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Preface

This book and its sister volumes, i.e., LNCS vols. 3610, 3611, and 3612, are
the proceedings of the 1st International Conference on Natural Computation
(ICNC 2005), jointly held with the 2nd International Conference on Fuzzy Sys-
tems and Knowledge Discovery (FSKD 2005, LNAT vols. 3613 and 3614) from
27 to 29 August 2005 in Changsha, Hunan, China. In its budding run, ICNC
2005 successfully attracted 1887 submissions from 32 countries/regions (the joint
ICNC-FSKD 2005 received 3136 submissions). After rigorous reviews, 502 high-
quality papers, i.e., 313 long papers and 189 short papers, were included in the
ICNC 2005 proceedings, representing an acceptance rate of 26.6%.

The ICNC-FSKD 2005 featured the most up-to-date research results in com-
putational algorithms inspired from nature, including biological, ecological, and
physical systems. It is an exciting and emerging interdisciplinary area in which
a wide range of techniques and methods are being studied for dealing with large,
complex, and dynamic problems. The joint conferences also promoted cross-
fertilization over these exciting and yet closely-related areas, which had a sig-
nificant impact on the advancement of these important technologies. Specific
areas included neural computation, quantum computation, evolutionary com-
putation, DNA computation, chemical computation, information processing in
cells and tissues, molecular computation, computation with words, fuzzy com-
putation, granular computation, artificial life, swarm intelligence, ants colonies,
artificial immune systems, etc., with innovative applications to knowledge dis-
covery, finance, operations research, and more. In addition to the large number
of submitted papers, we were blessed with the presence of four renowned keynote
speakers and several distinguished panelists.

On behalf of the Organizing Committee, we thank Xiangtan University for
sponsorship, and the IEEE Circuits and Systems Society, the IEEE Computa-
tional Intelligence Society, and the IEEE Control Systems Society for technical
co-sponsorship. We are grateful for the technical cooperation from the Interna-
tional Neural Network Society, the European Neural Network Society, the Chi-
nese Association for Artificial Intelligence, the Japanese Neural Network Society,
the International Fuzzy Systems Association, the Asia-Pacific Neural Network
Assembly, the Fuzzy Mathematics and Systems Association of China, and the
Hunan Computer Federation. We thank the members of the Organizing Com-
mittee, the Advisory Board, and the Program Committee for their hard work in
the past 18 months. We wish to express our heartfelt appreciation to the keynote
and panel speakers, special session organizers, session chairs, reviewers, and stu-
dent helpers. Our special thanks go to the publisher, Springer, for publishing
the ICNC 2005 proceedings as three volumes of the Lecture Notes in Computer
Science series (and the FSKD 2005 proceedings as two volumes of the Lecture
Notes in Artificial Intelligence series). Finally, we thank all the authors and par-
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ticipants for their great contributions that made this conference possible and all
the hard work worthwhile.

August 2005 Lipo Wang
Ke Chen
Yew Soon Ong
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Abstract. Wavelet neural networks(WNN) are a class of neural networks con-
sisting of wavelets. A novel learning method based on immune genetic algo-
rithm(IGA) for continuous wavelet neural networks is presented in this paper.
Through adopting multi-encoding, this algorithm can optimize the structure
and the parameters of WNN in the same training process. Simulation results
show that WNN with novel algorithm has a comparatively simple structure and
enhance the probability for global optimization. The study also indicates that
the proposed method has the potential to solve a wide range of neural network
construction and training problems in a systematic and robust way.

1 Introduction

In recent years, neural networks have been widely studied because of their out-
standing capability of fitting nonlinear models. As wavelet has emerged as a new
powerful tool for representing nonlinearity, a class of networks combining wavelets
and neural networks has recently been investigated [1,2,3].It has been shown that
wavelet neural networks(WNN) provide better function approximation ability than the
multi-layer perception (MLP) and radial basis function (RBF) networks. However, the
learning algorithm of WNN is focused on in this field. Learning of WNN consists of
parameters and structural optimization. The training of the network is still mainly
based on the gradient-based algorithm, and the local minimum problem has still not
been overcome [1,4].Recently, the Genetic Algorithm(GA) has been used to train the
networks [5,6]. Immune genetic algorithm(IGA), which combines the immune and
GA [7], operates on the memory cells that guarantees the fast convergence toward the
global optimum, has affinity calculation routine to embody the diversity of the real
immune system and the self-adjustment of the immune response can be embodied by
the suppress of production of antibodies. It can avoid the problems which have been
found in genetic algorithm.

In this paper, a novel algorithm based on IGA is proposed for training WNN. This
algorithm adopted multi-encoding to optimize the structure and the parameters in the
same training process. Simulation results show that WNN with novel algorithm has a
comparatively simple structure and enhance the probability for global optimization.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 1-7, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Wavelet Neural Networks for Function Approximation

Wavelet is a new powerful tool for representing nonlinearity. A function f(x) can be
represented by the superposition of daughters 1w, ,(x) of a mother wavelet ¥(x) .
Where v, , (x) can be expressed as

1 x—b 1
=y M
Ja' a
where a€ R* and b€ R are, respectively, called dilation and translation parameters.

The continuous wavelet transform of f(x) is defined as

l//a,b (x) =

wia,b) = [ f(OF,,(0dx . ()

where ¥, ,(x) is conjugate complex of ¥, ,(x) ,and the function f(x)can be recon-
structed by the inverse wavelet transform
dadb 3)
Xx) = w(a,b X)——— .
f= [ [ wabw,, (9=

The continuous wavelet transform and its inverse transform are not directly imple-
mental on digital computers. When the inverse wavelet transform (3) is discreted,
f(x) has the following approximative wavelet-based representation form.

AV o

F0=> wa(
k=1

x—

a;
where the w, , b, and g, are weight coefficients, translations and dilations for each
daughter wavelet, and K is the number of network nodes. Introducing the parameter
finto the network can make the network able to approximate the function with a

nonzero mean. This approximation can be expressed as the neural network of Fig.1,
which contains wavelet nonlinearities in the artificial neurons rather than the standard
sigmoid nonlinearities.

|

Wy

Fig. 1. The structure of wavelet neural networks
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The network is learned to determine the minimum value of K and corresponding
parameters of network to meet the training error, which is described as follows:

1< . )
E=5_Z(y,-—f(xj)>2 :

where y,, f (x;)are the target output and corresponding network output of the j th

sample, respectively, and J is the number of training samples.

3 Immune Genetic Algorithm Based on Multi-encoding for the
Training of Wavelet Neural Networks

3.1 Introduction to Immune Genetic Algorithm (IGA)

IGA is an algorithm based on immune principle. It has the same advantages as other
stochastic optimization methods possess, but it has the following differences from
others for instance GA:

(1) It works on the memory cells, and ensures that it converges on the global opti-
mal solution rapidly.

(2) It uses the computation of affinity to obtain the diversity of the production of
antibodies.

(3) It reflects self-adjusting function of the immune system through proliferating
and suppressing the emerging of antibodies.

IGA operation composes of recognition of antigens, establishment of coding
method, initialization of antibody, computation of affinities and fitness value, prolif-
eration and suppression of antibodies, production of antibodies ,differentiation of
memory cells and renovation of group.

3.2 Design of the Algorithm

Step 1. Recognition of antigens: The immune algorithm recognizes the invasion of
the antigens which correspond to the input data. In the training problem of WNN, we
consider the fitness function g(x)=E as the antigens. E is shown in Eq.(5)

Step 2. Multi-encoding mode: A combined binary system and decimal system is
adopted to optimize the structure and the parameters of WNN in the same training
process. A chromosome consists of four segments shown in Fig2. Parameters of
WNN (b,,a,,w, ) are decimal-coded mode and structure of WNN is binary-code
mode which describes the validity of corresponding hidden node (1 valid , O invalid).
M may be selected by experience.

L

b,

Fig. 2. Structure of chromosome multi-encoding
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Step 3. Initialization of antibody: In the first iteration, the antibodies are usually
produced in the space of solution by random method. The chromosomes correspond-
ing to parameter segment are created from the uniform distribution over the range of
(0,1) and the chromosomes corresponding to structure segment are created randomly
from a binary string.

Step 4. Computation of affinities: The theory of information entropy is applied to
defining affinity here. Suppose there are N antibodies in an immune system, and each
antibody has M genes. The information entropy of the j th gene is :

i (6)
H,(N)= Z—plj logp,; .
i=1
where p; is the probability of the allele of the i th antibody based on the j th gene.
For example, if all alleles at jth genes are same, H;(N) is equal to zero. So, the

average information entropy H(N) is given as:

1 ¥ (N
H(N)=—>"H,(N) .
M3
The affinity between antibody v and antibody w is defined as:
1 (®)

ay, =———.
Feow 1+ H(2)

When H(2) =0, the genes of the antibodies v and w are identical. And the value of
ay,,, is between o and 1.

Similarly, the affinity, ax, , between the antibody v and the antigen is defined by
ax, =—g . ©
where, g is the value of the fitness function.

Step 5. Proliferation and suppress of antibodies: The antibodies which will per-
form the next optimization generation are proliferated by crossover and mutation with
pre-determined probabilities(Pc, Pm). In this paper, multi-encoding mode is adopted.
Crossover and mutation methods in standard GA are applied for binary-code mode.
For decimal-coded mode, linear combination crossover method is adopted and muta-
tion operation is defined by

xit+l (C]) — xit (C[) +(rand—0.5)g(xbeg )Clm : 1o

where rand is randomly between 0 and 1, g(x,,,)is optimal fitness value until ¢
generation. ¢, is mutation operator and ¢ is mutation gene allele. After the prolifera-

tion, the size of population is N +W , in which W represent the population of newly
proliferated antibodies.
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For each antibody in the proliferation antibody, if ax, is less than the threshold T
(T = min(ax,,ax,,---,ax,) ), the antibody is eliminated. For each antibody in the
population, the concentration C, is calculated by

D ay,, 1)

v

" sum of the antibodies

where 77xmax(ay, )< ay,  <max(ay,,), 77is a changeable parameter between 0
and 1. The antibody v which has the maximum C, is eliminated. The procedure will
continue unless the population size becomes N .

Step 6. Differentiation of memory cells: The antibodies which have high affinities
with the antigen are added to the memory cells.

Step 7. Termination criterion: The termination criterion in this paper is the maxi-
mum iteration number I , if the error is less than 7, go to step 4 , else the optimiza-
tion procedures stop.

Step 8. Selection of optimal solution: After the iteration stops, the antibody which
has the maximum affinity with the antigen in the memory cells is selected as the op-
timal design parameters.

4 Simulation Results and Analysis

In this section, to investigate the feasibility and effect of the proposed novel algorithm
for WNN, one-dimension function approximation is presented. Algorithm is imple-
mented in MATLAB. The selected function is piecewise function defined as fol-
lows[1]:

—2.186x—12.864 -10<x<=22 (12)

4.246x -2<x<0

fx)= 10e70055-05 o

sin[(0.03x+0.7)x] 0<x<10

The wavelet function we have taken is the so-called ‘Gaussian-derivative’ function
1

v(x)= —xeiax- .The maximum number of the hidden nodes is set to 15. The WNN

with only one input node and one output node is employed. The parameters are de-
termined as follows: Pop_size=60, Pc=0.85, Pm=0.01, ¢, =0.75, n=0.8, I =100.

200 of sample are drawn Eq.(12). 150 sets of sample are used to train the network,
and the rest are used to test the network. Through evolution by the proposed algo-
rithm, the wavelet network with seven hidden nodes in the hidden layer is obtained.
Table 1 shows the results for approximation of the selected piecewise function, and a
comparison of the approximation performance with other methods is presented in
Table 2.
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Table 1. Parameters and structure of wavelet neural networks

M 1 2 3 4 5 6 7 8

b -4.1472 -3.8215 -4.6872 7.5365 6.4635 -2.1653 5.7420 12433
a 6.0528 2.1578 4.8754 3.4237 2.1403 8.7629 2.6135 3.1402
W -6.3405 6.9365 -3.9365 9.1669 6.7568 5.2816 -10.000 4.2571
structure 1 0 0 1 0 0 1 0

M 9 10 11 12 13 14 15

b  -1.3405 -6.3472 -3.0614 9.9673 -1.3676 -4.1327 -1.8868

a 14169 0.000 4.1042 5.0197 4.4621 6.1763 2.3473

W 8.0179 9.9324 -2.8476 -5.1430 1.6230 -6.8178 -4.1979
structure 0 1 0 1 0 1 1

Table 2. Comparison of approximation

Models Number of hidden node =~ RMS of approximate error
IGA-WNN 7 0.0435
GA-WNN 7 0.0523
WNN(gradient-based) 7 0.0506
BP 9 0.0637

5 Conclusion

This paper adopted the immune genetic algorithm model to solve the learning prob-
lems of WNN, which combines the characteristic of both the immune algorithm and
the genetic algorithm. Through adopting multi-encoding, this algorithm can optimize the
structure and the parameters of WNN in the same training process. The structure of the
wavelet neural network can be more reasonable, and the local minimum problem in
the training process will be overcome efficiently. Therefore, the wavelet network
obtained will give a better approximation and forecasting performance. affinity be-
tween antibody Vv and antibody w is defined as:
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Abstract. The MARN has the same structure as the RBF network and has the
ability to grow and prune the hidden neurons to realize a minimal network
structure. Several algorithms have been used to training the network. This paper
proposes the use of Unscented Kalman Filter (UKF) for training the MRAN
parameters i.e. centers, radii and weights of all the hidden neurons. In our
simulation, we implemented the MRAN trained with UKF and the MRAN
trained with EKF for states estimation. It is shown that the MRAN trained with
UKF is superior than the MRAN trained with EKF.

1 Introduction

The radial basis function (RBF) network has been extensively applied to many signal
processing, discrete pattern classification, and systems identification problems
because of their simple structure and their ability to reveal how learning proceeds in
an explicit manner. The MARN is a sequential learning RBF network and has the
same structure as a RBF network. The MRAN algorithm uses online learning, and has
the ability to grow and prune the hidden neurons to realize a minimal network
structure [1]. Fig.1 shows a schematic of a RBF network.

Fig. 1. RAN neural network architecture

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 8 — 14, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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The RBF neural network is formed by two layers; hidden layer N local units or
basis function, and a linear output layer. The output is given by

N (1)
y(m) = w,(n)®,(x(n))

i=1

where input vectorx(n) = [xl Xy e xm]T , @, (-) denotes the mapping performed by a

local unit, and w;(n) is the weight associated with that unit. Here n is the time index.

The basis function is usually selected as Gaussian function

@, = exp(—|x(m)—¢, ()| /o (m) @

where €;(n) and O,(n) will be referred to as the center and radius, respectively. It
can be seen that the design of a RBF requires several decisions, including the centers
¢,(n), the radius O,(n), the number N, and weight w,(n). Several training

algorithms have been used to train RBF network, including gradient descent [1], back
propagation (BP)[5], and extended Kalman filter (EKF) and so on [5]. Major
disadvantage of gradient descent and BP methods are slow convergence rates and the
long training symbols required. The EKF can be used to determine the centers, radius
and weights, but the method provides first-order approximations to optimal nonlinear
estimation through the linearization of the nonlinear system. These approximations
can include large errors in the true posterior mean and covariance of the transformed
(Gaussian) random variable, which may lead to suboptimal performance and
sometimes divergence [2]. Using UKF to train the network may have not these
problems. In MRAN algorithms, the number of neurons in the hidden layer does not
estimate, the network is built based on certain growth criteria. Other network
parameters, such as ¢,(n),o,(n), w;(n), can be adapted. In section 2, we explain using

the EKF for training MRAN network and then present UKF to train the network in
section 3. Finally, in section 4, we present simulation results of using the EKF and the
UKEF for training the MRAN network.

2 Training the MRAN with the EKF

The MRAN network begins with no hidden neuron. As input vector X(71) are

sequentially received, the network builds up based on certain growth and pruning
criteria [1]. The following three criteria decide whether a new hidden neuron should
be added to the network

Hx(n) —c, (n)” > g(n) €

e(n)=d(n)—y(n)>e_. “4)
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" d(n)— 2 )
e, (n)= \/Zi"‘M+1 [ A;n) v >el

where €;(n) is a centre of the hidden neuron that is nearest to X(7) , the data that

was just received, d(7n) is the desire output. g(n),e,. and e’ are threshold to be

min
selected appropriately. M represents the size of a sliding data window that the
network has not met the required sum squared error specification. Only when all these
criteria are met a new hidden node is added to the network. The parameters associated
with it:

(6)

Wy, =e(n), ¢y, ,=x(n), Oy, = KHX(”)_C,-(”)H

where K is an overlap factor that determine the overlap of the response of the hidden
neuron in the input space. When an input to the network does not meet the criteria for
adding a new hidden neuron, EKF will be used to adjust the parameters

0= [WI,CIT,Gp' w0, T'of the network. The network model to which the EKF can

be applied is
0(n+1)=0(n)+ow(n) (N

y(m) =2 w, (m)®, (x(m)) +v(n)

= 8(8(n),x(n)) +v(n)

where W(n) and v(n) are artificial added noise processes, ®(7) is the process noise,
v(n)is the observation noise. The desired estimate é(n) can be obtained by the

recursion

0(n) =0(n—1)+k(n)e(n) ®)

koo:Pm—ummﬂkmwa%mpm—nmmTI
P(n)= [I —Kk(n)a" (n)] P(n—1)+Q(n)I

where K(n)is the Kalman gain,a(n)is the gradient vector and has the following
form

_ 9g(0,x(n) ®

a’ (n)
00 0=0(n)
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P(n) is the error covariance matrix, R(n) andQ(n) are the covariance matrices of
the artificial noise processes )X72)and Vv(n), respectively. When a new hidden

neuron is added the dimensionality of P () is increased by

P(n-1) Oj

0PI 10

P(n) = [

The new rows and columns are initialized by P,. P, is an estimate of the uncertainty

in the initial values assigned to the parameters. The dimension of identity matrix I is
equal to the number of new parameters introduced by adding a new hidden neuron.

In order to keep the MRAN in a minimal size and a pruning strategy is employed
[1]. According to this, for every observation, each normalized hidden neuron output

value 7, (n) is examined to decide whether or not it should be removed.

0, (n) = w, (m)exp(=[x(m)—¢, ()| / 6 (n))

0, (n) 1r)

. k=1---,N
Omax(n)

r.(n)=

where 0, (1) is the output for kth hidden neuron at time n and o (1), the largest

absolute hidden neuron output value at n. These normalized values are compared with

a threshold O and if any of them falls below this threshold for M consecutive
observation then this particular hidden neuron is removed from the network.

3 Training the MRAN with UKF

The EKF described in the previous section provides first-order approximations to
optimal nonlinear estimation through the linearization of the nonlinear system. These
approximations can include large errors in the true posterior mean and covariance of
the transformed (Gaussian) random variable, which may lead to suboptimal
performance and sometimes divergence [2]. The unscented Kalman filter is an
alternative to the EKF algorithm. The UKF provides third-order approximation of
process and measurement errors for Gaussian distributions and at least second-order
approximation for non-Gaussian distributions [5]. Consequently, The UKF may have
better performance than the EKF. Foundation to the UKF is the unscented
transformation (UT). The UT is a method for calculating the statistic of a random
variable that undergoes a nonlinear transformation [2]. Consider propagating a

random variable x (dimension m) through a nonlinear function, y = g(X). To

calculate the statistic of y, a matrix ) of 2m+1 sigma vectors ¥, is formed as the

followings:
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(12)
W' =AM (m+X)

Wi =M m+A)+(1-a’ +B)
W =W =1/@m+2\)  i=1,--,2m

1
where X and PM are the mean and covariance of X, respectively, and

A=a’ (m+K)—mis a scaling factor. @ determines the spread of the sigma points
around X and usually set to a small positive value, typically in the range
0.001<a<1. Kis a secondary scaling parameter which is usually set to 0, and [3

is used to take account for prior knowledge on the distribution of x, and B =2 is the

optimal choice for Gaussian distribution[2]. These sigma vectors are propagated
through the nonlinear function,

)’,:g(X,) i:09”'72m (13)

This propagation produces a corresponding vector set that can be used to estimate the
mean and covariance matrix of the nonlinear transformed vector y .

2m

yszmyi
o (14)
Pyy = ZVVZC (yi _y)(yi _Y)T
i=0

From the state-space model of the MRAN given in 7), when an input to the network
does not meet the criteria for adding a new hidden neuron, we can use the UKF
algorithm to train the network. The algorithms are summarized below.

Initialized with:

0(0)=E[0]
A L (15)
P0)=E [(9 —0(0)(0—0(0) ]
The sigma-point calculation:
L(n) = (m+A)(P(n)+Q(n))
W(n) = [é(n),é(n) +T(n),0(n) -, /r(n)}
(16)

D(n) = g(W(n),x(n))
y(n) = g(O(n), x(n))
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Measurement update equations:

Pyy (n) = Zm: VViC (Di (n)— Y(n))(D,- (n)— Y(l’l))T +R(n)

i=0

- ) A a7
Py, (n) = ZW (W,(n) —0(n))(W,(n) —0(n))"
i=0
K(n) =Py, (n)P /(n) (18)
0(n+1)=0(n)+K(n)e(n) (19)
P(n+1)=P(n)-KmP, (mK' (n) (20)

The weight vector of the MRAN is update with the above equations.

4 Experiment Results and Conclusion

4

In the experiments, the thresholds e and €, respectively, set as 0.22, 0.40,

min * emin s
and 0.5, the thresholds are chosen largely by trial and error. The other parameters
were set as M=10 and 8=0.1. The RAN trained by the UKF and the EKF is used to
estimate a time-series corrupted by additive Gaussian white noise (5db SNR). The
time-series used is Mackey-Glass chaotic series. In Fig.2 and Fig 3, the dashed is
clear time series, “+” is the noise time-series, the solid line is the output of the MRAN
trained with EKF or UKF. We can see that the UKF have superior performance
compared to that the EKF. After learning, the average number of centers in the hidden
layer is 9 nodes.

300 250 300 350 400

Fig. 2. Estimation of Mackey-Glass time series: EKF
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1 L
200 250 300 350 400

Fig. 3. Estimation of Mackey-Glass time series: UKF

The paper investigated the performance of the MRAN networks. It shows that the
MRAN-UKF has better performance than the MRAN-EKF, with much less
complexity. In order to reduce the computer load, we can update the parameters of
only one hidden neuron instead of all the hidden neurons. This neuron called the
winner neuron is chosen as the one closet to the new data received.
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Abstract. An improved neural networks online learning scheme is proposed to
speed up the learning process in cerebellar model articulation control-
lers(CMAC). The improved learning approach is to use the learned times of the
addressed hypercubes as the credibility (confidence) of the learned values in the
early learning stage, and the updating data for addressed hypercubes is propor-
tional to the inverse of the exponent of learned times, in the later stage the up-
dating data for addressed hypercubes is proportional to the inverse of learned
times. With this idea, the learning speed can indeed be improved.

1 Introduction

Speed is very important for the online learning of dynamic nonlinear systems. When
learning capability is considered, neural networks are always the first candidates to be
taken into account, especially backpropagation (BP) trained multilayer feed forward
neural networks. However, owing to the gradient descent nature of BP neural net-
works, the learning process of BP algorithm may need to iterate many times so as to
converge to an acceptable error level, or even cannot converge at all. Another unsuc-
cessful property of BP algorithm is its distributed knowledge representation capabil-
ity[1-2]. So the BP algorithm can hardly be used for online learning systems. This is
because that online learning needs to work within real-time constraints, and training
can only be performed for current patterns. As a result, it is hard to find any success-
ful online BP algorithm examples in practical applications.

Another kind of learning approaches termed as cerebellar model articulation con-
trollers(CMAC) was proposed in the literature[3-4], in which several advantages
including local generalization and rapid learning convergence have been demon-
strated[5-6]. It seems to be a good candidate for online learning. However, when the
conventional CMAC approach still needs several cycles(or called epochs) to con-
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2004021)and the Key Project of Chinese Ministry of Education.( 105088).
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verge[7-8]. Though the conventional CMAC is much faster than BP algorithm, it still
is not good enough for online learning systems. Several approaches have been pro-
posed to improve the learning performance of CMAC[9-10] recently. For instance,
the fuzzy concept was introduced into the cell structure of CMAC, it indeed can in-
crease the accuracy of the representation of the stored knowledge. However, the speed
of convergence still cannot meet the requirement for real-time applications.

In order to improve the learning speed of CMAC, the learning approach has con-
sidered the credibility of the learned values in the literature[11] . In the conventional
CMAC learning schemes, the correcting amounts of errors are equally distributed into
all addressed hypercubes, regardless of the credibility of those hypercubes. Such an
updating algorithm violates the concept of credit assignment, requiring that the updat-
ing effects be proportional to the responsibilities of hypercubes. From the litera-
ture[11], it is shown that the credit assignment CMAC (CA-CMAC) is faster and
more accurate than the conventional CMAC. However, in the literature'" the times
of updating for hypercubes can be viewed as the creditability of those hypercubes,

1 .
and the updating data for hypercubes is proportional to ————, f(j) is the
f(H+1
learned times of the j th hypercubes. Notice, that the learning times must include the
current one to prevent dividing by zero. However in the early learning stage, f(j) is

very less, the process of “add one” is unaccepted.
In this paper, A new improved CA-CMACICA-CMAC) learning scheme is pre-

sented. The updating data for hypercubes is proportional to —————— when the

exp(f (/)

learned times f(j)=0,1,2, f(j)>2 the updating data is proportional to

fGy
The example showed that the ICA-CMAC has the best result in learning speed and
accuracy.

2 Conventional CMAC and Credit Assigned CMAC

2.1 Conventional CMAC

The basic idea of CMAC is to store learned data into overlapping regions in a way
that the data can easily be recalled but use less storage space. Take a two-
dimensional(2-D) input vector, or the so-called two-dimensional CMAC(2-D-
CMAC),as an example. The input vector is defined by two input variables, X, and X, .
The structure of a 2-D-CMAC is shown in Fig .1. In this example, 7 locations, called
bits in the literature, are to be distinguished for each variable. For each state variable,
three kinds of segmentation, or called floors, are used. For the first floor, the variable
X, is divided into three blocks, A, B, and C and the variable X, is divided into
blocks a, b, and c. Then, the areas, Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, and Cc are the
addresses or the locations that store data, Such areas are often called hypercubes.
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Similarly, hypercubes, Dd, De, Df, Ed, Ee, Ef, Fd, Fe, and Ff are defined in the sec-
ond floor, and Gg, Gh, Gi, Hg, Hh, Hi, Ig, Ih, and Ti are defined in the third floor. Be
aware that only the blocks on the same floor can be combined to form a hypercube.
Thus , the hypercubes, such as ,Ad and Db, do not exist. In this example, there are 27
hypercubes used to distinguish 49 different states in the 2-D-CMAC.

The basic concept of CMAC is illustrated in Fig.2. There are two phases of opera-
tions performed in the CMAC algorithm: the output-producing phase and the learning
phase. First, the output-producing phase is discussed. In this phase, CMAC uses a set
of indices as an address in accordance with the current input vector(or the so-called
state) to extract the stored data. The addressed data are added together to produce the
output. Let the number of floors be m , the number of hypercubes be N, and the num-

ber of total states be n. Then, the output value y for the state § (§=1,...... ,n) is the

sum of all addressed data and can be computed as :
N
¥, =>.Cw, (1)
j=1

Where w; is the stored data of the J th hypercube and C | is the index indicating
whether the j th hypercube is addressed by the state § . Since each state addresses
exactly m hypercubes, only those addressed C| are 1, and the others are 0, As shown
in Figl. let the hypercubes Bb, Ee, and Hh be addressed by the state s(3,3), Then

only those three C ,» are 1 and the others are 0.

x2
c 6} Memory  Memory target value
i I 5| indices  elements ;
1 f — 7~ "1 | Bb +l
Y I I A
1
h S 3 3 : | < state(3 3) Learning A
|| 2 I R Hh space s A
a 1 Ee
P -
id S T T O
0 12 3 45 6  x1
A8 e A,
D l E | F actual output
c | w [
Fig. 1. Structure of a 2-D CMAC Fig. 2. Basic operational concept of CMAC

Whereas the output-producing phase is to generate an output from the CMAC
table, the learning phase is to update the data in the CMAC table, according to the
error between the desired output and the obtained output. Traditionally, the error is
equally distributed to modify the addressed data. Let § be the considered state and
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wj. be the stored values of the j th hypercube after i iterations. The conventional

CMAC updating algorithm for Wj. is

i i1, O — < i
w' =wj‘+zcx(ys —ZCSWJW) )

Jj=1

N

Where Y is the desired value for the state s , Z C, W'fl is the produced output of
j=1

the CMAC for the state s , and a is a learning constant. Note that only those ad-

dressed hypercubes are updated. It has been proved that if a is not greater than two,

then the CMAC learning algorithm will converge[5-6].

In the above learning process, the errors are equally distributed into the hypercubes
being addressed. However, after i —1 iterations, the original stored data in the
CMAC table already contain some knowledge about previous learning. However, not
every hypercubes has the same learning history, hence, those hypercubes do not have
the same credibility. Disregarding such differences, all addressed hypercubes get
equal shares for error correcting in (2) .As a result, previous learned information may
be corrupted due to large error caused by an unlearned state. When the training proc-
ess lasts for several cycles, this situation may actually be “smoothed out”. This is
evident from successful learning in various CMAC applications, However, when
online learning is required, and perhaps only one cycle of training can be performed,
there may not have enough time for smoothing out the corrupted data. Thus, the
learned results of the updating algorithm may not be acceptable. This can be seen in
later simulations.

2.2 Credit Assigned CMAC

In the conventional CMAC updating algorithm, unlearned hypercubes may produce
corruption for adjacent hypercubes. Thus, the learned results may not be satisfactory
in online applications. In order to avoid such corruption effects, the error correction
must be distributed according to the creditability of the hypercubes. Such a concept is
often referred to as the credit assignment for learning[12-13]. However, in the CMAC
learning process, there is no way of determining which hypercube is more responsible
for the current error, or more accurate than the others. The only information that can
be used is how many times the hypercubes have been updated. The assumption used
in the literature is that the more times the hypercube has been trained, the more accu-
rate the stored value is. Hence, the times of updating for hypercubes can be viewed as
the creditability of those hypercubes.
With the above assumption, in the literature[11] formula (2) is rewritten as :

w; = Wj-_l +aC, {M} (y_x - Z C, Wj'_l) @

M+
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Where f(j) is the learned times of the jth hypercube, and m is the number of ad-

dressed hypercubes for a state. The idea of the updating algorithm is that the effects of
error correcting must be proportional to the inverse of learning times for the addressed
hypercubes. Notice, that the learning times must include the current one to prevent
dividing by zero. In (3) the equal share of error correcting as 1/m in (2) is replaced by

(f(H+D™

m . With this modification, the learning effects can be
-1
DD+
I=1
appropriately distributed into the addressed hypercubes according to the creditability

of hypercubes. However, it is not the best result, because it did not research how to
effect learning result by the process of “add one” further.

3 Improved Credit Assigned CMAC(ICA-CMAC)

3.1 Credit Assigned

According to analysis above, in order to prevent dividing by zero, moreover it do not
affect the learning speed. in the ICA-CMAC, (3) is rewritten as:

W aC (EPID 6 ey (=0 1 2 jeleem
Zexpefu»
W= 3 )
W +aC m(f(])) 10, ZC ) others
lZ}‘,(f(/))‘l

In (4) not only there is the concept of reasonable credit assignment, but also the
situation of “dividing by zero” do not existence. From later simulations, it can be seen
that the learned results of ICA-CMAC is better than conventional CMAC and CA-
CMAC.

To illustrate the learning effects of ICA-CMAC, a simple example is considered.

The target function is d(x,,Xx,) = \/(x1 -2)* + (x, — 2)? . Let the training data
be [{(2,0), 2},{(3,0), 2.2361},{(4,1), 2.2361},{(5,2), 3.0000},...... ]. The CMAC
shown in Fig.1 is used. First, the state (2,0) addresses three hypercubes, Aa, Ed, and
Hg. Then, y(2,0)=0 and d(2,0)=2. Since those hypercubes are all unlearned, each
hypercube gets 1/3 of the error. The weights of Aa, Ed, and Hg all become (2-
0)/3=0.6667; Next, (3,0) addresses Ba, Ed, and Hg, d (3,0)=2.2361 and
v(3,0)=0.6667+0.6667+0=1.3334. For CMAC, the error is equally distributed into
those three hypercubes. A=(2.2361-1.3334)/3=0.3009. The weights of Ed and Hg
become 0.9676 and the weight of Ba becomes 0.3009. For CA-CMAC, since Ed and
Hg are selected the second times, each get 1/4 of the error, and Ba gets 1/2 of the
error. The weights of Ed and Hg become 0.6667+(2.2361-1.3334)/4=0.8924 and the
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weight of Ba becomes (2.2361-1.3334)/2=0.4514. For ICA-CMAC, Ed and Hg are
selected the second times also, from (4), each get 1/(e+2) of the error, and Ba gets
e/(e+2) of the error. The weights of Ed and Hg become 0.6667+(2.2361-
1.3334)/(e+2)=0.8580 and the weight of Ba becomes (2.2361-1.3334)*e/(e+2)=0.
5201. Here, it can be found that the error in this step may largely come from the value
0 stored in Ba. For CMAC, all three hypercubes get the same share of the error. For
ICA-CMAC, a larger portion of the error goes to the weight of Ba. From the next
step, it will be evident that the resultant error of ICA-CMAC will be smaller than
others. Now,(4,1) addresses Ba, Fe, and Hg. d(4,1)=2.2361, y(4,1)=0.3009+0+0.9676
=1.2685 for CMAC, and y(4,1)=0.4514+0+0.8924=1.3438 for CA-CMAC, and
y(4,1)=0.5201+0+0.8580 =1.3781 for ICA-CMAC, Obviously, the predicted value in
ICA-CMAC is more close to the desired value 2.2361 than that in CMAC and CA-
CMAC method. Table 1 shows the errors for the first cycles. It can be found that the
errors of ICM-CMAC are all lower than others.

Table 1. learning behavior comparison for CMAC, CA-CMAC and ICA-CMAC

State (2,0) (3,0) 4,1 G2
d(xy,%2) 2.0000 2.2361 2.2361 3.0000 ...
CMAC 0 1.3334 1.2685 09459 ...

CA-CMAC 0 1.3334 1.3438 1.1814 ...
ICA-CMAC 0 1.3334 1.3781 1.3009 ...

3.2 Adressing Function

In the original CMAC([3-4], a hashing method is used to reduce the storage space. The
hashing method is a way of storing data in a more compact manner, but may lead to
collisions of data, and then may reduce the accuracy of CMAC. In fact, a paper[14]
exists that questions the applicability of the use of hash coding in CMAC. In our
approach, an addressing function is used to simultaneously generate the indices to
address the required hypercubes[11], This approach is to code all possible hypercubes
in an array ,which saves a lot of time and memory when compared to simple address-
ing approaches, and will not cause any collisions in data retrieval.

Take a three dimensional (3-D) CMAC as an example. Suppose that for each di-

mension, there are m * (nb —1)+ 1 locations to be distinguished, where m is the
number of floors in CMAC and nb is the block number for each floor. In this exam-

ple, each block covers m states and only N = m * nb’ hypercubes are needed to
distinguish (m* (nb—1)+1)° states. Consider a state s , denoted by
(x,,x,, X;) representing the locations of the state for those three dimensions, respec-
tively, Let the m addressed hypercubes by the state s be s(j), for j=1,...,m, The

addressing function is to generate S(j), for j=1,...m, The addressing function

S(j) = F(-xla-xza-x:;,j),is
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@ if j=1,then i=0, else i=m-j+1; @ ax = int((x, +1)/m);
®@ay =int((x, +i)/m);® az =int((x; +i)/ m);
®s(j) = F(x,,X,,%;, j) = ax+ay+az#nb”> +(j—1)*nb> +1.
When a state is defined, with this addressing function, the addressed hypercubes
can directly be obtained, Thus, no matter in the output-producing phase, or in the

learning phase, the required data extraction or data updating can be performed with
those hypercubes directly.

4 Simulation Results

There are two examples to illustrated the learning effects of ICA-CMAC further, the
two examples are conducted to compare the learning speed of conventional CMAC,
CA-CMAC, and ICA-CMAC; they are

y(x,,x,) = (x] = x;)sin(x,)cos(x,) —1<x, <1 and —=1<x, <1 (5)

y(x,,x,) =sin(x,) +2cos(2x,)+e @ —1<x, <1 and —1<x, <1 (6)

For both examples, each variable contains 64 locations. For each variable, 9 floors
are used, and each floor contains 8 blocks. The total states are 4096=64 * 64 , and
the number of used hypercubes is 9 * 8 % 8 =576(only 14% of the total states). The
learning & = 1. The training data is obtained by equally sampling in both variables,
and the number of the used training data 4096.

The learning histories for the two examples are illustrated in Fig 3 and Fig 4. The
ways of evaluating the errors are considered. The total absolute errors (TAE) from the
first cycle to the 6™ cycle, and from the 26" to the 30™ cycle are tabulated in tables 2
and tables 3.

n

TAE=Y

s=1

(=¥, %)

Where n is the number of total states, Y is the desired value for the state 5, y,

is the output value for the state § .

Table 2. Total absolute errors (TAE) y()C1 , xz) = (X12 - x22 ) SiIl()C1 ) COS()CZ)

1 2 3 4 5 6 26 27 28 29 30

CMAC 4042 3336 20.57 2195 1523 1628 ... 7.08 7.02 696 6.89 6.85

CA- 2534 1570 11.27 11.28 9.758 9.868 ... 734 732 729 727 725
CMAC

ICA- 2035 9.001 8.456 8324 7925 7938 .. 695 693 692 690 6.89

CMAC
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Table 3. Total absolute errors (TAE) y(x] 5 x2) = SiIl()Cl )+ 2COS(2)Cl )+ e ™

1 2 3 4 5 6 %6 272829 30
CMAC 2760 252. 237. 225. 209. 1844 . 796 750 7.04 658 6.14
CA- 1750 657 517 446 410 3793 .. 870 839 809 7.83 7.6
CMAC
ICA- 1506 224 162 139 124 1101 .. 409 396 385 375 3.6
CMAC
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Fig. 3. TAE of learning histories for y()C1 , x2) = ()Cl2 - x22 ) SiIl()C1 ) COS(XZ)

Online learning schemes are typically used for time-varying systems because those
schemes can “observe” the changes and then cope with them. When there are changes
(time-varying parameters ) in the system, errors occur to compensate those changes.
Those errors are then distributed into hypercubes according to the used update law.
The error correcting ability of ICA-CMAC is not different from conventional CMAC
and CA-CMAC for this situation. They may be different only in the distributed
amount of the errors. Such a distribution in ICA-CMAC is dependent on the learning
times of hypercubes, and the learning times of hypercubes are approximately the same
if sufficient learning is conducted. Thus, while facing time-varying systems, there are
no differences in different CMAC for long time. From those figures and tables, after
15 cycles, there is a little difference for different neural networks, and all CMAC can
learn well.
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Fig. 4. TAE of learning histories for y(x,, X, ) = sin(x,) +2cos(2x,) + e

But in the early learning stage, the learning results are wholly different. It can be
observed that the errors of ICA-CMAC are much smaller than others, such as the
conventional CMAC and CA-CMAC. Thus, we can conclude that ICA-CMAC indeed
learns faster than conventional CMAC and CA-CMAC in the early learning stage. It
compensates inappropriate process of “add one” in the design of credibility.

5 Conclusions

In the paper, the improved CA-CMACICA-CMAC) learning approach is proposed.
The updating data for addressed hypercubes is proportional to the inverse of exponent
of learned times in the early learning stage (the learned times is one or two), in the
later stage the updating data addressed hypercubes is proportional to the inverse of
learned times.

With this idea, the learning speed of ICA-CMAC indeed becomes very faster than
conventional CMAC and CA-CMAC in the early learning stage. It is very important
for successful online learning.
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Abstract. A new smooth support vector regression based on e-insensitive
logistic loss function, shortly Le-SSVR, was proposed in this paper, which

is similar to SSVR, but without adding any heuristic smoothing param-

eters and with robust absolute loss. Taking advantage of Le-SSVR, one

can now consider SVM as linear programming, and efficiently solve large-

scale regression problems without any optimization packages. Details of

this algorithm and its implementation were presented in this paper. Sim-

ulation results for both artificial and real data show remarkable improve-

ment of generalization performance and training time.

1 Introduction

Support Vector Machine (SVM) was first proposed by Vapnik and had been
one of the most developed topics in Machine Learning [1,2,3]. The nature of the
conventional SVM is solving a standard convex quadratic programming (QP)
problem [4], with linear constraints, which depends on the training data set and
the selection of a few of SVM parameters. For a small training set (less than
few hundreds points), the solution of the QP problem can be obtained straightly
by using standard QP packages such as CPLEX and LOQO. However, with the
massive datasets, the memory space will increase with the level of O(m?), where
m is the number of the training points. This indicates that the optimization
techniques mentioned above may be unsuitable to solve the large-scale prob-
lems. Besides the size of training set, the influence of SVM parameters on the
performance is also great [5]. It is true that we do not have any analytical method
for parameter selection. Hence, designing effective SVM training algorithms for
massive datasets with less heuristic parameters will be of momentous practical
significance.

At present, a number of SVM algorithms based on iteration or decomposition
strategies have been extensively developed to handle large datasets, such as
kernel adatron algorithm [6], successive over relaxation algorithm (SOR) [7] and
sequential minimal optimization algorithm (SMO) [8]. Although these methods,
to a certain extent, can decrease the size and the degree of the difficulty of
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QP problem by partitioning datasets and solving small sub-problems iteratively,
most of them still need an optimization package and long CPU time to complete
the whole iterative procedure. Another method in which SVM was solved as
linear programming without any optimization package was proposed in literature
[9] and [10]. In this case, one employed the smoothing techniques to transform
the primal QP to a smooth unconstrained minimization problem, and then used
a fast Newton-Arjmor algorithm to solve it. Although SSVR yielded a great
improvement on training speed, a heuristic smoothing parameter was added
during transformation, this would increase the difficulty of model selection, which
is very important for obtaining better generalization [5,11,12]. In additional, the
squared loss used in SSVR is not the better choice for robust regression either
[13].

In order to avoid SSVR’s disadvantages, a new smooth support vector re-
gression based on e-insensitive logistic loss function was proposed in this paper.

The paper is organized as follows: Section 2 provides a brief review over
support vector regression. A new smooth support vector regression based on
e-insensitive logistic loss function is derived in section 3. Section 4 describes
the implementation details based on pure Newton method. Section 5 gives the
experiments results, and the conclusion of the paper lies in the last section.

2 Support Vector Regression

The basic idea in SVR is to map an input data x into a higher dimensional
feature space F' via a nonlinear mapping ¢ and then a linear regression problem is
obtained and solved in the feature space. Therefore, the regression approximation
addresses the problem of estimating a function based on a given data set G =
{(zi,y:)}71 (x; € R™ is the input vector, y; € R is the desired real-value). In
SVM method, the regression function is approximated by

f(x) = (w, o(x)) +b (1)

where {¢;(x)}™, are the features of inputs, w and b are coefficients. The coeffi-
cients are estimated by minimizing the regularized risk function:

R@) = Il + €Y L(f (@), 1) @)

where regularized term |w||? is used as a flatness measurement of function (1),
C is a fixed constant determining the tradeoff between the training error and the
model complexity, and L.(-) is the e-insensitive loss function defined by Vapnik

[1]:
Le(f(x),y) = max{|f(z) —y| — € 0} 3)

where € is a prescribed parameter.
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There are two common approaches for regression minimization either the
sum of the absolute discrepancies over samples (>, |f(xi) — yile) or the square
of the discrepancies (3°,|f(z;) — y;|?). It has been proved that the squared
loss is sensitive to outliers, hence robust regression algorithms often employ the
absolute loss [13].

An introduction of slack variables £,£* leads Eq.(2) to the following quadratic
programming (QP) problem with 2m constraints and n + 1 + 2m variables:

||W|| +CZ & +&) (4)

(UJ b 5 5 )6R71+1+2m 1
1=

s.t. (w,d(z;)) +b—y; <e+&
Yi — (W, ¢(z:)) —b < e+ & ()
52751*20 izla"'vm

The classical Lagrange Duality enables above problem to be transformed to
its dual problem with 2m Lagrange multipliers:

m

o ZZ 5= 00w, Bla))+_ ale—yi)+)_ o (i)

i=1 j=1 i=1 i=1
(6)

s.t. E:i1 (i — af). =0 . (7)

Based on the nature of quadratic programming, only a few of coefficients
among «y, ¢ will be nonzero, and the data points associated with them refer to
support vectors. For computational convenience, the form (¢(z), ¢(x)) in formula
(6) is often replaced by a so-called kernel function with the following form,

K(z,y) = (6(x), o(z)) (8)

And so, all the computations are carried on via kernel function in the input
space. Any function that satisfies Mercer’s Theorem can be used as a kernel
function such as Gaussian kernel K (z,y) = exp(—ullz — y||?) and polynomial
kernel K (x,y) = (zTy + 1)P.

3 Smooth Support Vector Regression

The basic idea in smooth support vector machine consists of converting the
primal QP (Eq. 4&5) to a non-smooth unconstrained minimization problem,
and then using standard smoothing techniques of mathematical programming
[14,15,16] to smooth the problem.

Based on Karush-Kuhn-Tucker optimality conditions, the nonzero slacks can
occur outlier only, i.e. at the solution of QP, we have

€% = max{|¢(x)w + b —y| - €,0} 9)
where ) denotes ¢ and £*.
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|? at the same time, and transform

As described in [17] we minimize ||(w, )
the primal QP problem to unconstrained minimization problem with n+1+m
variables,

: 1 2,12 S
wwgﬁﬂwﬂuwu+b>+cz;wm (10)
where 6 = (¢(z)w +b) —

Based on duality theorem we have w = ¢(z)a,a € R™ redefined (10) as
follows

2 2
(a b?é%%n“g(llall +5?) +C; |K (@i )a+b=yil) (11)

Given that the objective function of this unconstrained optimization problem
is not smooth as its derivative is discontinuous at 6 = +-e. The Ref. [10] employed
a squared e-insensitive p function to replace the last term in (11), where the -
insensitive p function is defined by

1
pe(z,B) =plxz —€,8) = (x—€) + 5 log(1 + e~ 79 (12)
Based on the squared e-insensitive p function, redefined (10) as follows
2 4 p2) o
il + ) +c;;pe (o) tb—y.B) (13

where  is a smoothing parameter and the Eq.(13) was called as SSVR in [10].
The disadvantages of the SSVR (13) include twofold. Firstly the squared loss
is always sensitive to outliers. Secondly the selection of the smoothing parameter
[ is heuristic, which would increase the difficulty of model selection of SVM.
In order to avoid SSVR’s disadvantages, we employed another smooth ap-
proximation, defined as e-insensitive logistic loss function:

Liog(|6e) = log(1 + ll) (14)

We can describe |d|. as the form of |§]c = ((6 —€)4 + (=6 — €)1 ) (see Fig.1).
So, based on (14) we have following equation to approximate |d|.

Liog(8,€) = log(1 + €°=¢) +log(1 + e °7¢) — 2log(1 + e~ %) (15)

where the constant term 2log(1 + e~%) is set so that L(0,¢) = 0 (see Fig.2).

In Fig.2 we can observe that the e-insensitive logistic loss function provides
a smooth upper bound on the e-insensitive loss.

Since the additive constants do not change the results of the optimal regres-
sion, the constant is omitted in (15). Redefined (10) as follows,

: _ 1 2 2 ¢ (51'—6 —(51'—6
i, () = o (laf*+b )+C;(log(1+e )+log(1+e~%7)) (16)

where 6; = K (z;,z)a + b — y;.
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—d] — ]

Fig. 1. Constructing e-insensitive loss function |d|c(second) by (—d — €)+ (first) and
(6 — €)+ (third) withe=15
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Fig. 2. Approximating e-insensitive loss function (real) by e-insensitive logistic loss
function (dot) with e =5

The major properties of this smooth unconstrained optimization problem
(16) are strong convexity and infinitely often differentiability, so we can solve it
by Newton method instead of QP packages used in conventional SVM.

4 Implementation of Le-SSVR

By making use of the results of the previous section and taking advantage of the
twice differentiability of the objective function of Le-SSVR (16), we prescribed
a pure Newton algorithm to implement Le-SSVR.

Algorithm 4.1: Newton Method Algorithm for Le-SSVR
(i) Initialization: Start with any (a®,8°) € R™*! set A = 1,i = 0 and
e=1x1075;
(i) Having (af,b?), go to step (vi) if the gradient of the objective function of
(16) is not more than e, i.e. V¥(a?,b') < ¢; else, go to step (iii);
(iii)  Newton Direction: Determine direction d’ € R™*! according to Eq.(17),
in which gives m + 1 linear equations in m + 1 variables:

d = —[V20(a’ b)) V(o b) (17)
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(iv)  Compute (a1 b)) according to Eq.(18):

(@0 = (o, b)) + A (18)

(v) Seti=1i+ 1 and go to step (ii);
(vi)  End

5 Experiments Results

The purpose of the experiments results carried out here is twofold. Firstly it
has to be demonstrated that the algorithm proposed here has better general-
ization capability than SSVR. Secondly it has to be shown that it is really an
improvement over the exiting approach in terms of CPU time.

The simulations were done in Matlab 7.0. Joachims’ package SV M light with
a default working set size of 10 was used to test the decomposition method.
The CPU time of all algorithms were measured on 3.0GHz P4 processor running
Windows 2000 professional.

Ezxample 1. The training data were generated using the sinc function corrupted
by Gaussian noise.Picked z uniformly from [—3, 3], y = sin(7x)/(7x) + v, where
v drawn from Gaussian with zero mean and variance o?. We generated 100
samples for train-set and 50 for test-set from this additive noise model.

We approximated the true function by Le-SSVR with Gaussian RBF kernel,
C =100, = 0.5,0 = 0.2 and € = 0.01 . In addition, we also implemented the
SSVR with different smoothing parameters. The simulation results are shown in
Fig. 3. From Fig. 3 we can observe that the SSVR is quite sensitive to the choice
of the smoothing parameter. Table 1 illustrates the number of support vectors,
the train-set RMSE, the test-set RMSE and the time consumption for different
algorithms on sinc function datasets. From Tab.1 we can conclude that the gen-
eralization capability of Le-SSVR is better than SSVR without compromising
train error and CPU time.

5
o o Sample
1 g s True line:

o Sample
— True line ]
111 SSVR p=0.01
== =SSVRB=10 ||

SSVR p=1000

Fig. 3. Approximating sinc function by Le-SSVR (left) and SSVR (right) with different
smoothing parameters
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Table 1. Average results (50 trials) on sinc datasets with Root Mean Square Error

Dataset Method SV Num. Train Error Test Error CPU Sec.
Le-SSVR 75 0.0481 0.0328 0.3

y = sic(z) + v SSVR 76 0.0481 0.0386 0.3

Table 2. Average results (100 trials) on two real-word datasets with Mean Square
Error

Dataset Method  (C,u,e) SV Num. Test Error CPU Sec.

Boston Housing Le-SSVR 173 8.9 0.89
Train size:481 SMO 173 9.7 2.30
Test size:25 SV M9t (500,1.5,2) 178 8.8 4.90
Abalone Le-SSVR 1315 2.25 6.74
Train s‘lze.:SOOO SMlOight (1000,5,3.5) 1316 2.23 12.63
Test size:1177 SV M 1317 2.65 88.37

Ezxample 2. In this experiment, we chose the Boston Housing and the Abalone
datasets from the UCI Repository [18]. The data were rescaled to zero mean
and unit variance coordinate-wise. Finally, the gender encoding in Abalone
(male/female/infant) was mapped into {(1,0,0), (0,1,0),(0,0,1)}. We used the
same kernel function as Example 1. Table 2 illustrates the training set size, the
number of support vectors, the test-set MSE and the time consumption for dif-
ferent algorithms on two real-word datasets.Here we can conclude that Le-SSVR
is faster than other algorithms.

6 Conclusion

Based on the absolute loss of e-insensitive logistic loss function, we have pro-
posed a new smooth support vector regression formulation, which is a smooth
unconstrained optimization reformulation of the conventional quadratic program
associated with an SVR. Taking advantage of this reformulation, we solved SVR
as a system of linear equations iteratively with the pure Newton Method. Com-
pared with SSVR, our new method demonstrated better generalization capability
without compromising the train error and CPU time. We also got the conclu-
sion that the new method is much faster than any other decomposition methods
mentioned in this paper.
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Abstract. In this study, two methods for the electrocardiogram (ECG) QRS
waves detection were presented and compared. One hand, a modified approach
of the linear approximation distance thresholding (LADT) algorithm was studied
and the features of the ECG were gained for the later work.. The other hand,
Mexican-hat wavelet transform was adopted to detect the character points of
ECG. A part of the features of the ECG were used to train the RBF network, and
then all of them were used to examine the performance of the network. The
algorithms were tested with ECG signals of MIT-BIH, and compared with other
tests, the result shows that the detection ability of the Mexican-hat wavelet
transform is very good for its quality of time-frequency representation and the
ECG character points was represented by the local extremes of the transformed
signals and the correct rate of QRS detection rises up to 99.9%. Also, the
classification performance with its result is so good that the correct rate with the
trained wave is 100%, and untrained wave is 86.6%.

1 Introduction

Classification of the ECG using Neural Networks has being a widely used method in
recent years ' > > ® The far-ranging adopted method has represented its inimitable
superiority in the field of signal processing. But the recorded ECG signals with much
continues small-amplitude noise of various origins, are weak non-smooth, nonlinear
signals. If inputting the ECG signals into the network directly, the redundant
information would make the structure of the network much complex. But if only
inputting the features of the ECG, the data would be reduced much, and this is also

* This Work Supported by the Natural Science Foundation of China(No.60074014).
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accorded with the processing course of humans that first extracting the features from
the stimulators and then transmit it up to the centre neural. In general there are two main
aspects to get the features by analyzing the ECG signals, the single lead method and the
multi-lead method. Analyzing with multi-lead ECG signals, the information of all leads
are integrated and the result is always better than that with single lead.In this paper,
multi-lead signals were adopted in detection of the QRS complex. According to the
relation that the character points of the ECG were homologous with the local extreme
points of the ECG signals preprocessed by multi-scale wavelet transform, the character
points of the ECG were determined and more, many features represent the trait of the
waves were gained 181, heart-rate, the QRS complex width, the Q-T. intervals, and the
amplitudes of all the waves etc.

In comparison, another ECG detects method: a modified approach of the linear
approximation distance thresholding (LADT) ™ '® ' algorithm was studied. Also with
multi-lead ECG signals, first the modified fast LADT algorithm was adopted to
approximate the ECG signals with radials, and thus get the feature vectors representing
the signals: the slope of the segment, the length. And then, calculate the vectors to
determine the position of the R peak, and more, get the position of the whole QRS
complex and its duration and amplitudes.

All ECG features attained from these two methods were putted separately into a
RBF network to classification. A part of the features were used to train the network, and
then all of them were used to examine the performance of the network. As tested, the
two classification methods both performed well, not only in the training speed, but also
in the classification result. And as the great feature extraction powers of the wavelet
transform, it performed better than the LADT method, and the classification
performance with its result with the trained wave is 100%, untrained wave is 86.6%.

2 Detection Algorithm

The detection and the features extraction are the key for ECG analysis. And the
detection of the QRS complex is the chief problem in the ECG analysis, only when the
position of the R wave is determined can the other details of the ECG be analyzed.

In R wave detection, the fast LADT algorithm and wavelet transformation method
were innovated.

In recent time, the methods on the QRS detection had flourished: signal filter,
independent component analysis, wavelet transform, and neural network. Especially
wavelet transform method has a peculiarity that it has finite-compact support sets in the
time-scale domain, it can form an orthogonal basis with the translation in the position
and the alternate of the scale and it has alterable time-scale resolving power, thus it has
a splendid feature extraction power.

On the study of the wavelet transformation method®” 9], it is found that with the
transform using spline wavelet, the zero-crossing points of the modulus maximum pairs
should be detected. But the detection of zero-crossing points was always encumbered
by the noise of the ECG signals. And the detection of the modulus maximum pairs is
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not easy yet. However it is found that the Mexican-hat wavelet has many advantages in
detecting the R waves and even other waves such as Q and S waves.

In the study on the LADT, it was found that the fast LADT algorithm has some
weakness.

v,
A(m3) E
A(m2) |
Almly |
A0mO)
mo rnl m2 m3 =
Fig. 1. Theory of LADT
The fast LADT Approximation theory is as follow "% '!):
m, —m
la| =1 (A(m,) = A(my)) = (A(m,) = A(m,)) ——1 (M
m, —m,
A - A
Lt 1= (m,) (mO)(mz_mo)_(ml_mo)l @
A(m,) - A(m,)
|d | — |a ||t| 3)
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(a? + t2) 7

A(m,) = A(m,)

m, —m,

A (m) is the amplitude of the ECG signal at time m, is the slope

of the approximation line segment. Thus as the relation of similar triangles,

lA(m,)— A(my)l _lal _

k = fixedvalue “4)

lm, —m, | [zl

To get the distance the points on the AA; B from the line segment AB , a precision

as the maximum distance O was decided,
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According to (1) (2) (3):
| a |
(1 + (alt)y>)'?

I d |=

thus Idl< o ifandonlyif lal<o(l+(a/t)*)"?,

viz. d_ =o(l+@/nH’)’? o

When the precision O is decided, the only thing need to judge the satisfaction of the
line segment is to calculate the amplitude distance between the point on the ECG
signals and the corresponding point on the approximating line segment.

But when determined another endpoint making the radial become a segment, the
endpoint could not be fixed on the ECG signals, and thus, the start point of the next
segment could not be on the ECG segment. Further more, as function 9, dmax is the
distance threshold, O is the precision determined at first, and k is the slope of the
approximation segment. It can be seen that the d is determined by the k each
time.

X

d. =ocl+k>)"? =clkl ©)

In the instance when the slope of the segment is very big, such as at the R wave
period, the threshold could be very big too. Especially, when the ECG signal changes
from the R wave to the base-line, as the slope of the segment approximates the R wave
is very big, the segment will cross the ECG signal and only a few points can satisfy the
precision, thus the saw-tooth like approximation appears. The reason is that the
endpoints of the segment cannot be determined properly.

In order to amend this disadvantage, we fixed the endpoints on the ECG waves and
performed the new fast LADT algorithm and got the features of the ECG. As the slope
and length of each position of the ECG has their peculiarities, we can detect the
positions of the R waves.

3 Detection of Waves

3.1 Detection with Wavelet Transform Method

When the signals being processed by the wavelet transform, the noise of the signal was
restrained and the feature information was extruded. As on the scale of 2°,2, the high
frequency noise was well restrained, these two scales were selected out for the
detection work. As the former theory, the position of the R peak was corresponding
with the local extreme of the transformed signal on the scale 24, so a threshold could
judge the R peak, and if any, it could be located in this field as a window.
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As figure 1, the transform result of the ECG T103 with a spline wavelet:

B PN PN N

ECG data T103

—

Transformed with spline wavelet

Transformed with Mexican-hat wavelet

Fig. 2. Results of two wavelet transformations to ECG

The position of the R peak is just the obvious peak thus the local extreme of the signals
transformed with the Mexican-hat wavelet, and then, to determine the position of the R
peak is to find the local extreme. Then it overcomes the complexity that if transformed
with spline wavelet, the modulus maximum pairs should be found first, and then
zero-crossing points of in it should be detected. As the Mexican-hat wavelet was adopted,
the process of the R detection could be simplified and this also improved the detection
performance, the correct rate had achieved at 99.9%.

The process is as bellow:

ey

@

3)
“

&)

Read the ECG signal randomly, transform the signals with the Mexican-hat
wavelet using the Mallat algorithm and get the signal d,’ (1) representing the
details of multi-scale.

Select a part of the ECG signals, decided the precisions Rth’ of the detail
signals d,” (n) on each scale, and detect the local extremes Mo of d23 (n)
with the threshold Rt/ on the scale of 2°.

Modify the local extremes Mo according to the refractory period to Mol.
Detect the local extreme of the original signal to get the position of the R peak in
the field of 10ms corresponding to the local extremes Mol and calculate the
mean time between two R peaks Tm.

Examine whether the interval of the two R peaks is bigger than 1.7Tm, if it is,
that means some R peak was failed and then halve the threshold, and detect
again as former steps and thus get the R peaks



38 Mozhiwen et al.

3.2 Detection of Other Peaks

The ECG signals are constituted by a sequence of component-waves separated by
regions of the zero electrical activity, called iso-electric regions. Under normal
conditions, the compo- nent-waves repeats themselves in a rhythmic manner with a
periodicity determined by the frequency of impulse generation at the sino-atrial node. A
single ECG beat is made up of three distinct component-waves designated as, P, QRS
and T-waves, respectively. Each compo- nent-wave corresponds to the certain moment
of the electro-physiological activity.

The wavelet transform has the quality of time-frequency representation in local
period, that it has the peculiarity to analysis the time changing signals. In the analysis of
the ECG signals, the binary wavelet transform method was adopted. As multi-scale
transform is adopted, when the ECG signal was transformed with multi scales, the
character points such as Q, S, P and T waves, were just correspond with some local
extremes of the transformed signals. Thus the waves of the ECG can be all detected and
the features of the ECG such as the QRS-complex width, P-Q and Q-T intervals, the
height of each wave etc. Thus the classification about the ECG using neural network
can be done. The transformed signals in various scales as in figure 2, the top signals is
the original signal of ECG, and the transformed signals of 2'[12° are underneath it in
turn.

Fig. 3. Multi-scale ECG signal

Wave Q and S is always with high frequency and low amplitude, that their energies
are chiefly on these small scales of the transform. Thus they could be detected on these
scales. The Q wave is a downward wave before the R wave and the S wave is a
downward wave after the R wave. Thus the local extreme in a certain period (about
100ms) left to the R peak is corresponding to the Q wave, the local extreme in the
certain period right to the R peak is corresponding to the S wave. If there is no local
extremes in these periods, that means the wave Q and wave S is not exist.

The detection of P wave is very important to ECG analysis, but the amplitude of it is
small, and the frequency is low too. It is difficult to separate it from the noise. Analysis
from the figure 1, it can be found that at the position of the P waves and T waves, on
signals of the scales of 2’ s 26, there are some distinct waves accordingly. Thus the work
to detect the wave P and wave T could be achieved respectively on the signals of the
scales 2° s 28,
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And more, the features of the wave P and wave T are not so obvious as the QRS
complex, and the boundaries of the wave P and T are misty that the study on wave P and
T is also not as consummate as it of the QRS complex. But, the P wave, QRS complex,
T wave come forth by turns, that when the start and end positions were determined, it
could be conclude that the two most distinctive wave between the successive two QRS
complex are the wave P and wave T.

The extraction of the features of the ECG, such as the width of the QRS complex, the
P-Q and Q-T intervals, need the accurately determining of the start and end point of the
waves, is a classical problem in the analysis of the ECG signals. The start and end point
are also corresponding to the local extremes according to its frequency as transformed
by wavelet. The start point of QRS complex is just the start point of the wave Q; if there
is no wave Q, it is the start point of wave R. And the end point of the QRS complex is
the end point of wave S; if there is no wave S, it is the end point of wave R. The start
point of the QRS complex is corresponding to the sudden slope change point before the
wave Q on the signal of scale 2', or the sudden slope change point before the wave R if
the wave Q is not exist. And the end point of the QRS complex is just corresponding to
the sudden slope change point behind the wave S, or the point behind the wave R, if the
wave S is not exist. The start and end point of wave P and wave T is just corresponding
to some local extremes on the scale 2°. Thus the start and end point could be determined
by detecting the character points of the ECG.

And more, as the start and end points of each waves were determined, the parameters
significant to indicate the meaning of the ECG, such as the hear-rate, P-R and Q-T
interval, the QRS complex width, the VAT, the time of a beat, and the amplitude. In the
analysis of ECG, these parameters are very momentous to estimate the types of the
ECG signals.

3.3 Detection with Modified LADT Method

As the ECG signal was approximated, the slope and the length of the approximating
line segments can be formed in a vector. This vector contained the information of the
ECG, can be used to detect the R peak. As in experimentation, two channel ECG
signals was adopted and 40 sects of signals was picked each channel. Each sect is 3
seconds long. The process is as follows:

(1) Approximate the signal sects with the former algorithm, and gain the vectors of
the slopes and the lengths of the segment.

(2) Decide the threshold of the slope, for that the R peak is the most sharp part in the
whole heart beat periodicity; Decide the threshold of the length, for that the R
peak always is the highest peak and the approximating segment is always the
longest. And then, get the segments of the R peak. And according the LADT
theory, the local extreme point of the endpoint of the segments is probably the R
peak.

(3) According to the refractory period, remove the peaks falsely detected such as
too close to another one and get the ultimate position of R peak.



40 Mozhiwen et al.

When examine with the signals from MIT-BIH, the position of the R peak could be
detected correctly with the rate better than 99.5%.

The position of the other waves and their start and end points were be determined
with the method similar to the method of the wavelet transform. The position of the
character points are just corresponding to some local extremes of the approximating
line segments.

To determine the position of the peak, start and end points of each wave, a different
method was adopted that with a local coordinate transformation, analysis the potential
position of those waves. According to the feature of the ECG, the most sharpest
position is corresponding with the biggest slope line segment, and that the absolute
value of the first derivative is the biggest. And at the position of the start and end point
of each wave, the slope of the line segment changes most acutely, that the second
derivative there is the biggest. And thus, the characters of the waves were obtained.

4 Classification Experiment

4.1 Classification Network

With the high capability of classification from Radial-basis network, the features of the
ECG were classified in a high dimensions space.

In the experiment, first step, the multi-scale wavelet transform method was adopted
separately to detect the R and other waves as well as the modified LADT algorithm.
Second step, the features of the ECG were extracted according the positions of all the
waves. Third step, some features of each ECG were picked out randomly to train the
network. Thus the disease classification knowledge was stored in the conjunctions of
the network. Then the trained network could be adopted to classify the whole feature
vectors. Last step, all features were calculated by the RBF network; the output of the
network is just the result of the classification.

Accordingly, a multi-layer perception was adopted to classify the ECG signals. But
as the weight of the conjunction was modified with the negative-grads-descend
method, when the network was trained with the BP algorithm, the convergence speed
was low and had the short of local extreme. Thus the time for training must be tens or
even hundreds times of the training time for the RBF network. Therefore, the ability
and the learning speed of the RBF network were some better than the BP network.

Thus this method exerts the excellence of both wavelet transform and neural
network, gained the feature vectors well and truly, thus presents a high quality classify
network.

4.2 Classification Experiment

To test the classification system present above, some ECG signals from the MIT-BIH
database from the MIT-BME USA were classified in MATLAB toolbox.

The RBF network in the system has 20 cells in the input layer, corresponding to the
features of the two channels ECG; there are 10 cells in the output layer, corresponding
to the 10 types of selected ECG signals. 40 sects of each disease case were selected
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randomly, and analysis them with the wavelet-transform method and the LADT
method, and thus the features of each case were obtained. Then 20 sects of each case
were selected randomly to train the network. At last, the trained network to test the
efficiency of the system classified all sects.

The classification result was presented in the table 1 and table 2. Table 1 is the result
of classification with the features extracted with the wavelet transformation. Table 2 is
the result of classification with the LADT method.

All the ten ECG signals were elected according to the article [1], signal T100 is
mostly normal, T105, T108 and T219 have several PVC, T106 and T221 have many
PVC, T111 and T112 are BBB, T217 has several PVC and FUS, was paced style, T220
has several APC.

Table 1. Results of the classification with wavelet and neural network

Rec. No. Waves Waves Correct rate Correct rate

learned tested (trained) (untrained)
T100 20 40 100% 95.2%
T105 20 40 100% 81.0%
T106 20 40 100% 69.2%
T108 20 40 100% 75.0%
TI111 20 40 100% 95.0%
T112 20 40 100% 100%
T217 20 40 100% 82.6%
T219 20 40 100% 87.0%
T220 20 40 100% 100%
T221 20 40 100% 81.0%
Total/average 20 40 100% 86.6 %

Table 2. Results of the classification with LADT and neural network

Rec. No. Waves Waves Correct rate Correct rate

learned tested (trained) (untrained)
T100 20 40 100% 95.2%
T105 20 40 100% 65.4%
T106 20 40 100% 51.9%
T108 20 40 100% 81.0%
T111 20 40 100% 100.0%
T112 20 40 100% 86.4%
T217 20 40 100% 71.4%
T219 20 40 100% 90.5%
T220 20 40 100% 69.6%
T221 20 40 100% 70.8%

Total/average 20 40 100% 78.2%
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From the tables above it can be conclude that the features of the ECG of two leads
were integrated for the classification. It simulates the situation of the real world
situation that it classified the ECG according to the relations of the amplitude and width
of each waves with a RBF network. This method exerted the splendid character
extraction ability and the excellent peculiarity of the network on the classification,
which managed the classification work to a good level both in speed and the veracity. In
the experiment, the classification system gave a good performance. To the waves been
used to train the network, the classification ability is perfect that the correct achieved
100%. To the waves not used to train the network, the performance is also good that the
correct rate is 78.2 using the LADT method, with the wavelet-transform method, the
correct rate is 86.6%, which are both much better than other classified system, and the
wavelet-transform method is better than the LADT method for its accuracy feature
extraction ability.

In order to compare, the experiment with BP network and the wavelet-transform
method was test accordingly. As the accuracy feature extraction ability of
wavelet-transform, the correct rate is also very good, but as the speed of the BP is very
slow, the training time of it is hundreds times of the RBF network.

5 Conclusion

In this study, two feature extracting method were compared. First Mexican-hat wavelet
transform was adopted to detect the character points of ECG for it has the quality of
time-frequency representation and the ECG character points was represented by the
local extremes of the transformed signals. In succession, the modified LADT method is
adopted to detect the character points.

And with the high capability of classification from Radial-basis network, the
features of the ECG were classified in a high dimensions space along the theory of the
ECG diagnose and the situation of ECG diagnose in practice.. This method exerts the
excellence of both feature extraction methods and neural network, gained the feature
vectors well and truly, thus presents a high quality classify network. Thus take a new
idea for the ECG automatic analysis.
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Abstract. A new hybrid learning algorithm combining the extended Kalman fil-
ter (EKF) and particle filter is presented. The new algorithm is firstly applied to
train diagonal recurrent neural network (DRNN). The EKF is used to train
DRNN and particle filter applies the resampling algorithm to optimize the parti-
cles, namely DRNNs, with the relative network weights. These methods make
the training shorter and DRNN convergent more quickly. Simulation results of
the nonlinear dynamical identification verify the validity of the new algorithm.

1 Introduction

Diagonal recurrent neural network (DRNN) was firstly put forward by Chao-Chee
Ku, etc [1]. It only has self-feedback connections among the neurons in the hidden
layer and it has been becoming one of the hottest research topics for it may obtain the
tradeoff between the training cost and accuracy.

Chao-Chee Ku, et al applied the dynamical BP algorithm to train DRNN [1]. But
the dynamical BP algorithm needs to adjust the learning rates. The tuning of the learn-
ing rates is relatively complex and the convergent speed is also very slow. Williams
R.J. introduced the extended Kalman filter (EKF) algorithm for recurrent neural net-
work (RNN) [2]. Although having high convergent speed, the EKF has low accuracy.
And he augmented the output variable to the state vector in [2]. Thus, the calculations
of the covariance of the state vector and the filtering gain, etc are relatively complex.
de Freitas J.F.G., et al combined the EKF and particle filter to train a multilayer per-
ceptron (MLP) [3]. But MLP is a feed-forward neural network. And DRNN is not a
static mapping as MLP dose, outputs of DRNN are affected by inputs of both the
current and the previous time steps. So it is not suitable to train DRNN by the means
in [3] in each training cycle.

In this paper, we firstly combine the EKF and particle filter to train DRNN. We use
an effective method to exactly evaluate the weights of particles, and then the resam-
pling step may be just run to optimize particles with respective network weights.
Thus, the fast convergent speed of the EKF and the optimization function of particle
filter are incorporated into training DRNN. The nonlinear dynamical identification
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experiments demonstrate that the new algorithm can effectively be applied to train
DRNN.

2 Diagonal Recurrent Neural Network

The model architecture of DRNN is shown as Fig. 1. Suppose DRNN has P input
neurons, R recurrent neurons and M output neurons. WI, WD or WO represents input,

recurrent or output weight vectors respectively.
O Linear neuron

O-(==

sigmoid neuron

Fig. 1. The model architecture of DRNN

For each discrete time k, Ii(k) is the ith input, Si(k) is the sum of inputs of the jth re-
current neuron, and O,,(k) is the output of the mth output neuron. The mathematical
model of DRNN can be inferred as [1]:

S, (k) :Wj’)Xj(k—1)+zF:W,.j’1,.(k) (1)
X, (k)= £(S,0) 2
0, (k)= WX, (k) 3)

where f{.) is sigmoid function which is often f{x)=1/(1+e™). From the negative gradi-
ent descent rule, the weight vector of DRNN is updated as follows:

Wk+1D)=W(k)—n@J, /1d0W)=W(k)+ne,(k)(Q0(k)/IW) 4)

m
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where n is the learning rate, J,, represents the function of error, e,,, of output between
the plant and DRNN. From the chain rule of deriving the difference, we can have the
output gradients with respect to input, recurrent and output weights respectively:

a0, (k)/GWHZ. (k)= X, (k) 5)
90, (k)1 9W) (k) =W, (k) £ (S, (k)X (k —1) ©)
30, (k) 19W, (k) = W2 (k) (S, k)T, (k) )

3 Particle Filter

Particle filter uses a set of randomly sampled particles (with associated weights) to
approximate poster density function (PDF). So particle filter is not affected by the
non-linear and non-Gaussian problems, now it has been widely applied to robotics,
computer vision, statistical signal processing and time-series analysis, etc [4]. Sup-
pose Yi={y1,.... 9}, Xp)={x1,..., x;} represent the measurements and state sequences up
to time k respectively. Bayesian recursive estimation includes prediction and updat-
ing:

PO 1Yo = [pOx 1 )p(x,, 1Yo )dx, @)

p('xk |Yk):P(yk |xk)p(xk lYk—l)/p(yk |Yk—]) 9)

where p(xlx..1) is the transition density of the state, p(y;lx;) is the likelihood and the
denominator p(ylY;.;) is the normalized constant.

The analytical solutions to the above integrals are generally hard to be acquired. If
we can sample particles from PDF, PDF may be approximately represented by these
particles.

1 X . :
p(x 1Y) =NZWZ5(XIC - x) (10)
il

where x| is the i" particle with the relative weight w; , randomly sampled from the

PDF. &(") is Dirac delta function.

It is often not possible to directly sample from PDF, but we can approximate PDF
by sampling from a known proposal distribution, g(.), that is easy to sample. From the
large number theorem, the randomly sampled discrete particles are convergent to true
distribution. The weight w; is defined as:

w, (x,) = p(x, 1Y) p(Y) /1 q(x, 1Y) (11)

where g(x|Yy) is the proposal distribution (function).
As the states follow a first-order Markov process, we can obtain a recursive esti-
mate of the importance weights [3]:
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w, =w, p(y, lx ) pCe 1x ) g(x, 1 X, Y,) (12)

To reduce the effect of the degeneracy in the algorithm, Gordon, et al [5] intro-
duced the resmpling step, which evaluates weights of particles and resamples particles
to eliminate particles with small weights and to multiply particles with large weights.
Thus, prediction, updating, evaluating and resampling constitute the basic particle
filter.

Particle filters require the design of proposal distributions that can approximate
PDF as well as possible. The optimal proposal distribution requires it to sample from
the integrals [6] and it is often hard to be implemented in practice. Some suboptimal
proposals including the prior proposal [5], the EKF proposal [3], etc are presented.
The prior proposal, g(x, | x,_,,Y,)= p(x, | x,_,), has no considerations of the latest

measurements and the evaluation of the weight is simplified as evaluating the likeli-
hood, w, =w,_p(y, | x,). The EKF proposal uses the EKF to update each particle

and is firstly used to train a MLP [3]. For DRNN is very different from MLP, we
develop a new hybrid learning algorithm combining the EKF and particle filter to
train DRNN.

4 A New Hybrid Learning Algorithm

For DRNN may memorize previous network states, it is not suitable to simply ap-
praise the performance of DRNN and resample particles in every training cycle. In
each training cycle, the EKF is used to update network weights of every particle
(DRNN). When DRNN has been trained after some training cycles, weights of parti-
cles are just exactly evaluated in this certain fixed-length training period. And then,
the resampling algorithm is run to multiply good particles and reduce bad ones. Thus,
a new algorithm incorporating fast convergent speed and high accuracy is developed.

Now the updating of network weights is represented in the form of state space
model:

W(k)=W(k-1)+v(k-1) (13)

y(k)=h(u(k),W(k))+r(k) (14)

where the state vector W(k)=[W/(k) W”(k) W°(k)]" contains all network weights. u(k)
is the input signal, y(k) is the output of DRNN. v(k), r(k) is the uncorrelated white
Gaussian process, measurement noise respectively.

Main steps of the new algorithm are described as follows:

1) Initialize network weights of each particle (DRNN).
2) In the start training cycle of a fixed-length training cycles, update network weights
of every particle with the EKF.

W =W,

k-1

5)

Pl: = k-1 +Qk71 (16)
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K, =P H!(HFH +R) (17)
P =P —K.HP (18)
W, =W, +K,(y, —h (u(k),W,)) (19)

where P, is the covariance of the state, Oy, R; is the covariance of process, measure-
ment noise respectively. H, is the local linearized measurement matrix which is calcu-
lated as:

H, =h, (u(k),W.)/oW =00, /oW (20)

3) When DRNN is trained to the end training cycle of a certain fixed number of train-
ing cycles, weights of particles, that is, performances of DRNNSs, are evaluated. The
weight of ith particle is defined as:

L _
w, = [J(2R) ™ e **F % 1)
j=1

where &;= y — ¥/, L denotes the number of training cycles. ﬁf is the output of ith parti-
cle (DRNN) and y’ is the desired output of the plant in the jth training cycle.

4) The multinomial resampling algorithm [5] is run to produce new discrete particles
with optimized network weights. Particles with all relative network weights, which
have large weights, are multiplied. Particles with small weights are eliminated. After
resampling, all weights of particles are set as being identical.

5) If the training error is decreased into the desired error bounds, the training is ended.
Otherwise, move to the next start training cycle. Repeat step 2), 3), 4) and 5) up to the
end of training.

5 Simulations

In this paper, we adopt the series-parallel identification model to simulate with two
typical plants [7]. In the simulations, we compare the EKF training algorithm and our
new hybrid training algorithm (EKF-PF).

The training accuracy is raised with the increased particles and the shorter length of
training cycles. But at the same time, the computational cost becomes greatly higher.
Considering the tradeoff between the computational cost and the accuracy, we set the
values of all parameters empirically by a great deal of simulations. The covariance of
process noise, measurement noise is Q=qJ;, ¢g=0.0001, R=100 respectively. The initial
covariance of the state is set as Py=pJ;, p=1000. The learning rate is 0.5.

Example 1: A nonlinear plant is described by the first-order difference equation:

_ (k) 3
y(k+1)——1+y2(k) +u (k) (22)
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Series-parallel identification model has two DRNN, N{y(k)] and N,[u(k)], that are
to be identified. N{y(k)] represents that a DRNN with one network input variable y(k)
would approximate the function f[.]. Each DRNN has 1 input neuron, 10 recurrent
neurons and 1 output neuron. The number of particles is 8 and the fixed length of
training cycles is 8.

The training input u(k) is chosen as an i.i.d. random signal uniformly distributed in
the interval [-2, 2]. When trained with only 600 random data, the training error of
DRNN is convergent into the desired error range. After training, the input test signal
is u(k)=sin(2mk/25)+sin(2wk/10), where k=1,2,...,100, output of the plant and outputs
of DRNN trained by the EKF and our new EKF-PF algorithm respectively are shown
as Fig. 2.

- - EKF-PF outputs of NN
—— outputs of the plant
—— EKF outputs of NN

!

8 I I I I I I I I

10 20 30 40 50 60 70 80 90 100

Fig. 2. Outputs of single-input nonlinear plant and the DRNN

Example 2: A multi-input nonlinear dynamical plant is governed by the following
form:

X X, X% (x5 — 1)+ x,
1+x; +x2

Flx, %y, %5, %,, %51 = (23)

The training input u(k) is chosen as an i.i.d. random signal uniformly distributed in
the interval [-1, 1]. The DRNN has 5 neurons, 20 recurrent neurons and 1 output neu-
ron. After training with 600 random data, the input test signal is selected as
u(k)=sin(2mk/250) for k<500 and u(k)=0.8sin(2mk/250) + 0.2sin(2mk/25) for k>500.
Outputs of DRNN trained by the EKF and our EKF-PF respectively and output of the
plant are shown as Fig. 3.

As seen from the figures, the DRNN trained by our new algorithm can approximate
the plant quite accurately.
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0.8} u(k)=08sin(2z k/250)+0.2sin(2r; k/25), k > 500

— EKF-PF outputs of DRNN
Ak ; —— outputs of the plant
u(k)=sin(2z k/250), k<500, | — EKF outputs of DRNN
. . . : : :

.
0 100 200 300 400 500 600 700 800

Fig. 3. Outputs of multi-input nonlinear plant and the DRNN

6 Conclusion

In this paper, the extended Kalman filter (EKF) and particle filter are firstly combined
to train diagonal recurrent neural network (DRNN). The new hybrid algorithm not
only has the fast convergent speed of the EKF, but also has the “survival of the fittest”
of particle filter. The experiments confirm that the new algorithm is valid.
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Abstract. Based on rolling optimization method and on-line learning strategies,
a novel weighted least squares support vector machines (WLS-SVM) are pro-
posed for nonlinear system identification in this paper. The good robust prop-
erty of the novel approach enhances the generalization ability of LS-SVM
method, and a real world nonlinear time-variant system is presented to test the
feasibility and the potential utility of the proposed method.

1 Introduction

As a novel breakthrough to neural network, Support Vector Machines (SVM), origi-
nally introduced by Vapnik [1] within the frame of the statistical learning theory, has
been frequently used in a wide range of fields, including pattern recognition [2], re-
gression [3] and others [4], [5]. In this kernel-based method, one starts formulating
the problem in a primal weight space, but maps the input data into a higher dimen-
sional hypothesis space (so-called feature space) and constructs an optimal separating
hyper plane by solving a quadratic programming (QP) in the dual space, where kernel
functions and regularization parameters are chosen such that a regularized empirical
risk instead a conventional empirical risk is minimized. The solution of this convex
optimization problem leads to the sparse and robust solutions (or good generalization
capability) of the model.

Despite many of these advances, the present SVM methods were basically re-
stricted to static problems. It is known that the use of SVM in a dynamical system and
control context becomes quite complicated [8], due to the fact that it is a very strin-
gent requirement to solve online for a large-scale QP problem in standard SVM. As a
reformulation of standard SVM, a least squares version of SVM (LS-SVM) that leads
to solve linear KKT systems has been extended to dynamical problems of recurrent
neural networks [6] and used in optimal control [7]. While comparing with neural
network and standard SVM, LS-SVM based control has many advantages such as: no
number of hidden units has to be determined for the controller, no centers has to be
specified for the Gaussian kernel, fewer parameters have to be prescribed via the
training process, and the linear KKT systems can be efficiently solved by iterative
methods. It is well known that it is very convenient and straightforward to construct a
learning model of static (or time-invariant) problems via LS-SVM, however, noting
the learning process is off-line, and the train data is selected as a batch before the
whole process, the present LS-SVM methods were basically restricted when extended
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to time-variant dynamic system and on-line learning process. Therefore, a practical
on-line learning approach based on weighted LS-SVM (WLS-SVM) method is
mainly elaborated for nonlinear system identification in this paper.

This paper is organized as follows. In the next section we first give a brief review
on LS-SVM method, then we focus on a practical approach to construct an on-line
WLS-SVM method for nonlinear dynamic system modeling. In section 4, a numerical
experiment is presented to assess the applicability and the feasibility of the proposed
method. Finally, Section 5 concludes the work done.

2 Least Squares Support Vector Machines

Given a training data set D of / samples independent and identically drawn (i.i.d.)
from an unknown probability distribution (X,Y) on the product space

Z=XXY:
D={z;=(x, ).z, =(x, )} (1)

where the input data X is assumed to be a compact domain in a Euclidean space R?
and the output data Y is assumed to be a closed subset of R .

In the case of Least Squares Support Vector Machines (LS-SVM) , function esti-
mation is defined:

fx)=w®(x)+b @)
One defines the optimization problem.
qvl}}{l J(w,e)=%wTw+ y%eTe &)
s.t.
y, =w®(x)+b+e,k=1,...,1 4)

Ix1 . . .
where e € R denotes the error vector, regularization parameter ¥ denotes an arbi-

trary positive real constant.
The conditions for optimality lead to a set of linear equations:

0
1Q+y'1| o] |y

where  y=[y,¥, .., 1, I=[,..1," . a=[a...af .
Q. =0(x) @(x,)=K(x,,x,), i,j=1...,1
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The resulting LS-SVM model for function estimation becomes:

f()=> o K(x,x)+b 6)

k=1

where &, , b are the solution to the linear system (5).

Due to page limitation, more details of standard SVM and LS-SVM please further
the reference [1], [8].

3 On-Line Weighted LS-SVM Method

In empirical data-based modeling, learning process of LS-SVM is used to build up
some general model off-line based on the input and output data-pairs of the system,
from which it is hoped to deduce the prediction responses of the system that have yet
to be observed. As we know, the model of the system can be expressed with regard to
the basis elements of the hypothesis space, and it will obtain “good” generalization if
the hypothesis space can cover most of the target space. However, the observational
nature data obtained is frequently finite and sampled non-uniform over the whole
domain in practical. The hypothesis space, in which we select some function f based
on the empirical (training) data to construct the model of the nonlinear system, is
frequently only a subspace of the target space. Hence, the model of the system will
obtain “bad” generalization capability while using it to predict the response beyond
the hypothesis space. In order to solve this problem, we have to learn on-line with the
shifting of the work domain. Inspired by the rolling optimization method in control
area, we adapt a sliding window method to solve this problem.
Given a nonlinear system with input and output pairs:

{06 Y5 (s 35 (K Vi e (%, )5} € RYXR )

Let assume the response of system at certain work domain is completely illustrated
with the past observational data in a sliding window with the length W.
i) Recursive Incremental learning method
When the data points arrive at the system less than W, we propose a recursive in-
cremental algorithm for learning process. The train data set is as follows:

{(x,9)see (X, 9.),0000(x,,9,)},mSW ®)

where X, € Rd,yl. eR,i=1,...,m.

In order to obtain an on-line robust estimate based on the precious LS-SVM, in a
subsequent step, one can weighted the error variable ¢, =, / ¥ by weighting fac-
tors v, in (3).

A similar derivation as the standard LS-SVM can be made. The conditions for op-
timality lead to a set of linear equations:



54 X. Wen, X. Xu, and Y. Cai

01 e 1 b 0
1 K0+ -+ K(x,x,) a | | % ©
1 me,)(i) o K(‘xm’xm)+l/%}m a'm ym

For incremental learning process, the sampled points of the train set increase step
by step with the time, hence the Grammar matrix of kernel €2, the Lagrange multi-
pliers & and bias term b in (9) can be identified as the function of the time m. From

(9), we obtain
] L[]
= (10)
el Him) | [a(m)] | y(m)

where el is the column vector with appreciate dimension of elements “17,
T
o(m)=(a,,...,a,) , b(m)=b, ,

m

1

andH(m)=Qm(x.,xj)+diag{i,...,L}, i,j=1...,m.
1 m

Rewritten (10), it is easy to deduce
_el"Hm)™' y(m)
el" H(m) el D
elel” H(m)™" y(m)
el" Him) el

b(m)

a(m)=H(m)™ (y(m)~ )

In order to compute the factors of &(m) ,b(m) recursively, let define

U(m)=H(m)" (12)

The dimension of matrix in (12) is mXm . It is known that we can select direct
inverse method when dimension is small or a Hestene-Stiefel conjugate gradient algo-
rithm for solving the inverse of a large-scale matrix [9]. However, we have to calcu-
late (12) at every time when a new sample comes to the sliding window, and it leads
to heavy computation burden of the on-line learning algorithms. Here we select a
recursive algorithm to solve this problem.

From (10), we obtain

K, x)+/ m K(x,x,)

Hom (13

Kx,,x) . K(x,.x )+,
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For the next moment m+1, we get

Koo, )+ -+ Kgx)  Kix,x,,)
H(m+1)= : e (14)

Kog®) K, KO,
K()%H’)q) T K’Ym’)?) K(xmwxzml)"'l/ W

Substitute (13) in (14), with the symmetric positive definite properties of kernel
function, we obtain

H(m Vim+1
H(m+1)= (m) . (m+1) (15)
V(im+1)" h(m+1)
where
1
Vim+1)=[K(x,,,X),....,K(x,,,x, W, h(m+1) = K(x,  ,x, ) +t—
m+1
According to the inverse of sub-block matrix computation, it can be deduced that:
Um+D)=H@m+1)"
(16)

B {U(m) 0} _{U(m)V(m+1)

0 o » }B‘l [V(m+1)TU(m)—1]

where B =h(m+1)=V (m+1)"U(m)V (m+1)is a non-zero scalar factor .

By substitute (16) in (11), it is easy to deduce the factors of a(m+1),b(m+1).

Apparently, if the dimension of matrix in (12) is small enough (for example m=2),
we can compute its direct inverse easily via the method as mention above. Hence, we
can learn the new samples recursively based on the previous results.

ii) First In First Out (FIFO) strategy for on-line modeling

If the data points arrive at the system beyond the length of sliding window, in order
to obtain an on-line robust estimate based on the previous WLS-SVM, we have to
throw off some old samples. For simplification, we assume that the new (last) points
are more important than the old (first) points, and we adapt First In First Out (FIFO)
strategy for selecting the train data. In a subsequent step, one can weighted the error

variable ¢, =, /Y by weighting factors v, , this leads to the optimization

problem:
. 1 r i+W )
min/w.e)=—w w+y— Z v.e, (17)
w,b,e 2 2 k=i+1



56 X. Wen, X. Xu, and Y. Cai

Such that
yo=w ®(x ) +b+e k=i+l,....i+W (18)

A similar derivation as previous section can be made. The conditions for optimal-
ity leads to a set of linear equations:

1 1

0 1 oo K
1K)+ . i)

i+l

b 0
Ot | | Yin (19)

1
%) o

o KXy |
K (X2 %) " |
That is
01" b {0 }
T 0 T (20)
LQ+V, || y
where the diagonal matrix Vy is given by
. 1 1
V},=dlag{ yeees } 1)
7/Vi+l wi+W
The resulting WLS-SVM model for robust function estimation becomes:
. i+W ; N
f=2 aKx,x)+b (22)
k=i+1

where OKj , b" are the solutions to the linear system(20).
For simplification, let identify these weighted factors V,_; be a function of time 7,
for nonlinear system:

v, =8@,) (23)

where 7, 1<n < Wis the time that the point arrived in the sliding window of the
system. We make the last (new) point be the most important and choose v,, = @, and

make the first (old) point be the least important and choose v, = 90 . If we want to

make it be a linear weighted function of the time, we can select

v, =8t )=at +b (24)
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By application of the boundary conditions, we can get

6-6, O -6
Vk—i = tn + (25)
tw - tl tw - tl

So far, a recursive incremental algorithm based on sliding window for on-line mod-
eling is given as follows:

(1) Select samples point with the length of sliding window W for modeling.
(2) Given initial samples {(x;,y,),(x,,y,)} and initial kernel parameters and

regularization parameters, set m=2;
(3) Compute U(m), b(m),¥(m) , m=m+1;

(4) Sample new data point{x,,y, } and compute the U (m+1) in (16);
(5) Recursive compute b(m+1),a(m+1);

(6) If m<W , go to (3); otherwise next

(7) Modeling via (22) and produce prediction output;

(8) Optimization the kernel parameters and regularization parameters in (20);
(9) Add the new data points while discarding the old data with FIFO strategy;
(10) Go to (7); otherwise exit

Note it is straightforward for FIFO strategy when the new data points arrive at the
system are more than one point in step (9). For briefness, only the linear weighted
function in (25) is considered in this paper. Empirically, we can select the weight

v 1 1 %
parameters — from E to E When — = 1, it leads to standard LS-SVM with
A% 1%

w w

sliding windows.

4 Application Study

In this section, we construct nonlinear dynamic model with WLS-SVM from a real world
data set sampled from a water plant with interval 10 minutes. Water treatment system is a
time-variant nonlinear dynamic system with 40 minutes to 120 minutes delay, the main
process can be illustrated simply as follows: the raw water is pumped into the water
plant, then dosage for coagulation and flocculation, after clarification and filtration treat-
ments, we can obtain the drinking water in the end. The quality of the output water de-
pends on the quality of the raw water (flow, turbidity, temperature, pH, total organic
carbon (TOC), etc), appropriate coagulate dosage and the purification facilities. Since the
system involves many complex physical, chemical and biological processes, and it is
frequently affected by the natural perturbation or occasional pollution in the whole proc-
ess. Itis well known as a challenge work to construct an accurate prediction model of the
water plant. After selecting the primary variables via conventional methods such as prin-
cipal component analysis (PCA) method, the prediction model of the turbidity of the
output water is assumed to be the form:

Y, (k+1) = F (u,(k),u, (k),u;(k), y(k)) (26)
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(d) Testing output of WLS-SVM
Fig. 1. The identification result of training and testing data via LS-SVM and WLS-SVM

where u;(k),uy(k), uz(k), y(k) denote the flow of raw water, the turbidity of raw water,
coagulation dosage, and the turbidity of the output water, respectively. And y,(k+1)
is prediction output of next moment.

We attempted to construct the model in (26) based on WLS-SVM method as men-
tioned above. The length of sliding window is 30. For comparison, standard LS-SVM
with batch learning is also presented here. The training data set consists of 300 sam-
ples and another 200 samples in subsequent were used as test data. We compared the
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results with two popular criteria in control area: the mean square error (MSE) and
maximal-absolute-error (MAXE).

The simulation results are illustrated in fig. 1 and table 1. In fig. 1, the solid line
represent the output of the identification model and the dashed line show the practical
output of the plant, the modeling error is illustrated at the bottom of the figures with
dash-dot line.

Table 1. Comparison results of nonlinear system identifaction

Method MSE (train) MAXE (train) MSE (test) MAXE (test)
LS-SVM 0.0300 1.1436 0.0348 0.6304
WLS-SVM  0.0154 0.48614 0.0109 0.3999

In this simulation, although we adopted cross-validate method for optimization on
the regularization parameter and Gaussian kernel parameter of standard LS-SVM,
however, the novel approach has greatly outperformed it. Due to on-line learning
strategies and optimizing the parameters with the shifting of the work domain, it is not
surprising that the WLS-SVM has better performance and generalization ability than
the standard LS-SVM based on batching learning.

5 Conclusions

In this paper, we proposed a practical way for nonlinear dynamic system identifica-
tion based on WLS-SVM, and an on-line algorithm and rolling optimization strategy
is discussed. This work provides a novel approach for nonlinear dynamic system
modeling, and the experimental results show that the proposed method is feasible. It is
worth noting that the length of sliding window is user-prescribed before the learning
process while it has a critical influence on the performance of WLS-SVM associated
with certain hypothesis space, how to select a suitable sliding window effectively is
still remain to be further explored for the future work. In general, this on-line least
squares kernel methodology might offer a better opportunity in the area of control.

Acknowledgement

This research is supported in part by the National 973 Key Fundamental Research
Project of China (2002CB312200) , th e N ational 863 High Technology Projects
Foundation of China 2002 A A412010), and the National Natural Science
Foundation of China (60174038).

References

1. Vapnik, V.: The Nature of Statistical Learning Theory (the second edition). New York:
Springer-Verlag (1998)

2. Burges, C. J. C.: A tutorial on support vector machines for pattern recognition. Data Mining
Knowl. Disc., Vol. 2(2). (1998) 1-47



60

X. Wen, X. Xu, and Y. Cai

. Drucker, H., Burges, C.J.C., Kaufman, L. (ed.): Support vector regression machines.

In: Mozer, M., Jordan, M. , Petsche, T.(eds.): Advances in Neural Information Processing
Systems,Vol. 9. Cambridge, MA, MIT Press. (1997) 155-161

Kecman, V.: Learning and Soft Computing, Support Vector machines, Neural Networks and
Fuzzy Logic Models, The MIT Press, Cambridge, MA (2001).

. Wang, L.P. (Ed.): Support Vector Machines: Theory and Application. Springer, Berlin Hei-

delberg New York (2005)

. Suykens, J. A. K. and Vandewalle, J.: Recurrent least squares support vector machines.

IEEE Transactions on Circuits and Systems, part I, 47 (7). (2000) 1109-1114.
Suykens, J. A. K. and Vandewalle, J.:, Moor, B. De: Optimal control by least squares sup-
port vector machines, Neural Networks, 14 (1). (2001) 23-35.

. Suykens, J. A. K.: Support vector machines: a nonlinear modeling and control perspective.

European Journal of Control, 7 (2-3). (2001) 311-327.
Golub G.H., Van Loan C. F. Matrix Computations, Baltimore MD: Johns Hopkins Univer-
sity Press (1989)



Globally Exponential Stability Analysis and
Estimation of the Exponential Convergence Rate
for Neural Networks with Multiple Time
Varying Delays

Huaguang Zhang' and Zhanshan Wang'+?

! Key Laboratory of Process Industry Automation, Ministry of Education,
Northeastern University, Shenyang 110004, P. R. China
hgzhang@ieee.org
2 Department of Information Engineering,

Shenyang Ligong University, Shenyang, 110045, P. R. China
zhanshan wang@163.com

Abstract. Some sufficient conditions for the globally exponential stabil-
ity of the equilibrium point of neural networks with multiple time varying
delays are developed, and the estimation of the exponential convergence
rate is presented. The obtained criteria are dependent on time delay, and
consist of all the information on the neural networks. The effects of time
delay and number of connection matrices of the neural networks on the
exponential convergence rate are analyzed, which can give a clear insight
into the relation between the exponential convergence rate and the pa-
rameters of the neural networks. Two numerical examples are used to
demonstrate the effectiveness of the obtained the results.

1 Introduction

In recent years, stability of different classes of neural networks with time delay,
such as Hopfield neural networks, cellular networks, bi-directional associative
networks, has been extensively studied and various stability conditions have
been obtained for these models of neural networks [1-34]. The conditions ob-
tained in those papers establish various types of stability such as complete sta-
bility, asymptotic stability, absolute stability and exponential stability, etc. It
should be noted that the exponential stability property is particularly impor-
tant when the exponential convergence rate is used to determine the speed of
neural computation and the convergence to the equilibrium in associative mem-
ory. Thus, it is important to determine the exponential stability and to estimate
the exponential convergence rate for dynamical neural networks.

In general, there are two important notions concerning stability of time-
delay systems discussed in the current literatures. One is referred to as delay-
independent stability [1,3,9,11,12,13,21,31], the other is delay-dependent stabil-
ity. As pointed out in [2,10] that the delay independent stability criteria may
be overly restrictive when the delays are comparatively small. In many practical
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applications, the time delays in the neural networks are time varying, or only
known to be bounded but nothing else [12,13,25]. Therefore, the study of stability
analysis for time varying neural networks has become more important than that
with constant delays [2,10,12]. References [1,15] studied the delay-independent
stability and [12] studied the delay-dependent stability for single time varying
delayed systems, but those papers only concern with stability property, with-
out providing any information on exponential convergence rate of the system’s
states. References [2,7,8] studied the problem of delay-dependent stability for sin-
gle time varying delayed systems. References [22,23,24] studied the exponential
stability and the estimation of exponential convergence rate for neural networks
without time delay. For the case of multiple time varying delays, to the best of
our knowledge, few results have been reported.

In this paper, we present some results ensuring the globally exponential sta-
bility of delayed neural networks with multiple time varying delays dependent
on time delay based on LMI technique, and analyze the effects of time delay and
connection matrices on the exponential convergence rate and give an estimate
of the exponential convergence rate.

2 Problem Formulation and Preliminaries

Consider the following neural networks with multiple time varying delays

du(t)

N
" = —u) + Wogw) + 3 Wig(ult —m) +U, (1)

where u(t) = [u1(£), ua(t), ..., un(t)]" is the neuron state vector, A = diag(as, as,
...,ay) is a positive diagonal matrix with positive entries, Wy € R"*" and
W, € R**™ (i = 1,2,...,N) are the connection weight matrix and delayed
connection weight matrices, respectively, 7;(¢) > Odenotes the bounded delay,
7.(t)<1,i=1,2,....N, U = [U,Us,..., Un]T denotes the external constant
input vector, g(u(t)) = [g1(ui(t)), g2 (uz(t)), - - . gn(un(t))]" denotes the neuron
activation function.

Throughout the paper, we need the following notations and preliminaries.

Let BT, B™', Ay (B), A (B) and || B|| = \/A\u (BT B) denote the transpose,
the inverse, the smallest eigenvalue, the largest eigenvalue, and the Euclidean
norm of a square matrix B. Let B > 0(B < 0) denote the positive (negative)
definite symmetric matrix. Let 0 denote a zero matrix or a zero vector with
suitable dimension. Let u* denote a equilibrium point of system (1). Let p; =
max {7;(t), t=0,---,00}, p=max{p;},0<n =1—-7(),i=1,...,N.

Assumption 1. The activation function, g;(u;), satisfies the following condition

0< 9;(€) = g;(¢) <o
£—¢
for arbitrary &, € R, £ # ¢, and for any positive constant o; > 0,5 =1,2,...,n.
Let A = diag(o1,09,...,0,). Obviously, A is a nonsingular matrix.

(2)
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Remark 1. Many popular activation functions satisfy the Assumption 1, for
example, sigmoid functions, arctan(u), linear piecewise function 0.5(|u + 1] —
|u — 1|), and linear function g(u) = u, etc. As can be seen from these functions,
the function under the Assumption 1 may be bounded or unbounded.

Assumption 2. The equilibrium point set of system (1) is a non-empty set
when 7;(¢t) =0,i=1,2,...,N.

Lemma 1. For any two vectors X and Y , any matrix M, any positive definite
matrices (Q with same dimensions, and any two positive constants m, n, the
following inequality holds,

—mXTQX +2nXTMY <n?YTMT(mQ)~'MY. (3)

Lemma 2. Given any real matrices A, B, Q = QT > 0 with appropriate di-
mensions, and any scalar h > 0, the following inequality holds,

ATB + BTA < hATQA+h'BTQ'B. (4)

Lemma 3. For functions g(u) satisfying 0 < g("iig(v) < p, the following in-

equality holds,
u 1
| #spds < (5)
0 2
where u,v € R, u £ v, f(x) =gl +u) — g(u).

Definition 1. Consider the system defined by (1), if there exist positive con-
stants k > 0 and v > 0 such that ||Ju(t) — u*|| < ye % sup ||u(h) —u*|, Vt >
<0<0

0, then the system (1) is exponential stable, where k is called the exponential
convergence rate.

3 Uniqueness of Equilibrium Point

In this section, we will present a sufficient condition to guarantee the uniqueness
of the equilibrium point of system (1).

