a large margin when one single training 
sample per class is available. It also shows that the more challenge variation is 
presented in the probe, the larger performance gap is observed, which indicates the 
robustness of the proposed method. The superiority of the proposed method lies in: 1) 
Gabor wavelet based face representation extracts desirable facial features 
characterized by spatial frequency, spatial locality, and orientation selective, which is 
demonstrated to be able to cope with the variations due to illumination and facial 
expression changes and suppress the high frequency noise. 2) Whiten transform is 
performed to counteract the fact the PCA space weight preferentially for low 
frequencies, making the classifier make full use of all Gabor-based PCA features. 3) 
Cosine similarity measure is employed to restrain the magnified whiten noise in the 
high dimension principal component.  

Our work strongly indicates the image representation and similarity measurement is 
essential for face recognition besides the feature exaction method. More research 
work should focus on image representation and similarity measurement for face 
recognition. 
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Abstract. Word sense disambiguation plays an important role in natural lan-
guage processing, such as information retrieval, text summarization, machine 
translation etc. This paper proposes a corpus-based Chinese word sense disam-
biguation approach using HowNet. The method is based on the co-occurrence 
frequency between the relatives (such as synonym, antonymy, meronymy) of 
target word and each word in the context. Further, domains have been used to 
characterize the senses of polysemous word. To our knowledge, this is the first 
time a Chinese word sense disambiguation method using domain knowledge is 
reported. The accuracy is 73.2% at present. The experimental result shows that 
the method is very promising for Chinese word sense disambiguation. 

1   Introduction 

Polysemy implies presence of more than one sense of a particular word both in its 
context-bound and context-free situation[1]. Multiplicity of sense of words is a very 
general characteristic of natural languages. For example, the polysemous words ratio 
in Modern Chinese Dictionary is 14.8%. In Chinese corpus, the occurrence frequency 
of polysemous words is about 42%. It shows that words are highly ambiguous, par-
ticularly for frequently occurring words. 

Word sense disambiguation (shortly WSD) is the process of assigning a sense to a 
polysemous word based on the context in which it occurs. Word sense disambiguation 
plays an important role in natural language processing, such as information retrieval, 
text summarization, machine translation etc. The word sense ambiguity has a detri-
mental effect on the precision of automatic text processing. At the same time, word 
sense disambiguation is a difficult issue in these areas. Indeed, even between expert 
lexicographers, the inter-annotator agreement can vary hugely[2]. 

Most WSD research has focused on English word disambiguation. However, the 
WSD community has no desire to be narrowly monolingual. The paper will research 
the Chinese word sense disambiguation. 

The remainder of this paper is organized as follows. Section 2 describes the 
method that we adopt to disambiguate the sense of polysemous word. Section 3 pre-
sents the experiment result. Section 4 concludes the paper and provides some future 
research directions. 
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2   Methodology 

The approach is based on the following observation: the different sense of polyse-
mous word tend to appear in cognizably different contexts. In other word, various 
senses of word can be best reflected by their context. Therefore, we can use the con-
text of the word to be disambiguated together with information about each of its word 
senses.  

It has been observed that WSD is more accurate when multiple knowledge sources 
are combines. The method described in this paper is based on the co-occurrence fre-
quency between the relatives (such as synonym, antonymy, meronymy) of target word 
and each word in the context.  Further, domains have been used to characterize the 
senses of polysemous word. The method is similar to the combination of two methods 
are described in literature [3] and [4]. However, [3] and [4] target at English. For 
Chinese, the feasibility of this method is needed to confirm. Moreover, [3] and [4] are 
based on WordNet. WordNet is an online lexical reference system designed for Eng-
lish. In this paper, we use a new knowledge base---HowNet as knowledge resources 
for Chinese word sense disambiguation. 

2.1   HowNet 

HowNet is an online common-sense knowledge base unveiling inter-conceptual rela-
tions and inter-atttibute relations of concepts as connoting in lexicons of the Chinese 
and their English equivalents[5]. HowNet is not only like a machine readable diction-
ary which lists a set of possible senses for each word, but also provides other semantic 
relations, such as synonymy, antonymy, meronymy.  

In HowNet, the basic data of concepts definitions is similar to WordNet; its tax-
onomies of upper classes are similar to SUMO. Aimportant concept used in HowNet 
is sememe which is the basic unit of senses. 

In HowNet, the format of the lexical entry is as follow[6]: 
NO.=053234 
W_C= 
G_C=N 
E_C= 
W_E=teacher 
G_E=N 
E_E= 

DEF={human|  :HostOf={Occupation| }, domain={education| }, {teach|

:agent={~}}} 
Where NO. is the number of this lexical entry; W_C is the Chinese word; G_C is 

the pos of this Chinese word; E_C contains some example of this Chinese word; W_E 
is the corresponding English word; G_E is the pos of the corresponding English word; 
E_E contains some example of this English word; DEF is the definition of this Chi-

nese word. In the example, the definition of the concept of  (teacher) means that: 
a teacher is (a) a person who teaches, (b)a person who has a special attribute of 
occupation, (c) a person who belongs to the domain of education[6]. 
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2.2   Without Context Versus. Context 

In WSD system, the baseline method ignores context and simply assigns the most 
common sense in all case. In other words, the most frequent sense of the polysemous 
word in the corpus will be assigned as the sense of word appearing in the new text. 
The baseline is estimated as the lower bound of the performance of WSD. However, it 
is observed that it is sometime quite difficult for WSD system to beat the most fre-
quent sense baseline. The reason is probable that the most frequent sense provides a 
good default value for polysemous words which do not obviously have another 
sense[7]. Nevertheless, the baseline perform has a large variation for different polyse-
mous words because some words are relatively easy and others are harder. 

The limits of a linguistic context can be defined arbitrarily, but it is common to de-
fine it in terms of sentences. In our method, the context is classified into two types: 
global context and local context.  

Although local context is more important, Yarowsky[8] observes that there seems to 
be only one sense per collocation per collocation and that words tend to keep the same 
sense during a discourse. 

In other hand, it is observed that human seem to be able to disambiguate word 
sense based on very little context. It is to say, two words co-occur in the same context 
if they occur in the same sentence, even in the same phrase or clause. 

HowNet used in our WSD work contains the corresponding two types of informa-
tion: domain information and lexical information. It is the reason why we choose it as 
knowledge resource for Chinese word sense disambiguation. 

2.3   Preprocessing 

In document, some words have low content discriminating power such as preposi-
tions, conjunctions, articles and pronouns. These words are non-contextual words 
occurring in the text. They don’t directly contribute to the content. Therefore, they are 
listed at the stop-list. It is clear those words appearing at stop-list will be deleted from 
set of context words and co-occurrence sets of words before WSD. The step of pre-
processing is necessary for Chinese as well as English[9]. It is the first step of preproc-
essing for WSD. 

If we can determine which words co-occur frequently with each sense of polyse-
mous word, we can use the context of target word to disambiguate the word. Hence
we need to realize quantitatively the relation between senses of polysemous word and 
co-occurrence words in the corpus. 

In the Internet era, the availability of large electronic language corpus has strength-
ened the capability of WSD. We can obtain all possible instances of senses of 
polysemous word from the corpus (collection of sentences). In corpus, the sentences 
containing the polysemous word are grouped together according to their occurring in 
the same sense. 

It is the second step of preprocessing for WSD to generate dataset about the co-
occurrence frequency. When generating the statistical dataset, the corpus will be seg-
mented into sentences. Here, a sentence is a string of Chinese characters delimited by 

punctuations. If the polysemous word x  and y appear in the same sentence, and thi  
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sense of x  is is , the pair ,is y< >  is regarded as co-occurrence in the sentence. For 

the co-occurrence dataset, each pair of each sense of each polysemous word and each 
context word co-occurring in the corpus is respectively counted. 

2.4   WSD Using Domain Argument in HowNet 

The context can be lexical, grammatical, or domain-based. For example,  has 

senses law case and (document). From lexical angel, the sense is 
probably law case if the word is surrounded by police, cop or robber et al; the sense 
is probably document if the word is surrounded by secretary or designer. From 
grammatical angel, the sense is probably document if the word is modified by grace; 
the sense is probably law case if the word is modified by atrocious or barbarous. 
From domain angel, the sense is probably law case if the text containing the word is 
about policing; the sense is probably document if the text is about advertisement.  

The grammatical and lexical knowledge can be exploited from large corpus. The 
domain knowledge can be obtained from HowNet. In HowNet, word is annotated 
with one label. 

We utilize domain knowledge for Chinese word sense disambiguation. To our 
knowledge, this is the first time a Chinese word sense disambiguation method using 
domain knowledge is reported. 

The basic idea is to calculate the correlation between word contexts and domain 
because it is observed that different word senses tend to belong to different conceptual 
classes, and such classes tend to appear in recognizably different contexts. The 
polysemous word in same context is assigned the same sense as the sense with high 
probability. 

The relevance between domain and text may be estimated in the corpus. The text 
can be considered as “bag of words”. Therefore, the text can be denoted according to 
formula: 

1 1 2 2( , ; , ;...; , )i n nD T W T W T W=  (1) 

Here, iD  denotes a text; iT  denotes the word appearing in text and iW  denotes the 

corresponding weight of word iT .  

The high dimensionality of the word space will cause some problems, such as the 
computational complex and over-fitting. We use the TF-IDF method to have a term 
selection (or called subject-word selection). The TF-IDF function can be estimated as 
following: 

| |
( , ) ( , )*log

| ( ) |i j i j
i

D
TFIDF T D TF T D

DF T
=  (2) 

Here, ( , )i jTFIDF T D  is the weight measure of word iT  within text jD . 

( , )i jTF T D  is the number of times word iT  occurs in text jD . | |D  denotes the total 

number of all text and | ( ) |iDF T  is the number of texts in which word iT  occurs at 

least once. The function encodes the intuitions: (1) the more often a word occurs in a 
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document, the more it is representative of the content of the text; (2) the more text the 
word occurs in, the less discriminating it is[10].  

2.5   WSD Using HowNet Relatives 

Corpus is essential resource for WSD. In terms of Zipf’s law, a majority of words, no 
matter how corpus size increases, still do not appear even once at all. Hence, the main 
problem of distribution-based approach is obtained from the data sparseness problem 
of statistical methods[11]. For solving the problem, we adopt HowNet to provide the 
relative of polysemous word.  

How Net describes relations between concepts and relations between relations be-
tween the attributes of concepts. HowNet provides the semantic relations including 
synonymy, antonymy, meronymy and hyponymy/hyponymy et al. Relatives, espe-
cially those synonymy words, usually have related meanings and tend to share similar 
contexts[3]. 

In our Chinese word sense disambiguation method, we consider the context of rela-
tive of target word as the context of target word. In other words, the corpus sample 
relevant with the relatives of target will be augmented as the corpus sample of target 
word. The relatives can be extracted from HowNet automatically. By this approach, 
the problem of data sparseness will be solved to a large degree. 

2.6   Determining Sense by Combining Knowledge Sources 

When disambiguate a polysemous word, we use Bayes theorem to calculate the likeli-
hood of assigning a specific sense. Bayesian statistics provide a theoretically sound 
method. For the global context (domain knowledge) and local context (lexical knowl-
edge), the calculating procedure is same. The following will illustrate the procedures 
calculating the relevancy between local context of target word and the sense of target 
word. 

Let 1 2{ , ,... }nS S S S∈ be the set of possible senses of a polysemous word W , 

( | _ ( ))ip S Local Context W  be the probability of sense iS  in the local context of 

target word W . It is obvious: 

1

( | _ ( )) 1
n

i
i

p S Local Context W
=

=  (3) 

Where n is the number of all senses of a target polysemous word. 
According to the Bayes’ theorem, the probabilities ( | _ ( ))ip S Local Context W   

can be evaluated by following formula: 

( _ ( | ))* ( )
( | _ ( ))

( _ ( ))
i i

i

p Local Context W S p S
p S Local Context W

p Local Context W
=  (4) 

In the above formula, ( _ ( ))p Local Context W  is constant for all sense, only 

( _ ( | ))* ( )i ip Local Context W S p S  need be calculated. ( )ip S is the prior probability. 
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It is to say that the prior probability is based on the corpus. For each target word W , 
the prior probability may be estimated by following formula: 

iP(S )= i

i
i

C

C
 (5) 

Where iC  is the segment of corpus corresponding to thi  sense iS  of target word 

W , iC  is the number of word W with sense iS  in the corpus. 

Assuming the local context (the sentence in which the target word) contains words 

1 2, ,... mW W W . ( _ ( | ))ip Local Context W S  may be estimated by following formula: 

1

( _ ( | )) ( | )
m

i j i
j

p Local Context W S p W S
=

= ∏  (6) 

The probabilities 1 2( | ), ( | ),... ( | )i i m ip W S p W S p W S  can be obtained from the co-

occurrence frequency dataset described in section 2.3. 
The calculation of the relevancy between global context of target word and the 

sense of target is similar. The distinction is only that the content of context is the 
subject words corresponding to the domain. Assuming the relevancy between global 
context of target word is denoted as ( | _ ( ))ip S Global Context W . The uniform 

probability for all contexts may be estimated by following formula: 

( | ( )) ( | _ ( ))* ( | _ ( ))i i ip S Context W p S Local Context W p S Global Context W=  (7) 

For target word W , the sense iS  with the highest posterior probability 

( | ( ))ip S Context W , condition on _ ( )Local Context W  and _ ( )Global Context W  

respectively, will be assigned as sense of target word W . 

3   Experimental Result 

The experiment is based on real-world data collected from InfoBank, the biggest 
Chinese information base. Firstly, the corpus is segmented, and then the co-
occurrence dataset is generated. 

Using a predefined sense inventory and comparing answers against a gold standard 
is still the most frequent method for evaluating WSD. Therefore, experiment adopts 
the most commonly used performance measure, namely accuracy. We use the follow-
ing equation to evaluate the accuracy of WSD: 

the number of words assigned correctly a sense
accuracy

the number of words assigned a sense

        =
       

 (8) 

The accuracy is 73.2% at present. The experimental result shows that the method is 
very promising for Chinese word sense disambiguation. 
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4   Conclusions and Future Works 

We describe a method which performs Chinese word sense disambiguation by com-
bining lexical co-occurrence knowledge, semantic knowledge and domain knowledge. 
It is showed that the hybrid method based on large scale corpus and HowNet can be 
used to disambiguate the Chinese polysemous words. 

At the time when the research is conducted, HowNet has not provided all examples 
(E_C and E_E) for each word. When HowNet completes all examples, the example-
based method will be experimented. By comparing the context words of the polyse-
mous word with the examples of each sense of the word in HowNet, the correspond-
ing sense with the highest similarity will be chosen as the assigned sense. Example-
based method will be compared with the method presented in this paper. 

Now, there are many methods and algorithms have been proposed to automatically 
assigning a sense to a polysemous word from a given inventory of sense. Because 
combining multiple knowledge sources is usually beneficial to WSD task, many com-
bination methods are proposed, such as majority voting[12], hierarchy decision lists[13] 
or Bayesian statistics[14]. However, the optimal method combing these knowledge 
sources is a challenging task.  

For WSD, a quantitative evaluation exercise is required. The experiment results re-
ported in literatures are varied widely in Chinese word sense disambiguation studies. 
[15] reports that the accuracy of the experiment is 91.89% in open test and 99.4% in 
close test. [16] reports that the average accuracy is 83.13% for 10 polysemous words 
in open test by their method. However, these figures are not directly comparable be-
cause they use different corpus, different polysemous word, different word sense 
inventories, and different definitions of accuracy. The dataset of correct answers to 
evaluate against and a framework for administering the evaluation with the requisite 
credibility and accountability to the research community are essential[17]. For English, 
SENSEVAL et al can be use to evaluate the word sense disambiguation. However, the 
evaluation exercises SENSEVAL and SemCor don’t run in Chinese. Hence, a “gold 
standard” dataset for Chinese word disambiguation is an on-going and challenging 
task. 
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Modeling Human Learning as Context Dependent
Knowledge Utility Optimization

Toshihiko Matsuka

Rutgers University, Newark NJ 07102, USA

Abstract. Humans have the ability to flexibly adjust their information process-
ing strategy according to situational characteristics. However, such ability has
been largely overlooked in computational modeling research in high-order hu-
man cognition, particularly in learning. The present work introduces frameworks
of cognitive models of human learning that take contextual factors into account.
The framework assumes that human learning processes are not strictly error min-
imization, but optimization of knowledge. A simulation study was conducted and
showed that the present framework successfully replicated observed psychologi-
cal phenomena.

1 Introduction

Computational high-order cognitive modeling is a field of research trying to under-
stand the nature of real human cognitive processes or to evaluate theories on human
cognition by developing descriptive Artificial Intelligence models of ordinary people
(henceforth termed AOI for artificial ordinary intelligence) who often can be character-
ized as having erroneous, irrational, and/or sub-optimal intelligence. The effectiveness
of these cognitive models is, therefore, evaluated by comparing their predictions with
the results of empirical studies conducted with human subjects. Thus, it is not of great
interest and importance to examine how satisfactorily a cognitive model solves complex
problems independent of behavioral phenomena of interest (i.e., tendencies in human
cognition). This approach is very distinct from some other fields of AI and machine
learning research whose objectives are most likely characterized by accurate and effi-
cient identifications of solutions for, in general, numerically represented problems, or
by the development of artificial ”superior” intelligence (ASI) to solve very complex
problems with algorithms that qualitatively have no implication with regard to how hu-
mans really do process information. The present research focuses on introducing AOI
models of human learning that can be interpreted as apparently sub-optimal processes
in terms of absolute performance in a given task, but can result in refined outcomes with
regards to given contextual factors.

A conventional AOI approach for modeling human sub-optimal cognitive processes
is to incorporate some structural and/or algorithmic constraints on information flow
(mostly in forward processes) in order to impose limitations in the computational capa-
bility of simulated cognitive processes. Some AOI models of human cognition showed
successful results in replicating apparently irrational psychological phenomena (e.g.
[1]). However, as Matsuka [2][3][4] pointed out, many AOI models of human learn-
ing often incorporate computational processes that appear to have a normative (i.e.,

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 933–946, 2005.
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how we should think or ASI approach) than descriptive (i.e., what we do really think
or AOI approach) orientation. In particular, although, human cognitive competence is
characterized by adaptability, which manifests itself prominently in context dependent
thinking skills, many computational models of human learning assume that in every
instance we have a rather rigid objective, namely error minimization for a given task,
throughout learning processes. Certainly, such model approach fails to account qualita-
tively and probably quantitatively for interesting and important factors comprising the
heart of human intelligence as apparently irrational, erroneous, and sub-optimal pro-
cesses in absolute sense, yet as an efficient, unique (i.e., individually different), and
refined system in relative (i.e., context dependent) sense.

The main theme of the present study is to introduce and test new AOI models of
human learning that take the contextual factors into account. In particular, ordinary hu-
mans are assumed to be adaptive thinkers, being influenced by intra, inter, and/or extra-
personal contextual factors, who would attempt to improve their contextually-defined
knowledge utility in the course of learning, which does not necessary result in mini-
mization of error. This, however, does not imply that humans are unintelligent animals
incapable of minimizing error in learning. Rather, its more sensible interpretation is
that humans are intelligent and complex animals who are consciously or unconsciously
receptive to contextual factors at a given moment in the course of utility-enhancing
learning processes. The main ingredient of the present AOI model is, therefore, its sen-
sitivity to its internal and/or external contextual factors and its capability of revising
its knowledge (i.e., learning) to make it suitable for particular circumstances. Conse-
quently, the learning of the same matter can result in different trajectories depending on
the person and the circumstances. Perhaps, this is one of the factors making our intelli-
gence extremely adaptive and an apparently heuristic one. Note that although the AOI
models would learn to form contextually apt knowledge and concepts, it does not neces-
sarily result in effective outcomes. Rather, some contextual factors could have aversive
effects on concept formation (e.g. searching for overly simple concepts from inherently
complex concepts).

Since categorization is considered to be a fundamental higher-order cognition that
serves as a gateway to many other high-order cognitive processes, as an initial attempt,
I choose to apply this theory to AOI models of category learning. The new proposed
learning algorithms are general models of learning without any feedforward algorithm,
and thus does not restrict one to choose one network architecture over the other (i.e., it
is a model of learning or optimization, and thus independent of feedforward algorithm).
Without loss of generality, in the present study, the new leaning model is applied to
ALCOVE [5].

1.1 ALCOVE

Before describing the new models of learning in detail, ALCOVE [5], one of the most
successful models of category learning, will be introduced as the particular example
architecture selected in which to embed the new learning models. For detailed descrip-
tions and theoretical foundations of ALCOVE, readers are advised to refer to the origi-
nal work by Kruschke [5].
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Feedforward Algorithm: ALCOVE, for Attention Learning COVEring map, is a com-
putational model of high-order human cognition, namely categorization, based on the
exemplar theory on mental representation. It is a type of RBF network that scales each
feature dimension independently, and this scaling process is interpreted as a selective
attention process. Its basis units are the memorized exemplars introduced during train-
ing. Each unit corresponds to a particular exemplar, described by the multidimensional
stimulus feature space, and becomes activated when a stimulus enters the network. The
strength of activation depends on psychologically biased similarity, based on selective
attention processes, between input stimulus and a particular exemplar. Operationally,
the activation of exemplar unit j, denoted hj , is calculated based on its scaled distance
to the presented stimulus x:

hj(x) = exp
[
−c ·

∑
i
αi|ψji − xi|

]
(1)

where ψji is the feature value of exemplar unit j on dimension i, xi is the input feature
value on dimension i, c is a constant called the specificity that controls overall sensi-
tivity, and αi ≥ 0 is the selective attention strength for dimension i. The activities of
the exemplar units are fed forward to the category layer, whose nodes correspond to the
categories being learned. The activation of category node k is then computed as the sum
of weighted activations of all exemplars, or

Ok(x) =
∑

j
wjk · hj(x) (2)

where wkj is the strength of association between category node k and exemplar unit j.
The probability that a particular stimulus is classified as category C, denoted as

P(C), is assumed equal to the activity of category C relative to the summed activations
of all categories, where the activations are first transformed by the exponential function:

P (C) =
exp(φ ·Oc(x))∑
k exp(φ ·Ok(x))

(3)

where φ is a real-value mapping constant that controls decisiveness of classification re-
sponses.

Original ALCOVE Learning Algorithm: The standard version of ALCOVE uses an
online version of gradient descent for updating its coefficients. Note that this standard
gradient descent approach is introduced only for an illustrative purpose here.

Its objective function is defined as the sum of squared differences between the de-
sired and predicted outputs:

E(θ) = 1/2
∑

k
e2k = 1/2

∑
k
(dk −Ok)2 (4)

Partial derivatives of the error function with respect to the association weights wkj

and the attention strengths αi are used to compute coefficients updates, or Δwkj =
−λw

∂E
∂wkj

and Δαi = −λα
∂E
∂αi

.
This type of learning algorithm can be qualitatively interpreted as that human tries

to learn about the categories by adjusting all possible relevant knowledge or concepts
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about the categories (i.e., model coefficients) optimally in order to minimize misclassifi-
cation whenever they receive (negative) feedback on their performance in categorization
tasks. In other words, locally optimal changes are incrementally and correctly made,
given the current stimulus instance, in the model’s multi-faceted coefficient space in ev-
ery learning trial, or

⋂
t P (E(θ+Δθ) < E(θ+Δϑ), ∀Δϑ �= Δθ|x, θ, {|Δθ|, |Δϑ|} <

ε) = 1, where t indicates time, and ε is a small number, implying locality. However as an
AOI model of human cognition, such learning algorithm appears too normatively justi-
fied and more ASI oriented. In addition, the standard gradient descent does not account
for psychological, physical, and ecological contextual factors, which can be considered
as highly influential in high-order human cognition. In response to this type of con-
cerns, two families of learning algorithms that take into account contextual factors are
introduced in the following sections.

2 New Learning Algorithms – Learning as Context Dependent
Knowledge Utility Optimization

Fundamental Concepts: The present model assumes that people try to optimize utility
of knowledge or concepts about category (e.g. establishing simple concepts resulting in
sufficiently accurate categorization) in a course of learning, instead of minimizing clas-
sification error. Here, the utility of category concepts is assumed situation-dependent.
For example, in several real world category learning events, people perhaps implicitly,
try to minimize categorization error with smaller amount of effort, or try to have man-
ageably simple, acceptably accurate category concepts, simply because it is not worth
the effort, or because having comprehensive knowledge is not critical for some cate-
gories. For such categories and/or situations, simpler or more abstract concepts have
better utility than more comprehensive concepts, because such concepts require less
mental resources (e.g. memory & computation). Conversely, in other cases, some peo-
ple may put effort in becoming a domain expert who can distinguish one exemplar from
others. For domain experts, more comprehensive knowledge or the ability to pay atten-
tion to feature dimensions that help distinguish exemplars have better utility than more
compact concepts. In short, the learning trajectories of the present model are determined
by the utility of category concepts as defined by contextual factors at a given moment,
but not accuracy in learning itself.

The present model tries to optimize context dependent category knowledge util-
ity (operationally, it minimizes concept futility, thus smaller values have better utility)
defined by the weighted sum of classification error and other contextual factors, or:

U(θ) = E(θ) +
∑M

m
γm ·Qm(θ) (5)

where (wkj , αi ∈ θ), the first term is as in Eq. 4, and each Qm function in the second
term can be interpreted as a function defining a particular contextual factor m, γm is
a scalar weighting importance of context factor m, and M is the number of contextual
factors. Note that since a particular contextual factor can have rather different effects
on different coefficient types, a Q function for w and α for a particular contextual factor
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may be defined differently. There are virtually infinitely many contextual functions ap-
propriately defined for Eq. 5. For instance, Matsuka [2][3] discussed about incorporat-
ing concept abstraction, domain expertise, conservation (i.e., preparing for unforeseen
and novel stimuli), and knowledge commonality as few examples of contextual, mainly
motivational, factors possibly influencing learning processes and outcomes.

In the following section, two learning algorithms based on utility optimization are
introduced. One is based on a gradient decent optimization method with noise per-
turbations. The other is based on stochastic optimization methods, namely simulated
annealing. The fundamental principles behind the two models are the same (i.e., util-
ity optimization), but their qualitative interpretations of implied cognitive processes are
fairly distinctive.

2.1 Noisy Gradient Decent with Contextual Regularizers

The partial derivatives with stochastic processes are used for updating the coefficients.

Δwkj = −Λw
∂U

∂wkj
+ νkj = −λE

w

∂E

∂wkj
−
∑

m
λQm

w

∂Qm(wkj)
∂wkj

+ νkj (6)

Δαi = −Λα
∂U

∂αi
+ νi = −λE

α

∂E

∂αi
−
∑

m
λQm

α

∂Qm(αi)
∂αi

+ νi (7)

where, λs are step sizes weighting different contextual factors (including classification
accuracy) with superscript indicating particular factors and subscript indicating partic-
ular coefficient types, ν ∼ N (0, ζ(·)) is random noise in learning, and ζ is, in general, a
decreasing function. ζ needs to be a decreasing function for convergence. Note that γs
in Eq. 5 are subsumed in λs in Eq. 6 & 7. Since the present model incorporates a gra-
dient descent optimization method, the contextual factors need to be defined by some
differentiable functions or functions for which the first partial derivative can be defined.

There are two main reasons for including stochastic components (i.e., ν); one is to
make gradient descent learning algorithm sound more descriptively plausible; another
reason is to avoid symmetrical or parallel utilization of redundant feature dimensions.

Interpretation of noisy learning: The added random noise in coefficient updates can
be interpreted as follows: People try to revise their relevant knowledge (i.e., coeffi-
cient) about categories, but revision of each coefficient succeeds probabilistically due
to the somewhat coarse and imperfect nature of human high-order cognitive processes.
In other words, although, on average, concepts can be correctly adjusted, the present
model assumes that people are capable of adjusting their concepts only probabilisti-
cally. Unlike standard gradient descent optimization, the present method does not as-
sume that people can successfully update all relevant category concepts successfully in
every learning instance given a particular input stimulus. Rather, it assumes that people
do sometimes update some concepts in ”improper” directions, particularly in the early
stages of learning, because ζ is a decreasing function. In addition some concepts may
be learned faster than others, depending on the level and direction (i.e., + or -) of noise.
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Asymmetric utilization of perfectly redundant feature dimensions: As Matsuka
and Corter [4] pointed out when there are multiple feature dimensions with identical
information, ALCOVE trained with standard gradient descent resulted in utilizing the
dimensions identically (or in parallel, depending on initial coefficient configurations).
However, an empirical study [6] suggested that people tend to pay more attention to
one feature dimension than the other and show asymmetric attention learning trajecto-
ries. The added noise creates some inertia to break the symmetric balance between the
amounts of attention allocated to the two identical dimensions. It is, however, possi-
ble to achieve asymmetric attention allocation, when the initial attention allocations to
redundant dimensions differ (and if an appropriate contextual factor exists and is incor-
porated in learning). But, to offer more descriptive model interpretation (see a section
above) and because of the fact that empirical studies (e.g., [7]) showed that people tend
to allocate attention evenly to feature dimension in early stages of learning, the random
error in learning (i.e., ν) is incorporated in the model rather than the random attention
initialization.

2.2 Context Dependent Learning via Hypothesis Testing

Matsuka [3] introduced a learning algorithm for human learning based on a stochastic
optimization method termed SCODEL (for Stochastic COntext Dependent Learning).
The fundamental concepts underlying SCODEL and the previous models are very simi-
lar. But, as compared with the gradient descent method, SCODEL has a more heuristic-
orientated and hypothesis-testing like interpretations.

In SCODEL, people are assumed to form a hypothesis about category, which is di-
rectly related to the network architecture of forward algorithm (i.e., ALCOVE in the
present study), in a random fashion. With ALCOVE-type feedforward model in mind,
at the beginning of each training epoch, SCODEL randomly produces hypotheses about
the relationship between exemplars and category membership (i.e., association weights
w) along with hypotheses about diagnosticities of feature dimensions that determine
distribution of attention (i.e., attention strengths, α). This is accomplished by randomly
updating each coefficient by an independently sampled term from a prespecified, in
general, zero-mean symmetric distribution (e.g. the Gaussian distribution). Thus, the
coefficients updates are accomplished by the following simple functions.

wt
kj = ws

kj +Δwkj , αt
i = αs

i +Δαi (8)

where the superscript s indicates previously accepted coefficient values,Δwkj andΔαi

are random numbers generated from prespecified distributions (i.e.,Δwkj ∼ Φw(T t),
Δαi ∼ Φα(T t)). The random distributions, Φw and Φα take a parameter called ”tem-
perature” (see [8]) at time t that controls width of the random distributions (it also
affects the probability of accepting a new hypotheses set, see Eq. 10). The temperature
decreases across training blocks according to the following annealing schedule func-
tion:

T t = δ(υ, t) (9)

where δ is the temperature decreasing function that takes temperature decreasing rate,
υ, and time t as inputs. A choice of the annealing function (e.g., Eq. 9) may depend
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on the particular choice of the random number generation functions [9]. Note that the
decrease in the temperature causes decreases in width of the distributions Φw and Φα.

The new sets of coefficients are updated based on the currently accepted coeffi-
cients, and thus Eq. 8 indicates that people use the currently accepted hypothesis as a
basis for generating new hypothesis. Thus, the present model does not assume learn-
ing is carried out by totally stochastic processes, rather it assumes people utilize their
experience with stimuli from given categories. The effect of transition in distribution
widths controlled by the temperature can be interpreted as follows: In early stages of
learning SCODEL is quite likely to produce ”radical” hypotheses (i.e., the new set of
hypotheses thus coefficients are very different from the currently valid and accepted hy-
potheses). But, as learning progresses, the widths of the random distribution decrease,
so that it increasingly stabilizes its hypotheses and establishes more concrete and stable
knowledge about the category.

The hypotheses set (i.e., the set of new coefficient values) is then accepted or re-
jected, based on the computed relative utility (Eq. 5) of the new hypotheses set. Specif-
ically, if the new coefficient values result in a greater utility (lesser futility) or meet
learner’s objective better, then they are accepted. If they result in a poorer utility (greater
futility), they are accepted with some probability P, defined by the relative utility of the
new hypotheses against that of the currently accepted hypotheses. In a general form, the
probability of accepting a new set of coefficients is defined as:

P (Δw, Δα|T t) =
[
1 + exp

(
U(ws +Δw,αs +Δα)− U(ws,αs)

T t

)]−1

(10)

ifU(ws+Δw,αs+Δα) > U(ws,αs), or 1 otherwise, whereU(ws+Δw,αs+Δα)
is a function defining the utility of the new coefficient set as in Eq. 5, U(ws,αs) is the
utility of the previously accepted set, and T t is the temperature at time t. Note that in
SCODEL, a smaller value of U indicates better utility or less futility. When accepted,
the accepted coefficients will be replaced by the current coefficients. Equation 10 indi-
cates the acceptance of hypotheses is mainly influenced by the definition of the utility of
the coefficient set and thus the same hypotheses can be accepted or rejected depending
on the particular context.

In sum, SCODEL does not assume learning involves computation intensive (back)
propagations of classification error in the multi-faceted coefficient space, or calcula-
tion of partial derivative for each coefficient for the error hypersurface. Rather, in the
present learning model framework, a very simple operation (e.g., comparison of two
utility values) along with the operation of stochastic processes is assumed to be the
key mechanism in category learning. In SCODEL, the knowledge about the category
evolves as learning progresses by permitting mainly ”good” sets of hypotheses and
occasionally ”bad” ones to survive and using such enduring hypotheses as bases for
generating a new set of hypotheses. The goodness or badness of a set of hypotheses
in the SCODEL framework is purposely designed to be situation-specific, resulting in
context dependent learning processes. Unlike the gradient descent method, the utility
functions for SCODEL do not need to be differentiable or continuous, and thus it allows
more flexibility for defining its contextual factors.
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Table 1. Schematic representation of stimulus set used in simulations.

Category Dim1 Dim2 Dim3 Dim4
A 1 1 3 4
A 1 1 4 1
A 1 1 1 2
B 2 2 2 1
B 2 2 3 2
B 2 2 4 3
C 3 3 1 3
C 3 3 2 4
C 3 3 3 1
D 4 4 4 2
D 4 4 2 3
D 4 4 1 4

3 Simulations

Descriptions of Empirical Study: In the present simulation study, predictions of AOI
models of category learning via knowledge utility optimization were compared with
real human behaviors. To this end, I simulated the results of an empirical study on
classification learning, Study 2 of Matsuka [6]. In this study, there were two perfectly
redundant feature dimensions, Dimensions 1 & 2 (see Table 1), and those two dimen-
sions are also perfectly correlated with category membership. Thus, information from
only one of the two correlated dimensions was necessary and sufficient for perfect cate-
gorization performance. Besides classification accuracy, data on the amount of attention
allocated to each feature dimension were collected in the empirical study. The measures
of attention used were based on feature viewing time, as measured in a MouseLab-type
interface [10]. It should be noted that all feature values are treated as nominal values
differentiating each element within the dimension, and thus their numeric differences
do not have any meaning.

The empirical results that I am trying to simulate indicated that 13 out of 14 subjects
were able to categorize the stimuli almost perfectly. Specifically, mean classification ac-
curacy in the last training was 92.3%. The aggregated results suggest that on average
subjects paid attention to both of the redundant dimensions approximately equally (Fig
1 top row, left column). However, more interestingly when the attention data were ana-
lyzed per individual, it was found that many subjects tended to pay attention primarily
to only one of the two correlated dimensions, particularly in the late learning blocks
as shown in Fig 1, top row, right column. The scatter plot shows the relative amounts
(thus sum of the amount of attention allocated across all dimensions was fixed at 1)
of attention allocated to feature Dimension 1 (on x-axis) and Dimension 2 (on y-axis).
This suggests that subjects tended to ignore non-diagnostic feature dimensions, Dim3
and Dim4, and tended to have a bias toward one of the two redundant diagnostic fea-
ture dimensions, indicating that they have tried to perform the categorization task with
smaller amounts of attention allocation or mental effort.
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Fig. 1. Empirical finding of Experiment 2 of Matsuka (2002) in top row and the results of simu-
lations in the remaining rows. The graph on left column shows the amounts of relative attention
allocated to the four feature dimensions. The scatter plot (right column) compares relative atten-
tion allocated to Dimensions 1 and 2 for the last training blocks (for observed data, the last three
blocks), where each dot represents an observation.
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3.1 Hypotheses

Since category knowledge acquired during the empirical study does not provide any
merit to the participants outside of the experiment itself, it seems very likely that the
participants would find better utility in category knowledge that requires a smaller de-
gree of mental effort for information processing. In other words, for many participants,
it would have been useless to make an effort to have comprehensive knowledge of the
stimulus set, and they might have found simple, sufficiently accurate concepts to be
the more valuable concepts. Hence, in the present simulation study, it is hypothesized
that the utility functions are defined as some combination of classification accuracy and
concept simplicity. The hypothetical overall utility surface along with that of individual
contextual factors (i.e., accuracy & simplicity) are plotted in Fig 2. Note that since only
one of the two redundant dimensions is required for a perfect classification, paying at-
tention to at least one of the diagnostic redundant information would increase accuracy
in classification (Fig. 2a). On the other hand, the concepts simplicity would increase
as the number of feature dimensions attended decreases (Fig. 2b). Finally, to have a
compact yet sufficiently accurately-classifying concept, one would find paying atten-
tion primarily to either one of the two dimensions to be most valuable.

Quantitative properties: Operationally, the concept utility for the participants in Mat-
suka’s experiment can be defined by the weighted sum of classification accuracy,E(θ),
and concept simplicity, Q(θ). The Q function can be further decomposed into two in-
dependent functions. Specifically the functions for contextual factor, namely simplicity,
are defined as:

Q(θ) = Ω(wkj)+A(αi) = γw
∑

k

∑
j

w2
kj + γα

∑
i

α2
i

/(
α2

i +
∑
l 
=i

α2
l

)

1 + α2
i

/(
α2

i +
∑
l 
=i

α2
l

) (11)

The first term is a simplicity function for association weight, defined by a weight de-
cay function, causing magnitude (i.e., absolute value) of learned weight to be smaller.
The second term is simplicity function for attention strength, encouraging the models
to pay attention to smaller numbers of dimension. This function resembles a weight
elimination function, but its effects on coefficient configuration can be fairly different
from those of a weight elimination function. In particular, the second term in Eq. 11
encourages eliminations of attention coefficient in relative terms. Thus it encourages
eliminations of coefficients in a lesser degree when relative sizes of attention strengths
differ, while it encourages coefficient eliminations in a greater degree when relative
sizes of coefficients are similar, even when absolute sizes of coefficients are small. This
type of regularization is incorporated in the present models, because it is assumed that
the total amount of attention made available for a particular category learning task dy-
namically changes (e.g., more available in earlier stages of learning than later stages).
To allocate dynamically changing attention resources in the contextually suitable man-
ner, the utility of attention allocation patterns is best defined in relative amounts.
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Fig. 2. Hypothetical utility (futility) surfaces relative to the amounts of attention allocated to
feature Dimensions 1 and 2 (i.e., redundant dimension). The graphs are, from left, U(θ) = classi-
fication accuracy, U(θ) = simplicity, U(θ) = classification accuracy + simplicity.

3.2 Model Implementations

Noisy context regularized gradient decent: The standard gradient descent method
along with random error are used to update the model’s coefficient. Thus,

Δwkj = λE
w · ek · hj − 2λΩ

w · wkj + νkj (12)

Δαi = −λE
α

∑
j

∑
k
ek ·wkj · hj · c|ψji − xi| − λA

α

2αi ·
∑

l 
=i α
2
l(

2α2
i +

∑
l 
=i α

2
l

)2 + νi (13)

where νkj ∼ N(0,MAX(Δwt−1
kj )), νi ∼ N(0,MAX(Δαt−1

i )), MAX is a function
that returns the maximum value, and superscript t indicates time.

SCODEL: As in the previous model, SCODEL’s utility function consists of two in-
dependent functions, namely classification accuracy and concept simplicity. However,
since in general, SCODEL requires a stable estimate of classification accuracy of a par-
ticular hypotheses set (i.e., model coefficients), it obtains the estimate based on one
training block. Thus, for SCODEL, the utility function is defined as:

E(θ) =
∑

n

∑
k
(dk −Ok)2 +Q(θ) (14)

where Q(θ) is as defined in Eq. 11, and N is the number of instances in one training
block (i.e., 12).

Methods: Three models with different learning methods were trained in the present
simulation study. The models were (a) probabilistic (noise augmented) contextually
regularized gradient descent (PCRGD), (b) contextually regularized gradient descent
without noise (CRGD), and (c) stochastic context dependent learning (SCODEL). The
CRGD model was included for illustrative purposes showing the importance of stochas-
tic noise in AOI modeling. The models were run in a simulated training procedure to
learn the correct classification responses for the stimuli of the experiment. Two gradient
descent based models were run for 50 blocks of training, where each block consisted
of a complete set of the training instances. The SCODEL based model was run for 500
blocks of training. For all models, the final results are based on 100 replications. The
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model configurations were selected rather arbitrarily. Their feedforward or ALCOVE
parameters, specificity, c, and decisiveness, φ, were set to 3 and 5, respectively for all
models. The two gradient decent models had exactly the same parameter configuration,
namely λE

w = 0.1,λE
α = 0.05,λQ

w = 0.005, and λQ
α = 0.01. For SCODEL, the random

numbers used for coefficient updates were drawn from the Cauchy distribution, and its
random number generation algorithm and the temperature decreasing functions (i.e.,
exponential decay) were based on Ingber [9]. The γ scalars for SCODEL (see Eq. 11)
were 0.25 and 0.5 for association weights and attention strength, respectively.

3.3 Results and Discussion

The results of simulations are plotted in Fig. 1, second to fourth rows. All models were
successful in learning the stimulus set. The classification accuracies in the last training
block were 94%, 93%, 92% for PCRGD, CRGD, and SCODEL, respectively. Note that
predicted classification accuracies can be easily adjusted by manipulating ALCOVE’s
classification decisiveness parameter φ and thus are not of the greatest importance other
than the fact that all three models reached similar classification accuracies with the
same φ value. All models qualitatively replicated aggregated observed attention learn-
ing curves. However, only PCRGD and SCODEL were able to show the bias in paying
attention primarily to one of the two diagnostic redundant dimensions. All 100 simu-
lated CRGD learners paid exactly the same amounts of attention to Dim1 and Dim2,
even with a contextual factor, simplicity. As compared with PCRGD, more SCODEL
learners resulted in non-minima (e.g. paying little attention to both Dim1 and Dim2
or weaker bias in attending only one diagnostic dimensions, see Fig 2c). Although,
such prediction is most likely unacceptable for ASI (artificial superior intelligence) re-
search, as an AOI (artificial ordinal intelligence) research, this SCODEL’s prediction
appears more preferable than that of PCRGD because of the qualitative resemblance of
its prediction to the observed phenomena. One possible explanation for the differences
between PCRGD’s and SCODEL’s predictions, above and beyond the differences in
the model parameters (e.g., λs & em γs), is as follows: while PCRGD would continue
optimizing concept utility during the entire learning path, thus resulting in better out-
comes in terms of utility maximization, SCODEL would stop optimizing or would have
trouble finding a better hypotheses set when its temperature decreases ”too fast”, result-
ing in annealing at local minima or even at non-minimal points. This is because, while
PCRGD updates each coefficient independently, all coefficients are updated interdepen-
dently and collectively in SCODEL. That is, SCODEL accepts a hypotheses set only
when all coefficients or concepts collectively provide sufficiently worthy utility (how-
ever, it probabilistically accepts a hypotheses set with a worse utility value, see Eq. 10).
For example, even when a subset of hypothetical concepts is ”correct” they may not
be accepted if the other subset of hypotheses is ”incorrect”. Thus, SCODEL may find
it progressively difficult or become less motivated to find (marginally) a better set of
concepts as learning progresses, if its temperature decreases too fast (i.e., being ”too
confident” about its learning progress) and/or it is stuck at strong local minima (i.e.,
being ”too confident” about their acquired knowledge). On the other hand, in PCRGD,
regardless of ”correctness” of updates of the other coefficients or concepts, each coeffi-
cient is probabilistically and continuously adjusted in a ”correct” manner.
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To describe the empirical phenomena observed in Matsuka’s experiment with
SCODEL’s less successful optimization, yet apparently more successful replication of
the empirical observations, participants somehow would not mind having less-than-the-
optimal concepts or would not bother trying to find better category concepts after they
have had ”enough” training or experience with the stimuli. Although this is probably
true only for learning of mundane and non-critical tasks, yet as a model of ordinary
thinker, SCODEL might have captured the essence of the nature of humans’ ordinary
information processes pattern better than PCRGD.

4 Discussion and Conclusion

Learning Complexity: Both learning mechanisms underlying PCRGD and SCODEL
appear equally complex or simple. However, SCODEL’s implied cognitive processes
can be interpreted as, in general, simpler than that of the PCRGD leaning method. For
example, if one could disregard the computational complexity of the random number
generation (i.e., random number generation requires very small mental effort), then
SCODEL would calculate only Mw+α + Mw + Mα numbers of values in learning,
where Mw+α,Mw,Mα are the number of contextual factors defined for both associa-
tion weights and attention, association weights alone, and attention alone, respectively.
For example, assuming each factor is calculated independently, a SCODEL learner in
the simulation study would calculate only three independent values in each step of learn-
ing (and this number stays the same, regardless of the numbers of exemplars and the
dimensionality of the stimulus set, as long as the model is influenced by the same con-
textual factors). In contrast, in each learning step, a PCRGD with the same contextual
factor requires calculations ofMw+α× (J ×K+ I)+Mw×J ×K+Mα× I coeffi-
cient updates, where, J, K, I are the numbers of exemplars, category types, and feature
dimensions, respectively. Thus, for the stimulus set in the simulation study, there would
have been 28 + 24 + 4 = 56 values to be calculated.

Even if one cannot disregard the computational complexity of the random number
generation, the required mental effort for random number generation appears much less
than that for calculation of gradient. That is, a PCRGD based learning model assumes
that all coefficient updates would be executed correctly with some complex mathemat-
ical operations (e.g. Eq. 6 & 7), while SCODEL’s stochastic hypotheses generation
does not assume correctness nor any explicit mathematical operations. In these regards,
SCODEL models simpler cognitive processes than PCRGD.

There is, however one characteristic of SCODEL that can be considered more com-
plex than PCRGD. That is, SCODEL usually requires multiple instances in training
to estimate classification accuracy associated with each hypotheses set. In so doing,
SCODEL needs to store information on its performance in multiple instances, whereas
in PCRGD, it does not require any memory of past performance. It is, however, uncer-
tain which models are more descriptive in this regard.

Limitations and Extension: Effects of contextual factors in the present models are
assumed rather static. However, in reality the effects probably change dynamically. Ex-
tending present models to take dynamically changing contexts into account helps them
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describe more psychological phenomena observed in empirical studies. A related but
more important issue is that the present models do not describe how the models came
to ”realize” different contextual factors. In other words, modelers need to define con-
texts and supply their functions. Although these seem like very big challenges to be
tackled in the field of cognitive modeling research, incorporating such a system is cer-
tainly a constructive step towards plausibly and descriptively modeling human category
learning processes.

4.1 Conclusions

Although humans are cognitive animals who can adaptively modify their information
processes depending on the circumstances, such capability has remained largely under-
represented in previous modeling research in high-order human cognition. The present
work is an attempt to outline a framework of cognitive modeling approach that em-
phasizes context dependent learning strategies and processes. In particular, the present
research assumes that the objective in human learning processes is not strictly error
minimizing, but the optimization of utility of their knowledge or concepts. Two models
with this fundamental concept but with different learning algorithms were introduced
and tested. A simulation study qualitatively suggests the descriptive validity of this
approach. However, more thorough simulation studies comparing model predictions
against empirical phenomena should be conducted in future studies for better under-
standing the nature of high-order human cognition and for the development of better
models of ordinary human intelligence.
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Abstract. The method of lexical chains is the first time introduced to gener-
ate summaries from Chinese texts. The algorithm which computes lexical chains
based on the HowNet knowledge database is modified to improve the perfor-
mance and suit Chinese summarization. Moreover, the construction rules of lex-
ical chains are extended, and relationship among more lexical items is used. The
algorithm constructs lexical chains first, and then strong chains are identified and
significant sentences are extracted from the text to generate the summary. Evalu-
ation results show that the performance of the system has a notable improvement
both in precision and recall compared to the original system1.

1 Introduction

Summarization is a reductive transformation of source text to summary text through
content reduction by selection and/or generation on what is important in source text
(Jones 1999). It is valuable in the wide landscapes of cognitive science, information sys-
tems research, AI, computational linguistics, etc. Since summarization is defined by the
related human skills and concepts, cognitive approaches help to establish how a sum-
marization process is organized, which features of the source text influence the resulting
summary, how intended uses shape the summary, and so on. One important influence
on automatic text summarization has been the psychological study of human summa-
rization in the laboratory (Kintsch and van Dijk 1978). Subjects in these experiments
have been found to use conceptual structure for text comprehension. Experiments reveal
that humans create a hierarchical discourse organization, which provides retrieval cues
for memory; they restore missing information through inference-based reconstruction
processes. The other important influence on automatic summarization is the study of
professional abstractors. Endres-Niggemeyer et al.(1995, 1998) found that professional
abstractors take a top down strategy, exploiting discourse structure. Lexical chains, as
a discourse-level approach, are sequences of related words between which lexical co-
hesion occurs. In fact, cohesion itself is an abstract concept, representing an intuition:
some relation help to stick together different parts of the text. This made that some parts
of the text are about the same things in a sense. Namely, cohesion is such a method: it
admits the appearance of the term directly relevant to the theme as the appearance of
the important content. We mainly exploit lexical chains on summarization here. Terms

1 Sponsored by the National Natural Science Key Foundation of China (60435020) and the High
Technology Research and Development Programme of China (2002AA117010-09).

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 947–951, 2005.
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are aggregated into lexical chains based on relationships like synonym and hypernym;
the indicative summary is built by using these chains to select important sentences.

Some related work is presented in the following section. Section 2 describes our
lexical cohesion technology and introduces how to use the HowNet. Section 3 selects
the strongest chains from lexical chains constructed above and generates summary. The
evaluation of presented system is discussed in section 4. Section 5 gives the conclusion.

2 Algorithm for the Construction of Lexical Chains

The notion of cohesion is introduced by Hasan and Halliday(1995). Cohesion is a de-
vice for sticking together different parts of the text by using semantically related terms,
co-reference, ellipsis and conjunctions. Lexical cohesion occurs not only between two
terms but also among sequences of related words, namely lexical chains [1]. Lexical
chains provide a representation of lexical cohesive structure of text. It can be used in
information retrieval, topic tracking, summarization, etc[2,3]. Morris and Hirst [1] pre-
sented the first computational model for lexical chains based on Roget’s Thesaurus.
Then Hirst et al. [2,4,5] presented their algorithms for the calculation of lexical chains
based on WordNet, respectively. In their algorithms, the relations among words are de-
termined by WordNet. In WordNet, English nouns, verbs, adjectives and adverbs are
organized into synonym sets which represent different underlying lexical concept. Dif-
ferent relations, such as synonymy and hyponymy, link the synonym sets. Unlike that in
English, calculation of lexical chains uses the HowNet to determine the relation among
the Chinese words. HowNet is an on-line common-sense knowledge base unveiling
inter-conceptual relations and inter-attribute relations of concepts as connoting in lexi-
cons of the Chinese and their English equivalents. In HowNet, every concept of a word
or phrase and its description form one entry. Regardless of the language types, an entry
consists of four items: {W X= word/phrase form, G X = word/phrase syntactic class,
E X = example of usage, DEF = concept definition}. Just as that in WordNet, there are
some relations like hypernym, synonym, antonym, converse, part-whole, attribute-host,
location-event, etc., which exist in HowNet and are presented in DEF.

In preprocessing, Hirst et al. chose all words that appear as noun entries in WordNet
as candidate words. Barzilay et al. selected simple nouns and noun compounds as candi-
date words relying on the results of Brill’s part-of-speech tagging algorithm to identify,
while we experimentally extended the candidate words to nouns, verbs, adjectives, etc.
The algorithm we presented for construction lexical chains is as follows:

1. Segment Chinese words in text, and filter stopwords;
2. Select a set of words w1w2 · · ·wn which exist in HowNet as candidate words;
3. For each candidate word wj (j ∈ [1, n]), find an appropriate chain L relying on a

related criterion among members of the chains;
4. If an appropriate chain L is found, wj is inserted in the chain together with some

elements of its DEF;
5. If no chain is found, construct a new chain for the candidate word wj .

The algorithm segments Chinese words in text first. Then it filters stopwords with
very little semantic contents such as empty words and some high-frequency words,
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which did not contribute much to information retrieval for frequently appeared in many
documents. The words that appear as entries in HowNet are selected as candidate words.
For each candidate word, an appropriate chain is found relying on related criterion
among members of the chains. The relationship between words is determined by their
DEF in the HowNet knowledge dictionary. The related criterion is the sum of relation-
weights of wj and its DEF to wr (wr ∈ L) and its DEF is greater than a threshold T
which was determined experimentally. Here we assign the relation-weights 1.0 to 0.2
to different relations. For example, concepts co-relation has a relation-weight 0.8. If a
word has more than one DEF, we will consider all of its DEF in judgement. It is note-
worthy that some definitions in DEF are so common that they cannot reflect the relation
between two words, such as “attribute”, “event”, “ProperName”. Some even disturb the
judgement by ambiguous DEF. They should be filtered from the chains for word DEF
disambiguation. Therefore we omit 45 definitions in DEF experimentally. In addition,
the algorithm stipulates that the same words belong to the same chains, because same
words usually have the same semantic in the same text based on experiment.

3 Summary Generation

When lexical chains are constructed, the strongest chains among the chains must be
identified and are selected to generate a summary. The importance of a lexical chain
is evaluated by its contribution to the themes of document based on experience and
experiment. The score of each lexical chain is calculated by the following formula:

S =
∑C

m=1
ωm ×H (1)

H = 1− C
/∑C

m=1
ωm (2)

Where, S is the score of a lexical chain, m is the frequency of the mth element wm

in chain, H is a homogeneity index, and C is the total occurrences of the difference
element in chain. The score of strong chain satisfied with the condition: S ≥ AS +DS.
Where,AS is the average score of lexical chains,DS is the standard deviation of scores.

Once the score of each chain is calculated, strong chains are ranked in the order of
their score. Then the important sentences are extracted from the original text based on
the chain score. Considering that all words in a chain reflect the same topic of the chain
in different extent, a typical word is selected from each strong chain to represent the
topic of it. The frequency of typical word in text satisfied with the follow condition:ω ≥∑C

m=1 ωm/C . To typical word, given an appropriate measure of strength, we show
that picking the concepts represented by above condition gives a better indication of the
central topic of a text than simply picking the most frequent words in the lexical chains.
The method of building summary is adding sentence that contains the first appearance
of a typical word of the strongest chain to the summary, until the summary reaches the
specified length or there is no sentence left in strong chains. The specified length of
summary is determined by user or a percent of the length of original text, such as 10%.

The sentences extracted from original text are reorganized in its original position in
text. The anaphora technology is applied to improve the fluency of summary. The name
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in text is firstly recognized by fusing the method of natural language modeling and
related name rules. 10 rules of substituting pronoun are summarized based on lots of
analysis of Chinese sentences, and an anaphora resolution algorithm is provided. When
a personal pronoun is appeared in abstract sentence, it is substituted according to related
rules. Experiment result shows that our method can process in excess of 80% anaphora
phenomena. The method gave almost accurate answers to anaphora in text with simpler
character and environment. Thus it satisfied the need of automated summarization.

4 System Evaluation

Generally, there have two kinds of evaluation methods: intrinsic evaluation and extrinsic
evaluation. Intrinsic evaluation directly analyzes the summary to judge the quality of
summarization. Extrinsic evaluation judges the quality of summarization by its affection
to some other task. In this paper, an intrinsic evaluation method is presented. And a
series of comparison experiments are carried out to analyze the performance of the
system. Evaluation experiments are discussed as follows.

A set of 100 Chinese newswire texts that are various genres is randomly collected
from Internet to construct the testing corpus. For each text, three graduate students con-
structed manually and independently “ideal” summaries in two proportions: 10% and
20%, which are the rates of the summary length to the original text length. The text
length is counted in the number of sentences here. Then the summaries generated by
lexical chains algorithm are compared with the ideal summaries extracted by human.
For each text, the precision and recall are computed to evaluate the quality of the sum-
mary. They are defined as follows:

Precision = |St ∩ Sm|/|Sm| (3)

Recall = |Sm ∩ Sc|/|Sc| (4)

Where, Sm is the set of summary sentences produced by the system,St = |S1∪S2∪S3|,
Sc = |S1 ∩ S2 ∩ S3|, St is the union set of the 3 sets of summary sentences manually
extracted by 3 graduate students, and Sc is the intersection set of that. The operator “| |”
takes the cardinality of a set. The summaries generated by our system are compared with
those obtained from original lexical chains methods. The results are shown in Table 1:

Table 1. Evaluation of summarization system

Summary Rate Sys0 Sys1 Sys2 Sys3 Sys4

10% Precision 0.726 0.672 0.725 0.694 0.688
Recall 0.772 0.729 0.749 0.746 0.751

20% Precision 0.712 0.654 0.697 0.687 0.669
Recall 0.75 0.694 0.728 0.743 0.717

Table 1 shows the results of the presented system Sys0 are better on average than
that of Sys1, Sys2, Sys3, and Sys4. The lowest average results are obtained with the
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Sys1 that use the original method. It indicates that the presented system Sys0 has a no-
table improvement above the original system both in precision and recall. Lexical chains
are good predictors of main topic of a text. By selecting suitable candidate words, omit-
ting some definitions in DEF, selecting right typical words and so forth, the modified
algorithm can better reflect the topic of text. Sys2 is similar to Sys0 but not filtering any
definitions in DEF. This suggests that some definitions in DEF do not contribute much to
the judgement of relation between two words, and even disturb it. In Sys3, typical word
is defined as the word that its frequency is the max in the chain. This indicates the word
that has the max frequency in the chain is not necessary the most important word in the
text. Sys4 choose all words that appear as noun entries in HowNet as candidate words.
The result shows that only choosing words that appear as noun entries in HowNet as
candidate words may cause some important words to be ignored, such as some use-
ful verbs and adjectives. In addition, the 10%-length summaries are significantly better
than the 20%-length summaries. This suggests that difference in summaries is grow-
ing as the summary length increasing. In fact, with the summary length increasing, the
difference in manually summaries of each expert is growing.

5 Conclusion

The system that produces a summary of Chinese text by exploiting “lexical chains” is
presented. The experimental results show that lexical chains are effective for Chinese
texts summarization, and the performance of presented system has a notable improve-
ment above the original system both in precision and recall. The approach is highly
domain-independent, even though we have illustrated its power mainly for newswire
texts. It can be applied to daily web texts. In future, we plan to combine lexical chains
with additional knowledge sources to further improve the performance of the system.
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Abstract. General linear model (GLM) is a most popularly method of 
functional magnetic imaging (fMRI) data analysis. The key of this model is 
how to constitute the design-matrix to model the interesting effects better and 
separate noises. In this paper, the new general linear convolution model is 
proposed by introducing dynamic characteristic function as hemodynamic 
response function for the processing of the fMRI data. The method is 
implemented by a new dynamic function convolving with stimulus pattern as 
design-matrix to detect brain active signal. The efficiency of the new method is 
confirmed by its application into the real-fMRI data. Finally, real- fMRI tests 
showed that the excited areas evoked by a visual stimuli are mainly in the 
region of the primary visual cortex.  

1   Introduction 

Functional magnetic resonance imaging (fMRI) is a new non-hurt measure technique 
for brain activity which have been used at the study of brain cognition, locating 
nerve activity, medicine, psychology and other domains, and has become one of the 
most important way of the study of brain function[1]. At present, fMRI data processing 
have two methods: model driven and data driven method[2-9]. The model driven 
method is mainly the general linear model, which been advanced by Friston , is 
generally used to identify functionally specialized brain regions and is the most 
popularly approach to characterize functional anatomy and disease-related changes[6-

9]�but its theory is imperfect and in the process of continual development [10-16]. The 
design matrix is the key of the model analysis. Whether the result of data process is 
right directly connect with the quality of design matrix. Up to now, it is not a perfect 
criterion.  

In this paper, a new convolution model is firstly presented by a new dynamic 
function convolving with stimulus pattern as design-matrix to detect brain active 
signal, then the real-fMRI experiment data is analyzed. 

                                                           
* Supported by NSFC#90208003 and #30200059,  the 973 Project No. 

2003CB716106. 
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2   A General Linear Convolution Model 

2.1   General Linear Model(GLM) Theory  

The general linear model can be represented by 

nixxxy ipipkikii ,,2,1,110 =++++++= εββββ  (1) 

Where iy is the activation value of the voxel in scan i  (i.e., at time point i ), 0β  

denotes the overall mean of the time series, kβ  represent the influence of the 

experimental condition k on scan i , i.e., if at scan i  condition k  is measured, then 

ikx  equals one and kβ denotes the activation change that is caused by condition k . 

The terms ikx of conditions k  that do not exert an influence on scan i (but may have 

on other scans) are zero. Nevertheless, it is possible that more than one ikx  is one. 

The measurement error at scan i  is denoted by iε . iε  is assumed to be independent 

and identically normally distributed with the expected value )(εE being zero. 

The ‘least-squares’ estimation of parameter is  

yXXX TT 1)( −=β  (2) 

By t -distribution test, Given 05.0=α , then 96.1=αt . If  αtt > , then it is 

said the voxel is significantly activated by the i-th biological effect. By plotting the 
absolute value of t in the location of the voxel which is dealing with and repeating the 
above process with every voxel in the image space, it have obtained the statistic 
parameter map of the i-th effect[3-6].  However, the design matrix is simply 
implemented to analyze fMRI data, the result is unsatisfactory. 

2.2   Dynamics Convolution Model 

In general, the general linear model take Gamma function as hemodynamic response 
function to get design matrix. But, it is not reasonable in most actually case. The 
BOLD signal of the cerebral activation is a collective response of an activated region 
and it can be explained as a mutual interaction process between the neural response to 
a stimulus and the hemodynamic change due to the activation of a neural cluster. 
Therefore, the BOLD signal )(tu of a cerebral activation can be expressed by 

convolution of the neural response cosine function )cos(t with decay signal 

)exp( t− of the CBF hemodynamic response of a neural cluster.    

)exp()cos()( tttu −⊗=  (3) 

 



954 H. Yuan et al. 

 

Where ⊗  note the convolution operation. So as to combine biology effects of 
brain better, instead of box-car stimuli series at the first column, we convolved a new 
hemodynamic response function )(tu  with experiment stimuli patter as the first 

columns design matrix. The rest of columns model physiological noise which aroused 
by respiration and palpitation are coincident with Friston model[6-9]. Then we can gain 
the more realistic design matrix.  

3   Application for Real-Human fMRI Data 

3.1   Data Description 

The fMRI data was collected at Beijing hospital. The stimulus was a red illuminant 
point presenting at the center of the visual field with frequency 8HZ, light intensity 
200cd/cm2 and visual angle of 2 degrees. Totally six transverse sections were 
collected in a bottom-up direction. Each section is composed of 128 × 128 voxels. 
Each section map was completely collected in 160 seconds resulting in 80 sample 
images alternating between stimulation and non-stimulation box-car stimuli series. 
The sample time interval is 2secs. 

                     

  Fig. 1. Design-matrix                 Fig. 2.  fMRI result image 

3.2   Result of Data Analysis 

According to 2.2 methods, we get BOLD response of brain activity. The improved 
design matrix is shown in the Fig. 1. According to the principle of GLM, the cut-off 
condition T test >4, gave approximately P <0.0001, and were considered to be the 
true active voxels. Then the fMRI result image is gained in Fig.2, where the black 
points denote those activity voxels aroused by stimuli. Result of experiment 
correspond to the physiology fact that the excited areas evoked by a visual stimuli are 
mainly in the region of the primary visual cortex which located at outboard of 
occipital lobe, which consists with the result of independent component analysis 
(ICA) 2-5 . 

4   Conclusion  

In this paper, we proposed a new General linear Convolution model of fMRI data for 
processing. The validity of the new method is testified by detecting the brain 
functional activation from fMRI data.  
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Abstract.  This paper presents a novel approach toward high precision biology 
species categorization which is mainly based on KNN algorithm. KNN has 
been successfully used in natural language processing (NLP). Our work extends 
the learning method for biological data. We view the DNA or RNA sequences 
of certain species as special natural language texts. The approach for 
constructing composition vectors of DNA and RNA sequences is described. A 
learning method based on KNN algorithm is proposed. An experimental system 
for biology species categorization is implemented. Forty three different bacteria 
organisms selected randomly from EMBL are used for evaluation purpose. And 
the preliminary experiments show promising results on precision. 

1   Introduction 

Categorization is a very important issue in many fields. In order to identify and 
thoroughly understand something, people must categorize it first. In natural language 
processing (NLP), text categorization (TC) is the task of assigning a number of 
appropriate categories to a text document. This categorization process has many 
applications such as document routing, document management, or document 
dissemination [1]. The goal of TC is to learn categorization schemes that can be used 
to classify texts automatically. There are many categorization schemes addressed in 
categorization literature. It includes Naïve Bayes (NB) probabilistic classifiers, 
Decision Tree classifiers, Neural Network, KNN classifiers, Support Vector Machine 
(SVM), and Rocchio classifiers etc. 

Human beings always want to penetrate into and uncover the mystery of the 
essential of life. The first step is categorization. Traditionally, when we study an 
unknown life-form, we classify it by its substance, shape and color etc first. And then 
we can infer its probable character according to its type. With the rapid development 
of molecular biology technology, nowadays people can easily extract DNA sequence 
fragments from different kinds of samples. It is faster and more accurate to do 
researches. But there is also a great problem faced by biologists: Although we have 
already had the whole genome sequence information of many organisms in 
Genbank/EMBL which are the most important sources in biology research field, 
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much more unknown DNA sequences are left to be sequenced. When scientists get 
DNA fragments in their labs, most of them will do BLAST in Genbank. If there is no 
homogeneous gene sequence stored in the database, they can hardly get any 
information based on previous records and have no idea of what this unknown 
sequence might be or come from. 

However, there is another theory named Genome Signature to overcome this 
limitation. Genome signature method focuses on short motifs, such as dinucleodites. 
It has been proved that dinucleotide relative abundance can be used as a genome 
signature [2,3,4,5]. Although there are huge amount of DNA sequences submitted and 
stored in the Genebank, when biologists do BLAST for many of their newly 
discovered DNA sequence fragments, they can not get any related homogeneous 
sequence from Genbank. Biologists call these fragments orphan sequences. These 
orphan sequences are often so important that we have to know where they are from. 
Using dinucleotide frequency profile vector as a genome signature to portrait the 
DNA sequences, we don’t need to have the information of traditional homogeneous 
gene sequences to predict where the fragments might come from. 

So, in this paper, we have developed a KNN-based learning method for biology 
species categorization. We can use the existed sequence records, no matter whether 
they are homogeneous or not, to train our model. And then predict what kind the 
unknown fragment is or is most related to. Figure 1 illustrates the whole learning 
progress.  

 

 
 

Fig. 1. Learning Progress 

 
We carry out the categorization task by two phases. In the first phase, we map 

every DNA or RNA sequence into a composition vector. We extract the dinucleotide 
relative abundance as a genomic signature. We also do subtraction of random 
background to highlight the selective diversification. Then in the second phase, we 
build the learning method based on KNN algorithm. The composition vectors we get 
in the first phase are used as KNN’s feature vectors. We use cosine-value between 
two feature vectors as their similarity. 
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2   Composition Vector Constitution 

Given a DNA or RNA sequence of length L, we count the number of appearances of 
(overlapping) strings of a fixed length K (for dinucleodite K=2) in the sequence. 
There are N possible types of such strings: N=4K. 

For concreteness consider the case of one DNA or RNA sequence of length L. 
Denote the frequency of appearance of the K-string 1 2… K by f( 1 2… K), where 
each i {A, C, G, T} for DNA sequences or each i {A, C, G, U} for RNA 
sequences. This frequency divided by the total number (L – K + 1) of K-string in the 
given sequence may be taken as the probability p( 1 2… K) of appearance of the 
string 1 2… K in the DNA or RNA sequence: 

)1(

)...(
)...( K21

K21 +−
=

KL

f
p

αααααα  . (1) 

Mutation happens in a more or less random manner at the molecular level, while 
selections shape the direction of evolution. Neutral mutations lead to some 
randomness in the K-string composition. In order to highlight the selective 
diversification of sequence composition, we must subtract the random background 
from the above counting results. This is done as follows: 

Suppose we have done the counting for all strings of length (K - 1) and (K - 2). The 
probability of appearance of K-string is predicted by using a Markov model [6]: 
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The superscript 0 on p0 indicates the fact that it is a predicted quantity. When 

0)...( 1-K32 =αααp , then definitely 0)...( 1-K21 =αααp  because a string will not 

appear if its sub-string does not appear, in this case we set 0)...( K21
0 =αααp . The 

usage of this kind of Markov model prediction in biological sequence analysis has 
been justified [7]. 

We then calculate X as the difference between the actual observed result p and the 
predicted value p0, a measure of the shaping role of selective evolution by: 
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For all possible strings 1 2… K , we use )...( K21 αααX  as components to form a 

composition vector for a DNA or RNA sequence. To simplify the notations, we use Xi 
for the i-th component corresponding to the string type i, where i=1 to N (N=4K and 
the N strings are arranged in a fixed order as the alphabetic order). Hence we 
construct a composition vector X=(X1, X2,…, XN) for sequence X. As to dinucleotides, 
the composition vectors are 16-dimensional, in the form of [X1(AA), X2(AC), X3(AG), 
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X4(AT), X5(CA), X6(CC), X7(CG), X8(CT), X9(GA), X10(GC), X11(GG), X12(GT), 
X13(TA), X14(TC), X15(TG), X16(TT)] for DNA sequences and [X1(AA), X2(AC), 
X3(AG), X4(AU), X5(CA), X6(CC), X7(CG), X8(CU), X9(GA), X10(GC), X11(GG), 
X12(GU), X13(UA), X14(UC), X15(UG), X16(UU)] for RNA sequences. 

3   KNN-Based Learning Method 

KNN is a similarity-based learning algorithm and is known to be very effective for a 
variety of problem domains. Given a test instance dt , the KNN algorithm finds its k 
nearest neighbors among the training instances, which forms a neighborhood of dt. 
Majority voting among the instances in the neighborhood is used to decide the 
category for dt. 

In our novel KNN-based learning approach, we use the composition vector of each 
sequence as its feature vector. Let D be a collection of n pre-labeled DNA or RNA 
sequence documents {d1, d2, … dn} with m categories C1,C2, … Cm. Document di D 
is represented by a feature vector of the form <wi1, wi2, … wil>, where wij is the 
numeric weight for the j-th feature and l is the total number of features. Here, we will 
use cosine similarity as the default similarity metric. 
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(4) 

Let d1, d2, … dk denote the k instances from the training set that are nearest to dq. 
Then the following formula will return the category of dq: 
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where 1),( =baδ  if a b and where 0),( =baδ otherwise. 
We show the learning algorithm as follow: 

1. Calculate the dinucleotide frequency of each DNA or RNA sequence in both 
the training set and the test set. 

2. Do random background subtraction for every sequence. 
3. Create composition vector for each sequence based on the above two steps. 

Here l, the total number of features, is 16 (24). 
4. Given a query instance dq from the test set to be classified, calculate 

),( idqdSim  between dq and each di from the training set. 

5. For the k nearest neighbors whose similarities rank the top k among the 
training instances, do the majority voting and return the category of dt. 

6. For each instance in the test set, repeat step 4 and 5 to decide its category. 

4   Experiments and Results 

Some preliminary experiments have been done to test the validity of our approach. 
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4.1   Building the DNA Sequence Training Set and Test Set 

We select 20 different bacteria randomly from the EMBL [8] database at the genus 
level. That is to say, the distinct genus of each of the 20 bacteria is selected randomly. 

The bacteria we selected are described as follows. Here, the sequence length unit is 
base pair (bp). 

Table 1. The 20 different bacteria selected randomly from the EMBL database at the genus 
level 

Species 
No. 

Accession 
Number 

Total 
Sequence 
Length (bp) 

Organism 

1 AE008923 5175554 Xanthomonas axonopodis pv. citri str. 306 

2 AE000512 1860725 Thermotoga maritime 

3 AE014291 2107793 Brucella suis 1330 

4 AE017125 1799146 Helicobacter hepaticus ATCC 51449 

5 BA000016 3031430 Clostridium perfringens str. 13 

6 BA000030 9025608 Streptomyces avermitilis 

7 AE015924 2343476 Porphyromonas gingivalis W83 

8 AL450380 3268203 Mycobacterium leprae 

9 BA000039 2593857 Thermosynechococcus elongatus BP-1 

10 AE016879 5227293 Bacillus anthracis str. Ames 

11 AL592022 3011208 Listeria innocua 

12 BA000033 2820462 Staphylococcus aureus subsp. aureus MW2 

13 AE014074 1900521 Streptococcus pyogenes MGAS315 

14 AE005673 4016947 Caulobacter crescentus CB15 

15 BX470250 5339179 Bordetella bronchiseptica 

16 AE009952 4600755 Yersinia pestis KIM 

17 AE004091 6264403 Pseudomonas aeruginosa PAO1 

18 AE016795 3281945 Vibrio vulnificus CMCP6 

19 AE000513 2648638 Deinococcus radiodurans 

20 AE009951 2174500 Fusobacterium nucleatum subsp. 
nucleatum ATCC 25586 

From each whole genome of the above bacteria, we extract (without overlapping) 
150 DNA sequence fragments with the length of 10000 bp. A hundred of them are put 
into the training set, and the other fifty ones are used as the test instances. The 20  
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different bacteria are viewed as 20 categories. Therefore, in the training set, there are 
totally 2000 DNA sequences with the length of 10000 bp and the category of each one 
is represented. While in the test set, there are totally 1000 DNA sequences with the 
length of 10000 bp and their categories are unknown. The learning goal is to decide 
the category of each test instance by training the instances in the training set. 

4.2   Experiment 

First, for each 10000 bp DNA sequence in both the training set and the test set, we 
count the number of appearances of (overlapping) the dinucleotides in it. Then for 
each of the 16 different dinucleotides, we calculate its probability. And we do the 
random background subtraction in order to get the composition vectors of the 3000 
DNA sequences in both the training set and the test set. 

Given a sequence dq in the test set, first we measure ),( idqdSim  between dq and 

each di from the training set. Then we pick out the sequences whose similarities rank 
the top k. Finally, we decide the category of dt by the categories of these k sequences. 

For each category Cj, we sum up the ),( idqdSim  where di runs from the sequences 

whose category is Cj in the k nearest neighbors. Then the category with the largest 
similarity summation is set to be the category of dq. With the same method, we can 
decide the category of each DNA sequence in the test set. 

43   Test Result 

Test results reported in this section are based on precision. The performance of the 
KNN classifier algorithm also depends on the value of k, the number of nearest 
neighbors of the test process. Usually the optimal value of k is empirically 
determined. We set k to 1, 2, 5, 10, 20, 50 and 100 to do the test. The highest mean 
precision is 93% when k is set to 5 and 10. 

Table 2. The precision of each category when k is set to 5 and 10 

Species No. and Precision  

1 2 3 4 5 6 7 8 9 10 
k=5 84% 100% 94% 100% 72% 100% 100% 100% 96% 94% 

k=10 84% 100% 94% 100% 72% 100% 100% 100% 96% 92% 

Species No. and Precision  
11 12 13 14 15 16 17 18 19 20 

k=5 82% 94% 82% 96% 96% 94% 94% 86% 100% 92% 

k=10 86% 90% 84% 96% 94% 96% 94% 86% 100% 90% 
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All the mean precisions we get are shown as follows: 

Table 3. Mean precisions 

 k=1 k=2 k=5 k=10 k=20 k=50 k=100 

Mean Precision 92% 92% 93% 93% 92% 91% 89% 

Admittedly, the experimental precisions will decrease when the lengths of the 
DNA sequences are shorter or when there are more categories in our classifier. 
Longer sequences could submerge segments introduced by recent horizontal transfer 
from another species [9] and highlight the genome signature. Here we use 10000-bp 
sequences and 20 categories to do our experiment. 

4.4   Extended Experiment and Its Result 

In the above experiment, we construct the training set and the test set from 20 
different bacterial organisms. All the 3000 DNA sequences we used are extracted 
without overlapping. The test result shows that the mean precision is quite high when 
k is set to 5 or 10. Although the result is satisfying, there is also a limitation. The 
limitation is that both the sequences in the training set and the ones in the test set are 
extracted from the same 20 organisms. That is, although the DNA sequences in the 
test set are chosen exclusively, they come from the same 20 types of the organisms as 
in the training set. Suppose there is a new test sequence which has no training 
sequence of the same type. Of course, our classifier can not return its accurate 
category. But what result can we get if we add it to the test set? The experiment in this 
section is built to be in such a case. Our goal is to testify whether the test sequence 
can find its most closely related species or not. If so, we can extend our classifier to 
further research and more practical use. 

In the experiment, we still use the same training set of 2000 DNA sequences as 
before. The construction of the test data set needs to be carefully explained. 

The first column of Table 4 presents 13 different target bacterial organisms among 
the 20 training organisms. And the second column shows other 23 different bacterial 
organisms chosen as test data, making sure that each of them is closely related to, that 
is in the same genus as, one of the target organisms in the training set. In today’s 
biological field, scientists are still arguing about the real families, orders and classes 
of one organism. Each side has its own evidence. But in the genus level of organism 
classification they generally have the same idea. Therefore, we choose our test data in 
this level to do the experiment. In this way, we extend our KNN-based classifier to 
identify the genus of biology species, not only their definite categories. The last two 
columns show the precisions when k is set to 5 and 10. 

Most of the precisions the classifier returned are quite satisfying. But there are six 
low precisions (when both k=5 and k=10) and three of them are even below 10%. 
What make this happen? We find out that all the six organisms come from the species 
that can cause illness to other species. They all have a large number of horizontal 
transferred genes in their genomes. These horizontally transferred genes cause 
obvious noise in our experiment. However, as to the relatively conservative 
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organisms, our classifier works well. Especially considering the complexity and 
irregularity of biological data, the results are satisfying. 

 

Table 4. Target organisms, test organisms and the precision results of the experiment 

Target Organisms Test Organisms k =5 k =10 
Xanthomonas axonopodis pv. 
citri str. 306 

Xanthomonas campestris pv. 
campestris str. ATCC 33913 

95% 95% 

Brucella suis 1330 Brucella melitensis 16M 98% 98% 
Helicobacter hepaticus ATCC 
51449 

Helicobacter pylori 26695 33% 35% 

Helicobacter hepaticus ATCC 
51449 

Helicobacter pylori J99 12% 15% 

Clostridium perfringens str. 
13 

Clostridium acetobutylicum 82% 79% 

Clostridium perfringens str. 
13 

Clostridium tetani E88 95% 96% 

Streptomyces avermitilis Streptomyces coelicolor  100% 100% 
Mycobacterium leprae Mycobacterium bovis 

AF2122/97 
83% 84% 

Mycobacterium leprae Mycobacterium tuberculosis 
H37Rv 

86% 87% 

Bacillus anthracis str. Ames Bacillus halodurans 20% 15% 
Bacillus anthracis str. Ames Bacillus cereus ATCC 14579 92% 93% 
Bacillus anthracis str. Ames Bacillus subtilis subsp. subtilis 

str. 168 
4% 7% 

Listeria innocua Listeria monocytogenes 92% 92% 
Staphylococcus aureus subsp. 
aureus MW2 

Staphylococcus aureus subsp. 
aureus Mu50 

83% 82% 

Staphylococcus aureus subsp. 
aureus MW2 

Staphylococcus aureus subsp. 
aureus N315 

87% 87% 

Staphylococcus aureus subsp. 
aureus MW2 

Staphylococcus epidermidis 
ATCC 12228 

75% 69% 

Bordetella bronchiseptica Bordetella pertussis 91% 90% 
Bordetella bronchiseptica Bordetella parapertussis 94% 92% 
Bordetella bronchiseptica Bordetella bronchiseptica 92% 90% 
Yersinia pestis KIM Yersinia pestis CO92 95% 98% 
Pseudomonas aeruginosa 
PAO1 

Pseudomonas putida KT2440 7% 8% 

Pseudomonas aeruginosa 
PAO1 

Pseudomonas syringae pv. 
tomato str. DC3000 

7% 9% 

Vibrio vulnificus CMCP6 Vibrio vulnificus YJ016 83% 85% 
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5   Conclusion 

In this paper, we have described a KNN-based learning method for biology species 
categorization. The experiments of the categorization of DNA sequences show that 
the method is effective and practical. 

