
Transforming BPEL to Petri Nets

Sebastian Hinz, Karsten Schmidt, and Christian Stahl

Humboldt–Universität zu Berlin,
Institut für Informatik, D–10099 Berlin

{hinz, kschmidt, stahl}@informatik.hu-berlin.de

Abstract. We present a Petri net semantics for the Business Process
Execution Language for Web Services (BPEL). Our semantics covers the
standard behaviour of BPEL as well as the exceptional behaviour (e.g.
faults, events, compensation). The semantics is implemented as a parser
that translates BPEL specifications into the input language of the Petri
net model checking tool LoLA. We demonstrate that the semantics is
well suited for computer aided verification purposes.

keywords: Business process modeling and analysis, Formal models in
business process management, Process verification and validation, BPEL,
Petri nets.

1 Introduction

The Business Process Execution Language for Web Services (BPEL) is part
of ongoing activities to standardize a family of technologies for web services. A
textual specification [1] appeared in 2003 and is subject to further revisions. The
language contains features from previous languages, for instance IBM’s WSFL [2]
and Microsoft’s XLANG [3]. The textual specification is, of course, not suitable
for formal methods such as computer aided verification. With computer aided
verification, in particular model checking, it would be possible to decide crucial
properties such as composability of processes, soundness, and controllability (the
possibility to communicate with the process such that the process terminates
in a desired end state). For a formal treatment, it is necessary to resolve the
ambiguities and inconsistencies of the language which occurred particularly due
to the unification of rather different concepts in WSFL and XLANG.

Several groups have proposed formal semantics for BPEL. Among the ex-
isting attempts, there are some based on finite state machines [4,5], process
algebras [6], and abstract state machines [7,8]. Though all of them are success-
ful in unravelling weaknesses in the informal specification, they are of different
significance for formal verification. The semantics based on abstract state ma-
chines are feature-complete. However, Petri nets provide a much broader basis
for computer aided verification than abstract state machines. Most of the other
approaches typically do not support some of BPEL’s most interesting features
such as fault, compensation, and event handling.

In this paper, we consider a Petri net semantics for BPEL. The semantics
is complete (i.e., covers all the standard and exceptional behaviour of BPEL),

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 220–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Transforming BPEL to Petri Nets 221

and formal (i.e., feasible for model checking). With Petri nets, several elegant
technologies such as the theory of workflow nets [9], a theory of controllability
[10,11], a long list of verification techniques [12] and tools [13,14,12] become
directly applicable. The Petri net semantics provides patterns for each BPEL
activity. Compound activities contain slots for the patterns of their subactivities.
This way, it is possible to translate BPEL processes automatically into Petri nets.
Using high-level Petri nets, data aspects can be fully incorporated while these
aspects can as well be ignored by switching to low-level Petri nets.

We first explain the general concepts of BPEL. Afterwards we introduce the
principles of our Petri net semantics and explain the Petri net patterns for a few
typical BPEL activities. Then we report first experiences with an automated
translation of BPEL into Petri nets, and subsequent model checking. Finally, we
discuss some ideas for an extension of our technology that aims at models which
are better suitable for model checking.

2 Introduction to BPEL

BPEL is a language for describing the behaviour of business processes based on
web services. Such a business process can be described in two different ways: ei-
ther as executable business process or as business protocol. An executable business
process which is the focus of this paper models the behaviour and the interface
of a partner (a participant), in a business interaction. A business protocol, in
contrast, only models the interface and the message exchange of a partner. The
rest of its internal behaviour is hidden. Throughout this paper, we will use the
term BPEL process instead of “executable business process specified in BPEL”.
Executing a BPEL process means to create an instance of this process which is
executed.

For the specification of the internal behaviour of a business process, BPEL
provides two kinds of activities. An activity is either an elementary activity or a
structured activity. The set of elementary activities includes: empty 1 (do noth-
ing), wait (wait for some time), assign (copy a value from one place to another),
receive (wait for a message from a partner), invoke (invoke a partner), reply
(reply a message to a partner), throw (signal a fault) and terminate (terminate
the entire process instance).

A structured activity defines a causal order on the elementary activities. It
can be nested with other structured activities. The set of structured activities
includes: sequence (nested activities are ordered sequentially), flow (nested ac-
tivities occur concurrently to each other), while (while loop), switch (selects
one control path depending on data) and pick (selects one control path depend-
ing either on timeouts or external messages). The most important structured
activity is a scope. It links an activity to a transaction management. It provides
a fault handler, a compensation handler, an event handler, correlation
sets and data variables. A process is a special scope. More precisely, it is
the outmost scope of the business process.
1 We use this type-writer font for BPEL constructs.