Theorem 1. For a given positive constant k, if the following inequalities
E1 = 2kP — PA— AP + PW,Qy "Wy P + 2kAD
Nl ok t) prir o110 T
D T OPWQIIWEP <0, (6)

N
Sy= Qo —2DAA™ + DWo + WID +2 Zizl Q;
N 1
+Do . RO pW, QWD < 0, (7)

exist P > 0, @Q; > 0, j = 0,1,..., N, and positive diagonal matrices D =
diag(ds,...,dy), then the system (1) has a unique equilibrium point.
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Proof. We take contradiction method. Suppose that there exist two equilibrium

. T T . .
points u* = [uf, uj, ..., ui] and v* = [v}, v, ..., VL], Le., u* # v, satis-

fying system (1). Then we have

Y Wilgu) - g(v) =o. (8)

Let Z = u* — v*, then Z # 0. Let g(u*) — g(v*) = g(Z + v*) — g(v*) = f(Z), then
f(2) satisfies Assumption 1 and f(0) = 0. Thus, (8) can be converted into the
following form

— Al —0v*) 4+

N
—Az vy Wif(5)=0. (9)
That is to say, Z # 0 is the equilibrium point of the following dynamical system,
dz(t N
= ax+ Y W), (10)

In the following, we will prove that Z # 0 is not the equilibrium point of
system (10).
We choose Lyapunov function as follows,

n Zi(t)
V(2(t) = ertZ(t)TPZ(t) +262kt2‘ 1/ d; f(s)ds. (11)
=J oo
Then the derivative of V(z(t)) along the solution of system (10) is

V(z(t)) < e T (t)(2kP — PA — AP 4 2kAD)z(t)

25T (1) (PWy + PWy - - - + PWy) f(2(t))

2’“ffT( () DAAT f(2(t)) + 262 f (2(8)) (DWo + DWy - -- DWy) f(2(t))
< 2T (t)(2kP — PA — AP 4 2kAD)z(t)

2t T N g2kt 11T
+eM (T (1)) PW,;Q; ' Wl P(t)

=0
N
+ 3 e T () Quf (2(8))

i=0

2¢*M f1(2(6) DAAT f(2(t)) + 2¢*5 f1(2(8) (DWo) f (2(1))

N e2k'ri(t)
FMTEOS, T, DRI D) (1)
N
+ 3 e T () Quf (1)), (12)

=1

where 79(t) = 0 and 79 = 1.
Since n;e~ 2k () < 1, then (12) is equivalent to the following form

. N 2kTi(®)
V(z(t)) < e®*2T(t)(2kP — 2PA + 2kAD + Z}_O c PW;Q; "W P)z(t)

i
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+e2kt fT(z(t))(Qo —2DAA™Y + DWWy + W]'D

2k'r7_ N
Z s DWiQZlWiTD + 2_2 Qi) f(2(t))
= e%t(zT(t)Elz(t) + [T (2(1)Z2f (2(1))). (13)

Thus, V(z(t)) < 0 if z(t) # 0 and f(z(t)) # 0. V(z(t)) = 0 if and only if
z(t) = 0 and f(z(t)) = 0. By Lyapunov theory, Z = 0 is the equilibrium point
of system (10), which is a contradiction with (9). Therefore, system (1) has a
unique equilibrium point if conditions (6) and (7) hold. This completes the proof.

4 Globally Exponential Stability

The transformation z(-) = u(-) — u* changes system (1) into the following form

I(t) = ¢(t)a te [7/)7 0)7

where x(t) = [@1(t), 22(t), ..., 2, (t)]" is the state vector of the system (14),
fil@; () = g;(x;(t) + uj) — g;(uj) with f;(0) =0, j = 1,2,....n. ¢(t) is
a continuous vector-valued function with the maximum norm ||¢||. Obviously,
f(x(t)) satisfies the Assumption 1.

Clearly, the equilibrium point v* is globally exponentially stable for system
(1) if and only if the zero solution of system (14) is globally exponentially stable.

Theorem 2. If the conditions in Theorem 1 are satisfied, then the unique equi-
librium point u* of system (1) is globally exponentially stable. Moreover,

* Z —kt
[lu(t) —u* < \/Am(P) o] e=*, (15)

k

— €

1
where Z = A\ (P) + 201 Am (ATQ; A) + A (D)Anr (A).

Proof. Consider the following Lyapunov-Krasovskii functional

Via(®) = T ()Pl +23 / 2 7 (a(5))Quf (a(5))ds

z%(t)

o2kt Zl 1 / (16)

The time derivative of the functional (16) along the trajectories of system
(14) is obtained as follows
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V(a(t))

= 2ke?* 2T (£) Pa(t) + 2e227 ( +2Z M T (2(1)) Qi f ((t))
—zz (1 — 7(t)) e “)fT( (t —7i(t)Qi f (x(t — 7i(t)))
+4ke2kfz / (s)ds + 2e2F {1 (x(t)) Di(t)

< 2ke?Mi g T( )Pm()+2e2’” T(t)P(—Ax(t) + Wo f (2(1))

+Z ot —7(t +2Z e FT (1)) Qi f (2(1))

= Zizl me”““ ’“))fT(x(t — (1)Qif (w(t — (1))
+2ke® T () ADx(t) + 2e2* {1 (x(t)) D(—Ax(t) + Wo f (z(t))

+ 300 Wil - m()) (17

where we have applied the inequality [ Omi(t) f(s)ds < jo;x2(t) obtained from
Lemma 3.
By Assumption 1, Lemma 2 and Lemma 3, we have from (17)

V(x(t))
< el ()[2kP — PA — AP + PWoQy ' W] P + 2kAD

N
+> ! RO PWQ W Pla(t) + e f7(2(1))[Qo — 2DAA™!

=1 i
DWy+ WOTD n ZN S ODWQIWID +2 3 Q)f(a(0)
02,50 + 700 220} (18)

Thus, if condition (6) and (7) hold, V(x(t)) < 0 if z(t) # 0 and f(z(t)) # 0.
Besides, for the case f(z(t)) = 0 and z(t) # 0, or f(x(t)) = z(t) = 0, we
still have V(z(t)) < 0. V(z(¢)) = 0 if and only if f(z(t)) = z(t) = f(z(t —
7i(t))) = 0. Therefore, we have V(z(t)) < V(x(0)). Furthermore, V(x(t)) >
e X (P) |(t)]|?, and

VGal0) = 0P+ 257 [ e
+22i_ di/

<P 912 237 | Aur(AT Qi) ] / e ds

A (D)Aur () [l
—2k-1;(0)

Py AT Qi) LT T (D)4 ol
(19)
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then we have

Z —kt
el < ¢ gy el (20)

On the other hand, V(x(t)) is radically unbounded, that is V(z(t)) — oo
as ||z(t)|| — oo. Thus, by Lyapunov theory and Definition 1, it follows that the
origin of (14) is globally exponentially stable, i.e., the unique equilibrium point
u* of system (1) is globally exponentially stable. This completes the proof.

Because of the complexity of time varying delay, it is difficult to solve the
inequality (6) and (7) for a given constant k . Therefore, in order to check the
applicability of the results conveniently, we have the following corollary.

Corollary 1. For a given positive constant k , if the following inequalities
Z3= 2kP — PA— AP + PW,Q,'W{ P + 2kAD
Nl ok, 1y T
+Zi:1 e P PW;Q WP <0, (21)

N
Z1= Qo—2DAA™' + DWy+ W{ D +2 ZH @i
N 1
>0 DWQT WD <, (22)
1= 771

exist P > 0, Q; > 0, j = 0,1,..., N, and positive diagonal matrices D =
diag(ds,...,d,), then the system (1) has a unique equilibrium point and it is
globally exponentially stable.

In what follows, Theorem 2 will be particularized for the case of constant
time delay.

Theorem 3. In the case of 7;(t) = 7; = constant, i = 1,..., N, if for a given
positive constant k, there exist P > 0, Q; > 0, j = 0,1,..., N, and positive
diagonal matrices D = diag(ds, ..., d,), such that

= = 2kP7PA7AP+PWOQ51WOTP+ZJ_i1 27 pW,Q- W P42k AD < 0,

. (23)

6 = Qo—2DAA '+ DWo+W T D+ZJ,V_1 T DWQT W D42 ZN_I Q: <0,

- @

then the system (1) has a unique equilibrium point and it is globally exponen-
tially stable.

[1]

In the case of constant delay, we will discuss the relation between A and k.
For simplicity, we assume A = I and P = Q; = D = ol satisfying (23) and (24),
a > 0 is a constant, and let \; = A\ps(W; W), i =0,1,..., N. Then (23) can be
expressed as

N
2kI—2AI+ozZ_7O 2T\ T +2kT < 0,01 2k~+0.50(N +1)e?? Apax < Am(A),
(25)
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where Apax = max {\;}. (25) restricts k, p, N,A and W; in an inequality, from
which we can see that for fixed A and p, with the number of delay interconnec-
tion term N increasing, the exponential convergence rate k decreases. Similarly,
for fixed A and N, the increase of time delay will decrease the exponential con-
vergence rate k.

A more conservative estimate of exponential convergence rate may be ob-
tained from (25), i.e.,

O7 = 2kI — 2A+2kI < 0,0r k < 0.5\, (A). (26)

from which we can also conclude that the larger the smallest eigenvalue of A is,
the greater the exponential convergence rate k is.

To estimate the exponential convergence rate k, we must know the upper
bound of time delay 7;(¢). In this case, we may solve the following optimization

problem
max(k) (27)
s.t. Corollary 1 is satisfied, p; is fixed

The solution of (27) determines the maximum exponential convergence rate k <
k*, which is useful in real-time optimization and neural computation. Note that
this is a quasi-convex optimization problem.

5 Numerical Examples

Example 1. Consider the following delayed neural network
() = —Ax(t) + Wog(x(t)) + Wig(z(t — 1)) + U, (28)
where g(z(t)) = 0.5(|z(t) + 1| — |z(t) — 1]),

50 2 -1 3 1 1
A_{o 9}’ WO_[—Q 3}’ Wl_{0.5 2]’ U‘[z]'

In this case, the results in [1,29] and Theorem 1-2 in [2] cannot be able to
ensure the stability. Take 71 = 0.2, the maximum exponential convergence rate
is k < 0.83 from (27). When k = 0.8, the parameters in Theorem 3 are

p_ 0.4641 0.0219 D 1.3923 0
~10.0219 0.2518 |’ a 0 0.7576 |’

Qo = 1.6975 -0.2231 0, = 2.6343 1.2420
071 -0.2231 2.4865 |’ V7 1.2420 22424 |

The unique equilibrium point is (1.2000, 0.1250).

. 9 0 2(1 — 705
Ezample 2. Consider the system (28) except A = [O 9} ,T(t) = 1+ o050
It is easy to observe that py = 2, ;3 = 1 — 71(¢t) = 0.5. In this case, Corollary
1 holds for appropriate exponential convergence rate, and the estimate of ex-
ponential convergence rate is k < 0.681. As comparison, the Theorem 3 in [2]

can estimate the maximum exponential convergence rate k& < 0.2. The unique
equilibrium point is (0.2435,0.4075).
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6 Conclusions

In this paper, globally exponential stability dependent on time delay and esti-
mation of exponential convergence rate for neural networks with multiple time
varying delays are investigated. The obtained criteria are computationally effi-
cient than those based on matrix measure and algebraic inequality techniques. In
addition, compared with the results based on M-matrix theory and matrix norm,
the stability conditions contain all the information on the connection matrix of
neural networks, therefore, the differences between excitatory and inhibitory
effects on the neural networks have been eliminated. Moreover, the effects of
parameters in the delayed neural networks on the exponential convergence rate
are analyzed. Two numerical examples are presented to illustrate the validity of
the obtained results.

Acknowledgement. This work was supported by the National Natural Science
Foundation of China under grant 60274017 and 60325311.
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Abstract. The k-nearest neighbor rule is one of the most attractive
pattern classification algorithms. In practice, the value of k is usually
determined by the cross-validation method. In this work, we propose a
new method that locally determines the number of nearest neighbors
based on the concept of statistical confidence. We define the confidence
associated with decisions that are made by the majority rule from a finite
number of observations and use it as a criterion to determine the number
of nearest neighbors needed. The new algorithm is tested on several real-
world datasets and yields results comparable to those obtained by the k-
nearest neighbor rule. In contrast to the k-nearest neighbor rule that uses
a fixed number of nearest neighbors throughout the feature space, our
method locally adjusts the number of neighbors until a satisfactory level
of confidence is reached. In addition, the statistical confidence provides
a natural way to balance the trade-off between the reject rate and the
error rate by excluding patterns that have low confidence levels.

1 Introduction

In a typical non-parametric classification problem, one is given a set of n obser-
vations D, = {(X1,Y1),...,(X,,Yn)}, where X; are the feature vectors and
Y; are the corresponding class labels and (X;,Y;) are assumed to be i.i.d. from
some unknown distribution P of (X,Y) on R? x {wi,...,wy}. The goal is to
design a function ¢, : R — {wy,...,wy} that maps a feature vector X to
its desired class from {ws,...,wpr}. The performance of a classifier ¢,, can be
measured by the probability of error, defined as

L(¢n) = P{(X,Y) : u(X) #Y} . (1)

If the underlying distribution is known, the optimal decision rule for minimizing
the probability of error is the Bayes decision rule [1]:

(X)=arg _max  P(V]X) . 2)

Wisee,WM }
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One of the most attractive classification algorithms is the nearest neighbor
rule, first proposed by Fix and Hodges in 1951 [2]. It classifies an unseen pattern
X into the class of its nearest neighbor in the training data. Geometrically, each
labeled observation in the training dataset serves as a prototype to represent all
the points in its Voronoi cell.

It can be shown that at any given point X the probability that its nearest
neighbor X’ belongs to class w; converges to the corresponding a posteriori
probability P(w;|X) as the number of reference observations goes to infinity, i.e.,
P(w;|X) = limy, 00 P(w;|X’). Furthermore, it was shown in [3,4] that under
certain continuity conditions on the underlying distributions, the asymptotic
probability of error Ly of the nearest neighbor rule is bounded by

M
M—-1

where L* is the optimal Bayes probability of error. Therefore, the nearest neigh-
bor rule, despite its extreme simplicity, is asymptotically optimal when the
classes do not overlap. However, when the classes do overlap, the nearest neigh-
bor rule is suboptimal. In these situations, the problem occurs at overlapping
regions where P(w;|X) > 0 for more than one class w;. In those regions, the
nearest neighbor rule deviates from the Bayes decision rule by classifying X
into class w; with probability P(w;|X) instead of assigning X to the majority
class with probability one.

In principle, this shortcoming can be overcome by a natural extension, the k-
nearest neighbor rule. As the name suggests, this rule classifies X by assigning it
to the class that appears most frequently among its k£ nearest neighbors. Indeed,
as shown by Stone and Devroye in [5,6], the k-nearest neighbor rule is universally
consistent provided that the speed of k approaching n is properly controlled, i.e.,
k — oo and k/n — 0 as n — oo. However, choosing an optimal value k in a
practical application is always a problem, due to the fact that only a finite
amount of training data is available. This problem is known as the bias/variance
dilemma in the statistical learning community [7]. In practice, one usually uses
methods such as cross-validation to pick the best value for k.

In this work, we address the problem of neighborhood size selection. In the
k-nearest neighbor rule, the value of k, once determined by minimizing the es-
timated probability of error through cross-validation, is the same for all query
points in the space. However, there is no a priori reason to believe that the opti-
mal value of £ has to be the same for different query points. In general, it might
be advantageous to have the value of k determined locally. The question is: what
criterion should be used to determine the optimal value of k?

In this paper, we propose an approach to neighborhood size selection based
on the concept of statistical confidence. The approach stems from the following
observations. When a decision is made from a finite number of observations, there
is always a certain non-zero probability that the decision is wrong. Therefore,
it is desirable to know what the probability of error is when making a decision
and to keep this probability of error under control. For example, in many appli-
cations, such as in medical diagnosis, the confidence with which a system makes

L* < Lnn < L*(2-— L), (3)
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a decision is of crucial importance. Similarly, in situations where not every class
has the same importance, one may require different levels of confidence for deci-
sions regarding different classes. Instead of using a fixed value of k£ throughout
the feature space, in such applications, it is more natural to fix the confidence
level. Based on these observations, we propose a method that locally adjusts the
number of nearest neighbors until a satisfactory level of confidence is reached.

This paper is organized as follows. In section 2 we define the probability of
error for decisions made by the majority rule based on a finite number of ob-
servations, and show that the probability of error is bounded by a decreasing
function of a confidence measure. We then define the statistical confidence as the
complement of the probability of error and use it as a criterion for determining
the neighborhood size in the k-nearest neighbor rule. This leads to a new algo-
rithm, which we call the confident-nearest neighbor rule. In section 3 we test the
new algorithm on several real-world datasets and compare it with the original
k-nearest neighbor rule. Concluding remarks are given in section 4.

2 Probability of Error and Statistical Confidence

One of the main reasons for the success of the k-nearest neighbor rule is the
fact that for an arbitrary query point X, the class labels Y’ of its k nearest
neighbors can be treated as approximately distributed from the desired a pos-
teriori probability P(Y'|X). Therefore, the empirical frequency with which each
class w; appears within the neighborhood provides an estimate of the a poste-
riori probability P(w;|X). The k-nearest neighbor rule can thus be viewed as
an empirical Bayes decision rule based on the estimate of P(Y|X) from the k
nearest neighbors. There are two sources of error in this procedure. One results
from whether or not the class labels Y’ of the neighbors can be approximated
as 1.i.d. as Y. The other source of error is caused by the fact that, even if Y’
can be approximated as i.i.d. as Y, there is still a probability that the empiri-
cal majority class differs from the true majority class based on the underlying
distribution. In this section, we will address the second issue.

2.1 Probability of Error and Confidence Measure

For simplicity we consider a two-class classification problem. Let R € 2 be
a neighborhood of X in the feature space, and p = P(Y = w1|X) be the
a posteriori probability of the class being w; given the observation X. Let
X1,...,X, € R be n iid. random variables and assume that they have the
same a posteriori probability as X. The n corresponding labels Yi,...,Y, can
then be treated as i.i.d. from the Bernoulli distribution Bern(p). According to
the binomial law, the probability that n; of them belongs to class wy (therefore
ny = n — ny belongs to wsy) is (gl)pm(l — p)"2. Therefore, the probability of
observing  more samples from class wo than from class wy is given by:

an‘jm <§1>pm (1 pm (4)

TL1:O
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We define the probability

[((n—0)/2] n
Perr(p; 5; n) = Z (nl>pnl (1 - p)nfnl (5)

ni =0

under the condition that p € (0.5, 1] to be the probability of error for the follow-
ing reasons: since p € (0.5, 1], according to the Bayes decision rule, X should be
associated with the true majority class wy; however, if no —n; =46 > 0, X will
be classified into class wo by the majority rule, therefore leading to an error. In
other words, given p € (0.5, 1], Perr(p; 6;n) is defined to be the probability of ob-
serving 0 more samples from class we than w;. Using simple symmetry argument,
it is easy to check that P...(1 — p;d;n) is the probability that one will observe
d more samples from class wy than from we while 1 —p € (0.5, 1]. Regardless of
whether p € (0.5,1] or 1 — p € (0.5,1], if we let p = max{p, 1 — p}, Perr(p; J; n)
is the probability that one observes 6 more samples from the true minority class
than from the true majority class.

In practice, p is unknown; hence p is also unknown. Fortunately, it is easy
to show that P..-(p;0;n) is a decreasing function of p, which means that it is
bounded above by

1 [z, 5—1

Perr((sy n)maz - on Z (TL1> ~ ¢(_ ) ’ (6)
n1=0

where @ is the cumulative distribution function (CDF) of a standard Gaussian

random variable. The probability of error P.,.(p;d;n) can also be bounded by

applying concentration of measure inequalities.

Let us consider the relationship between Peyp(0;7)mae and (6 —1)/y/n. Ob-
viously, Perr(0;1)may is decreasing in (§ — 1)/4/n because as a cumulative dis-
tribution function, @(x) is an increasing function of x. Therefore, the larger
(6 —1)/+/n, the smaller the probability of error. Equation (6) also quantitatively
tells us how large (6 — 1)/y/n should be in order to keep the probability of error
under some preset value. For n < 200, we enumerate all possible values of § and
n and calculate (6 — 1)/y/n and the corresponding value of Py (9;7)mas- The
result is shown in Fig. 1.

Since Pe,.(p;J;n) is the probability that the observation is at odds with the
true state of nature, 1 — P.,..(p; 0; n) is the probability that the observation agrees
with the true state of nature. We therefore define

CFD(p;0;n) =1 — Perr(p; ;1) (7)
to be the confidence (CFD) level. From Eq. (6), it follows that the confidence
level is bounded below by
0—1

. 8
) ®)

The larger (6 — 1)/4/n, the higher the confidence level. For this reason and for
convenience, we will call (§ — 1)/+/n the confidence measure.

CFD(6;n) =1 — Pepr(0;n)max = erf(
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Probability of error

5 10 15
Confidence measure

Fig. 1. Probability of error as a function of the confidence measure

An alternative way to define the probability of error for a decision that is
made by the majority rule based on a finite number of observations is to use the
Beta prior model for the binomial distribution. Using the same argument, the
probability of error can be defined as

1 n-s n48
. o f0_5p 2 (1 _p) ;r dp
Perr(67n) - 1 n-¢ n46 ’ (9)
Jop 2 (1—p) 2 dp

which gives the probability that the actual majority class of the posterior prob-
ability distribution differs from the one that is concluded empirically from the
majority rule based on n and §. Likewise, the confidence level can be defined as

0.5 n—3a n+§
Jo p 2 (I=p) 2 dp

1 n—3a n+§ .
Jop 2 (I—p) =2 dp
Numerically, these two different definitions give roughly the same results. More
precisely, compared to the second definition, the first definition of the probability
of error can be better approximated as a function of the confidence measure,
which is easily computable. In addition, for the same values of n and §, the first
definition also gives a higher probability of error value because it is based on the
worst case consideration.

CFD(6;n) =1— Pepr(d;n) = (10)

2.2 Determining the Number of Neighbors in the k-Nearest
Neighbor Rule

In the k-nearest neighbor rule, the only advantage of choosing a large k value is
to reduce the variance of the a posteriori probability estimate. Similarly, as we
have shown, a large k£ value can potentially lead to a large confidence measure,
and therefore to a small probability of error. Note that at each query point, the
probability of error can be easily computed for different numbers of neighbors.
Therefore, one can choose to increase the number of nearest neighbors k until a
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preset probability of error threshold is achieved. For instance, if the threshold of
the probability of error is set to 5% (which corresponds to 95% confidence level),
one can see from Fig. 1 that there is no need to increase the number of neighbors
once the confidence measure exceeds 3.0. Therefore, the probability of error, or
equivalently the confidence level, provides a mechanism to locally determine the
number of neighbors needed. We will call the modified version of the k-nearest
neighbor rule the confident-nearest neighbor rule.

The main difference between the confident-nearest neighbor rule and the
original k-nearest neighbor rule lies in that the actual value of k at each query
point varies, depending on when the preset confidence threshold is reached, while
in the k-nearest neighbor rule, the value of k, once set, is the same for all query
points in the feature space. According to the first definition of the confidence
level (see Eq. (8)), the confident-nearest neighbor rule reduces to the 1-nearest
neighbor rule when the confidence level is set to 50%.

It should be noted that the confident-nearest neighbor rule differs signif-
icantly from previous methods that have been developed for adapting neigh-
borhoods in the k-NN rule, such as the flexible metric method by Friedman [§],
the discriminant adaptive method by Hastie and Hibshirani [9], and the adaptive
metric method by Domeniconi et. al [10]. Although differing in their approaches,
the common idea underlying these methods is that they estimate feature rele-
vance locally at each query point and compute a weighted metric for measuring
the distance between a query point and the training data. These adaptive metric
methods improve the original k-NN rule because they are capable of producing
local neighborhoods in which the a posteriori probabilities are approximately
constant. However, none of these methods adapts the number of neighbors lo-
cally. In fact, these methods fix the number of neighbors in advance, as in the
k-nearest neighbor rule, which is in direct contrast with our method that locally
determines the number of neighbors. Furthermore, these methods usually need
to introduce more model parameters, which are usually optimized along with the
value of k through cross-validation, and therefore leading to high computational
complexity. It is worth pointing out that our proposed method and previous
adaptive metric methods are complementary in that, the adaptive metric meth-
ods are able to produce neighborhoods in which the a posteriori probabilities are
approximately constant. This constant a posteriori probability property is a key
assumption in our probability of error analysis. In this paper, we focus on locally
adapting the number of neighbors while using the standard Euclidean metric.

3 Results and Discussion

In this section, we present experimental results of our algorithm on several real-
world datasets from the UCI Machine Learning Repository [11]. We used the
leave-one-out method to estimate the classification error of the confident-nearest
neighbor (confident-NN) rule and the k-nearest neighbor (k-NN) rule. In Table
1, for each dataset, we report the lowest error rate achieved by the k-NN rule,
together with the corresponding k value in parentheses, and the lowest error rate
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obtained by the confident-NN rule, together with the corresponding confidence
level and the average nearest neighbor number k in parentheses.

Table 1. Comparison of results

Dataset k-NN (k) Confident-NN (CFD;k)
BreastCancer 2.49 (5) 2.78 (75%;2.1)
Tonosphere 13.39 (1) 13.39 (70%;1.0)
Liver 30.43 (9) 31.30 (90%;19.9)
Pima 23.96 (19) 24.61 (90%;20.0)
Sonar 17.31 (1) 16.83 (75%;2.5)

As we can see, in terms of the overall classification accuracy, the confident-
NN rule and the k-NN rule are comparable. However, there are several important
points we would like to make. First, in many applications, the overall error is not
the only important goal. For instance, in medical diagnosis, in addition to the
overall error rate, the statistical confidence with which a decision is made is criti-
cally important. The confident-NN rule, unlike the k-NN rule, locally adapts the
number of nearest neighbors until the desired statistical confidence requirement
is met. Second, in many applications, the cost of misclassifying different classes
might be significantly different. For example, compared to the consequence of
a false alarm, it is more costly to fail to detect a cancer when a patient actu-
ally has one. Therefore, the acceptable confidence level for a non-cancer decision
should be much higher than for a cancer decision. This consideration can be
easily taken into account in the confident-NN rule by setting a higher statistical
confidence level for a non-cancer decision, while the k-NN rule, which is based
on minimizing the overall error rate, does not address this issue naturally.

Using the data from the Wisconsin Breast Cancer dataset, Figure 2 illustrates
how the error rate of the confident-nearest neighbor rule changes as a function of
the confidence level. As can be seen, the error rate does not necessarily decrease
as the confidence level increases. For example, the lowest error rate of 2.78% is
achieved at confidence level 75% — 80%.

The number of nearest neighbors used in the confident-NN rule varies from
point to point, as manifested in the non-integer values of the average nearest
neighbor number % in Table 1. Figure 3 shows the average number k at different
confidence levels. As one can see, more neighbors are used as one increases the
confidence level. However, combining Figs. 2 and 3, it is clear that more neighbors
do not necessarily lead to lower error rates. This is because as one increases the
confidence level requirement, more and more neighbors are needed in order to
satisfy the higher confidence level requirement. However, since the number of
training data is limited, it is not always possible to find a sufficient number of
training samples in the close neighborhood of the query points. Therefore, in
order to satisfy a high confidence requirement, one has to include points that
are farther away from the query points and these points may have very different
a posteriori probability distributions.
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Fig. 3. Average number of neighbors used at different confidence levels

In the most general pattern classification scenario, classes may overlap in
some regions of the feature space. Without knowledge of the underlying distri-
bution, it is hard to tell whether a training point is actually misclassified by
a classifier, or whether the data point itself is not labeled as the true majority
class. We use the k-NN rule to illustrate this point. We fix the value of k to 5 and
compute the mean confidence level of the misclassified data and the correctly
classified data respectively. The results are reported in Table 2. The numbers in
parentheses are the corresponding standard deviations. As one can see, on all
datasets that have been tested, the misclassified data have significantly lower
confidence levels than the correctly classified data. Since the number of near-
est neighbors used is the same, this is a clear indication that the misclassified
data are lying in the regions where two different classes overlap and attempts
to further reduce the classification error may run into the risk of overfitting the
training data.
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Table 2. Comparison of mean confidence levels of the misclassified and correctly clas-
sified data

Dataset Misclassified Correctly Classified
BreastCancer 83.55 (3.44) 97.07 (0.21)
Ionosphere 85.33 (1.76) 95.04 (0.50)
Liver 76.68 (1.21) 81.17 (0.84)
Pima 79.45 (0.91) 86.13 (0.58)
Sonar 82.16 (2.17) 89.83 (0.96)

Table 3. Trade-off between the reject rate and error rate

Confidence Level (%) Reject Rate Error Rate

50 0 2.49
60 0 2.49
70 3.37 1.67
80 3.37 1.67
90 9.81 0.81
95 9.81 0.81

In many applications, misclassifications are costly. An important result of this
work is the realization that for a given dataset and a given level of confidence,
there is always a limit in reducing the error rate. Therefore, instead of making
decisions regardless of the confidence level, a better alternative would be to reject
patterns with low confidence levels and make a decision only when confidence is
high. Since the misclassified data tend to have lower confidence levels than the
correctly classified data, rejecting patterns with low confidence levels will lead
to a reduction in the error rate on the remaining data. This implies that further
reduction of the overall error rate, while keeping the same confidence level in
making decisions, can be achieved, but at the expense of reducing the size of the
region over which decisions will be made. We illustrate this point on the Breast
Cancer dataset, where the lowest error rate, using the k-nearest neighbor rule, is
achieved when k is set to 5 (see Table 1). In order to assure that every decision
in the k-nearest neighbor rule is made with acceptable confidence, we rejected
the patterns whose confidence levels from their 5 nearest neighbors were below
a specific confidence level. The reject rate and the error rate on the remaining
data for a range of different confidence levels are illustrated in Table 3. As can
be easily seen, the reject rate increases monotonically with the confidence level,
whereas the error rate on the remaining data is decreasing. At the 95% confidence
level, a recognition accuracy of 99% is achieved with a reject rate less than 10%.

4 Conclusion

In this paper, we presented a new method that locally determines the number of
nearest neighbors based on the concept of statistical confidence. We introduced
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two different definitions of the probability of error of decisions made by the ma-
jority rule from a finite number of observations, and showed that the probability
of error is bounded by a rapidly decreasing function of its confidence measure.
The statistical confidence is defined to be the complement of the probability of
error, and it is used as a criterion to determine the number of neighbors needed.

We tested the confident-nearest neighbor rule on several real-world datasets
and showed that it is comparable to the k-nearest neighbor rule. In contrast
to the k-nearest neighbor rule, which uses a fixed number of nearest neighbors
over the whole feature space, our method locally adjusts the number of nearest
neighbors until a satisfactory level of confidence is reached. In addition, the
statistical confidence provides a natural way to balance the trade-off between
the reject rate and the error rate by excluding patterns that have low confidence
levels. We believe that the statistical confidence can be of great importance in
applications where the confidence with which a decision is made is equally or
more important than the overall error rate.
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Abstract. The fuzzy self-organizing map neural network using kernel principal
component analysis is presented and a hybrid-learning algorithm (KPCA-
FSOM) divided into two stages is proposed to train this network. The first
stage, the KPCA algorithm is applied to extract the features of nonlinear data.
The second stage, combining both the fuzzy theory and locally-weight
distortion index to extend SOM basic algorithm, the fuzzy SOM algorithm is
presented to train the SOM network with features gained. A real life application
of KPCA-FSOM algorithm in classifying data of acrylonitrile reactor is
provided. The experimental results show this algorithm can obtain better
clustering and network after training can more effectively monitor yields.

1 Introduction

The SOM is an unsupervised learning neural network [1]. It provides a mapping from
a high-dimensional input data space into the lower dimensional output map, usually a
one- or two-dimensional map [2]. As a result of this process, SOM is widely used for
the visualization of high-dimensional data. Moreover, a distinguishing feature of the
SOM is that it preserves the topology of the input data from the high-dimensional
input space onto the output map in such a way that relative distance between input
data are more or less preserved [3]. The input data points, located close to each other
in the input space, are mapped to the nearby neuron on the output map [4]. The SOM
visualization methods are versatile tools for data exploration. They are widely used in
data mining as a tool for exploration and analysis of large amounts of data, to
discover meaningful information from the data [5].

There are many research efforts to enhance SOMs for visualization and cluster
analysis. Some methods focus on how to visualize neurons clearly and classify data
[6]. Others concentrate on better topology preservation. Most of the methods
enhancing topology preservation use the squared-norm to measure similarity between
weight values and data points [7]. So, they can only be effective in clustering
‘spherical’ clusters [8]. To cluster more general dataset, Wu and Yang (2002)
proposes an algorithm by replacing the squared-norm with other similarity measures.
A recent development is to use kernel method to construct the kernel version of the
SOM (called KSOM training algorithm) [9]. A common ground of these algorithms is
that clustering is performed in the transformed feature space after the nonlinear data

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 81-90, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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transformation. However, kernel method projects data into the feature space of which
the dimensions is higher than those of original input space. So, computational
complexity is increased. In this paper, kernel principal component analysis (KPCA)
instead of kernel method is introduced to deal with the problem.

The basic SOM training algorithm is simply presented as an acceptable heuristic,
but one would naturally require more substantial support. So, Kohonen (1995) derives
what we term here basic SOM algorithm using the Robbins and Monro (1951) method
of stochastic approximation. This general approach involves use of the estimated
weight values at each iteration to provide an approximation to true gradient of the
distortion index that is defined in Eq. (4)[5]. Such a result is immediately re-assuring,
in that the algorithm is no longer based merely on a plausible heuristic, and can be
established, albeit as an approximation, according to certain general principles.
However, several points still need to be noted. First, the fact is that the basic
algorithm is derived only by a method of approximation. Second, the algorithm
belongs to hard partition method. For dealing with above two problems, SOM basic
algorithm is modified and extended through using fuzzy theory.

The remainder of this paper is organized as follows. Section 2 describes kernel
principal component analysis (KPCA) algorithms. In Section 3, the self-organizing
map (SOM) using fuzzy theory training (FSOM) algorithm is proposed and one-
quality index is defined. To demonstrate the performance of the proposed algorithm, a
simulated experiment and one real life application on monitoring the yield of
acrylonitrile reactor is conducted and the performance comparison between SOM
algorithm and FSOM algorithm is given in Section 4 and Section 5.At last,
conclusions and discussions are given in Section 6.

2 Kernel Principal Component Analysis (KPCA)

In the paper, KPCA algorithm [10] is introduced mainly for following two points.
First, SOM basic algorithm cannot correctly cluster nonlinear data [11]. Second,
although traditional KSOM algorithm can deal with nonlinear data, this method does
increase computational complexity for the sample after transforming being equal to
the number of samples in dimension. However, KPCA algorithm can make use of
both the advantages of kernel function and characteristics of PCA algorithm so that it
may not only deal with nonlinear data but also make the dimension of data and
complexity of calculation decrease dramatically.

According to the idea of KPCA algorithm, any sample can be transformed using
Equation (1) .

M
Ve =D 0 K (x,x). (1)
i=1

Where M is the number of samples, aik is the i" value of the k" eigenvector of

kernel matrix K , y, is the k™ (k=p---M ) value of the sample after
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transforming, X, is the i" original sample, X is original sample that need to be
transformed, p is the sequence number of the first nonzero eigenvalue by ordering

eigenvalue in accordance with sort ascending .
The dot product of samples in the feature space is defined as below:

K(xi,xj)zd)(xi)TCD(xj). )

Where X;. X; (i, j=1,2---,M ) are random samples of data set.

We use Gaussian’s kernel function, which is defined as:

2
k; = K (x,x,) =exp —Hxl‘_xf‘%jz . ®

From above narration, the basic procedures of KPCA algorithm can be summed up
as following:

(1) Calculate matrix K according to formulation (3).

(2) Calculate the eigenvalues and the eigenvectors of matrix K, and
standardize them.

(3) Calculate the PC (principal component) matrix transformed according to
formulation (1).

(4) Calculate the sum of contribution rates from the first PC to the k " PC,
and then carry out reduction of data.

3 Fuzzy Self-organizing Map (FSOM)

The traditional SOM basic algorithm belongs to a kind of hard partition methods. The
aim of the algorithm is that the sets of objects are strictly grouped into clusters [12].
However, all objects have not strict attributes and both attributes and characters are
always fuzzy. For clustering these objects, soft partition is proper [13].

3.1 Theory Foundation of SOM Basic Algorithm

Professor Kohonen presented theory basis that is defined as Eq (4) for his SOM basic
algorithm in 1995 and 1999.

D=E[p(x)]. @)

M=

p(x)=) h, (t)”x—ij. 5)

~.
X



84 Q.LvandJ.-s. Yu

Where E denotes the expectation operator, X is input vector, w; is nerve cell

weight at coordinate (k,,k, ), h(t) is neighborhood function, ¢(c;,c,) is the

e
coordinate of the winning neuron, M is the number of neuron. The neighborhood
function is defined as below:

Jo.—a,]
25 (1)

h;(r)=exp| - 6)

Where d_ is the position of the winning neuron, d ; is the position of the jth

neuron, O (t ) is the variance of the neighboring neurons at time . & (t ) decreases
with time, in order to control the size of the neighboring neurons at time t.
E I: p (x )] is called locally-weighted distortion index (LWDI) and we can see that

if the neighboring function is erased from the index, the rest of index is the same as
similar as mathematic equation of k-means algorithm. Therefore, SOM network can
be explained using following idea. Set M numbers of cluster centers ( M neurons)
and these centers will be organized like SOM lattice array. According to the main

principal min(E[ p(x):') , these cluster centers are continually updated until a

certain condition can be met. Now, M micro-clusters are formed and then we will

merge the M clusters to gain the final results. In addition, neighboring function has
the most important influence on the visualization of data clustering.

3.2 FSOM Algorithm

Assuming appearance probability of samples to be equal, the LWDI is rewritten to be
the following form:

1 N M
D:N;Z”ijuhcj(t)”xi_wju' (7
a=mxh, (c,—k,c,—k,). (®)
m=2- lT' (€))

Where (chz) is the coordinate of the winning neuron, (kl,kz) is the coordinate
of the jlh neuron, the effect of 71 is as similar as learning parameter of SOM basic

algorithm. The function /1, (C1 —k,c,—k, ) takes the following values.
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h,(0,0)=0. A (1,1)=0, h (1,-1)=0, h (-1,1)=0, A (~1,-1)=0,
h,(1,0)=0, h (0,1)=0, h (0,~1)=0, h (~1,0)=0

and one for all other values of its arguments. This function is introduced mainly for

strengthening visualization and for making the network gain better topology structure.
M

Where N is number of samples and the constrained condition is Zuij =1, To
j=
derive the necessary conditions for the minimization of (7), a lagrangian is

constructed and Eq (7) is modified for existence of derivative w Iz

1 &M M
L= 2y ()] —w,[[ +/1[Zu,.j—1j. (10)

i=l j=1 j=1

oL ' .
and — is calculated respectively.

ow, du,,
At last, weight-updated equation and membership-updated equation is expressed as

below.

— =l
wo=— (11)

hcj (t)Hxi _WjH ) (12)

u =—9 S . (13)
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Because @1 maybe is zero, membership needs to be modified again.
Membership equation after modifying is showed in Eq (13).

3.3 The Basic Process of FSOM Algorithm
Considering the idea of FSOM algorithm, its detail procedures are listed as follows.

Stepl. Initialize network weights. Select number M to be initial network weight
from input vectors.
Step2. Search the winning neuron for input vectors by using Equation (14).

[ (£) =W, ()] = min{| X, (1) =W, (1)]} (14)

Step3. Membership calculation. Calculate all membership u; based on Eq (13).

Step4. Update network weights by using Eq (11).
Step5. If iterative number equal to maximum number, then the algorithm is over.
Otherwise, go to step 2.

3.4 Network Quality

For validating effect of algorithm, one criterion, topographic error, is defined in the

paper.
Definition 1: Topology Error (TE)

u(x,)
TE:—; k . (1
N

Where u(xk) is 1, if the neurons of the smallest and second smallest distance
between input vector X, and the weight vector of the neuron are not adjacent.

Otherwise, U (xk) is zero. The topographic error is used to measure the continuity

mapping. After the training, the map is evaluated for the topology accuracy, in order
to analyze how the map can preserve the topology of the input data. A common
measure that calculates the precision of the mapping is the topographic error over all
input data.

4 Simulated Experiments

To demonstrate the effectiveness of the proposed clustering algorithm, three data sets
are used in our experiments. The first dataset is iris flower one. The iris flower dataset
has been widely used as a benchmark dataset for many classification algorithms due
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to two (iris-versicolor and iris-virginica) of its three (iris-versicolor,iris-virginica and
iris-setosa) classes are not linearly separable. Each cluster includes 50 data with four
dimensions. The second dataset is wine one. The dataset is thirteen-dimensional with
178 data entries positioned into three clusters. The third dataset is Olitos one. It

consists of four clusters having 120 points each in R”.

For clustering above datasets, three steps are performed. First, the features of input
data are extracted using KPCA algorithm. Second, the features are normalized such
that the value of each feature in each dimension lies in [0,1]. Third, 8x8 neural
network is used and using SOM basic algorithm and FSOM algorithm respectively
clusters three datasets. Table 1 shows elevating index and error rates on average in ten
independent runs of two algorithms.

Table 1. The clustering effect and average results of elevating index in three data set

Elevating SOM basic algorithm FSOM algorithm

index Iris data Wine data Olitos data Iris data Wine data Olitos data
set set set set set set

TE 0 04667 0 2809 0 19167 0 02667 0 05056 0 06667

Principal 3 [§ 10 3 6 10

component

Number of 3 3 4 3 3 4

clusters

Error rate 6% 8.74% 20.33% 4.667% 7.68% 14.92%

On an average, the topological errors of the FSOM for the three datasets are
0.02667,0.05056,0.06667, which are smaller than those of the SOM. The average
error rates of the FSOM are 4.667%, 7.68%, and 14.92% respectively. They are
smaller than those of SOM as shown in Table 1. So, we conclude that the FSOM can
obtain better topology mappings and the lower error rates.

5 Practical Application

The fluidized-bed reactor shown in Fig.1 is the most important part of acrylonitrile
equipment and its yield can directly influence the economic benefit of this equipment.
In this section, the data of fluidized-bed reactor will be analyzed by using clustering
technique. The prospective number of cluster is two classes that include optimal class
and bad class. If the parameters of fluidized-bed reactor are set on the basis of the
objects of optimal class, then the yield of reactor will be higher, and the SOM
network after training can monitor fluidized-bed reactor yields.

In the following sector, two algorithms, SOM algorithm and FSOM algorithm, are
used to cluster reactor data. The number of data is n=344; clustering number is 244
and testing number is 100 with 7dimensions.The first step, KPCA algorithm is used to
extract the features of the dataset. The second step, the features of the reactor data are
normalized such that the value of each feature in each dimension lies in [0,1]. The
final step, SOM algorithm and FSOM algorithm is used to analyze the data. Table 2
shows average elevating indexes and other information in twenty runs of two
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algorithms respectively. The best clustering structure using SOM algorithm is shown
in Fig 2. The best clustering structure using FSOM algorithm is shown in Fig 3.

R101

| : T101
E134 E133

Fig. 1. The fluidized-bed reactor

Table 2. The average results of elevating index in data set of fluidized-bed reactor

Elevating index SOM basic algorithm FSOM algorithm
Principal component 1 1
Number of cluster 2 2
TE 0 22515 0 14035

Bast Chistanng Sruciuce
0.9

Fig. 3. Best clustering structure using FSOM algorithm
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The SOM neural network are divided into high yield filed ( 77. 89 80. 95) and low
yield field (75.81 77.89) by synthetically considering clustering results and the
corresponding yield in the Fig 2 and Fig 3.From the clustering results based on the
above division, we will see that the error rate of FSOM algorithm is 5. 9% and that of
SOM algorithm is 10. 56%. Using 100 testing data, the testing results of FSOM
algorithm are better. Therefore, The network using FSOM algorithm can monitor
reactor yields as shown Fig 3 that show better topological structure. The average
cluster centers and the average yields are listed in Table 3.

Table 3. The cluster center and yield of two algorithms

The parameters FSOM algorithm SOM basic algorithm
Optimal cluster Bad cluster center ~ Optimal cluster  Bad cluster center
center center
Pressure( Mpa) 0.7479 0.6813 0.7604 0.7366
Temperature C) 434.0819 429.6533 433.4875 430.2254
Propylene(NM*/-  2569.1 2245 2544.7 2349.2
H)
Air/Propylene 9.4625 7.785 9.4487 8.8897
Ammonia/Propyl-  1.1515 1.1594 1.1687 1.151
ene
Catalyst(KG) 57.795 54.518 56.897 54.4847
Velocity(M/S) 0.6952 0.5267 0.6669 0.6155
Yield (%) 79.0355 77.2379 78.3907 78.0120

The yield corresponding to center of the optimal cluster of FSOM algorithm is
higher than that of SOM algorithm, as shown in Table 3. So, the optimal cluster
center of FSOM algorithm can guide how to adjust reactor parameters. In other
words, if the reactor parameters are set according to this optimal center, then the
reactor yield will be higher.

6 Conclusions

In this paper, distortion index is directly extended through fuzzy theory. So, Network
quality is enhanced and clustering results is better than that of SOM basic algorithm.
However, industry data are always nonlinear. For dealing with nonlinear data, KPCA
algorithm is introduced and it is proper for large data, especially industry data. The
above experiments demonstrate that better clustering results and topological structure
can be obtained by using KPCA-FSOM algorithm. The SOM neural network after
training can be used to monitor reactor yields and cluster centers can guide the
optimization of parameters.

References

1. Kohonen, T.: Self-Organizing Maps. Springer-Verlag New York (1987)
2. Kohonen, T.: The Self-Organizing Map. Neurocomputing. 21(1998) 1-6



90

10.

11.

12.

13.

Q.LvandJ.-s. Yu

Jin, H., Shum, W.H., Leung, K.S.: Expanding Self-Organizing Map for data visulization
and Cluster analysis. Information Sciences. 163 (2004) 157-173

Guha, S., Rastogi, R., Shim, K.: An efficient clustering for large database. Proceedings of
the ACM SIGMOD International Conference on Management of Data. (1998) 73-84
Curry, B., Morgan, P. H.: Evaluating Kohonen’s learning rule: An approach through
genetic algorithms. European Journal of Operational Research. 154 (2004) 191-205
Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map.IEEE Transactions on
Neural Networks. 11(2000) 586-600

Wu, S., Chow, T.W.S.: Clustering of the self-organizing map using a clustering validity
index based on inter-cluster and intra-cluster density. Pattern Recognition. 37 (2004) 175-
188

Su, M.C., Chang, H.T.. A new model of self-organizing neural networks and its
application in data projection. IEEE Transaction on Neural Network. 12 (2001) 153-158
Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge Press (2003)

Jade, A.M., Srikanth, B., Jayaraman, V.K.: Feature extraction and denoising using kernel
PCA. Chemical Engineering Science. 58 (2003) 4441-4448

Chen, S., Zhu, Y.L.: Subpattern-based principal component analysis. Pattern Recognition.
37 (2004) 1081-1083

Kuo, R.T., Chi, S.C., Teng, P.W.: Generalized part family formation through fuzzy self-
organizing feature map neural network. Computers&Industrial Engineering. 40 (2001) 79-
100

Li, S.T., Shue, L.Y.: Data mining to aid policy making in air pollution management.
Expert Systems with Applications. 27 (2004) 331-340



An Evolved Recurrent Neural Network and Its
Application

Chunkai Zhang and Hong Hu

Member, IEEE
Department of Mechanical Engineering and Automation, Harbin Institute of Technology,
Shenzhen Graduate School, Shenzhen, China, 518055
ckzhang@hotmail.com

Abstract. An evolved recurrent neural network is proposed which automates
the design of the network architecture and the connection weights using a new
evolutionary learning algorithm. This new algorithm is based on a cooperative
system of evolutionary algorithm (EA) and particle swarm optimisation (PSO),
and is thus called REAPSO. In REAPSO, the network architecture is adaptively
adjusted by PSO, and then EA is employed to evolve the connection weights
with this network architecture, and this process is alternated until the best neural
network is accepted or the maximum number of generations has been reached.
In addition, the strategy of EAC and ET are proposed to maintain the behavioral
link between a parent and its offspring, which improves the efficiency of evolv-
ing recurrent neural networks. A recurrent neural network is evolved by
REAPSO and applied to the state estimation of the CSTR System. The per-
formance of REAPSO is compared to TDRB, GA, PSO and HGAPSO in these
recurrent networks design problems, demonstrating its superiority.

1 Introduction

Modeling complex dynamic relationships are required in many real world applica-
tions, such as state estimation, pattern recognition, communication and control etc.
One effective approach is the use of recurrent neural network (RNN) [1]. RNN has
self-loops and backward connections in their topologies, and these feedback loops are
used to memorize past information. Therefore, it can be used to deal with dynamic
mapping problems. But the difficulty is that the training algorithm must take into
account temporal as well as spatial dependence of the network weights on the map-
ping error.

Many types of recurrent networks have been proposed, such as back propagation
through time (BPTT) [2], real-time recurrent learning (RTRL) [3], and time-
dependent recurrent back propagation (TDRB) [4]. But all of them have several limi-
tations: 1) a complex set of gradient equations must be derived and implemented, 2) it
is easy to be gets trapped in a local minimum of the error function. One way to over-
come the above problems is to adopt genetic algorithm (GA) or evolutionary algo-
rithm (EA) [5, 6, 7, 8], because GA and EA are stochastic search procedures based on
the mechanics of natural selection, genetics, and evolution, which make them find the
global solution of a given problem. In addition, they use only a simple scalar
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performance measure that does not require or use derivative information. In order to
farther improve the performance of these algorithms, such as avoiding the permuta-
tion problem and the structural / functional mapping problem, hybridization of genetic
algorithm (GA) and evolutionary algorithm (EA) with particle swarm optimization
(PSO), respectively named hybrid PSO+EA and HGAPSO, have been investigated to
evolve the fully connected recurrent neural network [9, 10]. But all of them have
following limitations: 1) the appropriate network architecture must be determined,
and 2) the structure may or may not capable of representing a given dynamic map-
ping. It means that the above problems depend heavily on the expert experience and a
tedious trial-and-error process. There have been many attempts in designing network
architectures automatically, such as various constructive and pruning algorithms [11,
12]. However, “Such structural hill climbing methods are susceptible to becoming
trapped at structure local optima, and the result depends on initial network architec-
tures.” [13]

To overcome all these problems, this paper proposes a new evolutionary learning
algorithm (REAPSO) based on a cooperative system of EA and PSO, which combines
the architectural evolution with weight learning. In REAPSO, the evolution of archi-
tecture and weight learning are alternated, which can avoid a moving target problem
resulted from the simultaneous evolution of both architectures and weights [14]. And
the network architectures are adaptively evolved by PSO, starting from the parent’s
weights instead of randomly initialized weights, so this can preferably solve the prob-
lem of the noisy fitness evaluation that can mislead the evolution. Since PSO pos-
sesses some attractive properties comparing with EA, such as memory, constructive
cooperation between individuals, so no selection and crossover operator exist [15],
which can avoid the permutation problem in the evolution of architectures. In order to
improve the generalization ability, the data sets are partitioned into three sets: training
set, validation set, and testing set. The training set is used to evolve the nodes with a
given network architecture, and the fitness evaluation is equal to the root mean
squared error £ of RNN. But in evolving the architecture of network, the fitness
evaluation is determined through a validation set which does not overlap with the
train set.

The rest of this paper is organised as follows. Section 2 describes the REAPSO
algorithm and the motivations on how to evolve the RNN. Section 2 presents experi-
mental results on REAPSO. The paper is concluded in Section 4.

2 REAPSO Algorithm

2.1 Evolutionary Algorithm (EA)

EA refer to a class of population-based stochastic search algorithms that are devel-
oped from ideas and principles of natural evolution. One important feature of all these
algorithms is their population based search strategy. Individuals in a population com-
pete and exchange information with each other in order to perform certain tasks. A
general framework of EA can be described as following:

1) Initialize the number of individuals in a population, and encode each individual
in term of real problems. Each individual represents a point in the search space;
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2) Evaluate the fitness of each individual. Each individual is decided by an evalu-
ating mechanism to obtain its fitness value;

3) Select parents for reproduction based on their fitness;

4) Apply search operators, such as crossover and/or mutation, to parents to gener-
ate offspring, which form the next generation.

EA are particularly useful for dealing with large complex problems which generate
many local optima, such as training artificial neural networks. They are less likely to
be trapped in local minima than traditional gradient-based search algorithms. They do
not depend on gradient information and thus are quite suitable for problems where
such information is unavailable or very costly to obtain or estimate.

2.2 Particle Swarm Optimization (PSO)

PSO is a population based optimization algorithm that is motivated from the simula-
tion of social behaviour. PSO algorithm possesses some attractive properties such as
memory and constructive cooperation between individuals, so each individual flies in
the search space with a velocity that is dynamically adjusted according to its own
flying experience and its companions’ flying experience. In this paper we propose an
improved PSO algorithm, which is as follows:

1) Initialise positions Pesentx and associated velocity v of all individuals (poten-
tial solutions) in the population randomly in the D dimension space.

2) Evaluate the fitness value of all individuals.

3) Compare the PBESTI] of every individual with its current fitness value. If the
current fitness value is better, assign the current fitness value to PBEST[] and
assign the current coordinates to PBESTx[][d]. Here PBEST(] represents the
best fitness value of the nth individual, PBESTx[][d] represents the dth compo-
nent of an individual.

4) Determine the current best fitness value in the entire population and its coordi-
nates. If the current best fitness value is better than the GBEST, then assign the
current best fitness value to GBEST and assign the current coordinates to
GBESTx[d].

5) Change velocities and positions using the following rules:

V[d]1=W *V[][d]+ C1* rand * (PBESTx[][d ]
— Pesentx[][d])+ C2*rand *
(GBESTx|d]— Pesentx[][d]) (1
Pesentx[][d] = Pesentx[][d ]+ v[][d]
W=W_+W,-W_)[1- %]
where C1=C2=2.0, t and K are the number of current iterations and total gen-
eration. The balance between the global and local search is adjusted through the
parameter W e (W ,W_).

6) Repeat step 2) - 6) until a stop criterion is satisfied or a predefined number of
iteration is completed.
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Because there is not a selection operator in PSO, each individual in an original
population has a corresponding partner in a new population. From the view of the
diversity of population, this property is better than EA, so it can avoid the premature
convergence and stagnation in GA to some extent.

2.3 REAPSO Algorithm

In REAPSO, the evolution of RNN’s architectures and weight learning are alternated.
The major steps of PSOEA can be described as follows:

1) Generate an initial population of M networks.
® The direct encoding scheme is applying to encode the architecture of each
network. The architecture of each network is uniformly generated at random
within certain ranges. In the direct encoding scheme, a 7Xn matrix

C=(c;)

dicates presence or absence of the connection from ith node to jth node.

.xn, Can represent a RNN architecture with n nodes, where C; in-

Here, C; = 1 indicates a connection and C; = O indicates no connection. It

is shown in Fig. 1.

0011 01
001 0 0
00 0 0 01
00 0 0 01
01 0 1
0 0 1 0
[A) (B)
001101 001010 000001 000001 010001 001000

<)

Fig. 1. The direct encoding scheme of a recurrent neural network. (A), (B) and (C) show the
architecture, its connectivity matrix, and its binary string representation, respectively

® The initial weights are uniformly distributed inside a small range.
2) Use the Extended Training (ET) algorithm to train each network in the popula-
tion on the training set, which is as follows:
® Choose a network as a parent network, and then randomly generate N-1 ini-
tial individuals as a population where each individual’s initial weights uni-
formly generated at random within certain ranges, but their network architec-
tures are the same as the parent network architecture. And then the parent
network is added into the population. Here each individual in this population
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is to parameterise a whole group of g nodes in a RNN, this means that every
component of each individual represents a connection weight.

® Employ EA to evolve this population until the best individual found is ac-
cepted or the maximum number of generations has been reached.

® The best individual that survived will join the network architecture evolu-
tion.
3) All survived networks form a new population. Evaluate the fitness values of
every individual in this population. Here the mean squared error value E of
each network on the validation set represents the fitness evaluation of each in-
dividual.
4) If the best network found is accepted or the maximum number of generations
has been reached, stop and go to step 7). Otherwise continue.
5) Employ the PSO to evolve the network architecture of each individual. Here
each individual represents the binary string representation of network architec-
ture.
6) When the network architecture of an individual changes, employ the strategy of
Evolving Added Connection (EAC) to decide how to evolve its connection
weights with the ET algorithm. There are two choice:
® [f some connections need to be added to this network, under the strategy of
EAC, the ET algorithm only evolves the new added connections to explain
as much of the remaining output variance as possible. In this case the cost
function that is minimised at each step of algorithm is the residual sum
squared error that will remain after the addition of the new nodes, and the ex-
isting connections are left unchanged during the search for the best new
added connections. Compared with the existing connections, the added con-
nections will represent or explain the finer details of this mapping that the
entire network is trying to approximate between the inputs and outputs of the
training data. This strategy can decrease the computation time for evolving
the entire network and prevent destruction of the behaviour already learned
by the parent.

® [f some connections need to be deleted from a network, EAC strategy can
remove the connections in the reverse order in which they were originally
added to the network, then the ET algorithm evolves the connection weights
of the entire network, but sometimes a few of jump in fitness from the parent
to the offspring is not avoided.
Then go to Step 3).

7) After the evolutionary process, train the best RNN further with the ET algo-
rithm on the combined training and validation set until it “converges”.

In step 7), the generalisation ability of RNN can be further improved by training the
best RNN with the ET algorithm on the combined training and validation set. The
logic diagram of coevolution between network architecture and weights is shown in
Fig. 2.

After evolving the architecture of networks every time, the strategy of EAC and ET
algorithm are used to optimise the connection weights of nodes with a given network
architecture which has been evolved by PSO. In other words, the purpose of this
process is to evaluate the quality of this given network architecture and maintain the
behavioural link between a parent and its offspring.
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Employ the PSO to evolve the network architec-
ture of each individual

A
The strategy of EAC and ET algorithm are used to optimise
the connection weights of nodes with a given network
architecture which has been evolved by PSO

Fig. 2. The logic diagram of coevolution between network architecture and weights

In ET algorithm, each individual of the population in EA is to parameterise a whole
group of g nodes in RNN, this means that every component of each individual repre-
sents a connection weight. Compared with the encoding scheme that each individual
represents a single node, and then the individuals are bundled together in the groups
of g individuals, this scheme is simple and easily implemented, and does not need a
combinatorial search strategy.

3 Experimental Studies

In order to evaluate the ability of REAPSO in evolving RNN, it was applied to esti-
mate the state of the CSTR system.

3.1 Continuous Stirred Tank Reactor System (CSTR)

Continuous Stirred Tank Reactor System (CSTR) is a chemical reactor system with
typical nonlinear dynamic characteristics.

In fig.3, C,, and C,, are the concentration of product A and B in tank 1 respec-
tively; C, , and C, , are the concentration of product A and B in tank 2 respec-

tively; 7, and T, are the reaction temperature in tank 1 and 2 respectively; F’ is the

flux from tank 1 to tank 2; & is the coefficient of feedback from tank 2 to tank 1. On
the basis of the knowledge of thermodynamics and chemical kinetics, mathematical
model is obtained:

Cy,r = f(Cyy.T,,T,) )
where f is the dynamic nonlinear function, the inputs are C A0 Tl and T2 , the

outputis Cy, .
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Fig. 3. The continuous stirred tank reactor (CSTR)

In order to forecast C B2 in CSTR system, an evolved RNN is selected. The net-
work inputs are C 40> 1, and T,, the output is C 5.2 - The number of hidden nodes

is 30. During training, the discrete-time step Ar = 0.2 is used, the root mean square

error (RMSE) in time interval (Z,,%,]=(0,100] is calculated by
N_ 500

1 2N\1/2
RMSE = (3 (v.(k)=y,,(k))") 3)

i=1 k=1
where y, (k) is the desired target value at kth time step, and y; (k) is the output of
network at the same time, here N=1. And the fitness value is defined to be

1/ RMSE .

3.2 Simulation

To demonstrate the superiority of REAPSO, the performance of REAPSO is com-
pared with TDBR, GA, PSO and HGAPSO.

We collected about 500 sets of sample data of C A.0° Tl s T2 and C B2 - The sam-

ple data from the site often accompany random measurement noise and gross error,
and must be processed before they are employed to train the network. For these sets
of sample data, the first 250 sets of sample data were used for training set, and the
following 150 sets of sample data for the validation set, and the final 100 examples
for the testing set.

In REAPSO, the population size is 200, C1=C2=2.0, (W,,W_)=(0,1), and
K =300. After 300 epochs off-line learning, the best and averaged RMSEs for the
50 runs for C .o in the tested 100 date sets are listed in Table 1. Fig. 5 shows the

desired target values and estimation values of Cp , .
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Fig. 4. The desired target values and estimation values of C B.2

To show the effectiveness and efficiency of REAPSO, TDRB, GA, PSO, and
HGAPSO are applied to the fully connected RNN for the same problem of the state
estimation of CSTR system.

In TDRB, the learning constant 7} is set to 0.3, the iteration is 10000, and the best

training result is listed in Table 1.

Table 1. Performance comparisons for different methods of RNN design for the state estima-
tion for CSTR system

GA
TDRB (Pc=0.4) PSO HGAPSO  REAPSO
RMSE(Ave) - 0.2539 0.1658 0.1083 0.0862
RMSE(Best) 0.0258 0.2240 0.0253 0.0216 0.0127

In GA, the population size is 200, and the parents for crossover are selected from
the whole population instead of from only the elites, and the tournament selection is
used. The elite strategy is used, where the best individual of each generation is copied
into the succeeding generation. The crossover probability P, is 0.4, the mutation prob-
ability P, is 0.1, and the evolution is processed for 1200 generations. The results after
50 runs are listed in Table 1.

In PSO, the population size is 200, the parameters C1=C2=2.0 ,
W,,W_)=(0,1), K =1200. The results after 50 runs are listed in Table 1.

In HGAPSO, the population size and initial individuals are the same as those used
in GA and PSO. The parameters of Pc, Pm, C1, C2, W, and W_ are the same as

those used in GA and PSO, and the evolution is processed for 1200 generations. The
best and averaged RMSEs for the 50 runs are listed in Table 1.

From the simulation results, it is illustrated that both the averaged and best RMSEs
of REAPSO and HGAPSO are obviously smaller than those of GA, PSO and TDRB.
Although the result of REAPSO is little better than those of HGAPSO, the evolution
generation of REAPSO is smaller than those of HGAPSO, and REAPSO possesses
good generalisation ability.
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4 Conclusion

This paper describes a cooperative system named REAPSO - a hybrid of EA and
PSO, which combines the architectural evolution with weight learning. It means that
PSO constructs dynamic architectures without requiring any software redesign, then
EA is employed to evolve the network nodes with this architecture, and this process is
automatically alternated. It can effectively alleviate the noisy fitness evaluation prob-
lem and the moving target problem. And no selection and crossover operator exist in
PSO, which can avoid the permutation problem in the evolution of architectures. In
addition of these, ET algorithm and EAC strategy, can maintain a closer behavioural
link between the parents and their offspring, which improves the efficiency of evolv-
ing RNN.

REAPSO has been tested in modeling the state estimation of the CSTR system. To
show the effectiveness and efficiency of REAPSO, the algorithms of TDRB, GA,
PSO, and HGAPSO applied to the fully connected RNN is used to the same problem.
The results show that REAPSO is able to evolve both the architecture and weights of
RNN, and the RNN evolved by REAPSO has good accuracy and generalisation
ability.
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Abstract. Locally Linear Embedding (LLE) is an efficient nonlinear
algorithm for mapping high-dimensional data to a low-dimensional ob-
served space. However, the algorithm is sensitive to several parameters
that should be set artificially, and the resulting maps may be invalid in
case of noises. In this paper, the original LLE algorithm is improved by
introducing the self-organizing features of a novel SOM model we pro-
posed recently called DGSOM to overcome these shortages. In the im-
proved algorithm, nearest neighbors are selected automatically according
to the topology connections derived from DGSOM. The proposed algo-
rithm can also estimate the intrinsic dimensionality of the manifold and
eliminate noises simultaneously. All these advantages are illustrated with
abundant experiments and simulations.

1 Introduction

In most machine learning problems, dimensionality reduction is an important
and necessary preprocessing step to cope with high-dimensional data set, such
as face images with varying pose and expression changes [1]. The purpose of
dimensionality reduction is to project high-dimensional data to a lower dimen-
sional space while discovering compact representations of high-dimensional data.
Many methods have been presented to cope with high dimensionality of data
sets and pattern recognition, including geometric preservation, neural network
and genetic algorithms [2], [3], [4], [5]. Two traditional methods of dimension-
ality reduction are Principal Component Analysis (PCA) and Multidimensional
Scaling (MDS). Both of them are linear methods and are widely used, but in
the situation of nonlinear input data, they often fail to preserve the structures
and relationships in the high-dimensional space when data are mapped into a
low-dimensional one [6].

While in these cases, Nonlinear Dimensionality Reduction (NLDR) methods
can achieve better results. Locally Linear Embedding (LLE), first proposed by
Roweis and Saul in 2000 [7], has attracted more and more attention among
such NLDR techniques. LLE reduces the dimension by solving the problem of
mapping high-dimensional data (possibly in a nonlinear manifold) into a single
global coordinate system of lower dimensionality. The most attractive virtues of
LLE are that there are only two parameters to be set, and the computation can

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 101-109, 2005.
© Springer-Verlag Berlin Heidelberg 2005



102 J. Xiao et al.

avoid converging to a local minimum. However, there have yet been very few
reports of application of LLE since it was proposed [8], which, in our opinion
while applying it, may be because the mapping results are quite sensitive to
parameters, and it may be useless when adequate noises were included in the
raw data set.

To tackle the problems, here we introduce features of a novel SOM model
proposed by the co-authors of this paper recently. The model, called Diffus-
ing and Growing Self-Organizing Maps (DGSOM) [9], increases units through
competition mechanism, generates and updates the topology of network using
Competitive Hebbian Learning (CHL) fashion, and uses NO diffusion model with
dynamic balance mechanism to define the neighborhoods of unites and the fine-
tuning manner. Topological connections among neurons generated by DGSOM,
which reflect the dimensionality and structure of input signals, can adapt to the
changes of the dynamic distribution [10]. The new algorithm proposed in this
paper firstly applies DGSOM to reduce the large amount of high-dimensional
input data to a set of data points with connections between neighboring ones to
reflect the structure of the original input data set rationally and efficiently. Sec-
ondly, the resulting neighboring relationships between data points are adopted
directly instead of the neighborhood searching in the original LLE [7], while the
following steps are similar. Experiments will show the impressive performance
of the combined algorithm.

The rest of this paper is organized as follows: Based on the algorithms of
LLE and DGSOM, the unified algorithm is proposed in section 2. Section 3
expatiates on abundant experiments and some theoretical analysis. Conclusions
and discussions are propagated in section 4.

2 Algorithms

2.1 Locally Linear Embedding

Supposing that the original data set consists of N vectors )TZ()T; € RP), the
purpose of LLE is to find N vectors 7;(?; € R?) in a low-dimensional space
while preserving local neighborhood relations of data in both the embedding
space and the intrinsic one. The basic algorithm is described as follows [7]:

Step 1: Compute the neighbors of each data point )7;, by finding K nearest
neighbors of each point or choosing points within a hypersphere of fixed radius.

Step 2: Compute the weights W;; that best reconstruct each data point )7;
from its neighbors. Reconstruction errors are measured by the cost function

(W) =3 1% =D Wiy X (1)

where W;; summarize the contribution of the j-th data to the i-th reconstruction,
and the weight matrix W satisfies two constraints: First, enforcing W;;=0 if )‘(—;
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does not belong to the neighbors of )7;; Second, the rows of W sum to one:
> ; Wij=1. The weights W;; are obtained by finding the minimum of the cost
function.

Step 3: Compute the vectors 71 best reconstructed by the weights W;;. Fix the

weights W;;, and then compute the d-dimensional coordinates 7; by minimizing
the embedding cost function

e(Y) = X [¥i = X, Wy ¥ = (T = W)Y |
=YT'(I1-w)yI(1-w)y
This process can be done by finding the bottom d nonzero eigenvectors of a
sparse N x N matrix (I — W)T(I —W).
LLE, being a powerful method solving the nonlinear dimensionality reduction
problem, however, still has some disadvantages: Quality of manifold characteriza-

tion is dependent on neighborhood choices and sensitive to noises. Improvements
are on demand to solve the problems.

(2)

2.2 Diffusion and Growing Self-organizing Maps (DGSOM)

The newly proposed model DGSOM [9] consists of four mechanisms to make it as
applicable as possible: Growing mechanism for resource competition, Competi-
tive Hebbian Learning (CHL) method and aging mechanism for topology updat-
ing, forgetting mechanism for avoiding data saturation, and diffusion/dynamic
balance mechanism for node adaptation. A detailed account of the four mecha-
nisms is given as follows:

i) Mechanism 1: If one unit holds too many resources, a new unit will be
generated and compete with it for redistribution of resources rationally.

ii) Mechanism 2: Ensure the formation of topology, with making a relation-
ship between the two nearest nodes to the current input.

iii) Mechanism 3: Make the influence of early input signals be forgotten and
prevent the winning times of a particular node from increasing infinitely.

iv) Mechanism 4: Combine the mechanism of topological connection adapta-
tion with the mechanism of NO diffusion to build and keep the balance of the
network.

The DGSOM model does not depend on any transcendental knowledge about
the input distributions because of the growing nature of nodes and connections.
It is not only able to compartmentalize the input space correctly, but also reflect
the topology relations and the intrinsic dimensionality. Though there are many
mechanisms incorporated in DGSOM model, the description of the model itself
is simple and the whole structure of DGSOM algorithm is compact. The detailed
steps of DGSOM algorithm are available by consulting [9].

2.3 The Proposed Self-organized LLE Algorithm

In the new algorithm, we unify DGSOM and LLE algorithms in one framework.
Firstly, before the operation of LLE, large amount of original data samples are
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fed as the input of DGSOM. An obviously reduced number of samples with
topology connections are achieved as the result of DGSOM, which reflect the
intrinsic structure of the manifold adaptively and efficiently.

Secondly, run LLE on the reduced samples. In place of the first step of the
original LLE method, the neighborhood relationships of sample points are de-
fined directly according to the connections generated by DGSOM, e.g., if one
point has connections with four other points in the DGSOM mapping, the four
data points are considered in LLE as the neighborhoods of that point. So the
neighborhood number of every sample may be different from each other, and
achieved automatically, rather than fixed and being set artificially as in the
original LLE.

The third and fourth steps of the unified algorithm are similar to the original
LLE, apart from the fact that weight matrix W’ is of size N x N instead of N x K.
For the i-th column of W’ the number of nonzero entries equals to the number
of nearest neighbors of the i-th sample. Finally, the low-dimensional vectors 7;
are computed the same way as in Step 3 of the original LLE algorithm.

In our Self-Organized LLE algorithm, D-dimensional samples u; are derived
from DGSOM while the number of which is remarkably reduced. The deviation
between u and the original data X expressed as F[X —u] is achieving zero asymp-
totically [11] which verifies that the reduced samples are good representations
of the input data set.

3 Experiments and Comparisons

In this section, we will discuss several applications of our Self-Organized LLE
algorithm to the selection of the nearest neighbors, estimation of the intrin-
sic dimensionality and the original data added with noises, through abundant
experiments on the synthesized manifold S-curve and face database.

3.1 Selection of the Nearest Neighbors

Though LLE has very few parameters to be set, they can impact the result
dramatically. One parameter is the number of nearest neighbors K, which is
fixed in some range according to the manifold. Fig.1 shows how LLE unfolds the
S-curve rationally.

However, if K is set too small, the mapping will cause disjoint sub-manifolds
divided from continuous manifold and can not reflect any global properties;
while on the other hand, if K is too large, the whole data set is seen as local
neighborhood and the mapping will lose nonlinear character [8]. Fig.2 illustrates
this problem using the example of S-curve, with K=4 and K=80.

In the new algorithm, numbers of nearest neighbors K are defined auto-
matically according to the topology connections generated by DGSOM. Since
the topology connections can reflect the intrinsic structure of the manifold, this
method of defining the neighborhood is adaptive. Fig.3 is the result of S-curve
with neighborhood relationship between reduced points automatically generated.
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Fig. 1. LLE algorithm maps three-dimensional data into two-dimensional embedding
space. Three-dimensional data points (B) are sampled from two-dimensional manifold

(A). Neighborhood-preserving mappings are shown (C), with the color coding reveals
how the data is embedded in two dimensions. (N=2000, K=12, d=2).

(A) (B)

Fig. 2. For S-curve shown in Fig.1, choose K=4 (A) and K=80 (B). There is obviously
deformation and incorrect color coding either.

Fig. 4 is another example of our method carried on Frey Face Database!. Though

the result of Fig. 4 is similar to that in [7], our algorithm avoids the problem of
setting the number of nearest neighbors K.

3.2 Estimation of the Intrinsic Dimensionality

Considering n-dimensional input data, if the dimension in the embedding space
is m (m < n), then the intrinsic dimensionality of the input data is m. In
the original LLE algorithm, if we don’t know the intrinsic dimensionality as
a prior, it should be established in advance. This problem can be solved by

L Available at http://www.cs.toronto.edu/ roweis/data.html
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Fig. 3. (A) The reduced samples of S-curve (shown in Fig.1) which number is 82 as the
result of DGSOM, with the nodes in red and topology connections in blue. (B) Map
the reduced samples into a two-dimensional space using the algorithm we proposed.
The black nodes and their connections in (A) and (B) show a single point (represented
by circle) and its neighborhood (represented by diamonds).
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Fig. 4. Images of faces mapped into a two-dimensional embedding space, with the
neighborhood defined automatically. In the original data, N=1965, D=560 (each image
has 28iA20 pixels). The number of the images is reduced to 92 after running our
algorithm. Representative points are marked by diamond with corresponding faces
next to them. The variability in expression and pose is illustrated clearly along the two
coordinates.
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Fig.5. The statistical graph of correlation between dimensionality of network and
average of coterminous neighbor nodes. The mean of average of coterminous neighbor
nodes for each node is represented by diamond and the variance by short line.

DGSOM, since the topology of DGSOM will reflect the dimension m rather than
n. The correlation between dimensionality of network and average of coterminous
neighbor nodes of each node in the network is obtained through Monte-Carlo
method [12], shown in Fig.5.

From Fig.5 it can be seen that for one-dimensional network, each node has
about two coterminous neighbor nodes averagely, and for two-dimensional net-
work correspondingly, each node has about four coterminous neighbor nodes
averagely. Then we can establish the intrinsic dimension by calculating the av-
erage coterminous neighbor nodes of the network results from DGSOM. For the
S-curve in Fig 3(A), the average number of coterminous neighbor nodes is 4.1205,
which is in good agreement with the result derived from Fig.5.

3.3 Eliminating Noises

Though the original LLE algorithm is efficient and robust when the data lie
on a smooth and well-sampled single manifold, the embedding result can be
affected and destroyed significantly when noises exist. Fig.6 demonstrates the
result with S-curve distribution with normal distributed random noises (mean=0,
variance=0.05, standard deviation=0.05). The variance and standard deviation
has a critical value 0.05, above which the mapping result will distort terribly.
However, in the unified algorithm, samples from DGSOM can reflect the in-
trinsic distribution of input data in case of noises. To demonstrate this character,
same data set as shown in Fig.6 (B) is fed in the Self-Organized LLE algorithm.
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Fig. 6. (A) The original S-curve. (B) S-curve with normal distributed random noises,
(mean=0, variance=0.05, standard deviation=0.05). (C) Mapping result using the orig-
inal LLE, which is not unfolded and disordered in color coding.
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Fig.7. (A) The network derived from Fig.6 (B) after running DGSOM, reflecting
the intrinsic distribution of S-curve, with the reduced number of samples 155. (B)
Mapping result in the embedding space after the algorithm we proposed, which is
unfolded compared with Fig.6 (C)

The mapping generated by DGSOM and the final result in the embedding space

are illustrated in Fig. 7.
From these experiments and comparisons, some conclusions can be drawn.

4 Conclusions

Self-Organized LLE algorithm, as proposed in this paper for nonlinear dimen-
sionality reduction, is the integration of two new but different kinds of ap-
proaches. The algorithm first applies DGSOM to high-dimensional input data
set, deriving a reduced number of samples with topology connections. Then
instead of the first step of LLE, neighborhood relationship is obtained auto-
matically from the topology mapping generated by DGSOM. Experiments and
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simulations indicate that the integrated algorithm outperforms the original LLE
in following aspects: 1) The number of nearest neighbors is achieved automati-
cally and efficiently rather than being set arbitrarily. 2) It provides an efficient
way of estimating the intrinsic dimensionality. 3) In case of noises, when the
original LLE can not work, our algorithm will still give satisfactory results.
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Abstract. In many neural network applications, the selection of best training set
to represent the entire sample space is one of the most important problems. Ac-
tive learning algorithms in the literature for neural networks are not appropriate
for Probabilistic Neural Networks (PNN). In this paper, a new active learning
method is proposed for PNN. The method was applied to several benchmark
problems.

1 Introduction

In the traditional learning algorithms, the learner learns through observing its envi-
ronment. The training data is a set of input-output pairs generated by an unknown
source. The probability distribution of the source is also unknown. The generalization
ability of the learner depends on a number of factors among them the architecture of
the learner, the training procedure and the training data [1]. In recent years, most of
the researchers focused on the optimization of the learning process with regard to both
the learning efficiency and generalization performance. Generally, the training data is
selected from the sample space randomly. With growing size of the training set, the
learner’s knowledge about large regions of the input space becomes increasingly
confident so that the additional samples from these regions are redundant. For this
reason, the average information per instance decreases as learning proceeds [1, 2, 3].

In the active learning, the learner is not just a passive observer. The learner has the
ability of selecting new instances, which are necessary to raise the generalization
performance. Similarly, the learner can refuse the redundant instances from the train-
ing set [1-5]. By combining these two new abilities, the active learner can collect a
better training set which is representing the entire sample space well.

The learning task is a mapping operation between a subset x of the input space X
and a subset y of the output space Y. The student realizes a function X—Y:sw(X)=y.
The subscript w denotes a set of adaptive internal parameters of the student that are
adjusted during the learning process [1, 6]. The goal of the training process is minimi-
zation of a suitably chosen error function E by adjusting the student’s parameters w.
The error term is defined as the disagreement of the teacher and the student. The ad-
justment of w is performed until the student makes decisions close to the teacher’s
ones. The main goal of the training is not to learn an exact representation of the train-
ing data but rather to exact a model of the teacher’s function [1]. The student must be
able to make good predictions for new samples. This ability is called as generaliza-
tion. In this paper, non-random selection of the training set is considered. The main
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© Springer-Verlag Berlin Heidelberg 2005
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goal of the selection of the training set by some rules is to improve the learner’s gen-
eralization ability. In Section 2, active learning paradigm was discussed. In Sections 3
and 4, Probabilistic Neural Networks (PNN) and a new active learning algorithm for
PNN were proposed. Sample applications of the algorithm were given in the Section
5; and the results were discussed in the Section 6.

2 Active Learning

Figure 1 shows a binary classification problem. Class 1 is represented by circles; class
2 is represented by rectangles. The black filled circles and rectangles are the training
set. Left to right hatch area is the teacher’s decision boundary and right to left hatched
area is the learner’s approximation. The area, which the learner and teacher decides
different represents the generalization error. The learner classifies all of the training
data correctly, but there are regions where teacher and learner disagree (Figure 1a).
The generalization error of the learner can be reduced if it receives additional new
training instances from the error region (Figure 1b). The selection of the new in-
stances might be done randomly or by some rule. An efficient active learning algo-
rithm must, ideally, minimize both its generalization error and amount of training data
[7,8]. For classification purposes, it is not necessary to minimize the mean square
error, but to estimate the correct boundary between the classes, so called decision
boundary [3].

The active learning strategies might be separated into two classes: active sampling
and active selection. In active sampling, new training instances are constructed or
generated from the existing training set by using some transformation rules. Selecting
a concise subset of the entire dataset is called as active selection. There are several
active selection approaches in the literature. Most of these approaches are separated
into two groups: those that start with a small subset of the training data and sequen-
tially add new instances, and those that start with a large subset of the training data
and sequentially remove instances from the training set.

Plutowski and Halbert [9] propose an algorithm that adds new training instances to
the training set. A new training instance is added to the training set with the aim to
maximize the expected decrement in mean square error that would result from adding
the training instance to the training set and training upon the resulting set. Another
incremental algorithm was described by [5]. In this algorithm, the network is first
trained by a training set. An unused pattern x,, which has the maximum error, is found
and this pattern is added to the training set. Various stopping criterions can be used
for this algorithm. The Query-By-Committee [1] approach uses a committee of learn-
ers to find a new sample, which has the maximum disagreement among the members
of the committee. Once this sample is found, it is added to the training set, members
of the committee are retrained and the entire process is repeated. [2] introduces a
similar approach for minimization of data collection. [10] represents an active learn-
ing scheme for parameter estimation in Bayesian networks. The method tries to find
the sample, which has the minimum risk factor based on Kullback-Leibler divergence
and adds it to the training set.
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(a) L

Fig. 1. (a) The passive learning. Learner acts as an observer and there are big dissimilarities
between the teacher’s and learner’s decision boundaries. (b) The active learning. The training
set is chosen by the learner.

Pruning of training set can be achieved in a natural way by using Support Vector
Machines (SVM) [11]. A SVM tries to find hyper planes, which separate the classes
from one to another by maximizing the margin between these classes. A small num-
ber of the training instances, those so-called support-vectors, suffice to define the
hyper planes. These support vectors are highly informative training instances. Tong
and Koller [12] introduced a new algorithm for performing active learning with sup-
port vector machines.

Another useful algorithm is Repeat Until Bored (RUB) which is introduced by
Munro [13]. In this algorithm, if the current training sample generates a high error
(i.e. greater than a fixed criterion value), it is repeated; otherwise, another one is ran-
domly selected. This approach was motivated by casual observations of behavior in
small children.

3 Probabilistic Neural Networks (PNN)

Consider a pattern vector X with m dimensions that belongs to one of two categories
K, and K,. Let F;(x) and F,(x) be the probability density functions (pdf) for the classi-
fication categories K; and K, respectively. From Bayes’ decision rule, x belongs to
K, if (1) is true, or belongs to K, if (1) is false;

Fi(x) S L P,

e 1
F,(x) LR
where L, is the loss or cost function associated with misclassifying the vector as be-
longing to category K; while it belongs to category K,, L, is the loss function associ-
ated with misclassifying the vector as belonging to category K, while it belongs to
category K, P; is the prior probability of occurrence of category K;, and P, is the
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prior probability of occurrence of category K,. In many situations, the loss functions
and the prior probabilities can be considered equal. Hence the key to using the deci-
sion rule given by (1) is to estimate the probability density functions from the training
patterns [14].

In the PNN, a nonparametric estimation technique known as Parzen windows [15]
is used to construct the class-dependent probability density functions for each classifi-
cation category required by Bayes’ theory. This allows determination of the chance a
given vector pattern lies within a given category. Combining this with the relative
frequency of each category, the PNN selects the most likely category for the given
pattern vector. Both Bayes’ theory and Parzen windows are theoretically well estab-
lished, have been in use for decades in many engineering applications, and are treated
at length in a variety of statistical textbooks. If the j™ training pattern for category K,
is x;, then the Parzen estimate of the pdf for category K is

1 n
Fi(x) =————>—— exp| -
j=1

- (zﬂ_)m/Z O_mn

(X_Xj)T(X_Xj)
207

@)

where n is the number of training patterns, m is the input space dimension, j is the
pattern number, and ¢ is an adjustable smoothing parameter [14].

Figure 2 shows the basic architecture of the PNN. The first layer is the input layer,
which represents the m input variables (Xy, X,, ... Xp). The input neurons merely dis-
tribute all of the variables x to all neurons in the second layer. The pattern layer is
fully connected to the input layer, with one neuron for each pattern in the training set.
The weight values of the neurons in this layer are set equal to the different training
patterns. The summation of the exponential term in (2) is carried out by the summa-
tion layer neurons. There is one summation layer neuron for each category. The
weights on the connections to the summation layer are fixed at unity so that the sum-
mation layer simply adds the outputs from the pattern layer neurons. Each neuron in
the summation layer sums the output from the pattern layer neurons, which corre-
spond to the category from which the training pattern was selected. The output layer
neuron produces a binary output value corresponding to the highest pdf given by (2).
This indicates the best classification for that pattern [14].

X
%)
Output
- Summation
m Layer
Pattern
Layer

Fig. 2. The basic architecture of the PNN. This case is a binary decision problem. Therefore,
the output layer has just one neuron and summation layer has two neurons.
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4 Active Learning with Probabilistic Neural Networks

Since the known active learning strategies require an error measure (i.e. mean square,
maximum absolute, sum square etc.) or a randomization in the learning phase (i.e.
initial weight vector of the Multi Layer Perceptron is random), active learning with
PNN is slightly different from other neural networks such as MLP (Multi Layer Per-
ceptron), RBF (Radial Basis Function Networks), etc. The output of PNN is a binary
value, not continuous. By using a binary output value, it is hard to develop any useful
training data selection criteria such as maximum or mean square error. On the other
hand, learning phase of the PNN takes only one sweep and unlike the MLP, the PNN
learning is not iterative; if the same training set is used, the learning phase of the PNN
always produces the same weights. For these reasons a new and useful approach for
PNN is offered below.

The first step of the PNN learning is to find an acceptable spread value. The spread
is found by using a trial-by-error process. When the optimum spread value is found,
the next step is to find a better training set by using a data exchange algorithm.

The exchange process starts with a random selected training set. After first training
process, the test data is applied to the network. A randomly selected true classified
instance in the training set (I1) is thrown into the test set; a wrong classified instance
in the test set (I2) is put into the training set and the network re-trained. If 12 is false
classified, it is marked as a “bad case”, 12 is put into the original location, and another
false classified test instance is selected and the network retrained. Retraining is re-
peated until finding a true classified 12. When it is found, I1 is considered. If 12 is true
classified and the test accuracy is reduced or not changed (I1 is false classified), I1 is
put into the original location and another true classified training instance, say I3, is
put into the test set and the process is repeated. If the accuracy is improved, the ex-
change process is applied to another training and test pairs. When an instance marked
as “bad” once, it is left out of the selection process. The process is repeated until
reaching the maximum training and test accuracy.

The last step is to find loss functions which give the best accuracy. In general, the
loss functions are considered equal. However, if the dataset has rare classes, well
selection of the loss functions improves the accuracy of the network. In this work, the
MATLAB Neural Network Toolbox was used. The loss functions are adjusted by data
replication when needed, because of this toolbox does not permit to adjust the loss
functions. The classes of the training set which have relatively less instances are used
two or more times in the training set. This operation increases the occurrence prob-
ability P; (or equally, reduces the loss function L;) of the i™ class (see Eq. 1). This
operation is called as replication. Replication is repeated until finding better test accu-
racy. After the considerable numbers of replication if the test accuracy is not raised,
the replication is cancelled.

5 Applications and Results

The methods described above were tested by using several datasets, which are Glass
data, Lenses data, Lung data, Wisconsin Diagnostic Breast Cancer (WDBC) data,
Wisconsin Prognostic Breast Cancer (WPBC) data, Cleveland Heart data, BUPA data
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and Escheria Coli data. The datasets were taken from UCI Machine Learning Reposi-
tory Database [16]. The simulations were realized by using MATLAB Neural Net-
work Toolbox.

Glass dataset has 214 instances separated into six classes. Each instance identified
by nine continuous chemical measures. The biggest class of this dataset includes 76
instances; the least class has only 9. Escheria coli dataset was taken from Nakai and
maintained by Horton in 1996. Dataset has 336 instances divided into eight classes.
Each instance is identified by eight continuous attributes. The biggest class of this
dataset has 143 instances and the least two classes have only two. Lenses database is a
complete database; all possible combinations of attribute value pairs are represented.
The dataset has only 24 instances, which are represented by four discrete attributes.
Class 1 has 5, class 2 has 4 instances. The remaining 15 instances belong to class 3.
BUPA Liver Disorder dataset was originally created by BUPA Medical Research Ltd.
This dataset has 345 instances. Each instance has six attributes which are taken from
blood tests and a class number which shows if a liver disorder exists or not. All of the
attributes are real and continuous. BUPA dataset has only two classes. WDBC dataset
has 359 instances separated into two classes. Each instance has 30 continuous fea-
tures. Features are computed from a digitized image of a fine needle aspiration (FNA)
of a breast mass. WPBC dataset has 198 instances separated into two classes. Each
instance has 32 continuous features. First 30 features are computed from a digitized
image of a FNA of a breast mass. Lung Cancer dataset describes 3 types of pathologi-
cal lung cancers. The Authors give no information on the individual variables. Dataset
has 32 instances (including 5 missing) which are described by 56 nominal features.
The last dataset, Speech/Music is not a part of UCI database. It was created by Bolat
and Kucuk; and first appeared in [17]. Speech/Music dataset has 150 instances di-
vided into two categories. Speech class has 50 speech samples from four different
males. Music class has 100 samples: 50 instrumental music pieces and 50 music
pieces with male and/or female singers. Each instance is represented by six continu-
ous values which are means and standard deviations of zero cross rate, RMS energy
and spectral centroid. Table 1 shows some past usage of the datasets described above.

Table 1. Recent works based on the datasets used in experiments

Dataset Network Accuracy
Glass [18] Bayesian EM 89.6%
Glass [19] 1-NN 78.8%
E.coli [20] k-NN 86%
E.coli [21] PNN 82.97%
Lens [22] RQuantizer 81.3%
WPBC [23] 9-NN 81.0%
WDBC [23] 5-NN 93.3%
WDBC [24] XCS 96.67%=2.2
Lung [25] C4.5 86.65%
BUPA [26] MLP 74.36%
BUPA [27] Weighted aggregation 67.83%
BUPA [26] PNN 42.11%
Speech/Music [17] PNN 84.45%
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Approximately 70% of the datasets were used as training sets; remaining portions
were used as test sets. Instances that have missing attributes were deleted from data-
sets. In the first stage of the learning phase, the optimum spread values were found by
a trial-by-error strategy by using randomly selected training sets. In the second stage,
the data selection method was applied and the best test accuracies obtained. In the last
stage, if needed, a data replication process was applied to achieve better accuracies.
Table 2 shows results of data exchange method with no replication and Table 3 shows
the results of data exchange with replication.

Table 2. Training and Test Accuracies (Exchange only)

Database Training Test
Glass 98.67% 89.06%
E.coli 94.60% 90.35%
Lens 93.33% 75%
WPBC 100% 84.48%
WDBC 100% 98.83%
Lung 100% 87.5%
BUPA 100% 94.78%
Speech/Music 95% 97,78%

Table 3. Training and Test Accuracies (Exchange and Replication)

Database Training Test
Glass 100% 95.31%
E.coli 95.5% 90.35%
Lens 100% 87.5%

According to the simulation results, it is seen that the good selection of the training
data boosts the accuracy of the network. Data replication also offers an improvement
on the classes which have relatively less instance numbers. As an example, test accu-
racy of the class 3 of the Glass dataset was raised from 50% to 100% by repeating the
training portion of this class three times. It is raised from 66% to 100% for class 6 of
the Glass dataset with a replication rate of 4. Data replication did not improve the test
accuracy of the E.coli dataset, but improved the training accuracy a little. Training
part of the class 6 repeated two times for this dataset. Both training and test accuracies
of the Lens data were improved by using data replication. The class distributions of
the other datasets are not so imbalanced, or accuracies were not improved by adjust-
ing the loss functions. Therefore, the replication was not applied to them.

For large, real-world inductive learning problems, the number of training examples
often must be limited due to the costs associated with procuring, preparing, and stor-
ing the training examples and/or the computational costs associated with learning
from them [28]. Another advantage of this algorithm is that the selection method (data
exchange) does not change the amount of the training data. The method presented
here is useful for these kinds of difficult learning tasks.
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6 Concluding Remarks

Generalization performance of a neural network usually depends on the selection of
instances. This also affects the learning efficiency of the network. Traditional learning
algorithms generally select the training data randomly from the sample space and the
learner is a passive observer here. In the active learning, the learner has the ability of
selecting new instances, which are necessary to raise the generalization performance.
Similarly, the learner can refuse the redundant instances from the training set. Hence,
the active learner can collect a better training set which is representing the entire sam-
ple space well.

There is no active learning algorithm for Probabilistic Neural Networks in litera-
ture. Active learning with PNN is slightly different from other neural networks such
as MLP, RBF, etc. The main reason of this dissimilarity is that the output of the PNN
is a binary value, not continuous. By using a binary output value, it is hard to develop
any useful training data selection criteria such as maximum error. In the other hand,
learning phase of the PNN takes only one sweep and unlike the MLP, the PNN learn-
ing is not random; if the same training set is used, the learning phase of the PNN
always produces the same network.

In this paper, a new active learning method for PNN is introduced. Firstly, a data
exchange method is considered and, secondly, a data replication is applied to increase
the performance. A comparative study with benchmark problems is also presented.
Concerning the results, it is seen that the good selection of the training data boosts the
accuracy of the Probabilistic Neural Network. Data replication also offers an im-
provement on the classes which have relatively less instance numbers.
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Abstract. A novel methodology to determine the optimum number of centers
and the network parameters simultaneously based on Particle Swarm
Optimization (PSO) algorithm with matrix encoding is proposed in this paper.
For tackling structure matching problem, a random structure updating rule is
employed for determining the current structure at each epoch. The effectiveness
of the method is illustrated through the nonlinear system identification problem.

1 Introduction

Radial basis function (RBF) neural networks became very popular due to a number of
advantages compared with other types of artificial neural networks, such as better
approximation capabilities, simpler network structures and faster learning algorithm
[1]. As is well known, the performance of an RBF network critically depends on the
choice of the number and centers of hidden units. More specifically, most of the
traditional training methods require from the designer to fix the structure of the
network and then proceed with the calculation of model parameters. Most natural
choice of centers is to let each data point in the training set correspond to a center.
However, if data are contaminated by noise, then over-fitting phenomena will occur,
which leads to a poor generalization ability of the network. For improving
generalization performance, some approaches decompose the training into two stages:
the centers of hidden units are determined first in self-organizing manner (structure
identification stage), followed by the computation of the weights that connect the
hidden layer with output layer (parameters estimation stage) [1],[2]. This is a time
consuming procedure as it requires evaluation of many different structures based on
trial and error procedure. Another drawback is the centers of hidden units are
determined only based on local information. It is desirable combined the structure
identification with parameters estimation as a whole optimization problem.
However, this results in a rather difficult problem which cannot be solved easily by
the standard optimization methods. An interesting alternative for solving this
complicated problem can be offered by recently developed swarm intelligent
strategies. Genetic algorithms (GA), the typical representative among others, have
been successfully utilized for the selection of the optimal structure of RBF network
[3],[4]. But GA have some defects such as more predefined parameters, more
intensive programming burden etc.
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Particle swarm optimization (PSO) algorithm is a recently proposed algorithm by
Kennedy and Eberhart, motivated by social behavior of organisms such as bird
flocking and fish schooling [5],[6] . PSO as an optimization tool, combines local
search methods with global search methods, attempting to balance exploration and
exploitation. It is demonstrated that PSO gets better results in a faster, cheaper way
compared with other methods. Another reason that PSO is attractive is that there are
few parameters to adjust [6].

In this paper, we propose a novel methodology to determine the optimum number
of centers and the network parameters simultaneously based on PSO with matrix
encoding. The method gives more freedom in the selection of hidden units’ centers.
The algorithm starts with a random swarm of particles, which are coded as centers of
RBF network in the form of matrix. Then, a structure updating operator is employed
to determine the structural state of all particles at each epoch. The fitness value of
each particle is calculated based on prediction error criterion. In addition, each
particle may be grown or pruned a unit for improving diversity. The algorithm is
terminated after a predefined number of iterations are completed or prediction error
threshold is met. The particle corresponds to the best fitness value throughout the
entire training procedure is finally selected as the optimal model.

This paper is organized as follows. In section 2 we formulate the training of RBF
network as a whole optimization problem by combined structure identification with
parameters estimation. The details of proposed algorithm are described in section 3.
Simulation results are shown in section 4. The results are compared with other
existing similar algorithm. Finally, the conclusions are summarized in section 5.

2 Formulation of the Whole Optimization Problem

RBF networks form a special neural network architecture which consists of three
layers, namely input, hidden, output layer. The input layer is only used to
communicate with its environment. The nodes in the hidden layer are associated with
centers, which character the structure of network. The response from a hidden unit is
activated through a radial basis function, such as Gaussian function. Finally, the
output layer is linear and serves as a summation unit.

Assume that we have a training set of N samples {Xl.,yl.},i =12,---,N where Yy,
is the desired output value corresponding to the network input vector
X, =[x,%,x, ]T with dimension d . The RBF network training problem can be
formulated as an optimization problem, where the sum of squared errors (SSE)
between the desired outputs y, and the network predictions ;i must be minimized

with respect to both the network structure (the number of units M in the hidden
layer) and the network parameters (the hidden unit center locations ¢;, width y; and

the weights w,, j=1,2,---,M ):

2
SSE(M,c,-,yj,w,-)=ﬁ(y,~—§,~j : (1)

i=l1
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The predicted out ;l. depends on the input vector and network parameters as follows:
A M .
Vi = 2w 0, (X )i =120 N @

where ¢, =¢(||x—cj||/ }/j) does non-linear transformation performed by the j th
hidden unit and |||| denotes Euclidean norm in R’ . The Gaussian function
¢(r)=exp(-r’/2)is used in our work.

The whole optimization problem requires minimization of the above error function
(1). This is rather difficult using the traditional optimization techniques, especially
due to the presence of the number M . PSO algorithm can be used for solving any
type of optimization problem, where the objective function can be discontinuous, non-
convex or non-differentiable [6].

3 Adaptive Training of RBF Networks Using PSO Algorithm

PSO algorithm is an adaptive method based on a social-psychological metaphor, a
population of individuals adapts by backing stochastically toward previously
successful regions in the search space, and is influenced by the successes of their
topological neighbors [6]. A swarm consists of many particles, where each particle
keeps track of its position, velocity, best position thus far, best fitness thus far, current
fitness. The velocity keeps track of the speed and direction the particle is currently
traveling. The current position is the most important attribute, which corresponds to a
potential solution of the function to be minimized.

For RBF networks implementation, a specially designed PSO algorithm with
matrix encoding is used to determine the optimum number of hidden units and the
network parameters simultaneously. The algorithm starts with an initial swarm of
particles, which represent possible networks structure and associated center locations.
The centers are determined by current position of particle. The widths are determined
using a nearest neighbor heuristic discussed later. After the determination of centers
and widths, the weights between the hidden and the output layer are calculated using
linear regression. Then the objective function can be computed. New position of
particles is produced using PSO algorithm after structural updating operation and
growing or pruning operation. The algorithm terminates after a predefined number of
iterations are completed or error threshold is met. The particle that has minimum
fitness is selected as the optimum RBF network.

The detailed description of the proposed algorithm that follows assumes that

N input-output samples {x,,y,},i=1,2,---,N are available, which can be grouped
into two data sets: the input set X and the output set Y. The dimension of the input
vector is d . While only one output variable is used in our paper, the algorithm can be
easily generalized for more than one output variables. Before the application of the
algorithm, the training data are processed as follows.
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3.1 Data Division

The samples are divided into two subsets (X, Y,),(X,,Y,) of size N,, N, , which are

the training and validation sets. The first subset (X,,Y,) is used in the training

procedure to calculate the connection weights of the different RBF networks that
constitute the whole swarm. The second subset (X,,Y,) is also used during the
training epoch to evaluate the fitness of each particle. This is crucial for the success of

the proposed algorithm, since it incorporates a testing procedure into the training
process. This strategy can avoid over-fitting effectively.

3.2 Data Scaling

The RBF network to obtain a predicted value at a given input proceeds by doing
weighted summation using all centers that are close to the given input. Thus the
performance of network depends critically on the metric used to define closeness.
This has the consequence that if you have more than one input variable and these
input variables have significantly different scales, then closeness depends almost
entirely on the variable with the largest scaling.

To circumvent this problem, it is necessary to standardize the scale of the input
variables. When all input variables are of the same order of magnitude, the algorithm

performs better.
3.3 Particle Swarm Optimization Algorithm for RBF Networks

3.3.1 Particle with Matrix Encoding

The problem of interest to us consists of how to design a particle as the RBF network
that performs a desired function. To encode a RBF network, we used the novel matrix
encoding to represent a particle. L matrices (particles) of size M X d are created, each
particle corresponds to a set of centers of RBF network, where M is maximum
number of hidden units and d is the dimension of input variables. We employ a
special label ‘ N’ to indicate invalid center location. Assumed that the ith particle

with m' (1 <m'<M ) hidden units, then position matrix C,; and velocity matrix V,

can be expressed as follows:

[ i i i [ i i

€ Cp Cia Vi Vi Via

N i i i i i

€y Cx € Va1 V2 Vaa

c = c'i c'i cli , V= V’i Vli V’i L i=L2eL . (3)

w1 m2 mid w1 m'2 mld

N N N N N N

N N N | N N N |
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The rows labeled by ‘ N’ do not involve any algebraic operation and indicate invalid
centers location.

3.3.2 Estimation of Widths and Weights
For each particle, we can identify the valid centers from the position matrix. Assumed

that m' hidden units with centers location of the ith particle are identified, then
widths 7/; are determined using a nearest neighbor heuristic suggested in Moody and

Darken [7]. That is
. 1 &y 112 2 .
y}{;ZIIc}—cill} L J=1l2eem =120 L, @)
I=1

where cj e R’ (l =1,2,---,p) are the p nearest neighbors of the center cij (p=2in

our work). Once the locations of centers and widths are defined, the RBF network can

be seen as a linear model [8], and the weights w' can be calculated either by an
algebraic single-shot process or by a gradient descent methods as in [9]. By

introducing the notation ¢} (k) = exp(—"xk -c, "2 /(2(% )2)) and y' = [7/1,7/2, 7, ]T,

m

we can express the predicted output y, (k) given input x, of training data (X,,Y,) as
yi(k)=>w ¢ (k), k=12,,N,,i=12,-L. 5)
=1

By applying all N, training sample to equation (5) and employing matrix
representation, equation (5) can be rewritten as

w=(0'0,) " (®y), i=12-L, (6)
where @, is the N, xm' matrix containing the response of hidden layer identified by
the ith particle to the N, training samples. The calculation of the weights and widths
completes the formulation of L RBF networks, which can be represented by the
triples (C',y',w'),(Cz,yz,wz),---,(CL,yL,wL).

3.3.3 Fitness Value Estimation
Fitness value gives an indication how good one particle is relative to the others. For
alleviating the occurrence of over-fitting phenomena, fitness value estimation is based

on the prediction error criterion by introducing the validation data (X,,Y,) in the

training procedure. The prediction fl,fz,m,i?L of the L particles formulated in the

previous section and the prediction error SSE"** are computed as follows:

2

SSE;M:HY—Y. . i=12,-L. )
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According to fitness estimation (7), we can determine the best personal position

matrix C;M of each particle and the best global position matrix C

gbest *
3.3.4 Particles Updating Operations

During each epoch every particle is accelerated towards its best personal position as
well as in the direction of the global best position. This is achieved by calculating a
new velocity matrix for each particle based on its current velocity, the distance from
its best personal position, as well as the distance from the global best position. An
inertia weight @ , reduced linearly by epoch, is multiplied by the current velocity and
the other two components are weighted randomly to produce the new velocity matrix
for this particle, which in turn affects the next position matrix of the particle during
the next epoch. In summary, the L particles interact and move according to the
following equations [10]:

Vi(t+1)=@x V' (t)+c xrand (-)x(C.,,, — C' (1)) +¢,xrand (-)x(C,,, —C' (1))

pbest -

(®)

C (t+1)=C'(1)+ V' (t+1) 9)

where rand (-)is random number generator between zero and one, 0<¢,,c, <2and

 is an inertia weight .

For implementation of algorithm, we must tackle the structure matching problem,
i.e. operands in equations (8,9) should have identical hidden units number at any
epoch. In the spirit of the PSO searching mechanism, a random strategy for
determining identical hidden units number is used here. It balances the tradeoff
between the approximation ability and the diversity. Assumed that the effective
hidden units of the individual particle, best personal and global best are

respectively. We can determine the current centers number as the

i

i
m, mpbest ’ mgbest

following equation:
m=m, +rand (-)(m, —m,) (10)

where rand(-) is random number generator between zero and one,

i

_ i
mgbest ) > M, = max (m ’ mpbest ’ mgbesl ) .

m, = min (mi ,m;bm s

Once the current structure m is determined, then operands in equation (8) can do
some transformation. If the rows number of the matrix is greater thanm , it will
collapse (i.e. replace additional rows with ‘ N ’). If the rows number of the matrix is
less thanm , it will expand (i.e. replace additional rows labeled by ‘ N’ with ‘0’). If
the rows number of the matrix is equal to m , it keeps fixed.

Since row labeled by ‘ N’ does not involve any algebraic operation, Equations
(8,9) can be calculated after transformation. With the proceeding of optimization
process, m will converge to a constant and corresponding centers of RBF network
can be identified. It should be noted that updating operation not only communicates
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the information among the global best position, best personal position and current
position, but also converges the optimal structure step by step.