We can use the KNN-based classifier to give a prediction of what the unknown 
sequence is, or probably is, or is most related to. This will help biologists a lot. They 
can get some helpful information to design their wet-lab experiments to predict what 
the unknown sequences are instead of testing aimlessly, saving both their time and 
efforts. 
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Abstract. Emerging patterns (EP) represent a class of interaction struc-
tures and have recently been proposed as a tool for data mining. Espe-
cially, EP have been applied to the production of new types of classifiers
during classification in data mining. Traditional clustering and pattern
mining algorithms are inadequate for handling the analysis of high di-
mensional gene expression data or the analysis of multi-source data based
on the same variables (e.g. genes), and the experimental results are not
easy to understand. In this paper, a simple scheme for using EP to im-
prove the performance of classification procedures in multi-source data
is proposed. Also, patterns that make multi-source data easy to under-
stand are obtained as experimental results. A new method for producing
EP based on observations (e.g. samples in microarray data) in the search
of classification patterns and the use of detected patterns for the classi-
fication of variables in multi-source data are presented.

1 Introduction

Microarray experiments have brought innovative technological development to
the classification of biological types. But more powerful and efficient analytical
strategies need to be developed to carry out complex biological tasks and to
classify data sets with various types of information such as mining disease related
genes and building genetic networks.

The analytical strategy of bio-data can be classified into two categories ac-
cording to the form of learning algorithm. First, as an unsupervised learning
method such as typical clustering algorithms, the analytical method deals di-
rectly with genes while ignoring the biological attributes (labels) when handling
DNA data (instance). Supervised learning is a target-driven process in that a
suitable induction algorithm is employed to identify the genes that contribute the
most toward a specific target, such as the classification of biological types, gene
� This work was supported by the Brain Korea 21 Project in 2004.
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mining or data-driven gene networking[8]. Among supervised learning methods,
rule based approach can be said that this partitions the sample and feature gene
space simultaneously and it is especially an efficient method for classification
of multi-source data. In statistics, the analysis of gene expression profiles is re-
lated to the application of particular supervised learning schemes. The structure
of gene expression profiles must be suited for the typical data situation with a
small number of patients n (=observations) and a large number of genes p (=vari-
ables), the so-called ’small n large p’ paradigm in gene expression analysis[2][12].

In this paper, we develop a new rule-based ensemble method using EP for
the classification of multi-source data. EP are those whose support changes sig-
nificantly from one data set to another[19]. EP are among the simplest examples
used to understand interaction structures, and are not only highly discriminative
in classification problems[19], but can also capture the biologically significant in-
formation from the data. However, a very large volume of EP is generated for
high dimensional gene expression data[7]. In this paper, we apply concise EP
for multi-source data classification based on observations from each individual
data set. When dealing with classification methods, microarray data is generally
used, but only a few number of approaches are designed to consider explicitly the
interaction among the genes being investigated. Interaction is well understood
as (co-)expression genes in a cell governing a complicated network of regulatory
controls. Hence, the interdependencies of all genes must be taken into consider-
ation in order to achieve optimal classification. We propose a new method that
can handle all variables in an appropriate way. It must be noted that the goal
of the analyses presented in this paper is not to present correlated interaction
genes for multi-source data but rather to illustrate our proposed classification
method using EP.

The remainder of this paper is organized as follows. The application of multi-
source data and classification methods in bioinformatics, and the analysis of EP
are reviewed in section 2. A method for extracting EP from multi-source data
sets and their applications are explained in section 3. Furthermore, significant
experimental results by applying the proposed method and its details are de-
scribed in section 4. Finally, concluding remarks and future works are presented
in section 5.

2 Related Works and Background

In section 2, multi-source data, classification algorithm applications in bioinfor-
matics and EP for multi-source data classification are reviewed as related works
and background.

2.1 Multi-source Data

Bioinformatics not only deals with raw DNA sequences, but also with other var-
ious types of data, such as protein sequences, macromolecular structure data,
genomes data and gene expression data[19]. The various types of data provide
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researchers with the opportunity to predict phenoma that were formerly con-
sidered unpredictable, and most of these data can be accessed freely on the
internet.

We assume that the analysis of combined biological data sets leads to more
understandable direction than experimental results derived from a single data
set. The purpose for combining and analyzing different types of data is to identify
with more accuracy and to provide more correlations using diverse independent
attributes in gene classification, clustering and regulatory networks and so on.
Among the features of bio-data, one is that the same variables can be used to
make various types of multi-source data through a variety of different experi-
ments and under several different experimental conditions. These multi-source
data are useful in understanding cellular function at the molecular level and
also provide further insight into their biological relatedness by use of informa-
tion from disparate types of genomic data. In [14], the problem of inferring gene
functional classification from a heterogeneous data set consisting of DNA mi-
croarray expression measurements and phylogenetic profiles from whole-genome
sequence comparisons is considered. As a result, it is proposed that more impor-
tant information can be extracted by using disparate types of data.

2.2 Classification Problem in Bioinformatics

Classification problems aim at building an efficient and effective model for pre-
dicting class membership of data. Initial analysis of multi-source data focused
on clustering algorithms, such as hierarchical clustering[9] and self-organizing
maps[16]. In these unsupervised learning algorithms, genes that share simi-
lar expression patterns form clusters of genes that may show similarities in
function[14]. But, because clustering methods ignore biological attributes (la-
bels), they have limitations in the search of attributes or the discovery of rules
in observations.

In [10], supervised learning techniques were applied to microarray expression
data from yeast genes. It was verified through this application that an algorithm
known as support vector machine (SVM)[3][4][13] provides excellent improve-
ment in classification performance compared to a number of other methods,
including Parzen windows and Fisher’s linear discriminant[10]. Also, the meth-
ods used in [10] have been successfully applied to disease genes classification
with machine learning approaches such as support vector machines (SVM), arti-
ficial neural network(ANN), k-nearest neighbors (kNN), and self-organizing map
(SOM). In recent studies on the application of classification methods, supervised
learning methods are aiming at showing the existence or nonexistence of disease
by searching for disease genes[19].

2.3 Analysis of Emerging Patterns

A wide variety of gene patterns can be found for each data set. In [2] and [19],
gene expression profiles were used to individually apply CART algorithm, a
supervised learning method, and clustering method, an unsupervised learning
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Fig. 1. Flowchart of the experimental method

method, to detect all types of early cancer development. To improve accuracy in
classification, EP were applied to express the interaction between cancer-causing
genes. Pattern association and clustering are both data mining techniques that
are frequently applied in the fields of cancer diagnosis and correlation studies of
gene expression[20]. But the results from these methods do not meet our require-
ments because multi-source data was not considered. EP were first introduced
in [5], and they were defined as the item set that significantly increases support
in each data sets D1 and D2 using the appropriate cut-off value of the growth
rate. Unlike frequent patterns in common association analysis, EP are applied to
classification problems to provide high discrimination, and are proved to be more
useful. Also, EP are easy to understand because they are the collections of at-
tributes in a dataset, and this property is especially important in bioinformatics
application problems.

Thus, this paper proposes an efficient classification method using EP that
is efficient when using analysis based on the smaller number of observational
attributes rather than the very large number of variable attributes.

3 Methods

In this section, the experimental data and experimental methods applied in this
paper are explained in detail. The overall framework is illustrated in Figure 1
and it will be explained in order.

3.1 Data

In this paper, two types of genomic data were used as multi-source data for
the application of the proposed method. The first data set was derived from a
collection of DNA microarray hybridization experiments. Each data point in the
microarray data represents the logarithm of the ratio of expression levels of a par-
ticular gene under two different experimental conditions. The data consists of a
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Fig. 2. Data structure of microarray data

Fig. 3. Data structure of phylogenetic profile

set of 79-element gene expression vectors across time points for 2,465 yeast genes.
These genes were selected by [9] based on accurate functional annotations. The
data were collected at various time points during the diauxic shift[6], the mitotic
cell division cycle[15], sporulation[17], and temperature and reducing shocks, and
are available on the stanford website (http://www-genome.stanford.edu)[14].

In addition to the microarray expression data, we applied data characterized
by 24 phylogenetic profiles[11] to each of the 2,465 yeast genes. In this data
set, a phylogenetic profile is a bit string, in which the boolean value of each bit
reflects whether the gene of interest has a close homolog in the corresponding
genome. The profiles employed in this paper contain, at each position, the neg-
ative logarithm of the lowest E-value reported by BLAST version 2.0[18] in a
search against a complete genome, with negative values truncated to 0. The pro-
files were constructed using 24 complete genomes, collected from the Institute
for Genomic Research website (http://www.tigr.org/tdb) and from the Sanger
Centre website (http://www.sanger.au.uk). Prior to learning, the gene expres-
sion and phylogenetic profile vectors were adjusted to have a mean of 0 and a
variance of 1. The description of each data set, composed of the microarray data
and phylogenetic profile data about the 2,465 yeast genes, are as shown in figure
2 and figure 3.

In the experiments of this paper, the betweenness centrality values based on
10 samples (=observations) that have 79-element time points values in the first
microarray data set were as shown in figure 2. Thus, gene clusters were formed
by extracting the most closely related genes in the order of high betweenness
centrality value first.

As a result, a total of 10 clusters were formed (all genes were included in
at least one sample in this experiment). And also for the second phylogenetic
profile data set, 25 clusters (one additional cluster was formed with the genes
that were not included in any of the 24 species) were formed by extracting the
most closely related genes in order of high betweenness centrality value first.

3.2 Application of Betweenness Centrality Based on Observation

Bio-data is characterized by having a small number of observations compared
to the number of variables. This characteristic found in bio-data can also be
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observed in microarray data, and this is well reflected in the data where the
number of columns corresponding to observations are outnumbered by the num-
ber of rows corresponding to variables (=genes). The exclusion of some variables
can lead to significant differences in experimental results because a characteristic
of bio-data is that interaction among the data is highly dependent. Therefore,
in this paper, the characteristic EP are represented by considering all variables
in each data set and the results are applied for the classification of multi-source
data. Also, since EP are easy to understand and represent, they are useful for
judging the features other types of data.

The following explains in order the proposed method of forming EP with a
single data set.

1. First, based on the observations, clusters are formed with genes that con-
tribute the most toward these observations, since bio-data sets have a smaller
number of observations than variables. Then, the betweenness centrality
method used in social network analysis to extract the variables that are
closely related to the observations is applied. Social network analysis is a
theory in Sociology, and it is the mapping and measuring of relationships
and flows between people, groups, organizations, animals, computers or other
information/knowledge processing entities. The nodes in the network repre-
sent people and groups, and this means that the most active people have the
most relationships (=links) with many other people[14]. That is, the entire
network is closely related to this node.
In this experiment, the betweenness centrality value of each observation was
computed, then the observation with the highest value was found and genes
that were the most closely related were extracted.

2. From the previous experiment, the observation with the highest between-
ness centrality value and the genes that were the most closely related to
the observation were set aside, and the betweenness centrality value for the
remaining observations and genes are computed again. From the resulting
values, the observation with the highest betweenness centrality value and
the genes that were the most closely related to the observation are clustered.

3. In the same manner, the betweenness centrality value is computed repeat-
edly as many times as the number of observations, in order to form clusters
according to the relations between observations and variables.

4. And finally, one cluster is formed with variables that are not included in any
other observation.

The methods mentioned above are shown in figure 4, when applied to a
phylogenetic profile data set. In the case of phylogenetic profiles data, 24 species
(=observations) and 2,465 genes (=variables) are formed, and the method is
repeated to extract the genes that are the most closely related in the order of
the observation with the highest betweenness centrality value. And finally, one
cluster is formed with genes that are not included in any other species.
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Fig. 4. Application method of betweenness centrality based on observation

3.3 Forming Emerging Patterns Between Individual Datasets

As shown in figure 4, the betweenness centrality value of each observation is
computed for the experimental data in section 3.1. Then clusters are formed
by extracting variables (=genes) that could explain the observations with the
highest betweenness centrality value. As a result, the microarray data of yeast
applied to the first experiment are clustered by reducing 79-elements time points
to 10 observations (the clusters were formed from 10 samples composed of 79-
elements time points, while the experiment handles observations according to
sample number and not time point. See figure 2). In the second phylogenetic
profiles experimental data, the 24 species corresponding to the columns are re-
garded as observations, and clusters are formed in as many number as observa-
tions. In this paper, EP formed in microarray data sets and phylogenetic profile
data are represented in the following way. EP in microarray data sets and phy-
logenetic profiles are expressed in the form of exp(X1) > a1

∧
exp(X2) < a2 and

phylo(Y1) > b1
∧
phylo(Y2) > b2, respectively. In each representation of EP, Xi

is the measured expression level of observations in microarray data sets and Yj

is the sequence similarity of observations in phylogenetic profiles data. The ai

and bj in the representations are boundary constants that can be inferred from
each data set, and they represent the threshold value of the expression level in
microarray data and the sequence similarity in phylogenetic profiles data.

4 Experimental Results

In this paper, R package was used to compute betweenness centrality and Weka
algorithm was applied to make classification rules. The results are shown in
figure 5, where 10 rules are made for the microarray data set and 24 rules are
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made for the phylogenetic profiles. We can confirm that 6 out of 10 samples are
applied in making EP of the microarray data and all 24 observations are applied
to the classification rules for making EP of the phylogenetic profiles data.

Fig. 5. Emerging patterns of microarray data and phylogenetic profiles

The results in figure 5 can be interpreted as follows: The EP in the 7th line
are in the form exp(dtt) ≥ 1.12

∧
exp(cold) ≤ 0.585, and this means that the

variables with dtt gene expression levels greater than 1.12 and cold values less
than 0.585 for ′dtt′ observation in the entire microarray data set can classify
the ′dtt′ observations in the entire microarray data set. Also, these EP can be
considered as classifiers that can be classified among other observations in the
microarray data set. The alpha in the last line of the EP of the microarray data
shows that the genes that can explain the ′alpha′ observation are those that do
not correspond to any of the above rules. The results of the phylogenetic profile
can be interpreted in the same way, where the EP of the first line is in the form
of phylo(cpneu) > 1.1

∧
phylo(tpal) ≤ 1.09, and this becomes the classifier that

can classify the ′cpneu′ observation in the phylogenetic profile data set.
Validation results of the EP, as to how accurately they can classify the two

types of data sets, show that accuracy is 86.76% and 97.79% for microarray data
and phylogenetic profile data, respectively. The relatively low accuracy for the
microarray data set could be explained by the reduction of 79 time points to 10
observations before the start of the experiment.
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5 Conclusions and Future Works

Typical bio-data analysis methods deal directly with genes while ignoring bio-
logical attributes, but since the interaction among genes plays an important role
in bio-data analysis, new methods must be developed. Also, multi-source data
classification and analysis problems are much more complex and have more fac-
tors to be considered than single-source data problems. When handling bio-data,
disparate types of multi-source data can be made based on the same variables,
and we are in need of classifiers that can classify the data sets and methods to
easily understand the features of the data sets. Therefore, this paper proposes
a new method that considers the characteristics of bio-data, and while existing
methods ignore biological attributes and analyze only the genes, the proposed
method provides an analysis method based on observations using all variables
from each data set. This method makes EP that take into account the relations
between genes in the data set and the results are applied to the multi-source
data classification. An existing paper introduced a method to map variables to
gene function categories by applying the SVM method using the same data set
in this paper[14]. But the method introduced in the existing paper differs from
the proposed method, which considers both observations and variables, in that
the existing method has no regard of the interaction structure between genes in
the analysis stage, that it is not easy to interpret and that the analysis is done
after variables are removed first by some threshold value in the preprocessing
stage.

The experimental methods introduced in this paper suggest several avenues
that can be taken for future research. One direction would be to find a better
classifier of multi-source data in bio-data. Another direction would be, since only
two biological data types were used for multi-source data classification, to include
multiple biological data types for discovering EP and for extending the proposed
method in multi-source data classification. Also, another important task would
be to come up with a theoretically and experimentally justified verification of
disparate data.
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Abstract. Combination of kernel PLS (KPLS) and kernel SVD (KSVD) with 
minimum-squared-error (MSE) criteria has created new machine learning 
methods for cancer classification and has been successfully applied to seven 
publicly available cancer datasets. Besides the high accuracy of the new 
methods, very fast training speed is also obtained because the matrix inversion 
in the original MSE procedure is avoided. Although the KPLS-MSE and the 
KSVD-MSE methods have equivalent accuracies, the KPLS achieves the same 
results using significantly less but more qualitative components.  

1   Introduction 

Cancer classification based on clinical or histopathological information is subjective 
and requires highly experienced pathologists for interpretation. Recently, the advent 
of DNA microarray and protein mass spectra has enabled us to measure thousands of 
expression levels of genes and mass/charge identities of proteomic patterns 
simultaneously. These gene expression profiles and proteomic patterns can be used to 
classify different types of tumors and there have been a lot of activities in this area of 
cancer classification. Several systematic methods have been applied on these datasets 
and they have successfully predicted different tumor types [1], [2].  

One problem often encountered is that there are a huge number m  (thousands) of 
features but relatively small number n  (a few dozens) of samples or arrays due to the 
high cost of microarray experiment. Therefore, methods which are originally devised 
for conditions when nm <  cannot be directly applied on these datasets. Dimension 
reduction is one of the solutions for this condition and has been successfully applied 
on microarray data by other researchers [3], [4].  

In past years, a number of kernel-based learning algorithms, e.g. support vector 
machines (SVM) [5], kernel principal component analysis (KPCA) [6] and KPLS [7] 
have been proposed. The kernel methods have enabled us to solve nonlinear 
problems. Successful applications of kernel-based algorithms have been reported in 
various fields.  

MSE linear discriminant function builds a classifier by simple matrix pseudo-
inversion and it has received enormous studies in literature [8]. In this paper, we 
combine the techniques of KSVD and KPLS with MSE. New classifiers called KPLS-
MSE and KSVD-MSE are derived and have been validated on seven publicly 
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available cancer datasets. Our baseline method is the SVM which is a very popular 
kernel method in the area of microarray data analysis and has often achieved superior 
performance against the other binary classifiers. The results illustrate that our 
proposed methods are as good as the SVM and require much less training time in the 
“small sample, large gene” condition.  

2   Methods 

2.1   General Framework 

Given a sample x , the linear discriminant function is defined as 0)( wf +⋅= xwx . 

Consider only a two-class classification problem. Then 0)( ≥xf  if ∈x class 1 or else 

0)( <xf  if ∈x class 2. Suppose that we have a set of training samples, 

, , , , 21
m

n R∈xxx and for convenience, let [ ]TnxxxX  , , 21=  and 

] ,[ n1XY = , where n1  represents the n -dimensional vector with all elements equal 

to one. Also, let ],[ 0wTT wa = . The weight vector a  can be estimated from the 

equation  

bYa =  (1) 

where b  represents the n -dimensional vector of class labels. The i th element of b  
can be set to 1 if ∈ix class 1 or –1 if ∈ix class 2. The linear system of (1) is under-

determined if nm >+ )1( , which is the usual case in microarray data analysis. 

Principal components analysis (PCA) [9] and partial least squares (PLS) [10] are two 
popular dimension reduction methods for generating component vectors so that the 
number of variables can be reduced from 1+m  to the number of components p . 

While PCA keeps most variance of the original variable Y , PLS attempts to keep 
most covariance of both variable Y  and class label b . The original variable Y  can 
be written as the dot product of the p  components and the corresponding loadings 

vector is  

RUTY += T
pp  (2) 

where the columns of pU  are the p  loading vectors, the columns of pT  are the p  

score vectors so that ],,,[ 21 pp tttT =  and R  are residuals. The score vectors are 

always assumed to be normalized without influencing the results of classification. 
Now for the discriminant function (1), we have  

baUT =T
pp  (3) 

with residuals R  omitted. aUT
p  can then be calculated by the pseudo-inversion of 

pT  so that  
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bTbTaU T
pp

T
p == +  (4) 

because of the mutual orthogonality of the component vectors of pT . For PLS, the 

algorithm used in this paper produces mutually orthogonal score vectors. Therefore, 
the matrix inversion which occurs in ordinary MSE process is replaced with 
transposition. Now the discriminant function can be formulated as  

bTdaUdy T
p

T
p

T
p

T
pf == )()(  (5) 

where pd  is a length p  vector representing the sample vector y  in the reduced 

dimensional space so that T
pp ddd ],,,[ 21=d . In the training procedure of cross-

validation (CV), because the optimal number of components p  is to be sought, the 

discriminant function is reformulated into the summation of p  items as 

=

=
p

i

T
iip df

1

)( bty  (6) 

 Then the classification results of using different numbers of components can be 
obtained by adding one item after another to the discriminant function sequentially. In 
the following sections, we show how to obtain id  and it  in (6) for both KPLS and 

KPCA.  

2.2   Kernel Partial Least Squares 

PLS is a technique for modeling a linear relationship between a set of input variables 
mn

ii Ry ∈=1}{  and a set of output variables 1{ } .n
i ib R= ∈  Only one-dimensional output is 

considered here. Furthermore, we assume centered input and output variables. Let 
T

n ],,,[ 21 yyyY =  and T
nbbb ],,,[ 21=b . The PLS method finds the weight 

vectors w  and c  so that  
2 2 2

1max [cov( , )] [cov( , )] [cov( , )]= = = =r s Yr bs Yw bc t u  

where t  and u  are score vectors for input vectors Y  and output vector b . After 
obtaining the pair of t  and u , Y  and b  are deflated by t  and the procedure is 
repeated to obtain a new pair of t  and u . This can be iterated until the rank of matrix 
Y . The different forms of deflation correspond to different forms of PLS [11]. The 
SIMPLS [12] algorithm which provides the same solution as PLS1 in the case of one-
dimensional output is used in this paper. The score vectors t  produced by SIMPLS 
are mutually orthogonal.  

Assume a nonlinear transformation of the input variables n
ii 1}{ =y  into a feature 

space F ; i.e. mapping FR i
m

i ∈Φ→∈Φ )(: yy . The goal of the kernel PLS method 

is to construct a linear PLS model in F . Therefore, we effectively obtain a nonlinear 
KPLS in the space of the original input variables. Denote by  an mn ′×  matrix of 
input variables whose i th row is the vector )( iyΦ . m′  is the dimension of )( iyΦ  
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and it could be infinite if the Gaussian kernel is used. The linear SIMPLS method can 
be written in the feature space F  as 

,  1T= →t b t  (7) 

)( tbbu T=  (8) 

where t  is also called the PLS components. Then the deflation rule is given by 

)(tt T−←  (9) 

)( bttbb T−←  (10) 

Instead of explicitly mapping the input data, the “kernel trick” is used resulting in  
TK =  

where K  represents the kernel Gram matrix of the dot products between all feature 

data points n
ii 1)}({ =Φ y ; that is  

),K()()( jijiij yyyyK =⋅=  

where K  is a selected kernel function. K  is now directly used in the deflation 
instead of  as follows [7]: 

)()( T
n

T
n ttIKttIK −−←  (11) 

where nI  is an n -dimensional identity matrix. The assumption of zero means of the 

variables of Y  in linear PLS should also be held in kernel PLS. To centralize the 
mapped data in a feature space F , the following procedure must be applied [6]: 

)
1

()
1

( T
nnn

T
nnn nn

11IK11IK −−←  (12) 

where n1  is a 1×n  vector with all elements equal to one. Let ]   [ 21 ptttT = , 

]   [ 21 puuuU =  and p  is the number of score vectors. Finally, the projection of 

test samples [7] into the feature space is given by 

1)( −= KUTUKT T
dd  (13) 

where dK  is the test set kernel Gram matrix. KUTT  is an upper triangular matrix 

and thus invertible. dK  should also be centered as  

)
1

)(
1

( T
nnn

T
nndd nn t

11IK11KK −−←  (14) 

2.3   Kernel Principal Components Analysis 

Singular value decomposition (SVD) [9] is used to implement PCA in this paper. 
According to the definition of SVD, the input variables  in the feature space F  can 
be decomposed as  
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TT UST=  (15) 

because nm >>′ . US  are loading vectors and T  are score vectors. The classical 

solution for SVD is to compute T  as the eigenvectors of T  because  

2TST =T  (16) 

where 2S  is a diagonal matrix with its elements being the eigenvalues. The kernel 

Gram matrix K  is also used to substitute T . The projection of test samples is  

2−= TSKT dt  (17) 

where dK  is again the test set kernel Gram matrix. 

2.4   Objective Functions and Training Speed 

The KPLS and KSVD based MSE procedure aims to find a weight vector T
p p=r U a  

so that the objective function 
2

M p pJ = −T r b  is minimized. The solution of the 

weight vectors can easily be obtained even without the pseudoinversion of data matrix 
by (4). Therefore, the training speeds of KPLS-MSE and KSVD-MSE are very fast 
and only depend on the size of kernel matrix K . However, the SVM training aims to 

find a weight vector w  so that the cost function +=
i

iS CJ ξ2

2

1
w  is minimized 

with a few other constraints satisfied, where iξ  are errors caused by the support 

vectors and C  is the regularization parameter. The solution of SVM involves the 
quadratic programming problem and the training time depends on the number of 
support vectors. Therefore, SVM is usually slower than the MSE especially when 
classes are overlapped, originating many support vectors.  

3   Results 

3.1   Classifiers Accuracy 

Seven datasets from [13] were chosen to test the classification accuracies of the 
KPLS-MSE and the KSVD-MSE. See Table 1 for a brief description of the datasets. 
As a comparison, SVM of which the implementation is a MATLAB toolbox [14] was 

also used. A Gaussian kernel )2exp()K( 22 σyxyx, −−=  was used for our 

experiments because of its flexibility. Due to the small sizes of the microarray data, 
the re-sampling technique was used. The original datasets were randomly separated 
into a training dataset and a testing dataset. The classifier was built on the training 
dataset and then tested on the testing dataset. This process can be repeated for many  
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times to obtain a stable estimate of the testing errors. Therefore, the evaluation of the 
three classifiers was designed as follows:  

• The numbers of training samples and testing samples were fixed (see Table 1) and 
then 30 random partitions were carried out.  

• For each partition, the optimal parameters for each classifier, including 
regularization parameter, number of components and kernel parameter σ , were 
first determined by 10-fold CV. Then the classifiers were built on the training 
dataset and tested on the testing dataset. The testing errors were recorded.  

• Average testing errors with its standard deviations were calculated.  
• The performance of the three classifiers on all the datasets was evaluated.  

Table 1. Description of the datasets 

Dataset Genes Partition Setting 
Breast Cancer 24481 40 training vs. 57 testing 
Central Nervous System 7129 30 training vs. 30 testing 
Colon Tumor 2000 40 training vs. 22 testing 
Acute Leukemia 7129 36 training vs. 36 testing 
Lung Cancer 12533 50 training vs. 131 testing 
Ovarian Cancer 15154 50 training vs. 203 testing 
Prostate Cancer 12600 50 training vs. 86 testing 

To test whether a classifier is statistically more accurate than another classifier on a 
particular dataset, the T test between the means of the testing errors of the two 
classifiers is employed as follows:  

2

2
2

1

2
1

21

nn

T
σσ

μμ

+

−
=  

(18) 

where 2121 ,,, σσμμ  are means and standard deviations of the testing errors of the 

two classifiers, and 21,nn  are the numbers of partitions carried out by the two 

classifiers. The significance level for all tests was set to be 05.0=α . 
The testing results are listed in Table 2. Very good performance is observed for the 

KPLS-MSE and the KSVD-MSE classifiers. The minimum average testing errors 
have been achieved by the KPLS-MSE on two datasets and by the KSVD-MSE on 
three datasets. The null hypothesis is rejected on the first five datasets between one or 
two classifiers and the best classifier. Nevertheless, for the last two datasets, the null 
hypothesis still holds. The classification performance of KPLS-MSE and KSVD-MSE 
are very similar with the SVM.  



 Nonlinear Kernel MSE Methods for Cancer Classification 981 

 

Table 2. The number of average testing errors with its standard deviation of KPLS-MSE, 
KSVD-MSE and SVM on 7 datasets and the number of average components used for KPLS 
and SVD. The best results are indicated in bold font 

Testing Errors 
σμ,  

Components Used Dataset 

PLS PCA SVM PLS PCA 
Breast Cancer 20.9, 3.9 22, 3.5 23.7, 3.7 3.3 9.2 
Central Nervous System 12.6, 3.5 10.4, 2.6 11.6, 3.1 3.7 10.8 
Colon Tumor 5.3, 2.0 4.5, 1.9 5.2, 2.4 3.3 8.1 
Acute Leukemia 3.3, 2.0 3.7, 2.0 2.9, 2.7 2.7 11.6 
Lung Cancer 6.8, 5.5 8.9, 5.2 5.0, 4.8 2.8 20.2 
Ovarian Cancer 21.4, 10.2 20.1, 12.1 22.9, 6.4 4.6 10.2 
Prostate Cancer 28.3, 10.0 30.1, 5.8 28.9, 7.5 6.7 17.1 

3.2   Components Selection 

The selection of KPLS components and KSVD components is based on minimum 
validation errors using CV. The number of components used is gradually increased 
and an optimal number of components is determined to avoid overfitting or 
underfitting of the training data. KPLS generates components based on the covariance 
of the predictor variables and the response variables while KSVD generates 
components only based on the variance of the predictor variables. Therefore, KPLS 
should produce more qualitative components than KSVD and thus fewer components 
are required by KPLS to achieve the optimal result. This condition is illustrated in 
Fig. 1. Ten-fold CV is carried out and the validation errors are obtained by KPLS-
MSE and KSVD-MSE on the lung cancer data. KPLS-MSE achieves the optimal 
result by 4 components while KSVD-MSE needs around 20 components.  

 

Fig. 1. Average training errors of KPLS-MSE and KSVD-MSE vs. components used on lung 
cancer data. Ten partitions were carried out. 
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3.3   Training Speed 

In some other authors' research work, feature selection is performed by recursively 
training a classifier on a series of nested subsets of genes on a particular cancer 
dataset [15]. Therefore, it is very important to know the training time of a certain 
classifier on a certain dataset. A five-fold CV to determine the validation errors of a 
classifier is carried out on the above seven datasets including all genes and samples. 
For SVM, linear kernel is used and the regularization parameter C  is constrained to 
one. For KPLS-MSE and KSVD-MSE, the validation errors for different numbers of 
components can be obtained in a single run simultaneously. The results are listed in 
Table 3. The KPLS-MSE and KSVD-MSE cost significantly less training time than 
SVM on all the datasets. If the optimal C  for SVM is to be chosen by CV, then much 
more training time is required. KPLS-MSE and KSVD-MSE spend almost the same 
time for training.  

Table 3. The training time of the three classifiers to determine the minimum training errors by 
five-fold CV on the seven cancer datasets  

Dataset PLS (s) SVD (s) SVM (s) 
Breast Cancer 2.10 2.09 16.67 
Central Nervous System 0.29 0.29 2.24 
Colon Tumor 0.12 0.12 2.42 
Acute Leukemia 0.37 0.37 3.32 
Lung Cancer 2.87 2.99 12.00 
Ovarian Cancer 6.30 6.73 50.72 
Prostate Cancer 1.77 1.81 15.68 

 

Fig. 2. The training time of KPLS-MSE, KSVD-MSE and SVM on the ovarian cancer dataset 
versus the number of genes 

Another study to determine the impact of the number of genes on the training time 
of a classifier is also carried out on the ovarian cancer dataset. By increasing the gene 
number from 1,000 to 15,000, the slope of the training time of a classifier versus the 
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numbers of genes is calculated by least squares regression. The slopes of KPLS-MSE 

and KSVD-MSE are known as 3102.0 −×  but the slope of SVM is as large as 
3108.1 −×  (see Fig. 2). Thus KPLS-MSE and KSVD-MSE cost much less time (one 

ninth) than SVM as the number of genes increases.  

4   Discussions and Conclusions 

The combination of KPLS and KSVD with MSE has created two very effective 
classifiers for cancer classification using gene expression profiles. The KPLS-MSE 
and KSVD-MSE have been validated on seven publicly available cancer datasets and 
very high accuracy has been achieved. Because of the orthogonality of component 
vectors, no matrix inversion is involved in constructing the discriminant function. 
Thus, both classifiers have very fast training speed compared with the other pattern 
classification algorithms. Because KPLS generates more qualitative components than 
KSVD, KPLS-MSE always uses less component vectors for classification.  

One of the main characteristics of the microarray data is nm >> . So high 
multicollinearity exists among the gene expression profiles, which is illustrated by the 
relatively small number of components we have extracted for classification. Due to 
the high cost of microarray experiments, the publicly available microarray samples 
are relatively few. Testing a classifier on a very small dataset could incur very large 
bias from the actual accuracy of the classifier. Thus, the random partition method 
used in this paper is a good approach for evaluation and comparison of the average 
performance of the classifiers. We have used the KPLS-MSE and the KSVD-MSE to 
get very similar results using the same training and testing datasets. Comparing the 
results of the well-established SVM method, our methods are very good and 
competitive.  

In such a very high dimensional datasets with relatively small numbers of samples, 
all classification algorithms suffer from the "curse of dimensionality" even those have 
the ability to handle the data when nm >  and all of them can benefit from feature 
selection [15]. Therefore, the fast training speeds of KPLS-MSE and KSVD-MSE 
should be profitable under this condition.  
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Abstract. Biometric based person identity authentication is gaining more and 
more attention. It has been proved that combining multi-biometric modalities 
enables to achieve better performance than single modality. This paper fused 
Face and fingerprint (for one identity, face and fingerprint are from the really 
same person) for person identity authentication, and Support Vector Machine 
(SVM) is adopted as the fusion strategy. Performances of three SVMs based on 
three different kernel functions (Polynomial, Radial Based Function and Hy-
perbolic Tangent) are given out and analyzed in detail. Three different protocols 
are defined and operated on different data sets. In order to enhance the ability to 
bear face with bigger pose angle, a client specific SVM classifier is brought 
forward. Experiment results proved that it can improve the fusion authentication 
accuracy, and consequently expand the allowable range of face turning degree 
to some extend in fusion system also. 

1   Introduction 

A biometric person recognition system can be used for two modes: identification and 
authentication (or verification). In the identification mode, there is no identity claim 
from the user. The system should decide who the person is. In the authentication 
mode, a person claims a certain identity, the system should accept or reject this claim, 
(the person is really who he claim to be?) [1]. So identification mode involves compar-
ing the acquired biometric information against templates corresponding to all the 
users in the database (one-to-all), but the authentication mode involves comparison 
with only those templates corresponding to the claimed identity (one-to-one) [2]. In 
this paper, we will only focus on the issue of biometric identity authentication. Obvi-
ously, the identity authentication problem is a typically binary classification problem, 
i.e. accept (genuine) or reject (imposter). SVM is well known as a two-class problem 
classifier with high performance [3,4]. So, in this paper, we adopted SVM as the fusion 
strategy of the face and fingerprint identity authentication system.  

In multimodal biometrics system, the information can be integrated at various lev-
els. A. K. Jain had given an illustration of three levels of fusion when combining two 
or more biometric systems in reference[5]. The three levels are: the feature extraction 
level, the matching score level and the decision level. Information fusion based on 
SVM is operated on the matching score level in this paper, and the experiment results 
are given out and analyzed in detail in the following sections.   
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The identity authentication problem can be formulated as a hypothesis testing 
problem where the two hypotheses are 

1ω : the person is not from the same identity;  

2ω : the person is from the same identity.  

For an acquired personUq , the authentication system should decide the person is 

an impostor or genuine. The decisions are 

1D : the person is an impostor;  

2D  the person is genuine. 

With the hypothesis and decisions above we have the false acceptance 
rate:

2 1( )FAR P D ω= , the false rejection rate: 
1 2( )FRR P D ω= , and the 

genuine acceptance rate: 1GAR FRR= − , the equal error rate (EER) is where 
FAR=FRR. In this paper, we attach much importance to FAR than to FRR. 

If 1x  and 2x  are the outputs of the component classifiers, then 

Assign jUq ω→  if  

2

1 2 1 2
1

( , ) max ( , ), 1, 2j k
k

P x x P x x jω ω
=

= =  (1) 

Where the 1 2( , )kP x xω represents the posteriori of kω  given 1x and 2x . 

The remainder of this paper is organized as follows. The performance of face and 
fingerprint authentication system are described in section 2 and 3. The SVM fusion 
methods and experiment results are presented and analyzed in section 4. Finally we 
give out the main conclusions and future work in section 5. 

2   Face Authentication 

Face authentication involves face detection, feature extraction, feature matching proc-
ess and decision making. In this paper, we use an automatic method for face detection 
and for eye and chin orientation [6], and adopted multimodal part face recognition 
method based on principal component analysis (MMP-PCA) to extract feature set [7]. 
The experiment face images are from the TH (Tsinghua University, China) Database. 
The TH database contains 270 subjects and 20 face images per subject with every 
other 5 degree turning from the front face to left (-) or right (+), and 10 fingerprint 
images from 2 different fingers with 5 images each. In our experiment, 186 subjects 
were selected for fusion of face and fingerprint authentication. We selected 13 face 
images and 5 fingerprint images for each subject. For face images, the first one, which 
is the one with zero turning degree, was selected as template, and the other 12 images 
as probes. Fig.1 shows the face and fingerprint images in TH database. Table 1 shows 
the training and testing protocols, the genuine and impostor match numbers. Protocol 
1(P1), 2(P2) and 3(P3) are different from the training sets, +5 and +10 degree for P1, -
5 and -10 degree for P2, ±5 and ±10 degree for P3. For training face images in P1 and 
P2, we have 2 genuine match scores per subject, together 2×186 match scores con-
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structing the training genuine distribution, and 2×185×186 impostor match scores 
constructing the training impostor distribution. Obviously every testing face sets has 
the same number. From table 1, we can see that each protocol of P1 and P2 has 1 
training set and 5 testing sets (Te1~Te5). For P3, Te1 set of P1 or P2 was used for 
training, so the training set of P3 has 4×186 genuine match scores and 4×185×186 
impostor match scores, and the testing sets (Te2~Te5) are same as sets in P1 and P2. 

 
                                                                    0                  1                 2                  3               4 

 
                                       5                6                   7                  8                 9                  10               11               12 

 
                                              0                 1                   2                     3                  4 

Fig. 1. Samples of Face and Fingerprint Images in the TH Database 

Table 1.  Authentication Protocols 

 Template Probes 
SN 0 1 2 3 4 5, 6 7, 8 9, 10 11, 12 

Degree 0 -5 +5 -10 +10 ±15 ±20 ±25 ±30 
Protocol 1 (P1) Te1 Tr Te1 Tr Te2 Te3 Te4 Te5 
Protocol 2 (P2) Tr Te1 Tr Te1 Te2 Te3 Te4 Te5 
Protocol 3 (P3) Tr Tr Tr Tr Te2 Te3 Te4 Te5 

Number of genuine match 186 186 186 186 2×186 2×186 2×186 2×186 

Face 

Number of impostor match 185×
186 

185×
186 

185×
186 

185×
186 

2×185
×186

2×185 
×186

2×185 
×186 

2×185 
×186 

Set Fusion 
with  Template Probes 

A Tr, Te1 0 1 2 3 4 
B Te2,Te3 1 0 2 3 4 

Finger
print 

C Te4,Te5 

S
N 

2 0 1 3 4 

 

 

Fig. 2. Face Matching Similarity Distributing             Fig. 3. FAR and FRR Curves of Face                   
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Fig.2 shows face distributing of genuine and impostor match similarity (%) of Tr 
data set of P3 (Note that the following figures relate to face and fusion systems are all 
from this set except indicate). It is obvious that the genuine and impostor overlapped 
each other, and the decision errors are unavoidable. FAR and FRR curves of face 
authentication system are presented in Fig.3, EER is 0.044 when authentication 
threshold is 77%.  

3   Fingerprint Authentication 

In the Fingerprint authentication system, we use an automatic algorithm to locate the 
core point and extracted the local structure (direction, position relationship with the 
neighbor minutiaes) and global structure (position in the whole fingerprint) of all the 
minutiaes [8]. The matching algorithm used local and also global structures of every 
minutia. Fig.4(a) shows a sample in the TH fingerprint database, the core, the first 
orientation and minutiae points are presented on it and (b) shows the extracted ridge 
and minutiae points. 

                            

(a) Fingerprint and Its Minutiaes      (b) The Ridge and Minutiaes 

Fig. 4. Sample in the TH Fingerprint Database 

             

Fig. 5. Fingerprint Match Similarity Distributing   Fig. 6. FAR and FRR Curves of Fingerprint 

 
For fingerprint images, we selected 5 images from one finger. Table 1 shows the 

fingerprint protocol. One was selected to be template and the other four leaved to be 
probes. As to fusion with face, three data sets are built, i.e. A, B and C. Data in each 
set was used to generate 4×186 genuine match scores and 4×185×186 impostor match 
scores. Fig.5 shows fingerprint distributing of genuine and impostor match similarity 
(%) on data set A. FAR and FRR curves of fingerprint authentication system was 
presented in Fig.6. EER is 0.0107 when threshold is 18%. See Fig.6, FAR and FRR 
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curves intersect and form a flatter vale, which predicate the range of threshold with 
respect to smaller FAR and FRR is larger, and the point of intersection is nearer to the 
x-axis, so the EER is smaller, both compared with face authentication in Fig.3. As a 
result, the authentication accuracy and robustness of fingerprint outperforms face 
authentication system obviously. In the next section, we will see fusion systems pre-
sent a rather better performance than either of face and fingerprint system. 

4   Fusion of Face and Fingerprint Authentication 

As to fuse face and fingerprint authentication systems, a confidence vector 

1 2( , )X x x represents the confidence output of multiple authentication systems was 

constructed, where 1x and 2x  correspond to the similarity (score) obtained from the 

face and fingerprint authentication system respectively. Further more, for multi-
biometric modalities more than 2, the problem turns to be N dimensional score vector 

1 2( , , )NX x x xL  separated into two classes, genuine or impostor. In other words, 

the identity authentication problem is always a two-class problem in spite of any num-
ber of biometrics. 

4.1   Support Vector Machine 

Support vector machine (SVM) is based on the principle of structural risk minimiza-
tion. It aims not only to classifies correctly all the training vectors, but also to maxi-
mize the margin from both classes. The optimal hyperplane classifier of a SVM is 
unique, so the generalization performance of SVM is better than other methods that 
possible lead to local minimum [3,4]. In reference [9], SVM was compared with other 
fusion methods, and its performance was the best. And in this paper, we pay attention 
to the performance of SVM with different protocols and on different data sets. The 
detailed principle of SVM is not showed in this paper, and it can be seen in reference 
[3]. And three kernel functions of SVM are used in our study, they are: 

Polynomials: ( , ) ( 1) , 0T dK x z x z d= + >  (2) 

    Radial Basis Functions: 
2

( , ) exp( )K x z g x z= − −  (3) 

Hyperbolic Tangent: ( , ) tanh( )TK x z x zβ γ= +  (4) 

4.2   Experiment Results 

4.2.1   Performance of SVMs Based on Different Kernel Functions 
In order to test the performances of SVMs based on three kernel functions mentioned 
above, protocol 3 was selected. And the results can be seen at the following figures.     
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Fig.7 shows different SVMs with different parameters separating genuine and impos-
tor of Tr data set of P3 before normalization. We can see that three SVMs can all 
separate the two classes correctly. Their performances are similar; however, the num-
ber of support vectors and the difficulty to adjust parameters of kernel function are 
different. In our experiment, the SVM-Pnm is easier to be trained than SVM-RBF and 
SVM-Tanh; the latter two need more patience during training period. 

 

(a) SVM-Pnm                             (b) SVM-RBF                           (c) SVM-Tanh 

Fig. 7. SVM Classification Results 

 

(a) SVM-Pnm                             (b) SVM-RBF                          (c) SVM-Tanh 

Fig. 8. SVM Performance with Different Parameters. (FA+FR—false accepted and false re-
jected number by classifier (18) on Tr data set of P3). 

Fig.8 presents different parameters resulting in different number of support vectors 
and different performances. For Pnm and Tanh kernel, the number of SV is invariable 
when parameter changed, unlike the former two, the SV number of RBF kernel is 
fluctuant. The false accepted and rejected number are wavy along with the parameter 
changing expect the Tanh kernel. 

The ROC curves of three SVMs are showed in Fig.9(a). From the ROC curves, we 
can see that Tanh kernel outperforms the other two, the Pnm is middling and RBF is a 
shade worse. Notice that the computational complexity of SVM is independent of the 
dimensionality of the kernel space where the input feature space is mapped. And the 
high computational burden is required both in training and testing phase. Fortunately, 
in our experiments, only a relatively small number of training data is enough. Just 
those points near to the support vectors or near to the hyperplane are inputted into 
SVM, of course, the hyperplane was not known at beginning, so just estimated it. 
From Fig.8, we see that the SV numbers of the three kernels are all no more than 10, 
so the computation quantum is not large during testing phase too.  
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                         (a)                                              (b)                                              (c) 

Fig. 9. (a) is SVM ROC Curves.  (b) is SVM-Pnm Result Distributing  (c) is FAR and FRR 
Curves of SVM-Pnm. 

Fusion score distributing and FAR and FRR curves of SVM-Pnm (d=2) are showed 
in Fig.9(b) and (c). See (c), FAR and FRR curves intersect and form a very flat and 
broad vale (EER is 0.0011), this means that for a large region of threshold value in 
which the FAR and FRR are both very small. Accordingly, not the accuracy but the 
robustness of the authentication system are both improved after fusion with SVM. 

4.2.2   Performance Under Three Different Protocols 
In order to test the performance of SVM under different training data, we defined 
three protocols, as mentioned in section 2, see table 1. Fig.10 shows the three hyper-
planes gained by SVM-Pnm after trained with different data sets. The authentication 
performances of the three hyperplanes are presented in table 2. From the results, we 
can see that the three hyperplanes are very similar and their performances are com-
petitive. P3 is a shade better than the other two by reason of more training data. This 
stable characteristic of SVM’s hyperplane is very grateful in applications. Further-
more, this result also proved the good generalization ability of SVM. Under P3, au-
thentication performances of three SVMs on each data set are presented in table 3. 

 

 

Fig. 10. Different Hyperplanes of SVM-Pnm under Different Protocols 
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Table 2. SVM-Pnm (d=2) Performances under Different Protocols. Note: for FAR and FRR 
column, the up value in bracket is the false accepted or false rejected number, under the number 
is the false rate. 

Protocol P1 P2 P3 
SV num 4 4 4 

FR 
Degree FAR FRR FAR FRR FAR FRR 

+5,+10 
(0), 

0.0000 
(3), 

0.0081 
(1), 

1.4531e-5
(4), 

0.0108 
(1), 

1.4531e-5
(3), 

0.0081 

-5,-10 
(0), 

0.0000 
(3), 

0.0081 
(0), 

0.000 
(2), 

0.0054 
(0), 

0.000 
(2), 

0.0054 

±15 
(0), 

0.0000 
(2), 

0.0054 
(0), 

0.0000 
(1), 

0.0027 
(0), 

0.0000 
(1), 

0.0027 

±20 
(0), 

0.0000 
(9), 

0.0242 
(0), 

0.0000 
(9), 

0.0242 
(0), 

0.0000 
(7), 

0.0188 

+25 
(0), 

0.0000 
(16), 

0.0430 
(0), 

0.0000 
(16), 

0.0430 
(0), 

0.0000 
(14), 

0.0376 

±30 
(0), 

0.0000 
(17), 

0.0457 
(0), 

0.0000 
(17), 

0.0457 
(0), 

0.0000 
(17), 

0.0457 

Table 3. Performances of Three SVMs on Each Data Set under P3 

Pnm RBF Tanh FR 
Set FAR FRR FAR FRR FAR FRR 

Tr (1),  
7.265e-6 

(5), 
 0.0067 

(2), 
 1.453e-5 

(5), 
 0.0067 

(1), 
 7.265e-6 

(5), 
 0.0067 

Te2 (0), 
0.0000 

(1), 
0.0027 

(0), 
0.0000 

(1), 
0.0027 

(0), 
0.0000 

(1), 
0.0027 

Te3 (0), 
0.0000 

(7), 
0.0188 

(0), 
0.0000 

(9), 
0.0242 

(0), 
0.0000 

(8), 
0.0215 

Te4 (0), 
0.0000 

(14), 
0.0376 

(0), 
0.0000 

(15), 
0.0403 

(0), 
0.0000 

(16), 
0.0430 

Te5 (0), 
0.0000 

(17), 
0.0457 

(0), 
0.0000 

(16), 
0.0430 

(0), 
0.0000 

(16), 
0.0430 

4.3   Client Specific SVM Classifier 

From table 2 and 3, we can see that the false rate is increasing with the face turning 
degree getting larger. Since face rotating angle is harmful to fusion system, one hy-
perplane only can hardly adapt to all face with different pose. If we trained a hyper-
plane for every single identity according to itself genuine and impostor distribution 
characteristics, the authentication accuracy would be improved. So client specific 
SVM (CS-SVM) classifier is put forward. Fig.11(a) shows two single identities’ 
genuine and impostor (genuine and impostor plot in RGB three colors, which repre-
sent ±5~±10, ±15~±20 and ±25~30 three data sets) scatter plot in 2D place which 
classified by two SVMs, and that the blue solid hyperplane is the common SVM, the 
red dash-dot one is CS-SVM. Obviously, the client specific classifier is more reason-
able than the common one. We selected data set with turning degree ±25 and ±30 to 
train CS-SVM, and the others to test in consideration of separating genuine and im-
postor with larger turning degree. The lowest cyan curve marked with “ ” in 
Fig.11(b) shows the performance of CS-SVM. We can see that CS-SVM outperforms 
the other methods. Results proved that CS-SVM can improve the fusion authentica-



 Fusing Face and Fingerprint for Identity Authentication by SVM 993 

tion accuracy, and accordingly, expand the range of face turning degree to some ex-
tend also. But one disadvantage of CS-SVM is that more memory required for storing 
the SVM classifier parameters for every identity, off course, the training burden is 
heavier than common SVM also. 

 

(a) Hyperplanes of Common and CS-SVMs              (b) False Rejected Number Curves 

Fig. 11. (a) Hyperplanes of Common and CS-SVMs. (b) False Rejected Number Curves of 
Three SVMs and Fingerprint Authentication Systems.  

5   Conclusion  

This paper fuses face and fingerprint for identity authentication by SVM. Differing 
from some other researches on multi-biometric fusion system, face and fingerprint for 
one identity are really from the same person other than just let face partnering with 
fingerprint from other person. Hence, fusion results gained in this paper are closer to 
practical applications.  

Because identity authentication is a two-class problem, so SVM is adopted as the 
fusion strategy. The performance of SVMs with different kernel functions, different 
test protocols and different test data sets is given out and analyzed in detail. And a 
client specific SVM classifier is brought forward to verify genuine and impostor for 
every identity. From experiment results mentioned above, we can draw the following 
conclusions.  

SVM fusion strategy is effective in face and fingerprint fusion system. And the 
EER is decreased to 0.0011(face is 0.044 and fingerprint is 0.0107). ROC curve of 
SVM shows that, not the accuracy but the robustness of the authentication system are 
both improved after fused with SVM.  

Performances of the three SVMs based on different kernel functions are similar, 
despite different number of support vector. SVM-Pnm is easier to be trained than 
SVM-RBF and SVM-Tanh; the latter two need more time to adjust the parameters 
during training period. All-around, SVM-Pnm and SVM-Tanh is a shade of better 
than SVM-RBF.  

We defined three protocols with different training data sets. Results showed that 
SVM performances under three protocols are very competitive. P3 is a shade better 
than the other two by reason of more training data. On the other hand, this result also 
proved the good generalization ability of SVM. 
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CS-SVM classifier outperforms the common SVM. Result proved that it can im-
prove the fusion authentication accuracy, and also expand the range of face turning 
degree to some extend.  
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Abstract. In this paper, a new multi-modality medical image fusion algorithm 
based on pulse-coupled neural networks (PCNN) is presented. Firstly a 
multi-scale decomposition on each source image is performed, and then the 
PCNN is used to combine these decomposition coefficients. Finally an inverse 
multi-scale transform is taken upon the new fused coefficients to reconstruct 
fusion image. The new algorithm utilizes the global feature of source images 
because the PCNN has the global couple and pulse synchronization 
characteristics. Series of experiments are performed about multi-modality 
medical images fusion such as CT/MRI, CT/SPECT, MRI/PET, etc. The 
experimental results show that the new algorithm is very effective and provides a 
good performance in fusing multi-modality medical images. 

1   Introduction 

Along with the development of medical imaging technology, various imaging modals 
such as CT, MRI, PET and SPECT are widely applied in clinical diagnosis and therapy. 
Owing to difference in imaging mechanisms and high complexity of human histology, 
medical images of different modals provide a variety of non-overlapped and 
complementary information about human body. These different images have their 
respective application ranges. For example, functional image (PET, SPECT, etc.) has 
relative low spatial resolution, but it provides functional information about visceral 
metabolism and blood circulation; while anatomical image (CT, MRI, B-mode 
ultrasonic, etc.) provide information about visceral anatomy with relative high spatial 
resolution. Multi-modality medical image fusion is to combine complementary medical 
image information of various modals into one image, so as to provides far more 
comprehensive information and improves reliability of clinical diagnosis and  
therapy [1]. 

The pulse-coupled neural networks (PCNN), as a novel artificial neural network 
model, is different from traditional neural networks. PCNN models have biological 
background and are based on the experimental observations of synchronous pulse 
bursts in cat and monkey visual cortex [2]. Due to this, PCNN has been efficiently 
applied to image processing field, such as image segmentation, image restoration, 
image recognition, etc. In this paper, we put forward a new algorithm of multi-modality 
medical image fusion based on PCNN. Firstly we use discrete wavelet frame (DWF) to 
decompose the original images into a series of frequency channels, and then we use 
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PCNN to combine the different features and details at multiple decomposition levels 
and in multi-frequency bands, which is suitable for the human vision system. Finally an 
inverse DWF transform is taken upon the new fused coefficients to reconstruct fusion 
image. Compared with some other existing methods for multi-modality medical image 
fusion purpose, the new algorithm combines the multi-resolution analysis characteristic 
with the global couple and pulse synchronization characteristics of PCNN, which can 
extract abundant information from source images. Series of experiments are performed 
about multi-modality medical images fusion such as CT/MRI, MRI/PET, etc. The 
experimental results show that the new algorithm is very effective and provides a good 
performance in merging multi-modality images. 

This paper is organized as follows. In section 2, a brief review of the PCNN theory is 
introduced first, and then the new fusion algorithm based on PCNN is described in 
detail. In section 3, results of computer simulations of fusion images are shown. 
Meanwhile, compared with three other existing methods in reference [3~5], the new 
algorithm has been proved to be very effective and provide a better performance in 
fusing multi-modality medical images. 

2   Image Fusion Algorithm Based on PCNN 

2.1   PCNN Basic Model 

A PCNN’s model neuron consists of three parts: the receptive field, the modulation 
field, and the pulse generator. The model is shown in Fig.1 

 

Fig. 1. Internal structure of a single neuron in PCNN 

The neuron receives input signals from other neurons and from external sources 
through the receptive field. Then input signals are divided into two channels. One 
channel is feeding input Fj, and the other is linking input Lj. Ij and Jj are external inputs; 
Mkj and Wkj are the synaptic gain strengths; kj

F and kj
L are the decay constants. The 

total internal activity Uj is the result of modulation. j is the linking strength. Yj is the 
output of neuron. The threshold j changes with the variation of the neuron’s output 
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pulse. j
T and j

T are the amplitude gain and the time constant of the threshold adjuster. 
The mathematic models of PCNN are described as: 
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(1) 

Where “ ⊗ ” denotes convolution operation. The PCNN used for image processing 
applications is a single layer two-dimensional array of laterally linked pulse coupled 
neurons. The number of neurons in the network is equal to the number of pixels in the 
input image. There exists a one-to-one correspondence between the image pixels and 
network neurons. Each pixel is connected to a unique neuron and each neuron is 
connected with the surrounding neurons. Pulse based synchronization is the key 
characteristic that distinguishes the PCNN from other types of neural networks. The 
linking connections cause neurons, in close proximity and with related characteristics, 
to pulse in synchronization. 

2.2   Fusion Algorithm Description 

The multi-scale decomposition principle of image is the same as that of retina. In this 
paper, the multi-scale decomposition and the PCNN are combined to give a new fusion 
algorithm. The fusion scheme is shown in Fig.2.  

 

Fig. 2. The image fusion scheme based on PCNN 

Supposing that I1 and I2 denote the two original images with the same size M×N. 
They are both accurately registered. F is the fused image. The new fusion algorithm is 
described as followed: 

(1). The DWF decomposition can be continuously applied to the I1 and I2 until the 
desired coarser resolution 2-J (J>0). Then we can obtain one low-frequency 
approximation sub-image and a series of high-frequency detail sub-images: 
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,
2 kIA J− ,1

2 kID j ,2

2 kID j ,3

2 kID j  )2,1,1( =−≤≤− kjJ  (2) 

In each decomposition stage, due to DWF using dilated analysis filters, each 
sub-image has the same size with the original images. 

(2). Designing a corresponding PCNN with the size M×N for each sub-image. The 
pixel’s intensity of each sub-image is used as the feeding input Fij

k of the corresponding 
PCNN neuron. Meanwhile, each neuron which is connected with neurons in the 
nearest-neighbor 3×3 (or 5×5) field. The sum of responses of the output pulses from 
surrounding neurons is the linking input. 

(3). A simplified discrete model based on equation (1) is used for PCNN fusion 
network. Each neuron’s output Yij

k is computed by equation (3)~(7): 
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Where k denotes the different low-frequency and high-frequency sub-images. r is 
the linking radius. 

(4). Use Nij
k denotes the total pulse number of the (i,j)th neuron at the kth PCNN of 

during n iterations, then we can get, 
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(5). Suppose that Np is the total number of iterations, we can utilize the total pulse 
number of the (i,j) neuron after Np iterations as the decision basis to select coefficients 
of fusion sub-image. The fused coefficients can be decided as follow: 
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Then the new fused coefficients are obtained. 
(6). Reconstruct image upon new fused coefficients matrix of each sub-image, and 

the fused image F is obtained by taking an inverse DWF transform. 

During image fusion, the most important thing for improving fusion quality is the 
selection of parameters of PCNN. In simplified PCNN model, the parameters required 
to be adjusted are L, , W, VL and . Since the new algorithm uses the number of 
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output pulses from PCNN’s neuron as the basis to select multi-scale decomposition 
coefficients, the total iteration times Np can be determined by using image’s entropy. 
The greater the image’s entropy is, the more useful information can be got from source 
images. These can be proved through our experiments. 

3   Experimental Results and Performance Evaluation 

In order to test and verify the correctness and effectiveness of the proposed new method 
in this paper, it is compared with three other existing fusion methods in reference [3~5]. 
Since the useful features in region are usually larger than one pixel, the pixel-by-pixel 
maximum-based method [3] and the fuzzy-rule-based method [4] are not appropriate 
though they are very simple. In some fusion themes, the region-feature-based methods 
[5] are used and obtain the good fusion results, but they have high computation 
complexity and need huge calculation. The new algorithm utilizes the global coupled 
property and pulse synchronization characteristic of the PCNN to take an intelligent 
fusion decision. It can meet the real-time requirement and overcome some 
shortcomings of the existing fusion methods mentioned above. Series of experiments 
are performed about multi-modality medical images fusion such as CT/MRI, 
MRI/PET, etc. A group of the experimental results are shown in Fig.3. 

 

Fig. 3. The experimental results of MRI and PET images fusion 

These multi-modality medical images used in our experiments are downloaded from 
the Whole Brain Atlas of the Harvard University. They have been registered strictly 
before fusion. In Fig.3, (a), (b) are original MRI and PET images and their sizes both 
are 256 256. (c) and (d) are the fused images using the new algorithm presented in 
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this paper. (e), (f) and (g) are the fused images respectively by using the 
Maximum-based, Fuzzy-Rule-based and Region-based fusion methods in Ref. [3~5]. 
Human visual perception can help judge the effects of fusion result using different 
fusion methods.  

In our new algorithm simulation, we use iteration times Np=32 which is the result 
that fusion image has the largest entropy. The size of each PCNN is 256 256. The 
parameter values of PCNN are: L=0.01, =0.1, VL=1.0, V =50, and =0.2. The 
linking range is 3 3 and the convolution kernel is a unit matrix with the size of 3 3. 
The WPF decomposition level is taken from 1 to 5. The experimental results indicate 
that when decomposition level m=2 the fused image has been better than those using 
three other existing fusion methods. With the increase of the decomposition level 
number, the fusion results can be improved step by step. But the increase of the 
decomposition level can cause the computational complexity increase significantly. So 
we should choice the appropriate decomposition level according to actual requirement. 
On the other hand, in our experiments, the selection of parameter values in PCNN is a 
difficult work because there is no efficient approach to select the appropriate parameter 
values. So the fused images in Fig.3 (c) and (d) are not the optimal results. How to 
search the optimal parameter values of PCNN will be the next work in our future 
research. 

To evaluate the fusion image objectively, we choose mutual information (MI) to 
measure the quality of fusion image. The MI is defined as follow: 
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Where PFA and PFB are the joint probability densities. The performance evaluation 
results by using MI criterion are shown in Tab.1. 

Table 1. Performance Evaluation of Fusion Results 

       
 

Maximum 
method 

Fuzzy-rule-based 
method 

Region-based 
method 

New algorithm by 
author 

2 level 5.0011 
MI 3.3118 3.3989 4.2618 

3 level 5.3628 
 

The experimental results in Fig.3 and Tab.1 show that the new method presented in 
this paper can improve the fusion effect significantly. The mutual information values of 
the new algorithm is larger indicating the fused image contains more details and texture 
features. In PCNN, a neuron is connected and coupled with the neighbor neurons to 
form a global coupling network. Strength of the coupling relation between neurons is 
decided by . Just because of the coupling characteristic of PCNN, information 
transfers quickly in the whole network. After one neuron fires, it sends pulse signal to 
the neighbor neurons through . After Np iterations, information is transferred, shared 
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and respondent between neurons sufficiently. So the output pulse of a neuron have 
global characteristic. Using the output of PCNN to make a fusion decision, so the fused 
results are better. 

4   Conclusion 

The novel algorithm of multi-modality medical image fusion based on PCNN is 
presented in this paper. The new algorithm uses DWF to decompose source images into 
a series of frequency channels. Then the PCNN is used to make intelligent decision on 
selecting fusion coefficients according to the number of output pulses from the 
corresponding neuron. Finally the fusion image is obtained by taking an inverse DWF 
transform. The new method utilizes the global coupling property and the synchronous 
pulse burst property of PCNN to extract abundant information from different source 
images. The experimental results show that the new method is very effective and 
provides good performance in fusing multi-modality medical images. 
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Abstract. In this paper, we demonstrate that the machine learning ap-
proach of rule extraction from a trained neural network can be success-
fully applied to SARS-coronavirus cleavage site analysis. The extracted
rules predict cleavage sites better than consensus patterns. Empirical
experiments are also shown.

1 Introduction

The first cases of severe acute respiratory syndrome (SARS) were identified in
Guangdong Province, China in November, 2002 and have spread to Hong Kong,
Singapore, Vietnam, Canada, the USA and several European countries [20]. An
outbreak of a life-threatening disease referred to as SARS has spread to many
countries around the world. By late June 2003, the World Health Organization
(WHO) has recorded more than 8400 cases of SARS and more than 800 SARS-
related deaths, and a global alert for the illness was issued due to the severity of
the disease [25]. A growing body of evidence has convincingly shown that SARS
is caused by a novel coronavirus, called SARS-coronavirus or SARS-CoV [14,19].
A novel SARS associated with coronavirus (SARS-CoV) has been implicated as
the causative agent of a worldwide outbreak of SARS during the first 6 months
of 2003 [16,24]. Currently, the complete genome sequences of 11 strains of SARS-
CoV isolated from some SARS patients have been sequenced, and more complete
genome sequences of SARS-CoV are expected to come [13]. It is also known that
the process of cleaving the SARS-CoV polyproteins by a special proteinase, the
so-called SARS coronavirus main proteinase (CoV Mpro), is a key step for the
replication of SARS-CoV [18]. The importance of the 3CL proteinase cleavage
sites not only suggests that this proteinase is a culprit of SARS, but also makes
it an attractive target for developing drugs directly against the new disease
[3,10,23].

Several machine learning approaches including artificial neural networks have
been applied to proteinase cleavage site analysis [1,3,4,7,15]. Even though neural
network model has been successfully used for the analysis [1,7], one of the major
weakness of the neural network is its lack of explanation capability. It is hidden in
a black box and can be used to predict, but not to explain domain knowledge in
explicit format. In recent years, there have been studies on rule extraction from
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feed-forward neural networks [1,5,6,7,8,12,17,21,22]. The extracted rules provide
human users with the capability to explain how the patterns are classified and
may provide better insights about the domain. Thus, it is used for various data
mining applications.

In this paper, we investigate the SARS-CoV cleavage site analysis using feed-
forward neural networks. Also we demonstrate how to extract prediction rules
for cleavage sites using the approach of rule extraction from neural networks.
Experimental results compared to other approaches are also shown.

2 Rule Mining for SARS-CoV

Kiemer, et al. used feedforward neural networks for SARS-CoV cleavage site
analysis [11]. They showed that the neural network outperforms three consensus
patterns in terms of classification performance. The three consensus patterns are
‘LQ’, ‘LQ[S/A]’ and ‘[T/S/A]X[L/F]Q[S/A/G]’. However, they used the neural
network for just cleavage site prediction, but not for understanding the sites
in explicit knowledge. In this paper, we extract If-Then rules from the neural
networks and then compare the generated rules to the consensus patterns. Our
experiments includes the followings:

– Training of a feedforward neural network with known SASS-CoV cleavage
site data.

– Extraction of If-Then rules from the trained neural network.
– Performance comparison of the extracted rules over consensus rules.

In this paper, we use decompositional approach for rule extraction. Decom-
positional approaches to rule extraction from a trained neural network (i.e., a
feed-forward multi-layered neural network) involves the following phases:

1. Intermediate rules are extracted at the level of individual units within the
network. At each non-input unit of a trained network, n incoming connection
weights and a threshold are given. Rule extraction at the unit searches a set
of incoming binary attribute combinations that are valid and maximally-
general (i.e., size of each combination is as small as possible).

2. The intermediate rules from each unit are aggregated to form the composite
rule base for the neural network. It rewrites rules to eliminate the symbols
which refer to hidden units but are not predefined in the domain. In the
process, redundancies, subsumptions, and inconsistencies are removed.

There have been many studies for efficient extraction of valid and general rules.
One of the issues is time complexity of the rule extraction procedure. The rule
extraction is computationally expensive since the rule search space is increased
exponentially with the number of input attributes. If a node has n incoming
nodes, there are 3n possible combinations. Kim [12] introduced a computation-
ally efficient algorithm called OAS(Ordered-Attribute Search). In this paper, the
OAS is used for extraction of one or two best rules from each node.



1004 Y.-J. Cho and H. Kim

3 Experimental Results

3.1 SARS-CoV Cleavage Sites

Twenty-four genomic sequences of coronavirus and the annotation informa-
tion were downloaded from the GenBank database [2], of which 12 are SARS-
CoVs and 12 are other groups of coronaviruses. The former includes SARS-
CoV TOR2, Urbani, HKU-39849, CUHK-W1, BJ01, CUHK-Su10, SIN2500,
SIN2748, SIN2679, SIN2774, SIN2677 and TW1, whereas the latter comprises
IBV, BCoV, bovine coronavirus strain Mebus (BCoVM), bovine coronavirus
isolate BCoV-LUN (BCoVL) , bovine coronavirus strain Quebec (BCoVQ),
HCoV-229E (NC002645), MHV, murine hepatitis virus strain ML-10 (MHVM),
murine hepatitis virus strain 2 (MHV2), murine hepatitis virus strain Penn 97-1
(MHVP), PEDV and TGEV [9].

The data set includes 8 regions (i.e., 8 positions of P4, P3, P2, P1, P1’, P2’,
P3’, P4’) and one class attribute. Each region represents one of the 20 amino
acids and the class attribute tells if the instance with 8 region values belongs
to either cleavage (i.e., 1) or non-cleavage (i.e., 0). Each region value that is
one of 20 amino acids is converted into 20 binary values in which only one of
them is 1 and the rests are 0s. This binary encoding is illustrated in table 1.
Thus, we have 160 (i.e., 8 ∗ 20) binary input nodes and one output node for our
neural network architecture. From each sequence of coronavirus genome, eleven
cleavage sites are included and thus, total 264 (= 24 ∗ 11) sites are available.
We eliminated duplicated ones out of the total 264 results and identified final
seventy cleavage sites. For training a neural network classifier, negative examples
(presumed non-cleavage sites) are created by defining all other glutamines in the
viral polyproteins as non-cleavable sites [11]. Therefore, the data set include 70
positive (i.e., cleavage) and 281 negative (i.e., non-cleavage) examples. Three-
fold cross-validation were used for classifier evaluation. That is, every test set
contains 117 examples of which 23 or 24 were positive examples.

3.2 Performance of Extracted Rules

We configured neural networks with 160 input nodes, 2 hidden nodes and 1
output nodes and trained them with training sets. The classification performance
of the neural networks is shown in table 2.

We used the OAS algorithm to extract rules from trained neural networks [12]
and compared classification performance over consensus rules. The consensus
patterns of ‘LQ’, ‘LQ[S/A]’ and ‘[T/S/A]X[L/F]Q[S/A/G]’ can be converted
into the form of rules. All of the consensus patterns have the ‘Q’ at position
p1, and all of 70 cleavage site examples have the ‘Q’ at position p1. Thus, we
created negative examples with ‘Q’ at position p1 for fair comparison. Then the
consensus patterns we use are ‘L.’, ‘L.[S/A]’ and ‘[T/S/A]X[L/F].[S/A/G]’ and
they are converted into the form of rules in table 3. The ‘.’ represents the position
p1. Their performance on examples are also shown in the table. We extracted
five best rules from each of the three trained neural networks. The rules and
their performance are shown in table 4. A rule is in the form of ”IF condition,
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Table 1. Each amino acid is assigned to a sequence of 20 bits

amino acid binary code
a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
k 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
l 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
m 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
q 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2. Performance of three neural networks

data training accuracy generalization
dataset1 100% 95.7%
dataset2 100% 97.4%
dataset3 100% 95.7%
average 100% 96.3%

THEN class” where class is either of cleavage or non-cleavage. Coverage and
accuracy as defined as follows:

Coverage =
Number of examples matched by the condition part

Total number of examples

Accuracy =
Number of true positive examples

Number of examples matched by the condition part

The five rules extracted generally outperforms the consensus rules. Coverage is
reasonably high and accuracy is very high. The rule ‘L@p2’ in consensus patterns
actually subsumes 11 other rules in the table 3. While its coverage is high (i.e.
55.6%), its accuracy is low compared to others. The rules that we extracted also
contain the ‘L’ at position p2, but we excluded the rule ‘L@p2’ by our 90% of
rule extraction threshold.
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Table 3. Consensus rules and their performance

Consensus Rules dataset1 dataset2 dataset3
coverage accuracy coverage accuracy coverage accuracy

L@p2 55.6 83.1 55.6 83.1 55.6 83.1
L@p2 ∧ S@p1′ 23.1 92.6 23.1 92.6 23.1 92.6
L@p2 ∧ A@p1′ 16.2 94.7 16.2 94.7 16.2 94.7
T@p4 ∧ L@p2 ∧ S@p1′ 6.0 100.0 6.0 100.0 6.0 100.0
T@p4 ∧ L@p2 ∧ A@p1′ 2.6 100.0 2.6 100.0 2.6 100.0
T@p4 ∧ L@p2 ∧ G@p1′ 0.9 100.0 0.9 100.0 0.9 100.0
T@p4 ∧ F@p2 ∧ S@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
T@p4 ∧ F@p2 ∧ A@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
T@p4 ∧ F@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
S@p4 ∧ L@p2 ∧ S@p1′ 6.0 85.7 6.0 85.7 6.0 85.7
S@p4 ∧ L@p2 ∧ A@p1′ 1.7 100.0 1.7 100.0 1.7 100.0
S@p4 ∧ L@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
S@p4 ∧ F@p2 ∧ S@p1′ 1.7 100.0 1.7 100.0 1.7 100.0
S@p4 ∧ F@p2 ∧ A@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
S@p4 ∧ F@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
A@p4 ∧ L@p2 ∧ S@p1′ 3.4 75.0 3.4 75.0 3.4 75.0
A@p4 ∧ L@p2 ∧ A@p1′ 1.7 100.0 1.7 100.0 1.7 100.0
A@p4 ∧ L@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
A@p4 ∧ F@p2 ∧ S@p1′ 0.9 0.0 0.9 0.0 0.9 0.0
A@p4 ∧ F@p2 ∧ A@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
A@p4 ∧ F@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. Extracted rules from neural networks trained on three data sets, and their
performance

Data Extracted Rules Coverage Accuracy
dataset 1 L@p2 ∧ S@p1′ 23.1 92.6

L@p2 ∧ A@p1′ 16.2 94.7
L@p2 ∧ T@p4 12.0 100.0
L@p2 ∧ R@p3 10.3 100.0
L@p2 ∧ S@p4 7.7 88.9

dataset 2 L@p2 ∧ E@p2′ 12.8 100.0
L@p2 ∧ T@p4 12.0 100.0
L@p2 ∧ V @p4 12.0 100.0
L@p2 ∧ P@p4 12.0 100.0
L@p2 ∧ K@p2′ 3.4 100.0

dataset 3 L@p2 ∧ V @p4 12.0 100.0
L@p2 ∧ T@p4 12.0 100.0
L@p2 ∧ P@p4 6.0 100.0
L@p2 ∧ T@p3 4.3 100.0
L@p2 ∧ K@p2′ 3.4 100.0
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4 Conclusions

For SARS-CoV cleavage site analysis, we used the approach of rule extraction
from neural networks. We trained 3-layered feedforward neural networks on ge-
nomic sequences of coronaviruses, and then extracted IF-THEN rules from the
neural networks. Their performances are compared to consensus patterns. The
results are promising. Rule mining using neural network classifier can be a useful
tool for cleavage site analysis.
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Abstract. A new method is proposed for generating if-then rules to predict pep-
tide binding to class I MHC proteins, from the amino acid sequence of any pro-
tein with known binders and non-binders. In this paper, we present an approach 
based on artificial neural networks (ANN) and knowledge-based genetic algo-
rithm (KBGA) to predict the binding of peptides to MHC class I molecules. Our 
method includes rule extraction from a trained neural network and then enhanc-
ing the extracted rules by genetic evolution. Experimental results show that the 
method could generate new rules for MHC class I binding peptides prediction.  

1   Introduction 

T-cell cytotoxicity is initially mediated by recognizing peptides bound to Major His-
tocompatibility Complex (MHC) class I molecules. It has been generally accepted 
that only peptides interacting with MHC above a certain affinity threshold are likely 
to be recognized by T cells. Prediction of the immunodominant peptides, so called T-
cell epitopes is a key step toward understanding host-pathogen interactions and hope-
fully the development of new vaccines against the pathogen as well. Prediction of 
binding peptide to MHC with high affinity can reduce significantly the number of 
peptides that have to be tested experimentally [1, 5, 8, 9, 13, 14 ]. 

The methods to predict MHC-peptide binding can be divided into two groups: se-
quence-based and structure-based methods. Profile-based prediction methods, such as 
SYFPEITHI and HLA_BIND, fall into the first group and the binding prediction 
based on the fitness of peptide to the binding groove of MHC molecule into the sec-
ond group [8]. While a structural approach is limited to MHC types with a known 
structure, the sequence-based approach has advantage of a lot of growing information 
on peptide binders [2, 8, 21]. In this paper, we used five methods of machine learning 
based on peptide sequences. Decision tree, artificial neural network and genetic algo-
rithm were used to extract rules for HLA binders. 

Decision tree is one of the best-known classification techniques in symbolic ma-
chine learning. It uses a heuristic method to select the attribute that separates the sam-
ples most effectively into each class using an entropy-based measure [3, 18, 19].  
Even though this algorithm has an advantage of extracting rules in simplicity, the 
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performance of predicting HLA binder was not as good as that of neural network. 
Neural network, even though it can not extract rules in general, has been reported to 
show a higher specificity in predicting candidate T-cell epitopes than profile methods 
[5, 8, 9, 14]. However, they used the neural network for just prediction of MHC-
peptides, but not for expressing the sites in explicit knowledge such as if-then rules. 
Genetic algorithm (GA) can be used for searching generalized rules [7, 16, 17]. How-
ever performance of GA is very sensitive to the initial population of chromosomes 
which was generated by random. In this paper, we developed a knowledge-based GA 
(KBGA) algorithm and applied to predicting HLA binders. Our method includes rule 
extraction from a trained neural network and then enhancing the extracted rules by 
genetic evolution to improve its quality. Support vector machine (SVM) is also 
known to produce better specificity than profile-based methods, because they educate 
machines with the information related to both of the binder and the non-binder [6, 8, 
10]. SVM, however, can not generate explicit rules in general. We compared three 
algorithms of DT, NN and SVM in terms of the performance and of DT, NN and 
KBGA in terms of rules extracted.    

The methods and results in this study were uploaded at the web site 
(http://www.koreanhla.net), where sequence logo was implemented to visualize the 
sequence motif based on DT entropy. 

2   Materials and Methods 

2.1   Data Set Preparation 

The dataset and the size of each data used in our experiment are identical to the ones 
used in the experiment done by Donnes, et al [8]. (The dataset was kindly given with 
personal communication). Among the dataset given, we used the dataset generated 
from the database SYFPEITHI1. Briefly, they used 6 alleles of MHC class I molecules 
in SYFPEITHI. Duplicated data were removed and the number of binder data was 
maintained to be more than 20 all the time [8]. Protein, randomly extracted from 
ENSEMBL database, was cut in a fixed size and all the sequences, defined in MHC-
peptide database, were removed from it, in order to get non-binders. 20 binders and 
40 non-binders are used, maintaining the binder to non-binder ratio 1:2. 

Table 1. The six MHC alleles of SYFPEITHI (SYF) 

MHC Length Size(positive/negative) 
HLA-A*0201 9 339(113/226) 
HLA-A*0201 10 120(40/80) 
HLA-A1 9 63(21/42) 
HLA-A3 9 69(23/46) 
HLA-B*8 9 75(25/50) 
HLA-B*2705  9 87(29/58) 

                                                           
1 SYFPEITHI is a database comprising more than 4500 peptide sequences known to bind class 

I and class II MHC molecules. 
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For neural network training, each region value that is one of 20 amino acids is con-
verted into 20 binary digits as shown in Table 1. Thus, each MHC-peptide position is 
encoded into 180 bits (9-mer peptide * 20). Class is encoded into either 1 (i.e., binder) 
or 0 (i.e., non-binder). 

Table 2. Each amino acid is assigned to a sequence of 20 bits 

Amino Acid Representation 

Alanine (A) 10000000000000000000 
Cysteine (C) 01000000000000000000 
Aspartate (D) 00100000000000000000 
Glutamate (E) 00010000000000000000 
Phenylalanine (F) 00001000000000000000 
Glycine (G) 00000100000000000000 
Histidine (H) 00000010000000000000 
Isoleucine (I) 00000001000000000000 
Lysine (K) 00000000100000000000 
Leucine (L) 00000000010000000000 
Methionine (M) 00000000001000000000 
Asparagines (N) 00000000000100000000 
Proline (P) 00000000000010000000 
Glutamine (Q) 00000000000001000000 
Arginine (R) 00000000000000100000 
Serine (S) 00000000000000010000 
Threonine (T) 00000000000000001000 
Valine (V) 00000000000000000100 
Tryptophan (W) 00000000000000000010 
Tyrosine (Y) 00000000000000000001 

 

For SVM training, each amino acid sequence is encoded as follows: 

                 di 1:X1i 2:X2i 3:X3i 4:X4i 5:X5i 6:X6i 7:X7i 8:X8i  9:X9i 

where d represents its class (i.e., 1 for binder; 0 for non-binder) and n:X  represents 
amino acid code X at position n. The amino acid code at peptide position n is shown 
in table 3.  