222 S. Hinz, K. Schmidt, and C. Stahl

A fault handler is a component that provides methods to handle faults
which may occur during the execution of its enclosing scope. In contrast, a
compensation handler is used to reverse some effects which happened during
the execution of activities. With the help of an event handler, external message
events and specified timeouts can be handled. A correlation set is used for
identifying the instance of a BPEL process only by the content of a message.
Thus, a correlation set is an identifier – more precisely, it is a collection of
properties – and all messages of an instance must contain it. It is either initialized
by the first incoming or outgoing message.

Another important concept in BPEL are links. A link can be used to define
an order between two concurrent activities in a flow. It has a source activity and
a target activity. The source may specify a boolean expression, the status of the
link. The target may also specify a boolean expression (the join condition)
which evaluates the status of all incoming links. The target activity is only
executed when it evaluates its join condition to true. BPEL provides dead-path-
elimination [15], i.e. the status of all outgoing links of a source activity that
is not executed anymore is set to negative. Consider, for instance, an activity
within a branch that is not taken in a switch activity.

3 Petri Net Semantics for BPEL

Our goal is to translate every BPEL process into a Petri net. The translation is
guided by the syntax of BPEL. In BPEL, a process is built by plugging instances
of language constructs together. Accordingly, we translate each construct of the
language separately into a Petri net. Such a net forms a pattern of the respective
BPEL construct. Each pattern has an interface for joining it with other patterns
as is done with BPEL constructs. Some of the patterns are used with a param-
eter, e.g. there are some constructs that have inner constructs. The respective
pattern must be able to carry any number of inner constructs as its equivalent in
BPEL can do. We aim at keeping all properties of the constructs in the patterns.
The collection of patterns forms our Petri net semantics for BPEL.

In the following subsections, we give a glimpse on our semantics, using a basic
activity (receive), a structured activity (flow) and the stop pattern as examples.
The complete version of the Petri net semantics is reported in [16,17].

3.1 Example of a Basic Activity

Let us have a more detailed look at the general design of a pattern. Figure 1
depicts the pattern for the BPEL’s receive activity. receive is responsible for
receiving a partner’s request. To identify whether the request is sent to this
receive pattern and not to another instance of the process, BPEL’s receive
specifies at least one correlation set. The pattern in Fig. 1 presents a receive
with one correlation set which is already initialized2.
2 The pattern of BPEL’s receive where a correlation set is initialized by the in-

coming message is very similar to Fig. 1 and can be found in [17].

Transforming BPEL to Petri Nets 223

initial

running

{guard}

{!guard}

failed

stop

final

fault

stopped

t1

obj3

p5t4

t5

<MessageType>

<MessageType> <PropertyType>

[Variable]

obj2
[Channel]

X

V

receive

[CorrelationSet]

p3

t3

p4

p2
(X,CS)

p6

p7

t7

t6

p1

t2

obj1 X

(X,CS)

(X,CS) (X,CS)

CS

CS

Fig. 1. Pattern for BPEL’s receive. When the pattern is activated, it is executed in

two steps. First, the message is taken from the channel (obj1) and the correlation

set (obj2) is read (t1). Both values are saved in variables X and CS, respectively. In the

second step, this information is analyzed. Either the message is saved in the variable

(t2) or a fault occurs (t3). With it variable V holds the old value of obj3 and fault holds

the fault information. In both cases, the pattern is finished.

Before we discuss details of the receive pattern, we give some general com-
ments on the notion of patterns. Firstly, we use the common graphical notations
for Petri nets. Places and transitions are labelled with an identifier, e.g. p1 3

or t1 which are depicted (contrary to common notation) inside the respective
Petri net node. In addition, some nodes have a second label depicted outside the
node, e.g. initial. This label is used to show the purpose of the node in the net.
Secondly, a variable with small letter in arc inscriptions, e.g. fault, symbolizes a
single variable and a variable with a capital letter, e.g. X, symbolizes a tupel of
variables. Thirdly, there are transitions, e.g. t2 which have a transition guard.
Such a transition can only fire when its guard, a boolean expression, is evaluated
to true. A guard is depicted (in braces) next to the transition it belongs to, e.g.
{!guard}.