3.3.5 Growing and Pruning

As mentioned in the description of the section 3.3.4, different structures of RBF
networks can be determined by updating operation. For faster convergence and
additional flexibility, we introduce two more operators: growing and pruning of
hidden units. For simplicity, only one hidden unit is grown or pruned depended on
growing probability p, or pruning probability p at one epoch. In order to

grow prune

apply these operators, we generate randomly a binary value and a number r between
0 and 1 for each particle. If the binary value is O and » > p one additional unit is

grow

attached to the first row labeled by ‘N . If r> p and the binary value is 1, the

prune

last row unlabeled by ‘ N’ is replaced with * N °.

4 Simulation Results

The simulation clearly demonstrates the ability of the RBF network trained by PSO to
learn the dynamics of the unknown system. The system to be identified is described
by the second-order difference equation [11]:

y(t)y(t—l)[y(t)+2.5:|+

L+ y* (1) +y* (1 -1)

y(t+1)= u(r). (1)

The equilibrium states of the unforced system are (0,0) and (2,2)on the state

space. If a series-parallel identification model is used for identifying the nonlinear
system, the model can be described by the equation

y(r+1)=£(x(1),y(t=1),u(1)), (12)

where f is an RBF network trained by PSO with three inputs and one output.

For comparison purposes, we developed an additional number of RBF network
models using the standard training method, which is based on the k -means clustering
algorithm. RBF networks trained with the standard procedure require a fixed number
of hidden units, so in order to make a fair basis for comparison, networks with
different structures (a.k.a. hidden units number) were developed and evaluated using
the validation set. The input and output data have been collected in such a way that
for an initial condition i.i.d random input signal uniformly distributed in the region of
[-2,2] forces the given system.

The simulation produced 200 data points which were then separated into two sets:
100 data were assigned to the training set, 100 to the testing set. The k -means two
stage training algorithm uses validation set to determine the best structure of RBF

network within the set me [1,2,-+-50] . The algorithm was implemented using the
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parameters: L=35, M =50 , +=300, p,,, =0.15, p,,, =0.15 ®=[0.4,0.95]
¢ =2,c,=2.

Fitness value

Prediction error
3
T
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Fig. 1. The evolving process of hidden units Fig. 2. The prediction error varies with
number and fitness value corresponding to the clusters number using two stage training
best network structure at each epoch. Left is algorithm, the optimum hidden units
fitness value, right is hidden units number. number is labeled by star

Solid line: fitness value, dashed line: hidden

units number
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Fig. 3. The results of identification obtained from the RBF network based on PSO algorithm
and k -means two stage training algorithm. Solid line: desired output, dotted line: output of
RBF network based on PSO training, dashed line: output using k -means two stage training.
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Table 1. Comparision of root mean squared errors (RMSE) and hidden units number of RBF
network constructed by proposed algorithm and k -means two stage training algorithm

Training algorithm Hidden units number RMSE of testing
Proposed algorithm 14 0.11767
k -means two stage training 36 0.72916

Fig. 1 depicts the evolving process of the hidden units number and fitness value
corresponding to the best network structure at each epoch. Fig. 2 shows the prediction
error varies with clusters number using two stage training algorithm and the optimum
hidden units number is labeled by star (m =36). For testing the identified model, the

sinusoidal input signal u(r) =sin(27¢/25) has been applied to both the system and

the model and generated 200 data. Fig. 3 shows the results of identification obtained

from the RBF network based on PSO algorithm and k -means . Table 1 illustrates the
performance of RBF network based on two methods. It can be seen from Table 1 and
Fig.3 that the RBF network based on the proposed PSO algorithm has not only
generated the most parsimonious structure but also provided the most accurate
outcome.

5 Conclusions

In this paper, a novel PSO algorithm with matrix encoding is presented for training
RBF network models based on input-output data. After encoding a RBF network with
matrix representation, we employ a structure matching rule to update the structure of
particles at any epoch. Its main difference with respect to traditional PSO has to do
with the update of the position of the particle in each of its effective dimensions.

The superiority of the proposed algorithm over one of the conventional methods
for training RBF networks was demonstrated through solving benchmark problems of
nonlinear system identification. The results showed that the RBF networks produced
by the proposed algorithm possess more parsimonious structure and achieve smaller
prediction error compared with those obtained using the k -means two stage training
algorithm.
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Abstract. Self-Organizing Maps (SOM) is a powerful tool for cluster-
ing and discovering patterns in data. Competitive learning in the SOM
training process focuses on finding a neuron that is most similar to that
of an input vector. Since an update of a neuron only benefits part of the
feature map, it can be thought of as a local optimization problem. The
ability to move away from a local optimization model into a global op-
timization model requires the use of game theory techniques to analyze
overall quality of the SOM. A new algorithm GTSOM is introduced to
take into account cluster quality measurements and dynamically modify
learning rates to ensure improved quality through successive iterations.

1 Introduction

Self-Organizing Maps (SOM), introduced by Kohonen [1], is an approach to
clustering similar patterns found within data [2,3]. Used primarily to cluster
attribute data for pattern recognition, SOMs offer a robust model with many
configurable aspects to suit many different applications.

The training of a SOM does not take into consideration certain advantages
that could be obtained if multiple measures were used in deciding which neuron
to update. Recent research that makes use of dynamic adaptive and structure-
adaptive techniques have been proposed [4,5]. Game theory offers techniques for
formulating competition between parties that wish to reach an optimal position.
By defining competitive learning in terms of finding a neuron that can perform
an action that will improve not only its own position, but also the entire SOM,
we may be able to improve the quality of clusters and increase the efficiency
of the entire process, moving towards a global optimization process from local
optimization found in traditional SOM methods.

This article proposes a new algorithm GTSOM that utilize aspects of game
theory. This allows for global optimization of the feature map. This technique
could be used to ensure that competitive learning results in the modification of
neurons that are truly suitable for improving the training results.

2 A Brief Review of Self-Organizing Maps

At the heart of SOM theory is the concept of creating artificial neurons that are
computational duplicates of biological neurons within the human brain [6]. Arti-
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ficial neural networks follow the model of their biological counterparts. A SOM
consists of neurons with weight vectors. Weight vectors are adjusted according
to a learning rate « that is decreased over time to allow for fast, vague training
in the beginning and specific, accurate training during the remaining runtime.

A SOM model contains three fundamental procedures that are required in
order to discover clusters of data. These procedures are similar to that of the
knowledge discovery in database process [7,8]. The first procedure consists of
all preprocessing tasks that are required to be completed before training can
take place. This includes initializing the weights vectors of each neuron either
randomly or by some other method [9,10]. Another task to be performed is that
of input vector creation. Training data for the SOM must be arranged in input
vectors, where each vector represents a tuple in an information system or other
similarly organized data set.

T P> O—u

n*

" Input Competition " Update

Fig. 1. The layers of a SOM during the training process

2.1 SOM Training

In order for a SOM to cluster data, it must be trained with suitable training
data. Training a SOM requires the combination of three layers that work in
tandem, where an output of one layer is treated as the input to the next layer,
as shown in Figure 1.

The first layer, denoted as the input layer, consists of a data store to be
formatted into a set of input vectors P. An input vector represents a tuple
within the data set. Each input vector p € P is used as input for the next layer
of a SOM. The second layer, denoted as the competition layer, manages the
competitive learning methods within the SOM [11]. This layer determines which
neuron n; has a weight vector w; with minimum distance (maximum similarity)
to p. From this layer, a winning neuron n is marked to be updated in the third
layer. The third layer, denoted as the update layer, updates the weight vector
associated with the winning neuron that was used as input. After the updating
of the neuron, the weight vector is more attuned to that of the input vector.

A data set P contains individual tuples of an information system trans-
lated into input vectors, P = {p1,...,Pm}. A set of artificial neurons, W =
{ni,...,n,}, is arranged in a grid-like topology of fixed dimensionality. FEach
neuron in W has a weight vector w; of the same dimensionality as the input
vectors p;.
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Data: A set of m input vectors P = {p1,...,pm}
Input: A threshold ¢, for maximum iterations to be executed.
Output: A feature map A’

1 for each neuron n; € W do

2 initialize w; randomly ;

3 end

4 while (¢ < gm) or (V pr € P,nj(q) =nj(¢g—1)) do
5 aq = adjusted ag—1 for iteration g ;
6 dq = adjusted dq—; for iteration ¢ ;
7 for each p, € P do

8 n; (¢) = Compet(py, W) ;

0 Update w(n! (), i, aq)
10 Update N(Nyx(q)(dq), Pk, otq) ;
11 end
12 end

Algorithm 1: The SOM Training Method

Each neuron n; € W has a set of neurons whose proximity is within that
defined by d, a scalar whose value is changed according to an iteration q. There-
fore, for each neuron n;, the neighborhood N;(d) = {n,,...,ns} consists of all
neurons that have connectivity to n; within distance d. The learning rate is used
as a scalar that determines how much a weight vector w; is changed to become
more similar to that of the current input vector.

2.2 Competitive Learning in SOM

To find a neuron n; € W that has a weight vector closest to pj, similarity
measures [12] are observed between each neuron and the input vector.

Once a winning neuron n} has been identified, the weight vector must be up-
dated according to the learning rate oy corresponding to iteration ¢. In addition,
the neighborhood of that neuron must be updated so that neurons connected to
the winner reflect continued similarity to the new information presented to the
network. In Algorithm 1, this process is done with functions Update w and Up-
date N, functions that update the winning neuron and its neighborhood respec-
tively. The update of a winning neuron and the update of the winning neuron’s
neighborhood is shown in Equation 1 and Equation 2 respectively. Equation 1
is known as the Kohonen rule [6].

wi(q) = wi(g — 1)+ alpr(q) —wi(g—1)) . (1)

W, (d)(q9) = Wn,. () (g — 1) + a/(pr(q) — wn,.@)(g—1)) . (2)

The modified learning rate o/ denotes a smaller learning rate that is used on the
neurons in N;-(d). We wish to use a smaller learning rate to signify that although
these neurons did not win the competition for the input vector, they do have
some connectivity to the neuron that did. The learning rate « in Equation 1 is
derived from a decreasing polynomial formula [13].
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Algorithm 1 shows the steps taken to train the SOM. The process of updating
a neuron and its neighbors can be thought of as a local optimization procedure.
For any given input vector, the update layer in Figure 1 only adjusts neurons
based on a very small instance of the overall patterns in the full data set.

3 Incorporating Game Theory into SOM Training

Although individual neurons have the ability to improve their situation during
each competition, a collective goal for the entire SOM is not considered. The
transition between local optimization techniques to those of global optimization
must occur in order to solve problems of density mismatch and physical adja-
cency errors. The concept of overall SOM quality must be defined in order to
progress to a state in which properties between overall neuron relationships and
input vectors can be measured.

3.1 Measuring SOM Quality

The competitive layer in the traditional SOM model does not have the ability
to find a neuron which best represents the current input vector as well as having
the ability to improve the quality of neuron placement and density. Improving
quality in a SOM could include an increased ability to create and define better
clusters. In order to determine the quality of a SOM, definitions on what is
considered a high-quality cluster must be discovered. Clusters can be defined in
two ways: by the actual input data that was used to adjust the weight vectors
or by the neurons associated with that data.

With the two abilities to define clusters, two methods of representing clusters
arise. A centroid vector can be used as a representation of the cluster. This vector
could be calculated by taking the average of all weight vectors that the cluster
includes. Second, a neuron whose weight vector is most similar to that of the
average weight vector of all neurons could be given representation status. In
addition to the two methods of representing clusters in a SOM, two methods
can be used in order to find a neuron required in the latter method:

1. If a centroid input vector for a cluster is known, we can simply discover
which neuron that centroid input vector is most similar to.

2. If we wish for the calculations of centroid to be strictly neuron based, we
can find groups of neurons and determine which of those neurons have won
more competitions.

The above methods allow us to measure the overall quality of a SOM. Using
the ability to calculate physical distance between clusters on the feature map as
well as the ability to calculate the density of a particular cluster can enable a
new algorithm to determine which neuron is best suited to be updated. These
quality measures can be used together to see how much a particular neuron, if
updated, can improve the overall quality of the feature map.
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3.2 Game Theory

In order to facilitate global optimization techniques in competitive learning, a
method must be employed that can take into consideration possible improve-
ments of overall SOM quality. Game theory provides a suitable infrastructure
to determine which neurons provide the best increase in feature map quality.
By manipulating the learning rate applied to both the winning neuron and its
neighbors, as well as the size of a neighborhood that should be taken into con-
sideration, a set of strategies with expected payoffs can be calculated.

Game theory, introduced by von Neumann and Morgenstern [14], has been
used successfully in many areas, including economics [15,16], networking [17], and
cryptography [18,19]. Game theory offers a powerful framework for organizing
neurons and to determine which neuron may provide the greatest increase in
overall SOM quality.

In a simple game put into formulation, a set of players O = {01, ...,0,}, a set
of actions S = {aq,...,a,} for each player, and the respective payoff functions
for each action F = {u1,..., pm} are observed from the governing rules of the

game. Each player chooses actions from .S to be performed according to expected
payoff from F', usually some a; maximizing payoff u;(a;) while minimizing other
player’s payoff. A payoff table is created in order to formulate certain payoffs for
player strategies, which is shown in Table 1.

3.3 Game-Theoretic Competitive Learning in SOM

With the ability to precisely define neuron clusters within a SOM, measures
can be used in order to define overall quality of the network. These measures,
such as the size of clusters, the distance between clusters, and the appropriate
cluster size to represent input can be combined to give a certain payoff value to
a particular neuron, if chosen as a winner. When the competitive phase begins,
a ranking can be associated with each neuron according to its distance from
the input vector. Using the ranked list of neurons, a new competition layer is
constructed in order to determine which neuron and which strategy or action
should be taken. This new model architecture is shown in Figure 2.

The first Competition layer is modified so that instead of determining which
neuron is most similar to the current input vector, the layer now ranks neurons
according to each similarity measure obtained. There is an opportunity here to
include a dynamic, user-defined threshold value t; that can deter any neurons

Table 1. Payoff table created by second Competition layer

nj(q)
aj,1 - Qg,r
Qi1 < 1y g1 > <1 e >

*

Wir < iy fbi 1 > e < hiry Ujr >
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Fig. 2. The layers of GTSOM including the addition of another competition layer used
during the training process

that are beyond a certain similarity measure to be included in the ranked set as
shown in Equation 3 and Equation 4:

WIZ{”T(Q)P"?”:(Q)} ) (3)

where Vnj(q) € W,

lw;(q) —pi| <t1, (4)

and 1 < ¢ < n. This allows the user to specify a degree of minimum similarity
desired when having the first competition layer computing which neurons should
enter the second competition layer.

Once a ranked set of neurons has been created, the second competition layer
starts to create competition tables of the form shown in Table 1. A neuron n;
with possible actions S = {a; 1, ..., a;,} and payoffs calculated from correspond-
ing utility functions U = {j;1,..., i} competes against neuron n} with the
same action and utility sets. The neuron whose specific action a; j, results in the
greatest overall SOM quality is chosen to be the winner.

With the addition of quality measures, neurons are now ranked in partial
order. For example, a particular neuron n; may have a higher ranking than n} in
terms of a particular similarity measure between itself and the input vector, but
the neuron may not have that same ranking when additional quality measures are
taken into account. The second competition layer must take into consideration
not only similarity to input, but also how much each neuron can increase or
decrease feature map quality. Many different ranking of neurons in W’ may
occur when more than one measure is used.

There are two possible ways of creating tables to govern the second phase
of competition. First, neurons can be initially paired randomly with each other.
Victors of each “round” move on to the next round, where new tables are created
for the neurons that have been awarded victories. This process proceeds until a
total victory is declared for one neuron. Second, for a set W = {nj(q),...,n(q)}
of ranked neurons, an n-dimensional payoff table can be created. With n neurons
ranked and entering competition, each with r possible actions, a total of r™ cells
must be observed to determine which neuron gives the best quality or utility
value for this iteration.
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3.4 A Strategy to Adjust the Learning Rate

Actions performed by a particular neuron could possibly include parameters
such as adjustable learning rates or adjust neighborhood size. Such actions can
be called strategies to describe an action that can be modified in order to create
new actions. A strategy of adjust the learning rate o can be modified so that
there is an action for an increased adjustment, decreased adjustment, and a no-
change scenario. This strategy can improve clusters by forcing subsequent input
vectors that are similar to the current input to have a greater possibility to be
more similar to a different neuron than it did on a previous iteration in the case
of an increased learning rate. That is, the input vector will have an increased
likelihood to be closer to a different neuron next iteration. A decreased learning
rate will result in a diminished similarity adjustment between the victor and the
current input vector, resulting in negligible change from subsequent iterations.

A set of actions detailing neighborhood size for a particular neuron is useful
when cluster sizes are desired to either grow or diminish. An increased neighbor-
hood size will modify a larger number of neurons to become more similar to the
current input vector. This may result in less dense clusters if desired. In contrast,
a decreased neighborhood size could have an exact opposite effect, decreasing
the size and increasing the density of clusters. If clusters are too far apart, the
density of a particular cluster could be dismissed so that cluster boundaries be-
come closer. Also, if clusters are too compact, the density of some clusters could
be increased in order to increase distance between centroids.

4 GTSOM Implementation

The process of ranking neurons according to similarity, creating payoff tables,
and determining winning neurons is introduced in Algorithm 2. Training will
stop when either of the following three conditions are met on line 4.

1. If a maximum number of specified iterations have been performed.

2. If no neurons have won competitions for new input vectors that were not
won before during previous iterations.

3. If the overall quality of the SOM has reached or moved beyond that of a
user-defined threshold.

A traditional SOM stops when the first two stopping conditions are met. With
the addition of the third condition, training time may be reduced if a certain
quality has been reached. For example, if the desired quality of the feature map
has been reached before g, iterations have been performed, training may stop
ahead of schedule. This threshold may correlate with the number of iterations
that are to be performed or it may represent the desired precision of weight
vectors belonging to individual neurons. A lower threshold will most likely result
in a lower number of iterations performed. As precision increases with respect
to the number of iterations performed (smaller learning rate), a lower number
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Data: A set of m input vectors P = {p1,...,pm}
Input: A threshold ¢, for maximum iterations to be executed.
Output: A feature map A’

1 for each neuron n; € W do
2 Initialize w; randomly ;
3 end
4 while (¢ < gm) or (V pi € P,ni(q) =n;j(¢g—1)) or (u(A) > t2) do
5 aq = adjusted ag—1 for iteration g ;
6 dq = adjusted dq—1 for iteration ¢ // neighborhood distance ;
7 for each p, € P do
8 Find set W' = {ni(q),...,n5(q)} ;
9 for each < nj(q),n;(q) > pair in W' do
10 Tiyj = (N, Siyj,Fi,j), where
11 N = {ni(q),nj(9)},
12 Si,; =set of actions for n;(q) and nj(q),
13 F; j =set of utility functions returning quality of A.
14 ag = taj, where aj =the action that best improves A. ;
15 end
16 Choose ng(p:) whose utility function p; has maximum payoff action a; ;
17 Update w(n;(q), pk, aq) // update winning neuron ;
18 Update N(Ny+(q)(dg), Pk, ) // update neighborhood of n* ;

19 end

20 end
Algorithm 2: The Training Method GTSOM

of iterations will result in the algorithm completing with a learning rate above
that of the final desired learning rate.

Lines 7-19 iterate the first and second competition layers for every input
vector in P. Line 8, executing the first competition layer, creates a set of ranked
neurons according to their similarity to the input vector. The third embedded
repetitive structure ranks neurons according to their similarity to the current
input vector. An interesting opportunity arises here when clusters are starting
to be defined. There may be an option to include centroid neurons in this set once
they have been discovered. This leads to the eventuality that no new clusters will
be formed. Another user-defined threshold could be specified if this method is
used, comparable to the maximum number of clusters desired. This also decreases
the number of distance measures to be calculated between the neuron weight
vectors and the current input vector.

The second competition layer is shown in lines 9-15. Using the set of ranked
neurons, tables are created for each neuron pair within W’. This table T} ; =
(N, Sij, Fi j), the payoff table for neurons n; and n;, includes the neurons them-
selves, a set containing actions .S; and S; for the neurons, and a set containing
utility functions F; and F}; that returns the quality of the feature map given ac-
tion a; € S; and a; € S;. Once these tables have been created, the neuron with
the action that provides the greatest increase in feature map quality through
the utility function is chosen as the final winner in the competition process. The
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action is executed (learning rate modification or neighborhood size) and update
procedures are performed.

A large value for ¢; may result in increased computation time as it will result
in a larger W’. Since tables are created and observed for each distinct pair of
neurons within W', the similarity threshold must be considered carefully. A value
too small for ¢; may result in incomplete competition, where neurons that may
offer valuable actions could be ignored based on their dissimilarity to the current
input vector.

The threshold ¢ found on line 4 gives the option of stopping the training
process when a certain overall SOM quality has been reached. Too high of a
threshold, although perhaps representing a high quality preference, may result in
no computational efficiency improvement. This threshold may never be reached
before maximum iterations have occurred. Too low of a threshold could result in
too few iterations being performed. Since the learning rate « is adjusted during
each iteration, it may not get an opportunity to become sufficiently small for
precise weight vector updating.

5 Conclusion

We have proposed a new approach to competitive learning in SOMs. The op-
portunity to create a model to facilitate global optimization of the feature map
requires methods to acquire the overall quality of the feature map. These meth-
ods take the form of measuring distance between clusters, cluster density and
cluster size.

An additional competitive layer has been added to the traditional SOM model
as well as modifying the original competition that results in the proposed GT-
SOM algorithm. A similarity ranking within a user-defined threshold between
neuron weight vectors and input vectors is used as a basis for the creation of
payoff tables between neurons. Payoffs are calculated according to strategy set
containing possible actions for each neuron. Each action results in a numeric
utility or payoff which may improve or diminish SOM quality. Finding the neu-
ron whose action maximizes the quality of the SOM for that iteration is now
possible, enabling neurons to be picked not only on similarity but on strength.
Clusters can be increased or decreased in size or density in order to attempt
to reach a user-defined threshold for overall desired quality of the SOM. Future
research will focus on training result analysis between the traditional SOFM
training method and the proposed GTSOFM training algorithm.
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Abstract. Due to the excellent performance of the HMM(Hidden Markov
Model) in pattern recognition, it has been widely used in voice recognition, text
recognition. In recent years, the HMM has also been applied to the intrusion
detection. The intrusion detection method based on the HMM is more efficient
than other methods. The HMM based intrusion detection method is composed
by two processes: one is the HMM process; the other is the hard decision
process, which is based on the profile database. Because of the dynamical
behavior of system calls, the hard decision process based on the profile database
cannot be efficient to detect novel intrusions. On the other hand, the profile
database will consume many computer resources. For these reasons, the
combined detection method was provided in this paper. The neural network is a
kind of artificial intelligence tools and is combined with the HMM to make soft
decision. In the implementation, radial basis function model is used, because of
its simplicity and its flexibility to adapt pattern changes. With the soft decision
based on the neural network, the robustness and accurate rate of detection
model network, the robustness and accurate rate of detection model are greatly
improved. The efficiency of this method has been evaluated by the data set
originated from Hunan Technology University.

1 Introduction

IDS (Intrusion Detection System)is a system that attempts to detect intrusions, which
are defined to be unauthorized uses, misuses, or abuses of computer systems by either
authorized users or external perpetrators [1]. There are a lot of technologies being
used as anomaly detection methods, such as the neural network [2-4]the data
mining[5],the support vector machine[]3[6], and the hidden Markov model [7-10],
Each kind of these technologies has shown its advantages to detect novel intrusions,
but it still has some shortcomings. Therefore, the hybrid architecture is provided.

War render et al. [7] introduced a simple anomaly detection method based on
monitoring the system calls used by active, privileged process. It is based on the idea
that the normal trace of a privileged process has a different pattern to that of the
anomaly process. This pattern can be expressed by a short sequence of system calls.
In sequence time delay embedding (STIDE), a profile of normal behavior is built by

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 139148, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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enumerating all unique, contiguous sequence of a predetermined ,fixed length k that
occurs in the training data. The method is efficient for sendmail, Ipr, ftpd of Unix. But
the normal database typically includes thousands of short sequences. The process of
building a normal database is time-consuming. Y.Qiao et al. [9] introduced an
anomaly intrusion detection method based on the HMM which has three advantages.
First, the profile database of the HMM method is smaller than that of the STIDE
method, so the HMM method can detect intrusions more quickly. Second, the HMM
method can build a nearly complete database with only small parts of normal data. At
the end, the mismatch rate difference between the normal process and the anomaly
process of the HMM method is larger than that of the STIDE method. But their
method also has insufficiency. It needs very large memory to store the database,
though their method has a compressed profile database compared with that of the
STIDE method.

Meanwhile, neural network was widely used to detect intrusions and achieved
some good results. Debar el al.[11]used a neural network component for an intrusion
detection system. Susan C.L. and David V.H. [2] used a neural-network based
intrusion detector to recognize intrusion. In their paper, it describes an experiment
with and IDS composed of a hierarchy of neural networks(NN) that function as a true
anomaly detector. The result is achieved by monitoring selected areas of network
behavior such as protocols, that are predictable in advance. The NNs are trained using
data that spanned the entire normal space. These detectors are able to recognize
attacks that are not specifically presented during training. It shows that using small
detectors in a hierarchy gives a better result than using a single large detector.

In this paper, a hybrid architecture, which is composed by the hidden Markov
model and neural network, is developed. The hybrid architecture is designed to
monitor the system calls used by the active, privileged process. The hybrid
architecture can greatly reduce the detection time and simplify the design of the
software. The profile database, which is a key component in the Warrender et al. [7]
and Y. Qiao et al. [9] method, consumes lots of the system’s rare resources. In our
method, the profile database will be deleted and the final detection is decided by the
neural work. So the detection speed will be greatly increased and many computer
resources are saved.

The rest of this paper is organized as follows. In Section II, we give a brief
introduction to the hidden Markov model and neural network. The overall design
composed of hidden Markov model and neural network is described in Section III.
Experimental results are shown in Section IV. Section V is the conclusions.

2 Brief Introduction to the HMM and the Neural Network

2.1 HMM Theory "

The HMM is a very powerful statistical method of characterizing the observed data
sample arranged in a discrete-time series. It has the ability to process nonlinear and
time-variant systems and is viewed as a double-embedded stochastic process.

Given a form of HMM of the previous section, there are three basic problem of
interest that must be solved for the model to be useful in real-world applications.
These problems are the following:
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Problem 1: Given the observation sequence 0O=0;0,...0r, and a model
A=(A,B,7), how do we efficiently compute P(Ol A ), the probability of the

observation sequence, for the given model?
Problem 2:Given the observation sequence O0=0;0,...07, and a model

A=(A,B,7n), how do we choose a corresponding state sequence Q=qq>...qr
which is optimal in some meaningful sense (i.e., best “explains” the observations)?
Problem 3: how do we adjust the model parameters A = (A, B,71) to maximize

P(OIA).

Problem 1 is the evaluation problem, namely given a model and a sequence of
observations, how do we compute the probability of which the observed sequence was
produced by the model. We can also view the problem as one of scoring how well a
given model matches a given observation sequence. The latter viewpoint is extremely
useful.

Problem 2 is the one in which we attempt to uncover the hidden part of the model,
i.e., to find the “correct” state sequence. It should be clear that for all but the case of
degenerate models, there is no “correct” state sequence to be found. Hence for
practical situations, we usually use an optimality criterion to solve this problem as
best as possible. Unfortunately, as we still see, there are several reasonable optimality
criteria that can be imposed, and hence the choice of criterion is a strong function of
the intended use for the uncovered state sequence.

Problem 3 is the one in which we attempt to optimize the model parameters so as
to best describe how a given observation sequence comes about. The observation
sequence used to adjust the model parameters is called a training sequence since it is
used to “train” the HMM. The training problem is the crucial one for most
applications of the HMM, since it allows us to optimally adapt model parameters to
the observed training data, i.e., to create best model for real phenomena.

To solve these problems, Forward-Backward Algorithm, Baum-Welch Algorithm
and Viterbi Algorithm were developed. Forward-Backward  Algorithm was
developed to solve the first problem: namely, given the observation sequence

0=0,0,...07, and a model A =(A,B,7), it was used to efficiently compute
P(Ol A )the probability of the observation sequence. Viterbi Algorithm was
developed to solve the second problem: namely, given the observation sequence
0=0,0,...07, and a model 4 = (A, B,7), it was used to choose a corresponding

state sequence Q=gq;q,...qr which is optimal in some meaningful sense. Baum-Welch
Algorithm was developed to solve the third problem, namely, it was used to adjust the

model parameters A = (A, B,7) to maximize P(Ol A ). In fact, the Baum-Welch
Algorithm acted as the HMM training algorithm to maximize P(OI A ).

2.2 Forward-Backward Algorithm

Forward-Backward Algorithm consider the forward variable @0, (i) defined as

a,(i)=P(0,0,-0,,q, =S, )
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i.e., the probability of the partial observation sequence, O;0,...0,, (until time ¢ )
and state S; at time ¢ ,given the model A We can solve for Ot(i) inductively, as

follows:
I Initialization:

a,()=7b.(0,), 1<i<N

II Induction:

N

a,,(j)= [2 a,(j)a, }b,- ©,.,)
i=1

l:i: N1:¢t:T-1

III Termination

PO12)=Y (i)

Step I initializes the forward probabilities as the joint probability of state S; and
initial observation O; . The induction step is the heart of the forward calculation. Step

IIT gives the desired calculation of P(OIl A ) as the sum of the terminal forward

variables 0, (j).

2.3 Neural Networks

The neural network consists of a collection of processing elements that are highly
interconnected and transform a set of inputs to a set of desired outputs. The result of

Pre-processing Combining
Model detection model
Training
o p Data > Hidden
rocess Markov Model
Z
Q
: v I
=
= System call Neural
2 record Network
w)
=1
e+l
v v
System call Detection
sequence Model

Fig. 1. The Combined detection model
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the transformation is determined by the characteristics of the elements and the
weights associated with the interconnections among them. By modifying the
connections between the nodes, the network is able to adapt to the desired
outputs[13].

A neural network conducts an analysis of the information and provides a
probability estimate that the data match the characteristics that have been trained to
recognize. While the probability of a match determined by a neural network can be
100%, the accuracy of its decisions relies totally on the experience the system gains in
analyzing examples of the stated problem.

The neural network gains the experience initially by training the system to
correctly identify reselected examples of the problem. The response of the neural
network is reviewed and the configuration of the system is refined until the neural
network’s analysis of the training data reaches a satisfactory level. In addition to the
initial training period, the neural network also gains experience over time as it
conducts analyses on data related to the problem.

3 The HMM and the Neural Network Based Intrusion Detection
Model

3.1 Neural Networks

The model is composed of two components: the first component is hidden Markov
model; the other is neural network, as is shown in Fig.1.

For the hidden Markov model, there are two important algorithms that are key to
the intrusion detection model, namely the Baum-Welch algorithm and Viterbi
algorithm. The Baum- Welch algorithm is used to compute the output. We use a
HMM with 21states to perform the experiment. Data for training the prototype is
generated by monitoring the system calls used by active, privileged process.

In the neural network, the number of hidden layers, and the number of nodes in the
hidden layers, was determined based on the process of trial and error. In our
experiment, 5-layer and feed-forward BP neural network are used. The first layer,
second layer and third layer apply a Tausig transfer function to the various connection
weights. And the fourth layer and fifth layer apply a Sigmoid transfer function (1/(1 +
exp (—x))) to the various connection weights. The neural network is designed to
provide an output value of 0.0 in the output layer when the analysis indicated no
attack and 1.0 in the output layer in the event of an attack. Data for training and
testing the prototype is generated by the HMM.

3.2 Intrusion Detection Method

Every program implicitly specified a set of system call sequences that it can produce.
These sequences are determined by the ordering of system calls in the set of the
possible execution paths. In this model, the system calls are monitoring by a program
designed by the Hunan technology University and the system call sequences are
recorded.
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First, part of the system call sequences are used to training the HMM. To train the
HMM, the Baum-Welch Algorithm is used.

Baum-Welch Algorithm[12]

Here we present the Baum-Welch re-estimation formulas:

mi=r(i)<i<N
_ T-1 T-1

a; =Y &G, NI r i)
t=1 =1

biky= Y r(NI¥r)

0,=k

If we denote the initial model by A and re-estimation model by A consisting of the
parameters estimated above, then it can be shown that either:

P(olA)>P(olA)

When the HMM has been trained, all the system call sequences are input to the
HMM. Through the Viterbi Algorithm, the HMM will output sequences that have n
different symbols. N is the number of the HMM states and it is greatly less then the
number of symbols in the original sequences. Those sequences with n different
symbols can express the intrinsic difference between normal action and intrusion
behavior more tersely and stably than the original sequences[9].

Viterbi Algorithm[11]:

Viterbi Algorithm is famous algorithm to find / that will maximize P(O, /A ). It

is inductive algorithm in which at each instant you keep the best (i.e. the one giving
maximum probability) possible state sequence for each of the N states as the
intermediate state for the desired observation sequence O=0;0,...O7. In this way you
finally have the best path for each of the N states as the last state for the desired
observation sequence. Out of these, we select one that has highest probability.

P(O,1/ )= P(O/LA)P(/A) = 2,b,(0)a, b, (0,)+a, b (O;)

hia "1
Now we define

T
Ulipiy...,ir)= — [[n(ﬂil b, (0))+ Y In(a; ;b, (O, ))}
t=2
Then it is easily seen that
PO, /A ) = exp(-U(i, iy, - i, ))
Consequently the problem of optimal state estimation, namely,
max p(o,i, iy, ,i;/A)
{il /1:1
becomes equivalent to
minU(i;,i,, iy )

{il /1:1
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Now the Viterbi Algorithm can be used a dynamic programming approach for
minimizing U(i},i,,...,i7). So the Viterbi Algorithm has four steps:
i. Initialization
For 1<i<N
6,(i) =—In(z;) — In(b, (0,))), ¢, (i) =0
ii. Recursive computation
For 1<i<T for 1I<i<N

5,()y=minl 8.~ In(a,) |- In(b,(0,)
0,(j)=argmin| 8, ()~ Ina,)]

iii. Termination
P =minl, ()]
I<i<N

gy =argmin(J, (1]

iv. Trace back the optimal state sequence
For t=T-1, T-2,...,1

q; = ¢z+1 (qz—l)
So the

Ed Ed * kS . .
0 =1{q,,9,, - q, }is the optimal state sequence.

After that, we must determine whether the sequence is normal or not. Due to the
excellent classification ability, the neural network is used to classify the normal
sequences and abnormal sequences. The neural network has 51 nodes in the input
layer and 1 node in the output layer. The neural network’s input is from the HMM’s
output, but the sequences generated by the HMM are different from each other in
length. So we use a sliding window of length n (the HMM’s states) with sliding (shift)
step of 5 to create the neural network’s input sequences. A long sequence is cut into a
set of short sequences with fixed length n .Then we can get the output symbols(0 or
1). To determine whether the sequence is normal or not, we must compute the number
of 0 symbol and symbol respectively. If the percentage of the 0 symbol exceeds the
threshold we put forward in advance, we may draw a conclusion that the sequence is a
normal sequence. Otherwise, if the percentage of 1 symbol exceeds the threshold, we
consider that sequence is an intrusion sequence.

4 Experiment and Results

4.1 Experiment Setup

Our data set comes from the Hunan technology University and it was considered as
the benchmark data set widely used in anomaly detection research. Each trace is the
list of system calls issued by a single process from the beginning of its execution to
the end .Each file lists pairs of numbers, one pair per line. The first number in a pair is
the PID of the executing process, and the second is a number representing the system
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call. The mapping between system calls and actual system call names is given in a
separate file. In our experiment, mail-sending system call is used as the normal data
set and syslog-local-1, syslog-local-1, syslog-remote-1,syslocal-remote-2 act as the
intrusion data.

The experiment follows these steps:

First, we use 60 percent of all the data(include normal and abnormal data)to train
the HMM.

Second, the data generated by the HMM are used to train the neural network.

The third, the other40 percent of the data are used to test the model.

Finally, we must compute the output of the neural network for each sequence.
Namely, we must compute the percentage of 0 and 1 for each sequence. If the
percentage of 1 exceeds the threshold, we should mark the sequence as an intrusion
action. On the other hand, if the percentage of 0 exceeds the threshold, we should
consider the sequence as a normal action.

4.2 Experiment Results

Through the experiment, we can see that our intrusion detection method is useful in
detecting novel intrusions.

Table 1. Detection results of normal Process

S Lrace Percent age of 1  Percent age of 0  Threshold Nor mal rate
Boun ce 0.2125 0.7875 0.6 0.99
Boun cel 0.2864 0.7136 0.6 0.95
Boun ce2 0.3001 0.6999 0.6 0.96
Send mail 0.3521 0.6479 0.6 0.95
Queue 0.2994 0.7006 0.6 0.97
Plus 0.3102 0.6898 0.6 0.94

Table 2. Detection results of abnormal Process
race
es Percentageof 1  Percentageof 0  Threshold ~ Abnormal rate

syslog-local-1 0.7107 0.2893 0.6 0.94
syslog-local-2 0.6993 0.3007 0.6 0.91
syslog-remote-1 0.7220 0.278 0.6 0.9
syslog-remote-2 0.7225 0.2775 0.6 0.93

The table 1 is the detection results of normal process and the table 2 is the
detection result of the abnormal process. Tablel shows that the combined detection
model can make detection very accurately. When the threshold is 60 per cent, the
normal rates are more than 90 per cent and the abnormal rates are less than 10
percent. Table 2 shows that our detection method is efficient to detect the anomaly
process. When the threshold is 60 per cent, the detection rates of the abnormal process
are more than 90 per cent. While the error rates are less than 10 per cent.
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Table 3. Comparing detection of anomalies

Traces Bo Gao el al. Our results
syslog-local-1 45.8% 71.07%
syslog-local-2 44.6% 69.93%
syslog-remote-1 53.5% 72.20%
syslog-remote-2 54.4% 72.25%

Through the experiment, we find that detection rate will be different when the
threshold is different. For the normal process, if the threshold is higher, the positive
error(positive error is that the normal process is branded anomaly process) rate will
be higher. But, if the threshold is too lower, the negative error (negative error is that
the abnormal process is branded normal process) rate will be increased. For the
anomaly process, the error rate will be different with the threshold also. If the
threshold is higher, the negative error rate will be increased. Otherwise, if the
threshold is lower, the positive error rate will be increased. So the choice of the
threshold is very important to the intrusion detection. For different processes, the
different thresholds can be utilized to intrusion detection and more accurate detection
rate can be achieved.

Table 3 shows the comparison of anomaly detection rate among three methods. The
results of Forrest and Bo Gao come from reference[14]. From Table 3, we can see
that our method greatly increases the anomaly process detection rate[15,16].

5 Conclusions

A combined intrusion detection method based on the HMM and the neural network is
proposed in this paper. The experiment results showed that our method is efficiently
to classify the anomaly profile from the normal profile. Comparing with other
methods based on the HMM only, our method has following advantages. First, it
needs less storage without the profile database. With the processes being used by
more and more users, the profile database will be greatly enlarged. So the profile
database will occupy much storage with the larger and larger and larger profile
database. Second, the detection speed will be faster than the other HMM based
methods. When the profile database is very large, the detection speed will be slower
as the sequence must be compared with all the records in the profile database. In our
method, if the HMM and the neural network have been trained, the detection speed
only relates with the neural network and it is constant.
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Abstract. This paper describes two methods on how to generate differ-
ent neural networks in an ensemble. One is based on negative correlation
learning. The other is based on cross-validation with negative correlation
learning, i.e., bagging with negative correlation learning. In negative cor-
relation learning, all individual networks are trained simultaneously on
the same training set. In bagging with negative correlation learning, dif-
ferent individual networks are trained on the different sampled data set
with replacement from the training set. The performance and correct
response sets are compared between two learning methods. The purpose
of this paper is to find how to design more effective neural network en-
sembles.

1 Introduction

The idea of designing an ensemble learning system consisting of many subsystems
can be traced back to as early as 1958. Since the early 1990’s, algorithms based
on similar ideas have been developed in many different but related forms, such
as neural network ensembles [1,2], mixtures of experts [3,4,5,6], various boosting
and bagging methods [7,8,9], and many others. It is essential to find different
neural networks in an ensemble because there is no improvement by combing the
same neural networks. There are a number of methods of finding different neural
networks including independent training, sequential training, and simultaneous
training.

A number of methods have been proposed to train a set of neural networks
independently by varying initial random weights, the architectures, the learn-
ing algorithm used, and the data [1,10]. Experimental results have showed that
networks obtained from a given network architecture for different initial random
weights often correctly recognize different subsets of a given test set [1,10]. As
argued in [1], because each network makes generalisation errors on different sub-
sets of the input space, the collective decision produced by the ensemble is less
likely to be in error than the decision made by any of the individual networks.

Most independent training methods emphasised independence among in-
dividual neural networks in an ensemble. One of the disadvantages of such a
method is the loss of interaction among the individual networks during learn-
ing. There is no consideration of whether what one individual learns has already

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 149-156, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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been learned by other individuals. The errors of independently trained neural
networks may still be positively correlated. It has been found that the combining
results are weakened if the errors of individual networks are positively correlated
[11]. In order to decorrelate the individual neural networks, sequential training
methods train a set of networks in a particular order [9,12,13]. Drucker et al. [9]
suggested training the neural networks using the boosting algorithm. The boost-
ing algorithm was originally proposed by Schapire [8]. Schapire proved that it is
theoretically possible to convert a weak learning algorithm that performs only
slightly better than random guessing into one that achieves arbitrary accuracy.
The proof presented by Schapire [8] is constructive. The construction uses filter-
ing to modify the distribution of examples in such a way as to force the weak
learning algorithm to focus on the harder-to-learn parts of the distribution.

Most of the independent training methods and sequential training methods
follow a two-stage design process: first generating individual networks, and then
combining them. The possible interactions among the individual networks cannot
be exploited until the integration stage. There is no feedback from the integra-
tion stage to the individual network design stage. It is possible that some of the
independently designed networks do not make much contribution to the inte-
grated system. In order to use the feedback from the integration, simultaneous
training methods train a set of networks together. Negative correlation learning
[14,15,16] is an example of simultaneous training methods. The idea of negative
correlation learning is to encourage different individual networks in the ensem-
ble to learn different parts or aspects of the training data, so that the ensemble
can better learn the entire training data. In negative correlation learning, the
individual networks are trained simultaneously rather than independently or se-
quentially. This provides an opportunity for the individual networks to interact
with each other and to specialise.

In this paper, two methods are described on how to generate different neu-
ral networks in an ensemble. One is based on negative correlation learning. The
other is based on cross-validation with negative correlation learning, i.e., bagging
with negative correlation learning. In negative correlation learning, all individual
networks are trained simultaneously on the same training set. In bagging with
negative correlation learning, different individual networks are trained on the
different sampled data set with replacement from the training set. The perfor-
mance and correct response sets are compared between two learning methods.
The purpose of this paper is to find how to design more effective neural network
ensembles.

The rest of this paper is organised as follows: Section 2 describes negative
correlation learning; Section 3 explains how to introduce negative correlation
learning into cross-validation so that the bagging predictors would not be inde-
pendently trained but trained simultaneously; Section 4 discusses how negative
correlation learning generates different neural networks on a pattern classifica-
tion problem; and finally Section 5 concludes with a summary of the paper and
a few remarks.
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2 Negative Correlation Learning

Given the training data set D = {(x(1),y(1)),--, (x(NV),y(N))}, we consider
estimating y by forming an neural network ensemble whose output is a simple
averaging of outputs F; of a set of neural networks. All the individual networks
in the ensemble are trained on the same training data set D

1

F(n) = M

Ez']V:I1E(”) (1)
where F;(n) is the output of individual network ¢ on the nth training pattern
x(n), F(n) is the output of the neural network ensemble on the nth training
pattern, and M is the number of individual networks in the neural network
ensemble.

The idea of negative correlation learning is to introduce a correlation penalty
term into the error function of each individual network so that the individual
network can be trained simultaneously and interactively. The error function E;
for individual i on the training data set D = {(x(1),y(1)), -+, (x(N),y(N))} in
negative correlation learning is defined by

1
Ei= X, Ein)

1 1
= NEé\’:l

9 (F3(n) —y(n))* + Api(n) (2)
where N is the number of training patterns, E;(n) is the value of the error
function of network i at presentation of the nth training pattern, and y(n) is
the desired output of the nth training pattern. The first term in the right side
of Eq.(2) is the mean-squared error of individual network i. The second term p;
is a correlation penalty function. The purpose of minimising p; is to negatively
correlate each individual’s error with errors for the rest of the ensemble. The
parameter \ is used to adjust the strength of the penalty.

The penalty function p; has the form

pave;(n) = —_ (Fi(n) — F(n))? (3)

The partial derivative of F; with respect to the output of individual 7 on the

nth training pattern is

aEz(n) o - B B - B
OFi(n) Fi(n) —y(n) — M(F;(n) — F(n))

= (1= N(Fi(n) —y(n) + A(F(n) - y(n)) (4)

where we have made use of the assumption that the output of ensemble F'(n)
has constant value with respect to F;(n). The value of parameter A lies inside
the range 0 < A < 1 so that both (1 — \) and A have nonnegative values. BP
[17] algorithm has been used for weight adjustments in the mode of pattern-
by-pattern updating. That is, weight updating of all the individual networks is
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performed simultaneously using Eq.(4) after the presentation of each training
pattern. One complete presentation of the entire training set during the learning
process is called an epoch. Negative correlation learning from Eq.(4) is a simple
extension to the standard BP algorithm. In fact, the only modification that is
needed is to calculate an extra term of the form A(F;(n) — F(n)) for the ith
neural network.

From Eq. (4), we may make the following observations. During the train-
ing process, all the individual networks interact with each other through their
penalty terms in the error functions. Each network F; minimizes not only the
difference between F;(n) and y(n), but also the difference between F'(n) and
y(n). That is, negative correlation learning considers errors what all other neu-
ral networks have learned while training an neural network.

For A =1, from Eq.(4) we get

OE;:(n)

o) = P =y 5)

Note that the error of the ensemble for the nth training pattern is defined by

Eensemble = ;(]\14 i:1‘Fi(n) - y(n))Q (6)

The partial derivative of Fepsemple With respect to F; on the nth training pattern
is

6Eensemble 1

_ 1
OF;(n) _M(M
= 1 (F(n) — y(n) (7)

ZM Fi(n) — y(n))

In this case, we get
8E1 (TL) aEﬂensemble

dF;(n) *  OF(n)

The minimisation of the error function of the ensemble is achieved by minimising
the error functions of the individual networks. From this point of view, negative
correlation learning provides a novel way to decompose the learning task of the
ensemble into a number of subtasks for different individual networks.

(8)

3 Cross-Validation with Negative Correlation Learning

Cross-validation is a method of estimating prediction error. Cross-validation can
be used to create a set of networks. Split the data into m roughly equal-sized
parts, and train each network on the different parts independently. When the
data set is small and noisy, such independence will help to reduce the correlation
among the m networks more drastically than in the case where each network is
trained on the full data.
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When a larger set of independent networks are needed, splitting the train-
ing data into non-overlapping parts may cause each data part to be too small
to train each network if no more data are available. In this case, data reuse
methods, such as bootstrap, can help. Bootstrap was introduced as a computer-
based method for estimating the standard error of a statistic s(x). B bootstrap
samples are generated from the original data set. Each bootstrap sample has n
elements, generated by sampling with replacement n times from the original data

set. Bootstrap replicates s(z*!), s(x*?),...,s(x*P) are obtained by calculating
the value of the statistic s(z) on each bootstrap sample. Finally, the standard
deviation of the values s(x*!), s(z*?), ..., s(z*?) is the estimate of the standard

error of s(x). The idea of bootstrap has been used in bagging predictors. In
bagging predictors, a training set containing N patterns is perturbed by sam-
pling with replacement N times from the training set. The perturbed data set
may contain repeats. This procedure can be repeated several times to create a
number of different, although overlapping, data sets.

One of the disadvantages of bagging predictors is the loss of interaction among
the individual networks during learning. There is no consideration of whether
what one individual learns has already been learned by other individuals. The
errors of independently trained neural networks may still be positively corre-
lated. It has been found that the combining results are weakened if the errors of
individual networks are positively correlated. In order to decorrelate the individ-
ual neural networks, each individual neural network can be trained by negative
correlation learning in bagging. In the origianl negative correlation learning, each
neural network is trained on the same training set. In bagging by negative cor-
relation learning, each neural network is trained on the different sampled data
with replacement from the training set.

4 Experimental Studies

This section describes the application of negative correlation learning to the
Australian credit card assessment problem. The problem is to assess applications
for credit cards based on a number of attributes. There are 690 patterns in total.
The output has two classes. The 14 attributes include 6 numeric values and 8
discrete ones, the latter having from 2 to 14 possible values. The Australian
credit card assessment problem is a classification problem which is different
from the regression type of tasks, such as the chlorophyll-a prediction problem,
whose outputs are continuous. The data set was obtained from the UCI machine
learning benchmark repository. It is available by anonymous ftp at ics.uci.edu
(128.195.1.1) in directory /pub/machine-learning-databases.

Experimental Setup. The data set was partitioned into two sets: a training
set and a testing set. The first 518 examples were used for the training set,
and the remaining 172 examples for the testing set. The input attributes were
rescaled to between 0.0 and 1.0 by a linear function. The output attributes of all
the problems were encoded using a 1-of-m output representation for m classes.
The output with the highest activation designated the class.
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Table 1. Comparison of error rates among negative correlation learning (NCL) and
bagging with NCL on the Australian credit card assessment problem. The results were
averaged over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two dif-
ferent combination methods used in negative correlation learning. Mean, SD, Min and
Mazx indicate the mean value, standard deviation, minimum and maximum value, re-

spectively.
Simple Averaging Winner-Takes-All

Error Rate Training Test Training Test

NCL Mean 0.0679 0.1323 0.1220 0.1293
SD 0.0078 0.0072 0.0312 0.0099
Min 0.0463 0.1163 0.0946 0.1105
Max 0.0772 0.1454 0.1448 0.1512

Bagging with NCL Mean 0.0458 0.1346 0.0469 0.1372
SD 0.0046 0.0111 0.0243 0.0104
Min 0.0367 0.1163 0.0348 0.1105
Max 0.0579 0.1570 0.0541 0.1628

The ensemble architecture used in the experiments has four networks. Each
individual network is a feedforward network with one hidden layer. All the indi-
vidual networks have ten hidden nodes.

Experimental Results. Table 1 shows the average results of negative correla-
tion learning and bagging with negative correlation learning over 25 runs. Each
run of the experiments was from different initial weights. The simple averaging
was first applied to decide the output of the ensemble system. For the simple
averaging, the results of bagging with negative correlation learning were slightly
worse than those of negative correlation learning.

In simple averaging, all the individual networks have the same combination
weights and are treated equally. However, not all the networks are equally im-
portant. Because different individual networks created by negative correlation
learning were able to specialise to different parts of the testing set, only the out-
puts of these specialists should be considered to make the final decision of the
ensemble for this part of the testing set. In this experiment, a winner-takes-all
method was applied to select such networks. For each pattern of the testing set,
the output of the ensemble was only decided by the network whose output had
the highest activation. Table 1 shows the average results of negative correlation
learning and bagging with negative correlation learning over 25 runs using the
winner-takes-all combination method. The winner-takes-all combination method
improved negative correlation learning because there were good and poor net-
works for each pattern in the testing set and winner-takes-all selected the best
one. However it did not improved bagging with negative correlation learning.

In order to see how different neural networks generated by negative correla-
tion learning are, we compared the outputs of the individual networks trained
by negative correlation learning and bagging with negative correlation learning.
Two notions were introduced to analyse negative correlation learning. They are
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Table 2. The sizes of the correct response sets of individual networks created respec-
tively by negative correlation learning (NCL) and bagging with NCL on the testing set
and the sizes of their intersections for the Australian credit card assessment problem.
The results were obtained from the first run among the 25 runs.

NCL 21 =147 (22 =150 (25 =138 (24 =142 (215 =142
213 =126 (214 = 136 (223 = 125 (224 = 136 (234 = 123
(2103 = 121 (2104 = 134 (134 = 118 (2934 = 118 (21234 = 116
Bagging with NCL 2, =150 29 =145 (23 =137 (24 =143 (21> =140
(213 =132 (14 = 138 (o3 = 127 (294 = 132 (234 = 128
2193 = 125 2124 = 128 (134 = 125 (2234 = 120 (21234 = 118

the correct response sets of individual networks and their intersections. The cor-
rect response set S; of individual network i on the testing set consists of all
the patterns in the testing set which are classified correctly by the individual
network ¢. Let {2; denote the size of set S;, and (2;,;,...;, denote the size of set
Si, NS, N---NS;,. Table 2 shows the sizes of the correct response sets of indi-
vidual networks and their intersections on the testing set, where the individual
networks were respectively created by negative correlation learning and bagging
with negative correlation training. It is evident from Table 2 that different indi-
vidual networks created by negative correlation learning were able to specialise
to different parts of the testing set. For instance, in negative correlation learning
with pave, in Table 2 the sizes of both correct response sets S; and S3 were
147 and 138, but the size of their intersection S; N S3 was 126. The size of
S1NS2NS3N S, was only 116. In comparison, bagging with negative correlation
learning can create rather different neural networks as well.

5 Conclusions

This paper describes negative correlation learning and bagging with negative
correlation learning for generating different neural networks in an ensemble.
Negative correlation learning can be regarded as one way of decomposing a large
problem into smaller and specialised ones, so that each subproblem can be dealt
with by an individual neural network relatively easily. Bagging with negative
correlation learning were proposed to encourage the formation of different neural
networks.

The experimental results on a classification task show that both negative cor-
relation learning and bagging with negative correlation learning tend to generate
different neural networks. However, bagging with negative correlation learning
failed in achieveing the expected good generalisation. More study is needed on
how to make bagging more efficient by negative correlation learning.
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Abstract. New algorithm was devised to speed up the convergence of
backpropagation networks and the Bayesian Information Criterion was
presented to obtain the optimal network structure. Nonlinear neural network
problem can be partitioned into the nonlinear part in the weights of the hidden
layers and the linear part in the weights of the output layer. We proposed the
algorithm for speeding up the convergence by employing the conjugate gradient
method for the nonlinear part and the Kalman filter algorithm for the linear part.
From simulation experiments with daily data on the stock prices in the Thai
market, it was found that the algorithm and the Bayesian Information Criterion
could perform satisfactorily.

1 Introduction

Backpropagation (BP) method, discovered at different times by Werbose [1], Parker
[2], and Rumelhart et al. [3], is a supervised learning technique for training multilayer
neural networks. The gradient descent (steepest descent) method is used to train BP
networks by adjusting the weights in order to minimize the system error between the
known output given by user (actual output) and the output from the network (model
output). To train a BP network, each input pattern is presented to the network and
propagated forward layer by layer, starting from the input layer until the model output
is computed. An error is then determined by comparing the actual output with the
model output. The error signals are used to readjust the weights in the backward
direction starting from the output layer and backtracking layer by layer until the input
layer is reached. This process is repeated for all training patterns until the system error
converges to a minimum.

Although the BP method is widely and successfully used in many applications
[4, 5, 6], there have been several problems encountered. One is its slow convergence,
with which many iterations are required to train even a simple network [7]. Another
problem is how to determine the appropriate network structure for a particular
problem. Generally, trial-and-error is used to determine the structure of a network in
practice.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 157 -166, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Normally, the number of nodes in the input and output layers depend upon the
application under consideration. Moreover, one hidden layer suffices for many
applications [8, 9]. Therefore, for the appropriate network structure, the remaining
problem is how to obtain the number of hidden nodes.

XL-1.1

AN

Xjk X719
Q

Xj-12

Xian XraN

/

EFror Error

Hidden Layers Output Layer

Fig. 1. Linear portions of a neuron in the hidden and output layers (in dotted blocks) [10]

In this paper, we present the algorithm for speeding up the convergence rate of BP
networks and the method for choosing the optimal network structure. Experimental
results of our simulation studies are given to assess the performance of these methods.

In the following section, we present the algorithm for speeding up the
convergence. In Section 3, the method to determine the optimal network structure
based upon the Bayesian Information Criterion (BIC) is described. Experimental
results are presented in Section 4 for demonstrating the capability of the algorithms
and the BIC. Finally, conclusions are given in Section 5.

2 Proposed Algorithm for Speeding Up the Convergence

Even though the original nonlinear problem is reduced to a linear problem that can
readily be solved using Kalman filter (KF) (See Fig. 1), the KF algorithm still uses error
signals generated by the BP algorithm to estimate the actual pre-image outputs of the
hidden layers [10]. Since they are only known at the output layer, the actual pre-image
outputs are estimated in the same way as in the BP algorithm at the hidden layers.

By partitioning the nonlinear neural network problem into the nonlinear part in the
weights of the hidden layers and the linear part in the weights of the output layer, we
propose a new algorithm obtained by combining the conjugate gradient method and
the KF algorithm. The conjugate gradient method, which represents a major
improvement over steepest descent with only a marginal increase in computational
effort [11], is employed to solve the nonlinear part and the KF algorithm is employed
to solve the linear part.

The system error (overall patterns) between the actual and model pre-image
outputs at the output layer is given as:
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(dpk_prk)z 1)

where d , and y,, are the actual and model pre-image outputs for the kth node in the
output layer L at the pth training pattern, respectively, M is the total number of
training patterns (number of data points) and A, is the number of nodes in the output

layer. Substituting the model pre-image output at the output layer, Eq. 1 becomes

1 M N, Ny Ny, 2 (2)
E =EZ [dpk - ZWLkif(zWL—],ilxp.L—Z,[ J]
=

k=1 i=0 1=0

where x,, ,, is the model output for the /th node in layer L-2 at the pth training pattern.
Equation 2 is substituted with x,, ,, until the input layer. It is noted that the model pre-
image output at the output layer is linear in the weights of the output layer, but still
nonlinear in the weights of the hidden layers.

The conjugate gradient method is employed to solve the nonlinear problem in the
weights of the hidden layers and then the KF algorithm is employed to find the
weights of the output layer. Minimizing the system error E with respect to the weights
for the kth node in the output layer results in

oE

= o
oWy,
fori=0through NV, ,.
As JE = L )
ow,; 9y pLk oW,
oE ud
we have w = _Z (dpk ~ Yok )‘xp,L—l,i =0 )
Wik p=1

Equation 3 can be rewritten as

M M
Z dpkxp,Lfl,i = Z YprkXp.L-1,i
p=l1 p=l1

Substituting the model pre-image output at the output layer by its expression gives:

M M Np_,
dekxp,L—l,i = Z Z WX pr-1,% i1
p=1 p=l r=0
M M Ny 4
or _
Z dpkxp,Lfl,i - z xp,Lfl,i z WLerp,Lfl,r ( )
p=1 p=l1 r=0
Changing the summation on the right-hand side to a vector in Eq. 4, we have
M M
_ T
Z dpkxp,Lfl,i - Z xp,Lfl,ixp,Lflek (5)
p=1 p=1
fori=0through NV, ,.
M
.. : .
Defining R= z X, X0

p=1

M
and p:dekxp’L_l
p=1
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Then Eq. 5 becomes  p =Rw ,,
or w,=R"'p
This results in the proposed algorithm, which can be summarized as follows:
1. Randomize all weights and biases as well as set the initial value to the inverse
matrix R, where R is the correlation matrix of the model outputs in the last

hidden layer.

2. For each training pattern pair (x,, 0,) where x , is the input vector and o, is the

actual output vector at the pth training pattern:
(a) Calculate the model pre-image output y,, and the model output x,, starting with
layer j from 1 and proceeding layer by layer toward the output layer L for every
node k. In this case, the sigmoid function is selected as an activation function:

Vi = pr,j—l,iwjki
i=0
1

I+exp(=py ;)

where N, is the number of nodes in the jth layer and p is the sigmoid slope.
(b) Calculate the error signals for the weights at the output layer L and backtracking
layer by layer from L-1 through 1:

—_— 1 —_—
- f (prk xopk - ka) - ka (1 - xka xopk - 'xka)
(yp}k)z p/+l i j+ll k— pjk( p}k)z p/+l i j+1 ik

(c) Calculate the gradient vector for each layer j from 1 through L-1:
oE
VE ( Jk ) =

€k X p,j-1
a ?k pJ psJ
where r denotes the present iteration number.
3. Calculate the gradient vector of all training patterns for each layer j from 1

through L-1: VE(w;k)z iVEP (W}k)
=

xjk :f(ypjk)z

where M is the total number of training patterns.
4. Calculate the search direction for each layer j from 1 through L-1:

=-VE (w N )
if ¢ is the first iteration or an integral multiple of the dimension of w; otherwise
=-VE(w', )+ B's";!
where §'is computed using a form of Fletcher-Reeves [12], Polak-Ribiere [13],
or Hestenes-Stiefel [14].
5. Calculate the learning rate (step size) A’ determined by an approximate line search
to minimize the error function E(w'+As’) along the search direction s’ at the rth

iteration.
6. Update the weight vector for each hidden layer j from 1 through L-1:

wt+1_w +/1t t

7. For each training pattern:
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(a) Calculate the model pre-image output y,, and the model output x,, starting with
the layer j from 1 through the output layer L.

(b) Calculate the Kalman gain k,, and update the inverse matrix R;Ll for the output

-1
R])Lx]I.L—]

k =
rL T -1
bL + xp,LflRppr,Lfl

-t T I
R])L - lR k])pr,L—]R L

pL - pL

layer L:

where b, is the forgetting factor of the output layer.
(c) Calculate the actual pre-image output at the output layer:

1
b= o) of |

1—0M

(d) Update the weight vector at the output layer L:

t+1 t
Wy =Wp t ka (dpk = Yk )ﬂ’L
where /, is the learning rate of the output layer.
8. Repeat steps 2-7 until the system error has reached an acceptable criterion.

3 Proposed Method for Optimal Network Structure

Generally, the number of nodes in the input and output layers depend upon the
application under consideration. In most applications, BP network with one hidden
layer is used [8, 9]. Thus, the important and difficult problem is how to choose the
number of hidden nodes. The optimal number of hidden nodes is usually determined
by trial-and-error, which starts with choosing an architecture of the network based on
experience and tests the network performance after each training phase. This process
is continued as long as the network performance increases and stopped whenever the
network performance begins to decrease.

Basically, network complexity measures are useful both to assess the relative
contributions of different models and to decide when to terminate the network
training. The performance measure should balance the complexity of the model with
the number of training data and the reduction in the mean squared error (MSE) [15].

Since different numbers of parameters may be involved [16], a straight MSE
cannot be used to compare two different models directly. Instead of the MSE, Akaike
Information Criterion (AIC) [17] and Bayesian Information Criterion (BIC) [18, 19]
can be employed to choose the best among candidate models having different
numbers of parameters. While the MSE is expected to progressively improve as more
parameters are added to the model, the AIC and BIC penalize the model for having
more parameters and therefore tend to result in smaller models. Both criteria can be
used to assess the overall network performance, as they balance modelling error
against network complexity. The AIC, proposed by Akaike [17], has been extensively
used. This criterion incorporates the parsimony criterion suggested by Box and
Jenkins [20] to use a model with as few parameters as possible by penalizing the
model for having a large number of parameters. The simplified and most commonly
used form of the AIC is as follows:

AIC = MIn(MSE) +2 P ©)
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where M is the number of data points used to train the network, MSE is the mean
squared error, and P is the number of parameters involved in the model. In Eq. 6, the
first term is a measure of fit and the second term is a penalty term to prevent over-
fitting. When there are several competing models to choose from, select the one that
gives the minimum value of the AIC.

Even if it is commonly used, when viewed as an estimator of the model order, the
AIC has been found to be inconsistent [21]. Another model selection criterion, known
as the Bayesian Information Criterion (BIC) or the posterior possibility criterion
(PPC), was developed independently by Kashyap [18] and Schwarz [19]. The BIC
can be expressed as follows:

BIC = M In(MSE) + P In(M)

The BIC also expresses parsimony but penalizes more heavily than the AIC models
having a large number of parameters. As for the AIC, one selects the model that
minimizes the BIC. It is known that the BIC gives a consistent decision rule for
selecting the true model. As the BIC is more consistent [21], we propose a new
method to systematically determine the optimal number of hidden nodes using a
procedure that gradually increases the network complexity and employs the BIC for
terminating the training phase. The proposed algorithm can be summarized as
follows:

1. Create an initial network with one hidden node and randomize the weights.
Train the network using with a chosen method e.g. the original BP algorithm, or
the proposed algorithm described in Section 2 until the system error has reached
an acceptable error criterion. A simple stopping rule is introduced to indicate the
convergence of the algorithm. It is based upon the relative error of the sum of
squared errors (SE): SE(t +1) —SE()
SE()

<g

where €, is a constant that indicates the acceptable level of the algorithm and
SE(r) denotes the value of SE at iteration .
3. Check for terminating the training of the network. A termination criterion is
suggested based on the relative BIC:

BIC(k +1)-BIC(k)
BIC(k)

where €, is a constant that indicates the acceptable level for the structure of the

network and k denotes the number of hidden nodes. If the relative BIC is less than

or equal to €, or the current BIC is greater than the previous, go to step 4;
otherwise add a hidden node and randomize the weights then go to step 2.

4. Reject the current network model and replace it by the previous one, then

terminate the training phase.

4 Experiment

4.1 Data Employed

The stock market is an important institution serving as a channel that transforms
savings into real capital formation. It will stimulate economic growth and also
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increases the gross national product (GNP). In this study, daily data on the stock
prices and volumes in the Thai market from 1993 to 1996 were used. For the gap from
Friday to Monday (weekend) and holidays when the stock exchange is closed, the
data are treated as being consecutive. Three different types of common stocks;
namely, Bangkok Bank Public Company Limited (BBL) in the banking sector, Shin
Corporations Public Company Limited (SHIN) in the communication sector, and
Land and Houses Public Company Limited (LH) in the property development sector,
were selected.

The data were obtained from the Stock Exchange of Thailand (SET). In each case,
the data are divided into a calibration part for training and validation part for testing:
1993 to 1994 and 1995 to 1996, respectively. Before being presented to the network,
the data are transformed by a linear (affine) transformation to the range [0.05, 0.95].
In this study, the input to the network may consist of the past values of stock price (P)
and stock volume (V). The stock price at time #+1 is treated as a function of past
values of stock price at times ¢, #-1, and #-2 and stock volume at times ¢, -1 and #-2 as
follows:

P(t+1) = @ (P(1), P(t-1), P(t-2), V(¢), V(t-1), V(1-2))
where ¢ stands for “function of”.

4.2 Experimental Conditions

To compare the performance of the algorithms, the same initial weights were used.
During the training process, both the learning rate and temperature learning rate
constants were set to 0.01 to avoid oscillation of the search path. The momentum and
temperature momentum constants were chosen to be 0.5 to smooth out the descent
path. The forgetting factor of 0.99 was found suitable. The temperature of each
neuron was set at random to lie within a narrow range of [0.9, 1.1]. The sigmoid slope
was set to 1. An architecture of the 6-1-1 network consisting of 6 input nodes, 1
hidden node, and 1 output node was selected as the initial network. We employed the
proposed algorithm as described in Section 3 for training the network to demonstrate
the determination of the number of hidden nodes. The values adopted for €, and €,
were 0.0001 and 0.01, respectively. The conjugate gradient method employed the
approximate line search method with backtracking by quadratic and cubic
interpolations of Dennis and Schnabel [22] to find the optimal step size. For
calculating the search direction, the formula of Fletcher-Reeves [12] was used, based
on preliminary experiments.

4.3 Performance Criterion

For measuring the performance of a given model, we employ the efficiency index (EI)
defined by Nash and Sutcliffee [23]:

M A2
EI:{ST—Z(yi —yi) ]/ST
i=1

M M 2
ST = Z[y,» —(UM)Y, yi]

i=1

where ST = Total variation,
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Actual output, i.e. observed value at time i,

Vi
y, = Model output, i.e. forecast value at time i,
M = Number of data points.

4.4 Results

As mentioned in Section 3, we selected the algorithm described in Section 2 for
training the network by using the BIC to obtain the optimal structure. The algorithm is
terminated when the relative BIC is less than or equal to €,, or the current BIC is
greater than the previous one. The algorithm is stopped with the structure 6-4-1 (6
input nodes, 4 hidden nodes, and one output node). Thus the 6-3-1 network is the best
as shown in Table 1 for all data sets.

Earlier, Sureerattanan and Phien [24] proposed an algorithm (referred to as
Algorithm 1) to speed up the convergence of BP networks by applying the adaptive
neural model with the temperature momentum term to the KF algorithm with the
momentum term. With the optimal structure obtained from the BIC method, we
compare between BP, KF, CG (conjugate gradient), Algorithm 1, and the proposed
algorithm (referred to as Algorithm 2). Figures 2-4 show the learning curve between
these system error and the iteration numbers for the algorithms during training of
BBL, SHIN, and LH, respectively. The calculated results of the efficiency index of
each algorithm are provided in Tables 2 and 3 for training and testing phases,
respectively. The total computation time of the algorithms for their convergence is
given in Table 4. It should be noted that the KF algorithm, the CG method (except in
the case of applying to BBL), Algorithms 1 and 2 converge with small value of the
system error, but Algorithm 2 required the least computation time when convergence
is achieved.

5 Conclusions

New algorithm to speed up the convergence and a method to determine the optimal
network structure were presented. The proposed training algorithm can improve its
convergence speed since the nonlinear problem in the weights of all layers are
reduced to be nonlinear part in the hidden layers and linear part in the output layer. As
we know, solving linear problem is less time consume than that of nonlinear problem
and Kalman filter technique is employed to solve the linear problem. Moreover, the
algorithm still solves the left nonlinear problem by applying the conjugate gradient
(CG) method. The potential of CG method can overwhelmingly overcome the
gradient descent method, used in the original BP algorithm, with a marginal increase
in computation time [11]. From the above reasons, the training algorithm for solving
convergence rate is quite effective in the data employed. The experimental results
show that Algorithm 1 and the proposed algorithm (Algorithm 2) can greatly speed up
the convergence of BP networks. In fact, they are the fastest algorithms among the
methods considered, with the proposed algorithm being the best of all. Furthermore,
the Bayesian information criterion (BIC) can be employed to determine the optimal
network structure, and the best structure network also gives good performance.



New Training Method and Optimal Structure of Backpropagation Networks 165

Fig. 2. Learning curve of BBL for BP, Fig. 3. Learning curve of SHIN for BP, KF,
KF, CG, Algorithms 1 and 2 CG, Algorithms 1 and 2

Table 1. Computed values of BIC

Stock 6-1-1 6-2-1 6-3-1 6-4-1

company
BBL -3310.96 -3431.71 -3593.22 -3579.97
SHIN -3057.91 -3227.42 -3332.04 -3240.40
LH -3459.62 -3669.86 -3863.04 -3726.92

Fig. 4. Learning curve of LH for BP, KF,
CG, Algorithms 1 and 2

Table 2. Comparison between BP, KF, CG, Algorithms 1 and 2 for training phase

Stock BP KF CG Algorithm 1 Algorithm 2
company  SE EI epoch SE EI epoch  SE EI epoch SE EI epoch SE EI _ epoch
BBL 035 098 3253 022 099 402 515 072 19 021 0.99 224 022 099 341
SHIN 0.83 094 3251 0.60  0.96 459 038 097 1822 0.56  0.96 278 038 097 293
LH 032 098 3254 0.8 099 416 016 099 1406 0.19 099 342 0.13 099 455

Table 3. Efficiency indices of BP, KF, CG, and Algorithms 1 and 2 for testing phase

Stock company BP KF CG Algorithm 1 Algorithm 2
BBL 0.80 0.93 0.27 0.93 0.93
SHIN 0.95 0.94 0.98 0.96 0.98

LH 0.94 0.96 0.95 0.96 0.98

Table 4. Total computation time (in seconds) for BP, KF, CG, Algorithms 1 and 2

Stock company BP KF CG Algorithm 1 Algorithm 2
BBL 251 173 3 100 94
SHIN 250 217 220 138 77

LH 251 188 170 152 126

" In this case, the value of SE is slightly high and the algorithm gets struck to local minimum.
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Abstract. Webpage categorization has turned out to be an important topic in
recent years. In a webpage, text is usually the main content, so that auto text
categorization (ATC) becomes the key technique to such a task. For Chinese text
categorization as well as Chinese webpage categorization, one of the basic and
urgent problems is the construction of a good benchmark corpus. In this study, a
machine learning approach is presented to refine a corpus for Chinese webpage
categorization, where the AdaBoost algorithm is adopted to identify outliers in
the corpus. The standard k nearest neighbor (KNN) algorithm under a vector
space model (VSM) is adopted to construct a webpage categorization system.
Simulation results as well as manual investigation of the identified outliers reveal
that the presented method works well.

1 Introduction

Webpage categorization, which involves assigning one or more predefined categories
to a free webpage according to its content, has turned out to be one of the very
important and basic components in web information management, such as web mining,
web information retrieval, topic identification, and so on. Most webpages are text
oriented. Thus, auto text categorization (ATC) becomes the main technique used for
webpage categorization, which is also called text-based webpage categorization [1].
ATC has been studied for several years, and a number of efficient machine learning
approaches have been proposed, such as Bayesian classifiers [2], nearest neighbor
classifiers [3], decision trees [2], rule learning [4], support vector machines (SVM)[5],
ensemble learning methods [6], neural networks [7], and so on. However, for Chinese
webpage categorization as well as Chinese ATC, even though some studies have been
performed [8], because of the unique properties and difficulties of the Chinese
language, there still exist a lot of problems. One of the basic and key problems is that a
good benchmark corpus is still unavailable. A more refined corpus for the research of
Chinese webpage categorization is urgently needed.

One of the main difficulties is the existence of the outliers, which are patterns that
are either mislabeled in the training data, or are inherently ambiguous and hard to
recognize [9]. It is already known that boosting, a typical ensemble learning method
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proposed by Schapire [10], is a good method for identifying outliers. In this study, it has
been adopted to deal with learning outliers. The basic idea of this study is learning the
outliers in the original corpus at the first step and then eliminating those identified
outliers to build a refined corpus.

The k nearest neighbor (kNN) algorithm is a typical memory-based learning
methodology, where past experiences are explicitly stored in a large memory for
prediction. Thus, to make an evaluation for this study, a kNN-based webpage
categorization system is a desirable selection for comparing the performance between
the original corpus and the refined corpus. Since some of the training samples have
been eliminated in the refined corpus, the past experience will be reduced, and then the
learning model trained based on the kNN algorithm could lead to a worse performance
if those past experiences are truly correct prior knowledge. However, the results
demonstrate that the learning model trained on the refined corpus outperforms the
learning model trained on the original corpus.

The reminder of the paper is organized as follows. In section 2, the boosting-based
outlier learning process is presented. In section 3, the system description will be
introduced. In section 4, simulations as well as analyses are given. Section 5 is the
conclusion.

2 Learning Outliers via Boosting

2.1 Outlier Problem

In machine learning, incomplete data is a big problem. There are many possibilities that
can cause the training data to be incomplete, such as mislabeling, biases, omissions,
non-sufficiency, imbalance, noise, outliers, etc. This paper mainly tackles the outlier
problem. An outlier is a pattern that was either mislabeled in the training data, or
inherently ambiguous and hard to recognize. In the course of collecting training data,
two circumstances can occur, one is the absence of information that may truly represent
the pattern, while the other is the presence of additional information that may not be
relevant to the patterns to be recognized. The former addresses the problem of signal
collection, feature extraction or feature selection, etc., while the latter deals with noise
and outlier problems. Fig. 1 illustrates an outlier x4 in sample space X, where two
categories of patterns labeled as “*”” and “+” respectively are classified by hypersurface
h(x).

2.2 Ensemble Learning Methodologies and Boosting

In recent years, statistical ensemble methodologies, which take advantage of
capabilities of individual classifiers via some combining strategy, have turned out to be
an effective way to improve the accuracy of a learning system. In general, an ensemble
learning system contains two parts: an ensemble of classifiers and a combiner. The key
issue is how to build an ensemble based on the original training set. Usually, some
re-sampling or re-weighting technique is adopted to produce several new training data
sets through which the classifiers are trained to make up an ensemble.
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Fig. 1. A demonstration on outlier. Where X is the sample space, i(x) is the hypersurface, x, is an
outlier

One of the standard ensemble learning methods is boosting, proposed by Schipire
in 1990, which represents a family of algorithms [10]. The main idea of boosting lies in
paying more attention to hard samples in the process of ensemble construction. The
AdaBoost algorithm, introduced in 1995 by Freund and Schapire [11], solved many of
the practical difficulties of the earlier boosting algorithms and has become a more
popular boosting algorithm. In AdaBoost, hard samples are paid more attention by
receiving larger weights. The basic idea of AdaBoost is as follows. The given training
set is used to first learn a classifier, where the weight assigned to each training sample is
the same. Suppose a classifier is obtained and then re-weighting is performed, that is,
larger weights are assigned to those hard samples that are incorrectly predicted and
smaller weights to those easy samples that are correctly classified. Lastly, by training
with the re-weighted samples, a new classifier can be obtained. Repeating the above
re-weighting procedure 7-1 times produces a 7-sized AdaBoost ensemble. Using some
combination strategy, one can then build an AdaBoost ensemble learning system.

2.3 Learning Outliers via Boosting

Compared with other methods, the outlier problem is more serious in ensemble
learning systems [11][12], since the main idea of most ensemble methods is to pay
attention repeatedly to the hard samples in the training phase, while hard is the inherent
property of the outliers. Dietterich demonstrated very convincingly that when the
number of outliers becomes very large, the emphasis placed on the hard examples could
become detrimental to the performance of AdaBoost [12]. To restrain the harmful
influence of outliers, Friedman et al suggested a variant of AdaBoost called “Gentle
AdaBoost” that puts less emphasis on outliers [13]. Ritsch et al gave a regularization
method for AdaBoost to handle outliers and noisy data [14]. A so-called “BrownBoost”
algorithm was proposed by Freund that took a more radical approach to de-emphasize
outliers when they were “too hard” to be classified correctly [15]. To conquer the
limitation of the sample-based weighting strategy, which was adopted in those
outlier-solving methods mentioned above, a unit-weighting strategy was proposed in
our previous studies [9].
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To tackle the outlier problem in the incomplete training data, two methods may be
used, i.e. “restrain” and “eliminate”. Those studies mentioned in the above paragraph
mainly focus on a “restrain” strategy. In this corpus refining study, however, our
viewpoint in outlier-solving is not to “restrain” but only “eliminate”. In spite of what
kind of strategy is used for tackling the outlier problem, the first step is to find the
outliers in the incomplete training samples.

An AdaBoost-based outlier learning procedure is presented as illustrated in Fig. 2.,
where four subfigures describe a boosting learning process in sequence on a binary
classification problem. Fig. 2(a) expresses a sample space where two categories of
patterns are labeled as “*” and “+” respectively. After several iterations, the sample
space will be divided by a decision boundary of the combined classifier shown as the
solid black curve in Fig. 2(b), where those samples that are misclassified or near the
decision boundary are comparatively hard samples and hence get a higher weight, such
as patterns Py, P, and Ny, etc., where P and N stand for positive and negative
respectively. The diameters of the circles that have the corresponding samples as their
centers are proportional to the weights of those patterns. In order to simplify the
problem, only those relevant samples’ weights (which are mainly “*”-labeled class
patterns) are illustrated in Fig. 2. As the boosting ensemble-construction process
continues, the learning system reaches the state shown in Fig. 2(c), where those
samples such as P; and P, that are misclassified by previous ensemble classifiers have

Fig. 2. Illustration of the outlier learning process
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been correctly classified and thus, their weights decrease. And those samples such as P
get higher weights since they are still misclassified by the current component
classifiers.

At the same time, the patterns of the other class such as N; and Nj get higher weights
since they are now closer to the decision boundary. When reaching the state illustrated
in Figure 3(d), it can be observed that the decision line moves closer to those samples
such as Pj, but still, they are misclassified. Thus, very large weights are assigned to
them, and in fact, they are outliers.

Usually, some criteria will be adopted to stop the learning process as well as fix outliers,
such as iteration times, weight value level, error rate, etc. Then, when the learning process
is completed, outliers could be identified according to the selected criteria.

In this study, the centers for each category are firstly calculated, and then the nearest
neighbor algorithm is used as weak classifier for the AdaBoost learning process. The
iteration times is set to 10 for stopping the learning process, and a weight value
threshold method is adopted for mark the outliers according to formula (1).
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=N
Wik o

Wy <a . )
where N, is the number of webpages in category k, wy is the weight value of ith
webpage in category k, and ¢, is the predetermined experimental threshold which is
set to 0.2 in our simulations. In other words, for the ith webpage in category k, if its
calculated value ¢, is less than ¢, = 0.2, it will be marked as an outlier.

3 System Description

3.1 Webpage Representation

A webpage document written in HTML or XML etc. usually consists of plain text,
various text fonts and styles, tags, links to other webpages as well as links to image,
audio and video files, etc. In this study, we ignore all other information carriers and
only use the text content as the main information for webpage categorization. Thus, a
preprocessing step must be performed to remove all those other tags but text. However,
the key issue to the Chinese webpage categorization problem is to transform the text
document into some kind of representation that is more suitable for learning. We also
call this process webpage representation, which includes two steps, feature extraction
and feature selection.

The most commonly used feature extraction is the vector space model (VSM) [16],
where a webpage is represented as a vector of terms, each of which may be a single
Chinese character, a Chinese word or a WordsGroup (WG). Thus, according to the ferm
frequency (TF) or other useful information of the text term, we could easily represent
the webpage as a feature vector. Those terms used to express the documents form a
dictionary. Usually, for a corpus of webpages to be handled, we would have a
word-by-document matrix A = (a;), where each element a; is the weight of term 7 in
webpage k. The number of rows of the matrix corresponds to the number of terms in the
dictionary, which is denoted as M, while the number of columns of the matrix
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corresponds to the number of webpages in the corpus, which is denoted as N. There are
several ways to determine the value of each element a;; the main goal is to search for a
more seemly representation for webpages, so that a good learning performance can be
reached. Two basic principles are usually considered in determining the value of a;.: (i)
the higher the term frequency in a webpage is, the more important it is to the category
the webpage belongs to, (ii) the higher the term frequency is in all webpages in the
corpus, the more unimportant it is [17].

The matrix A is usually sparse because each webpage only can contain a small
number of terms. Meanwhile, the number of rows of A, M, which is also the size of the
formed dictionary is typically very large. As a consequence, webpage representations
have to face the sparse and high dimensionality problem, which is another key problem
in webpage categorization tasks. A feature selection procedure therefore becomes very
important. There are several methods proposed to perform feature selection, such as DF
Thresholding, information gain (IF), mutual information (MI) and ;(2 statistics etc [2].

Unlike English and other Indo-European languages, Chinese text does not have a
natural delimiter between words, which leads Chinese word segmentation to be another
key issue in Chinese text processing tasks [18]. Thus, two common schemes were
formed in Chinese web page categorization tasks. One is single Chinese character
based mode; another is Chinese words based mode. In the Chinese language, the word
is the basic unit of a concept. Frequently, each word will contain more than one Chinese
character, although sometimes a single Chinese character will be a word. The former
scheme avoids the Chinese word segmentation problem but ignores the utilization of
the word meanings. The latter scheme encounters a more serious sparse and high
dimensionality problem because there are many more words than individual characters.
In order to improve the performance while utilizing knowledge of the Chinese
language, some additional knowledge dictionaries were imported in recent studies,
such as a thesaurus dictionary, etc. In this paper, a new scheme so-called WordsGroup
(WG) is adopted which was introduced in our previous studies [19], where knowledge
of Chinese linguistics was imported according to The Modern Chinese Classification
Dictionary [20]. In the WG scheme, there are about 49,000 words classified to 3,717
WordGroups, which are the selected terms for webpage representation. That means a
webpage can be represented as a 3,717 dimensional vector. In contrast, using two
traditional schemes, without extra processing, the feature vector dimension will be
about 6,000 and 10,000, respectively. Thus, the WG scheme becomes a desirable
representation for webpages and we chose it for our studies because of the following
two reasons. First, our previous studies have shown that the WG scheme outperforms
two traditional schemes in webpage categorization problems [19]. Secondly, in this
scheme, the feature vectors have a fixed and comparably lower dimension such that
extra processing is not required any more.

3.2 kNN-Based Webpage Categorization System

kNN is one of the top-performing methods for the webpage categorization task. The
procedure for building a kNN-based webpage categorization system is very simple. In
the training phase, all feature vectors extracted from the training webpages are stored in
a large memory. When classifying an input test webpage, the same representation
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processes are performed on it as during model building. The similarity between the test
webpage and every stored feature vector are measured by some distance metric such as
the Euclidean distance or the cosine distance, based on which k nearest neighbors can
be obtained. By sorting the scores of candidate categories, a ranked list is obtained for
the test webpage.

In such a memory-based learning system, more training webpages means more past
experiences and more prior knowledge from which the system can learn. Thus, a model
based on the refined corpus could potentially perform worse because it contains less
training samples. Our purpose is to prove that although the refined corpus has less “past
experience”, the model trained on it still outperforms the model trained on the original
corpus. If this case happens, we could conclude that the refined corpus is truly better
than the original corpus by eliminating outliers in the original corpus, and those
eliminated outliers could be regarded as error or abnormal “past experience”.

4 Simulations

4.1 Original Corpus and the Refined Corpus

The YQ-WPBENCH-V1.0 corpus is a webpage database for the webpage
categorization task, which was first collected for an automatic Chinese webpage
categorization competition hosted by the Computer Network and Distributed Systems
Laboratory at Peking University in 2003. Thereafter, it was freely provided for research
on webpage categorization tasks. It contains 12,533 webpages that are to be classified
into 11 categories, in which 9,905 webpages were randomly selected as the training
data set and the remaining 2,628 webpages were used for the test data.

Table 1 shows information regarding the 11 categories of the original corpus, where
for a fixed category label, its category name, number of training webpages as well as
number of test webpages are indicated. Apparently the corpus is imbalanced.

Table 1. Category information of the corpus

Category No. Name of Category Size of Training Set Size of Test Set
01 Literature and Art 378 97
02 Journalism 118 17
03 Commerce and Economy 781 201
04 Entertainment 1,417 356
05 Government and Politics 259 76
06 Society and Culture 987 278
07 Education 276 79
08 Natural Science 1,693 443
09 Social Science 1,567 425
10 Computer and Internet 792 210
11 Medical and Health 1,637 446

Total - 9,905 2,628
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Through elimination of the learned outliers, the refined corpus was obtained. Table
2 shows the comparison between the original corpus and the refined corpus. Here, the
number of outliers also refers to the number of webpages in the original corpus that
have been eliminated from the corresponding category after outlier learning. From
Table 2, one can see that altogether 597 webpages were learned as outliers and were
eliminated from the original 12,533 webpages’ corpus; about 5% of the original
training webpages were removed.

Table 2. The number of webpages in the original corpus and the refined corpus as well as the
number of identified outliers

Categor Original Corpus Identified Outliers Refined Corpus
y No. Training Set  Test Set  Training Set  Testset  Training Set  Test Set
01 378 97 14 3 364 94
02 118 17 8 1 110 16
03 781 201 16 4 765 197
04 1,417 356 99 6 1,318 350
05 259 76 4 4 255 72
06 987 278 68 13 919 265
07 276 79 6 0 270 79
08 1,693 443 118 14 1,575 429
09 1,567 425 118 19 1,449 406
10 792 210 29 1 763 209
11 1,637 446 26 26 1,611 420
Total 9,905 2,628 506 91 9,399 2,537

4.2 Performance Comparison

Measure. The evaluation of the performance of a webpage categorization system is
based on two aspects: one is the performance on each category, and the other is the
overall performance. Three commonly used indexes Precision, Recall and F1 have
been introduced to measure different aspects of the learning performance on each
category [21]. Given a category labeled as 7, assume that there are n; test webpages that
belong to the category. Also, assume m; is the number of test webpages classified to
category i by the system, where /; test webpages are correctly classified. Three indexes
are expressed as below.

Precision; = l—ix 100% 2)
m;
Recall; = i><100% , 3)
n.

L

Fl = Recall ; x Precision ; X2 .

1

“

Recall ; + Precision;;

For evaluating overall performance averaged across categories, there are two
conventional methods, namely Macro-averaging and Micro-averaging [22]. For the
former, three indexes Macro-Precision, Macro-Recall and Macro-F'1 are determined as
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the global means of the local measures for each category. For the latter, n;, m; and [; are
first summed up over all i, and then three indexes Micro-Precision, Micro-Recall and
Micro-F1 can be calculated by substituting these sums into the formulas (2), (3) and
(4), where now the subscript i should be ignored. There is an important distinction
between the two types of averaging. Macro-averaging gives equal weight to each
category, while Micro-averaging gives equal weight to every webpage.

When evaluating the performance of the system, three indexes are calculated for
each category based on which overall performance could be obtained. In our
experiments, each webpage is classified to only one category and therefore, the three
indexes of Micro-averaging are the same.

Performance Comparison. Based on the original corpus and the refined corpus, two
models were trained using the kINN-based categorization system. Their performances
were compared by predicting webpages in the test set of the original corpus, where all
measures discussed above are adopted, as shown in Fig. 3.
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Fig. 3. Performance Comparison between models trained on the original corpus and the refined
corpus, where testing webpages are from the test set in the original corpus
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There are 4 subfigures in Fig. 3, Precision, Recall and F1 value of each category
between two models were compared in Fig. 3 (a), Fig. 3 (b) and Fig. 3 (c), respectively.
Fig. 3 (d) shows the overall performance comparison, where the three indexes both
under Macro-averaging and Micro-averaging are compared. As mentioned above,
under Micro-averaging, the three indexes are equivalent, so we only report comparison
results for Micro-F1 of the two models.

From Fig. 3, one can see that the model trained on the refined corpus did not
perform worse than the model trained on the original corpus. On the contrary, its
overall performance was slightly better. According to the analysis made above, most of
those eliminated samples therefore are truly outliers, they are either error or abnormal
“past experiences” in the original corpus. In other words, the original corpus for
webpage categorization was successfully refined.

To obtain more robust results, the same performance comparisons were performed
on the test set of the refined corpus, as shown in Fig. 4., where the same conclusion
could be drawn. Moreover, it is observed from Fig. 4 that the performance
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Fig. 4. Performance comparison between models trained on the original corpus and on the
refined corpus, where testing webpages are from the test set in the refined corpus
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improvement is more distinct than that in Fig. 3. This is because the test set in the
original corpus may still have some outliers, which however may have been eliminated
in the refined corpus.

Furthermore, a manual investigation has been performed to check those learned
outliers. And the investigation results show that eliminated webpages could be divided
as four kinds: webpages mislabeled or lying on the border between different categories,
webpages that are out of the defined categories, non-sense webpages as well as some
regular webpages, where the first three kinds of webpages are truly outliers. Figure 5
shows the manual investigation results, from which one can see there 83.75%
eliminated webpages are truly outliers, which further reveals that the presented outlier
learning process is effective.

Fig. 5. The distribution of eliminated outliers, where ‘A’ denotes the webpages mislabeled or
lying on the border between different categories, ‘B’ denotes the webpages that are out of the
defined categories, ‘C’ denotes the non-sense webpages and ‘D’ denotes the regular webpages

5 Conclusion

In this paper, a machine learning approach was presented to refine a corpus for Chinese
webpage categorization, where the Adaboost algorithm was adopted to learn outliers in the
corpus. A kNN algorithm based classifier was integrated in building a Chinese webpage
categorization system to make an evaluation between the original corpus and the refined
corpus. Comparative results demonstrate that the model trained on the refined corpus,
where the learned outliers were eliminated, did not perform worse than the model trained
on the original corpus. On the contrary, its overall performance was slightly better. One
explanation is that there exists some abnormal knowledge manifested as outliers in the
original corpus, which could be successfully identified by the presented outlier learning
method. Further analysis shows that abnormal knowledge in the original webpage corpus
could be roughly divided as: non-sense webpages, webpages lying on the border between
different categories, and webpages that are out of the defined categories. This further
reveals the effectiveness of the presented outlier learning method for corpus refining. Still,
among the learned outliers, there exists a small number of regular webpages that are
misreported as outliers. How to deal with them is the topic of future work.
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Abstract. Kernel self-organizing map has been recently studied by Fyfe and his
colleagues [1]. This paper investigates the use of a novel bio-kernel function for
the kernel self-organizing map. For verification, the application of the proposed
new kernel self-organizing map to HIV drug resistance classification using mu-
tation patterns in protease sequences is presented. The original self-organizing
map together with the distributed encoding method was compared. It has been
found that the use of the kernel self-organizing map with the novel bio-kernel
function leads to better classification and faster convergence rate...

1 Introduction

In analysing molecular sequences, we need to select a proper feature extraction which
can convert the non-numerical attributes in sequences to numerical features prior to
using a machine learning algorithm. Suppose we denote by x a sequence and @(x) a

feature extraction function, the mapping using a feature extraction function is
F(F:S—¢e R?. Finding an appropriate feature extraction approach is a non-

trivial task.

It is known that each protein sequence is an ordered list of 20 amino acids while a
DNA sequence is an ordered list of four nucleic acids. Both amino acids and nucleic
acids are non-numerical attributes. In order to analyze molecular sequences, these
non-numerical attributes must be converted to numerical attributes through a feature
extraction process for using a machine learning algorithm. The distributed encoding
method [2] was proposed in 1988 for extracting features for molecular sequences. The
principle is to find orthogonal binary vectors to represent amino (nucleic) acids. With
this method, amino acid Alanine is represented by 0000000000 0000000001 while
Cystine 0000000000 0000000010, etc. With the introduction of this feature extraction
method, the application of machine learning algorithms to bioinformatics has been
very successful. For instance, this method has been applied to the prediction of prote-
ase cleavage sites [3], signal peptide cleavage sites [4], linkage sites in glycoproteins
[5], enzyme active sites [6], phosphorylation sites [7] and water active sites [8].

However, as indicated in the earlier work [9], [10], [11] such a method has its in-
herent limit in two aspects. First, the dimension of an input space has been enlarged
20 times weakening the significance of a set of training data. Second, the biological
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content in a molecule sequence may not be efficiently coded. This is because the
similarity between any pair of different amino (nucleic) acids varies while the dis-
tance between such encoded orthogonal vectors of two different amino (nucleic) acids
is fixed.

The second method for extracting features from protein sequences is to calculate
the frequency. It has been used for the prediction of membrane protein types [12], the
prediction of protein structural classes [13], subcellular location prediction [14] and
the prediction of secondary structures [15]. However, the method ignores the coupling
effects among the neighbouring residues in sequences leading to potential bias in
modelling. Therefore, di-peptides method was proposed where the frequency of each
pair of amino acids occurred as neighbouring residues is counted and is regarded as a
feature. Dipeptides, gapped (up to two gaps) transitions and the occurrence of some
motifs as additive numerical attributes were used for the prediction of subcellular
locations [16] and gene identification [17]. Descriptors were also used, for instance, to
predict multi-class protein folds [18], to classify proteins [19] and to recognise rRNA-
, RNA-, and DNA-binding proteins [20], [21]. Taking into account the high order
interaction among the residues, multi-peptides can also be used. It can be seen that
there are 400 di-peptides, 8,000 tri-peptides and 16,000 tetra-peptides. Such a feature
space can be therefore computational impractical for modelling.

The third class of methods is using profile measurement. A profile of a sequence
can be generated by subjecting it to a homology alignment method or Hidden Markov
Models (HMMs) [22], [23], [24], [25].

It can be seen that either finding an appropriate approach to define ¢(x) is difficult

or the defined approach may lead to a very large dimension, i.e., d — oo . If an ap-
proach which can quantify the distance or similarity between two molecular se-
quences is available, an alternative learning method can be proposed to avoid the
difficulty in searching for a proper and efficient feature extraction method. This
means that we can define a reference system to quantify the distance among the mo-
lecular sequences. With such a reference system, all the sequences are quantitatively
featured by measuring the distance or similarity with the reference sequences.

One of the important issues in using machine learning algorithms for analysing
molecular sequences is investigating sequence distribution or visualising sequence
space. Self-organizing map [26] has been one of the most important machine learning
algorithms for this purpose. For instance, SOM has been employed to identify motifs
and families in the context of unsupervised learning [27], [28], [29], [30], [31]. SOM
has also been used for partitioning gene data [32]. In these applications, feature ex-
traction methods like the distributed encoding method were used.

In order to enable SOM to deal with complicated applications where feature extrac-
tion is difficult, kernel method has been introduced recently by Fyfe and his col-
leagues [1]. Kernel methods were firstly used in cluster analysis for K-means algo-
rithms [33], where the Euclidean distance between an input vector x and a mean vec-
tor m is minimized in a feature space spanned by kernels. In the kernel feature space,
both x and m were the expansion on the training data. Fyfe and his colleagues devel-
oped so-called kernel self-organizing maps [34], [35]. This paper aims to introduce a
bio-kernel function for kernel SOM. The method is verified on HIV drug resistance
classification. A stochastic learning process is used with a regularization term.
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2 Methods

h

1 » Where s, € S? (S isasetof possible values and | S|

A training data set D ={s }
can be either definite or indefinite) and a mapping function which can map a sequence

to a numerical feature vector is defined as F (¢:S — F )e R 4 X, =¢(s,). In most

situations, X, = @(s,) = (¢,(s,), (s, ),, 9, (s, )" is unknown and possibly, d — oo .
This then causes the difficulty in modelling. In using self-organizing map for unsuper-
vised learning of protein sequences, the error function in the feature space F can be

defined as L =Ix, —w,, 1, where w,, €R ¢ is the weight vector connecting the mth

output neuron. Suppose w,, can be expanded on the training sequences (w,, = ®a,, ).
Note that a,, € R " is an expansion vector and ® = {9;(s ;) }1<i<a 1< j<n - The error func-
. . T .

tion can re-written as L =K ,, —2k,a, +a,Ka,, . Note that K ; =K (s;,s;) is the
kernel, k, = (K

nel matrix. The error function can be as follows if we use L, norm regarded as a regu-
larization term

oK 2.7t K ) is a row kernel vector and K ={K ; },o; /<, a ker-

L =%(K m— 2K, 0, +a;Kam +/1a,Tnam),

where A is the regularization factor. The update rule is then defined as
Aa,, =n@)k, —(K+ADa,,) . In designing the bio-kernel machine, a key issue is

the design of an appropriate kernel function for analysing protein or DNA sequences.
Similar as in [9], [10], [11], we use the bio-basis function as the bio-kernel function

K (x,bi):exp[M x,b;)—-M (bl.,bl.)J

M (b[’bi)

where X is a training sequence and b; is a basis sequence, both have D residues. Note
that M (x,b;) =37 M (x,,b,;) with x, and b;, and the dth residue in sequences.

The value of M (x,,b;;) can be found in a mutation matrix [36], [37]. The bio-basis

function has been successfully used for the prediction of Trypsin cleavage sites [8],
HIV cleavage sites [9], signal peptide cleavage site prediction [10], Hepatitis C virus
protease cleavage sites [38], disordered protein prediction [39], [40], phosphorylation
site prediction [41], the prediction of the O-linkage sites in glycoproteins [42], the
prediction of Caspase cleavage sites [43], the prediction of SARS-CoV protease
cleavage sites [44] and the prediction of signal peptides [45].

3 Results

Drug resistance modeling is a wide phenomenon and drug resistance modeling is a
very important issue in medicine. In computer aided drug design, it is desired to study
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how the genomic information is related with therapy effect [46]. To predict if HIV
drug may fail in therapy using the information contained in viral protease sequences is
regarded as genotype-phenotype correlation. In order to discover such relationship,
many researchers have done a lot of work in this area. For instance, the original self-
organizing map was used on two types of data, i.e., structural information and se-
quence information [46]. In using sequence information, frequency features were used
as the inputs to SOM. The prediction accuracy was between 68% and 85%. Instead of
neural networks, statistical methods and decision trees were also used [47], [48], [49].

Data (46 mutation patterns) were obtained from [50]. Based on this data set, bio-
kernel SOM was running using different value for the regularization factor. The origi-
nal SOM was also used for comparison. Both SOMs used the same structure (36 out-
put neurons) and the same learning parameters, i.e. the initial learning rate
(17, =0.01). Both algorithms were terminated when the mean square error was less
than 0.001 or 1000 learning iterations.

Fig. 1 shows the error curves for two SOMs. It can be seen that the bio-kernel
SOM (bkSOM) converged much faster with very small errors.

100

10 F-m bkSOM

RR=

0.01

143
214
285
356
427
498
569
640
711
782
853
924
995

Fig. 1. The error curves for two SOMs. The horizontal axis is the learning iterations and the
vertical one (logarithm scale) the errors. The numbers within the brackets of bkSOM mean the
regularization factor values.

Fig. 2 shows a map of bkSOM, where “n.a.” means that there is no patterns
mapped onto the corresponding output neuron, ““5:5” means that all the five patterns
mapped onto the corresponding neuron are corresponding to the mutation patterns
which are resistant to the drug and “0:9” means that all the nine patterns mapped onto
the corresponding neuron are corresponding to the mutation patterns which are not
resistant to the drug.
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L:k I &. L:k 1:1 n.a. -2
1. &. 1:1 n.a. n.a. n.a. 0O:1
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Fig. 2. The feature map of bkSOM.

Table 1 shows the comparison in terms of the classification accuracy, where “NR”
means non-resistance and “R” resistance. It can be seen that bkSOM performed better
than SOM in terms of classification accuracy. The non-resistance prediction power
indicates the likelihood that a predicted non-resistance pattern is a true non-resistance
pattern. The resistance prediction power therefore indicates the likelihood that a pre-
dicted resistance pattern is a true non-resistance pattern. For instance, the non-
resistance prediction power using SOM is 90%. It means that for every 100 predicted
non-resistance patterns, 10 would be actually resistance patterns.

Table 1. The classification accuracy of two SOMs

SOM bkSOM
NR R Precision NR R Precision
NR 28 0 100% NR 28 0 100%
R 3 15 83% R 0 18 100%
Power 90% 100% 93% Power 100% 100% 100%

4 Summary

This paper has presented a novel method referred to as bio-kernel self-organizing map
(bkSOM) for embedding the bio-kernel function into the kernel self-organizing map
for the purpose of modeling protein sequences. The basic principle of the method is
using the “kernel trick” to avoid tedious feature extraction work for protein se-
quences, which has been proven a non-trivial task. The computational simulation on
the HIV drug resistance classification task has shown that bkSOM outperformed
SOM in two aspects, convergence rate and classification accuracy.
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Abstract. In this paper a new learning algorithm, Lever Training Machine
(LTM), is presented for binary classification. LTM is a supervised learning al-
gorithm and its main idea is inspired from a physics principle: Lever Principle.
Figuratively, LTM involves rolling a hyper-plane around the convex hull of the
target training set, and using the equilibrium position of the hyper-plane to de-
fine a decision surfaces. In theory, the optimal goal of LTM is to maximize the
correct rejection rate. If the distribution of target set is convex, a set of such
decision surfaces can be trained for exact discrimination without false alarm.
Two mathematic experiments and the practical application of face detection
confirm that LTM is an effective learning algorithm.

1 Introduction

Target detection is an important research field of computer vision especially with the
specific subject, e.g. face detection and vehicle detection. Actually, target detection is
a binary classification problem, and the goal is to find a binary classifier. Binary
classifiers can be sorted into two categories: nonlinear and linear. The nonlinear
classifiers, such as neural network [1, 2], and nonlinear SVM [3, 4], are more power-
ful than linear classifier, but they’re computation expensive. On the other hand, linear
classifier is the most simple and fast one. An individual linear classifier is weak, but
a set of linear classifiers can be constructed to a piecewise linear classifier, which
combines the advantage of both linear and nonlinear classifiers, and results in a not
only fast but also powerful classifier.

Fisher’s LDA [5], SVM [1], and MRC [6], are the examples of linear classifier.
They train a linear classifier in some optimal manners. The goal of LDA is to maxi-
mize the Mahalanobis distance of the target and non-target classes. And the object of
SVM is maximizing the margin between the two classes. In the both algorithms, it’s
assumed that the two classes are linearly separable and equally important [6]. How-

*

This paper is supported by the Project of National Science Fund for Distinguished Young
Scholars of China under Grant No. 60225008, the Key Project of National Natural Science
Foundation of China under Grant No. 60332010, the Project for Young Scientists’ Fund of
National Natural Science Foundation of China under Grant No.60303022, and the Project of
_Natural Science Foundation of Beijing under Grant No.4052026.
” Corresponding author.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 187198, 2005.
© Springer-Verlag Berlin Heidelberg 2005



188 X. He, J. Tian, and X. Yang

ever, the assumptions are invalid in many applications. M. Elad et al. have proposed
MRC to overcome those limitations. MRC exploits the property that the probability
of target is substantially smaller than non-target; the property is common in many
target detection issues. And MRC processes nonlinearly separable classes with the
idea of piecewise linear classifier. But as pointed by M. Elad, even if MRC is used to
deal with a convex target set, false alarm may exist in practice [6], because its optimal
object only considers second moments with neglecting higher ones.