2.2   Methods for Rule Extraction 

To extract rules of MHC binding, three methods were employed such as decision tree, 
neural network and genetic algorithm. Quinlan’s C5.0 algorithm was used to build a 
decision tree which was converted into a set of if-then rules [19, 20].  

For neural network, a feed-forward neural network was trained, and then we extract 
if-then rules using the OAS (Ordered-Attribute Search) algorithm [12]. The OAS 
algorithm uses de-compositional approach that involves extracting intermediate  
rules from each non-input nodes of a trained neural network and aggregating the  
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intermediate rules to form a composite rule base. The details of this algorithm were 
already published by our group.  

 

Table 3. Encoding methods of SVM (Peptide position: Amino acid at each position) 

Peptide Position Amino Acid 
P1 P2 P3 P4 P5 P6 P7 P8 P9 

Alanine (A) 1:01 2:01 3:01 4:01 5:01 6:01 7:01 8:01 9:01 
Cysteine (C) 1:02 2:02 3:02 4:02 5:02 6:02 7:02 8:02 9:02 
Aspartate (D) 1:03 2:03 3:03 4:03 5:03 6:03 7:03 8:03 9:03 
Glutamate (E) 1:04 2:04 3:04 4:04 5:04 6:04 7:04 8:04 9:04 
Phenylalanine (F) 1:05 2:05 3:05 4:05 5:05 6:05 7:05 8:05 9:05 
Glycine (G) 1:06 2:06 3:06 4:06 5:06 6:06 7:06 8:06 9:06 
Histidine (H) 1:07 2:07 3:07 4:07 5:07 6:07 7:07 8:07 9:07 
Isoleucine (I) 1:08 2:08 3:08 4:08 5:08 6:08 7:08 8:08 9:08 
Lysine (K) 1:09 2:09 3:09 4:09 5:09 6:09 7:09 8:09 9:09 
Leucine (L) 1:10 2:10 3:10 4:10 5:10 6:10 7:10 8:10 9:10 
Methionine (M) 1:11 2:11 3:11 4:11 5:11 6:11 7:11 8:11 9:11 
Asparagines (N) 1:12 2:12 3:12 4:12 5:12 6:12 7:12 8:12 9:12 
Proline (P) 1:13 2:13 3:13 4:13 5:13 6:13 7:13 8:13 9:13 
Glutamine (Q) 1:14 2:14 3:14 4:14 5:14 6:14 7:14 8:14 9:14 
Arginine (R) 1:15 2:15 3:15 4:15 5:15 6:15 7:15 8:15 9:15 
Serine (S) 1:16 2:16 3:16 4:16 5:16 6:16 7:16 8:16 9:16 
Threonine (T) 1:17 2:17 3:17 4:17 5:17 6:17 7:17 8:17 9:17 
Valine (V) 1:18 2:18 3:18 4:18 5:18 6:18 7:18 8:18 9:18 
Tryptophan (W) 1:19 2:19 3:19 4:19 5:19 6:19 7:19 8:19 9:19 
Tyrosine (Y) 1:20 2:20 3:20 4:20 5:20 6:20 7:20 8:20 9:20 

Genetic Algorithm (GA) was also used to extract rules. Performance of GA, how-
ever, is very sensitive to initial population of chromosomes which are randomly gen-
erated [4, 7, 11]. It is known that domain knowledge incorporated into the initial 
population improves the performance of GA [7, 15, 16, 17]. Since domain knowledge 
is not available, we used the extracted rules from a trained neural network for the 
domain knowledge. The knowledge-based approach restricts GA’s random search 
space, and the GA-model refines and explores from the initial rules. The Knowledge-
based Genetic Algorithm (KBGA) enhances the initial rules from neural network and 
generates more rules previously unfound.  

Individual chromosome in a GA population is a sequence of 9 symbols in which 
each symbol represents an amino acid or `*’ (i.e., don’t_care symbol). Therefore the 
size of rule space is as huge as 219. The GA-based model searches for the best fitted 
set of chromosomes (i.e., rules) among the 219 candidates. One-point crossover is 
used and crossing point is selected randomly. Mutation occurs on each symbol by 1% 
and changes its symbol to one of other 20 symbols.  Fitness function for a chromo-
some n is defined as follows: 



 Prediction Rule Generation of MHC Class I Binding Peptides Using ANN and GA 1013 

 

( ) 100
1

nt
f n d

nt nf
= × +

+ +
 

where nt (or nf) is the number of positive (or negative) instances matched by the 
chromosome rule and d is the number of *s (i.e., don’t_care symbols) in the chromo-
some. 

3   Results and Discussion  

First of all, we evaluated performance of neural network (NN) on the MHC binding 
dataset, and compared it with the one of support vector machine (SVM). The neural 
network was configured with 180 input nodes, 4 hidden nodes and 1 output node. 3-
fold cross validation was used to evaluate the classification performance of NN and 
SVM. Table 4 shows the training accuracy and generalization. 

 

Table 4.  Classification performance of NN and SVM. 3-fold cross-validation is used to 
evaluate their performances and its average is shown at the table 

MHC alleles Classifier Training accuracy Generalization 

HLA-A*0201 (9-mer) NN 99.7% 86.7% 
 SVM 100% 84.96% 
HLA-A*0201 (10-mer) NN 100% 87.50% 
 SVM 100% 100% 
HLA-A1 (9-mer) NN 100% 100% 
 SVM 100% 96.83% 
HLA-A3 (9-mer) NN 100% 80.63% 
 SVM 100% 84.06% 
HLA-B*8 (9-mer) NN 100% 86.77% 
 SVM 100% 84.0% 
HLA-B*2705 (9-mer) NN 100% 96.57% 
 SVM 100% 99.7% 

 

Rules are generated using DT, NN and KBGA. The rules extracted from each clas-
sifier with the accuracy more than 75% were shown in Table 5. The new rules 
uniquely exist in each algorithm are shaded. DT_Rule was generated by converting 
decision tree to rules and ANN_Rule was generated from a trained neural network 
using the OAS algorithm. KBGA_Rule was generated by GA-based rule search with 
the neural network rules incorporated into the GA initial population. The rules shown 
in the Table 5 are positive rules in which consequence (i.e. then-part) of if-then rule 
represents MHC-binder. Thus “L@P2 ^ V@P9” is translated as “if L@P2 ^ V@P9, 
then MHC-binder”. 

Table 5 lists the most general (i.e., most simple) rules with accuracy greater than 
75%. For DT-Rule and ANN_Rule, most general rules were generated, eliminating 
any subsumed rules. For example, rule “if K@p3 ^ K@p5, then Binder” is subsumed 
to the rule “if K@p3, then Binder” or “if K@p5, then Binder”. For KBGA_Rule, we 
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list all of the rules generated with accuracy greater than 75% so that user can review 
the rules together.  

Our experiment shows that ANN and KBGA can generated more quality rules than 
DT. The performance of KBGA is equal to or sometimes better than ANN when it 
comes to rule generation. The if-then rule format is very easy to understand to domain 
experts or molecular biologists.  

 

Table 5. The performance of the rules extracted from each classifier algorithm 

- HLA-A*0201 (9-mer) standard accuracy +75%. 
 

Classifier 
 

Positive Rule 
  PosNum 

(113) 
NegNum 

(226) 
 

Accuracy(%) 
DT_Rule L@P2 ^ V@P9 *L******V 36 2 94.74  

ANN_Rule L@P2 ^ V@P9 *L******V 36 2 94.74  
L@P2 ^ V@P9 *L******V 36 2 94.74  
L@P2 *L******* 76 24 76.00 KBGA_Rule
V@P9 ********V 53 15 77.94 

- HLA-A*0201 (10-mer) standard accuracy +70%. 
 

Classifier 
 

Positive Rule 
  PosNum 

(40) 
NegNum 

(80) 
 

Accuracy(%) 
DT_Rule L@P2 *L******** 22 9 70.97 

ANN_Rule L@P2 ^ V@P10 *L*******V 12 1 92.31 
L@P2 ^ V@P10 *L*******V 12 1 92.31 

KBGA_Rule
L@P2 *L******** 22 9 70.97 

- HLA-A1 (9-mer) standard accuracy +75%. 
 

Classifier 
 

Positive Rule 
  PosNum 

(21) 
NegNum 

(42) 
 

Accuracy(%) 
DT_Rule Y@P9 ********Y 20 0 100.00 

E@P3 ^ Y@P9 **E*****Y 7 0 100.00  

L@P7 ^ Y@P9 ******L*Y 7 0 100.00  

T@P2 ^ Y@P9 *T******Y 9 0 100.00  
ANN_Rule 

D@P3 ^ Y@P9 **D*****Y 10 0 100.00  

T@P2 *T******* 9 3 75.00  

L@P7 ******L** 8 2 80.00  

D@P3 **D****** 10 2 83.33 

E@P3 **E****** 7 1 87.50  

KBGA_Rule

Y@P9  ********Y 20 0 100.00 
- HLA-A3 (9-mer) standard accuracy +75%. 

 
Classifier 

 
Positive Rule 

  PosNum 
(23) 

NegNum 
(46) 

 
Accuracy(%) 

DT_Rule N/A       
ANN_Rule L@P2 ^ K@P9 *L******K 8 1 88.89 

K@P9  ********K 13 3 81.25  
K@P1  K******** 9 2 81.82 KBGA_Rule
L@P2 ^ K@P9 *L******K 8 1 88.89 
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Table 5. Continued 
 

- HLA-B*8 (9-mer) standard accuracy +75%. 
 

Classifier 
 

Positive Rule 
  PosNum 

(25) 
NegNum 

(50) 
 

Accuracy(%) 
DT_Rule N/A       

K@P3 ^ K@P5 **K*K**** 12 0 100.00  
ANN_Rule 

K@P3 ^ L@P9 **K*****L 12 0 100.00  
A@P8 *******A* 8 2 80.00 
K@P5 ****K**** 15 2 88.24 
K@P3 **K****** 16 2 88.89  
K@P5 ^ L@P9 ****K***L 11 0 100.00  

KBGA_Rule

K@P3 ^ K@P5 **K*K**** 12 0 100.00 
- HLA-B*2705 (9-mer) standard accuracy +75%.  

 
Classifier 

 
Positive Rule 

  PosNum 
(29) 

NegNum 
(58) 

 
Accuracy(%) 

DT_Rule R@P2 *R******* 29 4 87.88 
ANN_Rule R@P1 ^ R@P2 RR******* 12 0 100.00 

KBGA_Rule 
R@P2 
R@P1 ^ R@P2 

*R******* 
RR******* 

29 
12 

4 
0 

87.88 
100.00 

4   Conclusion 

Prediction (or classification) rules provide us with explanation about the classification 
and thus better insights about a domain. We presented a new method that generates 
rules and improves quality of the rules with the subject of MHC class I binding pep-
tides prediction. Rules were extracted from a well-trained neural network and then 
enhanced by genetic evolution. Our experiment presents the rules generated by three 
different types of approaches: 

- Decision Tree 
- Neural networks 
- Genetic Algorithm initialized by neural network rules 

Neural network could generate the rules of high quality that were not discovered by 
decision trees. Knowledge-Based Genetic Algorithm (KBGA) model in which the 
neural network rules were incorporated initially could discover new rules in addition 
to the neural network rules. The KBGA can be considered as a hybrid model of neural 
networks and genetic algorithm since knowledge learned by a neural network is en-
hanced and expanded by GA evolution. The experimental result demonstrates that the 
hybrid model improves quality of rule generation.  
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Abstract. The problem of determining optimal decision model is a difficult 
combinatorial task in the fields of pattern classification, machine learning, and 
especially bioinformatics. Recently, support vector machine (SVM) has shown 
a higher performance than conventional learning methods in many applications. 
This paper proposes a new kernel function for support vector machine (SVM) 
and its learning method that results in fast convergence and good classification 
performance. The new kernel function is created by combining a set of kernel 
functions. A new learning method based on evolution algorithm (EA) is pro-
posed to obtain the optimal decision model consisting of an optimal set of fea-
tures as well as an optimal set of the parameters for combined kernel function. 
The experiments on clinical datasets such as stomach cancer, colon cancer, and 
leukemia datasets data sets indicates that the combined kernel function shows 
higher and more stable classification performance than other kernel functions. 

1   Introduction 

Support vector machine [1-6] (SVM) is a learning method that uses a hypothesis 
space of linear functions in a high dimensional feature space. This learning strategy, 
introduced by Vapnik [2], is a principled and powerful method. In the simplest and 
linear form, a SVM is the hyperplane that separates a set of positive samples from a 
set of negative samples with the largest margin. The margin is defined by the distance 
between the hyperplanes supporting the nearest positive and negative samples. The 
output formula of a linear case is 

,= ⋅ −y w x b  (1) 

where w is a normal vector to the hyperplane and x is an input vector. The separating 
hyperplane is the plane y = 0 and two supporting hyperplanes parallel to it with equal 
distances are  
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Thus, the margin M is defined as  

2
M =

w
 (3) 

In order to find the optimal separating hyperplane having maximal margin, ||w|| 
should be minimized subject to inequality constraints. This is a classic nonlinear op-
timization problem with inequality constraints. The optimization problem can be 
solved by finding the saddle point of the Lagrange function in the following. 

T
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2

N
T

i
i
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=

= − + −iw b w w y w x  (4) 

where αi ≥ 0 ,i = 0,…, N, are Lagrange multipliers.  
However, the limitation of computational power of linear learning machines was 

highlighted in the 1960s by Minsky and Papert [7]. It can be easily recognized that 
real-world applications require more extensive and flexible hypothesis space than 
linear functions. Such a limitation can be overcome by multilayer neural networks 
proposed by Rumelhart, Hinton and William [3]. Kernel function also offers an alter-
native solution by projecting the data into high dimensional feature space to increase 
the computational power of linear learning machines. Non-linear mapping from input 
space to high dimensional feature space can be implicitly performed by an appropriate 
kernel function (see Fig. 1). One of the advantages of the kernel method is that a 
learning algorithm can be exploited to obtain the specifics of application area, which 
simply can be encoded into the structure of an appropriate kernel function. One of the 
interesting characteristics on kernel functions is that a new kernel function can be 
created by combining a set of kernel functions with the operators such as addition or 
multiplication operators [1].  

 

 

Fig. 1. An input space can be transformed into a linearly separable feature space by an appro-
priate kernel function 

Evolutionary algorithm [8-10] is an optimization algorithms based on the mecha-
nism of natural evolution procedure. Most of evolution algorithms share a common 

kernel 
function

input space feature space 
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conceptual base of simulating the evolution of individual structures via the processes 
of selection, mutation, and reproduction. In each generation, a new population is se-
lected based on the fitness values representing the performances of the individuals 
belonging to the generation, and some individuals of the population are given the 
chance to undergo alterations by means of crossover and mutation to form new indi-
viduals. In this way, EA performs a multi-directional search by maintaining a popula-
tion of potential solutions and encourages the formation and the exchange of informa-
tion among different directions. EAs are generally applied to the problems with a 
large search space. They are different from random algorithms since they combine the 
elements of directed and stochastic search. Furthermore, EA is also known to be more 
robust than directed search methods. 

Recently, several researches have been working on GA/SVM to improve the per-
formance of classification. Some of them use GA to optimize the number of selected 
features that are evaluated by classifiers [13, 14] and the best recognition rate of 80% 
was achieved in case of colon dataset. Other approach used GA to optimize the en-
semble of multiple classifiers to improve the performance of classification [15]. 

In this paper, we propose a new kernel function combining a set of simple kernel 
functions for SVM and a method to train the combined kernel function. In the new 
learning method, EA is employed to derive the optimal decision model for the classi-
fication of patterns, which consists of the optimal set of features and parameters of 
combined kernel function. The proposed method was applied to the classification of 
proteome patterns for the identification of cancer, which are extracted from actual 
clinical samples. The combined kernel function and the learning method showed 
faster convergence and better classification rate than individual kernel functions. 

This paper is organized as follows. In section 2, our new combined kernel and its 
learning method are presented in detail. In section 3, we compare the performances of 
combined kernel functions and other individual kernel functions by the experiments 
with the classification of the datasets of colon cancer dataset, leukemia dataset and 
proteome pattern samples of stomach cancer. Finally, section 4 is our conclusion. 

2   Proposed Learning Method 

2.1   Overall Structure 

The proposed method is depicted in Fig. 2. Our method consists of preprocessing, 
learning, and classification phase.  

Firstly, in the preprocessing stage, training and testing sets consisting of a number 
of cancer and normal patterns is produced and passed to the learning phase.  

Secondly, we applied a learning method exploiting EA and SVM techniques to 
figure out optimal decision model for the classification of proteome patterns in the 
learning phase. Here EA generates a set of chromosomes, each of which represents a 
decision model, by evolutionary procedures. The fitness value of each chromosome is 
evaluated by measuring the hit ratio from the classification of samples with SVM 
classifier containing the decision model associated with the chromosome. n-fold vali-
dation method is used to evaluate the fitness of a chromosome to reduce overfitting 
[4]. Then only the chromosomes with a good fitness are selected and given the chance 



1020 H.-N. Nguyen et al. 

 

to survive and improve into further generations. This process is repeated for a prede-
fined number of times. At the end of EA procedure, the decision model with the high-
est hit ratios is chosen as the optimal decision model.  

Finally, the optimal decision model is used to build a SVM for the classification of 
novel samples and the performance of the model can be evaluated. 

  

 

Fig. 2. Overall Framework of Proposed Diagnosis Method 

2.2   Training Combined Kernel Function and Feature Selection by Evolution  
        Algorithm 

A kernel function provides a flexible and effective learning mechanism in SVM, and 
the choice of a kernel function should reflect prior knowledge about the problem at 
hand. However, it is often difficult for us to exploit the prior knowledge on patterns to 
choose a kernel function, and it is an open question how to choose the best kernel 
function for a given data set. According to no free lunch theorem [4] on machine 
learning, there is no superior kernel function in general, and the performance of a 
kernel function rather depends on applications. 

Table 1. The types of kernel functions are used to experiments 

Kernel function Formula 

Inverse Multi-Quadric 22
1 cyx +−

 

Radial ( )2
yxe −−γ  

Neural ),tanh( cyxs −⋅  

 

In our case, a new kernel function is created by combining the set of kernel func-
tions (see Table 1). The combined kernel function has the form of   

1
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where {Ki | i =1, …, m} is the set of kernel functions to be combined, ei is the expo-
nent of i-th kernel function, and  denotes an operator between two kernel functions. 
In our case, three types of the kernel functions listed in Table 1 are combined, and 
multiplication or addition operators are used to combine kernel functions. 

The parameters in a kernel function play the important role of representing the 
structure of a sample space. The set of the parameters of a combined kernel function 
consists of three part - i) the exponents of individual kernel functions, ii) the operators 
between kernel functions, iii) the coefficient in each kernel function. In the learning 
phase, the structure of a sample space is learned by a kernel function, and the knowl-
edge of a sample space is contained in the set of parameters. Furthermore, the optimal 
set of features should be chosen in the learning phase. In our case, EA technique is 
exploited to obtain the optimal set of features as well as the optimal combined kernel 
function.  

 

 

Fig. 3. Structure of a chromosome used in EA procedure 

The challenging issue of EA is how to map a real problem into a chromosome. In 
our learning method, we need to map feature space, the set of the parameters for ker-
nels, and the set of operators combining kernels. Firstly, the set of features is encoded 
into a n-bit binary string to represent an active or non-active state of n features. Then 
the exponents of m individual kernel functions, the operators between individual ker-
nel functions, and the coefficients in each individual kernel function are encoded into 
a multi-valued gene string. The combination of the two gene string forms a chromo-
some in EA procedure which in turn serves as a decision model (see Fig. 3). In learn-
ing phase, simulating a genetic procedure, EA creates improved decision models 
containing a combined kernel function and a set of features by the iterative process of 
reproduction, evaluation, and selection process. At the end of learning stage, the op-
timal decision model consisting of a combined kernel function and the set of features 
is obtained, and the optimal decision model is contained in a classifier to be used 
classify new pattern samples. 

3   Experiment Results 

In this section, we show the result from the classification based on the model trained 
by our learning method. Furthermore, the performance of the classification model 
with combined kernel function is compared to the performances of the models with 
other kernel functions. 
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3.1 Datasets  

There are several microarray dataset from published cancer gene expression studies. 
In this paper, we have used two representative datasets (Colon cancer and Leukemia 
datasets) among them and our own dataset (proteome patterns of Stomach cancer 
dataset). 

The colon cancer dataset [11] contains gene expression information extracted from 
DNA microarrays. The 62 samples dataset consists of 22 normal and 40 cancer tissue 
samples and each having 2000 features. 32 samples were chosen randomly as training 
set and the remaining samples were used as testing set. (Available at: 
http://sdmc.lit.org.sg/GEDatasets/Data/ColonTumor.zip). 

The leukemia dataset [12] consists of 72 samples that have to be discriminated into 
two classes ALL and AML. There are 47 ALL and 25 AML samples and each sample 
contains 7129 features. The dataset was divided into a training set with 38 samples 
(27 ALL and 11 AML) and a test set with 34 samples (20 ALL and 14 AML) (Avail-
able at: http://sdmc.lit.org.sg/GEDatasets/ Data/ALL-AML_Leukemia.zip).  

The proteome pattern dataset is provided by Cancer Research Center of Seoul Na-
tional University in Seoul, Korea. The dataset is extracted from the set of the pro-
teome images displayed from the sera of stomach cancer patients and normal persons 
by 2D PAGE method. Each proteome pattern consists of 119 intensity values, each of 
which represents the amount of a type of proteome contained in serum. The dataset 
includes 70 cancer samples and 67 normal samples. From the set of all the samples 72 
samples are randomly chosen to form a training set, and the set of the remaining sam-
ples serve as a test set. 

3.2 Environments for Experiments 

All experiments are conducted on a Pentium IV 1.8GHz computer. The experiments 
are composed preprocessing, learning by EA to obtain optimal decision model, and 
classification (see Sec. 2). For preprocessing data, we normalize data and randomly 
build 10 pair of training/testing dataset. For EA, we have used tournament rule for 
selection method [8]. Some of the selected chromosomes are given the chance to 
undergo alterations by means of crossover and mutation to form new individuals. 
One-point crossover is used, and the probabilities for crossover and mutation are 0.8 
and 0.015 respectively. The proposed method was done with 100 of generations and 
100 of populations. Our combined kernel function and three other kernel functions 
(Table 1) are trained by EA in learning phase with training set. Three kernel functions 
are chosen since they were known to have good performances in bioinformatics field 
[4, 6, 13-15]. Also, 10-fold cross validation is used for the fitness estimating to reduce 
overfitting problem [4]. The optimal decision model obtained after 100 generations of 
EA is used to classify the set of test samples. The experiments for each kernel func-
tion are repeated for 10 times to obtain generalized results. As the result of learning 
phase, an optimal decision model consisting of 15 most important features and opti-
mal combined kernel function is obtained. 
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3.3 Results of Experiment and Analysis  

The classified results of Stomach cancer dataset are shown in Fig. 4. The graph indi-
cated the proposed method with combined kernel function more stable than other 
cases. The average, highest, and lowest of hit ratios using four kernel functions are 
shown in Table 2. Here the combined kernel function case shows the best average 
performance with 79.23% correct classification. The upper and lower bound of it (see 
Table 2) also are higher and also more stable than other cases.  

Table 2. Hit ratioes for the case of stomach cancer dataset in the classification phase based on 
the decision model obtained after 100 generations of EA 

Hit ratio Combination 
Inverse Multi-

quadric 
Radial Neural 

Average 76.77% 74.62% 69.69% 46.15% 

Upper bound 86.15% 86.15% 83.08% 46.15% 

Lower bound 73.85% 63.08% 60.00% 46.15% 
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Fig. 4. Comparison of hit ratios by combined kernel function and single kernel functions in 
classification phase in the case of stomach cancer dataset 

In the case of colon dataset, the experiments of proposed method with combined 
kernel function also show more stable and higher than other cases (see Fig. 5). Ac-
cording to Table 3, the result of combined kernel function case shows the best average 
performance with 79.00% of recognition rate. The upper and lower bound of it (see 
Table 3) also are higher than other cases. This indicates that our method is able to 
discriminate cancer class from normal class. 
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Table 3. Hit ratios for the case of colon cancer dataset in the classification phase based on the 
decision model obtained after 100 generations of EA 

Hit ratio Combination 
Inverse Multi-

quadric 
Radial Neural 

Average 75.33% 74% 72.33% 66.67% 

Upper bound 96.67% 86.67% 86.67% 66.67% 

Lower bound 70% 60% 60% 66.67% 
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Fig. 5. Comparison of hit ratios by combined kernel function and single kernel functions in 
classification phase in the case of colon cancer dataset 

In the case of Leukemia dataset, the classified results of experiments with com-
bined kernel function still seem more stable and higher than other single kernel func-
tion (see Fig. 6). The average, highest, and lowest of hit ratios using four kernel func-
tions are shown in Table 4. The table shows us the best average is 82.35% of recogni-
tion rate in case of Inverse Multi-quadric kernel function. In this dataset, even though 
combined kernel function could not obtain the best average of corrected classification, 
but the results still stable than other cases.  

Table 4. Hit ratioes for the case of leukemia cancer dataset in the classification phase based on 
the decision model obtained after 100 generations of EA 

Hit ratio Combination 
Inverse Multi-

quadric 
Radial Neural 

Average 77.06% 77.65% 70.57% 58.82% 

Upper bound 85.29% 94.12% 79.41% 58.82% 

Lower bound 70.59% 67.65% 58.82% 58.82% 
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Fig. 6. Comparison of hit ratios by combined kernel function and single kernel functions in 
classification phase in the case of leukemia dataset 

The classification results of three above dataset indicate that the classification ratio 
of our proposed method is able to get more stable and higher recognition rate than 
single kernel function cases.  

4   Conclusion 

In this paper, we proposed a new kernel function combining a set of kernel functions 
for SVM and its learning method exploiting EA technique to obtain the optimal deci-
sion model for classification. A kernel function plays the important role of mapping 
the problem feature space into a new feature space so that the performance of the 
SVM classifier is improved. The combined kernel function and the learning method 
were applied to classify the clinical datasets to identify cancer/normal groups. In the 
comparison of the classifications by combined kernel and other three kernel functions, 
the combined kernel function achieved the fastest convergence in learning phase and 
results in the optimal decision model with the highest hit rate in classification phase. 
Thus our combined kernel function has greater flexibility in representing a problem 
space than individual kernel functions. 
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Abstract. Pixel values of contrast enhanced computed tomography (CE-CT) 
images are randomly changed. Also, the middle liver part has a problem to 
segregate the liver structure because of similar gray-level values of neighboring 
organs in the abdomen. In this paper, an automatic liver segmentation method 
using histogram processing is proposed for overcoming randomness of CE-CT 
images and removing other abdominal organs. Forty CE-CT slices of ten 
patients were selected to evaluate the proposed method. As the evaluation 
measure, the normalized average area and area error rate were used. From the 
results of experiments, liver segmentation using histogram process has similar 
performance as the manual method by medical doctor. 

1   Introduction 

In order to segregate hepatic tumors, the first significant process is to extract the liver 
structure from other abdominal organs. Liver segmentation using CT images has been 
dynamically performed because CT is a very conventional and non-invasive technique 
[1-5]. Generally, in order to improve diagnosis efficiency of the liver, the CT image 
obtained by contrast media is used. Pixel values of contrast enhanced CT (CE-
CT) images acquired from the dose of contrast agent are randomly changed. Also, the 
middle liver part has a problem to segregate the liver structure because of similar 
gray-level values of abdominal organs. In this paper, an automatic liver segmentation 
method using histogram processing is proposed for overcoming pixel variation of CE-
CT images and removing adjacent abdominal organs which are contact with liver.  

2   Liver Segmentation Using Histogram Processing 

Histogram transformation such as convolution and scaling is performed to reduce 
small noise of a histogram. A convolution method as one dimensional low pass 
filtering is used to smooth the histogram, even though the histogram's horizontal axis 
is extended and a vertical axis is very increased [6]. Then, the extended horizontal 
axis is scaled to gray-level values.  
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A multi-modal threshold (MMT) method is processed to find a region of interest 
(ROI) of the liver regardless of histogram variation derived from the contrast 
enhancement. After removing the background, bones and extremely enhanced organs, 
several ranges in the multi-modal histogram are found by a piecewise linear 
interpolation (PLI) method [7]. As a ROI range of the liver is located experimentally 
in the right side of the histogram, the ROI range is selected easily. Then the ROI of 
the liver is segmented by using the selected range.  

Histogram tail threshold (HTT) is presented to remove the neighboring pancreas, 

spleen, and left kidney from the ROI. Let ZZI ROI →2:  be the gray-level ROI. 

Then, ZnmI ROI ∈),( . Let ZZkkhROI →:),( 21  be the histogram of ROII with the 

range, ],[ 21 kk . Let HTTI  be the HHT image. Then the HHT algorithm is proposed: 

 

 Find maxk  where maxk is the gray-level value when )(khROI  is the 

maximum value. 
 Calculate the histogram tail interval )( 1max kkk HI −= .  

 Find histogram tail threshold )/( max γHIHTT kkk −=  where γ  is the 

integer value greater than 0. 
 Create the HHT image }),(|),{( 1 HTTROIHTT knmIknmI ≤≤= . 

 
Fig. 1 shows an example of liver segmentation using histogram processing such as 

histogram transformation, MMT, and HHT.  

 

     
(a)                                   (b)                                 (c)                             (d) 

 
 

         
(e)                                (f)                                (g) 

Fig. 1. Liver segmentation using histogram processing: (a) CE-CT image, (b) Transformed 
histogram, (c) ROI after MMT, (d) ROI after removing small objects, (e) HHT image, (f) 
Difference image, (g) Segmented liver after removing other objects 
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3   Experiments and Analysis 

Forty CE-CT slices of ten patients were selected for testing the proposed method to 
segregate a liver structure. Selected each slices were hard to segregate the liver 
structure in the abdomen. As a criterion, one radiologist took a part in this research to 
segregate the liver structure by the manual method. In order to evaluate performance 
of the proposed algorithm, two different methods were compared such as histogram 
processing and the manual method. Table 1 shows the normalized average area 
(NAA) segmented by each method. That is, segmented liver area of each patient were 
averaged and normalized by the image size. From the results of this comparison, we 
may know histogram processing has almost same area as the manual segmentation. As 
the average NAA of histogram process and the manual segmentation is 0.1531 and 
0.1594, the difference is very small. 

 

Table 1. Comparison of normalized average area between histogram processing and the manual 
segmentation 

 
 Histogram 

Processing 
Manual 

Segmentation 
Patient 01 0.1198 0.1292 
Patient 02 0.1773 0.1791 
Patient 03 0.1557 0.1588 
Patient 04 0.1922 0.2020 
Patient 05 0.1216 0.1304 
Patient 06 0.2090 0.2122 
Patient 07 0.1856 0.1897 
Patient 08 0.1482 0.1547 
Patient 09 0.1142 0.1226 
Patient 10 0.1080 0.1150 

Total Average 0.1531 0.1594 
 
 
As another comparison method, average area error rate (AER) is used. Average 

AER is defined as 
 

%100×
−

=
MSR

IRUR

a

aa
AER                                            (1) 

 

where URa  is the average pixel area of union region, IRa  is the average pixel area 

of intersection, and MSRa  is the average pixel area of the manual segmented region. 

As Fig. 2 shows, the average AER per each patient is 5 13% and the total average 
AER of all patients is 8.4138 %.  
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Fig. 2. Average area error rate 

4   Conclusions 

In this paper, we proposed an automatic liver segmentation method using histogram 
process. Histogram transformation such as convolution and scaling was first used. 
Next, multi-modal threshold (MMT) was performed to find the range of the ROI of 
the liver region. In order to remove other organs which were neighboring with liver, 
Histogram tail threshold were used. 40 slices from ten patients were selected to 
evaluate histogram process. As the evaluation measure, the normalized average area 
and area error rate were used. From the results of experiments, liver segmentation 
using histogram processing has similar performance as the manual method by medical 
doctor. 
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Abstract. An improved adaptive RBF neural network is proposed to realize the 
continuous classification of left and right hand motor imagery tasks. Leader-
follower clustering is used to initialize the centers and variances of hidden layer 
neurons, which matches the time-variant input features. Based on the features of 
multichannel EEG complexity and field power, the time courses of two evaluat-
ing indexes i.e. classification accuracy and mutual information (MI) are calcu-
lated to obtain the maximum with 87.14% and 0.53bit respectively. The results 
show that the improved algorithm can provide the flexible initial centers of 
RBF neural network and could be considered for the continuous classification 
of mental tasks for BCI (Brain Computer Interface) application. 

1   Introduction 

BCI technology provides a new non-neuromuscular communication and control chan-
nel between brain and external environment [1]. Currently, one important application 
of BCI is ‘thought-control’ over functional electrical stimulation (FES) directed by 
hand motor imagery [2]. Based on event-related desynchronization/ synchronization 
(ERD/ERS), the left and right hand motor imagery tasks can be easily discriminated, 
which can be used to implement the control over FES. The classification of mental 
tasks is the key issue in BCI. The RBF neural network has been widely used in pattern 
classification, in which K-means clustering is usually used to initialize the centers of 
network and the number of centers is pre-determined by prior knowledge. In this 
paper, an improved RBF neural network is proposed for the continuous classification 
of hand motor imagery tasks, in which Leader-follower clustering is used to initialize 
the centers of networks, which matches the time-varying input features. The results 
show that the improved RBF network is effective for continuous classification of 
hand motor imagery tasks in BCI application.  

2   The Experimental Data 

The data is available in BCI2003 competition website. The experiment consists of 280 
trials. Each trial is 9s length. The first 2s was quite, at t=2s an acoustic stimulus indi-
cates the beginning of the trial and a cross “+” was displayed for 1s; then at t=3s, an 
arrow (left or right) was displayed. At the same time the subject was asked to move a 
bar into the direction of the cue. The feedback was based on AAR parameters of 
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channel C3 and C4, the AAR parameters were combined with a discriminant analysis 
into one output parameter. Three bipolar EEG channels were measured over C3, Cz 
and C4. EEG was sampled with 128Hz and filtered between 0.5 and 30Hz. The data 
include train data and test data with equal 140 trials with the details referred to [3]. 

3   Feature Extraction 

Human’s EEG frequency is primarily between 0.5~30Hz. Studies by Pfurtscheller and 
his associates show that when people imagine or prepare for unilateral hand move-
ment, the amplitude of α  and β  especially μ  rhythm (10-12Hz) in contralateral 

hand area decreases, which is called as ERD; simultaneously the amplitude of the 
corresponding rhythms in ipsilateral hand area increases, which is called as ERS [4]. 
The multichannel desynchronized EEG would result in the decrease of local field 
power and spatial synchrony, and vice versa [5], which can well be characterized by 
the multichannel EEG linear parameters proposed by Wackermann [5]. Multichannel 
EEG complexity and field power can reflect the independence between functional 
processes and field strength of local brain regions [5]. Here, EEG within 10-12Hz 
from C3, Cz and C4, Cz are selected to calculate two-channel complexity and field 
power as features, which have good separability for left and right hand motor imagery 
so as to be considered for classification of two classes of EEG patterns. 

4   RBF Neural Network for Classification of Mental Tasks 

The Radial basis function usually chooses the Gaussian function. 
2

2
( ) exp( )

2
k

k
k

x u
g x

σ
−

= −                                        (1) 

where ,k ku σ  is the center and the corresponding variance of the kth cluster 

( 1, ,k K= ). The most used K-means clustering for initializing the centers is not 

suitable for the problem here. Firstly, for the continuous classification of hand motor 
imagery tasks, the subject’s brain state varies with time and then the input EEG fea-
tures are time-variant, which requires the number of centers of RBF neural network 
hidden layer changing with time. Secondly, the number of centers is unknown and 
should change with every new input feature vectors. So it’s necessary and reasonable 

to find another clustering method to initialize the centers ku  and variances kσ  adap-

tively. For the unknown number of clusters, the simplest clustering method is the 
Leader-follower clustering [6]. The basic idea of the method is to only change the 
cluster center nearest to the new input pattern repeatedly and keep others unchanged. 
So Leader-follower clustering can realize the adaptive initialization of the centers 
according to the time-varying input patterns. 

After initializing the centers of network, the next step is to adjust two parameters 

,k ku σ  by the gradient descent in the regularized error function with the regularized 
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coefficient λ  to avoid overfitting [7]. Then the optimal RBF neural network output 

weights 1[ , ]T
Kw w=w  are obtained. The output of RBF neural network is com-

puted as a linear combination of K radial basis functions. 

1

( ) ( )
K

k k
k

D x w g x
=

=                                   (2) 

where kw  is the weight between the kth hidden layer and output layer. For the two 

classes of EEG patterns, the classification outputs can be as follows: 
( ) 0 :

( ) 0 :

if D x right

if D x left

>
<

                                 (3) 

where ( )D x  indicates the size of classification margin. 

5   Experimental Results 

Classification accuracy is an important index for evaluating BCI system performance, 
which reflects the ability of BCI system identifying the brain consciousness task cor-
rectly. Another index MI (Mutual Information) is used to quantify the information 
transfer performance of BCI, which is proposed by A.Schlogl [8]. Based on the fea-
tures of two-channel spatial complexity and field power, the improved RBF network 
is used to classify the left and right hand motor imagery tasks. The classification accu-
racy and MI time courses for test data are shown in Fig1 (a, b). The parameters η , θ  

and λ  are chosen as 0.1, 0.055 and 10-6 respectively by minimizing the error with 
cross validation.  

 
(a)       (b) 

Fig. 1. Classification accuracy time course in (a) and MI time course in (b) 

From figure 1 the satisfactory results are obtained with the maximum classification 
accuracy and MI reaching 87.14% and 0.53bit respectively at about t=5s. MI time 
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course keeps consistent with classification accuracy. The time course of the two in-
dexes by RBF network based on K-means clustering (K=8) are also calculated, which 
shows a large oscillation. In contrast, the classification accuracy and MI time courses 
by RBF network with Leader-Follower clustering is more stable and smoother so as to 
improve the performance of the continuous mental tasks in BCI system. 

6   Discussions 

In this paper, Leader-follower clustering method provides the flexible time-variant 
initial parameters of the cluster centers, which could reflect the true clustering centers 
and meet the requirements of continuous classification of hand motor imagery tasks. 
Then by the gradient descent, the centers and variances are further tuned adaptively 
and the weight parameters of network are optimized, which can effectively improve 
classification accuracy. Combining the advantages of the above two steps, the im-
proved adaptive RBF neural network performs the satisfactory classification so that it 
could be expected to apply to mental tasks classification in BCI.  
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Abstract. This paper investigates the similarity of two sequences, one
of the main issues for fragments clustering and classification when se-
quencing the genomes of microbial communities directly sampled from
natural environment. In this paper, we use the relative entropy as a crite-
rion of similarity of two sequences and discuss its characteristics in DNA
sequences. A method for evaluating the relative entropy is presented and
applied to the comparison between two sequences. With combination of
the relative entropy and the length of variables defined in this paper,
the similarity of sequences is easily obtained. The SOM and PCA are
applied to cluster subsequences from different genomes. Computer sim-
ulations verify that the method works well.

1 Introduction

In conventional shotgun sequencing projects of microbial isolates, all shotgun
fragments are derived from clones of the same genome. When using the shot-
gun sequencing approach on genomes from an environmental sample, however,
the fragments are from different genomes. This makes assembling genomes more
complicated [1]. To find whether fragments in a given sample set can be assem-
bled, it is necessary to cluster those fragments likely from the same genome into
a group for reduction of computational complexity. The criterion of clustering
fragments is no doubt very important. The selection of the criterion is the mo-
tivation to investigate the similarity of sequences based on the relative entropy.
In this paper, we present a method of evaluating the relative entropy, apply it
to the comparison of similarity between two sequences and use it as a measure
for clustering fragments sampled from different genomes.

� To whom correspondence should be addressed. The project was supported by the
national natural science foundation of China under grant 60375015.
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After simply introducing Kullback-Leibler divergence(KLD), we will apply
it to processing the real data from NCBI. We introduce the definition of vari-
ables, and present the methods of processing the data, the result and analysis
of experiments. Finally, we will discuss the result and applications.

2 Problem Formulation

To understand our method, we will give explanations about the measure of
similarity and a method of evaluating KLD of two sequences.

Kullback-Leibler divergence(KLD), also called the relative entropy given by
Kullback (1959), KL(P |Q) between two probability distributions P and Q is
defined as

KL(P | Q) = −
N∑

i=1

[
p(xi)log

p(xi)
q(xi)

]
, (1)

where, 0 · log0 = 0. p(xi) and q(xi) are probability density function of P and Q,
respectively. Therefore KL(P | Q) establishes a measure of the distance between
the distributions Q and P. However, the Kullback entropy is not symmetric and
thus not a distance in the mathematical sense. KL(P | Q) �= KL(Q | P ). The
Kullback entropy KL(P | Q) is always greater than or equal to zero and vanishes
if and only if the distributions P and Q are identical[2][3].

A sequence X, of length n, is formed as a linear succession of n symbols from
a finite alphabet {A, C, G, T}. A substring of K symbols, with K ≤ n, is defined
as a K-length random variable ( also defined as K-word or K-tuple [4][5]). For
example, K = 2, 2-length random variables are included in the set {AA, AC,
AG, AT, CA, . . . , TA, TC, TG, TT}, which contains 16 variables in all.

The probability density of a random variable xi in the sequence X is evaluated
by Equation (2)

p(xi) = f(xi)/(n−K + 1), (2)

where, f(xi) is occurrences of xi in X. For example, let X be ”CGCGT”, of
length n=5. For K=2, f(CG) = 2 and p(CG) = 2/(5− 2 + 1) = 0.5.

Let Y be ”CGGT”. It is easy to estimate pX(GC) = 0.25, but pY (GC) = 0.
In this case, the standard KL(X |Y ) becomes infinite, resulting in no similarity
between X and Y according to definition of KLD. But in fact, X is very similar
to Y. Therefore, we evaluate KL(X |Y ) with the only variables included in X
and Y in common.

To let KLD satisfy conditions of symmetry and a distance in the mathe-
matical sense, we evaluate the mean of KL(X |Y ) and KL(Y |X) as the relative
entropy between X and Y.

3 Experiments and Results

We get some whole genomes from the nucleotide database of GenBank:
NC 000117, NC 000853, NC 000854, NC 000868, NC 000907, and NC 001807.
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The whole sequences are cut into subsequences of length ranging from 1.5K to
150K for different sequence analysis, such as selection of variable length and
similarity of subsequences from same genomes or different genomes. We will give
an application to clustering subsequences.

How long variables are suitable? Experiments indicate that there exists a
threshold of variable length that expresses the similarity between two sequences,
as shown in Fig. 1. If a variable length is too big, i.e. bigger than the threshold,
KLD cannot really reflect the similarity.

Using combination of KLD and variable length, we apply the method to
the sequence analysis. Fig. 2 indicates that KLD of all pair-subsequences from
a genome are almost same with a variable length. Fig. 3 indicates subse-
quences(before 10 on X-axis) from a same sequence are more similar to each
other than to ones(the rest) from different sequences.

It is noteworthy that in Fig. 3 that when the length is too big, such as 6,
KLD of subsequences from different genomes becomes smaller. Obviously, the
similarity measure with KLD of such a large length is not suitable. According
to the results, we can use the method to cluster the reads to reduce computing
complexity of assembling genomes directly sampled from natural environment.

As a similarity-based clustering method for unlabeled data [6], the self-
organizing map (SOM) is used to group the subsequences. We use PCA to get
three principle components and use them as the input patterns of SOM network
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because, in some cases, we have a little difficulty in grouping the subsequences
by the KLD of a single or several variable length, as shown in Fig. 4. Fig.5 indi-
cates that it is easier to classify the subsequences by PCA than by combination
of several variable length. Using the method, we can obtain two sets for a sub-
sequence. Subsequences in the first set is more similar to the subsequence than
ones in the second. The clustering result is satisfied.

4 Conclusions

In this paper we present and apply KLD with different variable length to the sim-
ilarity analysis of DNA subsequences from the same genome or different genomes
or species. Computer simulations verify that the method works well. The method
can be used to cluster the reads from the genomes of microbial communities di-
rectly sampled from natural environment to save computation for assembling
the whole genomes of varieties of species. The method is also used to search
similar sequences from nucleotide or protein databases, to compare homology of
sequences to find some similar species, and to cluster genes from gene-expression
data.
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Abstract. At Windber Research Institute we have started research programs 
that use artificial neural networks (ANNs) in the study of breast cancer in order 
to identify heterogeneous data predictors of patient disease stages.  As an initial 
effort, we have chosen matrix metalloproteinases (MMPs) as potential 
biomarker predictors. MMPs have been implicated in the early and late stage 
development of breast cancer. However, it is unclear whether these 
proteins hold predictive power for breast disease diagnosis, and we are not 
aware of any exploratory modeling efforts that address the question. Here we 
report the development of ANN models employing plasma levels of these 
proteins for breast disease predictions. 

1   Introduction 

According to estimates by the American Cancer Society, in 2004 breast cancer was 
the most common cancer among women in the United States and the second leading 
cause of female deaths. The current screening procedures have a ~20% false negative 
rate and are effective only after a lesion has developed which biological studies show 
may take 4-10 years from the onset of the disease. Thus, more sensitive strategies for 
detection of early stage breast cancers are needed.  

We are committed to the research on breast cancer using an integrative approach 
across clinical, genomic, and proteomic platforms [1-3], and a data warehouse has 
been developed to harbor the large amount of data produced in the high throughput 
experiments to facilitate the research [4]. In addition, we have small-scale research 
programs on identifying biological markers (biomarkers) for breast cancer diagnosis 
or early detection. One such example is a study on circulatory matrix 
metalloproteinases (MMP) 2 and 9 [5]. 

MMPs are involved in extracellular matrix modification. Specifically, MMP2 and 
MMP9 appear to play critical roles in the early stage of cancer development [6, 7]. 
We have studied the relative levels of these enzymes, and statistical analysis indicated 
that MMP2 and MMP9 levels may be used to stratify patients into different disease 
categories [5]. In this study, we further ask whether Artificial Neural Networks 
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(ANNs) can help in classifying the disease categories which in the future may be 
developed for the early prediction of breast cancers. 

ANNs comprise a family of powerful machine learning technologies which 
embody learning mechanisms that are analogous to the ways natural neural networks 
learn. At their core, ANNs learn by adjusting weights, which are in effect coefficients 
for non-linear functions in an equation that fits the sample data. A typical ANN 
consists of an input layer, a so-called “hidden layer” to perform input-to-output 
mapping, and an output layer which exposes network results. ANNs have been 
applied to breast cancer studies, and models using mammogram and other image data 
have been reported [8, 9]. There are also reports of ANN models for breast cancer 
diagnosis using clinical laboratory blood work data and image features of cells 
obtained through (fine) needle aspiration [10, 11]. ANN models have also been used 
for outcome, survival or relapse predictions [12, 13].  

All of these studies, however, are relatively specialized, i.e., none of these models 
used a combination of inputs of multiple categories including biomarkers, patient 
demographic and medical history, and family medical history data, etc.. Breast cancer 
is currently considered a heterogeneous disease, and environmental factors appear to 
play important roles in the development of the disease as well. We believe that an 
ultimately successful model for breast cancer diagnosis or detection needs to take into 
account multiple disparate factors. ANNs represent a natural class of candidate 
models that can use such inputs for breast cancer diagnosis and detection. The MMP 
study reported in the following reflects our initial ANN modeling efforts in this 
direction. 

2   Methods 

Non-control subjects enrolled in this study are fully informed and consenting female 
patients, 18 years old and above. Subjects were categorized as benign (non-
neoplastic) or with breast cancer based on pathological diagnosis. High Risk 
individuals were diagnosed as disease-free but were determined by the Gail Model to 
have a 5-year risk ratio of >= 1.67% of developing breast cancer. The control group is 
constituted of a group of healthy female volunteers with a 5 year risk ratio of < 
1.67%. In the following we denote these groups of subjects as Benign, Cancer, HR, 
and Control. 

A total of 169 subjects were enrolled in this study, which are n=77 for Benign, 
n=48 for Cancer, n=31 for HR, and n=13 for Control. The blood was drawn from the 
subjects and processed for plasma following conventional methods, and active and 
total MMP2 and MMP9 levels were analyzed using a commercial kit [5], denoted as 
MMP2_Active, MMP2_Total, MMP9_Active, and MMP9_Total respectively, which 
were used as the initial raw data input to the ANN models.  

ANN models were developed using NeuralWorks Predict® from NeuralWare. In 
developing the input layer, Predict first applies a range of mathematical 
transformations to the raw data in order to provide a richer pool of potential inputs 
with which to build a model, then it uses a genetic algorithm optimizer to identify 
members of the pool which would be most appropriate as model inputs. Next, Predict 
uses a cascade correlation network construction mechanism [14] to dynamically 
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determine the network architecture by continually monitoring the performance of the 
model being trained and gradually adding hidden nodes until model performance 
ceases to improve. The output layer contains four nodes, for the four groups of the 
subjects. The original dataset was partitioned into training and testing sets, 70% and 
30% by default. Scripts were developed to facilitate varying model parameters and 
allow for fast development of 1000 models in this study. 

3   Results and Discussions 

Although Predict allows for model parameter adjustment through the interface, we 
built the first model with all default settings. The model was 61% accurate on the 
training dataset and 71% accurate on the testing dataset, with a structure of 6-10-4 (6 
input nodes, 10 hidden, and 4 outputs) so multiple transformations of one or more of 
the raw data fields were ultimately chosen by the variable selection operation.   

In light of the reasonable, but not exceptional results obtained from the initial 
model, a script file was then created to guide Predict in building 1000 models by 
systematically varying model parameters and data partitioning. Of this pool of 
models, the majority gave a correct classification rate (average of training and test) of 
over 80% and 43 models yielded a classification rate of 90% or better.  

Given the relatively small size of the samples involved in this study we paid 
special attention to the possibility of over-fitting. We did have seven models 
producing 100% accurate results with the training dataset but not so with the test 
dataset, where the accuracies were two at >90% accuracy, 5 others at >80% accuracy, 
and another at 77% respectively. There was also one model that produced 100% 
accuracy with the test dataset but showed 85% accuracy with the training set. While 
the most direct approach to reducing/eliminating issues related to over-fitting is to 
hold out some of the available data to use in a final validation, limited by our sample 
size at this stage we were unable to set aside a validation dataset. The validation 
dataset should be completely inaccessible to the whole training and testing process. 

We also compared the ANN model results with logistic models developed using 
NCSS and SAS (data not shown). After combining some outcomes to form a binary 
condition (e.g. Cancer and non-Cancer) some logistic models produced an accuracy 
rate of 80% or higher, whereas when using all the 4 outcomes as in the ANN 
modeling the best logistic model only produced an accuracy rate of 70.2%. 

Overall, the results of the ANN modeling efforts are promising. This screening 
approach, which is based on the use of circulating blood markers, is attractive because 
it is minimally invasive. If MMP2 and 9 measured here truly reflect changes due to 
the cancer or lesion development, then it is possible that they can serve as early 
predictors before a lesion is detectible. We are now in the process of increasing our 
sample size, and developing ANN models taking multidisciplinary data types as 
inputs including other potential biomarkers, demographical, and clinical data etc.. We 
hope that more comprehensive ANN models can be developed which can potentially 
find application in clinical practices. 
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Abstract. In whole genome shotgun sequencing when DNA fragments
are derived from thousands of microorganisms in the environment sam-
ple, traditional alignment methods are impractical to use because of their
high computation complexity. In this paper, we take the divergence vec-
tor which is consist of Kullback-Leibler divergences of different word
lengths as the feature vector. Based on this, we use BP neural network
to identify whether two fragments are from the same microorganism and
obtain the similarity between fragments. Finally, we develop a new novel
method to cluster DNA fragments from different microorganisms into
different groups. Experiments show that it performs well.

1 Introduction

The sequences obtained from an environmental sample are from different
genomes [1], which makes the tradition assembly method ”overlap - layout -
consensus” [2] impractical to apply because of large number of DNA fragments
and consequently prohibitive computing complexity. It is desirable to cluster
fragments which are from the same or similar genomes into a group before as-
sembly. Many rigorous DNA sequence comparison algorithms like BLAST in-
volve sequence alignment at some stage and become computationally prohibitive
when comparison against a large number of sequences [6]. The Kullback-Leibler
divergence uses word frequencies thus can be computed as fast as Euclidean
distance [3]. We take the divergence vector which combines Kullback-Leibler di-
vergence of different word lengths as the feature vector. Then we apply BP(Back-
Propagation) neural network to determine whether two sequences are from the
same genome and obtain the similarity between sequences. Based on the simi-
larity, we develop a novel method to cluster DNA sequences into several groups
and each group is composed of sequences from the same or similar genomes.

The paper is organized as follows: Section 2 introduces the clustering problem
we faced in mathematical sense and the concept of Kullback-Leibler divergence.
� To whom correspondence should be addressed. The project was supported by the

national natural science foundation of China under grant 60375015.
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Our clustering method is described in Section 3. Section 4 is experiments and
results. Finally, Section 5 presents the conclusions.

2 Problem and Definition

2.1 Problem Formulation

In the problem of sequencing fragments from an environmental sample, we have
no idea of how many kinds of microorganisms or the coverage rate, and we
don’t know how many fragments each microorganism contains either [1], so the
problem of clustering such fragments can be called blind clustering.

2.2 Words in DNA Sequences and Kullback-Leibler Divergence

A sequence, X , of length n, is defined as a linear succession of n symbols from
a finite alphabet {A,G,C, T }.

L-word is defined as a segment of L symbols, with L ≤ n. The number of all
possible L-words satisfies K = 4L.

The vector of frequencies fX
L can be obtained by counting occurrences of each

L-word in sequence X . The counting is usually performed by sliding a window
L-wide that is run through the sequence, from position 1 to n− L+ 1.

One can then calculate the word probability vector by the equation below.

pX
L =

fX
L

n− L+ 1
(1)

The Kullback-Leibler divergence or relative entropy is a measure of difference
between two distributions based on information theory [4]. The Kullback-Leibler
divergence between sequence X and sequence Y is defined as

KL(X |Y ) =
4L∑
i=1

pX
L,i log

pX
L,i

pY
L,i

(2)

3 Clustering Method of DNA Fragments

3.1 Classification of Kullback-Leibler Divergence Vectors and
Measure of Similarity

The Kullback-Leibler divergence vector between two DNA fragments is defined
as (v(i), v(i+ 1), v(i+ 2), . . . , v(j))T where v(L), L = i, i+ 1, . . . , j is the diver-
gence of two DNA fragments when the word length is L. BP neural network is a
kind of multilayer feedforward network and has been used as an classifier for a
long time [7]. We apply BP neural network to determine whether the Kullback-
Leibler divergence vector is between two fragments from the same microorgan-
ism. In training phase, the output is 1 when two DNA fragments are derived
from the same genome and −1 otherwise. In test phase, if the output is not less
than 0, it means two fragments come from same or similar microorganisms.

We define the similarity of two fragments as the output of BP neural network
when the input is the divergence vector between them. The value of similarity
also reflects the possibility whether two fragments are from the same genome.
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3.2 Blind Clustering Method

Before introducing our clustering algorithm, we define an important concept
first:

veto rate: if in a group there are N such fragments, the similarity between
which and the compared fragment is no less than 0. Supposing the size of the
group is M . The veto rate defines as N/M .

In our algorithm, there are also three important parameters:
high threshold: if the similarity is equal to or greater than the

high threshold, the fragments are from the same genome with high possibil-
ity.

low threshold: if the similarity of two fragments is less than the
low threshold, the two fragments are from different genomes with high pos-
sibility.

veto threshold: If the veto rate between a group and the compared fragment
is not less than the veto threshold, the fragment will join the group.

Our clustering method:
1. Compute the divergence of every fragment pair for some word lengths.
2. Input the neural network with divergence vectors to compute similarity.
3. Find out the fragments where the similarity of every two fragments is less

than low threshold. We say each of them represents a group.
4. For each group, find out the fragments, the similarity between which and

the representation fragment of the group is not less than high threshold.
5. For each fragment, if the veto rate between it and a group is equal or

greater than the veto threshold, then it joins the group.
6. For every fragment which does not join any group, join the group, the veto

rate between which and the fragment is the greatest.

4 Experiments and Results

According to the taxonomy tree in NCBI [5], we obtain complete genomes of
9 microorganisms from genebank. Their search numbers are NC-000917, NC-
003551, NC-002806, NC-002932, NC-005042, NC-006576, NC-001318 and NC-
005835 respectively. We cut each genome randomly into sequences of length
between 18k and 22k . Then we calculate Kullback-Leibler divergence of word
length 2, 3, 4, 5, 6, 7 respectively. Fig. 1 presents the joint distribution of diver-
gences of word length 5, 6, 7. We do the experiments on a lot of word length com-
binations. Our conclusion is: when the input is (v(2), v(3), v(4), v(5), v(6), v(7))T ,
the classification performance of neural network is the best and we obtain the
similarity. We adjust the parameters high threshold, low threshold and veto
threshold . When their values are 0.95, -0.95 and 0.8 respectively, the final clus-
tering result reaches its best performance 98.55%.
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Fig. 1. The joint distribution of Kullback-Leibler divergences. X-axis represents diver-
gence of word length 5, Y-axis represents divergence of word length 6 and Z-axis rep-
resents divergence of word length 7. The red diamonds represent divergences between
fragments from the same microorganisms and the cyan asterisks represent divergences
between fragments from different microorganisms.

5 Conclusions

In this paper, we take the Kullback-Leibler divergence vector as the feature vec-
tor which combines divergences of different word lengths. BP neural network
performs well to determine whether the vector is between fragments from the
same genome. Based on the similarity(the output of BP neural network) , we de-
velop a novel blind clustering method. The result of our experiments is satisfying.
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Abstract. In this paper,we constructed a data set of rice proteins with
known locations from SWISS-PROT,using the Support Vector Machine
to predicte the type of a given rice protein by incorporating sequence
information with physics chemistry property of amino acid. Results are
assessed through 5-fold cross-validation tests.

1 Introduction

With an enormous amount of raw sequence data accumulating databanks, it
raises the challenge of understanding the functions of many genes. Proteins’
subcellular locations are valuable to elucidate proteins’ functions. Experiments
have determined 2744 yeast proteins [1]. However,it is time-consuming and costly.
It is highly desirable to predict a protein’s subcellular locations automatically
from its sequence. There are three basic approaches. One approach is based on
amino acid composition, using artificial neural networks (ANN), such as NNPSL
[2], or support vector machines (SVM) like SubLoc [3]. A second approach uses
the existence of peptide signals, which are short sub-sequences of approximately
3 to 70 amino acids to predict specific cell locations, such as TargetP [4]. A third
approach, such as the one used in LOCKey [5], is to do a similarity search on the
sequence, extract text from homologs and use a classifier on the text features.

Predictions based only on amino acid composition may lose some sequence-
order information. Chou [6] first proposed an augmented covariant discrimination
algorithm to incorporate quasi-sequence-order effect, and a remarkable improve-
ment was achieved. Subsequently, Chou[7] further introduced a novel concept,
the pseudo-amino acid composition to reflect the sequence-order effect. Recently,
Cai et al.[8] used SVM incorporating quasi-sequence-order effect.

We used SVM method here to predict subcellular locations based on amino
acid composition, incorporating dipeptide composition and physics chemistry
properties of proteins. Dipeptide composition can be considered as another rep-
resentative of proteins incorporating neighborhood information.

Stability is an important physics chemistry property of protein; it is key to
determine the native structure [9]. Guruprasad [10]designed a dipeptide instabil-
ity weight value (DIWV) according to their influence on the stability of protein
native structure. The DIWV is widely used in molecule structure.
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Besides it, the occurrence frequency of different amino acid at active sites
varied obviously [11], so sequence difference may result in different activity of
proteins. Encouraged by the positive impact of these effects, we try to apply
Vapnik’s Support Vector Machine [12] to approach subcellular location of rice
proteins problem.

2 Materials and Methods

2.1 Support Vector Machine

SVM is a type of learning machines based on statistical learning theory. The
basic idea of applying SVM to pattern classification can be stated briefly as
follows.

Suppose we are given a set of samples, i.e. a series of input vectors
Xi ∈ Rd (i = 1, 2, · · · , N), with corresponding labels yi ∈ {+1,−1} (i =
1, 2, · · · , N) , where -1 and +1 respectively stand for the two classes. Our goal is
to construct one binary classifier or derive one decision function from the avail-
able samples, which has small probability of misclassifying a future sample. Only
the most useful linear non-separable case (for most real problems) are considered
here.

SVM performs a nonlinear mapping of the input vector x from the input
space into a higher dimensional Hilbert space, where the mapping is determined
by the kernel function. It finds the OSH (Optimal Separating Hyperplane, see
Cortes and Vapnik[13]) in the space H corresponding to a non-linear boundary
in the input space. Two typical kernel functions are listed below:

K(xi, xj) = (xi · xj + 1)d (1)

K(xi, xj) = exp(−r‖xi − xj‖2) (2)

The first one is called the polynomial kernel function of degree d , which
will eventually revert to the linear function when 1 = d , and the latter one is
called the RBF (radial basis function) kernel with one parameter λ . Finally, for
the selected kernel function, the learning task amounts to solving the following
convex Quadratic Programming (QP) problem:

max
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαj · yiyj ·K(xi, xj)

subject to:

0 ≤ αi ≤ C

N∑
i=1

αiyi = 0

where the form of the decision function is

f(x) = sgn(
N∑

i=1

yiαiK(xi, x) + b)
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For a given data set, only the kernel function and the regularity parameter C
must be selected.

In this paper, we apply Vapnik’s Support Vector Machine for predicting the
types of rice proteins. We have used the SVMlight, which is an implementation
(in the C language) of SVM for the problem of pattern recognition.

2.2 Sequence Data

The data were selected from rice proteins with annoted subcellular location
in SWISS-PROT (24). 352 rice proteins were classified into the following four
groups: [1]chloroplast; [2]cytoplasmic; [3]integral membrane protein; [4]nuclear.
There are 79, 54, 55, 154 proteins in four groups, respectively.

2.3 Algorithm

To improve the quality of statistical prediction for protein subcellular location,
one of the most important steps is to give an effective representation for a protein.
We incorporate sequence information with physics chemistry property of amino
acid.

Here, each protein is represented by a 22-D vector P = [p1, p2, · · · , p22].
The first 20 components of its vector denote the occurrence frequencies of the
20 amino acids respectively. DIVW can be expressed by a 400-D vector, D =
[d1 · · · d400], where di is a dipeptide instability weight value.Similarly,each pro-
tein is expressed by X = [x1 · · ·x400] , where xi is the occurance frequency of
corresponding dipeptide in the sequence. Thus, the 21st component is defined as

p21 =
400∑
i=1

di · xi , which is the average of all the dipeptides instability values of

the protein.
The occurrence frequence of each amino acid at the active position is different,

so we can similarly derive the 22nd component, which is the average of the amino
acid activity values of the protein. Thus, a protein is expressed by 22-D vector.

Also for the SVM, the width of the Gaussian RBFs is selected to minimize an
estimate of the VC-dimension. The parameter C that controls the error-margin
tradeoff is set at 1000. After being trained, the hyper-plane output by the SVM
was obtained. The SVM method applies to two-class problems.

3 Results and Discussion

The prediction performance was examined by the 5-fold cross-validation test,
in which the data set was divided into five subsets of approximately equal size.
This means the data was partitioned into training and test data in five different
ways. After training the SVMs with a collection of four subsets, the performance
of SVMs was tested against the fifth subset. This process is repeated five times
so that every subset is once used as the test data.

To assess the accuracy of prediction methods we use the following measures.
Let TP is the number of true positive; FP the number of false positive; TN
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Table 1. Results for the 352 Rice Proteins Represented by 22-D Vectors Tested by
5-fold cross-validation Test

sort1 sort2 sort3 sort4 overall
Sen+(%) 77.78 85.45 56.96 90.26 79.82
Sen−(%) 96.18 93.73 92.40 90.96 93.57
Spe+(%) 79.25 72.31 69.23 89.10 80.53
Spe−(%) 95.85 97.11 87.73 91.94 93.29

CC 0.754 0.749 0.566 0.820 0.749
accurate rate 0.933 0.924 0.842 0.906 0.901

Table 2. Results for the 352 Rice Proteins Represented by 20-D Vectors (amino acid
composition) Tested by 5-fold cross-validation Test

sort1 sort2 sort3 sort4 overall
Sen+(%) 18.52 74.55 21.52 79.22 55.56
Sen−(%) 95.14 92.33 93.54 88.30 92.69
Spe+(%) 41.67 65.08 50.00 84.72 71.70
Spe−(%) 86.16 94.98 79.87 83.84 86.22

CC 0.254 0.652 0.287 0.705 0.564
accurate rate 0.830 0.895 0.769 0.842 0.834

the number of true negative; FN the number of false negatives; N=TP+ TN+
FP+FN. Then we have:

Sen+ =
TP

TP + FN
Spe+ =

TP

TP + FP

Sen− =
TN

TN + FP
Spe− =

TN

TN + FN

CC =
TP ∗ TN − FP ∗ FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)

The results are given in Table I. Compared with table II, the results obtained
by only using single amino acid composition, the overall accurate rate has been
improved much from 83.4% to 90.1%. It is tellable that sen+, spe+ and CC
have been highly enhanced. Only using amino acid composition is unreasonable,
for biological molecules is different to linear sequences of discrete units similar
to linguistic representations. Sequence-order information and physics chemistry
properties of proteins are absolutely necessary factors.

4 Conclusion

From the above results, considering appropriate sequence-order information and
physics chemistry properties of proteins is helpful to boost the prediction accu-
rate rate. The current study has further demonstrated that the instability index,
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the active index and SVM have opened a new and promising approach in dealing
with sequence order effect
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Abstract. After the Chinese National Neuroinformatics Working Group was 
formed in 2001, neuroinformatics research has progressed rapidly in China. 
This paper reviews the history of neuroinformatics in China, reports current re-
searches and discusses recent trends of neuroinformatics in China. 

1   Introduction 

The First Conference on Neuroinformatics was held in 2000 in Haikou, China. Neuro-
informatics is considered as a frontier and multi-discipline which combines the brain 
science, the information science and computer science together to investigate the form 
of neural information carrier, the mechanisms of generation, transmission, processing, 
coding, storage and retrieving of the neural information, and to construct the data 
bank system of neuroscience. A lots of Chinese scientists appealed Chinese Govern-
ment to pay more attention and financial support on neuroinformatics [1, 2]. From 
then on, a lot of conferences on neuroinformatics have been held in China and a num-
ber of research projects have been supported by Chinese government.  In 2004, the 
Chinese government joined the OECD-GSF-NI-WG. 

2   Progress of Neuroinformatics in China 

In September, 2001, the 168th Xiangshan Science Conference, which focusing on the 
scientific frontier of basic research and important engineering technology of China, 
entitled ‘Human Brain Project and Neuroinformatics’ was held in Beijing [3]. During 
the conference, Dr Stephen H. Koslow, who was the director of Office on Neuroin-
formatics Coordinator, NIMH, USA, was invited to introduce the Human Brain Pro-
ject and discuss how to conduct neuroinformatics research in China with the officers 
of the Ministry of Science and Technology of China. As a result, the National Neuro-
informatics Working Group was formed. 
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The Sino-Korea-Japan Joint Workshop on Neurobiology and Neurinformatics was 
held in Hangzhou, China in November 2001. 

Authorized by Chinese State Department, the Ministry of Science and Technology 
of China represented Chinese government joining the Commission of Science and 
Technology of the Organisation for Economic Co-operation (OECD) in 2001. Prof 
Xiaowei Tang, Prof Lin Yin and Prof Yiyuan Tang represented China, as an observ-
ing country, to attend the meeting of the Organisation for Economic Co-operation and 
Development - Global Science Forum - Neuroinformatics Working Group (OECD-
GSF-NI-WG) within same year. In April 2004, China joined the OECD-GSF-NI-WG 
[4]. 

Initially, there were only 6 members and nowadays there are 18 members from 10 
different provinces and area. The number of neuroinformatics researchers increase 
from initial 30 to more than 250. Involved institutes are 25, including Zhejiang Uni-
versity, the PLA General Hospital, Dalian University of Science and Technology, 
Fudan University, Tsinghua University, Beijing University, Institute of Biophysics 
Chinese Academy of Science, Shanghai Jiaotong University and so on. The research 
areas cover neurology, neuropathy, mathematics, physics, chemistry, informatics, 
computer science etc. al [5]. 

There are four neuroinformatics research centers in China. They are the Neuroin-
formatics Center of PLA General Hospital, Center for Neuroinformatics of Zhejiang 
University, Institute of Neuroinformatics of Dalian University of Science and Tech-
nology and Center for Neuroinformatics of Beijing University of Chinese Medicine 
and Pharmacy. 

Neuroinformatics training courses have been held twice. More that 200 people took 
part in and got basic training for neuroinformatics research.  

Since 2001 more than 24 project grants have been funded for research in neuroin-
formatics by the National Basic Research Program of China (973 Program), the Na-
tional Natural Science Foundation of China, International Collaboration Scheme and 
so on. These research programs include the neuroinformatic mechanisms of Chinese 
Traditional Medicine  [6], Chinese recognition, sensory perception, mental diseases, 
et al. Some of them are listed as following: 

 Neuroinformatics Research on fMRI of Acupuncture and Chinese Recogni-
tion 

 Application of Nonlinear Neuroinformatics on Study of Olfactory Mecha-
nisms 

 Construction of Chinese Node of International Neuroinformatics Web-
Database and Development of Informatics Tools 

 Comparison Research between Structural Functional Atlas of Oriental and 
Western People’s Brain 

 Experimental Research on fMRI of Acupuncture at Points of Zhu-San-Li and 
Nei-Guan 

 Study on Mechanism of Depression and Anxiety of Teenage and Strategy for 
Prevention and Treatment Based on Neuroinformatics Database 

 Research on fMRI of Digital Recognition 
 Research on Recognition and Nonlinear Analysis of EEG 
 Audio Information Coding and Feedback Control and Its Loop Base 
 Neural Mechanism of Audio Information Processing 



1054 G. Li et al. 

 

 Signal Measurement and Information Extraction of Neuronal Loop 
 Development of Quantitative Sensory Testing System 
 Application of Chaotic Array on Artificial Olfaction 
 Neural Systematic Function Oriented Computing Model 
 …… 

3   Data Sharing in Neuroscience in China 

In Jan 2004, there was a meeting of OECD committee for scientific and technological 
policy at ministerial level. A 2002 Report on Neuroinformatics from OECD-GSF-NI-
WG was submitted to the ministers attending the meeting. It highly recommended to 
establish a new global mechanism, the INCF (International Neuroinformatics Coordi-
nating Facility), created an associated funding scheme, the PIN (Program in Interna-
tional Neuroinformatics) and establish national nodes and research programs in 
Neuroinformatics [5]. According to the plan of OECD-GSF-NI-WG, a lot of works to 
setup a national web-based neuroinformatics database for data sharing have been 
carried out in China.  

3.1 Data Sharing in China 

Data sharing in Science and Technology is a very important policy in China. Man-
agement and Sharing System of Scientific Data for Medicine is a key project of the 
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Fig. 1. The structure of the Natioanl Medicine Data Managing and Sharing Service System of 
China 
National Basic Platform for Science and Technology for year 2003 in the Ministry of 
Science and Technology, China. As the paramount part of the National Engineering 
of Scientific Data Sharing, the System is undertaken by Chinese Academy of Medical 
Sciences, Chinese Center for Disease Prevention and Control, Chinese PLA General 
Hospital, and Chinese Academy of Traditional Chinese Medicine. Scientific data 
resources in medicine will be integrated together in the way of distribution physically 
and unification in logic by the system. The system covers most of the fields in medi-
cine, including basic medicine, clinical medicine, public health, traditional Chinese 
medicine, special medicine, pharmacology and innovated drug etc. As a part of this 
system, neuroinformatics database is also included (as shown in Fig.1).  

3.2    Neuroinfomatics Database in China 

Based on previous projects granted by Chinese government, the testing version of 
neuroinformatics web sites at PLA General Hospital and Dalian University of Science 
and Technology have been constructed. Some neuroscientific datasets have been 
stored and shared. 

Funded by the National Basic Research Program of China (973 Program), the pro-
ject, Construction of Chinese National Node of International Neuroinformatics Web-
Database and Development of Informatics Tools, has been initialized in January 2005. 
The aim of this project is to collect and normalize existing neuroinformatics resources 
all over the country, develop informatics processing platform for neuroscience, setup 
the national web node of China as a part of international neuroinformatics network 
and provide neuroinformatics resources with local characteristics.  

Following tasks are going to carry out: 1) collect and normalize existing neuroin-
formatics resources to establish the databases of neural cell biology, neural anatomy-
digital brain, neural image, fMRI, neural electrophysiology, neurological function 
evaluation, clinic neuroinformatics, artificial intelligence, Chinese recognition and 
sensory perceptions; 2) develop neuroinformatics tool software for Chinese recogni-
tion and acupuncture; 3) setup coordinating environment based on internet for neuro-
informatics research; 4) establish the national web node of China as a part of interna-
tional neuroinformatics network sharing the neuroinformatics resources globally; 5) 
construct databases of Chinese Traditional Medicine and acupuncture to provide local 
neuroinformatics resources for global network. The project is planned to finish within 
three years. 

4   Future Works 

Based on the HH neuron model and a two-layer network, the effect of noises on the 
sensory systems is discussed. For single neuron, the optimal intensity of noises must 
adapt to the stimulating signals. It is noted that the intensity of noises has a linear 
relation with the standard deviation of stochastic noises. The fluctuation of back-
ground noises is approximately stationary stochastic process with constant standard 
deviation, so its intensity hardly changes. This limits the application of SR. However, 
for the cooperative effect of a set of neurons, the fixed level of noise can induce SR 
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while the stimulating signals varying within a certain range. According to these  
results, the two-layer network can be considered as one of basic structure of signal 
detection in sensory systems. It is further proved that the collective behavior of a set 
of neurons can restrain the noises by analyzing the suprathreshold cases for the net-
works with different quantities of neurons. 
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Abstract. The Australian National Neuroscience Facility (NNF) has been 
established to provide Australian neuroscientists with access to networks of 
laboratories offering neuroscience consultancy, technical expertise and state-of-
the-art equipment. The facility is fostering neuroscience excellence, combining 
science, technology, innovation, investment, creativity and the opportunity to 
advance our understanding and treatment of the brain and mind. Within the 
NNF a Neuroscience Informatics platform has been established with the 
objective of enhancing both the national neuroscience research capability, as 
well as the commercialisation opportunities for the Australian health and 
biotechnology industries. The Platform has developed a NeuroGrid facility 
consisting of computational resources and Grid middleware, internet accessible 
neuroimage databases, and standardised neuroimage analysis tools. A 
customised NeuroGrid portal is currently under development. It is envisaged 
that the NeuroGrid facility and software tools will provide the basis for 
application of Grid computing technologies to other areas of neuroscience 
research. 

1   Introduction 

Neuroscience is one of the fastest growing areas of scientific research and of industry 
development in the biotechnology sector. There is growing interest amongst 
neuroscientists to equitably share neuroscience data and analytical tools since this 
sharing affords the opportunity to differently re-analyze previously collected data; 
secondly, it encourages new neuroscience interpretations; and thirdly, it also fosters 
otherwise uninitiated collaborations. Sharing of neuroscience data and tools is playing 
an increasingly important role in human brain research and is leading to innovations 
in neuroscience, informatics and the diagnosis and treatment of neurological and 
psychiatric brain disorders [1].  
    Neuroscience Informatics is the use of information technology to acquire, store, 
organize, analyse, interpret and computationally model neuroscience data. The term is 
used to describe both neuroscience databases, as well as computer-based tools for 
using these databases. In the past decade there has been a rapid growth in the volume 
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and complexity of neuroscience data. The limited degree to which scientific 
publications can describe the richness of the inter-relationships between these 
complex data has stimulated the development of internet accessible neuroscience 
databases. Internet access to these databases permits efficient re-analysis of these data 
as new concepts are developed, as well as the application of new quantitative 
modelling approaches to enable more precise investigations of the conceptual 
understanding that has been derived from the initial research studies.  
    The Australian National Neuroscience Facility (NNF) has been developed with a 
Major National Research Facility grant from the Australian Government and with 
additional supporting funds from the Victorian State Government. A key objective of 
the National Neuroscience Facility is to develop physical infrastructure to place 
Australia at the forefront of international neuroscience research, and to provide 
researchers with efficient access to this infrastructure. The Neuroscience Informatics 
platform has been developed to address the following issues:  the difficulties 
associated with accessing disparate and limited datasets, the lack of standardised 
analysis tools and experimental methods, and the lack of integrative analyses across 
sub-disciplines of neuroscience research. The Neuroscience Informatics platform aims 
at providing the necessary informatics infrastructure and expertise required by 
neuroscientists associated with the NNF, or who are working within other NNF 
platforms, particularly in the neuroimaging and neurogenomics platforms. It is 
envisaged that the Neuroscience Informatics Platform will become an Australian node 
of international neuroinformatics projects. The platform is also co-operating with a 
number of commercial organizations that have developed proprietary databases and 
are integrating behavioural, psychophysiological, neuroimaging and gene expression 
datasets. 

2   Neuroscience Informatics Platform – Applications to  
     Neuroimaging 

The application of neuroimaging methods to the study of human brain structure and 
function is continuing at an undiminished pace, particularly in the study of psychiatric 
disorders and higher cognitive functions. Existing MR image datasets from 
investigations in these fields contain enormously valuable information. The 
Neuroscience Informatics platform has focussed on the development of neuroimaging 
databases and specialized neuroimaging software tools. Existing databases within the 
NNF include a human neonate structural brain image database containing brain 
images from over 270 human subjects, and with over 1200 structural images stored 
[2]. Other databases developed by scientists and clinicians in the NNF include a 
human functional imaging database (including 180 adult subjects containing over 400 
structural and over 20,000 functional MR images), and an adolescent and adult human 
structural MR image database (containing over 1000 structural images) used to 
investigate brain morphology in schizophrenic patients and individuals at risk of 
developing schizophrenia [3].  
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    National and indeed international collaboration has been widely recognized 
[4,5,6,7] as a key requirement to develop effective informatics facilities that will 
enable researchers to fully reap the potential benefits of neuroimaging research 
investigations. In order to maximally capture these benefits, analyses of large imaging 
data sets need to be supported by modern data mining techniques. However, a number 
of significant research collaboration challenges must firstly be overcome. 
    The integration of database systems where the data representations are intrinsically 
different is problematic. Furthermore, the establishment of a standard human 
neuroanatomical ontology is required in order to, for example, enable unambiguous 
indexing of images in databases. This would it turn enable retrieval of a specific 
neuroanatomical segment (or brain structure) from a human brain image. Finally, 
important enhancements to neuroimaging analyses could be achieved by linking 
image databases to related subject information such as gene expression and genetic 
characterisation (using micro-array and/or serial analysis of gene expression) in the 
same subject. Nevertheless, in spite of these on-going challenges the recent rapid 
developments in Grid computing and the current high level of interest in e-science 
and e-research motivate our application of Grid technologies to neuroscience 
research. 

3   Methods 

Efficient analyses of large neuroimaging datasets requires layered information 
technology (IT) systems capable of data management (image database creation and 
curation), standardized image data processing algorithms (image registration, tissue 
classification, segmentation, and spatial normalization to name but a few), and 
standardized access to computational facilities. The NeuroGrid system aims to utilise 
the computational power and networking technologies of the Grid to perform 
standardised analyses of large volumes of neuroimaging data that are stored and 
organized into image databases within the NNF. Eventually it is anticipated that data 
access and processing operations will be managed through seamless Grid computing 
facilities that are running multiple operating systems including Mac OS-X, 
Linux/Solaris, and Windows 2000/XP [8,9].  
    Importantly, the analysed or processed imaging results will be stored into the 
originating databases, or to alternative results databases. The NeuroGrid system 
therefore consists of a cluster of Mac OS-X and Linux desktop computing nodes, a 
Grid management software (middleware) layer, internet accessible neuroimaging data 
repositories and neuroimaging analysis algorithms, and a customised Grid graphical 
user interface (GUI) application (the NeuroGrid portal). 