In general, a pattern is framed by a dashed box. Inside the frame, the struc-
ture of the corresponding BPEL construct is modelled. The interface is estab-
lished by the nodes depicted directly on the frame. Positive control flows from top

3 We use this serif-free font for labels in a Figure.

224 S. Hinz, K. Schmidt, and C. Stahl

to bottom while communication between processes flows horizontally. In Fig. 1
the positive control flow starts with a token on initial and it ends either with a
token on finish or failed. Outside the frame, there are external objects, e.g. obj1.
An object is either a place of a scope pattern (variable, correlation set) or
of the process pattern (channel). An activity’s pattern as the receive pattern in
Fig. 1 relates to those places. The label on the top of an object defines its sort
whereas the role is defined at the bottom of the object. A sort is the domain of
the tokens lying on and arriving at this place. The object’s role is independent
of its sort.

The pattern shown in Fig. 1 takes a message from the channel, reads the
correlation set and either updates its variable by saving this message or
a fault is thrown because of a mismatch between the values of the receive’s
correlation set and the correlation set in the message or some other error.

The meaning of place stop, stopped and failed in Fig. 1 needs to be explained.
In BPEL, a process is forced to stop its positive control flow, e.g., when a fault
occurs or activity terminate is activated. However, the BPEL specification [1]
tells only informally the requirements how to stop a scope. For instance, activity
receive “is interrupted and terminated prematurely” [1, p. 79]. The specifica-
tion does not describe how to realize those requirements. Thus, we had to make
some modelling decisions in our model: The pattern of BPEL’s scope is extended
by a stop pattern (see Sect. 3.3 for more details), which has no equivalent con-
struct in BPEL. If a scope needs to be stopped, the stop pattern controls this
procedure. Our idea is to remove all tokens from the patterns, embedded in the
scope pattern; thus the patterns of BPEL’s activities and event handler con-
tain a subnet – a so called stop component. In contrast, the patterns of BPEL’s
compensation handler and fault handler do not contain a stop component,
because they both need not to be stopped. In [16] we proved that every process
can be stopped using stop components. In the case of Fig. 1, the stop compo-
nent is established by transitions t4 – t7 using the interface stop and stopped.
Throughout this paper, we will call this the negative control flow of an activity.

In order to explain how a stop component works, consider a scope that
contains just a receive and the latter throws a fault. This leads to place failed

being marked – the token is an object that consists of the fault’s name. This
place is joined with a place in the stop pattern; thus this pattern gets the control
of the scope. First of all it stops the inner activity of the scope and consequently
a token is produced on the receive’s stop place. Transition t6 fires and stopped

is marked. This place is also joined with a place in the stop pattern. In contrast,
transitions t4, t5, t7 consume the token on stop by stopping the receive pattern
wherever the control flow is in this pattern. As a result, a token is produced on
stopped, too. One might assume that t4 obtains priority before t1 and t5 before t2.
Indeed, this would destroy the model’s asynchronous behaviour without changing
the possible set of runs. We use this asynchronous behaviour in our patterns
to model the aspect that sending the stop signal needs time, too. Consider,
for instance, two receive patterns executed sequentially. It is possible that the
first receive is finished (and so the second receive is activated) exactly in the
moment signal stop is sent. In our patterns, however, this possibility is taken into

Transforming BPEL to Petri Nets 225

account. Alternatively, a different modelling approach is possible: A transition
of the receive pattern’s positive control flow is only enabled when no fault has
been occurred in the surrounding scope pattern. This fact could be modelled
by a place marked when no fault has been occurred. But this, of course, would
destroy the asynchronous character of any BPEL process.

3.2 Example of a Structured Activity

Next we show the general pattern of BPEL’s flow. flow is used to execute
subtasks concurrently. The subtasks can be further synchronized by so-called
links.

The pattern in Fig. 2 can carry n inner activities which are executed concur-
rently. An embedded activity can be any BPEL construct; thus only the interface
is visualized and all other information of the pattern is hidden. Therefore only
the frame and places initial, final, stop, stopped and if needed negLink are visible
(see, for instance innerActivity1 in Fig. 2). The interface of each embedded pattern
is joined with the surrounding flow pattern.

negLink is an abbreviation of negative link. It is an optional place that is
only part of a pattern’s interface when it embeds at least one activity that is
source of a link. With the help of negLink the status of all outgoing links of

innerActivity1 innerActivityn

sync

innerStopped

stopped

final

stop

initialnegLink

running

flow
p1

p2 p3

p4

p5

p6

t1 t2

t3

t4

p8

t6

t7

t5

p15

p13

p14

p11p10

p7

p9

p16

p12

Fig. 2. Pattern for BPEL’s flow embeds n inner activities. There are two possible

scenarios: Either all inner activities are executed concurrently (t2) and afterwards they

are synchronized (t3) or the status of all source links embedded in the flow is set to

negative (t1)

