


Lecture Notes in Computer Science 3649
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Wil M.P. van der Aalst Boualem Benatallah
Fabio Casati Francisco Curbera (Eds.)

Business Process
Management

3rd International Conference, BPM 2005
Nancy, France, September 5-8, 2005
Proceedings

13



Volume Editors

Wil M.P. van der Aalst
Eindhoven University of Technology
Faculty of Technology and Management (PAV D2)
Department of Information Systems
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
E-mail: w.m.p.v.d.aalst@tm.tue.nl

Boualem Benatallah
The University of New South Wales
School of Computer Science and Engineering
Sydney 2052, Australia
E-mail: boualem@cse.unsw.edu.au

Fabio Casati
Hewlett-Packard
1501 Page Mill Rd, MS 1142, Palo Alto, CA, 94304, USA
E-mail: fabio.casati@hp.com

Francisco Curbera
IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, New York 10532, USA
E-mail: curbera@us.ibm.com

Library of Congress Control Number: 2005931138

CR Subject Classification (1998): H.3.5, H.4.1, H.5.3, K.4.3, K.4.4, K.6, J.1

ISSN 0302-9743
ISBN-10 3-540-28238-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28238-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11538394 06/3142 5 4 3 2 1 0



Preface

This volume contains the proceedings of the 3rd International Conference on
Business Process Management (BPM 2005), organized by LORIA in Nancy,
France, September 5–8, 2005.

This year, BPM included several innovations with respect to previous edi-
tions, most notably the addition of an industrial program and of co-located
workshops. This was the logical result of the significant (and still growing) in-
dustrial interest in the area and of the broadening of the research communities
working on BPM topics.

The interest in business process management (and in the BPM conference)
was demonstrated by the quantity and quality of the paper submissions. We
received over 176 contributions from 31 countries, accepting 25 of them as full
papers (20 research papers and 5 industrial papers) while 17 contributions were
accepted as short papers. In addition to the regular, industry, and short presen-
tations invited lectures were given by Frank Leymann and Gustavo Alonso. This
combination of research papers, industrial papers, keynotes, and workshops, all
of very high quality, has shown that BPM has become a mature conference and
the main venue for researchers and practitioners in this area.

We would like to thank the members of the Program Committee and the
reviewers for their efforts in selecting the papers. They helped us compile an
excellent scientific program. For the difficult task of selecting the 25 best papers
(14% acceptance rate) and 17 short papers each paper was reviewed by at least
three reviewers (except some out-of-scope papers).

We would like to acknowledge the splendid support of the local organization
(in particular Claude Godart, Olivier Perrin, and Daniela Grigori). We also
thank Chris Bussler as workshop chair. Special thanks (as always!) go to Eric
Verbeek: he did a great job in compiling the final versions of the papers into
this LNCS volume. Finally, we would like to mention the excellent co-operation
with Springer during the preparation of this volume. We hope you will find the
papers in this volume interesting and stimulating.

June 2005
Wil van der Aalst, Boualem Benatallah, Fabio Casati, and Francisco Curbera

Editors
BPM 2005



Organization

Organizing Committee

Sami Bhiri
Chris Bussler (Workshops Chair)
Anne-Lise Charbonnier
Antoinette Courrier
Francisco Curbera (Industrial Chair)
Armelle Demange
Walid Gaaloul

Claude Godart (General Chair)
Daniela Grigori (Publicity Chair)
Adnene Guabtni
Olivier Perrin (Local Organizing

Chair)

Program Committee

Wil van der Aalst,
The Netherlands (Co-chair)
Vijay Atluri, USA
Karim Baina, Morocco
Nouredine Belkhatir, France
Ladjel Bellatreche, France
Boualem Benatallah, Australia
(Co-chair)
Athman Bouguettaya, USA
Thierry Bouron, France
Mokrane Bouzeghoub, France
Chris Bussler, Ireland
Fabio Casati, USA (Co-chair)
Malu Castellanos, USA
François Charoy, France
Dickson K.W. Chiu, Hong Kong, China
Jen-Yao Chung, USA
Leonid Churilov, Australia
Francisco Curbera, USA
Peter Dadam, Germany
Jörg Desel, Germany
Jan Dietz, The Netherlands
Eric Dubois, Luxembourg
Marlon Dumas, Australia
Schahram Dustdar, Austria
Johan Eder, Austria
Marie Christine Fauvet, France

Dimitrios Georgakopoulos, USA
Claude Godart, France
Paul Grefen, The Netherlands
Mohand Said Hacid, France
Kees van Hee, The Netherlands
Arthur ter Hofstede, Australia
Geert-Jan Houben, The Netherlands
Stefan Jablonski, Germany
Gerti Kappel, Austria
Hassan Khorshid, USA
Kwang-Hoon Kim, Korea
Akhil Kumar, USA
Lea Kutvonen, Finland
Dan Marinescu, USA
Olivera Marjanovic Australia
Michael Maximilien, USA
Anne Ngu, USA
Andreas Oberweis, Germany
Maria Orlowska, Australia
Helen Paik, Australia
Mike Papazoglou, The Netherlands
Cesare Pautasso, Switzerland
Barbara Pernici, Italy
Fethi Rabhi, Australia
Krithi Ramamritham, India
Manfred Reichert, Germany
Hajo Reijers, The Netherlands



VIII Organization

Michael Rosemann, Australia
Yucel Saygin, Turkey
Karsten Schulz, Germany
Robert James Steele, Australia
Aixin Sun, Australia
Farouk Toumani, France

François Vernadat, France
Mathias Weske, Germany
Jian Yang, Australia
Liangzhao Zeng, USA
Yanchun Zhang, Australia
Leon Zhao, USA

Referees

Michael Adams
M. Salman Akram
Lachlan Aldred
Samuil Angelov
Danilo Ardagna
Emilia Cimpian
Feras Dabous
Peter Dadam
Helga Duarte
Nguyen Dung
Rik Eshuis
Matthias Faerber
Douglas Foxvog
Walid Gaaloul
Manolo Garcia
Juan Miguel Gomez
Daniela Grigori
Adnene Guabtni
Dan Hong
Jens Hündling
Stéphane Jean
Gabriel Juhas
Kirsten Keferstein
Agnes Koschmider
Dimitre Kostadinov
Ulrich Kreher
Dominik Kuropka
Emily (Rong) Liu
Xumin Liu
Robert Lorenz
Zaki Malik
Udo Mayer
Nikolay Mehandjiev
Christian Meiler
Marco Mevius
Harald Meyer

Adrian Mocan
Stefano Modafferi
Sascha Mueller
Tariq Al Naeem
Christian Neumair
Alex Norta
Justin O’Sullivan
Phillipa Oaks
Bart Orriens
Chun Ouyang
Hagen Overdick
Veronika Peralta
Olivier Perrin
Horst Pichler
Pierluigi Plebani
Rodion Podorozhny
Jan Recker
Abdelmounaam Rezgui
Stefanie Rinderle
Florian Rosenberg
Nick Russell
Sonia Sanlaville
Pano Santos
Brahmananda Sapkota
Arnd Schnieders
Hilmar Schuschel
John Shepherd
Philippe Thiran
German Vega
Jochem Vonk
Jerry Wang
Aklouf Youcef
Qi Yu
Surendra Sarnikar
Sherry Sun
Harry Wang



Table of Contents

Research Papers

Modeling and Analysis of Mobile Service Processes by Example of the
Housing Industry

Volker Gruhn, André Köhler, Robert Klawes . . . . . . . . . . . . . . . . . . . . . . 1

An Organisational Perspective on Collaborative Business Processes
Xiaohui Zhao, Chengfei Liu, Yun Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Mining Hierarchies of Models: From Abstract Views to Concrete
Specifications

Gianluigi Greco, Antonella Guzzo, Luigi Pontieri . . . . . . . . . . . . . . . . . . 32

Flexible Business Process Management Using Forward Stepping and
Alternative Paths

Mati Golani, Avigdor Gal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Semi-automatic Generation of Web Services and BPEL Processes - A
Model-Driven Approach

Rainer Anzböck, Schahram Dustdar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Human-Oriented Tuning of Workflow Management Systems
Irene Vanderfeesten, Hajo A. Reijers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

The Price of Coordination in Resource Management
Kees van Hee, Alexander Serebrenik, Natalia Sidorova,
Marc Voorhoeve, Jan van der Wal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

sPAC (Web Services Performance Analysis Center): Performance
Analysis and Estimation Tool of Web Services

Hyung Gi Song, Kangsun Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Specifying Web Workflow Services for Finding Partners in the Context
of Loose Inter-organizational Workflow

Eric Andonoff, Lotfi Bouzguenda, Chihab Hanachi . . . . . . . . . . . . . . . . . 120

An Intuitive Formal Approach to Dynamic Workflow Modeling and
Analysis

Jiacun Wang, Daniela Rosca, William Tepfenhart, Allen Milewski,
Michael Stoute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



X Table of Contents

Using the π-Calculus for Formalizing Workflow Patterns
Frank Puhlmann, Mathias Weske . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Mining Workflow Recovery from Event Based Logs
Walid Gaaloul, Claude Godart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Behavior Based Integration of Composite Business Processes
Georg Grossmann, Yikai Ren, Michael Schrefl, Markus Stumptner . . . 186

Visualization Support for Managing Large Business Process
Specifications

Alexander Streit, Binh Pham, Ross Brown . . . . . . . . . . . . . . . . . . . . . . . . 205

Transforming BPEL to Petri Nets
Sebastian Hinz, Karsten Schmidt, Christian Stahl . . . . . . . . . . . . . . . . . . 220

Event-Based Coordination of Process-Oriented Composite Applications
Marlon Dumas, Tore Fjellheim, Stephen Milliner, Julien Vayssière . . . 236

Integrating Process Learning and Process Evolution – A Semantics
Based Approach

Stefanie Rinderle, Barbara Weber, Manfred Reichert, Werner Wild . . . 252

An Analysis and Taxonomy of Unstructured Workflows
Rong Liu, Akhil Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

A Framework for Document-Driven Workflow Systems
Jianrui Wang, Akhil Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Service Interaction Patterns
Alistair Barros, Marlon Dumas, Arthur H.M. ter Hofstede . . . . . . . . . . 302

Industrial Papers

Modeling and Assessment of Production Printing Workflows Using
Petri Nets

Raju N. Gottumukkala, Dr. Tong Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Process Management in Health Care: A System for Preventing Risks
and Medical Errors

Massimo Ruffolo, Rosario Curia, Lorenzo Gallucci . . . . . . . . . . . . . . . . . 334

. . . . .