LTM has been developed to pursue a linear classifier in a more direct and novel
manner. The idea of LTM is inspired from Lever Principle in physics. Its optimal
goal is to maximize the correct reject rate directly. Given the training sets of target
and non-target, LTM trains a decision hyper-plane stage by stage to separate the non-
target data as many as possible from the target set. Prior the first training stage, LTM
generates an initial hyper-plane randomly. In each training stage, LTM aligns the
hyper-plane to an advantageous position based on Lever Principle, where the hyper-
plane can distinguish more non-target data. When the hyper-plane keeps the balance,
the equilibrium hyper-plane is defined as the output linear classifier by LTM.

If the distribution of target set is convex, a sequence of decision surfaces can be
found by LTM to exactly discriminate the both training sets without false-alarm. That
is confirmed by two mathematic experiments and the practical application of front
face detection. Compared with other training algorithms of linear classifier, LTM has
direct physical meaning and direct optimal goal. It admits the high probability of
non-target and is suitable to deal with nonlinearly separable classes.

In the paper, section 2 describes the theory of LTM in detail. Section 3 gives two
mathematic experiments. The application of LTM to face detection is presented in
section 4. The last section makes a conclusion with future perspectives.

2 Lever Training Machine

There are two concepts should be reviewed prior to present LTM: linear classifier and
Lever Principle.

2.1 Linear Classifier and Lever Principle

Linear classifier is a simple and fast pattern classification approach. It can be defined
by the linear-threshold formula:
I, x-U-d>0
h(x) - {O, otherwise QY
where d is the threshold and U is the unit projection vector. A linear classifier can
define a hyper-plane, of which U is the unit normal vector. Likewise a hyper-plane
corresponds to a linear classifier.
Lever Principle is a basic physical law and Archimedes stated it vividly: “Give me
a place to stand and I will move the earth”. The product of a force F by its effort arm
L is the moment of F:
M =LXxF 2
As demonstrated in Fig. 1, the movement state of the plane can be analyzed ac-
cording to Lever Principle. Each force Fi that acts on the plane will generate a mo-
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ment M;, where M; = L; x F;. If % M;=0, the plane will keep the balance. Other-
i=1
wise the plane will rotate, and the direction can be determined with the right-hand

rule. The normal vector U of the plane will change in the direction of (% M, j xU .

i=1

Fig. 1. The forces acted on the plane yield a moment sum XMl that determines the movement
state of the plane

The plane can be replaced by a hyper-plane and naturally Lever Principle is intro-
duced to high dimensional space, where the moment of a force is still defined by
Formula 2. With the high dimension extension, Lever Principle can be adapted to
optimize a decision hyper-plane by LTM.

2.2 Lever Training Machine

LTM is a supervised learning algorithm. Given the target training sets X = {x;}
a decision hyper-plane to separate non-target data asvﬁlany as possible from target set.

LTM is designed for aligning an initial hyper-plane P, to an optimal decision hy-
per-plane P, by a serial of training stages. In the training stage n, LTM modifies the
hyper-plane P, to a move advantageous position P,,;, where P,,; can separate more
non-target data from target set than P,. Generally, the dimension of data, e.g. face
image data and car image data, is typically high, which means that the hyper-plane
has high degree of freedom. Therefore it is quite difficult to determine the advanta-
geous direction to rotate the hyper-plane. Lever principle is adapted to address this
issue.

As shown in Fig. 2, P is generated randomly as the initial input, U is the unit nor-
mal vector of Py. Then the fulcrum O of Pyis located by following:

Step 1. For each x; € X, calculate the projection value with formula 3:

vpro(xi):xi U (3)

Step 2. Find the target data with the lowest projection values and those data are
named as fulcrum data. Denote the fulcrum data set as X crm = xjf“l"“'"}i:],zm ue It
satisfies Xfulcmm c X’ and vxiEXfulcrum and ijEX'Xfulcmm’ me(xi) < Vpro(xj)‘ ris de-

ﬁned as the proportion factor’ and r= HXfuluum HXH = MA/I It iS ICSS than 1.0 and usually
set to 0.1 or less;

w
Step 3. Calculate the mean vector of the fulcrum data: ¢ = e zxif“’”“"’ ;

i=1
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» F force

target
nontargt
fulcrum data

1.0 Y .
mean of fulcrum data R \ . L
fulcrurn N\, T the integral projection histogram
Y of target data
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Fig. 2. Image 1 indicates how to locate the fulcrum O of the hyper-plane P,. The integral pro-

jection histogram can be expressed as His(v): e x '(X’O)'UQH‘HXH . Image 2 shows how to

calculate the force that is defined in formula 5.

Step 4. Move C along reverse direction of U until all the target data reach the posi-
tive side of the hyper-plane (x—C)-U = 0, here we can move C farther to enhance the
generalization ability of the classifier. The final position of C is defined as the ful-
crum 0. Mathematically O is defined by:

0=C={v,,(M)-vi"+ gl @)

where y"i" =, {me (x)} and g is the generalization factor. The generalization abil-
xe X

pro

ity of LTM can be strengthened by augmenting g.
After locating O, P is aligned to Py”: (X—0)-U = 0 by moving it onto O. Then the
force acted on P, ’is determined by:

2
! [*]
F(y)= - U
() Nor S (5)
where, yEY and y~ is the vertical component of y-O to P,”:
vt =(v-0)up (6)

In LTM, all forces are generated by non-target data, so only non-target data influ-
ence the rotating direction of the hyper-plane. The definition of force satisfies that the
longer the y* is, the weaker the force is, as the yellow arrows indicated in Fig. 3. In
formula 5, ¢ is named as distance-insensitivity factor. And the larger it is, the more
insensitive the power of force is to y=.

The effort arm and the moment of a force can be calculated by formula 7 and formula
8 respectively:
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O target
+ nontarget
farce

*
® fulcrum
.

Fig. 3. Training a linear classifier with LTM. Py is the initial hyper-plane, and its fulcrum is
located at O;. It is moved onto O, as P, indicated, and then rotated to P; under the effect of
forces. The fulcrum of P, is located at O,. P; is moved to O, and rotated to P,. The training is
repeated until the hyper-plane keeps the balance, see Py,

yV=(y-0)-y* ™
M(y)=y"xF(y) @®)
Then according to Lever Principle, the normal vector U will change in the direction

of (%M(yi )) xU . As shown in Fig. 3, the pose of P,’is modified to P, by updating U :
i=1

N
Upi=U, —5((§M (v; )]xUn) )

where J, named as modification factor, is an empirical value. If J is too large, U will
be over modified; if J is too small, U will change very slowly. Both cases will slow
down the convergence rate of the training.

Fig. 3 indicates the training process. First P is generated randomly. It is aligned
to P; in the first training stage, and then P, is modified to P, in the second training
stages. The training repeats until the moment sum deceases to zero. As Py illustrated
in Fig. 3, the hyper-plane keeps the balance, Py is the optimal hyper-plane P,,, it
defines the optimal linear classifier. The training process, as above described, can be
summarized as below:

Step 1. Generate initial hyper-plane Py: (x-Oy)-Uy= 0 randomly; Set the stage num-
ber nto 0;

Step 2. Find the fulcrum O, of P,, and move P, onto O, , therefore P, is updated
to P,"t (x-0,41)-U,=0;

Step 3. Calculate the forces acted on P,’ by formula 5: F; = F(y;), where i=1,2...n;

Step 4. Calculate the moments of the forces by formula 8: M; = M(F;), where
i=1,2...n;



192 X. He, J. Tian, and X. Yang

Step 5. If % M, #0, update U, to U,,; by formula 9 and normalize its norm to 1,
i=1
therefore get the new hyper-plane P, : (x-O,,1)-U,; = 0, then return to step 2 with
increasing n by 1; Otherwise end the training and output the optimal linear classifier
defined by the equilibrium hyper-plane.

The first linear classifier output by LTM is denoted as hlnp,(x). In the case of the
convex distribution of target set, if Ylm ={ ylhlg,,,(y)=1, yEY} is not empty, Y-Y lm is
removed from the non-target training set. And LTM is applied to the abridged data
set for the second classifier hzgp,(y). Then if Yzm = { th%,,,(y):l, ye Ylm} is not
empty, Y le,.,- Yze,,. is removed and LTM is applied again for the third classifier h3np,(y).
The application of LTM is repeated until there are no non-target data remained. Fi-
nally a sequence of linear classifiers is yielded to construct a cascade classifier, which
distinguishes all the non-target data.

2.4 Lever Training Machine in Theory

In this section, it’s proved that the update strategy of LTM ensures that Ry is mono-
tonically increasing, therefore the final output classifier is a local optimal solution that
maximizes Ry.

Fig. 4. f; and fy are the probability density functions of target and non-target respectively; Ry"
and Ry~ is the increase and decrease parts of the correct rejection rates Ry respectively with the
decision line is rotated form P, to P,.;; U, and U, are the unit normal vector of P, and P, ;
AU is the differential value where U, =U,+A4U;, l(O+y") is the line from point 0+y" to P,,; and
it is vertical to P,; y is a non-target sample; y" and yl are the parallel and vertical components
of y—O to P, respectively

As demonstrated in Fig. 4, in the training stage n U, is updated to U,,; where
U,.1=U,+AU. The differential value of Ry is denoted as A4 Ry:

4R, = ffzv()’)dy (11)

yel(z),zePn
where fy is the non-target probability density function, /(z) is the line from point z to
P, . and it is vertical to P,,.
First we prove that AULU, when llAUIl—>0. The angle between U, and U .4, is
denoted as 6, then according to cosine low, U, IP=IU,IP+IAUIP-21U,lAUlIcos 6.



A New Learning Algorithm Based on Lever Principle 193

Because U, lI=IU,lI=1, cos@ =llAUII/2. Therefore when 1AUI1—>0, cos@ —>0 and
é=m/2. So when llAUIl is small enough, it is approximative that AULU,. Then I(z)
can be approximatively expressed as z+&U,[where ge[0,(—AU)-(z—0)] and z€P,.
And the non-target probability density on /(z) approximate to fy(z). Therefore:

ARy = [(-4U)-(z-0)fy (2)dz (12)

zePn
Then we estimate fy with the method of Parzen window, and shoose Gaussian dis-
tribution as the smoothing function. Therefore:

fN<y)=%¢<y—y,-> (13)

where ¢(y)= ) n is the dimension of data space. Therefore:

exp( g

(ZHGT
ARy = | (a0} (:-0) Lole-y,) i

_§ f(—Au)~<z—o>¢((z—o—y:)—yf)dzj
\ (14)
| ( J( av)- (5! )J

peof o)

[ ‘LZJ I is the optimal direction that ensure

The direction of vector Z _exp
i=1 27[O'ZT

ARN>0. Therefore:

AU =65 ——exp| -1 z” Vi (15)
i= 1(271'0' )2
where 0 is a small positive value to ensure the assumption that [l AUl is small enough.
The update rule defined by formula 15 equals to that defined by formula 9. So the
optimal object of LTM is to maximize the correct rejection rate, when Parzen window
is used to estimate probability density and Gaussian distribution is chosen as smooth
function.
If & S exp[ E H ] 1=0 then ARy=0, training is over and we get an optimal solu-
i= 1(2/!0' '
tion that maximizes Ry. The classifier output by LTM is not global optimal, it de-
pends upon the initial hyper-plane. Although the drawback slows the classification
speed, it doesn’t decrease the correct detection rate. As long as the non-target data is
outside the convex hull of the target set, a decision hyper-plane can be found to sepa-
rate it form the target set.

3 Experiments

The performance of LTM is evaluated in 2D and 3D Euclidean space respectively.
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3.1 Experiment in 2D Space

To illuminate the training process of LTM, the experiment in 2D space is conducted.
The whole data area is an ellipse centered at point (0, 0) with an x-axis of 300 and a
y-axis of 200; the target area is a circle centered at point (0, -100) with a radius of
100. 200 points are sampled randomly at the target area as the target training set; 300
points are sampled randomly at the non-target area as the non-target training set.

2 + +
) o e .

Fig. 5. Training the first classifier with LTM. The blue sparkle is the fulcrum, and yellow
arrow stands for force. The length of arrow varies directly proportional to the force.

In the experiment, r, , and o are set as 0.1, 0.003, and 120 respectively. As shown
in Fig. 5, the line is aligned to the balanced position stage by stage under the effect of
forces. Fig. 5 (1) shows the line after the 1st training stage, and the norm of moment
sum [IZM1l is 368.1; Fig. 5 (2) indicates the line after the 4th training step, and 112MI|
= 1124.9; Fig. 5 (3) shows the line after the 8th training stage, and [IZMIl = 2114.5;
Fig. 5 (4) presents the line after the 27th training stage, [|1ZMI| is reduced to 0.0011, it
is small enough and the training is ended. The first trained classifier distinguishes
62.0% of the non-target data.

Fig. 6. Training a sequence of linear classifiers. A sequence of linear classifiers is yielded by
LTM for exact discrimination.
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As shown in Fig. 6 (1), the non-target data rejected by the first classifier is re-
moved. LTM is applied to the abridged data set for the second classifier. The second
classifier distinguishes 14.7% of the non-target data. Finally 7 classifiers are trained
in turn for accurate discrimination without false alarm as indicated in Fig. 6 (2).

3.2 Experiment in 3D Space

The second experiment is performed in 3D space. The whole data area is an ellipsoid
centered at point (0, 0, 0) with an x-axis of 300, a y-axis of 400 and a z-axis of 500;
the target area is a sphere centered at (0, -100, 0) with a radius of 100. 200 points are
gathered at the target area as the target training set; 400 points are gathered at the non-
target area as the non-target training set.

In this experiment, r, J, and o are set as same as the first experiment. The first de-
cision plane trained by LTM distinguishes 53.5% of the non-target data; the first three
decision plane trained by LTM reject 90.0% of the non-target data, as shown in Fig. 7
(1); the first five decision planes output by LTM cut away 96.0% of the non-target
data. Totally LTM has trained 9 planes that separate all non-target data from target
set as illustrated in Fig. 7 (2).

Fig. 7. Training a set of decision planes in 3D space. Finally 9 decision planes are found by
LTM to separate target set from non-target set as shown in image 2.

4 Application of LTM to Face Detection

Face detection is an important topic in computer vision and in human computer inter-
action. The task is locating and extracting face region from all kinds of background.
It is an essential technology in face processing in terms of face recognition, tracking,
pose estimation, as well as expression recognition [7]. Face detection is a challenging
task for the great variance of light condition, 3-D pose, and expression etc [7]. Dif-
ferent methods, such as neural networks [2], Bayesian decision [8], SVM [4], MRC
[6], and Adaboost [9], are used to address the issue of face detection.

In the paper, LTM is applied to front face detection for a new attempt. The train-
ing sets include a face set with 5412 front face images, and a non-face set with 23573
non-face images. The face set comes from two resources. The first is the face train-
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ing set of MIT-CBCL [10], which has 2429 images. And the second is the database
for Viola’s face detector [9], 2983 front images are selected to our face set. The non-
face set comes from the non-face test set of MIT-CBCL [10], which contains 23573
non-face images. All of the images are scaled to 19x19 pixels. The size of training set
has been doubled by adding the mirror image of each sample, so there are totally
10824 face training data and 47146 non-face training data.

B B B B 8B @
28 R 2@ ¥ ¥
Fig. 8. Some unit projection vectors of the linear classifiers trained by LTM

Finally LTM yielded 209 linear classifiers. Those classifiers separate all the non-
face training data from face training set. Fig. 9 and Fig. 10 present some results of the
face detection with our classifier. Generally speaking, LTM works well in training a
face detector.

Interestingly, LTM has the ability of learning holistic features. The unit projection vec-
tor of the classifier trained by LTM presents some kind of holistic feature of face, as indi-
cated in Fig. 8. The projection vectors of the classifiers yielded earlier by LTM look like
human faces, as the first row shown in Fig. 8, while the projection vectors of the classifiers
yielded later by LTM represent the detail features and the noises of face images, as illus-
trated in the second row of Fig. 8. These phenomena are similar to PCA and LDA.

Fig. 9. Examples of face detection with LTM
Fig. 10. Examples of face detection with LTM
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5 Conclusion and Feature Work

A new learning algorithm, LTM, is introduced in this paper. LTM has direct physical
meaning since it is derived from a well-known concept in physics: Lever Principle. And
its optimal goal is to maximize the correct rejection rate in theory. If the distribution of
target set is convex, a sequence of decision surfaces can be found to exactly discrimi-
nate the both sets without false-alarm. That is confirmed by two mathematic experi-
ments and by the application of front face detection. In the application of face detection,
it performs well with satisfactory result and it illustrates that LTM has the ability of
learning holistic features.

However, LTM should be research further to perfect the theory and to promote the
application. One of the future works is on non-linear LTM. LTM can’t deal with the
case of concave distribution of target set. The issue can be addressed by a nonlinear
extension of LTM. A promising way is to develop nonlinear LTM based on kernel
method as the same in nonlinear SVM [3, 4], kernel LDA [11] and kernel PCA [12].
Another future work is on the initial algorithm. The linear classifier is not global
optimal, this issue can be improved by modifying the generating algorithm of initial
hyper-plane. If the initial hyper-plane is near the global optimal position, it is highly
likely that the initial hyper-plane will converge to the global optimal solution. There-
fore a smarter algorithm should be developed to replace the random initial algorithm.
The third future work is about the generalization ability. As described in section 2.2,
the generalization ability of LTM can be improved by increasing the generalization
factor g. However, if g is too large, false alarm will be caused even when the distri-
bution of target set is convex. Therefore how to optimize g is another important issue.
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Abstract. Based on conventional natural gradient algorithm (NGA) and
equivariant adaptive separation via independence algorithm (EASI), a novel
sign algorithm for on-line blind separation of independent sources is presented.
A sign operator for the adaptation of the separation model is obtained from the
derivation of a generalized dynamic separation model. A variable step-size sign
algorithm rooted in NGA is also derived to better match the dynamics of the in-
put signals and unmixing matrix. The proposed algorithms are appealing in
practice due to their computational simplicity. Experimental results verify the
superior convergence performance over conventional NGA and EASI algorithm
in both stationary and non-stationary environments.

1 Introduction

Blind signal separation (BSS) is concerned with recovering the original unknown
sources from their observed mixtures without. The algorithm operates blindly in the
sense that except for statistical independence, no a prior information about either the
sources or the transmission medium is available. BSS algorithms separate the sources
by forcing the dependent mixed signals to become independent. This method has
several applications in communications and signal processing. Suppose 7 unknown
statistically independent zero mean source signals, with at most one having a Gaus-

sian distribution, contained within se€ R" pass through an unknown mixing channel
Ae R™" (m=n), such that m mixed signals xe R"™ are therefore observed which
can be modeled as x = As+e, where ee R" is the possible contaminating noise

vector, which is usually ignored for simplicity in this study. The objective of BSS is
to recover the original sources given only the observed mixtures, using the separation

model y=Wx, where yg R" is an estimate of § to within the well-known permuta-

tion and scaling ambiguities, and W € R"™"is the separation matrix. The crucial as-
sumption with conventional BSS is that the source signals are statistically independ-

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 199208, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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ent. In this paper, we further assume that the sources have unit variance and the num-
ber of sources matches that of the number of mixtures, i.e. 72 =n , the exactly deter-
mined problem. To recover the source signals, it is frequently necessary to estimate an
unmixing channel which performs the inverse operation of the mixing process, as
subsequently used in the separation model. In this paper, we are particularly concern-
ing with a family of sequential BSS algorithms. Fig.1 shows a block diagram of se-
quential BSS. The separating coefficients W (k) are updated iteratively according to

some estimate of the independence between the estimated signal components in y(k) .
The sensor signal components in x(k) are fed into the algorithm in order to estimate
iteratively the source signal components, i.e. y(k). Compared with block (batch)-

based BSS algorithms, sequential approaches have particular practical advantage due
to their computational simplicity and potentially improved performance in tracking a
nonstationary environment [2]. The focus of this study is therefore the natural gradi-
ent algorithm (NGA) [1],[7] and the equivariant adaptive separation via independ-
ence algorithm (EASI)[6].

/

7
M xi ng x(k Separating
s(k)y— matrix mat ri x >y (k)
W (k)
/
[ ]

Fig. 1. Diagram of sequential blind source separation

Among important issues affecting the performance of sequential algorithms such as
equation (1) are the convergence rate and the misadjustment in steady state [3]. A
fixed step-size can restrict the convergence rate and can lead to poor tracking per-
formance [2]. In contrast, an adaptive step-size can exploit the on-line measurements
of the state of the separation system, from the outputs and the parameter updates. This
means, the step-size can be increased for a higher convergence rate, but can be sys-
tematically decreased for reducing any misadjustment of the parameters away from
their optimum settings. To improve the convergence rate, we consider using a nor-
malization technique (leading to a sign algorithm) together with gradient-based time-
varying step-size (leading to a variable step-size algorithm) in the updating process.
Both techniques are shown to increase the convergence speed of the algorithm, and
the sign operation can simultaneously reduce the computational complexity of the
whole algorithm, additionally introduced by the adaptive step-size. The remainder of
this paper is organized as follows. A sign algorithm using a normalization technique
based on the standard NGA algorithm is proposed in section 2. Section 3 is dedicated
to deriving a variable step-size algorithm for NGA, where the step-size is estimated
from the input data and the separation matrix. Following both of the section, S-EASI
algorithm was introduced. Then numerical experiments are presented in section 5 to
compare the convergence performance of the proposed algorithms with that of the
conventional NGA. Finally, section 6 concludes the paper.



An Effective Method to Improve Convergence for Sequential Blind Source Separation 201

2 Sign NGA (S-NGA)

Gradient techniques are established and well known methods for adjusting a set of
parameters to minimize or maximize a chosen cost function [4]. However, simple
standard gradient descent techniques is usually very slow. On these years, many novel
gradient algorithms have been proposed and their better performance properties which
can improve convergence speed have been proved. Here, we expect to propose a new
sign-algorithm, which is based on NGA. In NGA algorithm, the discrete-time on-line
updating equation of the separation matrix is denoted as

Wk +1)=W(k) + ull =y (k)W (k) ey

where K is the discrete-time index, p is a positive parameter known generally as the
step-size, I is an identity matrix, and (k) is given by

wk)= f(yk)y" (k) 2)

where f(y(k)) is an odd nonlinear function which acts element-wise on the output
vector y(k), and (.)7 is the vector transpose operator.

In this section, we consider using normalization of the output vector y(k)for the
off-diagonal terms of (k). This thereby results in a sign operation on the elements
of Q(k)y which restricts the norm of the matrix W (k). Our expectation is that, this

will lead to faster convergence and better robustness in the adaptation. For mathe-
matical formulation, let us consider a continuous matrix dynamic system

iy sy = OOV )

"1 3
i W) W (OII(y (k)W (k)

where J(.)is a cost function from which NGA is derived, and [1(y) is a diagonal
matrix with positive elements. Equation (3) can be deemed as an extension of the
standard NGA [4], since (1) is a result of [I(y) = I . By a straightforward differential
matrix calculation as in [1], we obtain

d B -
Ew(k) = Iy =TT (y(k) f(y(k)y" OTI(y(kDIW (k) ()

where f(y(k)) is a vector of nonlinear activation functions. Defining
' (y(k) f(y(k) = f(y(kyyand uTT(y(k)) = u(k), we have
d

dtW(k) = u(U = £ (y(k))y" ()TI(y (k)W (k) ®)

In parallel with (1), from (5), we have
wk) = f(y(k)y" (OTI(y(k)) (6)
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Denote by f,(y,)and y;, i=1,---,n, the entries of f(y), and y, and by 7Z;; the

elements of I1, w(k) can be re-written element-wise as
w(k)=f,(y)y;x; )

If77; takes the form of the normalization by y ,ie. 7, = ‘ yi‘fl then (6) is reduced to

w(k) = f(y(k))sign(y(kn1" ®)
where sign(y(k)) =[sign(y, (k), -, sign(y,(k)]" , and

1 z>0
sign (z)=+<—-1 <0 ©)

Note that, (8) could be deemed as a degenerate form of the median learning rule
discussed in [4]. The introduced normalization could potentially lead to faster conver-
gence rate because of the resulting sign activation function of the output data y in-

creasing the magnitude of small values, which could, on the other hand, reduce the
accuracy of statistics within the adaptation process, leading to inaccurate separation.
To optimize both the convergence rate and separation performance, we suggest to use
different normalization schemes for the elements of (k). Particularly, IT does not

hold fixed values at its diagonal elements, but these change according to the associa-
tion between f(y(k)) and y(k). Thatis, (7) is re-written in the discrete-time form as

W= . .
T fOR)sighy; (k) i#j

Using the Kronecker dot product © (element-wise product of matrices), we
have the following concise expression

y(k) = f(y(k)y" ()OD(y(k)) (an
where ®(y(k)) is derived from I and (10), i.e. the entries of @ are denoted as

1 i=j

a0 (12)
‘yj‘ 1# ]

®; =

Note that, (11) can also be written as

(k) =diagl f (y(k))y" (k)] +off [f (y(k))sign(y" (k)] 13)

where diag[.] and off'[.] denote the operation of taking the diagonal elements and off-

diagonal elements of a matrix respectively.
We call the adaptation procedure of using (11) and (12) the sign natural gradient
algorithm (S-NGA). Compared with the NGA using (2), the sign algorithm (SA) has
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reduced computational complexity, i.e. n(n-1) multiplications in (2) are replaced with
simple sign tests which are easily implementable. However, for each k, the off-
diagonal elements of (k) are not continuous (see equation (10)), this where makes

the analysis of such an algorithm more difficult than that of (1). However, it is
straightforward to show the algorithm is Lyapunov stable. Noticing that

WTHWz(\/ﬁW)T(\/ﬁW) in (3), where TI represents a diagonal matrix whose
diagonal entries are the square root of the corresponding diagonal elements of IT, and
denoting by WYy and w, Lj=1l-n, the elements of W , /TIW , and

1A (TIW)" , we obtain from (3) that
 dw,
77wy dt
oJ
= —Z 72 ViV
7 oWy T /
i,k

where zero is obtained if and only if dW(k)/dk =0, which means the solution to
W W is an equilibrium of (3).

A 1. Wk)) =
dt

(14)

3 Variable Step-Size Sign NGA (VS-S-NGA)

It has been shown [2] that, as compared with using a fixed step-size which would
restrict convergence rate, the algorithm with an adaptive step-size has an improved
tracking performance for a non-stationary environment, i.e., the value of which is
adjusted according to the time-varying dynamics of the input signals and the separat-
ing matrix. As another contribution, we therefore derive a gradient adaptive step-size
algorithm for the NGA algorithm, which adapts the step-size in the form of

u(k)=pk=1)=pVv J(k) (15)

u=u(k-1)

where p is a small constant, and J (k) is an instantaneous estimate of the cost func-

tion from which the NGA algorithm is derived. To proceed, we use an inner product
of matrices defined as [2],

(C,D)=1r(C"D) (16)

where <> denotes the inner product, tr(,)is the trace operator, and C,De R There-

fore, exploiting (16), the gradient term on the right hand side of (5) can be evaluated
as

V) yy= (0 (k)1 OW (k),0W (k)/ du(k —1))
=1r(3J (k) /W (k)" X oW (k)/dpu(k —1)
01 (k)1 OW (k) ==[1 = f (y(k)y" ()W (k) (18)

7)
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which is the instantaneous estimate of the natural gradient of the cost function of
J (k) . From the equation (1), the separating matrix W at time k is obtained as

W (k) =W (k—=1)+ (k= D]T = £ (e =1)y" (k=D W (k1) (19)
Following the approach from [2] and [5], from the above equation, we have
MW -y =l = OG0y k=D k1) (20)
Using the notation of (2) for (k) in the standard NGA algorithm and denoting we
have
T (k) =1 -y (oW (k) 1)
VI ) ey ==L (k =1)) (22)

Hence, an adaptive step-size with the form of (15) can be written as
(k)= u(k =1+ ptr(I'" ()T'(k—1)) (23)

which can be estimated from the input signals and the separation matrix. (21) has a
similar form as the equation (7) in [2], which was derived for an equivariant adaptive
source separation via independence (EASI) algorithm[6]. The separation procedure
using (1), (2), (21) and (23) represents the proposed variable step-size NGA algorithm
(VS-NGA). Following a similar procedure as in section 2, see (6) and (11), and as in
this section, see (18) and (20), it is straightforward to derive an adaptive step-size
algorithm using different normalization for the off-diagonal elements of (k). In this

case, () takes the form of (11). We represent (1), (11), (21) and (23) the sign ver-

sion of the variable step-size NGA algorithm, i.e., VS-S-NGA for notational
simplicity.

4 Sign-EASI

Cardoso proposed EASI algorithm in 1996. EASI algorithm is a kind of adaptive
algorithms for source separation which implements an adaptive version of equivariant
estimation. It is based on the idea of serial updating: this specific form of matrix up-
dates systematically yields algorithms with a simple structure, for both real and com-
plex mixtures, and its performance does not depend on the mixing matrix. So conver-
gence rates, stability conditions and interference rejection levels of EASI algorithm
only depend on distributions of the source signals. In order to reduce computation
complexity of the algorithm and obtain a satisfied stability, sign function is applied to
this kind of algorithm. Firstly, the separating matrix update equation for EASI algo-
rithm is given by

Wk +1) =W k) +pll = y(k)y" (k)= f(y(k)y" (k)+ (24)

y(k) f (y(k))" W (k)
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Here we also set a parameter w(k) = f(y(k))y" (k) to substitute f(y(k)) and y(k)
in the upper equation, then (24) can be rewritten as:

Wk +1) =W )+l — y(k)y" (k) —w (k) +w (k)" W (k) (25)

In order to easily understand and keep consistent with the NGA algorithm, all of the
parameters in the above equation are defined just as in the section 2, i.e. Q(k) in the

(25) takes the same form as in the section 2:

(k) = diagl f (y(k)y" ()1+off Lf (y(k)sign(y” (k)] (26)

Therefore, seeing in the section 2, we can omit some middle procedures and directly
derive the final algorithm what we expect. Equation (25) and (26) are all together
called the Sign EASI algorithm, namely S-EASI.

5 Numerical Experiments

In the first experiment, we mix a fixed sinusoidal signal with a randomly selected
uniform source signal by using a 2-by-2 (m =n =2) matrix A; = randn(m,n),i.e.

Zero mean, independent white Gaussian noise with standard deviation 0.1 was added
to the mixtures. A cubic non-linearity f(.) was used as the activation function. The
performance index (PI) [1], as a function of the system matrix G=WA, was used to

evaluate the proposed algorithm

PI(G) = ZQ'“ —}{ZQ'M _ 27)

n“g a5 max, l g | m 4= 4o max; gy |

where g, is the ik-th element of G. The initial value of p for all the algorithms was
set to 0.0045, p=2x107", and 200 Monte Carlo trials were run for an averaged per-
formance. The same simulation conditions were used for all the algorithms to allow
fair comparison. Fig.2 shows convergence behavior of the various approaches. From
Fig.2 , it is found that the proposed sign algorithms have much faster convergence
speed. For example, for the fixed step size, S-NGA needs approximately 2000 sam-
ples to converge, whereas the conventional NGA needs approximately 3250 samples.
Note that, we mean the convergence by the PI reduced to 0.02 (corresponding to an
approximately successful separation). For the adaptive step-size, VS-S-NGA only
requires approximately 1050 samples for convergence, however, VS-NGA requires
approximately 1700 samples. It is clear that VS-S-NGA has the fastest convergence
rate, which is a very promising property for sequential algorithms.Without any change

of parameters , we continued to realize the second group of simulation with S-EASI
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and EASI algorithms on the same conditions. Fig.3 showed a compared result be-
tween them. S-EASI arrived its steady convergence near the approximate 1300 sam-
ples, while EASI had to need around 1800 samples to satisfy this requirement. From
Fig.3, it clearly proved that the convergence rate of the S-EASI algorithm was faster
than EASI. Here, we only provided the simulation results with a fixed step size. For
the varying adaptive step-size, we also gained a similar conclusion, but it was not

very stable. So we still need further experiments to verify it.

0C‘ 500 1000 1500 2000 2500 3000 3500

Sampling Number--T

Fig. 2. Comparison of convergence rate by performance index in a stationary environment

N . e
0 500 1000 %11‘%%9 m%ﬂgr 4 2.300 3000 3500

Fig. 3. Comparison of convergence rate between S-EASI and EASI in a stationary environment

In the second experiment, the different approaches were examined for a non-
stationary environment. To this end, we use the following time-varying mixing matrix

A=A, +¥ (28)
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Fig. 4. Comparison of convergence rate by performance index in a non-stationary environment
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Fig. 5. Comparison of convergence rate between S-EASI and EASI in a non-stationary
environment

where W = oW + f.randn(size(A,1) , randn(.) and size(.) are MATLAB built-in func-
tions, and the initial Z is set to a null matrix. A, is the same as in (27). Here a is set to

0.95 and B to 0.001. Other parameters are the same as those in the first experiment.
Again, their convergence performances are compared in Fig.4 and Fig.5 respectively.
For the Fig.4, we observed similar performance improvement gained for the proposed
approaches in a non-stationary environment. Note that, lower PI generally indicates a
better separation performance. In both Fig.2 and Fig.4, although we have not ob-
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served much difference between the final separation performance by S-NGA and VS-
S-NGA in terms of PI measurement, the key point is that the reduced complexity
improves the rate of convergence. The same conclusion on S-EASI algorithm also can
be made from Fig.3 and Fig.5.

6 Conclusions

A new sign and variable step-size natural gradient algorithm for on-line blind separa-
tion of independent sources has been presented, also including a fixed step-size sign
EASI algorithm. The derivation is based on the gradient calculation of a generalized
dynamic equation. By applying the sign operation to NGA and EASI, these separation
algorithms have been found to have much faster convergence rate as compared with
the conventional natural gradient algorithm and EASI algorithm. The algorithm was
shown to be Lyapunov stable. Through the results of simulations, we prove both of
new algorithms can bring us a satisfied convergence rate and reduced computation
complexity. Although variable step-size sign EASE algorithm need further testing, we
still derived a variable step-size algorithm for the natural gradient learning which was
also shown to have faster convergence rate and than using a fixed step-size algorithm.
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Abstract. Linear Discriminant Analysis (LDA) is one of the most pop-
ular linear projection techniques for feature extraction. The major draw-
back of this method is that it may encounter the small sample size prob-
lem in practice. In this paper, we present a novel LDA approach for
high-dimensional data. Instead of direct dimension reduction using PCA
as the first step, the high-dimensional data are mapped into a relatively
lower dimensional similarity space, and then the LDA technique is ap-
plied. The preliminary experimental results on the ORL face database
verify the effectiveness of the proposed approach.

1 Introduction

In pattern recognition applications, how to obtain the most discriminant features
is a very significant problem. To this end, Linear Discriminant Analysis (LDA)
[2] serves as an important technique for linear feature extraction, the objective
of which is to find the set of the most discriminant projection vectors and map
high-dimensional samples onto a low-dimensional space. In the projective feature
space, all mapped samples will get the maximum between-class scatter and the
minimum within-class scatter simultaneously, and then the test samples from
different classes should be easily classified.

However, small sample size problem is the possible obstacle for applying LDA
whenever the number of samples is smaller than the dimensionality of the sam-
ples, which makes the between-class scatter matrix become singular. In recent
years, many researchers have noticed this problem and tried to solve it using dif-
ferent methods. In [1], the well-known fisherfaces method was proposed, which is
a two step PCA+LDA approach: Principal Component Analysis (PCA)is used
as a preprocessing step for dimensionality reduction so as to discard the null
space of the within-class scatter matrix of the training data set; the potential
problem of this method is that it may result in the loss of some significant dis-
criminatory information in its first step. Contrary to [1], Yu and Yang presented
a direct LDA (D-LDA) algorithm [2] for high-dimensional data set, which has
been proved to be suboptimal in theory [4]. In 2000, Chen et al. proposed the
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LDA +PCA method [5], although this method solves the small sample size prob-
lem, it is obviously suboptimal because it maximizes the between-class scatter
in the null space instead of the original input space.

In this paper, we present a novel LDA approach to deal with the small sample
size problem for high-dimensional data. The main idea is described as follows:
the high-dimensional data are transformed into a relatively lower dimensional
space via similarity analysis, and then the LDA technique is applied. The ex-
perimental results on the ORL face database verify the effectiveness of the pro-
posed approach. The advantages of our approach are two-folds: on one hand,
the original data may be very high dimensional and computing intractable, af-
ter transformed into the similarity space, this problem is avoided; on the other
hand, in the relatively lower-dimensional similarity space, the small sample size
problem for applying LDA is also alleviated.

The rest of the paper is organized as follows: Section 2 gives the detail of
the proposed approach. In Section 3 we describe the database and experiments
carried out and analyze the results. Section 4 presents some conclusions and
future work.

2 The Proposed LDA Approach for High-Dimensional
Data

This novel approach includes two steps. In the first step, all the data in the
original space are mapped into the similarity space via similarity analysis. Sec-
ondly, traditional LDA is applied for feature extraction. More specifically, sup-
pose training samples {21, xa,...,2p}, with class labels { X7, X», ..., X}, are
given, and each column z;(i =1,2,..., M) vector has n dimensions. The dis-
tance (dissimilarity measure) between arbitrary two samples can be expressed
as:

d(i,j) = ||z —z;ll2(6=1,2,...,M,5=1,2,..., M) (1)

which in fact means the Euclidean distance between these two samples in the
original space. The similarity between the two samples is then defined as:

s(i,g)= ()" 0Ni=1,2,... Mj=12...,M) (2)

Here r is a positive constant,and it is obvious that s(4, j) € (0, 1],which can be re-
garded as the similarity indicator of the two samples in the original data space.By
calculating all the similarity indicators s(i,5)(i = 1,2,...,M,j = 1,2,..., M)
from all the M training samples, a similarity matrix S can be obtained, here,

Sy =s(i,j)(i=1,2,...,M,j=1,2,..., M) (3)

the class label of every row of S; is the same as that of x;(: = 1,2,..., M),
then there are M mapped samples and the corresponding similarity space is
M-dimensional, and then the LDA technique can be applied to maximize the
Fisher criterion J(®) in similarity space , and then the projection matrix A =
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{@1,®Ps,...,P_1)} are obtained(for details, please refer to Ref.[2]). For a test
sample x; , the corresponding similarity vector Sy = [S(¢,1),5(¢,2)...,S(t, M)]
is projected onto the vectors:

F=5+A (4)

Strictly speaking, (M + ¢) samples at least are needed to have a nonsingular
between-class scatter for the similarity vectors [3]; therefore we should rewrite
the S, matrix:

Sw = Sw + el (5)

to avoid this problem. Here € is a small positive constant, I is an M by M
identity matrix.

3 Experimental Results and Analysis

We tested this novel LDA approach on the ORL face database which is available
at http : //www.cam orl.co.uk/ facedatabase.html. This database was built at
the Olivetti Research Laboratory in Cambridge, UK. The database consists of
400 different images, 10 for each of 400 distinct subjects. There are 4 female and
36 male subjects. For some subjects, the images were taken at different sessions;
varying the lighting, facial expression and facial details.The size of each image
is 92*112 pixels with 256 grey levels.

In our experiment, five images from each subject are selected at random to
comprise the training set, and the left are the test set (the partition is the same
as in [2]). Therefore, there are equally 200 images in both the training and the
test set. As far as calculating cost is concerned, the size of all the images is resized
to 46*56. We extract the 39 most discriminant vectors by using the proposed
approach and the nearest neighbor classifier in L2 norm sense is adopted. The
results are shown in Table 1, note that our approach is usually better than
the other two methods on other number of training samples. To save space,

Table 1. Face Recognition performance results

Methods Recognition accuracy rate
Fisherfaces 92.5%
D-LDA 90.8%

Proposed approach 93.5%

we do not show all the results here. From Table 1, it can be seen that using
our proposed approach, 93.5% recognition accuracy rate is obtained, and as a
comparison, the fisherfaces method, 92.5% and the D-LDA method, 90.8%. It
should also be pointed out that whether Sy is revised or not, the performance of
the proposed approach changes little, and it can be seen that with the M training
samples at hand the small sample size problem is to some extent alleviated .
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The results show that the proposed approach achieves better performance for
face recognition than the fisherfaces method and D-LDA method, the possible
reasons may be as follows: the similarity analysis retains as much information
as possible, in addition, the small sample size problem is alleviated, therefore
the LDA method can be deployed and discriminative features are obtained, and
such features is more suitable for the classification task.

4 Conclusions and Future Work

In this paper, we present a novel LDA approach for high-dimensional data. The
proposed approach is verified effective on the ORL face database. It is also
found in the experiments that the small sample size problem is to some extent
alleviated in the similarity space. In fact, there are several methods to make
the within-class scatter matrix entirely nonsingular in the similarity space, for
example, divide the training set into two parts, first fix the number of one part as
M , and then other training data are also compared with the M samples, hence
more than M training vectors can be obtained, which could be (M + ¢) and
larger than the dimensions of the similarity space, however, such experiments
are beyond the scope of this short paper. The direction of our future work is to
improve this approach and extend its applicable scope to other larger and real
applications, and we will also test it in our multi-modal biometrics system[6].
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Abstract. To solve the bottleneck of memory in current prediction of protein
secondary structure program, a chip training algorithm for a Distributed Neural
Networks based on multi-agents is proposed in this paper. This algorithm
evolves the global optimum by competition from a group of neural network
agents by processing different groups of sample chips. The experimental results
demonstrate that this method can effectively improve the convergent speed, has
good expansibility, and can be applied to the prediction of protein secondary
structure of middle and large size of amino-acid sequence.

1 Introduction

In recent years, more and more distributed problem-solved methods had been pro-
posed to solve a large-scale computing work, such as the multi-agent system (MAS)
[1] and parallel virtual machine (PVM) [2].

Those can be concluded in a searching method. The distributed computation aims
to improve searching ability. It can be subdivided into two categories:

1. The previous experience knowledge to a problem is known, the key to achieve
the answer is to speed-up the convergence to the optimal solution. The often-used
method is the hill-climbing algorithm, such as the gradient descent method, simu-
lation anneal method and etc.

2. There is no any previous experience knowledge of a problem, or there are many
local optimal solutions in the searching-space. The key to approach the global op-
timal solution is to avoid the interference from local optimum, and reveal the di-
rection to the global optimum. The evolution algorithm such as genetic algorithm
[3] is availability in this situation.

Neural network [4] is a computational model, which consists of many simple units
working in parallel with no central control. BP learning algorithm is successfully to
train multilayer feed-forward networks, however, there is no guarantee to the global
optimum, and its convergence speed is often slow especially when the training set is
very large. The distributed neural network aims improve the training algorithm’s
performance. Recently, the distributed neural networks achieve new developments on
image processing and other fields [5].
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In this paper, a Distributed Neural Networks (DNN) based on MAS is modeled for
learning from a large-scale data set. And a learning algorithm based on chip training
is proposed to work on the distributed neural networks, which evolve the global opti-
mum from a group of neural network agents. The experimental results in the predic-
tion of protein secondary structure show that this Distributed Neural Networks with
Chip Training Algorithm (DNNCTA) can effectively avoid BP network converging to
local optimum. It is found by comparison that the neural network obtained from the
DNNCTA can effectively improve the convergent speed.

2 Agent-Based Cooperative Model

In distributed applications, some methods have been proposed to adapt to the distrib-
uted environment through changes in the structure of neural network. Jean-Francois
Arcand researched on ADN [6], which regard the sub-networks as agents, and estab-
lish a whole neural network by combined with those trained sub-networks, but it’s
just a plan and only some parts has been realized, because it is difficult to combine
with the agents with different training target. Another distributed neural network
(DNN) is proposed [7], which built a virtual neural network using the communication
network. Every computer in the model simulates one or more neural nodes. But the
training complexity is increased with the size of the virtual neural network; the rap-
idly increased communication among the neural nodes will cause the problem of
lacking of status consistency and communication disruption [7].

In this paper, a new DNN model based on multi-agent from another point of dis-
tributed is proposed. It improves the convergent speed through making use of the
current network resources. The model is build based on a Hybrid Model combined the
Master-Slave Model [2] with the Node-Only Model [2], every agent in this model is
peer to peer that can offer computation service and get help from other agents when
training its sample set. So many distributed agents in different location can process
the large sample. Those free agents formed a Node-Only Model when there is no
computation mission as Fig.1 described. They will change to be a Master-Slave
Model when one of them informs a computation mission as shown in Fig.2. Those
resources are engaged in computation will be released at the end of the mission, and
return to be a free agent as a new Node-Only Model waiting for the next mission.

e T

\
OaC

Fig. 1. Node-only model Fig. 2. Master-Slaver Model
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3 Chip Training Algorithm for Distributed Neural Network

The Chip Training Algorithm (CTA) is proposed for the above-described distributed
neural network structure. CTA comes from the considering of chips, sample chips and
training chips. In the distributed environment, every computing resource is charged by
an agent that evolved the answer to the question through the competition among the
agents. Every agent trains the local neural network with its local sample, and provides
the best results to the master. The master collects its cooperators’ advices, and
chooses one of them as the answer to the question.

Thereby, the more resources, the more advices have been provided, and the prob-
ability to the global optimum is increased.

CTA is implemented as follows:

Stepl. Set neural network’s structure, mutation rate Pm, the training’s Termina-
tion-Conditions: maximum iteration Times, the expected precision
Step2. Collect the information of the current distributed environment, such as the
available resource number, the cooperate-agent’s state, etc.
Step3. Input training set, initiate a computation mission in the current Node-Only
Model and form a Master-Slave computation environment.
Step4. Make partition of training set and distribute it to the cooperators for the
new mission.
StepS. Each agent executes the computation mission using the local data set that
come from the Master, and returns the result of each phase, a training chip.
Step6. Master evaluates the results come from its cooperators and check the Ter-
mination-Conditions:
If Termination-Conditions = True Then
Return the best result
Else
Evolved the cooperator’s weights set through the Select & Mutate
operations, which is the starting point in the next phase of cooperate-agents;
End if
Step7. Repeat the above steps from step5 to step7.

4 Simulation Results

The performance of CTA with the above-described DNN structure is tested on the
Protein Secondary Structure Prediction (PSSP) problem in the accuracy of conver-
gence, accuracy of prediction and CPU running times.

The following parameter settings is used in the experiment: sample encoded with
orthogonal matrix of 20 nodes, all-zero means the blanks at the N- or C-terminal of a
chain, window Length is 13, the sample chip size is 250, the training chip size is 5
and the maximum iteration number is 20. The mutation rate Pm is 0.05.The neural
network is three-layer architecture with 260-12-3 and sigmoid function. The training
data set contains 2182 samples come from 9 protein sequences, and the test data set
contains 2043 samples come from 8 protein sequences.
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Table 1. The average results of three different situations

Resources False Acceptance Training Time False Acceptance
Rate of Training (Sec.) Rate of Prediction
1 0.6375 1930.9 0.6329
0.49 692.3 0.5172
3 0.5159 407.5 0.5089

The results show that DNNCTA algorithm cost-time is less, as the number of re-
source is more. Because the sample had been proceeded by each cooperate-agent is
less than the whole training sample set, which is the key to reduce computing time-
cost. And the best result comes from the one with more cooperate-agent in the train-
ing, which indicates that the distributed neural network with CTA method has im-
proved the generalization because it has more chances to approach the global
optimum.

5 Summary

This article has attempted to describe the DNN how to work on a large-scale dataset
with CTA algorithm. First, a DNN environment must be built to be a dynamic model
combined the Node-Only Model and Master-Slave Model. Then a training algorithm
based on the chips is model, which enable the DNN to learn from a distributed envi-
ronment. As demonstrated in the experiments about the PSSP problem, the time-cost
for training is reduced with the resource’s increasing, and the performance of the
trained neural network keeps as well as before. This algorithm resolves the memory
bottleneck problem, and provides a method to build a Computing Grid for NN.
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Abstract. The problem of construction of smoothing curve is actu-
ally regression problem. How to use SVR to solve the problem of curve
smoothing reconstruction in reverse engineering is discussed in this pa-
per. A modified support vector regression model is proposed. Numerical
result shows that the smoothness of curves fitted by modified method
is better than by the standard SVR, when there are some bad measure
points in the data.

1 Introduction

The freeform curve construction is one of the typical problems in reverse en-
gineering (see [1]-[3]). Essentially speaking, this problem belongs to regression.
But there is a particular requirement; the curve produced have to be smoothing.

In this paper, support vector regression (SVR) (see [4]-[5]) is used to deal with
the above smoothing curve problem. But the standard SVR must be modified
due to the smoothing requirement.

This paper is organized as follows. Section 2 introduces our algorithm: The
smoothing SVR. In section 3 some numerical experiments are given. At last, in
section 4 we give the conclusion.

2 The Smoothing SVR
Suppose the training set is

T:{(ml,y1)7($27y2)a'"a(ml,yl)}E (RXR)l (1)

with 1 < a9 < -0 < 4.

The key point of our algorithm is to replace the constant C' in the standard
SVR by C; which depends on the property of the i-th training point, i =1,---,1.
More precisely, our smoothing SVR solves the dual problem:

* Supported by the National Natural Science foundation of China (No.10371131).
** PhD student entrusted by Xinjiang University.
*** Corresponding author.
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l l l

min 25 > (i — )" K (i, 2) (s — af) = > wilei — o)
’ i=1 j=1 =1

l
+ey (ai+aj)
l =1
s.t. Z(ozi —al)=0 (2)

OSOéi,OZ;'kSCiv Zzlval

where a = (a1, aq, -+, )", o = (af, a8, o)t and K(z;, ;) = (D(x),
&(x;)) is the kernel function.

In order to select the penalty factor C;, ¢ = 1,---,1, we first consider the
corresponding curvature K; introduced in [6]. For i = 2,---,1 — 1, the absolute
value of K is approximated by

2sin
|K1| |Pi71Pi+1|’ (O S ﬁz S 7T) (3)

where (3; is the included angle between P;_1 P; and P; P;;1. And the sign of K; is
defined as follows: The sign of K; is positive when the circular arc Pi_l/P7Pi+1 is
inverted hour; otherwise the sign of K; is negative. As for K; and Kj, they are
defined by K1 = K5,K; = K;_1 respectively. In this way, we get the sequence of
curvature {K;},i=1,---,1.

Now we give the distinguishing criterion of “a bad point” and “a good point”.
Suppose that both P; and P, are “good point”. For ¢ = 2,---,l—1, consider sign
sequence of the curvature {sign(K;)|j = 1,---,1}. The i-th point P; is called as
“a bad point” if both the signs of K;_; and K, are different from the sign of
K;, otherwise P; is called as “a good point”.

So it is reasonable to select C; by

o _1C If P; is “a good point”; (4)
T o(tes e IE Pys “a bad point”,

where ; is the included angle between P;_; P; and P;P;11, and both p and C

are a positive parameters.
According to the selection (4), the problem (2) is defined. After getting its so-
!

lution o and a*, we obtain the decision function as f(z) = 3 (o —af) K (x4, )+

i=1

b, where b is determined by KKT conditions.

Algorithm: the smoothing SVR

1. Given a training set

T:{(ffl,yl)7($27y2)a'"a(ml,yl)}E (RXR)l (5)

with 7 <2 < - <y
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[\V]

. Select € > 0, C > 0, and a kernel function K (z,z’);
. According to the above rule, calculate the sign sequence of curvature
{sign(K;)|i = 1,2,---,1} for training points {P;|i = 1,2,---,1};
4. For i =1,---,1, decide P; is “a good point” or “a bad point” by the above
distinguishing criterion;
5. Fori=1,---,1, select C; by

w

oG If P; is “a good point”; (6)
i O(l—cosgrfﬂi) )ZD7 If P; is “a bad point”,

where (; is the included angle between P;_; P; and P;P; 1, and both p and
C' are positive parameters;
. Solve the following optimization problem:

(=}

1ol
min > > (=) K (s, 25) (s — af) = Y gilew — af)
’ i=1 j=1 i=1

l
+e Y (o +af)
=1

Oéaiaaréc’ia ’L:lavl

and get its solution o) = (ay,af,---, a, aj) of problem;
7. Construct the decision function as

where b is determined by KKT conditions.

3 Numerical Experiments

Consider the half round curve y = —/1 — 22, = € [—1,1]. The inputs are given
1

by x; = 7}(1) + 10t 7 = 1,2,---,21. And the corresponding outputs are given
by y; = f\/ 1 —2? + &, where the noise & obeys normal distribution with
E¢ =0, BEE =0.1.

Both the standard SVR and our smoothing SVR with Gaussian kernel are
executed, while the parameters of o,C, e, p are shown in Fig.1. The regression
curves obtained by two ways are shown in Fig.1(a) and 1(c). We have also
calculated the absolute value of curvature of both regression curves and shown
them in Fig.1(b) and 1(d).

It is easy to see that the absolute value of curvature corresponding to smooth-
ing SVR is flatter than the one corresponding to the standard SVR. So the re-
gression curves obtained by the smoothing SVR is smoother than that obtained

by the standard SVR.
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Fig.1(a) The Regression curves with Fig.1(b) Absolute value of Curvature with
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Fig.1(c) The Regression curves with Fig.1(d) Absolute value of Curvature with
6=0.5, C=1000,e=0.05 06=0.5, C=1000,e=0.05
Fig. 1.

4 Conclusion

This paper is concerned with smoothing fitting in one dimensional space in the
area of reverse engineering of CAD/CAM. We propose a modified support vector
regression by replacing its penalty factor C' by C; depending on the training
point. Preliminary numerical experiments show that this approach is promising.
An interesting problem is, as an extension of the one dimensional case, to study
the corresponding smoothing fit problem in two dimensional space.

Acknowledgement. We would like to thank Professor Naiyang Deng who
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Abstract. Support vector regression (SVR) is a powerful tool to solve regres-
sion problem, this paper proposes a fast Sequential Minimal Optimization
(SMO) algorithm for training support vector regression (SVR), firstly gives a
analytical solution to the size two quadratic programming (QP) problem, then
proposes a new heuristic method to select the working set which leads to algo-
rithm’s faster convergence. The simulation results indicate that the proposed
SMO algorithm can reduce the training time of SVR, and the performance of
proposed SMO algorithm is better than that of original SMO algorithm.

1 Introduction

Support Vector Machine (SVM)[1] is an elegant tool for solving pattern recognition
and regression problems, it has attracted a lot of researchers. Training a support vector
machine requires the solution of a very large quadratic programming (QP) problem.
Conventional QP methods is not impractical due to its high memory requirement and
slow computation speed. Platt. J.C.[2] proposed a new algorithm for training classifi-
cation SVM: Sequential Minimal Optimization, or SMO. SMO dramatically reduce
the computational time of training SVM. Recently Smola and Scholkopf[3] proposed
an new SMO algorithm for solving the regression problem using SVMs. In this paper,
we make some improvement to SMO algorithm for SVR.

2 A Fast SMO Algorithm for SVR

SVR can transform to the following constraint optimization problem [4]:

1 1 1
min=Y S @ak, +e el -3 va
23 j=1 i=l i=1
, (1
st Y@ =0, -C<a<C i=1..1
i=1
SVR output can be written as:
1
f) =Y ak(x,. 0+, &

i=1
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SMO breaks large QP problem into a series of size two QP problems. The analyti-
cal solution to the size two QP problem must be solved. We refer to [4] to give the
analytical solution, and correct some mistakes in it.

We use k i denote f( XX and rewrite the objective function of Formula (1) as a

function of two parameters a,,a,:

1
L@,, a,,)—faakm+2a,,kbb+a a,k, a,|-a,y, —a,y,

3)
+ay, +a,v, +L
Where ,, Z a, k = f —d k,-ak, -, L’is a term that is strictly constant

a ai bj
Jj= lj¢ab

with respect to &, , fl.* =f(x,o0 "), Note that a superscript * is used above to
explicitly indicate that values are computed with the old parameters values.
We let: s = ﬁ: + ﬁ: =, + O, , and substitute it into ( 3) :

~(5 =0y, ~ 04y, +(s ~Q)v, +0p, +L “)

LGy = Gk, 7k, +5 )k, s

To solve the optimization value of Equation (4), we need to compute its partial de-

rivative with respect to O/, :

OLG,)/08;, =(sgn(@) ~Se(s ~8,)+¥, =¥, + (G =5 Mk, +Tky, +(5 =28k, v, +v, (5
Now, by oL(@,)/da, =0, we get:

8,k +k,, =2k,) =y, =y, + [, = f; +eGgn(s’ —a) —sen@,))+, (k,, +k, ~2k,)  (6)

From formula (6), we can write a recursive update rule for ¢, in terms of its old

value:

L, =, +1ly, =y, + f, — f, +€(sgn(s” —a,) —sgn(&,))] 7

K

where 77 = 1/ (k,, +k,, —2k,, ). While formula (7) is recursive because of the two sgn()
functions, so we must solve it. If the kernel function of the SVM obeys Mercer’s
condition, then we are guaranteed that 77 >0 will always be true. If 7]is strictly posi-

tive, then Equation (5) will always be increasing. Moreover, if s is not zero, then it
will be piecewise linear with two discrete jumps. Putting these facts together means
that we only have to consider five possible solutions for Equation (7). When
(sgn(@x,) —sgn(@,)) sets to -2, 0, 2 respectively, we can get three possible solutions,

the other two candidates correspond to setting a,to one of the transitions: a, =0or
@, =s . Try Formula (7) with (sgn(@,) —sgn(&Z))equal to -2,0,2. If the new value is

a zero to Formula (5), then accept that as the new value. If the above step failed, try



A Fast SMO Training Algorithm for Support Vector Regression 223

@, equal to 0 or s . Accept the value that has the property such that all positive

(negative) perturbations yield a positive (negative) value for Formula (5). We can get:

a, +1E, — E, +2¢], a >0>a,
a, +1nE, —E, —2¢], a, <0<a,
a, +1nE, - E,], sgn(@,) = sgn(a,)
a = 8
’ 0, @) 2 — 0%y > 0and %) (g, =07y <0 ®)
b ab
s, dL(ab)(O! '+)>0andd (ab)(a s )<0
da, da,

Where E] = " —y,. We also need to consider how the linear and boxed constraints
relate to one another. Using: [ = max(s' —C,—C),H =min(C,s +C), with L and H
being the lower and upper bounds, respectively, guarantees that both parameters will
obey the boxed constraints. To update the SVR threshold ¢, . according to KKT
condition, forces the SVR to have f =y _, the second forces f, =y, ., we average
the candidate updates.

a’ = ﬁoold + fa* —y, + @ - o O (e — 70151 )k,

a _aoold +fb yb +(anew_§:ld)kab +(§bmw —nld)kbb

O, can be solved by:

a, =05 +ay))

In order to accelerating convergence, we propose a new heuristic method to choose
two Lagrange multipliers. For optimal problem( 1) , when we only consider its
equality constraint condition, we may get the following Langrage function:

ZZaa k; +£Z\0{\—Zayl +ﬂZa
i=l j=1

According to [5], Lagrange multiplier A equals to the parameter O, in formula

(2), namely: A = O, , So we can get :
l l l ]
L=5- Zal. jkij+82|04.|—v ay, + OZ 4 )
For (9), we solve objective function’s gradient for &, :

1
OL/o@, = Tk, + @, -y, +Esgn(@,) = E, + £sgn(a,)
i=l1
For an objective function, the bigger its gradient’s absolute value for a variable, the
bigger its variation when the optimal variable change. So according to this point we
choose the first optimal variable. For the other optimal variable’s choose, just like
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Smola’s method, to make the variable’s variation the biggest. According to above
statement, the strategy to working pair selection is as following: firstly select the first

variable &, which makes Max(\Eb +esgn(@, )‘) holding, then choose the second vari-

able @a which makes Max(\ E - Eh‘) holding.

3 Simulation and Comparisons

In this section we will take a concrete example to illustrate the proposed method. The
fitting function under consideration is as follow:

y(x) =4sin(2x) — x

Then we can train SVM by {x(k), y(k)}. We take Gaussian function as kernel, the
simulating results are as follows:

Table 1. The running time of original SMO and improved SMO

Sample number 100 {300 | 500 |800 | 1000 | 2000 | 3000
[m. | [teration 3964 | 5935 | 6533 | 9557 | 9852 | 8938 | 9668
number
proved Runni
SMO | “Hnmng 027 | 061 |[081 |21 |24 |481 |1082
time
| teration 19098 | 21228 | 24192 | 36296 | 34656 | 30143 | 31025
Origi- | number
nal SMO i
Running 10 (20 |28 |70 [81 |161 |320
time

Both trained SVM can exactly fit the function, their training and testing error are
almost the same, but their running time are very different, The proposed algorithm is
several times faster than the original SMO.
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Abstract. In most of the clustering algorithms the number of clusters
must be given in advance. However it’s hard to do so without prior
knowledge. The RPCL algorithm solves the problem by delearning the
rival(the 2nd winner) every step, but its performance is too sensitive to
the delearning rate. Moreover, when the clusters are not well separated,
RPCL’s performance is poor. In this paper We propose a RPFCL algo-
rithm by associating a Fuzzy Inference System to the RPCL algorithm
to tune the delearning rate. Experimental results show that RPFCL out-
performs RPCL both in clustering speed and in achieving correct number
of clusters.

1 Introduction

Given a data set D = {z;})¥, in a multi-dimension space, the task of cluster-
ing D is a classical problem in many fields. The k-means[1] and FCM(Fuzzy
C-Means)[2] algorithms are probably the most frequently used algorithms. As
an adaptive version of the k-means algorithm, Competitive Learning(CL)[3] and
FSCL algorithms[4] have their applications when the data set D is large, and
many other algorithms derive from them. In all these algorithms, the number of
clusters k should be preselected, and a wrong guess of it will make the algorithms
perform poorly. Unfortunately, it is hard to choose it sometimes. Some efforts
had been made to tackle this problem in the past decades. A typical example is
the RPCL algorithm[5], in which for each input, not only the winner is modi-
fied to adapt to the input, but also its rival(the 2nd winner) is delearned by a
smaller learning rate. The experiments[5] and other papers[6,7] show that RPCL
algorithm works well in determining the number of clusters for well-separated
clusters, but how to tune the delearning rate in RPCL is still a problem, to our
best knowledge. Xu Lei noted that the delearning rate «, should be much less
than the learning rate a., otherwise the RPCL algorithm may fail to work[5].
But if a. is too small, the speed of RPCL algorithm is slow. To improve the per-
formance of RPCL, some scholars[6] attempted to change «., o, after M steps,
but failed to give an appropriate criteria for the selection of M. Some others[7]
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tried to incorporate full covariance matrices into the original RPCL algorithm,
but some parameters are as hard to decide as the number of clusters.

In this paper, we propose a new way to tune the delearning rate in RPCL,
to improve both the clustering speed and its performance for data set with
over-lapped clusters. In RPCL, the learning rate and delearning rate are set
to constants. In fact, the distances of the winner and the rival to the input
datum can help much in determining the delearning rate, for there exist some
fuzzy rules to determine cv,. such that the rival should be penalized more after
a close competition, otherwise it should remain almost intact. To utilize these
information, we associate a fuzzy inference system to the original RPCL algo-
rithm, then a new improved cluster algorithm, named Rival Penalized Fuzzy
Competitive learning(RPFCL), is proposed.

This paper is organized as follows: In Sect. 2, we propose the RPFCL algo-
rithm by associating a Fuzzy Inference System into RPCL. Simulation result of
the RPFCL is shown in Sect. 3. Finally, we conclude this paper in Sect. 4.

2 RPFCL Algorithm

In order to explain the RPFCL algorithm, let us consider such a situation: sup-
pose there are k tigers in a mountainous area competing for their food, NV goats.
When a goat appears, the closest two tigers raise a competition. Obviously, it is
a close competition if the two tigers are as close to the goat as each other, and
the winner(the tiger that is closer to the goat) gets the food and becomes the
host of the domain, while the loser will be driven far away under the threat of
the winner. In the contrary cases, if a tiger is the only one who is close to the
goat, the second closest tiger will almost definitely quit the hopeless competition
and stand still to save its strength.

We imitate the phenomenon above with a fuzzy inference system to ad-
just the delearning rate in RPCL algorithm. Refer to [8] for the details of
fuzzy inference. Here we use language variables “zy: almost equal; xp: fairly
equal; and xo: far from equal” to describe the comparability of the distances
between competitors and the input datum in the universe (0, 1](the range of
Hzi:flzu,dt € D). We also use other language variables “yq:
serious; y1: moderate; ys: slight” to describe the penalty degree in the universe
(0, ). Here, the larger u is, the more equal the distances(||me — d¢||, ||mr — di|)
are. Since «, < «., we regard o, = a, as a very serious punishment. The
membership functions of the language are shown in Fig. 1 and Fig. 2.

The rules in the Fuzzy Inference System for choosing the delearning rate .
are listed below: Rule 1: if w is xg, then «,. is yo; Rule 2: if u is x1, then «,. is y1;
Rule 3: if u is x2, then «,. is y2. And the formula to calculate the delearning rate
a; in the Fuzzy Inference System is[8]:

u(mc, my, dt) ==

3
oy = in(u(mc,mr,dt))yi ) (1)
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Fig. 1. Membership functions of z; Fig. 2. Membership functions of y;

After associating this mechanism to RPCL, we modify the RPCL algorithm into
our RPFCL algorithm, which is consisted of the following three steps.

Step 1: Preselect an enough large number of clusters k, initiate k centers, set
an appropriate a.. Randomly take a sample d; from data set D, calculate ¢ and
r by formula (2).

c = argmin~y;[|d; —myll , = argminy;|ld; — m;|| . (2)
J Jri#e
Where v; = Z:j ,» 1 is the cumulative number of the times when m; wins
1=1""

a competition. We name m, the winner, and m, the rival. Here v; , called
conscience strategy[4], reduces the winning rate of the frequent winners, and
thus solves the problem of dead units. We select the first k£ input data as initial
centers.

Step 2: Update the winner m, and the rival m, by the following formulas,

mett = m + oe(dy —mg) 5 mT = my — ap(dy —my)
where «; is given by formula (1).

Step 3: The algorithm will stop after p epochs. one epoch means that all the
input data are scanned once. Here, p should be preselected. A datum closest to
center m; will belong to the cluster represented by m;.

Obviously, if ;. is constant, then RPFCL degenerates to RPCL algorithm[5].
So our RPFCL algorithm is an extension of the RPCL algorithm.

3 Simulation Results

Due to the limitation of space, here we present one of the experiments we made.
we choose a sample set same to that in [5], a data set of 4 clusters, each cluster
having 100 samples from 4 Gaussian distributions centered at (—1,0), (1, 0), (0,
—1), (0, —1). The only difference is that its variance is 0.3 instead of 0.1. We set
the initial number of clusters k = 8, 2 times that of the real number of clusters.
The simulation results of RPCL and RPFCL are shown in Fig. 3-5. Fig. 3 shows
that RPCL fails to select the correct number of clusters even after 1000 epochs.
As shown in Fig. 4 however, if we set a,. 10 times larger, the correct number of
clusters may be achieved, but the positions of the centers are not guaranteed. If
the variance of the data is set to 0.4, we find that RPFCL performs as good as
usual; but RPCL fails to work on such data set no matter how large . is.
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4 Conclusion

In this paper, we proposed the RPFCL algorithm by associating to RPCL algo-
rithm a Fuzzy Inference System to tune the delearning rate. Experiments show
that RPFCL algorithm not only clusters in a higher speed than RPCL, but also
works well on overlapped data set. The Fuzzy Inference System is easy to estab-
lish. In our future work, we will further extend the Fuzzy Inference System to
tune the learning rate a. at each step, and create a mechanism to automatically
stop the RPFCL algorithm.
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Abstract. For improving coding efficiency, a new predictive vector
quantization (VQ) method was proposed in this paper. Two codebooks with
different dimensionalities and different size were employed in our algorithm.
The defined blocks are first classified based on variance. For smooth areas, the
current processing vectors are sampled into even column vectors and odd
column vectors. The even column vectors are encoded with the lower-
dimensional and smaller size codebook. The odd ones are predicted using the
decoded pixels from intra-blocks and inter-blocks at the decoder. For edge
areas, the current processing vectors are encoded with traditional codebook to
maintain the image quality. An efficient method for codebook design was also
presented to improve the quality of the resulted codebook. The experimental
comparisons with the other methods show good performance of our algorithm.

1 Introduction

VQ, which has been widely applied in speech and image coding, provides an efficient
technique for data compression . VQ is defined as a mapping Q of k -dimensional
Euclidean space R into a finite subset ¥ of R* . Thus Q:R* =Y where
Y ={y,,¥,.,»¥y |y, € R"}is called a codebook, and N is the codebook size.
The distortion between the input vector X = (X;,X,, "X, )T and codeword
Y, =i Vs Va )" is usually defined as squared Euclidean distance:

k
D ICES AL m

d(x,y;) =Hx—y,.

The minimum distortion codeword is just the best-matched codeword for the input
vector. Given vector dimensionality, the larger the codebook size is, the smaller the
distortion is. However, a large size codebook will obviously result in high bit-rate and
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Research Team (grant 04205783), the National Natural Science Foundation of China (Grant
60274006), the Natural Science Key Fund of Guang Dong Province, China (Grant 020826),
the National Natural Science Foundation of China for Excellent Youth (Grant 60325310) and
the Trans—Century Training Program.
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long encoding time. To achieve high encoding efficiency, we always try to make the
codebook size as small as possible while still maintaining almost constant distortion.
Various VQ schemes had been developed for this aim. The nearest-neighbor search
algorithms[zl do not introduce extra distortion. However, the bit-rate of these
algorithms is log, N/k, which is invariable. To reduce the bit-rate, SMVQ [3], PPM 4
and SB_PVQ"!, were also successfully applied in image encoding.

In the proposed algorithm, these factors, e.g., encoding time, decoded image quality
and bit-rate, are sufficiently considered. In contrast to other VQ methods, the defined
image blocks are classified based on variance. Our method sufficiently exploits
correlation between pixels in intra-blocks and inter-blocks to recover image.
Codeword candidate scheme is employed to find the corresponding codeword.
Aiming at the drawbacks of LBGW, a modified codebook design method, which
reduces overall distortion, is proposed. Compared with other methods, the new one
achieves significant improvement in terms of rate-distortion performance while
maintaining comparable computation complexity.

2 Block Classification

Suppose the original image is divided into many sub-blocks, the block size is 4 X 4
and each block represents a 16-dimensional vector. The relationship of adjacent
image blocks is shown as Fig. 1, where X denotes the current processing block, u, 1
and N are the upper, left and upper left neighboring blocks, respectively. Here the
block X confined in dashed square box is defined for every X, because the pixel
information around X will be utilized in the following prediction. If X is located in
the first row and first column of image, X is just X itself. The mean and variance of
X are defined as (2) and (3).

...........................

: “4.4)]|4.1) (4.2) (4,3) (4,4
LA |[(1LD) (1.2) (1.3) (1.4)

i i (2,4) ¥ T the current processing block
ACR) e i———> the defined block X
£°4,4)

Fig. 1. Block classification
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4 4 4 4
(n4,4 _m})z +Z(”4,,‘ _m})2 +Z(li,4 _m})z +zz(xi,/ _mi')z
— i=1 i=1 =1 j=1 (3)
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x
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If v, is relatively large, this means the pixels in X have a high fluctuation of
intensities. Then block X is not smooth and probably located in edge areas. If v is
relatively small, then block X is smooth. If Vv, is less than threshold value TX , X can
be considered as smooth block. Otherwise X is not smooth.

3 Prediction Method

In this paper, the input vector is divided into two parts of even column vector X, .,
and odd column vector X _,,. X, is just the vector that needs be encoded. So a
4 X 4 -dimensional vector is sampled as a 4 X 2 -dimensional vector to be quantized,
and the vector dimensionality is reduced to the half of original ones.

The correlation between pixels in smooth areas behaves that the pixels can be
predicted using neighboring ones. If v calculated is less than the threshold value
T_, the current block X is even sampled to produce X, . It is quantized with
4 X 2 -dimensional codebook C whose size is N, and N is smaller than the
traditional codebook size N . The index of the best-matched codeword for X, is
transmitted to the receiver. In the decoding end, the codeword corresponding to the
index is chosen from the same codebook to replaceX, . .X_,, is predicated using
neighboring decoded pixels. Combining decoded X, with X ,, forms the
constructed block, which is called the predication block X . The prediction at the
receiver is shown as Fig 2, where @ denotes the decoded pixel of even column
vector, © denotes the decoding pixel of odd column vector and X denotes the decoded
pixel of odd column vector. For simplicity, the prediction of X ,, only uses
neighboring pixels of decoded even column vectors. The predication equations are
described as (4) and (5).

X @ X O x @ x ©®
L X e xe|xex e
X 0 x o Xx ox @
><o><0_><2,0><0
xoxo-sﬁooo
[ |X ®&X eflo"e O .%thecurrentdecodingblockx
X eX @0 @ O o
X @¢X @0 e O @

Fig. 2. The prediction of the odd vector
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+ X,

i+, j+1

xi—l.j+l + xi—l,j + xi—],j—l

X, = F X T X 4)
R()CH,J.H )+ R(x

i+l,j
)+ R(xi—l,j—l )+ R(xi+1,j+1 )+ R(le,j) + R(xi+l,j—l )

i1,

|1 if x, ; is available 5
R(x;,;) = {O if x,._jj is not available ©)

From above, we know that some decimated pixels are obtained by averaging their
available neighboring pixels. Though the block variance need be calculated
beforehand, this preliminary processing can save much time when a block is not adapt
to be encoded with the smaller codebook. To maintain encoding quality, the distortion
between X and X is calculated beforehand. Suppose the distortion is greater than the
predetermined threshold value Ty, which means the prediction fails to provide a
small distortion result. We switch to using traditional VQ coding.

In the experiment, we find that the best-matched codeword may not reconstruct the
best-predicted result for the input block, sometimes next-nearest codeword may result
in better predicted vector for reproduction. Considering the computation complexity
increased due to more predictions, we select the best and second best codewords from
C, as two candidates for obtaining the best prediction. The prediction blocks are
calculated using the two codewords, respectively. The index of the codeword that
yields the best prediction is chosen for transmission.

To distinguish the two different coding types, a flag should be applied to inform the
decoder as to which codebook of the two is employed for encoding an input block. A
simple way is to attach a prefix flag-bit ahead of the index of a codeword selected.
Though this will introduce extra bits, the bit-rate is less than that of traditional VQ if
N is far more larger than N . Assume that the probability of the smooth block is «
in an image, the associated bit-rate for every pixel is calculated as:

_ a(l+log, N,)+(1-a)(1+log, N) ©)
16

BR,

Compared with the bit-rate of the traditional VQ, we can easily see that given the
same codebooks, the more smooth the image is, the lower the bit-rate is achieved.

4 Codebook Design

The common codebook design is LBG algorithm'® which is an iterative procedure. In
LBG algorithm, the quality of the resulted codebook highly depends on the initial
codebook. The algorithm may probably result in a local optimum with improper
initial codebook, which in turn affects the performance of codebook. To overcome the
problem, our method does not generate the codebook at the same time. It is efficient
for LBG algorithm to generate a small codebook. So the modified algorithm first
generates a small codebook by the LBG algorithm. The training vectors whose
associated codeword has maximum average distortion will then be split into more
codewords by LBG algorithm to reduce overall distortion. In this way, even if the
initial small codebook is improper, it can adjust and improve the codebook step by
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step. The steps to design a codebook with § codewords from a training set
X ={x, Ilm=12,---,M }of k-dimensional vectors are described as follows:

Step 1: Generate a codebook with L codewords from the training set with LBG
algorithm, here L is much smaller than S . For example, L may be 2,3, or 4.

Step 2: Calculate the average distortion between every codeword and each training
vector of the associated cluster. Find the codeword that has the maximum average
distortion in the codebook and denote the codeword as y . . The cluster of the
training vectors associated with y . is denoted by 7.

Step 3: Employ the LBG algorithm to generate a codebook with L codewords
from the training set T .

Step 4: Replace the codeword y, . with above new L codewords. Thus the
number of the codewords in the codebook will be expanded by L —1 codewords.

Step 5: If the desired size of the codebook is reached, then stop the iteration.
Otherwise, go back to Step 2.5

5 The Proposed Algorithm

For encoding an image, encoder partitions it into a set of blocks (or vectors) first. The
blocks are processed from top to bottom and left to right. The encoding steps are
depicted as follows:

a): For the current processing block X, v, of defined block X is calculated. If v 4
is less than the threshold value 7', go to the next step, otherwise go to step c.

b): The even column vector X, is produced after sampling from X, and X,
is quantized with codebook C . The best and second best codewords for X, . are
searched from C . Two predlctlon blocks are produced using the two codewords.
Then calculate the distortion between X and two prediction blocks, respectively. The
index associated with the minimum distortion d_; is marked with p . If d , <T,
p will take place of X to be transmitted. Otherwise, go to the next step.

¢): X is encoded with traditional codebook C to maintain the image quality. The
index g of the best-matched codeword for X is searched from C and g will take
place of X to be transmitted.

d): To distinguish the different coding types, a one-bit checking flag is appended
with “0” for coding using codebook C and “1” for coding using codebook C. .
Encoder transmits the combination of one “0” bit and the index ¢ and the
combination of one “1” bit and index p to the decoder.

The decoding procedure is quite straightforward with reference to the encoding
one. For each input bit-string, there are two branches to describe the decoding steps:

a): Select the first bit as the check-bit. Suppose the check-bit is “0”, this means the
traditional VQ is used to process the current block. In this case, the following log, N
bits are read as an index from the bit-string. The original block is replaced with the
codeword associated with the index in C .

b): Suppose the check-bit is “1”, the following logz N bits are read as an index
from the bit-string. We retrieve the even column vector corresponding to the index
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from C and then predict the odd column vector using ( 4) and( 5) . Then combine
them to recover original input block.

After all the blocks are reconstructed from top to bottom and left to right, we can
piece the blocks together to obtain the decoded image. SB_PVQ is improved using
three amendments in our algorithm. The block classification based on variance
reduces encoding time. The number of the encoded pixels is the same as that of
SB_PVQ, while our method can sufficiently utilize the neighboring pixels to recover
origin block. So it needs less bit-rate than SB_PVQ with the same image quality. We
also propose a modified codebook design to improve VQ performance. So our method
is superior to SB_PVQ.

6 Experimental Results

Some experiments were conducted to test the efficiency of our proposed method. All
images in our experiments are of size 512X 512 with 256 gray level. We employ Lena
and Pepper as our training images, and apply modified LBG algorithm to generate
both the traditional and lower-dimensional codebooks. The splitting number L is
fixed to 4 and the size N is 256. We compare our algorithm, the traditional VQ,
SMVQ in encoding time, bit-rate and PSNR. Table 1 lists the experimental results for
the testing images. In SMVQ algorithm, the size of state codebook N P is 32. In our
algorithm, the threshold value7’ is 2000 and T), is 1000. The threshold values are

Table 1. The results of the proposed algorithm, the traditional VQ, SMVQ for comparison

SMVQ Our algorithm
Image Factors \Y
£ < N =32 N =16 N =32 N =64
Time(s) 30.27 120.18 7.18 524 6.56
Lena Bit-rate 0.500 0.315 0.323 0369 0415
PSNR(dB) 31.167 29.332 29.758 30.102  30.502
Time(s) 30.68 120.42 8.45 6.23 6.28
Pepper Bit-rate 0.500 0.315 0.324 0358 0417
PSNR(dB) 29.476 27.951 28.256 28.655 28.962
Time(s) 30.49 119.72 10.56 8.73 9.01
Boat Bit-rate 0.500 0.315 0332 0362 0419
PSNR(dB) 29.451 28.011 28.893 29.121 29.378
Airplane Time(s) 29.78 120.03 9.07 651 7.32
P Bit-rate 0.500 0.315 0.363 0387  0.430
PSNR(dB) 30.010 28.709 29.031 29.687 29.986

decided by experiments. In fact the bit-rate is variable along with different threshold
values. When threshold values are relatively large, the bit-rate will be decreased while
the image quality is reduced. PDE!"! is adopted in all searches of codebooks. From the
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experimental results, we can see that the traditional VQ obtain the best-decoded
image quality at the cost of maximum bit-rate and long encoding time. Though
SMVQ needs low bit-rate, this algorithm cost so long time to produce state codebook
for every input vector and the decoded image quality is not satisfied. The proposed
algorithm not only needs least encoding time, but also outperforms SB_PVQ as a
prediction method in PSNR and bit-rate. Figure 3 illustrates the rate-PSNR
performance curves between our method and SB_PVQ with N is 512. The curves
show that our method is superior to SB_PVQ in term of rate-PSNR performance. All
the experiments prove that our method outperforms VQ, SMVQ and SB_PVQ in total
performance.

PSNR{HE)

Cﬂ:ur method
SE-Pv

I
032 0.34 0.36 038 04 0.42 0.44 0.46
Bit-rate(bpp)

Fig. 3. Rate-PSNR curves for our method and SB_PVQ in encoding Lena and Pepper

7 Conclusion

For improving image coding quality, increasing encoding speed and reducing bit-rate
on transmission, a new prediction-based vector quantization method for image coding
is presented in this paper. In contrast to other VQ methods, the defined image blocks
are classified based on variance, which can speed up encoding time. Correlation
between pixels in intra-blocks and inter-blocks is sufficiently utilized to recover
image. Codeword candidate scheme is employed to find the corresponding codeword
that can generate better-reconstructed images. Aiming at the drawbacks of LBG, a
modified codebook design method, which reduces overall distortion and reduces the
dependence on initial codebook, is proposed to generate efficient codebook. The
experimental result shows that the proposed encoding outperforms VQ, SMVQ and
SB_PVQ in total performance.



236 M. Shi and S. Xie

References

1. Gersho A., Gray R. M.: Vector quantization and signal compression. Boston: Kluwer
Academic Publishers, (1992)

2. Chaur H. H., Liu Y. J.: Fast search algorithms for vector quantization of images using
multiple triangle inequalities and wavelet transform. IEEE Trans on Image Processing, vol.
9, (2000) 321-328

3. Kim T.: Side match and overlap match vector quantization for image. IEEE Trans on Image
Processing, vol. 1, (1992) 170-185

4. Chang C. C.: Chou J. S., Chen T. S.: A predictive image coding scheme using a smaller
codebook. Signal Processing: Image Communication, vol. 12, (1998) 23-32

5. Zhu C.: A new subsampling-based predictive vector quantization for image coding. Signal
Processing: Image Communication, vol. 17, (2002) 477-484

6. Linde Y., Buzo A., Gray R. M.: An algorithm for vector qauantizer design. IEEE Trans on
Communications, vol. 28, (1980) 84-95

7. Bei C. D., Gray R.M.: An improvement of the minimum distortion encoding algorithm for
vector quantization. IEEE Trans on Communications, vol. 33, (1985) 1132-1133



Performance Improvement of Fuzzy RBF Networks

Kwang-Baek Kim!, Dong-Un Leez, and Kwee-Bo Sim®

! Dept. of Computer Engineering, Silla University, Korea
gbkim@silla.ac.kr
2School of Architectural Engineering, Pusan National University, Korea
ldu2l@hanmail .net
3 School of Electrical and Electronic Engineering, Chung-Ang Univ., Korea
kbsim@cau.ac.kr

Abstract. In this paper, we propose an improved fuzzy RBF network which
dynamically adjusts the rate of learning by applying the Delta-bar-Delta
algorithm in order to improve the learning performance of fuzzy RBF networks.
The proposed learning algorithm, which combines the fuzzy C-Means
algorithm with the generalized delta learning method, improves its learning
performance by dynamically adjusting the rate of learning. The adjustment of
learning rate is achieved by self-generating middle-layered nodes and applying
the Delta-bar-Delta algorithm to the generalized delta learning method for the
learning of middle and output layers. To evaluate the learning performance of
the proposed RBF network, we used 40 identifiers extracted from a container
image as the training data. Our experimental results show that the proposed
method consumes less training time and improves the convergence of learning,
compared to the conventional ART2-based RBF network and fuzzy RBF
network.

1 Introduction

Recently, RBF networks, which have the characteristics of fast training time,
generality and simplicity, have been applied to the classification of training data and
nonlinear system modeling[1]. RBF networks avoid the problems with algorithms
such as error backpropagation learning algorithm. RBF networks reduces training
time and prevents training patterns from not being well-classified, which is caused by
the weights of multilayer perceptrons falling into local minimum[2]. The middle-layer
of RBF Networks is the clustering layer. That is, the purpose of this layer is to
classify a given data set into homogeneous clusters. This means that if in the feature
vector space of input data, the distance between vectors in a cluster is within the range
of the predetermined radius, the cluster is classified as homogeneous. Otherwise, the
cluster is classified as heterogeneous[3]. However, clustering within the prescribed
radius has the risk of selecting wrong clusters. Thus, the determination of middle-
layer has a great effect on the overall efficiency of RBF networks. If learning of a new
pattern is processed at the state in which learning is completed, that is, at the state in
which the connection weight is fixed, RBF networks have an effect on prescribed
weights. This effect leads to the problem of taking a lot of time to retrain a RBF
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© Springer-Verlag Berlin Heidelberg 2005



238 K.-B. Kim, D.-U. Lee, and K.-B. Sim

network. It also serves to decrease recognition rate by classifying untrained new
patterns as the homogeneous pattern when they are entered into the RBF network[4].

In this paper, we propose a method to improve the learning structure of RBF
networks. In the proposed learning structure, the connection structure between input
layer and middle layer is the same as the fuzzy C-Means structure. Though the
proposed learning structure is a complete connection structure, it compares target
vector with output vector in the output layer, and thus avoids the problem of
classifying the new patterns as the previously trained pattern since it adjusts
connection weight by back-propagating the weight connected with the representative
class. And the generalized delta method is applied to the representative class of
middle layer and the output layer nodes in terms of supervised learning. In doing this,
the rate of learning is dynamically adjusted by the application of Delta-bar-Delta
method to reduce training time. This paper comparatively analyzes learning
performance between ART2-based RBF networks, fuzzy RBF networks and the
proposed learning method in terms of applying them to the identifier extracted from a
container image.

2 Related Research

2.1 ART2-Based RBF Networks

In the ART2-based RBF networks, the number of middle-layer nodes is determined
according to the boundary parameter setting in the process of generating the middle
layer. The boundary parameter is the value of radius that classifies clusters. If the
boundary parameter is set with a low value, a small difference between the input
pattern and the stored pattern leads to the generation of new clusters in terms of
classifying them as different patterns. On the other hand, if the boundary parameter
has a high value, the input pattern and the stored pattern are classified as the same in
spite of a big difference between them. Thus, this reveals a problem that recognition
performance varies depending on boundary parameter setting[5].

2.2 Fuzzy C-Means-Based RBF Networks

Fuzzy C-Means-based RBF networks uses the fuzzy C-Means algorithm to generate
the middle layer. It has a disadvantage of consuming too much time when applied to
character recognition. In character recognition, a binary pattern is usually used as the
input pattern. Thus, when the fuzzy C-Means algorithm is applied to the training
pattern composed of 0 and 1, it is not only difficult to precisely classify input patterns
but also takes a lot of training time compared to other clustering algorithms[6]. In this
paper, we use the Delta-bar-Delta algorithm to improve the learning performance of
fuzzy C-Means-based RBF networks. It reduces the training time by dynamically
adjust the rate of learning in the process of adjusting the connection weight between
middle layer and output layer.
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2.3 Delta-Bar-Delta Algorithm

Delta-bar-delta algorithm[7], which improved the quality of backpropagation
algorithm, enhances learning quality by arbitrating learning rates dynamically for
individual connected weights by means of making delta and delta-bar. The formula of
making delta is as follows: In this expression, i, j and k indicate the input layer, the
middle layer and the output layer, respectively.

oE

A=, =0 1)
JE

K= awk/ = _6kzj (2)

The formula of making delta-bar is as follows:

Aji(1)=(1=B)-Aji(1)+B-Aji(1-1) 3)

Ayi(t)=(1=B) Ai(t)+ B-Ay(1=1) 4)

The value of parameter s in formula (4) is the fixed constant between 0 and 1.0.
The variation of learning rate in terms of the change direction of delta and delta-bar is
as follows: If the connected weight changes to the same direction in the successive
learning process, the learning rate will increase. At this point delta and delta-bar has
the same sign. On the other hand, if the signs of delta and delta-bar are different, the
learning rate will decrease as much as the ratio of 1- ¥ of the present value.

The formula of the variable learning rate for each layer is as follows:

a(t+l)=a,(t)+x if Aji(t=1)-A,(1)>0
=(1=y)-a;(t) if A(t=1)-A,(1)<0 ®)
=a,(t) iFA(1=1)-A,(1)=0

ay(t+1)=a(1)+x ikaz(f—l)‘Ak,(tPO
=(1=y)-ay(t) if Ag(1=1)-Ay(1)<0 (6)

=a(1) if Ag(1-1)-Ay(1)=0

3 Improved Fuzzy RBF Networks

The middle layer of an RBF network is a layer that clusters training patterns. The
purpose of this middle layer is to classify the given training patterns into
homogeneous clusters. If in the feature vector space of training patterns, the distance
between vectors in a cluster is within the range of the prescribed radius, they belong
to the same cluster. Otherwise, they belong to the different cluster. Clustering within
the range of the prescribed radius can select wrong clusters and take them as the input
value of output layer, thus decreasing the learning performance of RBF networks.
Since the node of middle layer does not know its target vector in the process of
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learning, Since the node of middle layer does not know its target node in the process
of learning, it takes a lot of training time caused by the paralysis resulting from credit
assignment by which the errors of nodes of output layer is inversely assigned to nodes
of middle layer.

In this paper, we propose a learning structure that selects the node with the highest
membership degree as the winner node in terms of the application of C-Means
algorithm, and transmit it to the output layer. We also apply the generalized delta
learning method for learning of the middle and output layer. The Delta-bar-Delta
algorithm is applied to improve training time. The learning model that we propose is
depicted in Fig. 1.

Output
Layer

Middle
Layer

Fig. 1. The proposed learning model

The proposed learning method for fuzzy RBF networks can be summarized as
follows.

1. The connection structure of input layer and middle layer is the same as in the
fuzzy C-Means algorithm whose output layer is the middle layer of the proposed
learning structure.

2. The node of middle layer denotes a class. Thus, though being a complete
connection structure as a whole, we adopts the winner node method which back-
propagates the weight connected with the representative class in terms of comparing
the target vector with the actual output vector.

3. The fuzzy C-Means algorithm selects the node middle layer with the highest
membership degree as the winner node.

4. The generalized delta learning method is applied to the learning structure of
middle layer and output layer in terms of supervised learning.

5. To improve learning performance, the Delta-bar-Delta algorithm is applied to
the general delta learning, dynamically adjusting the rate of learning. If the difference
between target vector and output vector is less than 0.1, it is defined as having
accuracy. Otherwise, it is defined as having inaccuracy. The Delta-bar-Delta
algorithm is applied only in the case that the number of accuracies of the entire
patterns is equal to or greater than the number of inaccuracies. The reason for this is
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to prevent learning from being stagnant or vibrating, arising from premature
saturation due to competitive steps in the learning process, which in turn make the

error rate stable. The proposed fuzzy RBF network is given in Fig. 2.

l

Calculate Error Signal Vector( d, )
8,=(T,-0,)0,1-0))

Initial parameters (c,m)
and threshold (&)
1
Set Target vector and Input vector €
A
Calculate the cluster prototype ( v )
v = 2 )" X 12 ()"
k=1 k=1
1
Calculate Membership Degree
of Middle layer
Ix
" _1/ k l/m—l
z(I X, v, I2
NO
[ YES
Select Maximum Output Vector( O,.)
0. =Max(U,)
1
Calculate output( O, ) of output layer
Net, =X W,.0. +6,
1.0
O, = F(Net)) = —————
1.0+

U
Calculate Delta-bar-Delta
A} =-6,0.
Ar=(1-pPA, + pA;
L
Update Learning Rate
o, (t+)=a, ()+k if (A (t=1)-A,. (1) >0
=(=pa, @) if(ArE=1)-A, (1) <0
=a, () if (A (1 =1)-A,. (=0

Update Weight( w,, ) and Basis( 6, )

w,t+1D)=w,(t)+ 0(,‘.5]0‘,
0,(t+1)=06,(t)+,0,

Total Correct Number
<0

Training End

Fig. 2. The proposed fuzzy RBF learning algorithm

4 Experimental Results and Analysis

We have implemented our learning algorithm in Visual C++ 6.0 on an Intel Pentium-
IV machine with 2 GHz CPU and 512 MB of RAM. In order to analyze the learning
performance of our learning algorithm, we chose the classification problem for 40
number identifiers extracted from a container image, and comparatively analyzed
ART2-based RBF networks with fuzzy RBF networks in terms of the number of
repetitive learning and the number of recognitions.

To extract container identifiers, the method proposed in [8] was applied and
individual number identifiers were extracted. The edge was detected by applying
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Canny mask. To eliminate from the detected edge information vertically long noises
produced by the outer light source when obtaining the image, we applied fuzzy
inference. After removing the noises, we extracted the domain of identifiers and then
made them binary-coded. Individual identifiers were extracted by applying the
contour-tracking algorithm.

We formed the training pattern by selecting 40 number patterns among the
normalized patterns extracted from the container image. A training pattern example is
given in Fig. 3. Table 1 shows the parameters of our learning method used in the
classification experiment of number identifiers.

Where, ¢ is set to 0.1. In table 1, @ denotes the rate of learning, and u, the

momentum coefficient x, y, fare the Delta-bar-constants.

00e01100 00000011 00111000 YUI1114Y HUHHWI1Y
81111111 @BA11111 AI111186 Am111AR AAAAATTT
14111AA11 AR111141 AARAAAMYY 11100110 OG0O1111
111AAATT 11119141 AAAAAAAT YUUIUUI1 YUYW
T1TUUUTT BT EI111 WYUUBULE BeEA8611 Gd811811
111AAA11 ARARI1411 AARAAA1Y1 GOO000110 0G110611
11100011 90001111 Q9001111 poei111p oadi001d
T1T1HHEIT M1 UeT1110Y geeds111 61108611
111686141 0006414141 811188006 AAARAA11 AATAANT 1
11100011 00001111 11100000 ppedBOI1 BA1111111
111800811 aeasi111 11 11 11
11118611 88861111 111188868 A11AAA11 AARAAAT1
91111111 60001111 00661111 Am11111 AnAAAR
21111111 800811008 11111111 80111183 00001000
11111111 W11 1188 11111111 3111111 8eti1ii1e
TITTHHHH HHT1HI1T 111711111 1110HH11 11188011
11110000 61110000 66060111 11190011 111AARTA
TTTYUUEY 111 USUY UHUELIIY 11 T180E11 11100011
11181118 81118111 86081160 811180811 11144811
11111111 11111111 06001160 00111116 AT1AAARIA
1110880811 11110811 88011180 11118011 00111111
88ea8e11 11188811 868118688 11188811 vuvuuwll
ARRAARTT 111AARTT ARATIAAR 1110AAT1 BOBBA118
11100011 11100011 006111000 11100011 00001100
ATTTTUYETT 111U T UET1TU0Y 11 116y11 AR AR
A1411144 Ad444144 AR1441AAR A1414441 881116088

Fig. 3. Example of container number identifier training pattern

Table 1. Parameters of the fuzzy RBF network

Parameter
Learning Method “ “ K 4 p

Fuzzy RBF Network 0.9 05 005 02 0.7

Table 2. Learning results of each learning method

# of middle # of TSS # of
layer’s nodes Epoch recognition
ART2-based
RBF Network 13 950 0.067065 40
Fuzzy RBE 10 822 0.082591 40
Network
Proposed Fuzzy 10 526 0.085005 40

RBF Network
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In table 2, the Epoch number is the repetitions of learning, and TSS is the sum of
the square of the total errors. In the ART2-based network and fuzzy RBF network, the
rate of learning and momentum were set to 0.5 and 0.6, respectively. In the proposed
fuzzy RBF network, the initial rate of learning was set to 0.5, and we applied the
Delta-bar-Delta algorithm if the number of accuracies of the total patterns is equal to
or greater than the number of inaccuracies. The momentum was set to 0.6.

Table 2 shows that learning is terminated only in the case where the number of
inaccuracies is equal to or less than 0. As can be seen from table 2, the proposed fuzzy
RBF network is improved in terms of learning speed, compared to the ART2-based
RBF network and the existing fuzzy RBF network. In the ART2-based RBF network,
the number of nodes of middle layer was increased or decreased according the value
of the boundary parameter, which is considered to be a problem of the network. In
table 2, the boundary parameter set to 0.5 proved to be most optimal.

In the conventional fuzzy RBF network and the proposed fuzzy RBF network,
both of which apply the fuzzy C-Means algorithm to the middle layer, they generated
less middle-layered nodes than the ART2-based RBF network because it generates
clusters according to the membership degree of nodes of middle layer. The proposed
fuzzy RBF network dynamically adjusts the rate of learning to reduce the premature
saturation corresponding to the competitive stage of learning process, thus consuming
less training time than the conventional fuzzy RBF network. Fig. 4 shows the curve
that is the sum of the square of errors in the conventional methods and the proposed
method.

3
—<&— Proposed Fuzzy RBF
25 —®&—— Network
e - - # - - ART2-based RBF
2 &« Network
\-‘ — -& — Fuzzy RBF Network
2] .
fél 1.5 \
i \
0.5 -
0 ! =5 T -R—--—a
40 200 400 600 800
Epoch Number

Fig. 4. Variance of TSS according to Learning Methods

As shown in Fig. 4, the proposed method wins the conventional methods in terms
of the speed of the initial convergence and training time.
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5 Conclusion

In this paper, we proposed an improved fuzzy RBF network which dynamically
adjusts rate of learning by applying Delta-bar-Delta algorithm in order to improve
learning performance of fuzzy RBF networks. The learning structure of the fuzzy
RBF network has also been improved. In the proposed learning structure, the fuzzy C-
Means algorithm is applied to the connection structure of input layer and middle
layer.

Though the proposed learning structure is a complete connection structure, it
compares target vector with output vector in the output layer, and thus avoids the
problem of classifying the new patterns as the previously trained pattern since it
adjusts the weight by back-propagating the weight connected with the representative
class. And the generalized delta method is applied to the representative class of
middle layer and the nodes of output layer in terms of supervised learning. In doing
this, the rate of learning is dynamically adjusted by the application of Delta-bar-Delta
method to reduce training time. The proposed method also avoids the problem of
taking too much training time caused by the paralysis resulting from credit
assignment by which the errors of nodes of output layer is inversely assigned to the
nodes of middle layer. This paper comparatively analyzed learning performance
between ART2-based RBF networks, fuzzy RBF networks and the proposed learning
method in terms of applying them to the identifier extracted from a container image.
The experimental results confirmed that the proposed method improved learning
performance of fuzzy RBF networks.
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Abstract. In this paper, we propose a universal approach to study dy-
namical behaviors of various neural networks with time-varying delays. A
universal model is proposed, which includes most of the existing models
as special cases. An effective approach, which was first proposed in [1],
to investigate global stability is given, too. It is pointed out that the ap-
proach proposed in the paper [1] applies to the systems with time-varying
delays, too.

1 Introduction

Recurrently connected neural networks have been extensively studied in past
years and found many applications in different areas. Such applications heavily
depend on the dynamic behavior of the networks. Therefore, the analysis of these
dynamic behaviors is a necessary step for practical design of neural networks.
Recently, there are dozens papers discussing recurrent neural networks with de-
lays. For example, see [1,2,3] for constant delays; For time-varying delays, see
[4,5,6] and [8,9,10,11].

It is natural to raise following question: Can we propose a unified
model and an effective approach to investigate all these models in a
universal framework?

The purpose of this paper is to give an affirmative answer to this question.

We consider the following system

duczt(t) = —d;(t)ui(t) + ; /0 N gi(u;(t — ))dJi;(t, s)

D " gt — (1) — $)AKE (8, ) + L) W

k=1j=1
where for any ¢ > 0, dJ;;(t,s), dKfj (t,s) are Lebesgue-Stieljies measures with
respect to s foreach i, =1,---,n, k= 1,---,m, and satisfy fOOO |dJ;;(t,s)| < o0

and fooo |dE;;(t, s)| < 0o. T =maxi<i j<n Tilfj, 7'1-13- = max Ti’fj(t).
The initial values are

ui(s) = ¢i(s) for s €[-00,0],

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 245-253, 2005.
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where ¢;;(t) are bounded continuous functions. Some variant of (1) has been
proposed in [12,21] to discuss periodic systems.
In particular, we consider following system

dui (t)

i =+ 3 / " gyt — )i (5)

=3 gt — g (t) — 5)dsi(s) + Li(t) @)
j=1

where lim; . I;(t) = I;.
We also consider the following system without delays:

o) = =duo) + 32 [ o100
3 | s ey + 1 )

For the convenience, we call g € Lip(Q), if 9zt =9(2)l < @ where G > 0.

Jul

2 Main Results

In this section, we will give several theorems and corollaries.
Theorem 1  Suppose that g; € Lip(G;), fi € Lip(F;). If fori =1,--- n, there
hold

—&id; + i;fj{ /000 [Gj|d=]ij(8)| + Fj|dKij(8)|H <0 (4)

Then there is at least a v* such that for any solution u(t) of (2), there holds
lim u(t) = v* (5)

t—o0

Remark 1 By transforms z;(t) = & 'u;(t), Ji(t) = & ' I;(t), we have

Wilt) _ iy + S [ oienst — s
0 =+ | st = a0

S / €yt — mist) — $)dEKy(s) + (1) (6)
j=1

Therefore, without loss of generality, in the following proof, we assume all
G =1fori=1,---,n.

Lemma 1 Under the assumptions in Theorem 1, the dynamical system (3)
has at least an equilibrium v*.
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Proof 1If g; € Lip(G,), fi € Lip(F;), then g;, f; as well as all v;(t),i =1, n,
are absolutely continuous and differentiable almost everywhere with respect to
Lebesgue measure. Therefore, for almost ¢ € [0,00), saying t € S, i =1,---,n,
following equalities hold

dii(t)
dt

+ Z{/ dJij(s ga(va(t))JF/ooo dKij(S)f§(Uj(t))}0j(f) (7)

= —d;v;(t)

Pick a small constant o > 0, such that

(i) + ; { [ |esansers paseilf <o @

Let z;(t) = e“*;(t), which is a continuous function. And for every t € S, iy =
14(t) is an index such that

[z, (0)] = Izl = max [z (t)]

Then, under (4), it is easy to see that

d|z:lit)| < (=d; + a)|zi ()] + ;/00" [Gjldjij(s)| + Fj|dKij(S)|:| |z (1)

<{d+a) +;/°° Gl ()] + Bl 0)] (0] < 0

Thus, ||z(t)|| is non-increasing at every ¢ € S. Because S is dense in [0, 00)
and [|z(¢)|| is continuous. Then ||z(t)|| is bounded and

[o(t)]] = O(e™) 9)

By Cauchy convergence principle, there is an equilibrium point v* € R™ such
that

tlggo v(t) =v* (10)
and
d;v? +Z/O dJ;;(s)g;(v]) +Z/ dKij(s)f;(v}) +1; =0  (11)

Lemma 1 is proven.

Remark 2 Proof of existence of v* does not depend on any complicated the-
ories (topology degree theorem, fixed point theorem, Lasalle theorem and so
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on), which were adopted in many papers. Moreover, we do not assume that the
activation functions are bounded or continuous differentiable.

Proof of Theorem 1 Suppose u(t) is a solution of (2), v* is the equilibrium
given in the Lemma 1.

Pick a small number n > 0 and a sufficient large 77 such that ||I(t) —I|| <7
for all t > Tj.