226 S. Hinz, K. Schmidt, and C. Stahl

an inner activity (i.e. all links for that the inner activity is source) that is not
executed anymore are set to negative. Consider an activity within a branch that
is not taken in a switch activity. In other words, negLink is a place for modelling
dead-path-elimination. In Fig. 2 we assume that innerActivity1 and innerActivityn

contain at least one activity that is source of a link.
In our semantics, we model a link by a place of sort Boolean. If the link is

set, the place is marked. The value of the token is the status of the link that
depends on how the transition condition is evaluated. The join condition
determines whether a target activity is executed or not. It is modelled by a
transition guard. For modelling dead-path-elimination, we build a link pattern
that embeds an activity.

If there is a token on stop, the flow and its embedded activities are stopped.
After t5 has fired, the token on running is consumed; thus t3 cannot be activated.
Furthermore the stop place of each inner activity is marked. So innerActivity1,
. . . , innerActivityn can be stopped concurrently. Firing t6 synchronizes them.

3.3 The Stop Pattern

After an activity has thrown a fault, the fault handler of the enclosing scope
has firstly to finish the positive control flow inside the scope and secondly it
has to handle the fault. We preserve this division and extend every scope by
a so-called stop pattern which has no equivalent construct in BPEL. When the
stop pattern receives the fault, it finishes its enclosing scope and afterwards it
signals the fault to the scope’s fault handler. Furthermore the stop pattern
is used to realize BPEL’s terminate activity, i.e. to stop the entire process.

Figure 3 depicts the pattern of the stop pattern. It is quite complex, because
the scope can be in different states when the fault signal occurs. For example,
a fault can occur in the positive control flow or in a fault handler. For each
scenario the stop pattern behaves differently. In order to explain how this pattern
works it is useful to make the following commitment: The pattern we have a look
at is embedded in a scope B. B itself embeds a scope C called the child scope
of B. Furthermore B is child scope of A or in other words: A is the parent scope
of B.

First of all we have a look at the interface of Fig. 3 which differs from the
former patterns. On top there are four important places: ft in (marked if A wants
B to be stopped), fault in (a fault is occurred in an enclosing activity of B, i.e.
either a token on a failed place or C’s fault handler rethrows a fault it can-
not handle), terminate up (a terminate activity embedded in A is activated) and
terminate (a terminate activity either embedded in C or in B is activated). The
place fault in results from joining the failed places of all activities enclosed by B.
All other interface places on top are state places of B. For the most part the
state places take inspiration from the business agreement protocol (BAP) [18].
The BAP specifies a set of signals serving for communication between a scope
and its parent scope. The places on the right are used to remove all tokens in
B’s compensation handler (cleanCH, ch cleaned) and to stop the positive con-
trol flow of B (stop, stopped). On the bottom there are places to activate other

Transforming BPEL to Petri Nets 227

!Ended

Faulted

x

x

upperFHrethrowupperTerminatestopped_sfaultSave

Faulted

x

x

x

x

fault

!EndedCompensated

!Faulted

Ended
!Faulted

terminate!Activeterminate_upfault_inft_in

ft

Active

x

ftSave

x stopped

stop

faultInCH

X
x

x

x

ch_cleaned

cleanCH

x

kill

x

stop

p9

p11

p29

t2

t8

t9

t10

t12

t15

p15 p22 p24

t11

p26

p25

p30

p32

p4p3

t1

p2

p1 p14

p13

p9

p28
p5

p20 p23

p5

t7

t6

p10 p21p18

p16 p19 t13

t14

t16

p29

p31

p27p17p12

t3

p8

t5

t4

p7

p6

Fig. 3. Stop pattern embedded in a scope

patterns. ft and ft fault (signalling that A wants to stop B), fault and faultSave

(signalling the occurrence of a fault) and rethrow (signalling the occurrence of a
fault during the execution of B’s fault handler) activate the fault handler
of B. In contrast, upperTerminate (signals scope A that it has to be terminated)
and upperFH (rethrows a fault to A’s fault handler that could not be handled
by B’s fault handler) activate the parent scope and the parent scope’s fault
handler, respectively. stopped s is the stopped place of B.

The arc connecting p10 and t5 differs from the other arcs in its notation (a
little circle at its source) and also in its semantics. It consumes all tokens of
p10 making no difference if there are 0, 1 or more tokens on this place. In other
words, p10 is emptied. This arc is a so-called reset arc [19].