 
NeuroGrid Computing Infrastructure. The NeuroGrid computing facility currently 
consists of the following computing hardware: an X-serve G5, an X-serve RAID 
system, an X-serve G5 Cluster Node, and 12 Power Mac G5 desktop machines (Apple 
Computer Inc, Cuppertino, CA); and 12 PC desktop machines. The X-serve G5 is 
configured as the X-serve Raid controller and is operating both as the file server and 



1060 G.F. Egan et al. 

 

database server. As demand for the database increases it is envisaged that the database 
server will be deployed on a separate machine.  

    The X-serve G5 cluster node is the controller for the internal Grid, accepting and 
distributing jobs to the other nodes. Ten of the Mac G5 machines are configured on a 
gigabit switch and are situated in a teaching laboratory. These machines are used as 
desktop machines and also as remote computing nodes. Two of the Mac G5 machines 
are used for development and testing of the facilities. The desktop PCs are also 
configured into he internal Grid and are accessible through the SGE. 

Grid Management Software. The requirements for the selection of a suitable Grid 
middleware application include: ease of setup, maintainence and operation; 
availability for a heterogeneous computing environment (Mac OS-X and Linux 
platforms); ability to monitor the available resources at each computing node; load 
balancing for efficient process distribution across the computing nodes; parallel 
computation capability; job scheduling and batch tools; and multi-cluster support for 
future internet based collaboration. 

    An X-Grid middleware software application (Apple Computer Inc., X-grid beta 
release 2003) has been tested using the NeuroGrid facilities. The initial testing 
showed that the X-Grid application has the following disadvantages compared to 
other middleware applications including the Sun Grid Engine (SGE), Portable Batch 
System (PBS) and Load Sharing Facility (LSF) middleware applications: inaccurate 
or non-existent load balancing across computing nodes; remote applications only 
executable as user “nobody” creating file permission problems; applications not 
executable with options; and applications executed remotely in the temp directory, 
thus creating difficulties with working directories and write permissions in the temp 
directory.  
    A detailed investigation of alternative Grid management software included: PBS 
Pro, a commercially available software which is powerful but costly; LSF, a powerful 
free application, but hard to configure; and SGE, also a powerful but less complex 
and free software, but with very little support. After evaluation the SGE middleware 
was selected and has been implemented as an alternative middleware layer, due to its 
superior performance in the following criteria: ease of installation and initial setup as 
well as usability; access to the work load list of each active computing node; 
capability to receive command line jobs; capability to monitor progress of submitted 
jobs; and the capability to specify both the input and output data directory. The SGE 
has performed satisfactorily since being configured for use with the NeuroGrid 
computing hardware. 
Neuroimage Database. The key capabilities of the NeuroGrid image database 
include: the storage of primary and secondary data (raw and processed images); the 
storage of multiple data types (demographic data, MR images, histology images); and 
the use of standard neuroimage formats (NIfTI [10], Analyze). The key design 
features of the image databases include: protection of the confidentiality of subject 
data through the removal of identifying header information; adoption of secure 
methods for accessing the system; the ability to remotely access  the database for data 



 Australian Neuroinformatics Research – Grid Computing and e-Research 1061 

 

sharing; adoption of open source database tools (PostgreSQL) and applications; and a 
remote user data entry and upload capability (via php). 
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Fig. 1. MRI Grid – Users Schematic View 

    Further development of the NeuroGrid database includes the creation of tables and 
tools for data to be re-entered into the database. Specifically, the second phase of the 
database includes the storage of multiple instances of an image; that is, storage of 
modified image results from successive processing operations performed on an input 
image. These image results, together with the details of the processing algorithms 
used to produce the results, are linked to the input image. Subsequent database queries 
of the original image will provide an index to processed results of the image. The 
third phase of the database involves development of a GUI for the semi-automated re-
entry of processed image results into the database. A data viewer and data curation 
GUI will require users to verify the veracity of image analysis results before 
populating the database with the results. 

 
Neuroimage Analysis Tools. A key objective of the design of NeuroGrid has been to 
rapidly provide users access to existing well established image analysis tools. This 
objective has been achieved by re-coding a number of the graphical user interface 
(GUI) based existing FSL image analysis scripts [11]. The tk/tcl GUIs for the brain 
extraction tool (BET), linear registration tool (FLIRT) and the automated 
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segmentation tool (FAST) have been re-coded as Java applications. A Java 
application has been developed to link the output of these applications (after user 
selection of analysis data sources and processing options) to the SGE middleware. 
Currently work is aimed at re-coding Java applications of the functional easy analysis 
tool (FEAT) and FSL diffusion analysis tool (FDT) GUIs for integration with the 
SGE middleware. 
    The NeuroGrid software suite also includes the following software applications: 
FSL 3.2, the native implementation of the tk/tcl tools operating in the X-11 
windowing environment; Matlab 6.5 (R13) mathematical modelling tools and 
associated toolboxes; SPM2, a library of image analysis functions developed by the 
Functional Imaging Laboratory (FIL, University College, London, UK); Slicer 2.1, a 
set of image processing tools developed by the MIT Artificial Intelligence Lab, (MIT, 
Boston); X-Grid Blast (Beta), as well as an implementation of the BLAST software 
for genomic database searching optimised for use on Apple G5 computing clusters 
(Apple Computing Inc, Cuppertino, CA). 

 
NeuroGrid Portal. The NeuroGrid user interface, or portal, is being developed to 
provide a workflow interface for users. The portal will provide direct access to the 
image database where a user will initially select the data for analysis. A series of 
processing steps will then be selected from a list of processing algorithms available on 
the web services directory. This directory will also maintain a database of the 
machines on the Grid which have executables available for each processing operation. 
Depending on the operations selected, a list of the available machines is generated for 
the execution of the job.  
    The user is also required to select a destination for the output of each step of the job 
schedule. For intermediate output steps, the user can select to have the job execution 
halted subject to verification of the intermediate processing result by the user. In these 
cases the user will typically use an image viewer to view the intermediate result, and 
choose to continue the job schedule or abort the job. The full NeuroGrid facility will 
provide an automated means for user to re-enter the processing final results into the 
originating database, or another customised image database. The selection of the 
output data destination will require the user to select from a list of possible databases 
accessible to the portal. The NeuroGrid portal is being developed as a Java 
application and requires a substantial programming effort. 

4   Discussion 

Future developments include the parallelizing of codes to gain full advantage of the 
increased computational power available from the Grid architecture. A number of the 
FSL processing algorithms are directly parallelizable at the job execution level where 
multiple datasets are selected with an identical set of processing operations selected 
for each dataset. These jobs can then be directly shared to multiple machines via the 
Grid middleware.  A Parcellation toolbox of image analysis algorithms has been 
developed as in-house cortical parcellation codes, based on the Matlab image 
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processing toolboxes. These tools are being coded into c/c++ algorithms for 
maximally efficient execution speeds, and will be incorporated into the image 
analysis tools available via NeuroGrid. The analysis of high resolution images 
(exceeding 250 MB per image) where cortical parcellation image analysis is possible, 
will require further automation of the image  processing protocol developed using the 
FSL tools BET, FAST, FLIRT and the Parcellation toolbox.  
    Other future improvements of the computational speeds include the parallelizing of 
source code for the analysis algorithms, such as a re-code of FSL using the Mac 
Vector Engine (a native library for the Apple Mac G5 architecture). This could 
potentially increase the execution speeds by a factor of 5. Furthermore, recompi- 
lations of existing tools using the IBM-compiler is also expected to produce 
significant gains in execution speeds. Future database development plans for the 
NeuroGrid system include access through the Internet via Java applets and a web 
portal. Users of the system will be able to retrieve data from external databases and 
select the desired processing application to apply to the images. These data will use 
the computing resources on the NeuroGrid to perform the computations. 

5   Conclusions 

The Australian National Neuroscience Facility (NNF) is providing Australian 
neuroscientists and commercial organizations with access to networks of laboratories 
throughout the country. The facility is fostering neuroscience excellence by 
combining science, technology, innovation, investment, and creativity; and thus 
jointly providing the opportunity to advance our understanding and treatment of the 
brain and mind. The Neuroscience Informatics Platform is developing informatics 
resources for Australian neuroscience researchers, in particular for the neuroimaging 
research community. A NeuroGrid facility including computational resources and 
Grid middleware, internet accessible neuroimage databases, and standardised 
neuroimage analysis tools have been developed. A customised NeuroGrid portal is 
currently under development that is envisaged will provide the basis for application of 
Grid computing technologies to other areas of neuroscience research. 
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Abstract. The Biomedical Imaging Lab in Singapore has been involved in 
neuroinformatics research for more than a decade. We are focused on clinical 
neuroinformatics, developing suitable models, tools, and databases. We report 
here our work on construction of anatomical, vascular, and functional brain at-
lases as well as development of atlas-assisted neuroscience education, research, 
and clinical applications. We also present future research activities. 

Keywords: Brain atlas, functional neurosurgery, human brain mapping, neuro-
science education.  

1   Introduction 

Singapore is a vibrant research hub, particularly in biomedical sciences. The research 
efforts in brain sciences and neural networks in Singapore have been summarized 
recently in an excellent overview by Rajapakse et al [ 35]. In this paper we are focus-
ing on activities in clinical neuroinformatics being done in the Biomedical Imaging 
Lab (BIL), Singapore for more than a decade. 
    The three principal aims of neuroinformatics are models, tools, and databases. BIL 
activities are aligned with these aims. For instance, we have developed a Cerefy brain 
atlas database which has become a standard in image guided neurosurgery [ 9, 16]. A 
public domain tool the Cerefy Neuroradiology Atlas [ 13], developed for neuroscience 
researchers and neuroradiologists, has more than 1,100 users. 
    BIL major efforts are focused on clinical neuroinformatics. By “clinical neuroin-
formatics” we mean applying of neuroinformatics methods and tools to address clini-
cal problems related to diagnosis and therapy of the human brain. 
    This work provides an overview of anatomical, functional, and vascular brain at-
lases and atlas-assisted education, research and clinical applications developed in 
BIL. 

2   Cerefy Human Brain Atlases 

For more than one decade we have developed a family of brain atlases called Cerefy 
atlases. This brain atlas family contains anatomical, vascular, and functional atlases. 
Recently we have been working on a blood supply territories atlas. 
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A. Anatomical atlases 
The anatomical part of the Cerefy electronic brain atlas database [ 9], [ 18], [ 28] con-
tains four complementary atlases with gross anatomy, subcortical structures, brain 
connections, and sulcal patterns. These highly enhanced electronic atlases were de-
rived from the classic print brain atlases edited by Thieme: 

1) Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren (SW) 
[ 37]; 

2) Co-Planar Stereotactic Atlas of the Human Brain by Talairach and Tournoux 
(TT) [ 39]; 

3) Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey [ 32]; 
4) Referentially Oriented Cerebral MRI Anatomy: Atlas of Stereotaxic Anatomical 

Correlations for Gray and White Matter by Talairach and Tournoux [ 40]. 

    These atlases are available in 2D and 3D, and they are mutually co-registered. The 
anatomical index has about 1,000 structures per hemisphere and more than 400 sulcal 
patterns. The construction, content, features as well as atlas enhancements and exten-
sions were addressed in detail in our previous papers [ 9], [ 18], [ 28]. The Cerefy brain 
atlas database is suitable for neurosurgery [ 8], [ 16], [ 26], [ 27], [ 33]; neuroradiology 
[ 7], [ 28]; human brain mapping [ 6], [ 24]; and neuroscience education [ 23]. 
    To facilitate development of atlas-assisted applications, we have developed two 
add-on brain atlas libraries, the Electronic Brain Atlas Library and Brain Atlas Geo-
metrical Models. The Electronic Brain Atlas Library [ 16] comprises the brain atlas 
database with the SW and TT atlas images, and a browser. The browser provides 
means for exploring and understanding of the atlas images as well as facilitates build-
ing user’s own applications. The Brain Atlas Geometrical Models [ 16] is a library 
with the atlases in contour and polygonal representations. It contains the brain atlas 
database and a viewer. The database comprises the SW atlas in contour representation 
and 3D polygonal models of the SW and TT atlases. The detailed specifications of 
both libraries are at www.cerefy.com . 

B. Vascular atlas 
We have constructed a cerebrovascular atlas from angiography data. A time-of-flight 
acquisition was done on a 3T MRI scanner. The 3D vascular model was derived from 
angiographic data in the following steps: 1) vasculature segmentation; 2) extraction of 
the centerline and radius; 3) centerline editing; 4) centerline smoothing; 5) radius 
processing; 6) modeling of vascular segments and bifurcations; and 7) labeling of the 
vascular segments [ 10]. An application developed allows the user to manipulate the 
vascular model and get 3D labels. In addition, the vascular atlas is combined with the 
3D TT atlas [ 10]. 

C. Functional atlases 
From a functional neurosurgery viewpoint, the main limitations of the Cerefy ana-
tomical atlases are sparse image material derived from a few specimens only and 3D 
inconsistency. More importantly, these atlases are anatomical while the stereotactic 
target structures are functional. To overcome these limitations, we have developed the 
probabilistic functional atlas (PFA) generated from pre-, intra-, and post-operative 
data collected during the surgical treatment of Parkinson’s disease patients [ 15]. So 
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far, we have constructed the PFA for the subthalamic nucleus [ 11] and ventrointerme-
diate nucleus of the thalamus [ 12]. 

3   Brain Atlases in Neuroscience Education  

The Cerefy Atlas of Brain Anatomy (CABA) [ 23] is a user-friendly application for 
medical students, residents, and teachers. It is also helpful for neuroinformatics re-
searchers who need some basic neuroanatomical background in their work. The 
CABA contains MRI and atlas images of gross anatomy as well as related textual 
materials. It also provides testing and scoring capabilities for exam preparation. Its 
novelty includes: 

- atlas-assisted localization of cerebral structures on radiological images; 
- atlas-assisted interactive labeling on axial, coronal, and sagittal planes; 
- atlas-assisted testing against location and name of cerebral structures; 
- saving of the labeled images suitable for preparing teaching materials. 

Our recent development includes a Chinese version of the CABA [ 32]. 

4   Brain Atlases in Research 

The usefulness of electronic brain atlases in medical research is growing, particularly 
in medical image analysis and human brain mapping.  

A. Medical image analysis 
The most commonly used system for medical image analysis is ANALYZE from Mayo 
[ 36]: a powerful, comprehensive visualization tool for multi-dimensional display, 
processing, and analysis of biomedical images from multiple imaging modalities. To 
facilitate analysis of brain images, the Cerefy brain atlas has been integrated with 
ANALYZE. 

B. Human brain mapping 
Though there are numerous software packages for functional image generation [ 3], 
[ 24], none of them provides atlas-assisted analysis of functional images. The Brain 
Atlas for Functional Imaging (BAFI) [ 24] and BrainMap [ 2] facilitate labeling of 
functional images (generated by other tools) by means of the TT brain atlas. The 
BAFI, as opposed to BrainMap, provides direct access to the TT atlas and the user can 
display the activation regions superimposed on the atlas, and subsequently place and 
edit the marks corresponding to the activation regions. Besides labeling, the BAFI 
supports localization analysis of functional images [ 6]. None of the existing software 
packages for functional image generation contains the TT atlas, which is the gold 
standard in human brain mapping research. The BAFI also provides numerous func-
tions such as fast data normalization, readout of Talairach coordinates, and data-atlas 
display. It has several unique features including interactive warping facilitating fine 
tuning of the data-to-atlas fit, multi-atlas multi-label labeling, navigation on the tripla-
nar formed by the data and the atlas, multiple-images-in-one display with atlas-
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anatomy-function blending, loci editing in terms of content and placement, reading 
and saving of the loci list, and fast locus-controlled generation of results [ 31]. 

5   Brain Atlases in Clinical Applications 

Electronic brain atlases are prevalent in functional neurosurgery and the interest in 
them is growing in neuroradiology for computer-aided diagnosis. Pioneering brain 
atlases in neuroradiological practice is much more difficult than introducing them to 
functional neurosurgery (as the neurosurgeons were familiar with the print atlases), 
though the potential they offer and radiology trends will cause atlases to be eventually 
useful in neuroradiology as well. 

A. Computer-aided diagnosis 
At present, two major trends are observed in radiology: 1) the number of scans to be 
read is growing three times faster the number of radiologists, and 2) about 65% of the 
world is radiologically void while another 30% has only basic technologies. There-
fore, new ways for speeding up and facilitating scan interpretation as well as reducing 
the learning curve of radiologists are needed, and model-enhanced radiology may be 
one of solutions. We addressed atlas advantages in neuroradiology in [ 28]; namely, 
the atlas can potentially: 

- reduce time in image interpretation by providing interactive labeling, triplanar 
display, higher parcellation than the scan itself, multi-modal fusion and displaying 
the underlying anatomy for functional and molecular images; 

- facilitate communication about interpreted scans from the neuroradiologist to other 
clinicians (neurosurgeons, neurologists, general practitioners) and medical stu-
dents; 

- increase the neuroradiologist’s confidence in terms of anatomy and spatial rela-
tionships by providing scan labeling on the orthogonal planes; 

- reduce the cost by providing information from mutually co-registered multiple 
atlases which otherwise has to be acquired from other modalities; 

- reduce time in learning neuroanatomy and scan interpretation by providing 3D and 
triplanar displays and labeling of multi-modal scans. 

 
    Towards realizing this potential, we have developed the Cerefy Neuroradiology 
Atlas (CNA) [ 13]. To our best knowledge, at present the CNA is the only model-
enhanced application for neuroradiology. It is web-enabled, public domain (available 
from www.cerefy.com) with more than 1,100 users registered. The CNA assists in 
speeding up scan interpretation by rapid labeling of morphological and/or functional 
scans, displaying underlying anatomy for functional and molecular studies, and facili-
tating multi-modal fusion. The labeled and annotated (with text and/or graphics) scan 
can be saved in Dicom and/or XML formats, allowing for storing the atlas-enhanced 
scan in a PACS and to use it in other web-enabled applications. In this way, the scan 
interpretation done by the neuroradiologist can easily be communicated to other clini-
cians and medical students. 
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    While the CNA employs interactive atlas-to-data registration, our recent tool [ 19] 
provides fully automatic warping of the atlas into morphological images in about 5 
seconds. For atlas warping, we use the Talairach transformation [ 39] which scales the 
Cerefy atlas [ 25] piecewise linearly based on point landmarks. Their automatic, fast, 
robust and accurate identification in the data is the core of our approach. We use the 
modified Talairach landmarks [ 30]: anterior commissure (AC) and posterior commis-
sure (PC) located on the midsagittal plane (MSP), and 6 cortical landmarks determin-
ing the extent of brain. Three component algorithms calculate these landmarks com-
pletely automatically based on anatomy and radiologic properties of the scan. The 
identification of the MSP is detailed in [ 4], that of AC and PC in [ 1], and calculation 
of cortical landmarks in [ 5].  
    We have recently extended the above solution to morphological images for atlas-
assisted interpretation of stoke images. Magnetic resonance (MR) diffusion and perfu-
sion are key modalities for interpretation of stroke images. They provide information 
both about the infarcted region and that at risk with high sensitivity and specificity. 
Their major limitations are the lack of underlying anatomy and blood supply territo-
ries as well as low spatial resolution (for instance, a typical slice thickness of diffu-
sion images is 5 mm while that of perfusion is 7.5 mm). We have developed a fast 
algorithm for overlapping the anatomical atlas as well as an atlas of blood supply 
territories on MR perfusion and diffusion images [ 20]. In addition, our solution allows 
for a simultaneous display of the atlas, diffusion image and one the selected perfusion 
maps (cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time 
(MTT), time to peak (TTP) or peak height (PKHT)). 
    Another atlas-assisted solution is for analysis of molecular images. The key limita-
tion of PET imaging is the lack of underlying anatomy. A combined PET-CT over-
comes this shortcoming, making it one of the fastest growing modality. However, 
PET-CT scanners are expensive. We have developed a more affordable solution by 
getting the underlying anatomy from the anatomical atlas warped non-linearly onto a 
PET scan [ 20]. 

B. Stereotactic and functional neurosurgery 
The anatomical Cerefy brain atlas database [ 9], [ 18], [ 28] has become the standard in 
stereotactic and functional neurosurgery. It is integrated with major image guided 
surgery systems including the StealthStation (Medtronic/Sofamor-Danek), Target 
(BrainLab), SurgiPlan (Elekta) and integration with the Gamma Knife is in process, 
SNN 3 Image Guided Surgery System (Surgical Navigation Network), a neurosurgical 
robot NeuroMate (Integrated Surgical Systems/IMMI), and the system of Z-kat. 
    We have developed several atlas-assisted tools suitable for stereotactic and func-
tional neurosurgery planning. The Electronic Clinical Brain Atlas on CD-ROM [ 17] 
offers probably the simplest atlas-assisted planning. It generates individualized atlases 
without loading patient-specific data by applying 2D landmark-based warping; a 
planning procedure by using this CD-ROM is given in [ 27]. 
    The NeuroPlanner is for preoperative planning and training, intraoperative proce-
dures, and postoperative follow-up [ 26]. It contains all, mutually co-registered atlases 
from the anatomical Cerefy brain atlas database including their 3D extensions [ 18]. 
The NeuroPlanner provides four groups of functions: data-related (interpolation, 
reformatting, image processing); atlas-related (atlas-to-data interactive 3D warping, 
2D and 3D interactive multiple labeling); atlas-data exploration-related (interaction in 
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three orthogonal and one 3D views, continuous data-atlas exploration); and neurosur-
gery-related (targeting, path planning, mensuration, electrode insertion simulation, 
therapeutic lesioning simulation).  
    The BrainBench [ 38] is a virtual reality-based neurosurgical planning system with a  
suite of neurosurgery supporting tools and the 3D TT atlas. It provides 3D, two-hand 
interaction with the data, atlas, electrode, and stereotactic frame. 
    The advantages of using the Cerefy brain atlases for stereotactic and functional 
neurosurgery are summarized in [ 9]. 
    The probabilistic functional atlas (PFA) opens new avenues. A dedicated application 
is developed for a combined anatomical-functional planning of functional neurosurgery 
[ 22]. Moreover, this application provides intraoperative support and also serves as a 
personal archive. The construction of PFA and development of PFA-based applications 
are behind two main conceptual breakthroughs. As the PFA is dynamic and can be 
updated with new cases, knowledge from the currently operated cases can be saved and 
accumulated continuously. Moreover, the atlas can be built and extended by the com-
munity over the internet by using a public domain portal [ 14], changing in this way the 
paradigm from the manufacturer-centric to community-centric. 

6   Future Directions 

We are continuously enhancing our electronic versions of the stereotactic atlases from 
content, 3D consistency and quality standpoints [ 33]. We are also in process of inter-
polating these atlases, which will increase their applicability. An atlas of blood supply 
territories is important, particularly for atlas-assisted processing of stroke images. We 
have recently demonstrated its initial version [ 20]. We are also in process of con-
structing better brain atlases. 
    Development of more powerful tools and user friendly applications is another di-
rection of our future research. We have recently developed the CNA ver 2.2 with 
many new features [ 41], and a new CNA ver 3.0, even more powerful, will be ready 
next year. A web-enabled atlas of cerebrovascular variants is scheduled for this year. 
Conceptually is it similar to our PFA-based portal for functional neurosurgery. The 
second version of the CABA is under development. It will be extended to 3D cerebral 
structures, blood supply territories atlas, and will combine the 3D structures with the 
orthogonal planes to better appreciate tomographic-spatial relationships. Atlas-
assisted interpretation of morphological images will be extended from MR to CT 
images as well; we will also provide a fast non-linear atlas-to-data warping. We will 
continue enhancing the applications for atlas-assisted interpretation of stroke and 
molecular images, making them more accurate and even faster. Finally several algo-
rithms developed by us for segmentation of neuroimages will be extended and applied 
for brain morphometry.  
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Abstract. There is a global trend to bring together research resources of the 
brain in the hope that these collaborations will provide critical information to 
the understanding of the brain as a system and its functions. Japan, among sev-
eral countries, is committed to actively participating in this process with the 
hope that millions of people will greatly benefit from this activity. Currently, 
we are formulating plans and strategies in order to carry out this objective.. This 
paper will discuss perspectives of the Japanese Neuroinformatics Node. 

1   Introduction 

With the advent of the information era, there is a growing trend of global cooperation 
among communities around the world to tackle issues confronting human society. 
One of these very important challenges of the 21st century is the study of the human 
brain. The task of understanding a functional brain system is hindered by the inevita-
ble necessity of tight focus and specialization of researchers in the field. This frag-
mentation makes the synthesis and integration of disparate lines of evidence excep-
tionally difficult. In order to address this difficulty, an organized framework is needed 
that facilitates integration and provides a fertile ground for sharing information. This 
agenda requires the establishment of a new discipline, aptly named "Neuroinformat-
ics". Neuroinformatics undertakes the challenge of developing the mathematical mod-
els, databases, data analyses, and tools necessary for establishing such a framework.  

The major emphasis of neuroinformatics is the organization of neuroscience data 
and knowledge-bases to facilitate the development of computational models and 
tools. An additional aim is to promote international interdisciplinary cooperation. 
This becomes especially important with regard to the emerging realization that 
understanding and developing models of brain processes of one functional area can 
be significantly facilitated by knowledge of processes in different functional areas. 
These efforts to integrate the diverse methodologies of neuroscience, if properly 
carried out, will assist in improving the utility and availability of the vast quantities 
of high quality data, models, and tools being developed by neuroscience research-
ers. In turn, this will result in further advancement of scientific research in many 
disciplines, stimulate promotion of technological and sustainable development, and 
facilitates the equitable sharing of high quality databases in the brain sciences. 
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The necessity for the framework to foster international collaboration and sharing of 
research data was recognized by many countries leading to the establishment of the 
INCF (International Neuroinformatics Coordinating Facility) under the auspices of 
the GSF (Global Science Forum) of the OECD (Office for Economic Cooperation and 
Development) [1].  In the USA, the first 10 years of the Human Brain project has 
finished in 2004 and the major highlights of their activities were summarized in [2]. 
They are now starting the next decade of the project building upon their successes and 
further developments. In Germany, their Federal Ministry of Education has started the 
initiative of creating a National Network for Computational Neuroscience with the 
primary aim of understanding cognitive functions through Computational Neurosci-
ence. To carry out this activity, they have established the Bernstein Centers for Com-
putational Neuroscience in four major sites (Berlin, Munich, Gottingen, Freiburg) 
collaborating and sharing data, computer models, theories, and approaches [3].  

2   NRV Project and Visiome Platform 

In Japan, Neuroinformatics Research in Vision (NRV) is a pioneering project initiated 
in 1999 under the auspices of Strategic Promotion System for Brain Science of the 
Special Coordination Funds for Promoting Science and Technology at the Science 
and Technology Agency (now under the Ministry of Education, Culture, Sports, Sci-
ence and Technology). The primary aim of NRV is to build the foundation of neuroin-
formatics research in Japan.  NRV’s top priority is the promotion of experimental, 
theoretical, and technical activities related to vision research . 

The first goal of the NRV project is the construction of mathematical models for 
each level of the visual system: single neuron; retinal neural circuit; and higher visual 
function. The second goal is to build integrated resources for neuroinformatics by 
utilizing information science technologies within the research support environment 
that we have named the “Visiome Platform” (VP). The third goal is to develop new 
vision devices based on brain-derived information processing principles. There are 
five major groups carrying out specific activities summarized below [4]: 

G1: Construction of mathematical models of single neurons 
G2: Realization of virtual retina based on retinal physiology 
G3: Study on the visual function by computational and systems' approaches 
G4: Realization of artificial vision devices and utilization of silicon technology 

for recording and stimulation  
G5: Fundamental neuroinformatics research and development 

The VP (Figure 1) recently became available for public access 
(http://platform.visiome.org/) in a test mode (May 2004). The VP commencement was 
one of the major highlights of the NRV project that was recently completed [5]. The 
platform is designed as a research resource archive that can be accessed from the 
Internet and provides published references, articles, reusable programs/scripts of 
mathematical models, experimental data, analytical tools, and many other resources.  
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Fig. 1. The top page of the Visiome Platform 

(a) VP Monthly Access Statistics 
 

(b) VP Monthly Downloaded Statistics 

Fig. 2. Monthly access statistics and downloaded statistics for VP 

The platform enables researchers to understand how the published models work or 
compare their own results with other experimental data. It also allows users to im-
prove existing models by making it easier for them to integrate their new hypotheses 
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into the existing models. Moreover, users can export/import their own models, data, 
and tools to the database to be shared with other users and colleagues. 

An indexed database of literature references, codes or models used in papers regis-
tered in VP are easily accessible in a tree structure index. In general, VP helps re-
searchers hasten the process of understanding the visual system from the perspective 
of visual functions and assists them in the construction of models based on their own 
hypotheses.  

Currently, there are 8 major types of contents in VP, namely: binder, reference, 
book, model, url, data, tool, and stimulus.  As of March 2005, VP contains a total of 
roughly 3000 registered items. Figures 2(a) and 2(b) show the VP monthly access 
and downloaded statistics of users during its public test operation. This data ex-
cludes statistics containing robots and search agents access to our site. By analyzing 
this trend, it provides us insights on how to carry out and manage effectively future 
projects of J-node. Also, more effective policies were formulated based on our ex-
perience with this initial phase of VP operation.  

3   Perspectives of the Japan Node from NRV Experience 

Based on our NRV project experience, we can utilize and extend the basic scheme of 
the neuroinformatics platform to any other possible research areas.   Figure 3 shows a 
conceptual framework describing what shall constitute the major components of the 
Japanese Node.  We have tentatively identified 10 major platforms, namely:  

• Visiome Platform (VP) 
• Cerebellar Development Transcriptome Data Base (CDT-DB) 
• Neuron/Glia Platform 
• Integrative Brain Project 
• Invertebrate Brain Platform  
• Brain Imaging Platform 
• Brain Machine Interface Platform 
• Visiome for visual psychophysics 
• Clinical Neruroinformatics Platform 
• BSI Neuroinformatics Platform 

While VP has been accessible to the public for more than a year, CDT-DB will 
start its operation in late 2005. The Neuron/Glia Platform will be implemented by the 
National Project for neuron-glia Interactions. The Integrative Brain Project will com-
mence in 2005 while the preliminary implementation for the Invertebrate Brain Plat-
form has already commenced. The implementation details for other platforms are still 
subject to further discussions.  
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Fig. 3. Conceptual scheme of Japanese node 

Our experience in the VP implementation led us to believe that the development of 
the Japan Node infrastructure requires proper coordination at different organizational 
levels to ensure standardization of rules for sharing, coherent tools to avoid redun-
dancy and waste of resources, and appropriate guidelines to spell-out a specific target 
and action plan. One important action plan is the development of core technologies 
that will serve as the basis of development to ease standardization and integration of 
data and other resources. Although each platform addresses different areas of spe-
cialization, the underlying technology for basic functions such as data storage, re-
trieval, searching, visualization, statistical analysis, modeling/simulation and other 
forms of information extraction are similar.  

Aside from the basic features such as indexing of research resources, each platform 
will be more useful if it can provide peer-reviewed sections where authors can di-
rectly publish reports on new data.  This will pave the way for the standardization of 
datasets that makes testing of new models more straightforward.     More importantly, 
the future of the Japanese Node lies on the active involvement of its members as well 
as in the participation of the research communities since the data they provide form 
the lifeblood of the system. There must be an active promotion of the importance of 
data sharing and appropriate reward mechanisms to encourage researchers to partici-
pate in this endeavor.  Relevant government and non-government agencies, journal 
publication firms, education and research institutes must be encouraged to participate 
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in this project because their influence will enhance the quality of contributions and 
support to the funding, research, and development of the neuroinformatics resources. 

4   Conclusion 

Our experiences in NRV and VP provide us with a great opportunity and incentive to 
discuss issues and to share technical know-how with other groups undertaking neuro-
informatics activities to meet the goals mandated by the INCF Committee. Based on 
our expertise and the results of consultations and surveys we conducted, we have 
identified the following areas for the initial phase in the establishment of Japanese 
Node: 

• Identify major fields of neuroscience to become development platforms 
• Identify potential organizations to work as partners in the building process 
• Identify ways to make the development and operation sustainable 
• Development of standards for common ontology, data interchange, interop-

erability, etc. 

The fulfillment of knowing that the endeavor is a significant way for the society to 
continue its quest of understanding the brain and eventually creating the virtual brain 
[6]. 

Acknowledgement. The author wishes to thank Drs. Masao Ito and Shun-ichi Amari, 
the members of Neuroinformatics Laboratory at RIKEN BSI, and NRV project mem-
bers for their support and collaborations. 
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Abstract. In this paper, we propose a novel approach called the grad-
ual noisy chaotic neural network (G-NCNN) to find a collision-free time
slot schedule in a time division multiple access (TDMA) frame in packet
radio network (PRN). In order to find a minimal average time delay of
the network, we aim to find an optimal schedule which has the minimum
frame length and provides the maximum channel utilization. The pro-
posed two-phase neural network approach uses two different energy func-
tions, with which the G-NCNN finds the minimal TDMA frame length in
the first phase and the NCNN maximizes the node transmissions in the
second phase. Numerical examples and comparisons with the previous
methods show that the proposed method finds better solutions than pre-
vious algorithms. Furthermore, in order to show the difference between
the proposed method and the hybrid method of the Hopfield neural net-
work and genetic algorithms, we perform a paired t-test between two of
them and show that G-NCNN can make significantly improvements.

1 Introduction

The Packet Radio Network (PRN) gains more attention in recent research and
industry as it is a good alternative for the high-speed wireless communication,
especially in a broad geographic region [1]. The PRN shares common radio chan-
nels as the broadcast medium to interconnect nodes. In order to avoid any colli-
sion, a time-division multiple-access (TDMA) protocol has been used to schedule
conflict free transmissions. A TDMA cycle is divided into distinct frames con-
sisting of a number of time slots. A time slot has a unit time to transmit one
data packet between adjacent nodes. At each time slot, each node can either
transmit or receive a packet, but no more than two packets can be received from
neighbor nodes. If a node is scheduled to both transmit and receive at the same
time slot, a primary conflict occurs. If two or more packets reach one node at
the same time slot, a second conflict occurs.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 1080–1089, 2005.
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The BSP has been studied by many researchers [2]-[8]. In [2], Funabiki and
Takefuji proposed a parallel algorithm based on an artificial neural network in a
TDMA cycle with n×m neurons. In [3], Wang and Ansari proposed a mean field
annealing algorithm to find a TDMA cycle with the minimum delay time. In [4],
Chakraborty and Hirano used genetic algorithm with a modified crossover op-
erator to handle large networks with complex connectivity. In [5], Funabiki and
Kitamichi proposed a binary neural network with a gradual expansion scheme
to find minimum time slots and maximum transmissions through a two-phase
process. In [6], Yeo et al proposed a algorithm based on the sequential vertex
coloring algorithm. In [7], Salcedo-Sanz et al proposed a hybrid algorithm which
combines a Hopfield neural network for constrain satisfaction and a genetic al-
gorithm for achieving a maximal throughput. In [8], Peng et al. used a mixed
tabu-greedy algorithm to solve the BSP.

In this paper, we present a novel neural network model for this problem,
i.e., gradual noisy chaotic neural network (G-NCNN). Numerical results show
that this NCNN method outperforms existing algorithms in both the average
delay time and the minimal TDMA length. The organization of this paper is as
follows. In section 2, we formulate the broadcast scheduling problem. The noisy
chaotic neural network (NCNN) model is proposed in section 3. In section 4, the
proposed two-phase neural network is applied to solving the optimal scheduling
problem. Numerical results are stated and the performance is evaluated in section
5. In Section 6 we conclude the paper.

2 Broadcast Scheduling Problem

We formulate the packet radio network as a graph, G = (I,E), where I is the set of
nodes and E is the set of edges. We follow the assumption in previous research
and consider only undirected graphs and the matrix cij is symmetric. If two
nodes are adjacent with cij = 1, then we define two nodes to be one-hop-away,
and the two nodes sharing the same neighboring node to be two-hop-away. The
compatibility matrix D = {dij} consists of N ×N which represents the network
topology by stating the two-hop-away nodes is defined as follows:

dij =

⎧⎨⎩
1 , if node i and node j are within two-hop-away

0 , otherwise

We summarize the constraints in the BSP in the following two categories:
1) No-transmission constraint [4]: Each node should be scheduled to trans-

mit at least once in a TDMA cycle.
2) No-conflict constraint : It excludes the primary conflict (a node cannot

have transmission and reception simultaneously) and the secondary conflict (a
node is not allowed to receive more than one transmission simultaneously).

The final optimal solution for a N -node network is a conflict-free transmission
schedule consisting of M time slots. Additional transmissions can be arranged
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provided that the transmission does not violate the constrains. We use an M×N
binary matrix V = (vij) to express such a schedule [3], where

vij =

⎧⎨⎩
1 , if node i transmits in slot j in a frame

0 , otherwise

The goal of the BSP is to find a transmission schedule with the shortest
TDMA frame length (i.e., M should be as small as possible) which satisfies the
above constrains, and the total number of node transmissions is maximized in
order to maximize the channel utilization.

3 The Proposed Neural Network Model

Since Hopfield and Tank solved the TSP problem using the Hopfield neural net-
work (HNN), many research efforts have been made on solving combinatorial op-
timizations using the Hopfield-type neural networks. However, since the original
Hopfield neural network (HNN) can be easily tramped in local minima, stochas-
tic simulated annealing (SSA) technique has been combined with the HNN [10]
[15]. Chen and Aihara [9][10] proposed chaotic simulated annealing (CSA) by
starting with a sufficiently large negative self-coupling in the neurons and then
gradually reducing the self-coupling to stabilize the network. They called this
model the transiently chaotic neural network (TCNN).

In order to improve the searching ability of the TCNN, Wang and Tian [11]
proposed a new approach to simulated annealing by adding decaying stochastic
noise into the TCNN, i.e., a chaotic neural network with stochastic nature, a
noisy chaotic neural network (NCNN). This neural network model has been ap-
plied successfully in solving several optimization problems including the traveling
salesman problem (TSP) and the channel assignment problem (CAP) [11]-[14].
The NCNN model is described as follows [11]:

xjk(t) =
1

1 + e−yjk(t)/ε
(1)

yjk(t + 1) = kyjk(t) + α(
N∑

i=1
i
=j

M∑
l=1
l 
=k

wjkilxjk(t) + Iij)

−z(t)(xjk(t)− I0) + n(t) (2)

z(t + 1) = (1− β1)z(t) (3)

A[n(t + 1)] = (1− β2)A[n(t)] (4)

where
xjk : output of neuron jk ;
yjk : input of neuron jk ;
wjkil : connection weight from neuron jk to neuron il, with wjkil = wiljk and
wjkjk = 0;
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N∑
i=1
i
=j

M∑
l=1
l 
=k

wjkilxjk + Iij = −∂E/∂xjk , input to neuron jk. (5)

Ijk : input bias of neuron jk ;
k : damping factor of nerve membrane (0 ≤ k ≤ 1);
α : positive scaling parameter for inputs ;
β1 : damping factor for neuronal self-coupling (0 ≤ β1 ≤ 1);
β2 : damping factor for stochastic noise (0 ≤ β2 ≤ 1);
z(t) : self-feedback connection weight or refractory strength (z(t) ≥ 0) ;
I0 : positive parameter;
ε : steepness parameter of the output function (ε > 0) ;
E : energy function;
n(t): random noise injected into the neurons, in [−A, A] with a uniform distri-
bution;
A[n]: amplitude of noise n.

In this paper, we combined the NCNN with a gradual scheme [5] and propose
a new method called the gradual noisy chaotic neural network (G-NCNN). In
this method, The number of neurons in the neural networks is not fixed, it starts
with a initial number of neurons, and then the additional neurons are gradually
added into the existing neural networks until the stop criteria meet. In the next
section, we will discuss in detail in solving the BSP.

4 The Two-Phase Neural Network for the BSP

4.1 Energy Function in Phase I

The energy function E1 for phase I is given as following [5]:

E1 =
W1

2

N∑
i=1

(
M∑

k=1

vik − 1)2 +
W2

2

N∑
i=1

M∑
j=1

N∑
k=1
k 
=i

dikvijvkj (6)

where W1 and W2 are weighting coefficients. The W1 term represents the con-
straints that each of N nodes must transmit exactly once during each TDMA
cycle. The W2 term indicates the constraint that any pair of nodes which is
one-hop away or two-hop away must not transmit simultaneously during each
TDMA cycle.

From eqn. (2), eqn. (5), and eqn. (6), we obtain the dynamics of the NCNN
for the BSP as below:

yjk(t + 1) = kyjk(t) + α{−W1(
M∑

k=1

vik − 1)

−W2(
N∑

k=1
k 
=i

dikvkj)} − z(t)(xjk(t)− I0) + n(t) . (7)
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In order to obtain a minimal frame length which satisfies the constrains, we
use a gradual expansion scheme in which a initial value of frame length is set
with a lower bound value of M . If with current frame length there is no feasible
solution which satisfied the constrains, then this value is gradually increased
by 1, i.e., M = M + 1. The algorithm compute iteratively until every node
can transmit at least once in the cycle without conflicts, then the algorithm
stopped and the current value of M is the minimal frame length. In this way,
the scheduled frame length would be minimized.

4.2 Energy Function in Phase II

In phase II, the objective is to maximize the total number of transmissions based
on the minimal TDMA length M obtained in the previous phase. We use the
energy function for phase II is defined as follow [5]:

E2 =
W3

2

N∑
i=1

M∑
j=1

N∑
k=1
k 
=i

dikvijvkj +
W4

2

N∑
i=1

M∑
j=1

(1− vij)2 (8)

where W3 and W4 are coefficients. W3 represents the constraint term that any
pair of nodes which is one-hop away or two-hop away must not transmit simulta-
neously during each TDMA cycle. W4 is the optimization term which maximized
the total number of output firing neurons.

From eqn. (2), eqn. (5), and eqn. (8), we obtain the dynamics of the NCNN
for phase II of the BSP as follow:

yjk(t + 1) = kyjk(t) + α{−W3

N∑
k=1
k 
=i

dikvkj + W4(1− vij)}

−z(t)(xjk(t)− I0) + n(t) (9)

In the above models of the BSP, the network with N×M neurons is updated
cyclically and asynchronously. The new state information is immediately avail-
able for the other neurons in the next iteration. The iteration is terminated once
a feasible transmission schedule is obtained, i.e., the transmission of all nodes
are conflict free.

5 Simulation Results

We use three evaluation indices to compare with different algorithms. One is the
TDMA cycle length M . The second is the average time delay η defined as [5]:

η =
1
N

N∑
i=1

(
M∑M
j=1

vij) =
M

N

N∑
i=1

(
1∑M

j=1 vij

) (10)



Optimal TDMA Frame Scheduling in Broadcasting PRN Using a G-NCNN 1085

i

j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1          

2               

3         

4         

5              

6        

7           

8           

i

j

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

1          

2          

3          

4                 

5               

6               

7             

8               

Fig. 1. Broadcasting Schedule for BM #3, the 40-node network
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Fig. 2. Comparisons of channel utilization for three benchmark problems. 1, 2, and 3
in the horizontal axis stand for instance with 15, 30, and 40 nodes, respectively.
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Fig. 3. Comparison of average time delay among different approaches for two bench-
mark problems: (a) 30-node, (b) 40-node

where M is the time-slot cycle length and vij is the neuron output. The an-
other definition of average time delay can be found in [3] and [6] which is cal-
culated with the Pollaczek-Khinchin formula [16], which models the network as
N M/D/1 queues. We will use both definitions in order to compare with other
methods. The last index is channel utilization ρ, which is given by [3]:

ρ =
1

NM

N∑
j=1

M∑
i=1

vij . (11)

We choose the model parameters in the G-NCNN by investigating the neuron
dynamics for various combination of model parameters. The set of parameters
which produces the richer and more flexible dynamics will be selected. The selec-
tion of weighting coefficients (W1, W2, W3, W4) in the energy function are based
on the rule that all terms in the energy function should be comparable in mag-
nitude, so that none of them dominates. Thus we choose the model parameters
and weighting coefficients as follows:

k = 0.9, α = 0.015, β1 = 0.001, β2 = 0.0002, ε = 0.004, I0 = 0.65
z0 = 0.08, A[n(0)] = 0.009, W1 = 1.0, W2 = 1.0, W3 = 1.0, W4 = 1.0 . (12)

Three benchmark problems from [3] have been chosen to compared with other
algorithms in [5],[6], and [7]. The three examples are instances with 15-node-29-
edge, 30-node-70-edge, and 40-node-66-edge respectively.

Fig. 1 shows the final broadcast schedule for the 40-node network, where the
black box represents an assigned time slot. The comparison of channel utilization
in eqn. (11) for three benchmark problems is plotted in Fig. 2, which shows that
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Table 1. Comparisons of average delay time η and time slot M obtained by the NCNN
with other algorithms for the three benchmark problems given by [3]

NCNN HNN-GA SVC GNN MFA
η / M η / M η / M η / M η / M

#1 6.8 / 8 7.0 / 8 7.2 / 8 7.1 / 8 7.2 / 8
#2 9.0 / 10 9.3 / 10 10.0 / 10 9.5 / 10 10.5 / 12
#3 5.8 / 8 6.3 / 8 6.76 / 8 6.2 / 8 6.9 / 9

Table 2. Paired t-test of average time delay η (second) between the HNN-GA and the
G-NCNN

Instances Node Edge HNN-GA G-NCNN
BM #1 15 29 6.84 6.84
BM #2 30 70 9.17 9.00
BM #3 40 66 6.04 5.81
Case #4 60 277 15.74 13.40
Case #5 80 397 16.33 14.48
Case #6 100 522 17.17 15.16
Case #7 120 647 17.85 16.02
Case #8 150 819 20.47 16.37
Case #9 180 966 20.04 16.38
Case #10 200 1145 20.31 17.22
Case #11 230 1226 20.36 16.58
Case #12 250 1424 20.25 17.17

T-Value = 5.22
P-Value (one-tail) = 0.0001
P-Value (two-tail) = 0.0003

the NCNN can find solutions with the highest channel utilization among all
algorithms. The average time delay is plotted in Fig. 3. From this figure, it can
be seen that the time delay experienced by the NCNN is much less than that
of the MFA algorithm in all three instances. In the 30-node and the 40-node
instances, the G-NCNN can find a TDMA schedule with less delay than other
methods.

The computational results are summarized in Table 1 in comparison with the
hybrid HNN-GA algorithm from [7], the sequential vertex coloring (SVC) from
[6], the gradual neural network (GNN) from [5] and the mean field annealing
(MFA) from [3]. From this table, we can see that our proposed method can
find equal or smaller frame length than other previous methods for all the three
examples. In respect of the average time delay, our algorithm outperforms the
other algorithms in obtaining the minimal value of η.

In order to show the difference between the HNN-GA and the NCNN, a
paired t-test is performed between the two methods, as shown in Table 2. We
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compared the two methods in 12 cases with node size from 15 to 250, where BM
#1 to BM #3 are benchmark examples and case #4 to case #12 are randomly
generated instance with edge generation parameter r = 2/

√
N . The results show

that the P-value is 0.0001 for one-tail test and 0.0003 for two-tail test. We found
that the G-NCNN (mean = 13.7, standard deviation = 4.12) reported having
significantly better performance than did the HNN-GA (mean = 15.9, standard
deviation = 5.45) did, with T-Value t(11) = 5.22, P-Value < 0.05.

6 Conclusion

In this paper, we propose a gradual noisy chaotic neural network for solving the
broadcast scheduling problem in packet radio networks. The G-NCNN consists
of N×M noisy chaotic neurons for the N -node-M -slot problem. We evaluate the
proposed method in three benchmark examples and several randomly generated
instances. We compare our results with previous methods including the mean
filed annealing, the HNN-GA, the sequential vertex coloring algorithm, and the
gradually neural network. The results of three benchmark instances show that
the G-NCNN always finds better solutions with minimal average time delay and
maximal channel utilization. We also have performed a paired t-test between the
G-NCNN and the HNN-GA in several randomly generated instances, the t-test
results show that the G-NCNN is better than the HNN-GA in solving the BSP.
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Abstract. This paper presents a fast online support vector machine
(FOSVM) algorithm for variable-step CDMA power control. The FOSVM
algorithm distinguishes new added samples and constructs current train-
ing sample set using K.K.T. condition in order to reduce the size of
training samples. As a result, the training speed is effectively increased.
We classify the received signals into two classes with FOSVM algorithm,
then according to the output label of FOSVM and the distance from the
data points to the SIR decision boundary, variable-step power control
command is determined. Simulation results illustrate that the algorithm
has a fast training speed and less support vectors. Its convergence per-
formance is better than the fixed-step power control algorithm.

1 Introduction

Power control is one of the most important techniques in CDMA cellular system.
Since all the signals in a CDMA system share the same bandwidth, it is critical to
use power control to maintain an acceptable signal-to-interference ratio (SIR) for
all users, hence maximizing the system capacity. Another critical problem with
CDMA is the “near-far effect”. Due to propagation characteristics the signals
from mobiles closer to the base station could overpower the signals from mobiles
located farther away, with power control each mobile adjusts its own transmit
power to ensure an desired QoS or SIR at the base station.

Over the past decades, many power control techniques drawn from centralized
control [1], distributed control [2], stochastic control [3] etc. have been proposed
and applied to cellular radio systems. Most of these available approaches are
based on the accurate estimates of signal-to-interference ratio (SIR), bit error
rates (BER), or frame error rates (FER).

Support vector machine (SVM) is one of the most effective machine learn-
ing methods, which are based on principles of structural risk minimization and
statistical learning theory [4]. The standard SVM algorithms are solved using
quadratic programming methods, these algorithms are often time consuming
and difficult to implement for real-time application, especially for the condition
that the size of training data is large. Some modified SVM algorithms [5,6] are
proposed to solve the problem of real-time application. Rohwer [7] just applied

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 1090–1099, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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a least squares support vector machine (LS-SVM) algorithm presented in [6] for
fixed-step CDMA power control, but the Lagrangian multipliers for the LS-SVM
tend to be all nonzero whereas for the SVM case only support vector are nonzero.
On the other hand, the convergence performance of the fixed-step power control
is not satisfying when the initial received SIR is far away from the desired SIR.

This paper presents a fast online support vector machine (FOSVM) algo-
rithm for variable-step CDMA power control. The algorithm classify the sets of
eigenvalues, from the sample covariance matrices of the received signal, into two
SIR sets using FOSVM, then according to the output label of FOSVM and the
distance from the data point to the SIR decision boundary, variable-step power
control command is determined. For the data points far away from the decision
boundary, large step will be considered, otherwise, we will choose small step.
In the process of training SIR decision boundary, we choose training samples
using K.K.T. condition, hence reducing the size of training data and increas-
ing the training speed effectively. Simulation results illustrate that the FOSVM
algorithm has a faster training speed and less support vectors without compro-
mising the generalization capability of the SVM, furthermore its convergence
performance is better than fixed-step power control algorithm.

2 Support Vector Machines

SVM can be described firstly considering a binary classification problem. Assume
we have a finite set of labeled points in Euclidean n space, they are linearly
separable. The goal of SVM is to find the hyperplane, (wTx) + b = 0, which
maximizes the minimum distance between any point and the hyperplane [4].

Let (xi, yi) i = 1, · · · , l be a set of l labeled points where xi ∈ RN and
yi ∈ {+1,−1}. Among all hyperplanes separating the data, there exists an opti-
mal one yielding the maximum margin of separation between the classes. Since
the margin equals 2

‖w‖ , maximizing the margin is equivalent to minimizing the
magnitude of the weights. If the data is linearly separable, the problem can be
described as a 1-norm soft margin SVM [8]

min(‖w‖2/2 + C
∑l

i=1 ξi)
s.t. yi(〈w,xi〉+ b) ≥ 1− ξi (1)

ξi ≥ 0, i = 1, · · · , l C > 0

where ξi denotes slack variables to the quadratic programming problem. Data
points are penalized by regularization parameter C if they are misclassified.

For the sets of data points that can not be separated linearly, we need replace
inner products 〈xi, yi〉 with kernel function K(xi, yi) which satisfies Mercers
Theorem [4]. The quadratic programming problem can be transformed into a
dual problem by introducing Lagrangian multiplier αi.
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minLD(α) =
1
2

l∑
i,j=1

αiαjyiyjK(xi,xj)−
l∑

i=1

αi

s.t.

l∑
i=1

αiyi = 0, i = 1, · · · , l 0 ≤ αi ≤ C (2)

The optimal solutionmust satisfy the followingKarush-Kuhn-Tucker (K.K.T.)
conditions

αi[yi(〈w,xi〉+ b)− 1 + ξi] = 0, i = 1, · · · , l (3)

The weight w obtained from (2) is then expressed as

w =
l∑

i=1

αiyixi (4)

The decision function can then be written as

f(x) = sgn

(∑
i∈SV

αiyiK(x,xi) + b

)
(5)

From equation (4), we see that only the inputs associated with nonzero La-
grangian multiplier αi contribute to the weight vector w. These inputs are called
support vectors(SVs) and lie on the margin of the decision region. These support
vectors are the critical vectors in determining the optimal margin classifier.

3 FOSVM

In the conventional SVM, training data are supplied and computed in batch by
solving the quadratic programming problem, therefore, it is time consuming to
classify a large data set and can not satisfy the demands of online application,
such as CDMA power control, which needs periodically retraining because of
the update of the training data. With this objective in mind, an online training
of support vector classifier (OSVC) algorithm is proposed in [5] to overcome
the shortcoming of conventional SVM. Although the simulation results show
that the training time of the OSVC algorithm is much less than the standard
SVM and SMO algorithm [9], it is still inefficient for some kinds of training data.
Borrowed the idea from OSVC algorithm, we present a modified fast online SVM
(FOSVM) algorithm to improve the performance of training phase. The FOSVM
algorithm is summarized as follow:

At the initial stage of online training, obtain the initial optimal hyperplane
f0(α0, b0) with the initial training data set S0, the size of S0 can be chosen by
users according to the actual application. SV0 = {(Sx0

i , Sy
0
i )} is the correspond-

ing support vectors set. When a new set of training data Sk is available, we will
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judge if the training data (xi, yi) ∈ Sk can be classified by the current opti-
mal hyperplane fk−1(αk−1, bk−1) correctly, where the corresponding hyperplane
is fk−1(x) = sgn(

∑|SVk−1|
i=1 αk−1

i Syk−1
i K(x,Sxk−1

i ) + bk−1). When there is no
training data misclassified, set fk = fk−1, SVk = SVk−1, continue for the next
step, otherwise we need train the new hyperplane. In the process of training new
hyperplane, we should first determine the training data set Wk. If there is a high
demand on real-time application and the size of Sk is large, we’d better choose
less training data to reduce the training time. Without losing generality, we set
Wk = Sk. Later, we retrain the current training data set Tk circularly until all
the training data (xi, yi) ∈ Wk satisfy the K.K.T. conditions. The current train-
ing data set Tk includes SVk and the samples violating the K.K.T. conditions
corresponding to the current hyperplane fk.

Compared with OSVC algorithm, the advantage of FOSVM algorithm is that
it reduces the training time by decreasing training times. The OSVC algorithm
obtain the new sample one by one in a sequence, once obtain a new sample which
can not be classified by the current optimal hyperplane correctly, it need carry
out a training for a new hyperplane. The training is so frequent that it leads to
increase the training time. While in FOSVM algorithm, we obtain a new set of
training data and construct current training data set using K.K.T. conditions at
every step. With this procedure, the training time can be decreased obviously
without compromising the generalization capability of the SVM.

We give the pseudo code of FOSVM algorithm as Algorithm 1:

Algorithm 1 Fast online SVM algorithm
1: Obtain initial training data set S0.
2: Set W0 = S0.
3: Minimize (2) with W0 to obtain an optimal hyperplane f0(α0, b0) and SV0.
4: for k = 1, 2, 3, · · · do
5: Obtain the kth training data setSk,
6: Ek = {(xi, yi) ∈ Sk|(xi, yi) are misclassified by fk−1}
7: if |Ek| > 0 then
8: Determine the training data set Wk.
9: Vk = {(xi, yi) ∈ Wk|yifk(xi) violate the K.K.T. conditions}

10: while |Vk| > 0 do
11: the current training data set Tk = SVk

⋃
Vk

12: Minimize (2) to obtain a new optimal hyperplane fk and SVk with Tk

13: Vk = {(xi, yi) ∈ Wk/Tk|yifk(xi) violate the K.K.T. conditions}
14: end while
15: else
16: fk = fk−1, SVk = SVk−1

17: end if
18: end for
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4 Convergence of FOSVM

In order to explain the convergence of FOSVM, we rewritten the dual objective
function (2) in a matrix as follows:

LD =
1
2
αTKα− 〈c, α〉 (6)

where c is an l×1 vector, α = (α1, · · · , αl)T and K = {Kij},Kij = yiyjK(xi,xj).
Next we will prove the convergence of the FOSVM algorithm by comparing

it with the decomposition algorithm (DA) proposed in [10]. The DA partitioned
the training set into two sets B and N. The set B is called working set and N
correcting set. Suppose α, y, c and K from (6) can be arranged properly as
follows:

α =
(
αB

αN

)
,y =

(
yB

yN

)
, c =

(
cB

cN

)
,K =

(
KBB KBN

KNB KNN

)
Then the dual objective function (6) is rewritten involving the working and

correcting sets as follows:

min
1
2
[αT

BKBBαB + αT
BKBNαN + αT

NKNBαB + αT
NKNNαN ] − 〈cB, αB〉 − 〈cN , αN 〉

s.t. 〈yB, αB〉 + 〈yN , αN 〉 = 0, 0 ≤ αB , αN ≤ C

The main idea of DA is that instead of solving the large quadratic program-
ming problem at once, small quadratic programming sub-problem are solved by
exchanging elements between the set B and N. Each sub-problem will bring the
solution closer to the optimal solution. The process of exchanging elements in-
cludes two steps, Build-down and Build-up, which shows in the Fig.1. [11]gives
the detailed proof of the convergence of DA.

B N

Randomly select m elements

Randomly select m elements
including one violating the K.K.T.

condition

B N

Bk �= SVk

The samples violate the K.K.T. condition

SVk−1

Fig. 1. Decomposition algorithm for SVC Fig. 2. Elements exchange for FOSVM

Compared with DA, the FOSVM keeps the support vector SVk set in the
working set B and removes the other elements of B to the correcting set N.
Another difference between FOSVM and DA is that FOSVM takes a new set
of elements at each step and put the elements violating the K.K.T. conditions
into the working set. Fig.2 shows the state diagram of the FOSVM. Because the
elements which are not SVs will farther away from the hyperplane, they have no
effect on the optimal solution, which means the parameter αN = 0. Therefore,
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the optimal solution of FOSVM is unchanged after removing only the elements
which are not SVs. In order to show the convergence of the FOSVM, we have
the following corollary:

Corollary 1. Moving elements {m} which are not SVs from B to N leaves the
cost function unchanged and the solution is feasible in the sub-problem.

Proof. Let B′ = B−{m}, N ′ = N
⋃
{m}, {m} ∈ B − SV ⇒ αm = 0 and notice

that αN = 0, we have

L D(B′, N ′)

=
1
2
[αT

B′KB′B′αB′ + 2αT
B′KB′N ′αN ′ + αT

N ′KN ′N ′αN ′ ]−〈cB′ , αB′〉 − 〈cN ′ , αN ′〉

=
1
2
[αT

B′KB′B′αB′ + 2αT
B′KB′mαm + αT

mKmmαm]− 〈cB′ , αB′〉 − 〈cm, αm〉

=
1
2
αT

BKBBαB − 〈cB , αB〉

= LD(B,N) (7)

〈yB′ , αB′〉+ 〈yN ′ , αN ′〉 = 〈yB′ , αB′〉+ 〈ym,αm〉 = 〈yB, αB〉 = 0 (8)

From (7) (8), we notice that the objection function and constraints conditions
both are unchanged, therefore, the sub-problem has the same solution, using
the proposed FOSVM algorithm which modifies the build-down and build-up
process of the DA.

5 FOSVM for Variable-Step CDMA Power Control

5.1 CDMA Signal Model

The received vector at the output of the ith antenna array detected at the
adaptive array processor can be written as [12]

xi(t) =
M∑

j=1

L∑
l=1

√
PjGjiaj(θl)gl

jisj(t− τj) + ni(t) (9)

where sj(t − τj) is the message signal transmitted from the jth user, τj is the
corresponding time delay, ni(t) is the thermal noise vector at the input of antenna
array at the ith receiver, and Pj is the power of the jth transmitter. aj(θl) is the
response of the jth user to the direction θl. The attenuation due to shadowing in
the lth path is denoted by gl

ji. The link gain between transmitter j and receiver
i is denoted by Gji.

The terms relative to the multiple paths are combined as

Zji =
L∑

l=1

aj(θl)gl
ji (10)
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Vector Zji is defined as the spatial signature or array response of the ith
antenna array to the jth source. In a spread spectrum system, the message
signal is given by

si(t) =
∑

n

bi(n)ci(t− nT ) (11)

where bi(n) is the ith user information bit stream and ci(t) is the spreading
sequence. The received signal, sampled at the output of the matched filter, is
expressed as

yi(n) =
∫ nT+τi

(n−1)T+τi

ci(t− nT − τi)·⎛⎝∑
j

√
pj(t)Gji

∑
m

bj(m)cj(t−mT − τj)Zji + ni(t)

⎞⎠ dt (12)

5.2 Variable Step CDMA Power Control

In CDMA system, the signals sampled from the same mobile user at different
time are independent, moreover, the power control algorithm have a high demand
on the speed of convergence, so we can discard the previous signal samples and
only use the current set of signal samples to train the current hyperplane. It
means that we can set Wk = Sk in the FOSVM algorithm.

According to the fixed-step power control algorithm mentioned in [7], we can
classify the set of eigenvalues from the sample covariance matrices of the received
signal into two classes, One represents the SIR greater than the desired SIR, an-
other represents the lower. Variable-step power control command is determined
according to the output label of FOSVM and the distance from the data point
to the SIR decision boundary. The size of step changes adaptively based on the
distance from the data point to the SIR decision boundary. The application of
FOSVM for variable-step CDMA power control can be described as follow:

1. Obtain one set of signals sampled from equation (12), suppose the set is Sk,
the number of signal sample in Sk is N .

2. Generate the sample covariance matrices with the signals from Sk, each
covariance matrix is generated with M samples, M < N .

3. Calculate the eigenvalues of sample covariance matrices, obtain [ N
M ] eigen-

value vectors.
4. Using FOSVM algorithm to classify the eigenvalue vectors into two SIR sets.
5. Generate power control command according to the output label of FOSVM

and the distance from the data point to the SIR decision boundary.

6 Simulation and Results

In this section, we compare the performance of various SVMs in terms of classifi-
cation errors, the number of support vectors and training time. The convergence
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performance of variable-step power control based on the FOSVM algorithm is
also compared with the fixed-step power control.

The signals generated from equation (12) include random noise components
and received SIR between 0dB and 15dB. The attenuation of each signal in the
different path is randomly generated with a maximum attenuation of 50% of
the dominant signal. The simulations include randomly generated link gains for
the different paths and the number of paths is 4. The direction of arrival signal
(DoA) θl is generated randomly from the range 0 to 180 degree and the number
of antenna array elements is 8. Simulation results show that the best performance
is achieved with the linear kernel, the value of the regularization parameter C is
2. Simulation results with the radial basis function (RBF) includes error rates
30% to 50% higher than error rates from simulations based on the linear kernel.

To evaluate the performance of FOSVM, we compared the FOSVM algo-
rithm with the OSVC and conventional SVM using the same data. We orderly
obtain 10 sets of training data based on the signal model, each set includes 100
training samples and 400 test samples. The training time and the number of
SVs is shown in Talbe 1 and Talbe 2. Tabel 1 shows that the training speed of

Table 1. The training time of FOSVM, OSVC and conventional SVM (unit: msec)

Training set 1 2 3 4 5 6 7 8 9 10
FOSVM 221 90 0 40 10 10 10 0 10 10
OSVC 221 321 0 234 118 345 187 0 114 110

Conventional SVM 221 445 324 415 287 345 223 218 356 372

Table 2. The number of SVs in FOSVM,OSVC and conventional SVM

Training set 1 2 3 4 5 6 7 8 9 10
FOSVM 34 35 36 32 32 33 31 29 33 32
OSVC 34 36 36 36 35 33 34 29 33 34

Conventional SVM 34 39 42 43 39 38 37 38 42 45

FOSVM is faster than the other two algorithms. Because their initial training
set have no difference, the training time of the first training set is the same for
these algorithms. When the new training data can be classified by the current
hyperplane, FOSVM and OSVC algorithms need not train the new hyperplane,
so the training time of FOSVM and OSVC algorithms is zero in column 3 and 8.
From Table 2, we find that the number of SVs in FOSVM is less than the other
two algorithms.

Table 3 presents the percentage of mean classification error of the three algo-
rithms for 5 different desired SIR. Each simulation includes 100 training samples
and 10 set test samples. It can be seen that the percentage of classification error
of these SVM algorithms are almost the same, which means their generalization
capability are comparative.
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Table 3. Percentage of mean classification error of three different SVM algorithms

SIR threshold FOSVM OSVC Conventional SVM
11dB 6.811 6.809 6.813
9 dB 7.606 7.608 7.618
7 dB 8.085 8.091 8.093
5 dB 7.513 7.513 7.515
3 dB 7.130 7.132 7.138

Fig.3(a) shows one received signal with 15dB SIR converges to the desired
SIR (7dB) through 100 iterations. There is a little vibration near 7 dB, because
at the points which are misclassified by the decision boundary, the outputs of
classifier are opposite to the real value, then the power control system will send
the wrong commands. Fig.3(b) shows the power control command responding to
the output of the FOSVM algorithm. A “-1” represents a received SIR greater
than the desired SIR and therefore corresponds to a power down command, a “1”
represents a received SIR lower than the desired SIR and therefore corresponds
to a power up command.
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Fig.4 shows the convergence performance of fixed-step power control with
FOSVM algorithm. When the size of fixed step is large, the transmitted signal
vibrates sharply near the 7 dB. When the size of step is small, it costs much
more time for the transmitted signal converges to 7 dB.

7 Conclusion

In this paper, a FOSVM algorithm was proposed as the modified algorithm of
OSVC. The FOSVM algorithm speeds up the training phase by reducing the size
of training sample set using K.K.T. conditions. Simulation results show that the
FOSVM outperform the OSVC and conventional SVM in term of the number
of SVs and training time while keeping the comparable classification errors.
According to the distance from the data point to the SIR decision boundary,
we present a variable-step CDMA power control method based on the FOSVM
algorithm. It offers better convergence performance than fixed-step algorithm.
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Abstract. This study addresses a new blind channel equalization method using 
fourth-order cumulants of channel inputs and a three-layer neural network 
equalizer. The proposed algorithm is robust with respect to the existence of 
heavy Gaussian noise in a channel and does not require the minimum-phase 
characteristic of the channel. The transmitted signals at the receiver are over-
sampled to ensure the channel described by a full-column rank matrix. It 
changes a single-input/single-output (SISO) finite-impulse response (FIR) 
channel to a single-input/multi-output (SIMO) channel. Based on the properties 
of the fourth-order cumulants of the over-sampled channel inputs, the iterative 
algorithm is derived to estimate the deconvolution matrix which makes the 
overall transfer matrix transparent, i.e., it can be reduced to the identity matrix 
by simple reordering and scaling. By using this estimated deconvolution matrix, 
which is the inverse of the over-sampled unknown channel, a three-layer neural 
network equalizer is implemented at the receiver. In simulation studies, the 
stochastic version of the proposed algorithm is tested with three-ray multi-path 
channels for on-line operation, and its performance is compared with a method 
based on conventional second-order statistics. Relatively good results, with fast 
convergence speed, are achieved, even when the transmitted symbols are 
significantly corrupted with Gaussian noise. 

1   Introduction 

In digital communication systems, data symbols are transmitted at regular intervals. 
Time dispersion, which is caused by non-ideal channel frequency response 
characteristics or multi-path transmission, may create inter-symbol interference (ISI).  
This has become a limiting factor in many communication environments. Thus, 
channel equalization is necessary and important with respect to ensuring reliable 
digital communication links. The conventional approach to channel equalization 
needs an initial training period with a known data sequence to learn the channel 
characteristics. In contrast to standard equalization methods, the so-called blind (or 
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self-recovering) channel equalization method does not require a training sequence 
from the transmitter [1]-[3]. It has two obvious advantages. The first is the bandwidth 
savings resulting from elimination of training sequences.  The second is the self-start 
capability before the communication link is established or after it experiences an 
unexpected breakdown. Because of these advantages, blind channel equalization has 
gained practical interest during the last decade. 

Recently, blind channel equalization based on second-order cyclostationary has 
been receiving increasing interest. The algorithm presented by Tong et al. [4] is one 
of the first subspace-based methods exploiting only second-order statistics for a 
system with channel diversity that has a single-input/multi-output (SIMO) discrete-
time equivalent model.  After their work, a number of different second-order 
statistical (SOS) methods have been proposed [5]-[10].  However, it should be noted 
that most SOS methods require a relatively high signal-to-noise ratio (SNR) to 
achieve reliable performance.  In practice, the performance degradation using SOS 
methods is severe if a received signal is significantly corrupted by noise.  In this case, 
a larger sample size is necessary [4]. To avoid this problem, higher-order statistics 
(HOS) can be exploited. Several recent works have re-established the robustness of 
higher-order statistical methods in channel equalization and identification [11]-[13].   

In this study, a new iterative algorithm based on the fourth-order cumulants of 
over-sampled channel inputs is derived to estimate the deconvolution (equalization) 
matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to 
the identity matrix by simple reordering and scaling. This solution is chosen so that 
the fourth-order statistics of the equalized output sequence { })(ˆ ks  is close to the 

fourth-order statistics of the channel input sequence { })(ks . It has a similar 

formulation with the cumulant-based iterative inversion algorithm which was 
introduced by Cruces et al. [14] for blind separation of independent source signals, 
but the iterative solution in our algorithm is extended with an additional constraint (a 
fourth-order statistical relation between the equalized outputs of over-sampled 
channels) in order to be applied to the blind channel equalization problem.  In the 
experiments, the proposed iterative solution provides more precise estimates of the 
deconvolution matrix with fast convergence speeds than a method based on second-
order statistics, even when the outputs of a non-minimum phase channel are corrupted 
by heavy Gaussian noise. However, this deconvolution matrix may yield to an 
amplification of the noise at the outputs because of noise-corrupted inputs, even 
though it can be precisely estimated from the noisy channel outputs.  To avoid this 
limitation, a three-layer neural equalizer, instead of the deconvolution matrix itself, is 
implemented at the receiver by using the over-sampled channel matrix (inverse of 
estimated deconvolution matrix). It is known that the equalizer made of neural 
network structure has a better noise-tolerant characteristic [15]-[17].    

2   Problem Formulation 

In a multi-path digital communication system, a data sequence { })(ks , k=…, 1− ,0,1, 

2,…, is sent over a communication channel with a time interval T. The channel is 
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characterized by a continuous function h(t), and the signals may be corrupted by noise 
e(t). The received signal y(t) can be expressed as: 

+∞

∞−
−= )()()( kTthkstx  (1) 

)()()( tetxty +=  (2) 

 
Fig. 1. Blind channel equalization in digital communication 

This is shown in Fig. 1.  The objective of blind equalization is to recover the 
transmitted input symbol sequence { })(ks  given only the received signal y(t).  Instead 

of choosing the equalizer so that the equalized output sequence { })(ˆ ks  is close to the 

source symbol sequence { })(ks , as in the standard equalization formulation, in blind 

equalization one chooses the equalizer so that the statistics of the equalized output 
sequence is close to the statistics of the source symbol sequence. In this study, a 
robust algorithm with respect to noise is constructed with a higher-order statistical 
constraint, which makes the fourth-order statistics of { })(ˆ ks  close to the fourth-order 

statistics of { })(ks .  For this approach, the following assumption is necessary. 

1> The symbol interval T is known and is an integer multiple of the sampling period. 
2> The impulse response h(t) has finite support, if the duration of h(t) is Lh, h(t) =0 for 

hLtt ≥or    0 . 

3> { })(ks  is zero mean, and is driven from a set of i.i.d. random variables, which 

means the fourth-order zero-lag cumulant or kurtosis of { })(ks  can be expressed by 

)0(3  ,1
)(),( lsksC =cum( )(),(),(),( lslslsks )= { })()()()( lslslsksE ∗∗  = )( lk −αδ  (3) 

where α  is non-zero constant and )(tδ  is the discrete time impulse function. 

4> e(t) is zero-mean Gaussian noise, and uncorrelated with { })(ks . 

In the conventional equalizer, the incoming signal, y(t), is spaced by a sampling 
rate T/N at the receiver, where T is a source symbol interval and N is an positive 
integer. In this study, the over-sampling technique is applied to change a finite-
impulse response (FIR) channel to a SIMO channel, which requires the incoming 
signal y(t) to be sampled at least as fast as the Nyquist rate ( 2≥N ). This is illustrated 
by way of an example shown in Fig. 2, where the channel lasts for 4 adjacent bauds, 
and the over-sampling rate is T/4.  
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Fig. 2. An over-sampling example of a FIR channel 

With over-sampling at rate T/4 during observation interval L=T in Fig. 2, a channel 
output vector at time index k is given by equation (4). If we define a FIR channel h(t) 
as in equation (5), y0(k) and y1(k) can be expressed as in equations (6) and (7), 
respectively.  In the same way, y2(k) and y3(k) can be obtained. 

y(k)=[y0(k), y1(k), y2(k), y3(k)]T (4) 

h(0)=[h0(0), h1(0), h2(0), h3(0)]T (5) 

y0(k)=h0(0)s(k)+h0(1)s(k-1)+h0(2)s(k-2)+h0(3)s(k-3)+e0(k) (6) 

y1(k)=h1(0)s(k)+h1(1)s(k-1)+h1(2)s(k-2)+h1(3)s(k-3)+e1(k) (7) 

Then we have 

y(k)=Hs(k)+e(k) (8) 

where s(k)=[s(k),s(k-1),s(k-2),s(k-3)]T, e(k)=[e0(k),e1(k),e2(k),e3(k)]T and 

H=

)3()2()1()0(

)3()2()1()0(

)3()2()1()0(

)3()2()1()0(

3333

2222

1111

0000

hhhh

hhhh

hhhh

hhhh

=[h(0),h(1),h(2),h(3)] (9) 

If the observation interval L is greater than T, for example L=2T in Fig. 2, 
y(k)=[y0(k),y1(k),y2(k),y3(k),y4(k),y5(k),y6(k),y7(k)]T, s(k)=[s(k+1),s(k),s(k-1),s(k-2),s(k-
3)]T, e(k)=[e0(k),e1(k),e2(k),e3(k),e4(k),e5(k),e6(k),e7(k)]T, and H becomes a 58×  
channel matrix shown in equation (10). 

H=
0hhhh

hhhh0

),3(),2(),1(),0(

)3(),2(),1(),0(,
 (10) 

where 0=[0,0,0,0]T. 
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In our approach to recover the transmitted input symbol sequence { })(ks , a 

deconvolution matrix G in equation (11) is derived to transform the overall transfer 
function W=GH into the identity matrix by using the observed channel output y(k) 
only.  For the solvability of blind equalization problem, an additional assumption is 
made throughout, i.e., the over-sampling rate T/N or the length of the observation 
interval L, qT, is selected to make the over-sampled channel matrix H full column 
rank. This means if a channel h(t) has p taps, H can described by a )1( −+× qpNq  

matrix, and N or q should be chosen for ).1( −+≥ qpNq   

(k)ŝ =Gy(k)=GHs(k)=Ws(k) (11) 

3   Iterative Solution Based on Fourth-Order Cumulants 

The aim in blind equalization is to select G in equation (11) that recovers the original 
source sequence { })k(s  only from the observations of the sampled channel output 

y(k). This is obtainable when the overall transfer system W is transparent (or reduced 
to an identity).  Here, for notational simplicity, we consider a special reordering and 
scaling so that W will always be an identity matrix.  If the over-sampled channel H is 
a )1( −+× qpNq  matrix and full column rank, its input sequences can be expressed 

as in equation (12).  

s =

−+

0

1

2

s

s

s qp

=

−+−
−+−

−−+−+

))q(ps(M)s()s(

))q(ps(M)s()s(

)s(M)qs(p)qs(p

110

221

112

 (12) 

where M is the total number of transmitted sequences and 210 ,,, −+qpsss  are the 

shifted input vectors by time interval T for each of p+q-1 over-sampled FIR channels. 
Then, for the noise-free case, equation (11) can be rewritten as 

ŝ =

−+

0

1

2

ˆ

ˆ

ˆ

s

s

s qp

=GH

−+

0

1

2

s

s

s qp

=Ws (13) 

The identifiability of system W can be guaranteed because the channel H has full 
column rank and its input vectors, 210 ,,, −+qpsss , are mutually independent [18].  

Equation (13) can be considered as a blind source separation (BSS) problem.  If we 
properly scale channel input s such that the kurtosis of each of 210 ,,, −+qpsss  is 

equal to 1+  or 1−  (scaled to 1=α  in equation (3)), its BSS solution by using a 

preconditioned iteration [19], is given by equation (14) [14]. 
)(3

ˆ
3,1

ˆˆ
)()()1( ))0(( nnnn GISCGG ss,s lk

−−=+ μ  (14) 
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where )0(3  ,1
ŝ,ŝ lk

C =cum( lllk ssss ˆ,ˆ,ˆ,ˆ )=E { }∗∗
lllk ssss ˆˆˆˆ : the fourth-order zero-lag cumulant 

or kurtosis matrix of ŝ (k,l=0,1,…,p+q-2), 3
ŝS =diag(sign(diag( )0(3  ,1

ˆˆ lk s,sC ))) in the 

Matlab convention, μ =a step-size of iteration, and I is an identity matrix.  The 

fundamental idea of this solution is based on the fact that the fourth-order statistics of 
equalizer output ŝ  should be close enough to the fourth-order statistics of channel 
input s.  However, in order to apply the BSS method in equation (14) to the blind 
channel equalization problem, an additional constraint must be considered. It is as 
follows.   

The channel input T
qp ],,,[ 012 ssss −+=  is constructed by shifting the same 

sequences with a time interval T, which is shown in equation (12). It means the 
fourth-order cumulant matrix of s with lag 1 always satisfies the following expression 

TT JJSJC sJs,s lk
=33,1 )1(  (15) 

where )1(3,1

lk s,sC =cum( 111 ,,, +++ lllk ssss )=E { }∗
++

∗
+ 111 lllk ssss , J is a shifting matrix 

denoted by equation (16), and 3
sJS =diag(sign(diag( T

s,s JC
lk

)1(3  ,1 ))). 

=

0100

0010

0001

0000

J  (16) 

Thus, the fourth-order cumulant matrix of equalizer output ŝ  with lag 1 should be 
forced to satisfy equation (15), and its iterative solution can be written as  

)(3
ˆ

3,1
ˆˆ

)()()1( ))1(( nnnn GJJSJCGG T
Js

T
s,s lk

−−=+ β  (17) 

where β =a step-size of iteration. Based on the above analysis, a new iterative 

solution combining equation (14) with equation (17) is derived for blind channel 
equalization, which is shown in equation (18).  

)(3
ˆ

3,1
ˆˆ

)()(3
ˆ

3,1
ˆˆ

)()()1( ))1(())0(( nnnnnn GJJSJCGISCGG T
Js

T
s,sss,s lklk

−−−−=+ βμ  (18) 

For the stability of equation (18), )1( +nG  in equations (14) and (17) should not to be 

singular [14]. In equation (14), )1( +nG  can be rewritten as in equation (19) and )(n  

should be less than 1 to avoid the singularity. Therefore, by taking into account the 

triangular inequality such as )0(1)0(1)0( 3,1
ˆˆ

3
ˆ

3,1
ˆˆ

3
ˆ

3,1
ˆˆ lklklk s,sss,sss,s CSCISC +=+≤− , the 
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step size )(nμ  is chosen as 
)0(1

1
3,1

ˆˆ

)(

lk s,sC+
<nμ  for the stability. By the same way, 

)(nβ  is selected as 
T

s,s JC
lk

)1(1

1
3,1

ˆˆ

)(

+
<nβ  in the experiments. 

