
Visualization Support for Managing Large
Business Process Specifications

Alexander Streit, Binh Pham, and Ross Brown

Faculty of Information Technology,
Queensland University of Technology,

2 George St, Brisbane Australia
{a.streit, b.pham, r.brown}@qut.edu.au

Abstract. This paper proposes a visualization technique to support the
modelling and management of large business process specifications. The
technique uses a set of criteria to produce views of the specification that
exclude less relevant features. The proposed approach consists of three
steps: assessing the relevance of nodes, reducing the specification, and
presenting the results. Algorithms and methods are presented for these
steps along with examples.

1 Introduction

There are multiple graphical business process modelling techniques such as EPC
(Event-driven Process Chain) and YAWL (Yet Another Workflow Language).
Graphical business process modelling languages are elegant solutions because
the user can visually interpret the process. For a more detailed discussion of
graphical modelling languages see [1] pp.3. However, as the process grows in
size the graph becomes difficult to deal with. This problem is well known to
fields that use graphical languages [2]. While zooming initially solves the issue of
gaining an overview perspective, there is a finite limit to the amount of zooming
that can be performed before information becomes obscured. Screen real estate
is limited and the specification given in Figure 7, for example, does not fit clearly
on a standard computer display.

Features requiring controlled visual processing, such as interpretation of text,
are dominant in business process modelling languages. The ability to interpret
controlled visual processing is particularly affected as more information is added.
Automatic processing features, such as colour, find limited use in specification
languages such as EPC and YAWL. In the case of EPC, where colour is used,
colour does not contribute to the overall structural interpretation of the graph.

The traditional solution to this has been to allow decomposition of tasks to
sub-specifications. This approach requires that the user construct a deliberate
hierarchical structure to support what is in essence a multi-resolution model.
Another approach is the conversion of the information into another format, but
this loses the benefits of user familiarity, requiring users to learn a new repre-
sentation.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 205–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

206 A. Streit, B. Pham, and R. Brown

For large models to be understood it is necessary that the level of controlled
processing required is reduced. The approach explored in this paper is to provide
views of the specification that exclude less relevant information. This filtering
of information produces a model with lower complexity, but introduces a degree
of uncertainty. This uncertainty reflects the lower resolution model’s potential
for representing variations of the original model. This use of uncertainty mimics
human reasoning [3], where decisions are made on relevant information instead
of relying upon a detailed and precise model.

The discipline of 3D computer graphics has conducted extensive research
into level of detail algorithms [4]. These algorithms construct simplified repre-
sentations of a full scale model. The purpose of simplification is to maintain a
representation of the model that is recognisable while reducing the processing
and data requirements of the system (see Figure 1). Typically, lower level detail
versions of a model are substituted for the object when it is further away from
the observer, where the change is indiscernible.

Fig. 1. The structure of the 3D model of a plane is evident, even at four different levels

of detail. (from [5])

The approach in this paper is motivated by the success of level of detail
methods in the 3D graphics field. The proposal is a simplification approach for
business process specifications by constructing a reduced graph that captures the
most relevant information of the original graph. By using this approach the user
avoids learning a new notation, because it uses the same graphical notation as
the original graph. However, the reduced graph must also preserve the semantics
of the original graph to avoid being misleading.

This reduction process presents an opportunity to not only preserve the
overview of structure, but to actually provide different views of the same graph
according to different interests of the user. Reduction should therefore be di-
rected by criteria that represent the interest of the user, which is governed by
the task of the user. For example, the user may wish to see only those processes
that are involved in a possible dead-lock situation, or alternatively the user may
wish to see nodes that are relevant to a text search term. A graphical search
engine can be constructed by creating reduced views of business process models
according to search terms. This effectively allows the user to browse the business
process similar to using a web search engine.

Visualization Support for Managing Large Business Process Specifications 207

To expand on the example of the search engine, consider the prototype shown
in Figure 2. The user is able to enter a search term that is used to direct the cri-
terion function. The resulting display is a reduced view of the specification that
includes only the most relevant nodes and their relationships to one another.
Should the user enter a different term, the process is repeated, starting from the
original specification every time. No changes are made to the original specifi-
cation, instead a temporary reduced view of the specification is constructed for
display to the user. Such a tool might be incorporated into the modelling pack-
age, to aid the user’s understanding and construction of large or complicated
specifications.