Fort > T, let w(t) = u(t)—v*, M(t) = sup_ .4« |[|w(t)]|, and to € (—o0, ],
ity = it,(to) be an index such that [ws, (to))| = [|w(to)|| = M(t). Then, we have

n

DFEM(t) < —dig Jwiy, (00)] + 3 / N [Gjle(to —)ldJ,,(s)]

Jj=1

+ Byt~ i) = K, 56|+
<{ i+ ; | et o+ mar, ol far 40 2

which means that if

M(t) > g

(13)
iy = Sy J5 (G140, 560 + B, )]

M (t) is non-increasing. Therefore, there is a constant M, such that ||w(t)|] < M.
For any small € > 0, pick a sufficiently large T, such that

)= -1 <" ift>T (14)
and
uy " |Gl + Bl <™ (15)

Now, denote M (t) = sup, _r<q< |[y(t)|]. Let t1 € (& —T,t], iy, = iz, (t1) be
an index such that [w;, (t1))| = [[w(t1)|| = M1 (t). By same approach, we have

DM (t) < { —d;, + z;/oT {Gj|dJit1j(s)| + Fj|dKit1j(s)|} }Ml(t)

€

n o0 77
2 MY [T a0l + Bl 0] +
J=1

n .7
<{ -t X [ |@lan, o1+ Bl ol bnw + 7
j=1"9

Thus, if M(t) > ¢, then

DMﬂw<—§ (16)
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Therefore, there must exists ¢ such that M () < e. It is clear that M (t) < e for
all t > . Because € is arbitrary, we conclude

lim u(t) = v” (17)

t—o0o

Theorem 1 is proved.

Theorem 2 Suppose that g; € Lip(G;), fi € Lip(F;), Li(t) = L. If for i =
1,---,n, there hold

G(-dita)+ 306 [ e |Glass(o)] + e Bk ()] <0 ()
j=1 70

Then system (2) has a unique equilibrium point v* such that for any solution
u(t) of (2), there holds

[lu(t) —v*|| = O(e™") (19)

Proof Suppose u(t) is any solution of the system (2), and let y(t) = e*[u(t) —

U*]a MQ(t) = Supfoogsgt ||y(t)||{§,oo}
If for some to < ¢ and some index 4, such that |y;,, (t2)| = [y(t2)|| = Ma(t).
Then by the same arguments used in the proof of Theorem 1, we have

DT My(t)

< {(—ditz +a)+ Z/O e*’ [Gj|dc7u2j(8)| + Fjem”|dKu2j(8)|] }Mz(t) <0
j=1

Therefore, Ms(t) is bounded and

[lu(t) = v"[lge,c0p = €™ [ly(B)l 1,001 = O™ (20)

Corollary 1  Suppose that g; € Lip(G;), f; € Lip(F;). If there are positive
constants &, --,&, and a > 0 such that fori=1,---,n,
G-t + )+ g [ Glas(ns) + e B d (ns)| < o2u)
=1 70

Then the dynamical system (1) is globally exponentially stable. It means that if
u1(t) and us(t) are two solutions of (1), then

[Jus () — u2(t)|| = O(e™")
In fact, let ui(t) and uq(t) are two solutions of (1). Replacing y(t) by §(t) =

e [uy(t) —ua(t)], by the same arguments used in the proof of Theorem 2, Corol-
lary 1 can be obtained directly.
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3 Comparisons

In this section, we will discuss the relationship among the results given in this
paper and those given the references.
Case 1. dJ;;(s) = a;;0(s), dK;j(s) = b;;0(s), where §(s) is the Dirac-delta
function. In this case, (2) reduces to the system with time-varying delays

dui (t)

g = () + Z aijgj(u;(t)) + Z bij fi(u(t —7i5(¢))) + Li(t) (22)

It is clear that the results obtained in [13] are special cases of Theorem 1. More-
over, the model (2) is much more general than that in [13].
If I;(t) = I;, then (2) reduces to

dui (t)

g = diw(®) +;aij9j(ua +waf] (uj(t —75;()) + L (23)

In this case, conditions in (18) become

i(—di + o) +Z§j{Ga‘|aij| +6M”Fj|bijl} <0 (24)
j=1
Therefore, all stability analysis on the system (22) in [2,3,4,5,6,7,8,9,10,11] and
many others are direct consequences of Theorem 2.
On the other hand, if d.Jy;(t,s) = ai;(t)0(s), dKJ(t,s) = bf;(t)d(s), delayed
system (1) reduces to the system with time-varying delays

wi(t) = —d;(t)u;(t) + Z aij(t)g;(u;(t))

+ZZb )5 (t = 7E(1)) + Li(1) (25)

k=1 j=1

In this case, by the same method to prove Theorem 1, we can prove that under

6i(—d +Z@{G a0+ 33 e By bt (1) } (26)

k=1 j=1

for t > 0. Delayed system (25) with time-varying coeflicients and delays is glob-
ally exponentially stable. It is clear that the conditions in (26) is more natural
than those given in [18]. Moreover, we do not assume that Tikj (t) are differen-
tiable.

Case 2. dJ;;(s) = a;;0(s), dK;j(s) = bijk;j(s)ds, and 7;;(t) = 0. Then system
(2) reduces to systems with distributed delays

du;(t )
s —du;(t +Zang u;(t Jrz bw/ [i(uj(t—s))kij(s)ds+1; (27)
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In this case, we have

Proposition 1  Suppose that g; € Lip(G;), fi: € Lip(F;). If there are positive
constants &1,---,&, and a > 0 such that fori=1,---,n,

Gi(—di +a) + ij{Gﬂaiﬂ +/O kz‘j(S)dSFj|bij|} <0 (28)

j=1

Then the dynamical system (27) has an equilibrium point v* and for any solution
u(t) of (27), there holds
lim u(t) = v* (29)

t—o0

Furthermore, if

§i(—di +a) + Zﬁj{Gﬂaiﬂ +/O eo‘skij(s)dSFﬂbiﬂ} <0 (30)

j=1
Then the dynamical system (27) is globally exponentially stable. It means
[lu(t) —v*|| = O(e™")

Therefore, all results in [14,15,16] and many other can be derived from The-
orem 2. It is also clear that the results obtained in [17] under more restrictions
can be derived directly from Theorem 1 in this paper.

Case 3. dJ;;(s) = a;;0(s) + cijkij(s)ds, dK;j(s) = b;;0(s), and f; = g;. Then
system (2) reduces to systems (see [19])

du(;ft) = —diu;(t) + Z aij fi(u;(t)) + Z bij [ (uj(t — 7i5(t)))
=1 o

S e [ st — )i ()ds + I
j;c /0 u S S S

Thus, the results on stability given in [19] can be derived from Theorem 2.

Remark 3 In proposition 1, we do not assume that

/ slkij(s)|ds < o0
0

which was assumed in many papers.

Remark 4 The approach, which was first proposed in [1], used in this paper
is very effective. It does not depend on any complicated theory. Derivations are
simple. Instead, Conclusions are universal. Moreover, this approach applies to
periodic systems with time delays (see [21]).

Remark 5 Theorem 1 and Theorem 2 explore an interesting phenomenon, i.e.,
concerning stability analysis, there is no difference between the delayed systems
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with constant delays and time-varying delays. Therefore, theorems for delayed
systems with constant delays given in [1] apply to the case with time-varying
delays without any difficulty.

Recently, several researchers also investigated stability criteria with L, (1 <
p < o0) norm (for example, see [3,7]). Therefore, it is necessary to compare
capability of criteria with L,(1 < p < co) norm and with L; norm or L.,. This
comparison was given in a recent paper [20]. It was explored in [20] that criteria
with L; norm or L are the best. Therefore, the results given with L, norm can
be derived from Theorems in this paper.

4 Conclusions

In this paper, we study dynamical behaviors of delayed systems with time-
varying delays. A universal model is proposed, which includes most of the exist-
ing models as special cases. An effective approach to investigate global stability
is given, too. It is pointed out that the results and approach proposed in [1]
also apply to the systems with time-varying delays. We also verify the effective-
ness by comparing the results obtained by this approach and those obtained in
literature.
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Abstract. How crucial is the long-distance connections in small-world
networks produced by the semi-random SW strategy? In this paper, we
attempted to investigate some related questions by constructing a semi-
random small-world network through only randomly adding ’long-range
lattice distance connections’ to a regular network. The modified network
model is compared with the most used NW small-world network. It can
be found that, by using the new modified small-worldify algorithm, one
can obtain a better clustered small-world network with similar average
path length. Further more, we numerically found that, for a dynamical
network on typical coupling scheme, the synchronizability of the small-
world network formed by our procedure is no better than that of the
small-world network formed by NW'’s algorithm, although the two classes
of network constructed at the same constructing prices and having similar
average path length. These results further confirmed that, the random
coupling in some sense the best candidate for such nonlocal coupling
in the semi-random strategy. Main results are confirmed by extensive
numerical simulations.

1 Introduction

Small-world network is highly clustered networks with small distances among
the nodes. There are many real-world networks that present this kind of connec-
tion, such as the WWW, Transportation systems, Biological or Social networks,
achieve both a strong local clustering (nodes have many mutual neighbors) and
a small diameter (maximum distance between any two nodes). These networks
now have been verified and characterized as small-world (SW) networks. In the
context of network design, the semi-random SW strategy (typically described as
modelling related real networks by the addition of randomness to regular struc-
tures) now is shown to be an efficient way of producing synchronically networks
when compared with some standard deterministic graphs networks and even to
fully random and constructive schemes. A great deal of research interest in the
theory and applications of small-world networks has arisen since the pioneering
work of D Watts and H Strogatz [1]-[23].

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 254-263, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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"How crucial is the long-distance connections in such networks produced by
the semi-random SW strategy’, this question is indeed worth reasoning. Recently,
Adilson E. Motter et al., have investigated the range-based attack on connections
in scale-free networks, they found that, the small world property of scale free
networks is mainly due to short range connections [2]. Further more, Takashi
Nishikawa et al., in the same research group, numerically and analytically studied
the synchronizability of heterogeneous networks [22].

In this paper, we will try to investigate some related questions by constructing
a modified version of small-world network through only randomly adding ’long
range connections’ (in the sense of "lattice-space-distance’) to a regular network.
We will compare the modified model with the most used small-world networks
in nowadays research works introduced by M E J Newman and D Watts[13].

The arrangement of the rest of this paper is as follows: in the following section
2, firstly, we provide a brief summary about the most used NW small-world net-
work algorithms as a preliminary. Then the modified version of small-world net-
work based on the NW small-world algorithm is introduced in section 3. Some basic
properties of this modified model, such as clustering coefficient, average distance
are discussed. In section 4, numerical investigation of the synchronizability of a
dynamical network under special coupling schemes on different networks are com-
pared with each other. In section 5, brief conclusion concludes the investigation.

2 Mathematical Model of Main Types of Small-World
Networks

In 1998, Watts and Strogatz [5] proposed a single-parameter small-world network
model that bridges the gap between a regular network and a random graph. With
the WS small-world model, one can link a regular lattice with pure random
network by a semirandom network with high clustering coefficient and short
average path length. The original WS model is described as follows:

(I) Initialize: Start with a nearest-neighbor coupled ring lattice with N nodes,
in which each node i is connected to its K neighboring nodes ¢ +1;¢+£2;---;i+
K/2, where K is an even integer. (Assume that N > K > In(N) > 1, which
guarantees that the network is connected but sparse at all times.)

(IT) Randomize: Randomly rewire each link of the network with probability p
such that self-connections and duplicated links are excluded. Rewiring in this
sense means transferring one end of the connection to a randomly chosen node.
(This process introduces p]\;K long-range links, which connect some nodes that
otherwise would not have direct connections. One thus can closely monitor the
transition between order (p = 0) and randomness (p = 1) by adjusting p.)

A small-world network lies along a continuum of network models between the
two extreme networks: regular and random ones. Recently, M E J Newman and
Watts modified the original WS model. In the NW modelling, instead of rewiring
links between nodes, extra links called shortcuts are added between pairs of nodes
chosen at random, but no links are removed from the existing network. Clearly,
the NW model reduces to the originally nearest-neighbor coupled network if
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p = 0; while it becomes a globally coupled network if p = 1. However, the
NW model is equivalent to the WS model for suciently small p and sufficiently
large N values. The WS and NW small-world models show a transition with
an increasing number of nodes, from a large-world regime in which the average
distance between two nodes increases linearly with the system size, to a small-
world model in which it increases only logarithmically.

Different from the semi-randomly constructing ways used by D. J. Watts,
M. E. J. Newman et al., very recently, F. Comellas and his colleagues show
that small-world networks can also be constructed in a deterministic way. Their
exact approach permits a direct calculation of relevant network parameters al-
lowing their immediate contrast with real world networks and avoiding complex
computer simulations[6]. For example, one of their procedures to create a small-
world network is described below. Starting with a regular nearest neighbored
coupled networks, they construct a deterministic small-world network by select-
ing h nodes to be hubs and then using a globally coupled network to interconnect
those hubs[7]. These approaches also attract much attention of researchers.

In what follows, We will only consider those small-world network created by
semi-random operations (For simplicity, we exclude further comparisons study
with the deterministic small-world networks and this will be done elsewhere in
the future). We will mainly concern on the NW small-world model for com-
parison with our new small-world model, since no matter how many nodes the
networks has, it keeps to be connected during the randomizing procedure (It is
not necessary to assume that N > K > In(N) > 1 as that in WS model de-
scribed before). This assumption can guarantee the basic condition (connected)
required in our research of these networks synchronizability.

3 The Modified Small-World Network Based on Adding
Long-Lattice-Distance Connections

The aim of constructing such model is to investigate the impaction of long-range
contracts in the NW small-world lattice network. What will happen, if only add
some space long range connection between nodes in a regular lattice during the
same procedure described in NW small-worldify process? This question attracts
our attention much during the research of the synchronization in a circle chain
of chaotic oscillators firstly. We then tried to construct such a related model to
further investigate its characteristics and the effectiveness of just adding long-
range shortcuts to the original lattice. In another words, two main aspects are
highly concerned in the whole investigation: One is, whether such a procedure
can make a ”small-world” network with high cluster coefficient and low average
path length or not. And the other is, what effects will it takes on the dynamical
behaviors of the original lattice after such re-choosing operations?

Aim to these targets, we construct the modified version of the two semi-
random small-world networks by the following two main steps:

(I) Initialize: Start with a nearest-neighbor coupled ring lattice with N nodes, in
which each node i is connected to its K neighboring nodes: i+1,i+2,---, i+ K /2,
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Fig.1l. NW small-world network, where Fig.2. Modified SW network, where
N =24, K = 4, p = 0.05435 for illustra- D*(d) = N/4, links 13—17, 19—22 of Fig.1
tion are unchosen in modified process

where K is an even integer. The nodes are numbered sequentially from 1 to
N (For simplicity, we suppose that N is a multiple of 4), thus, the "lattice
distance” [8]-[9] between two nodes numbered ¢ and j can be calculate by: d; ; =
Nfo —li = j[ = N/al;
(II) Randomize with re-choosing: Randomly adding connections between
a pair of nodes in the network with probability p, during the whole process,
duplicated links are excluded. Then, we re-choose shortcuts through the following
procedure: Firstly, defining the space distance of arbitrary two nodes as the
"lattice distance” d;; defined in (I). Given a setting value D*(d), where d is
the diameter of the original regular lattice, and D*(e) represents a function of
d. Only reserving those connections added randomly in the above operations,
which links two nodes and their ”lattice distance” longer than the setting value
D*(d), if d;; is larger than or equal to D*(d).

Thus, one can obtain a semi-random network after several times of such
modified operations.
Remark I: In NW model algorithm, their process will introduce abou
shortcut links between nodes of the original lattice when NN is sufficient large. In
our modified algorithm, the number of new links added in the original lattice is
obviously much dependent on the parameter value D*(d), and it will be certainly

pN(N—1)
t 2

much fewer than the expectation value ” N(]QV_I) in NW small-world network.
This fact is caused by the re-choosing strategy used in the new procedure.
Remark II: Obviously, the parameter D*(d) can be set on the interval [% , 7).
(There are two extremal situations in our modified procedure: if setting D*(d)
at D*(d) > ];7 , the re-choosing strategy loses its effect on changing the structure
of the original lattice. If setting at 12( , it reserves all the edges randomly added
in, and the operation generates the same network as that generated by NW
small-worldify algorithm.)

In the following context, we will further consider some characteristics of the

new type of semi-random networks. With regard of practical usage, we only con-
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0.02 0.04 R 0.06 0.08 0.1
Fig. 3. Comparison of the change of average path lengths and clustering coefficients
of M-SW network, where N = 200, '+" and ‘[0’ represent the average path lengths and
the clustering coefficients of the NW model, ‘<’ and "¢’ represent those of the M-SW
model when setting D(-) as N/3, >’ and ‘s’ represent those of the M-SW model when
setting D(-) as N/4, '+’ and ‘o’ represent those of the M-SW model when setting D(-)
as N/5, respectively

sider adding 10 percent of possible number of edges to the original K neighbored
lattices. It should be pointed out that, the situation when choosing K = 2 was
not appropriate for our discussion, since in this case the clustering coefficient of
the original lattice is zero. In what follows, we will set K > 4 in all simulations.
In this section, we are especially interested in the long range connections’ effect
on the network characteristics, such as the average clustering coefficients, the
average networks diameter, and the average shortest path length, etc. We will
compare those characteristics with the most used NW models. In all of the nu-
merical experiments shown below, we take the average results of 20 runs at each
parameters setting.

The related two semi-randomized network models are illustrated respectively
as follows (for the straight intuitive purpose, choosing N = 24 K = 4,p =~
0.05, D*(d) = N/4; see Figure 1-2).

In Figure 3-4, we give the linear-linear and log-linear scale graphs for the
related changes. We compared the basic characteristics of NW model and the
modified networks. In these figures, the parameter of re-choosing criterion is
set at D*(d) = 0, and N/4, respectively. For simplicity, we only give p changes
in [0,0.1]. In these figures, the results are obtained by averaging the results of
20 runs and the step change of p is set at 0.0005. In these graphs, '+’ and 'TJ
represent the average path lengths and the clustering coefficients of the NW
model, <’ and "¢’ represent those of the M-SW model when setting D(-) as N/3,
>’ and ‘%’ represent those of the M-SW model when setting D(-) as N/4,’+" and
'o’ represent those of the M-SW model when setting D(-) as N/5, respectively.

Remark ITI: We have done large amount of numerical experiments about the
change of C' and L about the modified model besides Figure 5-6. All of the
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experiments lead to similar results. The results show that the new networks
behaves as a typical type of small-world network (Networks those with high
average clustering coefficient and short average path length).

Remark IV: It can be seen that: for any given value of p, Cluster Coeflicients
C(N, p) clearly increase with the increasing of D*(d); but the average path lengths
L increase very slightly with the increasing of D*(d) (< N/2). For similar average
pathlength L and Ll, the cluster coefficients C; yw in the modified model is much
larger than that Cyy in the NW small-world models. That is to say, by using the
modified procedure, one can obtain better clustered networks with similar average
path length. (eg., AAC&V;Z wo> 3%2’;3 , where AC' is the changed fraction of cluster
coefficients, 6 Ny qq is the changed fraction of added edges.)
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Fig. 4. Figure 3 in log-linear scale

We also studied the ”Probability distribution of the connectivity” of the
modified model for K = 4, p = 0.01. The curves are similar with each other,
but we can see that, the distribution curves are apparently transported from
"right to left”, see Fig.5h-6. These two figures are obtained by setting "added
links fraction” parameter p at p = 0.01 and p = 0.05, respectively.

4 About Different Networks’ Synchronizability

In this section, we begin to discuss the synchronizability of the two types of semi-
random networks: the NW model and the modified small-world model. We will
only consider a network of N identical nodes, linearly coupled through the first
state variable of each node, with each node being an n-dimensional dynamical
subsystem. The dynamics of the whole network are

i1 = fi(@;) + CZ;\; @ijTj1
Eig = fo(w;) 1=1,2,--- N.
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Fig. 5. The ”Probability distribution of the Fig. 6. The ”Probability distribution of the
connectivity” of the NW small-world model connectivity” of the NW small-world model
and the modified NW model for K = 4, and the modified NW model for K = 4,
p = 0.01, where N = 500, '+’ represents p = 0.05, where N = 500, '+’ represents
that of NW’s, "o/, 'I0", "%’ represent that of that of NW’s, ¢/, ‘[0, "%’ represent that of
the M-NW models with parameters setting the M-NW models with parameters setting
N/3, N/4, and N/5, respectively N/3, N/4, and N/5, respectively

0o 0.02 0.04 b 0.06 0.08 0.1

Fig. 7. The change of the largest non-zero eigenvalues of M-SW network and NW
network v.s. p, where D* = 0: '+', D* = N/3: '00', D* = N/4: '<d',D* = N/5: '¢’, and

the parameter p = Nur?;e(:{?idf)i /(’,nges

where x; = (241, %2, +, Tin) € R™ are the state variables of node i, fr(0) =
0, k=1,2,---,n, ¢ > 0 represents the coupling strength, and A = (a;;)nxn is
the coupling matrix. If there is a connection between node ¢ and node j, then
a;j = 1; otherwise, a;; = 0 (i # j). The diagonal elements of A is defined as

N N
Qi3 — — Z Q5 = — Z g, 7;:172,-“7]\[ (2)

j=1.j#i j=1.j#i
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Suppose that the network is connected in the sense that there are no isolated
clusters. Then the coupling matrix A is a symmetric irreducible matrix. In this
case, it can be shown that zero is an eigenvalue of A with multiplicity 1 and all
the other eigenvalues of A are strictly negative. Wang X F and Chen G [23] have
proved the following result.

Lemma 1 Consider dynamical network (1). Let Ay be the largest nonzero eigen-
value of the coupling matriz A of the network. The synchronization state of net-

work (1) defined by x1 = xo = -+ - = x,, is asymptotically stable, if
T
Ao < — 3
<" ®)

where ¢ > 0 is the coupling strength of (1) and T > 0 is a positive constant such
that zero is an exponentially stable point of the n-dimensional system

2h
z2 — 2(% (4)

Note that system (4) is actually a single cell model with self-feedback —T 2.
Condition (3) means that the entire network will synchronize provided that

C Z _T/)\Q (5)

We now can compare the changes of the largest nonzero eigenvalue of the cou-
pling matrix of our model and the NW model. Figure 7 shows the results. It can
be seen that:

(i) For any given value of N, Ao decreases with the increasing of number of
added edges;

(ii) Adding the same number of new edges, the value of Ay increases with the
increasing of D*(d);

(iii) Tt is strange that, from Figure 7, we found that the contribution for
synchronization of dynamical networks (1) caused by intentionally adding n
long-lattice-distance connections is almost no difference when randomly adding
n edges to the original regular lattice, when p € [0,0.01]. If p € [0.01,0.1], we
found that additional long-lattice-distance connections have not special effects
for improving the synchronization for the dynamical networks (1). It is even
worse than randomly adding the same number of connections to the original
lattice from the viewpoint of considering constructing price. This fact hints us
that, in practice, according to both physical and synchronizing mechanism rea-
sons, we should not constructing too many long-lattice-distance connections to

obtain better synchronization of networks (1), although it will cause more clus-

. A)\JWNW A)\NW
tered small-world structure as mentioned before. (eg., AN < AN, , where
add add
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AMg is the changed fraction of second largest eigenvalue, AN,q4 is the changed
fraction of added connections.)

Remark 3: From the synchronization criterion (3), we can conclude that, al-
though the average path length and clustering coefficients are typical in the
range of small world category, the long-lattice-distance connections seem caus-
ing lower synchronousness of coupled networks described by (1) without some
shorter-lattice-distance connections being added. Thus, the 'short connections’
may have similar and equally important effectiveness with the "long connections’
behaved for improving the synchronizability of a dynamical network. In a recent
research of Barahona and Pecora [17], they state the small-world property does
not guarantee in general that a network will be synchronizable. Further compar-
ison with the results in [17] will proposed later in another paper.

5 Conclusion

In this paper, we proposed a modified small-world lattice network model based
on the classical small-world models. Some basic characters are discussed based
on numerical experiments with comparison to each other. It can be found that,
by using our modified small-worldify algorithm, one can obtain a better clus-
tered small-world network with similar average path length. The result gives
us some hints: we can construct a small-world lattice with lower physical price
through the proposed modified method. We also discussed the synchronizability
of different networks on certain coupling scheme. The numerical results show
that, the random coupling in some sense the best candidate for such nonlocal
coupling in the semi-random strategy. Main results proposed in this paper are
all confirmed by extensive numerical simulations. As we know, sometimes, Ay
does not guarantee the synchronization and it need more conditions [11], [12].
We will continue our study on the long range for synchronization mechanism in
the near future.
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Abstract. In this paper, a novel mathematical model of neuron-Double Synap-
tic Weight Neuron (DSWN)' is presented. The DSWN can simulate many kinds
of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage
and Hyper Ellipsoid models, etc. Moreover, this new model has been imple-
mented in the new CASSANN-II neurocomputer that can be used to form vari-
ous types of neural networks with multiple mathematical models of neurons.
The flexibility of the DSWN has also been described in constructing neural net-
works. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-
dimensional space covering, a recognition system of omni directionally oriented
rigid objects on the horizontal surface and a face recognition system had been
implemented on CASSANN-II neurocomputer. In these two special cases, the
result showed DSWN neural network had great potential in pattern recognition.

1 Introduction

Neural network models consists of a large number of simple processing units (called
neuron) densely interconnected to each other through a synaptic interconnection net-
work. In the last decade, the level of interest in Artificial Neural Network (ANNSs) has
been steadily growing. Although software simulation can be useful, designers have
been induced to face hardware solutions in order to meet the required performance of
massive computing possibly mission-critical applications. Chip integration, multi-
chips system, wafer scale integration (WSI), and even multi - wafers system are the
common methods [1], [2]. Despite many models and variations, a common feature for
most of them is the basic data progressing unit or artificial neuron. In accordance, the
neural networks’ performance is primarily decided by the basic computation method
and function of neurons.

Neural networks are aimed to mimic biological neural networks often attributed by
learning, adaptation, robustness, association and self-organization. In the beginning of
1940’s, a classical mathematical model of neuron was presented [3], which was given by
the formula (1).

* This work was supported by the National Natural Science Foundation of China (No.60135010).
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Y=f(zWiXi_9) (1)
i=0

where Y is the output vector. f is an activation function (nonlinear function). X is

the input vector. W is the weight vector and @ is the activation threshold.
According to formula (1), the neuron’s output is decided by two factors: one is the

activation function f , and the other is the radix of the function (ZWiX ; — @), which
i=0

represents the distance from an input point (in the input space) to a decision hyper-

plane (one side is positive, and the other is negative). The equation of the decision

hyperplane was given by the formula (2).

Y WX, —6=0 )
i=0

If the activation function is a step function, the neuron constructs a decision hyper-
plane in multi- dimensional input spaces. Then the value of output is equal to one
when the input point is in one side of this hyperplane. It is zero otherwise. Pattern
classifier usually used this kind of neural network [4].

Researchers were at all the time purposing to create closed hypersurface to replace
the hyperplane defined by (2) in multi-dimensional space [5]. The RBF neural net-
work is a supervised feed-forward back-propagation neural net with only one hidden
layer. While rather than trying to find a boundary between different classes of in-
stances, it forms clusters in the multi-dimensional space with a “center” for each clus-
ter. These clusters are then used to classify different groups of data instances. The
number of centers and the nonlinear functions used to determine the distance away
from each center dictate the performance of a RBF neural net[6]. It was testified by
experiments that in applications of pattern recognition and function fitting, the RBF
neural network had the better performance than the neural network described by for-
mula (1).

The mathematical model of RBF neural network is expressed as formula (3):

Y= W, - X% -6%) A3)

i=0

According to formula (3), if the activation function of neuron is a step function, the
RBF neuron constructs a hypersphere with W, as the center and € as the radius.

When the input points fall into the inner of this hypersphere, the output is equal to
zero. The output is one otherwise. Therefore, RBF neural network can be regarded as
one of the simplest high-order neural networks. As its performance is better than the
ones described by formula (1), the superiority of high-order hypersurface neural net-
works is evident.

This paper intends to create a new mathematical model of neuron with better com-
monality, universal functionality, and easy implementation. The latter text will
discuss a novel basic algorithm for high-order hypersurface neural networks-Double
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Synaptic Weight Neuron (DSWN) networks, which is applied in the design of
CASSANN-II neurocomputer.

2 Early Research Work on General-Purpose Neurocomputer in
Author’s Lab

A general-purpose neural network hardware should adapt to various neural network
connections, diverse activation functions, and flexible algorithm models of neurons. A
kind of its implemented method is to use changeable parameters to represent all vari-
ous factors in a general computing formula. Neurocomputer synchronously calculates
the general computing formula repeatedly. And those parameters are adjusted ac-
cording to practical requirement. Thus, a neural network with complex flexible archi-
tecture can be created [7]. For example, CASSANDRA-I neurocomputer, which was
created in China, 1995, is readily based on general computing formula under men-
tioned:

n-1 n-1

0, t+)=F [G (ZS iWiid i+ Zséi%iomg(t))_ g1 4)
j=0 g=0

where O,,;(t+1) is output state value from the i -th neuron at the moment
t+1 when the m -th example is input. n is the number of input nodes (i.e. the dimen-
sion of input space) and the maximum neuron number. Fj is non-linear function from
the i -th neuron, whose subscript k; is serial number of non-linear function used by
the i -th neuron, in function library. 7, is the j -th input value (i.e. the j -th dimen-

sion) in the m -th input pattern. O, , (t) is output state value at the moment ¢ from

mg

the g -th neuron when the m -th example is input. W is the weight from the j -th

input node to the i -th neuron. Wg'i is the weight from the g -th neuron to the i -th

neuron. S and Sigl- are parameters that determine topological structural model of
networks. And if §; =0, there has no connection between the j -th input node and
the i -th neuron. If S;zi =0, there has no connection between output of the g -th

neuron and input of the i -th neuron. On the contrary, there has connection. 6, is the
threshold of the i -th neuron. C is scale factor for enlarging dynamic range of calcu-

lation.

According to formula (4), CASSANDRA-I neurocomputer can calculate feedfor-
ward networks and feedback networks with arbitrary topological architectures. Each
neuron can random select various activation functions from non-linear function li-
brary. In CASSANDRA-I, there have different thresholds and scale factors. So, it has
very flexible and adaptable in topological architecture of networks and parameters of
neuron. However, we can easily see that the neuron of formula (4) is based on math-
ematic model of formula (1). So, it can only calculate “hyperplane” neural networks
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and the calculation of “hypersurface” neural networks is too hard for it. We can use
the basic calculation of formula (1) to calculate included angle between vectors. And
then we can construct Direction-basis function (DBF) neural network with the radix
of non-linear function being the included angle. This DBF neural network can imple-
ment the functions of high-order neurons [8]. But the dimension of closed hypersur-
face achieved by it was n —1 dimension and all modules of input vectors were aban-
doned during normalization.

In the following sections, a new model-DSWN with various functions and flexibil-
ity will be discussed in detail.

3 The Double Synaptic Weight Neuron (DSWN) with
Commonality of Hypersurface

The basic mathematical model of hypersurface neuron for the neurocomputer must
satisfy the following conditions [9]:

(1)  The model has functions of the traditional hyperplane neuron and RBF neural
network.

(2)  The model has the possibility to implement many various hypersurface.

(3) The model can implement character modification by adjusting minority pa-
rameters.

(4) The model can easily implement high-speed calculation with hardware meth-
ods.

According to the conditions, the basic mathematical model of general neuron must
be with high flexibility include calculations of both formula (1) and (3). A DSWN
model has been proposed. In this model, the signal for each input node has two
weights: one is direction weight and the other is core weight. The formula of this
model is given as follow:

Y= f[Z( ‘W'i(xj _W}i) P_e] (5)

kel

where Y is the output of neuron. f is the activation function. &is the threshold.
W;; and W, are two weights from the j-th input node to neuron. X ;is a input
value from the j -th input node. nis the dimension of input space. S is a parameter
for determining the sign of single entry. If S =0, the sign of single entry is always
positive and if S =1, its sign is the same as the sign of W, (X ; —Wj'-i) . pis a expo-
nent parameter.

Obviously, if all W'=O, S =1, p=l1, the formula (5) is the same as the formula (1).

Ifallw =1, S =0, p=2, the formula (5) is the same as the formula (3). Therefore, the
formula (5) satisfies the condition (1).
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If we assume that S =0, this formula defined a closed hypersurface neuron. When
the radix of function f is fixed to a definite value, the locus of input points is a closed
hypersurface. And its center is decided by W' Its shape can change according to the
value of p on the assumption that all values of W are equal. The case in three-
dimensional space can be illustrated. The various shapes of this closed hypersurface
according to the value of pbeing 1/3, 1/2, 1, 2, 3, 4 are showed in figurel, 2, ..., 6,
respectively.

Fig. 1. Fig. 2. Fig. 3.

Fig. 4.

Fig. 7. Fig. 8.
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If the weight W has different values, the closed hypersurface will be extended or
compressed on various directions. If p =2, the hypersphere will be extended or com-
pressed to construct various hyper-sausage or hyper-ellipsoids on different dimen-
sional directions as illustrated in figure 7,8.

Thus, the formula (5) satisfies the condition (2) and (3).

4 The General Formula of Neural Network Hardware Based on
DSWN Neurons

The author created general purpose neurocomputer CASSANN-II based on formula

(5), which is suitable for traditional BP networks, RBF networks, hyper sausage net-

works, hyper ellipsoid networks and various high-order hypersurface neural networks.
Its general formula is defined as follow:

0, (t+1) = F {41C; - (R) - 6,1) ©)

Where:

_[Z ‘W (1

Wi (O

. |P
) W0 W] 1

where O,,;(t +1) is the output state value from i -th neuron at the moment #+1
when the m -th example is input. F; is the output non-linear function of the i -th
neuron and its subscript k; is the serial number of non-linear function in function

library used by the i -th neuron. /,,; is the j-th (i.e. the j-th dimension) input value
in the m -th input example. W, and Wj'-i are “direction” weight and “core” weight

from the j-th input node to the i -th neuron, respectively. W,; and Wéi are “direc-
tion” weight and “core” weight from the output of the g -th neuron to the 7 -th neu-
ron, respectively. pis a exponent parameter (1/3, 1/2, 1, 2,3, 4). S(0O or 1) is a pa-
rameter for determining the sign of single entry. O, (7) is the output value from the
g -th neuron at the moment ¢ when the m -th example is input. 6, is the threshold of

the i-th neuron. C;is a scale factor. 4, is a scale factor of coordinate of non-linear

function.

According to the formula (6), CASSANN-II neurocomputer can simulate arbitrary
neural network architectures with various neuron features (including hyperplane,
hypersphere, hyper sausage, various hyper-ellipsoids, hypercube and so on).
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5 Applications of Biomimetic Pattern Recognition Implemented
on CASSANN-II Neurocomputer

CASSANN-II neurocomputer is composed of DSWN. Based on the theory of Biomi-
metic Pattern Recognition (BPR) [10] and high-dimensional space covering, many
applications of pattern recognition have been implemented on CASSANN-II neuro-
computer successfully.

Fig. 10. test set

The first application of CASSANN-II neurocomputer is a recognition system of
omni directionally oriented rigid objects on the horizontal surface [10] based on BPR.
Ignoring the disturbance, the distribution region of a certain class is topologically
homomorphical to a circle. So Hyper sausage neuron (HSN) networks are used to
construct the covering sets of different classes. The SVM method with RBF kernel is
also used as control experiment. The samples for training and test are divided in three
sample sets. The first one contains 3200 samples of 8 objects (lion, rhinoceros, tiger,
dog, tank, bus, car, and pumper,Fig.9), while the second one contains another 3200
samples that are collected later from the same 8 objects. A third one, which comprise
2400 samples of another 6 objects (cat, pug, zebra, little lion, polar bear and ele-
phant,Fig.10), is used for the false acceptance test. All the samples are mapped into a
256-dimensional feature space. The HSN networks are constructed according to the
training samples, which are selected from the first sample set. Under the condition
that no one sample in the first and second set is misclassified and no one in the third
set is accepted falsely, the correct recognition rates of BPR and RBF-SVM with dif-
ferent training set are shown in Table 1.
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Table 1. The results of RBF-SVM and BPR

Amount RBF-SVM BPR
of Training SV Correct rate HSN Correct rate
Samples
338 2598 99.72% 338 99.87%
251 1925 99.28% 251 99.87%
216 1646 94.56% 216 99.41%
192 1483 88.38% 192 98.98%
182 1378 80.95% 182 98.22%
169 1307 78.28% 169 98.22%

Another application of CASSANN-II neurocomputer is a face recognition system
[11]. If the changes of face appearance are considered as disturbance, the distribution
region is topologically homomorphical to an arc when he turns his face horizontally.
So the HSN network is very fit to construct the covering set. Ninety-one face pictures
of 3 persons are used to construct three HSN networks, and 226 face pictures were
used to test the correct recognition rate of the same class, while 728 pictures were
used to test the rejection rate of the other classes. The correct recognition rate of the
same class reaches 97%, while the rejection rate of the other classes is 99.7%. As the
contrast, the correct recognition rate of the same class reaches 89.82%, while the
rejection rate of the other classes is 97.94% in K-NN method. [11]

6 Conclusions

This paper proposed a novel general-purpose neuron model- DSWN, which can con-
struct both the hyper sausage and some other more complex shapes. At the same time,
this new model is realized using hardware and implemented in the new CASSANN-II
neurocomputer.

Based on the theory of BPR and high-dimensional space covering, a recognition
system of omni directionally oriented rigid objects on the horizontal surface and a
face recognition system had been implemented on CASSANN-II neurocomputer. The
result showed DSWN neural network had great potential in pattern recognition.
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Abstract. In order to explore the search mechanism of chaotic neural net-
work(CNN)), this paper first investigates the time evolutions of four chaotic noise
models, namely Logistic map, Circle map, Henon map, and a Special
Two-Dimension (2-D) Discrete Chaotic System. Second, based on the CNN
proposed by Y. He, we obtain three alternate CNN through replacing the chaotic
noise source (Logistic map) with Circle map, Henon map, and a Special 2-D
Discrete Chaotic System. Third, We apply all of them to TSP with 4-city and
TSP with 10-city, respectively. The time evolutions of energy functions and
outputs of typical neurons for each model are obtained in terms of TSP with
4-city. The rate of global optimization(GM) for TSP with 10-city are shown in
tables by changing chaotic noise scaling parameter ¥ and decreasing speed pa-
rameter . Finally, the features and effectiveness of four models are discussed
and evaluated according to the simulation results. We confirm that the chaotic
noise with the symmetry structure property of reverse bifurcation is necessary for
chaotic neural network to search efficiently, and the performance of the CNN
may depend on the nature of the chaotic noise.

1 Introduction

Recently, many artificial neural networks with chaotic dynamics have been investi-
gated for optimization [2]-[13]. One of the well-known neural networks for combina-
torial optimization problems is the Hopfield neural network (HNN) [1]. The HNN
model may converge to a stable equilibrium point, but suffers from severe local minima
due to its gradient descent dynamics. In order to take advantage of both the Hopfield
network’s convergent dynamics and chaotic dynamics, some network models com-
posed of chaotic elements have been proposed for information processing [2]-[12]. It
may be useful to combine chaotic neurodynamics with heuristic algorithm, high effi-
ciency of which has already been well confirmed [6] [7][13]. For the purpose of har-
nessing chaos, a kind of chaotic simulated annealing algorithm was derived by ex-
tending the original chaotic neural network to a transiently chaotic neural network by
introducing the self-feedback connection weight [3]. A more sophisticated adaptive
annealing scheme was also considered for practical applications, where the network
dynamics is changed from chaotic to convergent by adjusting some parameters [8].

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 273 -282, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Wang and Smith presented an alternate approach to chaotic simulated annealing by

decaying the time step Af [5]. In order to combine the best of both stochastic wan-
dering and efficient chaotic searching, Wang et al obtained a stochastic chaotic simu-
lated annealing by adding a decaying stochastic noise in the transiently chaotic neural
network of Chen and Aihara [3]. The previous approaches are all based on continuous
HNN. Based on the discrete-time continuous-output Hopfield neural network
(DTCO-HNN) model, Y. He proposed an approach for the TSP by adding chaotic noise
to each neuron of the DTCO-HNN and gradually reducing [9][10]. As the chaotic noise
approaches zero, the network becomes the DTCO-HNN, thereby stabilizing and
minimizing the energy.

In this paper, we harness chaotic behavior for convergence to a stable equilibrium
point and attempt to clarify the search mechanism of CNN. We obtain three alternate
CNN through replacing the chaotic noise source (Logistic map) in He’s CNN with
Circle map, Henon map, and a Special 2-D Discrete Chaotic System. According to the
computer simulation results of solving the TSP with various approaches, the four CNN
all can search global optimal solutions, but the GM is different in terms of different
control parameters. Comparisons of solution quality, optimization performance, effi-
ciency of the chaotic search etc. are discussed to try to gain the understanding of chaotic
search mechanism.

2 Chaotic Neural Network Models

Based on the discrete chaotic neural network proposed [9][10] by Y. He, the effects of
additive chaotic noise are checked. The chaotic neural network based on in this paper is
defined as follows:

u,t+D=a(Xw;v; +1,)+ (1) @
1

v, (t)=f(u,-(f))=m ?

n,(t)=z,(t)—h @

where (i=1, 2, ..., n)
v,(t)  Output of neuron i ;
u;(t) Internal state of neuron i;

w; Connection weight from neuron j to neuron i, w; =w;;
I, Input bias of neuron i;

Y Positive scaling parameter for the chaotic noise;

o Positive scaling parameter for neural inputs;

n,(t) Chaotic noise for neuron I;

E Gain of the output function, € >0;

z,(2) Chaotic noise source;

h Input bias of chaotic noise

The chaotic noise source z,(¢) can be the Logistic map [10],

z;(t+D =a®)z, )1 -z; 1)) 4)
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Let a(z) decay exponentially so that z,(¢) is initially chaotic and eventually settles

to a fixed point 7z~ and h=7 .
ait+)=1-Pa@®)+f-a, 5)
In order to study the dynamics of the chaotic neural network, we firstly investigate

the time evolutions of the previous Logistic map in this section. In terms of the de-
caying rule (5) ( #=0.005,a, =2.5) for a(r) and the initial value of a(0) (=3.9), a(r)

is decreased by one step after each of iteration. The time evolution of z(¢) is shown in
Fig. 1(a) with respect to control parameter a(¢). The other three type of chaotic noise
source take as follows:

(a) Circle map

V.=fV)=V +Q- ’; sin22V,)  (mod 1) (6)
T

where V, e [-1,+1], Q=0.01,V, =0.50.
kn+l = kn (1 - ﬂ) (7)
where f is decreasing rate.
The initial values of k, 8 are k=5.0, =0.003, respectively, and k is de-

creased by one step after each of iteration according to the decreasing rule (7). Fig. 1(b)
shows the time evolution of V, according to control parameter k .

10— .00
R T
gg . . s
WBog LT T Y T
(T mp
[
- 250
0 078
T e T T s R T S TR T TR R TR TR T
8 k
(a) Logistic map (b) Circle map
— ]
ag e, T AR
ag o T anp
ERTIL ) _ ,‘\H__———___ u-f B
wp - T b
asf 7 25
18t b
15 35

a0 M
200 173 149 13 100 0% DB D0 DED D62 DB
P

(c) Henon map (d) a Special 2-D Discrete Chaotic System
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Fig. 1. the time evolutions of chaotic noise within 500 iterations
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(b) Henon map

Xy =Py =X} +0-3yn} ®
Yur1 = X
where x, =0.5,y,=0.5.
P =(=P)p, ©)

The initial values of p, f are p=2.0, f£=0.003, and p is decreased by one step

after each of iteration in terms of the decaying rule (8). Fig. 1(c) shows the time evo-
lution of x, according to control parameter p.

(c) a Special Two-Dimension (2-D) Discrete Chaotic System [14]

U, =—cu,+av, +k, (u,, —u,) 10)
Vn+l =é/ti% _b/§
where £ =025 a=-0.1 b=1.6 ¢c=01 u,=00 v,=0.0.
k.,=k,+0 an

The initial values of k, 8 are k=5.0 ,=0.0005, and k is increased by one step
after each of iteration in terms of the rule (11). Fig. 1(d) shows the time evolution of u,

according to control parameter k .

3 Application to the TSP

3.1 The Chaotic Dynamics and Energy Function of the Neural Network for TSP

In the TSP, the salesman is to visit all 7 cities once and only once, returning to his
starting point after traveling the minimum total distance. The exact solution is easily
found for the small system size 71, but as the number of possible solutions increases
exponentially with 7, it becomes difficult to find the best solution. To verify and il-
lustrate the features and effectiveness of CNN with different chaotic noises for com-
binatorial optimization problems, we apply them to TSP in this section, respectively.
The formulation for TSP by Hopfield and Tank [1] is adopted. Namely, a solution of
TSP with n cities is represented by the outputs of a nXn network, with v, =1 sig-

nifying that the salesman visits city i in order k . The chaotic discrete dynamics of the
neural network for TSP in this paper is defined as follows:
u (t+1)= 05{— A v+ 2v; ) =B d; (v (O +v (1)) + A} (@ 12)
1k J#i J#i
1
Vi ()= fuy () = ——— 13)
l+e—u,-k(t)/£
Na () =24 () =h 14)
where 1, k=1,2, ... ,n
n, @) Chaotic noise for neuron i,k;
z; ()  Chaotic noise source;

h Input bias of chaotic noise;
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A computational energy function used to minimize the total tour length while si-
multaneously assuring that all the constraints are satisfied takes the following form:

2 2

Alxn n n n Bn non

E:_{Z[Zvik _1j +Z(Zvik _lj }"'_ZZZ(V,‘/{H Vg Vi dy; (15)
=1\ k=1 k=1\i=1 2 iS5 j=tk=l

where v,, =v,, and v, ,, =v,, A and B are the positive parameters corresponding

in+1
to the constraints and the tour length, respectively, and d; is the distance between city
i andcity j.

Although the dynamics of (12) is discrete, the output v, from (13) takes a con-

tinuous value between zero and one. The corresponding energy function of (15) is also
continuous. Since a solution to TSP requires the states of the neurons to be either zero
or one, a discrete output is introduced as follows:

Vi (1) = { 1, iff v, @) >V, (1)

(16)
0, otherwise

where V, () is nth value of Z: v, (t) in order to reduce the number of the iteration. In

the simulations, the continuous energy function E€ using (15) and the discrete energy
function E¢ by replacing v, with v} in (16) are simultaneously calculated.

In the following studies, a four-city TSP is examined with data originally used by
Hopfield and Tank [1], and a ten-city TSP is analyzed with data in [1] with 1000
randomly generated initial conditions of u, € [l,—1] and v, € (0,1) . The constant
values of A and B are both one in (12) and (15). The asynchronous cyclic updating of
the neural-network model is employed. A iteration means one cyclic updating of all
neuron states. The chaotic noise 77, () in (14) is assigned to each neuron and they are
independent of each other. In this paper, the focus of the simulations is on the optimi-
zation performance (the rate of global optimization) with different chaotic noise. So,
the term z, (f) in (14) will be replaced with Logistic map (Eq4), circle map (Eq6),
Henon map (Eq8) and a Special 2-D Discrete Chaotic System (Eq10), respectively. The
term % in (14) is adopted the different fixed point z* according to Eq4, Eq6, EqS,
Eql0. The other parameters «,f,y are adjusted with the different chaotic noise
model.

3.2 Simulations on TSP with 4-City

The performance of Y. He’method is firstly investigated as a reference for later com-
parison. The same decaying rule for a(t) (a, = 2.5) in (5) and the same initial value of

a(0)(=3.9) are used for all neurons, and a(¢) is decreased by one step after each of

iteration. Fig. 2 shows the time evolutions of (a) the discrete energy function E< and
(b) neuron Vi for the four-city TSP with

a=0.015,4=0.003,y=0.1,h=0.6,£ =0.004 .
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Fig. 2. Time evolutions of (a) E< and (b) v,, with logistic map as chaotic noise

Second, the performance of CNN with the circle map is examined in this subsection.
The same decaying rule for £ in (7) and the same initial value of k (=5.0) are used
for all neurons, and k is decreased by one step after each of iteration. Fig. 3 shows the
time evolutions of (a) the discrete energy function E< and (b) neuron v,, for the
four-city TSP with & =0.05, £ =0.005, ¥ =0.5,h=0.024, £ =0.004 .

Furthermore, the performance of another CNN model is explored, which the chaotic
noise source is Henon map. The same decaying rule for p in (9) and the same initial value
of p (=2.0) are used for all neurons, and p is decreased by one step after each of itera-
tion. Fig. 4 shows the time evolutions of (a) the discrete energy function E< and (b)
neuron v,, for the four-city TSP with & = 0.015, £ =0.003,7=0.5,2=0.4,£ =0.004.
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iteration
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Fig. 3. Time evolutions of (a) E< and (b) v,, with circle map as chaotic noise
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iteration

Finally, we check the performance of the CNN with a Special 2-D Discrete Chaotic
System as chaotic noise. The same increasing rule for k£ in (11) and the same initial
value of k (=0.0) are used for all neurons, and & is increased 0.0005 ( 5 =0.0005) by
one step after each of iteration. Fig. 5 shows the time evolutions of (a) the discrete
energy function E< and (b) neuron v,, for the four-city TSP with

a=0.05y=15h=-2.33,=0.004.
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3.3 Simulations on TSP with 10-City

(b)
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For the instance, 1000 simulations were performed for each CNN with different initial
neuron states. While using logistic map as chaotic noise source, o =0.015,2=0.6 are

adopted. The & =0.06, 7 =0.008 are used in CNN when using circle map as chaotic

noise source. The coefficients ¢, h are fixed to 0.015, 0.18 in CNN with Henon map.
The coefficients «, h are fixed to 0.02, -2.33 in CNN with 2-D discrete system. The

rate of reaching the global minimum (GM) and the number of iterations (NI) required
for the network to converge are presented in Table 1 with different coefficient y while

coefficient f# is bounded to 0.015, 0.003, 0.005 and 0.001, respectively.

Table 1. Simulation results for each ¥

Logistic Map Circle Map Henon Map 2-D Map

y GM NI |7 GM NI | 7 GM NI Y GM NI
01 100% 87 | 009 0% 0.005 34% 50 0015 100% 95
03 100% 97 | 0.1 40% 193 | 0.007 99% 68 0.10 100% 214
06  100% 121 | 0.15 0% 0.01 100% 186 1.00 100% 261
08 100% 144 0.015 100% 233 5.00 100% 285
L0 100% 165 0.02 100% 254 10.0 100% 297
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Bounded y to 0.1, 0.1, 0.01 and 0.1 in each CNN, respectively, Table 2 shows the
GM and NI on 10-city TSP for each /.

Table 2. Simulation results for each §

Logistic Map Circle Map Henon Map 2-D Map
B GM N | B GM NI | g GM NI [ g GM NI
0.003  100% 346 | 0.002 0% 0.002 100% 266 | 0.0005  100% 368
0.008  100% 143 | 0003  40% 193 | 0.003 100% 186 | 00008  100% 255
0015  100% 87 | 0.005 0% 0.005 100% 372 | 0.001 100% 214
005 100% 41 0.01 100% 64 | 0.003 100% 101
0.1 100% 31 0.03 0% 0.005 100% 75

4 Discussion

4.1 Transient Chaos Scenario

On the basis of the several numerical studies, the time evolution of typical neuron (Fig
2 (b), Fig 3(b), Fig 4 (b) and Fig 5 (b)) is analogue to the one of chaotic noise source
(Fig 1 (a), (b), (c) and (d)), respectively. The time evolutions of typical neurons show
that the output of each neuron undergoes period-doubling bifurcation routes, which
lead to neuronal stable state to be 0 or 1 according to the control parameter. Those
figures show that the initial output of neuron is chaotic between 0 and 1. As the control
parameter is further decreased, the neuron state switches among smaller scale, and fi-
nally merges into a single stable state, which corresponds to a neuron chaotic attractor.
The merging process gives rise to the corresponding wandering of the energy among
local minima, which can be observed in Fig 2 (a), Fig 3 (a), Fig 4 (a) and Fig 5 (a). We
use the control parameter ( p ) in CNN with Henon map for 4-city TSP to illustrate the
phenomenon. At the first stage, 2.0 > p >0.95, the neuron v, output is chaotic be-
tween 1 and 0, and the corresponding value of discrete energy wanders between 4.00
and 1.39379724; at the second stage, 0.952> p >0.70, the neuron v, output is pe-
riod-doubling bifurcation, and the corresponding value of discrete energy switches
between 2.110667 and 1.760779; at the third stage, 0.70= P >0.45, the neuron
v, output is 0, and the corresponding value of discrete energy is the minima

(1.341768). The simulations confirm that transient chaos takes a key role for the global
optimization of TSP during the chaotic search of CNN.

4.2 Parameter Tuning

Parameter tuning is one of the important issues to improve the performance of such
kinds of networks. In fact, total performance for finding the best solution strongly
depends on the set of coefficients in E, bias &, and the decaying rate S of chaotic noise.
In section 2, we adjust the decaying parameter £ to control the chaos to equilibrium
via period-doubling bifurcation in terms of Eq4, Eq6, Eq8, and Eql0, respectively.
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While incorporating the different chaotic noise into CNN for 10-city TSP, the positive
scaling parameter y and decreasing speed [ should be adjusted to gain the global
optimization solution. From Tablel, Table2, the observations can be made: when g is
set to a small value, it uses more steps to converge to a stable state; when y is set to a
large value, it uses more steps to converge to a stable state. The problem to be settled
for ‘chaotic search’ is the difficulty of choosing good parameter values for
(A,B,a, B,y) that may give rise to efficient ‘chaotic search’. For ‘chaotic search’, it
may be necessary to adjust the parameters to obtain the symmetric reverse bifurcation
structure.

4.3 Efficiency of the Chaotic Search

In this paper, we intend to clarify the search mechanism of CNN designed to solve
optimization problems and the role of chaotic noise during the process of chaotic
search. It is clear that the searching dynamics of the CNN is made up of two combined
dynamics in Eq12. The first term is the input of neuron. The second term is the input of
chaotic noise. The second term makes much contribution to the searching dynamics
because positive scaling parameter « for neural inputs is small. For example, the Fig5
(b) represents that neuron v, undergoes chaos to equilibrium via reverse bifurcation

for the four-city TSP. The other three models show the same effects. From Tablel,
Table2, the observations can be made: the CNN with circle map has worse effects than
the other three methods. The numerical simulation implies the ‘better’ the transient
chaos process is the higher the ‘chaotic search’ capability. As long as the external noise
is appropriate, the energy function (Eq15) of the CNN could sense the force of additive
chaotic noise. In this experiment, it is well confirmed that the performance of the CNN
may depend on the nature of the chaotic noise.

5 Conclusion

In this paper, possible functional roles of transient chaos are explored. Chaotic effects
of four chaotic models are firstly investigated, namely, Logistic map, Circle map,
Henon map and a Special 2-D Discrete Chaotic System. The time evolutions of each
chaotic noise model are given in Figl. Second, based on He’s CNN model, three al-
ternate approaches are obtained by replacing the chaotic noise source of He’s method
with Circle map, Henon map and a Special 2-D Discrete Chaotic System, respectively.
While applying them to TSP, we obtain that the time evolutions of the discrete energy

function E“ and typical neuron for the TSP with four-city. All of them are also applied
to TSP with 10-city, respectively. The GM of 1000 different initial conditions are ob-
tained for each of y with fixed £ and for each of g with fixed y . The simulation
results show that the symmetric bifurcation property can improve the efficiency of the
chaotic search. Applying the chaotic dynamics to larger scale optimization problems
will be studied in forthcoming papers. The systematic way for determining good pa-
rameter values for ( A, B, ¢, B,y ) is the subject of future research.
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Abstract. This paper presents a novel learning model in qubit neuron according
to quantum circuit and describes the influence to learning with gradient descent
by changing the number of neurons. The first approach is to reduce the number
of neurons in the output layer for the conventional technique. The second is to
present a novel model, which has a 3-qubit neuron including a work qubit in
the input layer. For the number of neurons in the output layer, the convergence
rate and the average iteration for learning are examined. Experimental results are
presented in order to show that the present method is effective in the convergence
rate and the average iteration for learning.

1 Introduction

For quantum computation [1],[2] and neural network [3], a number of approaches have
been studied. A neural network model dealt with the quantum circuit has been devised
for the quantum computation and has been known to exhibit the high capability for
learning [4]. However this model has many neurons placed in the output layer so as to
correspond to the generall quantum circuit. The neuron is the model which rewrites the
computation in quantum mechanics, instead of the real number calculation in neural
network, and takes the structure unlike the actual quantum circuit. For the qubit neuron
according to the quantum circuit, thus the number of neurons is expected to the less
number than in the conventional technique.

In this study, we present a novel learning model in qubit neuron according to quan-
tum circuit and describe the influence to learning with gradient descent by chang-
ing the number of neurons. The first approach is to reduce the number of neurons
in the output layer for the conventional technique. The second is to present a novel
model, which has a 3-qubit neuron including a work qubit in the input layer. For the
number of neurons in the output layer, the convergence rate and the average itera-
tion for learning are examined. Experimental results are presented in order to show
that the present method is effective in the convergence rate and the average
iteration.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 283-292, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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2  Quantum Computation

2.1 Quantum Bit

The bit expression in quantum computer is presented with a quantum bit (qubit). For the
qubit, the state O represents |0), and the state 1, |1). The qubit |¢) with the superposition
of two states is shown as follows.

) = al0) + 51), (1

where « and (3 are the complex number called the probability amplitude.

In the field of quantum mechanics, the probabilities that |0) and |1) are observed
become the square of the absolute value for a and 3, respectively. Here o and 3 satisfy
the following relation.

la]* +|8]* =1 2)

As |0) and |1) for the qubit are strictly described, these are expressed with the

following matrix.
1 0
o=(3). w-(}) ©

The quantum circuit is constituted by the quantum logic gate, such as the rotation gate
and the control NOT gate, as shown in Figs. 1 and 2, respectively. For the rotation gate,
the state of 1-qubit is rotated. For the control NOT gate, if the qubit a is |1), the output
b’ becomes the reversal sate of the qubit b. Thus the control NOT gate carries out the
XOR operation.

In order to describe the state of qubit, the complex function is used as the quantum
state in the following equation, in which the probability amplitude |0) corresponds the
real part and the |1), the imaginary part.

2.2 Quantum Gate

f0) = e = cosf + isin 0, 4

where i is the imaginary unit /—1.
Therefore the quantum state is presented as follows.

|¢) = cos0|0) + sind|1) 5)

Fig. 1. Rotation gate for 1-qubit
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a >

b & - b’

Fig. 2. Control NOT gate for 2-qubit

According to the representation of the quantum state, the rotation gate and the con-
trol NOT gate are described. The rotation gate is presented as follows.

f(01+62) = f(01)f(62) (6)
The control NOT gate is expressed as follows.
™ _ [sin@+icosf (y=1)
f(QW_Q)_{cosﬁisine(y_O) @)

where +y is the control variable. v = 1 implies the reversal state and v = 0 means the
non-reversal.

2.3 3-Qubit Circuit

Figure 3 shows the 3-qubit circuit. The qubit circuit has the logic state, namely, the
work qubit ¢ has the state of logical operation for qubits a and b, by changing the values
of 01, 02, 5, and 6. For the qubit ¢, AND state |a - b), OR state |a + b), and XOR state
|a @ b) can be realized in the quantum circuit.

2.4 Qubit Circuit in Neural Network

As the state |1) is corresponded to an excitatory state and the state |0), an inhibitory
state, the quantum state of neurons is considered as the superposition of the excitatory

a >
b >
c > 0, —d— 0, ——> 0;——] 0,|— >c’

Fig. 3. 3-qubit circuit
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and the inhibitory states. According to Eq. 4, the state of i-th neuron s; which receives
inputs from n neurons is presented as follows.

si = f(ui). (®)
Then
u; = gg(éi) —arg(v;) 9)
vi =Y f(00)f(uy), (10)
j=1

where g(z) is the sigmoid function in the following equation.

1

9(@) = | i

(1)

For the qubit neural network, there exist two variables, the phase variable 6 and the
reversal rate variable 8. 6 is among neurons and ¢ is in each neuron. § and 6 corre-
spond to the phase of the rotation gate and the reversal rate of the control NOT gate,
respectively.

3 Learning Model of Qubit Neuron

In this section, a novel learning model of qubit neuron is presented. Figure 4 shows the
network model according to the qubit circuit. z; (j = 1,2,---,m) and z¢ (= 0) in the
input layer and y; (kK = 1,2,---,n) in the output layer represent neurons. The input-
output properties of neurons in each layer are concretely exhibited as the following
description. For the suffix with the top here, a neuron in the input layer represents I,
and in the output layer, O.

540

" 10

'Yy 'Yy 'Yy 'Yy
_ o) o) S N W N
0O ) ) ) O
Input Layer Output Layer

Fig.4. Model for qubit neuron
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(i) Input-output of neurons in the input layer
The output function of neurons in the input layer is written as follows.

ul = gxm (12)
s, = fluh,), (13)

where z; has the input {0, 1}. The output function f(x) corresponds to Eq. 4. For the
input 0, the input to the network contains the input of |0), since u., = 0 holds and the
phase exists on the real axis. For the input 1, the input to the network corresponds to the
input |1), because ul, = 7/2 holds and the phase exists on the imaginary axis.

(i1) Input-output of neurons in the output layer

According to Egs. 8, 9, and 10, the output function of neurons in the output layer is
presented as follows.

vf = eWr-1050 4 Zew”s; (14)
j=1
o_T §.) — o 15
U = 29( k) — arg(vy ) (15
st = fug) (16)
where
,UlO — ei90716i0 + Z ei@j,l S; (17)
j=1

(iii) Final output
The final output is used the probability which is observed the state |1). As the imag-
inary part represents the probabilistic amplitude of the state |1), the output is the square
of the absolute value in the following equation.
y = Im(s9)Im(s9) (18)
For learning in the qubit neuron, the gradient descent is used in this study. The
evaluation function is presented as follows.

M

1
E= >~ (19)

p=1

where M is the number of sample data, yf) is the desired output, and y, is the final
output of neurons.

In order to decrease the value of the evaluation function F, 6 and ¢ are updated as
follows.

Ot + 1) = 0() + A0(t) (20)
5(t+1) = 8(t) + Ab(t) (1)
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Fig. 5. Dependence of learning constant for conventional model. Number of neurons in output
layer is four.

Subsequently Af and Ad are calculated as follows.

AQ(t+1) = —77(?9? 22)
AS(t+1) = —77(?9? (23)

where 7 is the learning constant.

4 Experimental Results

In the numerical experiments, the phase variable 6, is randomly assigned in [0, 27)
and the reversal rate variable 8y, is distributed in [—1, 1] at random for the initial stage.
In order to evaluate the performance of the present model, the network learns the basic
logical-operation XOR. For XOR operation, four kinds of patterns, (1,72 : y%) =
{(0,0:0),(0,1:1),(1,0:1),(1,1:0)}, are given to the network every learning. The
results are averages of 500 trials.

Figure 5 shows the dependence of learning constant on the convergence rate and
the average of learning iteration for the conventional model (The number of neurons in

Table 1. Learning in conventional approach

Number of neurons 4 3 2 1
Convergence rate [%] 100 100 97.2 0
Average iteration  63.9 66.8 175.2 —
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Table 2. Learning in present approach

Number of neurons

4

3

2

1

Convergence rate [%] 100 100 99.0 55.8
45.4 47.3 165.8 445.1

Average iteration

|

Learning constant
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(a) Number of neurons: 3

(b) Number of neurons: 2

Fig. 6. Number of neurons in output layer is three and two for conventional model

the output layer is four). Figure 6 exhibits the number of neurons in the output layer is
three and two for the conventional model. Here we confirmed that the network cannot
learn for one neuron in the output layer for the conventional model. When the number
of neurons increases, the model exhibits high qualities.

Figures 7 and 8 show the dependence of learning constant on the convergence rate
and the average of learning iteration for the present model. When the number of neurons
increases, the model exhibits high qualities. Especially the present model can learn for
one neuron in the output layer.
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Fig. 7. Dependence of learning constant for present model. Number of neurons in output layer is
four and three.

Tables 1 and 2 summarize the convergence rate and the average iteration for XOR
problem in the conventional model and the present model, respectively. Here the values
are described for the best results in the learning constant. The present method exhibits
high qualities.

5 Conclusions

In this paper, we have presented a novel learning model in qubit neuron according
to quantum circuit and have described the influence to learning with gradient descent
by changing the number of neurons. The first approach was to reduce the number of
neurons in the output layer for the conventional technique. The second was to present
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Fig. 8. Dependence of learning constant for present model. Number of neurons in output layer is
two and one.

a novel model, which had a 3-qubit neuron including a work qubit in the input layer.
For the convergence rate and the average iteration, it has been shown that the present
method is more effective than the conventional method. Finally, we will study more
effective techniques for the future works.
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Abstract. The min-max modular neural network with Gaussian zero-
crossing function (MS-GZC) has locally tuned response characteristic and
emergent incremental learning ability, but it suffers from quadratic com-
plexity in storage space and response time. Redundant Sample pruning
and redundant structure pruning can be considered to overcome these
weaknesses. This paper aims at the latter; it analyzes the properties
of receptive field in M3-GZC network, and then proposes a strategy for
pruning redundant modules. Experiments on both structure pruning and
integrated with sample pruning are performed. The results show that our
algorithm reduces both the size of the network and the response time no-
tably while not changing the decision boundaries.

1 Introduction

The min-max modular (M?) neural network [1,2] is an alternative modular neural
network model for pattern classification. It has been used in real-world problems
such as part-of-speech tagging [3] and single-trial EEG signal classification [4].
The fundamental idea of M? network is divide-and-conquer strategy: decompo-
sition of a complex problem into easy subproblems; learning all the subproblems
by using smaller network modules in parallel; and integration of the trained
individual network modules into a M? network.

Using linear discriminant function [5] as the base network module, the M3
network (M3-Linear) has the same decision boundaries as that of the nearest
neighbor classifier (NN) [6]. And M3-Linear is a specialization of M?® network
with Gaussian zero-crossing function (M3-GZC) [7], so M3-GZC can be viewed as
a generalization of nearest neighbor classifier. The most attracting attributes of

* To whome correspondence should be addressed. This work was supported in part by
the National Natural Science Foundation of China via the grants NSFC 60375022
and NSFC 60473040.
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M3-GZC are its locally tuned response characteristic and emergent incremental
learning ability. But it suffers from quadratic complexity in space and time, and
may be inefficient in large-scale, real-world pattern classification problems.

To decrease the storage space and response time of M3-GZC network, two
ways of redundancy pruning can be considered. One is sample pruning, which is
inspired by pruning strategies in NN [8,9,10,11,12,13,14,15]. We have proposed
the Enhanced Threshold Incremental Check algorithm [16] for M3-GZC network
in our previous work. The other way is structure pruning, which is correlative
with detailed network and can not borrow ideas from NN. In this paper we will
analyze the structure of M3-GZC network and propose a pruning algorithm.

The rest of the paper is organized as follows: In Section 2, M3-GZC network
is introduced briefly. In Sections 3 and 4 we analyze the properties of receptive
field and redundant modules in M3-GZC network. In Section 5 pruning algorithm
is described. Experiments are presented in Section 6. Finally, conclusions are
presented in Section 7.

2 Min-Max Modular Network with GZC Function

Let 7 be the training set for a K-class problem,
L
T ={(Xi, D))}y, (1)

where X; € R™ is the input vector, D; € R¥ is the desired output, and L is the
total number of training data.

According to the min-max modular network [1,2], a K-class problem defined
in equation (1) can be divided into K x (K — 1)/2 two-class problems that are
trained independently, and then integrated according to a module combination
rule, namely the minimization principle. Fig.1(a) shows the structure of M3
network to a K-class problem, where L; denotes the number of data belonging
to class C;.

A two-class problem can be further decomposed into a number of subprob-
lems and be integrated according to the minimization principle and the max-
imization principle. These subproblems can be learned by some base network
modules, such as SVM[17], back-propagation algorithm[3,4], and so on. Suppose
the training set of each subproblem has only two different samples, and the base
network module is Gaussian zero-crossing discriminate function as defined in
equation (2), the corresponding network is called M3-GZC network.

£ (@) = eap [_ (IIw el )] ~enp l_ (nw - cjuﬂ | )

where z is the input vector, ¢; and ¢; are the given training inputs belonging to
class C; and class C; (i # j), respectively, o = A||c; —¢;|, and A is a user-defined
constant.
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Fig. 1. Structure of M3-GZC network. (a) A K-class problem; (b)Further decomposi-
tion of a two-class problem.

The output of M3-GZC network is defined as follows.

1 if y;i(z) > 0*
gi(z) = { Unknown if 6= < y;(z) < 0F (3)

where 67 and 6~ are the upper and lower threshold limits, and ; denotes the
transfer function of the M3 network for class C;, which discriminates the pattern
of the M3 network for class C; from those of the rest of the classes.

The structure of M3-GZC network is shown in Fig.1. It is clear that the total
number of modules in a M3-GZC network is

K K
Z Z Lz X Lj, (4)
=1 j=1,j#i

which means quadratic complexity in storage space and response time.

3 Properties of Receptive Field in M3-GZC Network

The receptive field in a M3-GZC network is defined as the input space that can
be classified to one class.

RF = {z|xeR",3i, g;(x) = 1}. (5)

Suppose there are only two samples ¢; and c¢;, and we only concentrate on the
receptive field around ¢;. According to the axiom of norm, the following equation
is satisfied.

lei = ¢sll = llz = cill < llz = e;ll <llei = ¢l + |z = el (6)



296 J. Li, B.-L. Lu, and M. Ichikawa

o o e

(a) (b) (©) (d)

Fig.2. An illustration of structure pruning. (a) and (b) Receptive fields of a MIN
unit; (c¢) Modules and final decision boundaries in a M®-GZC network before pruning;
(d)Modules and final decision boundaries in a M*-GZC network after pruning.

So the shortest receptive field radius rp,in can be obtained when ||z — ¢;| =
lei — ¢jll = ||& — ¢;]|, while the longest receptive field radius 7,4, can be achieved
when ||z — ¢;|| = ||e; — ¢j|| + ||z — ¢i|, as depicted in Fig.2 (a).

From equations (2), (3), (5), and (6), we can prove that the relationship
between 7,4, and ||¢; — ¢;|| can be expressed as

Tmaxz = k1||ci - Cj”v (7)

where ki is only correlated with A and 67.
Proof: Suppose x is on the direction of 7,4, and on the margin of the recep-
tive field, which means % = f;;(z). From equations (2) and (7), we get:

krlle: — ;1\ killei — c;ll + llei — e\ ?
0T =exp |— ( 7 —exp |— 7 7
[ Allei = ¢ Allei = ¢
ki) ki +1\°
= exr — — EX —
P A P A
So k; is a function of A and 671.

Also, we can prove that the relationship between 7,,,;, and ||¢; — ¢;|| can be
expressed as:

(8)

Tmin = k2||ci - Cj”' (9)

where ko satisfies the following equation.
2 2
0% = exp l— (%) 1 —exp [—(1_/\k2> ‘| (10)
4 Redundancy Analysis

When another sample ¢} belonging to class Cj is available, module M; ; will
be established, which determines another receptive field RF5 around c¢;. Then
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the minimization principle will be used to combine RF» and the field RF} that
was previously determined by ¢; and ¢;. Since the role of minimization principle
is similar to the logical AND [1], only those fields that contained in both RF}
and RF, will be the final receptive field RF, as shown in Fig.2 (b). In other
word, if RF5 includes RF;, RF will be equal to RF}. In this case, sample c;
has no contribution to the final receptive fields around ¢;, and module M; j is a
redundant module.

Now the question of under what circumstances RF5 will include RF; arises.
Here we give a sufficient proposition.

Proposition 1: Suppose sample c¢; is the nearest sample in class C; to sam-
ple ¢, if sample ¢/ in class C; satisfies equation (11), then module M; ; is a

J
redundant module.

k
lei =l = i =1 (11)
The proof is straightforward. From equation (11) we can get kal|c;—c;/|| > ki||lci—
¢;|l, which means that 7y, of RF, is larger than 7,4, of RFy, so RF1 C RF>,
and module M; ;s is a redundant module.
For a k-class classification problem, proposition 1 can be extended to proposi-
tion 2 according to the minimization principle in K-class classification problems][1].
Proposition 2: Suppose sample ¢; is the nearest sample in class C; (1 < j <
K,j # i)to sample ¢;, if sample ¢ in class Cx (1 < k < K,k # i) satisfies
equation (12), then module M, j is a redundant module.

k1
llei — ckll > ks llci — ¢l (12)

5 Pruning Algorithm

For a K-class problem defined in equation (1), according to proposition 2, our
pruning algorithm works as below.

1. Calculate ki and ko according to A and 67;
2. For each sample (x,d) in T,
(a) Find the nearest neighbor (z/,d") inT,d # d’ and ||z—a'|| = MIN{]||z"—
z||}, (2",d")eT, d" # d.
(b) For each sample (z”,d") in T (d" # d), if ||z — x| > Z; |z" — z||, prune
the module based on (z,d) and (z”,d").

The final structure of pruned M3-GZC network is composed of L MIN units,
as shown in Fig.3. Each MIN unit is composed of a center sample and some
neighbors in different classes around it. When a test sample x is presented, if it
is in the receptive field of one MIN unit, then the calculation is completed, and
the output is the same as the class of the center sample. If = is rejected by all
the MIN units, then the output is ‘Unknown’.

Suppose there are N; neighbors around one center sample, N; is determined
by the distribution of training samples. The total number of modules in the
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Fig. 3. Structure of pruned M*-GZC network. Nij denotes the jth neighbor around
sample %

pruned M3-GZC network is ZiL:1 N,;, which is less than that in the original

M3-GZC network: 5 Eleu’#i L; x L;.

An illustration of our pruning algorithm is depicted in Fig.2 (c¢) and (d).
Each circle line represents a module in M3-GZC network. The black and grey
areas denote the receptive field of each class, while the white area denotes the
‘Unknown’ output. Form the results, we can see that the decision boundaries

are identical, while 41.7% modules are pruned.

6 Experimental Results

In order to verify our method, we present experiments on three data sets. The
first is an artificial problem and the other two are real-world problems. We also
do the experiments that integrating our method with sample pruning. All the
experiments were performed on a 2.8GHz Pentium 4 PC with 1GB RAM.

6.1 Two-Spiral Problem

We test our structure pruning algorithm on the popular two-spiral benchmark
problem firstly. The data include 192 training samples and test samples respec-
tively (non-overlapping). The parameters of the experiment are given as follows:
A =0.5; 07 = 0.01; 6~ = —0.01. The correspond k; and ks is 1.073 and 0.497,
respectively. Fig.4 (a) shows the original problem, Fig.4 (b) shows the decision
boundaries before pruning and Fig.4 (c) shows the decision boundaries after
pruning. As we have expected, they are identical, but the number of modules
and response time are greatly reduced, as listed in Table 1.
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(a) (0) (c)
Fig. 4. Results on two-spiral problem. (a) Training samples; (b) Decision boundaries

before pruning; (c¢) Decision boundaries after pruning. Here black area denotes ‘Un-
known’ output.

Table 1. Experimental results. The upper row in each experiment denotes the pruned
net while the lower row denotes the original net. The unit of ‘Time’ is ms.

Data set Accuracy Unknown False Size Time Size Ratio Speed Up

two-spirals  100% 0.0% 0.0% 2516 18 13.7% 129
100% 0.0% 0.0% 18432 2315
balance 92.0% 0.0% 8.0% 39377 42 31.6% 137
92.0% 0.0% 8.0% 124800 5767
car 57.87% 42.13% 0.0% 126079 1805 37.7% 60
57.87% 42.13% 0.0% 334006 107878
image 84.0% 7.33% 8.67% 11280 449 33.0% 66
84.0% 7.33% 8.67% 34200 29730
Iris 94.67% 1.33%  4.0% 1843 3 49.1% 84
94.67% 1.33% 4.0% 3750 252
optdigits  97.22% 1.45% 1.34% 11454592 10784 89.1% 700
97.22% 1.45%  1.34% 12862520 7548237
glass image 86.0% 2.0% 12.0% 1167989 18817  43.7% 125

86.0% 2.0% 12.0% 2673000 2349796

6.2 UCI Database

In this experiment, our algorithm is tested on five benchmark data sets from the
Machine Learning Database Repository[18]: Balance, Car, Image Segmentation,
Iris and Optdigits. The detailed information of each problem is described in
Table 2. The parameters of each experiments are same as those in the two-spiral
problem, and results are listed in Table 1.
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Table 2. Number of class, dimension, training samples and test samples in UCI
database

Data Set Class Dimension Training Test

balance 2 4 500 125
car 4 6 864 864
image 5 19 210 2100
Iris 3 4 75 75
optdigits 9 64 3823 1797

Table 3. Experimental results of integrating sample pruning and structure pruning.
The upper row in each experiment denotes the net after sample pruning and structure
pruning while the lower row denotes the net only with sample pruning. The unit of
‘Time’ is ms.

Data set Accuracy Unknown False  Size  Time Size Ratio Speed Up
two-spirals  100% 0.0%  0.0% 794 11 4.31% 208.3
100% 0.0% 0.0% 8192 1268 44.4% 1.82
balance 92.0% 0.0% 8.0% 9878 15 7.92% 384.6
92.0% 0.0% 8.0% 44676 2510  35.8% 2.30
car 62.15% 34.14% 3.70% 31322 645 9.38% 166.7
62.15% 34.14% 3.70% 111138 36392 33.3% 2.97
image 82.0% 9.24% 8.76% 3280 478 9.59% 625
82.0% 9.24% 8.76% 11162 12035 32.6% 2.47
Tris 94.67%  1.33%  4.0% 345 3 9.2% 1.19%
94.67% 1.33% 4.0% 570 125 15.2% 84.0
optdigits  96.05%  2.62% 1.34% 1137798 3714  8.85% 2000
96.05%  2.62%  1.34% 1378048 840613 10.7% 9.0
glass image 85.55%  2.59% 11.86% 46397 16049 1.74% 147.1
85.55%  2.59% 11.86% 176928 151796 6.62% 15.5

6.3 Industry Image Classification

Due to its locally tuned response characteristic and incremental learning ability,
M3-GZC has been used in an industry fault detection project. The purpose of
this project is to choose out eligible glass-boards in an industrial product line,
which is done by trained workers in practice. It is a boring work; workers are easy
to be tired and then make wrong decisions. With the help of M3-GZC network,
workers need only judge the glass-boards that are classified to ‘Unknown’ by
the network. In our experiment, each glass-board image is converted into a 4096
dimension vector, 3420 images are used as training data while 1197 images as
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test data. The parameters are same as those in the two-spiral problem, and
results are listed in Table 1.

From Table 1, several observations can be made. Our pruning method has
no influence on the classification accuracy, but the size and response time can
be decreased notably, by an average of 42.6% and 0.975%, respectively. The
response time is saved much further than the size. This is due to that in the
pruned net it need not calculate all the modules to get the answer, if there is
a MIN unit accepts it, the calculation can be finished. Only those inputs that
the correspond result is ‘Unknown’ will calculate all the modules. But in most
cases, the ‘Unknown’ ratio is very low. So the response time can be cut down
greatly.

6.4 Integrated with Sample Pruning

Experiments of integrating sample pruning (Enhanced Threshold Incremental
Check)[16] and structure pruning are also conducted on the data sets mentioned
above. First we use ETIC to prune redundant samples in each training data set;
then we use our structure pruning algorithm to prune redundant models. The
results are listed in Table 3. We can see that the size and response time are
decreased much further, by an average of 7.28% and 0.49%, respectively.

7 Conclusions

M3-GZC network has the locally tuned response characteristic and emergent in-
cremental learning ability. But it suffers from sample redundancy and module
redundancy. In this paper we have presented a novel structure pruning algorithm
to reduce the redundant modules based on the properties of receptive field in
M?3-GZC network. The decision boundaries of the pruned net are identical with
the original network, but the storage and response time requirement decreased
significantly. Experiments on structure pruning and integrated with sample prun-
ing verified the effectiveness of our pruning algorithm. We believe that module
redundancy reflects sample redundancy, our future work is to investigate the
relationship between them and combine them more effectively.
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Abstract. A general procedure for combining binary classifiers for mul-
ticlass classification problems with one-against-one decomposition policy
is presented in this paper. Two existing schemes, namely the min-max
combination and the most-winning combination, may be regarded as its
two special cases. We show that the accuracy of the combination proce-
dure will increase and time complexity will decrease as its main param-
eter increases under a proposed selection algorithm. The experiments
verify our main results, and our theoretical analysis gives a valuable cri-
terion for choosing different schemes of combining binary classifiers.

1 Introduction

The construction of a solution to a multiclass classification problem by combining
the outputs of binary classifiers is one of fundamental issues in pattern recog-
nition research. For example, many popular pattern classification algorithms
such as support vector machine (SVM) and AdaBoosting are originally designed
for binary classification problems and strongly depend on the technologies of
multiclass task decomposition and binary classifier combination. Basically, there
are two methods for decomposing multiclass problems. One is one-against-rest
policy, and the other is one-against-one policy. The former is computationally
more expensive, the latter is more popular in practical application and will be
concerned in this paper.

There are three main combination policies for one-against-one scheme accord-
ing to reported studies. a) the most-winning combination (round robin rule (R?)
learning [1]); b) the min-max combination that comes from one of two stages
in min-max modular (M?3) neural network [2]; and ¢) decision directed acyclic
graph (DDAG) [3]. In comparison with one-against-rest scheme, a shortcoming
of one-against-one decomposition procedure is that it will yield too many binary
classifier modules, precisely the quantity is K (K — 1)/2, that is, the quadratic
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function of the number of classes, K. In the recognition phase, however, it is ob-
served that only a part of binary classifiers will be called to produce a solution
to the original multiclass problem.

In order to improve the response performance of this kind of classifiers, it is
necessary and meaningful to develop an efficient algorithms for selecting neces-
sary binary classifiers in the recognition phase. Therefore, we focus on binary
classifier selection problem under a novel general combination procedure of bi-
nary classifiers proposed in this paper. Here, we will only care the module based
time complexity, which means our work will be independent of the classification
algorithms and then it earns more generality. On the contrary, a related work
in [4] focuses on an optimized combining policy for margin-based classification,
which strongly depends on classification methods used in binary classifiers.

One of our previous work [5] gives a comparison between DDAG combination
and the min-max combination and proves that DDAG can be seen as a partial
version of the min-max combination. With ulterior study in this paper, we may
obtain a more comprehensive understanding of combination of binary classifiers.

The rest of the paper is organized as follows: In Sections 2 we briefly intro-
duce the min-max combination and the most-winning combination for binary
classifiers. In Section 3, a generalized combination procedure is presented and
two equal relations are proved. A selection algorithm is presented for the gen-
eral combination procedure is presented in Section 4. The experimental results
and comments on theoretical and experimental results are presented in Section 5.
Conclusions of our work and the current line of research are outlined in Section 6.

2 Min-Max and Most-Winning Combinations for Binary
Classifiers

Suppose a K-class classification problem is divided with one-against-one task
decomposition, then K (K — 1)/2 individual two-class sub-problems will be pro-
duced.

We use M;; to denote a binary classifier that learns from training samples
of class ¢ and class j, while 0 < i,j < K. The output coding of binary classifier
M;; in the min-max combination is defined as 0 and 1, where 1 stands for its
output of class ¢ and 0 stands for class j. M;; will be reused as Mj; in the
min-max combination, and they output contrary results for the same sample.
Thus, though K (K — 1) binary classifiers will be concerned in the min-max
combination, only one half of them need to be trained.

Before combination, we sort all K (K —1) binary classifier M;; into K groups
according to the same first subscript ¢, which is also regarded as the group label.
Combination of outputs of all binary classifiers is performed through two steps.
Firstly, the minimization combination rule is applied to all binary classifiers of
each group to produce the outputs of K groups. Secondly, the maximization
combination rule is applied to all groups outputs. If the result of the maximiza-
tion procedure is 1, then the label of that group which contribute to such result
will be the class label of combining output, otherwise, the combining output is
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unknown. We name the group which leads to the class label of combining output
as “winning group”, and the others as “ failure groups”.
A min-max combination procedure is illustrated in Fig 1.

I MAX
- Output

nduy |

Fig. 1. Illustration of K-class min-max combination of (K — 1) x K binary classifiers
with K MIN units and one MAX unit

For the most-winning combination of binary classifiers, a direct output coding
is applied. The output of each M;; is just ¢ or j, instead of 0 or 1. And the
combination policy is concise, too. The class label supported by the most binary
classifiers is the combining output of K (K — 1)/2 binary classifiers.

3 A General Combining Procedure for Binary Classifiers

For K(K — 1)/2 binary classifiers produced by one-against-one decomposition
procedure, we present a general combination procedure, named N-voting com-
bination, denoted by V (K, N), where N is an additional parameter. A direct
class output coding is used in the combination, that is, the output of a binary
classifier M;; will just be class ¢ or class j. Combination rule is defined as follows.
If there are at least IV binary classifiers support a class label, e.g. class i, and no
more binary classifiers support any other class label, then the combining output
is just class ¢. Otherwise, the combining output is unknown class.

We will show that N-voting combination V (K, K —1) is equal to the min-max
combination. In fact, if there is a class, e.g. class ¢, with consistent support of
K — 1 binary classifiers under V(K, K — 1) combination, then this means that
only these binary classifiers, M;;, 0 < 7 < K — 1, and ¢ # j, must all support
the same class ¢. In other words, their output must all be class 1 under coding
method of the min-max combination. These K — 1 binary classifiers just form a
group under the min-max combination. Thus, it must be the group with label ¢
that wins the combination, which means the combining output is class ¢ under
the min-max combination. On the contrary, if there is one winning group with
a label 4, under the min-max combination, then these K — 1 binary classifiers
must support the same class i. Notice that since the classifier M;; has output
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class i, then the symmetrical classifier M;; must output the same result class
i, namely only K — 2 binary classifiers support class j in the group that are
supposed to supported class j as the combining output, which leads to a failure
and means that no more binary classifiers support any other class except for
class i. According to the definition of V (K, K — 1) combination, the combining
output must be class ¢ under V(K, K — 1) combination. So the conclusion that
V (K, K —1) and the min-max combination are equal combinations can be drawn.
What’s more, since the same class label can only be supported by at most K — 1
binary classifiers, this comes the fact that the upper bound of N must be K —1.
It is easy to recognize that the supremum of N is K — 1, too.

We also show that V(K [K/2]+1) combination is equal to the most-winning
combination, where denotation [K/2] means the largest integer below K /2. It is
induced from the following two facts.

a) For convenient description, we name such combination as v(K, N) combina-
tion. If there are just N binary classifiers support a class label, e.g. class ¢,
and no more binary classifiers support any other class label, then the combin-
ing output is just class i. Otherwise, the combining output is unknown class.
Suppose the set of combining outputs of all defined class labels by v(K, N)
combination is denoted by sy, and the set of combining outputs of all defined
class labels by V(K, N) combination is denoted by Sx. For the same test
sets and trained binary classifiers, there must be Sy = sxg_1Usg_2U...Usn.
Then it is obvious that Sy, € Sy,when N; > Na, for all 0 < N;, Np < K.
That is, for the larger N, the corresponding V (K, N) combination will give
the less outputs of defined class labels. The reason is that the condition to
finish a combining output of defined class label is more and more strict as
the value of IV increases. Turn to the case of the most-winning combination,
such result can be obtain according to its definition:

Smw = Sk_1USk_oU...Usq,or (1)
Smw = 1.

b) To give a combining output of defined class label under V(K, N) or the
most-winning combination, such condition must be satisfied: after N binary
classifiers are excluded in K (K —1)/2 binary classifiers, the remaining classi-
fiers are divided into K — 1 groups, in which the numbers of binary classifiers
all are less than NN, that is, the following inequality should be satisfied.

K(K—-1)/2—N

N
7 K-

(2)

The solution to the above inequality is N > (K —1)/2. Consider N must be
an integer, we have N > [(K —1)/2] + 1, that is, N > [K/2] + 1. This result
suggests

sy =¢,YN,0 < N < [K/2]+ 1. (3)



Combining Binary Classifiers and Its Performance Analysis 307

According to (1) and (3), we obtain

Smw = 85K -1USKk-2U...US[Kg/2]41,0" (4)

Smw = S[K/2]+17

and consider all undefined class labels will be output as unknown classes. There-
fore, the equality between V (K, [K/2] + 1) and the most-winning combination
is obvious.

However, the fact that [K/2] 4+ 1 is a lower bound of N is not necessary to
lead to the fact that [K/2] 4 1 is the infimum of N just like the case of upper
bound of N. Actually, many sets sy are empty for some N > [K/2] + 1 in
practical classification tasks. To find a larger lower bound of N is still remained
as an open problem.

4 Selection Algorithm for Combining Binary Classifiers

The original N-voting combination needs K (K — 1)/2 binary classifiers to be
tested for a sample before the mostly supported class label is found. But if
we consider the constraint of the value of N, then it is possible to reduce the
number of binary classifiers for testing, which give an improvement of response
performance.

As mentioned in Section 2, K — 1 binary classifiers with the same first sub-
script ¢ are regarded as one group with the group label i. If there exists more
than K — N binary classifiers without supporting the group label in a group for
a given value of IV, then it is meaningless for checking the remained classifiers
in the group since this group loses the chance of being a winning one, that is to
say, the remained classifiers in the group can be skipped.

The selection algorithm for N-voting combination V' (K, N) is described as
follows.

1. For a sample, let + =0 and j = 1.
2. Set all counters R[i] = 0, which stands for the number of binary classifiers
rejecting group label ¢, for 0 <1i < K.
3. While : < K, do
(a) While j < K and R[i] < K — N, do
i. Check the binary classifier M;;.
ii. If M;; rejects class label ¢, then R[i] = R[i] + 1, else R[j] = R[j] + 1.
iii. Let j =741, if 7 =4, then let j = 5 + 1 again.
(b) Let i=¢+1and j = 1.
4. Compare each number of binary classifiers rejecting the same class to find
the lest-rejected class label as combining output. If all R[i] > K — N, for
0 <i < K, then output unknown class as combining classification result.

It is obvious that the chance of a group to be removed by selection algorithm
will increase as the value of N increases. This means the efficiency of selection
procedure will increase, too. Thus, with the highest value of N, V(K, K — 1),
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or the min-max combination, has the best test performance in the combination
series.

Notice that the strictness of voting for a combining output of defined
class label will be increase as the value of N increases from [K/2] 4+ 1 to
K — 1, monotonously. The chance to complete such combination will decrease,
simultaneously. This means the accuracy of V(K,N) combination will de-
crease, monotonously, and the unknown rate will increase, monotonously. Thus,
V(K,[K/2] 4+ 1) or the most-winning combination is of the highest accuracy in
the combination series.

It is hard to directly estimate the performance of N-voting combination selec-
tion algorithm. Here we give an experimental estimation. The number of checked
binary classifiers under V(K, K — 1) or the min-max combination will be

na = K(alog(K) + ), ()

where o and [ are two constants that depend on features of binary classifier,
experimentally, 0 < a < 1 and —0.5 < § < 0.5. And the number of checked
binary classifiers under V(K,[K/2] + 1) (or the most-winning policy in some
cases) combination will be

nNpr = 'VKQa (6)

where ~y is a constant that depends on features of binary classifier, experimen-
tally, 0 < v < 0.3. According to above analysis, performance of V (K, N) combi-
nation should be between njy; and ng.

According to above performance estimation, our selection algorithm can im-
prove the response performance of one-against-one method from quadratical
complexity to logarithmal complexity at the number of binary classifiers in the
best case, namely the min-max combination or 1.67 times at least in the worst
case, namely the most-winning combination policy.

5 Experimental Results

Two data sets shown in Table 1 from UCI Repository[6] are chosen for this
study. Two algorithms, k-NN with £ = 4 and SVM with RBF kernel are taken
as each binary classifier, respectively. The kernel parameters in SVM training are
shown in Table 1, too. The experimental results of N-voting combination with
different values of N are shown in Tables 2-5. These tables list the numbers of
checked binary classifiers, which show the performance comparison independent
of running platform.

It is necessary to access 45 and 325 binary classifiers for two data sets re-
spectively for testing a sample without any module selection. while there is only
one half of binary classifiers or less to be checked under presented selection al-
gorithm. This demonstrates an outstanding improvement of test performance.
Consider the generality of N-voting combination, the selection algorithm pre-
sented has actually included selection procedure of the min-max combination



Table 1. Distributions of data sets and corresponding parameters for SVMs

Data sets #Class Number of Samples Parameters of SVM

Optdigits
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Letter

10
26

Train
3823
15000

Test
1797
5000

v
0.0008

0.0125

C
8
8
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Table 2. Performance of Optdigits data set on N-voting combination: k-NN algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

6

7
8
9

98.39
98.39
98.39
98.39

1.61
1.61
1.61
1.61

0.00
0.00
0.00
0.00

25.55
26.16
24.84
20.74

Table 3. Performance of Optdigits data set on N-voting combination: SVM algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

6

7
8
9

99.00
99.00
99.00
98.94

1.00
1.00
1.00
0.78

0.00
0.00
0.00
0.28

24.91
25.53
24.61
20.69

Table 4. Performance of Letter data set on N-voting combination: k-NN algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

14
15
16
17
18
19
20
21
22
23
24
25

95.78
95.78
95.78
95.78
95.78
95.78
95.78
95.78
95.78
95.78
95.78
95.74

4.22
4.22
4.22
4.22
4.22
4.22
4.22
4.22
4.22
4.22
4.22
4.02

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.24

191.15
191.05
189.47
186.34
181.51
174.85
165.73
154.19
139.74
121.98
99.49
73.41
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Table 5. Performance of Letter data set on N-voting combination: SVM algorithm

N Accuracy Incorrect rate Unknown rate #checked modules

14 97.18 2.82 0.00 188.77
15 97.18 2.82 0.00 189.02
16 97.18 2.82 0.00 187.45
17 97.18 2.82 0.00 184.54
18 97.18 2.82 0.00 180.00
19 97.18 2.82 0.00 173.62
20 97.18 2.82 0.00 165.33
21 97.18 2.82 0.00 155.04
22 97.18 2.82 0.00 141.46
23 97.18 2.80 0.02 124.68
24 97.16 2.80 0.04 103.26
25  96.80 2.34 0.86 76.27
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Fig. 2. Comparison of theoretical estimation and experimental result of N-voting com-
bination on Optdigits data set under k-NN algorithm, where o = 1.05, 6 = —0.32 and
v =0.247. (a) V(K, K — 1) combination and (b) V (K, [K/2] + 1) combination

and the most-winning combination. If we regard selected V (K, [K/2] + 1) com-
bination as selected the most-winning combination in the worst case, then there
comes nearly 1.7 times improvement at least. If a larger IV is taken, then the
speeding is much more. In addition, the accuracy and unknown rate do decrease
and increase, respectively, while the value of IV increases just as expected. How-
ever, the decreasing of accuracy or increasing of unknown rate is not outstanding
when N is small enough. This suggests that the most-winning combination is
equal to V(K, N) combination with a value of N which may be many larger
than [K/2] + 1.

By removing samples of the last class continuously from each data set, we
obtain a 3-26 data sets for Letter data and 3-10 data sets for Optdigits data.
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Under selection algorithm, the comparison of the numbers of checked binary
classifiers between experimental results and theoretical estimation under contin-
uous classes are shown in Figs. 3-4. We see that the experimental estimation
value and experimental results are basically identical.

6 Conclusions

A general combination procedure of binary classifiers for multi-classification with
one-against-one decomposition policy has been presented. Two existing schemes,
the min-max combination and the most-winning combination, can be regarded
as its two special cases. For such general combination procedure, we ulteriorly
propose a selection algorithm. An improvement of response performance to the
original combining procedure is demonstrated. The experimental performance
estimation of selection algorithm is given, too. The experiments verify the ef-
fectiveness of the proposed selection algorithm. Our theoretical analysis gives a
valuable criterion for choosing combination policies of binary classifiers. From
the generality of our work, the improvement of response performance with pre-
sented selection algorithm can also be widely applied, especially for multi-class
classification with a large number of classes.
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Abstract. Humans use many different kinds of information from differ-
ent sensory organs in motion tasks. It is important in human sensing to
extract useful information and effectively use the multiple kinds of in-
formation. From the viewpoint of a computational theory, we approach
the integration mechanism of human sensory and motor information.
In this study, the modular structure of auto-encoder is introduced to
extract the intrinsic properties about a recognized object that are con-
tained commonly in multiple kind of information. After the learning, the
relaxation method using the learned model can solve the transformation
between the integrated kinds of information. This model was applied to
the problem how a locomotive robot decides a leg’s height to climb over
an obstacle from the visual information.

1 Introduction

It is supposed that the human recognizes various objects in the real-world by in-
tegrating multiple kinds of sensory information. Consider that the human recog-
nizes a cup to drink water. It has been pointed out that not only visual informa-
tion about the cup but also somatosensory information (e.g., hand configuration
when grasping it) concerns the object’s shape recognition[l]. We hypothesize
that the internal representation of a grasped object is formed in the brain by in-
tegrating visual, somatosensory and other sensory information while the human
repeats such grasping movements.

When the human recognizes a cup, perceived data consists of the intrinsic
property of the cup and the condition of sensing. For example, visual image
changes depending on not only the size or the shape of the cup but also the
direction or the distance from eyes to the cup. Somatosensory information also
changes depending on how human grasps the cup. Consequently, when these dif-
ferent kinds of sensory information are integrated, the relation between them is
many-to-many and the recognition process must include the extraction of intrin-
sic properties of the objects. We focus on the fact that the intrinsic properties
are contained constantly and commonly in multiple kinds of sensory informa-
tion. From this viewpoint, we think that the most important purpose of sensory
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integration is the extraction of the information commonly contained in different
kinds of sensory information, which is called the correlated information[2].

Base on a five-layered auto-encoder[3], we have proposed a neural network
model that integrates different kinds of information and shown that this model
can solve the many-to-many problem by a relaxation method with a penalty
method[4]. In our successive work, the former model has been modified in or-
der to extract the correlated information through the learning process of the
integration[5]. However, these models always require both data integrated in the
learning phase, which is not natural in the biological system.

In this study, a modular structure of auto-encoder is introduced. Each module
corresponds to a kind of information and when the multiple kinds of information
about a recognized object are gained, corresponding modules learn the correlated
relation. Even if only a kind of information is gained, the corresponding mod-
ule can learns to achieve the identity map as a simple auto-encoder. Moreover,
we show that the proposed model can solve a many-to-many problem without
penalty method. This model is applied to the problem how a locomotive robot
decides the leg’s height to climb over an obstacle from the camera data.

2 Architecture of the Neural Network

2.1 Extraction of the Correlated Information

The proposed model consists of the multiple five-layered auto-encoder models
as shown in Fig.1. In this work, we consider the case that two kinds of the
sensory information (x,y) are integrated. Each auto-encoder corresponds to a
sensory modality. The numbers of neurons in the third layer in the every auto-
encoder are set to the intrinsic dimension of the input data. In the learning phase,
each auto-encoder model learns to realize the identity map. Simultaneously, the
several neurons in the third layer of each module, which are called the correlated
neurons((), must learns to have the same value as the correlated neurons in the
other module for the sensory modality that shares the correlated information.
The other neurons in the third layer(£,n) are called non-correlated neurons.
The number of the correlated neurons sets to be the same as the dimension
of the correlated information. Consequently, the error functions that must be
minimized in the learning phase are as follows:

K

B =Y (=) + A3 - ¢ 1)
v x

B =3 (0~ P A - ) @

i

Here, M and N are dimensions of the input data and K is the number of the
correlated neurons. x’ and y’ are outputs of the auto-encoders. When only one
kind of the information is gained in the recognition process, the second term in
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Fig. 1. The structure of a neural network model that extracts correlated information
between two different kinds of information

(1) or (2) is omitted. The network learns to minimize the objective functions by
the back-propagation method.

Through the learning of the identity map, arbitrary transformation and its
inverse transformation will be obtained from the input layer to the third layer and
from the third layer to the fifth layer, respectively. When there is the correlated
information between the both kinds of the sensory information and its dimension
is K, the correlated information should be extracted in the correlation neurons
since the correlation neurons in every auto-encoder have the same value for a
recognized object after the learning phase.

Generally, it is difficult to determine the number of neurons in the hidden
layer of the layered neural network. In this work, it is assumed that the intrinsic
dimensions of x and y and the dimension of the correlated information between
x and y are known; therefore, the number of neurons in the third layer in every
auto-encoder can be properly set.

2.2 Relaxation Method for a Many-to-Many Transformation
Problem

As described before, the transformation from a pattern of one kind of sensory
information to a pattern of another kind of sensory information is a many-
to-many transformation problem. A “many-to-many transformation problem”
is an ill-posed problem since many corresponding output patterns exist even
if an input pattern is specified. In the previous study[4], we have shown that
a relaxation computation applying to the learned neural network model can
solve such a transformation problem as an optimization with constraints by
introducing a criterion of the output pattern in order to determine an optimal
solution from many candidates. This relaxation method is equivalent to the
penalty function method in the optimization theory and a different solution also
can be computed by employing a different criterion. However, this relaxation
computation needs a great deal of computation time and it is difficult to choose
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Fig. 2. A schematic of the relaxation method to solve a many-to-many problem

suitable values of some parameters such as a regularization parameter for the
criterion and its decreasing rate.

Generally, the condition of constraints means that both kinds of the informa-
tion are obtained from the same object. In other words, the both sensory data
contains the same correlated information that is the object’s property. In the
case of the proposed model in this study, if (; = ¢y, x and y, in the fifth layer
that are computed from ( are always obtained from the same object. That is,
the constraint is satisfied.

Consequently, when a kind of the sensory data(x) is obtained, the values of
the correlated neurons((,) computed from x are copied to the correlated neurons
of the another module(¢,). After that, we may search an output pattern y’ that
optimizes the criterion based on the values of (, by adjusting n(Fig.2). In this
step, the gradient method can be used to optimize the criterion C(y) as follows:

dngi, _ 0C(y')
¢ ds N 877k (3)

Here, s is relaxation time and c is a positive time constant. After n reaches the
equilibrium state, an optimized pattern y* that minimizes the criterion is formed
in the fifth layer.

In this model, the transformation from the sensory data to the coordinates
representing the correlated information is acquired through the learning process.
Since the constraints are always satisfied when (, = (,, the transformation
problem can be solved as not the optimization with constraints, but simple
optimization problem. Thus, an adjustment of the regularization parameter and
its decreasing rate in the penalty method is unnecessary and the computation is
expected to be stable. Moreover, since the search space in the third layer become
small, less computational time is expected.

3 Experimental Results

3.1 Integration Task

We confirmed the plausibility of the proposed model by a computer simulation
and an experiment of a real robot, AIBO. We employed the recognition of ob-
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stacle’s heights by integrating the visual information when a locomotive robot
see it by a camera from different distances and the joint angle of the robot’s
leg when it touches the top of the obstacle by its front leg in various postures.
The visual image changes according to the obstacle’s height as the correlated
information and the distance from the obstacle. Instead of the raw image data,
the width and length of the obstacle in the camera image were used as the visual
information in order to reduce the computational cost. Since the AIBO has only
one CCD camera, the width of every obstacle was set to be the same such that
the height of the obstacle and the distance could be calculated from a camera
image. In this experiment, the joint for abduction of the leg was fixed so that
the AIBO’s leg was considered as a 2-link manipulator. The shoulder and elbow
joint angle when the robot touches the top of the obstacle were used as the leg’s
posture data. These angles change according to the height of the obstacle and
the distance from the body to the toe. Thus, it is expected that the height of
the obstacle is extracted in the correlated neurons by integration of the visual
data and leg’s posture of the robot.

3.2 Simulation Experiment

At first, we investigated the proposed model by a computer simulation. Nine
obstacles of width 80.0mm were prepared, heights of which were from 8.0mm to
60.0mm.

It was supposed that the image data was obtained by a camera at the same
height of the center of the obstacle’s side plane. The widths of the side plane in
the camera image, which are inversely proportional to the distance, were set to
be 30, 50, 70, and 90 pixels. Their lengths in the camera image were calculated
from the widths in the camera images of the obstacles and the real proportions
of length to width.

About the joint angle data, eleven elbow angles from -25 to 25 degrees (plus
value means forward flexion) were prepared. Each shoulder angle, which is or-
thogonal to the body at zero degree, was calculated from obstacle’s height and
elbow angle using the kinematics equation.

Thus, 396 data sets, all combination of four image data and eleven posture
data for nine obstacles, were used for training. The number of neurons in the first
and fifth layer was two in each auto-encoder model. The number of correlated
neurons and the non-correlated neurons in the third layer was one, respectively.

Figure3 shows the activities of the correlated neurons in each module when
the training data were fed to the model after the sufficient learning. The both
values of correlated neurons have almost same for an obstacle and increase mono-
tonically with the height of the obstacle. These results indicate that the corre-
lated neurons extract the height of the obstacles without a supervised signal
about the height information.