Altogether 8 possible scenarios are modelled in this pattern: Either a fault is
thrown, an activity terminate is activated or A wants to stop B. In the case of

228 S. Hinz, K. Schmidt, and C. Stahl

an activated terminate activity we distinguish if this activity is embedded in an
enclosing scope (here A) or not and if B’s fault handler is activated or not.
In the case of a thrown fault we distinguish a fault in the positive control flow,
in the compensation handler, and in the fault handler. In this paper, we
restrict ourselves to explain how a scope can be stopped if a fault in the positive
control flow occurs. For details of the remaining scenarios, the interested reader
is referred to [17].

Let us continue the scenario described in Sect. 3.1: Let B be the scope that
encloses the receive. If the receive throws a fault, its failed place is marked –
the token is an object that consists of the fault’s name. As already mentioned,
the failed place and the place fault in in Fig. 3 are identical. It is the first fault
occurred; thus B is in state Active, i.e. Active is marked. t6 can fire and variable
x holds the fault information. Firing t4 produces a token on stop which leads to
removing all tokens inside the receive pattern and to produce a token on place
stopped. Place stopped in the receive pattern and stopped in Fig. 3 are identical,
too. So t5 can fire and the positive control flow of B is finished. By firing t7 the
stop pattern invokes the fault handler by signalling the fault information.

4 BPEL2PN

In [20], we translated a small BPEL process – it was a modification of the
Purchase Order Process presented in the BPEL specification [1, pp. 14] – into
a Petri net. This BPEL process consists of 17 activities. The resulting Petri net
consists of 158 places and 249 transitions and it was generated manually. In fact
this transformation was very laborious and took hours. Therefore tool support
was necessary to transform a BPEL process automatically into a Petri net.

We built a parser, BPEL2PN [21], that can automatically transform a given
BPEL process into a Petri net. The way BPEL2PN works is shown in Fig. 4: It
takes a BPEL process process.bpel as an input. Then this process is transformed
into a Petri net according to the Petri net semantics. In more detail, for each
activity of process.bpel an instance of the corresponding pattern is generated and
all these patterns are stuck together as done in the BPEL process. The resulting
Petri net, process.lola, is the output of BPEL2PN where .lola is the data format
of our model checker LoLA [12]. LoLA offers the user the opportunity to write
out the net into the standard interchange format for Petri nets, the Petri Net
Markup Language (PNML) [22].

As explained in Sect. 3.3, in the stop pattern a reset arc is used to remove all
tokens from place fault in. In the following we draft the idea how such an arc can
be modelled as a high-level construct which can be, in turn, unfolded into a low-
level construct: It is possible to safely over-approximate the maximal number k
of tokens, i.e. the number of faults that can be produced on place fault in. This
is the number of activities of the enclosing scope that can throw a fault. Every
scope encloses only a finite number of activities. Consequently k is bounded. So
place fault in is a high-level place that is k-bounded, i.e. the number of tokens on
fault in is never greater than k. Then, unfolding the reset arc means to replace

Transforming BPEL to Petri Nets 229

transformationread write

BPEL2PN

process.bpel process.lola

Petri net
semantics

Fig. 4. Mode of operation of BPEL2PN

fault in by k+1 places (0 tokens are possible, too). Furthermore every transition
of the pre-set or post-set of fault in has to be replaced by k + 1 transitions. It
can be easily seen that a reset arc causes an increasing of the net size. The value
of k can be narrowed, for instance, in the case of a sequence. Unaffected by
the number of its inner activities only one fault can be thrown, because after
this fault is thrown the control flow within the sequence is blocked. Calculating
the best possible k of place fault in is ongoing research. In order to avoid an
increasing net size due to unfolding we could build an abstract stop pattern. In
this pattern we could restrict the number of faults (and therefore k) to 1. Those
ideas are explained in more detail in Sect. 6.

The current version of BPEL2PN has the following limitations: Firstly, as
already mentioned in [20] we decided to abstract from data, i.e. messages and
data are modelled as black tokens, because we directed our attention to the
control flow. Consequently, all other high-level constructs like transition guards
and variables were left out, too. So selecting one of two control pathes in the Petri
net semantics, solved by the evaluation of data, is modelled by a nondeterministic
choice, e.g. t2 or t3 in Fig. 1. Therefore the resulting Petri net is low-level4. Data
aspects can be integrated later in our tool or analyzed by methods of static
analysis. Secondly, every activity is limited to one correlation set (except
the synchronous invoke that is limited to two correlation sets). And last,
attribute enableInstanceCompensation is ignored. Therefore it is not possible to
compensate a process instance, i.e. the entire BPEL process. This is, however,
no real limitation: You only need to redefine the process as a scope and embed
this scope in a process. Then, the old process can be compensated.