)()()(3
ˆ

3,1
ˆˆ

)()()1( )())0(( nnnnnn GIGISCGG ss,s lk
−=−−=+ μ  (19) 

If the formulation of equation (18) is based on the second-order statistics of equalizer 
output and the channel input s is scaled to have a unity power, the iterative solution is 
reduced as  

)(1,1
ˆˆ

)()(1,1
ˆˆ

)()()1( ))1(())0(( nnnnnn GJJJCGICGG TT
s,ss,s lklk

−−−−=+ βμ  (20) 

where )0(1,1
ˆˆ lk s,sC =cum( lk s,s ˆˆ )=E { }∗

lk ss ˆˆ  and )1(1,1
ˆˆ lk s,sC =cum( 1

ˆˆ +lk s,s )=E { }∗
+1

ˆˆ lk ss :  zero-

lag and lag 1 correlation function of ŝ , respectively.  These two iterative solutions 
have been implemented in a batch manner in order to obtain an accurate comparison, 
and tested with three-ray multi-path channels.  In our experiments, their stochastic 
versions, which are shown in equation (21) for the fourth-order statistics and in 
equation (22) for the second-order statistics, are evaluated for possible use on-line. 
These are accomplished by estimating continuously the fourth-order cumulants in 
equation (18) and the second-order correlations in equation (20) with the over-
sampled channel outputs coming in at time interval T. Thus, G gets updated at time 
interval T. By applying these stochastic versions of algorithm, it is not necessary to 
wait until a whole block of the sample is received to estimate G. The stochastic 
version based on second-order statistics in equation (22) is the same as the one used 
by Fang et al. [5] for their two-layer neural network equalizer. It is compared with our 
proposed algorithm based on the fourth-order statistics shown in equation (21).  

)(3
ˆ

)1()()()(3
ˆ

)1()1()()()1( ))ˆ)(ˆ(())ˆ)(ˆ(( nnnnnnnnnn GJJSJssfGISssfGG T
Jsf

TT
iisf

T
ii −−−−= −−−+ βμ  (21) 

)()1()()()()1()1()()()1( ))ˆ(ˆ())ˆ(ˆ( nnnnnnnnnn GJJJssGIssGG TTT
ii

T
ii −−−−= −−−+ βμ  (22) 

where T
is ]ˆ,ˆ,,ˆ[ˆ (n)

0
(n)
1

(n)
2-

)( sss qp
n

+= : a 11)( ×−+ qp  output vector of )(nG , 
2
ˆ

)(3)()( ˆ3)ˆ()ˆ(
isiii sssf σnnn −= , 2

ˆisσ : adaptively estimated power of iŝ  at each iteration,  

3
ŝfS = ))))ˆ)(ˆ(((( )1()1( T

ii ssf −− nndiagsigndiag  and 3
ĴsfS = ))))ˆ)(ˆ(((( )1()( TT

ii Jssf −nndiagsigndiag .  

4   Neural Network-Based Equalizer 

In the absence of noise, the deconvolution matrix G perfectly recovers the source 
symbols at the output because of the overall transfer function W=GH=I.  However, 
when there is noise, this deconvolution matrix may yield to an amplification of the 
noise at its outputs, even though it can be precisely estimated from the noisy channel 
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outputs y by using our proposed algorithm. To avoid this limitation, a three-layer 
neural equalizer is employed at the receiver because of its noise robust characteristic 
[15]-[17].  This is done by using the estimated over-sampled channel as a reference 
system to train the neural equalizer. It consists of an input layer, a hidden layer, and 
an output layer of processing elements called neurons [15][16], as shown in Fig. 3.  

 

Fig. 3. The structure of three-layer neural equalizer 

 
 
Fig. 4. Samples of received and equalized symbols under 15db SNR: (a) 1000 received 
symbols, (b) equalization by a neural equalizer, (c) by G itself derived from eq. (21), and (d) by 
the optimal inverse of H 

Once the deconvolution matrix G is estimated, which means the over-sampled 
channel H is available, the training sequences based on H are generated at the 
receiver. The three-layer neural equalizer is trained with these sequences by using the 
back-propagation algorithm.  In back-propagation, the output value is compared with 
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the desired output. This results in the generation of an error signal, which is fed back 
through layers in the network, and the weights are adjusted to minimize the error.  
More details on the back-propagation algorithm can be found in [15][16].  A sample 
of equalized binary )1,1( −+  source symbols under 15dB SNR by this neural equalizer, 

one by the deconvolution matrix G itself, and one by the optimal inverse of over-
sampled channel H are shown in Fig. 4. The deconvolution matrix G used in Fig. 4 is 
derived from the proposed algorithm in equation (21). The outputs of neural equalizer 
can be more densely placed onto the transmitted symbols )1,1( −+ even in heavy noise 

environments. 

5   Simulation Results and Performance Assessments 

The blind equalizations with three-ray multi-path channels are taken into account to 
show the effectiveness of the proposed algorithm.  Performances under different 
SNRs, varied from 5 to 15dB with 2.5 dB increments, are averaged after 50 
independent simulations.  The proposed algorithm and the solution based on the 
second-order statistics are implemented in a batch manner in order to achieve the 
accurate comparison.  In the first experiment, a three-ray multi-path channel truncated 
up to 2 symbol periods (p=2) is tested with 1000 randomly generated binary 
transmitted symbols (taken from { }1± ).  The delays of this channel are 0.5T and 1.1T, 

and its waveform is a raised-cosine pulse with 11% roll-off.  It has a zero outside unit 
circle, which indicates a non-minimum phase characteristic. The channel outputs are 
sampled twice as fast as the symbol rate, which means the over-sampling rate is T/2 
(N=2), and the observation interval used for this channel is T (q=1). Thus, the over-
sampled channel H becomes a 22× ))1(( −+× qpNq  matrix.  For each simulation, 

the initial matrix for G and both of step size( βμ , ) in equations (21) and (22) are set 

to an identity matrix I and 0.001, respectively, and the numbers of iteration is limited 
to 50 epochs.  The normalized root-mean square error for overall transfer system 
W=GH is measured in terms of the index NRMSEw, 

=
−=

NS

j

j
w NS

NRMSE
1

2)(11
IW

I
 (23) 

where HGW )()( jj =  is the estimation of overall system at the jth simulation and NS 
is the number of independent simulations (NS=50 in this study).  The NRMSEw for the 
proposed algorithm and the one based on second-order statistics are shown in Fig. 5 
with different noise levels.  

Once G is available, the three-layer neural equalizer is trained with 1000 training 
sequences which have been generated at the receiver. It has 2 inputs, 4 hidden 
neurons and 2 outputs, and the learning rate is set to 0.05. The maximum number of 
iterations for the training process is set to 50 epochs. The output of this neural 
equalizer is the estimation of transmitted symbols, and its performance measure is 
defined as follows.  
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Fig. 5. NRMSEw with different SNR levels in experiment 1 

 

Fig. 6. NRMSEs with different SNR levels in experiment 1 

 

Fig. 7. Averaged BER(%) in experiment 1 
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Fig. 8. NRMSEw with different SNR levels in experiment 2 

 
Fig. 9. NRMSEs with different SNR levels in experiment 2 

=
−=

NS

j

j
s NS

NRMSE
1

2)(ˆ11
ss

s
 (24) 

where )(ˆ js  is the estimate of the channel input s at the jth trial.  The NRMSEs by the 
neural equalizer with the proposed algorithm and with the one based on second-order 
statistics are shown in Fig. 6, and their bit error rates (BER) are compared in Fig. 7.  

In the second experiment, the same simulation environment is used, such as the 
step size( βμ, ), the learning rate for the neural equalizer, the maximum number of 

iterations, and the over-sampling rate (N=2).  The exceptions are the length of 
channel, its delays and the observation interval.  The three-ray multi-path channel 
tested at this time is truncated up to 3 symbol periods (p=3), and its delays are T and 
1.5T.  It has one zero outside unit circle and the other inside.  The observation interval 
used for this non-minimum phase channel is two times longer than one symbol 
period, 2T (q=2), and thus, the over-sampled channel H becomes a 

44× ))1(( −+× qpNq  matrix.  The neural equalizer used to recover the transmitted 

symbols in this experiment has 4 inputs, 8 neurons in the hidden layer, and 4 outputs. 
The performance measures, NRMSEw, NRMSEs after 50 independent simulations, and 
the averaged BER, are presented in Figs. 8-10, respectively. 
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Fig. 10. Averaged BER(%) in experiment 2 

From the simulation results for NRMSEw, which are shown in Fig. 5 for experiment 
1 and in Fig. 8 for experiment 2, the proposed solution is proved highly effective to 
estimate G, the inverse of unknown channel H, which makes the overall system 
W=GH an identity even when the observed symbols are heavily corrupted by noise. 

The difference in performance between the proposed solution and the one based on 
the second-order statistics is not severe if the noise(signal) level is as low(high) as 
15dB SNR in our experiments. However, it is observed that, if the noise level is 
getting higher such as to 10 or 5 db SNR, the proposed algorithm performs relatively 
well, and the performance difference becomes more serious. It results from the fact 
that our approach is based on the fourth-order cumulant of the received symbols and it 
always goes to zero for Gaussian noise.  This phenomenon can also be found for 
NRMSEs in Figs. 6 and 9, and the averaged BER in Figs. 7 and 10, because the neural 
equalizer trained with more accurate estimation of H produces the lower symbol 
estimation error. Therefore, the proposed algorithm in our study can be implemented 
for on-line operation in a heavy noise communication environment.  

6   Conclusions 

In this paper, a new iterative solution based on the fourth-order cumulants of over-
sampled channel inputs is presented for blind channel equalization.  It does not 
require the minimum phase characteristic, and shows relatively high performance 
results even when the observed symbols are significantly corrupted by Gaussian 
noise.  In addition, it can be implemented for on-line operation for channel estimation 
without waiting for a whole block of the symbols. The proposed algorithm could 
possibly be used for heavy noise communication environments. In future work, the 
proposed iterative solution will be further investigated and applied as a learning 
algorithm for a neural network so that the transmitted symbols can be directly 
recovered from the output of a neural-based equalizer without the estimation 
procedure of the deconvolution matrix, G.  
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Abstract. A new equalization method for a wireless ATM communica-
tion channel using a simplified version of the complex bilinear recurrent
neural network (S-CBLRNN) is proposed in this paper. The S-BLRNN
is then applied to the equalization of a wireless ATM channel for 8PSK
and 16QAM. The results show that the proposed S-CBLRNN converges
about 40 % faster than the CBLRNN and gives very favorable results in
both of the MSE and SER criteria over the other equalizers.

1 Introduction

One of the major problems in the wireless ATM network is the intersymbol
interference that leads to a degradation in performance and capacity of the sys-
tem. Because of this problem, the received signals tend to get elongated and
smeared into each other. Several techniques have been used to build wireless
ATM equalizers which aim to correct the received signal. One of the simpler
types of equalizers is the Linear Equalizer (LE). With the presence of channel
nonlinearities, it appears that techniques based on linear signal processing such
as the LE show limited performance. Others types of equalizers such as Deci-
sion Feedback Equalizers (DFE)[1], Volterra filter based equalizers, and Viterbi
equalizers are based on nonlinear signal processing techniques.

Another promising approach to designing equalizers are neural network (NN)
-based approaches[2,3]. Recent researches have shown that a recurrent type NN
is more suitable than a feedforward type NN in predicting time series signals[3].
Among recurrent neuron networks, the Complex Bilinear Recurrent Neural net-
work (CBLRNN) -based equalizer gives very favorable results in both the MSE
and SER criteria over Volterra filter equalizers, DFEs, and Complex Multiplay-
ered Perceptron type NN (CMLPNN) equalizers[3]. However, the CBLRNN also
suffers from slow convergence because of its rather complicated architecture.

In this paper, a simplified version of CBLRNN is proposed and applied to the
equalization of wireless ATM channels. The Simplified-CBLRNN (S-CBLRNN)
uses only a part of the feedback components for bilinear component calculation.
The experiments are performed on 8PSK and 16QAM signals.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 1113–1116, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Simplified Complex Bilinear Recurrent Neural Network

The BLRNN is a recurrent NN which has a robust ability in modelling nonlinear
systems and was originally introduced in[4]. CBLRNN is the complex version of
BLRNN. CBLRNN has been designed to deal with the problems with complex
number operations[3]. Even though the CBLRNN shows very promising results
when applied to equalizer problems, it still suffers from slow convergence in
practical use. Choi et al. propose a simplified version of the bilinear DFE[5]. In
this approach, only a part of feedforward inputs are multiplied to the feedback
portion for bilinear components without suffering from performance degradation.
By adopting this idea of reduced bilinear components to the CBLRNN, the
output of the CBLRNN is derived as follows:

sp[n] = dp +
Nf−1∑
k2=0

apk2op[n− k2] (1)

+
Nf−1∑
k1=0

E∑
k2=S

bpk1k2op[n− k1]x[n− k2]

+
Ni−1∑
k1=0

cpk1x[n− k1]

= wp +Ap
TAp

T [n] + Zp[n]Bp
TX [n] + Cp

TX [n]

Fig. 1. A simple S-BLRNN with the structure 5-2-1 and 2 feedback lines. Note that
only 3 middle inputs are used for bilinear part in this example
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where dp is the weight of bias neuron for the p−th hidden neuron, p = 1, 2..., Nh.
Nh, Ni, and Nf are the number of hidden neurons, input neurons, and feedback
lines, respectively. Note that a part of Ni inputs are used for the bilinear part. Ap

is the weight vector for recurrent portion, Bp is the weight matrix for the bilinear
recurrent portion, and Cp is the weight vector for the feedforward portion. T
represents the transpose of a matrix. More detailed on CBLRNN can be found
in[3].

In a CBLRNN architecture (Ni=10,Nh=4,Nf=5), the number of multiplica-
tion for CBLRNN and the number of multiplications for S-CBLRNN used in our
experiments are 264 and 155, respectively. The number of reduced multiplication
is 109 in this case and 41.3% of the multiplications can be reduced.

3 Experiments and Results

The ATM channel for experiments is simulated with 6 propagation paths whose
gains and delays are given by: gain = {ai} = { 1, 0.5, 0.4, 0.32, 0.1, 0.08},
delay = {τi} = { 0, 1/2, 9/8, 13/8, 21/8, 39/8}. The transmitted data symbols
are randomly generated 8PSK and 16QAM signals. Transmitted signals over the
ATM channel are corrupted with AWGN with various SNRs.

In each experiment, randomly generated 30,000 data symbols are used for
training the equalizers and another 100,000 data symbols are used for testing the
performance of the equalizers. The proposed equalizer based on a S-CBLRNN is
compared with a CDFE, a Volterra equalizer, a CMLPNN-based equalizer, and
a CBLRNN-based equalizer.

The selected structures for all equalizers are CDFE(10 inputs, 30 feedbacks),
Volterra (10 inputs, 1st and 3rd orders), CMLPNN(10-25-1), CBLRNN(10-4-1,
5 feedbacks), and S-CBLRNN(10-4-1, 5 feedbacks). We observe that all equalizer

Fig. 2. SER performance of equalizers
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models have 10 input tabs and the proposed S-CBLRNN requires much less com-
putational effort when compared with Volterras, CMLPNNs, and CBLRNNs.

In the result shown in Fig. 2, the S-CBLRNN yields much less symbol error
rate (SER) than any other equalizer for both cases of 8PSK and 16QAM sig-
nals. As can be seen in Fig. 2, the SER of S-CBLRNN gives some improvement
over the CMLPNN and other equalizers. This result is very acceptable when
compared with other equalizers reported in the literature and implies that the
S-CBLRNN-based equalizer is suitable for the wireless ATM channel. Because
the performance of the CBLRNN and S-CBLRNN are almost indistinguishable
in both the SER and MSE categories throughout the experiments, only the
results of the S-CBLRNN are given in this paper. In addition to the SER per-
formance, the performance of mean square error (MSE) of S-CBLRNN is also
lower when compared with different equalizer schemes.

Acknowledgement. This research was supported by the Korea Research Foun-
dation (Grant # R05-2003-000-10992-0 (2004)).
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Abstract. Recently, interacting neural network has been studied out coming a 
novel result that the two neural networks can synchronize to a stationary weight 
state with the same initial inputs. In this paper, a simple but novel interacting 
neural network based authentication scheme is proposed, which can provide a 
full dynamic and security remote user authentication over a completely insecure 
communication channel.   

1   Introduction 

Remote user authentication schemes are used to verify the validity of a login request 
from a remote user to obtain the access rights on the remote server. Most of schemes 
make the server and the remote user share a secret as a password. Recently, many 
password based dynamic authentication schemes using smart cards have been 
presented[1,2,3,4], but also many security problems discovered[5,6,7].According to 
security analysis for remote user identification schemes, latest research paper[8] have 
discussed two key design rules. One is that at least single unique information must be 
required to identify an entity, another is that at least single information representing 
the entity must be static. Anyway, exploring a non-classic cryptography method for 
authentication scheme can bring some unsurpassable advantages. 

The state-of-the-art research on interacting neural network[9,10] has shown a novel 
phenomenon that both weights of such two networks can be trained to synchronized 
under some specific Hebbian rules with the identical inputs. Expanding interacting 
neural network to multi-layer network, such as tree parity machine, a secure 
authentication model can be designed based on the final synchronization for the truth 
that only the same input vectors lead to the same weight vectors. 

2   Neural Network Based Synchronization 

2.1   Synchronization in Interacting Neural Network  

A simple interacting system is modeled that two perceptrons receive a common 
random input vector x and modify their weights w according to their mutual bit . The 
                                                           
∗ Supported by Zhejiang Province Natural Science Fund (Y104158) 
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output bit  of a single perceptron is given by the equation = sign(w·x) where x is an 
N-dimensional input vector and w is a N-dimensional weight vector. 

Let neural network A and B learn from each other, the perceptron learning rules are 
listed as follows[9]: 

)()()1( BABAA x
N

twtw σσση −Θ−=+                              (1)    

)()()1( BAABB x
N

twtw σσση −Θ−=+                              (2) 

where Θ (x) is the step function and  is the learning rate.  
Due to the analysis in [9], if  is larger than a critical value the networks can obtain 

a synchronization parallel weight state, wA = wB.  

2.2   Authentication Using Tree Parity Machine (TPM) 

Some modifications and improvements have been done in paper[10] for utilizing tree 
parity machine to secret key generator. To make system discrete, weight vectors 
perform random walk with reflecting boundary L: wA(B)i [−L,−L + 1, ...,L − 1,L] . 

The structure of TPM is illustrated in Fig.1.The two machines A and B receive 
identical input vectors x1, x2, x3  at each training step. The training algorithm is that 
only if the two output bits are identical the weights do be modified and only the 
hidden unit, which is identical to the output bits, do modify its weight[8]. 

 

 
 

The most important point is that wo partners A and B with their respective initial 
weights and identical input vectors synchronize to an identical state, 

)()( twtw i
B

i
B = . But, non-identical inputs lead to non-synchronization. 

 

3 

w3 

x3 

Fig. 1. Tree parity machine with three hidden units 

1 2 

w1 w2 

x2 x1 
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3   Proposed User Authentication Scheme 

3.1   Notations 

Although smartcard has been widely used for automating remote user login securely, 
we shall simplify our authentication scheme without considering smartcard model. 
Some main notations are shown below.  

U       the user 
S        the remote server 
UP     the user login program 
PWU  the password set by the user 
XS      the secrecy set by the user  
WI      Tree Parity Machine I’s weight vector state  
IVI      TPM I’s intitial input vector IVI 

⊗    Exclusive Or operation 
H        one way hash function 

A ⎯→⎯S B: M      A sends M to B over a secure channel 

A ⎯→⎯ B: M       A sends M to B over an insecure channel 

A ⎯⎯ →←TPM B        Interacting neural network between A and B using TPM  

3.2   Authentication Scheme 

We separate the remote user authentication into two key phases, User Registration 
Model and User Authentication Model.  

 
User Registration Model 

1. U submits PWU to S 
2. S generates secrecy XS for U 
3. S computes NU = H(PWU) ⊗ H(XS) 

4. S ⎯→⎯S U: H, NU 

5. UP computes H(XS) = H(PWU) ⊗ NU  using H hash received from S 
 

 
 
User Authentication Model 

1. UP generates a random RU 
2. UP computes NU’ = H(PWU) ⊗ H(XS) ⊗ RU 

3. U ⎯→⎯ S: NU’ 
4. S computes RU = NU’ ⊗ H(PWU) ⊗ H(XS) 

5. U ⎯⎯ →←TPM S where IVU = IVS = RU , WU = H(PWU), WS =H(XS) 
       6. TPMs learn from each other for more than 400 steps 
       7. If WU = WS then U logins successfully to S , otherwise fails.  
 



1120 T. Chen and J. Cai 

 

3.3   Analysis 

Some concrete analytical results stay in [9,10], from which we know that TPM model 
with hidden layer is rather secure than simple interacting neural network, since even 
in case of an opponent breaking into network and obtaining the change of output bits 
it still can not identify which one of weight vectors is changed. On the other hand, the 
time for opponents getting synchronization is longer than the partners do, so the 
agreed secret key is practical secure for private key encryption. In addition, it’s true 
that if the inputs are not identical, the system can never synchronize. So in the 
proposed scheme, only if the user and server exactly input Ru as initial vector for 
TPM mutual learning, the authentication can success. During user authentication, two 
TPMs are running for synchronization, so the exchange information between U and S 
are completely independent on user identity or password. These full dynamic and 
ruleless exchanges provide security against any network monitor or adversary. 

4   Conclusions 

We have explored a novel remote user authentication scheme based on interacting 
neural network learning. Comparing to other traditional methods, TPM based scheme 
for secure authentication is full dynamic and secure. However, more security analysis 
and implementation details for our proposed scheme here should be studied further.  
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Abstract. MANET (Mobile Ad Hoc Network) is a collection of wireless mobile 
nodes forming a temporary computer communication network without the aid of 
any established infrastructure or centralized administration. MANET is 
characterized by both highly dynamic network topology and limited energy. This 
makes the efficiency of MANET depending not only on its control protocol, but 
also on its topology management and energy management. Clustering Strategy 
can improve the flexibility and scalability in network management. With graph 
theory model and genetic annealing hybrid optimization algorithm, this paper 
proposes a new clustering strategy named GASA (Genetic Algorithm Simulated 
Annealing). Simulation indicates that this strategy can with lower clustering cost 
and obtain dynamic balance of topology and load inside the whole network, so as 
to prolong the network lifetime. 

1   Introduction 

MANET (Mobile ad hoc network) is multi-hop wireless network that are composed of 
mobile hosts communicating with each other through wireless links [1]. MANET is 
likely to be use in many practical applications, including personal area networks, home 
area networking, military environments, and search a rescue operations. The wide 
range of potential applications has led to a recent rise in research and development 
activities.  

Efficient energy conservation plays an important role in the protocol design of 
each layer in MANET because mobile host in such networks is usually battery-operated 
[2]. This paper mainly focuses on the hierarchical topology management. In hierarchical 
framework, a subset of the network nodes is selected to serve as the network backbone 
over which essential network control functions are supported. Hierarchical topology 
management is often called clustering which involves selecting a set of cluster-heads in 
a way that every node is associated with a cluster-head, and cluster-heads are connected 
with one another directly by means of gateways. The union of gateways and 
cluster-heads constitute a connected backbone. Once selected, the cluster-heads and the 
gateways help to reduce the complexity of maintaining topology information, and can 
simplify such essential functions as routing, bandwidth allocation, channel access, 
power control or virtual-circuit support.  

 
 * Supported Partially by National Natural Science Foundation of China (No.60372107) and 

Natural Science Foundation of Fujian Province in China (No.A0440001) 
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The rest of the paper is organized as follows. Section 2 briefly describes previous 
work and their limitations. Section 3 describes the details of the proposed clustering 
strategy GASA. Section 4 introduces performance metrics and performance results 
based on various experiments environment. The paper ends with some conclusions and 
remarks on future work. 

2   Related Work 

The key step of hierarchical topology management is cluster-head election. Several 
algorithms have been proposed to choose cluster-heads in MANET. Let us summarized 
below these algorithms. 

2.1   Max-Degree Algorithm 

The node degree is a commonly used algorithm in which nodes with higher degree are 
more likely to be cluster-heads [3]. The neighbors of cluster-head are members of that 
cluster and will not participate in the election process. Experiments demonstrate that 
the system has a low rate of cluster-head changes. However, this approach can result in 
a high turnover of cluster-heads due to the network topology changes. The high 
overhead caused by cluster-head’s change is undesirable.  

2.2   Lowest-ID Algorithm 

Several approaches [4-5] utilized the node identifiers to elect the cluster-head with one or 
multiple hops. This strategy assigns a unique id to each node and chooses the node with 
the minimum id as a cluster-head. The drawback of this algorithm is its bias towards 
with smaller id, which leads to the battery drainage of certain nodes. Moreover, it does 
not attempt to balance the load uniformly across all the nodes. 

2.3   Node-Weight Algorithm 

Basagni et al. [6-7] introduces two algorithms, named DCA (distributed clustering 
algorithms) and DMAC (distributed mobility adaptive clustering. A node is chosen to 
be cluster-head if its node-weight is higher than any of its neighbor’s node-weight. The 
smaller node id is chosen to break a tie. The DCA is suitable for clustering 
“quasi-static” ad hoc networks. It is easy to implement and the time complexity 
depends on the topology of the network rather than on its size. The DMAG algorithm is 
adapted to the changes in the network topology due to the mobility of the nodes. Both 
algorithms are executed at each node with the sole knowledge of the identity of the 
one-hop neighbors.  

None of the above three kind of algorithms leads to an optimal election of 
cluster-heads since each deals with only a subset of parameters which can possibly 
impose constraints on the system. Each of these algorithms is suitable for a specific 
application rather than for arbitrary wireless mobile networks. 
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3   System Model and Basic Definition of Our Algorithm 

Definition 1. This work assumes that MANET comprises a group of mobile nodes 
communication through a common broadcast channel using omni-directional antennas 
with the same transmission range. The topology of MANET is thus presented by an 
undirected graph G = (V, E), where V is the set of network nodes, and VVE ×⊆  is 

the set of links between node. The existence of a link Evu ∈),( , and that nodes u and 

v are within the packet-reception range of each other, in which case u and v are called 
one-hop neighbors of each other. 

Definition 2. Each node has one unique identifier, and all transmissions are 
omni-directional with the same transmission range. In addition, a reliable neighbor 
protocol is assumed to enable the quick update neighbor information at each node. 
Definition 3. We introduce a function IFClusterHead () for each node. The initial value 
of this function is –1.If one node is elected as cluster-head, the function value is set to 1. 
If one node is elected as cluster member, the function value is set to 0.  

Definition 4. Average relative mobility uM  is defined as equation (1). Where 

),( vud  represents the distance between node u and v , vV  represents the movement 

velocity of node v . 

               )(
),(

|)(|

1
uNu

v vV

vud

uN
uM ∈∀=                                   (1) 

Definition 5. Relative remainder energy 1][0,uB ∈  is defined as equation (2). Where 

uF and uR  respectively represents the initial energy and remainder energy at time t of 

node u . 
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uB
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=                                                     (2) 

Definition 6. Computes dynamic weighted value uDW  as equation (3). The meaning 

of uΔ  is the same as in the WCA strategy [6].  
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                          (3) 

The definition 6 decides how well suited a node is for being a cluster-head. The 
cluster-head election procedure is not periodic and is invoked as rarely as possible. This 
reduces system updates and hence computation and communication costs. The 
clustering algorithm is not invoked if the relative distances between the nodes and their 
cluster-head don not change. 

 Mobility is an important factor in deciding the cluster-heads. In order to avoid 
frequent cluster-head changes, it is desirable to elect a cluster-head that does not 
move very quickly according its neighbor node.  
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 Given that cluster-heads provide the backbone for a number of network control 
function, their energy consumption is more pronounced than that of ordinary 
hosts. Low-energy nodes must try to avoid serving as cluster-heads to save 
energy. So the lower remain power of node, the small chance to become 
cluster-head in our algorithm. This strategy can realize energy consumption 
balance and avoid the extinction of nodes due to exhaustion of their battery power.  

 The more smaller node number implies the more lower management complexity. 
However, if the number of cluster-head is too lower, the conflict probability is 

increase and the capacity of network will also decrease. So the uΔ  can resolve 

this contradiction.  

3.2   Steps of Genetic Algorithm Simulated Annealing Based Clustering Strategy  

This section provides how the genetic algorithms simulated annealing is applied to DW 
(Dynamic Weighted) to optimize the total number of cluster-head. As can be seen in 
Fig.1, we have all the nodes along with the adjacency list as the DW values which are 
already calculated from the execution of DW definition. This is stored separately in a 
list where each node is pointing to its neighbor chain. The chain is used to compute the 
object function. 

   DW  Node ID Neighbor node chain 

  M1      1       4       33       62       …  

M2      2      21       39       48       …  
M3   3    9       17       25       …  

…       …       …        …        …        …  
M99    99      49       …        …        …  

M100  100      43       68       29       …  
 

Fig. 1. Adjacency list with DW of network graph 

The Genetic Algorithm Simulated Annealing based Cluster procedure consists of 
four steps as described below: 

Step 1. Initial Population: Randomly generates the initial population with the pool 
size being equal to the number of nodes in the given network. This will produce the 
same number of chromosomes in the form of integer strings. Suppose the randomly 
array is:  

Fig.2 illustrate the procedure of cluster and cluster-head come into being. 
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   DW  Cluster-head node ID  

  M1      1       4       33       62       …  

M2      3       9       17       25       …  
M99   99   49                         …  

…       …       …        …        …        …  
M35    35      41       88       19       …   

Fig. 2. The procedure of Cluster and Cluster-head come into being 

The detailed flow describe as follow. 

A. Set object function SDW=0. 
B. Select the first node 1 from the random array. Because the IF function 

ClusterHead () value of this node is –1. So node 1 is elected as cluster-head. 
Let SDW SDW M1, and continuous to visit the whole chain table.  

C. If all of the nodes in the randomly array have been visit then go to E, 
otherwise, visit the next node in the array in turn. 

Case ( clusterhead () =0 ). Skip this node 
Case ( clusterhead()=-1). Elect this node (suppose K) as cluster-head and 

set clusterhead()=1. SDW=SDW+MK. And visit the whole chain table which 
head node is node K. 

D. Complete the clustering procedure. Get the Dominating Set (viz. 
chromosome), which is made up of all the cluster-head. 

 E.  Repeats from A to D until L times clustering procedures, and get the Initial 

Population as DS1 DS2 …DSL and fitness value SDW1 SDW2  

… SDWL . 

Step 2. Boltzmann mechanism based selecting strategy and get copulation pool. The 
conventional select probability defines as 

          Li
SDW

SDW
DSP

L

i
i

i
i L,2,1)(

1

==

=

                (4) 

We introduce boltzmann mechanism into select probability, which defines as  

          Li
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             (5) 

Where T>0 is called “temperature” by analogy with physical systems. And 
temperature is decreased at a constant factor α , TT α= . The new select probability 
strategy can adaptive to the optimize selection procedure.  
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Step 3. Crossover and Metroplis based elitism 

The crossover procedure can be get by replacing )(mAi and )(nAi in the 

randomly array iA . The new randomly array is defined as *
iA . The new Population is 

DS1* DS2* …DSL* and fitness value is SDW1* SDW2* … SDWL* . 

If )
|| *

T

DSDS iI

eRandom
−

−
<  then replace iDS with 

*
iDS i=1,2 …L else discard *

iDS . 

Step 4. Convergence condition 
The fitness values of k and k+1 generation is 

separately k
iSDW i=1,2 …L and 1+k

iSDW i=1,2 …L . if 

min{ k
iSDW i=1,2 …L } min{ 1+k

iSDW i=1,2 …L }  then stops the 

evolution process. 

4   Simulation and Performance Evaluation 

4.1   Simulation System and Performance Metrics 

The simulation system is build by MATLAB tool and VC++. We compare the 
GASA-CS clustering strategy with the Max Degree and WCA strategy [8]. There are 30 
nodes randomly placed within a rectangle area, whose moving speed ranges from 0 to 
10m/s. A random waypoint mobility model [7] is adopted here and pause time set 1 s. the 
transmission range of node is 30m. We chose the values for constants describe in 
GASA-CS strategy as shown in Table 1. These parameters are configurable from 
implementation meaning that the parameter values can be adjusted to serve a particular 
application.  

Table 1. Parameters Used in Simulation 

We compare the performance of GASA-CS with four performance metrics: 

A. The number of clusterhead.  
B. CRF (cluster re-affiliation factor), which defines as 

CRF 1 2

1

2 i ii
N N−                                                            (6) 
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where i is the average number of cluster, and 1iN , 2iN  are the degree of node i at 

different times.  
C. We take the same definition of load balancing factor (LBF) [3] as: 

LBF
2( )

c

ii

n

x μ−
  

)c

c

N n

n
μ −

                                  (7) 

where cn  is the average number of cluster, N is the number of all nodes, and ix  is 

the practical degree of node i. The larger LBF, the better load balanced among the 
network.  

D. Lifetime of Network. We define this metric as the duration from the beginning of 
the simulation to the first time a node runs out of energy. The energy consumption of 
clusterhead is five times as normal node. This set is because the cluster averagely 
includes about five nodes in our simulations. 

4.2   Simulation Result and Evaluation 

The first group simulations are set the nodes area as 100m×100m, simulation time is 
100 units. As shown in Fig.3, we can see clearly that the GASA-CS has lowest CRF 
value (mean 0.17). WCA strategy has the highest CRF values (mean 1.56). This 
indicates by optimization mechanism, GASA-CS decreases the choice of switching 
from one cluster to another. The Fig.4 illustrates that GASA-CS has the highest LBF 
(mean 1.1901) and the LBF of Max Degree strategy is lowest (mean 0.0922). This 
result indicates Max Degree strategy merely considers the number of cluster node. This 
make some clusters have too many nodes can cause the traffic unbalance. GASA-CS 
considers not only current cluster node, but also the change. So it can heighten the 
balance performance.  

In the second group simulations, the density of network varied by changing node 
distributed area. Fig.5 indicates the cluster number of GASA-CS strategy is always 
fewest. In higher density, the Max Degree strategy is better than WCA. While in lower 
density, WCA is better than Max Degree. Fig6 illustrates that network lifetime by 
GASA CS strategy is longest because the GASA CS strategy introduces remain 
energy factor and decrease the chance of lower energy node becoming clusterhead. 

5   Conclusion 

We proposed an improved clustering algorithm and compared it with original 
clustering algorithms in terms of average cluster number, CRF, LBF and network 
lifetime. From the experimental results, we can fairly draw a conclusion that our GASA 
algorithm performs well compared with other algorithms.. It achieves the best 
performance on the trial dataset. Further research is required into how to rebuild the 
simple energy-consuming model proposed in this paper by considering the practical 
traffic in the application layer and how to control the compute complication in lager 
scale network which is an opened problem. 
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Fig. 3. The cluster re-affiliation factor of GASA-CS, Max Degree and WCA strategy 
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Fig. 4. The load balance factor of GASA-CS, Max Degree and WCA strategy 
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Fig. 5. The average number of cluster 
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Fig. 6. The lifetime of network 
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Abstract. Support Vector Machine(SVM) has become a popular tool for learn-
ing with large amounts of high dimensional data, but sometimes we prefer to 
incremental learning algorithms to handle very vast data for training SVM is 
very costly in time and memory consumption or because the data available are 
obtained at different intervals. For its outstanding power to summarize the data 
space in a concise way, incremental SVM framework is designed to deal with 
large-scale learning problems. This paper proposes a gradual algorithm for 
training SVM to incremental learning in a dividable way, taking the possible 
impact of new training data to history data each other into account. Training 
data are divided and combined in a crossed way to collect support vectors, and 
being divided into smaller sets makes it easier to decreases the computation 
complexity and the gradual process can be trained in a parallel way. The ex-
periment results on test dataset show that the classification accuracy using 
proposed incremental algorithm is superior to that using batch SVM model, the 
parallel training method is effective to decrease the training time consumption. 

1   Introduction 

Support Vector Machine (SVM) is a new approach of pattern recognition based on 
Structural Risk Minimization which is suitable to deal with magnitude features prob-
lem with a given finite amount of training data[1,2]. In recent years, SVM has been 
given considerable attention because of its superior performance in pattern recogni-
tion and been successfully used as a classification tool in a variety of areas, ranging 
from handwritten digit recognition, face identification, and text categorization[3,4,5].  

However, being a very active approach, there still exist some open questions that 
should be deliberated by further research, such as how to train SVM efficiently to 
learn from large datasets and stream datasets incrementally. That is to say, when the 
training datasets are often far too large or always change in practice and new samples 
data are added in at any moment, incremental learning of SVM should be developed 
to avoid running time-consuming training process frequently[6,7]. Many researches 
have been made on incremental learning with SVM. 
                                                           
*  This work is supported by the Natural Science Foundation of Heilongjiang Province under 

Grant No. F0304. 



 A Gradual Training Algorithm of Incremental Support Vector Machine Learning 1133 

 

The basic principle of SVM is to find an optimal separating hyperplane so as to 
separate two classed of patterns with maximal margin[1]. It tries to find the optimal 
hyperplane making expected errors minimized to the unknown test data, while the 
location of the separating hyperplane is specified via only data that lie close to the 
decision boundary between the two classes, which are support vectors. Obviously, the 
design of SVM allows the number of support vectors to be small compared with the 
total number of training data, therefore, SVM seems well suited to be trained accord-
ing to incremental learning. 

The rest of this paper is organized as follows. In section 2, a preliminary review of 
SVM is given. In section 3, a gradual training algorithm for incremental learning with 
SVM is proposed after brief review of batch incremental algorithms. In section 4, 
experiments on real datasets are executed to evaluate the proposed learning algorithm 
compared with batch learning model. Finally, some concluding remarks are made in 
section 5. 

2   SVM and Incremental Learning Theory  

2.1   Brief Review of SVM  

The SVM uses the Structural Risk Minimization principle to construct decision rules 
that generalize well. In doing so, it extracts a small subset of  training data. We 
merely outline its main ideas here. The method of Structural Risk Minimization is 
based on the fact that the test error rate is bounded by the sum of the training error 
rate and a term which depends on the so-called VC-dimension of the learning ma-
chine[1]. By minimizing the sum of both quantities, high generalization performance 
can be achieved. 

For linear hyperplane decision functions:  

 
(1) 

The VC-dimension can be controlled by controlling the norm of the weight vector 

w . Given training data 1 1( , ), , ( , )n nx y x y , N
ix R∈ , { }1iy ∈ ± , a separating 

hyperplane which generalizes well can be found by minimizing 

2

1

1

2

n

i
i

w γ ξ
=

+  (2) 

subject to 

0iξ ≥ , ((iy ) ) 1 ib ξ+ ≥ − , 1, ,for i n=  (3) 

γ  is a constant which determines the trade-off between training error and VC-

dimension. The solution of this problem can be shown to have an expansion 
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where only those ia  are nonzero which belong to ix  precisely meeting the constraint 

(3), these ix  lie closest to the decision boundary, called support vectors. The coeffi-

cients ia  are found by solving the quadratic programming problem defined by (2) 

and (3). 
Finally, this method can be generalized to nonlinear decision surfaces by first 

mapping the input nonlinearly into some high-dimension space, and finding the 
separating hyperplane in that space. This is achieved implicitly by using different 
type of symmetric functions ( , )K x y  instead of the ordinary scalar product . 

One can get 

1

( ) sgn( (
n

i
i

f x a K
=

= ) )b+  (5) 

as a generalization of (1) and (4). 
More details of SVM are described in Ref.[1,2]. 

2.2   Incremental SVM Learning 

The development of modern computing and information technologies has enabled that 
huge amount of information has been produced as digital data format. It is impossible 
to classify this information one by one by hand in many realistic problems and fields, 
there is a need to scale up incremental learning algorithms to handle more training 
data[1]. Therefore, incremental techniques have been developed to facilitate batch 
SVM learning over very large datasets and stream datasets, and have found wide-
spread use in the SVM community.  

Incremental learning algorithm with SVM proposed in Ref. [6,7] consists in learn-
ing new data by discarding all past examples except support vectors, it utilizes the 
property of SVM that only a small fraction of training data end up as support vectors, 
the SVM is able to summarize the data space in a very concise manner, and assume 
that the batches of data will be appropriate samples of the data. Although this frame-
work relies on the property that support vectors summarize well the data and it is an 
approximate solution to learn incrementally with SVM as batch model, the results of 
experiments proved that it is an effective way to deal with large datasets and stream 
datasets.  

It is proved that the key to construct optimal hyperplane is to collect more useful 
data as support vectors during the incremental learning. Most incremental learning 
algorithms are based on improving SVM training process by collecting more useful 
data as support vectors[6,7,8,9]. There aims are also looking for more potential sam-
ples as support vectors and take advantage of the outstanding traits of SVM, that is, 
after learning process, SVM divides data into two classed with a hyperplane. Suppose 
that x is to be classified, the further x is from the hyperplane, the higher the probabil-
ity of correct classification is, and vice versa.  
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2.3   Batch SVM Learning Model  

Given that only a small fraction of training data end up as support vectors, the SVM is 
able to summarize the data space in a very concise manner. This suggests us a feasible 
method is that we can partition the training samples dataset in batches (subsets) that 
fit into memory, for each new batch of samples, a SVM is trained on the new samples 
data and the support vectors from the previous learning step, as the Fig.1 shows[6]. 
According to important properties of support vectors, we can expect to get an incre-
mental result that is equal to the non-incremental result, if the last training set contains 
all samples that are support vectors in the non-incremental case. 

 
 
 
 
 
 
 
 
 

Fig. 1. Batch incremental SVM learning model 

The reasoning behind batch learning model is the assumption that the batches of 
data will be appropriate samples of the data. While the problem is the learning results 
are subject to numbers of batches and state of data distribution but always the distri-
bution of data is unknown. Another disadvantage of this learning model is the time 
consuming is not prompted, since all data in any subset should be computed to tell 
whether it is a support vector or not. Therefore, some researchers proposed their in-
cremental training algorithms to promote learning results[7,8,9,10,11,12,13,14,15]. 

3   Gradual Training SVM Algorithm  

Incremental SVM learning with batch model divides the training dataset into batches 
(subsets) that may fit into memory suitably. For each new batch of data, a SVM is 
trained on the new training data and the support vectors from the previous learning 
step. As mentioned above, separating hyperplane is subject to support vectors of train-
ing dataset, batch model learning may not collect all support vectors that incremental 
learning algorithm need, for the distribution state of batches of training datasets are 
unknown generally.  

According to the distributing characteristic of support vectors, we know that the 
data located between the face-to-face marges of the two classes of training datasets 
are not classifiable correctly and easily. Less of these data are, higher of the classifi-
cation precision is. Therefore, in every step of batch learning model, some actions are 
taken not only to support vectors but also these data between the marges of the two 
classes. That is, classify the new coming dataset with current hyperplane defined by 
training dataset to collect the data that are between the marges of the two classes. 

+ + + 
concept 
final  

concept 
…  

SVs 
initial  

SVs SVs 

subset 1 subset 2 subset n…  
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Then divide current training dataset into two or there smaller subsets and combine 
them with new coming dataset to collect support vectors respectively. Finally, com-
bine the data collected in former two steps to construct new hyperplane, until the 
classification precision is satisfying.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Pseudo-code of proposed gradual increment SVM algorithm 

Fig.2 shows the pseudo-code of this gradual increment SVM algorithm. Clearly, 
computation is almost focused on constructing hyperplanes with new combined data-
sets twice or thrice, but the classification precision would be improved, as subsets of 
training dataset may have different distribution status, combining them with new 
coming dataset may collect different but potential support vectors.  

4   Experiments and Results  

We conducted experiment using a text database which is pre-labeled by hand and 
consists of 1830 data points, each having a dimension of 35 to compare the batch 
incremental SVM learning algorithm with crossed iteration incremental SVM learning 
algorithm we proposed. All algorithms are programmed with Matlab7.0 in Windows 
2000. 

The experiment is prepared as following: take 273 data points as initial training set 
and 427 data points as test set randomly, separate the rest data points into 5 subsets 
and use the polynomial kernel. Table 1 shows the classification precision results for 
our experiment. 

It can be seen that the classification precision results in incremental steps are im-
proved from the Table 1. The whole classification process needs much more time-cost 
for computing, but the classification precision is improved in some degree.  The num-
bers of support vectors of two learning model in Table 2 show that our proposed algo-

Given current training data set  and new coming data set  

Initialize .
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  1. Train  with , construct optimal hyperplane ,

  2. Classify every data  in  with . Set = { } if

X Xi j

SV

SVM Xi i i
x X SV SV xj i

ψ

ψ

=Φ

∪ the distance of  to the hyperplane 

      is less than the half of the margin defined by ,  

  3. Divide  into  and  randomly, that is, , ,1 2 1 2 1 2
  4. Set , ,1 1 2 2

x

i
X X X X X X X Xi i i i i i i i

X X X X X Xi i j i i j

ψ

= ∪ ∩ =Φ
= ∪ = ∪  train them respectively and collect support vectors set

       and .1 2
  5. Set , construct  with  and classify the new coming data . 1 2 1
      Go step 2 if the classification 

SV SVi i
SV SV SV SV SV Xi i jiψ= ∪ ∪ +

precision is less than that in step 2.

  6. Stop the algorithm until the precision is satisfying.
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rithm collects much more support vectors to obtain higher classification precision 
than batch incremental learning algorithm. 

Table 1. The comparison of classification precision and training time of two incremental SVM 
learning algorithms 

Table 2. The comparison of numbers of support vectors of two incremental SVM learning 
algorithms 

Table 3. The comparison of classification precision and training time of two learning strategies 

 
 

Batch incremental  
SVM algorithm 

Proposed gradual 
SVM algorithm  Number 

time /s  precision /% time /s precision /% 

training dataset 273 92.6 90.21 146.6 92.37 

subset 1 367 127.3 91.45 184.2 93.65 

subset 2 184 107.8 90.37 175.5 94.87 

subset 3 97 76.9 92.64 138.8 94.51 

subset 4 219 152.4 92.80 191.7 95.22 

subset 5 263 179.2 93.26 233.4 95.93 

SVs 
 Number 

Batch incremental  
SVM algorithm 

Proposed gradual 
SVM algorithm 

training dataset 273 55 67 

subset 1 367 78 96 

subset 2 184 96 127 

subset 3 97 108 144 

subset 4 219 131 163 

subset 5 263 167 212 

Proposed  algorithm 
with one machine 

Proposed  algorithm with 
two parallel machines  Number 

time /s  precision /% time /s precision /% 

training dataset 273 146.6 92.37 80.7 92.37 

subset 1 367 184.2 93.65 106.6 93.65 

subset 2 184 175.5 94.87 88.3 94.87 

subset 3 97 138.8 94.51 75.1 94.51 

subset 4 219 191.7 95.22   110.5 95.22 

subset 5 263 233.4 95.93 133.2 95.93 
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Another experiment proves it is true that supposing there are two parallel learning 
machines to train divided datasets respectively, the training time would not increase 
much more, under the same test condition. Table 3 shows the comparison results of 
these two strategies with the proposed algorithm. 

5   Conclusions  

The ability to incremental learning from batches of data is an important feature that 
makes a learning algorithm more applicable to real-world problems. SVM is adapt-
able to incremental learning to vast data classification for its outstanding power to 
summarize the data space. A gradual algorithm for training SVM to incremental 
learning is proposed based on considering the possibility of new support vectors set 
works on the history dataset and the incremental dataset. Experiments improved that 
this approach is efficient to deal with vast data classification problems with higher 
classification precision.  

The algorithm presented in this paper is similar to other heuristic algorithms for 
their aims are mainly focused on collecting more potential samples as the support 
vectors. It was experimentally shown that the performance of the new algorithm is 
comparable with an existing approach in the case of learning without concept 
changes. More researches will be performed with problems that training dataset con-
tains changing concepts in the future. 
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Abstract. The feature selection and weighting are two important parts of 
automatic text classification. In this paper we give a new method based on 
concept attributes. We use the DEF Terms of the Chinese word to extract 
concept attributes, and a Concept Tree (C-Tree) to give these attributes proper 
weighs considering their positions in the C-Tree, as this information describe 
the expression powers of the attributes. If these attributes are too weak to 
sustain the main meanings of the words, they will be deserted and the original 
word will be reserved. Otherwise, the attributes are selected in stead of the 
original words. Our main research purpose is to make a balance between 
concept features and word ones by set a shielded level as the threshold of the 
feature selection after weighting these features. According to the experiment 
results, we conclude that we can get enough information from the combined 
feature set for classification and efficiently reduce the useless features and the 
noises. In our experiment, the feature dimension is reduced to a much smaller 
space and the category precise is much better than the word selection methods. 
By choose different shielded levels, we finally select a best one when the 
average category precise is up to 93.7%. From the results, we find an extra 
finding that the precise differences between categories are smaller when we use 
combined features. 

1   Introduction 

Automatic text classification is a process which classifies the documents to several 
categories by their content. With the rapid development of the online information, text 
classification becomes one of the key techniques for handling and organizing the text 
data. So far, the English text classification is practical and is widely used in E-mail 
classification, information filer and so on. For example, the E-mail category system of 
White House, and the Construe system used by Reuter are two successful 
classification systems.

The Chinese text classification steps much slower than the English one. In 1981, 
Hou H. discussed the automatic classification and introduced some foreigner research 
results. After that, the Chinese research begins. Because the Chinese text is different 
from English, there is much to do before classification, such as participle, speech 
tagging and so on, which are important techniques of Chinese language process. 
Therefore, the researchers have developed a lot of techniques which are fit for 
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Chinese text classification and the text classification begin to boom. For example, the 
C-ABC system built by Zhongshan Library, and the automatic category system built 
by Tsinghua University [6]. 

2   Overview of the Improved Concept Feature Selection 

In order to classify the documents, we should reflect them to a vector space. In text 
classification, the processed data is always called feature, and the original data is 
sometimes called attribute. In order to get a proper feature set, a process is required 
which is called feature selection. Feature selection includes two parts, one is called 
feature reduction, reducing the feature set to a minimum with the essential 
information of the original attribute, and the other is called feature weighting, giving 
the features different weight referring to their contribution to the classification[5]. In 
this paper, we used HowNet dictionary to extract concept attributes from the words in 
the text and weight them by the C-Tree. And then, by setting a shielded level to filter 
the weak concept attributes, we reduce the feature space with little information lose. 
After that, we use term frequency and cross entropy (TF-CE) as the reduction method, 
which is based on the difference between categories. With a proper threshold which is 
called a shielded level, we can reduce the original feature dimension to a much 
smaller one, which can be easier to calculate, and information noises are mostly 
filtered out. In this feature selection process, we mainly discuss the expression power 
of the concept attributes and how to combine the concept features and the original 
word ones. 

3   Principles and Methods 

The concept definition in our system comes from HowNet [1], which is a knowledge 
system referring to the concept of Chinese words. When we select feature from the 
text we will use the DEF term of every Chinese word. In this method, we can extract 
the concept attribute as the feature of the text, which will describe the internal concept 
information, and get the relationship among the words. There are 24,000 words in the 
HowNet and only 1,500 concept attributes, as a result, the feature will be reduced to a 
stable dimensionality space with little information lose.  

The DEF Term of a certain Chinese word “ ” is “DEF=human | research | study | 
education”, so we can extract four attributes from it and add them to the feature set 
instead of the word “ ”,and the attribute “education” is a clear prediction of 
category “Education”. As a result, the concept attributes in DEF Terms are sometimes 
helpful for classification and they are easy for feature weighting because there are 
some attribute documents in HowNet in tree forms, with which we could built a 
concept Tree (C-tree) with every node for a attribute. Meanwhile, as all the concepts 
in HowNet are definitely positioned, we don’t need to worry about that there are 
redundant concept in a DEF term, for example, a DEF with both a node and its father 
node. 
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Fig. 1. This is part of the Entity tree of HowNet from which we could see the tree form of the 
concept attributes. As we can see, there are some abstract concept attribute such as Entity, 
Thing and so on. These attributes exist in the DEF terms of many words 

Also, there are more than one trees in the HowNet and every tree has its special 
roots and tree high. Below is the Event tree which describes all the event concept in 
HowNet, and it is easy to see that this tree is much higher than the Entity tree above 
and there should be some strategy to deal with these differences. The strategy will be 
introduced in the next part of this paper and the experiment shows that the different 
treatment of different trees is important to make the concept balance. 

 

Fig. 2. This is part of the Event tree of HowNet from which we could see that it has much more 
abstract levels than the Entity one. That is why we have to set different weights to different tree 
roots. In fact, the Event tree is higher than the Entity tree. 

Static Act 

Relation State 
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3.1   The Weighting of Concept Attributes 

The attribute feature table of the HowNet lists 1505 concept attributes in tree form, so 
the level of the node is always considered as the most important reason of the 
weighting, and the most used weighting formula is as follows[8]: 

L)alog( ��ikik DrootW =  (1) 

In our system, we use a different formula which put much more information into 
considering. At last, we added two things to the weighting formula, one is the 
different weighting of different tree roots; the other is the number of the child nodes 
of the weighting node. Because the weighting of the nodes at the same level in the 
different trees are not equal, we give a different root weight to treat them differently. 
For example, in the Entity tree, we give the root “Entity” a weight of 1.0, but in the 
Event tree, we give the root “Event” a weight of 0.25. Meanwhile, when a node have 
more child nodes, it means that in the cognize world, this concept is more complex 
and has more details, so people would use its child nodes more and treat this concept 
as a more abstract one, so it should have a comparatively lower weight. 

At last, we give a weighting formula as follows: 

]
b

1
L)2/)alog(([

+
=

k
ikiik CNum

DrootWtreeW ���  (2) 

In this formula Wik is the weighting of node k in tree i; Wtreei is the weighting of 
the tree root i; Drootik is the distance between node k and the tree root i; CNumk is the 
number of the child nodes of node k; L, a and b are the tempering factors, which are 
used to control the weighting range. According to the experiments, we set L=0.15, 
a=1 and b=5. 

3.2   The Abstract Concept Attributes and the Shielded Level in the C-Tree  

Though the HowNet is easy to use in text classification, the concept attributes in it 
exist in a tree form and there are some nodes near the root which are abstract concept 
attributes. For example, the concept attribute “entity” is an abstract one which does 
not have much information for category. If the DEF term of a certain word contains 
only abstract concept, it means that the DEF term does not describes the word 
precisely and the information gain is not enough. For example, the DEF term of the 
Chinese word “ ” is “DEF=ATTRIBUTE VALUE |DIFFERENCE |EQUAL 
|ENTITY”, but the meaning of this word is that two things(especially two colonies ) 
are equal and should help each other in order to make benefit for themselves. Because 
none of the attributes in its DEF term describe this meaning, they can not express this 
word efficiently, and because these abstract attributes exist in a lot of Chinese words, 
they will be calculated a lot and occupy a big scale in feature statistic. As a result, if 
we extract all concept attributes and ignore the original words, it will not give the 
correct feature set and the precise of classification will not be perfect. In order to deal 
with this problem, we have to decide in which case we can extract the concept 
attributes and in which not. In this paper, we give a strategy to make a balance 
between the original words and the extracted concept attributes.  
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We use the tree form of the concept attributes in HowNet to make a concept-tree 
(C-tree), and calculate their expression power according to the level of the node. By a 
selected shielded, we divided these nodes into two parts, the strong ones and the weak 
ones. Because we mainly use the level of the node to decide its expression power, we 
set a level threshold which will ignores the concept attribute nodes above it, 
otherwise, the attributes will be added to the feature set. This threshold is called 
shielded level. And for a word, if the levels of the nodes in its DEF term are all above 
the shielded level, we consider that these attributes are weak in expression and give 
less information than the original word, and it is unsuitable to extract them. As a 
result, it is much better to add the original word to the feature set, not the concept 
ones. The formula calculating the concept expression power of a word is as follows:  

)()(f max
0

i

m

i

ckc
=

=  (3) 

In formula 3, k(ci) is the weight of attribute i in the DEF term of word c;m is the 
number of attributes in DEF term. This formula calculates all the attributes in a DEF 
term and decides whether the attribute or the word should be added to the feature set. 
If there is at least one attributes whose levels are higher than the shielded level, the 
expression power of the DEF terms are enough and we added them into the feature 
set. Otherwise, the original word is added. By this strategy, we can reserve the 
original words which are not fully expressed, and filter the concept which are abstract 
and scattered in a lot of words. 

3.3   The Treatment of the Word not in the HowNe

Because there are so many Chinese words and the scale is getting larger and larger, it 
is impossible for a dictionary to embody all of them. So there are some words which 
are not in HowNet which we also should deal with. Because these words have no DEF 
terms, we will select them as the feature and give them a weight by a certain strategy. 
In our system, we give these words weights by their lengths. When a Chinese word is 
longer, it is much likely to be a proper noun of a certain field, and its occurrence 
frequency if much lower, as a result, we gives it a higher weight to compensate it[7].  

By practical consideration, we use the square root of the word length to avoid 
depending too much on the word length because this strategy does not have adequate 
theoretic foundation. The formula is as follows: 

)(*5.0Wi ilength=  (4) 

3.4   The Improved Feature Selection Method Based on TF-CE 

TF-CE Term Frequency – Cross Entropy [2] is improved from TF method which is 
widely used in classification and information retrieval. This method considers the 
information entropy in the document set and the qualification entropy among the 
words in order to define how much information a certain word provides in 



 An Improved Method of Feature Selection Based on Concept Attributes 1145 

 

classification, which is also called the importance of a word. The formula mainly 
depends on three factors: 

1). TF (Term Frequency): TF is the occurrence frequency of a certain word. 
2). CE (Cross Entropy): CE is the relationship between the information entropy of the 
document and that of the certain word: 

l l )(

)|(
log)|p(c)(Txt(w)pyCrossEntro

l

l

cp

wcp
wwp�  (5) 

Here, p(w) is the occurrence rate of word w in the word set; p(cl) is of category l in 
document set; p(cl|w) is of the document which has word w and belongs to category l.  
3). CN (Cosine Normalization): Cosine Normalization is used to normalize the 
vectors to an equal measure in order to compare with them. Without it, the 
comparison is not trusty. 

As a result, the full formula of TF-CE is as follows: 
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The TF-CE is used to reduce the original feature set because it is always too large 
and there are some features which are not essential in classification or are even noise. 
For example, there are some words which are commonly used in text and have little 
difference among categories, and some rare words which occur in very little 
documents. These words always have a low value of TF-CE, and will be filtered out 
of the feature set to make the vector dimension smaller and better[4]. 

4   Experimental Results 

This system is coded in Windows 2000, and the coding tool is VS.Net. The corpus 
comes from the People Daily from 1996 to 1998. 

Table 1. Below is the corpus of out experiment. These documents are select for training or test 
in random. And it is easy to see the corpus is a unbalanced one as the number of the documents 
in different category is different. However, we manage to make the rate of training and test 
approximately 2:1 

 Economy Polity Computer Sport Education Law Total 

Train Set 250 175 130 300 150 200 1205 
Test Set 121 82 55 282 63 152 755 
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In order to show the system clearly, we put it into several models, and use the 
interim files as the interface of two models. In this way, we can see the result of every 
main step clearly and easily estimate where is incorrect and should be modified.  

 
 
 
The experiment result shows that, the improved extraction of concept attribute can 

reduce the feature scale efficiently and with this reduction, the classification precise is 
much better because it filters the redundant features and the noise in the text which 
are necessary. 

We can see that if we only use original words, the reduction is sharp and many 
features are filtered while with concept attributes, the reduction is smoother and the 
difference between different shielded levels are less while the levels are lower. It 
means that when we reflect the original word to the concept space, we could get a 
smaller and more stable feature space. For example, when the shielded level is 6, the 
original feature set is only 40% of the original set. And when we use a threshold (for 
example the threshold is 3) to reduce the vector dimension, the reduction is small and 
only 83.6% of the features are cut off, while when we use original words as the 
feature, we have to cut off 90% of the features with the same threshold. This chart 
means that using proper concept attribute will reflect the word feature to a smaller and 
more stable dimension which has a strengthened value in every direction, which is 
nicer for classification. 

 

Training 
Set 

Pretreatment

Concept 
extraction & 

weighting 

HowNet 

TF-CE 
Weighting 

Vector 
Construction

Test 
Set 

Classification 
Machine 

Participle 
Dictionary 

Result 

Fig. 3. This is the main flow of the system and the classification machine is based on SVM [3] 
algorithm which is admitted widely as an efficient and quick method of classification 
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4.1   The Reduction of the Improved Feature Selection 

Fig. 4. The y axis is the number of the feature set, and it is shown that the different reductions 
of the features in a threshold of 3.0

4.2   The Classification Precise 

We test this method with the Recall Rate as the standard of the quality of the 
classification. The Recall Rate is defined as follows: 

TotalNum

CorrectNum
call =Re  (7) 

The CorrectNum is the number of the documents which are correctly classified; 
TotalNum is the number of the test set. We used the average value of the six 
categories as the Recall Rate of the system. 

From the result we conclude that only uses original words or concept attributes are 
both not very suitable. In the experiment, if we only use the concept attributes without 
any shielded levels, the precise is 90.9%, which is the lowest. And when we choose a 
proper level, for example, level 6, the precise is 93.7%, which is the highest. Also, 
when the shielded level is , which means we only use original words, the precise is 
91.7%, which is higher than the concept one but also not the highest. However, this 
line is sharper than others, which means that the difference between categories varies 
largely, from 81.0% to 96.7%. And when we use shielded level, the result is much 
better and the line is much smoother, that is to say, the precise is much higher and 
more stable. For example, when the shielded level is 6, the precise varies from 86.2% 
to 98.2%. This is probably because the feature selection based on original words 
depends much on the categories because if there are more special words in this field, 
it is easier to classify it from others. But when we use concept attributes, this 
difference between categories seems to be smaller and the curve seems to be much 
smooth. 
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Fig. 5. This is the classification precise of the system with different shielded levels. The x axis 
is the categories of the classification and we give an average precise as the precise of the 
system.

5   Conclusions 

When we use the concept attributes as the features, we can reduce the feature scale 
efficiently and reflect the space to a comparatively stable space. However, as there are 
some weak attributes, it is likely to lose some important information of the words if 
we put them all into concept. As a result, we set a shielded level to reserve the words 
with weak concept attributes. Though this would make the feature scale a litter larger, 
but this addition is reasonable and the classification precise will be improved. Also, 
the precise difference between different categories will be reduced and the average 
precise is much more stable. In our experiment, the average precise rises to 93.7% and 
the difference between categories reduced from 15.7% to 12%. 
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Abstract: This paper applied the Data Envelopment Analysis (DEA) method to 
evaluate the input-output efficiency of constructing the enterprise information. 
Through projecting the inefficacy DEA unit to make the DEA effective in the 
unit, the data from projection can be used to train the BP network. In the pure 
BP network model, some flaws exist in BP network model such as slow speed 
in convergence and easily plunging into the local minima. On the contrary, 
artificial immune model has a few advantages such as antibody diversity 
inheritance mechanism and cell-chosen mechanism, which have been applied in 
this research. In this research, the BP network has been designed, and the IA-
BP network model established. By taking the enterprise information application 
level, enterprise human resources state and information benefit index as the 
inputs, and the enterprise investing as the output, this model carries out the 
network training, until to get the satisfied investment decision method. Basing 
on this model, the enterprise can realize the maximized return on investment. 
This model not only constructs a new viable method to effectively use the 
research data, but also overcomes the drawbacks of non-linear description in the 
traditional information investment decision. The application results show that 
the model can satisfy the requirements of enterprise information, and provide 
the best decision method for enterprises as well. 

1   Introduction 

When implementing the information system for an enterprise, the maximum of input-
output benefit on  the limited investment could be always deserved. Generally, the 
maximal benefit is constrained by many factors such as the management, utilization 
of the information resource, and the quality of the staff. In the traditional process of 
decision making for establishing the information system for enterprise, the enterprise 
policy-makers almost always had the highest privilege. In this case, the avoidless 
personnel state problems always cause the return on investments inefficacy. That is 
why the scientific decision methods are needed. This kind of scientific decision 
methods can satisfy the enterprise’s requirements, raise the return on investment, 
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improve the enterprise management, promote the application level and strengthen the 
quality of the staff, in all, it can get the enterprise the maximized input-output 
benefit[1-3]. 

Duo to the non-linear function of relationship between the input-output benefit of 
enterprise information and factors such as utilization level, application level and 
quality of the staff, the BP network can be well used in the information investment 
decision[4-5]. This paper firstly employs the DEA method to evaluate the input-
output efficiency of constructing the enterprise information. Through projecting the 
inefficiency DEA unit, the DEA can be made effective in the unit, and the data else 
can be used to train the BP network. For avoiding the drawbacks of BP network 
model such as slow speed in convergence and easily plunging into the local minima, 
the artificial immune system, which has been known having the characteristics such 
as antibody diversity inheritance mechanism and cell-chosen mechanism, has been 
taken into account. This paper designs a BP network which is powerful in searching 
ability in order to avoid the immature constringency. For constructing IA-BP network 
model, the enterprise information application level, enterprise human resources state 
and information benefit index are used as input variables and the enterprise’s 
investment is considered as the output variable. The network training should be done 
repeatedly till the satisfied investment decision is obtained, which means the maximal 
investment benefit. 

2   Data Envelopment Analysis (DEA) 

In 1957 Farrell published The measurement of productive efficiency, which uses the 
non-premised production function and the premised production to evaluate the 
efficiency. It is the first time in the world that the efficiency is evaluated by foreland 
production. The foreland production is evaluated through the linear programming. In 
1978, on the basis of the Farrell theory, Charnes, Cooper and Rhodes established a 
CCR model, which inverted the efficiency evaluation for more investment and more 
output into the mathematical ratio, used the linear programming to evaluate the 
foreland production and calculated relative efficiency in the fixed scale. CCR is used 
to evaluate the input-output efficiency for more-input and more-output decision units: 
applying  the proportion between input and output to evaluate the efficiency, 
projecting the input and output to the hyper-plane by the DEA method and acquiring  
the highest output or the least input efficiency frontier. All DMUs that project on the 
efficiency frontier are called DEA effective and that project within the efficiency 
frontier is called non-effective DEA[6-8]. 

Suppose the model CCR has n  DMUs, each DMU has m  inputs and p  

outputs. The vector T
mjjjj xxxX ),,,( 21 L=  is the input of DMUj and output is 

recorded as T
mjjjj yyyY ),,,( 21 L= , so the corresponding maximal efficiency  

value is: 
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θ  is the relative efficiency value of the decision-unit oDMU ( 10 ≤θ≤ ),namely 

the utilization degree of input related with output. θ  reflects the reasonable degree to 
the resource allocation of oDMU , and the larger value θ  ,the more reasonable 

resource allocation is. −
iS and +

rS  are slack variables. The former denotes ineffective 

devotion of the i th resource and the latter is the shortfall of the r th output .The 
decision unit would be considered under 3 conditions according to the value of 

θ , −
iS , +

rS : 

(1) If 1=θo  and −o
iS = +o

rS =0, oDMU  is taken for DEA efficiency. In the 

economic system composed of n  decision-units, the resources have be made the full 
use and the devotion-factors are the best combinations. 

(2) If 1=θo  and a certain −o
iS > 0 or +o

rS > 0, oDMU  is considered to be 

DEA weak efficiency. In the economic system composed of n  decision-units, it 

means that it has not enough data with −o
iS  for the i th resource if −o

iS > 0 and 
+o

rS > 0,we say that there is less +o
rS  between the r output index and the maximal 

output. 

(3) If 1<θo , oDMU  is not DEA efficiency. In the system consisting of n  

DMUs , we can make the devotion decrease to the primary oθ proportion and keep 
the original output through combination. At this point, the effective units will be 
connected together to form an efficiency boundary that is the foundation to scale 
efficiency. It can scale the devotion-redundancy and the scarcity of the output from 
non-effective DEA units. Through analysis, it can supply the information from every 
devotion-unit using resource at present. Thus, it may be the benchmark of setting 
objective, so we can see how much this decision-unit can be improved. For oDMU  

with non-effective DEA, its input-output is ( roio YX , ). If the optimal value for 

formula (1) is jλ , *−
iS , *+

rS ,and the maximal efficiency value is oθ , the projection 

of ( roio YX , ) at the efficiency boundary:  
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**ˆ −−θ= ioioio SXX    *ˆ ++= rioio SYY   ),,2,1(),,,2,1( srmi LL ==  (2  

From the above formula, we can figure out the optimal input and output of 

oDMU  as the improvement objective, so the difference between the primary 

devotion and the optimal one may be regarded as devotion-redundancy, and the 
difference between the primary output and optimal one can be considered as the 
scarcity of the output. oDMU  can decrease the  input ioXΔ or increase the output 

ioYΔ  in order to improve the relative efficiency[8-11]. 

3   IA-BP Network Model 

3.1   BP Network Design 

BP network is a kind of popular neural network model. Now there are two major 
methods to design a BP neural network. One is the incremental or decrement 
detection method. Using this method, we can get network’s structure and weight. On 
the other hand, it can not avoid the traditional inverse arithmetic’s defects, such as 
network structure hardly confirming, network training slowly, often getting into part 
convergence and the quality of network by practicing depending on actual detection 
process. The other is the genetic algorithm (GA),which simulates the survival of the 
fittest of Darwin and the thinking of random information exchanging to reach the 
global optimization, so, it is the better choice over the traditional method. But the 
evolution algorithm still has some limitations. For example, the start population is 
randomly created so that it is easy to obtain immature convergence and get into the 
local optimization when the solution candidates distribute unevenly. Therefore, there 
are still some problems to use the evolution arithmetic to design a BP network. In a 
word, no satisfied method exists for solving the problem up to now. 

Artificial immune model is based on the biological immune system theory and is 
an optimization model extracting and reflecting the biological immune system. There 
are several characteristics when using artificial immune model to design BP network. 
Firstly, the antibody’s diversity behaves in cell’s splitting and differentiation. The 
immune system clones a large number of antibodies to resist antigens. If this 
multiplex inheritance mechanism is used to optimize, it will greatly help to improve 
capability in global search and avoid the local optimization. Secondly, the self-
regulation immunity system has the mechanism to support immunologic balance that 
can create suitable antibodies by suppressing and stimulating them. Using this 
functionalities we can improve BP network’s capability in local research. Thirdly, 
immunity memory function can remain in part of cells. If there is the same type of 
antigen to invade, the corresponding memory cell will be aviated quickly and create 
lots of antibodies. BP network can use the antigen’s identification function to 
accelerate searching speed and improve BP network’s global searching capability. 

3.2   An IA-BP Network Model 

An idea of using the artificial immunity model to design BP network is considering 
the network weight and structure as the antibody in biological immunity system and 
combining with immunity network evolution algorithm to learn. The study is to 
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optimize antibodies continually and to research the best antibody by operating to 
antibodies variation and adjusting based on antibodies’ concentration, which is the 
same as the vector and network structure that make the error cost function E least. 

3.3   The Arithmetic and Coding Based on IA-BP Network Model  

During the BP network design, we suppose that the input (including the input node 
number and input value) and output (including the output node number and output 
value) are known and the node transition function is given in advance, such as S 
function. 

Antibody coding. Each antibody corresponds to a type of network structure. In this 
paper, mixed coding is made based on real number and formed of the number of 
invisible node and network weight. Every antibody’s code is formed as following. 

 
N   …  

 

                                                  

 

Fig. 1. The coding format of antibody coding 

Design of fitness function. Let iE  be the energy function of the network 

corresponding to antibody iP , the fitness function )(iF  can be simply defined as 

below. 

)(
1)( constEiF

i +=  (3  

In the above equation, const is a constant number which is equal to or greater 
than zero. Introducing const is to avoid the arithmetical overflow when iE  is equal 

to zero. In this paper the feedback-forward network with a single invisible layer is 
used. 

−=
p out

outpoutpi YTE 2
,, )(  (4  

outpT , and outpY , , respectively, are the expected output and actual output of the out th 

output node in the P th training sample. 

Immune operation. (1) Selection. 

Suppose the current filial group is 1−kC , the antibody selection for 1−kC  is based on 

expected reproduction rate ie . The expected reproduction rate ie  of the antibody iP  

is calculated according to the following steps. 

Invisible layer’s 
node number 

The weight connecting 
with the first invisible 
layer 

The weight connecting 
with the nth invisible 
layer 

The weight connecting 
with the second 
invisible layer 
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Step1:  Calculate the concentration ic  of the antibody iP .  

Nacc
N

w
vwi /][

1=

=  (5) 

Where,  

<
≥

=           
          0

          1

,

,

Taca

Taca
ac

wy

wy

vw  (6) 

wya ,  is the affinity between y and w  and Tac  is a given value. 

Step2: Calculate the expected reproduction rate of the antibody iP  

ii ciFe /)(=  (7) 

There are n  optimal individual nC  determined by ie . By cloning these nC , a 

temporary clone group C  is produced. The clone scale is an increasing function in 

proportion to ie . 

(2) Gaussian mutation. The mutation will be executed only through the 
component of weight of every antibody among C . 

Step1: Each antibody will be decoded into a network structure. 
Step2: Mutate all network weights according to the following formula 

sequentially. 

)1,0()( μ××+=′ iFaWW ijij  (8) 

In Equation (8), a is a parameter in [-1,1], )1,0(μ  is a Gaussian operator. Thus *C  

will be formed as a mature antibody group, then re-calculate the expected 

reproduction rate of antibody ie  among *C  and update the antibodies based on ie  to 

form a new memory group. Some of the group 1−kC  are replaced by other improved 

members. d individuals with less ie  will be eliminated to keep variety and the next 

generation 
k

C  is produced. Then a new antibody is about to be reproduced by the 

component of invisible node and weight. 

4   Information for Enterprises Devotion-Decision-Model Based on 
IA-BP Network 

4.1   The Evaluation of DEA Relative Efficiency  

This research analyzed 28 construction corporations including China Road and Bridge 
Corporation(short for CRBC)(DMU1), the First Bureau in Road (DMU2), Hebei Road 
& Bridge Group Co., Ltd(DMU3), Beijing Road & Bridge Group Co., Ltd (DMU4) , 
the Second Company in Pathway Group(DMU5), Fujian Industrial Equipment  
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Installation Co., Ltd (short for FIEIC)(DMU6), South China Engineering of Bridge 
Group Co., Ltd (DMU7) and so on. Their enterprise information scales and levels are 
unequal. 

Every enterprise has the same input index: the application level for enterprises 
information human resources state and efficiency index. Every evaluation unit is in 
the same industry, its character and application field are identical. Therefore, we can 
use DEA model to evaluate the technology efficiency for information devotion in all 
enterprises and then determine the effective degree and the level. The non-DEA-
efficiency DMU is going to be projected, we can get the Table 1. In this table, there 
are about 50% enterprises being non-DEA-efficiency, which means that the part 
information-devotion exists waste and it is necessary to adjust its input. 

Table 1. the relevant index of the evaluated unit 

Evaluated 
unit 

efficiency 
index 

evaluated 
unit 

efficiency 
index 

evaluated 
unit 

efficiency 
index 

evaluated 
unit 

efficiency 
index 

DMU1 1 DMU8 1 DMU15 1 DMU22 1.21 

DMU2 1 DMU9 1.21 DMU16 1 DMU23 1 

DMU3 1.31 DMU10 1.32 DMU17 1.15 DMU24 1 

DMU4 1 DMU11 1.17 DMU18 1 DMU25 1.31 

DMU5 1.22 DMU12 1 DMU19 1.32 DMU26 1.09 

DMU6 1.31 DMU13 1.13 DMU20 1 DMU27 1.03 

DMU7 1.13 DMU14 1.12 DMU21 1.37 DMU28 1.18 

4.2   Establishing IA-BP Network-Decision Model of Information Devotion 

(1) Data Processing 
The training data and predicted data are normalized in [-1,1] through the 

function-Premnmx , and all data from 28 entities are divided into two groups: the 
training data (23 groups) and the predicted data (5 groups). 

(2) Network Structure 
The neurons in input-layer are respectively the application level of information, 

the index of human resources, and the information benefit index. The neuron in 
output-layer is information investment index. The other parameters such as the 
number of neurons in hidden layer and related weights will be determined by using 
the artificial immune model. 

(3) Network Training 
We shall design BP network based on the artificial immune model. Through 

network training time after time, it is noted that the full match happens when the 
number of neuron of the hidden layer is eight or more. When there are only 4 neurons, 
the error will be less and steady for all test data. Hence the number of neurons of the 
hidden layer is set to be 4. By merging new training data and predicted data, all 
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produced data are used to train the network. After 141 iterations, the training mean 
absolute error of information-investment index is 4.13, the correlation coefficient is 
0.981, and error sum of squares of network is 1.16. Therefore, we can get the decision 
model of IA-BP network of information-investment with better training accuracy. 

5   Practical Application 

Now we use the decision model of IA-BP network of information-investment to make 
information investment decision for CRBC in 2003. The application level of 
enterprise information and the state of human resources are respectively 0.51 and 
0.73. The information efficiency index is in [0.70,0.91], and the sampling interval of 
the model-decision is set as 0.02. We can get the Fig.2 by setting the information 
benefit index as the horizontal axis and setting information-devotion index as the 
vertical axis.  

From Fig.2a and Fig.2b, we can know that the information efficiency index is 
less than 0.81, the characteristic curve of information-investment (the relation curve 
of the information efficiency index and information-investment) is similar with the 
curve of function method of information effect. And it shows the demand variation 
that the increase of the information efficiency index brings information devotion. 
When the information efficiency index is greater than 0.81, we need more 
information-devotion as often as the information efficiency index increases 0.02, 
maybe the scarcity of human resources state in training data creates those.  

Take the case of CRBC and FIEIC. The index of human resources condition in 
CRBC is less than that in FIEIC. The former increases in information-devotion faster 
than the latter, which means that the characteristic of information-devotion is different 
in different companies due to the human resources state. Moreover, the demand of 
information-devotion is not same in identical company. 

In Fig 2a, when the information efficiency index of CRBC is less than 0.81, the 
information-devotion increases slowly, and vice versa. 

It reflects the relation between the information efficiency index and the 
information-devotion in Fig 2b. With the increase of information-devotion, the 
information efficiency index grows up. Therefore, for FIEIC, the information 
efficiency index and the competition of enterprises will be improved if the 
information-devotion increases. Whereas, the information efficiency index of FIEIC is 
restricted by application level and human resources state so that its value is often less 
than 0.87. 

If the other input restrictions are not in the consideration, the optimal 
information-devotion of FIEIC is: the hardware investment is 0.677 billions per year 
and software investment (including personal training) is 0.787 billions per year. In 
addition, the error is clear between the project of information-devotion and the expect 
information efficiency index on account of the difference from the application level of 
enterprise information and the human resources state, and every company has its 
respective optimal project about the information-devotion. 
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6   Conclusions 

This research established the investment decision-model of IM-BP network 
information based on statistical network analysis, artificial immune model and BP 
network. It not only introduced the feasible method for using all data fully, but also 
overcome the nonlinear deficiency in traditional information methods. Practical 
application shows that the information efficiency index of CRBC is restricted by 
application level and human resources state, and commonly the value is less than 
0.87. The forecasted result is comparatively reasonable and can reflect the 
information demand characteristic of CRBC. Many factors, including basic level of 
information, information security and the recognition for information, affected the 
output effect of information devotion. Therefore, those factors must not be neglected 
besides application level and the human resources state, which need further study. 
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Abstract. As argued in this paper, a decision support system based on data min-
ing and knowledge discovery is an important factor in improving productivity 
and yield. The proposed decision support system consists of a neural network 
model and an inference system based on fuzzy logic. First, the product results 
are predicted by the neural network model constructed by the quality index of 
the products that represent the quality of the etching process. And the quality 
indexes are classified according to and expert’s knowledge. Finally, the product 
conditions are estimated by the fuzzy inference system using the rules extracted 
from the classified patterns. We employed data mining and intelligent tech-
niques to find the best condition for the etching process. The proposed decision 
support system is efficient and easy to be implemented for process management 
based on an expert’s knowledge.  