Table of Contents XI

A Pathway for Process Improvement Activities in a Production
Environment: A Case Study in a Rework Department

Onur Özkök, Fatma Pakdil, Fahri Buğra Çamlıca, Tolga Bektaş,
İmdat Kara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

IT Support for Healthcare Processes
Richard Lenz, Manfred Reichert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

From RosettaNet PIPs to BPEL Processes: A Three Level Approach
for Business Protocols

Rania Khalaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Short Papers

Using Software Quality Characteristics to Measure Business Process
Quality

A. Selcuk Guceglioglu, Onur Demirors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Business Process Modelling and Improvement Using TAD Methodology
Nadja Damij, Talib Damij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

On the Suitability of Correctness Criteria for Business Process Models
Juliane Dehnert, Armin Zimmermann . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Service Retrieval Based on Behavioral Specifications and Quality
Requirements

Daniela Grigori, Verónika Peralta, Mokrane Bouzeghoub . . . . . . . . . . . . 392

On the Semantics of EPCs: Efficient Calculation and Simulation
Nicolas Cuntz, Ekkart Kindler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Towards Integrating Business Policies with Business Processes
Zoran Milosevic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

A Contract Layered Architecture for Regulating Cross-Organisational
Business Processes

Mohsen Rouached, Olivier Perrin, Claude Godart . . . . . . . . . . . . . . . . . . 410

An Effective Content Management Methodology for Business Process
Management

Young Gil Kim, Sang Chan Park, Chul Young Kim, Jin Ho Kim . . . . 416

Specification and Management of Policies in Service Oriented Business
Collaboration

Bart Orriëns, Jian Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422



XII Table of Contents

Yet Another Event-Driven Process Chain
Jan Mendling, Gustaf Neumann, Markus Nüttgens . . . . . . . . . . . . . . . . . 428

Comparing the Control-Flow of EPC and Petri Net from the End-User
Perspective

Kamyar Sarshar, Peter Loos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Overview of Transactional Patterns: Combining Workflow Flexibility
and Transactional Reliability for Composite Web Services

Sami Bhiri, Khaled Gaaloul, Olivier Perrin, Claude Godart . . . . . . . . . 440

Accelerated Enterprise Process Modeling Through a Formalized
Functional Typology

Avi Wasser, Maya Lincoln, Reuven Karni . . . . . . . . . . . . . . . . . . . . . . . . 446

Introducing Business Process into Legacy Information Systems
Marcos R.S. Borges, A.F. Vincent, Ma Carmen Penadés,
Renata M. Araujo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Spheres of Isolation: Adaptation of Isolation Levels to Transactional
Workflow

Adnene Guabtni, François Charoy, Claude Godart . . . . . . . . . . . . . . . . . 458

Verification of SAP Reference Models
B.F. van Dongen, M.H. Jansen-Vullers . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 1 – 16, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Modeling and Analysis of Mobile Service Processes by 
Example of the Housing Industry 

Volker Gruhn1, André Köhler1, and Robert Klawes2 

1 University of Leipzig, Chair of Applied Telematics / e-Business,  
Klostergasse 3, 04109 Leipzig, Germany 

{gruhn, koehler}@ebus.informatik.uni-leipzig.de 
2 Deutsche Bank AG, Alfred-Herrhausen-Allee 16-24, 65760 Eschborn, Germany 

robert.klawes@db.com 

Abstract. This article describes the method of Mobile Process Landscaping by 
example of a project in which the service processes of a company from the 
housing industry were analyzed regarding their mobile potential. This analysis 
was conducted with the aim to organize these processes more efficiently in or-
der to realize cost savings. Therefore, the method of Mobile Process Landscap-
ing, which is introduced in this article, was used. The method refers to the stage 
of requirements engineering in the software process. It is shown how the initial 
situation of the company was analyzed, which alternative process models on the 
basis of mobility supporting technology were developed and how these alterna-
tives were economically evaluated. Furthermore, it is shown how first restric-
tions for the software and system design were made on the basis of one process 
model. Finally, it is shown how the Mobile Process Landscaping method can be 
used to verify whether the adoption of mobility supporting technology is suit-
able to obtain a defined goal and which requirements such a solution needs to 
fulfill. 

Keywords: business process modeling and analysis, mobile business processes. 

1   Introduction 

Since the availability of broadband radio networks and the receded costs for appropri-
ate devices the use of mobility-supporting technology has become an interesting op-
portunity for companies to optimize selected business processes and to increase their 
efficiency. Mobile business processes are characterized by a high degree of mobility 
of the involved persons and by a lack of knowledge about the next location of the per-
son. Often a connection to IT-systems of the company would be desirable. In such 
processes, media-breaks, long processing times, inefficient routes and lacks of infor-
mation can be observed. The use of mobility supporting technology offers the oppor-
tunity to solve these problems. But therefore a systematic analysis of the professional 
requirements on the basis of business processes is necessary.  

This article deals with the method of Mobile Process Landscaping (MPL) by 
whose use the described tasks can be handled. Referring to the software process the 
activities and their results can be assigned to the requirements engineering. The use of 



2 V. Gruhn, A. Köhler, and R. Klawes 

 

this method is shown by example of the technical service processes taken from a 
company of the housing industry. 

In chapter 2 the MPL method is explained. First, mobile business processes are de-
fined (2.1.). Afterwards, the structure of the method (2.2.) as well as its aim (2.3.) are 
described. Subsequently, an overview about related work is given (2.4). Chapter 3 
shows the usage of the MPL method by example of a company of residential trade 
and industry. That chapter corresponds to the structure of the MPL method as ex-
plained in section 2.3. Chapter 4 draws a conclusion. 

2   Mobile Process Landscaping Method 

2.1   Mobile Business Processes 

The term „business process“ was defined by numerous authors ([1], [2], [3], [4], [5], 
[6]). Below, we follow the commonly used definition of Davenport [2] according to 
which a business process can be understood as „a specific ordering of work activities 
across time and place, with a beginning, an end, and clearly identified inputs and out-
puts: a structure for action.”  

A business process can be decomposed in different levels into sub-processes. If a 
sub-process is not decomposable it is called “activity.” Thus, a business process can 
be understood as an abstract description of workflows in a company. The actual oc-
currence of such a business process in reality is called a business process instance. 

In the following, only business processes with a specific distribution structure and 
thus a certain mobility of the process-executing person are considered. We suppose 
that mobility is given when for at least one activity an “uncertainty of location“ exists. 
This assumption is based on the concept of “location uncertainty” by Valiente and van 
der Heijden [7], according to which the place of the execution of an activity can be 
different in different instances of the business process or the place can change during 
the execution of an activity. Thus, we deal with a mobile activity within a business 
process. Because multiple mobile activities are conceivable, and a mobile activity of-
ten affects the whole business process, the complete business process is called “mo-
bile business process”. 

Furthermore, it can be noticed that the “uncertainty of location“ is externally de-
termined. This assumption implies that the location uncertainty is caused by external 
factors and that the process-executing person has therefore no freedom of choice re-
garding the place of the process execution. Beyond, often a cooperation with external 
resources (from the process-point of view) is needed during the execution of the proc-
ess. This fact restricts the term “mobile business process“ to the necessity of coopera-
tion with external resources within the considered activity, for instance caused by the 
need for communication or coordination with other persons or interaction with other 
objects. 

Considering this, we propose the following definition: A mobile business process 
is a business process, in which 

a. at least one person is involved, which executes its tasks in different locations, 
b. the actual location of the task-execution is known just vague and/or just short be-

fore the beginning of the task, 



Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry 3 

 

c. this uncertainty (b) is determined externally and can not be fully controlled by the 
process-executing person. 

On the basis of this definition, two conclusions can be drawed. First, the definition 
implies that the assigned task causes the mobility of the involved person. The mobile 
worker need to appear physically on the specified location because there exists a re-
source (damaged device, customer) necessary for the solution of his task. Second, it is 
not relevant for this definition whether mobile information technology is used or not. 
In fact, mobile information technology will be the key for the realization of an effi-
cient work flow in the majority of the cases. 

2.2   Structure of the Method 

Subsequently, the structure of the method is explained. Figure 1 shows the essential 
steps of the method. First, the company needs to define the objective which is to be 
achieved by use of this method. Usually, the goal is to optimize the process parameter 
(personnel) costs, the duration of the process or the quality of the produced goods and 
services.  
 

map processes as landscape

identify mobile processes

develop alternative solutions

analyze mobile processes

calculate profitability

deduce requirements 
specification

define objective

 

Fig. 1. Steps of the MPL-Method 

As soon as the objective is defined one can start with acquiring the processes and 
depicting them as process landscape. The process landscape shows relations between 
the main business processes and allows its user to recognize dependencies between 
processes very early. During the next step, those sub-processes characterized by a 
high degree of mobility of the process-executing person need to be identified. There-
fore, the method provides an assessment scheme which is explained in chapter 3.3. If 
mobile processes are identified, an analysis is necessary. 



4 V. Gruhn, A. Köhler, and R. Klawes 

 

During this step, shortcomings in the process flow resulting from the mobility of 
the process-executing person can be discovered. On the basis of these insights new 
process versions can be developed in order to avoid the recognized shortcomings. 
This can be conducted by constraining or supporting the mobility within the process. 
Subsequently, the different alternatives need to be evaluated by an economically point 
of view. If a positive decision for the realization of one alternative has been reached, 
first requirements specifications and restrictions for the software architecture can be 
deduced. Further information about the Mobile Process Landscaping method can be 
found in ([8], [9], [10], [11]). 

2.3   Aim of the MPL Method 

By the use of the MPL method within the business process model of a company the 
following can be achieved: 

• the discovery of mobile processes in the business process model, 
• the analysis of potential for optimization by the support or elimination of the mo-

bile processes, 
• the development of alternative solutions based on the use of mobility-supporting 

technology, 
• the economic evaluation of those alternatives and 
• the deduction of general conditions and requirements for the software and system 

design for the selected alternative. 

