
Service Interaction Patterns

Alistair Barros1, Marlon Dumas2, and Arthur H.M. ter Hofstede2

1 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

2 Queensland University of Technology, Australia
{m.dumas, a.terhofstede}@qut.edu.au

Abstract. With increased sophistication and standardization of model-
ing languages and execution platforms supporting business process man-
agement (BPM) across traditional boundaries, has come the need for
consolidated insights into their exploitation from a business perspective.
Key technology developments in BPM bear this out, with several web
services-related initiatives investing significant effort in the collection of
compelling use cases to heighten the exploitation of BPM in multi-party
collaborative environments. In this setting, we present a collection of
patterns of service interactions which allow emerging web services func-
tionality, especially that pertaining to choreography and orchestration,
to be benchmarked against abstracted forms of representative scenarios.
Beyond bilateral interactions, these patterns cover multilateral, compet-
ing, atomic and causally related interactions. Issues related to the imple-
mentation of these patterns using established and emerging web services
standards, most notably BPEL, are discussed.

1 Introduction

Process modeling languages have emerged as a key instrument for achieving
integration of business applications both within and across organizations in a
service-oriented architecture (SOA) setting. This trend is reflected in a number
of standardization initiatives such as the set of WS-* Specifications [11], OMG’s
Enterprise Collaboration Architecture1 and RosettaNet2, all of which position
processes at the highest level of abstraction. Process modeling languages provide
an abstract means of specifying complex sequences of execution steps, leaving
lower layers to deal with details like software interfacing, quality of messaging
and transport protocol binding. From the SOA prism, process steps result in
interactions with (web) services that encapsulate the business logic associated
to the step. Processes that rely on services to realize process steps can themselves
be deployed as services, a practice known as process-based service composition.

Through different insights from various initiatives over the last few years,
different aspects of process-based service composition have evolved. In partic-

1 http://www.omg.org/technology/documents/formal/edoc.htm
2 http://www.rosettanet.org

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 302–318, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.omg.org/technology/documents/formal/edoc.htm
http://www.rosettanet.org

Service Interaction Patterns 303

ular, the developments of the Business Process Execution Language (BPEL)3

and W3C’s Web Services Choreography Definition Language (WS-CDL)4, have
been accompanied by requirements and use cases gathering. However these have
largely steered towards technical concepts and implementation concerns, with
documented use cases and examples reflecting little more than simple processes
involving basic “buyer-supplier-shipper” interactions.

For service composition technology to progress further, more requirements
gathering is needed to shed light into the nature of service interactions in col-
laborative business processes. In particular, it must be considered that there is
often a large number of parties in such collaborative processes and thus the na-
ture of interactions may be multilateral rather than bilateral. Furthermore, the
assumption of strict synchronization of all canvassed responses breaks down due
to the independence of the parties. More realistically, responses are accepted as
they arrive or a minimum number is required for an interaction to be successful.
Another crucial feature is that not all service providers have comparative advan-
tage and collaborate. Not untypically, they compete. Hence, canvassed requests
to competing service providers may require exclusivity – e.g the first response
is accepted and the rest ignored. Finally, not all interactions follow a requestor-
respondent-requestor structure. Instead, a sender may redirect interactions to
nominated delegates and services may outsource requests choosing to “stay in
the loop” and partially observe follow-ups. More generally, it may only be possi-
bly to determine the order of interactions at runtime given the message contents.

This paper aims at contributing to this requirements gathering activity by
proposing a set of service interaction patterns. Patterns have proved invaluable
in the reuse of requirements, design and programming knowledge. They were tra-
ditionally the province of software design, but have recently emerged in the BPM
field [1]. The collected service interaction patterns apply primarily to the ser-
vice composition layer (orchestration, and choreography) but also to lower layers
(e.g. message typing and addressing). They have been derived and extrapolated
from insights into real-scale B2B transaction processing, use cases gathered by
standardization committees (e.g. BPEL and WS-CDL), generic scenarios iden-
tified in industry standards (e.g. RosettaNet Partner Interface Protocols), and
case studies reported in the literature. It is not claimed that the proposed set
of patterns is complete: the aim is rather to consolidate recurrent scenarios and
abstract them in a way that provides reusable knowledge. Furthermore, the pat-
terns allow the assessment of emerging web services standards. Specifically, we
use the patterns to analyze the scope and capabilities of BPEL and to some
extent of related specifications such as WSDL and WS-Addressing (WS-A) [11].

The proposed patterns are classified according to the following dimensions:

– The maximum number of parties involved in an exchange, which may be
either two (bilateral interactions, covering both one-way and two-way inter-
actions) or unbounded (multilateral interactions).

3 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel. In this
paper, we use the acronym BPEL to refer to WS-BPEL version 2.0.

4 http://www.w3.org/TR/ws-cdl-10

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/TR/ws-cdl-10

304 A. Barros, M. Dumas, and A.H.M. ter Hofstede

– The maximum number of exchanges between two parties involved in a given
interaction, which may be either two (in which case we use the term single-
transmission interactions) or unbounded (multi-transmission interactions).