In fact, these are no serious limitations, because the control flow of the BPEL
process is preserved. In the next section, we want to give the reader an impression
what complex processes can be translated by BPEL2PN and analyzed by our
model checker LoLA.

4 Due to the high-level construct of the reset arc the net generated by BPEL2PN is
high-level, but it is unfolded to a low-level Petri net by LoLA. Generating a low-level
net by BPEL2PN would be possible, too. As a consequence, the complexity of the
parser would be increased.

230 S. Hinz, K. Schmidt, and C. Stahl

5 Case Study: Online Shop

In this section we present a case study. It shows how a given, realistic BPEL
process can be analyzed by the use of our semantics. We generated a business
process and verified several relevant properties of this process. We use the Petri
net based model checker LoLA that features powerful state space reduction tech-
niques like symmetries [23] partial order reduction using stubborn sets [24] and
the sweep-line method [25].

In Fig. 5 our example process is depicted – a modification of the Online Shop
Process presented in [10]. A box frames an activity. In the case of a scope or
the process itself we use a bold frame. Sequential flow is depicted by dashed
arcs, whereas concurrent activities are grouped in parallel. Arcs with solid lines
symbolize links. The two nested scopes of the Online Shop Process are depicted
in Figures 6(a) and 6(b).

This is a medium-sized example. It consists of 53 activities, yet most of
BPEL’s activities including fault handler, event handler, nested scopes,
and links occur.

The Petri net of the example process consists of 410 places and 1069 transi-
tions. It was generated by our tool BPEL2PN. LoLA takes this Petri net as an
input and generates the state space, i.e. it calculates the reachability graph of the
Petri net. The whole state space consists of 6,261,684 states and is calculated
in ca. 96 minutes. By using LoLA’s state space reduction techniques (partial
order reduction and sweep line method in combination) a reduced state space
consisting of 443,218 states could be generated in 50 minutes. More detailed,
these reduction techniques do not work on the Petri net patterns, but on the
reachability graph of the Petri net. We also generated a variant of the Online
Shop Process where every place fault in was 1-bounded, i.e. safe. That means,
in every scope only one fault can occur. As a consequence, the net consists of
only 382 places and 495 transitions. The state space reduced to 6,246,601 states
(full state space) and 412,731 states (reduced state space), respectively.

If the state space can be fully explored by our tool, it is possible to analyze
Petri net specific properties like dead places and dead transitions as well as any
temporal property of the underlying process that can be expressed by a formula
of the temporal logic CTL.

LoLA calculated dead places and dead transitions. These resulting places and
transitions show which aspects of the patterns have been unused. Furthermore
this result was used to prove whether there are activities inside the process that
can never be activated. In fact, this is possible due to incorrect use of links. As
an example consider the switch in Fig. 6(b). If the two assigns were ordered by
a link, the target activity would never be activated: On the one hand the branch
of the source activity is chosen and so the target activity is not executed. On
the other hand the branch of the target activity is chosen, but due to dead-path-
elimination the link is set to false. Thus, this activity is never activated, but the
process will deadlock neither. In our example all activities can be activated.

We further verified relevant properties of the Online Shop Process like ter-
mination and “the customer will always get an answer”. Of course, the formula

Transforming BPEL to Petri Nets 231

receive

switch

syn.
invoke

reply
syn.

invoke

reply

scope A

replyscope B
syn.

invoke reply

scope A

reply

asyn.
invoke

assign

Fault Handler

reply

Process

Fig. 5. When the Online Shop Process receives an order from a customer, it retrieves

the customer’s data. These data are analyzed, because the business strategy of the

shop distinguishes new and already known customers. If it is a known customer (left

switch branch) the shop initiates two tasks concurrently: The marketing department

sends a special offer (on the left) and the customer department (right sequence) firstly

takes the order and secondly send its discount level. Afterwards the shop invites offers

from the suppliers (scope A). In the case of a new customer (right switch branch),

the shop initiates four tasks concurrently: It collects the customer’s bank data (scope

B), the marketing department sends the customer a special offer (second task on the

left). Furthermore the shop takes the order and then it invites offers from the suppliers

(scope A). In addition, the terms of trade are sent to the customer (right task). After

the completion of the flow the tasks of both, new and known customer are joined.