The mechanics of the reduction algorithm is based on first determining a
relevancy factor for each node, followed by analysing the paths through the
process model and removing the least relevant nodes. Once the graph has been
reduced it must be prepared for display, which requires an aesthetically pleasing
and intuitive layout for the graph.

Fig. 2. Prototype for a system that allows users to query specifications in a similar

manner to a web search engine

Section 2 provides background material, section 3 details the techniques and
approach, while section 4 provides a summary of the work and points to future
work.

208 A. Streit, B. Pham, and R. Brown

2 Background

2.1 Workflow Specifications

Business process management (BPM) is about the management of business pro-
cesses. BPM is receiving increased attention due to improvements in information
systems [6]. Workflow management systems (WFMS) are computerised tools to
support BPM and workflow specifications drive the WFMS.

Workflow specifications can be observed from different perspectives: control-
flow, data, resource, and operational. The control-flow perspective describes the
order of execution of tasks. Tasks can either be atomic or decompose to sub-
specifications, which creates a hierarchical view of the process. The data per-
spective deals with the flow of objects such as documents and can overlay the
control flow perspective. The resource perspective links tasks to the resources
required to perform them. The operational perspective details the practical exe-
cution of tasks, such as the underlying software services involved.

There are a number of workflow specification languages, both commercial and
academic (see [1]). WF-nets were proposed [6] as a specification language based
on Petri-nets. The advantage of using Petri-nets is that they provide a formal
basis, which enforces precise definition. The disadvantage to this approach is
that some patterns do not map well onto high-level Petri-nets [7]. YAWL [7]
is a progression from WF-nets that overcomes these disadvantages by adding
mechanisms to support the workflow patterns in [8]. The YAWL environment is
freely available1.

The YAWL environment currently provides support for the control-flow per-
spective, data perspective, and the operational perspective. The formal under-
pinnings and expressiveness of YAWL make it an ideal choice for visualization
research. The former allows for a formal analysis of techniques, while the latter
implies that successful development of techniques for YAWL will translate to
other workflow specification languages.

The constructs of the YAWL language are given in Figure 3.

2.2 Visualization

A visualization program is analogous to a looking glass through which the user
inspects an underlying system. In other words, it is the “bringing out of meaning
in data” [9]. Examples of visualization techniques are given in [9]. Traditionally,
visualization research has produced visualization techniques that were classi-
fied according to data type [10,11,12,13]. However, recent opinion has criticised
this approach as producing “showy” images that are insufficiently useful to the
user [14].

Suggestions for overcoming this include working more closely with the appli-
cation domain [14] and creating task-oriented visualization systems [15]. Task-
oriented visualizations are driven by the task of the user rather than the com-
position of the underlying data. The user-centric approach of task-oriented vi-

1 The YAWL environment is available through http://www.yawl-system.com

Visualization Support for Managing Large Business Process Specifications 209

Fig. 3. Constructs of the YAWL language [7]

sualization requires an understanding of the user’s requirements. This in turn
requires closer cooperation with the application domain.

Visual elements can be classified into two categories [12]: automatic visual
processing elements are easily interpreted and include colour, shape, and width,
whereas controlled visual processing requires additional user interpretation and
include features such a text, icons, and arrows.

2.3 Mesh Simplification Algorithms

Real-time computer graphics applications use 3D mesh structures to model 3D
objects. The mesh structure consists of a collection of convex surfaces defined by
their vertices. The visible surfaces of the mesh are rasterized, to produced a raster
image, which is subsequently shown to the user. To maintain interactive frame
rates, this process must be performed for every visible 3D object, in under 83
milliseconds. The sheer mesh complexity required for acceptably accurate models
creates processing challenges and has lead to the creation of novel techniques to
reduce complexity.

Simplification algorithms reduce the mesh complexity while maintaining the
important characteristics of the model. These techniques are used to reduce
computation requirements for uses such as fluid flow simulation, shadow volume
extrusion, and particularly preserving visual appearance. Several techniques ex-
ist (see [4]), which can be placed into two broad categories: decimation and
collapse. Decimation techniques remove numerous elements and reconstruct sur-
faces over the holes this creates, whereas collapse methods incrementally reduce
the mesh through atomic operations.