Using the learned model, the adequate posture of the robot’ leg was com-
puted from the image data by the proposed method. In this simulation, (4) was
employed as the criterion.

Cly)=yi+y: (4)
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Fig. 4. Estimated postures and optimized postures for each obstacle in the simulation

Here, y, and y. means the shoulder and elbow angle. The results of the estima-
tion of leg’s posture from the every training data of image module, which was
obtained at the different distance, are shown in Fig.4. Dotted lines indicate the
optimized leg’s postures by Optimization Toolbox of MATLAB. The postures
estimated from the different image data for the same obstacle are almost same
and very close to the optimized postures, too. These results indicate that the pro-
posed model can extract the correlated information and solve the many-to-many
problem with less computational cost.

3.3 Robot Experiment

We tested the proposed model by a real robot. AIBO(RS-210A) made by SONY
Corporation was employed in this experiment. Nine rectangular parallelepiped ob-
stacles, width and height of which were the same as those of the obstacles in the
simulation were prepared. AIBO has a CCD camera the size of which was 176 by
144pixels. In order to extract the size of the obstacle in the camera image easily, the
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Fig. 6. Estimated postures of AIBO. (a) Obstacle of the height 145mm was estimated
from an image data taken at about 100mm away. (b) Obstacle of the height 535mm
was estimated from an image data taken at about 200mm away

side planes of these obstacles were painted in pink. At first, AIBO was put at about
100, 200, 300, and 400mm away from the obstacle. When AIBO detected the pink
area from the front of the side plane and looks at its center, the robot took each ob-
stacle’s image three times. The length and width were computed by counting the
number of the pixels of the length and width of the pink region. After that, in order
to prepare the leg’s posture data for the learning, the sitting robot was put near
the obstacle. The elbow joint of the former leg was fixed at seven angle patterns
from -24 to 24 degrees by PID controller and when a touch sensor on the leg’s toe
became on during the shoulder was swung down, the shoulder and elbow angles
of the former leg were measured by a potentio-meter for every obstacles. However,
some postures for some obstacles were too high for AIBO to touch the top of the
obstacles. In such cases, network learning was executed only for the vision module.
Since twelve image patterns and seven leg’s posture patterns were prepared for nine
obstacles, 756 combinations of the image data and leg’s posture data were used to
train the proposed model. However, 216 sets were trained by only image data be-
cause of lack of the posture data. The network configuration was the same as that
in the simulation.
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After the sufficient network learning, the neuron activation patterns formed in
the correlation neurons are shown in Fig.5. The values of ¢ for the same obstacle
but different visual data or posture data are almost same and monotonically de-
creased with the height of the obstacle. Although deviation is larger than that in
the simulation experiment because of the sensory noise and quantization error, the
correlated neuron seems to be acquired the information of the obstacle’s height.

After the learning, AIBO took the image data from several distances from
the obstacles and the adequate postures to their heights were computed by the
proposed relaxation method when (4) was employed as the criterion. ATBO could
raise its leg as high as the obstacle(Fig.6).

4 Conclusion

A neural network model that extracts correlated information between different
kinds of information has been proposed. The proposed model uses an auto-encoder
architecture and, therefore, a supervised signal for internal representation is unnec-
essary. Although we used the simple back-propagation method to train this net-
work, other learning methods to realize the identity map can be applied.

We have also proposed the new relaxation computation to solve the many-
to-many transformation problem using the gradient descend method without
the penalty method. The simulation result shows that the proposed method can
reduce the iteration number and is not so sensitive to the values of parameters
in the gradient method.

Comparing the previously proposed model[5], this model is difficult to learn
by back-propagation method. The second terms of the objective functions of
learning((1) and (2)) can decrease by depression of the range of the correlated
neuron activity. Therefore, the case in which ¢, and ¢, always have the constant
value for every obstacle and the identity map is not realized is a local minimum
in the learning process. Fine adjustment of A in (1) and (2) and the learning
rate by trial-and-error is necessary to escape the local minimum.

The critical problem in our neural network model is how many neurons should
be set for the correlated neurons and other neurons in the third layer. To de-
termine an adequate number of neurons for the hidden layer in an auto-encoder
model, several methods have been proposed[6,7]. In our model, even if the to-
tal number of neurons for the third layer can be decided, the more important
problem is how to divide the neurons in the third layer into the correlated and
non-correlated neurons. In the present stage, we have no method to decide an ad-
equate number of neurons for each subset in the third layer. This is an important
task for the future.

Acknowledgments

This work was partially supported by The 21st Century COE Program “Intelli-
gent Human Sensing.” from the Ministry of Education, Culture, Sports, Science
and Technology.



A Modular Structure of Auto-encoder 321

References

1. Sakata, H., Taira, M., Kusunoki, M., Murata, A. and Tanaka, Y.: The Parietal
Association Cortex in Depth Perception and Visual Control of Hand Action. Trend
in Neuroscience Vol.20 8 (1997) 350-357

2. Shibata, K.: A Neural-Network to Get Correlated Information among Multiple In-
puts. Proc. of IJICNN’93 NAGOYA Vol.3 (1993) 2532-2535

3. Cottrell, G.W., Munro, P. and Zipser, D.: Image Compression by Back—Propagation:
an Example of Extensional Programming. In Sherky, N.E(eds.): Advances in Cog-
nitive Science, Vol.3. Norwood, NJ: Ablex (1988)

4. Uno, Y., Fukumura, N., Suzuki, R. and Kawato, M.: A Computational Model For
Recognizing Objects and Planning Hand Shapes in Grasping Movements. Neural
Networks Vol.8 6 (1995) 839-851

5. Fukumura, N., Otane, S., Uno, Y. and Suzuki, R.: A Neural Network Model for
Extracting Correlated Information in Sensory Integration. Proceedings of ICONIP
Vol.2 (1998) 873-876

6. DeMers, D. and Cottrell, G.: Non-Linear Dimensionality Reduction. Advances in
Neural Information Processing Systems Vol.5 (1992) 580-587

7. Noda, I.: Acquisition of Internal Representation using Overload Learning. —Case
Study of Learning Identity-function—. Japan IEICE Technical Report NC94-34
(1994) 15-22 (in Japanese)



Adaptive and Competitive Committee Machine
Architecture

Jian Yang and Siwei Luo

School of Computer and Information Technology, Beijing Jiaotong University,
Beijing, 100044, China
vJj_swendy@yahoo.com.cn
swluo@center.bjtu.edu.cn

Abstract. Learning problem has three distinct phases, that is, model
representation, learning criterion (target function) and implementation
algorithm. This paper focuses on the close relation between the selection of
learning criterion for committee machine and network approximation and
competitive adaptation. By minimizing the KL deviation between posterior
distributions, we give a general posterior modular architecture and the
corresponding learning criterion form, which reflects remarkable adaptation and
scalability. Besides this, we point out, from the generalized KL deviation
defined on finite measure manifold in information geometry theory, that the
proposed learning criterion reduces to so-called Mahalanobis deviation of
which ordinary mean square error approximation is a special case, when each
module is assumed Gaussian.

1 Introduction

Committee machines have been frequently employed to improve results in
classification and regression problems [1-10]. Among the key issues are how to
design the architecture and scale of the networks; how to make best use of a limited
data set; how the results of the various component networks should be combined to
give the best estimate; and how to make each component adaptive etc. In this paper
we address the last two issues, which are closely related to the learning criterion
adopted, through minimization of generalized Kullback-Leibler (KL) divergence.

This paper is organized as follows; the first section discusses influences of learning
criterion on approximation and adaptation; the second section introduces the
generalized information divergence and KL divergence in information geometry; the
necessity of posterior average over all components is in section three; the fourth
section describes construction of committee machine using the cost function derived
from KL divergence between posterior distributions, and then gives a general form of
learning criterion, which not only makes committee machine give best approximation
but also have good adaptation; the following section points out that the learning
criterion given in section four reduces to so-called Mahalanobis divergence of which
ordinary mean square error approximation is a special case, when each module is
assumed Gaussian. The last one is conclusion.
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2 Influences of Learning Criterion on Approximation and
Adaptation

2.1 Learning Criterion and Approximation

It’s well known that learning problem is to construct a learning machine using given
training data set under a certain learning criterion such that the machine approximates
the underlying rule reflected by the data set as best as possible. Learning problem
includes three distinct phases [11,12]:model representation, that is available
computing resource or model representation ability such as Generalized Linear Model
(GLIM) and various Nonlinear Regression Models; the learning criterion used to
measure the quality of learning results like Square Sum of Error (SSE) and Likelihood
Function (ML); and the implementation algorithm Like the Gradient Descent,
etco As a general nonlinear approximation model neural network has powerful
representation ability; and the dynamic committee machine, which is nonlinear
combination of nonlinear functions like Mixture of Experts (ME) and Hierarchical
Mixture of Experts (HME), can represent almost usual statistical models, although
models with same representation power, such as Projection Pursuit Regression Model
(PPR) and Multilayer Perceptron (MLP) with single hidden layer, may show different
learning effects due to different learning criterion.

The most frequently used learning criterion is to minimize SSE and its variants that
are R -error norm when R =2. It has proven that MSSE is to make the network
approximate the conditional expectation of the target, whose effect equivalent to
taking same variance but mean which is the Gaussian distribution of input function as
the input-output conditional probability model. On the other hand, ML of the joint
probability can be reduced to MSSE when the target variables are Gaussian; however,
ML is no longer effective on some distributions [13]. Of course, we need not assume
Gaussian distribution when take SSE as learning criterion, but the results may deviate
from the best one if not. Another usual learning criterion is the cross entropy
measuring the difference between two distributions, to minimize cross entropy is
equivalent to minimizing KL (MKL) divergence. Cross entropy is the function of
relative error of network output, but SSE is related to absolute error of network
output. Both MSSE and MKL approximate the conditional expectation of network
output [1].

2.2 Learning Criterion and Adaptation

If back propagation is used to train a single, multiplayer network to perform different
subtasks on different occasions, there will generally be strong interference effects that
lead to slow learning and poor generalization. Using committee machine with
appropriate learning criterion can efficiently solve this problem. In this system
different module inputs correspond to different regions of input space which is
realized by gate network; and we expect that, if the output is incorrect, the weight
changes are localized to these modules and gating network. So there is no interference
with the weights of other modules that specialized in quite different cases. The
modules are therefore local in the sense that the weighs in one module are decoupled
from the weights in other modules. In addition they will often be local in the sense
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that each module will be allocated to only a small local region of the possible input
vectors. This is determined by the learning criterion adopted. For example, if we use
the following learning criterion

E°=llde —Zp;o; I )

where E° is the final error on case C, Of is the output vector of module i on case
c, pf is the proportional contribution of module i to the combined output vector,

and d°is the desired output vector in case. So, to minimize E°, each local module
must make its output cancel the residual error that is left by the combined effects of
all the other modules. When the weights in one module change, the residual error
changes, so the error derivatives for all the other local modules change. This strong
coupling between the modules causes them to cooperate nicely, but tends to lead to
solutions in which many modules are used for each case. It is possible to encourage
competition by adding penalty term to the objective function to encourage solutions in
which only one module is active, but a simpler remedy is to redefine the error
function so that the local modules are encouraged to compete rather than cooperate.
We imagine that the gating network makes a stochastic decision about which single
module to use on each occasion. Now the error is the expected value of the squared
difference between the desired and actual output vectors.

E=(ld* —o{ I’)= p{lid* —o IP. 2)

Notice that in this new learning criterion, each module is required to produce the
whole of the output vector rather than a residual. As a result, the goal of a local
module on a given training case is not directly affected by the weights within other
local modules. There is still some indirect coupling because if some other module
changes its weights, it may cause the gating network to alter the responsibility that get
assigned to the modules. If both the gating network and the local modules are trained
by gradient descent in this new learning criterion, the system tends to devote a single
module to each training case. Whenever a module gives less error than the weighted
average of the errors of all the modules its responsibility for that case will be
increased, and whenever it does worse than the weighted average its responsibility
will be decreased.

Jacobs in his paper [5] gave the following learning criterion based on the above
mentioned learning criterion, which showed better performance in the simulations:

E‘=-In) p! exp(—%lld”—of 7). 3)

To see why this learning criterion works better, it is helpful to compare the

derivatives of the two with respect to the output Of of a module. The resultant

derivatives of equation (2) and (3) are both R -error norm when R =1 multiplied by a
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new weighting term, for the former the weighting term is pf , but the weighting term

for the latter not only takes into account how well module i does relative to other
modules but also adapt the best-fitting module the fastest. This feature is very useful
especially in early training.

3 Information Divergence and Information Geometry

Information geometry [14,15] emerged from investigating the natural differential
geometric structure possessed by families of parameterized probability distributions,
aiming to show information processing capability of systems. A point on the manifold
denotes a distribution. Amari introduces ¢ -connection with single parameter, and
proved that exponential family corresponds to & =1 , mixture family to
o =—1., and they are dually flat. An important divergence on statistical manifold is
. , -« . e
o -divergence or O -divergence D 5 ( o= T) .For the set P of all positive finite

probability measures, the divergence of any two points ¢, p is D s [16]
D,(g,p)=[6(1=T" [[8g+1-8)p—q°p'1.5€ (O, )
Therefore the KL divergence with respect to INJ is
KL(g, p) =1lim D;(p.q) =lim D;(q. p) = [(q— p+InL) )
q,p 51m s\P>q imubs(q, p q—prin—).
—0 51 p

Obviously when J qg=1and J p =1, the above equation reduces to ordinary KL

divergence. Like the norm in function space, information divergence enables us
consider a set of finite measures as some well-behaved space, not only a set of points.

4 Posterior Averages

The main reason of using committee machine is that when we select only one best
model and discard the others, we lost all those knowledge contained in the discarded
models, because the selected model only contain a fraction of the whole probability
mass. This means that the selected model can explain the observations well, but may
not explain future data due to the parameters of the model very sensitive to parameter
values. On the other hand, Probability theory tells us that the optimal generalization is
the one resulting from a Bayesian approach. A neural network (either deterministic or

stochastic) can be regarded as a parameterized model p(yl|x, H) denoted

as Py in the following, where X is the input, y is the output and H is the model

structure including weights. In the Bayesian framework, knowledge is contained in
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the conditional probability distributions of the models. Each model can be seen as a
hypothesis, or explanation. We can use Bayes theorem to evaluate the conditional
probability distributions for the unknown quantities y given the set of observed
quantities X . Bayesian rule states that prior becomes posterior after another set of
observations and suggests an iterative and “gradient ascend” procedure.

If in some sense over-fitting is caused by selecting only one model, then it’s
necessary to average over all possible models to gain good generalization. However,
the most usual case is to combine models using softmax function of gating network as
a priori distribution, it doesn’t explicitly reflect the features of each model, and use
MSSE or ML as learning criterion; in addition, as we show that the learning criterion
should avoid too strong coupling, otherwise lose scalability.

5 Construction of Committee Machine

As we know that KL divergence can be used to measure the misfit between two

distributions. The true posterior distribution Dy is approximated with the q,, by

minimizing the KL divergence

pqulx

D(qylx 4 pylx qulx le dy J.qylx 1Il dy

yix Xy

(6)

= qulx Ty dy+Inp..

X,y

Since the term p_ is a constant over all the models, we can define a cost function

C y (x), which we are required to minimize to obtain the optimum approximating

distribution
C (x)=D np, = [q, Ly )
,(x)=D(q,,,p,)-Inp = |q, In——dy.
ylx
It is easy to see that the cost function gives an upper bound for—In p, . In the
following we denote g(ylx,H)bygq,, , and p(x|H)by p_, , use the same

notation as with probability distribution, that is, C y (x|H ) means

qy»,
Cy (X | H) = D(qylx,H 4 pylx,H)_ln pxIH = qulx,H ln — ° (8)

x,ylH



Adaptive and Competitive Committee Machine Architecture 327

where H stands for a model. Obviously since this cost function yields the lower

bound forln p , , and p,, = PuuPy _ _ PanPu
P pralH
H

. It is natural that we may use

C, (x| H) toapproximate p,,., that is

_exp[=C (xIH)]- py N )
Z[_Cy(xl H)]pH pHIx.

In fact we have the following theorem
Theorem 1. Assumez Py, =1.1f p,, = A, that is, the posterior about model
H

structure H and the posterior about output y satisfies the relation p,, = A, then

q, ), is the best approximation for p, ., or C y.H(x) 18 minimized with respect

o Py -
Proof: Without losing any generality, we have

9y = Qe Dyt (10)

Now the cost function can be written as

q ), Hlx Q 4 lx,
Conw = Z _[%,Hu In ]9} = dy = Zme J.qylx,H In ==t dy an
H

x,y,H H ppr,ylH

= 0, .{m O | C,(xl H)}.

H

Minimizing C| ,, (x) with respect to Q,, under the constraintZQHlx =1, it is
H
easy to evaluate that when

_ exp[—Cy(X|H)]'PH (12)
D expl=C (xIH))p,,
2

Q

C, ; (x) with respect to O, arrives at its minimum value which is
C, () ,==InY_exp[-C, (x| H)]- p,,. (13)
H

This completes the theorem.
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ME and HME as typical examples of modular networks, we know that all modules
receive the same input. The gating network typically receives the same input as the
expert networks, and it has normalized outputs as a prior probability to select the
output from each expert to form the final weighted output. The dynamical role of
gating network according to input can be considered as a division of input space and
is crucial to ME and HME, typically the output (combination proportion or activation
function) of gating network is a softmax function of inner product of input and
weights of the gating network.

On the other hand, from the above theorem and the poof procedure we can see the

posterior about the structure H of a single model can be represented in terms
of Cy’ (%) |Q, or a group of N models (with different structures, with the same
structure but different initial parameter values or be trained with different learning
algorithms). So, if we want to use a part of those models that minimize C, ,, (x) ly
obviously each of them may be viewed as a module (or an expert), then these selected
modules can be combined with the posterior about structure (), —as the mixing

proportion. Using a posterior not a prior has some advantages: the division of input
space may be more precise; it seems more reasonable that the combination proportion
is determined not only by input but also by module, this makes possible to coordinate
different tasks according to different features of each module. Here we don’t discuss
how to do model selection and implementation algorithm. For present task, we

assume there are N modules, then the goal of learning or the learning criterion is to
minimize equation (13). It’s important to see that this learning criterion has the same
form as the learning criterion in subsection 1.2. In fact, we will show that the latter is
the special case of the former from information geometry point.

6 Committee Machine with Gaussian Regression Models

We suppose there have N trained modules and each module with single output unit,
and the corresponding regression model is: y, = f, L (x, wk)+ &€, , where sub-
index k stands for a module in the hybrid networks, £, is Gaussian noise with zero
mean and variance O, ; also assume the corresponding true model is Gaussian with

mean £/ and variance O ; therefore, the input-output relation of each module can be

represented as the following conditional probability distribution

1 1 (14)
Pygleang ZWEXP _E(Yk —fe (x|

It’s an exponential family. Obviously minimizing equation (13) is equivalent to
minimizing C, (x1H,) Py, for each module or minimizing the product of
corresponding KL divergence and a prior D(qylx’ 1> Pyien, ) Py, - The following

theorem [17] is useful for our present task.
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Theorem 2. Let p, [ N(t, | ),k € {1,2} be two Gaussian distributions. Denote
- h
hhy ( h j (15)
dy(h,h) = ————| .d(ulh)y=exp| ——u |
Sl ) (%m_m ()= exp| 2

Then the O -divergence is given by

1
Da(pl,pz)=m[l—do(h,h2)dl(ul — 1, IV)]. (16)

where 5 e (0,1), V' = (oh, Y - O)h, ™" From section 2, the extreme case
0 =1 corresponds to the ordinary KL divergence. Let O — 1, then

dy () = (hz/}“)h;_h {ﬁ} zexp{ﬁ{h—hzﬂ (1)
1—(1—5)72

therefore asd —> 1, anduse In x™' =1—x, we have

lndoe—l nleqif ,—Llndlaﬁ(ﬂl—uz)z. (18)
2| h h, 2

1-6 1-6

Hence we have

1

1 h
D, == 5(lndo+lndl) aa{lnhﬁ+i—l+h2(ul —ﬂz)z}. (19)

2

From equation (14), the mean and variance for module k is f, (x,w,) and O,

respectively, and the assumptions for real model, we have KL divergence for module

k

D! zl{ln£+&—l+o"(fk—y)2}. (20)
2| o, ©

Notice that if 0, = O, then the learning criterion is written as

I
Cy,H (x) |Q=_1n ZPHk eXp|:—EO'kl(fk —ﬂ)z:l. 1)
k
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In fact, the content in the square brackets is equivalent to so-called Mahalanobis
divergence between two distribution masses [18]. If use the desired output given by
data samples as the instantaneous value of £/ , now the content in the square brackets

becomes equivalent to the Mahalanobis divergence between samples in one mass and

another mass. Furthermore, if assume O, is constant and Py, ,k =1...N is softmax,

then the obtained learning criterion is the same as learning criterion (3). it can be
trained by stochastic gradient methods. In this sense, learning criterion (3) is just a
special case of our framework.

If models are not Gaussian then it’s not easy to get explicit form of KL divergence.
However, when model is of general exponential family, Amari in his paper [19] has
proven that by introducing suitable hidden variables, combination of multi
exponential families is an exponential family. Generally, since the true distribution is
unknown, the choice of “target” poses a logical dilemma in itself. It is usually chosen
according to some asymptotic properties. Paper [20] explored Bayesian inference
using information geometry and suggested using the empirical distribution or the

MLE for approximation under D, = KL for exponential family manifold. Another

implicit implementation algorithm is so-called em algorithm [19], which is equivalent
to EM algorithm in most cases.

7 Conclusion

This paper focuses on the close relation between the selection of learning criterion for
committee machine and network approximation and competitive adaptation. By
minimizing the KL deviation between posterior distributions, we give a general
posterior modular structure and the corresponding learning criterion form, which
reflects remarkable adaptation and scalability. Besides this, we point out that, from
the generalized KL deviation defined on finite measure manifold in information
geometry theory, the proposed learning criterion reduces to so-called Mahalanobis
deviation of which ordinary mean square error approximation is a special case, when
each module is assumed Gaussian. Our future work is to find an appropriate
incremental learning implementation algorithm.
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Abstract. The radial basis function(RBF) neural networks have been widely
used for approximation and learning due to its structural simplicity. However,
there exist two difficulties in using traditional RBF networks: How to select the
optimal number of intermediate layer nodes and centers of these nodes? This
paper proposes a novel ART2/RBF hybrid neural networks to solve the two
problems. Using the ART?2 neural networks to select the optimal number of in-
termediate layer nodes and centers of these nodes at the same time and further
get the RBF network model. Comparing with the traditional RBF networks, the
ART?2/RBF networks have the optimal number of intermediate layer nodes ,
optimal centers of these nodes and less error.

1 Introduction

Radial Basis Function (RBF) networks are powerful computational tools that have
been used extensively in the areas of systems modeling and pattern recognition. The
difficulties of applying RBF networks consist in how to select the optimal number of
intermediate layer nodes and centers of these nodes. In general, it is desirable to have
less nodes networks that can generalize better and are faster to train. This calls for an
optimal number of intermediate layer nodes and optimal positioning of intermediate
layer nodes i.e., the location of centers.

This paper proposes a novel ART2/RBF hybrid neural networks. Using the ART2!"
neural networks to select the optimal number of intermediate layer nodes and centers
of these nodes at the same time and solves the two difficulties in traditional RBF
networks effectively.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to
the traditional RBF networks. Section 3 provides a brief introduction to the ART2
networks. Section 4 introduces the principle of the ART2/RBF hybrid neural net-
works. Simulation results are presented and discussed in Section 5. Finally, conclu-
sion is given in Section 6.

* This work was supported by the National Natural Science Foundation of China under Grant
60374056,60405009,50307011.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 332335, 2005.
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2 RBF Neural Networks
The RBF feedforward neural networks achieve a nonlinear mapping as following:
Fr0=Wo+ 3 Wip(|X - ()
i=1

X € R" is the input vector. @(e) is the radial basis function which achieve a map-
ping: R* - R. ||0|| is the euclidean norm. W; is the weight. c¢; is the center of the

intermediate layer ith node. n is the number of centers. Select the radial basis func-
tion as Gaussian function. Then, a RBF networks can be expressed as

n — . 2
£ =Yw, exp(—@) @
i=1 i

When ¢, is known, we can use the following formula to determine ¢}

2 _ 1 2
of == D [X =l 3)
i Xe6;
M is the sample number of 6, class. Finally, we can use the least square method to
solve w; .We can see that the difficulties of the RBF networks consist in how to select
the optimal number of intermediate layer nodes and centers of these nodes.

3 ART?2 Neural Networks

ART?2 is a class of adaptive resonance architectures which rapidly self-organize pat-
tern recognition categories in response to arbitrary sequences of either analog or bi-
nary input patterns. It can not only rapidly recognize the learned pattern but also
fleetly adapt a new object which has not been learned formerly. The number of all
winning neuron in F, layer is the clustered categories number.

The algorithm of the ART2 neural networks was completely described in reference
[1]. We can see that the classification precision is determined by the vigilance pa-
rameter O (0< P <1) and higher O corresponds to finer categories.We can deter-

mine how fine the categories will be by adjusting the vigilance parameter O .

4 ART2/RBF Hybrid Neural Networks

The ART2/RBF hybrid neural networks can select the optimal number of intermediate
layer nodes and centers of these nodes at the same time and further get the RBF net-
work model.
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Its learning algorithm is as following:

(1)Using the ART2 neural networks to cluster input sample data under a vigilance
parameter , the number of all winning neuron in F, layer is the clustered categories

number and the number is the optimal number of RBF networks’ intermediate layer
.The top-down weights of these winning neuron are the centers of the nodes of RBF
networks’ intermediate layer.

(2)Using the least square method to get weights between the RBF networks’ interme-
diate layer and output layer can get the model of RBF networks.

If the RBF networks’ model requires higher accuracy, we should increase the vigi-
lance parameter p and repeat (1)and (2) up to satisfying the demand.

The ART2/RBF hybrid networks can adaptively get the intermediate layer of RBF
networks. When we want to get the different nonlinear model under different input
and output sample data, the networks can adaptively get the intermediate layer node’s
number and centers according to the required precision and input sample.

5 Simulation Research

Suppose input sample data is {xi,i = 1,-~,N},output sample data is {yi,i = 1,---,N},
the trained neural networks model is f(e) ,then the approximation error can be gotten
with the following formula.

N
E=2 > (0~ ) 4
i=1

In traditional RBF networks, people usually adopt trial-and-error method to deter-
mine the number of intermediate layer nodes. The traditional method of selecting
centers of intermediate layer nodes can be adopted as k-means clustering algorithm™
,Konhonen self-organizing map"”' ,Orthogonal least square learning algorithm'*. This
paper compares the three methods’ the performances with the ART2/RBF networks’
by a nonlinear system identification example.

Example: The nonlinear identification object is as following:

y(x) =1.6x? sin(8x) cos(x) xe[0,2] (5)

Training input sample set : x = 0:0.005: 2 training output sample set y(x) can be

gotten according to the formula (5).The number of training sample is 401.

Traditional RBF networks adopt the trial-and-error method to determine the num-
ber of intermediate layer nodes and use above three method to select centers of these
nodes.

The ART2/RBF hybrid neural networks adopt ART2 networks to select the optimal
number of intermediate layer nodes and centers of these nodes at the same time.

The parameters of ART2 networks are

M =2,N=35a=4,b=4,c=0.13,d =0.8,0 =0.15,p =0.93 .
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All kinds of algorithm’s performances are as table 1.

Table 1. Four kinds of algorithm’s performances

Algorithm the Number of | Clustering Measuring Error
Centers and Norm

k-means cluster- 16 Euclidean distance 0.01 0.4563

ing

Konhonen 16 Euclidean distance 0.01 0.4143

self-oganizing

Map

orthogonal least 16 Euclidean distance 0.01 0.3837

square

ART2/RBF 26 Euclidean distance 0.01 0.1309

Observing the simulation results in table 1,we can conclude that the ART2/RBF
hybrid networks can achieve the optimal number of intermediate layer nodes and less
approximation error than the traditional RBF networks.

6 Conclusion

This paper proposes a novel ART2/RBF hybrid networks which can adaptively get
the intermediate layer node’s number and centers according to the required precision
and input sample. This networks structure solves the difficulties of applying RBF
networks. Simulation results also show the validity of this networks.
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Abstract. This paper deals complex number procedure neural networks and its
learning algorithm. The conception and mathematic description of complex
number procedure neurons are proposed based on traditional complex number
neuron and procedure neuron. Feed-forward complex number neural networks
models are considered. Grads-descent learning algorithm is deduced according
to the supervising learning, and its learning procedure consists of two parallel
procedures, the real part and imaginary part. An application example is given
which show that the complex procedure neural network is suitable for signal
processing problem.

1 Introduction

Generally, traditional neural networks deal with real number data. Neuron state, in-
put/output and weight are all real, which limits its application. Early in 1990s, in the
time of neural networks, people began to pay attention to complex number procedure
neural networks (CNNN). In 1990, Gordon extended BP algorithm to complex num-
ber weights [1]. In 1991, Benvenuto applied CNNN in signal sorting [2]. In 1992,
Kechriotis used CNNN in simulating equilibrium as non-linear channels [3]. Later,
CNNN were employed in designing FIR digital filters [4] and recognizing non-linear
time series model [5], etc.

Procedure neural network is the extension in time domain of traditional neural
network, which takes the effect that time factor causes to the system into account,
whose inputs are time functions and output is a space vector. Many forms of proce-
dure neural networks and application have been proposed [6, 7].

This paper proposes a model of complex number procedure neural networks
(CNPNN) in section 2. The third section deals with CNPNN learning and in the forth
part an application example is given for signal processing problem.

2 Complex Number Feed-Forward Procedure Neural Networks

The difference between real procedure neuron and CNPNN is that the inputs, outputs
and weights of procedure neuron are all complex number. And its aggregation opera-

' This paper is supported by Zhejiang Province Nature Science Foundation of China
(No.Y104107).

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 336339, 2005.
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tion includes not only multi-input aggregation on complex number space, but also
accumulation on time procedure. The structure of a single complex number procedure
neuron can be showed in Fig.1.

x,(2) W, (1)

w0y = 7 ey

x )~ W)

Fig. 1. Model of complex number procedure neuron

Where x,(£), xx(2),....x,(£) [0, T] are vectors of input complex number function of
procedure neuron, and
xi(0)= xgg (O)+ ixy (1), k=1,2,....n, (1)
where xg, (f) and xy, (1) are x,(f) real part and imaginary part respectively, which are
all real functions; wi(t), wy(2),...,w,(t) =[0, T] are complex number weight functions,
also take the form as formula (1).
Complex number procedure neurons can constitute many forms of CNPNN ac-
cording to their organization and topology structure. In this paper, we consider a
CNPNN(Fig. 2) whose weight function can be extended by a set of basis function B(¢).

Fig. 2. Procedure neural networks of expansion of basis function

Where L is the number of basis function and

w, (1) = i Wby, (1) = wy by, (1) + iZL: Wby (1) + Wby, (1) (2)
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A = Wy (D5 (1) = wy (D53, () +1Y (W (D3 (1) +wy (D (1)) )

The output of complex number procedure neural networks is as following.
v = A@K (D) @

Where fis activation function of neuron. Functional K should be defined according
to practical need.

3 Learning Algorithm

The learning algorithm of CNPNN can be deduced by supervised algorithm of real
number procedure neural network. Suppose

y=3r +i, (5)
is the desire output of complex procedure neural networks. Define the error function
of complex number procedure neural network as

1 1 _ 1, - = = -
_1 o= L s oy L AT T o (6)
E 2||y vl 2(y My =y 2(yy+yy yy—1yy)

According to grads-descent learning algorithm, the rules of iterative learning of
networks weights can be deduced.

4 Application Example

Given a series of complex number function y,(f)=a,(f)*cos(t)*sin(n)

+i*b,(f)*sin(f)*cos(n) , each of which is sampled on [-n, ©], #,=(k-180/K), k=0,1,...,K-

1. And choosing a,(t)= 157, b,(t)= 1.8¢, K=360, n=1,2,...,8. The image of the func-

tion is shown. Using the network parameters of CNPNN trained on [-m, ©] as the

simulation function test on { 3r 5w } , we get the original and predictive images as
4 4

in Fig.3 and Fig.4, separately.

oE T
rd
n& o6 .
b - .
| R
a n e
Y
. Lef.///
a ‘-_..—T‘—-—
=
o6 re R |
(IS
/ 4 —r —
4 - —
1 _.'/ SR i
!
a0 4
1B 1
A 1 1 ns 5 15 2 k) - 1 1 na 15
L L

Fig. 3. Original image of {y,} Fig. 4. Predictive image of {y,}
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5 Conclusions

CNPNN extends the traditional procedure neural network to the complex number
field, which many typical problems, such as the signal processing, can be solved di-
rectly by single networks. Although the fashion of the CNPNN is a little complicated
and the calculation complexity is doubled, the area and ability of solving problems
has been highly extended.
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Abstract. Urban traffic system is a complex system in a random way, it is nec-
essary to optimize traffic control signals to cope with so many urban traffic
problems. A multi-layer chaotic neural networks involving feedback (ML-
CNN) was developed based on Hopfield networks and chaos theory, it was ef-
fectively used in dealing with the optimization of urban traffic signal timing.
Also an energy function on the network and an equation on the average delay
per vehicle for optimal computation were developed. Simulation research was
carried out at the intersection in Jiangmen city in China, and which indicates
that urban traffic signal timing’s optimization by using ML-CNN could reduce
25.1% of the average delay per vehicle at intersection by using the conventional
timing methods. The ML-CNN could also be used in other fields.

1 Introduction

With the development of productivity, traffic jam is becoming a tougher and tougher
problem in modern cities. It is necessary to develop a kind of high efficiency traffic
signal controller with intelligent technologies for better and efficient urban traffic
control. It is known that Chaos phenomenon exists in various dynamical systems.
Urban traffic system has a typical chaotic characteristic. Chaos theory should be a
kind of effective methods to deal with the problem. There is a Hopfield network
which is a ripe one and fit for optimization especially. Yet it can’t be used for solving
complex traffic problems because it is single-layer. Thus here, a ML-CNN using the
basic theory of both chaos theory and Hopfield network will be put forward in this
paper. It can be used to optimize traffic control signal timing on a single intersection.

In recent years, a lot of research has been carried out on chaotic neural networks
(CNN). Zhenya He (2002) developed a Multistage Self-Organizing Algorithm Com-
bined Transiently CNN for Cellular Channel Assignment; Cao Zhitong, Jacob (2003)
used the Nagumo-Sato model to construct a chaotic CNN; Ohta, Masaya(2002) pro-
posed a CNN with reinforced self-feedbacks; Lipo Wang(2004) proposed a noise
CNN for solving combinatorial optimization problems. And so on.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 340344, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Urban Traffic Signal Timing Optimization Based on ML-CNN 341

2 Multi-layer Chaotic Neural Networks Involving Feedbacks

Combining Hopfield network with chaos map, a ML-CNN was put forward here, the
ML-CNN has a characteristic of escaping from a local minimum of the energy func-
tion, so that it can find a global minimum more easily as compared with the Hop-
field’s model.

As an example, fig.1 shows a ML-CNN’s framework that can be used in an inter-
section with a standard four signal phases. Compared with Hopfield networks, several
major characteristics of the networks consist of: (i) it is a three-layer network includ-
ing an input layer, an output layer and a hidden layer; (ii) all the outputs in the output
layer are returned to the input layer; (iii) the hidden layer consists of many chaos
neurons with self-feedback.

As shown in fig.1, g, ~ g5 represent respectively the effective green time of the
signal phase 1, 2, 3, 4 and the cycle time; S, ~ §, represent respectively the saturation
flows of the signal phase 1, 2, 3, and 4; and §5 ~ S, represent respectively actual
average vehicle flows of traffic flow 1, 2 in the signal phase 1, 2, 3, and 4.

The outputs in the output layer are a linear combination of the hidden layer’s out-
puts, which can be expressed as follows,

6
g, =7y fx,  j=1~5. (1)
i=1

Several output models of the hidden layer’s can be expressed as follows,

x, ()= Toe e 2
Yt +D)=ky, )+ D wu, ) +1, |-z, 0-1,]. 3)
j=1
zi(t+1)=(l—ﬁ)zi(t) i=12,...,. “)
Some output models of the input layer’s can be expressed as follows,

5

u, =Y pg;+As, i=1~12. (5)
j=1

where, 7 is discrete time step (¢ = 0,1,2,---); X, and y, are respectively the output
and the internal state variable of the ith chaotic neuron in hidden layer; u,is the out-
put of the ith neuron in input layer; Z,is the self-feedback’s dynamic weight of the
ith neuron in hidden layer; ﬂ ji»W;and P, are respectively the weights between the
ith neuron in hidden layer and jth neuron in output layer, the jth neuron in output layer
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and ith neuron in hidden layer, the jth neuron in output layer and ith neuron in input
layer; /, is the ith neuron’s input deviation in hidden layer; € is a gradient parameter
of X; () ; kis a neuron’s attenuation factor in hidden layer; ¢ is a scaling fac-
tor; ﬂ is the attenuation factor of Z; (t); 7 and A are all dimension uniform factors.

As shown in the equation (4), z,(f) — 0, when? — 0, and the network will be-
come a discrete feedback neural networks without chaotic self-feedback’s neurons
and converge at a steady balance point, and then we get the optimization.

g & & & &
A A A A A

Output layer
ji
Pji z, Hidder layer
@
------ Input layer
A A A A A A
S A S12

Fig. 1. Multi-layer chaotic neural networks involving feedback

3 Energy Function
It is a key to define energy function in chaotic neural networks involving feedback.

3.1 Delay Model

The Webster equation, shown below (when degree of saturation is smaller than 97%),

2 2 1
d=CUTA X 65 C i ©)

T 2(-Ax)  2g(-x)

where, d is the average delay per vehicle(s/veh), ¢ the cycle time(s), A the propor-
tion of a cycle than effectively green for the phase under consideration (i.e., g/c),
q the flow(vehicles per h), s the saturation flow (vehicles per second of green), X the
degree of saturation (i.e., X = q//ls ).

Robertson retained Webster’s first term for uniform vehicle arrivals but replaced
the last two terms using the terms below (when degree of saturation is larger than
97%),



Urban Traffic Signal Timing Optimization Based on ML-CNN 343

X 5> 2(-x)+xz
2] - 4 2
Z—Z

(2(1—)c)+xz)2 N

D, +D, =[
? ’ 4z -z7* 4z -2

)

where, D2 +D3 is the added delay because of vehicle random variety;

72=((2x/0).(60/T), vis the approach volume(veh/h), T the period length.

3.2 Energy Function

The energy function includes the total delay and some restriction conditions of the
cycle’s and the effective green time. The energy function is in this form,

m n;
2
E=Y>di+A(c—cp)le—cp 1 +A (o —0) le—cpy 1+

i=1 j=I

= 8
D LA (Guin =81 & = &in 1 FAinar (81 = G ) 1 81 — G N+ ®)

i=1

AO[Z(gi +Ii)_c]2~

where, m is the numbers of phase, 7, approach number of the ith phase, d ; the
average delay per vehicle of the jth lane in the ith phase within a cycle (s/veh), ¢ the
cycle length (s), ¢, and c_ . the upper limit and the lower limit of cycle length
(s), g; the effective green time of the ith phase (s), g, and g .. the upper limit
and the lower limit of the effective green time (s), /; losing time of the ith phase, A,

(i=0,1,---,2m+2) the punishment coefficient.

4 Simulation Research and Conclusion

The object simulated is an intersection in Jiangmen city in China, whose traffic is
controlled by four phases, and each phase includes two various traffic flows, turning
right isn’t controlled. Simulation is done respectively by vehicle actuated control,
adaptive control and ML-CNN method under the same traffic condition. Suppose: the
upper limit of cycle length is 120s, the lower limit 47s, the upper limit of green time is
60s, the lower limit 10s, the yellow time is 1s. Tablel shows the simulation result,
which shows that it can reduce the total delay at intersection by using ML-CNN for
timing optimization.

Urban traffic signal timing optimization based on ML-CNN can reduce25.1% of
the average delay per vehicle at intersection based on the conventional timing means,
and can improve the traffic efficiency. It is a key to fix restriction conditions that have
a huge influence on optimization results. The ML-CNN can also been used in other
fields. Consider that ML-CNN can effectively be used in a single intersection, we
believe that it could also be used in area traffic control.
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Table 1. Simulation result. “*’ML-CNN; “**’vehicle induce control; “***” adaptive control;
”#’the reduce of average delay per vehicle of ML-CNN compared with vehicle induce control;
“##” the reduce of average delay per vehicle of ML-CNN compared with self-optimization
control (This table has been abridged)

7:45 9:55 12:50  14:10  15:10  18:25
~8:00 ~10:10 ~13:05 ~14:25 ~15:25 ~18:40

Cycle length (s) 89 95 53 90 88 60
Green time in phasel (s) 11 10 10 10 10 10
Green time in phase2 (s) 23 31 14 27 30 18
Green time in phase3 (s) 17 20 10 20 18 10
Green time in phase4 (s) 31 27 12 26 22 15
Average delay(s/veh) ’ 67 70 48 76 62 53
Average delay(s/veh) 86 87 67 95 88 78
Reduce(%) # 22.1 19.5 28.4 20.0 29.5 32.0
Average delay(s/veh) 9 96 68 92 81 76
Reduce(%) # 26.3 27.1 29.4 17.4 23.4 30.2
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Abstract. The problem of direct adaptive neural control for a class of nonlinear
systems with an unknown gain sign and nonlinear uncertainty is discussed in
this paper. Based on the principle of sliding mode control and the
approximation capability of multilayer neural networks (MNNs), and using
Nussbaum-type function, a novel design scheme of direct adaptive neural
control is proposed. By adopting the adaptive compensation term of the upper
bound function of the sum of residual and approximation error, the closed-loop
control system is shown to be globally stable, with tracking error converging to
zero. Simulation results show the effectiveness of the proposed approach.

1 Introduction

In recent years, robust adaptive control of nonlinear systems has received much
attention[ 1-8]. Typically, these methods use neural networks as approximation models
for the unknown system nonlinearities[2-7].Using the approximation capability of
radial basis function neural networks, which are the linear function of adjustable
output weights, a stable adaptive controller was proposed in [2].In order to improve
the approximation of radial basis function neural networks, an adaptive neural
network control with variable variance parameters was proposed in [3]. But the
approximation errors were assumed to be bounded in [2,3].Based on multilayer neural
networks, the adaptive controllers proposed by [4-6] ensured tracking error
converging to residual set only. A direct adaptive controller was developed based on
multilayer neural networks and sliding mode control technique in [7],but the
approximation error was assumed to be bounded in stability analysis (See
equation(26)).Using the approximation capability of the second-type fuzzy system,
which is the nonlinear function of adjustable parameters, the design scheme of a
stable adaptive fuzzy controller was proposed in [8].The projection algorithm was
adopted for the parameter estimation in [8].However, the control gain signs were
assumed to be known in [1-8].By using Nussbaum —type function, two control
schemes were presented for a class of strict-feedback nonlinear systems with
unknown virtual coefficients signs in [9,13].

In this paper, a new design scheme of adaptive neural controller for a class of
nonlinear systems with an unknown gain sign is proposed. The design is based on the

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 345-352, 2005.
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principle of sliding mode control and the approximation capability of multilayer
neural networks. By utilizing the robust adaptive control and Nussbaum function, an
adaptive law is derived to adjust the gain of sliding mode control term to adaptively
compensate for the residual and the approximation error of MNNs. By theoretical
analysis, the closed-loop neural control system is proved to be stable and the tracking
errors asymptotically converge to zero.

2 Problem Statement and Basic Assumptions

Consider the neural adaptive control problem for a class of nonlinear systems in the
following form:

X, =x..,i=1..,n-1

i i+l
X = f0)+gu+d(x,r),” M
Yy=X
where x=(x;, X, ..., x,,)TuR“ is the state vector, u is the control input, f is the

unknown continuous function, g is the unknown continuous function control gain, y is
the system output, d denotes external disturbance.

The control objective is to force the system output y to follow the specified
trajectory y4. Therefore we should design a neural network control u(t) such that y-y4
converges to zero.

Define xq, e and a filtered tracking error s as follows:

¢ -)\T
de(yd,yd,"‘,y;n )) 5
—)\T
(n )) ,

_ T _ _
e=(e,e,,",e,) =X—X; =(X;, =Y, X = VX, =V,

@)

n—1

d e
s=(—+A4) 1elz E ce +e,,
dt i1

where ¢’ =C ,:11 A g=1,..., Aisa positive constant, specified by the designer.
Lemma 19 : Let s be defined by (2), then

1) if s =0, then lim,_,., €;=0;

2) if Isl <c, e(0) €Q,, then e(t) EQ.V >o0;

3) if sl <c, e(0) €EQ., then T =(n-1)/ 4,3 V =T, e(t) EQ.,
where ¢>0, Q={ e(V)l leji<2” A7, j=1....,n}.

From(1),(2),we have

s=fX)+g@u+d(x,H+y, . (€)
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n-1
(n)
where = 271 Ci€jg = Ya -
In order to design adaptive neural network control, we make the following
assumptions:

1)0<g<lg(x)l <g;, ¥V «ER";

2) 9g(x) =0,Vxe R",
x ox

n

3H(xh,y"M ' eQ, cR™;

Hld (x,0)l <D(x), V =0,
where g, and g; are known positive constants, (), is a known bounded compact set

is continuous function;

In order to copy with the unknown control gain sign, the Nussbaum gain technique
is employed in this paper. A function N( & ) is called a Nussbaum-type function if it

has the following properties:

Dlim sup- fN(g)dg oo ;

s—>too

2 lim sup- fN(g)dg =0

§—>—00

Lemma 2"?:Let V() and G (-)be smooth function defined on [0,t;] with V(t)=0,

Y €[0,t), and N(-)be an even smooth Nussbaum-type function. If the following
inequality holds:

V(t)<c, + _E(gN(g)+1)gdz', V. E10.0)

where g is a nonzero constant, ¢, represents some suitable constant, then V(t), ¢ (t)

and £[gN(g) +1]¢ d7 must be bounded on [0,1)).

3 Adaptive Neural Network Controller Design
Let

WINLC RS 16 sen(g()s “
g™ 22

where z =(x,s,y)", we first define a compact set as

Q ={(x"5, 0 1xeQ,, (x;,y{") € Q,} cR"™,
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with compact subst €2 u to be specified later. Let h(z,W,V) be the approximation

of the three-layer neural networks on the compact €2 . toh(z),ie.
h(z,W,V)=W"'S(v'z) | )

where z=(z,, ....z0)", 2= )" 5 V=(vy...v) ERP W=(wy,..ow) T ER!
are the first —to second layer and the second-third layer weights, respectively; p=n+2,
I>1 is the NN node number and constant ¥ >0 ; S(V" z )=( S(vlT E),-'~,S(V,T_lz),l)T
with s(z,) =1/(1+e ™). Let
(W*,V*) = arg (mirg[sup [ h(z,W,V)—h(2)]], (6)
W.V) eqz

then we have
h(z) = h(z,W*V*)+£(2),z€ Q_, 0

where W*, V* are ideal NN weights and £(Z)is the NN approximation error.
Since h(z),h(z,W*,V*) are the continuous function on compact

region QZ ,de > 0 with

le(z) K e,2€ Q. , ®)

Let W(f) and V(¢) be the estimations of W* and V* at time t, and the weight

estimation errors denoted as W({)=W({)-W*V(#)=V(@)—-V * . From
reference[4], we have

T A A AT _ AT A T

h@WH V= hzW.V)=-W (S=S'V 2)-W =SV z+d,.

V,eQ,
A /\T_ A A A A
where S =S(V 2);S'=diag (5", §'2..., $')
A AT _ AT _

with §'x =8'(vik 2) =ds(z,)/dz, 1z, =vi 2,k =1,...,1} ,and the residual
term d, is bounded by
_ A T N T

ld KNV W ST +TWEL 1SV I+ W, (10)

Let II-llp denote the Frobenus norm, |-l denote the 2-norm and II-ll; denote the 1-
norm, i.e.
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Ae R™" I All, =+ tr(A" A) ja=(a,,...,a,) ER",

lal= ,Za?,lla Il,= Zl a; | From(8)and(10),we have
i=1 i=1

AT A

ld, ()1 +1 ) IIVEN I zW S'll, +
I\I\T_

W=l ISV zI+IW*I, +6 = K ¢(z,1),z€ Q_,
where K = (IIVEI, IW*I,1W*II, +&)",

_ AT A A AT _
#z.t)y=UzW Sl NSV zI, D",
Adopting the following control law:

AT AT _ AT (

u)=N)k,s+W SV Z)+ K ¢(z,t)sgn(s)+ )sgn(s)],

8o

AT AT _ A

g“ kys> +W SV 2)s+[K é(z,t)+ D(x)

8o

I1sl,

) V4
where K is the estimation of K at time t, N({) = E:Xp(é’2 ) COS(E $).

Choose the adaptive law as follows:

A A AT _

W I'w(S-S'V z)s,

_ AT A

V I zw S's,

K=T, zIslg(z1),

349

(1)

12)

13)

(14)

s)

(16)

where I, >0,I, >0and I', > 0 are gain matrices which determine the rate

of adaptation.
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4 Stability Analysis

2
s

21 g(x) |
Differentiating V with respect to t and applying(3),(4)and(7),we obtain

Define a smooth scalar function VS =

;2851800 -g(x)sen(g()s’

* 2% (x) (17)
{ d(x,1) }
= 5| sgn(g(x))u(t)+ +h(z, W*V¥)+e(2) |,
lg(x)l

Theorem Consider the nonlinear systems (1) with the control law defined by

A A A

(2),(5),(12)and (13).Let the weights W, V and sliding mode gain K be adjusted by
the adaptation law determined by (14)-(16) and let the assumptions 1)-5) be true.
Then, for any bounded initial conditions, all the signals in the direct adaptive control
system will remain bounded; moreover, the tracking error e, () will asymptotically

converge to zero, i.e.
(1) The overall closed-loop neural control system is globally stable in the sense
that all of the closed —loop signal are bounded, and the state vector

x€Q, ={x( le,;)K2 AV "y, j=1,nx,€Q,},t2T;

(2) lim, ., s=0, i.e. lim_.. €, (¢) =0, where 1 =2g, supsV(t), T=(n-1)/ 4.
Proof (1) Define the Lyapunov function candidate

- T - T . - ~
! 2+1[W C'W+er(V T,')V)+K' T K], (8

YO= ot T2

A

where K = K— K . Differentiating V(t) with respect to time t, we have

T

V(6)=V.+W T, W+tr(V

T T

I'V)+K T K, (19
Substituting(12)and (14)-(17)into(19), we have
d(x,t)
lg(x)1

T A T A (20)
h(z,W*V¥)s+e(2)s]+W T, W+r(V T,'V)+

s+

V() =sgn(g())N() E+ -+
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~ T A . . A A
K T K <sgn(g(x)N({) §+ & —kos +[-h(z,W,V) +
AT
h(z,ZW*V¥)+e()]ls—K ¢(z,t)|s|+
. T A _T A _T A
W TI,)W+r(V T,'V)+K T.'K 20)
) LT A
< —kos® +sgn(g(D)IN() {+EW [T, W—

A A AT _ T

s(S=S'V l+tr(V [F;l‘A/—szW S'D+

AT A

T

K [T K —1519(z.0] < —kos® +sgn(g (DN E+ £

Therefore we know that
V) SV + £ kos> <V (0)+ j; [sen(g(X)N(O) +11&dr , Vi € [0,0),Acc
ording to Lemma 2, we obtain that vie) . @)

and £[sgn( g)IN) +1] g“ d T are bounded on [0,t;).Similar to the discussion in

[12],we know that the above conclusion is true for t=c0.It is easy to show that fs 2 dt

exists. From(18), we have that

W@ le L, N K(@#)le L, IIV(t)Il.e L_ .According to assumption 1) and

()

(18),we have that s€ L_ . Since a continuous function is always bounded on a

compact set, using(3),we have that s(t) is bounded and ds*(1)/dt = 2s(t) s(t) is

also bounded. Therefore, s? (¢) is uniformly continuous on [0,00) .According to
Barbalat’s lemma, it is easy see that lim,_,.,Is(t)|=0.From (2), we obtain that

1
e (t)=———s(t) with A >0. This means that lim,_,.le;(t)|=0.
(s+4)

5 Conclusions

Based on Nussbaum function property and multilayer neural networks, a new direct
adaptive control scheme for a class of nonlinear systems with an unknown gain sign
and nonlinear uncertainties has been presented in this paper. The adaptive law of the
adjustable parameter vector and the matrix of weights in the neural networks and the
gain of sliding mode control term are determined by using a Lyapunov method. The
developed controller can guarantee the global stability of the resulting closed —loop
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system in the sense that all signals involved are uniformly bounded and the
asymptotic convergence of the tracking error to zero. Since the direct adaptive control
technology is used, the controller singularity is avoided in our proposed controller
design.
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Abstract. The performance of Self Organizing Map (SOM) is always influ-
enced by learn methods. The resultant quality of the topological formation of
the SOM is also highly dependent onto the learning rate and the neighborhood
function. In literature, there are plenty of studies to find a proper method to im-
prove the quality of SOM. However, a new term "stiffness factor" has been pro-
posed and was used in SOM training in this paper. The effect of the stiffness
factor has also been tested with a real-world problem and got positive
influence.

1 Introduction

Kohonen’s Self-Organizing Map (SOM) is a neural network which projects the high
dimensional input space to one or two-dimensional array in nonlinear fashion [1, 2].
The codebook vectors (neurons) connected in a lattice structure in a two dimensional
plane which forms the resultant topology provide insights about possible relationships
among the data items. This idea is inspired from the structure of the cortical map of
the brain. Although various disciplines use the SOM model in order to find solutions
to broad spectrum of problems, however, there is not so much clue about the how the
resultant maps are supposed to look after training or what kind of learning parameters
and a neighborhood functions have to be used according to the nature of data itself. In
literature, there are plenty of studies to determine the optimum learning rate and
neighborhood function [3.,4,5,6].

Although a lot of effort has been made to analyze the organization of the topology
of SOM, the delineation of data dependent learning rate and neighborhood function is
a cumbersome task. The introduction of a hit term in order to improve the topological
quality concerning data statistics for two dimensional topographical SOM has been
defined by Germen [7] for rectangular lattice. Here in this paper, the same hit term is
used to track the density localizations of data points in multi dimensional space, how-
ever much more adequate method the, "stiffness factor”, has been proposed to use it in
training. The main insight of this term is, decreasing the fluctuations of the neurons in
lattice, if those get much hit ratio than the others. In Newtonian physic, the mass with
higher density attracts the others to it. Similarly the “stiffness factor” simulates this
phenomenon, and the statistical characteristic of data can be conserved in topology.

In this paper, I address the SOM algorithm and the proposal for the novel term
“stiffness factor” and its usage with the learning rate and neighborhood function is

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 353 -357, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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given in section 2. The results of the proposal are examined in Section 3. In Section 4
there is a brief conclusion.

2 SOM Algorithm and the Stiffness Factor

In Kohnen's SOM, the learning is an iterative procedure defined as:

M (k) =M, (k—1)+o(k)- B(c,i k) - (A(k) =M (k-1)) )

Here M (k) denotes the modified neuron and A(k) shows the training data presented

in the iteration step k. The subscript i is used to show the Neuron index in the planar
lattice. The a(k) and B(c,i, k) are used to denote the learning rate and the neighbor-

hood function parameters around the Best Matching Unit (BMU) where the index
value is ¢ and found as :

¢ = arg min[|A(k) = M, (k)] )

The learning rate usually gets value 1 at he beginning and diminishes gradually
during the training phase in order to first find the global localizations and then do
local adjustments. Similarly the size of the neighborhood function shrinks with the
lapse of time and the training is done in two phases: first with large neighborhood
radius, and then fine tuning with small radius.

The automatic formation of the topologically correct mapping is the direct conse-
quence of the localization of the BMU and its direct influence onto the other neurons
around the neighborhood of it determined by the neighborhood function. In learning
process, if a number of excitations of a particular neuron is more than the others, it is
possible to deduce that the weights of that neuron points out the much denser localiza-
tion in the training data. If those particular neurons' weights are changed as much as
the weights of neurons which didn’t get so many hits, will cause the loss of this in-
formation. However in conventional approaches, this phenomenon doesn’t be taken
into the consideration.

Here in this paper, a new term has been proposed to effect the change of weights of
a neuron according to its past number of hits. The hit term will be used to explain that
the neuron is “on” (selected as BMU) at an instant. The main idea of stiffness factor is
increasing the inertia of a neuron proportionally with the number of hits during train-
ing. Although it seems quite reasonable to count the hits per neuron and use the pro-
portions of the hit rates between BMU and the updated neuron during training, it can
easily be prove that, this technique causes twists and butterfly effects which have to
be avoided [2]. In order to get rid of this problem, the planar movement of the up-
dated neuron into the direction of BMU, should have to be less than the other neurons'
movements which are located around the close vicinity of BMU. The motivation
behind the stiffness factor is finding an updating scheme which takes BMU hits into
consideration without affecting the twist-free organized topology. The method which
is proposed in this work is first finding the closest neurons as "impact neurons"
M, (M;) for the updating neuron M; in planar lattice "in the direction" of BMU. Here
either one impact neuron or two impact neurons are selected according to the topo-
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logical locations of the updated neuron M;(k) and BMU M. (k). The Fig. 1 explains this
idea. In the figure, possible three different updated neurons M,, M; M, and their im-
pact neurons M,,;(M;) for M;, M,,;(M,) and M,,(M,) for M, and M, ;(M;) for M; has been
shown.

l_"_> BMU M M) M

y © O
\/

O O

M, (M)
O O @) @) O
M, ,(My)
O O O O O

Fig. 1. Different impact neurons for different updated neurons

The Impact Neurons' M,(M;) topological indexes are calculated as:

)

x,(x, () =1x, +sgn(x, —x, ).y, =y, if ((x, #x)Ay, =)

xn(xM, (k) = x, + sgn(x_ — x, )

if(‘xM, —x|= ‘yMY -,

y,(y, (K)) =y, +sgn(y —y,)

¥, (v, k) =y, +sgn(y -y, )x, =x if ((v, 2y)Ax, =x)

w 'xM,

Y = Y, +sgn(y, — yM')

lf(‘xM, —xt.‘ <‘yM, —yt‘) 3)
o =Xy +sgn(x, — va)
Y2 = Y, +sgn(y, — yM')
x, =x, +sgn(x —x,)
Y = Vu, )

if (Jx, —x|>|v, )

X, =X, + sgn(x, — xM,) ' '

ynZ = yM’ +Sgn(yp - yM,)

After finding the Impact Neurons, the average impact hit ratio has to be found. If
there is only one neuron as an Impact Neuron, the impact hit can be calculated as:

Hit (k) =h(M (k)) otherwise Hit (k)=(h(M (k)+h(M  (k))/2

impact impact

where h(M,) represents the number of hits of the neuron M,
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By using the hit ratio of the Impact Neurons, the Stiffness Factor is defined as:

. Hitimpacr
o(c,i k) =— 4
Hit, +h(M (k)

impact
Using the calculated stiffness factor, the weight is updated with the formula:

M (k) =M (k1) +a(k)- Bc,i,k)-o(c,i k) - (A(k)—M (k—1)) ®)

3 Experimental Results

The new stiffness factor parameter is used with the conventional learning rate and
neighborhood parameters and a considerable improvement in the final topology has
been obtained. In order to analyze the contribution of the proposed parameter, Aver-
age Quantization Error (AQE) is used. This is measured using average quantization
error between data vectors and their corresponding BMU's.

In the experiment, two-dimensional 10x10 neuron map is trained with two dimen-
sional data. The neurons are connected in a rectangular lattice. The training set con-
sisted of 10,000 samples with a normal distribution of Mean = 0, and Standard Devia-
tion = 5. The training set is randomly sampled 10,000 times. Fig. 2 shows the AQE
comparisons of training the map when the stiffness factor is applied after training
steps of 1000 and 5000 data. The resultant maps and the data have been shown in Fig.
3. Here it is observed that, the Stiffness Factor has considerable positive influence on
the final maps.

The effect of the Stiffness Factor also has been tested with a real-world problem in
order to classify the power-quality data. At the end of the experiments a considerable
improvement on the classification borders of SOM has been observed.

AQE comparisons of Stiffness Factor effects
T T T

© T © T
Training without Stiffness Factor
5.5F Stiffiness Factor applied after 1000 step |
s Stiffness Factor applied after 5000 step
4.5 1
a4l
8 3.5
<
3l
25
2+
1.5
1 . . . . . . . . .
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Trainig Time

Fig. 2. Average Quantization Error comparisons of Stiffness Factor effects
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Final Map Without Stfness Factor Final Map With Stifness Fector Afer 5000 Traning Final Map With Stifness Factor Afer 1000 Training

Fig. 3. Effects of Stiffness Factor on the final topologies

4 Conclusion

During the training period of SOM, the stability of the weights of a neuron has been
increased directly in proportion with the number of getting hits. While updating a
neuron, according to the relative positions of it and the BMU, the impact neurons are
found. According to the average hits, the hit ratio o(i,c,k) parameter has been defined
and used with different learning rate and neighborhood function parameters. It has
been observed that this novel parameter has an improving effect for different kind of
SOM parameters from the point of view of the quality of resultant topology.

Another asset of this hit ratio term is, it can easily be applied with conventional pa-
rameters, which are used in SOM training. This term enforces the power of self-
organization idea and data dependent topological formation of the net.
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Abstract. This paper proposed a novel self-adaptive wavelet network model for
Regression Analysis. The structure of this network is distinguished from those of
the present models. It has four layers. This model not only can overcome the
structural redundancy which the present wavelet network cannot do, but also can
solve the complicated problems respectively. Thus, generalization performance
has been greatly improved; moreover, rapid learning can be realized. Some
experiments on regression analysis are presented for illustration. Compared with
the existing results, the model reaches a hundredfold improvement in speed and
its generalization performance has been greatly improved.

1 Introduction

Wavelet networks that has been proposed recently by Zhang, Benveniste, Pati and
Krishnaprasad [1]~[3] are a class of neural networks consisting of wavelets. The
wavelet network provides a unique and efficient representation of the signal. At the
same time, it preserves most of the advantages of the RBF network. The wavelet neural
network has shown its excellent performance in many fields and now it has been widely
used [1][2][3][6][7]. According to the theory of Multiresolution, Baskshi B R and
Stepphanopoulous proposed a novel orthonormal wavelet network model and
corresponding learning algorithm [4]. In the network, the hidden layer replaces the
sigmoid active function by wavelet function and Scaling function.

Since the present wavelet networks successfully preserve most of the advantages of
the RBF network, few researches are focused on the structure of wavelet network. In
fact, as to the whole signal, the orthogonal wavelet based network can be constructed
and it is not redundant. However, as to some parts of signal, only some of neurons are
useful, and the others are redundant. If the structure of the present wavelet network is
changed properly, the various advantages of RBF network can be preserved and at the
same time, the redundancy can be overcome effectively.

In this paper, a novel self-adaptively wavelet network and algorithm are proposed.
Some experiments on Regression Analysis problems have been done to verify the

* This work was supported by the National Science Foundation of China (Grant No.60375021)
and the Science Foundation of Hunan Province (Grant No.00JJY3096) and the Key Project of
Hunan Provincial Education Department (Grant No.04A056).
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performance (learning speed and generalization performance) of the model. Comparing
the experimental results with the ones that are published in references [1] ~ [3] show
that the model can reach better generalization performance and can reach a
thousandfold improvement in speed.

2 A Novel Wavelet Network

Throughout this paper, let R, Z and N denote the set of real, all integers and natural
numbers respectively. As everyone knows, the construction of wavelet is associated
with multi-resolution analysis (MRA) developed by Mallat and Meyer.

Suppose function ¢(r)e L*(R) satisfied f”"(p(t)dtzl , @(x) can span multi-

resolution analysis (MRA) of r (R), which is a nest sequence of closed subspaces VJ.

in *(R).{2"" (2"t —n)},="" or {g, (1)}'=" are the bases of V, . () known as
the scaling function (the ‘father wavelet”), specifically, there exists a function
Y(t) (the “mother wavelet”) and {y,, ()= 2" y(2"t —n)}'="7 which are the bases
of space W, . Space V, isrelatedtow by V, =V @W, .

It induces a decomposition of 72(g)

L'(R)=V, W, M

m=J

The above discussions suggest a scheme for decomposing a L* function f@,
namely,

FO=S<fo0m>0,, 0+ <y, >w,, 0 2

n m>J.,n

Without loss of the generality, for the analyzed signal f (), a following two-hidden

layer wavelet network is set up, which has realized a R’ >R mapping. Its structure
is as Fig.1.

Fig. 1. Four layer wavelet network
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As shown in Fig.1, the novel wavelet network has two hidden layers. The
first-hidden layer consists of n, ” ¢ neurons”, N, “ |/ neurons” and d neurons
quantizers. d is the dimension of the input data. Each neuron quantizer consists of two

sigmoidal neurons called A—fype neuron and B —tfype neuron respectively.

A —type Neuron and B —type neuron of j—th quantizer are denoted as neuron

A" and neuron BV respectively. The output of j—th quantizer is denoted as

O  +0 1< Jj< d . All of the neurons in the input layer are linked with all of the

A/(,” BL/)
” @ neurons” and “¥ neurons”. But the  —th input neuron is just linked with the
i —th quantizer. ;j=1,...,d . The second layer has L? neurons ( Lis arbitrarily plus
integral value). The neurons of the first hidden layer link to all of the neurons of the
second hidden layer.

Definition 1: For a d —  dimension signal  f suppose

A
L={f1f=/®f,®..0f,} Let f; denotes the i-th sub-signal of f thatis

divided continuously into L equidistant shares according to the support of each
dimension.

As to the distinct samples (x,,?,) , where x, =[x,,X,,,...,x,, ] € R’ andt, € R,
without loss of the generality, suppose the support of signal is[0,]¢, a plus vector
W can be chosen randomly. It can separate them into L groups according to the
support of each dimension.

)-o

v o iw LT E gy 2% < p<L, 1< j<d
’ L

ij L

—Da
GroupV'? = {x, IW-%

p_-(Z d X
<Wex, sw-?, 1<g=>p,-L""+1<L’

1<i<nl<j<dl<p, <L} a

According to the above discuss, GroupV " c f,

The training of novel wavelet network mainly consists of two phases: (1)
Determination of weights and biases of neural quantizers. (2) Determination of weights
and bias of the “ ¢ neurons” and “ i/ neurons”

2.1 Determination of Weights and Biases of Neural Quantizers

As shown in Fig.1, the weights which link the inputs with the neuron A'” and neuron

B'” can be chosen as W, =T, W ad wy, ==T, W . The T, ,

1 < p < d can be set as following:
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-7
In(—) . N
Tset = (T, 1T, = n 1<j<d)” 1 <0.5 is arbitrarily
min,__, (W-x, —w-2%)
1€p<L L
small positive value. When Tj > TjA , 1<j<d for
Vx, € GroupV'? ,q =1,...,L’ , the corresponding input
Input, (x;), m= L...L" of m th-neuron in the second-hidden layer satisfies
<n, ifg=m
Input, (x,)
21-n, ifg#m

The biases b o and b ., of neuron A" and neuron B” are simply analytically

calculated as

B»

EA«@:_T(W'LL“) 1Sjgd,lSpSL
=12 LD % 1<j<di<p<L

For any input X; within input vector group GroupV @ q=1,., L, only the
¢ th-neuron’s input are almost zero while one of the inputs of other neurons is almost
one in the second-hidden layer.

2.2 Determination of Weights and Bias of the “( neurons” and “/ neurons”
According to the theory of the wavelet, the weight and bias of the “ ¢ neurons” and

“W neurons” can be determined as the reference [4].

3 Experimental Results

The scaling function N*(x) and wavelet l//2 (x) are selected as the activating function
of the N, ” @ neurons” and N, “¥/ neurons” of the first hidden layer in the model of
the paper respectively.
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X, [0,1]
N*(x)=412-x, [1,2]
0, others

X
=, 0’7
6 [0,—]
27 1
27 B
360 1
2B
8" 6 2
, 29 8 3
X)=q—-——x, =2
v (x) 6 3 [2 ]
T nd
6 6 2
11 5
———x, 23
e
0 others

Then the same non-liner functions in the reference [2][3] are chosen as the
approximate functions. To assess the approximation results, a figure of merit is needed.
We select the same figure of merit in the [2].

For the input datum 7, = {(x;,,,)}/_, and the network output ,, ;.

The computing environment as following: Intel P4 1.7G CPU, 256M RAM, and
MATLAB 6.5. At first, the functions that are chosen by the reference [2][3] are chosen
to do the experiments and compare the results with those that are shown in the reference

[2][3].

Function 1:
—43.72x+8.996, 0<x<0.4
y =184.92x—42.46, 04<x<0.5
10e* " sin(12x* +2x—-4) 0.5<x<1
Model Hidden Neurons | Epochs RMSE Of Testing Time(s)
Zhang "’ 7 10000 0.05057 1100
Pati ! 31 800 0.024 101.7
BP 7 10000 0.13286 1150
Our WN 41 1 0.0013 1.8600
Function 2:
7=400(x> — y* —x+y)sin(10x—5)  x,ye[0,1]
Model Hidden Neurons | Epochs RMSE Of Testing | Time(s)
Zhang ™! 49 40000 0.03395 21300
Pati 187 500 0.023 500
BP 225 40000 0.29381 95640
Our WN 217 1 0.0085 3.2180
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From the datum, both the generalization performance and the learning speed of the
network in this paper are more ascendant than those of the previous wavelet network
models.

4 Summery

In this paper, a novel model and a rapid algorithm of wavelet neural network are
described. For the more rational and effective structure is adapted in the model,
Comparing with the present wavelet network, this model not only has a hundredfold
improvement in speed, but also obtains better generalization performance. For future
work, to investigate the model in some real world large-scale applications are of great
interest.
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Abstract. Reliable prediction of sales can improve the quality of business
strategy. In this research, fuzzy logic and artificial neural network are integrated
into the fuzzy back-propagation network (FBPN) for printed circuit board
industry. The fuzzy back propagation network is constructed to incorporate
production-control expert judgments in enhancing the model’s performance.
Parameters chosen as inputs to the FBPN are no longer considered as of equal
importance, but some sales managers and production control experts are
requested to express their opinions about the importance of each input
parameter in predicting the sales with linguistic terms, which can be converted
into pre-specified fuzzy numbers, aggregated and corresponding input
parameters when fed into the FBPN. The proposed system is evaluated through
the real life data provided by a printed circuit board company. Model evaluation
results for research indicate that the Fuzzy back-propagation outperforms the
other three different forecasting models in MAPE.

1 Introduction

Sales forecasting is a very general topic of research. When dealing with the problems
of sales forecasting, many researchers have used hybrid artificial intelligent
algorithms to forecast, and the most rewarding method is the application integrating
artificial neural networks (ANNs) and fuzzy theory. This method is applied by
incorporating the experience-based principal and logic-explanation capacity of fuzzy
theory and the capacity of memory and error-allowance of ANNs, as well as self
learning by numeral data.

This research focuses on the sales forecasting of printed circuit board (PCB) and
modifies the fuzzy back-propagation network system (FBPN) proposed by
Chen[2003], to select variables with a better and more systematic way from expert
experience, with the purpose of improving the forecasting accuracy and using this
information to help managers make decisions.

2 Literature Review

Although the traditional sales forecasting methods have been proved effective, they
still have certain shortcomings. (Kuo, 2001, Tang, 2003, Luxhgj, 1996) As claimed
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by Kuo[1998], the new developed Artificial Intelligent (AI) models have more
flexibilities and can be used to estimate the non-linear relationship, without the limits
of traditional Time Series models. Therefore, more and more researchers tend to use
Al forecasting models to deal with problem.

Fuzzy theory has been broadly applied in forecasting. (Chen, 1999, Hwang, 1998,
Huarng, 2001) Fuzzy theory is first combined with ANNs by Lin and Lee[1991], who
incorporated the traditional fuzzy controller and ANNs to a network structure to
proceed appropriate non-linear planning of unplanned control systems based on the
relationship of input and output through the learning capacity of ANNs. Following
them, many researchers started doing different relative research based on the
combination of fuzzy theory and ANNs. Fuzzy theory combining with ANNs is
applied in different areas and has positive performance. (Xue, 1994, Dash, 1995,
Chen, 2003, Kuo, 1998)

3 Methodology

There are three main stages in this research and the first stage is the variables
selection stage. This stage is to select many possible variables, which may influence
PCB product sales amount. In order to eliminate the unrelated variables, Stepwise
Regression Analysis (SRA) and Fuzzy Delphi Method (FDM) were used to choose
the key variables to be considered in the forecasting model. The second stage is the
data preprocessing stage and Rescaled Range Analysis (R/S) was used to judge the
effects of trend from serial observation values appearing as the time order. If the
effect of trend is observed, Winter’s method will be applied to remove the trend effect
and reduce the forecast error. The third stage is the FBPN forecasting stage, which
was developed to forecast the demand of PCB sales amount in this research and will
be described in details in the following section. After being compared with other three
forecasting models, the superior model will be recommended to the decision makers.
The details of each stage will be described as follows:

3.1 Variable Selection Stage

In this stage, fewer factors were considered in order to increase the efficiency of
network learning. Many researchers have used several methods to select key factors in
their forecast system. (Chang, 2000, Kaufmann, 1988, Lin, 2003 and Hsu, 2003) In
this research, the following two methods were used to determine the main factors that
would influence the PCB sales amount.

1. SRA (Stepwise Regression Analysis)

Stepwise regression procedure determines the set of independent variables that most
closely determine the dependent variable. This is accomplished by the repetition of a
variable selection. At each of these steps, a single variable is either entered or
removed from the model. For each step, simple regression is performed using the
previously included independent variables and one of the excluded variables. Each of
these regressions is subjected to an ‘F-test’. If the variable small F value, is greater
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than a user defined threshold (0.05), it is added to the model. When the variable large
F value, is smaller than a user defined threshold (0.1), it is removed from the model.
This general procedure is easily applied to polynomials by using powers of the
independent variable as pseudo-independent variables. The statistical software SPSS
for Windows 10.0 was used for stepwise regression analysis in this research.

Variables Selection Stage .
1.Market demand domain
2.Macroeconomics domain
3.Industrial production domain

‘ SRA ‘ ‘ FDM ‘4- ————————— { Choose key variables

v
Data Preprocessing Stage
P R/S analysis to find the effects of
" trend
no
Trend Effect?
Winter’ s | Winter’ s method to remove the
method |~ trend effect
T
v
FBPN Forecasting Stage Translate the input signal, which
\ Fuzzy input S generated by experts, to the
fuzzy term
< General BPN moodel
v
Weights
Adjustment | Defuzzification the output
‘ Defuzzy < . . .
# signals to the forecasting value
Error measurement ‘

v
\ End Training |

Fig. 1. Architecture of Three Main Stages in the Research

2. FDM (Fuzzy Delphi Method)

The modified procedures of the proposed FDM for the search are listed as follows:

Step 1:

Collect all the possible factors that may affect the PCB product sales
quantity. The domain experts select the important factors and give each a fuzzy
number. This is the first questionnaire survey.

Step 2:
Formulate the questionnaire, which is a set of IF-THEN rules.
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Step 3:
Fuzzify the questionnaires that are returned by the domain experts and
determine the following indices:

(1). Pessimistic (Minimum) index

_tatlapttly,
n

Uy 1

where £ 4; means the pessimistic index of the i—th expert and n is the

number of the experts.
(2). Optimistic (Maximum) index

_ug gyt ty,

2

Ug
n
where u,; means the pessimistic index of the i—th expert.
(3). Average (Most appropriate) index
For each interval /,; +u,; , calculate the midpoint, m,; = ({ 4; +uy;)/2,
then find 12, = (my Xm gy X---xmy )"
Step 4:
Therefore, the fuzzy number A = (i, O'R, ot ) , which represents the mean,

right width, and left width, respectively, for an asymmetric bell shaped function
that can be determined through the above indices:

O_R — gA - /'lA (3)
3
O_L — Ug — :uA (4)
3
Step 5:
Formulate the next questionnaire with the above indices and conduct the
survey.
Step 6:

Repeat 3 to 5. Use the following formulas as the stopping criteria to confirm
that all experts have the consentaneous importance of each factor.

8(A.B)=[ S(Alal Blalda
(5)
1 — — — —
=SB =0 (Ale1" ~Blen" ) +(Ala)” - Blet' e
where A and B are the fuzzy numbers, Z[] and E[] denote the membership

function of fuzzy numbers. The o -cut of the fuzzy number is defined as
Z[a] = {X|Z[X] >a, x€ R} for 0<a <1. The distance between the two fuzzy
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numbers is 6(A,B). B, and f3, are any given convenient values in order to

surround both Z[a] =0 and 1_3[0(] =0.

3.2 Data Preprocessing Stage

When the seasonal and trend variation is present in the time serious data, the accuracy
of forecasting will be influenced. This stage will use R/S analysis to detect if there is
this kind of effects of serious data. If the effects are observed, Winter’s exponential
smoothing will be used to take the effects of seasonality and trend into consideration.

1. R/S analysis (Rescaled Range Analysis)

For eliminating possible trend influence, the rescaled range analysis, invented by
Hurst (1965), is used to study records in time or a series of observations in different
time. Hurst spent his lifetime studying the Nile and the problems related to water
storage. The problem is to determine the design of an ideal reservoir on the basis of
the given record of observed discharges from the lake. The detail process of R/S
analysis will be omitted here.

2. Winters Exponential Smoothing

In order to take the effects of seasonality and trend into consideration, Winter’s
exponential smoothing is used to preliminarily forecast the quantity of PCB
production. According to this method, three components to the model are assumed: a
permanent component, a trend, and a seasonal component. Each component is
continuously updated using a smoothing constant applied to the most recent
observation and the last estimate. Luxh[1996] and Mills[1990] compared Winter’s
Exponential Smoothing with other forecasting methods, like ARIMA, and all showed
that the Winter’s method had a superior performance. In this research we assume
=01, #=0.1 and y=0.9.

3.3 Fuzzy Neural Network Forecasting Stage

There are three main layers, input layer, hidden layer and output layer, and two
training stages in our FBPN. In the feedforward stage, FBPN use the data on hand to
forecast the PCB sales amount, and the forecasting error will be recalled to adjust the
weights between layers in the backprooagation of error stage. The details will be
described in the following:

Step0. Initial weights between layers are randomly generated.

Stepl. While stopping condition is false, do step 2-11.

Step2. For each training pair, do step 3-8.

Feedforward stage:

Step3. Each input unit /;, which was generated by many experts, receives input

signal 5, x,, and broadcasts this signal to all units in the hidden layer.
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Where 5;) is the fuzzy membership function, which is supported by the
experts, and , is the normalized input signal.

Step4. Sum the weighted input signals of each hidden unit.

StepS. Apply the translation function to compute its output signals.

Step6. Sum the weighted input signals of each output unit.

Step7. Apply the translation function to compute its output signals.

Step8. Defuzzify the output signals to the forecasting value, and compute its
MAPE.

Backpropagation of error stage:

Step9.Compare the forecasted output with the actual sales amount and compute
the error term between hidden layer and output layer. Next, calculate its
weight correction term, (used to update connection weights latter). Finally,
calculate its bias correction term, and update weights and biases.

Step10. Compute its error information term for hidden nodes. Then, update the
information term of each hidden node.

Step11.Calculate its weight correction term between hidden layer and input layer.
Then, calculate its bias correction term. Finally, update weights and biases.

‘ Generate the initial weights of the network ‘

v

‘ Input layer node receives fuzzy input signal ‘ )

»
A

Feedforward stage

‘ Translate and compute the forecasting ‘

v

‘ Defuzzification the output signals ‘

v

‘ Compute the MAPE of forecasting ‘

v

Backpropagation of error stage

‘ Computes the error information term ‘

v

‘ Update all weights and biases ‘

no

atisfy stopping
condition?

Stop Network Training

Fig. 2. The detailed flow diagram of FBPN
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The configuration of the FBPN is established as follows:

number of neurons in the input layer: 5
number of neurons in the output layer: 1
single hidden layer

number of neurons in the hidden layer: 5
network-learning rule: delta rule
transformation function: sigmoid function
learning rate: 0.1

learning times: 30000

4 Experimental Results

The data in this research are from an electronic company in Taiwan from 1999/1 to
2003/12. Monthly sales amount is considered as an objective of the forecasting
model. This research develops a FBPN for sales forecasting in PCB industries and we
will compare this method with other traditional methods such as Grey Forecasting
(GF), Multiple Regression Analysis (MRA) and Back-propagation network
(BPN), etc.

Mean average percentage error (MAPE) was applied as a standard performance
measure for all four different models in this research. After the intensive experimental
test, the MAPEs of four different models are 15.04%, 8.86%, 6.19% and 3.09% (as
shown in table 1). Among that, the grey forecasting has the largest errors, and then
MRA, BPN, and the least is FBPN.

Table 1. Comparisons among Four Different Forecasting Models

MAPE Improvement Rate
GF 15.04% 74.95%
MRA 8.86% 65.21%
BPN 6.19% 50.08%
FBPN 3.09% -

As can be seen in fig 3, the GF has a significant up and down in the beginning and
it also over estimate the data up to the end. Thus the overall MAPE is high. As for
MRA, the tendency is formed and the up and down is minor compared with GF. The
overall MAPE is around 0~20% and it is also a little higher. Traditional BPN model
is in a stable situation and the overall MAPE is smaller than MRA and it is around
0~10%. The same situation exist for FBPN although in the beginning it has a larger
error however it converge quickly and the overall MAPE is still around 0~10%.
Especially, it performs very well in the end since it is very close to the real data.
Therefore, the FBPN performs the best among others.
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MAPE

1 B ppy

.2 * ey

Fig. 3. The MAPE Values for Four Different Forecasting Models

According to the various criteria, i.e., encompassing test, MAPE, and forecasting
accuracy, the best model among these four different models is FBPN with a MAPE of
3.09% and accuracy of 97.61%. Therefore, we can claim that by combining the fuzzy
theory and BPN the hybrid model can be applied in forecasting the sales of PCB
industry and the result is very convincing and deserve further investigation in the
future for applications in other areas.

Although, the GF and MRA is very powerful when the data is very scarce and they
claim that with only four data points and they can be applied to forecast the future
result. However, after intensive experimental test, these two methods did not perform
very well especially for those non-linear and highly dynamic data. As for the fuzzy
Delphi back-propagation model since it can include the opinion from various experts
in PCB sales and production department. It seems the assignment of different weight
to the factor really improve the forecasting errors and perform much better than other
models.

5 Conclusions

The experimental results in section 4 demonstrated the effectiveness of the FBPN that
is superior to other traditional approaches. The FBPN approach also provides another
informing tool to the decision maker in PCB industries. In summary, this research has
the following important contribution in the sales forecasting area and these
contributions might be interested to other academic researchers and industrial
practitioners:

1. Feature Selections:

To filter out significant factors from a series of input variables, the FDM is
superior to the SRA method. FDM will collect the opinion from various experts and
assign different weights to these variables according to their experiences in this field.
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Therefore, it is very easy to extract important factors from these various variables. In
contrary, gradual regression analysis may come out with a combination of various
variables which is mutually correlated. However, the effect of these selected
variables may not significant enough to be included in the final inputs. The errors for
input from fuzzy Delphi is 12.88%, and errors from SRA is 13.87%. It is obvious to
see that FDM is more effective for applications.

2. The effect of tendency:

When take tendency effect into consideration, the overall errors are decreased.
Tendency and seasonality are included in the time series data and these two factors
will affect the accuracy of the forecasting method dramatically. This research applies
the [Winters trend and seasonality exponential smoothing model] to forecast the
sales and then convert this data as an input to the BPN model. After the training
procedure, the final errors, no matter it is from FDM or SRA, are decreased
significantly. Errors from gradual regression analysis decreased from 13.84% to
7.15%, and FDM from 12.88% down to 6.19%%. This shows the significance of
including [ Winters trend and seasonality exponential smoothing model | in the
model.

3. Comparisons of different forecasting models:

This research applies three different performance measures, i.e., encompassing test,
forecasting errors and accuracy of forecasting to compare the FBPN with other three
methods, i.e., GF, MRA and BPN. The intensive experimental results show the
following: 1. In encompassing test, FBPN and BPN models are superior to GF and
MRA. 2. As for MAPE, FBPN has the smallest MAPE and it is only 3.09%.
Therefore, FBPN model by combining FDM and BPN model is a very powerful and
effective forecasting tool that can be further applied in other field of applications
since expert’s opinion can be incorporated into the model.
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Abstract. This paper presents an evolutionary artificial neural network (EANN)
to the prediction of the BF hot metal silicon content. The pareto differential
evolution (PDE) algorithm is used to optimize the connection weights and the
network’s architecture (number of hidden nodes) simultaneously to improve the
prediction precision. The application results show that the prediction of hot
metal silicon content is successful. Data, used in this paper, were collected from
No.1 BF at Laiwu Iron and Steel Group Co..

1 Introduction

In blast furnace (BF) ironmaking process, hot metal silicon content is important both
for quality and control purposes [1]. Not only is silicon content an significant quality
variable, but also reflects the internal state of the high-temperature lower region of the
blast furnace, so its accurate prediction can greatly help to control the thermal state of
a BF, which is one of the significant factor ensuing the BF stable operation.

The multi-layer neural network is emerging as an important tool to predict the sili-
con content of hot metal [2,3], while BP algorithm suffers the disadvantage of being
easily trapped in a local minimum and another problem with BP is the choice of a
correct architecture. Evolutionary approach is used over traditional learning algo-
rithms to optimize the architecture of neural networks. However, most of the research
undertaken in the EANN literatures does not emphasize the trade-off between the
architecture and the generalization ability of the network. With the trade-off, the
EANN problem is actually a Multi-objective Optimization Problem. The PDE algo-
rithm [4] was designed for vector optimization problems. So the PDE algorithm will
be used to evolve the weights and the networks architecture simultaneously here.

2 An Artificial Neural Network Based on the PDE Algorithm

A three-layer feed forward neural network is selected in this paper. Now we have a
multi-objective problem with two objectives; one is to minimize the error and the
other is to minimize the number of hidden units. Our chromosome is a class that con-
tains one matrix £ and one vector P. The matrix 2 is of dimension (I+0)x(H+0),
where I, H and O are the number of input, hidden and output units respectively. Each
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element @ ;€@ is the weight connecting unit i and j, where i=0,...,(I-1) is the input
unit i, i=I,...,(I+0-1) is the output unit I-I, j=0,...,(H-1) is the hidden unit j,
j=H,...,(H+0-1) is the output unit j-H. The vector pis of dimension H, where P}, is a
binary value used to indicate if hidden unit % exists in the network or not. Then we
can apply PDE to our neural network as follows:

Stepl: Create a random initial population. The elements of the weight matrix 2
are assigned random values according to a Gaussian distribution N(0, 1). The ele-
ments of the binary vector P are assigned the value with probability 0.5 based on a
randomly generated number according to a uniform distribution between (0, 1); oth-
erwise 0.

Step2: Evaluate the individuals in the population and label those who are non-
dominated. If the number of non-dominated individuals is less than 3 repeat the fol-
lowing until the number of non-dominated individuals is greater than or equal to 3:

Find a non-dominated solution among those who are not labeled. Label this solu-
tion as a non-dominated.

Step3: Delete all dominated solutions from the population.

Step4: Select at random an individual as the main parent a;, and two individuals,
a,, as, as supporting parents.

Step5: Crossover: With some probability, do

hild [0 o o
w," —w,+NO)w,-w,), (1)
pewa _ |1 [P+ N @D - o] 205 o
0 otherwise
Otherwise
child __ ,.a hild
; =y, p" = py (€)
And with some probability, do
hild
@, =0, +NO, 1)@, -,) . “)
Otherwise
child __ a,
a)ho - a)ho . o)

Each weight in the main parent is perturbed by adding to it a ratio, ' N(0,1), of the
difference between the two values of this variable in the two supporting parents.
Step6: Mutation: with some probability Uniform (0, 1), do

a);lh”d = a)l;lhild + N (0, mutation _ rate) |, (6)
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A" = @™ + N(O,mutation _rate) @

enita |1 ifp;h”d =0
pr— . (8)

P .
" 0 otherwise

Step7: Apply BP to the child.

Step8: If the child dominates the main parent, place it into the population.
Step9: If the population size is not completed, repeat step 4-8.

Step10: If the termination conditions are not satisfied, repeat step 2-9.

In the following, we will outline the performance of this method on predicting sili-
con content in hot metal.

3 Practical Applications to Hot Metal Silicon Content Prediction

In this section, firstly, we select six key variables (see Tablel) affecting the hot metal
silicon content [Si] as the input nodes of our neural network.

Table 1. Input variables

VC(t/h)  PI(m’/minkPa)  PC(t/h) BT(°C) [Sil,.((%) BQ(m’/min)

Charging  Permeability ~ Pulveized Blast Last [Si] Blast
mixture index coal temperature quantity
velocity injection

Secondly, two important criterions used in practice are considered here to evaluate
our method: the hit ratio J:

L

NP
~ (3, H)x100% , H , =

p J=l

J =

{1 if |, - x,[< 0.1 )

0 otherwise.

Np is the total predicted tap numbers; another criterion which indicate consistency of
the method Perr:

N, N,
Perr:Z(x;.—x,)z/Z x? o (10)
] p

where x; is the predicted value and x; the observed value. According to the proposed
method, we varied the crossover probability from O to 1 with an increment of 0.1.
Mutation probability is varied from 0 tol with an increment of 0.05. The maximum
number of hidden units is set to 12, the population size 20, the learning rate for BP
0.03. A total of 1000 patterns were used in optimizing our model. The optimal ANN
obtained after 100 generations evolution was tested through another 50 sets of data.
When crossover probability is 0.8 and mutation probability is 0.1, we got the opti-
mum solution. The results are shown in Fig. 1. The hit ratio J is calculated to be 88%
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and Perr is in the magnitude of 107 (0.0286), which is helpful for operator to make
right decision to operate blast furnace.
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Fig. 1. The silicon content comparison between predicted and real data

Lastly, according to a conventional evolutionary approach [2,3,5], we will need to
run the algorithm (e.g. BP algorithm) a number of times with different weights while
varying the number of hidden units to select the optimum neural network. This is not
an efficient way to solve the problem. The proposed method evolves the weights and
the networks architecture simultaneously. Therefore, in terms of the amount of com-
putations, it is much faster than the traditional methods which run for a fixed architec-
ture and could be effectively used for online control of hot metal silicon content.

4 Conclusions

In this paper, we introduced an evolutionary multi-objective approach to artificial
neural networks. It not only preserves the advantages of genetic algorithm, but also
overcomes some disadvantages of previous approaches by considering the trade-off
between the architecture and the generalization ability of the network. However, more
work is needed in evaluating the performance of the proposed method and extend the
selection of input variables can enhance the quality of prediction further.
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Abstract. This paper presents a simulation of a biological olfactory neural
system with a KIII set, which is a high-dimensional chaotic neural network. The
KIII set differs from conventional artificial neural networks by use of chaotic
attractors for memory locations that are accessed by, chaotic trajectories. It was
designed to simulate the patterns of action potentials and EEG waveforms
observed in electrophysioloical experiments, and has proved its utility as a
model for biological intelligence in pattern classification. An application on
recognition of handwritten numerals is presented here, in which the
classification performance of the KIII network under different noise levels was
investigated.

1 Introduction

In recent years, the theory of chaos has been used to understand the mesoscopic
neural dynamics, which is at the level of self-organization at which neural populations
can create novel activity patterns [1]. According to the architecture of the olfactory
neural system, to simulate the output waveforms observed in biological experiments
with EEG and unit recording, the KIII model, which is a high dimensional chaotic
network, in which the interactions of globally connected nodes lead to a global
landscape of high-dimensional chaotic attractors, was built.

In this paper we present two application examples of the KIII network for
recognitions of image patterns and handwriting numerals [2].

2 Chaotic Neural Model Based on Olfactory System

The central olfactory neural system is composed of olfactory bulb (OB), anterior
nucleus (AON) and prepyriform cortex (PC). In accordance with the anatomic
architecture, KIII network is a multi-layer neural network model, which is composed
of heirarchichal KO, KI and KII units. Fig.1 shows the topology of KIII model, in
which M, G represent mitral cells and granule cells in olfactory bulb. E, I, A, B
represent excitatory and inhibitory cells in anterior nucleus and prepyriform cortex
respectively.
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3 Application on Image Pattern and Handwriting Numeral
Recognitions

Pattern recognition is an important subject of artificial intelligence, also a primary field
for the application of Artificial Neural Network (ANN). KIII network is a more accurate
simulation of the biological neural network than conventional ANN.
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Fig. 1. Topology of the KIII network (Adapted from Chang & Freeman [3].)

Derived from the study of olfactory system, the distributed KIII-set is a high
dimensional chaotic network, in which the interactions of globally connected nodes lead
to a global landscape of high-dimensional chaotic attractors. After reinforcement
learning to discriminate classes of different patterns, the system forms a landscape of
low-dimensional local basins, with one basin for each pattern class [4]. The output of
the system is controlled by the attractor, which signifies the class to which the stimulus
belonged [5].

3.1 Classification of Image Patterns

In this article, we used the KIII model to classify image patterns. The parameters
involved in our simulation in this paper were taken from the document [3].

First, the KIII model learned the desired patterns --- the 8*8 binary bitmap image of
circle and isosceles triangle. Both patterns were learned for three times in turn.
Second, the novel input images need to be preprocessed before classification: image
segmentation, image zooming, edge detection, etc. Finally, we input the preprocessed
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patterns in the R layer of the KIII model and simulate its output, as well as calculate the
categories of the input patterns. Only if the difference between the Euclid distances from
the novel input pattern to the two kinds of stored patterns reaches the pre-defined
threshold, the classification can be viewed as valid and persuasive.

Taking Fig. 2 as an example, Table 1 contains the final result of classification.

Fig. 2. Example image
patterns to be classified

Table 1. Image classification result

. Euclid Central
Euclid . .

. . distance to point of the

object | distance to the . .

. the triangle object
circle pattern
pattern

Triangle 0.3559 7.3113 [152,318]
Circle 6.6196 1.9795 [322,111]

3.3 Classification of Handwriting Numerals

Automatic recognition of handwriting characters is a practical problem in the field of
pattern recognition, and was here selected to test the classification performance of the
KII network. The test data set contains 200 samples in 20 groups of handwritten

Table 2. Classification Result — Using KIII

Correct | Incorrect | Failure Reliability (%)

Pattern I Kl | ok |k Ei:leerar Perceptron | Hopfield
0 196 3 11 98.49 | 74.50 100 59.79
1 185 10 5 | 94.87 | 55.85 89.5 78.89
2 192 4 4 19796 | 710 53.68 78.42
3 177 12 11 19365 | 355 67.37 79.87
4 179 11 1019421 | 39.44 44.13 41.99
5 181 7 121 96,28 | 48.73 49.36 21.17
6 191 1 8 19948 | 835 69.95 89.23
7 189 7 4 196.43 | 58.59 51.59 64.0
8 174 9 17 1 95,08 | 76.53 46.88 87.93
9 186 9 5 | 9538 | 64.06 63.5 64.29

Total 1850 73 77 1 96.20 | 60.99 64.84 66.76

Rate

(%) 92.5 3.65 3.85 | 96.20
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numeric characters written by 20 different students. One group included 10 characters
from zero to nine. In this application, a 64-channel KIII network was used with system
parameters as reference [3]. Every character in the test data was preprocessed to get the
1x64 feature vector and to place a point in a 64-dimensional feature space. Thus the 64
features are given as input to the KIII network as a stimulus pattern in the form of a
1x64 feature vector.

As can be seen in the Table 2, while a high overall reliability of 96.20% was gained
using KIII, the reliability of the linear filter, the perceptron and the Hopfield network
was merely around 60%. Obviously, the KIII model shows its excellence in practical
pattern classification.

4 Discussion

Derived directly from the biological neural system, KIII network gives a more
complicated and more accurate model in simulating the biological neural system in
comparison with conventional ANN. The KIII model has good capability for pattern
recognition as a form of the biological intelligence. It needs much fewer learning trials
than ANN when solving problems of pattern recognition. Although when considering
the processing speed, the KIII network still could not replace the conventional ANN for
solving practical problems, it is surely a promising research for building more intelligent
and powerful artificial neural network when the speed is increased by implementing the
KIII in analog VLSI [6].
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Abstract. This paper incorporates robustness into neural network modeling and
proposes a novel two-phase robustness analysis approach for determining the
optimal feedforward neural network (FNN) architecture in terms of Hellinger
distance of probability density function (PDF) of error distribution. The pro-
posed approach is illustrated with an example in this paper.

1 Introduction

Generally, the feedforward neural network (FNN) architecture consists of an input
layer, an output layer and one or more intervening layers, also referred to as hidden
layers. The number of nodes in the input and output layers can be determined by the
practical problems. But it is difficult to determine the number of hidden layers and
their hidden units per hidden layer. Usually, a three-layer FNN with sufficiently many
neurons in a single hidden layer has been proven to be capable of approximating any
Borel measurable functions in any accuracy [1]. A focus, thus, is how to determine
the hidden neurons in a single hidden layer of FNN modeling and applications.

In the past, many researchers have proposed a variety of methods, such as the up-
start algorithm [2] and pruning method [3], to try to determine the number of hidden
nodes in a neural network. These methods, however, are not perfect. For example, the
algorithms in [2] are likely to disrupt the approximated solution already found. A
common problem with the above-mentioned methods is that they do not consider the
model robustness — this is one of the important considerations in modeling. A solution
that uses a local robustness property is proposed in [4], but such an analytical ap-
proach is only suitable for local robustness problems. Here we extend the method and
propose a two-phase robustness analysis procedure to determine the optimal FNN
architecture. Here “robustness” of the models can be defined in such a way as fol-
lows. The set of selected models should be robust in the sense that they are indifferent
to radical change of a small portion of the data or a small change in all of the data [4].
Here we use Hellinger distance (HD) between probability density functions (PDF) of
error distribution as a model selection criterion. HD can be calculated as

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 382385, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Double Robustness Analysis for Determining Optimal FNN Architecture 383

k
HD=3" (fpar ") - par =)y )

where pdf (x}l)) and pdf (x}z)) are two PDFs of error distribution [6], the error distri-

bution PDF of FNN approximation for each candidate’s architecture is computed
using the method described by [5]. In this study, we choose the HD between PDFs as
the robustness evaluation criterion to determine the optimal FNN model architecture.
The rest of the study is organized as follows. Section 2 presents the proposed two-
phase robustness analysis approach. To demonstrate the efficiency of the proposed
approach, a simulated study is given in Section 3. Section 4 concludes the paper.

2 The Proposed Double Robustness Analysis Approach

2.1 Intrapolated Phase

For convenience, the FNN model within the range of error goal is called as “initial
model”, robust FNN model based on in-sample data set is called as “medial model”;
and the robust FNN model based upon out-of-sample data set is called as “final
model”. This phase contains three steps based upon in-sample data set as follows:

Step 1. Initially, we build a class of network with different hidden nodes, and train
the network over the entire training data set (with an increasing number of hidden
neurons) in order to learn as many associations as possible. Within the error goal
range, some FNN models with different architectures (i.e., initial models) are ob-
tained. Assume that these initial models have the same input and output nodes and
different hidden nodes in the single hidden layer.

Step 2. For every “initial model”, we change the size of the in-sample data set to
check the HD values. If the HD values are unstable, then the corresponding model is
discarded, and the models with small fluctuations (i.e., medial models) are retained.
Note that we use standard deviation of HD as a measurement of stability.

Step 3. If the HD values of all “medial models” are not stable, then go to Step 1
and select more initial models over again. If we obtain some robust models from Step
2, then go to the next phase.

Since we only check the robustness of the FNN model in terms of the in-sample
data set in this phase, we further check the robustness of FNN model using the out-of-
sample data set in order to improve the generalization of the FNN model.

2.2 Extrapolated Phase

The main extrapolated phase procedure of this phase includes the following steps.

Step 1. As for every “medial model” from Step 3 in the previous phase, we apply
the “medial model” to the out-of-sample data set. Thus, the approximated error series
between actual values and approximated values can be obtained.

Step 2. When changing the size of the out-of-sample data set, different HD values
of every “medial model” are achieved.
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Step 3. If the HD values show little fluctuation, then the models (i.e., final models)
are transferred to Step 4, otherwise this model is excluded. If all “medial models” are
discarded, then go to Step 1 in the first phase.

Step 4. 1f the HD values of a certain model are stable, then the model is identified
as the “true” model. Accordingly, this model’s architecture is the optimal one. If there
are several “final models”, we select the FNN architecture with minimal standard
deviation as the optimal FNN architecture.

To illustrate the efficiency of the approach, an experiment is performed.

3 Simulations

In order to test the efficiency of the proposed approach, a problem of predicting the
JPY/USD exchange rate series is considered. The JPY/USD data used are daily and
are obtained from Pacific Exchange Rate Service (http://fx.sauder.ubc.ca). The entire
data set covers the period from 1 January 2000 until 31 December 2003 with a total of
1121 observations. For convenience, we take daily data from 1 January 2000 to 31
August 2003 as in-sample data sets (999 observations), which are used for the first
phase, and meanwhile we take the data from 1 September 2003 to 31 December 2003
as out-of-sample data sets (122 observations), which are used for the second phase. In
this experiment, the neural network architecture has the form of “4-x-1”.

First of all, according to the predefined error goal (The predefined error NMSE <
0.15), several candidate models (i.e., “initial models”) for in-sample data set with
different hidden neurons (x) are generated based on NMSE, as shown in Table 1.

Table 1. NMSE of the JPY/USD predictions with different FNN architectures

JPY (x)  JPY(5) JPY(8) JPY(9) JPY(10) JPY(Il) JPY(13) JPY(14) JPY(15) JPY(16) JPY(17)

NMSE 0.109 0.118 0.125 0.119 0.135 0.127 0.139 0.133 0.136 0.139

Subsequently, we test the robustness of candidate network architectures by chang-
ing the size of the in-sample data set. The results are shown in Table 2.

Table 2. Robustness testing of FNN architecture for JPY predictions with in-sample data

Criterion Data IPY JPY IPY IPY JPY IPY JPY IPY JPY JPY
size 5) 8) 9) (10) an (13) 14) (15) (16) a7
999 0.145 0.081 0.612 0.228 0.265 0.097 0.187 0.393 0.158 0.377

989 0.133 0.085 0.089 0.219 0.696 0.101 0.181 0.456 0.166 0.548
979 0.147 0.079 1.258 0.227 1.021 0.093 0.195 0.558 0.159 0.551
b 969 0.151 0.072 0.556 0.226 0.891 0.114 0.182 0.987 0.161 0.972
959 0.144 0.083 0.157 0.233 0.338 0.087 0.193 0.118 0.155 0.547

Stdev.  0.0067  0.0050 0.4666  0.0050  0.3328  0.0101 0.0063  0.3162  0.0041 0.2214
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From Table 2, we find that JPY (9), JPY (11), JPY (15) and JPY (17) are discarded
in view of HD criterion. Therefore, some “medial models” can be obtained.

Finally, we apply “medial models” to out-of-sample data sets in order to check the
robustness of “medial models”. The results obtained are given in Table 3.

Table 3. Robustness testing of FNN models for JPY predictions with out-of-sample data

Currency Criterion Data size JPY(5) JPY(8) JPY(10) JPY(13) JPY(14) JPY(16)

122 0.074 0.072 0.140 0.073 0.123 0.125

117 0.081 0.081 0.109 0.081 0.141 0.058

112 0.088 0.077 0.162 0.093 0.155 0.156
JPY HD

107 0.078 0.069 0.145 0.084 0.102 0.116

102 0.084 0.078 0.158 0.077 0.093 0.163

Stdev. 0.0054 0.0048 0.0209 0.0076 0.0259 0.0417

Table 3 shows that JPY(5), JPY(8) and JPY(13) are robust. According to previous
procedure, we select JPY(8) as an optimal model from the smallest standard devia-
tion. In such a way, an optimal FNN architecture is determined using a two-phase
robustness analysis approach.