The price information are saved and then the shop sends the supply information to

the customer. The process finishes after the shop has invoked the shipper. There is a

dependency between two tasks in the case of a new customer, realized by a link: The

terms of trade are only sent after the shop has received the customer’s order.

232 S. Hinz, K. Schmidt, and C. Stahl

Fault Handler

reply

termi-
nate

while
asyn.
invoke

pick

onMessage onAlarm

empty empty

scope A

(a) scope A

syn.
invoke

switch

onAlarm EH

syn.
invoke

assign

reply

assign

reply

reply

termi-
nate

scope B

(b) scope B

Fig. 6. (a) The shop invokes one supplier after the other to invite offers for the product.

If the supplier does not answer in time, the next supplier is invoked. Additionally, if

a fault occurs during the execution of the process, the customer is informed and the

process instance is terminated. (b) The customer’s bank data are analyzed whether he

is credit worthy. The result is sent to the customer. If he is credit worthy, the process

goes on. Otherwise, the process stops. If the bank does not reply in time, the process

is terminated after the customer gets a message. One further dependency is modelled

by a link (not depicted in the figure): The shop starts invoking the suppliers (scope A)

only when the customer is credit worthy.

of the respective temporal properties were generated manually by ourself. The
Online Shop behaves as expected: it always comes to an end and the costumer
will always get an answer. By abstracting from data aspects as we did, a single
process must always terminate, because a deadlock is not possible. Termination
plays a more important role if we compose several BPEL processes. Then, it is
possible that the composed processes run into a deadlock.

We also tried to analyze a business process that consists of 132 activities.
Due to the huge net size we were not able to calculate the full state space of this
process. In order to check such an extremely huge process it is necessary to get
a smaller model. The next section presents some ideas how to do so.

Transforming BPEL to Petri Nets 233

6 Advanced Translation

The models generated by the present version of our parser can be seen as brute
force models. The generated models are significantly larger than typical manually
generated models. This is due to the fact that the Petri net patterns are complete,
i.e. applicable in every context. For a particular process, many of the modelled
features are unused. For instance, if a basic activity cannot throw any error,
many of the error handling mechanisms in the surrounding compound activity
can be spared. Furthermore, to decide if a specific property holds, it is often
sufficient to restrict the patterns to specific aspects. To prove the correct inter-
operation of two BPEL processes, for instance, it is sufficient to restrict the
attention to communication aspects of the patterns, while internal actions can
be abstracted away.

In ongoing projects, we aim at an improved translation where several Petri
net patterns with different degree of abstraction are available for each BPEL
activity. Using static analysis on the BPEL code, we want to select the most
abstract pattern applicable in a given context. We believe that model sizes can
be drastically reduced this way thus alleviating the state explosion problem
inherent to model checking.

Data flow equations, the basis of static analysis, are already available for
many features of BPEL [26]. It is, however, still necessary to select suitable
abstraction techniques in order to make static analysis run.

7 Conclusion

We presented first experimental results for generating Petri net models of BPEL
processes. The translation of BPEL to Petri nets follows a feature-complete Petri
net semantics of BPEL. The translation is implemented, and we were able to
present first results. The results show that it is necessary to complement the
technology with an improved model generation. We have proposed the use of
static analysis as a tool for providing process-specific information that can be
exploited in a flexible model generator.

Our goal is a technology chain that, starting at a BPEL process, performs
static analysis. Based on the analyzed information, the translator selects the
most abstract pattern for each activity that is feasible in the analyzed context
and synthesizes a Petri net model. On the Petri net model, a model checker
evaluates relevant properties. The analysis results (e.g., counter example paths)
are translated back to the BPEL source code.

References

1. Curbera, Goland, Klein, Leymann, Roller, Thatte, Weerawarana: Business Process
Execution Language for Web Services, Version 1.1. Technical report, BEA Systems,
International Business Machines Corporation, Microsoft Corporation (2003)

234 S. Hinz, K. Schmidt, and C. Stahl

2. Leymann, F.: WSFL – Web Services Flow Language. IBM Software Group,
Whitepaper. (2001) http://ibm.com/webservices/pdf/WSFL.pdf.