On the basis of these results alternative solutions can be evaluated according to the 
companies strategic goals. The architecture of the resulting system can be developed 
on the foundation of clear professional guidelines. 

2.4   Related Work 

A number of recent publications show that efficiency and effectiveness of certain ac-
tivities can be improved through the use of mobile technologies ([7], [12], [13]). The 
mentioned examples are case studies describing successfully released solutions in dif-
ferent companies. However, how these companies choose the described business 
processes and activities for the use of mobile technologies remain open questions. 

Frequently, a technology-driven approach can be observed for realising potential 
benefits, which adjusts processes corresponding to the available features of certain 
mobile devices. But often, a large number of complex processes with many involved 
people prevails, e.g. in large companies and corporate groups. Such an approach may 
then lead to wrong decisions, especially in the long term. In our opinion, the process 
of decision-making about use and design of a mobile information system needs to be 
systematic and comprehensible. 

Beyond, the question for the quality of mobility is an important one in this context. 
As stated in [14] user mobility is often distinguished into personal and terminal mo-
bility. Particularly, the movement of the terminal and therewith the terminal mobility 
has come to the fore in the recent years. In contrast, the personal mobility has re-
ceived less attention. In our opinion, it is necessary to focus research on this topic  



Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry 5 

 

because of the constraints for software development resulting from certain require-
ments of the specific kind of mobility. 

Kakihara and Sorensen [19] discuss the notion of mobility in distinguishing spatial, 
temporal and contextual mobility. This is an important contribution to the definition 
of mobility in this article. 

Dustdar and Gall [16] as well as Sairamesch et al. [17], [18] describe frameworks 
for distributed and mobile collaboration which can be used to develop software archi-
tectures for mobile systems. These frameworks are of particular interest for the MPL 
method because it is the methods aim to provide a systematic deduction of constraints 
for the software architecture on the basis of the process model. 

Gupta and Moitra [20] introduce an highly interesting technology integration ap-
proach for pervasive IT Infrastructure. The aim of this approach is partly the same as 
of the MPL method (focusing on the protection of investments and maximizing the re-
turns) but has a more generic character. 

3   The Use of MPL in an Industry Case 

In the following, the application of the MPL method is shown by example of a mu-
nicipal company called LWB, located in Leipzig, Germany. Its main task is to assure 
a socially acceptable apartment supply for a great number of citizens. For this pur-
pose, LWB builds and maintains apartments particular in the low price segment. 
These apartments are mainly located in multi-storey houses which are affected by va-
cancy more than averagely. 

The economic situation in the concerned real estate market is characterized by a 
considerable oversupply of apartments. Because of the large share of vacant apart-
ments (approx. 17%) as well as the continuous migration of prosperous inhabitants 
into the suburbs, landlords compete for the lowest rents on the market. In this situa-
tion the company LWB is confronted with high losses of revenue and high costs for 
maintenance. In order to overcome this situation the company induced a variety of 
steps, basically to lower the costs. In this context, an examination and analysis of the 
internal workflow was planned in order to discover potential for optimization. 

The company started quite fast to focus on its maintenance processes because of 
the very large number of apartments (approx. 12,000) and therefore the very large 
number of process recurrences. Beyond, these processes are characterized by a high 
degree of mobility of the process-executing person. These facts promised a high po-
tential for optimization. Therefore, the company LWB asked the University of Leip-
zig to conduct an analysis by the use of the MPL method. The precise proceeding dur-
ing this project and the achieved results are introduced in the following. The 
explanations are aligned on the structure of the method as described in Figure 1. 

3.1   Defining Objective 

The company aimed at preferably high cost-savings by an optimization of the busi-
ness processes with a high degree of mobility of the process-executing person. The 
use of mobile technology therefore was favored. The analysis should be conducted for 
the business process “Technical Service.” As a result, a couple of alternative technical 



6 V. Gruhn, A. Köhler, and R. Klawes 

 

and process solutions as well as an economical evaluation and first requirement speci-
fications of them was expected. 

3.2   Mapping Processes as Landscape 

3.2.1   Depiction of Processes 
The business process “Technical Service” consists of the sub-processes “Mainte-
nance,“ “Administration,“ “Allocation of Costs,“ “Billing“ and “Recording of Con-
sumption Values.“ These business processes are depicted as a process landscape (PL) 
to recognize their essential relations to each other (Figure 2). The sub-processes are 
evaluated by the level of value added and the assumed degree of mobility. 

Degree of 
Mobility

Degree of 
Value Added

Recording of 
Consumption 

Values

Allocation of 
Costs

Billing

Administration

Maintenance

 

Fig. 2. Figure 1. PL “Technical Service“ 

The sub-processes “Allocation of Costs“ and “Administration“ were classified as 
slightly value adding and not mobile. The sub-process “Billing“ was classified as 
value adding but not mobile. The sub-process “Maintenance“ is extremely mobile but 
just slightly value adding due to the fact that necessary repairs need to be achieved but 
no revenue can be associated to them. The sub-process “Recording of Consumption 
Values“ is extremely mobile and value adding. Because of this classification the sub-
process “Recording of Consumption Values“ was examined. Figure 3 shows the de-
tailed sub-process. The notation in this figure as well as in the following ones is used 
according to the Business Process Modeling Notation [15]. The sub-process „Re-
cording of Consumption Values“ contains the recording, the transportation and the 
processing of the consumption values for water and heating. They are measured by 
appropriate meters for each apartment.  

The recording of the consumption values is executed by a subsidiary company of 
the LWB called WSL. The process starts when the LWB assigns the WSL to record 



Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry 7 

 

the consumptions in all properties of the company. This assignment is done once a 
year. The execution of the whole process takes three months for approximately 
12.000 apartments in 240 properties. A property is a real estate which contains 50 
apartments on average. The LWB sends lists with addresses and tenant data to the 
WSL to prepare the recording of the consumption values. Subsequently, the WSL 
processes the acquired lists electronically for the upcoming tasks (process data re-
cords). On basis of this information dates for the recording are arranged and efficient 
tours for the inspection of the apartments are planned (plan tour). Furthermore, for 
each daily tour paper lists with addresses and tenant data are created. These preparing 
tasks take about one week. 

plan tour (2)

Subprocess „Recording of Consumption Values“

process data 
records (1)

provide 
information 
sheet (4) 

drive to office 
(6)

print list (5) brief service 
technician (7)

meter-reading 
(9)

deliver list 
(13)

drive to 
property (8)

drive to office 
(11)

drive to 
property (12)

inform service 
technician (3)

start on 
due date

tenant 
data

enter data 
into the 
software 

(14)

7 56

1211
10

8 4

2
1

9 3

error 
handling 

(15)

start on 
due date

second 
meter-reading 

(10)

start on 
due date  

Fig. 3. Recording of consumption values 

After completing the tour planning the service technicians get informed about their 
individual tours (inform service technician). Afterwards, they drive to their assigned 
properties and attach an information sheet with the recording date to each entrance 
(provide information sheet). Shortly before the date of recording  the service techni-
cians drive to the office duty to get recording lists as well as information about the re-
cording procedure (brief service technician). Then they drive to the properties accord-
ing to their tour plans and start the recording (meter-reading). 

For each apartment an average of four values need to be recorded. The service 
technician walks from apartment to apartment and records by hand each value as well 
as the tenant name and the identification number of each device on his list. This activ-
ity takes approximately ten minutes per customer. After the recording the service 
technician has to drive back to office duty and deliver the recording lists. There the 
staff transcript the data into the appropriate software. 

3.2.2   Shortcomings of the Process 
Within the process different shortcomings could be found. In approximately ten per-
cent of the cases the tenant is absent, which leads to a repetition of the process starting 
with a new appointment. If the tenant is absent again the process is repeated a third 



8 V. Gruhn, A. Köhler, and R. Klawes 

 

time at the tenant’s own expense. Beyond, there is the danger of transcription errors 
due to media breaks. They can be caused by inaccurate recordings or by accidentally 
mixing up the numbers. The company WSL estimates that approximately five percent 
of the recording lists are wrong without anybody noticing it. Additionally, the staff es-
timates that around ten percent of the lists are unreadable. In such cases a request by 
telephone and an adjustment are necessary. Apart from its vulnerability for errors the 
double-recording causes high efforts. Because of the large number of apartments and 
the necessary personnel effort the recording of the consumption values is conducted 
just once a year. In that way, defective or manipulated meters can be recognized just 
once a year. 

Table 1. Costs of “Technical Service” 

Activity duration  
(minutes)

number of 
executions 
per property

duration per 
property  
(minutes) 

cost per  
property 
(EUR) 

total cost 
(EUR) 

process data records 900 0,00 3,75 1,12 268,44 
plan tour 1500 0,00 6,25 1,86 447,41 
inform service technician 10 0,00 0,04 0,07 17,98 
provide information sheet 5 5,00 25,00 7,46 1789,63 
print list 30 0,00 0,13 2,12 508,95 
drive to office 30 0,33 10,00 2,98 715,85 
brief service technicians 5 0,33 1,67 0,50 119,31 
drive to property 30 0,33 10,00 2,98 715,85 
meter-reading 10 50,00 500,00 149,14 35792,64 
second recording 12 5,00 60,00 17,90 4295,12 
drive to office 30 0,33 10,00 2,98 715,85 
drive to property 30 0,33 10,00 2,98 715,85 
deliver list 5 0,00 0,02 0,07 16,49 
enter data into software 2 50,00 100,00 29,83 7158,53 
error handling 6 5,00 30,00 8,95 2147,56 
    766,85 230,94 55425,47 

3.2.3   Costs of the Process 
Table 1 shows the distribution of the process costs over the single activities. The fig-
ured costs of the activities refer to the execution of the activity for one property.  

For this calculation only personnel costs are considered. Therefore, an hourly rate 
of 17.90 EUR was assumed. The whole personnel costs for the process “Recording of 
Consumption Values“ account for approximately 55,500 EUR. 