The progressive mesh [5] is a collapse technique designed for progressive
transmission of mesh data. Partially received progressive meshes can be displayed
to give the user a low resolution model and the model is refined as more data
is received. The edge collapse technique used has an inverse operation, called a

210 A. Streit, B. Pham, and R. Brown

vertex split. Given vertex split information, in the correct order, the mesh can
be reconstructed to the desired level of detail.

All simplification algorithms make use of an error metric to choose the appro-
priate reductions. The error metric varies depending upon the intended applica-
tion of the simplified mesh. For example, the error metric used to generate the
appearance preserving meshes given in Figure 1 uses an energy function that
measures the squared distance of the proposed vertices to the original mesh,
tempered by a spring function to distribute collapses across the mesh [5]. For
further reading on this topic see [4].

2.4 Other Related Work

Researchers have previously identified comprehension issues with large concep-
tual schemas. Their solution builds abstractions for conceptual schemas through
recursive derivation of simplified representations [16]. Each derived representa-
tion is termed an abstraction level. The abstraction mechanism introduces an
importance rating for roles. Objects are weighted according to the sum of their
anchored role weights. Object weights that exceed the current abstraction level
threshold are identified as important and are included in the abstraction level,
whereas a series of production rules are used to remove the remaining objects
and their associated roles.

3 Approach

This section details the approach including the underlying algorithms. Section
3.1 describes methods for assessing the relevance of nodes, section 3.2 provides
algorithms for reducing graphs based on the relevance of nodes, and section 3.3
discusses methods for presenting the results to the user.

The aim is to construct a reduced representation for a given input specifi-
cation. Two methods are proposed to achieve this construction, both of which
are guided by a criterion function that reflects the requirements of the user. The
reduced graph is then presented to the user, who may alter their requirements or
request a different level of detail in response. The input specification is hereafter
referred to as the original graph. This process is called the visualization process
and is illustrated in Figure 4.

This paper proposes the following visualization process:

1: Calculate the relevance of each node according to the criteria
2: Reduce the graph by either the collapse or decimation methods
3: Display the graph to the user for inspection

The original graph is a graph G(V, E), where V is the set of vertices and
E is the set of edges. Each node v ∈ V is either a condition or a task. There
is always one start condition, s, and one end condition, t. For the purposes
of this paper, a completed graph has at least one task and every node v can
be reached on a directed path from s to t. In other words ∀v ∈ V : p(s, v) �=

Visualization Support for Managing Large Business Process Specifications 211

Original
Graph

1
Criterion
Function

2
BPM

Reduction

Reduced
Graph

3
Presentation

User

Fig. 4. Visualization support using the reduced graph approach

Fig. 5. Any valid process model can be abstracted to the level of a single task P , which

stands for “execute the process”

∅ ∧ p(v, t) �= ∅, where p(vi, vj) ⊂ E returns the edges on a directed path from
vi to vj . Partial graphs are those graphs where not all nodes can be reached
from the start condition, or the end condition is not reachable from any node, or
both. During the modelling process, where the user is still building the process
specification, the graph may not necessarily be completed. Both of the graph
reduction strategies proposed here support these partial graphs, however, the
criterion function requires additional care to ensure that it also supports partial
graphs. In practice the end condition is typically unreachable in a partial graph.

Any valid workflow specification, which must be a completed graph, can be
abstracted to the level start → P → end (see Figure 5), which is the minimum
valid specification possible.

The aim is to build a reduced graph GR(VR, ER), where the R subscript
denotes reduction. The reduced graph is built such that it contains a subset of
the nodes of the original graph. In other words, a reduced graph GR(VR, ER) is
built from an original graph G(V, E), such that VR ⊂ V . A relevance factor, ε, is
calculated by εi = C(vi) for each node vi ∈ V , where C is the criterion function
C : V → IR and IR is the set of real numbers. C orders the nodes according to
their relevance to the task of the user.

3.1 The Criterion Function

The criterion function is formulated according to the task of the user. For ex-
ample, if the task of the user is to identify deadlocks, then neighbourhood nodes

212 A. Streit, B. Pham, and R. Brown

that contribute to the deadlock state are of greater interest to the user than
the overall graph structure. Contrast this with a user that wishes to see only
those nodes that contain a particular search term and closely related nodes.
Consequently we assign each task a different criterion function, whose effects
dictate the degree to which the preservation of structure overrides the relevance
of neighbouring nodes.