4 Conclusions

In this study, we present a novel and efficient approach for determining the optimal
feedforward neural network architecture in terms of model robustness. The proposed
approach includes two phases: intrapolated phase and extrapolated phase. Relying on
the two-phase robustness analysis approach, an optimal FNN architecture can be
obtained. In the meantime, a simulated experiment demonstrates the efficiency and
feasibility of the proposed approach.
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Abstract. The problem of stochastic robust stability analysis for Markovian
jump neural networks with time delay has been investigated via stochastic sta-
bility theory. The neural network under consideration is subject to norm-
bounded stochastic nonlinear perturbation. The sufficient conditions for robust
stability of Markovian jumping stochastic neural networks with time delay have
been developed for all admissible perturbations. All the results are given in
terms of linear matrix inequalities.

1 Introduction

The stability analysis for neural networks has received considerable attentions in
recent years [1]. When the parameters of neural network are subject to random abrupt
changes and stochastic nonlinear perturbations, the neural network can be modeled as
stochastic jumping time-delayed systems with the transition jumps described as finite-
state Markov chains [2]. These parameters changes may deteriorate the stability as
well as the systems performance of the neural networks.

In this paper, we will investigate the problem of stochastic robust stability analysis
for Markovian jump neural networks with time delay. The sufficient conditions for
the robust stability of the neural networks will be developed. Based on stochastic
Lyapunov theory, stable criteria for the neural networks are presented in terms of
linear matrix inequalities (LMIs) [3, 4]. In section 2, the system model is described.
Some necessary assumptions are given. In section 3, the robust stochastic stable crite-
ria are developed. Finally, conclusions are provided in section 4.

2 Systems Descriptions

Consider the Markovian jump stochastic neural network with time delay, which can
be represented in the form of vector state space as follows:

dx(t) ={=A(6(1))x(t) —A (68())x(t—7) +B(6(t))olx(1)]
+B.(0()olx(t —)]}dt +COW®) f (x(t), x(t —T)aw(r).
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where x(2)€ R" is the state vector of the neural network, x(f —7) is the delayed
state vector of the neural networks with the time delay 7= 0. w(f) is standard Wie-
ner process, and f (x(¢),x(f —7)) is stochastic nonlinear perturbation, o[ x(?)] is
the activation function. {€(¢),# >0} is a time homogeneous Markov process with

right continuous trajectories taking values in a finite set S ={1,..., N} with station-
ary transition probabilities:
7T.At+0(At) E )
P{O(t+A)=j10(t)=i}=< " o
W+ an =16 =i 1+7,A1 +0(A1) i = j

where At >0, B_)mo O(At)/At=0, and 7, = —j_IZNJ;# 7T, . Here 7; 20 is the
transition rate from mode i at time ¢ to mode j# i attime f+ At for i, j€ S .

A(6(t)), A1), B(O()), B,(6(t)), C(O(t)) are known real constant
matrices of appropriate dimensions for all @(¢)€ S . In the sequel, we denote the
parameter matrices A(6(¢)), A (6(t)), B(6(t)), B,(6(t)), C(6(t)) as A,
A, B, B,, C, when 0(t)=1i.

Though out this paper, we assume that the activation function o[x(¢)] and the
perturbation function f(x(#), x(f —7)) satisfy the following conditions:

(A.1) If there exist positive constant diagonal matrix K , such that

0< o(x)—-o(x,)
X=X

<K,Vx,x,eR,x #x,. )

(A.2) There exist positive constant matrices M and M | » such that

ST x(), x(t =) f (x(0), x(1 =) < X" ()M " Mx(1)

X t-M'Mxt-7). P

3 Main Results

In this section, robust stability criteria for Markovian jumping neural networks with
time delay and stochastic nonlinear perturbation are given.

Theorem 1. Consider the Markovian jumping stochastic neural networks with time
delay (1), if there exist matrices X, >0, W >0, $§>0, S, >0 and constants

p;> 0(j=1,2), satisfying the LMIs
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I Qll XIAT; XiKT XiKT piXiMT [)leMIT Q17_
AX, W 0 0 0 0 0
KX, 0 =S 0 0 0 0
(). Q= KX, 0 0 =S, 0 0 0 |<O0- (%)
p.MX, 0 0 0 -pl 0 0
pMX, 0 0 0 0 -pl 0
2, 0 0o 0 0 0 Q
where
Q,=-X,A"-AX,+W +BSB/ +B,S B/
Q,, :Q; :[ﬂ-ilXi ﬂ-iNXi]
Q. =diag{-7,X,,....— 7wy X}
(b). [_p’] C"T}so,izl,...,N. (6)
C X,

then the neural network (1) is robust stochastic stable for all admissible perturbations.
Proof. Let the mode at time  be i, thatis @(¢) =i€ S, and introduce a Lyapunov

functional as

V(x(),i)=x" (t)Px(t)+ J:_T x" ($)R.x(s)ds . (7

From (7), it is easy to obtain 0 < &, ”)c(l)”2 SV(x(1),1) < (&, +£,97T) ||x(l‘)||2,
(P),&,=4,,(P), & =2, (R). Forsimplicity, we

max max

where ¢ 21, &, =4

denote x(7) and x(f—7) as x and x,.

By using Ito’s formula, the weak infinitesimal operator of the Lyapunov functional
along the solution of system (1) is

N
LV (x,i)=x"Px+x"Px+ Z ﬂiijij +x"Rx—x!Rx,
j=1
+ £ (x,x,)C PC,.f(x,x,)
<—x"A'Px—x"PAx +x' AAIW™A x, + x" PWPx+ x" R x
+o’ (x)S'o(x) +x" PB,SB/ P+ 0" (x,)S;'0(x,)— x! R x,

®)

1

N
+x" BB, S Bl Px +p,f" (x,x) f(x,x)+ > 7w,x" Px.
j=1

In view of inequality (6), and by using Schur complement, we have

C/PC,<pl. 9)
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Hence
LV(x,i)<—-x"A'Px—x"PAx +x] AW ™A x, + x" PWPx
+x"K"'ST'Kx +x" PB,SB! Px+x. K" S;'Kx,
+x" PB,,S,B/,Px +p,x' M " Mx+ px! MM x, (10)
N
T T T
+x' Rx—x,Rx, + Z wx Px.

j=1
Let

R=AW'A +K'S'K+pMM,. )
Then, we have
LV(x,i))<x"E.x. 12)
where

E,=—A'P-PA+AW'A,+PWP+K'S"'K+K"S'K

N
T T T T 13
+PBSB/P+PB,SB/P+pM'M+pM'M +> z,P. 9

j=l1
Pre- and post-multiply (13) with X, = Pl._l. By the Schur complement, 2, <0

holds if and only if inequality (5) holds. It is easy to obtain LV (x,i) <0, that is,

the Markovian jumping stochastic neural networks with time delay are robust stable
for all the admissible perturbations.
This completes the proof. ]

4 Conclusions

In this paper, the problem of robust stability analysis for Markovian jumping neural
networks with stochastic nonlinear perturbations and time delay is investigated. The
stability criteria are given in terms of linear matrix inequalities for all admissible
pertubantions.
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Abstract. With the changing of the stimulus frequency, there are a lot
of firing dynamics behaviors of interspike intervals (ISIs), such as quasi-
periodic, bursting, period-chaotic, chaotic, periodic and the bifurcations
of the chaotic attractor appear alternatively in Hodgkin-Huxley (H-H)
neuron model. The chaotic behavior is realized over a wide range of
frequency and is visualized by using ISIs, and many kinds of abrupt un-
dergoing changes of the ISIs are observed in deferent frequency regions,
such as boundary crisis, interior crisis and merging crisis displaying al-
ternately along with the changes changes of external signal frequency,
too. And there are many periodic windows and fractal structures in ISIs
dynamics behaviors. The saddle node bifurcation resulted collapses of
chaos to period-12 orbit in dynamics of ISIs is identified.

1 Introduction

The bifurcation and crisis of neural system have been an object of major at-
tention since the beginning of the study of chaos theory. As we all known, the
neural systems have strong nonlinear characters, and are usually able to display
different dynamics according to system parameters or external inputs in ISIs
sequences. When these parameters are slightly modified, the system’s dynamics
usually experience also little modification, except when these changes occur in
the vicinity of a critical point, in which case an abrupt qualitative change or
transition in the dynamics occurs [1-3]. These transitions, for example, may be
from periodic to chaotic, from chaotic to chaotic, and their inverse transitions
[4].

And, the numerical evidence and theoretical reasoning has proved that there
is a chaos-chaos transition in the neuron, in which the change of the attractor
size is sudden but continuous, different from general discontinues chaos-chaos
transitions, and which occurs in the Hindmarsh-Rose model of a neuron. This
transition corresponds to different neural dynamics, i.e. the chaotic dynamics of
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bursting and spiking dynamics [3]. The crisis resulted from homoclinic bifurca-
tion and the chaos collapsing to a period-3 orbit in the dynamics of a quadratic
Logistic map neuron have also been studied [5,6]. Xie et al introduced periodic
orbit theory to characterize the dynamical behavior of aperiodic firing neurons,
and considered that bifurcations, crises and sensitive dependence of chaotic mo-
tions on control parameters can be the underlying mechanisms [7], and there are
many chaotic activities have been observed in experimental studies of electroen-
cephalogram(EEG) signals and neuronal ISTs sequence [8-10].

The transitions between different dynamic behaviors of ISIs sequence of H-H
neuron model under external periodic stimulus and the saddle-node bifurcation
are studied in this work, which is relevant both to the theory of nonlinear dy-
namics and to biophysics.

2 The Hodgkin-Huxley (H-H) Neuron Model

The equations that describe the H-H neuron model have been derived from a
squid giant axon. These equations can describe the spiking behavior and refrac-
toriness of real neuron very well, so that this kind of model is employed in this
work. The H-H model for the action potential of a space clamped squid axon is
defined by the four-dimensional vector field [11]

i = Loge — [120m3h(u + 115) + 36n(u — 12) + 0.3(u + 10.6)]
m=(1- m)@(“ﬁ‘%) —m(4exp(y))

n=0.1(1 —n)¥(“11°) — n(0.125exp(L)) ’ (1)
. . u 1
h = 007(1 - h)w(QO) o h( 1+exp( ”J{OSU))
where T
U (z) = (2)

exp(zx) — 1
and variables u, m, n, and h represent membrane potential, activation of a sodium
current, activation of a potassium current, and inactivation of the sodium cur-
rent. There is also a current parameter I.,; that is an external periodic signal
current into the space-clamped axon in this work, i.e.

Iea:t = Ishift + S’L?’L(Qﬂ'fot), (3)

where Isnipe = 10pA/cm?, being the amplitude of current shift, and fo = 1/3
Hz being the basic stimulus frequency in this work.

Recalling that the H-H convention for membrane potential reverses the sign
from modern conventions, and so the voltage spikes of action potentials are
negative in the H-H model. When improved models for the membrane potential
of the squid axon have been formulated, the H-H model remains the paradigm for
conductance-based models of neural systems. From a mathematical viewpoint,
varied properties of the dynamics of the H-H vector field have been studied.
Nonetheless, we remain far from a comprehensive understanding of the dynamics
displayed by this vector field.
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In this work, the ordinary differential equations (1) is integrated by using
double precision fourth-order Runge-Kutta method, with integration time step
0.01, the rest membrane potential equals to 0 mV.

3 Bifurcations and Crises of ISIs

In this work, the H-H neuron model has been simulated numerically in the ab-
sence of noise, using the ISIs as a state variable. The ISIs are registered by
the membrane potential crossing a threshold (at 60 mV) with positive deriva-
tive (Poincaré surface of section). The controlled frequency of stimulus ranges
f € 10.01,10] fo. There are a lot of firing dynamic behaviors of ISIs, such as
quasi-periodic, bursting, period-chaotic, chaotic and periodic appears alterna-
tively with the changing of the stimulus frequency f(see Fig.1). Associating with
our previous works [1,2], we could conclude that the time scale of the external
signal (including periodic and chaotic) play an important role in transition of
neural information.

One typical detailed bifurcation diagram of ISIs is shown in Fig.2a represent-
ing a classical route to chaos through a inverse period doubling cascade located
at f ~ 2.9128 fy,2.9155fp, and 2.935 f; respectively. Inside the chaotic regions,
we observed several periodic windows located at 2.9071 fy, 2.9102 fj, 2.9104 f,
and 2.911 fy, all of which are opened by a saddle-node bifurcation and closed by
a global bifurcation, namely being an interior crisis (see section 4). At the same
time, several other typical crises occur as the stimulus frequency varies. The first
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Fig. 1. Scattered ISIs sequences for stimulus frequency f = 1.35fy represents qusi-
periodic firing (a), 2.9fo is bursting (b), 2.9114f, is period-3 chaotic (c), 3.4685fy is
chaotic (d), 5.1fo is period-2 (e), and 6.0fo is period-1 (f), respectively
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type is boundary crisis, resulted from the attractor colliding with an unstable pe-
riodic orbit that was on the basin boundary before the crisis, a chaotic is suddenly
destroyed as the parameter passes through its critical value (e.g., f ~ 2.9104fo).
The second type is merging crisis, two or more chaotic attractors, simultaneously
colliding with a period orbit (or orbits) on the basin boundary which separates
them, and merging to form one chaotic attractor (e.g., f & 2.9080 fo, 2.9087 fo,
and 2.9114fy). The last type is interior crisis, i.e., the periodic orbit with which
the chaotic attractor collision is in the interior of its basin result in the size of
the attractor in phase space suddenly change (e.g., f =~ 2.9055f;). Certainly,
here, we just list a few of cases as examples.
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Fig. 2. Detailed bifurcation diagrams of ISIs and its part enlargement, the bifurcation
parameter f being increased with step 0.0001fy (a), and bifurcation diagram of Logistic
map ;41 = rz;(1 —xz;), r € [4 ~ 2.8] (b)

The pattern of bifurcation diagram of ISI shown in Fig.2a is being very similar
to that of the Logistic map x;41 = rz;(1 — z;), its bifurcation diagram shown
in Fig.2b. Both of them have similar pattern in return map, e.g., the first return
map of them with single one-hump structure. In some cases, the single one-hump
is replaced by two one-hump pattern corresponding to two chaotic attractors,
and so on. For an example, The shape of the 12th return map (shown in Fig.3
b-e) of ISIs is four curves with multiple extremum, each of which is similar to
that of the third iterate of Logistic map.
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4 Saddle-Node Bifurcation

In this section, we aim at one of the numerous bifurcation processes collapse of
chaos to a period-12 orbit in the H-H spiking dynamics, which emerges around
f = 2.9103fp, the bifurcation diagram of ISIs of H-H model shown in Fig.3
suggests that saddle-node, period doubling and other common basic bifurcations
which underlie ISIs of H-H neuronal dynamics as Logistic map.

Seen from bifurcation diagram shown in Fig.3a, when stimulus frequency
locates within f = 2.9102f, four period-3 orbit are embedded in four chaotic
attractors, and their shapes of 12th return map IS5, 12 = F12) (ISI,) are sim-
ilar to that of the third iterate of Logistic map respectively, shown in Fig.3b-e.
Appearance of period-3 is due to three saddle-node bifurcations, giving birth to
three stable and three unstable orbits out of chaos. This phenomena can easily
be seen with graphical method. As we all know, period-3 orbit correspond to
three fixed point of the 12th return map (shown in Fig.3) in this work. Fixed
point IST* of the system IS, 12 = F(?)(ISI,) can be defined as a point of
intersection of curves IS1, 12 = F2)(ISI,) and 181,12 = ISI, (cf., Fig.3),
and its stability of IST* is defined by

|dF12(;c)| <1

=1
|dFI(L)| >1

where x represents ISIs. Fixed point I.ST* is stable, neutral or unstable if con-
dition Eq.(4) is satisfied respectively.

After stimulus frequency f is slightly greater than 2.91049 fo, the map F(1?)
has no stable fixed points and its state wanders within chaotic attractor as shown
in Fig.3b. As f keeps decreasing, the map of F(1?) is simultaneously tangent to
151,112 = IS, at f =~ 2.91049fp in 12 saddle-node bifurcation points, all
of them being neutral fixed points produced by 12 saddle-node bifurcations as
shown in Fig.3c, and then, these points split into to six stable and six unstable
fixed points as shown in Fig.3d. The stability of stable fixed points keep up to
the extremum of the parabolic passed through IS, 12 = IS, they loose their
stability via period-doubling bifurcations as shown in Fig.3e.

With f decreasing further, the system undergoes period-doubling cascade and
around the critical point f = 2.9101f; it becomes chaotic. At last, this periodic
windows is closed by interior crisis (see Fig.3a). Due to the fractal structure of
the bifurcation, there are a larger number of f, and with their chaotic attractors
the system lives on collapse, producing stable periodic orbits, such as periodic
windows locating at f = 2.9071fy, f = 2.90932f;, and f = 2.9011 fj.

5 Conclusions

The study of transitions between different dynamic behaviors in neural systems
is an issue of major interest for biophysicist. Chaos-chaos transitions will help
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Fig. 3. The detailed bifurcation diagram of ISIs, the bifurcation parameter f is in-
creased with step 0.00001fo (a), The 12th return map of ISIs for f = 2.9107fy (b),
f =2.91049fo (c), f = 2.91043fo (d), f = 2.91012f; (with a partly enlargement)(e);
the insets schematically show the emergence and disappearance of fixed points via
saddle-node bifurcations with different inputs, rectangle, black and empty circles cor-
respond respectively to neutral, stable and unstable fixed points (marked by "N, ’S’,
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us to understand how the neural system is able to give quick responses to the
different external or internal stimulus, and neuronal potential computational
and learning properties. The observation of bifurcations and cries in this work
is relevant to the theory of nonlinear dynamics and chaos, and to biophysics,
particularly to neurobiology.
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Abstract. An algorithm of Dynamic Decay Adjustment Radial Basis Function
(RBF-DDA) neural networks is presented. It can adaptively get the number of
the hidden layer nodes and the center values of data. It resolve the problem of
deciding RBF parameters randomly and generalization ability of RBF is im-
proved. When is applied to the system of image pattern recognition, the ex-
perimental results show that the recognition rate of the improved RBF neural
network still achieves 97.4% even under stronger disturbance. It verifies the
good performance of improved algorithm.

1 Introduction

RBF neural networks is one kind of feed forward neural networks. It has the advan-
tage of simple structure, powerful ability of approximation of overall situation and
quick simple training method [1,2]. So, it has been broadly applied to prediction,
signal process, pattern recognition and so on [3].

At present, generally, the method of the design of RBF neural networks can be
grouped into two categories, first, is the random selection of the data centers of the
hidden layer nodes, e.g., OLS algorithm, and ROLS algorithm [4]. The advantages of
it include easier completing and fixing the number of hidden layer nodes during the
weighted value is learning. But it can’t design the networks with smallest structure.
Second is the positions of data centers are adjusted dynamic. The advantage of it is
that it can fix the extended constant of each hidden node according to the distance
between cluster centers. The defects are that it also can’t fix the number of hidden
layer nodes of the networks and the speed of cluster process is slower [5,6]. So, find-
ing the reasonable method that can fix the number of cluster and corresponding data
centers is a problem of top concern for the design of RBF neural networks.

In order to tackle the problem above, an improved method of adjusting data cen-
ters based on dynamic decay is presented. The method overcomes the defects that
mainly depend on prior knowledge to design parameters in the former algorithm. It
can adaptively fix the number of hidden layer nodes and the center values of Gaus-
sian function. So it greatly increases the speed and accuracy of the networks. At the
same time, the improved networks is applied to the system of image pattern
recognition.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 397 -404, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 The Structure and Principle of RBF Neural Networks

RBF neural networks with topological structure is of feedforward neural networks. It
is made up of input layers, hidden layers and output layers. The function of hidden
layer nodes respond to the input signal only in local area. Only when the input signal
is near to the center area of the effective function, the hidden layer nodes will pro-
duce higher output. The Gaussian function is selected as the radial basis function in
hidden layers

2
[x=c]

) i=hzem. (1)

G =exp(—

In the formula, xis a input vector; c; is the data center of ith node’s function in
hidden layers. &, means the width of the function nearby the center point. m shows
the number of the hidden layer nodes, that is, the number of data center of the effec-
tive functions; ||x—c,. || is the norm of the vector, shows the edclidean distance be-

tween x and c;.

The output layers are linear mapping of the output data of the hidden layers when
the sum function is used as the effective function of output layers the output are

m

Ve =D wuR(x) k=12,---,p. ()
i=1

In the formula, p- the number of the output nodes, w, - the output weighted

value of the hidden layers of the radial basis networks.

There are three parameters to be processed in the RBF neural networks, that is, the
data center of Gaussian function in the hidden layers, the width corresponding to the
data center of Gaussian function and the weighted values between the hidden layers
and the output layers. The most important parameter of the three is the data center of
Gaussian function in the hidden layers. When the data center is fixed, the width of the
radial basis function is fixed according to the following expression

8 =d/2M . 3)

In the formula, d; - the largest distance between the ith data center and other data

centers; M -the number of data centers. After fixing the data center and Gaussian
function’s width, we can use methods of least square to fix the weighted value, be-
cause the relation between the hidden layers and the output layers is linear.

3 The Optimized Design of DDA Algorithm

German scholar—Berthold proposed a changeable structure dynamic RBF networks
model [7]. The topological structure of the network is adjusted dynamic in the learn-
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ing process, which is based on DDA technology. According to the space distribution
of the learning samples, the number of the hidden layer nodes, the data center and
width of Gaussian function are adjusted dynamic in the learning course [8].

First, to adjust the range of width of RBF neural networks, set two parameters, that
is, activated threshold value & and suppressed threshold value £ . When the RBF

neural networks is training, & and £ will make sure that all learning samples fall into

the range of width of the Gaussian function, that is, when a sample is inputted, if it is
in the coverage of the data center c , it will meet the following formula

G(x.—cpza G(x—c|p<p. )

In the formula: G - the output of RBF neural networks, k, je M . M - the number
of the hidden layers nodes. k # j.

The former algorithm of dynamic decay adjustment radial basis function networks
mainly depends on the prior knowledge to design parameters. In order to conquer the
defect of the former algorithm, the improved algorithm of RBF — DDA is proposed
in this paper. Because the new algorithm can adaptively fix the number of RBF hid-
den layer nodes and the center value of the Gaussian function, it can largely increase
the algorithm is as follows:

1. Initialize parameters: o and f, set the step length to p , and the time of circula-
tion. One parameter varies with step length p , the other is fixed.

2. Select one from the input samples randomly as the initial data center c;, set the
width of Gaussian function randomly 6, ,set parameter T, and order 7 =1;

3. Input the second sample (x,,y,) , calculate the output of the hidden layers

G("xi - cj") , if G("xl. -c; ") > o , then the sample (x,, y,) falls into the coverage of

the data center ¢, ; if G("xi —c j") < B, sample (x,,y,) will be the second data

center, The width of Gaussian function- €, meets the formula: G("xi -c j") <p.

4. Assume that the number of the fixed data center is M . For inputted training sam-
ple (x,,y,) randomly, calculate its output at each data center of the Gaussian func-

tions, if max (G(”xi -C j")) 2o, j=12,---,M then the sample (x;,y,) falls into the
coverage of data center of the Gaussian whose output is highest. If

max (G"xi -c j“) < /3, then the input sample ( x;,y,) will become another new data

center , C,, , whose Gaussian function’s width meet maximal
maX(G"xj —cia) < B

5. Order the fixed deta centers, adjust the of each data center ,adjust the width of each
data center , make all adjoined data centers meet the formula:

(G"xi -c; ”) < [ ,then jump(4), When all data centers don’t change, jump(6).
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6. According to the fixed parameters, construct the RBF neural networks,
calculate the error sum of squares of the output of the networks, that

is, E(T) = Z( y,=Y,)* ,T=T+1;The changeable parameter increases one step
Jjump(2).When the times of circulation is satisfied, jump (7).
7. Find out the value of the changeable parameter corresponding to the minimum of

E, then fix the value. When the minimum of E is less than required error, jump (8);
else another parameter varies with step length p ,jump (2);

8. Fix & and S, construct the RBF neural networks, output the values, the algorithm
ends.

4 Simulating Experiment

Ship recognition has attracted much attention of researchers who study on pattern
recognition. For testing the effectiveness of the improved algorithm, we take ship-
base as the subject of study, and build the mathematical model of it.

4.1 Build the Mathematical Model

First, recognize the subject, A-type ship that is one of the ship-base with thirty ships.
It is shown in Fig. 1. The moment invariants of the template are shown in Table 1.

Fig. 1. The A-type ship template

Table 1. The moment invariants of the A-type ship template

a 9, ) 9. és % 9
1.181 0.406 1.256 1.006 0.696 0.624 0.122

As the input of the network, the moment invariants of A - type ship are trans-
formed to a 7X1 column vector. The corresponding expectation output is a 30x1
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column vector. The code of the corresponding ship is 1, and the others are 0. The
corresponding output is

Y, =[000000000000000000100000000000]". (5)

Likewise, adopting this coding rule, we can get the inputs and expectation outputs
of the 29 types left. Because the value of normal random noise is between —1 and 1
randomly, we add the noise which is between 0 and 0.4 , to the 30 groups of sam-
ples. It effectively simulates the actual data with disturbance. When the number of
hidden layer nodes of the RBF network and the data center are fixed, a system of
linear equations is formed from the input layers to the output layers in the RBF neu-
ral networks. Thus we can get the output weighted values by the methods of least
square.

In addition, the outputs may not necessarily be a vector solely consisting of 0 and
1.So we adopt the competition rule, the element with the highest output value will
win the competition. While the others will fail. To the network in this paper, we set
the element with the highest output value to 1,and others to 0.

4.2 The Analysis of the Experimental Results

We respectively test random noise with the disturbance 0.1,0.2,0.3,0.4. As fig.4
shows, the vertical axis shows the error sum of square of the output vector and the
horizontal axis shows the number of tested data. As Fig. 2 shows, when the distur-
bance is lower, for example 0.1,0.2,the output can track the expectation value ex-
actly. As Fig. 2(a) and 2(b) show, when the disturbance is higher, for example
0.3,0.4,the output can’t track the expectation value exactly, that is, the fault recogni-
tion appears. It is shown in Fig. 2(c) and 2(d).
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Fig. 2. The error sum of square of the actual output and the expectation value with the different
disturbance
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To understand the recognition ability of the improved algorithm, we give the curve
which shows the recognition rate varies with the disturbance .It is shown in Fig.3.

100

o1 o0r 03 04

Fig. 3. The recognition rate of the improved algorithm varies with the disturbances

As fig.3 shows, when the disturbance is under 0.24, the system can recognize the
input data correctly. With the increasing of the disturbance, the recognition rate be-
gins to decline. The recognition rate is still 97% above although the disturbance is 0.4.
Experimental results show the improved RBF neural networks have better perform-
ance. Powerful recognition ability even in stronger disturbance is obtained.

5 Conclusions

An optimized RBF-DDA neural networks algorithm is proposed in this paper. The
optimized networks can adaptively fix the number of the hidden layer nodes and the
data center of Gaussian function. It conquers the defect that parameters to be fixed
mainly depend on prior knowledge in the original algorithm. In order to test the per-
formance of optimized algorithm, it has been applied to curve fitting and ship pattern
recognition. The experimental results prove that the learning rate and recognition
accuracy of the optimized RBF-DDA neural networks is greatly improved.
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Abstract. The problem of global exponential stability of cellular neural
networks with time-varying delays is discussed by employing a method
of delay differential inequality. A simple sufficient condition is given for
global exponential stability of the cellular neural networks with time-
varying delays. The result obtained here improves some results in the
previous works.

1 Introduction

In recent years, the stability properties of cellular neural networks (CNNs) and
delayed cellular neural networks (DCNNs) introduced by Chua et al. [1]-[2] have
been extensively studied and many global asymptotic stability and global ex-
ponential stability criteria for cellular neural networks with constant or time-
varying delays have been proposed[3]-[14]. In this paper, by making use of a
delay differential inequality, we present a new sufficient condition which guar-
antees global exponential stability of the unique equilibrium point of cellular
neural networks with time-varying delays. Since it does not assume the delay
to be differentiable, this condition is less conservative than some given in the
earlier works. An example is illustrated to show the applicability of the result
obtained here.

2 Preliminaries

The dynamic behavior of a continuous time cellular neural networks with variable
delays can be described by the following state equations:

zi(t) = —ciwi(t) + Z aij fi(z;(t) + Z bij fi(zi(t —75(t)))

+1;, i=1,2,---,n. (1)
or equivalently

* The project supported by the National Natural Science Foundation of China (grant
no. 60403001.) and China Postdoctoral Science Foundation (grant no.200303448).
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2 (t) = —Cuax(t) + Af(z(t)) + Bf(z(t — 7(t))) + I (2)

where a(t) = [21(t), -, 2n ()T € R", f(2(t)) = [fr(z1(t)), -+, fulza(t)]" €
R f(a(t —7(t)) = [fizr(t = (1)), -, fu(zn(t — T (t)))]" € R". A = {a;;}
is referred to as the feedback matrix, B = {b;;} represents the delayed feedback

matrix,while I = [I1,---, I,]7 is a constant input vector and time delays Tj are
bounded nonnegative functions satisfying 0 < 7;(¢) < 7 for all j = 1,2,---,n
The activation function f;,7 =1,2,---,n satisfy the following condition

(H) Each f; is bounded continuous and satisfies

|fi(&1) — fi(&2)] < Li|& — &

for each &1,& € R.

This type of activation functions is clearly more general than both the usual
sigmoid activation functions in Hopfield networks and the piecewise linear func-
tion(PWL): f;(x) = 5 (Jz 4+ 1| — | — 1]) in standard cellular networks [1].

Assume that the system (1) is supplemented with initial conditions of the
form

zi(s) = ¢i(s), se[-1,0,i=1,2--,n.

in which ¢;(s) is continuous for s € [—7,0].

Due to the boundedness of the activation function f;, by employing the well-
known Brouwer’s fixed point theorem, we can easily obtain that there exists an
equilibrium point of Eq.(1). Besides, the uniqueness of the equilibrium point can
be derived from the global exponential stability established below.

Suppose that (1) has a unique equilibrium z* = (27,23, - -, 2z}). Denote
1/2
o=~ smp |S It 7]
—7<s<
We say that an equilibrium point «* = (z7, 25, -, z}) is globally exponen-

tially stable if there exist constants ¢ > 0 and M > 1 such that
|z(t) — a*]] < M||p — a*[[le™", t>0

Let y(t) = x(t) — *, then Eq.(1) can be rewritten as
bi(t) = —en(t) + Z aij g5 (3 (1)) + wagj yi(t = 75() (3)

where g;(y;) = fi(y;+z;)—fi(z}), j =1,2,---,n. It is obvious that the function
g;(+) also satisfies the hypothesm (H).

To prove the stability of the equilibrium point 2* of Eq.(1), it is sufficient to
prove the stability of the trivial solution of Eq.(3).

Definition 1. [15] Let the n xn matric A = (a;;) have non-positive off-diagonal
elements and all principal minors of A are positive, then A is said to be an M-
matriz.
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The following lemma will be used to study the global exponential convergence
of (1).

Lemma 1. [16] Let 2(t) = (x1(t), 22(t), -+, 2,(t))T be a solution of the differ-
ential inequality (4).

#'(t) < Az(t) + Bx(t), t > to (4)
where
0= (o s @) st

A= (aij)nxna B = (aij)nxn- ]f :

(Hl) ai; >0 (Z 7&‘7')7171']‘ >0, 4,5=12,---,n, Z?:l xj(tO) > 0;

(H2) The matriz —(A + B) is an M-matrix.

then there always exist constants A > 0,r; >0 (i =1,2,---,n) such that

t) <7 anxj(to)ed(tft“)- (5)

j=1

3 Stability Analysis

Theorem 1. If there exist positive constants a; >0 (i =1,2,---,n) such that

Sij=—| |2 +2) L] 6y + ZZ (af; +b5)
J

j::l nxn

1,i=

0i%]
(1) is globally exponentially stable.

is an M-matriz, where 0;; = { , then the equilibrium point x* of system

Proof. Let z(t) = Jo;y?(t), calculating the z[(t) along the solution of (1) as
follows:

Z(t) = ayi(t)yi(t)
=y (t) { —ciyi(t) + Z aijg;(y;(t
+ Z bijgi(y;(t — 75(1)))
= —cioqyi (1) + Y aigi(t)ai;g;(y; (¢))

j=1

Jrzazyz bijg; yj( T(t)))
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< —ciaayi (t) + Y aiLylys(t)]]as|ly; (¢)]

Jj=1

+> i Lylyi ()16 |9 (1)

j=1

1 n
< Clalyz 2 Z L2 + a’z]y]( ))

+ Zal L2 erwyj())

= —cz—i—ZLQ azyz Zal Uy]

Jj=1

+ ZozlbwyJ

Q;
= Z —2¢; + QZL? 5@‘ + afja_ 2ajyj2(t)
=1 =1 i
- (67 1 _
DN AT
g=1 >
=> [—QCi—&-QZL? Sij + fjaf 2 (1)
=1 =1 i
S RRCAST
g=1 >
Let =, = [20i+2 > L? 8ij +afj g) , By = (SJ b2) then the above
j=1

inequality can be rewritten as

DT z(t) < Z12(t) + Za2(t)

According to Lemma 1, if the matrix & = — (57 + _2) is an M-matrix, then
there must exist constants A > 0,7; >0 (i = 1,2,---,n) such that
1 2 Loy
2aminyi (t) < Zz(t) = 2a1y1 (t)
n
S T Z Zj(to)ei/\(titn)
j=1



Global Exponential Stability of Cellular Neural Networks with TV Delays 409

Tzamax Zy_] tO Alt—to)

Thus, we have
n

yzg(t) < Gmax r; Z gjz(to)e—k(t—tu)

Qmin J=1
that is,
o 1/2
lostt) =il < (270 ) s = a0
Omin
This implies that the unique equilibrium point of Eq.(1) is globally exponentially
stable.

Remark 1. In [12]-[14], some results on the global asymptotic stability of Eq.(1)
are presented by constructing Lyapunov functional. Different from our results,
all of their results require that the delay function 7(t) be differentiable. Thus,
compared with the results presented here, their conditions are more restrictive
and conservative.

4 An Example

In this section, we will give an example to show the applicability of the condition
given here.

Ezxample 1. Consider cellular neural networks with variable delays

2y (t) = —crz1(t) + ann f (21 (1) + ara f (2(t))
+ou1f(21(t — 71(t))) + biaf (22t — 72(¢))) + L
2o(t) = —cawa(t) + aar f(x1(t)) + aza f(22(t))
o1 f(z1(t — 71(t))) + bao f(22(t — 72(1))) + L2
(6)
where the activation function is described by PWL function: f;(z) = 5 (|z+ 1| —
| — 1]).Obviously, this function satisfies (H) with L; = Lo = 1.
In (6), taking a1 = 0.5,(112 = 70.1,&21 = 0.3,(122 = 70.2;1)11 = 0.5,b12 =
0.1,b21 = 70.1,1)22 = 0.1;01 = 2.3,62 = 204, Tl(t) = Tg(t) = |t+ 1| - |t* 1| i.e.,

23 0 0.5 -0.1 0.5 0.1
“=10 20| 47|03 0.2} b= [0.1 0.1 bet o =az =1, wecan
easily check that the matrix in Theorem 1 above
—_ | 01 —0.02
- —0.1 0.03

is an M-matrix. Hence, the equilibrium point of Eq.(6) is globally exponentially
stable.
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5 Conclusions

A new sufficient condition is given ensuring the global exponential stability of
cellular neural networks with variable delays by using an approach based on
delay differential inequality. The result established here extends some in the
previous references.
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Abstract. Stochastic resonance (SR) effect has been discovered in non-
dynamical threshold systems such as sensory systems. This paper presents a
network simulating basic structure of a sensory system to study SR. The neu-
ronal network consists of two layers of the Hodgkin-Huxley (HH) neurons.
Compared with single HH model, subthreshold stimulating signals do not
modulate output signal-noise ratio, thus a fixed level of noise from circum-
stance can induce SR for the various stimulating signals. Numeric experimental
results also show that noises do not always deteriorate the capability of the de-
tection of suprathreshold input signals.

1 Introduction

Stochastic resonance (SR) [1, 2] is a counter intuitive nonlinear phenomenon wherein
transmission or detection of a signal can be enhanced by addition of a non-zero level
noise. The effect has been discovered in bistable dynamical systems [3] and non-
dynamical threshold systems [4].

Neural sensory systems are typical non-dynamical threshold systems [5, 6], thus
they have been studied to understand how biological sensory systems utilize SR to
improve their sensitivity to external inputs. Although many simulation studies on
neuron model and neuronal network model have been carried out to investigate SR [7,
8], and the results indicate that the optimal intensity of noises must be altered with the
different stimulating signals. The intensity of background noises depends on the aver-
age energy of random noises, so it is approximately constant. This is a limitation for
neural systems to utilize external noises to detect changeful signals based SR. Collins
et al. [8] investigated the dynamics of the ensemble of FitzHugh-Nagumo (FHN)
model and concluded that noises positively affect the FHN model without controlling
the intensity of noises, which means that the optimal intensity of noises is not neces-
sary to be adjusted with the change of the stimulating signals. However, the model of
Collins et al. adopted a summing network of excitable units, which includes only one-
layer so that the effect on the next layer of the network was ignored.

In this paper, a two-layer network, differing from one-layer network in afore-
mentioned papers, has been used to simulate the sensory systems. This neuronal
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network consists of the Hodgkin-Huxley (HH) model that is physiologically closer to
real neuron than the FHN model [9]. Compared with the single HH model, SR in the
two-layer network has a wider range of optimal intensity of noises for subthreshold
input signals, while the noises do not deteriorate the capability of the detection of the
suprathreshold input signals which is consistent with the result Collins obtained [8].

2 Model Description

2.1 Hodgkin-Huxley Model of Single Neuron

The HH neuronal model is a useful paradigm that accounts naturally for both the
spiking behavior and refractory properties of real neurons [10], which is described by
four nonlinear coupled equations: one for the membrane potential V and the other
three for the gating variables: m, n, and & as following:

dav

Cmg =1, —guTh(V =V, )= gen' V=V, ) =g, V=V, ) +1,+1, sin27f) + (1) (D
dm _(m_(V)—m)
da  1,(V) @
dh (h_(V)—=h)
o 3)
dt 7, (V)
dn _ (n.(V)-—n)
@ ) «@

where the ionic current includes the usual sodium, potassium, and leak currents; the
parameters gy, gx and g; are the maximal conductance for the ions, sodium and po-
tassium, and the leakage channels; Vy,, Vi and V, are the corresponding reversal po-
tentials; my(V), hy(V),n(V) and 7,(V), 7,(V), 7,(V) represent the saturated values and
the relaxation times of the gating variables, respectively. The values of parameters are
listed in the appendix of this paper.

I; sin(2 7ff) is a periodic signal with /; and f ; being the amplitude and the fre-
quency of the signal respectively. [ is a constant stimulus being regarded as the sim-
plest modulation to the neuron. &(¢) is the Gaussian white noise, satisfying <&(f)> =
0, <&(t)) &(t)> =2Dd(t1-1,), D is intensity of noises.

2.2 Two-Layer HH Neuronal Network Model

Fig.1 shows the structure of the two-layer HH neuronal network model. The first layer
network consists of N parallel neurons represented by n;;, n;;, ...n;y . The second
layer has one neuron represented by n, and act as the output part of network. The total
network has an analogical structure of sensory systems, in which the first layer can be
considered as the part of the reception and transmission of external stimulus and con-
verges on the neuron of the second layer.
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output

&N

Fig. 1. The structure of the two-layer network

The input signal / of the first layer consists of the periodic stimulating signals
sin(2 7zft) and constant stimulating signals I,. The former denotes the external stimu-
lating signals including detection information and the latter is regarded as the average
effect of the internal environment in sensory systems. Each neuron in the first layer is
subjected to the external input noises represented by &;, &,...... ,Cy » which are as-
sumed as an independent or uncorrelated Gaussian white noise. The neuron of the
second layer receives all outputs of the neurons in the first layer and the same internal
environment stimulating signals [,. The neurons in the first layer are parallel con-
nected with the second layer through a synapse. The synaptic current of the neuron n;;
is described as [11]:

I, (0 =~g,,0~)V(O)-V,,] . ®

syn syn
where a(¢t) =(t/7 )e_t/T , 85 i the maximal value of synaptic conductance, V"Xy,, is

the synaptic potential between the neuron 7, and the neuron n;; The parameters t and
t represent the characteristic time of excitatory postsynaptic potential and the firing
time of the neuron ny;, respectively. The corresponding values of the parameters are:
8syn= 2mS/cm V’U,,— OmV (=1, 2...N), representing the excitatory connection be-
tween two layers; 7=2ms; ¢ denoting the time when action potentials arrive at the
maximal value. The total synaptic currents I,,,(f) added on the second layer can be
written as:

I, (0)=(@1/ N)EN; I,(1)- (6)

3 Results and Discussion

In this section, we will discuss the single neuron case and the two-layer HH network
case. The relevant equations of two cases are solved by using a second-order algo-
rithm suggested in Reference [12] and the integration step is taken as 0.02ms.The
results of two cases are measured through the output signal-noise ratio (SNR). This
SNR is defined as 10logl0(G/B) with G and B representing the height of the signal
peak and the mean amplitude of background noise at the input signal frequency f  in
the power spectrum respectively.
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Calculating the SNR, we simplify firstly the firing pulse sequences into the stan-
dard rectangle pulse sequences (the amplitude of each pulse is ImV and the width is
2ms), and then obtain the power spectrum density (PSD) by summing the results from
the Fast Fourier Transform (FFT) of the pulse sequences. In single neuron case the
summation is done 100 times and in network case 10 times. For the two cases, we pay
attention to the relation between the intensity of input signals and noises when sto-
chastic resonance phenomenon occurs.

3.1 Results for Single HH Neuron

Firstly, let us consider the output performance of single neuron model in the presence of
the aforementioned input signal and the external Gaussian white noise. When single
neuron is subjected to the subthreshold input signal (e.g., the amplitude of the signal /;is
1 v A/cm’and the threshold of the neuron is about I;=1.4 u A/ci’.) and the noise (the inten-
sity of the noise ranges between 0 and 50), the corresponding characteristics of SR are
shown in Fig.2, i.e., the output SNR first rises up to a maximum around D=2 and then
drops as D increases. On the contrary, if the stimulating signals (e.g., in fig.2 the ampli-
tude of signal /;is 1.5 1 A/cm’) is larger than the threshold, then SR disappears. Though
SR occurs for the subthreshold stimulating signals, the bell shaped curve of SR is narrow
and the optimal intensity of the noise is restricted within small range. Fig. 3 shows that
change of stimulating signals exerts influence on the output SNR in present of fixed
intensity of noises (D=2). It can be found that the optimal intensity of noises would be
adjusted as the nature of the signal to be detected changes, i.e., the optimal detection
capacity is modulated by the different stimulating signals.

Based on the central limits theorem, the integration of a variety of noises existing
in environment can gain the Gaussian white noise with the steady variance repre-
sented by the intensity. Similarly, the noise imposed on neurons can be view as Gaus-
sian white noise with a fixed intensity. Therefore, the simulation results have been
thought to add a limitation when SR is used to detect changeful signal.

SNR (@B)

0 10 20 30 40 50
D (arbitrary units )
Fig. 2. The output SNR of single neuron varying with the intensity of noises D for I; =1 n A/cm’

(subthreshold) and I, =1.5u A/cm’ (suprathreshold), respectively. The rest parameters: I,
=1pA/em?, f=50Hz.
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SNR(dB)
=

82 02 06 08 1 12 14
1 (uATem?)

Fig. 3. The output SNR of single neuron varying with the amplitude of the subthreshold signal.
I; The rest Parameters: I,=1 u A/c’, f=50hz, D = 2.

3.2 Results for Two-Layer HH Neuronal Network

Secondly, we investigate the two-layer network described in section 2.2. The first
layer of the network has N neurons parallel coupling to a neuron of the second layer.
N neurons are subject to the common sinusoidal signal and independent noise.

Fig. 4 shows the output SNR versus the intensity of noises D in the case of N=1,
N=50 and N=100. Three curves exhibit the typical characteristic of SR: first a rise and
then a drop. Differently, the optimal intensity of noises in the case of N=50 and
N=100 varies from 1 tol0 and has much wider range than that in the case of N=1.
This means that the range and the amplitude of optimal output SNRs (the SNR corre-
sponding to the optimal intensity of noises) increase with the number of neurons in
first layer.

=]

SNR (dB)

0 1I0 ZID 3I0 4I0 50

D (arbitrary units )
Fig. 4. The output SNR of network varying with the intensity of noises D for N=1, 50 and 100,
respectively. The rest parameters: I; =1pA/em?, Iy=1pA/em?, f=50Hz.
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SNR (48}
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—e— M = single neuron
e —8- N=5&0
—&— N=100

%.2 0.4 0.6 08 1 1.2 1.4
[ {uATem®}

Fig. 5. The output SNR of network varying with the amplitude of periodic signal /; for N=1, 50
and 100, respectively. The rest parameter: D=2, I, =1pA/cm?, f=50Hz.

Fig.5 shows output SNR versus amplitude of stimulating signals /; in the presence
of the fixed intensity of noise D=2. The amplitude of signals /; varies from 0.2 to 1.5
and is lower than that of the subthrehold signals. The intensity of noises D is during
the range of the optimal intensity of noises of fig.4. In contrast with the case of N=1,
the output SNRs in the case of N=50 and N=100 has almost constant values when I;
varies from 0.5 to 1.5. Clearly, the SNR is not necessary to change with the signals
when the noise is fixed. It is suggested that the ability of sensory systems to detect a
certain range of weak (subthreshold) signals can be optimized by a fixed level of
noise, irrespective of the nature of the input signal if such a network is considered as
the basic structure of information processing in sensory systems. It is worth noting
that the two-layer network based on HH model is more close to the real nature of
sensory neuronal systems which exhibits that neurons of previous layer converge at
the synapse of a neuron of next layer though the same results as Collins et al. can be
obtained. It is convergence of the neurons that decreases the negative effect of noise
on the synapse and ensures the rationalization of SR effect.

It is also worth noting that how the output SNR of the network varies with the in-
tensity of noises when the amplitude of stimulating signals exceeds the firing thresh-
old of neuron (i.e., the suprathreshold case). Fig.6 shows the output SNR versus the
amplitude of stimulating signals /; in the presence of two fixed intensities of noises
D=2 and D=0 respectively. In order to indicate the different output characteristic
between the subthreshold and the suprathreshold, we simulate the output SNR in the
present of the stimulating signals without noise (i.e., D=0). Obviously, the su-
prathreshold case can be illustrated by occurrence of the nonzero output SNR. It need
be emphasized that noiseless case can use the concept of SNR because the output
from many neurons of the first layer can induce the randomized input of the second
layer. According to noiseless case, a vertical line in Fig.6 illustrates the position of the
threshold. For the stimulating signal with the intensity of noise D=2, two curves show
that the cooperative effect of many neurons can improve the output SNR in the case
of the suprathreshold stimulating signals.
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SNR (dB)
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Fig. 6. The output SNR of network varying with the amplitude of periodic signal /; for N= 50
and 100, D=0 and 2, respectively. The rest parameter: I,=1pA/cm?, f=50Hz.

10

{=z]

SNR (dB)
'S
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D ( arbitrary units )

Fig. 7. The output SNR of network varying with the intensity of noises D for N=1, 50 and 100,

respectively. The rest parameter: I, =1.5pA/cm?, I, =1pA/cm?, f=50Hz.

Fig.7 shows the output SNR versus the intensity of noises D in the case of N=1,
N=50 and N=100 for the suprathreshold stimulating signals (e.g., a signal amplitude I,
takes 1.5pA/cm?.). Two curves representing N=50 and N=100 demonstrate that many
neurons in the first layer can improve the output performance in contrast with the case
of N=1.This implies that many neurons employ a certain collective effect on the syn-
apse of one neuron.

Let us to analyze the mechanism that noise can enhances transmission of informa-
tion. According to the essence of SR, noises and signals have a cooperative and com-
petitive effect on the system. For single neuron in the case of the subthreshold input
signals, randomicity of noises exerts great influence on the outputs thus the optimal
intensity of SR is prone to change. For the two-layer HH network, many neurons of
the first layer can produce the summation effect on the synapse of the neuron of the
second layer, which can decrease the randomicity and increase the probability of
signal transmission. Consequently, the output SNR of the network can be improved.
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4 Conclusion

Based on the HH neuron model and a two-layer network, the effect of noises on the
sensory systems is discussed. For single neuron, the optimal intensity of noises must
adapt to the stimulating signals. It is noted that the intensity of noises has a linear
relation with the standard deviation of stochastic noises. The fluctuation of back-
ground noises is approximately stationary stochastic process with constant standard
deviation, so its intensity hardly changes. This limits the application of SR. However,
for the cooperative effect of a set of neurons, the fixed level of noise can induce SR
while the stimulating signals varying within a certain range. According to these re-
sults, the two-layer network can be considered as one of basic structure of signal de-
tection in sensory systems. It is further proved that the collective behavior of a set of
neurons can restrain the noises by analyzing the suprathreshold cases for the networks
with different quantities of neurons.
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Appendix: Detailed Parameters of HH model

Detailed values of parameters are as follows:
Vae=30mV, Vi= -77mV, V;= -544mV ; gn=120mS/cm’, gx=36mS/cm?,
g:=0.3mS/cm’ ; C,=1pF/cm’ ;
Xo(V)=al(a+ b)), t(V)=1/(a+b,) with x=m,h,n ;
a, =0.1(V+40)/(1—e" 010, b =47V
a,=0.07¢"V""0, b =1/(1+77"),
a, =0.01(V +55)/(1—">"1%), b =0.125¢""~"%.
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Abstract. A spiking neural network (SNN) model trained with spiking-timing-
dependent-plasticity (STDP) is proposed to perform a 2D co-ordinate transfor-
mation of the polar representation of an arm position to a Cartesian representa-
tion in order to create a virtual image map of a haptic input. The position of the
haptic input is used to train the SNN using STDP such that after learning the
SNN can perform the co-ordinate transformation to generate a representation of
the haptic input with the same co-ordinates as a visual image. This principle
can be applied to complex co-ordinate transformations in artificial intelligent
systems to process biological stimuli.

1 Introduction

The brain receives multiple sensory data from environments where the different
senses do not operate independently, but there are strong links between modalities
[1]. Electrophysiological studies have shown that the somatosensory cortex SI neu-
rons in monkeys respond not only to touch stimulus but also to other modalities.
Strong links between vision and touch have been found in behavioural [2] and elec-
trophysiological [3] studies, and at the level of single neurons [4]. For example,
neurons in the somatosensory cortex (SI) may respond to visual stimuli [5] and other
modalities [6]. Neurons in monkey primary SI may fire both in response to a tactile
stimulus and also in response to a visual stimulus [5].

A new interaction between vision and touch in human perception is proposed in
[7]. These perceptions may particularly interact during fine manipulation tasks using
the fingers under visual and sensory control [8]. Different sensors convey spatial
information to the brain with different spatial coordinate frames. In order to plan
accurate motor actions, the brain needs to build an integrated spatial representation.
Therefore, cross-modal sensory integration and sensory-motor coordinate transfor-
mations must occur [9]. Multimodal neurons using non-retinal bodycentred reference
frames are found in the posterior parietal and frontal cortices of monkeys [10-12].
Basis function networks with multidimensional attractors [13] are proposed to simu-
late the cue integration and co-ordinate transformation properties that are observed in
several multimodal cortical areas. Adaptive regulation of synaptic strengths within
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SI could explain modulation of touch by both vision [14] and attention [15]. Learned
associations between visual and tactile stimuli may influence bimodal neurons.

Based on these concepts, a spiking neural network (SNN) model is proposed to
perform the co-ordinate transformation required to convert a time-coded haptic input
to a space-coded visual image. The SNN model contains STDP synapses from haptic
intermediate neurons to the bimodal neurons. In Section 2, the SNN model is pre-
sented. The spiking neuron model and STDP implementation is described in Section
3. The training approach is described in Section 4. After training, the strength of
synapses between haptic intermediate neurons and bimodal neurons is obtained. A
simplified model is provided in this paper to demonstrate that neural networks based
on integrate-and-fire neurons with STDP are capable of performing 2D co-ordinate
transformation. The implication for a biological system and applications in artificial
intelligent systems are discussed in Section 5.

2 Spiking Neural Network Model for Co-ordinate Transformation

In order to simulate location related neurons in the somatosensory cortex (SI), sup-
pose that X’ and y’ are single layers of bimodal neurons that represent the Cartesian
co-ordinates of the output. A point (X, Y) at the touch area can provide both visual
and haptic stimuli that reach x* and y’ bimodal neuron layers through a visual path-
way and a haptic pathway respectively. Fig.1 shows a simplified SNN model for
building associations between visual and haptic stimuli. When a finger touches a
point in the touch area, visual attention focuses on the point and the retinal neurons
corresponding to this point are activated. These neurons provide the training stimulus
to x’ and y’ bimodal neuron layers through the visual pathway. When the finger
touches the point, the arms activate the corresponding neurons in 6 and ® neuron
layers. These stimuli are fed into haptic pathway. Actually, 6 and @ are based on
bodycentred co-ordinates, which are polar co-ordinates. The neurons in 6 and ®
layers transfer haptic location signals to the intermediate layer, and then this inter-
mediate layer transfers the bodycentred co-ordinate to the integrated co-ordinate x’
and y’ neuron layers. In the SNN model, x’ and y’ bimodal neurons have a receptive
field corresponding to the vertical and horizontal lines on the retinal neuron layer
respectively, and receive haptic stimuli from all the intermediate neurons through
STDP synapses. These STDP synapses make it possible to learn and transform body-
centred co-ordinate (0, ®@) to co-ordinate (x’, y’). The co-ordinate (x’, y’) can be
regarded as integrated co-ordinates in the brain. For simplicity, the synapse strength
from retinal neuron layer to (x’, y’) neurons is fixed. Under this situation, co-
ordinate (x’, y’) is actually the retina-centred co-ordinate. The transformation is
equivalent to transformation from a haptic bodycentred co-ordinate to a retina-
centred co-ordinate. Each neuron in the 6 and @ layers is connected to an intermedi-
ate layer within a vertical field and a horizontal field with fixed synapse strength
respectively, as shown in Fig.1.
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Retinal @) . '
neuron layer @ Vertical line

@)

Touch area

Attention 3

o 2D intermediate layer

Fig. 1. A SNN model for 2D co-ordinate transformation. (X,Y) is co-ordinate for touch area. (a)
Visual pathway: the retinal neuron layer is represented by 2D layer with 40X40 neurons that
are connected to x” and y’ neuron layer with a fixed weights. (b) Haptic pathway: L1 and L2
are arms. 0 and @ are arm angles represented by a 1D neuron layer respectively. Each 6 neuron
is connected to the neurons within a corresponding vertical rectangle in the 2D intermediate
layer. Each @ neuron is connected to the neurons within a corresponding horizontal rectangle
in the 2D intermediate layer. The neurons in the intermediate layer are fully connected to the x’
and y’ neuron layers with STDP synapses. These connections are adapted in response to the
attention visual stimulus and haptic stimulus under STDP rules.

3 Spiking Neuron Model and STDP Implementation

3.1 Integrate-and-Fire Neuron Model

The integrate-and-fire model is applied to each neuron in the SNN. In a conductance
based integrate-and-fire model, the membrane potential v(¢) is governed by the fol-
lowing equations [16], [17], [18], [19].

dv(t)

J ol
Cp pr —gl(El—v(t))+Z it 110]
J

s

. (E; —v(1)) (1)
where c,, is the specific membrane capacitance, E,is the membrane reversal potential,
Eis the reversal potential (s€ {i,e}, i and e indicate inhibitory and excitatory synapses
respectively), w'is a weight for synapse j, and A is the membrane surface area con-
nected to a synapse. If the membrane potential v exceeds the threshold voltage, v;,, v
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is reset to vy, for a time 7,,and an action potential event is generated. Fig. 2 shows
that a neuron receives spike trains from three afferent neurons.

Neuron j=1

W g() il

Neuron j O [

Neuron i

w" g"(1)

Neuron j=n
Fig. 2. Conductance based synapses connections in a SNN

The valuable g/((7) is the conductance of synapse j. When an action potential reaches
the synapse at ,,, the conductance is increased by the following expression.

g! (tap + téelay + dt) = g! (tap + tzi’elay ) + qs (2)

Otherwise, the conductance decays as illustrated in the following equation.

gl @)
dt

- —Tigj ) 3)

\)

where ¢ is the peak conductance. Neuron i integrates the currents from afferent syn-
apses and increases the membrane potential according to Equation (1). In our simula-
tion, the parameters are set as follows. /ddayzo. Vi =-54 mV. V5, =-70 mv. Ee= 0 mv.
Ei=-75 mv. q, 4,,=0.01 us. g; ,,,=0.01 ps. ¢,=0.002 ps. ¢;=0.002 ps. El=-70 mv. g,
=10 us/mm’. ¢,=10 nF/mm®. 7,=3 ms. =10 ms. A,=0.028953 mm’. A,=0.014103
mm”.

3.2 STDP Implementation Approach

In order to perform STDP learning in the SNN, the implementation approach in
[20],[21] is applied. Each synapse in an SNN is characterized by a peak conductance
g, (the peak value of the synaptic conductance following a single presynaptic action
potential) that is constrained to lie between 0 and a maximum value ¢g;_,,,.. Every pair
of pre- and postsynaptic spikes can potentially modify the value of ¢,, and the changes
due to each spike pair are continually summed to determine how ¢, changes over
time. The simplifying assumption is that the modifications produced by individual
spike pairs combine linearly.

A presynaptic spike occurring at time £, and a postsynaptic spike at time £,,,, mod-
ify the corresponding synaptic conductance by



424 Q. Wu et al.

qX 9 qX + qAY_max F (At) (4)
where At = t,,, - 1, and
A At/t)), if At>0
Fan={ Aot )
—A_exp(At/7_), if At<0

The time constants 7, and = determine the ranges of pre- to postsynaptic spike inter-
vals over which synaptic strengthening and weakening are significant, and A, and A_
determine the maximum amount of synaptic modification in each case. The experi-
mental results indicate a value of 7, in the range of tens of milliseconds (about 20
ms). The parameters for STDP are set as follows.

qs max= 0.01, A, =0.01, A.=0.005, 7.=20 ms, 7=100 ms.

The function F(A4t ) for synaptic modification is shown in. Fig. 3.

0ar b

% FlAf)

el
-0 80 B0 -40 0 20 0 20 40 60 g0 100

Fig. 3. Synaptic modification

4 Learning and Simulation Results

This network can be trained using an unsupervised approach. When a finger touches a
point in the touch area, the haptic stimulus triggers (0, @) stimuli that are fed into the
haptic pathway. At the same time, the visual attention focuses on the tip of the finger
and this position signal is transferred to (x’, y’) neuron layer through the visual path-
way. The STDP synapses between intermediate layer and (x’, y’) neuron layer are
trained under STDP rules. The finger randomly touches different points for a Poisson
distribution period with a mean of 20ms. The STDP synapses from the intermediate
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layer to (X°, y’) neurons can adapt synapse strength in response to the stimulus and
form a weight distribution for association between haptic and visual training stimuli.
By repeating the finger touching within the whole touch area randomly, the weight
distribution is adapted in response to the haptic and visual stimuli and reaches a stable
state after 800s training time. The weight distribution is shown in Fig. 4. The stimuli
are represented by Poissonian spike trains whose firing rate is drawn from a Gaussian
distribution. The centre of the stimulus corresponds to the finger position within the
touch area.

I,earninvg'r. t=0s f:{bﬂs t:Zl'dOs rzléhﬂs
A. Weight distribution of STDP svnapse from intermediate laver neurons to v’-Neuron 29.

I,eamil;;;r t=0s t=lv(').0§ t=4ll}.)09 f;f.iﬂ()s
B. Weight distribution of STDP synapse from intermediate layer neurons to y’-Neuron 40.

Fig. 4. Change of weight distribution during STDP learning. During the learning process, the
weight distribution is recorded each 100s time interval. The distributions at moment 0, 100,
400, and 800s are shown in row A for y’-neuron 29 and row B for y’-neuron 40. Colour yellow
indicates maximal weights.

In our experiments, 40 neurons are employed to encode O and @ layers respec-
tively. 1600 neurons are applied to the 2D intermediate layer and training layer re-
spectively. 80 neurons are applied to x’ and y’ layers respectively. After training, (x’,
y’) neurons can respond to both visual and haptic stimuli. When the visual pathway is
blocked, (x’, y’) neurons respond only to haptic stimulus at the correct position, i.e.
(6, @) layers and the intermediate layer can perform a co-ordinate transformation
from the bodycentred co-ordinate (6, @) to co-ordinate (x’, y’). If two Poisson proce-
dure spike trains with bell-shaped distributions are fed into the (8, @) layers respec-
tively, the responses of (x’, y’) neurons, representing the result of the co-ordinate
transformation, are shown in Fig.5.
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Fig. 5. Co-ordinate transformation from bodycentred co-ordinate (8, ®) to co-ordinate (x’, y’).
One Poisson spike train stays at 0 = 180° for 8000ms. Another Poisson spike train stays for
200ms in sequent positions at ®=0°, 9°, 18°, ...360°. The changes of (0, ®) correspond to the
finger moving along a circle with radius L. The output x” = L (Sin(0) — Cos(®)), y’=L(Cos(6)
+ Sin(®P)).

5 Conclusion

In the presented SNN model, the network is trained by the arm angles of the haptic
stimuli position fed to the input layer, and a position signal, which is regarded as a
supervising signal, fed to the output layer via the visual pathway. The strength of the
synapses between the intermediate layer and output layer is trained under the STDP
learning paradigm. A firing rate encoding scheme is applied in the network. The input
stimulus is represented by Poissonian spike trains whose rates are drawn from a two-
dimensional Gaussian distribution at the input layer and a one-dimensional Gaussian
distribution at the output layer. The conceived network is able to perform a 2D coor-
dinate transformation by learning the Cartesian coordinates (x, y) from the angular
positions of the haptic stimulus. The network is more robust and provides better noise
immunity than classical neural networks as even if some of the neurons do not work,
the network can still perform the transformation function. The model can provide a
biologically plausible approach for designing artificial intelligent systems.
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Abstract. This work presents a model of minimal time-continuous target-cell
specific use-dependent short-term synaptic plasticity (STP) observed in the pyra-
midal cells that can account for both short-term depression and facilitation. In
general it provides a concise and portable description that is useful for predicting
synaptic responses to more complex patterns of simulation, for studies relating
to circuit dynamics and for equating dynamic properties across different synap-
tic pathways between or within preparations. This model allows computation of
postsynaptic responses by either facilitation or depression in the synapse thus
exhibiting characteristics of dynamic synapses as that found during short-term
synaptic plasticity, for any arbitrary pre-synaptic spike train in the presence of
realistic background synaptic noise. Thus it allows us to see specific effect of the
spike train on a neuronal lattice both small-scale and large-scale, so as to reveal
the short-term plastic behavior in neurons.

1 Introduction

Among the various hallmarks in brain science, memory and learning are the most re-
searched because they transmute a brain into a mind. Learning & memory demands
the exploration of two levels of modeling computation in neural systems: level of in-
dividual synapses & spiking neurons, and the network level i.e., overlap of neurons in
ensembles and the dynamics of synaptic connections. The signalling between neurons is
central to the functioning of the brain, but we still do not understand how the code used
in signalling depends on the properties of synaptic transmission [1]. Generally neurons
communicate with each other primarily through fast chemical synapses. Such synapses
have action potential (AP) generated near the cell body that propagates down the axon
where it opens voltage-gated Ca®" channels. The entering Ca* ions trigger the rapid
release of vesicles containing neurotransmitter, which is ultimately detected by recep-
tors on the postsynaptic cell [2]. Short-term synaptic plasticity refers to this change in
the synaptic efficacy on a timescale that is inverse to the mean firing rate and thus of
the order of milliseconds (ms) [3]. The experimental observation that forms the basis of
the short-term plasticity [2] lies in the fact that the transmission of an action potential
across a synapse has influence on the postsynaptic potential (PSP) induced by the sub-
sequent spikes [3]. One of the vital features of short-term plasticity is the dependence
of the steady-state amplitude on stimulation frequency (Table 1). Also the amplitude of
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Table 1. Popular types of short-term plastic behavior

Type Onset Decay
Fast Facilitation 1-5 spikes  10-100 ms
Fast Depression 1-10 spikes 100 ms -1 s
Slow Depression > 10 spikes >1s
Augmentation 1-10 spikes 1-5s

Post-tetanic Potentiation (PTP) > 10 spikes >35S

the postsynaptic response is proportional to the probability that a synapse transmits a
given presynaptic spike. Refs. [4,5, 6] have shown that the synaptic transmission prob-
ability for a presynaptic spike train of frequency 7 is approximately proportional to i
forr > 10— 20 Hz.

Typically, the synapses of most artificial neural networks are static, in the sense that
the single value characterizing it remains fixed except on short timescales. The model
implemented here adds to our understanding of how neural circuits process complex
temporal patterns. It is the balance between the facilitation & depression of the synaptic
strength in short time scales, that determine the temporal dynamics and the basis for
each computation in the synapse.

2 Computational Model

To acquire the coarse grained character of the neuronal dynamics, we compute the post-
synaptic current (PSC) using a detailed compartmental model of a hippocampal neuron
(based on the data from ModelDB [7]) depicting the phenomenological model of pyra-
midal neocortical neurons [1]. The NEURON model (basic network structure depicted
in Fig. 1) formalism used in this work broadly describes the data on short-term plastic-
ity [4,1,5,6,2] and, at the same time, is compact enough to be incorporated easily into
network models. STP, in particular depression & facilitation strongly influence neuronal
activity in cerebral cortical circuits. Facilitation & depression mechanisms in a synapse
are quite interconnected as stronger facilitation will lead to higher utilization of synap-
tic efficacy which subsequently leads to stronger depression. When receiving high fre-
quency input, as during a presynaptic burst, a depressing synapse will only transmit the
onset of the signal efficiently. Synapses which are facilitating, on the other hand, will
transmit the signal with increasing strength, until a maximum is reached some 30-300
ms after burst onset.

Synaptic short-term plasticity is shown through the proper quantification of features
of the action potential activity of the presynaptic neurons and populations transmitted
in pyramidal cells and interneurons [1,5,6,4,2]. Refs. [1,5] & [6] have also shown the
derivation of mean-field dynamics of neocortical networks to understand the dynamic
behavior of large neuronal populations. This work facilitates description of neuronal
dynamics by calculating the postsynaptic current (PSC) generated by a neuronal lattice
with a particular firing rate in response to both deterministic & Poisson spike trains.
It is important to note that the coupling strength between two neurons depend on: no.
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Fig. 1. The neural network in NEURON

of release sites (n), probability of release of a vesicle following a presynaptic action
potential (AP) (p) & some measure of postsynaptic response to a single vesicle (g).

We start with a simple implementation to display STP behavior of a dynamic synapse
by producing three sub-models with the synapses implemented with conduction changes
rather than current sources [5] because real synapses are associated with conductance
changes. The models concentrate on:

1. Layer V pyramidal neuron interaction to show the effect of depression

2. Layer V pyramidal neuron to an inhibitory interneuron interaction to show the ef-
fects of facilitation

3. Layer V pyramidal neuron to an inhibitory interneuron interaction with different
model dynamics to show the effect of facilitation & early depression

It is vital to be aware of the fact that it is experimentally quite difficult to isolate the
response of a single synapse, and the data have become available just very recently [8].
The results are quite startling. Those single synapses (synaptic release sites) in the Cen-
tral Nervous System (CNS) exhibit a binary response to each spike from the presynaptic
neuron - either the synapse releases a single neurotransmitter filled vesicle or it doesn’t
respond at all. In the case when a vesicle is released, its content enters the synaptic cleft
and opens ion channels in the postsynaptic membrane, thereby creating an electrical
pulse in the postsynaptic neuron. To capture this realism, the model incorporates both
deterministic & probabilistic model for the dynamic synapses.

2.1 Model Mechanism

Deterministic Dynamic Synapse Model: The deterministic dynamic synapse model
is based on the idea of finite amount of resources available for transmission. Each presy-
naptic spike, at time ¢, activates a fraction of resources (Usg , utilization or synaptic
efficacy). This then inactivates within few milliseconds (time constant of 7;,, ) and re-
covers about 1 second later (time constant of 7,... ). The important biochemical reac-
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tions, including second-messenger systems, synaptic release, and enzymatic cascades
are partly described by the following kinetic equations:

dx z

gt = - —Uspz(tsp — 0)6(t — tsp)
dy Yy

dt = *Tm + USEI(tSp - O)5(t — tsp)

‘ff =Y _ 7 (1
t Tin Trec

where x, y & z are the fractions of resources that are recovered, active and the inactive
respectively. The PSC (I4(t)) is proportional to the fraction of resources in the active
state (Aspy(t)). The parameter Agp is the absolute synaptic strength, which is de-
termined by activating all the resources. Ugg determines the dynamics of the synaptic
response [5]. The fraction of synaptic resources available for transmission is determined
by the following differential equation,

dR (1-R)
= —Usg.R.6(t —tsp). 2
dt Troe SE ( p) ( )
The amplitude of the postsynaptic response at time %), is a dynamic variable given by
the product PSR (Postsynaptic Response) =As g * R(tsp).

The chemical kinetics represented by (1) doesn’t include facilitating mechanism
which is only evident in synapses between the pyramidal neurons and inhibitory in-
terneurons. Short-term facilitation is through the introduction of a facilitation factor. It
increases by the advent of each spike and in the same time decays in between the spikes.
Hence for this change, we need to assume that Ug g, is not fixed but rather increased by
a certain amount due to each presynaptic spike. This running value of Uggis referred to
as U é g - Generally, an increase in Usg would mean an accumulation of calcium ions
caused by spikes arriving in the presynaptic zone. If we take an example of a simple
kinetic scheme, in which an AP causes a fraction of Ugg calcium channel to open, that
later closes with a time constant of 74, the fraction of opened calcium channel is
then determined by the current value of UZ . . The final kinetic equation then becomes

UL Ug
djE Z_TSE, + Usp(1—=Ugg)d(t — tsp). 3
facil

Usg determines the increase in the value of UL, due to each spike and coincides with
the value of UL, reached upon the arrival of the first spike [5]. The iterative expression
for the value of U}, reached upon the arrival of the n*" spike, which determines the
response according to (1) is:
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U™ = U (1 = Ug ) exp(—0t ) Tfacit) + Usp

EPSCpi1 = EPSCy(1 — USE)Q*&/TTEC
+ASE.USE(1—€75t/T7‘ec)7 )

where 6t is the time interval between nt" and (n + 1)""spikes. If the presynaptic neu-
ron releases a regular spike train (as that shown in the first stage of the simulation) at
frequency r, then Ugg reaches a steady state value, as shown in (5). Hence in this ki-
netics, UL, becomes a frequency-dependent variable, and Us g is treated as the kinetic
parameter characterizing the activity-dependant transmission of this particular synapse.
It is evident that Ugg is responsible for determining the contribution of facilitation in
generating subsequent synaptic responses. Smaller values of Ugg display facilitation
but this is not observed for higher values of Ugg.

Usk
. 5
1—(1—-Ugg)exp(=1/rTracit) ©

We know that there are an infinite number of ways by which a neuronal population
can fire relative to each other. These are usually Poisson processes. The equations for
regular spike activities can be adjusted for Poisson processes as under:

U IR0
d<ZfE> == <Zj:jl> +Usp(l = (Ugp))r(t)
(Usp) = (Usg) (1 = Usp) + Ugp- (6)

Here, r(t) denotes the Poisson rate of the spike train for the neuron at time t.<U§ E>
is the average value of Ul just before the spike. Depressing synapses are described
by (6) with fixed value of Ul . To make the model simpler it is assumed that the
inactivation time constant 7;,, is faster than the recovery time 7,.. . This assumption is
made to adjust the biological data found in pyramidal interneuron synapses. To find the
postsynaptic current, we simply use:

d;? - —iyz (UL (@) (L), %

To account for the timescales that are slower than 7;,,, (7) can be reduced to

Y= rTmUéE (x). ®)

Probabilistic Dynamic Synapse Model: The probabilistic model (accounts for the
inter-trial fluctuations) is based on the deterministic model — the probability of a vesi-
cle at release site, P, is similar to the fraction of resources available, R in the determin-
istic model. The probability of release of docked vesicle in the former is also analogous
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to the fraction of available resources in the latter. The kinetics of the probabilistic model
is represented by

dp, (1-DP,)
= —Ugg.P,.0(t —t,
dt Trec SE ( v)

P.(tsp) = Usg.Py. )

P, (ts,) represented the probability of release for every release site [9].

Mean-Field Network Dynamics: Though this study facilitates computation of the
postsynaptic responses of facilitating and depressing synapses for any arbitrary presy-
naptic spike train, it becomes challenging when the need of mean-field equations for de-
scribing the neocortical dynamics of large networks arises. The firing rates of a closed
population of neurons with two sub-populations of cortical pyramidal excitatory & in-
hibitory interneurons, where each of the population can be considered as a cortical col-
umn having neurons with similar receptive field (RF) properties [5] can be formulated
using (10) & (11).

dE, -
3 =—E, JEE e — JE g, 4 TE), 10
Te dt +g(; rr y’l" rr y’l”’l" + ’I") ( )
dI, o L ,
A Jie yie _ Jii gt 4 ]i), 11
Ti +g(§: Y yo, +17) (11)

E,.(I,) is the firing rate of the excitatory or the inhibitory sub-population located at r,
g(x) is the response function which is assumed to be monotonously increasing,

JS¢ 1s the absolute strength of the synaptic connection between excitatory neurons
located at r and 7’ times the average number of such connections per postsynaptic
neuron, and

I¢(I7) is the external input to the excitatory (inhibitory) population.

2.2 Model Dynamics and Implementation

The NEURON implementation is based on the synchrony generation model [5, 6]. The
basic scheme is:

1) x — y (Instantaneous, spike triggered) & the increment here is u * x. Here, x is the
fraction of “synaptic resources” that has “recovered” (fraction of transmitter pool that
is ready for release, or fraction of postsynaptic channels that are ready to be opened,
or some joint function of these two factors) & y is the fraction of “synaptic resources”
that are in the “active state”. This is proportional to the number of channels that are
open, or the fraction of maximum synaptic current that is being delivered.

T . . « . » . “: . »
2) y— z, z is the fraction of “synaptic resources” that are in the “inactive state”.
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Fig. 2. Relationship of resource pool to that of the spike amplitude

3) z %z, where z + y + z = 1. The synapses represent a conductance change. Active
state y is multiplied by a synaptic weight to compute the actual synaptic conductance
(or current, in the original form of the model). Additionally, facilitation term u that gov-
erns fraction of x, is converted to y on each synaptic activation. It should be noted that
u is incremented before «x is converted to y. If w is incremented after x is converted to
y then the first synaptic activation after a long interval of silence will produce smaller
and smaller postsynaptic effect as the length of the silent interval increases, eventually
becoming vanishingly small.

4) — u (Instantaneous, spike triggered). This happens before x is converted to y. In-
crement is U * (1 — u) where U and u both lie in the range 0 - 1.

S5)u Tlag (Decay of facilitation).

This implementation for NEURON offers the user a parameter »0 that has a default
value of 0 but can be used to specify a nonzero initial value for u. When 77405 = 0,
u is supposed to equal U. Note that the synaptic conductance in this mechanism has
the same kinetics as y i.e., decays with time constant 7;. This mechanism can receive
multiple streams of synaptic input and each stream keeps track of its own weight and
activation history.

3 Result

This model illustrates a viable means to account for the dynamic changes in the post-
synaptic response resulting from the timing of pre-synaptic inputs under a constrained
synaptic transmission i.e., an amount of neurotransmitter is used each time the pre-
synaptic cell is stimulated, it then recovers with a particular rate & probability, binding
the amount of neurotransmitter to post-synaptic receptor, resulting in a PSR.
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Fig. 4. Post-synaptic response is proportional to available resources

The amplitude of the spike is dictated by the amount of resources available. After
a spike has occurred, the resources follow the same recovery equation, increasing the
pool available for the next spike as shown in Fig.2. Ugg is analogous to the probability
of release in the quantal model of synaptic transmission. A comparison of this is made
in Fig.3. The PSR on the other hand, is directly proportional to the amount of available
resources (Fig.4).

The probabilistic model on the other hand, accounts for the trial-to-trial fluctuations
in observed synaptic responses. Each release site has at most one vesicle available for
release with a release probability of Ugg. A comparison of the probabilistic value to
that of the deterministic one can be noted in Fig. 5 for different number of vesicles.
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4 Discussion

This theoretical study looks into a simplistic view of single responses from neocor-
tical synapses & their usage in encoding temporal information about the presynaptic
spikes.Typically information is potentially represented by a combination of two mech-
anisms. Rate coding allows the information to be conveyed by the average firing rate
of pre-synaptic input. The problem with this type of coding is that it is possible for
completely different distributions of spikes to result in the same mean firing rate. On
the other hand, in temporal coding the information is conveyed by the timing of the pre-
synaptic input. The PSR is influenced by the interspike interval (ISI). In all these effort,
it is seen that the secondary dynamics of the network is quite rightfully portrayed by
short-term plasticity. This work also captures the short-term activity-dependent changes
in the amplitudes of the PSR that characterize different types of synaptic connections.
Probabilistic models (classical quantal) were used for studying the behavior of single
synapses whereas, the deterministic ones were generally used during the study of big
neuron population. In fact, in the big networks having probabilistic transmission does
not qualitatively change the behavior of the network. Variability of quantal response am-
plitudes of single CNS synapse is taken into consideration and hence we assume that
the PSR to the release of each vesicle (g) is not a constant value but has a Gaussian
distribution with mean ;. and variance 0.

The model captures the fact that the common induction protocol with repeated pair-
ings of pre- and post- synaptic spikes in a specific temporal relation does not change the
scaling factors i.e., the weights or the synaptic efficacy of the amplitudes of the Excita-
tory Post Synaptic Current (EPSP), but rather the synaptic release probabilities U for the
first spike in the spike train. An increase of this parameter U will increase the amplitude
of the EPSP for the first spike but it tends to decrease the amplitudes of the following
EPSPs. The typical manifestation of this short-term, adaptation mechanism is the rapid
decrease in the successive values of EPSPs induced by a fast, regular pre-synaptic train,
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until a stationary value of the EPSP is reached. After no pre-synaptic spikes occur for
about 1 second, the full, maximum EPSP is ‘recovered’. The functional significance of
this study remains to be clarified in future. The temporal coding capability of dynamic
synapse in the model supports evidences of temporal code for information processing
in the neocortex. The model draws attention towards the quantification of features in
AP activity of the presynaptic neurons and in the same time allows us to instigate fur-
ther analysis by deriving novel mean-field equations for understanding the dynamics of
large neocortical networks.
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Abstract. To realize mutual association function, we propose a
hippoca- mpus-neocortex model with multi-layered chaotic neural net-
work (MCNN). The model is based on Ito et al.’s hippocampus-cortex
model (2000), which is able to recall temporal patterns, and form long-
term memory. The MCNN consists of plural chaotic neural networks
(CNNs), whose each CNN layer is a classical association model pro-
posed by Aihara. MCN N realizes mutual association using incremental
and relational learning between layers, and it is introduced into C'A3
of hippocampus. This chaotic hippocampus-neocortex model intends to
retrieve relative multiple time series patterns which are stored (experi-
enced) before when one common pattern is represented. Computer sim-
ulations verified the efficiency of proposed model.

1 Introduction

The experimental studies on physiological and anatomical suggest that memory
functions of brain are executed in neocortex and hippocampus [1,2,3,4]. Although
the mechanism of learning and memory is not understood completely, the process
of memorization can be considered roughly as: sensory receptor — sensory mem-
ory (in primary cortex) — short-term memory (in neocortex) — intermediate-
term memory (in a dialogue between the hippocampus and the neocortex) —
long-term memory (in neocortex) [1,3,4,7]. Based on the knowledge of facts in
nature, Ito et al. proposed a hippocampus-neocortex model for episodic memory
[5,6], and a hippocampus-cortex model for long-term memory [7]. Meanwhile,
as chaotic phenomena are observed in neurons activity, there have been many
chaotic neural networks were proposed for decades [8,9,10,11,12,13,14,15,16]. For
chaotic memory systems, especially, there also exit chaotic neural networks
(CNN) given by Aihara and his fellows [10,11], transient-associative network
(TCAN) given by Lee [14], advaced Aihara’s models and their applications
[12,13,16], and so on. These models provide auto-associative function, recall in-
put patterns as short-term memory.

Though all facts of neocortex, hippocampus and the communication between
them are understood poorly, recent researches show the important role of hip-
pocampus in the formation of long-term memory in neocortex [3,4]. Here, we
assume there is a chaotic circuit in C A3 of hippocampus, and improve Ito et

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 439-448, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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al.’s model [7] using a multi-layered chaotic neural network (MCNN)[16]. The
new chaotic model provides one-to-many retrieval of time-series patterns by its
incremental and relational learning between chaotic neural network (CNN) lay-
ers. So it is able to realize mutual association which exists in the humans brain
but the mechanism is not understood yet.

2 Model

2.1 Model of Ito et al. [7]

The original hippocampus-cortex model of Ito et al. is presented by Fig. 1 [7].
The signal flow of the system is: input patterns (Input layer) — sensory memory
(Cortex 1) — short-term memory (Cortex 2) and intermediate-term memory
(DG) — Hebbian learning (CA3) — decoding (CAl) — long-term memory
(Cortex 2). The long-term memory are stored in Cortex 2 at last, and as output
of system,the stored temporal patterns are recalled when one of the patterns is
represent as input. We repeated computer simulation of this model and obtained
the same results as Ref. [7]. When we presented an input pattern which was
stored in two different time-series patterns, however, the system failed to retrieve
two temporal patterns correctly. The reason could be considered that energy of
internal state function dropped at a convergence point corresponding to the
input pattern.

et @QOOQP

i i —
— B...? j@@ @@@% on e B...? jﬁ)(ﬂb @D@Q%‘E on

Association Cort H
sociation Cortex ippocampus Assotiation Cortex Hippocampus

Fig. 1. Structure of hippocampus- Fig. 2. Structure of a chaotic model
cortex model proposed by Ito et al. of hippocampus-neocortex proposed
(2000) here

Meanwhile, there are many other remarkable approaches of theoretical stud-
ies for associative memory [10,11,14]. Classical chaotic neural models are able
to retrieve stored time-series patterns by external stimulus. However, the re-
trieval is a dynamical short-term memory. Considering the ability of exchanging
short-term memory into long-term memory function of hippocampus [1,2,3,4],
here we introduce a multi-layered chaotic neural network (MCNN) [16] into
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Output Layer

(@)

Fig. 3. Proposal structure of C A3 layer model: (a) Multi-layered chaotic neural network
(MCNN); (b) Connections between MCNN layers

conventional hippocampus-cortex model to realize mutual association of differ-
ent time-series patterns (one-to-many retrieval). The new chaotic hippocampus-
neocortex model is expected to form long-term memory in neocortex.

2.2 MCNN [16]

For real neurons active far more complicatedly than artificial neurons construc-
tured with simple threshold elements, chaotic neural models are proposed also
[10,11]. To realize mutual association function, for instance, the formation of con-
ditional reflex (Ivan Pavlov), we proposed to combine multiple classical C NN
layers as an associative model MCNN (Fig. 3). In MCNN, neurons on each
CNN layer and between the layers connect each other completely, and the dy-
namics is as follows:

zit+1) = f(yit+ 1) + 2zt + 1) +v- vt +1)) (1)
yi(t + 1) = kryi(t) — azi(t) + a; (2)
zi(t +1) = kyzi(t) + Z wijx;(t) (3)
vi(t+ 1) = ke (t) + i W:]:C(t) (4)

where z;(t): output value of ith neuron at time ¢, n: number of input, w;;: con-
nection weight from jth neuron to ith neuron, y;(¢): internal state of ith neuron
as to factory, z;(t): internal state of ith neuron as to reciprocal action, v;(t):
internal state of ith neuron as to reciprocal action from another layer, a: thresh-
old of 7th neuron, ks, k,, k.: damping rate, a;: item given by the summation
of threshold and external input, v: the rate of effectiveness from another layer,
W connection weight from jth neuron of another layer to ith neuron, z} (t):
output value of jth neuron of another layer at time ¢. The connection weight w;;
is define as:
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m

wy= (22l (et 1) (5)

p=1

where, 2?: ith element of pth stored pattern(0 or 1), m: number of stored pat-
terns. The input-output function is as follows:

_ 1—exp(—x/e)
@)= 1+exp(—x/e) (©)

where, ¢ is a constant.

When a new pattern is input to MCN N, an additive storage is executed on
each CNN layer through a; (i = 1,...,n). After states of the system store the
pattern, Hebb learning, Aw;j, is executed as:

1
Awij = mxizj (7)

here, m is a number of the stored patterns.

The connection weights, W12 and W21 relate patterns between what stored in
different layers of MCNN. Usmg relatlonal Hebbian learning, a 2-layer MCN N,
for example, stores the time-series patterns as:

W12 B-xia?, VV21 G- 171256]1 (8)

, where, (3 is the learning rate, z} is output value of ith neuron of CNN1, 27 is
output value of ith neuron of CNN2.

2.3 Chaotic Model of Hippocampus-Neocortex

Hippocampus is considered availably an exchange organ between short-term
memory and long-term memory [3,4]. Long term potentiation (LT P), phenom-
ena observed in C'A3 layer of hippocampus especially, maybe give the key of
long-term memory formation. Here, we propose a chaotic model of hippocampus-
neocortex by introducing MCN N into C'A3 of Tto et al. model (Fig. 2). Neurons
on each layer of MCNN accept signals from DG, then provide output of sparse
representation from its Output layer to CAl. The dynamics of this model will
be described in this section.

Association Cortex. The dynamics of association cortex (Left of Fig. 1) is
described as same as Ito et al. model [7] :

_J 1. excitatory
L) = {0 - -+ inhibitory (9)
w{m (1) = Li(t) (10)

N
1’?12 (t) _ f <Zj_0 wzc]ac2 c12$§m2(t _ 1)
+ wcx2-cxlxgxl(t) + wcx?~cl (t)xgl (t) _ ecx) (11)

3 3
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here, I;(t) : ith input number, z¢*1(¢): output of ith neuron in CX1, 2§*2(t):
output of ith neuron in CX2, w§f*“**: weight of connection from jth to ith
neuron in CX2 (variable), w ca2 C””l. weight of connection from CX1 to CX2
(fixed), w?<l: weight of connection from C' Al to CX2 (fixed), x¢!(¢): output
of ith neuron in C'A1 in hippocampus, 6*: threshold, N: number of neurons in
CX1 and CX2, f: step function.

The learning of connection weights in C X2 is according to Hebb rule:

AwgP o = ape - 2f" (4)2§" (t — 1) (12)

where «ay,. is a learning rate.

Hippocampus

- DG
Competition learning is executed in this layer. The input from association
cortex is exchanged into internal states (pattern-encoding).

N
k = arg max Z wdg'mxjﬂ (t) (13)
i =
dg random -+ - initial
z;(t) = f (Zj\f o wdg cwl jzl gdg) .- usual (14)
The learning rule of connection weight from CX2 to DG w dg @ g,
Aw dt] cx2 _ ﬁ he - L ( )m;IQ(t) (15)

. Here, By is a constant, ap. < Bpe.
- CA3

Feedback connections exist in C' A3, and they result association function like
Hopfield model. Ito et al. noticed in this respect, however just presented the
dynamics of C'A3 by a step function only. We suppose chaotic memorization
phenomena exist in CA3, and apply MCNN which provides mutual asso-
ciation on C'A3 layer. By learning of C'A3 (self-feedback connections), the
intermediate patterns are formed.

n

k= argmax Y _ wiFortennt (2267 (1) — 1) (16)
k3 =0
or
k = argmax Z wiFeu e (2253 () — 1) (17)

7=0
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s = {0 (18)

where,
wff"“t ennl: weight of connection from jth neuron of CNN1 layer
to ith neuron of Output layer in C A3
WOt : weight of connection from jth neuron of CN N2 layer
to ith neuron of Output layer in C A3
¢ (t) < output of ith neuron of CN N1 layer in C A3 (given by 1-4)

7

x¢"2(t) : output of ith neuron of CNN2 layer in C A3 (given by 1-4)

7

239U (t) : output of ith neuron of Output layer in C'A3.

For time-series patterns are stored in MCNN alternatively, CNN1 layer
and CNN2 layer are excitative alternately, Eq. 16 and Eq. 17 are adopted
alternatively. This structure intends to result mutual association like suc-
cessful behavior of bidirectional associative memory model (BAM).

The rule of learning of self-feedback connection weights is

Aw? = B - afP ()2 (t — 1), (19)
Here, B, is as same as DG, n is number of neurons in hippocampus.
CAl

Internal states in hippocampus is decoded into output patterns. The input
from association cortex performs as a teacher signal.

Z ,wcl -c3 c3 wcl-clx§ml(t) —pt| . (20)

From C'A3 to C'A1, connections wfjl'C?’ learn according to

Awfjl'CB = Bhe - xfl (t)a:f’ (t). (21)

Computer Simulation

3.1 One-to-Many Time-Series Patterns

We

define One-to-many time-series patterns retrieval as : there is a same pat-

tern exists in different time-series patterns, and by representing the pattern to
associative memory model (proposed chaotic model of hippocampus-neocortex,
at here), all patterns in the different time-series are recalled as output of system.
Fig. 4 shows input patterns in two time-series, where the first pattern is common
Pattern A, are used in our computer simulation. Each time-series (Time Series
A and Time Series B) includes 4 orthogonal patterns. An input pattern is pre-
sented temporally to model, and with more than 1 interval, it is classified to be
from different time-series (Fig. 5).
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The purpose and process of computer simulation of proposed model is described

as follow:

— Input time-series patterns whether and how to be processed in model: To
Cortex 1 layer, external stimulus is time-series patterns described in last
section. DG transforms sensory pattern into internal state in hippocampus.
CA3(MCNN) compresses the signals of DG, stores internal states in dy-
namical networks and outputs in simple forms. C' A1 decodes the signals from
Output layer of MCNN(CA3).
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Fig. 4. Time-series patterns for one-to-many retrieval

~

— Long-term memory whether and how to be formed in model: To repeat
to input a holding pattern, which is a common pattern exists in different
time-series, to form intermediate term memory in C'A3 and Cortex 2, and
long-term memory becomes to be stored in Cortex 2 at last. The repetition
stimulation can be considered as long-term potentiation (LT P) like-hood
phenomenon which is observed in brain.

— One-to-many time-series patterns retrieval result: After different time-series
patterns are presented, and a common pattern represented, whether pro-
posed chaotic model retrieves all patterns or not.

3.3 Parameters

Parameters of proposed model in simulation is given as follow:
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N =50 : number of neurons in association cortex
n =30 : number of neurons in hippocampus
wiFerl = 1.0 : weight of connection from Cortex 1 to Cortex 2
wffZCl =1.0 : weight of connection from hippocampus to Cortex 2
ape = 0.0015 : learning rate in association cortex
Orhe =1.0 : learning rate in hippocampus

63 =0.5 : threshold of neuron in C A3 layer
6t =05 : threshold of neuron in C A1l layer

S =0.07 :maximum correlation between random patterns
6% =55 : threshold of neuron in DG

€ =0.15 :slope of sigmoid function

v =03 : influential rate from other CN N layer in C'A3

3.4 Result and Analysis

Fig. 5 shows memory storage processes and retrieval results of proposed model in
computer simulation.There were three kinds of patterns retrieved in 86 iterations
when orthogonal patterns were presented as order as Fig. 4 showed. The rate of
different result is as:

— result in case 1 (Fig. 5): Time Series A stored as a long-term memory
and retrieved when common patern presented. The process of encoding and
decoding was also shown in the Fig. 5.

— result in case 2 (Omitted): Time Series B stored as a long-term memory
and retrieved when common pattern presented.

— result in case 3 : (B(Omitted): Time Series patterns stored confusedly,
and failed to retrieval correct time-series pattern when common pattern pre-
sented. The reason of confusion can be observed on TIME A stage in C'A3
(Output layer of MCN N), where same situation occured for different time-
series patterns signals from DG.

The ratio of these different kinds of retrieval is shown in Tab. 1. We also repeated
computer simulation of Ito et al. model using the same time-series patterns (Tab.
1). Time Series B could not be stored as long-term memory for confusion with
Time Series A which was input before.

Table 1. Simulation result: retrieval rate for one-to-many time-series patterns

Kind of retrieval case 1 (TimeSeriesA) case 2 (TimeSeriesB) case 3 (Failed)
Convetional Model 0.0 0.0 100.0
Proposed Model 60.0 6.0 34.0
unit : (B[%]
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4 Conclusion

A chaotic hippocampus-neocortex model is proposed. By combining conventional
chaotic neural networks, a multi-layered chaotic neural network (M CN N) is in-
troduced into a conventional hippocampus-cortex. The proposed model is able to
not only convert short-term memory to long-term memory, but also realiz mutual
memorization and association for one-to-many time-series patterns. Computer
simulation verified the efficiency of proposed model.

Acknowledgments. A part of this work was supported by MEXT-KAKENHI
(No.15700161).
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Abstract. In most neural network models, neurons are viewed as the only com-
putational units, while the synapses are treated as passive scalar parameters
(weights). It has, however, long been recognized that biological synapses can
exhibit rich temporal dynamics. These dynamics may have important conse-
quences for computing and learning in biological neural systems. This paper
proposes a novel stochastic model of single neuron with synaptic dynamics,
which is characterized by several stochastic differential equations. From this
model, we obtain the evolution equation of their density function. Furthermore,
we give an approach to cut the evolution equation of the high dimensional func-
tion down to the evolution equation of one dimension function.

1 Introduction

In most neural network models, synapses are treated as static weights that change
only with the slow time scales of learning. It is well known, however, that synapses
are highly dynamic and show use-dependent plasticity over a wide range of time
scales [1]. Moreover, synaptic transmission is an inherently stochastic process: a spike
arriving at a pre-synaptic terminal triggers the release of a vesicle of neurotransmitter
from a release site with a probability that can be much less than one. The diverse
types of synaptic plasticity and the range of timescales over which they operate sug-
gest that synapses have a more active role in information processing. Long-term
changes in the transmission properties of synapses provide a physiological substrate
for learning and memory, whereas short-term changes support a variety of computa-
tions [2]. In this paper, we present a novel stochastic model to descript the single
neuron model which considers the synaptic dynamics. This stochastic dynamics
model is characterized by several stochastic differential equations, from which we get
the evolution equation of density function. Moreover, we reduce the density function
of high dimension to one dimension.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 449 -455, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Models and Methods

2.1 The Integrate-and-Fire Model Neurons and Synaptic Dynamics

The integrate-and-fire (IF) model was introduced long ago by Lapicque (1907). Due
to its simplicity, it has become one of the canonical spiking renewal models, since it
represents one of the few neuronal models for which analytical calculations can be
performed. It describes basic sub-threshold electrical properties of the neuron. It is
completely characterized by its membrane potential below threshold. Details of the
generation of an action potential above the threshold are ignored. Synaptic and exter-
nal inputs are summed until it reaches a threshold where a spike is emitted. The gen-
eral form of the dynamics of the membrane potential v(7) in IF models can be written
as

dv_ v

0 +ZS O+LO+L); 0<v<l, (1)

v k=l

where z, is the membrane time constant, S; is the synaptic current, N is the number of

synaptic connections , I, is an external current directly injected in the neuron, I, is the
fluctuating current aroused by noise and assume it is a Gaussian random process

I,=0,®, (2)

where &) is a Gaussian random variable satisfying <¢&()>=0 and
<& & )>=0(t-1) , and o, characterizes the amplitude of the noise. The trans-

membrane potential, v, has been normalized so that v = O marks the rest state, and v =
1 the threshold for firing. When the latter is achieved v is reset to zero.

The postsynaptic currents have a finite width that can be of the same order of mag-
nitude or even larger than the membrane time constant. An accurate representation of
synaptic inputs consists of an instantaneous jump followed by an exponential decay
with a time constant z, . The realistic models of the synaptic current can be described

by the following equation:

ds, S,
T ——=+J (H(t-1,) , 3)

where J, (r) is the efficacy of synapse k in mV (amplitude of the postsynaptic poten-

tial), 1, is occurring time of the firing of a pre-synaptic neuron, the sum over i corre-
sponds to a sum over pre-synaptic spikes of each synapse. In reality, J,(s) act in ac-

cordance with complex dynamics rule. In recent in vitro studies it was found that the
short-term synaptic dynamics in the neocortex are specific to the types of neurons
involved. For example, pyramidal-to-pyramidal connections typically consist of de-
pressing synapses, whereas pyramidal-to-interneuron connections typically bear fa-
cilitating synapses [3], [4], [5]. We use the phenomenological model by Markram et
al. [4] to simulate short-term synaptic plasticity:

@:m_Fk(nD’(([)ﬁu_t\p) s (4)

dt
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and

ﬂszrUa_Fk(t))é(t—tm), ()

dt (5

where Dy is a ‘depression’ variable, D, € [0,1], F} is a ‘facilitation’ variable, F, € [0,1],
U is a constant determining the step increase in F}, r, is the recovery time constant,
and 7, is the relaxation time constant of facilitation. The product D,F} is the fractional

amount of neurotransmitter available at time ¢. Each firing of a presynaptic neuron,
occurring at time f,,, decreases the ‘depression’ variable Fy by DF, and increases the
‘facilitation’ variable w by U(l — F;). The amplitude of the postsynaptic response
(PSR) J,(r) at time ty, is therefore a dynamic variable given by the product

J,()=AF.(1)D, (1), (6)

where A is a constant representing the absolute synaptic efficacy corresponding to the
maximal PSR obtained if all the synaptic resources are released at once.

2.2 Diffusion Approximation

Neurons usually have synaptic connections from tens of thousands of other neurons.
Thus, even when neurons fire at low rates, a neuron receives a large amount of spikes
in an interval corresponding to its integration time constant. If we assume these inputs
are Poissonian and uncorrelated and the amplitude of the depolarization due to each
input is small, we can use the diffusion approximation [6]. The equations (3), (4) and
(5) can be approximated by

as, _ S -
a0 sk<r>+Jk<zM¢+Jk<z>ﬁkei<z>’ o
M, ()= T, (04 + T (DA E (1)
and
dD, (1-D,)) . . (1=D,(t))
it 28 —_ = —[F.()D F (t)D
" . nl (1) . [F()D, ()4, + F, () k(r)ﬂs‘k(m’ ®
7 () = F,(0D (0 + F(DD,(0JA4,6,(0)
and

dF _W=ED) iy = U=ED) | - By, +00- EoAE ()
a 7, , 9)
! (1) =U(1~F,(0)A +U(1~F,OWAE )

where 4, is the mean intensity of the kth synaptic input, & (s) is a gaussian random
variable satisfying <& (1)>=0 and <& ()& (t)>=5,6(t-r) . We can prove 7(t) ,
n! () andn/(r) share identical first and second order statistics with I, Dy, and F. Dy is

taken as an example. Considering a small time interval(s , since t;, obey Poissonian
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distribution, J:+ ’Fk(t')Dk(t')ﬁ(t'—tb\_p)dt' equal to F,(rD,(r) with probability az4, , and

equal to zero with probability (1-az4,), then we have

< [ E@D )3 1, )dr >
lim —=

2150 at

+al d , ,
< [Mnt@hdt >
<[t

at

= F(OD, ()%, = lim

and

+at +al
. ([ F@D )8 1, )dry > =< [ F@)D()8 (1 -1, ) >
A}H}) at
+at +al 2
<([ni@hdry > —< [l s?

at

= (F,(0D,(14,)’ = lim

10)

1)

From equation (1), (2), (7), (8) and (9), we can write out their Ito stochastic differen-

tial equations:

dv = (—iv(t) +1,(1)+ isk(l‘))dt +0,& (ndt =K di +0,dW,(1)
7, k=1

K, = —iv(l‘) +1,(1)+ isk(z)
T, k=1

and
ds, = (—@ + AF, (1)D,(1)4,)dt + AF, () D, (DA, £ (Ddt = K di + 75 dW, (1)
K, =— S"T(%) + AF, ()D, ()4, s
o, = AF, {;)Dk<z)\/2
and
dD, = [w —F,(1)D, ()4, 1dt — F, (t)Dk(t)\/ka(t)dt =K, dt— Oy, aw, (1)
K, =(1_fA—Fk(t)Dk(t)ﬂk )
oy =F, (r)I,)k ONA
and
dF, = [M +U(-F . ()A1dr+U(1— Fk(t))\/ka(t)dt =K, dt+ oy, dW, (1)
f
k, = -,
f

o, =U(-F, ()4,

The Fokker-Planck equation of equations (12)~(15) is given by[7]

12)

13)

(14)

s)
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Ip(.S.DF) _ 7{

% f<1<p>+z[7g<&p)+ <KDp>+ (qu)]}

2

1
{ ~(o}p)+ z[asz(“*””ap- ,)Ap)+aF_(th)]} , (16)

0
{;[as aF( 50nP)" as, aD( 5.00P) BFBD( b “p)]}

where p(v,S,D.F) is the joint distribution density function, S=(S,S,,....Sy) »
D=(D,.D,,...D,), F=(F,F,...F,).

2.3 Reduce to One Dimension

The dimension of joint distribution density p(v,S,D,F) is huge, and is discommodi-

ousness for us to analyze its performance. Sometimes, we are more interesting the
density evolution of membrane potential v, so, in what following, we discuss how to
get the density evolution equation of membrane potential v.

Due to

P8, D,F)=p,(S,D,FIv)p,(v), A7)
and
J.pz(S,D,FIv)deDdF:I, (18)

substituting (17) into (16) yields:

9 9
p.% P2 ap' =—{—(K p.pz)+;p, as — (K, pa)+ (K,)Apa)+a (thz)]}
A 9° 9°
{ )+,{Zpl s, 2(cr;pz)+aD h(okaq)+aF2(aqu)]} . (19)

2 »
{Zp, 35,0, 0nP) T 5e o n (05 Tn ) = BFBD( ”pz)]}
k=1

Integrating with S,D,F in (19) two side and using equation (18) we can get

dp, 9 o’ 9
1 — P v
= =5, B o5 () (20)
where
P = J'K‘,pzdeDdF. 21)

Because ¢& (1) (k=1,..,N) are uncorrelated, then we have
N
pS.D.F 1) =[] p5(S,. D F 1v) . (22)
k=1

MOreOVer, W€ can assume
Py (S D F 1v) = pi(S,. Dy, F) (23)
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From (13), (14) and (15), we can get the Fokker-Planck equation of p(s,,D,.F,),

k
ap4(Sk’Dk’Fk) =— i(Ks p:)'*'i(Kn ,04)+7(Kr,04
aS,\ k a k 3

ot
22 92 pe e k (24)
{85 : (O-Skp4)+aD - (O-I)Ap4)+aF2 (O-I'kp4 )} aS aD 350 C b, s‘p“) W(O—u‘aﬂpﬂ
Since
PE(S D, F) = pE(S, 1 D E)pt (D, F) 25)
substituting (25) into (24) yields:
J apt
4 g;(v o4 g = {Psg( Skp6)+ (Kkaip(’)-‘—i(Kﬂpipﬁ)}
k az (0- ) (0.2 k 1«)+ (O_z k A) 26
aSZ Skp(’ kz b, Ps Ps an £PsPs) ([ - ( )

Gl Ch -
aS BD ——— (o, Op, Skp5p6)+aFaD ( D‘O-FAPSP())

Integrating with s, in (26) two side and using normalization condition we can get

a k
%:-{ ( kai)+ (Krkpi )}
5 . (27)
{BDZ( ukps) an( l-kps)} aFaD —— (o, 1)A I-Api)
Because of 7, <7, and 7y <7,, we can assume [8]
oD, as, OF, oS,
62 k 82 k al k 52 k (28)
Ps 9 Ps Ps 9 Ps
oD? a8S.?’ OF*  6S.}
k k k k

Then from (26), (27) and (28), and omitting the small terms of high order, we obtain

a k
%: ( 5P o 2852( S‘pﬁ ' (29)
.
If we adopt the adiabatic approximation [8], apt ¢ =0, we have
0 19
=*£(Kskp§)+gasz(0§kp§). (30)
k k

From (12), (21), (22), (23) and (25), we have

P = V(t)+1(z)+zjs (OpL(S, |D,,F)ps(D,,F,)dS,dD,dF, . 31)
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If we have solved the value of P from (27), (30) and (31), substituting it in (20), we

can immediately get the probability density evolution equation of the membrane po-
tential v.