3.3   Identification of Mobile Processes 

Not every business process is suitable for an optimization by the use of mobile tech-
nology. Because of that potentially mobile sub-processes need to be identified by 
means of different criteria. Therefore, the MPL method provides an assessment 
scheme in order to evaluate each activity by different criteria. For the evaluation a 



Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry 9 

 

scale from 0 (not true) to 2 (true) is used. The small scale limits the subjective discre-
tion of the conducting person. 

Table 2. Evaluation of the activities 

 General Potential  Mobile Potential   

 cr
ea

ti
on

 o
f 

va
lu

e 

nu
m

be
r 

of
 e

xe
cu

tio
ns

 

cu
st

om
er

 s
at

is
fa

ct
io

n 

oc
cu

rr
en

ce
 o

f 
m

ed
ia

 
br

ea
ks

 
w

ei
gh

te
d 

su
m

 o
f 

 
G

en
er

al
 P

ot
en

ti
al

 
in

vo
lv

ed
 p

er
so

ns
 m

ee
t 

in
 s

pe
ci

fi
ed

 lo
ca

tio
n 

in
vo

lv
ed

 p
er

so
ns

 a
re

 
sp

at
ia

ll
y 

se
pa

ra
te

d 

ac
ti

vi
ty

 in
 m

ot
io

n 

es
ti

m
at

ed
 d

at
a 

am
ou

nt
  

w
ei

gh
te

d 
su

m
 o

f 
 

m
ob

il
e 

po
te

nt
ia

l 

su
m

 

weight 1,0 1,5 0,3 1,8  1,5 1,0 0,3 0,8   
No. Activity    
1 process data records 1,0 0,0 0,0 1,0 2,8 0,0 0,0 0,0 2,0 1,6 4,4
2 plan tour 1,0 0,0 0,0 1,0 2,8 0,0 0,0 0,0 2,0 1,6 4,4
3 inform service technician 0,0 0,0 0,0 0,0 0,0 2,0 0,0 0,0 0,0 3,0 3,0
4 provide information sheet 0,0 0,0 1,0 1,0 2,1 0,0 0,0 0,0 1,0 0,8 2,9
5 print list 1,0 0,0 0,0 1,0 2,8 0,0 0,0 0,0 1,0 0,8 3,6
6 drive to office 0,0 1,0 0,0 0,0 1,5 0,0 0,0 2,0 0,0 0,6 2,1
7 brief service technician 0,0 0,0 0,0 0,0 0,0 2,0 0,0 0,0 0,0 3,0 3,0
8 drive to property 0,0 1,0 0,0 0,0 1,5 0,0 0,0 2,0 0,0 0,6 2,1
9 meter reading 2,0 2,0 2,0 2,0 9,2 2,0 0,0 0,0 2,0 4,6 13,8
10 second recording 2,0 2,0 2,0 2,0 9,2 2,0 0,0 0,0 2,0 4,6 13,8
11 drive to office 0,0 1,0 0,0 0,0 1,5 0,0 0,0 2,0 0,0 0,6 2,1
12 drive to property 0,0 1,0 0,0 0,0 1,5 0,0 0,0 2,0 0,0 0,6 2,1
13 deliver list 1,0 0,0 0,0 0,0 1,0 2,0 0,0 0,0 0,0 3,0 4,0
14 enter data into software 2,0 2,0 0,0 2,0 8,6 0,0 0,0 0,0 2,0 1,6 10,2
15 error handling 2,0 2,0 2,0 2,0 9,2 0,0 2,0 0,0 2,0 3,6 12,8

 

The criteria can be divided into two different groups. The first group contains univer-
sal criteria (General Potential) showing general potential for optimization. They are: 

• creation of value, 
• number of executions, 
• importance for customer satisfaction and 
• occurrence of media breaks. 

The second group of criteria (Mobile Potential) allows to assess whether an activity is 
particularly influenced by the mobility of the process-executing person. They are: 

• involved persons meet in specified location, 
• involved persons are spatially separated, 
• activity in motion and 
• estimated amount of data. 

Table 2 shows the result of the evaluation with these criteria for the process “Re-
cording of Consumption Values.“ The single criteria were weighted by the company 
LWB. Figure 4 shows the result of this analysis. 



10 V. Gruhn, A. Köhler, and R. Klawes 

 

 

Fig. 4. Potential for optimization per activity 

The activities “meter-reading,“ “second meter-reading,“ “enter data into software” 
and “error handling” are characterized by a particularly high potential for optimiza-
tion. Interestingly, the general potential for optimization for these four activities is 
evenly distributed whereas the mobile potential for optimization causes differences in 
the evaluation. Furthermore, the activities “inform service technician,“ “brief service 
technician“ und “deliver list“ are (nearly) exclusively characterized by potential for 
optimization on the basis of the mobile criteria. On the basis of this analysis the de-
velopment of a solution aiming at the activities with the biggest potential for optimi-
zation (9, 10, 14 and 15) was started. To do so, it is very important to interpret the 
term “Mobile Potential” in the right way. Activities with a high degree of mobile po-
tential are characterized by the effects of physical mobility. This fact does not imply a 
need for implementing an activity support by means of mobility-supporting technol-
ogy. It is rather a question of regarding the activities in the process-context and justi-
fying IT-solutions on the whole process. Consequently, this can lead to a completely 
new structure of the activities. In particular, the IT-solution should have positive ef-
fects on the four processes named. The following section shows three alternative solu-
tions which were developed on the basis of this analysis. 

3.4   Developing Alternative Solutions and Calculation of Profitabilaty 

The starting point for the development of a mobile solution are activities which in-
volve the meter-reading (9, 10). Therefore, an electronical recording seems to be an 
opportunity in order to avoid media breaks. It can be done either automatically or 



Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry 11 

 

manually with the help of the process-executing person. The two propositions “Online 
Device Support” and “Mobile Device Support“ are directed towards the support of the 
mobility of the service technicians. In contrast, the proposition “Remote Meter-
Reading“ focuses on the removal of the mobile activities.  

3.4.1   Online Device Support 
One approach for the solution of the outlined problems is the use of a mobile elec-
tronic device. It displays the form electronically and the service technician can enter 
the consumption values. By the use of a mobile radio network adapter the connection 
to a central server can be realized. The application can be designed browser-based due 
to its low complexity. In case that the radio network is not available the consumption 
values can be noted on paper and transcripted later. 
    Figure 5 shows the change in the sub-process which results from the implementa-
tion of the change. The grey activities are the ones which are dropped compared to the 
original solution. With this solution the sub-process would be much shorter and sim-
pler in its structure than before. By this solution especially the media breaks between 
meter-reading and transcription into the software can be avoided. 

Furthermore, activities dealing with creation, transport and analysis of the recording 
lists are avoided. This affects activity 5, 6, 7, 11, 12, 13, 14 and 15. As with this solu-
tion the service technician is always online the use of the mobile device for other pur-
poses is possible. For example the support of the sub-process “Maintenance” is imag-
inable. In the current situation the service technician receives calls on his mobile phone 
from the office duty and gets informed about trouble messages from tenants. The dis-
tribution and the management of these tasks by the use of mobile devices is an interest-
ing opportunity which could be hooked on the solution “Online Device Support”. 

The estimated costs for the new process according to the scheme showed in Table 
1 amount to 45,000 EUR a year. Thereby, only personnel and mobile radio costs were 
taken into account. That way savings of approximately 10,000 EUR a year can be re-
alized. In order to realize this solution an investment of around 40,000 EUR is 
needed. 

LW
B 

(p
rin

ci
pa

l)
W

SL
 (a

ge
nt

)
Te

na
nt

S
er

vi
ce

 T
ec

hn
ic

ia
n

O
ffi

ce
 D

ut
y

 
Fig. 5. “Online Device Support” 



12 V. Gruhn, A. Köhler, and R. Klawes 

 

Thus, the project would be worthwhile about four years after its introduction. The 
essential advantages of this solution are: 

• improvement of those activities with the highest potential for optimization, 
• avoidance of media breaks between service technician and office duty, 
• reduction of drives, the avoidance of handling of recording lists and 
• creation of an important framework for the development of further applications 

which can support the service technician via the mobile device. 

Disadvantages of this solution are: 

• in some cases the application might not be available if the radio network is out of 
reach, 

• potentially new sources for errors due to mistakes in handling the device or the 
software and 

• potentially higher risk of process disruption due to failure of the devices or the 
software. 

3.4.2   Mobile Device Support 
In contrast, an alternative to the solution outlined above could be to retain from the 
use of a radio network. Then, software needs to be installed at the mobile device in 
order to support the meter-reading. The recorded consumption values are entered into 
the software by the service technician and synchronized with the central server. 

In this case, the flow of the business process “Recording of Consumption Values” 
occurs as shown in Figure 5. Inside of the activity “meter-reading” the synchroniza-
tion with the central server has to be conducted additionally. The synchronization has 
to be done using a docking station in a determined location (service technician’s 
home, a company’s branch). 

Because in this solution no radio network costs occur, the costs per year for the 
whole process amount to approximately 40.000 EUR (personnel costs). This results in 
costs savings of about 15.000 EUR a year. To realize this solution an investment of 
approximately 40.000 EUR is needed. The project would turn worthwhile after three 
years. The financial savings are assessed as minor ones, but they are even higher than 
in the solution described above.  

The advantages of this solution are the same as in the solution “Online Device Sup-
port”. An additional advantage is the independence of radio networks, especially in 
basements and garages. Beyond, there are no costs for the use of radio networks. The 
disadvantages of this solution are the same as in the one described above. 

3.4.3   Remote Meter-Reading 
A further alternative is the use of an automatic meter-reading system. For this, a de-
vice is needed which can be attached to the meter and which has the capability to re-
cord the meter-value and to send it via a radio network. For each apartment a central 
module needs to be installed which sends the acquired data to a central server. 

Within this alternative the business process “Recording of Consumption Value” 
becomes redundant because no human intervention is necessary except in the case of 
a malfunction. Beyond, the consumption values can be recorded as often as desired. 

The estimation of costs of the process was not possible in this project. There is a 
wide variety of vendors offering suitable devices for the creation of an infrastructure 



Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry 13 

 

for remote meter-reading. The replacement of all meters would need an investment of 
millions of EUR. Thus, the realization of this solution only makes sense in combina-
tion with the renovation or the new building of houses. Furthermore, prices for the 
needed devices are anticipated to be on the decrease for the next two years. Hence, an 
investment at this juncture seems not to be recommendable.  