– In the case of two-way interactions (or aggregations thereof) whether the re-
ceiver of the “response” is necessarily the same as the sender of the “request”
(round-trip interactions) or not (routed interactions).

Based on these dimensions, we identify four groups of patterns. The first one
encompasses single-transmission bilateral interaction patterns. These correspond
to elementary interactions where a party sends (receives) a message, and as a
result expects a reply (sends a reply). This group covers one-way and round-trip
bilateral interactions but not routed interactions which are covered in a separate
group. The second group of patterns stays in the scope of single-transmission
non-routed patterns, but deals with multilateral interactions. In this case, a party
may send or receive multiple messages but as part of different interaction threads
dedicated to different parties. The third group is dedicated to multi-transmission
(non-routed) interactions, where a party sends (receives) more than one message
to (from) the same party. The final group is dedicated to routed interactions.

The proposed patterns may be composed through operators expressing flow
dependencies such as sequence, choice, and synchronization. In this paper how-
ever, we do not deal with patterns composition. Also, it is not in the scope of
the proposed patterns to capture internal steps performed by a service that do
not directly contribute to nor directly result from interactions. Also, we abstract
from data representation and manipulation issues as these deserve a separate
elaboration. For the same reason, the patterns do not cover security issues.

The structure of the paper follows the groups of patterns outlined above. For
space reasons, we omit the first group which comprises three well-known patterns
(send, receive and send/receive) as detailed in [3]. Thus the next section starts
directly with Pattern 4.

2 Single-Transmission Multilateral Interaction Patterns

Pattern 4: Racing incoming messages.

Description. A party expects to receive one among a set of messages. These
messages may be structurally different (i.e. different types) and may come from
different categories of partners. The way a message is processed depends on its
type and/or the category of partner from which it comes.

Example. A manufacturing process involves remote subcontractors and uses
a pull-strategy to streamline its operations. Each step in the manufacturing
process is undertaken by a subcontractor. A subcontractor signals intention to
execute a step when it becomes available through a request. At the same time,
progress is monitored by a quality assurance service. The service randomly issues
quality check requests in addition to the pre-established quality checkpoints in
the process. When a quality check request arrives, it is processed in full before
processing any new quality check request or subcontractor intention. Similarly,

Service Interaction Patterns 305

when a subcontractor intention arrives, it is processed in full before processing
any other check request or subcontractor intention. Thus, there are points in the
process where quality checks and subcontractor intentions compete.

Issues/design choices.

– The incoming messages may be of different types.
– The processing that follows the message consumption (which we term the

continuation) may be different depending on the consumed message.
– When one of the expected messages is received, the corresponding contin-

uation is triggered. The remaining messages may or may not need to be
discarded.

– Depending on the underlying communication infrastructure, several of the
expected messages may be simultaneously available for consumption. In
this case, two approaches may be adopted: (i) let the system make a non-
deterministic choice, or (ii) provide a “ranking” among the competing mes-
sages. In any case, only one message is chosen for consumption.

Solution. This pattern is directly captured by the pick activity in BPEL. The
pick activity simultaneously enables the consumption of several types of message
events and allows at most one message event to be consumed. Specifically, a pick
activity is composed of multiple branches, each of which has a corresponding
handler which acts as the trigger of the branch. Occurrences of message events
are consumed by onMessage handlers. An onMessage handler is associated with
a type of message, identified by a partner link and a WSDL operation. When
a message of the type associated to an onMessage handler is available for con-
sumption, a message event may occur which is immediately consumed by the
handler. The pick enforces that at most one of its associated onMessage handlers
will consume an event. It is also possible to associate a timer with a branch of
a pick activity through an onAlarm handler. The corresponding branch is taken
if the timeout event occurs before any of the other branches is taken.

In the current version of BPEL, it is not possible to express a ranking among
the competing types of message event handlers under a given pick. Although in
the concrete syntax of BPEL the handlers under a pick are ordered, this order
is not significant. Hence, should there be several onMessage handlers able to
consume message events when the pick activity is executed, the system may
choose any of them non-deterministically. What is needed to capture the fourth
issue of this pattern is a way of ranking message events so that when several of
them enter into a race, the one with highest ranking is chosen.

Related pattern.

– Deferred choice [1]. The deferred choice pattern corresponds to a point in
a process where one among a set of branches needs to be taken, but the
choice is not made by the process execution engine (as in a “normal choice”).
Instead, several alternatives are made available to the environment and the
environment chooses one of these alternatives. The Racing Messages pattern
can be seen as a specialization of the deferred choice where the choice of
branch is determined by the receipt of a message.

306 A. Barros, M. Dumas, and A.H.M. ter Hofstede

Pattern 5: One-to-many send.
Description. A party sends messages to several parties. The messages all have
the same type (although their contents may be different).
Synonyms. Multicast, scatter [10].
Example. A purchasing service sends a call for tender to all known trading
parties that provide a given type of product or service.
Issues/design choices.

– The number of parties to whom the message is sent may or may not be
known at design time. In the extreme case, it may only be known just before
the interaction occurs.