1   Introduction 

Semiconductor is one of the most important elements leading the modern culture. 
Specially, electronics industries have been developed based on the development of the 
semiconductor. Fabrication of the semiconductor is achieved by Cleaning, Thermal 
Treatment, Impurity Doping, Thin Film Deposition, Lithography, and Planarization 
process. The lithography sub-process sequentially accomplished by photo resistor 
spread, exposure, development, etching, and photo resistor remove. The fabrication 
processes are mostly chemical processes, so it is difficult to evaluate the quality of the 
products on-line. Inspection of the products is completed after fabrication and then the 
recipe is adjusted by operators. This feature of manufacture can give rise to a serious 
financial loss in material processing.  

In this study, the management system was proposed to solve the mentioned prob-
lem. The proposed system was applied in the etching process that is one of the sub-
processes of the lithography process (patterning). However, on-line management of 
the etching process is difficult because inspection of the product quality is taken after 
fabrication. Therefore, prediction of the product status and inference of the product 
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patterns are necessary to improve the quality and yield in the manufacturing indus-
tries. The product quality can be estimated by the prediction model and the prediction 
result can be information how to adjust the control conditions for quality improve-
ment. In this study, the process management was designed by the prediction models 
and the inference rules based on data mining techniques such as neural networks, 
fuzzy clustering, and fuzzy logic. The term knowledge can be used separately from or 
synonymously with information. Information is an outcome of data processing and 
knowledge is accumulative know-how acquired through the systematic use of infor-
mation [1]. The concept of data mining will be shown to satisfy this need [2]. Data 
mining is a process that extracts relevant information from a large amount of data 
utilizing intelligent techniques in decision-making.  

Over the past several decades, the clustering method [3], input space partition [4], 
neuro-fuzzy modeling [5], and the neural network [6] and other methods have been 
researched in the context of rule extraction and data modeling. Knowledge extraction 
is the most important aspect of intelligence, and has been much developed. Neuro-
fuzzy modeling, an important method to generate rules, was introduced in the early 
1990s. In rule generation, clustering [7] and the input space partition method have 
also been applied. And the extension matrix [8], high-order division [9], decision tree 
[10] and others have been studied for the purpose of information extraction.  

In this study, feed-forward neural networks are used for prediction modeling that is 
widely applied because of the adaptability. Model inputs consist of control parameters 
of the process and the quality indexes of the products are predicted by the model. 
After modeling, the control rules are extracted to adjust the control parameters corre-
sponding to the quality indexes. The rules are generated by fuzzy clustering and in-
puts of the rules are patterns of the etching products. The main goal of the proposed 
system is to analyze the process of operation status rapidly and to make a decision 
easily.  

In section 2, the target process such as etching and applied data mining methods 
are described and section 3 shows the experimental results using the proposed system. 
Finally, the conclusion is summarized in section 4.  

2   Target Process and Methods 

The etching process is a very important unit process of semiconductor processes. The 
etching process is a chemical process that puts slices in a chemical solution and gen-
erates a reaction with the solution to shorten the thickness of the slices, or to remove 
surface defects or surface stress. Etching technologies are broadly classified according 
to dry and wet etching methods. The process data are not gathered from physical 
sources, but from a simulation tool. The tool named TCAD is a verified tool by many 
manufacturing companies of the semiconductor, which use the tool for simulation of 
processes. We collected dry etching data through simulation in this study and the 
simulation was designed by Taguchi methods are statistical methods to improve the 
quality of manufactured goods. Taguchi methods are controversial among many con-
ventional Western statisticians. Taguchi’s principle contributions to statistics are 
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Taguchi loss-function, the philosophy of off-line quality control; and innovations in 
the design of experiments [11]. 

Figure 1 shows the proposed management system in this study. The system con-
sists of two parts. One is to predict the quality of the products and the other is to infer 
the patterns of the products corresponding to the quality. And then the control pa-
rameters are handled for quality improvement based on the estimation result. The 
many goal of the study is to design the management system for etching process. x1 to 
x4 are control parameters, y1 to y3 are quality indexes, and p3 to p4 are patterns of 
products. The patterns are classified by quality indexes and the control parameters are 
adjusted corresponding to the patterns of products. The operating recipe is initially 
defined by operator’s experience with respect to the patterns. Neural networks and 
fuzzy clustering were applied in modeling and rule generation, respectively.  

Feedback countermeasures
(control process variable/

diagnose equipment faults)
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x2

x3

x4

y1

y2

y3

p1

p2

p3

p4

Process data
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(Product pattern)
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(Final outputs)
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CompareInputs

Target

Adjust
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Outputs Fuzzy inference system

Rule 1

Rule n

Σinputs Outputs
•
•
•

Physical plant

Digital Factory

e-Diagnostics

Decision Support System

 

Fig. 1. Schematic concept of the process management system in this research 

2.1   Etching Process 

Figure 1 shows a schematic diagram of the decision support system that analyzes the 
process status using data mining and knowledge discovery steps that are called the 
data model and the inference system, respectively. Sensors or measuring instruments 
for self-diagnosis are not installed in most equipment assembled in physical proc-
esses. Therefore, it is not easy to diagnose processes and equipment through direct 
detection of the equipment. This paper proposes an indirect diagnosis method to de-
tect the process equipment considering process status and product results.  

2.2   Neural Network  

The learning property has yielded a new generation of algorithms that can learn from 
the past to predict the future, extract rules for reasoning in complex environments, and 
offer solutions when well-defined algorithms and models are unavailable or cumber 
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some [12]. The main advantages of neural networks stem from their ability to recog-
nize patterns in data. This can be achieved without a priori knowledge of causal rela-
tionships, as would be necessary in knowledge-based systems. The ability of neural 
networks to generalize relationships from input patterns make them less sensitive to 
noisy data than other approaches. In the present research, it is difficult to perform a 
comprehensive inspection in semiconductor assembly lines, so the neural network 
model was employed to predict the final quality of products with simulations. 

2.3   Fuzzy Logic 

Fuzzy Logic is a departure from classical two-value sets and logic that uses soft lin-
guistic system variables and a continuous range of true values, rather than strict bi-
nary decisions and assignments. Formally, fuzzy logic is a structured, model-free 
estimator that approximates a function through linguistic input/output associations. 
Fuzzy rule-based systems apply these methods to solve many types of real-world 
problems, especially where a system is difficult to model, is controlled by a human 
operator or expert, or where ambiguity or vagueness is common. A typical fuzzy 
system consists of a rule base, membership functions, and an inference procedure. 
Some fuzzy logic applications include control, information systems, and decision 
support. The key benefits of fuzzy design are ease of implementation, and efficient 
performance [13].  

3   Experimental Results 

The final goal of this research was to design a data model for a simulation of the proc-
ess of manufacture and to build a process management system, as shown in Fig. 2. 
The algorithm consists of 5 steps that include the input, pre-processing, data model-
ing, inference system construction and output. The data model and inference system 
are the main algorithms in the proposed system. Neural networks and fuzzy logic 
were applied to design the proposed model and inference system. Threshold values 
are determined by the expert’s knowledge according to the data or system.  

The proposed system consists of the input, preprocessing to extract features, data 
modeling, rule extraction and the output stage. The target variables such as quality 
indexes included the gradient and height of the center barrier of etched area that were 
applied for modeling as target variables and for rule extraction as input variables. The 
quality indexes were extracted based on knowledge and the data modeling was 
achieved to predict the quality indexes of the etched products. After modeling, the 
rules were generated by the fuzzy clustering to infer the input-output relationship. The 
rules can indicate the cause of the product quality, so the control parameters can be 
adjusted based on the inference information. Through the proposed system, the prod-
uct result is predicted, the cause of the result is inferred, and then the control condi-
tion is handled. This sequence of the process is the self-organization and self-learning 
concept in this study that can improve the flexibility and adaptability.  
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Data Mining & KD
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Digital Factory

SETP 4: Inference System

e-Diagnostics

SETP 5: Output
 

Fig. 2. Whole flow chart of the decision support system for the etching process 

3.1   Step 1: Input (Control Parameters) 

Test data were generated by the commercial simulator (TCAD) that was used as a 
substitute for physical plants. The upper layer (Oir32) was the control target of the 
etching process. The input variables (control parameters) of the etching process con-
sisted of Bake Time, Bake Temp, Circle Sigma, and Projection numerical aperture 
(na.). The control parameters play an important role in the product quality, so the 
quality can be handled by adjusting the parameters. The etching status of Oir32 is 
determined by the four input variables. The ranges of variables are determined by the 
Taguchi method, which is an optimization method for experimental design. First, the 
maximum and minimum ranges of each variable are defined, and the range values 
(discrete ranges) are determined, as shown in Table 1.  

Table 1. Input variables of data generation for the etching process using commercial tools 

Input variables Variable name Range Values 

x1 Bake Time 2 1(30)  2(60) 

x2 Bake Temp 2 1(125)  2(185) 

x3 Circle Sigma 3 1(0.3)  2(0.5)  3(1.0) 

x4 Projection na 3 1(0.28)  2(0.4)  3(0.52) 

3.2   Step 2: Preprocessing (Extraction of Quality Indexes) 

Nine feature points are extracted from the approximated pictures, as shown in Fig. 3. 
The depth of the 4th feature point, the difference between the 4th feature and the 5th 
feature, and the gradients between the 2nd feature and the 3rd feature are the  
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respective y1, y2, and y3 product variables that express the product quality. Thus, the 
input variables are four, from x1 to x4, and the product variables are three, from y1 to 
y3, as shown in Table 2. The three quality indexes in this study have strong influence 
on the quality of the etching process.  

        

OiR32
1

2
3

5

64

7
8

9

 
(a) Etching result                           (b) Feature of etching result (quality indexes) 

Fig. 3. Feature points of Oir32 in the etching process 

Table 2. Product variables generated by the plant or model (quality indexes) 

Product variables Variable description 

y1 Etching depth at the initial point (Depth of 4) 

y2 High of the centre point (Difference between 4 and 5) 

y3 Slope of left side (Gradient between 2 and 3) 

3.3   Step 3: Construction of Data Model 

The modeling technique was applied to predict the quality index of the etching proc-
ess with current parameters of the process control. The effective management can be 
achieved by the prediction model of the product quality.  

In this study, the neural network modeling technique was employed to design the 
data model to match input variables (x1 to x4) with quality indexes (y1 to y3). Through 
the traditional mathematical model, it is very difficult to identify the process status in 
nonlinear and complex systems. But the neural network is a very effective modeling 
method to express the relationship between the inputs and outputs of complicated 
systems. The new model can be constructed and the designed model can be imple-
mented by the developed application.  

Thirty-six data sets for the input variables and product variables were trained by 
the neural network model. The number of layers was four and the number of nodes 
was 7, 9, and 11, respectively. The learning rate was 0.01 and the epoch was 50,000 
iterations. The back-propagation algorithm was employed in model learning. The 
model was trained until the RMSE fell below 0.03. Table 3 shows the prediction re-
sults of the product features using the neural network model. The prediction perform-
ance is good enough to be applied in the estimation of product qualities.  
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Table 3. Prediction results of quality indexes using the neural network model 

Target values Prediction results 
No. 

y1 y2 y3 y1 y2 y3 
1 0.3594 0.3438 -0.0691 0.33 0.3306 -0.0654 
2 0.0057 0.2101 0.0223 0.0246 0.2098 0.0456 
3 0.5975 0.2852 0.015 0.5984 0.2748 -0.0009 
4 0.3309 0.2926 0.0659 0.3432 0.2979 0.0468 
5 0.3639 0.3438 -0.0558 0.3514 0.3215 -0.0845 
6 0.013 0.1793 0.0381 0.018 0.1856 0.0131 
7 0.6032 0.2738 0.0073 0.5992 0.2673 0.0076 
8 0.3444 0.2571 0.0615 0.3347 0.2725 0.0367 
9 0.3986 0.2813 -0.076 0.3982 0.2839 -0.0533 

10 0.0888 0.1417 -0.0051 0.0913 0.1396 0.0528 
11 0.6251 0.2386 0.004 0.6141 0.2357 -0.0265 
12 0.3905 0.2029 0.0379 0.463 0.2253 0.0402 
13 034064 0.2601 -0.0932 0.4291 0.2841 -0.1098 
14 0.1217 0.1313 0.0149 0.1343 0.1307 -0.0222 
15 0.63 0.2295 -0.019 0.6597 0.2216 -0.0361 
16 0.388 0.1881 0.0387 0.3863 0.1726 0.0427 

RMSE (Root Mean Square Error) 0.0252 0.0125 0.025 

3.4   Step 4: Construction of Inference System 

In this study, the fuzzy inference system was applied to estimate the patterns of the 
products with respect to quality indexes of the products. The inference rules were 
extracted according to the results of the model estimation such as quality indexes. 
This inference system was the primary step in supporting a decision of system opera-
tion. If the pattern can be inferred from the quality index, the control parameters can 
be handled because there is a recipe corresponding to the pattern. 

The fuzzy inference system was built by 36 data sets that were employed in the 
model construction step, as shown in Fig. 4. In addition, 16 test data sets were used to 
validate the inference performance. Table 4 shows the classification results based on 
the fuzzy inference system. The classification accuracy was 93.75%. The membership 
functions were optimized by simulated annealing, which is one of the fastest optimi-
zation methods. The optimization was repeated until the performance achieved over 
90% accuracy. The threshold was defined by the user according to the performance.  

IF y1 is S and y2 is S and y3 is S, THEN p is S
IF y1 is S and y2 is S and y3 is L, THEN p is M1
IF y1 is S and y2 is L and y3 is S, THEN p is S
IF y1 is S and y2 is L and y3 is L, THEN p is M2
IF y1 is L and y2 is S and y3 is S, THEN p is L
IF y1 is L and y2 is S and y3 is L, THEN p is M1
IF y1 is L and y2 is L and y3 is S, THEN p is L
IF y1 is L and y2 is L and y3 is L, THEN p is M2

IF y1 is S and y3 is S, THEN p is S
IF y2 is S and y3 is L, THEN p is M1
IF y2 is L and y3 is L, THEN p is M2
IF y1 is L and y3 is L, THEN p is L

 

Fig. 4. Extracted rules by the clustering method and reduced rules 
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Table 4. Classification results of product patterns using the fuzzy inference system 

No. y1 y2 y3 Target pattern Results Threshold Classified results 
1 0.3594 0.3438 -0.0691 4 3.526 3.5 P<4.5 4 
2 0.0057 0.2101 0.0223 3 2.527 2.5 P<3.5 3 
3 0.5975 0.2852 0.015 3 2.96 2.5 P<3.5 3 
4 0.3309 0.2926 0.0659 3 2.527 2.5 P<3.5 3 
5 0.3639 0.3438 -0.0558 4 3.719 3.5 P<4.5 4 
6 0.013 0.1793 0.0381 2 2.475 1.5 P<2.5 2 
7 0.6032 0.2738 0.0073 3 2.742 2.5 P<3.5 3 
8 0.3444 0.2571 0.0615 3 2.527 2.5 P<3.5 3 
9 0.3986 0.2813 -0.076 4 3.512 3.5 P<4.5 4 

10 0.0888 0.1417 -0.0051 2 2.527 Inaccuracy 3 
11 0.6251 0.2386 0.004 3 3.413 2.5 P<3.5 3 
12 0.3805 0.2029 0.0379 3 2.527 2.5 P<3.5 3 
13 0.4064 0.2601 -0.0932 4 4 3.5 P<4.5 4 
14 0.1217 0.1313 0.0149 2 1.949 1.5 P<2.5 2 
15 0.63 0.2295 -0.019 4 3.53 3.5 P<4.5 4 
16 0.388 0.1881 0.0387 3 2.527 2.5 P<3.5 3 

Accuracy corresponding to the inputs: 93.75%  

3.5   Step 5: Output  

The final proposed system can diagnose abnormal situations of the process status and 
adapt unexpected plant conditions to normal situations. In Step 5, the control com-
mands of the process will be drawn to manage the manufacturing plant effectively and 
stably. The process simulator and diagnostics were developed to handle the processes 
and equipment of neural networks and fuzzy logic. This integrated system can make 
decisions for process and equipment management. Table 5 shows the control com-
mand and operating guide based on the results of the fuzzy inference system for 
faults. 

Table 5. Control command and diagnostic action corresponding to output patterns 

Output patterns Control command and diagnosis action 

p1 (pattern 1) 
• Decrease x1 (Bake Time) 
• Check baking heater or heating controller 

p2 (pattern 2) 
• Increase x3 (Circle Sigma) 
• Check coater or coating controller 

p3 (pattern 3) • Good product 

p4 (pattern 4) 
• Decrease x1 (Bake Time) and Increase x4 (Projection na.) 
• Check baking heater or heating controller and coater or coating controller 

3.6   Simulation Results 

By using this simulator, the quality indexes of the products can be estimated and the 
production pattern can be inferred at the same time. Also, incorrect results of predic-
tion or inference can be adjusted by re-organization and re-training of the neural net-
works and fuzzy inference system. Figure 5 shows an inferior product case that is 
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inferred to be a Pattern 4 case. In this case, the bake time has to be reduced and the 
projection numerical aperture must be increased gradually. Figure 5 (a) shows a pre-
diction and inference result that is included in the Pattern 4. There is incorrect opera-
tion in the projection numerical aperture. Therefore, the control command is shown in 
the bottom box for control commands. One command is to increase the projection 
numerical aperture, so the value is increased shown in Fig. 5 (b). As shown in Fig. 5 
(b), the simulation result with handling the control parameter is included in the nor-
mal condition. That is, the product quality can be managed by the prediction model 
and inference rules.  

Actual product: pattern 4

 
(a) Prediction and inference result about pattern 4 

Actual product: pattern 3

 
(b) Prediction and inference result about pattern 3 

Fig. 5. The simulation result: (a) simulation of Pattern 4 and (b) Pattern 3 with changed x4 

4   Conclusions 

The process of production is a complex and dynamic system, and its fabrication line 
contains other unit processes. Faults or breakdowns of the process can occur under 
abnormal conditions that influence the product qualities or the production yields. The 
faults of process usually appear after a specific symptom occurs. Over the past dec-
ades, many techniques using artificial intelligence and data mining have been studied 
to solve these problems. In past research, model-based, case-based, and knowledge-
based diagnosis methods have usually been employed. Because each method has 
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strong points and weak points, a suitable method has to be selected according to the 
features of the target system. A combined technique, furthermore, can be more effi-
cient than a single method. In this study, a prediction model based on neural networks 
was applied to estimate the special quality of products that are produced under the 
given input conditions. The final decision support system was built using a fuzzy 
inference system that contains reasoning functions for the simulation of products.  
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Abstract. Reticular Activating system which has a form of small neural
networks in the brain is closely related system with the automatic ner-
vous system. It takes charge of the function that distinguishes between
memorizing one and the others, accepts the only selected information
and discards the unnecessary things.In this paper, we propose Reticular
Activating system which has functions of selective reaction, learning and
inference. This system consists of Knowledge acquisition, selection , stor-
ing and retrieving part. Reticular Activating layer is connected to Meta
knowledge in the high level of this system and takes part in Data Selec-
tion. We applied this system to the problem of analyzing the customer’s
tastes.

1 Introduction

Reticular Activating system which has a form of small neural networks in the
brain is closely related system with the automatic nervous system. It takes charge
of the function that distinguishes between memorizing one and the others, ac-
cepts the only selected information and discards the unnecessary things. In the
environment of huge data flood, the requirement for implementing more intel-
ligent system which can select the important information from the huge data
pool is getting high. For implementing automatic intelligent smart system, it
should be firstly considered to design the efficient structure of component and
its intelligent mechanism. Adapting Reticular Activating system is very helpful
for making more efficient system. Accordingly, in this paper, we propose Retic-
ular Activating system which has functions of selective reaction, learning and
inference. This system consists of Knowledge acquisition, selection , storing and
retrieving part. Reticular Activating layer is connected to Meta knowledge in
the high level of this system and takes part in Data Selection. We applied this
system to the problem of analyzing the customer’s tastes.

2 Reticular Activating System

In this section Reticular Activating System which can select and store the infor-
mation was designed. As shown in Fig.1, this system has a hierarchical structure
and it consists of Knowledge acquisition, Selection and Storing to Memory.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 1170–1178, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Associative memory frame

First,Knowledge acquisition part has multi modular NN(neural Network)s
and perform the learning process with the training data according to the cate-
gories. It uses BP(Back Propagation) algorithm. The output nodes of Modular
NN are connected to nodes in Associative layer which has logical network con-
nected by associative relations.

Second, Reticular Activating layer has a knowledge net which consists of
nodes and their associative relations. The nodes in knowledge net are connected
to the nodes of Associative layer vertically. The importance value is assigned
to the connection weight of this vertical relation. Selection module performs
selecting process with these values of associative relations and vertical relations
using the criteria given by Meta Knowledge.

Third, Storing to Memory consists of two part of Knowledge Reconfiguration
and storing the values for NN. In Reconfiguration, the selected nodes and rela-
tions are reconfigured and stored in memory. The knowledge net is performed
by attaching nodes centering around common node. After reconfiguration the
centering node is connected to index which is used in searching process. The
another part of memory is storing the values for NN. After finishing the learning
process of modular NN, this system stores the values of category, parameters
and weight matrix. These stored values are used for perception, inference and
knowledge retrieval.

Reticular Activating System performs the functions of Learning, Selection
and Knowledge retrieval as these three parts collaborates on a work interactively.

3 Knowledge Retrieval from Memory

In this section ,Selection, Storing and Knowledge Retrieval of Reticular Activat-
ing System are described. This system has a same structure of multi modular
NN ,learning and functions of Associative layer as explained in the paper [1].
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3.1 The Structure of Reticular Activating Layer

As shown in figure 2, the nodes of reticular layer are connected each other with
Associative relation , Rij horizontally and are also connected to the nodes in
Associative layer with connection weight Rij vertically.

Fig. 2. Reticular Activating Layer

The connection weights Rij and Sij are used for selecting when Meta knowl-
edge gives a criteria.

Storing Criteria:

Vi ≥ 0.5, Rij ≥ 0.5

If Meta knowledge gives a following storing criteria, the nodes and relations
satisfying this criteria are selected. The selected nodes and relations are reconfig-
ured by attaching the related nodes centering common node [7]. This centering
common node is connected to the index node in Index layer and used for search-
ing as a keyword.

After reconfiguration, new knowledge net is formed and it is transferred to
Associative Matrix which is used for knowledge retrieval.

3.2 Associative Matrix

The knowledge net is represented as shown in figure 3 and transferred to Asso-
ciative Matrix.

Each node has two factors of P(Property) and Vertical Strength,EV, between
the node in Reticular Activating layer and node in Associative layer. P has
the property of a class and EV retains the empirical value obtained by the
mechanism. The empirical value represents the preference or the strength of
activation. The relation between the two nodes is represented by both linguistic
term and its associative strength.
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TRANSFORM-TO : transform in time
AFFECT : partial transform
IS-A : generalization
MADE-OF :component

The linguistic terms are represented as TRANSFER-TO, AFFECT, IS-A,
MADE-OF, NOT and SELF. Linguistic term denotes the degree of representing
the associative relation. It can be transformed to the associative strength that
has a real value of [-1,1]. The positive value denotes the excitatory strength and
the negative value represents the inhibitory relation between the nodes. It is
used for extracting the related facts. The minus sign of the minus value means
the opposite directional relation as -TRANSFORM-TO.

The relational graph is transformed to the forms of AM(Associative Matrix)
and vector B in order to process the knowledge retrieval mechanism. AM has
the values of associative strengths in the matrix form and vector B denotes the
EV of the nodes.

For example, the relational graph in Fig.2. can be transferred to the associa-
tive matrix A and vector B as follows.

The associative matrix,A, is :

A =

⎡⎢⎢⎢⎢⎣
1.0 1.0 1.0 0.0 0.0
−1.0 1.0 0.9 0.0 0.0
−1.0 −0.9 1.0 0.7 0.3
0.0 0.0 −0.7 1.0 0.0
0.0 0.0 −0.3 0.0 1.0

⎤⎥⎥⎥⎥⎦
The matrix, A, has the form of A = [Rij ]. The associative strength,Rij ,

between Ci and Cj is calculated by equation (2).

Rij = P (ai|aj)D (1)

where D is the direction arrow, D = 1or − 1 , i = 1, . . . , n, j = 1, . . . , n.

The vector B is :

B =
[
−0.9 1.0 0.3 0.8 0.2

]
It consists of the empirical value,Vi.

Using this Associative Matrix,A, and vector B, this system can extract the
related facts by following knowledge retrieval algorithm.

Algorithm 1 : knowledge retrieval algorithm from AM

Step 1: Search the corresponding keyword in Index layer
Step 2: Retrieve the corresponding associated nodes and relations in the row

of the activated node from AM in memory.
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Step 3: IF((not found) AND (found the initial activated node))
Goto Step 4.
ELSE
Output the found fact.
Add the found fact to the list of inference path.
Goto Step 2

Step 2: STOP

When the class,Ci, in the relational graph is assumed to be activated, from
the node, Ci, the inferential paths can be extracted using the knowledge retrieval
algorithm. The inferential path, Ii has the following form.

Ii =
[
Ci (Vi) (Rij) Cj (Vj)

]
where Ci is i-th class node, Vi is its vertical value, Rij is the associative strength
between Ci and Cj . In this step, the vertical values of the classes are also ex-
tracted. The following example is the result from the matrix A and vector B
using the knowledge retrieval mechanism.

I1 = [C1(−0.9) IS-A(1.0) C2(1.0) TRANSFER-TO(0.9) C3(0.3) MADE-OF(0.7)
C4(0.8)]

I2 = [C1(−0.9) IS-A (1.0) C2(1.0) TRANSFER-TO(0.9)]
I3 =[C3(0.3) MADE-OF(0.7) C5(0.2) ]
I4 =[C1(−0.9) IS-A(1.0) C3(0.3) MADE-OF(0.7) C4(0.8)]
I5 = [C1(−0.9) IS-A(1.0) C3(0.3)MADE-OF(0.7)C5(0.2)]

From the obtained inferential paths, this system can extract the related facts
as much as user wants by masking with the threshold, θ which is given by
a criteria of Meta knowledge. In this step, the connected facts that has the
value of the associative strength over the threshold are extracted. In the case of
I1,when the threshold is 0.7, the extracted path is [C1(−0.9) IS-A(1.0) C2(1.0)
TRANSFER-TO(0.9) C3(0.3)].

The another function of the knowledge retrieval mechanism is to infer the
new relations.

From the following extracted inferential path,

Ci(Vi)RijCj(Vj)RjkCk(Vk),

we can elicit the new inferred path between Ci and Ck. The new associative
strength,Rik, is calculated by equation (3).

Ci(Vi)RikCk(Vk)

Rik = Rij ∗Rjk (2)

The inferential path, I1 : C1(−0.9) IS-A(1.0) C2 TRANSFER-TO (0.9) C3

MADE-OF(0.7) C4, can produce the new relations, C1 (0.9) C3, C1 (0.63) C4

by its mechanism[4].
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The numerical term, -0.9, of C1(−0.9) denotes the vertical prior knowledge
of node C1. It has the negative value which gives an negative effects on the
selecting factor.

3.3 Vertical Selecting Factor

It is generally known that human brain strongly reacts on the familiar facts
which are experienced before. In a similar way, this concept can be adopted
to the intelligent system and used for developing the more efficient mechanism.
To implement this concept, we define the value that represents the vertical prior
knowledge as Vertical Selecting factor. Vertical Selecting factor is the value which
represents the vertical prior knowledge in the memory. This factor affects the
reactive degree of a certain class for the input data in the Selecting layer.

The vertical value(EV) of the node in the Associative layer has an effect on
calculating the vertical selecting factor of the Selecting layer.

Vertical Selecting factor, Ei ,is calculated by the equation(3) from the Ver-
tical Values of node i in Associative layer.

Ei =
1− exp−Vi

1 + exp−Vi
(3)

where Ei is Vertical Selecting factor and Vi is the Vertical Values. The function
of Ei is the bipolar sigmoid and its desired range of output values is between -1
and 1.

Positive Vertical Selecting factor denotes the positive vertical prior knowledge
and negative Vertical Selecting factor denotes the negative prior knowledge. The
value of Vertical Selecting factor is sent to the Reactive layer for deciding the
Reactive degree. Reactive degree which represents the degree of activation for
the corresponding class, is calculated by Filtering factor and Historical Accessing
factor including this Vertical selecting factor.

Filtering factor,Fi is the activated ratio for a certain class and it is already
introduced in the equation (1). Historical Accessing factor,Hi, represents the
frequency of accessing to a certain class. If a class is not activated for a long
time, the value of Historical factor decays.

Hi =
1

1 + e−A
, A =

{
A+ 1 if accessed
A− 1 otherwise (4)

where Hi is Historical Accessing factor and A is the number of being accessed.

Si =
Ei + Fi +Hi

3
(5)

where Si is Selecting degree.
This selecting degree is used for filtering the input data in the Selecting layer.
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4 Experiments

This system is applied to the area for estimating the purchasing degree from
the type of customer’s tastes, the pattern of commodities and the evaluation of
a company. We tested with three classes. First class consists of ten customer’s
input term - four types of customer’s tastes, second class consists of five input

Fig. 3. Associative Matrix A, vector B

Fig. 4. Knowledge retrieval step : output value from the mechanism

Fig. 5. Knowledge retrieval step : extracted inferential path
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Table 1. The output by the selecting degree

Vi -1.0 -0.5 0.0 0.5 1.0
Ei -0.4621 -0.2449 0.0000 0.2449 0.4621
Si 0.4230 0.4954 0.5700 0.6587 0.7311
Oi 0.4199 0.4898 0.5635 0.6512 0.7228

0

0.2

0.4

0.6

0.8

-0.462 0 0.4621

Oi

Oi

Fig. 6. The variation of output by Vertical selecting factor, Hi = 0.7311, Fi = 1.0,
Oi = 0.990412

factors - three patterns of commodities and third class consists of eight evaluating
terms - three evaluation degrees of company in the diagnostic area. Fig.3, Fig.4
and Fig.5 represent the results from the data extraction mechanism. Table 1.
denotes the variation of output Oi according to the Vertical Value of the node
in Associative layer where Vi is Vertical Value, Ei is Vertical Selecting factor, Si

is selecting degree, Historical Accessing factor Hi is 0.7311, Filtering factor Fi is
1.0 and the output value of NNi is 0.990412. Fig.6 shows the variation of output
by Vertical Selecting factor. As shown in these figures, this memory is reacted by
the Vertical Selecting factor sensitively and produces the different output values
according to the Vertical selecting factor.

5 Conclusion

In this paper, we propose Reticular Activating system which has functions of
selective reaction, learning and inference. This system consists of Knowledge ac-
quisition, selection , storing and retrieving part. Reticular Activating layer is
connected to Meta knowledge in the high level of this system and takes part
in Data Selection. We applied this system to the problem of analyzing the cus-
tomer’s tastes.

As a result of testing, we could find that it can extract the related data easily.
This system is expected to be applicable to many areas as data mining, pattern
recognition and circumspect decision making problem considering associative
concepts and prior knowledge.
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Abstract. In this paper, we describe glove-based information retrieval method 
and input device for wearable computers. We suggest an easy and effective al-
phanumeric input algorithm using gloves and conduct efficiency test. The key 
to the development of the proposed device is the use of unique operator-to-key 
mapping method, key-to-symbol mapping method and simple algorithm. We 
list and discuss traditional algorithm and method using a glove, then describe an 
improved newly proposed algorithm using gloves. The efficiency test was con-
ducted and the results were compared with other glove based device and algo-
rithm for wearable computers.  

1   Introduction 

In this paper, a new gloves-based text input device and improved algorithm are intro-
duced to provide information retrieval method for a wearable computer. Wearable 
computers are the next generation of portable machine. Worn by people, they provide 
constant access to various computing and communication resources. Wearable com-
puters are generally composed of small sized PC, display mounted on head, wireless 
communication hardware and input device. Thus, input to small sized devices is be-
coming an increasingly crucial factor in development for the ever-more powerful em-
bedded market [1]. The purpose of this paper is to introduce the information retrieval 
device for the wearable computers using gloves and an improved algorithm, and assess 
its performance. Because of its device independent characteristic, proposed device 
could be applied to all kinds of electronic applications. It could be applied to all kinds 
of wearable computers as well as desktop computers. 

Our paper is organized as follows. In section 2, several devices for wearable com-
puters using gloves are introduced. In section 3, we suggest an improved information 
retrieval method and input device for wearable computer. In section 4 we analyze pro-
posed device and method. And conclusions are given in section 5.  

2   Traditional Glove Based Information Retrieval Device and 
Method 

The following subsections explain the main characteristics of traditional glove based 
alphanumeric input devices. In these sections, we shortly describe the features of each 
method, and compare between methods. 
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2.1   Chording Gloves 

The Chording Glove employs pressure sensors for each finger of the right hand in a 
glove to implement chording input device. There is one key for each finger. Multiple 
keys are pressed simultaneously in various combinations to enter characters. A chord 
can be made by pressing the fingers against any surface. Almost all possible finger 
combinations are mapped to symbols, making it potentially hard to type them. Addi-
tional buttons, located along the index finger, are used to produce more than the 25 
distinct characters [2]. Fig 1 shows the external appearance of Chording Glove. 

Fig. 1. External appearance of Chording Glove 

A weak point of this method is difficult to use. It needs more than 80 minutes to 
learn the entire chord set. After 11 hours of training, word input speed reached ap-
proximately 18 words per minute (wpm) whereas the character error rate amounted to 
17%. 

2.2   Finger-Joint Gesture Wearable Keypad 

The Finger-Joint Gesture Wearable Keypad suggests viewing the phalanges of the 
fingers (besides the thumb) of one hand as the keys on phone keypad.  

By holding the inside of the hand in front of you, and bending the fingers toward 
you and aligning the fingertips of the four fingers, a 4X3 matrix is similar in shape to 
the traditional telephone keypad. And FJG keypad employs the same layout as that 
encountered on any traditional mobile telephone. Nothing else has to be learned. The 
FJG concept is a generic way of combining the 12 keys of the keypad with 4+1 dif-
ferent functions. It can be used in a variety of different interfaces.  

A weak point of this method is the limited number of alphabets can be aligned on 
the phalanges. To overcome this weak point, if the multiple numbers of alphabets are 
mapped on the same phalanges (one-to-many characters mapping) in the same mode 
(EX: ABC, DEF…), the user has to use multiple successive keystrokes on the same 
phalanx of the fingers. 
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2.3   Thumbcode 

“Thumbcode” method defines the touch of the thumb onto the fingers’ phalanges of 
the same hand as key strokes. Character is signed or thumbed by pressing the tip of 
the thumb against one of the phalanges. This defines the twelve thumb states of 
Thumbcode. In combination with the twelve thumb states this gives a total of 96 basic 
Thumbcode. Fig 2 shows the Thumbcode assignments. Each of the eight 3X4 arrays 
in Fig 2 should be visualized as being superimposed on the fingers of the right hand.  

Fig. 2. Thumbcode assignments view of right-hand palm 

In Fig 2, the 4 vertical bars mean 4 fingers of right-hand. Narrow space means that 
the adjacent fingers are closed. And regular space means that the adjacent fingers are 
opened. The four fingers can touch each other in eight different ways, each basically 
representing a mode, or modifier key that affects the mapping for the thumb touch [4].  

A weak point of this method also can be described as complexity of combining fin-
gers. User has to combine their fingers to generate Thumbcode in complex ways. As a 
result of this complexity, this method also needs training time to use fluently.  

3   An Improved Information Retrieval Method and Input Device 

Key-to-symbol mapping methods can be divided into two classes. Exactly one key to 
one symbol (character) mapping (1 degree of freedom, DOF) method and one-to-
many characters mapping (1.5 degree of freedom, DOF) method are typical key-to-
symbol mapping methods. In a one-to-many characters mapping method, user has to 
use multiple successive keystrokes to produce some character. In this letter, we pro-
pose an improved one-to-many characters mapping method. 
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We can produce any character using a keystroke. If the user wants to produce a 
character “C” in a traditional one-to-many characters mapping method, the user has to 
use multiple successive keystrokes on the medial phalanx of the index finger. But, in 
the proposed method, the user can produce a character “C” using a keystroke on the 
medial phalanx of the index finger with a specific operator (third operator).  

First of all, we could decide the number of discrete operators and the layout of the 
key-to-symbol mapping according to the use of applications. In the proposed text 
input device, maximum number of the symbols can be mapped on a key depends on 
the number of using operators (the maximum number of used operators not exceeds 
5). If we use 3 operators, we can map 3 characters on a key. Thus, the maximum 
number of characters can be mapped on the phalanges of the 4 fingers is 36. We can 
produce 36 different characters using a keystroke with a specific operator. This proc-
ess could be finished using the control unit in Fig 3.  

 

Fig. 3. Key-to-Symbol mapping and the operators 

If the user depresses the tip phalanx of the middle finger with a first operator, then 
the character “M” will be produced. And, if the user depresses the tip phalanx of the 
middle finger with a second operator, then the character “N” will be produced. And, if 
the user depress the tip phalanx of the middle finger, then character “O” will be pro-
duced, and so on. Key-to-symbol mapping method is very easy and simple. Thus, 
nothing else has to be learned. 

4   Efficiency Test and Results 

To verify its efficiency, the proposed glove based text input device was built and 
assessed. The experiment that we conducted was designed to evaluate the input speed 
and error rate of the proposed device. 20 subjects were selected from among the re-
spondents to advertisements placed around the university campus. There were 12 
males and 8 females, and all were right handed and aged between 24 and 32 years. 
The initial session consisted of a tutorial which lasted less than a minute, and whose 
purpose was to teach the subjects the key-map and how to operate the device. Once 
this session was completed, a sample text was provided to the subjects. Fig 4 shows 
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provided sample text. The complete text to be entered by the subject appeared in the 
top window of the computer display, while their keyboard input was displayed in the 
bottom window. 

 

Fig. 4. Sample text for used testing and keyboard input display 

We compared the proposed device and its method of utilization with other devices 
which use other methods, from several points of view, namely the input speed, error 
rate and the time required to learn the entire key-map. After 1 hour of training, the 
average input speed for the proposed device was 27.4 words per minute. For compari-
son, the input speed on a QWERTY keyboard for a previously untrained user after 12 
hours of training is 20 words per minute [5], and the input speed for a previously 
untrained user using a glove after an 80 minutes tutorial is 16.8 words per minute [2]. 
Therefore, this result means that the proposed device offers a fast and convenient 
method of inputting text. The error rate was calculated as the ratio of input errors to 
the total number of characters and was found to be 7.8% after training. Compared 
with the error rate on a QWERTY keyboard (12.7%) and the traditional method of 
using a glove (17.4%), the proposed method constitutes an accurate text input method 
[2 and 6]. Furthermore, the number of keystrokes and the time required to enter the 
complete sample text were the same as those obtained using a QWERTY keyboard, 
and were much less than the corresponding values in the case of a traditional glove. 

5   Conclusions 

Nowadays, many systems adapt multi-modal human computer interfaces. The reason 
for using multi-modal HCI system is to create a more natural experience for the user 
by allowing him/her to use other methods of communication than just speech or just 
mouse, and aid the computer in understanding what the user wants by providing mul-
tiple modality streams that can disambiguate each other. 



1184 J.-H. Shin and K.-S. Hong 

 

In this paper, we proposed an improved information retrieval method and input de-
vice using gloves for the purpose of using as a human computer interface method. 
Although there are several benefits of using one-handed text input devices, but there 
are clear-cut lines of input speed and error rate. To overstep these limits, we proposed 
the method and the device using two hands. The proposed method and experiment 
gave us possibility of using gloves as a text input device. For the purpose of achieving 
popular use of the glove as a text input device, more convenient and swift method 
should be proposed. 
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Abstract. In this paper, we provide information an artificial intelligence agent 
for a smart home and discuss a context model for implementation in an efficient 
smart home.  An artificial intelligence agent in a smart home learns about the 
occupants and the smart environment, and predicts the appliance service that 
they will want. We propose the SVM (Support Vector Machine) for the learning 
and prediction aspects of the artificial intelligence agent. The experiment was 
done using three methods. Each of these three methods applies a higher impor-
tance to a different set of context data, out of the data related to the occupant, 
home environment, and the characteristics of the home appliances. Excellent re-
sults were seen when the experiment applied a higher importance to the data re-
lated to the characteristics of the home appliances.  

1   Introduction 

A home network integrating sensors, actuators, wireless networks and context-aware 
middleware will soon become part of our daily life. We define this environment as a 
smart home [1].  A smart home is a house or living environment that contains the 
technology to allow devices and systems to be controlled automatically. An artificial 
intelligence agent in a smart home learns about the occupants and the smart environ-
ment, and predicts the appliance services that they will want. We utilize an SVM 
(Support Vector Machine) for the learning and prediction capabilities of the agent [2]. 
In order for a smart environment to provide services to its occupants, it must be able 
to detect its current state or context and determine what actions to take based on the 
context. Dey and Abowd discuss the requirements for dealing with context in a smart 
environment and present a software infrastructure solution [3]. 

In this paper, we discuss the use of a support vector machine for learning and pre-
diction by an artificial intelligence agent in a smart home. Learning human control 
strategy shows how human control strategy can be represented as a parametric model 
using a support vector machine [4]. In pattern classification, to improve the limited 
classification performance of the real support vector machine, it is proposed to use an 
SVM ensemble with bagging (bootstrap aggregating) or boosting [5]. 
                                                           
* Correspondence Author 
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2   The System Architecture and Inner Component 

The artificial intelligence agent receives six contexts data inputs from the occupant 
and smart home and one set of context data inputs from occupant commands to rec-
ognize the pattern of appliance use by the occupant in the smart home. The artificial 
intelligence agent gathers information from the occupant and environment and ana-
lyzes appliance’s choice pattern of the occupant. The artificial intelligence agent ac-
quires status information for the home environment, occupant, and home appliances 
for the learning and prediction of the agent, and this states information is used to 
define the context [6]. Figure 1 shows the two-layer context model that presented in 
this paper. Layer 1 defines 7 context data inputs that are acquired from the occupant, 
home environment, and home appliance: pulse, body temperature, facial expression 
value, room temperature, time, and occupant location in the smart home.  

 

Fig. 1. The two Layer Context model 

    Six of the seven data inputs in lay 1, excluding only the device context input, are 
normalized between 0.1 and 0.9. The context related device input is one of the appli-
ances used by the occupant. Pulse rates below 40 and over 180 were eliminated, since 
they represent abnormal human states. Body temperatures below 34 and over 40 were 
eliminated for the same reason. Facial expressions are normalized and categorized as 
seven expressions (by Charles. D). Room temperature is normalized based on the 
most comfortable temperature, which is between 23 and 24 degrees Celsius. The time 
is normalized based on a 24-hour clock. The location is the occupant’s position in our 
experimental room. 

 

Fig. 2. Structure of artificial intelligence agent 
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    Figure 2 shows the structure of the artificial intelligence agent. The context dis-
tributor accepts all the context data from the context model. The context distributor 
offers context data according to the learning time and prediction time of the SVM. 
Figure 3 shows the structure of the SVM in the artificial intelligence agent. The struc-
ture of the SVM was an applied hierarchical support vector machine classifier for 
appliance pattern analysis of the occupant.  

 

Fig. 3. Structure of SVM in Artificial Intelligence Agent 

3   Experiments and Evaluations 

The artificial intelligence agent changes the context's importance according to the appli-
ance choice of the occupant. We compared the performance of the artificial intelligence 
agent based on different levels of context importance. We applied a higher importance 
to context data related to the occupant in Table 1. In Table 2, we applied higher impor-
tance to the context data related to the home environment. In Table 3, we applied a 
higher importance to the context data related data to the characteristics of the home 
appliances. Table 1 shows a low pattern recognition rate for the projector, air condi-
tioner, and light. Table 2 shows a low pattern recognition rate for the television, projec-
tor, and light. Table 3 shows an excellent pattern recognition rate from all appliances. 

Table 1. Higher importance to context data related to the occupant. (sv:number support vector / 
lv:norm of longest vector / ke:number of kernel evaluations / pt: precision on test set) 

Test Set 
 sv lv ke 

correct incorrect Total 
Pt 

TV 30 2.25885 12266 981 19 1000 98.10% 
Au 51 2.26254 11552 978 22 1000 97.80% 
Pr 74 2.11505 12701 343 657 1000 34.30% 
Ai 60 2.01333 12377 253 747 1000 25.30% 
Li 67 2.14278 12335 275 725 1000 27.50% 

Table 2. Higher importance to context data related to the home environment 

Test Set 
 sv lv ke 

correct incorrect Total 
Pt 

TV 52 2.13000 11912 225 775 1000 22.50% 
Au 59 1.95908 12290 909 91 1000 90.90% 
Pr 44 1.75454 11342 120 880 1000 12.00% 
Ai 55 2.02097 11627 1000 0 1000 100.00% 
Li 65 1.96550 12098 208 792 1000 20.80% 
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Table 3. Higher importance to context data related to the home appliance’ characteristics 

Test Set 
 sv lv ke 

correct incorrect Total 
pt 

TV 95 2.10637 12209 1000 0 1000 100.00% 
Au 28 2.02417 10979 1000 0 1000 100.00% 
Pr 171 1.75716 14204 886 114 1000 88.60% 
Ai 36 2.20606 11213 1000 0 1000 100.00% 
Li 135 2.02598 13085 930 70 1000 93.00% 

4   Conclusions 

In this paper, we provide information on an artificial intelligence agent for a smart 
home and discuss a context model for implementation in an efficient smart home.  An 
artificial intelligence agent in a smart home learns about the occupants and the smart 
environment, and predicts the appliance service that they will want. The experiment 
was done using three methods. Each of these three methods applies a higher impor-
tance to a different set of context data, out of the data related occupant, home envi-
ronment, and the characteristics of the home appliances. It shows that excellent results 
were obtained from the experiment that applied a higher context’s importance to the 
context data related to the characteristics of the home appliances. 
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Abstract. In this paper, a dynamical model for data clustering is proposed. This 
approach employs a network consisting of interacting elements with each repre-
senting an attribute vector of input data and receiving attractions from other 
elements within a certain region. Those attractions, determined by a predefined 
similarity measure, drive the elements to converge to their corresponding clus-
ter center. With this model, neither the number of data clusters nor the initial 
guessing of cluster centers is required. Computer simulations for clustering of 
real images and Iris data set are performed. The results obtained so far are very 
promising.  

1   Introduction 

A data clustering task can be formulated as follows: partition the N data values into K 
groups, so that two data points in the attribute space belonging to the same group are 
more similar than those belonging to different groups [3, 4, 7, 10]. According to [4], 
data clustering techniques can be classified into two categories: hierarchical tech-
niques and partitional techniques. Hierarchical clustering techniques produce tree type 
partitions of the data. These techniques do not require the information of the number 
of clusters beforehand. However, they cannot incorporate a priori knowledge related 
to the global structure of the clusters, since, in each step, they take into account only 
local neighbors. Partitional clustering techniques have the advantage of being able to 
incorporate previous knowledge related to the data set. Nevertheless, they usually 
require the number of clusters to be previously defined and are sensitive to noise and 
initialization.  

In spite of the success obtained by traditional clustering techniques in several ap-
plication domains, it must be observed that there has been growing interest in the 
development of new clustering techniques based on alternative approaches. One of 
the reasons for such investigation is that traditional techniques are usually based on 
statistical data analysis and employ serial processing, which suffer from low effi-
ciency and usually need high computational power. Thus, recent techniques exploit 
parallel architectures and have flexible implementation. Due to elegance and effec-
tiveness of the clustering performed by many biological systems, several of these new 
techniques are inspired by biological systems [2, 5, 6, 9, 11, 13, 14].  Special interests 
have been concentrated in developing network of interacting elements for data clus-
tering. This kind of model can not only incorporate global statistical property of the 
data, but also preserve local geometrical features.     
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The data-clustering model presented here is composed of a network of interacting 
elements. Each element in the constructed network corresponds to a data point in the 
attribute space. When a set of data is supplied to the network, the elements of the 
network self-organize according to a predefined similarity criterion, such that each 
group of elements representing a data cluster will be coupled together. Each element 
receives forces from all other coupled elements, which drive the element toward its 
corresponding cluster center. With this moving mechanism, the model is designed 
such that elements representing similar data approximate each other to form a cluster. 
At the same time, ambiguous elements (those that receive forces from more than one 
group) will leave other groups and fix themselves in only one group, the group with 
the strongest attraction to them. 

The rest of this paper is organized as follows. Sec. 2 presents the model definition 
and the clustering strategy. Sec. 3 describes computer simulation results. Finally, Sec. 
4 discusses the main conclusions of this work. 

2   Model Description 

The model presented in this paper can be seen as an improved and quite simplified 
version of the model described in [14]. It is a network composed of N elements with 
each corresponding to a data point in the attribute space. Specifically, the model is 
governed by the following equations: 
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value representing the intensity of the ith pixel; for a color image, K = 3 and xi is a 
vector representing the three-color components of the ith pixel. xi(0) is the original 
value of the ith element. Fi(t) = (Fi1(t),  Fi2(t), ..., Fik(t))

T represents the total force 
imposed upon the element i from all elements in ( )tiΔ  at iteration t and ( )tMi  is the 

number of elements in ( )tiΔ , where ( )tiΔ is a pixel region defined by the term 

( ) ( ) −−− θα tt ije
xx

H  in Eq. (3).  It means that, all elements in ( )tiΔ  are considered 

to be similar to i . H is a Heaviside function. It returns a value 1 when the input is 

larger than zero and returns a value 0, otherwise. The term
( ) ( )tt ije

xx −−α
 is a Gaussian 

function, which results in a value between 0 and 1, and the parameter  controls its 
stiffness.  is the Euclidean norm. The parameter θ  is a threshold, which shifts the 

Heaviside function. Increasing in the value of θ  reduces the chance of the Heaviside 

function returning the value 1. The term 
( ) ( )
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xx
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−
 in Eq. (2) determines the 

driving direction upon element i from element j, while the term 
( ) ( )tt ije

xx −−α
 in the 

same equation determines the quantity to move. The parameter ( ) 10 ≤< tiη controls 

the moving rate of element i, whose function will be described bellow.  
The clustering process can be described as follows: Firstly, the initial data vector 

xi(0) is used by the system as initial condition. As the system runs, elements with 
similar features are grouped together and finally converge to a unique point. The 
Heaviside function returns the value 1 if the similarity between xi(t) and xj(t) is be-
yond a certain value, which can be adjusted by the parameters  and θ .  

It must be observed that, very often, some data are grouped into more than one 
cluster at the beginning. This ambiguity problem can be solved by the model’s adap-
tive moving process, which is described next. 

Initially, xi(0) is the original value of ith data item. As the system evolves, each 
element i receives a force of attraction Fi(t) from a set of similar elements. This force 
drives the element to move toward the group with higher similarity. Thus, if any two 
elements have the same distances to a common element i, and they are exactly on the 
opposite sides of i, the two forces (positive and negative) imposed on i are cancelled 
and the element i remains unaffected by them. Otherwise, the element i moves in the 
direction defined by the sum of the force vectors. Thus, elements at the center of a 
given group will move slowly, since the majority of forces imposed on them are can-
celled. On the other hand, off-center elements will move toward their respective cen-
ter quickly. Ambiguous elements (those that receive forces from more than one 
group) will leave other groups and fix themselves in only one group, the group with 
the strongest attraction to them. Successive iterations will decrease the distance be-
tween similar elements (decrease intra-class distance) and increase the distance be-
tween very different elements (increase inter-class distance).  

 
 



1192 L. Zhao, A.P.G. Damiance, and A.C.P.L.F. Carvalho 

 

At this point, one may perceive that there is still a convergence problem, i.e., as 
each group of elements get closed, the corresponding force received by each element 

becomes larger resulting in quickly moving. This is because that the force term ( )tiF  

is proportional to similarity measure. What we want is exactly contrary to this situa-
tion. Specifically, we want to slow down the movement when the elements of a same 
group are getting closed and the movement eventually stops when the elements of a 
same group reach to a unique point. Otherwise, the moving process may not converge, 
but oscillate in a certain region. This problem can be solved by making the moving 

rate ( )tiη  time and element dependent, as shown by Eq. (4). Elements move rapidly 

to their corresponding center with a large value of ( )tiη , and slowly with a small 

value. Thus, the model is designed so that ( )tiη  changes with time and is dependent 

on the dispersion of the elements in the group ( )tiΔ , characterized by the average 

Euclidean distance between element i and each element belonging to ( )tiΔ  (see Eq. 

(4)). When elements in ( )tiΔ  are still far away from one another, the dispersion is 

large, ( )tiη  takes a large value. Hence, the element i moves rapidly. On the other 

hand, at the final stage of the moving process, elements from the same cluster are 

concentrated, resulting in a low value of ( )tiη , indicating that the elements move 

slowly. Finally, when elements of a cluster get closer to one point in the attribute 

space, ( ) 0→tiη , i.e., elements do not move at all. Consequently, each group of data 

is represented by a point whose position in the attributes space is the cluster center. 
In comparison to conventional data clustering techniques, this model offers the 

following interesting characteristics: 

- It is not necessary to know the number of clusters in advance; 
- The mechanism of adaptive modification of data makes the model robust enough 

to classify ambiguous elements; 
- Due to the model's self-organizing feature, no guessing of initial cluster centers is 

needed. Thus, combinatorial search can be avoided; 
- From the results obtained in the numerical experiments performed by the authors, 

it is possible to see that the data moving process can be completed in a few itera-
tions. Moreover, due to the model’s parallel nature, all elements interact inde-
pendently. Consequently, the number of iterations needed to form compact 
groups increases very slowly as the amount of data becomes larger. This feature 
is especially attractive if the model is implemented in a parallel architecture.  

3   Computer Simulations 

This section presents the simulation results by using the model to cluster different 
type of data sets. As previously mentioned, the model has few parameters to be ad-
justed.  The parameter α  controls the stiffness of the Gaussian function in Eq. (5) and 

Eq. (6) and the parameter θ  is a hard threshold. Both of them can be adjusted to 
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obtain hierarchical representation of clustering results. A low value for θ  or high 
value for α  smoothes the difference between data items and, consequently, results in 

a small number of clusters. A high value for θ  or a low value for α , on the other 
hand, amplifies the difference and may lead to a large number of clusters. Consider 
the example of pixel clustering for images, details of the original image can be ampli-
fied by setting either a high value to θ  or a low value to α . However, if only skele-

tons of the objects in the image are needed, either a low value can be set to θ or a 
high value can be set to α .  In all simulations to be shown, the hierarchical represen-

tation effect is obtained by only changing θ . The parameter α is held constant at 

8.0=α . 
The authors first illustrate the data moving process by using a 2-dimensional artifi-

cial data set of various sizes and forms of data groups. From Fig. 1(a) and 2(a), one 
can perceive that, in a normal situation, the data should be clustered into 3 groups in a 
gross level and into 5 groups in a fine scale. It is also possible to see that the distances 
between some elements from the same group are larger than distances between ele-
ments belonging to different groups. Without the data moving technique, this feature 
may result in interconnection among elements from various groups. Due to the mov-
ing technique introduced in the previous Section, all elements move correctly to their 
corresponding group center. Figure 1 and 2 show that 3 and 5 clusters can be correctly 
extracted by using the present model. 

In order to show the complete data clustering process performed by the proposed 
model, consider Fig. 3, which shows the x-ray of a human head as input data set. 
Figure 4 shows the pixel clustering results in three different resolutions. As previously 
observed, when θ  is small, a clustering result with few data groups is obtained. Fig-
ure 4(a) shows the 2 clusters produced. In this case, one can see that the background 
and the object are separated. As θ  increases, clustering result with more data groups 
are achieved. Figure 4(b) and 4(c) show cases where 5 and 9 clusters are produced, 
respectively. In these figures, it is possible to see some details within the object. 

Figures 5(a), 5(b) and 5(c) show the evolution of ( )txi  corresponding to the simu-

lation illustrated by Figure 4(a), 4(b) and 4(c), respectively. One can see the pixels 
initially mixed. As the system evolves, all such elements leave their least attractive 
group and go to their most attractive group. In this way, overlaps among element 
groups are eliminated and, consequently, pixel clusters are correctly formed. At the 
end, all elements move into distinct groups.  

Figure 5 also shows that the clustering evolution finishes in a very small number 
of iterations, demonstrating the high efficiency of the proposed model.   

Now we present the clustering results for a data set frequently used in clustering 
experiments, the Iris data set. The Iris data set has 156 data samples, with 4 attributes 
each [1]. In the original data set, the correct class associated to each data sample is 
known. Thus, the clustering results obtained by our model can be compared with the 
correct results. Table 1 shows the cluster centers found by the model and table 2 
shows the clustering results for each class. According to these results, the proposed 
method obtains an average error rate equal to 4%, which is similar to the best results 
reported in the literature for the same data set [1].    
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    Fig. 1. Data moving process. Three data groups are formed, θ  = 0.1 

                 

        Fig. 2. Data moving process. Five data groups are formed, θ = 0.3 
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       Fig. 3.  Original image for pixel clustering 

 
 

                               
 
 

        
 

Fig. 4. Clustering results. a) 3 clusters, θ = 0.1; b) 5 clusters, θ = 0.3; c) 7 clusters, θ  = 0.5 

(a) 

(c) 

(b)
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Fig. 5. Evolution of ( )tci
 corresponding to the simulation results shown in Fig. 5. a) 3 clusters, 

θ = 0.1; b) 5 clusters, θ = 0.3; c) 7 clusters, θ  = 0.5 

 

(a) 

(b) 

(c) 



 A Self-organized Network for Data Clustering 1197 

 

Table 1. Cluster centers found (Positions of final fixed points) 

  Clusters   Attribute 1   Attribute 2   Attribute 3   Attribut3 4 
   Class 1 0.6305 0.7698 0.2125 0.0938 
   Class 2 0.7553 0.6312 0.6307 0.5402 
   Class 3 0.8283 0.6784 0.7866 0.8022 

 

Table 2. Clustering results 

 Íris setosa Íris versicolor Íris verginica  
Class 1 

50 
0 0  

Class 2 0 48 4  
Class 3 0 2 46  

Rc 100% 96% 92% 96% 

4   Concluding Remarks 

This paper presented an adaptive moving mechanism for data clustering. The parallel 
nature of the model makes it suitable for hardware implementation, providing an 
efficient alternative approach for solving this general problem. Local interactions 
among elements in the network have the advantage of simplicity in hardware imple-
mentation in contrast to global interactions, where connections between most of the 
elements should be devised. The results obtained in the set of experiments performed 
show the potential of this method for two different kinds of datasets.   

In general, there is not a unique representation in data clustering problems, i.e., the 
same data set can be interpreted by different meaningful clustering results. By using 
this model, one can get hierarchical meaningful results by tuning a very small number 
of parameters. As described in the text, there are only two parameters (α and θ) to be 
tuned. Due to the model's self-organizing feature and its free parameters, neither the 
cluster number, nor the guessing of initial cluster centers is required. Thus, combina-
torial search is avoided. 
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Abstract. Complete synchronization of N coupled systems with sym-
metric configurations is studied in this paper. The main idea of the syn-
chronization stability criterion is based on stability analysis of zero so-
lution of linearized dynamical systems. By rigorous theoretical analysis,
a general synchronization stability criteria is derived for N coupled sys-
tems with the first state variable diffusive coupling. This criterion is
convenient for us to explore the synchronization of a class of coupled
dynamical systems. Finally, the famous Lorenz system and Hindmarsh-
Rose(HR) neuron are used to test our theoretical analysis.

1 Introduction

The synchronization of coupled dynamical systems has received much atten-
tion since the papers by Pecora and Carrol[1-2] show that chaotic systems can
be synchronized. Complete synchronization of coupled identical systems means
that motion of coupled elements starting from different initial point in state
space is identical with time t going toward infinity, that is to say, when the array
is synchronized, the systems are decoupled. Dynamics of coupled systems was
extensively studied in many fields of science and technology, such as secure com-
munication[3], chemical systems[4] and neural collective motion[5-7]. Up to now,
the study of the synchronization in the coupled systems is still an interesting
topic.

However, main problem in the study of the synchronization is how to deter-
mine the coupling strength or certain control parameter, where synchronization
can occur in the coupled systems. In the past, many authors devoted them-
selves to the study in this field and some desirable results have been obtained.
The master stability function method (MSFM) was introduced by Pecora and
Carroll[8-9]. This method is very valid to determine the synchronization thresh-
old of the coupled systems. But The Lyapunov exponents (for chaotic system)
or Floquent multipliers (for period system) must be calculated when we resort
to MSFM. In general, they can only be detected by numerical method. Based
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on the Lyapunov function theory, a sufficient condition for synchronization was
obtained for symmetric coupling network[10]. In Ref.[11], chaos synchronization
of two coupled Lorenz systems was studied by means of asymptotical stabil-
ity of linearized system and a sufficient condition was given by means of the
Routh-Hurwitz rule. Chai Wah Wu and Leon O. Chua gave a synchronization
criterion for linearly coupled dynamical systems by mens of construction of the
Lyapunov function and asymptotical stability of solution on a single system [12].
In previous works, rigorous calculation is unavoidable.

In this paper, a simple synchronization criterion is developed on basis of
the Lyapunov function and matrix theory. This criterion avoids many rigorous
calculations for only requiring simple calculation of determinant. It is very valid
to detect the synchronization of N coupled systems with regular connection
network (See Fig.1). Moreover, it is noted that network we consider in this
paper is linked only through the first state variable and the Jacobian matrix of a
single system must satisfy the certain conditions as given in the following paper.
In short, synchronization stability criterion in this paper is only feasible for a
special systems. But most systems studied (including Lorenz system, HR neuron
model, Chay neuron model, etc.) satisfy the conditions of developed Theorem in
the present paper.

(a)

(b) (c)

Fig. 1. Sketches of three regular connections (a) chain connection. (b) ring connection.
(c) global connection.

2 Synchronization Stability Criterion of N Coupled
Systems with Regular Connection

In this section, we develop a criterion, which determines the stability of synchro-
nization manifolds. Here, we consider the regular network structure. Dynamics
of N identical linearly and diffusively coupled systems, and with each system
being a n-dimensional dynamical system, is governed by the following set of
differential equations.

Ẋi = F (Xi) + C

N∑
j=1

aijXjΓ, i = 1, 2, . . . , N (1)

where Xi = (xi1, xi2, . . . , xin) ∈ IRn is state variables of the coupled ith cell. C
represents the coupling strength and Γ is a n× n matrix, which has the below
form:
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Γ =

⎛⎜⎜⎝
1 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

⎞⎟⎟⎠
This means that two coupled systems are only linked through their first state
variables. The coupling matrix A = (aij)N×N represents the coupling style of
N coupled systems. In the following, we consider three different coupling config-
urations with chain, ring and global connections. For these cases, the coupling
matrix A has the following common properties:

(1) A is a symmetric and irreducible matrix.
(2)The off-diagonal elements, aij(i �= j) of A, are either 1 or 0.
(3) The elements of A satisfy

aii = −
N∑

j=1,i
=j

aij , i = 1, 2, 3, ..., N. (2)

(4) One eigenvalue λ1(N) of A is zero, with multiplicity 1, and all the other
eigenvalues λ2(N) ≥ λ3(N) ≥ . . . ≥ λN (N) of A are strictly negative.

Given the dynamics of the single oscillator and the coupling style, the sta-
bility of the synchronization state of coupled systems can be characterized by
those nonzero eigenvalues of A and the coupling strength C. In the following,
a criterion, which determines the synchronization of coupled systems with the
matrix A satisfying the above conditions, is analyzed. The coupled system (1)
is said to achieve synchronization if the following relation holds:

X1(t) = X2(t) = · · · = XN (t) = s(t) t→ +∞ (3)

where s(t) is a solution of an isolate system, namely, the coupling strength C is
zero in the system (1).

Lemma 1. Consider the coupled system (1). Let

0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn (4)

be the eigenvalues of its coupling matrix A. If the following N − 1 of
n-dimensional linear time-varying systems are asymptotically stable:

ω̇ = (DXF (s(t)) + CλkΓ )ω, k = 2, 3, . . . , N (5)

then the synchronization states (3) are asymptotically stable.

Proof of the Lemma 1 can be found in[10].
In what follows, Lemma 2 is given with supposing that Jacobian DF (s(t))

satisfies the below conditions.
C1. The matrix A(s(t)) = (aij(s(t)))n×n = DF (s(t)) + (DF (s(t))))T is non-

singular, that is, det(DF (s(t)) + (DF (s(t)))T ) �= 0.
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C2. All eigenvalues λi(s(t))(i = 2, 3, . . . , n) of the matrixA22(s(t)) are strictly
negative for any s(t).

C3. 1
2

det(A(s(t))
detA22(s(t))

is bounded for all s(t).
with

A22(s(t)) =

⎛⎜⎜⎜⎝
a22(s(t)) a23(s(t)) . . . a2n(s(t))
a32(s(t)) a33(s(t)) . . . a3n(s(t))

...
... . . .

...
an2(s(t)) an3(s(t)) . . . ann(s(t))

⎞⎟⎟⎟⎠
Lemma 2. If Jacobian DF (s(t)) satisfies the conditions C1 and C2, then the
matrix DF (s(t))+(DF (s(t)))T−2TΓ is negative definite when T > 1

2
det(A(s(t)))

det(A22(s(t)))
.

Proof. Let

A(s(t)) =
(
a11(s(t)) α(s(t))

(α(s(t)))T A22(s(t))

)
with α(s(t)) = (a12(s(t)), a13(s(t)), . . . , a1n(s(t))) and (α(s(t)))T is the trans-
pose of α(s(t)).

Because A22(s(t)) is symmetric, there exists an orthogonal matrix Q22 such
that (Q22)TA22(s(t))Q22 = Λ2, with Λ2 =diag(λ2(s(t)),λ3(s(t)), . . . ,λn(s(t))).

Let

Q =
(

1 Θ
ΘT Q22

)
with Θ = (0, 0, . . . , 0) being a (n − 1)–dimensional zero vector. Thus, we know
that Q is an orthogonal matrix and the following relation holds:

QTA(s(t))Q =
(

1 ΘT

Θ QT
22

)(
a11(s(t)) α(s(t))

(α(s(t)))T A22(s(t))

)(
1 Θ

ΘT Q22

)
=
(

a11(s(t)) α(s(t))Q22

QT
22(α(s(t)))T QT

22A22(s(t))Q22

)
=
(
a11(s(t)) α(s(t))Q22

QT
22(α(s(t)))T Λ2

)
Consequently, we have

QT (A(s(t)) − 2TΓ )Q =
(

a11(s(t)) − 2T α(s(t))Q22

QT
22(α(s(t)))T Λ2

)
Denote α(s(t))Q22 = (q12, . . . , q1n). Because λi (i = 2, 3, . . . , n) are nonzero, we
have

PT (QT (A(s(t)) − 2TΓ )Q)P =

(
a11(s(t)) − 2T − ( q2

12
λ2

+ . . .+ q2
1n

λn
) Θ

ΘT Λ2

)

by using a series of elementary transformations on the matrix QT (A(s(t)) −
2TΓ )Q, with P being the product of some elementary matrices.
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If the matrix A(s(t))− 2TΓ is negative definite, then a11(s(t))− 2T − ( q2
12

λ2
+

. . . + q2
1n

λn
) < 0. Hence, T > 1

2 (a11(s(t)) − ( q2
12

λ2
+ . . . + q2

1n

λn
)). From the above

analysis, we know that

PT (QT (A(s(t))Q)P =

(
a11(s(t)) − ( q2

12
λ2

+ · · ·+ q2
1n

λn
) Θ

ΘT Λ2

)
In terms of the properties of the matrix P andQ, the following relation is derived:

det(A(s(t)) = λ2 · · ·λn(a11(s(t)) − ( q2
12

λ2
+ · · ·+ q2

1n

λn
))

Hence, T > 1
2

det(A(s(t))
λ2···λn

= 1
2

det(A(s(t))
detA22(s(t)) . The proof is complete.

Corollary 1. If conditions C1, C2 and C3 hold, then when T ≥ 1
2β, the ma-

trix DF (s(t)) + (DF (s(t)))T − 2TΓ is negative definite for all s(t), with β ≥
det(A(s(t))
detA22(s(t)) being a constant for all s(t) .

Theorem 1. Consider the coupled system (1) and suppose that Jacobian
DF (s(t)) satisfies conditions C1, C2 and C3. The synchronization states of the
system (1) defined by (3) are achieved if C > T

|λ2| , where λ2 is the largest nonzero
eigenvalue of the coupling matrix A, C is the coupling strength and T is given
in Corollary 1.

Proof. To explore the stability of the synchronization states of the system (2),
the perturbed solutions ηi are introduced:

Xi = s(t) + ηi, i = 1, 2, . . . , N (6)

and linearize system (2) about s(t). This leads to

η̇ = η[DF (s(t))] + CAηΓ (7)

where η = (η1, η2, . . . , ηN )T ∈ IRN×n, DF (s(t)) is the Jacobian of F (X, t) at
s(t). Since A is a real symmetric matrix, there exists a unitary matrix Φ =
(φ1, φ2, . . . , φN ) such that:

Aφi = λiφi, i = 1, 2, . . . , N (8)

By expending its each column η on the basis Φ, we may derive

η = Φγ (9)

where γ = (γ1, γ2, . . . , γN )T ∈ IRN×n. So we know that γ satisfies the following
differential system

γ̇ = γ[DF (s(t))] + CΛγΓ (10)

where Λ =diag(λ1,λ2, . . . ,λN ). Let γk be the kth row of γ. We have

˙γT
k = γT

k [DF (s(t)) + CλkΓ ], k = 1, 2, . . . , N (11)
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In terms of the Lemma 1, we have now transformed stability of the synchro-
nization states (3) into the stability problem of the N pieces of n dimensional
linear time-varying systems (11). In the following, we will prove that if C > T

|λ2| ,
the N pieces of n dimensional linear time-varying systems (11) are asymptot-
ically stable. Since λ1 = 0 corresponds the synchronization state s(t), we only
need to prove that the following N−1 pieces of n dimensional linear time-varying
systems (12)are asymptotically stable when C > T

|λ2| .

˙γT
k = γT

k [DF (s(t)) + CλkΓ ], k = 2, . . . , N (12)

According to (4), we have (Cλk + T ) < 0 (k = 2, . . . , N) if C > T
|λ2| . In order

to prove the theorem, let Lyapunov function be

V (γk) = γT
k γk, k = 2, . . . , N (13)

and we have

V̇ (γk) = γ̇T
k γk + γT

k γ̇k

= γT
k (DF (s(t)) + (DF (s(t)))T + 2CλkΓ )γk

= γT
k (DF (s(t)) + (DF (s(t)))T − 2TΓ ) + 2(Cλk + T )Γ )γk

= γT
k (DF (s(t)) + (DF (s(t)))T − 2TΓ )γk + γT

k (2(Cλk + T )Γ )γk

< γT
k (2(Cλk + T )Γ )γk ≤ 0, (k = 2, . . . , N) (14)

So we can conclude that the N − 1 pieces of n dimensional linear time-varying
systems (13) are asymptotically stable when C > T

|λ2| . The proof is complete.

Remark: (1) The above mentioned Theorem is a sufficient condition, not a neces-
sary. Even if the conditions of the Theorem are not satisfied, the synchronization
of the coupled systems can occur.

(2)The above conclusion is not only valid for the coupled chaotic systems,
but also for coupled limit cycles.

(3)Theorem is also valid to small world network mentioned in Ref.[13], be-
cause the corresponding coupling matrix A of this network also satisfies proper-
ties (1)-(4).

3 Numerical Simulation

As an illustration, we at first study synchronization of N coupled Lorenz systems
with the first state variable coupling. The famous Lorenz system is described by
the following differential system:

ẋ = a(y − x) (15)

ẏ = bx− xz − y (16)

ż = xy − cz (17)
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with the parameters a = 10, b = 28, c = 8
3 , Lorenz system exhibits chaos with

double-scroll attractor as shown in Fig.2(a).
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Fig. 2. (a) The Lorenz attractor with double-scroll, (b) Temporal evolution of synchro-
nization error e = x2 − x1 in two coupled Lorenz systems when the coupling strength
C = 190

By simple calculation, it is derived that the Jacobian

DF (s(t)) =

⎛⎝ −a a 0
b− z −1 −x
y x −c

⎞⎠
hence,

A(s(t)) = DF (s(t)) + (DF (s(t)))T =

⎛⎝ −2a a+ b− z y
a+ b− z −2 0

y 0 −2c

⎞⎠
It is seen that all eigenvalues of A22(s(t)) are -2 and −2c, and detA(s(t)) =
4c(−2a+ y2

2c + (a+b−z)2

2 ). Because the solution of the Lorenz system is bounded,

there exists a constant β such that β ≥ detA(s(t))
detA22(s(t))

= −2a+ y2

2c + (a+b−z)2

2 for
all s(t). In Ref.[14], it was proved that there exists a bounded region Γ ⊂ IR3,
which includes the whole Lorenz attractor. This region is estimated as follows:

Γ = {(x, y, z) ∈ IR3 | x2 + y2 + (z − a− b)2 =
c2(a+ b)2

4(c− 1)
)} (18)

Hence, −2a+ y2

2c + (a+b−z)2

2 < −2a+ 1
2 (y2+(z−a−b)2) = −2a+ 1

2 ( c2(a+b)2

4(c−1) −x2) <

−2a+ 1
2 ( c2(a+b)2

4(c−1) ). Thus, we can choose β = −2a+ 1
2 ( c2(a+b)2

4(c−1) ). For two coupled
Lorenz systems with the first state variable, it is derived that when the coupling
strength C > 1

4 (−2a+ 1
2 ( c2(a+b)2

4(c−1) )) = c2(a+b)2

32(c−1) )− a
2 , which is in good agreement
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with result in Ref.[11], the synchronization of two coupled Lorenz systems is
achieved(See Fig.2(b)). But it is noted that the proposed method in this paper
avoids rigorous calculation of Routh-Hurwitz rule. Here, only the determinant of
the matrix A(s(t)), A22(s(t)) and the largest nonzero eigenvalue of the coupling
matrix are considered. It is very convenient to determine the synchronization of
a class of coupled systems with the first state variable coupling.

The next is biological application. The HR neuron is used to test our theo-
retical analysis. The HR neuron is governed by the following set of differential
equations[15]:

ẋ = y − ax3 + bx2 − z + Iext (19)

ẏ = c− dx2 − y (20)

ż = r[s(x −X0)− z] (21)

where x is the membrane potential, y is associated with the fast current, Na+, or
K+ and z with the slow current, for example, Ca2+. Here we choose a = 1.0, b =
3.0, c = 1.0, d = 5.0, s = 4.0, X0 = −1.60 and external stimulus Iext = 2.95. r
is used as control parameter. With the parameter r changing, the HR neuron
exhibits rich firing behaviour such as periodic and chaotic motions[See Fig.3].
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Fig. 3. (a) Bifurcation diagram of ISI(inter spike interval) of a single HR neuron with
respect to the parameter r, (b) Chaotic attractor of a single HR neuron with respect
to the parameter r = 0.015

The Jacobian of the system (17) is derived as follows:

DF (s(t)) =

⎛⎝−3ax2 + 2bx 1 −1
−2dx −1 0
rs 0 −r

⎞⎠
hence,

A(s(t)) = DF (s(t)) + (DF (s(t)))T =

⎛⎝2(−3ax2 + 2bx) −2dx+ 1 rs− 1
−2dx+ 1 −2 0
rs − 1 0 −2r

⎞⎠
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By a simple calculation, we know that A(s(t)) satisfies all conditions of the
Theorem 1 and Corollary. Moreover, detA(s(t))

detA22(s(t)) = 2(−3ax2 + 2bx) + (rs−1)2

2r +
(−2dx+1)2

2 . The solution of HR neuron is bounded under given parameters in this

paper and we know | x |< 2. Hence, detA(s(t))
detA22(s(t))

= 2(−3ax2 + 2bx) + (rs−1)2

2r +
(−2dx+1)2

2 ≤ 8b+ (1+4d)2

2 + (rs−1)2

2r and we can choose β = 8b+ (1+4d)2

2 + (rs−1)2

2r .
According to the Theorem 1, we conclude that when the coupling strength C >
1
2

β
|λ2| , the coupled HR neurons can achieve synchronization. As an illustration,

we consider four coupled chaotic HR neurons with ring structure. Here, in order
to make a single HR neuron chaotic, we take r = 0.015. The largest nonzero
eigenvalue of the coupling matrix A is λ2 = −4sin2 π

4 . We can infer that when
C > 1

2
β

|λ2| ≈ 68.5, complete synchronization of four coupled chaotic HR neurons
is realized (See Fig.4).
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Fig. 4. Temporal evolution of synchronization error ei = xi+1−x1, (i = 1, 2, 3) for four
coupled chaotic HR neurons when the coupling strength C = 69

4 Conclusion

In this paper, a general criterion, which determines synchronization stability
of N coupled systems with the first state variable coupling, was developed in
terms of the stability theory of dynamical system. This criteria is conveniently
implemented with only calculating the determinant of the Jacobian and the
largest nonzero eigenvalue of the coupling matrix. It avoid rigorous calculation
of the Routh-Hurwitz rule, which determines sign of all eigenvalues of the corre-
sponding Jacobian. Some numerical simulations were conducted to support our
theoretical analysis. But it is noted that this is a sufficient condition. In general,
the coupling strength, which is derived by means of the Theorem in this paper,
is larger than actual critical coupling value. It is our future work to find minimal
T in Theorem.
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Abstract. Cellular automata(CA) is not only a discrete dynamical system with
infinite dimensions, but also an important computational model. How simple can
a CA be and yet support interesting and complicated behavior. There are many
unsolved problems in the theory of CA, which appeal many researchers to focus
their attentions on the field, especially subclass of CA – linear CA. These studies
cover the topological properties, chaotical properties, invertibility, attractors and
the classification of linear CA etc.. This is a survey of known results and open
questions of D-dimensional linear CA over Zm.

1 Introduction

Cellular automata (CA) was originally proposed by von Neumann. The latter wanted to
construct simple mathematical models, capable on the one hand of universal computa-
tions, on the other hand of self-reproduction. One of the most remarkable example is
the so called “game of life” defined by Conway in 1970.

A decisive contribution to the mathematical study of CA were given by Wolfram at
beginning of 1980s[20]. Based on computer simulation, Wolfram proposed an empiri-
cal classification of CA. Any way many of the later researchers, however various their
means, were aimed at giving a mathematical sense to Wolfram’s classification. Unfortu-
nately, some properties of the temporal evolution of general CA are undecidable[3,11].

Linear CA is a subclass of CA. Despite of their apparent simplicity, linear CA may
also exhibit complex features and allow a detailed algebraic analysis. Recently, many
scientists focus their attentions on linear CA[7,15,16,18,17]. This paper is survey of
known results and open questions of D-dimensional linear CA over Zm. However, we
would like to point out that any survey of CA is bound to be incomplete. We only focus
on some topological properties, which are closely relative to the chaotical theory.

2 Definitions and Notations

Now we recall the definitions of discrete time dynamical systems(DTDS).

& Supported by Natural Science Foundation of China (NSFC) grant 60103015 and The Project-
sponsored by SRF for ROCS, SEM.
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2.1 Topological Dynamical Systems and Topological Properties

A topological dynamical system is a compact metric space X endowed with a continu-
ous self-map F : X→ X . If F is surjective, (X ,F) is called an endomorphism. It turns
out that (C D

m ,F) endowed with a CA map F is a topological dynamical system.
A dynamical system (X ,F) is sensitive to initial conditions iff there exists δ > 0

such that∀x ∈ X ∀ε > 0 ∃y ∈ B(x,ε) ∃n ∈ Z : d(Fn(x),Fn(y)) > δ. The value δ is
called sensitivity constant.

A dynamical system (X ,F) is equicontinuous at x∈X iff for any δ> 0 ∃ε> 0, ∀y∈
B(x,ε) ∃n ∈ N : d(Fn(x),Fn(y)) < δ. A dynamical system (X ,F) is equicontinuous
iff it is equicontinous at every x ∈ X . The notions of sensitivity and equicontinuity are
related. In fact, F is not sensitive⇔∃x : F is equicontinuous at x.

A dynamical system (X ,F) is positively expansive iff there exists δ > 0 such that
∀x,y ∈ X , x �= y, ∃n ∈ N : d(Fn(x),Fn(y)) > δ. The value δ is called expansivity con-
stant.