3. Thatte, S.: XLANG – Web Services for Business Process Design. Microsoft
Corporation, Initial Public Draft. (2001) http://www.gotdotnet.com/team/

xml wsspecs/xlang-c.
4. Fisteus, J.A., Fernández, L.S., Kloos, C.D.: Formal Verification of BPEL4WS

Business Collaborations. In: Proceedings of the 5th International Conference on
Electronic Commerce and Web Technologies (EC-Web ’04). LNCS, Springer (2004)

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: WWW
’04: Proceedings of the 13th international conference on World Wide Web, ACM
Press (2004) 621–630

6. Ferrara, A.: Web services: a process algebra approach. In: ICSOC, ACM (2004)
242–251

7. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative Control
Flow. In D. Beauquier, E.B., Slissenko, A., eds.: Proc. 12th International Work-
shop on Abstract State Machines, Paris, March 2005. Lecture Notes in Computer
Science, Springer-Verlag (to appear, 2005)

8. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the Busi-
ness Process Execution Language for Web Services. In: Abstract State Machines.
Volume 3052 of Lecture Notes in Computer Science., Springer (2004) 78–94

9. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers 8 (1998) 21–66

10. Martens, A.: Verteilte Geschäftsprozesse – Modellierung und Verifikation mit Hilfe
von Web Services. Dissertation, WiKu-Verlag Stuttgart (2004)

11. Schmidt, K.: Controlability of Business Processes. Technical Report 180,
Humboldt-Universität zu Berlin (2004)

12. Schmidt, K.: LoLA – A Low Level Analyser. In Nielsen, M., Simpson, D., eds.:
International Conference on Application and Theory of Petri Nets. LNCS 1825,
Springer-Verlag (2000) 465 ff.

13. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In: Proceedings of the 24th International
Conference on Applications and Theory of Petri Nets (ICATPN 2003), Eindhoven,
The Netherlands, June 23-27, 2003 — Volume 2679 of Lecture Notes in Computer
Science / Wil M. P. van der Aalst and Eike Best (Eds.), Springer-Verlag (2003)
450–462

14. Starke, P.H., Roch, S.: Ina et al. In Mortensen, K.H., ed.: Tool Demonstrations 21st
International Conference on Application and Theory of Petri Nets, Department of
Computer Science, University of Aarhus (2000) 51–56

15. Leymann, F., Roller, D.: Production Workflow – Concepts and Techniques. Pren-
tice Hall (1999)

16. Stahl, C.: Transformation von BPEL4WS in Petrinetze. Diplomarbeit, Humboldt-
Universität zu Berlin (2004)

17. Stahl, C.: A Petri Net Semantics for BPEL. Technical report, Humboldt-
Universität zu Berlin (to appear June, 2005)

18. Cabrera, Copeland, Cox, Freund, Klein, Storey, Thatte: Web Services Trans-
action. Vorschlag zur Standardisierung, Version 1.0. (2002) http://ibm.com/

developerworks/webservices/library/ws-transpec/.

http://ibm.com/webservices/pdf/WSFL.pdf
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c
http://ibm.com/developerworks/webservices/library/ws-transpec/
http://ibm.com/developerworks/webservices/library/ws-transpec/

Transforming BPEL to Petri Nets 235

19. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In Spies, K., Schätz, B., eds.: Proc. 25th Int. Coll. Automata,
Languages, and Programming (ICALP’98), Aalborg, Denmark, July 1998. Lecture
Notes in Computer Science 1443, Springer (1998) 103–115

20. Schmidt, K., Stahl, C.: A Petri net semantic for BPEL4WS - validation and
application. In Kindler, E., ed.: Proceedings of the 11th Workshop on Algorithms
and Tools for Petri Nets (AWPN’04), Universität Paderborn (2004) 1–6

21. Hinz, S.: Implementation einer Petrinetz-Semantik für BPEL4WS. Diplomarbeit,
Humboldt-Universität zu Berlin (2005)

22. Billington et al., J.: The Petri Net Markup Language: Concepts, Technology, and
Tools (2003)

23. Schmidt, K.: How to calculate symmetries of petri nets. Acta Informatica (2000)
545–590

24. Schmidt, K.: Stubborn set for standard properties. In: Proc. 20th Int. Conf.
Application and Theory of Petri nets. Volume 1639 of LNCS., Springer-Verlag
(1999) 46–65

25. Schmidt, K.: Automated Generation of a Progress Measure for the Sweep-Line
Method. In: Proc. 10th Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Volume 2988 of LNCS., Springer-Verlag (2004)
192–204

26. Heidinger, T.: Statische Analyse von BPEL4WS-Prozessmodellen. Studienarbeit,
Humboldt-Universität zu Berlin (2003)

	Introduction
	Introduction to BPEL
	Petri Net Semantics for BPEL
	Example of a Basic Activity
	Example of a Structured Activity
	The Stop Pattern

	BPEL2PN
	Case Study: Online Shop
	Advanced Translation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