Structural Importance. Preservation of the overall structure of the graph is
achieved through identifying important control flow nodes. The control perspec-
tive defines the flow of control through the graph.

A promising structural importance heuristic is based on the connectedness,
χ : V → ZZ, of the node and its estimated position in the routing hierarchy,
φ : V → ZZ. ZZ is the set of integers and φ is calculated by counting the number
of splits and subtracting the number of joins on the shortest path from s to the
node, excluding this node. χ is simply the sum of all connected nodes to this
node. ε is calculated as follows:

εi =
χ(vi)

min(φ(vi), 1)

An example application of the heuristic structural importance criteria is
shown in Figure 8.

Text Retrieval. Text retrieval algorithms perform best when there are a num-
ber of words in a document. Business process models rarely include much text for
each node, limiting the applicability of traditional text retrieval ranking meth-
ods. However, the context for a node can be viewed as the neighbouring nodes.

One approach to take advantage of this neighbourhood is to introduce a
notion of relevance flow, which increases the relevance of nearby nodes. The
amount of the contribution drops off with distance travelled including loops.
The amount of the drop off is arbitrary and a constant rate, β, gives adequate
results. This algorithm to assign relevance factors based on a text search term
for graph G(V,E) is as follows:

1: Find ST , the set of all nodes that contain the search term.
2: For each v ∈ ST ,
3: Initialise the contribution value, c ← 1.
4: Initialise the neighbourhood node set, SN ← {v}.
5: While c > 0 and SN �= ∅,
6: update ε for all neighbours: ε′(n) ← ε(n) + c for all n ∈ SN .
7: reduce future contributions: c′ ← c − β.
8: update neighbour list: SN ← {n ∈ SN : w ∈ V, {nw} ∈ E}.
9: End while.
10: End for.

An example using the text retrieval criteria is shown in Figure 9.

Visualization Support for Managing Large Business Process Specifications 213

Graphical Considerations. The business process model is a graphical repre-
sentation, meaning that the modeller has assigned the positions of the nodes.
These positions hold meaning, for example, invoicing related tasks will commonly
be grouped together spatially. This meaning can be included in the criterion
function by measuring the relative change in the position of a node.

3.2 Business Process Model Reduction

This section describes model transformation techniques that produce reduced
models based on the criterion function.

The reduced graph must preserve the semantics of the original graph to avoid
being misleading. Semantics are preserved if all possible orders of execution of
the remaining nodes are unchanged from the original graph. In other words, the
dependencies between nodes cannot change.

Two methods are described: the collapse method, which incrementally re-
duces the graph until a threshold value for ε is reached, and the decimation
method, which removes all nodes below a threshold value and reconstructs the
paths between remaining nodes.

The threshold value is assigned by the user and is called the alpha-cut value,
denoted α.

Collapse. The principle behind the collapse technique is to incrementally reduce
the graph. Each incremental change in the graph is selected on the basis of
removing the least relevant (minimum ε) node from the current model GR

n to
produce next GR

n+1, according to conditions described next.
A non-join node is selected for removal at each increment. A split node is

only selected if its predecessor is a task. The removal is performed by merging
the node with its predecessor. Figure 6 illustrates how this is done under various
circumstances. Split and join decorators are removed from a node when a single
inflow or outflow, respectively, results from the collapse, yielding a sequence
operation. Given the selection pattern under the heading ‘Original YAWL’ in
Figure 6, the first selected node is y, which is merged with a to produce the
version shown under the heading ‘Reduced (introduce ε)’. Subsequently, x is
chosen and merged with a to produce the sequence pattern of a → b.

One advantage of the collapse technique is that the order of collapses can be
stored. The inverse operation of a collapse, called a node-split, can then be per-
formed to restore GR

n+1 to GR
n. Another advantage is that since collapses relate

one level of detail to another, the presentation can animate changes to increase
interpretability of the technique. The calculation of collapses can be performed
in a pre-processing step and since the actual collapse operation requires minimal
processing, the visualization system can allow interactive navigation between
various levels of detail.

An example application of the collapse algorithm is shown in Figure 8.