A dynamical system (X ,F) is strongly transitive iff for all nonempty open set U ⊆X
we have ∪+∞

n=0Fn(U) = X .
Let P(F) = {x ∈ X | ∃n ∈ N : Fn(x) = x} be the set of the periodic points of F . A

dynamical system (X ,F) is regular iff it has dense periodic orbits ( P(F) is a dense
subset of X), e.g. ∀x ∈ X and ε > o ∃y ∈ P(F) such that d(x,y)< ε.

2.2 Linear CA

For m ≥ 2, let Zm, denote the ring of integers modulo m. We consider the space of
configurations C D

m = {c|c : ZD → Zm}, which consists of all function from ZD into Zm.
Each element of C D

m can be visualized as an infinite D-dimensional lattice in which
each cell contains an element of Zm.

Let s ≥ 1. A neighborhood frame of size s is an ordered set of distinct vectors
u1,u2, · · · ,us ∈ ZD. Given any function f : Zs

m → Zm, a D-dimensional CA based on
local rule f is the pair (C D

m ,F), where F : C D
m → C D

m , is the global transition map
defined as follows. For every c ∈ C D

m the configuration F(c) is such that for every
v ∈ ZD

[F(c)](v) = f (c(v + u1), · · · ,c(v + us)). (1)

Note that the local rule f and the neighborhood frame completely determine F . The
linear CA is CA with a local rule of the form f (x1, · · · ,xs) = ∑s

i=1 λixi mod m, whereλ1,
· · ·, λs ∈ Zm. Throughout the paper, B(x,ε) will denote the set {y ∈ X : d(x,y) ≤ ε}
with respect to corresponding distance. F(c) will denote the result of the application of
the map F to the configuration c and Fn(c) = F(F(n−1)(c)).

3 Classifications of Linear CA

In the beginning of 1980s Stephen Wolfram introduced a heuristic classification of CA
based on the qualitative long-term behavior starting from random initial conditions, as
observed on computer simulations [20]:

(W1) A spatially homogeneous state.
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(W2) A sequence of simple stable or periodic structure.
(W3) Chaotic aperiodic behavior.
(W4) Complicated localized structure, some propagating.
Later work concentrated on formalizing the intuitive classification by Wolfram.

From the same line, Čulik and Yu [3], Sutner [19] consider some similar classifica-
tions of CA. In recent times, Hurley [9] addressed another classification of CA based
on attractor, which has been refined by Kurka [12].

3.1 Classifications According to the Local Behavior

In order to study the topological properties of D-dimensional CA, we need give a dis-
tance over the space of configuration, most researches adopted the metric topology in-
duced by the Tychonoff distance. Let Δ : Zm×Zm →{0,1} given by Δ(i, j) = 0, if i = j
and Δ(i, j) = 1, if i �= j. For any a,b ∈ C D

m the Tychonoff distance d(a,b) is defined by

d(a,b) = ∑
v∈ZD

Δ(a(v),b(v))
2‖v‖∞

(2)

It is easy to verify that d is a metric on C D
m . With this topology, C D

m is a compact and
totally disconnected space and every CA is uniformly continuous map.

For the linear CA over ring Zm, several important topological properties have been
studied during the last few years [1,10,15,18] and in some cases exact characterization
have been obtained (see Table.1, P denotes the set of prime factors of m). According

Table 1. Characterization of topological properties of linear CA over Zm

Propertry Characterization

Surjectivity gcd(m,λ1, · · · ,λs) = 1
Injectivity (∀p ∈P)∃!λi) : p � |λi
Erodicity gcd(m,λ1, · · · ,λs) = 1
Transitivity gcd(m,λ1, · · · ,λs) = 1
Regularity gcd(m,a−r , · · · ,ar) = 1
Expansitivity gcd(m,a−r , !‘,a−1,a1, !‘,ar) = 1
Sensitivity (∃p ∈P) : � |gcd(λ2, !‘,λs)
Pos. expansivity gcd(m,a1, · · · ,ar) = 1
Equicontinuity (∀p ∈P)p|gcd(λ2, · · · ,λs)
Strong trans. (∀p ∈P)(∃λi,λ j) : p � |λi∧ p � |λ j)

to the above results, G. Manzini and L. Margara [15] give a hierarchical classification of
linear CA, namely equicontinuous CA, sensitive but not transitive CA, transitive but not
strongly transitive CA, strongly transitive but not positively expansive CA, and positive
expansive CA, which can be expressed the degrees of chaoticity. The membership of
the classification require only gcd computations and it can be checked in polynomial
time in logm. Unfortunately, in general case the problem of deciding whether a given
CA belongs to one of the above-mentioned class is not even known to be decidable.
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3.2 Classifications According to the Attractors

What is an attractor of a CA? Let (X ,F) be a dynamical system. A nonempty subset
Z ⊆ X is an attractor for F iff there exists an open set U ⊆ X such that F(U)⊆U, Z =
∩ j≥0F j(U).

Attractors of CA have been studied by Hurley [9], Kukra[12]. For linear CA over
Zm, G. Manzini and L. Margara [16] continue the study on their dynamical properties
(see [1,10,15,18]) and furthermore they find that the evolution of a linear nonsurjetive
cellular automata F will take place completely within a subspace YF of C D

m after a
transient phase of length at most -log2 m.. Based on the result, they make a further
step in the analysis of the long-term behavior of linear CA and prove that for linear
CA (Surjective and nonsurjective) it is possible to determine the membership in the
Kukra’s classification by looking at the coefficients of the associated local rule. The
characterization of attractors for linear CA is a basic step towards the computation of
their entropy, which is uncomputable for general CA [8].

3.3 Chaos for Linear CA

The notion of chaos is very appealing, and it has intrigued many scientist[5,13]. For
DTDS, a universally accepted definition of chaos does not exist. In the popular book
by Devaney[5], the author isolates three components as being the essential features of
chaos: transitivity, sensitivity to the initial conditions and regularity. For CA, a result
has been proved in [2]: topological transitivity implies sensitivity to initial conditions.
Kundsen in [13]proposed another definition of chaos which excludes chaos without
non-periodicity. According to the Kundsen’s definition, the dynamical system is chaotic
iff the system has a dense orbit and sensitive to initial conditions.

In [1,6], the authors apply the definition of chaos given by Devaney and by Kundsen
to the study of CA. For linear CA, Favati et al [6] completely classify one-dimensional
additive CA definition over any alphabet of prime cardinality according to the De-
vaney’s definition of chaos. In [1], G. Cattaneo et al completely characterize topologi-
cal transitivity for every D-dimensional linear CA over Zm (m≥ 2 ,and D≥ 1) which is
equivalent to ergodic and regularity for any one-dimensional linear CA over Zm (m≥ 2).
But for D-dimensional linear CA over Zm (D ≥ 2), regularity is equivalent to surjec-
tivity remains open. Furthermore, Finelli et al [7] establish a connection between the
theory of Lyapunov exponents and the properties of expansivity and sensitivity to initial
conditions.

The topological entropy is often interpreted as a measure of the chaotic character
of a dynamical system, which measures the uncertainty of the forward evolution of any
dynamical system. For general CA, the topological entropy is one of those properties
that are known to be undecidable[8]. Nevertheless there a few classes for which it has
been computed. In [4], the authors adopt following simpler form:

H (C D
m ,F) = lim

w→∞
(lim
t→∞

logR(D)(w,t)
t

) (3)

where w is the side-length of a D-dimensional region of the lattice, R(D)(w, t) be the
number of distinct D+1 dimensional hyperrectangles obtained as space-time evolution
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diagrams of (C D
m ,F). According to equation(3), the authors prove a closed formula for

the topological entropy of D-dimensional linear CA over Zm.

4 Conclusions

Linear CA have been studied from several different angles other than the ones men-
tioned here. Computation-theoretic questions in computer science, simulation of nat-
ural phenomena in physics and biology are considered important. We focus on topics
which are closer to computer science and physics rather than its applications. We hope
the survey to be useful to both fresh entrants into this field and to experts working on
particular aspects of CA.
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8. L. Hurd, J. Kari and K. Čulik: The topological entropy of cellular automata is uncomputable,
Ergodic Theory and Dynamical Systems 12 (1992) 255-265.

9. M. Hurley: Attractor in cellular automata, Ergodic Theory and Dynamical Systems 10 (1990)
131-140.

10. M. Ito, N. Osato, M. Nasu: Linear cellular automata over Zm, J. Comput. System Sci. 27
(1983) 125-140.

11. J. Kari: Reversibility of 2D cellular automata is undecidable, Physica D 45 (1990) 379-385.
12. P. Kurka: Languages, equicontinuity and attractors in cellular automata, Ergodic Theory and

Dynamical Systems 17 (1997) 417-433.
13. C. Kundsen: Chaos without nonperiodicity, Amer. Math. Monthly 101 (1994) 563-565.
14. G. Manzini: Characterization of sensitive linear cellular automata with respect to the counting

distance, Lecture Notes in Computer Science Vol.1450 Springer Verlag (1998) 825-833.
15. G. Manzini, L. Magara: A complete and effciently computable topologyical calssification of

D-dimensional linear cellula automata over Zm, Theoret. Comput. Sci. 221 (1999) 157-177.
16. G. Manzini, L. Margara: Attractor of linear cellular automata, J. Comput. system Sci. 58

(1999) 597-610.
17. T. Sato: Group Structured linear cellular automata over Zm, J. Comput. System Sci. 27 (1999)

18-23.
18. T. Sato: Erogodicity of linear cellular automata over Zm, Inform. process. lett. 61(3) (1997)

169-172.
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Abstract. This paper considers a design framework of a computational 
experiment in finance. The examination of relationships between statistics used 
for economic forecasts evaluation and profitability of investment decisions 
reveals that only the ‘degree of improvement over efficient prediction’ shows 
robust links with profitability. If profits are not observable, this measure is 
proposed as an evaluation criterion for an economic prediction. Combined with 
directional accuracy, it could be used in an estimation technique for economic 
behavior, as an alternative to conventional least squares. Model discovery and 
performance surface optimization with genetic algorithm demonstrate 
profitability improvement with an inconclusive effect on statistical criteria. 

1   Introduction 

Motivations for this paper come from the ongoing search for the foundation of 
evolutionary computation (EC) in finance and a claim by [1] that traditional summary 
statistics are not closely related to a forecast’s profit, with the exception of directional 
accuracy (DA).  

Financial prices exhibit non-stationarity, autocovarience and frequent structural 
brakes, posing problems for their modeling. This paper investigates how data mining 
benefits from genetic algorithm (GA) model discovery, performance surface 
optimization and pre/pro-processing, improving predictability or/and profitability.  

2   Methodology 

For our experiment we build evolutionary / artificial neural network (E/ANN) 
forecasts and generate a posterior optimal rule. The rule, using future information to 
determine the best current trading action, returns a buy/sell signal (B/S) today if 
prices tomorrow have increased/decreased. A posterior optimal rule signal (PORS) is 
then modeled with ANN forecasts, generating a trading B/S signal. Combining a 
trading signal with a strategy warrants a position to be taken. We consider a number 
of market timing strategies, appropriate for different strengths of the B/S signal. If we 
have a buy (sell) signal on the basis of prices expected to increase (decrease) than we 
enter a Long (Short) position. Note that our approach is different from standard B/S 
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signal generation by a technical trading rule. In the latter it is only a signal from a 
technical trading rule that establishes that prices are expected to increase/decrease. In 
our model we collaborate signal’s expectations of price change (given by PORS) with 
a time-series forecast.  

To apply our methodology we develop the dual network structure, presented in 
Figure 1. The forecasting network feeds into the action network, from which the 
information set includes the output of the first network and PORS, as well as the 
inputs used for forecasting, in order to relate the forecast to the data upon which it 
was based. 

 
 
 

 

 

 

 

 

Fig. 1. Dual ANN: (1) forecasting network; (2) acting network 

The model is evolutionary in the sense it considers a population of networks 
(individual agents facing identical problems/instances) that generate different 
solutions, which are assessed and selected on the basis of their fitness. 
Backpropagation is used in the forecasting net to learn to approximate the unknown 
conditional expectation function (without the need to make assumptions about data 
generating mechanism and beliefs formation). It is also employed in the action net to 
learn the relationship between forecasts’ statistical and actions’ economic 
characteristics. Lastly, agents discover their optimal models with GA; applying it for 
ANN model discovery makes technical decisions less arbitrary.  

2.1   Generating Posterior Optimal Rule Signal 

PORS is a function of a trading strategy adopted and based on the amount of 
minimum profit and the number of samples into the future. Stepping forward one 
sample at a time, the potential profit is examined. If the profit expected is enough to 
clear the minimum profit after transaction costs (TC), a PORS is generated. The 
direction of PORS is governed by the direction of the price movement. Normally, the 
strength of the signal reflects the size of underlying price changes, although, we also 
examine signals without this correlation to identify when profit generating conditions 
begin. Lastly, we consider PORS generated only at the points of highest profit to 
establish the maximum profit available. 
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3   Description of the Environment 

Let Y be a random variable defined on a probability space ( ,  , ).  is a space of 

outcomes,  is a -field and  is a probability measure. For a space ( ,  , ) a 

conditional probability P[A| ] for a set A, defined with respect to a -field , is the 
conditional probability of the set A, being evaluated in light of the information 
available in the -field . Suppose economic agents’ utility functions are given by a 
general form:                                                   

( ) ( , ( ))t s t s t sU W g Y fcδ+ + += . (1) 

According to (1), agents’ utility depends on: a target variable Yt+s; a 
decision/strategy variable, (fct+s), which is a function of the forecast, fct+s, where s  
1 is a forecasting horizon. Setting the horizon equal to 1, we examine the next period 
forecast (when this simplification does not undermine the results for s 1). A reward 
variable Wt+s is sufficiently general to consider different types of economic agents and 
includes wealth, reputation, etc. wt+1(yt+1, fct+1) is the response function, stating that at 
time t+1 an agent’s reward wt+1 depends on the realization of the target variable yt+1 
and on the accuracy of the target’s forecast, fct+1. Forecasting is regarded as a major 
factor of a decision rule, being close to the reality in financial markets. Also, it has a 
developed statistical foundation in econometrics allowing its application in 
evolutionary computation. 

Let fct+1= ’Xt to be a forecast of Yt+1 conditional on the information set t, where 

unknown m-vector of parameters,  χ , with  to be compact in Rk and observable 
at time t n-vector of variables, Xt. Xt are t-measurable and might include some 
exogenous variables, indicators, lags of Yt, etc. An optimal forecast does not exclude 
model misspecification, which can be due to the form of fct+1 or failure to include all 
relevant information in Xt. Under imperfect foresight, the response function and, 
therefore, the utility function are negatively correlated with forecast error, 

1 1 1 1 ; 0t t t te y fc e+ + + +≡ − > . A mapping of the forecast into a strategy rule, (fct+1) 

(combined with elements of Xt) determines a predictive density gy, which establishes 
agents’ actions.  

In this setting, maximizing expected utility requires us to find an optimal forecast, 
fct+1 and to establish an optimal decision rule, (fct+1). Note that optimality is with 
respect to a particular utility function, implemented through a loss function, in the 
sense that no loss for a correct decision and a positive loss for incorrect one. Given a 
utility function, expected utility maximization requires minimization of the expected 
value of a loss function, representing the relationship between the size of the forecast 
error and the economic loss incurred because of that error. A strategy development 
(mapping of the forecast into a decision rule) is another way to minimize the expected 
value of a loss function.  

A loss function, L: R R+, related to some economic criteria or a statistical 
measure of accuracy, takes a general form: 
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( ,  ,  ) [ (1- 2 )1( 0)] pL p a e a a e e≡ + < , (2) 

where  is a coefficient of risk aversion; e is the forecast error;  χ [0,1] is the degree 

of asymmetry in the forecaster’s loss function.  L( , , e) is t-measurable. It could 
also be presented as: 

1 1 1 1( ,  ,  ) [ (1- 2 )1( ( ) 0)] ( )
p

t t t tL p a a a Y fc Y fcθ θ θ+ + + +≡ + − < − , (3) 

where  and  are shape parameters and a vector of unknown parameters,  χ .  For 

given values of  and  an agent’s optimal one-period forecast is  

1 1 1min [ ( ,  ,  )]  [ ( )]  [ ( )]t t tE L E L Y fc E L e
θ

ρ α θ + + +∈Θ
= − =  (4) 

Training EANN under different criteria allows us to examine relationships between 
statistical measures and economic characteristics. 

4   Experimental Design 

4.1   Performance Surface 

The performance of ANN learning is monitored by observing how the cost changes 
over training iterations. The learning curve presents the internal error over each epoch 
of training, comparing the output of the ANN to the desired output. In price 
forecasting, the target is the next day closing price, where in signal modeling, the 
target is the current strategy. Achieving an accurate representation of the mapping 
between the input and the target might not necessarily lead to a forecast to be 
exploitable or a strategy using that forecast to be profitable.  

Although we train ANN with the goal to minimize internal error function, we test 
and optimize its generalization ability by comparing its performance with the results 
of a benchmark, an efficient prediction (EP). In forecasting prices, EP is the last 
known value. For predicting strategies, it is the buy/hold (B/H) strategy. The degree 
of improvement over efficient prediction (IEP) is calculated as an error from a de-
normalized value of the ANN and a desired output, then normalizing the result with 
the difference between the target and EP value.  

Making a prediction using a change or a percentage change, the value of IEP is 
particularly significant. IEP around 1, implying that the ANN predicted a change or a 
percentage change of zero, indicates that the network does not have adequate 
information to make a valid prediction. So, it ends up predicting the mean of all 
changes, zero. Predicting two samples or more in advance, one can have reduction in 
value of IEP (in comparison to one sample prediction). This does not mean that there 
is an improvement, since the change in the desired value is typically larger for a 
longer prediction. We classify our results using the following scale: IEP<0.8 υ 
excellent; IEP<0.85 υ very good; IEP<0.9 υ good; IEP<0.95 υ satisfactory; IEPƒ0.95 
υ weak. 
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4.2   Profitability as Performance Measure  

Similar to the performance evaluation criteria of investment managers (total realized 
returns adjusted for the riskness) the realized total continuously compounded returns 
or excess returns have been used to review trading rules developed under evolutionary 
learning. Unlike case-by-case evaluation of actions of portfolio managers, decisions 
of evolutionary agents are assessed on aggregate, over the entire trading period. 
Therefore, in computational modeling process/means used by agents need to be 
explicitly evaluated. Under continuously compounded reinvestment of realized 
returns, strategies with a higher number of trades and lower returns per trade receive 
greater fitness. [2] demonstrates that strategies with the lowest mean returns and 
variances per trade could be evaluated as best. 

We examine the following forms of cumulative and individual trades’ return 
measures: non-realized simple aggregate return; profit/loss factor; average, maximum 
gain/loss. In addition we estimate exit efficiency, measuring whether trades may have 
been held too long, relative to the maximum amount of profit to be made, as well as 
the frequency and the length of trades, including out of market position. To assess risk 
exposure we adopt the Sharpe ratio1 and the maximum drawdown2, as well as 
common ‘primitive’ statistics. To overcome the Fisher effect we consider trading 
positions with a one-day delay.  

TC is assumed to be paid both when entering and exiting the market, as a 
percentage of the trade value. TC accounts for broker’s fees, taxes, liquidity cost (bid-
ask spread), as well as costs of collecting/analysis of information and opportunity 
costs. According to [3] large institutional investors achieve one-way TC about 0.1-
0.2%. Often TC in this range is used in computational models. Since TC (defined 
above) would differ for heterogeneous agents, we report the break-even TC that 
offsets trading revenue with costs leading to zero profits.  

The classification of the ANN output as different types of B/S signals determines 
the capability of the model to detect the key turning points of price movement. 
Evaluating the mapping of a forecast into a strategy, (fct+1), assesses the success in 
establishing a predictive density, gy that determines agents’ actions.  

4.3   Time Horizons and Trading Strategies Styles 

Heterogeneous traders use different lengths of past and forward time horizons to build 
their forecasts/strategies. We have run the experiment on stock indexes from a 
number of markets and found that ‘optimal’ length of training/validation period is a 
function of specific market conditions. In this paper we adopt three memory time 
horizons, [6; 5; 2½] years. We run the experiment with one year testing horizon, as it 
seems to be reasonable from the actual trading strategies perspective.  

Both long and short trades are allowed in the simulation. Investing total funds for 
the first trade, subsequent trades (during a year) are made by re-investing all of the 
money returned from the previous trades. If the account no longer has enough capital 
to cover TC, trading stops. 

                                                           
1
  Given by the average return divided by the standard deviation of that return. 

2 The size of the individual losses occurred while achieving given gains. 
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5   Genetic Algorithm Optimization 

In this research EC is used for ANN model discovery, considering GA optimization 
for: network’s topology; performance surface; learning rules; number of neurons and 
memory taps; weight update; step size and momentum rate. GA tests the performance 
of various ANN models. We examine the performance surface optimized with GA for 
DA, discounting the least recent values and minimizing the number of large errors. 
For learning rule optimization we consider Steepest Descent; Conjugate Gradient; 
Quickprop; Delta Bar Delta and Momentum.  

With GA optimization we test the integer interval [1, 20] for hidden layers’ 
neurons, expecting that a higher number increases the network’s learning ability, 
although at the expense of harder training and a tendency to overspecialization. GA 
optimization considers the range [1, 20] for the number of taps, affecting the memory 
of the net. GA optimization of the weight update for static networks considers 
whether the weights are updated following all data (batch) or after each piece of data 
(online) are presented. For dynamic networks GA determines a number of samples to 
be examined each time ANN updates weights during the training phase. 

GA optimizes the step size of the learning rates in the range [0, 1]. The momentum, 
using the recent weight update, speeds up the learning and helps to avoid local 
minima. GA searches in the range [0, 1] for the value by which the most recent 
weight update is multiplied.  

In terms of GA parameters, we apply the tournament selection with size 4, 
{prob=fitness/ fitness}. Four types of mutation are considered in the experiment: 
uniform, non-uniform, boundary and Gaussian. Probability of mutation (PM) tested in 
the range [0, 0.05] and probability of uniform crossover is examined in the range [0.7, 
0.95]. We test the effect of the increase in population size in the range [25, 200] on 
performance and computational time. The training continues until a set of termination 
criteria is reached, given by maximum generations in the range [100, 500]. 

When a model lacks information, trading signals’ predictions often stay near to the 
average. If ANN output remains too close to the mean to cross over the thresholds 
that differentiate entry/exit signals, post-processing is found to be useful (establishing 
thresholds within the range). Post-processing with GA optimization, examines a 
predicted signal with simulated trades after each training, searching for the thresholds 
against the values produced by ANN to generate maximum profit.  

GA tests various settings from different initial conditions (in the absence of a priori 
knowledge and to avoid symmetry that can trap the search algorithm). We use GA 
optimization with the aim to minimize IEP value and profitability as a measure of 
overall success. 

6   Empirical Application 

6.1   Data 

We consider daily closing prices for the MTMS (Moscow Times) share index 
obtained from Yahoo Finance. The time period under investigation is 01/01/97 to 
23/01/04. There were altogether 1575 observations in row data sets. Examining the 
data graphically reveals that the stock prices exhibit a prominent upward, but non-
linear trend, with pronounced and persistent fluctuations about it, which increase in 
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variability as the level of the series increases. Asset prices look persistent and close to 
unit root or non-stationarity. Descriptive statistics confirm that the unit-root 
hypothesis cannot be rejected at any confidence level. The data also exhibits large and 
persistent price volatility with significant autocovarience even at high order lags.  

Changes in prices increase in amplitude and exhibit clustering volatility. The daily 
return displays excess kurtosis and the null of no skewness is rejected at 5% critical 
level. The tests statistics lead to rejection of the Gaussian hypothesis for the 
distribution of the series. It confirms that high-frequency stock returns follow a 
leptokurtic and skewed distribution incompatible with normality. 

6.2   Experimental Results 

ANN with GA optimization was programmed with various topologies3. Altogether we 
have generated and considered 93 forecasting and 143 trading strategies’ settings. 
Effectiveness of search algorithm was examined with multiple trials for each setting. 
92% of 10 individual runs produce identical results, confirming the replicability of 
our models. Efficiency of the search was assessed by the time it takes to find good 
results. The search with ANN unoptimized genetically took a few minutes, where the 
search with GA optimization lasted on average 120 minutes on a Pentium 4 processor. 

Over a one year testing period 19 trading strategies were able to outperform in 
economic terms the B/H strategy, with an investment of $10,000 and a TC of 2% of 
trade value. The average return improvement over B/H strategy was 20%, with the 
first five outperforming the benchmark by 50% and the last three by 2%. The primary 
strategy superiority over B/H strategy was 72%.  

For the five best performing strategies, the break-even TC was estimated to be 
2.75%, increasing to 3.5% for the first three and nearly 5% for the primary strategy. 
Thus, the break-even TC for at least primary strategy appears to be high enough to 
exceed actual TC.  

The experiment demonstrates that normalization reduces the effect of non-
stationarity in the time series. The effect of persistency in prices diminishes with the 
use of the ‘percentage change’ in values. Table 1, presenting the average effect of GA 
post-processing on performance, shows that it has generally improved (positive 
values) statistical characteristics. Although only accuracy4 exhibits sizable change, the 
effects on IEP and correlation5 were significantly smaller and not always positive. 

Table 1. GA Post-Processing Effect 

Stats./Sets 2000-2004 1998-2004 1997-2004 

IEP 0.059 -0.838 0.001 
Accuracy (%) 1.3 6.58 0.95 

Correlation 0.016 0.011 0.001 

                                                           
3 Programs in Visual C++, v. 6.0 are available upon request.  We have run tests on 

TradingSolutons, v. 2.1, NeuroSolutions v. 4.22 and Matlab v. 6. 
4 Percentage of correct predictions. 
5 Correlation of desired and ANN output. 
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The experiment with four types of GA mutation did not identify the dominance by 
a particular type. We have run simulations with different PM to test how the 
frequency of novel concepts’ arrival affects modeling of the environment with 
structural brakes. The results, presented in Table 2, show that newcomers generally 
benefit the system. Although we have expected this outcome, its consistency among 
all (including short time) horizons was not anticipated. In economic terms, runs with a 
high probability of mutation {PM=0.05} have produced the highest returns. At the 
same time, this relationship is of non-linear character (e.g. {PM=0.001} consistently 
outperforms {PM=0.02}).  

Some moderate, although consistent relationship between PM and strategies’ risk 
exposure was found. Higher PM resulted in low riskness, given particularly by Sharpe 
ratio. We have also noticed some positive correlation between PM and annual trades’ 
quantity, although this relationship appears to be of moderate significance and 
robustness. Trading frequency in simulations without mutation seems to be set at the 
beginning and stay until the end either at low or high values. The experiments without 
mutation have produced strong path-dependent dynamics, though not necessarily with 
sub-optimal outcome. It seems there exist some ‘optimal’ PM (in our experiment 0.05 
and 0.001) and tinkering with this parameter can improve overall profitability. 

Table 2. Economic and Statistical Measures under Different Probabilities of Mutation 

Meas./PM    0 0.001 0.02 0.05    0 0.001 0.02 0.05    0 0.001 0.02 0.05 

Return (%) 76.9 85.7 76.4 99.8 65.6 75.1 62.1 86.8 68.3 74.7 60.8 82 

Sharpe R 0.13 0.1 0.15 0.16 0.13 0.13 0.14 0.16 0.13 0.13 0.13 0.14 

Trades N°    1    3    3    5    9    1    5    10    7    1    4    3 

IEP 1.116 1.126 1.169 1.1350.949 0.95 0.9580.9360.9421.0761.077 0.979 

Accuracy 51.5 32.9 37.66 54.98 41.2 45.9240.7742.0632.38 32.9 32.9 32.4 

Data Sets 2000-2004 1998-2004 1997-2004 

 

We have not found a robust relationship between the memory length and PM>0. 
Although, the memory length in simulations without mutation was on average 2.5 
times shorter than in experiments with mutation. The relationship between PM and 
common statistical measures was inconclusive at acceptable significance or 
robustness. 

GA model discovery reveals that MLP and TLRN with Laguarre memory, neurons 
number in the hidden layer in the range [5, 12] and Conjugate Gradient learning rule 
generate the best performance in statistical and economic terms for forecasting and 
acting nets. Generally models discovered with GA have lower trading frequencies, but 
without reduction in riskness. Annualized returns of those models were improved 
moderately. The effect of GA discovery on models’ statistical performance was not 
conclusive, with a weak tendency towards accuracy amelioration. An increase in 
population size for GA optimization didn’t lead to improvement in results.  
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The relationship between statistical measures (accuracy, correlation, IEP) and 
trading strategies’ profitability seems to be of a complicated nature. Among the ten 
statistically sound price forecasts, there is only one that was used in a trading strategy 
superior to B/H benchmark. The best five in economic terms strategies are among the 
worst 50% according to their accuracy. Three of the most accurate strategies are 
among the worst 25% in terms of their annualized return. Correlation of desired and 
ANN output characterizes one of the first five strategies with highest return among its 
best performers, another one among its worst results and the remaining are in the 
middle. IEP shows some robust relationships with annualized return. All five 
strategies with highest return have IEP<0.9. Furthermore, one of the first five 
profitable strategies has one of the three best IEP values. Therefore, if profits are not 
observable, IEP could be used as an evaluation criterion for an economic prediction. 

Regarding the performance surface optimization, two out of the three best 
strategies included an adjustment to treat directional information as more important 
than the raw error. We found that training ANN with the performance surface 
genetically optimized for DA, discounting least recent values or minimizing number 
of large errors generally improves profitability. Among 25% of the weak (in 
economic terms) strategies’ annualized returns, there is none with learning criteria 
optimized. Our experiment has shown that among three optimizations of the 
performance surface considered, strategies trained on learning the sign of the desired 
output were generally superior to those trained to reduce the number of large errors or 
focusing learning on recent values. At the same time, the impact of optimization for 
DA on common statistical measures was insignificant, conforming that DA only 
weekly relates to conventional statistical criteria.  

Our simulation supports a claim that DA relates to forecast profits more than mean 
squared/absolute errors criteria. The experiment rejects an assertion that all other 
summary statistics are not related to forecast profit, as was demonstrated by the IEP 
relationship with profitability. As the results show that DA does not guarantee 
profitability of trading strategies trained with this criterion, it might be ineffective to 
base empirical estimates of economic relationships on that measure. If conventional 
least squares are to be considered inadequate, an alternative estimation technique for 
economic behavior might use a combination of measures, demonstrated to have 
certain relationships with profitability; IEP and DA have been identified so far. 

7   Conclusion 

The performance surface set-up is a crucial factor in search of a profitable prediction 
with an evolutionary model. Measures of trading strategies’ predictive power might 
significantly differ from criteria leading to its profit maximization.  

GA post-processing has generally improved statistical characteristics. Novel 
concepts’ arrival, determined by PM, benefits the system in economic terms, but is 
inconclusive statistically.  

Models discovered with GA have moderately higher profitability, but the impact 
on their statistical characteristics was inconclusive. GA optimization of performance 
surface (particularly for DA) has a positive effect on strategies’ profitability, though 
with little impact on their statistical characteristics. Since DA does not guarantee 
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profitability of trading strategies trained with this criterion, it might be ineffective to 
base empirical estimates of economic relationships only on that measure. 

When profits are not observable, IEP is proposed as an evaluation criterion for an 
economic prediction, due to its robust relationships with returns. If conventional least 
squares are to be considered inadequate, an alternative estimation technique for 
economic behavior might use a combination of measures, demonstrated to have 
certain relationships with profitability; IEP and DA have been identified so far. 
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Abstract. Neural networks have advantages of the high tolerance to noisy data 
as well as the ability to classify patterns having not been trained. While being 
applied in data mining, the time required to induce models from large data sets 
are one of the most important considerations. In this paper, we introduce a 
query-based learning scheme to improve neural networks' performance in data 
mining. Results show that the proposed algorithm can significantly reduce the 
training set cardinality. Additionally, the quality of training results can be also 
ensured. Our future work is to apply this concept to other data mining schemes 
and applications. 

1   Introduction 

In this paper, we introduce a query-based learning scheme to back-propagation neural 
networks for data mining. Neural networks have advantages of the high tolerance to 
noisy data as well as the ability to classify patterns having not been trained [1-2]. 
They have been applied to a wide variety of problem domains to learn models that are 
able to perform different interesting tasks [4]. While being applied in data mining, the 
time required to induce models from large data sets is the most important considera-
tion [5]. Based on our previous paper [3], a query-based back-propagation neural 
network is introduced for data mining in this paper. Query-based learning is a meth-
odology that requires asking a partially trained neural network to respond to the ques-
tions [7]. Usually, only the selective-attention is applied to respond system's goal-
directed behavior with self-focus [8]. In some applications, there is no supervisor to 
verify the self-focus. We need a compromise is then made to environment-focus with 
self-regulation [3]. Namely Confucius say "To teach students in accordance with their 
aptitude" [3]. Experiments show that the classification performance can be signifi-
cantly improved while the quality of training data can be also ensured. The paper is 
organized as follows. Section 2 presents the data mining problem and introduces the 
multi-layer perceptron and back-propagation learning. Section 3 introduces query-
based learning method that combines into one composite back-propagation neural 
networks.  Section 4 presents the experiments and the results. Section 5 shows the 
conclusion and future perspectives. 

                                                           
* This paper is partially supported by NSC under grants NSC93-2213-E-002-086-. 
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2   Related Works 

Data mining is an interdisciplinary field with a general goal of predicting outcomes 
and uncovering relationships in data. It uses automated tools employing sophisticated 
algorithms to discover hidden patterns, associations, anomalies and/or structure from 
large amounts of data stored in data warehouses or other information repositories. 
Classification of data is one of the most important tasks in data mining. It first builds 
a model to describe a predetermined set of data classes or concepts [9]. Then, the 
model is used for classification.  

A neural network with multi-layer perceptron (MLP) and back-propagation learn-
ing is one of the best known techniques for data classification. MLP is constituted of a 
set of interconnected neurons organized in layers. The most often employed architec-
ture consists of three layers: an input layer, one hidden layer and an output layer. The 
output of a neuron as a function of the input signals can thus be written in the follow-
ing equations. 
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iθ  is the bias term and f is the activity function. )1( +lai is the output of the generic 
neuron belonging to layer )1( +l and ijw  is the synaptic weight associated with the 
connection between the generic neurons belonging to layers i and j . The most 
widely used weight updating algorithm for MLP is the back-propagation learning 
algorithm [10]. It consists of the repeated application of the rule for computing the 
influence of each weight in the network with respect to an arbitrary error function E. 
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3   Proposed Method 

A learning machine consists of a learning protocol and a deduction procedure [11]. 
The protocol accumulates information, which is used by the deduction procedure to 
assimilate the concept. In this paper, the learning protocols allow two kinds of infor-
mation supply: examples and oracle. When presented with data, oracle tells the 
learner whether or not the data positively exemplify the concept. In practice, the 
source of the training information could be modeled as an oracle. This source could 
be very expensive, such as samples that are simulated by a supercomputer or informa-
tion that could be gained only by destroying samples. According to Oates [12], when 
a machine learning algorithm is to learn, what are usually needed are some particular 
samples for training. With these samples, the algorithm could learn almost completely 
what it is taught. According to Baum [13], query-based learning is approximate to the 
way humans learn. It not only employs the samples for training that are presently at 
hand, but also uses the method of query to produce extra samples. Thus, the oracle 
should co-work with the query method that initiates training using a small input set, 
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and then produces appropriate training information with minimum cost. Fig. 1 shows 
the structure of the query-based neural networks. Suppose that the sample for training 
is )}(,{ xax , where the input vector is x and )(xa  is the output vector. When part of 
the sample is modeled as an oracle, a query about the input value could modify the 
ideal value for output. And when the point of query is set as y , the oracle would 
respond with )(ya . Accordingly, )}(,{ yay  is called the queried sample. 

 

 

Fig. 1. Query-based Neural Networks Framework 

3.1   Region of Maximum Ambiguity 

When a neural networks is within a training process of back-propagation, the sore 
objective is to diminish the difference between the ideal output value and the real 
output value. In training neural networks, information from the decision boundary has 
been proved to produce best training results [15]. The so-called “inversion algorithm” 
would employ the weight in the back-propagation and the desired output value in the 
decision boundary to gain the output vector )}0({ ja .  
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Similarly, the inversion algorithm would propagate the error signal backward to the 
input layer to update the activation value of the input units and eventually to lower the 
rate at which an error happens to the output value. The activation value of the input 
segment is updated as follows. 
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In each search, gradient descent algorithm would slide along the gradient of the func-
tion to search t the smallest error function E . To certain weights ijw , when the lowest 
point upon the boundary of )( ijwE  is being searched for, the path of the search is 
presented as: 
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This means that the search begins from )(lwij  to where the gradient ijwΔ lead, the 
purpose of which is to make )1( +lE  lower than )(lE ; the search goes on until the 
value of E  does not change anymore. 

Suppose that this is applied to classification into more than one group. Each group 
is represented by a particular output neuron. In the condition that the other output 
neurons do not influence each other, gradient descent algorithm would search for 
what could make the activation value of the kth output neuron as 0.5; in other words, 
it would search among the input pieces of information for the points whose output 
value is 0.5. The energy function or the error function, which, in the realm of the kth 
output neuron, is between the target value and the actual value, is represented as: 
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3.1   Query with Selective-Attention 

To construct the prediction mode is to draw the boundaries between the groups for the 
training samples in the field of application; each group would therefore be distin-
guished from each other. And after the training, the neural network would use the 
weight value to build up the parametric representation between the input and the out-
put values. 

As for each information point in the input spaces, we could calculate the gradi-
ent kjρ  of the input neuron that is related to each output neuron. To acquire the modi-
fied information at the mixed boundaries, according to Hwang [6], is to employ the 
inverted boundary points to calculate the gradient and eventually to acquire the con-
jugate pair. If the input vector is ),...,,,( 321 jnjjjj aaaaa =  and the output vector at the 
opposite side is )(Lak , then the gradient would be  
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where n  means the quantity of neurons at the hidden layer and ojw  means the 

weights between the j th neuron at the hidden level and the o th neurons at the output 
layer. And 
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Where )(⋅f  means the sigmoid function 
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)( . The derivation of iu with 

respect to ja is formulated as 
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For each inverted boundary point, a conjugate training data pair },{ −+ pp based 
on the magnitude of gradient can be created. The one point is at the one side and the 
other point is at the other side of the boundary. The two points lying on opposite sides 
of the line passing through the boundary point and perpendicular to the boundary 
surface are located with their distance to the corresponding boundary point equal 
to ||/1 gradient . The conjugate training data pair is extracted along the reverse bound-
ary: the inverted boundary point p  would be used to calculate the reciprocal of the 
magnitude of gradient, and then along the magnitude of gradient we would pick up 

two information points in symmetry, that is, +p and _p . Then we would use the ora-

cle to decide the groups which +p and _p  belong to. If they belong to the same group, 
we would ignore the reverse boundary point, and if they belong to two different 
groups, we would include them into the training information. 

3.3   Query with Self-regulation 

However, as for the datasets of the problem domain of data mining, the method in 
which the reverse boundary point is used to obtain the conjugate training data pair is 
inappropriate. The reason is that the information point obtained via the reverse 
boundary point does not necessarily exist in the information set of the problem do-
main and therefore we might fail to obtain information. 

Accordingly, in the new method proposed by this research, all of the training in-
formation would go through the examination of the oracle, and we would detect the 
information points that have been put in wrong classes. Further, after the distance 
between the information point and the boundary is calculated, the information would 
be saved in the priority queue sorted by min-heap. As Linden [14] and Reed et al. [15] 
suggest, in the training samples of the neural network, the input data of the noise/jitter 
or the outlier would not influence the decision boundary produced by the network. 
Therefore, our research set the quantity of samples in the priority queue as ten percent 
of the initial training samples. And we employ the sorting method of min-heap to 
contain only the samples that are spatially the most close to the boundary. 

To take Fig. 2 as an example,  and  mean respectively class A and class B of the 
training samples, and the black line means the boundary after the finish training. But 
in the data sets in the problem domain, different sampling methods would ignore 
some samples; the actual decision boundary could be wrongly-drawn. In Fig. 2,  and 

 mean respectively class A and class B of the un-sampled training data, and the 
pieces of information that are put into wrong class. Therefore, in the new method 
proposed by this research, all the training samples would be examined by the oracle, 
in order to detect the samples that are put in wrong class. Further, we would calculate 
distance between the boundary to each sample—that is, ()Dis —and then we would 
pick the samples that are near the boundary, that are spatially close to the boundary. 
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These samples would be put into the priority queue to become the information to 
improve the training. That the prediction mode has not learned enough about the sam-
ple in question, and that the information should be included in the training informa-
tion in order to have a better learning. The boundary of the prediction mode would be 
modified over and over. And when the difference between the square root of mean 
squared error (RMSE) of the previous prediction and the present calculation is lower 
than RMSE, it means that the prediction mode has finished the learning process. 

 

 

Fig. 2. An example of our query results 

3.4   Proposed Query-Based Learning Algorithm 

The step-by-step description of the proposed query-based learning algorithm is shown 
as follows [3]. 

Step 1: Initialize all weights randomly. 
Step 2: Train the neural network using a subset of the training samples Aai ∈}{ , 

where A denotes the training sets, }{ n
i RaA ∈= . 

IF E< RMSE or Epoch > Training Threshold  
THEN EXIT. 

Step 3: Using Oracle verify A to judge classification whether accuracy. 
Step 4: Insert the mistake samples to Priority Queue which sorted by min-heap. 
Step 5: Take samples in queue to add training sample. 
Step 6: Retaining the network  

IF E< RMSE or Epoch > Training Threshold  
THEN EXIT. 

 ELSE GOTO Step 2. 

4   Experiment Results 

The ultimate goal of a data mining process should not be just to produce a model for a 
problem at hand, but to provide one that is sufficiently credible and accepted and 



1230 L.-B. Lai, R.-I. Chang, and J.-S. Kouh 

 

implemented by the decision maker [9]. In order to verify the feasibility and effec-
tiveness of the proposed query-based learning procedure, this research uses database 
in UCI Machine Learning Repository [16]—Adult Database —to be the test data. We 
would use the data mining modes constructed by Query-Based Learning Neural Net-
works (QBL) and Back-propagation Neural Networks (BPN) to examine the correct-
ness and reliability of what the mode predicts.  

A common tool for classification analysis is the confusion matrix [17], a matrix of 
size LL× , where L denotes the number of possible classes. This matrix is created by 
matching the predicted and actual values. When 2=L  and there are four possibilities, 
as Table I shows: the number of True Negative (TN), False Positive (FP), False Nega-
tive (FN) and True Positive (TP) classifications. Furthermore, we applied to the posi-
tive predictive value (PPV) and Negative Predictive Value (NPV). The PPV of a test 
is the probability that the patient has the disease when restricted to those patients who 
test positive. The NPV of a test is the probability that the patient will not have the 
disease when restricted to all patients who test negative. Eventually, we employ four 
criterions to deal with the acquired diagnostic mode; the four are sensitivity, specific-
ity, Positive Predictive Value (PPV), and Negative Predictive Value (NPV).In addi-
tion we applied to the Receiver-Operator Characteristic (ROC) analysis that is an 
evaluation technique used in diagnostic, machine learning, and information-retrieval 
systems [18]. ROC graphs plot false-positive (FP) rates on the x-axis and true-positive 
(TP) rates on the y-axis.  

In our research, we use the rotation method to sample the training data; that is, the 
rotation method would train and examine group by group the pieces of training data in 
the datasets. As for the parameters about the structure of the neural network, the re-
search considers primarily the quantity of the hidden layer, learning rate, and mean 
squared error. As Rumelhart [10] concluded that lower learning rates tended to give 
the best network results. The convergence criteria used for training are a root mean 
squared error (RMSE) less than or equal to 0.01 or a maximum of 10000 iterations. 
The network topology with the minimum testing RMSE is considered as the optimal 
network topology. The dataset is extracted from the UCI Adult database that aims to 
predict whether a person makes over 50k dollars a year. The dataset consists of 48842 
instances and 14 attributes. Each record in the dataset contains eight predictor vari-
ables, namely, work class, education, marital-status, occupation, relationship, race, 
sex and native-country. And the response variable is the income status it belongs to, 
either “>50K” or “<=50K”. 

The structural design of the network is a multi-layered neural network, as Table II 
shows. BPN training way to is it train sample is it learn to go on to utilize , and QBL 
training way in initial to choose 20% do for sample of training at random among 
training sample when learning, learn , in the course of learning, after inquiring Oracle, 
and then obtain the new training sample from Priority Queue, strengthen learn. 

BPN and QBL are after training the learn cycle of 10000 epoch, the Convergence 
of network training is as Fig. 3 shows, and Table II states the error rate of carrying out 
the speed and predicting, among them QBL needs to finish learning promptly in 
16344.94 seconds, and verify the results of learning by testing the samples, the error 
rate of QBL is lower than BPN. 
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Table 2. The structural design of the network is a multi-layered neural network 

 QBL BPN 

Network Model   
Input-hidden-output 14-28-1 14-28-1 

Learning rate 0.45 0.45 
Momentum 0.9 0.9 

RMSE 0.05 0.05 
Learning epoch 10000 10000 

Average Performance  
Execute time(sec) 16344.94 81090.87 

Accuracy (%) 81.85% 80.70% 
ROC Curve (AUC) 0.756 0.727 

Model Estimation  
Sensitivity 0.872 0.870 
Specificity 0.644 0.61 

PPV 0.888 0.874 
NPV 0.609 0.601 
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Fig. 3. Convergence behavior for the Census Income 
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Fig. 4. Comparison of ROC Curves for the Census Income using QBL and BPN 
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Assessing ROC curve in addition, as Fig. 4 shows, QBL is also better than BPN re-
sult. According to confusion matrix show, as Table III , in is it construct Census In-
come predict model one kind of neural networks, prediction of way while being 
above-mentioned, under the equally limited number of times of training, QBL is more 
excellent than BPN. 

Table 3. The Census Income confusion matrix 

 Census Income 

Predicted  
Positive Positive 

Positive 10848 1368 
 QBL 

Actual 
Negative 1587 2478 

Predicted  
Positive Positive 

Positive 10722 1540 
 BPN 

Actual 
Negative 1601 2418 

5   Conclusion and Future Works 

Due to the information technology progresses, we nowadays are facing an environ-
ment of competition different from any other of the past. The focus has been transfer 
from merely collecting and sorting data to effectively extract information from the 
database. Thus, data mining becomes extremely important. Data would become in-
formation, which in turn would inspire correct decisions and actions. And when these 
actions accomplish their missions and reach their goals, the technique of data-mining 
would be proved valuable. Query-based learning differs from traditional methods in 
that the samples could be selected out of its will for training, instead of accepting 
whatever information it is fed. The objective of such learning is to produce a training 
sample that is comprehensive and educative. Its goal is to help the learner compre-
hending whatever has appeared to be difficult. When dealing with data-mining, we 
could combine the techniques of neural network and query-based learning; hence, the 
neural network could gain the most effective classification with the least training cost. 
Our future work is to apply this concept for association rule and sequential pattern 
mining so as to develop more applications. 
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Abstract. One of the most significant factors influencing the liquidity
of financial markets is the amount of currency in circulation. Even the
central bank is responsible for the distribution of the currency it could
not assess the demand for the currency as it is influenced by the non-
banking sector. Therefore the amount of currency in circulation have
to be forecasted. This paper introduces feedforward structured neural
network model and discusses its applicability to the forecasting of the
currency in circulation. The forecasting performance of the new neural
network model is compared with an ARIMA model. The results indicates
that the performance of the neural network model is slightly better and
that both models might be applied at least as supportive tools for the
liquidity forecasting.

1 Introduction

Central banks pursue their statutory objectives in maintaining the price stabil-
ity or foreing exchange rates stability through different sets of monetary policy
instruments. Nowadays, central banks mainly control the economic conditions
indirectly. They usualy steer money market interest rates through proper liquid-
ity managment. Therefore an accurate estimate of the money market liquidity
is essential for the effective monetary policy implementation.

Although only transactions with the central bank have impact on money
market liquidity, some of them are out of central bank control. These factors are
called autonomous factors. One of the most important autonomous factors is the
currency in circulation (CIC). The demand for CIC is influenced by non-banking
sector which means it is rather volatile and depends on various seasonal factors.
The influence of seasonal factors make the assessment of the demand for CIC
very knotty. For that reason central banks employ various mathematical models
to deal with this typical seasonal time series.

For example the Federal Reserve System, the European Central Bank and
other central banks within the European Monetary Union already use mathe-
matical models of CIC at least as supportive tools. The most of the used models

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 1234–1246, 2005.
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is based on the principles of Box-Jenkins methodology [4] and on its further im-
provements (e.g [10], [9]). However, recently banks also develop new non-linear
models that are supposed to approximate seasonal patterns with higher accuracy
then linear models.

This article follows the idea of non-linear model applications and investigates
the applicability of a special neural network model called structured feedfor-
ward neural network. This neural network model is derived from networks with
switching units originally developed as a dataclassifiers. However experiments
with time series forecasting showed the model might be sufficently applied in
this area too. Moreover the model is based on the combination of linear regres-
sion and cluster analysis and hence the analysis of the model is less complicated
than the analysis of a multi-layer perceptron or other neural networks models.
This fact is also important as the application of neural networks usualy raises
many doubts as they are too complicated and dealing with them is like dealing
with black-boxes. Therefore structured feedforward neural networks seems to
offer an attractive option. This work was partly supported by the Ministry of
Education of the Czech Republic under project No. 1M684077004 - Center of
Applied Cybernetics.

This work was partly supported by the Ministry of Education of the Czech
Republic under project No. 1M684077004 - Center of Applied Cybernetics.

2 Currency in Circulation

For the purposes of this paper currency in circulation is defined as banknotes
and coins hold outside the central bank and the series of CIC in Czech Republic
from the range between January 1996 and June 2004 is considered (see fig. 1).
The selection of Czech data is not very restrictive as the behaviour of CIC in
Czech is similar to other countries like the USA, the European Union countries
and many others.

The currency is distributed into the system mainly through commercial
banks. They tries to follow clients requirments as flexibly as possible not to
spend money for needles cash. Hence the demand for cash is mainly influenced

 120

 140

 160

 180

 200

 220

 240

 260

 280

1997 1998 1999 2000 2001 2002 2003 2004

C
IC

 v
ol

um
e 

(b
ln

 C
ZK

)

Currency in Circulation Volume

(a) Whole sample 01/96-06/04

 200

 205

 210

 215

 220

 225

 230

 235

 240

 245

07/02 09/02 11/02 01/03 03/03 05/03

C
IC

 v
ol

um
e 

(b
ln

 C
ZK

)

Currency in Circulation Volume

(b) One year period (07/02-06/03)

Fig. 1. Czech currency in circulation - daily volumes
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by the non-banking sector including commercial subjects and households as well.
It means that the changes of the CIC volume are caused by enourmous number
of factors and circumstances that are obviously uncontrollable. Thus the CIC
volume is supposed to be a random variable following a compound process with
seasonal and stochastic components.

Both models described and compared later on express the series of the CIC
volume as a function of historical values, seasonal and shock factors.

The identification of all significant seasonal patterns and shocks and the
choice of the correct form for their representation proved to be cruicial for the
models forecasting performance. The choice of seasonal factors was predomi-
nantly motivated by [6]. However experience of experts who are responsible for
the liquidity forecasting in the Czech National Bank was also considered.

The exogenous factors are involved in the models in two different forms fol-
lowing the idea presented in [3]. The first type of seasonal factor is a superposi-
tion of goniometric functions and the second is a lagged polynomial of indicator
function.

The only factor modeled as a superposition of the goniometric functions is
the intramontly effect. The factor has the form:

dt =
p∑

j=1

(
aj sin

(
2jπmt

Mt

)
+ bj cos

(
2jπmt

Mt

))
, (1)

where dt is the value of the factor in time t, Mt is the length of the current
month and mt is the position of the day in the current month. Finally, the
positive number p sets up the number of different frequences forming the factor.
Naturaly, the more frequencies is considered the better the approximation is.
However, its also necessary to keep the number of model parameters low hence
the number of frequences p have to be chosen carefully. In this paper p is set to
eight for both models.

The second group of seasonal factors is mostly applied to model isolated
events like national holidays or shocks and is of the form

dt,i = Γi (B)B−Fiτi (t) , (2)

where B is the backshift operator (Byt = yt−1), Γi is a polynomial in B and τi
is the seasonal indicator function (τi (t) = 1 if ith season occurs at time t and
τi (t) = 0 otherwise). Finaly the Fi is a positive power of B. The combination of
the polynomial Γi and B−Fi guarantees that particular seasons might influence
future and also past observations.

The overview of all factors of the form (2) is summarized in the table 2. All
the factors listed in the table were involved in both models except the number of
forthcoming non-working days. This additional factor that might help to model
the interference between weekends and fixed holiday is included only in neural
network model as it was assessed as usignificant factor in case of ARIMA model.
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Table 1. Seasonal factors and shocks represented by lagged indicator function

Seasonal factor Order of Γ Power F

Monday, Thuesday, Wednesday, Thuersday 3 0

Easter (Good Friday) 10 5

Christmas 15 5

New Year 5 5

Other National Holiday 10 5

Number of forthcoming non-working days 10 5

Bank failure (June 2000) 15 5

Y2K effect (New Year 2000) 10 5

3 Seasonal ARIMA Model

One of the most common classes of seasonal time series models is based on
the methodology proposed by Box and Jenkins in [4]. Various generalisations of
Box-Jenkins ARMA models are widely approved and applied. The applicability
of ARIMA models on CIC forecasting is studied by an ECB research group in
[6] where the model is precisely described and all necessary tasks summarized.
Therefore the same methodology as that described in [6] was applied for the
construction of ARIMA model for Czech data.

The ECB research group follows the idea of Bell and Hillmer ([3]) who sug-
gested to use a linear regression model with ARIMA errors for modeling time
series with calendar variations. The model might be witten in the following form:

yt = Dt,i +
Θ (B)

Φ (B)Δ (B)
εt. (3)

Here yt is the modeled series, Dt,i is the regression part, B is the backshift
operator and Θ, Φ, Δ are polynomials in B. The polynomials Θ and Φ are
moving-averages and autoregressive operators, respectively. The polynomial Δ
is a difference operator that might also include a seasonal difference operator.
The regression part Dt,i =

∑s
i=1 dt,i is the superposition of all seasonal factors

dt,i involved in the model as described in the section 2.
The formula (3) defines a quite general model that might still be optimised

by least square estimator as shown by Pierce [19]. However, to identify the model
it is neccesary to identify the orders of ARIMA process as well as the appropriate
seasonal factors and their lags. The model described in this section was identified
using the two-step approach proposed by Koreisha and Pukkila in [18].

First, sample autocorrelation and partial autocorrelation functions (SACF,
SPACF) were computed and investigated to specify the difference operator Δ.
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The correlograms of CIC volumes and CIC daily changes indicated Δ in the
form:

Δ = (I −B)
(
I −B252

)
where

(
I −B252

)
is the first order seasonal difference operator that corresponds

to the one-year difference.
Appart from the seasonal differencing number of seasonal factors were in-

volved into the regression part of the model to deal with the calendar variations.
The included factors were selected from the set of seasonal factors summarized
in the section 2. However only factors that were not refused by a significancy
test remained in the final model.

CU CUCU

SU

(a) Neuron with
a switching unit
(SU) and three
computational
units (CU)

OUTPUT

INPUT

Σ

(b) Basic string
topology

OUTPUT

INPUT

(c) Hyper-topology
of the feed-forward
structured network
with basic strings
as nodes

Fig. 2. Neural Network with Switching Units

The ARMA structure of the stochastic component was investigated simulta-
neously with the identification of appropriate set of seasonal factors. The lags
of MA and AR process was chosen with respect to the SACF and SPACFand
results of significancy tests.

The final ARIMA model is described by 71 parameters. The correlogram in
the figure 6 shows that a tiny correlation in residuals still remained. Also the
Ljung-Box test refer to higher correlation particularly around the lag 60 and 252,
however the addition of appropriate lags do not improve the forecasting perfor-
mance of the model. Jargue-Bera test disproved the normality of standardized
residual and verified the difference of N(0, 1) density and the residuals histogram
(see figure 3).
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4 Neural Network Model

Since the ARIMA model is linear in seasonal effects it might not sufficiently
cover the calendar variation. Therefore the application of non-linear models is
recently more and more investigated. Unfortunately, functions realized by typical
neural networks like MLP or RBF networks are higher-order superpositons of
non-linear functions with large number of parameters. Therefore the application
of neural networks raises many doubts as they are too complicated and dealing
with them is like dealing with black-boxes.

To avoid such doubts a concept of neural networks with switching units was
chosen as an alternative approach. Switching units allow to use linear transfer
functions and the model at whole is than a combination of two common stochas-
tic methods - linear regression and cluster analysis. Such a model is relatively
simple and might be further analysed using common stochastic tools.

The feed-forward structured neural network described in this section is de-
rived from the neural network with switching units introduced in [5]. For the
purposes of this paper these original model is refered as Basic string. The gener-
alisation is based on the connection of more basic strings into a hyperstructure.
In the following subsections the final neural network model is described step by
step.

4.1 Neuron with Switching Unit

The main idea of neuron with switching unit is to control the flow of the very
input. Any neuron with switching unit consists of one switching unit and several
computational units as shown in the figure 2(a). Switching units only choose
which computational unit will process the given input while the computational
units apply a transfer function to the inputs.

The switching unit splits the input space into several disjoint clusters. The
number of clusters is the same as the number of computational units and each
cluster is associated with different computational unit. Inputs from a cluster
are processed only by the associated computational unit. The clusters are found
during the training process using cluster analysis methods. The character of
clusters depends on the metric or pseudometric of the input space. This metric or
pseudometric together with number of computational units defines the switching
unit.

Computational units are the neurons in the common sense. They could be of
any type like perceptron or RBF unit, but such general case might lead again
to a black-box model. Therefore, only computational units with linear transfer
functions are considered. The linear transfer function is defined by the formula:

(y0, y1, . . . , yn) = (α0, α1x1, . . . , αnxn) (4)

where y = (y0, . . . , yn) is an output, x (x1, . . . , xn) is an input and parameter
α = (α0, . . . , αn) is estimated from the training set using the linear regression
equation:

Y = Xα+ ε. (5)
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where Y is a column vector of a modeled quantity, X is a matrix of appropri-
ate inputs, the column vector α is the estimated parameter and ε is the error
or residuum. It implies the sum of the components of output y from (4) is the
approximation or estimation of the correct value of the modeled quantity. Nev-
ertheless the row vector y instead of the sum of its components is the output of
the neuron as it could be further processed rather then a single number.

4.2 Basic String

The original model of neural network with switching units proposed in [5] is
quite simple one. Its refered here as a basic string because of its string topology.
The topology is defined by a graph which is a path exactly. It means that every
neuron except the input and output one has one parent and one child. The input
neuron is a neuron with switching unit with Euclidean norm and linear transfer
function. The output neuron only sums its inputs and the rest are neurons with
switching units with clusters defined by sum of input components and with
linear transfer function. The sketch of string architecture is in the figure 2(b).
The Euclidean norm is used in the input neuron because it reflects the original
structure of network input space. The rest of neurons splits the inputs according
to expected output as the sum of input components is the approximation of the
modeled quantity.

Even these models are simple they are quite effective. From the theoretical
point of view strings are for example capable to approximate any smooth or
measurable function ([14]) or they might realize any AR process as well. The
model was also applied on several problems with encouraging results ([12]). How-
ever, more complicated problems need more complicated models. Therefore more
general models called feed-forward structured networks were defined as models
with topology described by a hyper-structure with basic strings as its nodes (see
2(c)).

The advantage of the hyper-structure is that the usage of basic strings as
nodes helps to define and control the topology. This is particularly important
in the context of genetic optimisation (see [17]) but also when the topology is
defined according to the results of derived models by an expert.

4.3 Feed-Forward Structured Neural Network for CIC Forecasting

The model used for CIC modeling is a simple feed-forward structured network
with the hyper-structure described by a graph that is a path extended by addi-
tional connections between network input and each basic string as shown in the
figure 2(c). The main role of additional connections is to keep original structure
in analysed data because the input space structure might be heavily damaged
by non-invertible transfer functions. Even this model could not still realize an
MA process the additional connections allows to use more neurons effectively
and hence better analysis of the input data is possible.

The number of strings in the very network, their length, and numbers of
clusters in neurons might be chosen arbitrary and unfortunately no guideline
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how to choose the best combination is available. The neural network model
described there is a product of iterative process based on analysis and comparison
of derived models. First few randomly generated networks were analysed and
according to their performances some restrictions were applied. The length of
strings was limited up to five neurons and the number of clusters per neuron was
restricted to be in the range between two and five. According to these restrictions
ten networks were randomly generated and then particular basic strings from
best four networks were combined in different order until the final topology
described in the table 4.3 was chosen as the best one.

Table 2. Summary of final neural network model topology

string order string length number of string order string length number of
clusters clusters

1 1 4 6 3 3,3,1

2 4 2,2,2,2 7 2 4,3

3 1 4 8 3 2,2,2

4 4 2,3,2,2 9 3 3,2,2

5 1 3 10 2 2,2

All the inputs summarized in the table 2 together with lagged values of CIC
comprise the input of the neural network model. The laggs included into the
model were selected according to the SACF and SPACF functions (see fig.7).
However, also the incapability of neural network model to realize MA process
was considered and hence for example five laggs around one year instead of a
single one are used to deal with strong one year correlation. Finally the following
laggs were used: 1, 2, 5, 10, 15, 20, 21, 22, 250, 251, 252, 253 and 254.

The model was then applied to the series of daily changes and to its one year
seasonal difference. The daily changes were forecasted with significantly higher
accuracy then the seasonaly differenced series. The probable explanation is that
the seasonally differenced series contains a prominent MA(252) component which
might be hardly approximated by the neural network. On the other hand the
non-linear neural network model might stabilize the non-stationary series of CIC
daily changes as it approximates the seasonal character of the series with higher
accuracy then the linear regression model.

Anyway the correlogram of residuals (see fig. 7) do not refer to a strong cor-
relation of the residuals. As in the case of ARIMA model additional laggs do not
significantly improve the model performance. Tests for the residuals normality
contributed what the histogram (see fig. 4). The normality is also rejected even
if the peaks around zero are removed as they are caused by clusters with only
few observations that might be classified as outliers.
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Fig. 4. Neural Network out of sample residuals

5 Comparison

Two models the ARIMA one and the neural netwrok one were described in the
previous sections 3 and 4. Appart from the model definitions and description of
their functionality the results of the in-sample residuals analysis is also presented
there. Moving the analysis along the out-of-sample forecasting performance and
the general applicability of both models is discused and compared in this section.
First the forecasting performance is compared and then the discussion of the
applicability follows.

The sample used for the forecasting performance qualification is the one
year period from July 2003 to June 2004 and is the same for both models. The
comparison is focused on the one-step-ahead forecasts because the experimetns
showed the forecasting horizon do not affect the relative models performance.
The initial point for the analysis are the one-step-ahead residual plots (3 and
4 respectively) and the plot of differences between squared residulas of both
models (5).

The figures 4 and 5 shows the neural network model miscalculates the fore-
casts awfully in few cases particularly around Chtristmas. Focusing on these
unfitted events it was found they all fell into a cluster with only few observa-
tions. It means the application of the neural network is not serious for such
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Fig. 5. Differences between the ARIMA and the neural network model squared resid-
uals. The positive values indicates the NN model is more accurate.

Table 3. RMSE and Diebold-Mariano test results

horizon ARIMA RMSE NN RMSE D-M p-value

1 0.491 0.454 0.975

5 0.476 0.442 —

10 0.484 0.448 —

events as the network is strongly overlearned with regard to these sparse events.
However the table 5 shows the neural network is more accurate in the average
for all considered horizons even the Diebold-Mariano test do not classify the
difference to be significant (the test p-value is also reported in the table 5).

The neural network model particularly outperforms the ARIMA model in
the beginnig of the testing sample where the neural network RMSE is really
low. This might be viewed in the figure 8 that shows RMSE evaluated for the
particular months. The figure 8 also indicates that the average error changes
during the forecasted period in both models. The growth of the error in the end
of the period is probably caused by the obsolescence of the models while the
changes in the middle of the period corresponds to the Christmass season which
effect might not be well approximated.

The interesting fact is also that the forecast error do not increase with the
forecasting horizon. Contrary the RMSE of both models for the five days horizon
is lower then that for one day horizon. This apparent paradox means the mod-
els could not approximate the intra-weekly effects with sufficient accuracy. The
reason is probably that the intra-weekly effect changes a lot during the period.

Moving to the general point of view the interpretability of results is the
next important atribute of any model. The regression component of the ARIMA
model (3) allows to effectively analyse the approximation of seasonal influence.
This could be done for the Neural network model as the influence of a given
season might be modeled miscellanously by different computational units. On
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the ather hand the proper analysis of neural network model is also possible and
it might lead to more complicated findings. The problem is that there is plenty
of possible paths for data processing in any neural network model hence the
analysis based on the comparison of particular paths is really complicated and it
could be hardly done manualy. Unfotunately a serious analysis tool that might
analyse the neural network model still missing.

Contrary the advantage of the neural network application is that it might be
easily reoptimalised even if the set of exogenous factor changes. In the case of
the ARIMA model any change in the set of considered inputs means the model
have to be rebuild completly. However the topology of a neural network model
might be preserved and it is only necessary to learn the network again using
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the new set of inputs. The learning process of a neural network is then a fully
automized compact algorithm that might be run without any expert.

6 Conclusion

The paper introduces a new kind of neural network model for currency in cir-
culation forecasting. The feed-forward structured neural network model that
might be suitable for the analysis of arbitrary seasonal time series is compared
with the conventional Box-Jenkins ARIMA model. Characteristic properties of
both models were discussed with the emphasis on the out-of-sample forecasting
performance.

The analysis of out-of-sample residuals showed the neural network model out-
performs the ARIMA model in the average and particularly in the beginnig of
the testing sample. However the Diebold-Mariano test do not classiffy the differ-
ence to be significant. On the other hand the neural network model strongly unfit
few observations in the testing sample probably due to the model is overlearned
in sparse observations. Anyway the neural network model is a competitive alter-
native to the Box-Jenkins ARIMA models and is worth improving.

Ragarding to the properties of structured neural network model few improve-
ments that might improve the model are obvious. First the feedback would be
included to deal with MA processes. Second the selection of relevant inputs might
be improved through the application of stochastic tests. Next the more general
architecture of network might be considered simultaneously with the usage of
genetic algorithms for the architecture optimisation. Finally a tool for analysis
of the network, data flows and other model properties might make the model
more applicable.

Even these all extension would improve the model performance the applica-
tion of the neural network model in the current stage or better its combination
with the ARIMA model is relevant at least as a supportive tool for the liquidity
forecasting.
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Abstract. This study investigates the effectiveness of a hybrid approach with 
the time delay neural networks (TDNNs) and the genetic algorithms (GAs) in 
detecting temporal patterns for stock market prediction tasks. Since TDNN is a 
multi-layer, feed-forward network whose hidden neurons and output neurons 
are replicated across time, it has one more estimate of time delays in addition to 
a number of control variables of the artificial neural network (ANN) design. To 
estimate these many aspects of the TDNN design, a general method based on 
trial and error along with various heuristics or statistical techniques is proposed. 
However, for the reason that determining time delays or network architectural 
factors in a stand-alone mode doesn’t guarantee the illuminating improvement 
of the performance for building the TDNN models, we apply GAs to support 
optimization of time delays and network architectural factors simultaneously for 
the TDNN model. The results show that the accuracy of the integrated approach 
proposed for this study is higher than that of the standard TDNN and the 
recurrent neural networks (RNNs). 

1   Introduction  

Early studies of stock market prediction tended to use statistical techniques. However, 
studies using only classical statistical techniques for prediction reach their limits in 
applications with non-linearities in the data set. Compared with statistical methods, an 
artificial neural network (ANN) has an advantage in handling nonlinear problems by 
using the hidden layer. Among ANN algorithms, the back-propagation neural network 
(BPN) is the most popular method in many applications such as classification, 
forecasting and pattern recognition. A major limitation of BPN, however, is that it can 
learn only an input-output mapping of static (or spatial) patterns that are independent 
of time. To overcome this limitation, two methods applying the time property are 
proposed: the first is use of recurrent links; the second is use of time-delayed links.  

This study investigates effectiveness of a hybrid approach with the time delay 
neural networks (TDNNs) and the genetic algorithms (GAs) to in detecting temporal 
patterns for stock market prediction tasks. Since TDNN adds a memory to the ANN 
by use of the time-delayed links for each unit, it has one more estimate of time delays 
in addition to a number of control variables of the ANN design such as network 
topologies, the number of hidden nodes, the choice of activation function and so on. 
To estimate these many aspects of the TDNN design, a general method based on trial 
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and error along with various heuristics or statistical techniques is proposed. However, 
determining time delays or network architectural factors in a stand-alone mode 
doesn’t guarantee the illuminating improvement of the performance for building the 
TDNN models. Therefore, the suitable method to select time delays and network 
architectural factors simultaneously for TDNN is necessary to accurately model the 
temporal patterns. We apply GAs to support optimization of time delays and network 
architectural factors at the same time for the TDNN model. Our proposed approach is 
demonstrated by applications to the stock market's prediction domain. 

The rest of the paper is organized as follows: Section 2 proposes ANN for a time 
series property. Section 3 describes a hybrid approach of TDNN using GA (GA-
TDNN), research data and experiments, and in Section 4, empirical results are 
summarized and analyzed. In the final section, conclusions and the limitations of this 
study are presented. 

2   ANN for a Time Series Property 

Regarding previous studies of time-series properties using nonlinear dynamics, most 
forecasting methods are capable only of picking up general trends, and have difficulty 
in modeling cycles. Two methods may be applied to add memory to a feed-forward 
neural network. The first is use of recurrent links [3], while the second is use of time-
delayed links [2]. 

2.1   Recurrent Neural Networks 

Unlike BPN, the recurrent neural network (RNN) is permitted to have feedback 
connections among neurons. Operation of the RNN involves combined use of two 
network structures that work together, the original recurrent network and the 
adjoining network. The original network is characterized by the forward propagation 
equation; for a given input-output, this network computes the error vector. The 
adjoining network is characterized by the backward propagation equation; the 
adjoining network takes the error vector from the original network and uses it to 
compute adjustments to the synaptic weights of the original network. 

Due to reliance on feed-forward connections, the standard BPN algorithm suffers 
from an inability to fill in patterns. Use of the RNN algorithm overcomes the pattern-
completion problem by virtue of its inherent feedback connections. Almeida [1] has 
experimentally confirmed that feedback structures are much better suited to this kind 
of problem. Feedback connections in the RNN make it less sensitive to noise and lack 
of synchronization, and also permit it to learn faster than the BPN. However, the BPN 
is more robust than the RNN with respect to the choice of a high learning rate 
parameter [5]. 

2.2   Time Delay Neural Networks 

The time delay neural network (TDNN) is much more complex than the BPN, as it is 
required to explicitly manage activations by storing delays and back-propagated error 
signals for each unit and for all time delays [7]. The TDNN learns time-based as well 
as functional relationships that correlate input data with projected neural outputs.  
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TDNN was first proposed for dealing with speech recognition [6], and is now applied 
successfully both to speech recognition and phoneme classification. TDNN is 
described as a multi-layer, feed-forward network whose hidden neurons and output 
neurons are replicated across time. TDNN is made up by units that get an input at the 
generic time instant t and an output of the previous level units, in which the input at 
several time steps t-1, t-2… t-n is summed and fully connected with suitable weights. 
These delayed inputs let the unit know part of the history of the signal at time t, and 
enable the solution to more complex decision problems, especially time dependent 
ones. Training of the TDNN takes place through temporal expansion of time delays 
over the entire input sequence [2].  

We consider a neural network with L levels, containing Nl units in each level l. Let 
us define the delayed input vector x for unit i pertaining to level l at discrete time t as: 

xi(t) = [ xi(t), xi(t-1),…, xi(t-T1)]
T ,  i =1, …, Nl 

The vector of variable weights with which each input, xi, in the previous layer is 
multiplied and put as an output to unit j, xj, of level l, is expressed as: 

wji = [ wji(0), wji (1),…, wji (T1)]
T ,  j =1, …, Nl+1. 

The contribution, sj, from unit i to unit j, is given as: 

sji(t) = wji
 T xi(t)                                                       (1) 

The output field for unit j is a weighted sum of past-delayed values of the input, 
expressed as: 

sj(t)= )(
1

t
lN

i
jis

=

                                                      (2) 

Named f for the unit's transfer function, the output of the neuron is given as:  

xj(t) = f(sj(t))                                                         (3) 

Assume that at each instant in time, the target vector of the ith element, di(t), is 
provided to the networks.  Accordingly, the instantaneous error is defined as:  

ei(t) = di(t) - xi(t)                                                        (4) 

The total instantaneous squared error is defined as: 

e2(t)= )(
1

2 te
lN

i
i

=

                                                         (5) 

The total squared error is defined as: 

e2 =
=

T

t

te
0

2 )( .                                                          (6) 

Because training is supervised at each time t, and the net output depends on time 
delay inputs at times t, t-1… t-T1, the target vector d(t) changes synchronously with 
the input at each time t. 

Figure 1 illustrates an example of the time delay neural network architecture, 
where the hidden and output neurons have two and three time delays, respectively 
(i.e. L=3, T1=2, T2=3). For simplicity, only one unit has been shown for each level. 
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Fig. 1. TDNN algorithm (adapted from Cancelliere, R. and Gemello, R. [2]) 

3   Hybrid Approach Using GAs 

 In this study, we propose a hybrid approach of TDNN using GA (GA-TDNN) for 
optimization of time delays and network architectural factors simultaneously to 
improve the effectiveness of constructing the TDNN model. Since TDNN is a multi-
layer, feed-forward network whose hidden neurons and output neurons are replicated 
across time, it requires one more estimate of time delays to use for each unit in 
addition to many aspects of the ANN design.  

A common method to estimate time delays that will be used to build the TDNN 
models is to choose the time lag based on trial and error along with various heuristics. 
On the other hand, it is possible to extrapolate the dynamics of the series based on the 
autocorrelation function (ACF) or the average mutual information that describe the 
correlation of the time difference between x(t) and x(t+T), separated by T time lag. 
The concept of mutual information is similar to that of the ACF, which is a classical 
statistical measure of linear dependence in a time series, but mutual information is a 
measure of general dependence in a time series, which can be applied to any time 
series. However, the process of mutual information is rather cumbersome 
computationally. So far, the most popular method to choose the time lag for nonlinear 
time series analysis is to estimate the slope of the curve of the logarithm of the 
correlation integral. 

Considering that to find an appropriate ANN model that can reflect problem 
characteristics is an art and plays a very important role for the promising performance 
of an ANN model, a reasonable technique to optimize not only the design of 
numerous network architectures such as network topologies, the number of hidden 
nodes, the choice of activation function and so on, but also input selection, learning 
condition, learning methods, and parameters is also necessary. However, determining 
time delays or network architectural factors in a stand-alone mode doesn’t guarantee 
the illuminating improvement of the performance for building the neural network 
models. Therefore, the suitable method to select time delays and network architectural 
factors simultaneously for TDNN is necessary to accurately model the temporal 
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patterns. This study uses the notion of machine learning, an evolutionary search 
technique, to find an optimal or near-optimal time lag as well as network architectural 
factors according to a given task.  

GAs have been increasingly applied in conjunction with other AI techniques such 
as neural networks, rule-based system, fuzzy theory, and CBR. The integration of 
GAs and neural networks is a rapidly expanding area. Various problems faced by 
researchers and developers in using neural network can be optimized using GAs 
[4][8]. Examples include selecting relevant input variables, searching the weight 
space, determining the optimal number of hidden layers, nodes and connectivity, and 
tuning the learning parameters. 

We apply GAs to learn an optimal and near-optimal set of time delays and network 
architectural factors at the same time among population searches. By evaluating the 
fitness of different sets of time delays and network architectural factors, we may find 
good global solutions for the TDNN model. Notably, the task of defining a fitness 
function is always application specific. In this study, the objective of the system is to 
find the more relevant set of time delays and network architectural factors that can 
lead to the correct solutions. The ability of GA-TDNN to achieve these objectives can 
be represented by the fitness function that specifies how well the set of time delays 
and network architectural factors decrease the prediction error. We apply the 
prediction error rate of the test set to the fitness function for this study.  

To calculate the fitness of different sets of time delays and network architectural 
factors, we use the moving window approach for the train, test and validation set 
extraction method, which is an efficient way to assess accuracy of the ANN model 
with sequences of inputs over time. This method starts to train on the defined quantity 
of training records, tests on the subsequent quantity of test records, and validates on 
the subsequent quantity of validation records (i.e. the first fold). This process moves 
all records forward by size of the validation set, retrains, retests and revalidates, and 
continues through all folds until the end of the data set. Then the average mean square 
error (AMSE) is computed, yielding the averaged value of the mean square error 
(MSE) of each fold.  

 

Train    Test   Val

 Val   Val   Val   Val            Val 

...

�����Data Set

Train      Test    Val

Train      Test   Val 

Train   Test   ...
 

Fig. 2. Moving window approach 

Research data in this study comes from the daily Korea Stock Price Index 200 
(KOSPI 200) from January 1997 to December 1999. The total number of samples 
includes 833 trading days. In this study, the training set size is 400 records while the 
test and validation set size is 15 records each. There are 28 resulting folds through this 
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process, and validation records in the last fold are 13 records. The moving window 
approach used here is illustrated in Figure 2. 

We used the value of the stock price index as an input variable and as output 
variables. At the generic time instant t, we selected KOSPI 200 at time t as an input 
variable, and KOSPI at time t+1 as an output variable.  

To compare with GA-TDNN, we also design the standard TDNN with predefined 
time delays in the input layer, which is connection of hidden neurons, and the 
standard RNN with a predefined time lag in input neurons, using the slope of the 
curve of the logarithm of the correlation integral. In addition, the number of hidden 
neurons in both algorithms is given as eight, and the other conditions are equally 
controlled to those of GA-TDNN. Figure 3 represents the RNN architecture in which 
we have chosen a time lag of two days. 

 

Fig. 3. RNN with time lag  

As described above, in this study, GAs search the number of time delays in the 
input and hidden layer in TDNN, which is connection of hidden and output neurons, 
and the number of hidden neurons for optimization tasks. For an efficient search, we 
control the following variables; the transfer function for hidden and output neurons is 
set to the logistic function, and the number of hidden neurons is limited to eight. The 
number of hidden layers is given as one.  

Fitness function we use is to minimize the error of AMSE. We use a population 
size of 50, a selection rate of 0.5, and a mutation rate of 0.25 for the experiment. Ten 
generations are used as a stopping condition. The neuro-genetic algorithms software, 
NeuroGenetic Optimizer (NGO) version 2.5, is used to execute these processes. 

4   Results and Analysis 

To investigate the effectiveness of the integrated approach for building neural 
networks models for a time series property, we set GAs to search the optimal set of 
time delays and network architectural factors simultaneously in TDNN. The derived 
results by this genetic search are summarized in Table 1. 
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Table 1. The optimized architectural factors using GA 

 Methods 

Number 
of 
hidden 
neurons 

Connection 
of hidden 
neurons 

Connection 
of output 
neurons 

Time 
delay 

GA-TDNN1 5 4 2 4 
GA-TDNN2 3 7 1 6 
GA-TDNN3 5 1 5 4 

 

To reduce the impact of random variation in GAs search processes, we replicate 
the experiment several times and suggest the best networks found in each model. As a 
result, GA-TDNN can be of three types regarding the connection of neurons. GA-
TDNN1 is the general TDNN architecture with time delays of both hidden and output 
neurons. GA-TDNN2 has only have time delays of hidden neurons, while GA-
TDNN3 has only time delays of output neurons. 

The optimized GA-TDNN models are compared with the standard TDNN and 
RNN with predefined time delays and the time lag respectively. These predefined 
values of the standard TDNN and RNN are independently obtained by estimating the 
slope of the curve of the logarithm of the correlation integral as shown in Figure 4. 

 

0                      Embedding Dimension    10

Dim

0
0                      Embedding Dimension    10

Dim

0

 

Fig. 4. Function of Dimension  

The embedding dimension can be chosen as six, which indicates that we have to 
train on five successive stock price indices for predicting the sixth value.  