Thus, from the economical point of view this alternative is not realizable measured 
on the primary goal of cost-savings. Nevertheless, the advantages of such a solution 
should be named. These are: 

• the complete avoidance of the business process “Recording of Consumption Val-
ues,” 

• a considerable saving of personnel costs, 
• the complete avoidance of former sources of errors and media breaks, 
• the meter-reading in any desired period (detailed billing and forecasts are possible) 

and 
• an early recognition of malfunctions at the meter (energy losses caused by mal-

functions and thievery can be avoided). 

Disadvantages of the solution are: 

• very high investment needed and 
• an additional effort for the maintenance of the devices is needed. 

3.5   Deducing Requirements Specifications 

On the basis of these results the company decided to realize the solution “Online De-
vice Support.” The determining factors were the costs-savings per year as well as the 
opportunities for further applications on the basis of the infrastructure of mobile  
devices and radio networks. On the basis of the professional requirements a require-
ments specification could be deduced. Thereby, it consciously remains an open ques-
tion whether a software development is needed or if single components or complete 
products from specialized vendors can be used. 

The draft of the system architecture is shown in Figure 6. The service technician is 
equipped with a mobile device. Therewith, he can access the mobile application pro-
vided by a service provider. The company WSL is connected via WAN with the ser-
vice provider. The office duty can access all data via the intranet and its ERP-client. 

The mobile application needs to provide the following functionality: 

• creation of recording lists and tour plans (office duty), 
• inquiry of the current state of recording (office duty), 
• display of recording lists and tour plans (service technician) and 
• recording of the consumption values for each apartment. 

The mobile device needs to fulfil the special requirements of the service technicians. 
Therefore, the following requirements are defined: 

• weight at maximum 500 gram, 
• size at maximum (w/h/d) 90/200/50 mm, 
• precipitation protection at minimum 100 cm, 
• display size at minimum 320/240 pt (coloured), 



14 V. Gruhn, A. Köhler, and R. Klawes 

 

• slightly water resistant, 
• battery runtime at minimum 8 hours, 
• docking station with car recharge adapter and 
• large keypad with separate number field. 

intranet

            http via WAN

http via GPRS/UMTS

Client Server

Mobile Device
at Service Technician

Browser

Stationary Device at
Office Duty

tour plan
Server at Service Provider

Mobile Application

Server at WSL

ERP-Application

consumption values

DBMS

ERP-Client

consumption values

tour plan

consumption values

Mobile Application

tour plan

 

Fig. 6. System architecture 

4   Summary 

The development of an IT-solution for mobile business processes requires a detailed 
analysis of the professional requirements as well as an adaptation of the solution onto 
these requirements. With the described example it was shown that by the help of the 
MPL method the outlined tasks can be accomplished. The main feature of the method 
is the analysis of the business processes as well as their dependencies. Furthermore, it 
was shown how mobile solutions can be evaluated economically in order to justify the 
needed investment. If the decision for the realization of one alternative solution is 
made, comprehensive defaults for the system development can be defined on the basis 
of the detailed professional analysis. 

Based on the shown MPL method, further research is planned. First, existing lan-
guages for the modeling and analysis of mobile business processes seem not to be suit-
able for the explicit modeling of mobility. In order to use the process model for the pre-
diction of efficiency and performance of the solution the simulation of the transferred 
data volume as well as the necessary response time is needed. Second, the systematic 
deduction of general conditions for the system architecture of a mobile system from the 
process model would be desirable. Therefore, patterns for mobile business processes as 
well as corresponding classes of mobile system architectures could be helpful. 



Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry 15 

 

Acknowledgements 

The Chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG. 

References 

1. Hammer, M., Champy, J.: Reengineering the corporation: a manifesto for business revolu-
tion. Brealey, London (1993) 

2. Davenport, T. H.: Process innovation: reengineering work through information technol-
ogy. Harvard Business School Press, Boston Mass. (1993) 

3. Scheer A.: Business process engineering: reference models for industrial enterprises. 
Springer, Tokyo (1998) 

4. Aalst, W. v. d., Hee, K. v.: Workflow Management: Models, Methods, and Systems. MIT 
Press, Cambridge, (2002) 

5. Deiters, W.: Information Gathering and Process Modeling in Petri Net Based Approach. 
In: van der Aalst, W.M. et al. (eds.): Business Process Management – Models, Tech-
niques, and Empirical Studies, Lecture Notes in Computer Science 1806, Springer, Berlin 
Heidelberg New York (2000), pp. 274–288 

6. Noor, N. M. M., Papamichail, K. N., Warboys, B.: Process Modeling for Online Commu-
nications in Tendering Processes. In: Proceedings of the 29th EUROMICRO Conference 
'New Waves in System Architecture', IEEE Computer Society (2003), pp. 17-24 

7. Heijden, H. van der, Valiente, P.: Mobile Business Processes: Cases from Sweden and the 
Netherlands. SSE/EFI Working Paper Series in Business Administration, Stockholm 
School of Economics (2002) 

8. Gruhn, V., Wellen, U.: Process Landscaping: Modeling Distributed Processes and Proving 
Properties of Distributed Process Models. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, 
G. (Eds.): Unifying Petri Nets - Advances in Petri Nets, Lecture Notes in Computer Sci-
ence 2128, Springer, Berlin Heidelberg New York (2001), pp. 103-125 

9. Köhler, A., Gruhn, V.: Effects of Mobile Business Processes on the Software Process. In: 
Proceedings of 5th International Workshop on Software Process Simulation and Model-
ing, 26th International Conference on software engineering, IEE, Stevenage UK (2004), 
pp. 228-231 

10. Köhler, A., Gruhn, V.: Analysis of Mobile Business Processes for the Design of Informa-
tion Systems. In Bauknecht, K., Bichler, M., Pröll, B. (eds.): Proceedings of 5th Interna-
tional Conference on Electronic Commerce and Web Technologies, Lecture Notes in 
Computer Science 3182, Springer, Berlin Heidelberg New York (2004), pp. 238-247 

11. Gruhn, V., Wellen, U.: Structuring Complex Software Processes by 'Process Landscap-
ing'. In Conradi, R. (ed.): Proceedings of 7th EWSPT European Workshop on Software 
Process Technology, Lecture Notes in Computer Science 1780, Springer, London (2000), 
pp. 138-149 

12. Jorstad, I., Thanh, D. v., Dustdar, S.: An Analysis of Service Continuity in Mobile Ser-
vices. In Proceedings of the 13th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises, IEEE Computer Society, Washington, 
DC, USA (2004), pp. 121-126 

13. Nielsen, C., Sondergaard, A.: Designing for mobility – an integration approach supporting 
multiple technologies. In: Proceedings of NordiCHI, Royal Institute of Technology, 
Stockholm, Sweden (2000), pp. 23-25 

14. Thai, B., Wan, R., Seneviratne, A., Rakotoarivelo, T.: Integrated personal mobility archi-
tecture: a complete personal mobility solution. In Chlamtac, I. et al. (eds.): Journal of Mo-
bile Networks and Applications, vol. 8, Kluwer Academic Publishers, Hingham (2003), 
pp. 27-36 



16 V. Gruhn, A. Köhler, and R. Klawes 

 

15. White, S. A.: Business Process Modeling Notation, BPMI.org, 2003. 
16. Dustdar, S., Gall, H.: Architectural concerns in distributed and mobile collaborative sys-

tems. In Hellwanger, H. et al. (eds.): Journal of Systems Architecture, Elsevier Science, 
Amsterdam (2003), pp. 457-473 

17. Sairamesh, J., Goh, S., Stanoi, I., Padmanabhan, S., Li, C. S.: Disconnected processes, 
mechanisms and architecture for mobile e-business. In Chlamtac, I. et al. (eds.): Journal of 
Mobile Networks and Applications, vol. 9, Kluwer Academic Publishers, Hingham 
(2004), pp. 651-662 

18. Sairamesh, J., Goh, S., Stanoi, I., Li, C. S., Padmanabhan, S.: Commerce and Business : 
Self-managing, disconnected processes an mechanisms for mobile e-business. In: Pro-
ceedings of the 2nd International Workshop in Mobile Commerce, International Confer-
ence on Mobile Computing and Networking, ACM Press, New York NY USA (2002), pp. 
82-89 

19. Kakihara, M., Sorensen, C.: Expanding the mobility concept. ACM SIGGROUP Bulletin, 
vol. 22, no. 3, ACM Press (2001), pp. 33-37 

20. Gupta, P., Moitra, D.: Evolving a pervasive IT infrastructure: a technology integration ap-
proach. In: Journal of Personal and Ubiquitous Computing, vol. 8, no. 1, Springer, London 
(2004), pp. 31-41 



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 17 – 31, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Organisational Perspective on Collaborative 
Business Processes 

Xiaohui Zhao, Chengfei Liu, and Yun Yang 

CICEC - Centre for Internet Computing and E-Commerce, 
Faculty of Information and Communication Technologies, 

Swinburne University of Technology, 
Melbourne, VIC 3122, Australia 

{xzhao, cliu, yyang}@it.swin.edu.au 

Abstract. Business collaboration is about coordinating the flow of information 
among organisations and linking their business processes. It brings great 
challenge to keep participating organisations as autonomous entities in 
integrating business processes of these organisations seamlessly. To address 
this issue, we develop a new perspective on business collaborations with a 
novel concept called relative workflow, which defines what a participating 
organisation can perceive in collaboration. By incorporating a visibility control 
mechanism, relative workflows allow each organisation to define its own 
collaboration structure and behaviours. In this paper, we present a formal 
definition of relative workflows and related algorithms for generating relative 
workflows, along with a discussion on how to perform tracking over relative 
workflows. 

1   Introduction 

Recent years have seen the trend of global business collaboration urgently requiring 
organisations to dynamically form virtual organisation alliances. The business 
processes of different organisations need to be integrated seamlessly to adapt the 
continuously changing business conditions and to stay competitive in the global 
market [1]. To enable such business collaboration, research efforts have been put on 
improving current workflow technologies for supporting collaborative business 
processes [2-6]. Web service technology has also emerged partly for this purpose and 
has been deployed for implementing inter-organisational workflows [7,8].  