– As for the one-to-one send, reliable delivery may or may not be required. In
the case of reliable delivery, the individual send actions may result in faults
and thus fault handling routines should be associated to each of the individ-
ual send actions. The logic of these fault handlers is application-dependent:
some applications may choose to terminate the whole one-to-many send when
one of the individual “send actions” fail, while others may simply record the
failures that occur and proceed.

Solution. A natural approach to address this pattern is to use the One-to-
one Send pattern as a basic building block. Thus, a number of one-to-one send
actions are scheduled in parallel or sequentially depending on the capabilities of
the underlying language. For example:

– If the number of parties is known at design time, it is possible to capture
this pattern in BPEL through a parallel block (i.e. a flow activity) such
that each thread contains a one-to-one send action with its associated fault
handler. Otherwise, the individual send actions would need to be scheduled
sequentially (using a while) thus contradicting the essence of the pattern.

– In certain proprietary extensions of BPEL, such as Oracle BPEL5, special
constructs are provided to capture the situation where an arbitrary number
of executions of an activity need to be performed in parallel, such that this
number is only determined when these parallel executions are started (see
for example the FlowN construct in Oracle BPEL).6 The pattern can be
captured using such a construct.

– In WSCI and BPML7, a construct known as “spawn” is provided to start an
instance of a sub-process asynchronously. By embedding the “spawn” within
a “while” loop, it is possible to start a number of “send sub-processes”, each
of which would be responsible for sending one of the messages and dealing
with any possible fault. These sub-processes would execute in parallel and
return back to the parent process upon completion through a “signal”. These
signals can then be gathered by a dedicated activity in the parent process.

5 http://www.oracle.com/technology/products/ias/bpel
6 A similar construct (namely parallel foreach) has been proposed for introduction

into the BPEL standard; see Issue 147 in the list of BPEL issues available from
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

7 http://www.bpmi.org

http://www.oracle.com/technology/products/ias/bpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.bpmi.org

Service Interaction Patterns 307

This pattern requires a “dynamic binding by reference” mechanism [2] since in
some cases the set of potential parties to which messages will be sent is not
known at design/build time. Instead, the identity and location of the partners
may be given as parameter, or retrieved from a local database, or from a remote
service registry. In BPEL, this is achieved by treating service endpoints references
(described in WS-A) as first-class citizens that can be associated with predefined
partner links at runtime.
Related pattern.

– Multiple instances with a priori runtime knowledge (MIRT) (van der Aalst
et al. 2003). In this pattern, several instances of a task are created and
allowed to execute in parallel with synchronization occurring when all in-
stances have completed. The number of task instances to be created is only
known at runtime, just before the instantiation starts. The one-to-many send
can be expressed by composition of the MIRT pattern and the one-to-one
send pattern discussed above. The FlowN construct of Oracle BPEL (see
discussion above) is a realization of the MIRT pattern.

Pattern 6: One-from-many receive.
Description. A party receives several logically related messages arising from
autonomous events occurring at different parties. The arrival of messages must be
timely so that they can be correlated as a single logical request. The interaction
may complete successfully or not depending on the messages gathered.
Synonyms. Event aggregation [8], gather [10].
Example. A group buying service receives requests for buying different types of
items. When a request for buying a given type of product is received, and if there
are no other pending requests for this type of item, the service waits for other
requests for the same type of item. If at least three requests have been received
within five days, a “group request” is created and an order handling process is
started. If on the other hand less than three requests are received within the five
days timeframe, the requests are discarded and a fault notification is sent back
to the corresponding requestors.
Issues/design choices:

– Since messages originate from autonomous parties, a mechanism is needed
to determine which incoming messages should be grouped together (i.e. cor-
related). This correlation may be based on the content of the messages (e.g.
product identifier).

– Correlation of messages should occur within a given timeframe. The receiver
should avoid waiting indefinitely.

– The number of messages to be received may or may not be known at design
time or run-time. Instead, after a certain condition is fulfilled, the received
messages are processed without waiting for subsequent related messages (i.e.
proceed when X amount of orders for a given product have been received).

– In some cases, a timeout occurs before any message is received.

Solution, The first issue implies that the payload of the messages received
should contain a piece of information that determines with which other messages

308 A. Barros, M. Dumas, and A.H.M. ter Hofstede

it should be grouped (i.e. in which group should it be placed). At an abstract
level, this can be captured through a function Group: Message → GroupID,
which associates a “group identifier” to a message. Messages with the same group
identifier are to be correlated. When a message of the expected type is received,
its group ID is inspected and one of three options may be taken: (i) a new group
is created for the message if no group for that group ID exists; (ii) the message
is added to an existing group; (iii) the message may be discarded because the
group ID is not valid (e.g. the group existed before but it is no longer accepting
new messages). The latter option entails that the recipient should maintain a
list of invalid group IDs (or equivalently a set of valid ones).

Because the number of messages to be received is not necessarily known
in advance, it is necessary to incorporate a notion of stop condition. The stop
condition may be expressed as a predicate over the set of messages received.
The stop condition is evaluated each time a message is received. As soon as the
stop condition evaluates to true, the interaction is considered to be complete.
In a tender scenario, to capture that as soon as 5 bids have been received the
interaction completes and subsequent bids are ignored, the corresponding stop
condition would be |R| = 5, where R denotes the set of messages received.