Decimation. The decimation approach selects a number of nodes that will be
included in GR. All other nodes are removed. The original graph is then analysed

214 A. Streit, B. Pham, and R. Brown

Pattern Original YAWL Reduced (introduce ε)

Sequence

Selection

Parallel

Multi-choice

Iteration

Fig. 6. Selected reduction patterns for the collapse technique

to reconstruct the paths between the remaining nodes. Nodes are selected for
inclusion if their relevance is α or higher. A concurrent path is defined as any
path from one node to another where a split exists on the path that was not
synchronised before reaching the destination node. A direct path from x ∈ S to
y ∈ S is a path from x to y without going through any other element of S.

The decimation-construction algorithm is given as follows:

1: Initialise the set of included nodes, SI ← {s, t}
2: add all vi where C(vi) > α to SI .
3: Initialise output edges, ER ← ∅
4: For x ∈ SI , y ∈ SI , x �= y,
5: V ′

R ← VR ∪ {y}
6: if there is a direct path from y to y, E′

R ← ER ∪ {yy}
7: if there is a direct path from x to y, E′

R ← ER ∪ {xy}
8: if a concurrent path {x..y} includes any z ∈ SI (z �= x �= y),

add the offending split node(s) before x and y to SI ,
add the matching join node(s) after x and y to SI .

9: End for

Visualization Support for Managing Large Business Process Specifications 215

Fig. 7. An example workflow specification that is too large to fit on a computer screen

In practice, the detection of concurrent paths in step 8 is implemented by per-
forming a search for elements of SI − {x} in the original graph G, starting at x
and following the directions of edges in E. Split nodes will spawn multiple paths

216 A. Streit, B. Pham, and R. Brown

Fig. 8. A reduced version of specification graph in Figure 7 showing structure built

using the collapse approach (α = 2.5)

leading away from them, whereas join nodes reunite paths back together. Since
the graph is cyclic, the search must keep a set of traversed edges to ensure they
are not pursued again. Any path is terminated if it reaches y, or there are no
untraversed outflows to follow. If any path finds an element of SI − {x, y}, the
path is recorded then terminated. The search is terminated when all paths termi-
nate. The offending split nodes are found by backtracking recorded paths until a
forward path to y is found. The matching join nodes are found using a similar ap-
proach that starts a path at every element of SI −{x} that was previously found,
including y. The algorithm continues until all paths terminate or there is a single
path. It records join nodes that combine the paths along the way.

An example application of the decimation algorithm is shown in Figure 9
where the task ‘Negotiate on claim’ is an offending split node and ‘Complete
settlement documentation’ is the matching join node.

3.3 Presentation Techniques

This section considers issues of presenting the reduced graph to the user. The
reduction techniques described previously produce a reduced graph, but do not
alter the position of the nodes. The role of the presentation algorithm is to
produce a visually pleasing layout of the reduced graph while preserving the
intuitiveness of the result.

Producing an appropriate layout is the subject of ongoing work and prelim-
inary results are described here. The method used in figures 8 and 9 adjusts
the length of the edges in ER to seek an even length among all edges. Nodes
also carry a localised repellent force that push nodes apart and keeps them from
overlapping. The system is then allowed to stabilise, which will occur when all

Visualization Support for Managing Large Business Process Specifications 217

Fig. 9. A reduced version of the specification in Figure 7 for the text query ‘legal’ built

using the decimation approach (β = 0.5, α = 1)

edges have expanded or contracted until the repellent force of each node equals
the force on its edges.

The aim of presentation is to ensure that the user is able to interpret the
results, which depends largely on the user easily being able to relate the graph
back to the original. The original position of the nodes was chosen by the mod-
eller and holds associated meaning. Whenever automated changes to the graph
are performed, it is necessary to preserve the user’s mental map [17]. The relative
position of nodes to one another should not alter considerably, since this would
also reduce the ability of users to relate the reduced graph to the original graph.

To improve fidelity to the original graph, another force can be modelled as an
attracting force between the node and its relative position in the original graph,
called the scaled original position. The scaled original position Ps(i) of node i is
the position in the original graph Po(i) scaled by the ratio of the extents of the
graphs γ:

Ps(i) = γPo(i)
where γ is given by the ratio of the extents of the current graph Ec to the

extents of the original graph Eo:
γ = Ec

Eo

4 Conclusions and Future Work

This paper proposed the use of a visualization process to support the under-
standing of large business process specifications. The process was divided into
three steps that together provide the user with a simplified specification that is
relevant to the task of the user.