3 Conclusion

In this paper we have presented a novel model to descript the single neuron model
using the stochastic differential equations. The model has considered the synaptic
dynamics. We adopt the diffusion approximation and get the Ito stochastic differential
equations from which we can obtain the Fokker-Planck equation to descript the evolu-
tion of joint distribution density function. However, the dimension of joint distribu-
tion density, p(v,S,D,F), is huge and is discommodiousness for us to analyze it. For

obtaining the evolution equation of the density function of membrane potential v, we
adopted the adiabatic approximation and other approaches to approximation. Tis
model is useful for us to analyze the behavior of neural system, such as neural coding,
oscillations and synchronization.
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Abstract. Spiking Neural Networks (SNNs) use inter-spike time coding to pro-
cess input data. In this paper, a new learning algorithm for SNNs that uses the
inter-spike times within a spike train is introduced. The learning algorithm uti-
lizes the spatio-temporal pattern produced by the spike train input mapping unit
and adjusts synaptic weights during learning. The approach was applied to clas-
sification problems.

1 Introduction

Spiking Neural Networks (SNN) can be considered as the third generation of ANNS,
after multi-layer perceptron neural networks and neurons which employ activation func-
tions such as sigmoid functions [10]. The latter two types of neural networks use syn-
chronized analog or digital amplitude values as inputs. SNNs do not require a synchro-
nizing system clock (although they may use a local synchronizing signal) and utilize
input inter-spike time data to process information. An SNN is composed of spiking
neurons as processing units which are connected together with synapses. A spiking
neuron receives spikes at its inputs and fires an output spike at a time dependent on the
inter-spike times of the input spikes. Thus, SNNs use temporal information in coding
and processing input data. Synaptic spike inputs with only one spike per each input
synapse during a given time window are called spatio-temporal inputs. A synaptic input
which consists of a sequence of spikes with various inter-spike intervals (ISIs) during
a given time window is called a spike train. The ISI times within a spike train has a
much larger encoding space than the rate code used in traditional neural networks [11].
Accordingly, the processing efficiency of SNNs can be higher than traditional rate code
based ANNs for most applications.

Learning how to recognize the temporal information contained in spike trains is
the main goal of this research. The literature is scant regarding this area of research.
Some SNN learning models have been proposed in the past which make it possible to
process spike trains in close to real-time [8], [9], [12], [13]. However, these models used
recurrent networks and a large number of synapses which needed a relatively long time
to map and process input spike trains. In this paper, a new learning algorithm for spiking
neurons which use spike trains inputs is proposed. This learning algorithm utilizes the
input spike mapping scheme, described in [1],[2], and input synapses with dynamically
changeable weights.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 456-465, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Learning Algorithm for Spiking Neural Networks 457
2 Spiking Neural Network

The spiking neuron model employed in this paper is based on the Spike Response Model
(SRM) [6] with some modifications. Input spikes come at times {¢;...t,, } into the input
synapse(s) of a neuron. The neuron outputs a spike when the internal neuron membrane
potential 2 (t) crosses the threshold potential ¥ from below at firing time ¢; = min{t :
x;(t) > ¥}. The threshold potential ¥ is assumed to be constant for the neuron.

The relationship between input spike times and the internal potential of neuron j
(or Post Synaptic Potential (PSP)) x;(¢) can be described as follows:

n

zi(t) =Y Wialt—t;), o)

i=1

ot
T

el (1)

1 represents the 7th synapse, W is the ith synaptic weight variable which can change the
amplitude of the neuron potential x;(t), ¢; is the ith input spike arrival-time, «(t) is the
spike response function, and 7 represents the membrane potential decay time constant.

In this paper, the «(t) function is approximated as a linear function for ¢t << 7. It
then follows that the internal neuron potential Equation 1, can be re-written as:

t n
Ij(t) = - ZWlu(tftl), t<n 2)
L1
u(t) is the Heaviside function and 7 = ¢

3 Mapping-Learning Scheme for Spiking Neural Networks

A one-to-one correspondence between input spike trains and output spike firing times is
necessary for the learning algorithm proposed in this paper. By selecting an appropriate
set of synaptic weights for a neuron, a particular spike train or a set of spike trains which
belong to the same class can be distinguished by the output firing time of the neuron
because of the one-to-one correspondence between the input and output. The combined
mapping-learning organization is shown in Figure 1.

Learning is performed in two stages: (1) The mapping stage is composed of neural
mapping units (MUs) as shown in Figure 1. This stage was described in [1],[2] and it
is used for mapping the input spike train(s) into unique spatio-temporal output patterns.
The one-to-one relationship between the inputs and outputs of the mapping stage was
proved in Appendix A of [2]. (2) The learning stage consists of several learning units
(LUs) as shown in Figure 1. The learning stage receives the spatio-temporal output
pattern produced by the mapping stage. Each learning unit is composed of sub-learning
units as shown in Figure 2(A). Each sub-learning unit (e.g LUA1) takes inputs from one
mapping unit (MU) as shown in Figure 2(B). As shown in Figure 2(B), the outputs #;
and ¢ from the mapping unit are input into the sub-learning unit ISI blocks. The ISI
block performs the same function as the ISI block used in the mapping units used in
[11,[2]; the learning unit IST block input synaptic weights are assigned using W; = 3.t;
and W; = 5 for the ISI1 and ISI2 blocks respectively. It should be noted that in a
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learning unit there are 2n ISI blocks where n is the number of input spike trains. A
one-to-one mapping between inputs and outputs is also necessary in the learning unit.
The ¢, reference time input shown in Figure 2(A) is used as a local reference signal
for the combined mapping-learning organization shown in Figure 1. The coincidence
generation (CG) neurons in a sub-learning unit perform the function of aligning their
output spike times. When all CG neurons in an LU fire simultaneously, the coincidence
detection (CD) neuron fires.

Past learning algorithms for spiking neural networks such as back-propagation
(SpikeProp) [4], self-organizing map (SOM) [15], and radial basis function (RBF) [14]
used synaptic weights and delays as well as multiple sub-synapses as the learning pa-
rameters. The learning algorithm proposed in this paper can perform learning in one
step and utilizes only synaptic weights for learning. Hence, the proposed algorithm is
simpler than past approaches and more practical to implement in hardware.

3.1 The Learning Algorithm

The spatio-temporal patterns generated by the ISI1 and ISI2 blocks in the mapping
stage, described in [1],[2], are used as inputs for the learning stage where a supervised
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learning method is used to classify input patterns. Clustering of input patterns which
belong to the same class is achieved by setting the synaptic weights for a learning unit
(LU) so that its output fires at approximately the same time for as many input spike
trains as possible that belong to the same class.

The supervised learning algorithm works as follows:

1. Choose an input pattern vector (say P4) at random from the set of P, = (Pa, Pg,
....) pattern vectors to be used for the learning phase. Each pattern P, consists of
the spatio-temporal outputs generated by the mapping stage. The randomly chosen
pattern P4 is used to assign weights to all the ISI blocks in a learning unit. This
learning unit will represent the class to which pattern P4 belongs. Once the weights
have been assigned, they are temporarily fixed. The weights selected for the initial
input pattern works as a center vector which can later be modified slightly to ac-
commodate more than one input pattern; in this manner, similar input patterns can
then be clustered together and fewer learning units will be needed.

2. Another input pattern (say Pp) belonging to the same class as pattern P4 chosen in
step 1 above is selected. This new pattern is applied to the learning unit for P4 and
the output of the ISI blocks times for Pg {tout1, tout2, ---» toutan | are compared
against the output times for Pa{t}, 11, t5 .19, -t outon }- This new pattern (Pg) is
assigned to the learning unit (e.g. learning unit for P4) with which each of the
output times differ by less than e.

[touer — tout1] <€ [toun —tourz] <€

R and [t} 100 — toutan] < € (3)

out2n

€ is a small error value determined empirically. If the error is larger than e for any
one of the error conditions in Equation 3 , a new learning unit is added as is done
in incremental learning.

3. Steps 1 and 2 are repeated for all the remaining input patterns in the learning set
P

In this learning scheme, all input spike train samples used for learning must be known
a priori. However, the total number of learning units (clusters) which will be needed for
classification with clustering cannot be known a priori. It may be possible to cluster m
input patterns belonging to one class into a single learning unit (cluster) or as many as
m learning units may be needed.

This learning scheme is similar to the algorithm proposed in [14] but without the
need for synapse delays. This could help to make the model more practical for an IC
circuit design implementation. Furthermore, each synapse in the model is not composed
of multiple sub-synapses as proposed in [3], [14] and this leads to a reduction in com-
plexity.

The proposed learning algorithm produces locally optimal input clustering because
the input patterns for a given class are sequentially chosen at random; the consequence
of this is that a larger neural network than necessary may result.

3.2 Learning Unit Output Time Uniqueness

A one-to-one relationship between inputs and outputs for each of the learning units
must be achieved in order to guarantee that each learning unit outputs a spike at a time
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which is different from the output times corresponding to other inputs. This one-to-
one relationship will be shown using one MU and one sub-learning unit. When a new
pattern (e.g. pattern Pg with MU output times ¢ and ) is input into a sub-learning
unit within an LU which had its synaptic weights fixed during the learning of pattern
P the following will result: ({t2,,1, 12,0} # {tB,,1,t5, 5}, where t,,; is the output
firing time of an ISI block. This can be proved by contradiction:

Assume that Pp produces the same tq,41 O Toy12 as P4. For the moment, £,,,¢1 and
toute Will not be distinguished and they will simply be referred to as ;.

Then the internal neuron potentials z;(t) (Equation 2) for P4 and Pp at time #,y4
can be written as follows:

2 2
Z WA u(t — 1) = Z WA u(t —tP) )
i=1 =1

WiA’s are the synaptic weights which have been fixed for the learning unit P4. Two
different input patterns P4 and Pp producing an identical output at time ¢,,,; can occur
only if the neuron internal potential z;(t) for one of the input patterns becomes equal
to the other input pattern’s neuron internal potential (at ¢2) and then both increase at

identical rates until crossing the threshold potential ¥ at time ¢, as shown in Figure 3.
For the IST1 block, WA = 3.t#*; Equation 4 can be rewritten as follows:

t _ u(t—t5) —ult —t3)

= (5
ta u(t — ) —u(t —tP)
For the ISI2 block, WiA = f_A ; thus Equation 4 can be rewritten as follows:
i u(t =t —u(t —t8
1 ( 1 ) ( 1 ) (6)

ty u(t—tF) —u(t—13)

Equations 5 and 6 can have a solution only if #{* = 4 which cannot happen because 2
distinct spikes output times from the mapping unit are assumed'. In other words, if the
ISI1 block outputs a spike at the same ¢,,,; time for both P4 and Pp, the ISI2 output
times will be not equal and vice versa.

U4 = ¢ can happen only if an input spike train consists of only two spikes at times 0 and 1
when the input spike train time window size is assumed to be equal to 1.
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3.3 Firing of Only One Learning Unit

Assume that patten P4 was learned by the learning unit A(LUA) and that patten Pp
was learned by the learning unit B (LUB). Assume that the sub-learning units LUA1
and LUBI get inputs from the same mapping unit (MU). If pattern Py is input into both
LUA1 and LUBI, the neuron internal potentials for LUA’s ISI1 or ISI2 and LUB’s IST1
or ISI2 will increase according to equation 2. If t2,,; = t5,, = tou1 and t2,,, =

tOBth = toute are assumed, the following relationship will be established:
2 2
Sowiut—t) => Wlaut—t) (7)

=1 i=1

The only way for LUA1 and LUBI to produce an output spike at the same 1 (tout2)
time is to have the following condition satisfied:

2 2

Y wi=> wr ®)
=1

i=1

Thus, if the condition specified by Equation 8 is not satisfied by any one of the sub-
learning units, only one of the learning units will respond to an input pattern. The learn-
ing algorithm has to include a checking phase to guarantee that the condition specified
by Equation 8 is not satisfied.

3.4 Coincidence Detection Neuron

In order to have only one learning unit fire for a given input pattern, output times of
the C'G neurons in the sub-learning units (Figure 2(A)) have to be made coincident by
changing the input synaptic weight values of the coincidence generation (CG) neurons.
The coincidence detection neuron (CD), shown in Figure 2(A), uses the exponential
response function (Equation 1) of a spiking neuron.

The outputs of the ISI1 and ISI2 blocks of each sub-learning unit (Figure 2(A)) fire
at certain times according to the assigned synaptic weight centers. The other patterns
which have been joined to the same learning unit cause the outputs to fire at times which
are close to the ones corresponding to the center pattern. The coincidence detection
neuron threshold value 1 is adjusted so as to allow some fuzziness in the input spike
times.

3.5 Local Reference Time

In section 3.2 it was proved that the output combination {¢,u:1, tout2 | for the ISI1 and
ISI2 blocks will be unique for each sub-learning unit; however, the relative time |t 11 —
toutz| should also be considered for all the sub-learning units of different learning units
(LUs). In other words, two different sub-learning units in two different learning units
can fire at different output times, ¢,,1 and t,,¢2, but the relative time |tout1 — touro|
may be the same; this would lead to two (or more) learning units firing outputs for the
same input pattern. Thus, a reference time (bias) ¢, input is necessary to differentiate
these outputs as shown in Figure 2(A). This reference time ¢, is the time when the first
input spike arrives at one of the mapping stage inputs.
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4 Simulations

4.1 Realization of the XOR Function

Due to its nonlinearly separable input characteristics, a two-input exclusive OR (XOR)
function has often been used to test the function approximation or classification capa-
bility of a neural network [7]. The XOR problem has non-linearly separable classes.
One of these classes is represented by x;x5 inputs 00 and 11. The other class is rep-
resented by x5 inputs 01 and 10. The logical inputs ”0” and 1" are represented by
spikes at times O and 0.1 respectively in Table 1. The spike time can be defined with
any appropriate unit of time (e.g. ms, ns).

For a spiking neural network, the inputs 122 = 00 and ;25 = 11 are not dis-
tinguishable in the time domain because the inputs are not referenced to a clock. Thus,
in order to distinguish the z12x9 = 00 and z;29 = 11 cases, a third reference (bias)
input z9 = 0 is used as shown in Figure 4. Thus, the logical input z122 = 00 and
xlz2 = 11 can for example be distinguished in the time domain as ”0sec, Osec, Osec”
and ”0sec, 0.1sec, 0.1sec” respectively.

As describes in section 3.4, each learning unit in conjunction with a coincident de-
tection neuron generates a spike when the appropriate spatio-temporal pattern is input.

Learning Coincidence
units detection
neurons

Final output

0
1
1

Fig. 4. Spiking neural network for XOR function. Details of learning unit also shown.
Table 1. XOR Input spike times (including the bias) and output times

Input Patterns Coincident firing time Final output time

00 0 1.464 4
00 01 1.910 2
001 O 1.910 2
001 0.1 3.013 4
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The XOR neural network organization is shown in Figure 4. The final output neuron,
shown in Figure 4, is used to represent the XOR output value in the time domain (e.g.
output time = 2 corresponds to the logical output ’17).

4.2 C(lassification of Spike Trains

The robustness of the learning algorithm was tested using a set of randomly generated
spike trains as inputs. These spike trains were generated by adding noise to the original
spike trains. Noise consisted of input spike shifts in time or addition/deletion of spikes
within a spike train. These types of noise are realistic since a correct spike sequence
can be altered by short-lived interferences. Spike time skews were produced by adding
Gaussian white noise (GWN) to the spike train, or by time shifting one or two spikes in
a spike train randomly. The deletion/addition of spikes was also done randomly.

The spike trains used in the simulations were generated using Poisson distributed
inter-spike intervals [5] at a low frequency. By injecting various amounts of GWN into
a spike train, noisy time shifted versions of the original spike trains could be generated
as shown in Figure 5, where spike train number 1 is the original spike train for each
class.

Each of the generated spike trains shown in Figure 5 was used as an input to the
mapping stage (shown in Figure 1). The spatio-temporal pattern output from the map-
ping stage was then used as an input to the learning stage. The mapping stage used
multiple mapping units with different 3 values in the range of [0.25,1.0] in order to
increase the input dimension of the learning stage.
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x

X xx x x
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x XXX X x xx

x X X x x
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x X XX x x

x % x x X

x X xx x x
1 1 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Spike Train Number
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x % % X x %
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X X X X

XX

IS
T

XX

XX

o
T

x
x
X
x
x xx
x

x % s X X
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xx
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.

Time (S)

Spike Train Number

S

Fig. 5. Three classes of input spike trains. The original spike train for each class is spike train
number 1 and the other five trains are noisy versions of it.
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Table 2. Input spike train classification, clustering, and final output times

Class No. Learning unit # # Learning patterns # Test patterns Final output time

1 1 5 5 4.0
2 1 -

2 3 4 3 5.0
4 2 2

3 5 4 3 6.0
6 2 2

After generating the noisy versions of each of the original spike trains, all the pat-
terns including the noisy patterns were used as a learning set. The closer the noisy
versions were to the original spike train, the likelihood of being able to use an already
assigned learning unit increased.

The learning and input pattern clustering simulation results are shown in Table 2.
For example, for the three classes a total of six clusters were needed. For input class 1,
learning unit 1 was used for clustering five input patterns and learning unit 2 was used
for clustering one input pattern. Similar clusterings were possible for classes 2 and 3 as
shown in Table 2.

After the learning phase was completed, additional noisy spike trains for each of the
three classes were used to test the neural network. These additional noisy spike trains
are called test patterns in Table 2. The testing phase spike trains were generated with
the same range of noise used during the learning phase. For example, for input class
3, three input patterns were recognized by learning unit 5 and two input patterns were
recognized by learning unit 6. Similar test patterns recognition were possible for classes
1 and 2 as shown in Table 2.

A final output neuron (refer to Figure 1) is used to represent the final output time
value for each of the three classes as shown in Table 2.

5 Conclusions

Spiking neural networks can be used to process time domain analog real world signals
once these signals have been converted into spike trains. A new learning algorithm for
spiking neural networks was proposed. After learning, the resulting spiking neural net-
work could classify input spike trains. Simulations have shown that incremental learn-
ing for classification learning of input spike trains with noise could be achieved by either
adding learning units or clustering. The learning algorithm is relatively simple when
compared with other neural networks learning algorithms such as back-propagation.
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Exponential Convergence of Delayed Neural
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Abstract. Several new conditions for exponential convergence of DNN
were proposed in this paper. These conditions guarantee the existence
and uniqueness of equilibrium of DNN with certain different activation
functions. To demonstrate the differences and features of the new criteria,
some remarks are presented.

1 Introduction

There are a great of research activities associated with different stability prop-
erties of neural NN(see, for example,[1,2,3,4,5,6,7]). However, most of the early
work just discussed the asymptotic stability and exponential stability without
delayed parameters. During the last few years, a large number of papers ad-
dressed the problems of exponential stability with delay parameters([4,5]).

In this paper, we provide two new results for exponential convergence of
equilibrium of DNN with different activation functions, and activation functions
herein may not be bounded.

2 Preliminaries

We consider the following delayed neural networks(DNN):

dx(t)

P —Dux(t) + Ah(z(t)) + Bh(z(t — 7)) + U (N)

where x(t) = (x1(t),22(t), -+ ,2,(t))T € R™ is the state vector, D = diag(ds,
dg,- - ,dy) is a positive diagonal matrix, A = (a;;)nxn and B = (b;;)nxn are the
n x n matrices, h(z) = (hi(21), ha(w2), -, hn(7,))T : R® — IR™ denotes the
neuron activation vector function, and U = (uy, uz,--- ,u,)?T € IR" is a constant
vector, while 7 > 0 is the delay parameter.

A continuous function, h : IR — IR is said to be of class H(«) if (i) h is an
increasing function; (ii) there exists a positive constant o > 0 such that for any

* This work is supported by the Natural Science Foundation of China under grant
10271035 and by the Foundation of HIT under grant 2002.53.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 466-469, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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p € IR there exist two numbers ¢, > 0 and a, > 0 satisfying |h(6) — h(p)| >
qp|0 — p|™ whenever |6 — p| < a,. For example, h(p) = p, h(p) = arctan(p), and
h(p) = [1 —exp(=Ap)]/[1 + exp(—Ap)](A > 0) are all in H(1).

We define GL as class of globally Lipschitz. Note that H(a) N GL # ¢, for
example, h(p) = arctan(p) € H(1) NGL.

An equilibrium z* is a constant solution of (N), i.e., it satisfies the algebraic
equation —Da* + Ah(z*) + Bx* + U = 0.

Definition 1. (N) is said to be exponentially convergent if it has a unique equi-
librium x* and there exist two constants M > 0 and 5 > 0 such that for any
initial continuous function @(t)(—1 < t < 0), there exist a solution z(t,p) in
[0, +00) of (N) and T(p) > 0 satisfying ||z(t,p) — x*|| < Me™Pt (t > T(yp)).

Lemma 1. If h € H(«), then for any po € IR, one has

im [ [2(0) — h(py)]d = +oc.

|p]—o0 0

3 Main Results

Theorem 1. Suppose h; € H(a)(i = 1,2,---,n) and there exists a positive
diagonal matriz P = diag(p1,p2,- -+ ,pn) such that PA+ ATP + (PB)(PB)T
I < 0. Then the system (N) is exponentially convergent.

Proof. We first prove that the system (N) has a unique equilibrium. Let V (z) =
Dz — (A+ B)h(z) — U, then z* is an equilibrium iff V(z*) = 0. We can rewrite
V(z) as the form V(z) = Dx—(A+ B) f(z)+Vy, where f(z) = h(x)—h(0) € R"
and f; € H(«) satisfying f;(0) =0, Vo = —(A+B)h(0)—U € IR". Construct the
open subset 2, = {x € R" : ||z|| < r} for some r > 0 and the homotopy H (), z)
defined as H(\,z) = ADz 4+ (1 = NV (z), 2 € 2, ={z: ||z|]| < r}, A €[0,1].
By computing, we have

fr@)PH, ) = fT(x)PDz — (1 = \) fT(2)P(A + B) f(2) + " (z) PVq

p pid;

Since f; € H(a), then there exist M > 0 and b > 0 such that |fi(z;)| >

PVy); .
M when |z;| > b, i = 1,2,--- ,n. Let a = max |(PVo) | For every index
1<i<n pidi

set @ C {1,2,---,n}, the function fo = 3 pid; [|fi(z;)| — a] is continuous on
i€Q
Ng ={z; € RI9l: |2;] < a,i € Q}, then it can attain to the minimum. Let

l = 1I<n.i£1 pidi M, j1g be the minimum of fg on g, and p = min{ug : Q &
<i<n

1
n 2
{1,2,---,n}}. Thus, if r > maz{n(a + |/;|)7nb} and ||z|| = (Z |xl|2> =,

then there exist two index sets Q1 and (2 such that

=1

|z;] < a when i € Q, |x;| >a when i € Qa, Q1UQ2=1{1,2 ,n}.
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On the other hand, we can find an index i in Q2 such that |a;, | > . From (1),

we obtain

JTPH= S kit Y ki = piydi M [|in| —a- '“'] >0,
i€Q1 i€Q2 P

where k; = pid;|fi(x:)|[ |x;] —a]. Then, we get that for x € 902, = {z €
R™ : |jz|| = r} and A € [0,1], fT(x)PH()\,z) > 0, which implies that
H (), z) # 0. By topological degree theory, it following that deg(H (0, x), §2,-,0) =
deg(H(1,x),2,,0), i.e., that deg(V(x), 2, x) = deg(Dx, §2,,0) = sgn|D| # 0.
Thus, V(2) = 0 has at least one solution in (2. We obtain easily that (N) has
a unique equilibrium.

Next we will prove that the global existence of solutions of (N). We can easily
see that local existence of the solutions of (N) with initial values @(t)(—7 <t <
0) Let z* be the unique equilibrium and y(t,$) = x(t, @) — x*, where z(t, ) is
the local solution of (N), ¢(t) = ¢(t) — a*, then y(¢, @) is the local solution of

(Nl): d
0 — Dy(r) + Agly(t)) + Balult — 7)), (M)

where g(y) = (91(y1), 92(y2): . gn(yn))" and gi(yi) = hilyi + 7)) — ha().
Since PA+ ATP + (PB)( B)T +1 <0, we can choose a small § > 0, such that
PA+ ATP + (PB)(PB)T + €71 < 0 and § < min{d; : 1 <14 < n}. Construct
the following functional

n yi(t)
2 E Di / g9i(0)do
i=1 70

V= Vit () = + [ g o)) .

(2)

By the assumption on h;, there exist rg > 0 and My > 0 satisfying
9:(0) =0 and |g;(0)] > Mo|0|* if 6 € [—rg,r0], i =1,2,--- ,n. (3)

By computing the derivative V(t) of V along the solution y(t,3), we obtain
V(t) < 0. This implies that V(t) < V(0), Hence

22])2 /y " 9:(6)d6 < V(0)e (4)

According to the Lemma 1, it implies that y;(¢t,$) are bounded. Therefore,
by virtue of the continuation theorem, we can conclude that y(¢, @) exists on
[0, 4+00), then, x(t, ¢) is also.

Moreover, by (4), we have tlggo yi(t,®) = 0. Thus, there exists a time constant

T, such that y;(t,9) € [—ro, 0], t > T. Let p = 1I<n_i£1 pi, then by (2) and (4), we
a+1 s o
have maxi<;<n |yi(t, @) < {2‘;]@}0 V(O)] e~ e+1" This means that the system

(N) is exponentially convergent. ad
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Remark 1. Forti([2], B = 0) and Joy([3]) obtained that the 0-solution of system
(N7) is asymptotically convergent. However, in general case, the system (V) is
not equivalent to the system (N7). In Theorem 1, the functions g; are stronger
than that given in [2,3], but the results are also stronger.

If h; € GL, then they satisfy that |h;(p) — hi(p')| < wilp — p'| (Vp,p’ € R). Let
I'= diag(ﬂhﬂ% T 7Mn)

Theorem 2. If h; € H(a)(\GL, and assume further that there exists a positive
diagonal matrix P and 5 > 0 such that

—2PDI' ' + PA+ ATP + ;(PB)(PB)F +BI<0 (%)

then the system (N) is exponentially convergent.

Remark 2. The proof is similar to that of Theorem 1 and omitted.The asymp-
totic convergence of 0-solution of (N7) is proved in [1,5] based on the stronger
conditions of Matrix inequality. In our Theorem 2, the matrix inequality (x) is
less restrictive than with [1,5].

4 Conclusion

In this paper, some conditions for existence and uniqueness of equilibrium and
its exponential convergence are derived. The results herein impose constraints
on the inter connection matrix of the neural networks independently of delay
parameter. Our Theorems show that the properties of activation functions play
the key role in the convergence of neural networks.
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Abstract. This paper proposes a neural network for saddle point prob-
lems(SPP) by an approximation approach. It first proves both the exis-
tence and the convergence property of approximate solutions, and then
shows that the proposed network is globally exponentially stable and
the solution of (SPP) is approximated. Simulation results are given to
demonstrate further the effectiveness of the proposed network.

1 Introduction

Saddle point problems(SPP) provide a useful reformulation of optimality con-
ditions and also arise in many different areas, such as game theory, automatic
control, function approximation, and so on(see e.g., [1]). Recently, many neural
networks have been constructed for optimization problems(see e.g., [2,3,4,5]).
Among them, Ye [2] proposed a neural network for unconstraint minimax prob-
lems, and proved its stability under some convexity assumptions; both Gao [3]
and Tao [4] focused on quadratic minimax problems, and established several neu-
ral networks in assuming that the matrices in the models are positive definite.
All these models solve minimax problems by searching the saddle points of the
objective functions. The aim of this paper is to develop a new neural network to
solve general constrained saddle point problems by an approximation approach.
Without any additional assumptions, the proposed network can exponentially
solve (SPP), including those the existing ones can not solve(see e.g., Sect. 4).
Let
U={reR":a; <x; <bj,i=1,2,---,n} ,

V:{yEIRm:ngngdj,jzl,Z"',m} R

for —a;, b;, —c;,d; € RU {400}, and let f : R"™ — R U {+oo} satisfying f
is twice continuously differentiable on some open convex set D1 x Da(D U x V)
and is a saddle function on U x V (i.e., for fixed (z,y) € U x V, both f(-,y) and
—f(z,-) are convex on U and V respectively). Let g = (91,92, -+,q1,) : R" —
R p = (p1,p2, -, 1) : R™ — R, with both —g; and —p; proper convex on
U and V and twice continuously differentiable on D; and D5 respectively. And

* Supported by the National Key Basic Research Project (973 Project)(2002cb312205),
the Grant of the NSF of China(10471114), and the Grant of the NSF of Fujian
Province, China (A04100021).
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let
D ={zeU:g(zx)>0h(z)= A1z — b =0} ,
2 ={y eV :p(y) > 0,q(y) = Aoy — b =0} ,

where 4; € RF**" A, € R¥*™ with rank(A;) = k1 < n, rank(A4s) = ky < m,
b! € R¥ and b? € IR*. Then we have the following saddle point problem:

Find a point (x*,y*) € 21 x 22, such that (z*,y*) is a
(SPP) saddle point of f(x,y) on 21 x (22, that is, (1)
f@y) < fla*y) < fle,y7), V(ey) € 2 x 2y

Throughout this paper, we assume that (SPP) has a solution and satisfies
the Slater condition(see e.g., [1, p325]). Let ||-|| be the Euclidean norm, IR" =
{zeR":2;>0,i=1,2,---,n}, V. f(z,y) = (0f (x,y)\Ozx1, Of (x,y)\Oxa, -,
Of (z,y)\0x,)T, and [|* = max{0,-}. A vector z € IR" will be the column form,
and z7 denotes its transpose.

2 Convergence of Approximate Solutions

In this section, we will show some results about the approximate solutions,
which are the theoretical key links in the construction of the network.

For simplicity, let u = (27,7 ") v = (yI, AT, 1) 2 = (uT,0T)T, Uy =
UxR? xR™, Uy =V x IRll x RM, 2 =Dy x ]Rl?““? x Dy x I+,

Let z/;(u v) = ¥1(u) — 1/)2( ), where ¥1(u) and Yo (v) are uniformly convex
and twice continuously differentiable on IR™™27*2 and R™1 % respectively.
For example, we can take 1(u,v) = 1/2|ju* — 1/2 ||v|/*.

Let L be the "Lagrange function” of (SPP) defined by

L(u,v) = f(z,y) = A'g(z) — " h(z) +  ply) +n"q(y),V(u,v) € 2 .

And for every k € IN, let Ly (u,v) = L(u,v)+1/kp(u,v). Then, for every k € IN,
we have the following saddle point problem associated with (SPP):

(SPPKk) {

Lemma 1. [1] Let C C R" be closed and convex. Then u* € C is equal to the
projection Po(u) of u on C if and only if [u — u*]T[u* —v] >0, Vv € C.

Lemma 2. Suppose that C C IR™, D C R™ are closed and convex. Then
Poxp(z) = (Po(x)', Pp(y)")T, V2= (a7,y")T e R™™ .
Theorem 1. Take 1(u,v) = 1/2|jul|> = 1/2|[v||*. Then (u},v}) is a solution

of (SPPk) if and only if (u}, vy) satisfying
vt = Pul(l — a/b)s; — a(Vaf (@1, 47) — Vo)X, — VR )] |
yi = Pvl(1 — a/k)y; + a(Vy f (@i, ) + Vi) T8 + Valy Z)Tn}i)] @)

& =1 —a/k)&§ —ap(yp)]™. A, = [(1 - a/k)N; — ag(z)]™
V/kpj, + h(z) =0, 1/kng +q(yz) =0 .

where a > 0 is a constant, uf = (xi", &7, ni")T

Find a point (uj,vy) € Uy x Usa, such that
(ug,v;) is a saddle point of Ly(u,v) on Uy x Us.

= AT T
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Proof. By Lemma 1 and Lemma 2,

(2) = ui = P, [ui — oV Ly (ui, vi)l vie = Pus[vp + Vo Li(ui; b))
= (u—up)"VulLy(ui,vi) >0, (v — i) Vo Li(uf,vi) < 0,Yu € Ur,v € Us,
<= Ly (uy,vy) < Li(u,vj), Ly (uk, ) < Li(ug,vg),Yu € Ur,v € Uz ,
<= (up,vg) is a solution of (SPPk) . O

Lemma 3. [6] If o : R" — R is continuously differentiable. Then
1) p(x) is uniformly convex if and only if V(x) is strongly monotone,i.e., there
exits a constant ¢ > 0, such that

(z —y)T[Ve(z) — Vo(y) > cllz —y||*,V 2,y e R" ; (3)

ii) if p(x) is uniformly convez, then {x € R" : p(x) < v} is a closed bounded
convez set for every v € R, and p(x) has a unique global minimum on every
nonempty closed convex set C' C R".

Lemma 4. [7] Suppose that C C R" is closed and convex, and T : C — IR"
is continuous and strongly monotone. Then there exists a unique point x* € C,
such that (x — z*)TT(z*) >0,V z € C.

Theorem 2. For (u,v) = 11 (u) —2(v) given as above, the followings are true
i) (SPPE) has a unique solution (u},v;), for every k € IN;

it) if (SPP) has a solution, then (uj, vy) converges to a point (u*,v*), as k — oo,
such that (x*,y*) is a solution of (SPP) and X\*,u*,&*,n* are the corresponding
Lagrange multipliers, where u* = (x*7, &7 T o* = (T, X7 T

Proof. i) Let G(u,v) = (VyL(u,v)T, =V, L(u,v)")T, Gi(u,v) = (VyLi(u,v)7,
—VLi(u,v)T)T. By Lemma 3, there is ¢ > 0, such that (3) holds for both 1, and
9. Noting that G(u,v) is monotone, we obtain Gy (u,v) is strongly monotone
on Uy x Us. By Lemma 4, there is a unique point (u}, vy) € Up x Us, such that

(= u3) TV Ly 07) — (0 = vi) "V Li(uf ) 2 0 (4)
for all (u,v) € Uy x Us. Then
(4) <= (u—uf)" VL (uf, v5) > 0, (v —03) " Vo L (uf,, vi) < 0,Yu € Ur, v € Us,
— Lk(UZ,UZ) < Lk(U,UZ),Lk(UZ,’U) < Lk(ultﬂ}l:)? Vue Ulav el )

<= (uy,vy) is a saddle point of (SPPk) .

ii) Denote 2* = {(u,v) : (u,v) is a saddle point of L(u,v) on Uy x Us}. Then
£2* is a closed convex set [8]. Suppose (SPP) has a solution (z,y)(i.e., (1) satisfies
for z* = z,y* = y). Then x is a solution of the following convex programming;:

{min flz,y)
st. g(x) >0, hiz) =0, 2 €U .

By Kuhn-Tucker saddlepoint Theorem [1], there are A € IR{LM e R, such that

Fla,y)— AT g(@) — p"h(z) < f(z,y) — X g(x) — " h(z) < f(z,y) — N g(z) — n"h(z),
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forallz e U, \ € IRlJi, p € IR* . Similarly, there are & € Ile,n € IR*2, such that

Fla, )+ p)+n"aly) < @, y)+€ py)+nTaly) < fa,9)+ pw)+n"a(w),

forally € V,¢ € IRI_E, n € R*. Adding the above two inequalities, we obtain
that 2* is a nonempty closed convex set.

Since 91 (u) and 12 (v) are uniformly convex, by Lemma 3 ii), there exists a
point (u*,v*) € £2*, such that

P1(u”) + P2(v”) < hr(u) +42(v), V (u,0) € 27\ {(u”,0")} ()

and W = {(u,v) € Uy x Uz : ¥1(u) + P2(v) < ¢1(u*) + ¥2(v*)} is a nonempty
bounded closed convex set. Since (uj,v;) is a solution of (SPPk), we have

Ly (uj,v) < Li(uy,vy) < Li(u, vi), Y(u,v) € Uy x Us . (6)

Substituting (u,v) by (u*,v*) in (6), and noting L(u*,v};) < L(u*,v*) < L(uj,v*),
we get 1 (uf) + 2 (vy) < 1 (u*) + Yo (v*). That is, (uf,vi) € W, Vk € IN.

We claim that (u}, v}) converges to (u*,v*). If not, by taking a subsequence,
we can assume that (u},vy) — (u,v) € W\ {(u*,v*)}. Letting k — oo in (6),
we have (u,v) € 2%, which contradicts (5).

Noting L(u*,v) < L(u*,v*),Vv € Us, and letting y = y*, we obtain

A\ =N g@*) + (0" — w)Th(z*) <0, VA€ R, pe R .

Letting A = \*, we get (u — p*)Th(z*) > 0,Yu € R*. Thus h(z*) = 0. Letting
pw=p* A =0, we get X*Tg(z*) < 0. For every i, letting u = p*, A\j = ¥ + 1,
Aj = Nj(J # i), we get gi(z*) > 0, A\jgi(2*) > 0. Thus, we obtain h(z*) = 0,
g(z*) > 0, X" g(x*) = 0. Similarly, we get ¢(y*) = 0,p(y*) > 0,6 p(y*) = 0.
For each (z,y) € 41 x {29, noting L(u*,v) < L(u*,v*) < L(u,v*),Yu €
Ui,v € Us, and letting A = 0,u = 0 and £ = 0,7 = 0 respectively, we get
fla*,y) < f(z*,y*) < f(z,y*), which completes the proof. O

3 Neural Network Model with Globally Exponential
Stability

In this section, we will construct a neural network model for (SPP) and will
show the globally exponential stability for the proposed network. Especially,
take ¢ (u, v) = 1/2 ||ul|* = 1/2 ||lv||>. Then by Theorem 1 and Theorem 2, we have
the following dynamic system as a neural network model to solve (SPP):

T —

T
e /5—5()
n|_ | a/kn+aqly
dt |y | y—y ’ @)
A A=A
Iz a/ku+ ah(x)
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where k € IN, @ > 0 are constants, 7 = Py[(1—a/k)z—a(V.f(z,y)—Vg(z)TA—
Vh(x) ), € = [(1 — a/k)s — ap)]*, § = Pv[(1 — a/k)y + a(Vyf(z,y) +
V()€ + Va(y) )], A =[(1 - a/k)X — ag(z)]*.

It can be easily seen that model (7) has one-layer structure, and the pro-
jection operators Py (-),Py(-) and [-]* can be easily implemented by piecewise-
activation functions(see e.g., [9]). Thus, the complexity of (7) depends only on
Vaof(z,y),Vyf(z,y),Vg(x),Vp(y),g(z), and p(y) in the original problem.

Theorem 3. For any initial point in Uy x Us, the solution of (7) will converge
to the unique solution (u},vy) of (SPPk) exponentially. Moreover, for k large
enough, (x},y;) is an approzimate solution of (SPP), and Ay, py, &5, nf are the

corresponding approzimate Lagrange multipliers, where u), = (sz, ZT,nZT)T

* *T \xT *T\T
vp =y s AL )

7

Proof. By Lemma 2, (7) is equivalent to dz/dt = Py, xu, [z — aGy(2)] — z, where
z = (uT,vT)T and Gi(z) = Gi(u,v) is defined in the proof of Theorem 2 i).
Since G (u,v) is strongly monotone, by Theorem 2 and [5, Thm 2], we completes
the proof. a

4 Simulation Examples

In this section, two illustrative examples are given to compare model (7) with
the existing one in [3]. The simulations are conducted in MATLAB.

Ezample 1. Consider (SPP) with f(z,y) =2y on R x R, 2, =U = 1R, {2
V' = IR. This problem has a unique saddle point (0,0). For initial point (zg, yo)
IR?, the solution of model (7) for it is x(t) = e *(z¢cost — yosint),y(t)
e (yo cost + xgsint), which converges to (0,0) exponentially. To make a com-
parison, the solution of model in [3] for this problem is x(t) = —yo sint+ g cost,
y(t) = xosint + yo cost, which doesn’t converge whenever (z,yo) # (0,0).

mll

Ezample 2. Consider (SPP) with f(z,y) = 1/22% — 21 + 22(y2 — 1) + 3w2y3 —
1203 42y, 2 =U ={x e R*: -5 < a; <5,i=12}and 2 =V =
{y e R*: -2 < y; < 4,5 = 1,2,3}. This problem has infinite saddle points
{(z,y) e R xR® : 2y = 1,51 = 2,20(yp +3y3 — 1) = 0,5 < 20 < 5,-2 <
y2 <4, -2 <y <4}.

We first use model (7) to solve this problem. All simulation results show
that it converges to one saddle point of the problem. As an example, Fig. 1 (a)
shows that the trajectories of (7) converge to (0.9901, —0.0011, 1.9802, —0.1089,
—0.3267) with the initial point (4.4, —4.1,—1.5, —1.0,2.5) for a = 1, k = 100.

Then we solve this problem by the model in [3]. But, Fig. 1 (b) shows that
this model with the initial point (4.4, —4.1,—1.5,—1.0,2.5) is not stable.

Thus, from the above simulation results, we can conclude that the proposed
network (7) is feasible and has a good stability performance.
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Ya
Yo

(a) © 200 time 400 600

(b) 0 10 20 time 30 40 50

Fig. 1. (a) Transient behavior of (7) for Example 2 with & = 100, « = 1. (b) Transient
behavior of the model in [3] for Example 2.

5 Conclusion

A neural network model with globally exponential stability is constructed for
(SPP) after showing both the existence and the convergence property of approx-
imate solutions. In contrast to the existing ones, the proposed network requires
no additional assumptions and has globally exponential stability automatically.
The simulation results demonstrate further its effectiveness.
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Abstract. Implementing of intersection operation and union operation in fuzzy
reasoning is explored by three Integrate-And-Fire (IAF) neurons, with two neu-
rons as inputs and the other one as output. We prove that if parameter values of
the neurons are set appropriately for intersection operation, firing rate of the
output neuron is equal to or is lower than the lower one of two input neurons.
We also prove that if parameter values of the neurons are set appropriately for
union operation, the firing rate of the output neuron is equal to or is higher than
the higher one of the two input neurons. The characteristic of intersection op-
eration and union operation implemented by IAF neurons is discussed.

1 Introduction

Fuzzy logic is considered as one of the information processing mechanisms of the hu-
man brain. Fuzzy set theory was proposed to model this mechanism. Numerous success-
ful application systems based on fuzzy set theory are reported. Computation of fuzzy
systems is based on mathematical framework of fuzzy set theory, while the computation
of fuzzy system in the brain is accomplished by neurons. Though many neuron-fuzzy
systems have been proposed, the purpose of these systems is to encode fuzzy rules in
artificial neural networks and to tune parameters of fuzzy systems with learning ability
of artificial neural networks. Few systems that integrate fuzzy logic and neural network
with biological plausible neurons are proposed. We have found a fuzzy-like phenome-
non in an autoassociative memory with dynamic neurons [3]. In this work, we explore
to implement the reasoning of fuzzy systems with Integrate-And-Fire (IAF) neurons.

2 Fuzzy Reasoning in Fuzzy Systems

Fuzzy systems are usually expressed by fuzzy rules that take a form as follows:

Rule 1: if X, is A, and X, is B, then y is C

Rule 2: if X, is A, and X, is B, then y is Cy» -

Where x, and x, are input linguistic variables, y is an output linguistic variable,
A,A,,B,B,,C and C, are fuzzy sets that are defined by membership functions.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 476-479, 2005.
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When crisp inputs x, (0) and x,(0) are supplied to the system, firing strengths of Rulel
(o) and Rule2 (¢, ) are computed by:

oy =min(i, (x,(0)), 2, (x,(0))) (1)

o, =min(u, (x,(0)), 4, (x,(0))) )

Where 1, (x,(0)), tp, (x,(0)), 22, (x,(0)), 4, (x,(0)) are calculated by the

membership functions of the fuzzy sets A, B,, A, and B, respectively. Based on the
firing strengths of rules, membership function of the fuzzy set of the output due to the
i th rule is figured out:

He () =min(@,, e () 3)
The overall membership function of the fuzzy set of the output is given by:
e (y) =max(Ue, , Me,) @

The fuzzy set of output described by the membership function of 4 _(y) will be

defuzzied to obtain a crisp value of the output. Lee [1] gave a diagrammatic represen-
tation of the fuzzy reasoning approach discussed in this section.

3 Fuzzy Reasoning Implemented by IAF Neurons

As explained in section 2, min operation is commonly used for fuzzy intersection
operation and max operation is commonly used for fuzzy union operation. We discuss
how to implement the two operations by IAF neurons in this section. We name fuzzy
intersection operation implemented by IAF neurons fuzzy intersection-like operation,
and name fuzzy union operation implemented by IAF neurons fuzzy union-like opera-
tion.
A simplified version of models of IAF neuron [2] is used in this paper:

dx,(t)

st ASEAp U N )
0 I—Ax,(t)

Where Xx; is the state variable of i th neuron, [ is the external input, A is the pa-

rameter of dissipation. When x, =1, the i th neuron fires and x; jumps back to 0.

When a given neuron fires, it emits a spike and pulls other neurons by an amount of £ :
x; () =1= x,(¢t")=min(L, x;(t) + &) ©)

As shown in Fig. 1, assume that the firing rates of neuron 1 and Neuron 2 corre-
spond to the degrees of membership of two fuzzy sets respectively, the firing rate of
neuron 3 is the result of fuzzy intersection-like operation of neuron 1 and neuron 2.
Let neuron 1 and neuron 2 receive constant input 7, and ], respectively and let

I, > I,. Neuron 1 and neuron 2 will fire periodically with period T, and T, (T, < T, ).
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The spikes of Neuron 1 and Neuron 2 are fed to Neuron 3. If the parameters of IAF
neurons are carefully set, the number of spikes generated by neuron 3 is equal to or is
smaller than the number of spikes in S2 (see Theorem 1 and Fig. 1).

Theorem 1: If the parameters of neuron 3 in Fig.1 is so set that spike sequence of
S1 itself can not make neuron 3 fire, then the number of spikes generated by neuron 3
is equal to or is smaller than the number of spikes in S2.

Proof: Suppose that the number of spikes in S3 is larger than that in S2. As spike
sequence S1 itself can not make neuron 3 fire, there are no spikes generated by neu-
ron 3 before the first spike of S2, and there is at most one spike generated by neuron 3
after the last spike of S2. Therefore, there must exist two spikes of S3 that is between
two spikes of S2. There are two cases (see Fig. 1). When neuron 3 generates a spike,
the state of the neuron resets to zero. Therefore, in these two cases, the spike that is
marked by thick line must be generated by neuron 3 under the stimulation of spike
sequence of S1 only. This contradicts with the assumption of the theorem. o

I I
L= 04 2
! 2l [ R R TP RPN IR B | |- 82

A N
Sllllleuwz L e s
3 N

n spikes n»=1

2000

(a) (b} (el

Fig. 1. Figure for the proof of theorem 1. (a) Three neurons (b) Case 1 (c) Case 2.

As we know, firing rate is defined by a temporal average over many spikes of a
single neuron. Since degree of membership to a fuzzy set is between 0 and 1, we used
a normalized firing rate ( FR ) in this work:

FR the  number of  the spikes in  spike  sequence @)

B upper  bound  of the number of  spikes of  spike  sequences

Theorem 1 tells us if the parameter values of neuron 3 are satisfied with the as-
sumption, the firing rate of neuron 3 ( FR3) is equal to or is lower than that of neuron
2 (FR2). Stated in other way, FR3 < min(FRI, FR2)-

Theorem 2: The parameters of the neuron 3 in Fig. 2 are so set that it does not fire
with none spikes from neuron 1 and neuron 2. If the spike interval in S1 is larger than
T in Fig.2, then the firing rate of neuron 3 is equal to or is higher than that of neuron
1.

Proof: As the neuron 3 does not fire with none spikes from neuronl and neuron 2
and the spike interval in S1 is larger than T in Fig .2, every spike generated by neu-
ron 1 will trigger a spike of neuron 3 if J, = 0. Therefore the firing rate of neuron 3 is

equal to or is higher than that of neuron 1 if we set 1, >0. ]
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Fig. 2. Figure for the proof of theorem 2. (a) Three neurons. (b) Parameter set of neuron 3.

Theorem 2 tells us if the parameter values of neuron 3 are satisfied with the as-
sumption, FR3>max(FRI, FR2)-

4 Discussion

The analysis shows that the firing rates of neuron 1 ( FR1), neuron 2 ( FR2) and neu-
ron 3 ( FR3) satisfy FR3 < min(FR1, FR2) for fuzzy intersection-like operation, and

FR3>max(FRI, FR2) for fuzzy union-like operation. As for the calculation of the
firing strength of Rule 1, min operation is ¢, = min(u, (x,(0)), & (x,(0))) . While
fuzzy intersection-like operation is ¢, < min(x, (x,(0)),; (x,(0))). On the other
hand, from the viewpoint of a probabilistic theory, suppose the probabilities for the
event A and B, are y 4 (x,(0)) and Uy (x,(0)) respectively, and suppose that the

two events are independent, the firing strength of Rule 1is u A (X, (0)* 1 (x,(0)) -
Since 1, (x,(0))* tp (x,(0)) <min(x, (x,(0)), 4 (x,(0))) , fuzzy intersection-

like operation seems to be a compromise between the intersection operation of fuzzy
set theory (min operation) and that of a probabilistic theory. Similarly, fuzzy union-
like operation seems to be a compromise between the union operation of fuzzy set
theory and that of probabilistic theory.
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Abstract. Spike trains are treated as exact time dependent stepwise
functions called response functions. Five variables defined at sequential
moments with equal interval are introduced to characterize features of re-
sponse function; and these features can reflect temporal patterns of spike
train. These variables have obvious geometric meaning in expressing the
response and reasonable coding meaning in describing spike train since
the well known ’firing rate’ is among them. The dissimilarity or distance
between spike trains can be simply defined by means of these variables.
The reconstruction of spike train with these variables demonstrates that
information carried by spikes is preserved. If spikes of neuron ensem-
ble are taken as a spatial sequence in each time bins, spatial patterns of
spikes can also be quantified with a group of variables similar to temporal
ones.

1 Introduction

How neurons represent, process and transmit information is of fundamental in-
terest in neuroscience [1]. It is accepted that neural information processing relies
on the transmission of a series of stereotyped events called action potentials, or
spikes. Temporal recordings of firing events provide inter-spike-interval (IST) se-
ries. It is expected that aspects of the processed information are encoded in the
form of structures contained in the ISI series. The basic biophysics that underlie
the generation of these action potentials (spike) is well established. However, the
features that convey information are not well understood.

An emerging view in neuroscience is that sensory and motor information is
processed in a parallel fashion by populations of neurons working in concert
[2-4]. Encouraged by this progress many laboratories are investing considerable
effort into the development of recording techniques and spike-sorting algorithms
that permit simultaneous recording of the activity of multiple neurons [5]. In this
context, a fundamental and long-standing question is the type of neural codes
used by the population of neurons to represent information in trains of action
potentials [1, 6]. The firing rate of spike trains is a candidate for such a neural
code [7]; however it is possible that spike timing rather than firing rates plays a
significant role in this task [8]. It remains a controversial issue, partly because
there are few mathematical methods for directly and quantitatively assessing the
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temporal structure in spike trains [9]. A key factor in distinguishing among these
theories is the temporal precision of individual action potentials. Many existing
methods are either qualitative, or limited to examining lower-order structure.
Moreover, quantitative techniques used in conjunction with cross-correlations
such as the shift predictor can overestimate the number of expected synchronous
spikes due to slow rate co-variations which are known to exist [10-12]. In spite
of that, and as it was very clearly pointed out by some authors [1, 13, 14],
this distinction cannot be pushed too far because both concepts are intrinsically
related and the mere introduction of time discretization certainly blurs their
differences. Therefore, it is important to measure this precision and to develop
new methods to describe population spike trains.

In general£stimuli are time dependent, responses represent dynamic char-
acteristics of stimuli by temporal structures of spike, which are not continuous
functions of time. This makes it difficult to relate the time history of stimulus
to the temporal patterns of spikes. Therefore, to search how neural responses
varying with different stimuli, many researchers turn to measure the statistical
signification of temporal structures in spike trains or to determine how much
information about stimulus parameter values is contained in neural responses
by means of information theory [15]. For example, to investigate the encoding
meanings of spike timing and temporal structures or patterns, series expansion
approximation method [16], information distortion method [17] and other meth-
ods have been used [18-22]. These works show that both the temporal patterns
of a spike train and the measurement of dissimilarity between ISI series are im-
portant for extracting the information from a neuronal response. However, how
to express the varied time histories of temporal patterns and the distance is
remained in unsolved.

Taking into account the above considerations, we have developed a way to
quantify the temporal and spatial structures of spikes. As we shall explain below,
the key feature of this novel method is to express spike trains as stepwise function
called response function regarding the dynamic characteristics of spike trains.
Several characteristics of the spike train are readily apparent by means of a group
of temporal pattern variables deduced from response function, which are defined
at sequential moments with equal time interval. Varied temporal patterns of spike
train can be uniquely indicated and the time dependent distance between spike
trains can also be conveniently defined with these variables. And moreover, these
variables may have simple interpretation with neural coding. A tight correlation
between dynamic stimuli and cell responses can be expected to set up.

2 Response Function

A recorded spike train can be characterized simply by a stepwise function called
response function, the count of spikes fired before time t shown as Fig.1.

It is a monotonic function of time, but has various temporal structures or
patterns and exactly reflects the information elicited from stimulus. In geometric
viewpoint, a segment of curve can be characterized with its increment, tangent,
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Fig. 1. Spike train expressed as a stepwise function of time

curvature, area surrounded with time axis and other geometric quantities. In
neuroscience viewpoint, these aspects may contain coding meanings. Therefore,
the temporal pattern variables are introduced basing on geometric quantities of
the response function.

3 Variables for Characterizing the Response Function

The first variable is the increment of response function, namely, the spike count
of spikes within time interval T; =t; —t;_1,5 =1,2,..

q(t;) = n(t;) —n(t;j-1) (1)
The averaged firing rate over can be expressed as:
q(t;)
) = 1) 2)

It gives the well known rate code or tuning curve of spike train. Evidently,
averaged firing rate only reflects part features of the spike train. One cannot tell
timing and the order of spikes, namely, the temporal patterns of ISI series. To
express the temporal pattern more accurately, we introduced the area surrounded
by response function n(t) and time axis in each interval T; =¢; —¢;_1 :

T;
V= / n(t)dt (3)

T]‘71

For illustrating, we divide it into two parts: rectangular and stepwise one shown
as Fig.2. The area of rectangular part equals to n(¢;_1)T; and another part is:

q(t;)—1
W)= D ISIG) i+ alt)(t; — ther,) (4)

Where represents the order of spikes fired in time interval 7} ; () is the firing
moment of last spike and IST(i) is the ith ISI in the same interval.

The response function can be roughly approached by such a sequence of rect-
angular. Adding stepwise parts, the response function is approximated further
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shown as Fig.2. Variable v(¢;) defined with ISIs and the order of spikes also
partly reflects the temporal pattern of spike train. It has statistical meaning,
but we prefer to consider it in the view point of functional; it is a functional
of response function defined in interval T} . The coding meaning this variable
is that it indicates whether spikes taken placed during gather around moment
t; . For given spike number, the smaller the area 7(t;), the closer to moment
the spikes are. Therefore, more information could be extracted. Suppose that is
uniformly 16 times of the minimum of ISIs expressed with 151,,;, , and that
each ISI is an integer multiple of 1.51,,;, , the total number of possible spike
trains is 216 . The count of spikes ¢(t;) within 7} can only distinguish 17 kinds
of these possible spike trains, and the area «(t;) can differentiate 137 kinds of
them. Using both of these variables, more possible spike trains can be differenti-
ated. The third variable is deduced from the approximate slope of the response

function: (t+ At) (t)
n(t + -n
S(t) = A\t (5)

It shows whether a spike fires during sufficiently small At around time t. For
large At it gives an averaged firing rate. Here we take At varied as At; = [S1(7)

, and have:

Averaging above variable over interval T} leads:

711(15;')—1 1
s(ty) = ; 1S1(i) @)

This variable shows whether the spikes are close to each other in interval T} .
Since it has the dimension 1/sec, therefore it can be taken as another firing rate.
Geometrically, it is the averaged slope of the dashed lines in each time interval
T; shown as Fig.2, where dashed lines connect the 'saw teeth’ of the response
curve. The coding meaning is that this variable can be used as a ’bursting’ index
of spikes; the maximum of s(t;) , Smaz(t;) = (q(t;) —1)/ISTyin , indicates
that all the spikes fire with the smallest 1.S1,,;, ; while the minimum of s(¢;)
, smin(tj) = (q(tj) — 1)?/T; means that all spikes are separated uniformly. The
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next one is originated from the ’curvature’ of response curve which is formally

defined as:

1 1

W= [ISI(Z' +1) ISI(i)]/[

ISI(i+ 1)+ ISI(i)] (8)

Since the sign of k* depends on the ratio ISI(i+1)/ISI(i) , we use the following
variable to measure the averaged ’curvature’ of the response curve over 7} :

a(tj)=2 .
)= 3 Tt 9)

It has the code meaning that the IST increases/decreases. The last one is relevant
to the weight center of the area defined by Eq.(4):

q(t;)—1
Clty)= > ;151(2') R (10)
i=1

Its code meaning cab be interpreted as the symmetric degree of ISIs within the
interval.

4 The Degree of Reflecting Spike Train

The latter four variables are defined by ISIs and their order; therefore reflect
the temporal structures of ISI series in each time interval 7. Whether these
variables characterize the spike train can be examined by reconstructing the
spike train with them. In the case of each ISI being integer multiple of the
minimum ISI, taking T as 16 times of the minimum ISI; all possible spike trains
can be uniquely reconstructed with these variables. For ¢(t;) =1 or ¢(¢;) = 15,
the possible spike trains are 16, spike trains can be exactly reconstructed only by
~(t;) . When ¢(t;) = 8 , there are 12870 possible spike trains, the most variety
case, but spike trains can still be exactly reconstructed.

For general cases, ISI varies arbitrarily within a given range. Spike trains
cannot be reconstructed exactly. If suppose a spike only takes several possible
positions in time bin At = I.S1,,,;,,, for example, each ISI is an integer multiple of
one nth of I.51,,;,, reconstruction can still be carried out. The large the number
n, the higher the precision is. Here we took n=2 to reconstruct a stochastic spike
trains with the following procedures: (A) Finding the minimum IST At = .51,
for a give ISI series, and dividing the time span of the spike train into sequential
intervals T' = 16151, ; (B) Calculating the original values of the group of
variables for each intervals T; with formulae (1), (4), (7), (9) and (10); (C)
Placing ¢(t;) spikes into T; by keeping ISIs being integer multiple of 1.ST,;, /2
and being greater than or equal to IST,,;, ; (D) Calculating the values of the
group of variables for all of possible spike trains; and finding the spike train that
yields the most approximate values of the group variables comparing to those
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Fig. 3. Reconstruction of a spike train: upper panel is the given spike train and values
of the four variables defined at moments shown as dashed lines; lower panel is the
reconstructed spike train and values of the four variables

of original spike train. The given and reconstructed stochastic spike trains are
shown in Fig. 3.

The validity of reconstruction means that an ISI series is equivalent to these
variables defined at sequential moments. Therefore, the analysis on ISI series
can be done by dealing with these variables.

5 As a Measurement of Dissimilarity Between Spike
Trains

To determine whether a set of ISI series depends systematically on a set of
stimuli, it is important to quantify the similarity (or dissimilarity) of two spike
trains. Dissimilarity helps characterize neural variability and coding [9]. The
distance between spike trains can be defined with this group of variables. At
first all the variables except the spike count are scaled to 0-1 by the following
equations:

S0 (t5) , k240 (t;) and CZ,,,.(t;) are the maximum values of y(t;) ,s(¢;) , k(¢
and C(t;) , respectlvely7 among pos&ble spike trains correspondlng to splke coun
q(t;). While spike count ¢(t;) is scaled as:

(Js(tj) = q( /(T/ISImm) (15>

s (t5) = 7(t5)/Via (t5) (11)

ss(tj) = 8(t5)/85as(t)) (12)

ks(ty) = k(t5)/Kinaa (t5) (13)

CS(tj) = C( j)/c’rmu( J) (14)

Where gammas(t;) , ss(t;) , ks(t;) and Cs(t;) are scaled variables; vg,,.(¢; ;
t
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Fig. 4. Distances between spike train sl and s2, s3, s4 and s5, respectively

Here, we take T' = 16151, and have: gs(t;) = ¢(t;)/16 . Then the Euclidean
distance between two groups of scaled variables is defined as the distance of
corresponded spike trains. The following example gives distances between one
spike train and other four, respectively, shown as Fig.4.

It can be seen that this measurement can conveniently express the varied
distance along with time. These variables quantitatively give the temporal pat-
terns of a spike train at discrete moments; it can be expect to relate the varied
temporal patterns to the dynamic stimuli.

6 Spatial Patterns

Typically, many neurons respond to a given stimulus, and stimulus features
are therefore encoded by the activities of large neural populations. In studying
population coding, we must examine not only the firing patterns of individual
neurons, but also the relationships of these firing patterns to each other across
the population of responding neurons. A group of similar variables are used to
quantify the spatial patterns of neurons, along sequential time bin containing
only one spike at the most for each neuron.

To quantify the spatial patterns of spikes, neurons are numbered as i =
1,2,3...N; here we take N=16. Their spikes can be represented by a spatial-
temporal function n(i,t), the count of fired neurons whose number is less than
or equal to 7, during time bin At shown as Fig.5.

This spatial pattern varies with time. For given time bin At < I.51,,;, the
spatial pattern can be represented by five variables similar to (1), (4), (7), (9)
and (10):

q(t): Count of fired neurons during At;

q(t)—1

Y(t) =Y ISS(i)-i+q(t)(16 — N;) (16)

i=1
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Fig. 6. Time dependent spatial patterns of 16 neurons. Upper panel are 16 stochastic
spike trains. Middle and lower panels gives the values of four pattern variable.

q(t)—1
s(t) = ; IS;(i) (a7)
a(t)=2 . i
q(t)—2 1

ct)y= Y o 195(i) 2 (19)

=1
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Where ISS is taken as the spatial interval of spikes, namely, the number difference
between adjacent fired neurons; N; is the largest number of fired neurons.
In Fig.6 the time history of spatial patterns of 16 neurons is shown.

7 Conclusions

In conclusion we have shown a method to quantify spike trains with a group
of variables based on characterizing exact temporal structures of ISI series. The
code meaning of these variables can be reflected by one of them, the firing rate
that plays equal role as other variables; though the potential use of other vari-
ables have not been verified. Moreover, since spike train can be reconstructed
with these variables, the works of dealing with spike trains can be transformed
to treating a group of data defined at sequential moments. Consequently, the
distance between spike trains can be simply defined with Euclidean distance be-
tween two groups of variables. If these variables are regarded as discrete time
history of neural response, this quantification leads to a potential way of relating
spike trains to dynamic stimuli for searching what aspects of stimulus are en-
coded in the spike train. A group of similar variables can also be used to quantify
the spatial patterns of spike trains for neuron population.
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foundation of China (No0.10432010).

References

1. F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spike: Exploring
the Neural Code MIT Press, Cambridge, MA (1997).

2. Fernndez E, Ferrandez JM, Ammermller J, Norman RA. Population coding in spike
trains of simultaneously recorded retinal ganglion cells. Brain Res 887 (2000) 222-
9.

3. Nicolelis MA, Ribeiro S. Multielectrode recordings: the next steps. Curr. Opin.
Neurobiol 12 (2002) 602-6.

4. Panzeri S, Schultz SR, Trevez A, Rolls ET. Correlation and the encoding of infor-
mation in the nervous system. Proc R Soc Lond B 266 (1999) 1001-12.

5. Kralik JD, Dimitrov DF, Krupa DJ, Katz DB, Cohen D, Nicolelis MA. Techniques
for long-term multisite neuronal ensemble recordings in behaving animals. Methods
25 (2001) 121-51.

6. Meister M, Berry II MJ. The neural code of the retina. Neuron 22 (1999) 435-50.

7. Abbot L, Sejnowsky TJ. Neural code and distributed representations. Cambridge:
MIT Press, (1998).

8. Funke E, Worg?tter F. On the significance of temporally structured activity in the
dorsal lateral geniculate nucleus (LGN). Prog Neurobiol 53 (1997) 67-119.

9. N. Hatsopoulosa , S. Gemanb , A. Amarasinghamb , E. Bienenstockb At what time
scale does the nervous system operate?Neurocomputing 52 (2003) 25 - 29

10. C. Brody, Slow covariations in neuronal resting potentials can lead to artefactually
fast cross-correlations in the spike trains, J. Neurophysiol. 80 (1998) 3345-3351.



11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Method for Quantifying Temporal and Spatial Patterns of Spike Trains 489

C. Brody, Correlations without synchrony, Neural Comput. 11 (1999) 1553-1577.
M.W. Oram, N.G. Hatsopoulos, B.J. Richmond, J.P. Donoghue, Excess synchrony
in motor cortical neurons provides direction information that is redundant with the
information from coarse temporal response measures, J. Neurophysiol. 86 (2001)
1700-1716.

Usrey MW, Reid CR. Synchronous activity in the visual system. Annu Rev Physiol
61 (1999) 435-56.

Guillermo J. Ortega a, Markus Bongard b, Enrique Louis ¢, Eduardo Fernndez
Conditioned spikes: a simple and fast method to represent rates and temporal
patterns in multielectrode recordings Journal of Neuroscience Methods 133 (2004)
135-141

C.M. Gruner, K. Baggerly, D.H. Johnson, C. Seshagiri ” Information-theoretic anal-
ysis of neural coding.” J. of Computational Neuroscience 10 (2001) 47-69

S. Panzeri et al., Coding of stimulus location by spike timing in rat somatosensory
cortex Neurocomputing 573 (2002) 44-46

A. G. Dimitrov et al., Spike pattern-based coding schemes in the cricket cerecal
sensory system Neurocomputing 373 (2002) 44-46

R. Romero and T. S. Lee, Spike train analysis for single trial data Neurocomputing
597 (2002) 44-46

R. Lestienne, Spike timing, synchronization and information processing on the
sensory side of the central nervous system. Progress in Neurobiology 65 (2001)
545-591

J. P. Segundo, Nonlinear dynamics of point process systems and data I. J. of
Bifurcation and Chaos, 13 (2003) 2035

M. Christen ea al., Fast spike pattern detection using the correlation integral Phys-
ical Review E 70 (2004) 011901

D. Aronov and J. D. Victor, Non-Euclidean properties of spike train metric spaces
Physical Review E 69 (2004) 061905



A Stochastic Nonlinear Evolution Model and Dynamic
Neural Coding on Spontaneous Behavior of Large-Scale
Neuronal Population

Rubin Wang and Wei Yu

Institute for Brain Information Processing and Cognitive Neurodynamics, School of
Information Science and Engineering, East China University of Science and Technology, 130
Meilong Road, Shanghai 200237, China
rbwang@l63.com or @dhu.edu.cn

Abstract. In this paper we propose a new stochastic nonlinear evolution model
that is used to describe activity of neuronal population, we obtain dynamic image
of evolution on the average number density in three-dimensioned space along
with time, which is used to describe neural synchronization motion. This paper
takes into account not only the impact of noise in phase dynamics but also the
impact of noise in amplitude dynamics. We analyze how the initial condition and
intensity of noise impact on the dynamic evolution of neural coding when the
neurons spontaneously interact. The numerical result indicates that the noise
acting on the amplitude influences the width of number density distributing
around the limit circle of amplitude and the peak value of average number
density, but the change of noise intensity cannot make the amplitude to
participate in the coding of neural population. The numerical results also indicate
that noise acting on the amplitude does not affect phase dynamics.

1 Introduction

In 1960s, Winfree started his famous theoretical investigation of phase resetting with his
studies on circadian rhythms [1,2], he showed that an oscillation can be annihilated by a
stimulus of a critical intensity and duration administered at a critical initial phase. Haken
expanded the theory when he researched the synergetics of the brain [3,4]. P. A. Tass
researched Parkinson’s disease by the theory of phase resetting [5-8]. Taking into account
the noise background within brain, P. A. Tass developed a stochastic approach to phase
resetting dynamics. There is abnormal frequency of the action potential in Parkinson’s
disease. For this reason Tass only considered the curative effect of the frequency in his
model. And Tass proposed a stochastic nonlinear model of phase dynamics for the
therapy of Parkinson’s disease, the amplitude of population of neuronal oscillators is
dealt with as a limit circle, namely, amplitude of the action potential is a constant. In this
paper, we will apply Tass’s model to the research of cognition and propose a new model
what base on early our research [9-14]. There are many special structures in nerve nets,
for instance, lateral inhibition, presynaptic inhibitory and presynaptic facilitation [15].
Compared with other structures of neurons, the amplitude and the frequency of the action
potential of the postsynaptic neuron change stochastically. Furthermore, the background

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 490-498, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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noise in the brain impact on both amplitude and frequency because phase and amplitude
are inseparable in the analysis of wave. Though action potential of one neuron does not
attenuate when it transmits in the axon, we should consider the impact of the amplitude
on the neural coding when we investigate one or more neural functions of the population
composed of abundant neurons for the reason of complicated structures and impacts of
some uncertain factors. Neural information is transmitted through a couple of cortex
areas in the brain information processing, the output of the layer may be the initial
condition of the next layer, therefore, it is great important to take into account the impact
of the initial condition on the neural coding. In this paper, we numerically analyze the
neural coding in the case of different noise intensity and different initial conditions
according the stochastic nonlinear dynamic model of the neural population and obtain
some important results what can be explained in biological sense.

2 Derivation of Stochastic Model Equation

Setting the amplitude and the phase of N oscillators under the random noise
independently are TNy G=1.2,....... N). The dynamics of phase and the amplitude

obey the following evolution equations,
. 1 &
v, :Q+NZM(1//J, ~ W1 )+ F (D)
= : (1)
2

We assume that in equation (1) all oscillators have the same eigenfrequency €2, and
the oscillators’ mutual interactions are modeled by the term MW, —w,.r;.1)> which

=g+ F 0 (j=LN)

model the impact of the kth on the jth oscillator. is the difference of their phase.

Vi~V
g(r) is a nonlinear function of the amplitude. For the sake of simplicity the random
force, F, (1) (i=1,2) is modeled by Gaussian white noise, which is delta-correlated with

zero mean value[1]:
where 5/_k denotes the Kroneker delta.

According to Eq. (1) and (2), one obtains the Fokker-Plank equation about probability
density f :

I _ Q. 3 250 v 9

T PY s zg 25, 00
N a 1 N
JZ:I:BTNH AR VA

(3)
where f = f(¥,,%¥,,---W,,r,r,ry,t) . f is function of the phases and the

amplitudes of oscillators, which evolve along with time. By introducing the abbreviation
L(rr, ¥, W) =Q+MW, —v,,r,.n) and the average number density
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“)
where R denotes the probability when the amplitude r of every oscillator equals R, i
denotes the probability when the phase v, of every oscillator equals y . Inserting (4)
into Eq. (3), and then the Fokker-Plank equation with average number density is given by
on_Q dn 0 n_odn dRn)

o 20y> 20ROy OR

a = IN ’ ’ 4 ’ ’
PG [ay’ [M@y -y, R, Ry, R, )R’y
14 0 0 . (5)
M@ -y’ R, R’ is a 27 -period function, it can be expanded as the sum of

progression by Fourier transform. We define nonlinear function of amplitude and the
mutual interaction term as follows:

4
M(y/j—y/k,rj,rk):—ZZr’"rkm(K sinm(y; —y,)+C,, cosm(y; —y,)) - ©)

m=1

g(rj):arj—ﬂrj3, a:ﬂ:l. (7)
As in Tass’s reference, we assume ¢, =0 in function (6), g, denote the coupling

coefficient among neurons. The first term of average number density to be transformed in
term Fourier is given by

2 R

— |g(x)dx R ffjg(r)dr

(0,R,1) =B,e™ je dx . (8)

0

Ry
where B, fills Iﬁ((l R,1)dR :L, R, is the upper limit of the amplitude, R) =2 in
2r
0
this paper.

3 Impact of Noise Intensity on Neural Coding
For the sake of research of noise impact on the dynamics of amplitude, in the case of
spontaneous activity, the parameters are chosen as follows:
K =2,K,=K,=K,=0,0,=04,Q=2r,
initial condition is given by
n(y, R,0) =n(0,R,0)(1+ 0.01siny) (9)
We choose two different noise intensity: 0, =1 0,=01 Tpe equation (5) is

numerically calculated by difference method and the four groups of figures are obtained
as follows:
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o n
(a)

Fig. 1. n about the amplitude change along with time: (a) 0, =1 (b) 0,=0.1

The limit circle R=1 of the amplitude is confirmed by Eq. (2) and function (7). The
distribution of average number density on the amplitude broadens when the intensity
Q, of Guassian white noise was larger, the larger the intensity Q, is, the wider the

distribution of average number density is around the limit circle. The distribution will
be a narrow band peak when the noise intensity (, is small enough. Though the noise
intensity (, are different in Fig.1, probability of the amplitude of action potential
centralize around the limit circle, namely, tend to the R=1, in other words, change of
noise intensity (, cannot change the configuration of the distribution and the
amplitude does not participant in the population coding expect the noise is enough

strong to change the original distributing (Fig.1) around the limit circle. This agrees
with the conclusion in reference [7].

(a) (b)

Fig. 2. The figure of n(y, R,t)at T=7.351s: (a) 9, =1 (b) 0, =0.1

Though noise intensities are different in Fig.2.(a) and Fig.2.(b), the wave crests locate
at the same phase at the time T=7.351s. But their peak values are different, one is 1.8787
when g, =1, the other is 4.3528 when ¢, = o.1. It shows that the stronger the noise acting

on the amplitude is, the wider the distributing of average number density on the amplitude
is, and the smaller the peak value of the wave is.
The stochastic fluctuant range of the amplitude changes on the limit circle R=1, the

amplitude fluctuates in 0.82~1 in the case of Q2 =1(Fig.3.(a)), but amplitude fluctuates
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in2.1~2.5 in the case of o, =.1. It shows that noise intensity impacts the average number
density’s evolution course in the case of same initial condition.
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Fig. 3. The evolution figure of average number density on the limit circle: (a) 0,=1: (b)
Q, =0.1, q(t)=n(0,L,t)
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Fig. 4. Firing density on the limit circle. (a) 0, =1, (b) g, =0.1, p(t) =n(0,1,7)

According to the relation of the average number density and the fire density in Tass’s
reference, Fig.4 denotes that the neuron fires when the phase of the jth neuron equals 0.
According function (4) what is the definition of the average number density, amount of
firing neurons at time t is given by p(z)=n(p,r,t). p(r) is a macrovariable which

corresponds to observable typically measured in experiments. Experimentalists are not
able to measure the firing behavior of a large cluster of neurons; they can only assess
amount of firing neurons, i.e. how many neurons fire at time t. For this reason the fire
density ;) is introduced. It indicates that researching the phase resetting dynamics of

the neural oscillators on the limit circle is feasible, in other words, the noise 0, acting on

the amplitude does not impact on the neuron’s phase dynamics.

According to the numerical results, we can observe that noise in evolution of the
amplitude has some affection on the probability distributing of the amplitude. The
average number density diminishes on the limit circle when noise intensity acting on the
amplitude augments (Fig.3.). A. G. Leventhal [16] pointed out that the energy of the noise
within brain augment because the content of GABA diminishes. Our result indicates that
the firing density of neurons diminishes on the limit circle of amplitude (Fig.4.).
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4 The Impact of Initial Condition on Neural Coding

In order to investigate how the initial condition impacts on the neural coding, we choose
the case of one coupling parameter , = ( to discuss. The result is also the same with
others coupling structures. The parameters are setting as
K,=K,=K,=0, K, =2, 0, =04, Q=27 ,0,=02. One obtains two groups of
figures after computing numerically Eq. (5).

a3

0

Fig. 5. The figure of n(y,R,t) at T=7.35ls: the initial condition is
(@ n(w,R,0)=n(0,R,0)1+0.05siny) (b) n(w,R,0)=n(0,R,0)(1+ 0.05sin 2i)
©n(y,R,0)=n(0,R,0)(1+ 0.05sin i + 0.05 sin 2y )

We compare the three evolution results of the average number density at T=7.351s
under case of the stable state. From Fig.5.(a) and Fig.5.(c), one can know that the two
figures of the average number density are same though their initial conditions are
different. From Fig.5.(b), one can know that the average number densities of the neural
oscillators are same at T=7.351s when they are at the same amplitude and different
phases, the average number density will keep this figure from now on. The result shows
that the initial condition what only contain higher-ordered harmonics terms does not
make the average number density change stochastically along with time finally.
Fig.6.(b) can approve the conclusion, the coupled structure of the neural population
determines its cognitive capability.
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1.8
1.2

06|

Fig. 6. n about the phase evolutes along with time on the limit circle:
@n@w,R,0)=n(0,R,0)(1+0.05siny) (b)n(y, R,0)=n(0,R,0)(1+0.05sin2y) (¢
n(w, R,0)=n(0,R,0)(1+ 0.05siny + 0.05sin 2y)

Comparing Fig.6.(a) with Fig.6(c), their steady states are the same, namely, their
periods and the shapes of waves are the same. The result indicates that the higher rank
in the initial condition only impacts on the course of transition of the evolution of the
average number density, namely that it does not impact on the result of evolution. The
different types of synapses increase the complexity when the neurons transmit
information. The neural population which has lower-ordered coupling structure can not
recognize higher-order initial condition, that is why the neurons can filtrate some
information they does not need when they are dealing with information.

5 Conclusion

In this research, we propose a stochastic nonlinear dynamic model which is used to
describe the phases and the amplitudes of neurons evolve along with time when neural
population actives. We first describe the dynamic evolution course in three-dimensioned
space by introducing the average number density n(y, R, 1) -

The result of numerical analysis indicates that the larger the noise intensity @, is, the

wider the distributing is. But the configuration of the distributing is not changed,
namely, the probability distributing of the amplitude centralize around the limit circle
R=1, it is the same with Tass’s supposition. The noise on the amplitude has no effect on
the neural coding. It indicates change of noise acting on the amplitude does not change
the character of the phase dynamics on the limit circle. For the sake of simplicity, we
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will not take into account the noise’s impact on the amplitude in our later research, but
it will lose a part of coding information.

The result of numerical analysis also indicates that different initial conditions have
distinct impact in the dynamic evolution of the average number density. The evolution
course is the coding course. The initial condition and the coupled structure among
neurons determine the coding result. It may be explained that the output of the former
layer is the initial condition of the later layer. Though the third initial condition contain
two-ordered harmonic term, the evolution result only has one peak as result of the first
initial condition, namely, it does not impact result of neural coding. It indicates that
neural coding is mostly dominated by the structure of the system because the neural
system does not have this ability of coding. Though the initial condition has been
changed, it does not impact result of coding.

In this paper we research the neural oscillators’ mutual interactions and the dynamic
evolution when neuronal active spontaneously and obtain the result that amplitude
dynamics impacts on the neural coding. We will introduce how the stimulate influences
on the neural coding in the other paper.

Project “Phase resetting of neural dynamic system and brain information
processing” (30270339) supported by National Natural Science Foundation of China
(NSFC)
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Abstract. Till now, the problem of neural coding remains a puzzle. The intrin-
sic information carried in irregular neural spikes sequence is not known yet. But
solution of the problem will have direct influence on the study of neural infor-
mation mechanism. In this paper, coding mechanism of the neural spike se-
quence, which is caused by input stimuli of various frequencies, is investigated
based on analysis of H-H equation with the method of nonlinear dynamics. The
signals of external stimuli -- those continuously varying physical or chemical
signals -- are transformed into frequency signals of potential in many sense or-
gans of biological system, and then the frequency signals are transformed into
irregular neural coding. This paper analyzes in detail the neuron response of
stimuli with various periods and finds the possible rule of coding.

1 Introduction

In a paper published in Science!"!, Gilles Laurent remarked: “Studying a neural coding
requires asking specific questions, such as the following: What information do the
signals carry? What formats are used? Why are such formats used? Although superfi-
cially unambiguous, such questions are charged with hidden difficulties and biases.”

Till now, it is still not clear what meaning these irregular neural pulse sequences is.

The coding mechanism of the neural discharge spikes sequence caused by the input
signals (pulse) of various frequencies is analyzed in this paper using the method of
nonlinear dynamics. For a neural system, when sensory organs are sensing the exter-
nal continuous signals of physical or chemical, the first step taken is to transform
these analog signals into the frequency signals of neural response'”, and then the
frequency signals are transformed into irregular neural pulse sequence. What is the
rule of transmission like? Or how does neuron encode the frequency information?
This is the key issue to be discussed in this paper.

2 Circle Maps of Neurons

The main task of neural coding study is to explore how irregular neural pulse se-
quence varies with the input signal. Once the variation rule is discovered, the rule of

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 499 -507, 2005.
© Springer-Verlag Berlin Heidelberg 2005



500 Z. Hong, F. Lu-ping, and T. Qin-ye

signal variation in the neural system can be made clear, and finally the mechanism of
neural coding can be found. For this, circle maps can be used as a helpful tool /.

First, let’s consider the response signal of a neuron stimulated by a pulse with con-
stant frequency. In the paper, the classical H-H equation, shown in equation (1), is
adopted to describe the potential variation of a neuron. Several decades passed, basic
structure of the equation remains unchanged, though many persons contribute various
modifications to it "*. For generality, we take this function as the research target.

C%:_gkn4(v_EK)+§Num3h(V_ENu)+gI(V_EI)+I<’x1
% =K,(A,(1-n)-B,n)
’ (1)

K, (4,0-m)-B,m)
dh
- = K(A(1=h)=B,h)
Here, I,,, functions as the external input signal.
(T—(vﬁ%
K, =3
v':v_vrest
4 2 0ot #* (10 = V")
P ()Y A
e o1
B, =0.125 + o /&)
A - 0.1(25-Vv")
m T sV
e 25 VA) _1 (2)

B =4*e(7v%3)

A, =007 %p /™
1

B, = —fi——
(30-v")

e A’-’-l

The parameter list used in the emulation is shown in Table 1.

From the emulation, it is found that an irregular pulse sequence (response signal)
will come out if a sequence of neural pulses with equal intervals (stimulus signal) is
imposed on a neuron:

Input signal takes the form of periodical square wave with amplitude of 20mA/cm’
and width of 1ms. The width selection of input pulse signal depends on the general
width of potential of neural system. Period of sequence of stimulus input is Sms.

Runge-Kutta method with variable step size is applied to the numerical solution of
H-H equation. In detail, routine ode45 of Matlab is chosen, while the relative error
range sets to 1e®, and the absolute error range sets to le”. Meanwhile, the minimal
time step period falls into the range from le™ to le”, and the maximal time step pe-
riod falls into the range from 0.01 to 0.1.
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Table 1. Parameters list in formula (1)

Parameter Value Unit
C 1 uF cm™
8k 36 mS cm”
8 120 mS cm”
8 0.3 mS cm?
E, -71.967 mv
E,, 54.98 mv
E, -49 mv
T 6.3 T
V o -59.805 mv

Take the time when one action potential reaches its peak as the time point of the
potential, the interval between current time point and the nearest preceding one is
referred to as period of response pulse. Then the period of response pulse is quite
irregular. We extract the circle maps of the signal according to the period of input
signal .

For a given initial condition, we get a phase sequence:

{9i}=919293 ...... Gn . (3)

where 0; takes relative value.
From sequence (3), we obtain the following equation (4)

0, =@( 0, ) . 4)

Since there is no explicit function in it , we are unable to obtain the concrete form
of function ®, however, its curve can be drawn based on equation (3), as shown in
Fig.1.

It can be seen from Fig. 1 that the relation between6, andf,,, forms a regular func-
tion.

From the point of circle maps theory, this is a monotonic increasing function. If the
initial phase0; is given, 0, can be determined according to Fig.1. Through similar
deduction, a phase sequence is obtained consequently, the phase rule of which coin-
cides with that of actual neural impulses. This rule forms the solid base for us to un-
derstand the mechanism of neural coding.

Next, we will analyze the pulse sequence using circle maps method.
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8n

Fig 1. The circle maps of responses of the neuron, when the period of input stimulus is 2.6ms.
Relative coordinates O =6/t are used, where 7 is the period of the input stimulus.

3 Symbolic Dynamics of Circle Map

Symbolic dynamics analysis can be performed with the help of circle map. For it is a
monotonic increasing maps function, without descending part, what we should do is
to extract the symbol periodically™. According to the calculated pulse sequence
above, the distance between the ith pulse and the i+ /th pulse is almost as lengthy as 5
to 6 periods of input pulse. To simplify, pulse within 5 periods is defined as L, and
pulse within 6 periods is defined as R. For generality, when input frequency increases,
pulse within 5-6 periods may expand to range of 6-7 or 7-8 periods. The approach of
extracting symbol remains the same.

{Si}=S:S, Ss...... NI ,where S;=RorL. 5)

Then, one specific initial phase valuef; can determine one pulse sequence and then
one phase sequence {0;}. Similarly, one symbol sequence {S;} can be determined,
which can be orderly arranged based on initial phase valuef; And its rule is shown as
following:

Sequencing method for a symbol sequence is achieved with comparison one by
one. Assume there are two sequences:

A=a aa;.....q,
(6)
B=b1b2b3. . ..bn .
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Firstly, the 1% symbols (a; & b;) is compared as follows:
If a;=R, and b;=L
R>L

This indicates that the phase of the 6™ period(0,=a,) is larger than that of the 5™ pe-
riod (91=b1).
In the case of more than two symbols, we have

(313233 .......... ;A4 & b1b2b3 ---------- bibi+1)
YL <XR. @
where 22313233 ...... a; =b1b2b3 ------- bi. (8)

It is unnecessary to know the value of every initial phase6,. Once symbol sequence
corresponding to each of the initial phases is given, the relative value of each initial
phase is determined. This is so-called sequencing rule of symbolic dynamics.

4 Principle of Frequency Coding in Neuron

Next, we will study the variation of output phase sequence under the condition of
sequence of impulse with various frequencies as input.

Actually the sequencing rule demonstrated in equation (7) reflects the ordering by
initial phases. Now the question is: when the frequency of input pulse changes, does
the output symbolic sequence order in terms of frequency? From the point of sym-
bolic dynamics, it is an ordering problem by parameters. Therefore, the impact on the
curve of function ®(6,) , shown in Fig.1, which is posed by the variation of input
frequency, can be assessed according to equation (1).

The stimulus signals, depicted in the group figures of Fig.2, arranging from top to
down and from left to right, have periods ranging from 1.1ms to 2.5ms and pulse
width of 0.1ms. From Fig.2, it can be seen that the function curve of circle maps shifts
right as the frequency of stimulus descends. In the figure, the function combines two
part, @ (0,) in the left and ®g(0,) in the right. When ®r(6,) moves to the end, @ (0,)
will replace it and at the same time a new @ (0,) is formed. Refer to the changes be-
tween the 1% small figure and the 2™ small figure from the left in the second row, it
can be seen that the changes behaves regularly. It seems that the 2™ small figure from
the right in the bottom row of Fig.2, which contains only several points, does not
match with its surrounding figures. Actually this is due to drawing techniques. The
small figure serials of Fig.2 are not depicted point by point according to phase angle
calculated one by one originating from the initial phase angle. On the contrary, each
point is determined by Poincaré maps after a stimulus sequence with a certain fre-
quency is given. For its property of ergode, we can obtain almost all the points of the
curve.

Some figures contain only several points, due to the occurrence of periodical solu-
tion under the specific frequency. Thus, Poincaré maps produces limited number of
points, while the ordering rule remains unchanged.
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T=2. 1ms T =2.2ms T =2.3ms T =2. 4ms T =2.5ms
Fig. 2. Variantt and corresponding frequence map

Because they are all monotonic increasing functions, and the movement and fre-
quency of ®(8,) are changed monotonously, it is discernable that under certain initial
condition, the yielded phase sequence changes monotonously too.

After pulse sequences with various frequencies are assigned to equation (1), sym-
bols are extracted with the same approach (see Section 3) in the subsequent computer
experiment.

Table 2 is obtained using the above method. Within the permission range of stimu-
lus frequencies, the period of system response pulse varies from 5t to 61. Therefore
the symbol sequence of the system response can be described simply with two sym-
bols. Symbol O (or L) represents that the pulse period is 5t, whereas symbol 1(or R)
represents that the pulse period is 67.

Table 2 exhibits that symbol sequence becomes smaller when the period increases
(frequency decreases).

In column 5 and column 6 of table 2, period changes from 2.64 to 2.65. Though it
is obvious that the frequency descends, the corresponding 10 symbols are identical,
therefore there is no way to distinguish which symbol sequence is bigger. However,
the change can be observed in the case of 20 symbol sequence. It reveals that the
more lengthy one symbol sequence is, the higher resolution is.

In Fig.2, we notice that system has an approximate periodical solution when the
stimulus period is as long as 2.4ms. Meanwhile, the right part of the circle maps func-
tion is to be replaced with the left part in the movement process of the circle maps
function caused by the variation of stimulus period, i.e. the system evolves to the



Study on Circle Maps Mechanism of Neural Spikes Sequence 505

critical condition, in which the new left branch emerges. As circle maps function
changes around the critical zone, the scope of distance between two stimulus periods,
where two consecutive system responses occur, changes accordingly, requiring more
symbols to implement the symbolization of system response. Fig.3 illustrates the
symbol sequence of system response at the time when stimulus period ranges from
2.3ms to 2.5ms; symbol O indicates that the distance between two stimulus periods
where two consecutive system responses occur is equal to 5; symbol 1 indicates that
the distance between two stimulus periods where two consecutive system responses
occur is equal to 6; symbol 2 indicates that the distance between two stimulus periods
where two consecutive system responses occur is equal to 7. The ordering rule coin-
cides with that of two-symbol sequence. In Table 3, the ordering relation of the sym-
bol sequence is demonstrated, i.e. symbol sequence decreases also once the stimulus
frequency decreases.

If symbolization of system response is implemented in a much wider scope of
stimulus period variation, more symbols are required. Generally, we can exploit any
element in the symbol set to express the symbol sequence of system response.

A={5,0,05...... on}- 9)
For example, table 2 is the case of n=2, in other words, the symbol set contains only
Table 2. The symbol sequence of the system response orbit as the period of the stimulus ranges

from 2.6ms to 2.7ms, with step 0.1ms. Here, 0 and 1 correspond to L and R in the symbol
sequence.

Period of Stimu- | Corresponding Symbol Corresponding Symbol
lus ( ms) Sequence (10 symbols) Sequence (20 symbols)
2.6 1010101101 10101011010101010110
2.61 1010101010 10101010101011010101
2.62 1010101010 10101010101010101010
2.63 1010101010 10101010100101010101
2.64 1010010101 10100101010101010010
2.65 1001010101 10010101010010101010
2.66 1001010100 10010101001010010101
2.67 1001010010 10010100101001010010
2.68 1001001010 10010010100100101001
2.69 1001001001 10010010010010010100
2.7 0100100100 01001001001001001001

two symbols, representing distances between impulses equal to 5 or 6 periods respec-
tively, with ;= 0 or §;= 1 (L or R) in equation (9).

In Table 3, n equals to 3, indicating the symbol set comprises of 3 symbols, which
represents 5,6 or 7 periods of pulse interval respectively, and d;is equal to 0,1, or2.
If the scope of stimulus frequency expands further, d; varies in the wider range of
period, having more change of symbols (see equation (9) ).
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Table 3. The symbol sequence of the system response orbit as the period of the stimulus ranges
from 2.3ms to 2.5ms, with step 0.2ms. Here the frequency scope of the stimulus extends
beyond the range, which requires 3 symbols for representation, rather than 2 symbols, with 9;

=0,1 or 2.

Period of | Corresponding Symbol | Corresponding Symbol

Stimulus (ms) | Sequence (10 symbols) | Sequence (20 symbols)
2.30 2111121111 21111211112111211112
2.32 1211111211 12111112111112111112
2.34 1211111111 12111111112111111112
2.36 1121111111 11211111111111111121
2.38 1111211111 I1112111111111111111
2.40 1111111111 I111t11t11r1e111111
2.42 1111111111 IT111111111111110111
2.44 1111111011 I1111110111111111011
2.46 1111011111 11110111111011111101
2.48 1110111101 11101111011111011110
2.50 1101111011 11011110111011101111

5 Discussion

According to the above analysis, we have the following points.

1)

2)

3)

Though the output response of neuron, stimulated by various frequencies, is
quite irregular, it becomes regular under the analysis using method of circle
maps and symbolic dynamics. Measures of frequency signal can be determined
from symbol sequences. It is also the process of frequency detection for a neural
system, various sensory organs change analog signal to frequency signal, and
then to chaotic orbits (a sequence of irregular pulses). So, what is discussed in
the paper is the general procedure of neural information process.

This method can be used to distinguish the seemingly messy neural pulses and
then order them. If these orbits which are able to be ordered are assembled to-
gether, an orbit space can be constructed. In addition, this orbit space is an or-
derly one. We think information processing involving neural system can be de-
veloped in orderly space. In order space, some operations can be performed,
which provide the foundation for further study on neural information processing.
If H-H function can reflect the real-world neuron’s electric activity in qualitative
fashion "*!, the above analysis is suitable for the real-world neuron’s activity.
Even if there are some discrimination between H-H function and the real situa-
tion, if only the curve shapes of function @ (6,) and ®x(6,) in Fig.1 are changed,
and if function monotonicity is not changed, then no influence will be imposed
on the extraction of symbol. Therefore the above outcomes still take effect. If
any change happens on monotonicity, some modification is required for the
above analysis
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Because of page limitation, we will end our discussion here. Actually this analysis

is capable to disclose the information coding mechanism of various sensory organs. In
another paper, the information process mechanism of olfactory neural system will be
introduced.
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Abstract. We study the synchronization phenomena in a pair of Hindmarsh-
Rose(HR) neurons with chemical coupling. We find that excitatory synaptic
coupling pushes two neurons towards antisynchrony, and weak or moderate in-
hibitory synaptic coupling pushes two neurons towards antisynchrony too, but
sufficiently strong inhibitory synaptic coupling pushes two neurons towards
synchronized periodic oscillations without spikes. And synchronization patterns
can’t be changed even if the intrinsic frequency of individual cell is changed by
modulating external input current. Investigating the effect of synapse on ISIs bi-
furcation structures shows that whether excitatory synapse or inhibitory syn-
apse, both remarkably influence ISIs structures. That is, the chemical coupling
between neurons wholly distorts the neuronal information.

1 Introduction

Synchronization of nonlinear oscillators has been widely study recently !\ Espe-
cially, the affection of electrical and chemical coupling on synchrony of coupling
neurons has attracted lots of attention.

In Ref. [3], the experimental studies of synchronization phenomena in a pair of
biological neurons interacted through electrical coupling were reported. In Ref. [4],
the synchronization phenomena in a pair of analog electronic neurons with both direct
electrical connections and excitatory and inhibitory chemical connections was stud-
ied. Traditionally, it has been assumed that inhibitory synaptic coupling pushes neu-
rons towards antisynchrony. In fact, If the time scale of the synapses is sufficiently
slow compared with the intrinsic oscillation period of the individual cells, inhibition
can act to synchronize oscillatory activity .

In this paper, we investigate dynamics of network of two HR neurons with chemi-
cal synapses, the models used were given in Ref. [6]. The results show that excitatory
synapses can antisynchronize two neurons and enough inhibition can foster phase
synchronization. And the synchronization patterns of two coupled neurons can’t be
changed with intrinsic frequency of individual cell being changed by modulating
external input current,

Investigating the effect of chemical synapse on ISIs bifurcation structure!’’ of
chemical coupling HR neurons shows that the ISIs bifurcation structures are wholly
changed by chemical synapse.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 508 -511, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Hindmarsh-Rose Models with Electrical and Chemical Synaptic
Connections

Consider two identical HR models with reciprocal synaptic connections. The differen-
tial equations of the coupled systems are given as'®' [

. x, +V
xizyi+bxi2—axi3—zi+ldc+es( i CX )
X. —
l+exp 2%
Y,
. (D)

Vi =c—dxl.2—y.

1

2, =r[S(x;, — ¥)—z1

Where i =12, j=12, i#j

In the simulation, let a =1.0,b =3.0,c =1.0,d =5.0,s = 4.0, = 0.006,y = —-1.56,
1,,=3.0, I, denotes the input constant current. The last term of the first formulation
is synaptic current of coupling system, €_ is the strength of the synaptic coupling, and

V. =1.4 is synaptic reverse potential which is selected so that the currents injected
into the postsynaptic neuron are always negative for inhibitory synapses and positive
for excitatory synapses. Since each neuron must receive an input every time the other
neuron produces a spike, we set ¥, =0.01 and X, = 0.85 °", In numerical simula-
tion, the double precision fourth-order Runge-kutta method with integration time step

0.01 was used, the initial condition is (0.1,1.0,0.2,0.1,0.2,0.3). In each realization, the
data for n<10"* are ignored to avoid transients.

3 Synchronizing Two HR Neurons with Synaptic Connection

The chemical synapse is excitatory for e, >0 and is inhibitory for e, <0. The results

show that two neurons will be irregular oscillation with small excitatory coupling
strength, and will be in full antisynchrony for enough excitatory coupling strength,
such as Figs.1(a,b). It is interesting that these results do not agree with those of Ref.
[4], and are contrary to traditional view.

Investigating the synchrony course of two neurons with inhibitory synapses
shows that two neurons oscillation are irregular for small coupling intensity, and the
phase difference between two neurons increase gradually with coupling strength in-
creasing, till e, = —0.45 at which the phase difference between two neurons are big-

gest, see Fig.1c, which means that two neurons are full antisynchrony. Continuing to
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increase intensity of inhibitory coupling, the phase difference between two neurons
will decrease, till e, =—0.9, when two neurons are full synchronous periodic oscilla-

tion without spikes, such as Fig.1d. In Ref. [8], the intrinsic oscillation frequency of
the individual cell was increased by increasing external stimulating current, and the
systems with inhibitory coupling can evolve to synchronous state. In our paper,
numerical results show that the synchronization patterns of membrane potential and
synaptic current of two coupling neurons haven’t been changed even if the intrinsic

oscillation frequency of individual cell has been changed with changing external input
current.
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Fig. 1. ( a, b) Time courses of membrane potential of two neurons for excitatory synapse, two
neurons are irregular activity for e, = 0.03, period 1 antisynchrony fore, = 0.3, respectively;
(c,d) Time courses of membrane potential of two neurons with inhibitory synapse., two neurons

are full antisynchrony for e;=-0.45, two neurons are full synchrony periodic oscillation for
e=-0.9

4 The Effect of Chemical Coupling on ISIs Bifurcation Structure

The neuronal information proceeding and coding are mainly based on ISIs. Figs.2
(b,c) show ISIs bifurcation diagrams of coupled HR neurons with es=0.3 and es=-0.5,
respectively. Compared with fig.2a, it is obvious that ISIs structures are remarkably
different from those of individual HR neuron without coupling. The difference of ISIs
structures between individual HR neuron and coupled HR neuron means that the
coupled neurons undergo entirely different firing patterns from those of individual
neuron without coupling under the same parameter values; that is, the neuronal infor-
mation is wholly distorted by the chemical coupling between neurons.
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Fig. 2. (a) Bifurcation diagram of ISIs vs the external current Iy in single HR neuron without
coupling; (b,c) ISIs bifurcation diagram vs external input current I, for e=0.3 and e=-0.5,
respectively

5 Conclusion

In this paper, we investigate synchronization patterns of two HR models with chemi-
cal coupling. The results show that excitatory synapses can antisynchronize two neu-
rons, and weak or moderate inhibitory synaptic coupling can antisynchronize two
neurons too, but strong inhibitory synapse can foster phase synchrony of two neurons.
And the synchronization patterns of membrane potential and synaptic current of two
coupling neurons haven’t been changed even if the intrinsic oscillation frequency of
individual cell has been changed with changing external input current. The ISIs bifur-
cation structures are wholly changed by chemical synapse. That is, the chemical
coupling between two neurons wholly distorts the neuronal information.
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Abstract. This paper deals with the estimation of the linear and the
nonlinear quantile regressions using the idea of support vector machine.
Accordingly, the optimization problem is transformed into the Lagrangian
dual problem, which is easier to solve. In particular, for the nonlinear
quantile regression the idea of kernel function is introduced, which al-
lows us to perform operations in the input space rather than the high
dimensional feature space. Experimental results are then presented which
illustrate the performance of the proposed method.

1 Introduction

Quantile regression introduced by Koenker and Bassett[6] is gradually envolving
into an ensemble of practical statistical methods for estimating and conducting
inference about models for conditional quantile functions. Quantile regression
is an increasingly popular method for estimating the quantiles of a distribution
conditional on the values of covariates. Regression quantiles are robust against
the influence of outliers and, taken several at a time, they give a more com-
plete picture of the conditional distribution than a single estimate of the center.
Just as classical linear regression methods based on minimizing sum of squared
residuals enable one to estimate a wide variety of models for conditional mean
functions, quantile regression methods offer a mechanism for estimating models
for the conditional median function, and the full range of other conditional quan-
tile functions. By supplementing the estimation of conditional mean functions
with techniques for estimating an entire family of conditional quantile functions,
quantile regression is capable of providing a more complete statistical analysis
of the stochastic relationships among random variables. The introductions and
current research areas of the quantile regression can be found in Koenker and
Hallock[9], Yu et al.[15].

In this paper we present the estimation methods of linear and nonlinear
quantile regression by utilizing support vector machine(SVM). The SVM, firstly
developed by Vapnik and his group at AT&T Bell Laboratories, is being used as
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a new technique for regression and classification problems. SVM is gaining pop-
ularity due to many attractive features, and promising empirical performance.
SVM was initially developed to solve classification problems but recently it has
been extended to the domain of regression problems. SVM is based on the struc-
tural risk minimization(SRM) principle, which minimizes an upper bound on
the expected risk unlike ERM minimizing the error on the training data. By
minimizing this bound, high generalization performance can be achieved. In
particular, for the SVM regression case SRM results in the regularized ERM
with the e-insensitive loss function. The introductions and overviews of recent
developments of SVM regression can be found in Vapnik[12][13], Gunn[4], Smola
and Scholkopf[11], Cristianini and Shawe-Taylor[2], Kecman[5], and Wang[14].

The minimization problem associated with linear quantile regression is in
essence the linear programming(LP) optimization problem, which is based on
simplex algorithm or interior point algorithm. The current state of algorithms
for nonlinear quantile regression is far less satisfactory. The widely used algo-
rithm is interior point algorithm. Nonlinear quantile regression poses new al-
gorithmic challenge. Refer to Koenker and Park[8] and Koenker and Hallock[9)
for the algorithms. Training an SVM requires the solution of a quadratic pro-
gramming(QP) optimization problem. Thefore, both the linear and the nonlinear
quantile regressions by SVM require solving QP problem to get estimates.

The purpose of this paper is to present the estimation methods of the linear
and the nonlinear quantile regressions using SVM. The rest of this paper is
organized as follows. In Section 2 we present the estimation methods of quantile
regression using SVM. In Section 3 we perform the simulation studies through
examples. In Section 4 we give the conclusions.

2 Quantile Regression via SVM

Conditional quantile estimation has long been studied in the literature. Most
commonly used approach is quantile regression introduced by Koenker and
Basset[6]. In this section we derive the linear and the nonlinear quantile re-
gression methods by implementing the idea of SVM. Consider a random sample
{x;,yi}", with input vector x; € R? and output variable y; € R. Here the
output variable y; is related to the vector x; of covariates, possibly including a
constant 1.

2.1 Linear Quantile Regression

In the linear quantile regressin model introduced by Koenker and Bassett[6] the
quantile function of the response y; for a given x; is assumed to be linearly
related to the input vector x; as follows

QO)x;) = B(0)'x; for 6 € (0,1), (1)

where 3(6) is the 0-th regression quantile and its estimator is defined as any
solution to the optimization problem,
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Hllénzpe(yi - lg(e)txi) for 6 €(0,1), (2)

where pg(-) is the check function defined as
po(r) =0rI(r >0)+ (0 —1)ri(r <0).

We now describe how to implement the idea of SVM for the linear quantile
regression. Since quantile regression is in principle based on absolute deviation
loss, to derive quantile regression using the idea of SVM, we should adopt the
procedures of the case ¢ = 0 in a standard SVM. In order to follow the basic
idea of quantile regressions, we express x; as x; = (1,x!)". We use the same
notation for the resulting new vectors to avoid the abuse of notation. Then, we
can express the linear quantile regression problem by the formulation for SVM.

1 n
minimize 5 lwl* + C’Z(@& +(1-06)) for 0 €(0,1), (3)
i=1
yi —w'x; < &
subject to wix, —y; < & .
&, & =20

where the 0-th regression