A solution to this pattern should associate timers to message groups. The
timer for a group is started when the group is created. A group may be created
either explicitly by the service (e.g. when the service enters a given state) or by
the receipt of a message which mapps to a group ID for which no corresponding
group is open. In the former case, it is possible that a timeout occurs even if no
message has been received.

When a timeout occurs, depending on the set of messages gathered at that
point, the interaction may be considered to have succeeded or failed. For exam-
ple, a tender may be considered as successful if there are at least 3 bids and at
least one of them is below a given limit price. Thus, a generic solution to the
pattern also needs to incorporate a notion of success condition which is evalu-
ated when the interaction completes and determines whether the interaction is
considered as successful or not. Again, the success condition can be expressed
as a predicate over the set of messages received. In the example at hand, the
success condition would be: |R| ≥ 3∧∃r ∈ R : Price(r) ≤ limitPrice. Note that
in theory, it may happen that the stop condition evaluates to true (and thus the
interaction stops), while the success condition evaluates to false, so the interac-
tion is considered to have failed. When a group completes successfully, the set
of responses gathered for that group constitute the output of the interaction.

In the “group buying” example above, the stop and success conditions are
identical (“at least three requests should be received”), the timeframe is five
days, groups are created when the first message for the group arrives, and group
IDs are never flagged as invalid since it is always possible to process requests for
a type of product whether previous groups for this type have been filled or not.
Related pattern.

– Multiple instances with a priori runtime knowledge (MIRT). See discussion
in the “Related patterns” paragraph of the previous pattern. Note that exist-

Service Interaction Patterns 309

ing realizations of the MIRT pattern, such as the FlowN construct of Oracle
BPEL (see discussion above) do not support arbitrary stop and success con-
ditions as defined above. Instead, these conditions appear as lower and upper
bounds on the number of task instances that are required to complete.

Pattern 7: One-to-many send/receive.
Description. A party sends a request to several other parties, which may all be
identical or logically related. Responses are expected within a given timeframe.
However, some responses may not arrive within the timeframe and some parties
may even not respond at all. The interaction may complete successfully or not
depending on the set of responses gathered.
Synonyms. Scatter-gather [10,6].
Example. An insurance company outsources some aspects of its claims valida-
tion to its external search brokers. Brokers are typically small agencies and have
variable demands. For efficiency, the insurance company sends search requests
to all the brokers, and accepts the first three responses to undertake the search.
Issues/design choices.

– The number of parties to which messages are sent may or may not be known
at design time.

– Responses need to be correlated to their corresponding request.
– The sender should avoid waiting indefinitely or “unnecessarily” for responses.
– It is possible that no response is received.
– Reliable delivery may or may not be required during sending. In the case of

reliable delivery, the individual send actions may result in faults.

Solution. A solution to this pattern can be obtained by combining patterns
one-to-many send and one-from-many receive through parallel composition (e.g.
“flow” construct in BPEL). Since outgoing and incoming messages need to be
correlated, it is necessary to include correlation data in the outgoing messages
and retrieve these data from the incoming messages. BPEL provides a declarative
mechanism, namely correlation sets, for correlating communication actions (e.g.
correlating an invoke action with a receive action). Unfortunately, this mecha-
nism can not be employed if the actions to be correlated are executed in different
loops located in different branches of a flow activity8, which is the case for this
pattern since an a priori unknown number of invoke and receive actions need to
be executed in an arbitrary order. Thus the correlation between the send and
the receive actions implied by this pattern needs to be handled at the applica-
tion level, i.e. by introducing actions that insert and extract the correlation data
into/out of the incoming/outgoing messages.

The “stop condition” and the “success condition” for the one-from-many
receive may involve both the set of requests (to be) sent (say RQ) and the set
of responses gathered at a certain point (say RS). For example, to capture that

8 Specifically, in BPEL the invoke and the receive actions to be correlated must be
enclosed under a common scope activity such that each of these actions is executed
at most once per execution of the scope.

310 A. Barros, M. Dumas, and A.H.M. ter Hofstede

as soon as 10 responses have been received the interaction stops and subsequent
responses are ignored, the stop condition can be set to: |RS| = 10. Meanwhile,
to ensure that at least 50% of the parties need to respond the success predicate
should be set to: |RS| = 0.5 × |RQ|.

In the absence of a “stop condition” (i.e. if the stop condition is always true)
the pattern can be expressed by combining several elementary send and receive
actions through parallel composition which may be preempted by a timeout. As
discussed in the previous pattern, this would mean that the underlying language
provides a mechanism for executing an a priori unknown number of activities
in parallel, such as for example the “FlowN” construct in Oracle BPEL or the
“spawn” construct in BPML. Such a mechanism is not present in standard BPEL
and a workaround solution where the various one-to-one send/receive would be
executed sequentially does not properly address the pattern.

In the case of reliable delivery, fault handling routines (BPEL fault handlers)
may be attached either to each individual send actions or to the whole set of
send actions. A possible fault handling routine is to record that the message in
question was not delivered so that this information can be used in the stop and
success conditions. This way, it is possible to express conditions such as “stop
as soon as half of the parties who actually received a request have responded”.