In order to compare the enhancement of GA-TDNN with the standard TDNN and 
RNN, the mean square error (MSE), which is the metric used in this experiment, of 
each network is calculated between the predicted and actual neural outputs. 
Comparative methods are represented as the benchmark to verify the application of 
the proposed model to the domain. Test results are summarized in Table 2.  

F-Test results for the comparison of each model are summarized in Table 3. If the 
F-value is significantly large or small, it is probable that a performance difference 
exists between the models. 
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Table 2. The measure of accuracy 

Methods MSE 
GA-TDNN1 3.49 
GA-TDNN2 3.96 
GA-TDNN3 4.23 

TDNN 5.30 
RNN 7.40 

Table 3. F-test result for the comparison of the difference between models 

(F-values) 
 GA-TDNN2 GA-TDNN3 TDNN RNN 

GA-TDNN1 1.13 ** 1.21*** 1.52*** 2.12*** 
GA-TDNN2  1.07 1.34*** 1.87*** 
GA-TDNN3   1.25*** 1.75*** 

TDNN    1.40*** 
** significant at 5%, *** significant at 1% 

 

On the whole, the MSE of the derived GA-TDNN from the genetic search process 
is smaller than that of the standard TDNN and RNN. As the F-tests show, predictive 
ability of all GA-TDNN models is significantly different compared to the standard 
TDNN and RNN at 1% statistical significance level. Specifically, the MSE of the GA-
TDNN1 that has a time delay of both hidden and output neurons is the smallest 
among other comparative error values. F-test results support that GA-TDNN1 
significantly performs better than the other types of GA-TDNN, such as GA-TDNN2 
and GA-TDNN3, which are significantly indifferent. It also appears that the standard 
TDNN outperforms the standard RNN with significant levels.  

Based on these empirical results, we conclude that the optimization of time delays 
and network architectural factors simultaneously plays an important role in improving 
the performance of the TDNN models as well as the effectiveness of constructing the 
TDNN models. The overall result shows that the integrated GA-TDNN approach 
proposed for this study performs better than the standard TDNN and RNN to reflect 
temporal patterns.  

5   Conclusions 

This study investigates the effectiveness of a hybrid approach with TDNN and GAs 
for the time dependent prediction domain. By evaluating the fitness of different sets 
of time delays and network architectural factors at the same time, we may find good 
global solutions for the TDNN model. Results show that the accuracy of GA-TDNN 
is higher than that of the standard TDNN and RNN.  

Our study has the following limitations that need further research. Although a 
hybrid approach with TDNN and GAs intends to optimize time delays and network 
architectural factors simultaneously and to select feature subsets, we have controlled 
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some variables for search efficiency, such as transfer function and number of hidden 
layers. However, there are an infinite number of possible combinations with these 
control variables. In setting up the GAs optimization problem, we have selected 
several parameters such as stopping condition, population size, crossover rate, 
mutation rate and so on. Their values of these parameters can greatly influence the 
performance of the algorithm, and can generate a lot of groups for our general result. 

TDNN as applied also has limitations in its inability to learn or adapt time delay 
values. Time delays are initially fixed, and remain constant throughout training. As a 
result, TDNN may have poor performance due to inflexibility of time delays and a 
mismatch between choice of time-delay values and temporal location of important 
information in the input patterns. In addition, performance may vary depending on the 
range of the time delay values.  

To overcome this limitation, our future work will focus on an adaptive time-delay 
neural network model. This network adapts its time-delay values as well as its 
weights during training to better accommodate changing temporal patterns, and 
provides more flexibility for optimization tasks. 
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Abstract. In this paper we firstly analysis the chaotic characters of three sets of 
the financial time series (Hang Sheng Index (HIS), Shanghai Stock Index and 
US gold price) based on the phase space reconstruction. But when we adopt the 
feedforward neural networks to predict those time series, we found this method 
run short of a criterion in selecting the training set, so we present a new method: 
using correlation dimension (CD) as the criterion . By the experiments, the 
method is proved effective.  

1   Introduction 

The prediction of the financial time series is a problem which interest the researchers 
at all time because it has important meaning for macro-economic adjustment and 
micro-economic management. For predicting the financial time series better research-
ers made great efforts to find the laws of the time series. In the past the financial time 
series were considered random walk and the models were built according to this view-
point, but the predicted results were proved bad by some experiments [1]. 

In recent years researchers found that some financial time series are chaotic time 
series rather than the random series in fact. Literature [2] indicated that hourly data of 
four spot exchange rates (British Pound, Deutschmark, Japanese Yen and Swiss 
France) are chaotic; literature [3] pointed out American national debt time series has 
chaotic attractor; literature [4] proved that some metal prices in London market fol-
lows a mean process that is dynamic chaotic. 

Many methods such as the maximum Lyapunov exponent method [5] and one-rank 
weighed local method [6] are used to predict the chaotic time series. In maximum 
Lyapunov exponent method, a teeny error induced by computing the maximum 
Lyapunov exponent will bring large error in the prediction. The idea of one-rank 
weighed local method is to use the linear model to resume local chaotic system. But 
the linear model always has some limits to mirror the nonlinear system. So the pre-
dicted effects of the economic time series are not good enough with these methods. 

At the same time owing to the strong nonlinear mapping ability of the neural net-
works, many kinds of neural networks such as BPNN [7], GRNN [8] and RNN [9] 
etc. were used to predict the financial time series. In this paper we adopt the feedfor-
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ward neural networks used in the literature [10] as the training networks to predict the 
financial time series. With this kind of networks introduced in the third section, many 
classical chaotic systems such as Lorenz system, Henon mapping etc. can be pre-
dicted very well.  

But in the process of studying the method, we find the training set’s choice is hazy 
and run short of a criterion in this method. So at the forth section, we bring forward a 
new method to choose the training set. According that the financial time series are 
chaotic, we choose the correlation dimension -- a kind of fractal dimension that can 
depict the chaotic characteristics as the criterion to choose the training set. By the 
experiments the method is proved effective. 

If we use the feedforward neural networks to predict the time series, the phase 
space must be reconstructed firstly, so in the second section we introduce the delay 
coordinate method adopted to reconstruct the space and compute the financial time 
series’ maximum Lyapunov exponents to prove the three sets of financial time series 
are chaotic. Then we show the architecture of the neural networks in third section. In 
the forth section we explain the definition of the correlation dimension simply, and 
introduce how to choose the training set according to the correlation dimension. At 
the same time the three sets of economic data are used to prove the effect of the new 
method in the fifth section. In the last section, we reach the conclusion. 

2   Phase Space Reconstruction 

2.1   Theory Introduction 

For resuming the dynamic characteristics of the original financial systems, the phase 
space should be reconstructed firstly. Takens’ theorem, which opens out some nonlin-
ear systems’ dynamic mechanism, is the theoretic base of the phase space reconstruc-
tion. 

Takens’ theorem: M is d dimension manifold mapping MM →:ϕ is a smooth dif-

ferential homeomorphism mapping RMy →: has second-order continuous derivative 
12:),( +→ dRMyϕφ and 

)))((,)),((),((),((),( 22 xyxyxyxyyx dϕϕϕφ L=  (1) 

where the function ),( yϕφ is a embedding from M to 12 +dR . The theorem indicates that a 

suitable embedding dimension can be found to resume the inerratic trajectory [11]. 
The delay coordinate method is used to reconstruct the phase space in the paper. An 
embedding dimension m and a delay timeτ are determined to create

mN points, and 

every point iY is a m dimension vector, 

),,,(,),,,,(,),,,,( 1)1()1(1111 NNNNmiiiim xxxYxxxYxxxY
mmm

LLLLL +−++−++ === ττττ  (2) 

where τ)1( −−= mNNm
. The embedding dimension m and the delay timeτ are impor-

tant parameters because they decide the quality of the reconstructed phase space.  
In this paper, we use the so-called false nearest-neighbor method [12] to decide the 

embedding dimension m . The idea of the method is when the dimension is in-
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creased from m to 1+m , we estimate whether there are false near points in the near 
points of the point iY , if there is none, the geometrical structure of the attractor has 

been opened. When the dimension is m , supposing that the point 'i
Y  is the nearest 

point of the point iY , the distance between these two points is )(
'

m

ii
YY − .When the 

dimension is increased to 1+m , their distance is marked )1(
'

+
−

m

ii
YY .  

5010,
)()()1(

''' ≤≤>−−−−
+

TT

m

ii

m

ii

m

ii
RRYYYYYY  (3) 

The point 'i
Y is the false neighbor point of the point iY  where 

TR is the threshold .We 

start at dimension 2 and increase the dimension by one each time. Either the propor-
tion of the nearest neighbor points is smaller than 5% or the number of the nearest 
neighbor points don’t decrease with the increase of the dimension, the dimension m is 
the optimum. 

2.2   Financial Time Series’ Phase Space Reconstruction 

In the paper, we choose the opening quotation of Hang Sheng Index (HIS) (4067 
points from 31 December 1986 to 16 June 2003), Shanghai Stock Index (2729 points 
from 19 December 1990 to 29 January 2001), and US gold price (7277 points from 2 
January 1975 to 8 August 2003) as the experiment data. The three sets of time series 
are shown in Fig.1. 

 

         
(a)                                          (b)                                         (c) 

Fig. 1. (a) Opening quotation of Hang Sheng Index (b) Opening quotation of Shanghai Stock 
Index (c) Opening quotation of US gold price. 

From Fig.1 we can observe that in the time series curves some locals have similar-
ity with the whole. For showing the complexity of the three sets economic data, we 
compute their box dimensions [13]. The box dimension, which always is used to cal-
culate the dimension of the continuous curve, is a kind of fractal dimension. They are 
shown in Table 1. 

According to the theory in the literature [14], if the capital market follows the ran-
dom walk, the box dimension should be 1.5. The time series whose box dimension is 
between 1 and 1.5 is called long range correlation fractal time series, which means 
that the past increment is positive correlative with the future increment. The time 



 The Prediction of the Financial Time Series Based on Correlation Dimension 1259 

 

series whose box dimension is between 1.5 and 2 is called long range negative corre-
lation fractal time series, which means that the past increment is negative correlative 
with the future increment. From the Table 1, we can observe that the box dimensions 
are all between 1 and 1.5, so the financial time series don’t follow the random walk 
entirely, and that there is long range positive correlation in them. 

 

Table 1. The  box dimensions of the enconomic time series 

     HIS              Shanghai Stock Index                US gold price 
Box  dimension    1.16016                   1.16631                                1.18816 

 

We reconstruct the phase space by calculating the embedding dimension m and the 
delay timeτ with the prediction error minimizing method [15].  

At the same time, we choose three dimensions data from the every m -dimension 
reconstructed phase space of the financial time series and plot them which are shown 
in Fig.2. 

 

   
              (a)                                     (b)                                         (c) 

Fig. 2. The 3 dimensions data from the reconstructed phase space of the financial time series (a) 
the opening quotation of Hang Sheng: 1-dimension, 9-dimension and 17dimension (b) the 
opening quotation of Shanghai Stock Index:1-dimension, 10-dimension and 19dimension (c) 
the opening quotation of US gold price:1-dimension, 10-dimension and 19dimension 

The maximum Lyapunov exponent
maxλ is computed with the small data sets 

method [16] to prove that these financial time series are chaotic. A quantitative meas-
ure for the sensitive dependence on the initial conditions is the Lyapunov exponent, 
which characterizes the average divergence rate of two neighboring trajectories.  

It is not necessary to calculate Lyapunove spectrum because a bounded time series 
with a positive maximum Lyapunove exponent indicates chaos. Moreover, the maxi-
mum Lyapunov exponent gives an estimate of the level of chaos in the underlying 
dynamical system. From Table 2 we can found the maximum Lyapunov exponents 
are positive, so the financial time series are chaotic. 

The chaotic systems are sensitive to the initial values, so the chaotic time series has 
limited prediction potential. Since the maximum Lyapunove exponent characterizes 
the average degree of neighboring orbits, its reciprocal 

max1 λ determines the maximum 

predictable time. The results are all shown in Table 2. 
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Table 2. The chaotic analyse of the financial time series. 

                            Embedding    Delay time  maximum Lyapunov maximum predictable 
dimension                                    exponent                     time 

HSI                                 17                    6                       0.069                         14 
Shanghai Stock Index         19                    4                       0.029                         30 

US gold price                    19                    7                       0.046                         20 

3   Feedforward Neural Networks 

The architecture of the feedforward neural networks used in this lecture is 
1::2: mmm , where m is the embedding dimension. The topology architecture is shown 

in Fig.3. 

           

 

Fig. 3. Architecture of the feedforward neural networks 

When the m dimension training set is put into the networks, each hidden unit j  in 

the first hidden layer receives a net input  

=
i

ijij xwγ  (4) 

and produces the output 

)tanh()tanh( ==
i

ijijj xwV γ  (5) 

where jiw  represents the connection weight between the i th input unit and the j th 

hidden unit in the first layer. Following the same procedure for the other unit in the 
next layers, the final output is then given by 

=
l j i

iijljsl xwwwz tanhtanh'  (6) 
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where the hyperbolic tangent activation function is chosen for all hidden unit, and the 
linear function for the final output unit.  

The weights are determined by presenting the networks with the training set and 
comparing the output of the networks with the real value of the time series. The func-
tion of the weights adjusting is 

qt
old
qt

new
qt www Δ−= ηα  (7) 

where 
qtqtqt wwEw )(∂=Δ , )( qtwE is the mean square error function, 10 ≤< η is the learn 

rate, and 10 << α is the inertial term. By setting the delay coordinates of the time se-
ries )(tx : ))1((,),(),(( ττ −−− mtxtxtx L  as the input pattern and choosing )( Λ+tx as the 

know target, the networks can be trained to predict the future state of the system at a 
time Λ , which corresponds to a certain number of time steps [10]. 

4   How to Choose the Training Set 

4.1   Method of Choosing Training Set  

In the above feedfoward neural networks prediction the input data and the target 
should be known, but it is impossible to know the target in reality, therefore this pre-
diction is only a systemic simulation. At the same time the literature [10] didn’t men-
tion how to choose the training set, thus the choice of the training set has some uncer-
tainty. So if we want to predict the time series authentically, we should choose the 
training set whose characters are similar with the prediction set’s, and use the weights 
getting from the training set’s exercitation to forecast the prediction set. So how to 
choose the training set became an important problem. We solve this problem in this 
section. 

In the second section we proved the three sets of the financial time series are cha-
otic time series, so we put forward a new method to choose the training by using the 
correlation dimension as the criterion. The correlation dimension is a kind of fractal 
dimension that can depict the chaotic characteristic. The notion of dimension often 
refers to the degree of complexity of a system expressed by the minimum number of 
variables that is needed to replicate it. 

 The steps of how to choose the training set are shown as follows. 

1) Reconstructing the phase space. 
2) Calculating correlation dimension of the prediction set. 
3) Choosing 50 sets which are closest to the prediction set. 
4) Computing every set’s correlation dimension. 
5) Choosing the set whose correlation dimension is nearest to the prediction set’s as 

the training set. 

Then use this training set to train the networks, and get the weights. We can adopt 
these weights to forecast the prediction set. 
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4.2   Correlation Dimension 

The G-P algorithm which was presented by Grassberger and Procaccia is adopted to 
calculate correlation dimension [17]. 

For a set of the space points }{ iY , defining 

,)(
)1(

2
)(

1 ≤<≤
−−

−
=

Nji
jiN YYr

NN
rC θ  (8) 

where 
>
≤

=
0,1

0,0
)(

x

x
xθ  is the Heaviside function.  

When we choose different r , we can get different )(rC N
. In estimating the correla-

tion dimension from the data, one plots )(log rCN  against )log( r , where N is the cardi-

nality of the data set. )(rCN
 measures the fraction of the total number of pairs 

),( ji YY such that the distance between iY and jY not longer than r . 

5   Experiments 

From the embedding dimensions in the Table 2 we can determine the neural net-
works’ architecture, for Shanghai Stock Index the architecture is 19:38:19:1, for HSI 
the architecture is 17:34:17:1, for US gold price the architecture is 19:38:19:1.  

 

 
                        (a)                                   (b)                                   (c) 

Fig. 4. Fitting curves of prediction set’s CD and the Training set’s CD (a) the opening quotation 
of Hang Sheng Index (b) the opening quotation of Shanghai Stock Index (c) the opening quota-
tion of US gold price 

Based on the three phase spaces with the financial time series, we choose 100 con-
tinuous points in the every phase space as the prediction set. Using the method expati-
ated in the forth section we determine the training set. The correlation dimensions of 
the prediction set and training set are listed in Table 3.  

Fig.4 shows the fitting curves of prediction set’s CD and the Training set’s CD. 
From Table 3 and Fig.4 we can observe for every set of the financial time series that 
the training sets’ correlation dimensions are near to the prediction sets’, and their 
fitting curves are parallel. So in the next step we use these three training sets to train 
the networks. 
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Table 3. The correlation dimension comparison between the predicting set data and training  
data 

                                     HIS           Shanghai Stock Index        US gold price 
Predicting set’ CD               1.9113                     2.3979                           2.7269 
Training set’s CD                 2.1078                    2.3276                           2.7936 

CD’s difference                  0.0965                    -0.0703                           0.0667 
 

By educating the every training set in the networks, we obtained the weights one 
by one. Put the prediction set into the networks whose weights have been determined, 
and the predicted data are calculated. The three sets of the predicted results and the 
real values are shown in Fig.5. 

 

 
                      (a)                                          (b)                                            (c) 

Fig. 5. The prediction of the financial time series (a) the opening quotation of Hang Sheng 
Index from 2 April 2002 to 22 April 2002 (b) the opening quotation of Shanghai Stock Index 
from 21 October 1996 to 11 November 1996 (c) the opening quotation of US gold price from 8 
September to 5 October 1995 

We also calculate the mean absolute percentage error (MAPE) displayed in Table 4 
to show the prediction effect. 

n

xxx
MAPE

n

t
ttt

=

−
= 1

'

 (9) 

where tx is the real data and '
tx is the predicted data. 

Table 4.  The MAPE between the real data and the predicted data 

                             HIS           Shanghai Stock Index        US gold price 
MAPE              1.9%                       3.9%                           0.46% 

 
Every MAPE is less than 5%, so the prediction effect is good enough. 

6   Conclusions 

Though the experiment results, we can find that the predicted data’s trend is identical 
with the real data’s on the whole except few exceptional points and the MAPE be-
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tween the real data and the predicted data are all small. This proved that as the chaotic 
time series, the financial time series can be predicted by the feedforward neural net-
works.  

On the other hand, we also can prove that the method which is adopted to choose 
the training set by using the correlation dimension as the criterion is effective from 
the experiment results. When we predict the chaotic financial time series using this 
method, the uncertainty of the training set’s choice is reduced.  
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Abstract. Clustering of incomplete data using a neural network and the
Gradient-Based Fuzzy c-Means (GBFCM) is proposed in this paper. The
proposed algorithm is applied to the Iris data to evaluate its performance.
When compared with the existing Optimal Completion Strategy FCM
(OCSFCM), the proposed algorithm shows 18%-20% improvement of
performance over the OCSFCM.

1 Introduction

When a data consists of numerical values, each numerical component of the data
usually represents a feature value. The numerical data sometimes contains data
that is missing one or more of the feature values. Any data with missing feature
values is called an incomplete data. In addition, a data set which consists of at
least one incomplete data is called an incomplete data set. Otherwise, it is called
a complete data set. Research on clustering and estimating of the missing feature
values in the incomplete data was first summarized by Dixon[1]. Hathaway and
Bezdek proposed the optimal completion strategy FCM (OCSFCM), a modified
fuzzy c-means algorithm for clustering of the incomplete data. They reported
how near the centers of the clusters of the original complete data can be to
the estimated data by applying the OCSFCM to the incomplete data[2]. The
OCSFCM, however, requires the center values of the complete data in advance
in its initial stage of the estimation process for the incomplete data and it is not
feasible to utilize the OCSFCM when the center values of the complete data are
not available as is the case for most practical problems.

This paper proposes a clustering algorithm for incomplete data that does
not require the center values of the compete data in advance. The proposed
algorithm in this paper first estimates the missing values of the incomplete data
using an autoencoder neural network (AENN) and estimates the group centers
by using the Gradient-Based FCM (GBFCM).

2 Gradient-Based Fuzzy c-Means Algorithm

One attempt to improve the FCM algorithm was made by minimizing the ob-
jective function using one input data at a time instead of the entire input data

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 1266–1269, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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set. That is, the FCM uses all data to update the center value of the cluster,
but the GBFCM that is used in this paper was developed to update the center
value of the cluster with a given individual data sequentially.

In GBFCM, the update rule for the center vector v and the membership
grade μi with a given data x can be summarized as:

v(k + 1) = v(k)− 2ημ2
i (v(k)− x) (1)

μi =
1∑c

j=1(
di(x)
dj(x) )

2
(2)

where k denotes the iteration index, η is a learning gain, and di(x) is the distance
from x to the i−th center.

As can be seen from Eq. (1) and Eq. (2), the GBFCM requires only one data
to update the centers and corresponding membership values at a time. More
detailed explanation about the GBFCM can be found in [3,4].

3 Optimal Completion Strategy Fuzzy c-Means

The OCSFCM is an effective algorithm for clustering of incomplete data. This
algorithm finds a condition that minimizes the objective function with an addi-
tional condition from the incomplete data set and estimates the missing portion
of the incomplete data. That is, the OCSFCM obtains estimated values of the
missing components and the center value of clusters of the optimized incom-
plete data through adding an additional step given in Eq. (3) over the missing
components during iteration [2].

xj =
∑c

i=1(μi)mvij∑c
i=1(μi)m

(3)

where xj is the j -th feature value of the incomplete data x and c represents the
number of clusters.

4 Optimal Completion Autoencoder Fuzzzy c-Means

Since the OCSFCM utilized the FCM, the OCSFCM requires the center value of
clusters of the original complete data set. However, when the original complete
data sets are not available, the OCSFCM is not applicable. In this paper, an
algorithm that does not require any information on original complete data sets
and can estimate the missing components is proposed by using the autoencoder
neural network (AENN) [5]. The AENN has a same number of input neurons
and output neurons with a smaller number of hidden neurons. In particular,
the information of the input pattern after training the AENN is presented by
compressing the form of the bottleneck hidden layer.

The OCAEFCM proposed in this paper first estimates missing features by
using the trained AENN and clusters the restored incomplete data by using the
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Fig. 1. A schemic block diagram of the OCAEFCM

GBFCM. The estimation of missing features is finished by one incomplete data
by one incomplete data and the clustering is performed after estimating all the
missing features in the incomplete data set. However, our goal is to find the
proper clustering with an incomplete data set and individual missing features
that do not affect the clustering results can be ignored. Therefore, the proposed
algorithm does not estimate missing feature values by sequential repetition. As
shown in Fig. 1, the proposed OCAEFCM estimates and restores the missing
feature values only after evaluating the final clustering results by the GBFCM.

5 Experiments and Results

In this paper, Anderson’s Iris data [6] was used as the experimental data set to
examine the proposed OCAEFCM. The Iris data set has been used extensively
to evaluate various clustering and classifier problems. The data set consists of
150 four-dimensional (equivalently, 600 feature) values with 50 vectors for each
of three physically labelled classes. Out of the 600 feature values, randomly
chosen features are labelled as missing features. The data which contains the
missing values is considered an incomplete data. The percentages of incomplete
data over complete data are set to vary from 10% to 60% for experiments. Note
that an incomplete data must have at least one missing feature value and this
experimental method was used in OCSFCM [2]. Experiments are performed 50

Table 1. Results on Iris data completion problem

Data Missing Rate
Algorithm 10% 20% 30% 40% 50% 60%
OCSFCM 0.067 0.074 0.085 0.086 0.091 0.109

OCAEFCM 0.043 0.062 0.063 0.067 0.075 0.081
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times on each of the complete and incomplete data sets for obtaining unbiased
results. In each experiment, the performances of the OCSFCM and OCAEFCM
are calculated by the average value of the Mean Prototype Error (MPE). Table 1
shows the MPE of each algorithm compared. As can be seen from these results,
the accuracy of prototype estimation by OCAEFCM is always at least as good
as the other algorithms. It shows that the OCAEFCM gives 18%-20% less errors
over the OCSFCM in MPE. This result shows that the proposed OCAEFCM is
a more reliable tool for clustering incomplete data over the OCSFCM.

6 Conclusion

In this paper, an efficient clustering algorithm for incomplete data, called the
OCAEFCM (Optimal Completion Autoencoder FCM), is proposed. The pro-
posed OCAEFCM utilizes the AENN for estimating and restoring missing fea-
tures and the GBFCM for clustering of incomplete data. The proposed OCAE-
FCM is applied to restoration of artificially deteriorated Iris data and compared
with the OCSFCM. The results show that the OCAEFCM gives an improvement
in MPE performance of 18% - 20% over the OCSFCM.
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dation (Grant # R05-2003-000-10992-0(2004)).
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Abstract. Artificial Neural Network (ANN) is widely used in the business to 
get on forecasting, but is often low performance for noisy data. Many tech-
niques have been developed to improve ANN outcomes such as adding more 
algorithms, feature selection and feature weighting in input variables and modi-
fication of input case using instance selection. This paper proposes a Euclidean 
distance matrix approach to instance selection in ANN for financial forecasting. 
This approach optimizes a selection task for relevant instance. In addition, the 
technique improves prediction performance. In this research, ANN is applied to 
solve problems in forecasting a demand for corporate insurance. This research 
has compared the performance of forecasting a demand for corporate insurance 
through two types of ANN models; ANN and ISANN (ANN using Instance Se-
lection supported by Euclidean distance metrics). Using ISANN to forecast a 
demand for corporate insurance is the most outstanding. 

1   Introduction 

When there is a need of forecasting in business management, ANN (Artificial Neural 
Network) is an excellent method to use. For example, ANN is widely used in the 
business to get on forecasting of bankruptcy, churning customers and stock price [10], 
[8]. Recently, in order to forecast problems more accurately in cooperation manage-
ment, many techniques have been developed to improve outcomes such as adding 
more diverse algorithm, feature selection and feature weighting in input variables and 
modification of input case using instance selection.  

The prediction performance using ANN depends on various factors such as the 
number of hidden layers and nodes as well as learning rate and the number of momen-
tum, etc. Thus, ANN requires control to hidden layer and nodes as well as learning 
rate, momentum, etc. Also the method shows somewhat lower prediction level when 
the data set has noise and very large. Thus ANN needs to select relevant case for 
avoid an over-fitting problem inherent in ANN model.  

In developing the most well forecasting model (ISANN : ANN supported by In-
stance Selection) for a demand for corporate insurance using instance selection sup-
ported by Euclidean distance metrics, two sample models (ANN, ISANN) of forecast-
ing performances have been compared.  
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The result of this research has shown, first, to present more accurate forecasting 
model to the management of insurance cooperation. Secondly, the guide line will be 
given to whom a demand for corporate insurance has been used. 

2   Research Background 

2.1   ANN as a Tool for Forecasting 

ANN is used in solving problems of pattern recognition, classification and forecasting 
after analyzing the linked relation between independent variables and dependent vari-
ables [4] [8]. For example, ANN is used in following fields of study; forecasting of 
stock price, bankruptcy and churning of customer. The advantage of using ANN is 
that it brings out more outstanding result than statistical technique. 
 Fletcher, Coss [2] who used ANN in forecasting a bankruptcy of the cooperation 

proved that ANN has given better performances in forecasting than logit analysis. 
Tam, Kiang [10] also verified that ANN is more superior in forecasting a bankruptcy 
of a bank. Recently, many researches are in process using ANN to improve the per-
formance of forecasting with fuzzy membership function, Genetic Algorithm (GA), 
and Case-based Reasoning (CBR). For example, Yang et al. [10] has proved that 
Probabilistic Neural Networks (PNN) using neural network in forecasting a bank-
ruptcy is more than existing Back Propagation Neural Networks (BPNN) or MDA. 

2.2   Instance Selection 

There are feature weighting, instance selection and feature selection techniques to 
improve the performance of forecasting in data mining. Especially, Instance selection 
is the technique to improve the performance of predicting in data mining for selecting 
relevant data. Their methods are proven to be affective in forecasting performance [9].   

There are various methods to be applicable in instance selection. Kai et al. [7] has 
proved the remarkable improvements in forecasting a performance of recommended 
system based on collaboration with feature weighting and instance selection method. 
Ahn et al. [6] also verified the innovative progress in predicting of stock price using 
genetic algorithm and feature selection with instance selecting through case based 
reasoning. Cardie [1] proposed an instance selection method based on a decision tree 
approach to improved case-based learning.  

3   ANN Supported by Instance Selection 

To improve the ANN prediction performance, this research uses ISEDM (Instance 
Selection technique supported by Euclidean Distance Metrics) as an optimization tool 
of ANN performance. This research has compared the forecasting performance 
through ANN models, ISANN as mentioned earlier. 

First, the ANN model is a conventional ANN model. This model uses a conven-
tional method. Generally, feature selection and feature weighting of each feature of 
ANN is not considered and not a used instance selection. Second model is named as 
ISANN. ISANN is a sequential two step approach. It was carrying out, ISEDM for 



1272 S. Lim 

 

experimental data set 1 and experimental data set 2. And then, it carried out an ANN. 
The ISANN model consists of the following stage. For the first stage, we extract ex-
perimental data set 1 and experimental data set 2 from a large scale data base for 
demand forecasting of corporate insurance. For the second stage, we developed the 
matrix composed of experimental data set 1 and experimental data set 2 the width and 
length by Euclidean distance to reduce and extract large scale data. And then, we 
decided the ranking from the small of Euclidean distance to the experimental data set 
1 and experimental data set 2 based on the selection principle of minimizing of 
Euclidean distance. For the third stage, we applied algorism of k-Nearest Neighbor 
(k-NN) to the instance selection of experimental data set 1 and experimental data set 
2. In choosing case, we applied the algorism of k-NN and then chose each 50% in 
experimental data set 1 and experimental data set 2. Therefore it can improve the 
forecasting performance by applying to ANN.   

4   Research Design and Experiments  

4.1   Data Description and Measurement of Variables 

Table 1. Descriptive Statistics 

Feature Name Minimum Maximum Mean 

Firm Size  5558235 64529738387 764826604 

Minority Shares  .00 85.70 5.1401 

Financial Service Own .00 78.40 1.0187 

Government Ownership  -237.10 302.36 3.2303 

Debt-to-Equit Ratio  .00 6.25 .8161 

Leverage  -54.56 114.21 .5070 

Liquidity  72836.00 14488258048. 144619473.48 

Tax shields Depreciation  -143598916. 12290374509. 112897148.88 

Tax shields Margin  -.08 4.56 .0122 

 

    This paper used KIS-FAS (Korean Investors Services-Financial Analysis System) 
accounting data of non-financial firms listed in the Korean Stock Exchange from 
2000 to 2002. Fortunately the 800 data includes insurance premium expenditures,
property casualty losses, ownership structure (shares of major institutional
stockholders, the largest individual stockholder, minority stockholders, and for-
eigners), a number of employee as well as other financial data [3], [4]

In this research, the 9 independent variable is established as based on insurance 
theory. The original data are scaled into the range of [0, 1]. Linear scaling helps to 
decrease prediction errors. Table 1 summarizes the definitions of the variables used in 
this analysis, and also indicates our expectations about the effect of each on insurance 
demand. Below, we discuss the results of our estimation. 
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4.2   Research Method 

This research has compared the performance of forecasting a demand for corporate 
insurance through two types of ANN and ISANN models as mentioned earlier. First 
model is a traditional ANN model which is named as ANN. Second is named as 
ISANN based on instance selection using Euclidean distance metrics. 

ANN, ISANN were given fixed value of 5 for hidden layer for tests. The ratio for 
experimental data set 1 and experimental data set 2 is 80:20 for the test. Results con-
sisted of 640 of experimental data set 1 and 160 of experimental data set 2. In experi-
mental data set 1, the ratio for training data and holdout data is 80:20 for the test. 
Results consisted of 512 of training data and 128 of holdout data. Also, in experimen-
tal data set 2, the ratio for training data and holdout data is 80:20 for the test. Results 
consisted of 128 of training data and 32 of holdout data. The rest of conditions were 
set as given option provided in Clementine 8.1. The rest of default values are used as 
quick algorithm, Alpha 0.9, Initial Eta 0.3, Eta decay 30, High Eta 0.1, Low Eta 0.01. 

5   Results 

The prediction performances of ISANN and other alternative model are compared in 
this section. Table 2 describes the prediction performance of each model. As table 3 
shows, in experimental data set 1, ISANN achieves higher prediction accuracy than 
ANN by 3.190% for the holdout data and by 16.218% for the training data. And in 
experimental data set 2, ISANN achieves higher prediction accuracy than ANN by 
0.656% for the holdout data and by 3.810% for the training data. 

According to this research outcome, using ISANN to forecast a demand for corpo-
rate insurance is the most outstanding. The order of outstanding performances of 
forecasting is following; ANN < ISANN. Reflecting on case reduction of Euclidean 
distance metrics is very important for realizing instance selection. 

 

Table 2. Prediction performance of ANN, ISANN 

 
Model 

Experimental data set 1 
ANN             ISANN 

Experimental data set 2 
ANN                    ISANN 

Training Data 53.226 69.444 53.333 57.143 
Holdout Data 54.737 57.927 56.944 57.500 

6   Conclusion 

This research has optimized the forecasting performance a demand for corporate in-
surance using ISANN. This research result is very significant that forecasting of in-
surance demand can now have a model in making more accurate decisions. 

There are some limits found while carrying out the research. The limitations are 
followings. First, the generalizability of ISANN should be test further applying them  
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to other area. Second, ANN forecasting performances depend on learning rate, hidden 
node, hidden layer etc. Therefore, the control method of it remains an interesting 
further research topic. 
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Abstract. L-system is a grammar-like formalism introduced to simulate the de-
velopment of organisms. The L-system grammar can be viewed as a sort of ge-
netic information that will be used to generate a specific structure. However, 
throughout development, the string (genetic information) that will effectively be 
used to ‘draw’ the phenotype of an individual is a result of the derivation of the 
L-system grammar. This work investigates the effect of applying a genetic pro-
gramming approach to evolve derived L-systems instead of evolving the L-
system grammar. The crossing over of plants from different species results in 
hybrid plants resembling a ‘Frankstree’, i.e. plants resultant from phenotypi-
cally different parents that present unusual body structures.  

1   Introduction 

Development at the multicellular level consists of the generation of structures by cell 
division, enlargement, differentiation, and cell death taking place at determined times 
and places in the entire life of the organism. It corresponds to the series of changes 
that animal and vegetable organisms undergo in their passage from the embryonic 
state to maturity, from a lower to a higher state of organization.  

Evolutionary algorithms (Bäck et al., 2000a,b) have been used not only to solve a 
number of complex problems, but also as a tool for generic evolutionary design. The 
grammar of an L-system fully describes its development and can thus be considered 
the genetic information of an L-system. It has been used by many authors as the ge-
netic material to be evolved by an evolutionary algorithm (Runqiang et al., 2002).  

This paper introduces a different hybridization of evolutionary algorithms and L-
systems. It proposes the use of a genetic programming approach to evolve derived L-
systems and discusses its implications on the resultant phenotype. It shows that cross-
ing over derived L-systems is equivalent to performing a graft between the plants. 

2   Genetic Programming Design of L-Systems 

In his 1968 papers, Lindenmayer (1968) introduced a notation for representing graph-
theoretic trees using strings with brackets. The bracketed L-systems extend an L-
system alphabet by the set {[,]}. The motivation was to formally describe branching 
structures found in many plants, from algae to trees.  
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The main reason that makes the automatic generation of L-systems a difficult task 
is the fact that a simple modification on a production rule or produced word, such as 
the inclusion of an orientation change symbol, may damage the whole plant-like 
structure. Other changes could affect the plant fatally.  

To circumvent these difficulties and due to the tree-like nature of L-systems, Ge-
netic Programming (GP) was used here as a theoretical basis (Koza, 1992; Bahnzaf et 
al., 1998) for evolving L-systems. Furthermore, instead of evolving the L-system 
grammars as already performed in the literature, we chose to evolve derived L-
systems. In this case, the individuals of the population are the derived L-system 
words, and the crossover points have to be based on valid tree nodes of the ‘adult 
plants’. No mutation is employed here. If a node is chosen as a cut point during a 
crossover operation, all nodes from its branch (sub-tree) must also be part of the 
crossover. In this case, an L-system plant is seen as a genetic programming tree with 
each bracket representing the interconnection between tree nodes and the initial point 
of each bracket representing a potential cut point.  

2.1   Evolving L-Systems 

The approach adopted here to efficiently perform crossover between two derived L-
systems (plants) was to identify some basic units (branches) of the plants and cross 
them over. This was implemented through the generation of a pattern table, a bracket 
table, and a cut table, as follows: 

o Pattern table generation: For all plants that are going to suffer crossover, find 
and isolate all the basic units that compose the L-system word. The basic units 
are defined here as the different production rules, which, by default, cannot be 
divided during a crossover operation. To do this, a pattern table is generated for 
saving the initial and final position of each basic unit within a derived L-system;  

o Bracket table generation: A new bracket table is generated for saving all the 
initial and final positions of the brackets located outside the basic units found; 

o Cut table generation: To perform crossover, one cut point for each parent plant 
has to be selected based on the bracket table. Integer numbers between 0 and the 
word length are randomly generated. All the intervals on the bracket table that 
contain these numbers are selected and placed on a cut table for each plant; 

o Crossover: With a given probability, the crossover operation has to obey two 
basic rules. First, the direction of both selected branches (sub-trees) must have a 
maximum difference of 90o. Second, if the direction of a branch is ±90o, this can 
only be replaced by another branch pointing in the same direction.  

3   Some Computer Experiments 

A number of plants are chosen to compose the population for evolution. The user is 
then responsible for selecting a plant that will serve as a parent and will be crossed 
over with another plant from the population. Crossover is performed with a probabil-
ity pc = 50%. Three different types of experiments were performed here. (a) A popu-
lation of identical individuals (Fig. 1a); (b) A population with two different kinds of 
plants (Fig. 1b). (c) A population with six different individuals (Fig. 1c). 
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(a)      0 generations 20 generations 30 generations 

   
(b)      0 generations 20 generations 30 generations 

  
(c)      0 generations 20 generations 30 generations 

   
Fig. 1. Aesthetic evolution of (a) six identical plants, (b) six plants of two different species, (c) 
six different plants 

Fig. 2 shows some situations when the crossing of different plants resulted in mon-
grel offspring that are possibly not biologically plausible. The mix of genetic informa-
tion from adult parents of different species leads to plants that are actually constructed 
out of parts from incompatible individuals. 

 
 

Fig. 2. Hybrid plants (FranksTrees) generated from parents of different species 
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4   Discussion and Future Investigation 

The experiments reported in this paper corroborate with the biological notion that 
individuals of different species are reproductively isolated. The concept of species is 
an important but difficult one to define in biology. There is little agreement on a defi-
nition for species. The idea for species came about as the result of observing the ef-
fects of several processes: reproduction, genetic variation and drift. New traits in the 
population result from these processes and are subject to natural selection, which 
favors different characteristics in different situations. The accumulation of differences 
eventually yields different species. 

These facts are in accordance with the results obtained in the experiments reported 
here. It is possible to note that crossing individuals of the same species (phenotypi-
cally similar individuals) results in biologically plausible (aesthetically normal) 
plants. On the other hand, though crossing individuals of different species is computa-
tionally feasible; this results in plants with ‘grafts’ taken from plants that are com-
pletely different from the parent plants. 

The main future investigation is to study the influence of automating the selection 
of derived L-system plants. One question that remains to be answered is related to the 
outcome of an automatic evolution of derived L-systems when a fitness function that 
takes into account factors of major impact on plant evolution (e.g., phototropism, 
symmetry, light gathering ability, etc.) are used. The effects of mutation also deserve 
investigation.  
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Abstract. This paper proposes a novel constructive learning algorithm for a 
competitive neural network. The proposed algorithm is developed by taking 
ideas from the immune system and demonstrates robustness for data clustering 
in the initial experiments reported here for three benchmark problems. Com-
parisons with results from the literature are also provided. To automatically 
segment the resultant neurons at the output, a tool from graph theory was used 
with promising results. A brief sensitivity analysis of the algorithm was per-
formed in order to investigate the influence of the main user-defined parameters 
on the learning speed and accuracy of the results presented. General discussions 
and avenues for future works are also provided. 

1   Introduction 

Most living organisms exhibit extremely sophisticated learning and processing abili-
ties that allow them to survive and proliferate, generation after generation, in dynamic 
and competitive environments. These are some of the reasons why nature has inspired 
several scientific and technological developments [3]. One such natural system is the 
human immune system. It can be seen as a parallel and distributed adaptive system 
with a tremendous potential as a source of inspiration for the development of robust 
problem solving techniques. This results from the fact that the immune system exhib-
its features like self-maintenance, pattern recognition and classification, feature ex-
traction, diversity, adaptability, memory to past encounters, distributed detection, and 
self-regulation [2],[6]. 

This paper extends the work proposed in [4] on the use of features from the human 
immune system, and also artificial immune systems [6], to design novel artificial 
neural network learning algorithms. In particular, the network to be developed here is 
modeled as a competitive and constructive (i.e., with network growing and pruning 
phases) artificial neural network. Differently from the network proposed in [4], which 
was characterized as a Boolean neural network, called ABNET (Antibody Network), 
this new version uses real-valued vectors to represent the weight connections to the 
neurons and is, thus, termed RABNET (Real-valued Antibody Network).  

The resultant hybrid system has a typical competitive neural network architecture 
similar to a one-dimensional self-organizing map [11]. In order to adapt to the input 
patterns, the network makes use of several features of an immune response, such as 
the clonal expansion of the most stimulated cells, death of the non-stimulated cells 



1280 H. Knidel, L.N. de Castro, and F.J. Von Zuben 

 

and the affinity maturation of the repertoire. The network does not have a predefined 
number of neurons, which will be dynamically determined based on immune princi-
ples. Finally, a minimal spanning tree [14] is used to automatically specify the num-
ber of clusters in the neural network after learning, and thus in the input data. 

2   RABNET: A Neuro-immune Network 

Inspired by ideas from immunology, the RABNET development assumes an antigen 
population (Ag) that should be recognized by an antibody repertoire (Ab) modeled as 
a one-dimensional competitive neural network with real-valued weights. At the be-
ginning of the adaptation process, RABNET contains a single antibody (neuron) in 
the network and grows when required. 

Similar to the work in [4], RABNET presents the following main features: com-
petitive network with unsupervised learning and dynamic network structure, with 
growing and pruning phases governed by an implementation of the clonal selection 
principle. As a distinctive aspect, RABNET makes use of real-valued connection 
strengths in an Euclidean shape-space [12], instead of binary connections [4] . 

Furthermore, a method based on graph theory is presented as a means to automati-
cally determine the number of groups in the network after training. It is important to 
remark here that most, if not all, self-organizing neural networks requires an addi-
tional technique after training for segmenting the output grid of the network in order 
to automatically identify the clusters found. An example of an approach typically used 
in the literature is the U-matrix [13]. 

2.1   Competitive Phase 

The competitive phase of the algorithm involves finding the most similar antibody 
AbK to a given antigen Ag; that is, to find the winner neuron to a given input pattern. 
This antibody is said to have the highest affinity with the antigen. 

K = arg mink ||Ag − Abk||, ∀k (1) 

In the present implementation, there is one variable (vk) that stores the index of the 
antibody that has the highest affinity for each antigen. For instance, if the antibody 
with highest affinity with a given antigen Ag5 is antibody 9 (Ab9), then v5 = 9. This is 
aimed at calculating the concentration level of each antibody, what corresponds to the 
number of antigens recognized by each antibody. 

2.2   Network Growing 

Network growing is inspired by the clonal selection principle, where the most stimu-
lated cell is selected for cloning. The choice of the most stimulated cell is based on 
the affinity to the antigen, determined during the competitive phase, and also on the 
concentration of antigens recognized by an antibody. The antibody with the highest 
antigen concentration will generate a single offspring (clone) and the two antibodies 
might turn into memory antibodies after their maturation phase.  

Two parameters control the network dynamics and metadynamics: one related to 
the concentration of antigens (τ) recognized by a given antibody, and the other related 
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to the affinity threshold ( ) between an antigen and an antibody. All antibodies j 
stimulated by more than one antigen (τj > 1) are potential candidates to be cloned. The 
network growing process can be described by the following sequence of steps, exe-
cuted after a sequence of β iterations has been performed. 
If the current iteration is a multiple of β, 

a. Then, antibody Abs with highest concentration level τ is selected for cloning. 
If there is more than one antibody with the same concentration level, one of 
then is chosen randomly. 

b. From all antigens recognized by antibody Abs, antigen Agw with lowest af-
finity to Abs is selected. If the distance (Abs−Agw) > ε, then antibody Abs is 
cloned; otherwise, the network structure does not change. 

The weight vector of the newly created antibody receives the attributes of the anti-
gen (input pattern) with the smallest affinity to Abs, that is, the one with highest 
Euclidean distance to the antibody selected for cloning. 

2.3   Network Pruning 

The strategy adopted here to perform network pruning is based on the concentration 
level of each antibody. If the concentration level of a given antibody Abi is zero (τi = 
0), it means that antibody i was not stimulated by any of the antigens. In this case, 
antibody i is pruned. Pruning is performed every iteration. 

2.4   Weight Updating 

Updating the weights in RABNET is similar to the procedure used in winner-takes-all 
competitive neural networks. Equation (2) shows the weight updating rule used, 
where α is the learning rate and Abk is the antibody that recognizes antigen Ag. Thus, 
antibodies are constantly being moved in the direction of the recognized antigens. 
After γ iterations, the learning rate α is exponentially decreased by a factor σ. 

Abk = Abk + α(Ag − Abk). (2) 

2.5   Convergence Criterion 

Two features are important to define a convergence criterion: the stability of the net-
work topology and of the network weights. To contemplate both, it is proposed a 
convergence criterion that checks the stability of the number of neurons in the net-
work, and the variation in the weight vectors.  

It is assumed that the network topology has reached stability if during the last 10.β 
iterations there is no variation in the number of neurons. Concerning the weights, they 
are assumed to have stabilized if the sum of their modules does not vary by more than 
10−4 from the current iteration to the past 10.β iterations. 

2.6   Defining the Number of Clusters 

One of the main objectives of RABNET is to cluster unlabelled data. The adaptation 
procedure builds a network that associates each element of the input data set with a 
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single neuron at the output by means of the inner product between the current input 
and the weight vector of each neuron. This way, the spatial distribution of the input 
patterns is represented by the spatial distribution of the network weight vectors. 

However, after network learning it is still necessary to extract the information ob-
tained, i.e., to automatically determine the number of clusters detected by the net-
work. In order to accomplish this task, we propose the use of a minimal spanning tree 
(MST) [14], which is a powerful tool from graph theory for data clustering.  

This clustering process can be seen as a two level approach: first the dataset is 
clustered and quantized using the RABNET, and then the clusters found are seg-
mented by the MST. The MST thus defines a neighborhood relationship among anti-
bodies (the learning algorithm does not account for neighborhood) and determines the 
optimal number of clusters found by the learning algorithm.  

The application of the MST to automatically segment the neurons at the output 
layer of RABNET is performed as follows. First, link all network antibodies using a 
minimal spanning tree, what can be implemented, for instance, by Prim’s algorithm 
[10]. Second, determine the inconsistent edges and remove them, thus identifying 
those edges that are linked together as belonging to the same cluster.  

An inconsistent edge may be determined as follows: for each edge of the MST 
built, its two end points are analyzed; the average and the standard deviation of the 
length of all edges which are within p steps from each end point are calculated; if the 
length of an edge is greater than the average plus two standard deviations, then this 
edge is considered inconsistent [14]. 

2.7   RABNET Pseudocode 

1. Initialization and parameter definition 
1.1. Initialize randomly a single antibody in the network 
1.2. Define parameters: α, β, γ and σ 

2. While the convergence criterion is not reached do: 
2.1. For each input pattern do: 

2.1.1. Present a random antigen to the network; 
2.1.2. Calculate the Euclidean distance between the anti-
gen presented and the antibodies in the network; 
2.1.3. Find the winner antibody (Eq. (1)); 
2.1.4. Increase the concentration level of the winner; 
2.1.5. Update the weights of the winner antibody: Eq.(2); 

2.2. If iteration > γ 
2.2.1. α = σ * α; 

2.3. If iteration is multiple of β, then 
2.3.1. Grow if necessary (Section 2.2) 

2.4. If the concentration level of a given antibody is zero, 
then prune it from the network. 

3. Use the MST criterion proposed to automatically segment 
the neurons at the output layer of the network. 

3   Performance Evaluation 

RABNET was applied to three benchmark problems and the results compared with 
the literature (when available and appropriate). In particular, RABNET was applied to 
the Animals data set [11], to the Two-Spirals data set [13], and to the Chain Link data 
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set [13]. The parameters used to run RABNET in all experiments to be reported here 
were: α = 0.2, β = 2, γ = 100 and σ = 0.95, unless otherwise specified. 

3.1   Animals Data Set 

The Animals data set [11] consists of the description of 16 animals by binary prop-
erty. By varying the affinity threshold, ε, it is possible to obtain networks with differ-
ent sizes, as depicted in Figs. 1(a). The right hand side scale represents the weight 
value of each connection plotted with the corresponding gray level in the network 
picture; darker lines correspond to connections with larger positive values. Note that 
higher values of ε result in more generalist networks, i.e., networks with a smaller 
number of neurons. For instance, for ε = 2 it could be observed that only two neurons 
resulted from learning and these were responsible for mapping the groups of birds and 
mammals, respectively, the two major classes of animals in the data set.  
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(c) (d) 

Fig. 1. RABNET applied to the Animals data set. Figs (a) and (b) ε = 1 and Figs (c) and (d) 
ε = 2. Figs (a) and (c) show the networks obtained with their respective output units. In Figs (b) 
and (d) the dashed lines correspond to the average error and the solid lines indicate the network 
size evolution. 

 
The use of an affinity threshold value close to zero, for instance ε = 10−6, should 

produce a network with the same number of neurons as input patterns. However, 
when using this value for the Animals data set, this was not verified. After looking for 
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a possible cause, it could be observed that this happened because the Owl and the 
Hawk present exactly the same attributes, thus being mapped into the same neuron. 
The same has happened with the Zebra and the Horse. 

3.2   Two Spirals Data Set 

The two spirals data set has already been used to assess the performance of unsuper-
vised growing neural networks [13],[4]. The data set used here has 95 input patterns 
in each spiral, as presented in Fig. 2 (a). The input patterns were adjusted within the 
[0,1] interval, and an affinity threshold ε = 0.025 was empirically obtained. 

 

 

 
(a) (b) 

Fig. 2. (a) The Two Spirals data set. (b) RABNET result. 

Some classification results produced by the application of different unsupervised 
learning algorithms are summarized in Table 1. Fig. 2 (b) depicts the spatial location 
of each neuron in the network and the result of the application of the MST criterion to 
the network generated. Before applying the MST cluster identification procedure, the 
two spirals in Fig. 2 (b) were connected by an edge that was pruned. 

Table 1. Classification results for the Two Spirals data set (Based on [4] and [8]). Units means 
neurons or nodes in the corresponding networks. 

Algorithm GCS DCS-GCS LVQ SOM ESOM aiNet RABNET 
Number of Units 145 135 114 144 105 121 90 
Error Rate (%) 0 0 11.9 22.2 0 0 0 

3.3   Chain Link Data Set 

The Chain Link data set [13], sometimes called Donuts data set, consists of 1,000 
input patterns forming two intertwined 3D rings, as depicted in Fig. 3 (a). The results 
presented by RABNET, when applied to the Chain Link data set, were also encourag-
ing (see Fig. 3 (b)). This result was obtained using an affinity threshold ε = 0.3 and 
the other parameters as presented earlier. It was observed that the algorithm required 
only 14 prototypes to represent the input data with 100% accuracy.  

One of the best results available in the literature for the Chain Link problem was 
obtained by an algorithm named aiNet [4]. In its minimum configuration, aiNet re-
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quired 55 prototypes (cells) to represent this data set with 100% accuracy. Fig. 3 (b) 
presents the spatial distribution of the 2 clusters (rings) generated by the network. It is 
important to remark that aiNet and RABNET are different types of network models. 
Work in [4] summarizes the differences and similarities between aiNet and competi-
tive neural networks. Similar comparison can be made between RABNET and aiNet. 

4   Sensitivity Analysis 

The application of RABNET to the solution of any problem requires the definition of 
parameters α, β, γ, σ and the affinity threshold ε. To study the influence of these pa-
rameters in the behavior and final result of RABNET, a sensitivity analysis of the 
algorithm will be performed by applying it to the Animals and Chain Link data sets.  

As discussed, parameter ε influences the specificity of the network cells, and thus 
the final number of neurons in the network: the lower the value of ε, the larger the 
number of neurons in the network, and vice-versa. This behavior can be observed in 
the networks of Figs. 1(a) and 1(c). Table 2 summarizes the trade-off between the 
number of cells in the network and ε for the Animals data set. In practice, this corre-
sponds to having more generalist or more specific networks. For instance, in the ex-
periments performed with the Animals data set, it can be seen that a network with 
only two neurons can group together mammals and birds, while a network with eight 
neurons (Fig. 1(a)) can group together passive birds, mammals, etc. 

To study the influence of σ and γ in the final network size and in the number of it-
erations for convergence, 30 independent runs of RABNET were performed for the 
Animals data set. Three different values of each of these parameters were adopted: 
γ ∈ {20,100,200}; σ ∈ {0.1,0.5,0.95}. The results are summarized in Figs. 4 to 6. 

It can be observed from Figs. 4 and 5 that parameters σ and γ have almost no influ-
ence on the final network size, but strongly influence the number of iterations for 
convergence. Higher values of σ and γ result in longer convergence times. 

To evaluate the influence of the initial learning rate and the affinity threshold on 
the final network size, 10 experiments were run with the Chain Link data set. The 
other parameters used in this analysis were β = 2, γ = 100 and σ = 0.95. 

Fig. 6 shows the results obtained for the Chain Link data set when the initial learn-
ing rate and the affinity threshold are varied. In Fig. 6 it can be observed that, in addi-
tion to the affinity threshold, the initial learning rate (α) also influences the final 
number of neurons in the network, but in a much lesser degree. For a constant affinity 
threshold, it can be observed that the smaller the initial learning rate, the smaller the 
final number of neurons in the network. In the experiments performed, it could also 
be observed that when the initial value α is very small, the network may not be able to 
reach an adequate structure. 

Table 2. Tradeoff between the number of cells in the network and the affinity threshold ε 

ε = 0 ε = 1 ε = 2 

14 Cells 8 Cells 2 Cells 
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Fig. 3. (a) Chain Link data set. (b) Clusters obtained by the application of RABNET to the 
Chain Link data set.  
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Fig. 4. Final number of neurons in the network (a), and iterations for convergence (b) for three 
different values of σ: σ = 0.1, σ = 0.5, and σ = 0.95 
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Fig. 5. Final number of neurons in the network (a), and iterations for convergence (b) for three 
different values of γ: γ = 20, γ = 100, and γ = 200 
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Fig. 6. Number of neurons in the output layer as a function of the initial learning rate and the 
affinity threshold for the Chain Link data set 

5   Discussion and Future Trends 

This paper introduced RABNET, a real-valued antibody network, developed by mix-
ing ideas from the immune system with concepts from artificial neural networks. A 
simple competitive neural network constitutes the basic model, and a learning algo-
rithm developed by taking ideas from the immune system is proposed to determine 
the network weights and structure according to the input data. 

The main concepts from the immune system used in the development of the algo-
rithm are clonal selection and affinity maturation. The resultant network has the fol-
lowing main properties: competitive learning, constructive architecture with growing 
and pruning phases, real-valued connection strengths, and automatic determination of 
the number of clusters. 

After learning, the number of clusters (groups) identified by the network is deter-
mined using a criterion based on a minimum spanning tree (MST) criterion. The MST 
is built connecting the resultant weight vectors and those edges considered inconsis-
tent are removed from the network. So, the neighborhood definition and the cluster 
discrimination are both performed a posteriori. 

To assess the performance of RABNET, it was applied to three benchmark prob-
lems and the obtained results are compared with those from the literature. The net-
work demonstrated to be capable of appropriately grouping the input data with the 
production of parsimonious networks. A brief sensitivity analysis was also carried out 
to study the sensitivity of the algorithm to its user-defined parameters. It was ob-
served that most parameters only influence the convergence speed of the algorithm, 
and not the final quality of the results. The exception is the affinity threshold, which is 
responsible for the construction of more or less parsimonious solutions. 

The proposed algorithm opens up some avenues for future investigation. First, it is 
necessary to perform exhaustive tests with the system, including the use of more chal-
lenging data sets, and broad comparisons with similar networks from the literature, 
such as the works presented in [13] , [1] and [9]. Fundamental differences between 
these works and our proposal are the absence of the concept of a neighborhood during 
the process of weight adjustment in RABNET, and the way growing is performed. As 
already mentioned, the neighborhood is defined a posteriori by an MST algorithm. 
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Farkaš, Igor II-676
Feng, Chen I-793, I-1256
Feng, Chunbo III-698



Author Index 1291

Feng, Ding I-25
Feng, Du I-679
Feng, Guangzeng III-457
Feng, Guiyu I-209, I-675
Feng, Guorui I-720
Feng, Jiuchao II-332
Feng, Li III-374
Feng, Naiqin III-562
Feng, Xiao-Yue II-698
Figueredo, Grazziela P. II-941
Fong, Alvis C.M. II-849
Fontana, Federico II-1155
Freeman, Walter J. I-378
Freund, Lars II-1112
Fu, Chaojin I-664
Fu, Duan III-1128
Fu, Xiao II-627
Fu, Y.X. III-668
Fu, Zetian II-352
Fujii, Robert H. I-456
Fukumura, Naohiro I-313
Furutani, Hiroshi II-1025

Gao, Hai-Hua I-565, II-21, II-89
Gao, Pingan III-1308
Gao, Xieping I-358, I-783, II-139
Gao, Ying II-386
Ge, Weimin III-984
Ge, Yang III-553
Geem, Zong Woo III-741, III-751
Germen, Emin I-353
Glackin, B. I-420
Goebels, Andreas II-744
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Sáiz, José Manuel I-778
Sakamoto, Makoto II-1025
Sang, Enfang. I-199
Sasaki, S. III-684
Sendhoff, Bernhard II-1112, II-1145
Sengupta, Biswa I-429
Seo, Kyung-Sik I-1027



Author Index 1297

Seo, Sam-Jun III-1099
Seok, Kyung Ha I-536
Shang, Fu hua III-505
Shang, Jincheng III-374
Shang, Lin III-855
Shen, Hong-yuan III-477
Shen, Lan-sun I-975, II-7
Shen, Xisheng I-470
Shen, Xueqin I-692
Shen, Yi I-740
Shen, Zhenyao III-129
Shi, Feng I-1047, III-636
Shi, Haixiang I-1080
Shi, Jun III-496
Shi, Lukui I-692
Shi, Min I-229
Shi, Wenkang I-679
Shi, Xi II-1089
Shi, Xiangquan II-508
Shi, Yan-jun II-1080
Shi, Yuexiang III-1308
Shi, Zhiping III-496
Shi, Zhongzhi I-903, III-496
Shigei, Noritaka II-361, II-415
Shi-hua, Luo I-374
Shim, JeongYon I-1170
Shim, Jooyong I-512, I-521
Shin, Dongil I-1185, II-552
Shin, Dongkyoo I-1185, II-552
Shin, Jeong-Hoon I-1179
Shin, Kyung-shik I-1247, II-636
Shin, Sang-Uk III-962
Shou-jue, Wang I-264
Shriver, C.D. I-1039
Sim, Kwee-Bo I-237, II-85, III-713
Smutek, Daniel III-841
So, Yeon-hee I-797
Soh, W-S. I-1057
Sohn, Insuk II-306
Soke, Alev III-1304
Somiari, R. I-1039
Somiari, S.B. I-1039
Song III-1089
Song, Chonghui II-214
Song, Gangbing III-1089
Song, Hong II-863, III-602
Song, Jingyan II-1089
Song, Shiji I-470
Song, Weiwei III-972
Song, Xiao-yu II-992

Song, Yexin II-1101
Srinivas, M.B. III-1015
Su, Guangda I-985
Su, Juanhua II-185
Su, Tao III-893
Su, Tieming III-688
Su, Xiao-hong I-213
Suenaga, Masaya I-283
Sun, Changping I-397
Sun, Changyin II-602
Sun, Jiancheng I-573
Sun, Jigui III-434
Sun, Jun III-543
Sun, Lin-yan III-911
Sun, Shiliang II-652
Sun, Wei II-190
Sun, Xin-yu III-911
Sun, Xingming III-958, III-968
Sun, Yanguang I-546
Sun, Yi II-12
Sun, Ying-Guang III-1152
Sun, Youxian I-688, I-706, I-716,

II-242, II-292
Sun, Yu II-1159, III-93
Sun, Zengqi II-234, II-252,

II-262, III-141
Sun, Zhengxing I-655
Sun, Zonghai II-292
Sung, HyunSeong II-451
Sureerattanan, Nidapan I-157
Sureerattanan, Songyot I-157
Suresh, R.K. III-572
Szeto, Kwok Yip III-112

Takikawa, Erina II-438
Tan, E.C. I-975
Tan, Guanzheng III-915
Tan, Min III-622
Tan, Ying II-476, II-493, II-501, II-867
Tang, Chang-jie III-194
Tang, Deyou II-1049
Tang, Enyi I-655
Tang, Min II-1229, III-48
Tang, Renyuan III-1162
Tang, Xiaojun I-806
Tang, Xiaowei I-1052
Tang, Xusheng III-688
Tang, Yinggan II-75
Tang, Yiyuan I-1052
Tang, Yuan Yan III-663



1298 Author Index

Tang, Zhe II-252
Tao, Hai-hong III-893
Tao, Jun III-761
Taylor, Meinwen III-877
Temeltas, Hakan III-703
Teng, Hong-fei II-1080
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Zeng, Jianchao III-22, III-255, III-467
Zeng, Libo II-210
Zeng, Qingdong III-915
Zeng, Sanyou II-1049
Zeng, Zhigang I-664
Zhan, Tao III-602, III-883
Zhang, Changjiang I-221
Zhang, Changshui II-652
Zhang, Chunfang II-1239
Zhang, Chunkai I-91
Zhang, Dan II-863, III-602, III-883
Zhang, Defu III-1235
Zhang, Dexian II-727, II-822
Zhang, Dongmo I-956
Zhang, Erhu I-640
Zhang, Feng III-873
Zhang, Gang II-957
Zhang, Guomin II-65
Zhang, Haoran I-221
Zhang, Hongbo II-210
Zhang, Huaguang I-61
Zhang, Huidang I-273
Zhang, Jian II-266, III-112
Zhang, Jiang III-309
Zhang, Jianming II-270
Zhang, Jian-Pei I-1132
Zhang, Jihui III-299
Zhang, Jing I-660, I-1052, III-194
Zhang, Jingjing III-102
Zhang, Jun I-358, I-783, II-139, II-592
Zhang, Lei III-535
Zhang, Ling II-501
Zhang, Liqing I-1043
Zhang, Lisha I-655
Zhang, Min II-476, III-668
Zhang, Qiang I-405
Zhang, Qing-Guo III-28
Zhang, Sanyuan I-835
Zhang, Shuai III-1300
Zhang, Shui-ping II-539
Zhang, Taiyi I-573

Zhang, Tao I-806
Zhang, Wei III-28
Zhang, Weidong I-528
Zhang, Wen III-449
Zhang, Wenquan I-8
Zhang, Xianfei II-37
Zhang, Xiangrong II-905
Zhang, XianMing II-1
Zhang, Xiao-hua II-1044
Zhang, Xiaoshuan II-352
Zhang, Xiufeng II-774
Zhang, Xuanping III-592
Zhang, Xudong III-654
Zhang, Y.S. III-1060
Zhang, Yan III-938
Zhang, Yanning III-215
Zhang, Yanxin II-283
Zhang, Ye I-8
Zhang, Yuanzhen II-483
Zhang, Yulei I-956
Zhang, Yuming III-723
Zhang, Yuntao I-925
Zhang, Z.Z. III-668
Zhang, Zhen-Hui II-1164
Zhang, Zhengwei II-95
Zhang, Zhijie I-952
Zhang, Zhousuo II-324
Zhao, Bin II-461
Zhao, Bo II-895
Zhao, Guoying I-740
Zhao, Hai I-303
Zhao, Hengping I-630
Zhao, Jian II-346
Zhao, Jieyu II-432
Zhao, Jin-cheng II-1159
Zhao, Jing II-557
Zhao, Jun III-948
Zhao, Keyou III-698
Zhao, Li II-71
Zhao, Liang I-1189
Zhao, Liping I-956
Zhao, Mingyang III-727
Zhao, Pengfei III-688
Zhao, Qiang III-632
Zhao, Qijun II-28
Zhao, Qin II-346
Zhao, Rongchun III-215
Zhao, Wencang I-793, I-1256
Zhao, Xi III-137
Zhao, Xinyu I-825



1302 Author Index

Zhao, Xue-long III-1280
Zhao, Yinliang I-608
Zhao, Yu I-1090, II-584
Zhao, Zhefeng II-957
Zhao, Zhi-Hong III-855
Zhao, Zhilong III-980
Zhao, Zijiang III-444
Zheng, ChongXun I-1031, II-376,

III-646, III-873
Zheng, Da-zhong III-417
Zheng, Hong II-210, III-934
Zheng, Ji III-525
Zheng, Jin-hua III-68
Zheng, Shiqin II-978
Zheng, Yi I-8
Zheng, Yisong I-773
Zhexin, Cao II-316
Zhi, Qiang II-316
Zhong, Jiang II-814
Zhong, Weicai III-366, III-925
Zhong, Weimin I-706
Zhong, Xiang-Ping II-55
Zhou, Changjiu II-252
Zhou, Chun-Guang II-698
Zhou, Dongsheng I-405
Zhou, Jian III-120, III-684
Zhou, Jiping III-727
Zhou, Li-Quan III-337
Zhou, Lifang III-289
Zhou, Ming-quan II-346
Zhou, Qiang III-181
Zhou, Shude III-141

Zhou, Wen-Gang II-698
Zhou, Xiaoyang III-374
Zhou, Ying II-814
Zhou, Yuanfeng II-105
Zhou, Yuanpai III-269
Zhou, Yuren II-1015
Zhou, Zhi-Heng I-839
Zhou, Zhong III-772
Zhou, Zongtan I-101, I-209, I-675
Zhu, Chengzhi II-895
Zhu, Daqi I-15
Zhu, En II-65
Zhu, Jia III-93
Zhu, Jianguang III-1162
Zhu, Jihong II-234, II-262
Zhu, Qingsheng III-57
Zhu, Xinglong III-727
Zhu, Xue-feng I-995
Zhu, Yan-fei I-601
Zhu, Yun-long II-992
Zhu, Zheng-Zhou II-814
Zhu, Zhengyu III-57
Zi, Yanyang II-324
Zou, Cairong II-71
Zou, Henghui III-996
Zou, Hengming III-988, III-996, III-1001
Zou, Qi I-867
Zribi, Nozha III-259
Zuo, Wanli II-690
Zuo, Wen-ming II-51
Zurada, Jacek M. III-1216


	Frontmatter
	Neural Network Learning Algorithms
	A Novel Learning Algorithm for Wavelet Neural Networks
	Using Unscented Kalman Filter for Training the Minimal Resource Allocation Neural Network
	The Improved CMAC Model and Learning Result Analysis
	A New Smooth Support Vector Regression Based on $\epsilon$-Insensitive Logistic Loss Function
	Neural Network Classifier Based on the Features of Multi-lead ECG
	A New Learning Algorithm for Diagonal Recurrent Neural Network
	Study of On-line Weighted Least Squares Support Vector Machines
	Globally Exponential Stability Analysis and Estimation of the Exponential Convergence Rate for Neural Networks with Multiple Time Varying Delays
	Locally Determining the Number of Neighbors in the {\itshape k}-Nearest Neighbor Rule Based on Statistical Confidence
	Fuzzy Self-Organizing Map Neural Network Using Kernel PCA and the Application
	An Evolved Recurrent Neural Network and Its Application
	Self-organized Locally Linear Embedding for Nonlinear Dimensionality Reduction
	Active Learning for Probabilistic Neural Networks
	Adaptive Training of Radial Basis Function Networks Using Particle Swarm Optimization Algorithm
	A Game-Theoretic Approach to Competitive Learning in Self-Organizing Maps
	A Novel Intrusions Detection Method Based on HMM Embedded Neural Network
	Generate Different Neural Networks by Negative Correlation Learning
	New Training Method and Optimal Structure of Backpropagation Networks
	Learning Outliers to Refine a Corpus for Chinese Webpage Categorization
	Bio-kernel Self-organizing Map for HIV Drug Resistance Classification
	A New Learning Algorithm Based on Lever Principle
	An Effective Method to Improve Convergence for Sequential Blind Source Separation
	A Novel LDA Approach for High-Dimensional Data
	Research and Design of Distributed Neural Networks with Chip Training Algorithm
	Support Vector Regression with Smoothing Property
	A Fast SMO Training Algorithm for Support Vector Regression
	Rival Penalized Fuzzy Competitive Learning Algorithm
	A New Predictive Vector Quantization Method Using a Smaller Codebook
	Performance Improvement of Fuzzy RBF Networks

	Neural Network Architectures
	Universal Approach to Study Delayed Dynamical Systems
	Long-Range Connections Based Small-World Network and Its Synchronizability
	Double Synaptic Weight Neuron Theory and Its Application
	Comparative Study of Chaotic Neural Networks with Different Models of Chaotic Noise
	A Learning Model in Qubit Neuron According to Quantum Circuit
	An Algorithm for Pruning Redundant Modules in Min-Max Modular Network with GZC Function
	A General Procedure for Combining Binary Classifiers and Its Performance Analysis
	A Modular Structure of Auto-encoder for the Integration of Different Kinds of Information
	Adaptive and Competitive Committee Machine Architecture
	An ART2/RBF Hybrid Neural Networks Research
	Complex Number Procedure Neural Networks
	Urban Traffic Signal Timing Optimization Based on Multi-layer Chaos Neural Networks Involving Feedback
	Research on a Direct Adaptive Neural Network Control Method of Nonlinear Systems
	Improving the Resultant Quality of Kohonen's Self Organizing Map Using Stiffness Factor
	A Novel Orthonormal Wavelet Network for Function Learning
	Fuzzy Back-Propagation Network for PCB Sales Forecasting
	An Evolutionary Artificial Neural Networks Approach for BF Hot Metal Silicon Content Prediction
	Application of Chaotic Neural Model Based on Olfactory System on Pattern Recognitions
	Double Robustness Analysis for Determining Optimal Feedforward Neural Network Architecture
	Stochastic Robust Stability Analysis for Markovian Jump Neural Networks with Time Delay

	Neurodynamics
	Observation of Crises and Bifurcations in the Hodgkin-Huxley Neuron Model
	An Application of Pattern Recognition Based on Optimized RBF-DDA Neural Networks
	Global Exponential Stability of Cellular Neural Networks with Time-Varying Delays
	Effect of Noises on Two-Layer Hodgkin-Huxley Neuronal Network
	Adaptive Co-ordinate Transformation Based on a Spike Timing-Dependent Plasticity Learning Paradigm
	Modeling of Short-Term Synaptic Plasticity Using Dynamic Synapses
	A Chaotic Model of Hippocampus-Neocortex
	Stochastic Neuron Model with Dynamic Synapses and Evolution Equation of Its Density Function
	Learning Algorithm for Spiking Neural Networks
	Exponential Convergence of Delayed Neural Networks
	A Neural Network for Constrained Saddle Point Problems: An Approximation Approach
	Implementing Fuzzy Reasoning by IAF Neurons
	A Method for Quantifying Temporal and Spatial Patterns of Spike Trains
	A Stochastic Nonlinear Evolution Model and Dynamic Neural Coding on Spontaneous Behavior of Large-Scale Neuronal Population
	Study on Circle Maps Mechanism of Neural Spikes Sequence
	Synchronous Behaviors of Hindmarsh-Rose Neurons with Chemical Coupling

	Statistical Neural Network Models and Support Vector Machines
	A Simple Quantile Regression via Support Vector Machine
	Doubly Regularized Kernel Regression with Heteroscedastic Censored Data
	Support Vector Based Prototype Selection Method for Nearest Neighbor Rules
	A Prediction Interval Estimation Method for KMSE
	An Information-Geometrical Approach to Constructing Kernel in Support Vector Regression Machines
	Training Data Selection for Support Vector Machines
	Model Selection for Regularized Least-Squares Classification
	Modelling of Chaotic Systems with Recurrent Least Squares Support Vector Machines Combined with Reconstructed Embedding Phase Space
	Least-Squares Wavelet Kernel Method for Regression Estimation
	Fuzzy Support Vector Machines Based on $\lambda$---Cut
	Mixtures of Kernels for SVM Modeling
	A Novel Parallel Reduced Support Vector Machine
	Recurrent Support Vector Machines in Reliability Prediction
	A Modified SMO Algorithm for SVM Regression and Its Application in Quality Prediction of HP-LDPE
	Gait Recognition via Independent Component Analysis Based on Support Vector Machine and Neural Network
	Uncertainty Support Vector Method for Ordinal Regression
	An Incremental Learning Method Based on SVM for Online Sketchy Shape Recognition
	Eigenspectra Versus Eigenfaces: Classification with a Kernel-Based Nonlinear Representor
	Blind Extraction of Singularly Mixed Source Signals
	Application of Support Vector Machines in Predicting Employee Turnover Based on Job Performance
	Palmprint Recognition Based on Unsupervised Subspace Analysis
	A New Alpha Seeding Method for Support Vector Machine Training
	Multiple Acoustic Sources Location Based on Blind Source Separation
	Short-Term Load Forecasting Based on Self-organizing Map and Support Vector Machine
	A Multi-class Classifying Algorithm Based on Nonlinear Dimensionality Reduction and Support Vector Machines
	A VSC Scheme for Linear MIMO Systems Based on SVM
	Global Convergence of FastICA: Theoretical Analysis and Practical Considerations
	SVM Based Nonparametric Model Identification and Dynamic Model Control
	Learning SVM Kernel with Semi-definite Programming
	Weighted On-line SVM Regression Algorithm and Its Application

	Other Topics in Neural Network Models
	Convergence of an Online Gradient Method for BP Neural Networks with Stochastic Inputs
	A Constructive Algorithm for Wavelet Neural Networks
	Stochastic High-Order Hopfield Neural Networks
	Predicting with Confidence -- An Improved Dynamic Cell Structure
	An Efficient Score Function Generation Algorithm with Information Maximization
	A New Criterion on Exponential Stability of a Class of Discrete Cellular Neural Networks with Time Delay
	A Novel Local Connection Neural Network
	An Unsupervised Cooperative Pattern Recognition Model to Identify Anomalous Massive SNMP Data Sending
	A Fast Nonseparable Wavelet Neural Network for Function Approximation
	A Visual Cortex Domain Model for Illusory Contour Figures

	Cognitive Science
	ANN Ensemble Online Learning Strategy in 3D Object Cognition and Recognition Based on Similarity
	Design and Implementation of the Individualized Intelligent Teachable Agent
	Comparison of Complexity and Regularity of ERP Recordings Between Single and Dual Tasks Using Sample Entropy Algorithm
	Representation of a Physio-psychological Index Through Constellation Graphs
	Neural Network Based Emotion Estimation Using Heart Rate Variability and Skin Resistance
	Modeling Belief, Capability and Promise for Cognitive Agents -- A Modal Logic Approach
	PENCIL: A Framework for Expressing Free-Hand Sketching in 3D
	Blocking Artifacts Measurement Based on the Human Visual System
	A Computation Model of Korean Lexical Processing
	Neuroanatomical Analysis for Onomatopoeia and Phainomime Words: fMRI Study
	Cooperative Aspects of Selective Attention
	Selective Attention Guided Perceptual Grouping Model
	Visual Search for Object Features
	Agent Based Decision Support System Using Reinforcement Learning Under Emergency Circumstances
	Dynamic Inputs and Attraction Force Analysis for Visual Invariance and Transformation Estimation
	Task-Oriented Sparse Coding Model for Pattern Classification
	Robust Face Recognition from One Training Sample per Person
	Chinese Word Sense Disambiguation Using HowNet
	Modeling Human Learning as Context Dependent Knowledge Utility Optimization
	Automatic Text Summarization Based on Lexical Chains
	A General fMRI Linear Convolution Model Based Dynamic Characteristic

	Neuroscience Informatics, Bioinformatics, and Bio-medical Engineering
	A KNN-Based Learning Method for Biology Species Categorization
	Application of Emerging Patterns for Multi-source Bio-Data Classification and Analysis
	Nonlinear Kernel MSE Methods for Cancer Classification
	Fusing Face and Fingerprint for Identity Authentication by SVM
	A New Algorithm of Multi-modality Medical Image Fusion Based on Pulse-Coupled Neural Networks
	Cleavage Site Analysis Using Rule Extraction from Neural Networks
	Prediction Rule Generation of MHC Class I Binding Peptides Using ANN and GA
	Combined Kernel Function Approach in SVM for Diagnosis of Cancer
	Automatic Liver Segmentation of Contrast Enhanced CT Images Based on Histogram Processing
	An Improved Adaptive RBF Network for Classification of Left and Right Hand Motor Imagery Tasks
	Similarity Analysis of DNA Sequences Based on the Relative Entropy
	Can Circulating Matrix Metalloproteinases Be Predictors of Breast Cancer? A Neural Network Modeling Study
	Blind Clustering of DNA Fragments Based on Kullback-Leibler Divergence
	Prediction of Protein Subcellular Locations Using Support Vector Machines
	Neuroinformatics Research in China- Current Status and Future Research Activities
	Australian Neuroinformatics Research -- Grid Computing and e-Research
	Current Status and Future Research Activities in Clinical Neuroinformatics: Singaporean Perspective
	Japanese Neuroinformatics Research: Current Status and Future Research Program of J-Node

	Neural Network Applications: Communications and Computer Networks
	Optimal TDMA Frame Scheduling in Broadcasting Packet Radio Networks Using a Gradual Noisy Chaotic Neural Network
	A Fast Online SVM Algorithm for Variable-Step CDMA Power Control
	Fourth-Order Cumulants and Neural Network Approach for Robust Blind Channel Equalization
	Equalization of a Wireless ATM Channel with Simplified Complex Bilinear Recurrent Neural Network
	A Novel Remote User Authentication Scheme Using Interacting Neural Network
	Genetic Algorithm Simulated Annealing Based Clustering Strategy in MANET

	Neural Network Applications: Expert System and Informatics
	A Gradual Training Algorithm of Incremental Support Vector Machine Learning
	An Improved Method of Feature Selection Based on Concept Attributes in Text Classification
	Research on the Decision Method for Enterprise Information Investment Based on IA-BP Network
	Process Control and Management of Etching Process Using Data Mining with Quality Indexes
	Automatic Knowledge Configuration by Reticular Activating System
	An Improved Information Retrieval Method and Input Device Using Gloves for Wearable Computers
	Research on Design and Implementation of the Artificial Intelligence Agent for Smart Home Based on Support Vector Machine
	A Self-organized Network for Data Clustering
	A General Criterion of Synchronization Stability in Ensembles of Coupled Systems and Its Application
	Complexity of Linear Cellular Automata over $\mathbb{Z}$<Subscript>{\itshape m}</Subscript>

	Neural Network Applications: Financial Engineering
	Applications of Genetic Algorithm for Artificial Neural Network Model Discovery and Performance Surface Optimization in Finance
	Mining Data by Query-Based Error-Propagation
	The Application of Structured Feedforward Neural Networks to the Modelling of the Daily Series of Currency in Circulation
	Time Delay Neural Networks and Genetic Algorithms for Detecting Temporal Patterns in Stock Markets
	The Prediction of the Financial Time Series Based on Correlation Dimension
	Gradient-Based FCM and a Neural Network for Clustering of Incomplete Data
	Toward Global Optimization of ANN Supported by Instance Selection for Financial Forecasting
	FranksTree: A Genetic Programming Approach to Evolve Derived Bracketed L-Systems
	Data Clustering with a Neuro-immune Network

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