Current inter-organisational workflow approaches mainly focus on modelling 
workflows from a public view, where a third-party designer or the leading 
organisation of a virtual organisation alliance defines the business collaboration 
structure and behaviours by choosing participating organisations and linking 
workflow processes of these organisations into an inter-organisational workflow 
process. These approaches work well with the assumption that there exists a third-
party designer or a leading organisation that can see certain level of details of all 
participating organisations. However, this assumption is too restrictive. Though 
several organisations may be involved in the same collaborative business process for 
a defined business goal, the relationship between each pair of participating 
organisations could be different. As such, the visibility between participating 



18 X. Zhao, C. Liu, and Y. Yang 

 

organisations may be relative, rather than absolute as adopted in the public view 
approaches. Besides, the predominant view of a third-party designer or a leading 
organisation may put participating organisations in a passive position. This violates 
that each participating organisation acts as an autonomous entity in business 
collaboration. Moreover, the pre-fixed business collaboration in the public view 
approaches may not be applicable to those applications where the partner relationship 
is not fixed.  

Aiming at solving these problems, we develop a new perspective on business 
collaboration based on a novel concept called relative workflow, to support 
participating organisations as autonomous entities. A collaborative business process is 
represented as a series of relative workflow processes, each of which is defined from 
the perspective of an individual participating organisation. This allows each 
organisation, as an autonomous entity, to design its own collaboration structure and 
behaviours. The third party or leading-organisation-oriented inter-organisational 
workflow design can be distributed into multiple one-party oriented relative workflow 
process design. Different visibility constraints can then be defined for different 
organisations to reflect the fine granularity of visibility control between participating 
organisations.  

The remainder of this paper is organised as follows. In Section 2, we analyse, with 
a motivating example, the business collaboration requirements that are not well 
supported by current approaches. Section 3 presents the formal definitions relevant to 
relative workflow processes. Section 4 introduces a procedure and algorithms for 
generating relative workflow processes. Section 5 addresses how to perform 
workflow tracking among organisations. Section 6 discusses the advantages of 
relative workflows and their applied domains. Related work and concluding remarks 
are given in Section 7 and Section 8, respectively. 

2   Requirement Analysis with Motivating Example 

Traditional inter-organisational workflow design approaches streamline business 
processes contributing to a common business goal, yet belonging to different 
organisations, into a public workflow process. As discussed earlier, this procedure has 
the following problems. 

The first problem is that the collaboration choreography of all participating 
organisations is determined by a third party designer or a leading organisation. 
Following this approach, each organisation behaves in the collaboration passively as a 
worker does in a pipeline workshop. We find that in many cases, a participating 
organisation expects to choose its own partner organisations and define inter-
organisational workflow processes by itself to adapt its own collaboration objectives 
and benefits rather than delegate to a third-party designer or a leading organisation. 
Actually, it is not always possible to find an appropriate third party designer or a 
leading organisation.  

The second problem is the coarse granularity of visibility control. As the public 
inter-organisational workflow process is open to each involved organisation, either 
excessive information has to be disclosed or required collaboration information is not 
provided sufficiently. In the former, some private business information may be 



 An Organisational Perspective on Collaborative Business Processes 19 

 

disclosed unwillingly to an involved organisation with a distant partner relationship. 
In the latter, business processes belonging to involved organisations cannot be 
integrated seamlessly. 

The third problem may be caused by pre-determined collaboration choreography of 
participating organisations. This may not be applicable to some business collaboration 
scenarios, where the partner relationship between participating organisations may be 
changed in an ad hoc manner. 

We believe that business collaboration should be decided from the view of each 
individual organisation, i.e., an organisation defines its collaboration structure and 
behaviours by following corresponding contracts with proper partner organisations, 
and may change them later by updating existing contracts or signing new contracts. In 
this way, each organisation acts as a highly autonomous collaboration participant. 

Raise Order

Place Order with
Manufacturer

Invoice
Customer

Pay Invoice

Approve
Payment

Print Cheque

Collect Order

Order Parts

Schedule
Production

Schedule
Delivery

Confirm
Delivery

Make Goods

Dispatch
Goods

Invoice
Retailer

Check Arrival

Pay Supplier

Stock Parts

Collect Order

Preparation

Delivery

Invoice
Manufacturer

Collect Order

Book Delivery

Schedule Van

Confirm
Delivery

Retailer Manufacturer Shipper Supplier

Check Inventory

DB

(Product Ordering) (Production) (Shipping) (Supplying)

(Inventory Management)
 

Fig. 1. Inter-organisational workflow process example (modified from [9]) 

Figure 1 shows business collaboration among a retailer, a manufacturer, a shipper 
and a supplier, from a public view. Five intra-organisational workflow processes and 
their interaction are shown in the figure. When a ‘Product Ordering’ process of a 
retailer sends a product order to a manufacturer, the ‘Production’ process of the 
manufacturer may hold this order until it has collected enough orders from more than 
one ‘Product Ordering’ process for the purpose of batch production. Before it starts 
producing products, the manufacturer needs to order necessary parts from suppliers, 
which will interact with the ‘Inventory Management’ process of the manufacturer 
later for arrival checking and invoice/payment processing. Also, the manufacturer 
needs to contact shippers to book the delivery of products, and simultaneously checks 
inventory with the ‘Inventory Management’ process through the corporate database 
within the same organisation. Finally, the retailer receives the products from the 
shipper, and pays the invoice to the manufacturer. 

In this example, all the participating organisations have the global knowledge of 
the whole collaboration process, which is somehow pre-determined and may be 



20 X. Zhao, C. Liu, and Y. Yang 

 

defined by a third party designer or a leading organisation such as the manufacturer. 
Once the collaborative process has been defined, each participating organisation acts 
passively and loses more or less its autonomy. It will be difficult for an organisation 
to change its collaboration structure and behaviours, for instance, to start a new 
partner relationship or to terminate an existing partner relationship. Besides, the 
global knowledge of the whole collaboration process gives no chance to define a close 
or distant partner relationship between participating organisations. For example, from 
Figure 1, we can clearly see that the views from a retailer and a manufacturer on the 
collaborative process are different. While a manufacturer has a close partner 
relationship with all other participating organisations, a retailer, however, only has a 
close partner relationship with a manufacturer via a proper purchase/supply contract. 
A retailer may not need to know, and actually should not know the manufacturer’s 
partner relationships, say, with a supplier. At the same time, a retailer may need to 
have some knowledge about a shipper of the manufacturer so that tracking on the 
delivery of products may be made possible. We may also need to allow that a 
manufacturer changes partner relationships with suppliers and shippers for better 
services. All these are not well supported in the public view approaches. 

In this paper, we propose a new approach to enable the participating organisations 
as autonomous entities. The different views from individual organisations are well 
supported by the concept of relative workflows. This approach also provides visibility 
control with the finer granularity and allows the easy change of partner relationships 
in business collaboration. 

3   Relative Workflow Processes 

In this section, we define a relative workflow, which is based on a visibility control 
mechanism, to support the requirements discussed in Section 2. In our context, a 
collaborative workflow process consists of several intra-organisational workflow 
processes of participating organisations and their interaction. We call these intra-
organisational workflow processes as local workflow processes. 

Definition 1 (Local Workflow Process). A local workflow process lp is defined as a 
directed acyclic graph ( T, R ), where T is the set of nodes representing the set of tasks, 
and R⊆T×T is the set of arcs representing the execution sequence. 

Definition 2 (Organisation). An organisation g is defined as a set of local workflow 
processes {lp1, lp2, … , lpn}. An individual local workflow process lpi

 of g is denoted 
as g.lpi. 

As the owner of local workflow processes, a participating organisation may wish to 
protect the critical or private business information of some workflow tasks from 
disclosing to other participating organisations, during business collaboration. 
According to the two most important behaviours in the context of collaborative 
workflows, i.e. workflow tracking and business interaction, we define the following 
three values for the visibility of workflow tasks as listed in Table 1. 

 
 



 An Organisational Perspective on Collaborative Business Processes 21 

 

Table 1.  Visibility values 

Visibility value Explanation 
Invisible A task is said invisible to an external organisation, if it is hidden from 

that organisation. 
Trackable A task is said trackable to an external organisation, if that organisation is 

allowed to trace the execution status of the task. 
Contactable A task is said contactable to an external organisation, if the task is 

trackable to that organisation and the task is also allowed to send/receive 
messages to/from that organisation for the purpose of business 
interaction. 

Definition 3 (Visibility Constraint). A visibility constraint vc is defined as a tuple (t, 
v), where t denotes a workflow task and v∈{ Invisible, Trackable, Contactable }. 
A set of visibility constraints VC defined on a workflow process lp is represented as a 
set {vc:(t, v) | ∀t (t∈lp.T )}.  

Example 1. Based on Figure 1, two sets of visibility constraints are given as follows: 
VC1 = { (‘Raise Order’, Invisible), (‘Place Order with Manufacturer’, Contactable), (‘Invoice 
Customer’, Contactable), (‘Pay Invoice’, Contactable), (‘Approve Payment’, Invisible}), 
(‘Print Cheque’, Invisible)}. 
VC2 = { (‘Collect Order’, Contactable), (‘Order Parts’, Invisible), (‘Schedule Production’, 
Trackable), (‘Schedule Delivery’, Trackable), (‘Confirm Delivery’, Contactable), (‘Check 
Inventory’, Invisible), (‘Make Goods’, Trackable), (‘Dispatch Goods’, Trackable),  (‘Invoice 
Retailer’, Contactable)}. 

These two sets are defined on the ‘Product Ordering’ and ‘Production’ processes, 
respectively. 

Definition 4 (Perception). A perception lpg
gp .0

1
 of an organisation g0’s local workflow 

process lp from another organisation g1 is defined as ( VC, MD, f ), where           

− VC is a set of visibility constraints defined on g0.lp. 
− MD ⊆ M × { in, out }, is a set of the message descriptions that contains the 

messages and the passing directions. M is the set of messages used to represent 
inter-organisational business activities. 