Related pattern.

– Scatter-gather [6]. The scatter-gather pattern is a special case of the one-to-
many send/receive. The scatter-gather assumes that all parties respond in
a timely manner and that all responses must be gathered. Thus it does not
address issues related to timeout, stop and success conditions.

– One-from-many receive/send. This is the dual of the One-to-many
send/receive. Its description, issues, design choices, and solution are ana-
logue to those of the One-to-many send/receive.

3 Multi-transmission Interaction Patterns

Pattern 8: Multi-responses.
Description. A party X sends a request to another party Y. Subsequently, X
receives any number of responses from Y until no further responses are required.
The trigger of no further responses can arise from a temporal condition or mes-
sage content, and can arise from either X or Y’s side. Responses are no longer
expected from Y after one or a combination of the following events: (i) X sends
a notification to stop; (ii) a relative or absolute deadline indicated by X; (iii) an
interval of inactivity during which X does not receive any response from Y; (iv)
a message from Y indicating to X that no further responses will follow. From
this point on, no further messages from Y will be accepted by X.
Synonyms. Streamed responses, message stream
Example. A goods deliverer provides an urgent transportation service on behalf
of suppliers to customers in a city. For optimization of travel, it subscribes to
a local traffic reporting service provides its destination nodes (goods dispatch

Service Interaction Patterns 311

and customer locations) and obtains regular feeds on traffic bottlenecks, until it
indicates that no feeds are required.
Issues/design choices.

– Party X should be capable of receiving multiple messages from party Y
including ones that arrive simultaneously. The number of responses accepted
will depend on a condition to be evaluated at runtime.

– As with Pattern 4, the messages may be of different types. The way each
message is processed depends on its type.

– As with the One-from-many Receive pattern, a stop condition is pertinent.
However, unlike the One-from-many Receive, a success condition does not
apply since faults messages received by X are treated individually just as
“normal” messages. It is assumed that X and Y establish an a priori under-
standing of the stop condition.

– In the case where X determines when the multi-transmission should stop,
there is an interval between the moment when X decides to stop and the
moment when Y becomes aware of this decision. During this interval, Y may
send messages that will then be rejected by X. Hence, a mechanism should
be in place for Y to know that its messages have been rejected.

Solution. As for Pattern 4, the core of this pattern can be captured in BPEL
through a pick activity with a onMessage handler per type of message (whether
a normal message or a fault message). To capture the fact that several messages
may be accepted, the pick activity must be embedded within a “while” activity.
The encoding of the stop condition depends on its nature:

– If the stop condition is based on data available at the receiver’s side and/or
messages’ content, the stop condition can be encoded as the exit condition
of the while loop (like in the One-from-many receive pattern).

– If the stop condition is an absolute or a relative deadline (with respect to the
beginning of the interaction), the while activity must itself be embedded in a
scope activity containing an onAlarm handler corresponding to the deadline.

– If the stop condition corresponds to a period of inactivity between responses,
it can be captured as a branch in the pick activity associated with an on-
Alarm handler capturing the maximum duration of inactivity. If this branch
is taken, the while loop is interrupted (e.g. by setting an appropriate flag).

– If the stop condition is determined by the Y, a pre-agreed type of message
will signal the end of the interaction to X and thus the stop condition will
be encoded as an onMessage handler corresponding to this type of message.

In the case where the stop condition is determined by X, or in the case where
it is determined by Y but the underlying messaging infrastructure or interaction
policies do not guarantee ordered delivery of messages, X should be able to return
fault messages to Y for responses that are ignored. In BPEL, this can be done
by activating a thread of control after bespoke while/scope activity, which upon
receiving any of the expected types of messages from Y, returns a fault message.
This additional coding is necessary because in BPEL, while it is possible to state

312 A. Barros, M. Dumas, and A.H.M. ter Hofstede

that a process is expecting a type of message from a given party, it is not possible
to express that a process expects not to receive a given type of message and that
such messages should be discarded and a fault returned to their sender.
Pattern 9: Contingent requests.
Description. A party X makes a request to another party Y. If X does not
receive a response within a certain timeframe, X sends a request to another
party Z, and so on.
Synonyms. Send with failovers.
Example. A travel agency allows contingent reservations of flights in particu-
lar situations - urgent requests and busy flight paths. Customers nominate the
preference of flight carriers. In order of preference, reservations are sought in
short-timeframes. If a reservation is secured, the interaction ends.
Issues/design choices.

– There is a race between receiving a response and a timer.
– After a contingency request has been issued, it may be possible that a re-

sponse arrives (late) from a previous request. This means that more than
one response may arrive; in all, as many responses may potentially arrive as
requests have been sent. The question is when to accept a response if more
than one request has been made and more than one response arrives.