The visualization process can be used to allow users to browse the speci-
fication in a similar manner to the way in which the web is explored through
web search engines. The techniques presented in section 3 work with partial
graphs, allowing the process to be used during modelling of the business process
specification.

218 A. Streit, B. Pham, and R. Brown

The notion of a criterion function allows for rich and flexible expression
of relevance. Section 3.1 provided two criterion functions: one favouring the
overall structure of the graph and another for locating nodes related to a text
search term. Section 3.2 described two methods for actually building the re-
duced graphs: the collapse technique, which is incremental, and the decimation
technique. Section 3.3 covered aesthetic and interpretability issues involved with
presenting the reduced graph to the user. Two examples were given in figures 8
and 9 for the original graph in figure 7.

Future work would explore additional criteria functions and presentation
algorithms. User interaction with the system can also be extended, such as to
allow users to ‘brush’ over nodes to reveal their neighbourhood. The applicability
of this visualization process is not limited to modelling large processes. It can
be extended to work with run-time data or process mining results.

Acknowledgements. The authors wish to acknowledge Arthur ter Hofstede
for his feedback and Michael Roseman for providing access to real world large
business process specifications. Thanks also go to Alexander Campbell, Rune
Rasmussen, and Frederic Maire for their suggestions on graph theory.

References

1. W. van der Aalst, “Business process management demystified: A tutorial on mod-
els, systems and standards for workflow management,” in Lectures on Concurrency
and Petri Nets, vol. 3098, pp. 1–65, Springer Verlag, Berlin, 2004.

2. M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, and P. van Zee,
“Scaling up visual programming languages,” Computer, vol. 28, no. 3, pp. 45–54,
1995.

3. J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems. Prentice Hall PTR,
2001.

4. D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner,
Level of Detail for 3D Graphics. Morgan Kaufman Publishers, 2003.

5. H. Hoppe, “Progressive meshes,” in SIGGRAPH ’96: Proceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques, (New York, NY,
USA), pp. 99–108, ACM Press, 1996.

6. W. van der Aalst and K. van Hee, Workflow Management: Models, Methods, and
Systems. MIT Press, 2002.

7. W. van der Aalst and A. ter Hofstede, “Yawl: Yet another workflow language,” in
Information Systems, vol. 30, June 2005.

8. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. P. Barros, “Workflow
patterns,” Distrib. Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

9. P. Keller and M. Keller, Visual Cues. IEEE Press, 1992.

10. S. Henderson, “Vised: Visaulization techniques.” Retrieved 25 June 2004 from
http://www.siggraph.org/education/materials/HyperVis/vised/VisTech/

vtmain.html, 1996.

11. M. Reed and D. Heller, “Olive: Online library of information visualization environ-
ments.” Retrieved 15 May 2004 from http://www.otal.umd.edu/Olive/, 1997.

Visualization Support for Managing Large Business Process Specifications 219

12. S. Card and J. Mackinlay, “The structure of the information visualization design
space,” in IEEE Symposium on Information Visualization, pp. 92–99, IEEE Press,
Oct 1997.

13. E. Chi, “A taxonomy of visualization techniques using the data state reference
model,” in IEEE Symposium on Information Visualization, pp. 69–75, IEEE Press,
Oct 2000.

14. K.-L. Ma, “Visualization - a quickly emerging field,” ACM Computer Graphics,
vol. February, pp. 4–7, 2004.

15. R. Brown and B. Pham, “Visualisation of fuzzy decision support information: A
case study,” in IEEE International Conference on Fuzzy Systems, 2003.

16. L. J. Campbell, T. A. Halpin, and H. A. Proper, “Conceptual schemas with ab-
stractions: Making flat conceptual schemas more comprehensible.,” Data Knowl.
Eng., vol. 20, no. 1, pp. 39–85, 1996.

17. K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment and the mental
map,” Visual Languages and Computing, vol. 6, no. 2, pp. 183–210, 1995.

	Introduction
	Background
	Workflow Specifications
	Visualization
	Mesh Simplification Algorithms
	Other Related Work

	Approach
	The Criterion Function
	Business Process Model Reduction
	Presentation Techniques

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