− f: MD → g0.lpg1.T is the mapping from MD to g0.lpg1.T, and g0.lpg1 is the 
perceivable workflow process of g0.lp from g1. 

The generation of g0.lpg1 from g0.lp will be discussed in the next section. 

Example 2. Again, based on Figure 1, the perception of the retailer’s ‘Product 
Ordering’ process from the manufacturer, and the perception of the manufacturer’s 
‘Production’ process from the retailer are given, respectively, as follows:  

eringproductOrdretailer
erManufacturp .  = (  VC1,  

{(‘Order of Products’, out),  (‘Confirmation of Delivery Date’, in),  (‘Invoice’, in) },   
{(‘Order of Products’, out) → ‘Place Order with Manufacturer’,  (‘Confirmation of Delivery Date’, in) 
→ ‘Invoice Customer’,  (‘Invoice’, in)→ ‘Pay Invoice’} ); 

productionerManufactur
retailerp . = (  VC2, 

{(‘Order of Products’, in),  (‘Confirmation of Delivery Date’, out),  (‘Invoice’, out) }, 



22 X. Zhao, C. Liu, and Y. Yang 

 

{(‘Order of Products’, in) → ‘Collect Order’,  (‘Confirmation of Delivery Date’, out) → ‘Confirm 
Delivery’, (‘Invoice’, out) → ‘Invoice Retailer’} ). 

where VC1 and VC2 are defined in Example 1.  

Definition 5 (Relative Workflow Process). A relative workflow process g1.rp 
perceivable from an organisation g1 is defined as a directed acyclic graph ( T, R ), 
where 

T is the set of the tasks perceivable from g1, which is a union of the following two 
parts: 

− T..1
k

k
lpg∪ , the union of the task sets of all g1.lp

k. 

− T..
1

j
gi

ji
lpg∪∪ , the union of the task sets of all perceivable workflow processes of 

gi.lp
j from g1.  

R is the set of arcs perceivable from g1, which is a union of the following three 
parts: 

− R..1
k

k
lpg∪ , the union of the arc sets of all g1.lp

k. 

− R..
1

j
gi

ji
lpg∪∪ , the union of the arc sets of all perceivable workflow processes of 

gi.lp
j from g1.  

− L, the set of messaging links between local and perceivable workflow processes, 
consisting of two parts: 
− Lintra, the set of intra-organisational messaging links that connect tasks 

belonging to different local workflow processes, and is defined on  
TT .... 11

ji

ji
lpglpg ×  where i  j . 

− Linter, the set of inter-organisational messaging links that connect tasks 
between a local workflow process and a perceivable workflow process, and is 
defined on  

( )TTTT ........ 11 11

kj
gi

j
gi

k

kji
lpglpglpglpg ×∪× . 

Relative Workflow
Process

hashashas

Preceivable
Wf Process

Local Wf
Process

Message
Link Set

Perception

composes
match

1 1 1

[1, n] [1,n] [1, n]

1 1

Visibility
Constraints

hashas

Message
Description

[1, n]

[1, n]

[1, n]

1

1

[1, n]

11

Relative Workflow
Process

has has has

Preceivable
Wf Process

Local Wf
Process

Message
Link Set

Perception

composes

111

[1, n][1,n][1, n]

1

Visibility
Constraints

has has

Message
Description

[1, n][1, n]
1

[1, n]

11

[1, n]

1

g1
g0

 

Fig. 2. Relative workflow model 



 An Organisational Perspective on Collaborative Business Processes 23 

 

 

Figure 2 illustrates how the components of the relative workflow model are related 
across organisations. Given the discussion and definition of the relative workflow 
process above, a necessary procedure for an organisation, g0 or g1, to generate relative 
workflow processes is to define the perceptions on local workflow processes. This 
step includes defining visibility constraints, message links and matching functions. 
Once the perceptions on local workflow processes of its partner organisations have 
been defined, a relative workflow process can be generated by two more steps: 
composing tasks and assembling relative workflow processes. 

The purpose of composing tasks is to hide some private tasks of local workflow 
processes. We choose to merge invisible tasks with the contactable or trackable tasks 
into composed tasks, if not violating the structural validity; otherwise, those invisible 
tasks are combined into a dummy task. According to the perception defined from g1, a 
local workflow process of g0 after this step becomes a perceivable workflow process 
for g1. 

In the step of assembling relative workflow processes, an organisation, say g1, 
assembles its local workflow processes with perceivable workflow processes from its 
partner organisations, say g0, into a relative workflow process, as shown in Figure 2.  

The details are to be discussed in the following section. 

4   Generating Relative Workflow Processes 

4.1   Defining Perceptions 

A perception can be derived by analysing and decomposing a commercial contract 
between organisations in connection to certain business collaboration. Unlike a 
contract, a perception is defined from the perspective of one organisation on the local 
workflow processes of other participating organisations. To represent a business 
 

Raise Order

Place Order with
Manufacturer

Invoice
Customer

Pay Invoice

Approve
Payment

Print Cheque

Order Parts

Schedule
Production

Schedule
Delivery

Confirm
Delivery

Make Goods

Dispatch
Goods

Invoice
Retailer

Retailer Manufacturer

Check Inventory

Collect Order

“Order of
Products”

“Order of
Products”

( Product Ordering ) ( Production )

“Confirmation of
Delivery”

“Invoice”

“Invoice”

“Confirmation of
Delivery”

 

Fig. 3. Local workflow processes 



24 X. Zhao, C. Liu, and Y. Yang 

 

interaction between an organisation g0 and other participating organisations g1 , … , 
gm, two sets of such perceptions are required: PS1, the set of the perceptions defined 

on g0.lp
1
, … , 0.0

nlpg  from g1 , … , gm, i.e. { 
1

0

1

.lpg
gp , … , 

0
0

1

. nlpg
gp , … , 

1
0 .lpg

gm
p , … , 

0
0 . n

m

lpg
gp }; and PS2, the set of the perceptions defined on all local workflow processes 

of g1 , … , gm from g0, i.e. { 
1

1

0

.lpg
gp , … , 

1
1

0

. nlpg
gp , … , 

1

0

.lpg
g

mp , … , 
mn

m lpg
gp .

0
}.  

Figure 3 shows the ‘Product Ordering’ process and the ‘Production’ process in 
Figure 1, where the dashed arrows denote the message descriptions. To represent the 
business interaction between these two processes, we can define the perception 

ringroductOrdeRetailer.p
erManufacturp of the retailer’s ‘Product Ordering’ process from the manufacturer 

and the perception productionerManufactur
rRetailep . of the manufacturer’s ‘Production’ process from 

the retailer, which are already given in Example 1.  

4.2   Composing Tasks 

In this step, a local workflow process needs to hide its invisible tasks by composing 
them with proper contactable or trackable tasks for creating the corresponding 
perceivable workflow process. The algorithm is given below. 

For the simplicity of discussion, we only consider composing one local workflow 
process lp of the organisation g0 from another organisation g1. Furthermore, we conduct a 
pre-processing on all split/join structures of lp such that for all those branches consisting 
of only invisible tasks, a dummy task is created to delegate these branches. 

 
Algorithm 1. Task Composition 

 
 
Input:    lp = g0.lp, the organisation g0’s local workflow process lp before composition 
     p = lpg

gp .0

1

, the perception of g0’s lp from g1 

   Output:  lp′ = g0.lpg1, the perceivable workflow process composed from lp for g1, according to lpg
gp .0

1

.  

lp′ = lp;  
VT = { all the visible tasks of lp, defined in p}; 
// connect invisible tasks  
while (∃t, t′∈ (lp′.T–VT)) ((t, t′)∈lp′.R )∧seq(t)∧seq(t′)) // seq(t)=(indegree(t)=1∧outdegree(t)=1)   
{      t°=t+t′; 
       lp′.T = lp′.T∪{t°}-{ t, t′};  
       lp′.R = lp′.R-{( t, t′)};  
       replace t, t′ in lp′.R with t° ;                        
} 
// downward composition with incoming interaction tasks 
while ((∃t∈VT (p′.f -1(t)=(m, in)∧outdegree(t) =1)∧(∃t′∈(lp′.T-VT))((t, t′)∈lp′.R∧indegree(t′)=1)) 
{ t°=t+t′; 

VT= VT∪{t°}-{t};                  
lp′.T = lp′.T∪{t°}-{t′, t};  
lp′.R = lp′.R-{(t, t′)};  
replace t, t′ in lp′.R with t° ;  

} 



 An Organisational Perspective on Collaborative Business Processes 25 

 

// upward composition with outgoing interaction tasks  
while ((∃t∈VT (p′.f -1(t)=(m, out)∧indegree(t) =1)∧(∃t′∈(lp′.T-VT))((t′,t)∈lp′.R∧outdegree(t′)=1))  
{ t°=t+t′; 

VT= VT∪{t°}-{t};                  
lp′.T = lp′.T∪{t°}-{t′, t};  
lp′.R = lp′.R-{(t′, t)};  
replace t, t′ in lp′.R with t° ;  

} 
 

 
Algorithm 1 first keeps composing each pair of neighbouring sequential invisible 

tasks into one invisible task, then downward composes invisible tasks with incoming 
interaction tasks and upward composes invisible task with outgoing interaction tasks. 
Figure 4 shows the results of task composition: (a) is the perceivable ‘Product 
Ordering’ process of the retailer from the manufacturer; and (b) is the perceivable 
‘Production’ process of the manufacturer from the retailer, where the dashed 
rectangles denote invisible tasks. 

Raise Order

Place Order with
Manufacturer

Invoice
Customer

Pay Invoice

Approve
Payment

Print Cheque

Retailer

Order Parts

Schedule
Production

Schedule Delivery

Confirm Delivery
Make Goods

Dispatch
Goods

Invoice
Retailer

Manufacturer

Check Inventory

Collect Order

( a ) ( b )

( Product Ordering ) ( Production )

“Order of
Products”

“Order of
Products”

“Confirmation of
Delivery”

“Invoice”

“Confirmation of
Delivery”

“Invoice”

 

Fig. 4. Perceivable workflow processes 

4.3   Assembling Relative Workflow Processes 

In this step, proper local workflow processes and perceivable workflow processes are 
connected together by linking the corresponding interaction operations. This can be 
achieved by matching the message descriptions defined in the perceptions, using the 
algorithm below. Similarly, for the simplicity of discussion, we only consider 
matching one local workflow process lp of the organisation g0 from another 
organisation g1. 