Solution. The first issue is generally well-understood and in fact BPEL pro-
vides direct support for it through the pick construct containing onMessage and
onAlarm handlers. For the second issue, several choices are available. One is to
accept the first response even if it is late and stop outstanding requests. An-
other is to accept the first arriving response, trigger the end of outstanding
requests, but receive any further responses that arrive (before the “contingent
send” process terminates). Yet another possibility is to disallow late arrivals al-
together, and receive only the response of the current request. For these choices,
the pattern does not pre-dispose which prevails. In some situations accepting
late responses is desirable, while in others it may cause problems of integrity in
remote parties particularly if requests are non-idempotent (involving database
updates and extending interactions even further with other parties).
Pattern 10: Atomic multicast notification.
Description. A party sends notifications to several parties such that a cer-
tain number of parties are required to accept the notification within a certain
timeframe. For example, all parties or just one party are required to accept the
notification. In general, the constraint for successful notification applies over a
range between a minimum and maximum number.
Synonyms. Transactional notification
Examples.

– Classical “all-or-none” atomicity. A business venture service9 supports the
process of business license applications for small business endeavors (e.g.

9 This example reflects the Queensland Government’s SmartLicence initiative
(http://www.sd.qld.gov.au/dsdweb/htdocs/slol/)

http://www.sd.qld.gov.au/dsdweb/htdocs/slol/

Service Interaction Patterns 313

opening a restaurant). After the steps of obtaining and verifying applica-
tion details, relevant agencies involved in the approval or registration of
the application are notified. All of them must receive notification as there
are inter-dependent aspects of the application leading to cross-consultation.
There may also be competing applications for the same business. Therefore,
all agencies should receive the notification in a timely fashion. In this exam-
ple, the minimum and maximum equal the number of all agencies notified.

– Exclusive choice. A legal firm has automated its property conveyance process
for various loan types. The process utilizes a number of search brokers who
have the same level of service agreements with the firm. Each of the brokers
competes for conveyance applications. Therefore, only one of the notified
brokers is selected, namely the first to accept the request. The minimum
and maximum both are one.

Issues/design choices.

– The set of parties to which the notification will be sent may not be known
at design time nor a priori at run-time.

– Specification for the minimum and maximum bounds should be supported.
– The constraint that all parties should have received the notification, means

that if any one party received the notification, all the other parties also
received it. Thus, some kind of transactional support is required for this
aspect of the interaction.

– Following from the above point, two steps in the interaction can be seen,
both of which need to be formalized. The first send-receive establishes the
intention to accept a request while the second acts of the decision following
an examination of received intentions - parties are notified about whether
they have been selected or not.

– The maximum number of parties required to accept the notification may
be less than the number of parties that notifications were sent to. Thus,
more responses than the maximum allowed may be willing to accept the
notification and a preference function may be needed to prune some of them.

Solution. The central issue of this pattern (third issue above) clearly relates to
transactional atomicity. At present, BPEL does not provide support for transac-
tional atomicity. However, it does provide support for a related notion, known as
quasi-atomicity [5] through the notion of compensation handler. Quasi-atomicity
refers to the ability to “undo” certain parts of a process execution. Using this
mechanism, the receiving parties, when they receive the initial request, may ac-
tually perform the work associated with this request. Later on during the second
round, if the sender decides not to proceed with the request to a given party,
then that party may compensate for the work that it had previously done. How-
ever, in between these two rounds, the effects of the initial request would be
visible to other parties, thus violating the principle of atomicity underlying this
pattern. Supporting atomic interactions is the aim of a dedicated WS specifi-
cation known as WS-AtomicTransaction10, which provides a realization of the
10 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwebsrv/html/wsacoord.asp

314 A. Barros, M. Dumas, and A.H.M. ter Hofstede

distributed two-phase commit (2PC) protocol. However, this specification has
not yet matured into a standardization initiative.

4 Routing Patterns

Pattern 11: Request with referral.

Description. Party A sends a request to party B indicating that any follow-up
should be sent to a number of other parties (P1, P2, ..., Pn) depending on the
evaluation of certain conditions. By default, faults are sent to these parties, but
they could alternatively be sent to another nominated party (possibly party A).

Examples.

– Referral to single party: As part of a purchase order processing, a supplier
sends a shipment request to a transport service. Subsequently, the transport
service reports shipment status (e.g. as per RosettaNet’s PIP 3B1) directly
to the customer who then correlates these with its initial purchase order.

– Referral to multiple parties: After processing its inventory re-stocking for a
week, a supermarket’s warehouse contacts a supplier for order and dispatch
of goods, notifying it of the different transport services available (differ-
ent services specialize in transport of different sorts of goods). The sup-
plier directly interacts with these transport services regarding the scheduled
dispatch times (arranged by the supermarket). Faults related to order ful-
fillment are sent by the supplier to the warehouse, while faults related to
delivery are sent by the corresponding transport services to the warehouse.

Issues/design choices.

– Party B may or may not have prior knowledge of the identity of the other
parties. The information transferred from A to B must therefore allow B to
fully identify and to interact with the other parties.

– The referred parties (P1, ..., Pn) and the party nominated to process faults
(if different from A) may receive messages related to interactions that they
did not initiate. These messages should then be related to internal processes
at these parties. Sometimes, messages received through referral trigger new
process instances, while other times, they will be routed to an activity within
an already running process instance. The data transferred must allow the
referred parties to route the message to the correct internal process.

Solution. At the messaging level, this pattern is partially addressed by WS-A
which defined (among others) two fields that can be included in SOAP message
headers, namely reply-to and fault-to. Using these fields, it is possible to specify
the service endpoint(s) to which replies and faults should be sent. The informa-
tion allowing the referred service to correlate the incoming message with its in-
ternal processes may be transferred in one of two ways depending of the adopted
state representation style [4]: (i) it may be encoded in the endpoint reference it-
self (as per the REST architectural style); or (ii) it may be encoded somewhere

Service Interaction Patterns 315

else in the message (e.g. in the message body). In the supplier-shipper-customer
example, the supplier passes to the transport service, a reference to the cus-
tomer’s procurement service endpoint. In the first style above, this endpoint
reference would contain a data item (e.g. the original purchase order ID) allow-
ing the customer to correlate the message with its internal activities, while in the
second style, this data item would be encoded inside the shipment notification.

At the service composition level (specifically in BPEL), endpoint references
can be manipulated as ordinary data. They can be included in the contents of
a message and can be dynamically bound with partner links (e.g. the partner
link defined between the transport service and the customer). In addition, BPEL
offers a notion of correlation set, which corresponds to information sent along
a message that is used on the receiver’s end to correlate that message with its
internal process instance. Correlation sets can thus be used to encode correlation-
related information that it not included as part of the endpoint reference.

Related pattern.

– Channel mobility. Channel mobility in pi-Calculus [9] refers to the ability for
a process X to pass a channel name to another process Y. Passing channel
names along with requests provides a means of realizing the Request with
Referral pattern. In fact, this is the way the pattern is captured in BPEL,
where channels names are coded as endpoint references and correlation data.

Pattern 12: Relayed request.
Description. Party A makes a request to party B which delegates the request
to other parties (P1, ..., Pn). Parties P1, ..., Pn then continue interactions with
party A while party B observes a view of the interactions including faults. The
interacting parties are aware of this view (as part of the condition to interact).
Example. Some supportive work of managing regulatory provisions outsourced
by government agencies to external agencies fits this pattern. Party A is a client
seeking some outcome pending regulation, e.g. obtaining particular land tenure.
Party B is the government authority concerned with the regulation. e.g. lands
department. Parties P1, ..., Pn are outsourced service providers from the gov-
ernment authority’s regulation process, e.g. brokers who validate applications
and external land management experts who can provide independent audit of
applications. The government authority stipulates that interactions between the
client and outsourced service providers associated with key points of processing,
such as the start and end of activities, and key reports, be sent to it.
Issues/design choices.

– The delegated parties (P1, ..., Pn) may or may not have prior knowledge of
the identity of the request originator, party A.

– A mechanism is needed to express party B’s view of interactions between
party A and the delegated parties. This may include all interactions or spe-
cific ones deemed to be of interest as indicated by the content of the messages.

– The view is defined at design time, but may be modified at run-time (party
B may adjust what it needs to see depending on progress of activities).

316 A. Barros, M. Dumas, and A.H.M. ter Hofstede

– Party B could apply referrals for redirecting interactions or faults to other
parties, however this issue is orthogonal to this pattern and is covered in
Pattern 11.

Solution. This pattern, like the request with referral (pattern 11), involves indi-
rection through delegation (party B passes party A’s endpoint service reference
to delegated parties for further interactions) and can be effected through WS-A
or exchanged message data as previously discussed. The correlation strategies
similarly apply. The comparative requirement for relayed requests is representing
party B’s view and enforcing it, including changing it, as interactions execute as
identified through the second and third issues above.

Unfortunately, WS-A does not provide direct support for including party B in
the interactions due to its lack of a “Cc field”. But even if WS-A offered such Cc
field, it would not cover a key requirement of the pattern: The messages passed
between party A and the delegated parties would be exactly the same as what
party B sees. Of course, not all messages have to be “Cc-ed” to party B, but
this remains a rather limited solution since whole message, not filtered messages,
are transmitted to B. It is furthermore possible that B do the filtering rather
than pushing this up to the level where interactions are generated. We argue,
however, that view filtering decoupled from interaction generation, is deficient
since party A and the delegated parties no longer have an understanding of what
they are obliged to reveal to B, as required by the pattern.

This brings us to the core issue of how to specify views such that they could
be deployed and utilized as part of the interaction cycle. Simple views could be
specified through a querying language like XPATH while more sophisticated ones
could be supported through XQuery. Party A and the delegated parties would
either have static view definitions prior to run-time or they would be passed at
run-time when B establishes delegation.

For dynamically modified views, B would issue new views. These need to
be coordinated with A, so that both ends of interactions are subject to the new
version of the view. An obvious solution is to accompany a send in an interaction
with a second send for party B, conditional upon the view filter applied to the
message passed through the first sent. The two sends must be atomic.
Pattern 13: Dynamic routing.
Description. A request is required to be routed to several parties based on a
routing condition. The routing order is flexible and more than one party can be
activated to receive a request. When the parties that were issued the request
have completed, the next set of parties are passed the request. Routing can be
subject to dynamic conditions based on data contained in the original request
or obtained in one of the intermediate steps.
Synonyms. Routing slip [6,7].
Example. After processing an order, the sales department sends a request to the
finance department to process the invoicing and payment receipt for the order.
This request contains a reference to the customer’s procurement service and
possibly also to a shipping service nominated by the customer. After arranging
invoicing and payment by interacting directly with the customer, the finance

Service Interaction Patterns 317

service forwards the order to the warehouse service. If the order is marked “for
pick-up”, the warehouse eventually sends a notification of availability for pick-up
to the customer’s procurement service. Otherwise, the warehouse issues a request
to a shipping service which may be either the company’s default shipping service,
or the one originally nominated by the customer. The shipping service eventually
sends a shipping notification directly to the customer.
Issues/design choices.

– The set of parties through which the request will circulate may not be known
in advance and these parties may not know each other at design time.

– The specification of ordering should support service-to-role late binding, par-
allelism and interleaved parallel routing [1], synchronization points between
parallel steps, and dynamic conditions.

– A way of providing relevant (fragments of) documents to different parties
needs to be supported as well as a mechanism for controlling read-only and
write access to these document (fragments).

– The update of routing should be subject to role access permissions, e.g.
only a project coordinator is allowed to re-route a proposal review through
work-package leaders.

Solution. The requirements for dynamic routing are outside the scope of direct
support through BPEL. BPEL solutions are possible but would necessarily be
ad hoc and require significant amounts of hand-crafted application code. WS-
Routing11 (a proposal not yet under standardization) can serve to implement
some aspects of this pattern: Parallel routing, but not interleaved parallel rout-
ing, is possible; static, but not dynamic, conditions are supported, although this
and the relevant routing role matching becomes supplementary coding for the
full solution. Thus, WS-Routing can support simple dynamic orders, like those
of the Routing slip pattern [6]. However, the complex dynamic routes required
by our examples above, cannot currently be supported.

5 Conclusion

As service composition developments unfold in their objectives of making real-
scale B2B transactions a reality and ushering in newer exploitations of service
interoperability, it is striking how insufficiently guided these efforts are by well-
structured requirements. We sought in this paper to address this gap by estab-
lishing a reference for service interactions. We did so by distilling insights from
the literature, standardization activities, and use case scenarios, to derive a set
of patterns. These patterns allow relevant technologies to be benchmarked. In
this paper, we have investigated BPEL’s capabilities in terms of the patterns.

BPEL directly supports single-transmission bilateral patterns. For single-
transmission multi-lateral patterns, BPEL restricts the send-receives to be se-
quential and requires “house-keeping” code for correlation and for capturing stop

11 http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp

318 A. Barros, M. Dumas, and A.H.M. ter Hofstede

and success conditions. We recommend more effective support for these patterns
through a construct capturing parallel composition of an a priori unknown num-
ber of send-receives. Of the multi-transmission patterns, BPEL event handling
capabilities provide support for the multi-responses and contingent sends. How-
ever, lack of sufficient transaction support significantly compromises a BPEL
solution for atomic multi-cast. For the routing patterns, simple request referrals
are possible by passing endpoint references and implementing indirect interac-
tions through correlation identifiers. This also serves request relaying. In addi-
tion, WS-A provides some support for request referrals and relaying although
this support would be more direct if a Cc field was available. Dynamic routing
is outside the scope of BPEL but WS-Routing can serve to implement some
aspects of it, though not the flexible ordering and dynamic routing conditions.

Future work will extend the patterns by further extrapolations and will con-
sider conversation management, viz. create, cancel, undo, suspend, and resume
conversations. We are also drawing on insights from the patterns to design a
framework for conceptual modeling of service interactions.

Acknowledgments. The authors wish to thank Phillipa Oaks, Helen Paik and
Ivana Trickovic for their input and feedback. The second author is funded by a
Queensland Government “Smart State” Fellowship co-sponsored by SAP.

References

1. W. M.P. van der Aalst, A. H.M. ter Hofstede, B. Kiepuszewski, and A. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, archi-
tectures and applications. Springer Verlag, 2003.

3. A. Barros, M. Dumas, and A. H.M. ter Hofstede. Service Interaction Patterns:
Towards a Reference Framework for Service-based Business Process Interconnec-
tion. Technical Report FIT-TR-2005-02, Faculty of IT, Queensland University of
Technology, 2005. See: http://www.serviceinteraction.com.

4. R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000.

5. C. Hagen, and G. Alonso. Exception Handling in Workflow Management Systems.
IEEE Transactions on Software Engineering 26(10): 943-958, 2000.

6. G. Hohpe and B. Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley, 2004.

7. A. Kumar and J.L. Zhao. Workflow Support for Electronic Commerce Applications.
Decision Support Systems 32: 265-278, 2002.

8. D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, 2002.

9. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-
versity Press, 1999.

10. M. Snir and W. Gropp. MPI: The Complete Reference. MIT Press, 2nd edition,
1998.

11. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson (Editors).
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall, 2005.

http://www.serviceinteraction.com

	Introduction
	Single-Transmission Multilateral Interaction Patterns
	Multi-transmission Interaction Patterns
	Routing Patterns
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