26 X. Zhao, C. Liu, and Y. Yang 

 

Algorithm 2. Local Workflow Process Matching 
 

 
Input:  lp' = g0.lpg1, the perceivable workflow process composed from g0’s local workflow process lp. 

        p = lpg
gp .0

1
, the perception of g0’s lp from g1 

       ps = {
1

1

0

.lpg
gp , … , 

11
1

0

. nlpg
gp }, the set of perceptions defined on g1’s perceivable workflow       

       processes from g0

    Output: L, the set of generated messaging links 
 L = ∅; 
 for each t ∈lp′.T   
       if ∃md( p.f-(md)= t) then {  

   md1=p.f -1(t); 
         for each p°∈ps 

        for each md2∈p°.MD 
                   if md1 matches md2 then L = L ∪{(t, p°.f(md2), md1)};  
       }  

 

 

Raise Order

Place Order with
Manufacturer

Invoice
Customer

Pay Invoice

Approve
Payment

Print Cheque

Retailer Manufacturer

Send Order

Confirm
Delivery

Invoice

Place Order with
Manufacturer

Invoice
Customer

Pay Invoice

Schedule
Production

Schedule
Delivery

Confirm
Delivery Make Goods

Dispatch
Goods

Invoice
Retailer

Retailer Manufacturer

Collect Order

Send Order

Confirm
Delivery

Invoice

( a ) ( b )

Order Parts

Schedule
Production

Confirm
Delivery

Make Goods

Dispatch
Goods

Collect Order

Invoice
Retailer

Check Inventory

( Product Ordering ) ( Product Ordering )( Production ) ( Production )

Schedule
Delivery

 

Fig. 5. Relative workflow processes 

By one message description md1 matches another message description md2 in 
Algorithm 2, we mean that they have the same message, and one has passing direction 
‘in’ while the other has ‘out’. With the set L of generated messaging links, we can 
now finally assemble relative workflow processes. As shown in Figure 5: (a) is the 
relative workflow process perceivable from the retailer; and (b) is the relative 
workflow process perceivable from the manufacturer, where the dashed connecting 
arrows denote the generated message links. Different participating organisations may 
have different views to the same inter-organisational workflow process. This reflects 
our relativity characteristics.  



 An Organisational Perspective on Collaborative Business Processes 27 

 

5   Tracking on Business Collaborations 

Once a relative workflow process is generated at the process level, we may perform 
workflow tracking of its instances, through complex interactions between business 
process instances of participating organisations. Tracking on business collaboration 
means the ability to track and report on the events happened to a specific business 
collaborative process during its execution. In our context, we are referring to the 
status enquiries on a relative workflow instance and other related relative workflow 
instances. 

As we can see from the relative workflow assembling algorithm, i.e. Algorithm 2, 
a relative workflow process is created for a specific organisation. However, as a 
relative workflow process is a part of a collaborative workflow process, this 
organisation may track the status, for instance, of an outsourced job, and the tasks 
related to this job. Sometimes, these related tasks may belong to non-neighbouring 
organisations. 

Referring to the motivating example in Figure 1, the ‘Confirm Delivery’ task of the 
manufacturer’s ‘Production’ process cannot send the confirmation of delivery to the 
retailer’s ‘Product Ordering’ process until it receives the confirmation of delivery 
from the shipper’s ‘Shipping’ process. But from the retailer’s relative workflow 
process about the product purchase/supply collaboration shown in Figure 5 (a), the 
retailer cannot see this dependency between the manufacturer and the shipper directly. 
Then, what if the shipper permits the retailer’s tracking on its ‘Shipping’ process? 
Can the relative workflow model support tracking beyond neighbouring 
organisations? We address this issue in this section. 

As mentioned in Section 3, the ‘trackable’ visibility value is dedicated to represent 
the trackability of a task to a specific organisation. Based on the motivating example, 
the shipper may permit the retailer’s tracking by signing a contract, from which the 
corresponding perception can be defined with some tasks set to ‘trackable’ for the 
retailer. For example, here we suppose the shipper defines the following visibility 

constraints for the retailer in the perception ShippingShipper
Retailerp . , 

VC3 = {(‘Collect Orders’, Trackable), (‘Book Delivery’, Invisible), (‘Schedule Van’, 
Invisible), (‘Confirm Delivery’, Trackable) }; 

With such visibility constraints, the retailer can obtain the perceivable ‘Shipping’ 
workflow process, which is shown in Figure 6 (a).  

Given the visibility constraints defined by the shipper for the manufacturer in the 

perception ShippingShipper
erManufacturp . , 

VC4 = {(‘Collect Orders’, Contactable), (‘Book Delivery’, Trackable), (‘Schedule 
Van’, Invisible), (‘Confirm Delivery’, Contactable)},  
the manufacturer can obtain a relative workflow process about the product delivery 
collaboration, as shown in Figure 6 (b). 

Now, the manufacturer’s ‘Production’ process may become a bridge between the 
retailer and the shipper because it exists in both the retailer’s relative workflow 
process from the manufacturer in Figure 5 (a) and the manufacturer’s relative 
workflow process from the shipper in Figure 6 (b). As the ‘Shipping’ process is also 
perceivable from the retailer, it is possible for the retailer to track the related tasks in 
the shipper’s ‘Shipping’ process via the manufacturer. 



28 X. Zhao, C. Liu, and Y. Yang 

 

Collect Order

Book Delivery

Schedule Van

Confirm
Delivery

Shipper

(Shipping)

( a ) ( b )

Collect Order

Order Parts

Schedule
Production

Schedule
Delivery

Confirm
Delivery

Make Goods

Dispatch
Goods

Invoice
Retailer

Collect Order

Book Delivery

Confirm
Delivery

Schedule Delivery

Confirm Delivery

Manufacturer Shipper

Check Inventory

(Production) (Shipping)

 

Fig. 6. ‘Shipping’ process perceivable from different organisations 

However, such a bridging procedure requires a composite view from the retailer to 
the shipper by composing the view of the retailer from the manufacturer and the view 
of the manufacturer from the shipper. This step has to be handled by the 
manufacturer, since only the manufacturer has the knowledge of all necessary 
visibility constraints and relative workflow processes. First, we start from the 
manufacturer’s relative workflow process in Figure 6 (b). We can see that the ‘Collect 
Order’ task of the ‘Shipping’ process has the ‘Schedule Delivery’ message link with 
the ‘Schedule Delivery’ task of the manufacturer’s ‘Production’ process. And the 
‘Schedule Delivery’ task is also set trackable to the retailer (refer to VC2 defined in 
Example 1). Therefore, the ‘Schedule Delivery’ message link can be kept as original, 
because the tasks connected by it are perceivable to both the manufacturer and the 
retailer. Similarly, the same result can be achieved when composing the ‘Confirm  
 

Raise Order

Place Order with
Manufacturer

Invoice
Customer

Pay Invoice

Approve
Payment

Print Cheque

Retailer Manufacturer

Send Order

Confirm Delivery

Invoice

Schedule
Production

Make Goods

Dispatch
Goods

Collect Order

Invoice
Retailer

Collect Order

Confirm
Delivery

Shipper

Schedule Delivery

Confirm Delivery

Confirm Delivery

( Production ) ( Shipping )( Product Ordering )

Schedule Delivery

 

Fig. 7. Tracking structure 



 An Organisational Perspective on Collaborative Business Processes 29 

 

Delivery’ message link. Finally, at the site of the retailer, the tracking structure can be 
extended by connecting the perceivable ‘Shipping’ workflow process to its original 
relative workflow process in Figure 5 (a), with the composed message links. The 
extended tracking structure is given in Figure 7. 

Once such a tracking structure is derived, the execution information of all involved 
workflow processes can be collected by propagating along this structure. 

6   Discussions 

With the proposed relative workflows, organisation centred business collaboration 
can be easily achieved. In this collaboration scheme, an individual organisation can 
actively choose partner organisations, and assemble proper ‘off-the-shelf’ perceivable 
workflow processes from partner organisations with its own workflow processes into 
a relative workflow process. This relative workflow process forms part of a 
collaborative workflow process for specific business collaboration. This collaboration 
scheme has the following appealing features: 

1. Support of high autonomy in collaborations. 
  As an autonomous entity, each organisation is in charge of defining the 
collaboration structure and behaviours with its partner organisations to fulfil its 
own business planning and management, without being forced to adapt the 
restrictions and irrationalities caused by the design of a third party designer or a 
leading organisation anymore. Therefore, each organisation owns the full control 
of its business collaboration.  
2. Support of flexible collaborations. 
  The proposed collaboration scheme can support business collaborations 
among loosely-coupled organisations in a dynamic or temporary manner. With 
the help of this scheme, a participating organisation is now able to easily redefine 
its collaboration structure and behaviours on the fly, e.g., to change partner 
organisations, to alter requirements for business collaboration with partner 
organisations, etc.  
3. Support of information protection. 
  The visibility control mechanism prevents the private information disclosure 
at the task level or at the process level. Participating organisations are now able to 
control the level of information revealing to different participating organisations 
accordingly.  

As we can see, a collaborative workflow process modelled in the public view 
approaches can be modelled in our relative workflow approach by a series of relative 
workflow processes with more advantages described above. Moreover, it may also 
support some applications that the public view approaches cannot cope with. One 
such an application is to support transient supply chains. In current e-marketplaces or 
other information portals, buyer, supplier, seller and distributor organisations can 
exchange their trading information and find trading partners. These sorts of 
collaborations are most likely to be dynamic and temporary, because a partner 
relationship is usually decided by means of price matching, bidding or auctions, and it 
will terminate as soon as the trading finishes. As discussed earlier, our relative 
workflow approach can support it very well. Another application is a virtual 



30 X. Zhao, C. Liu, and Y. Yang 

 

organisation alliance consisting of small-to-medium sized enterprises (SMEs), where 
SMEs join a virtual community to share business services from each other. Each 
organisation in such an open alliance is aware of the services utilisable, and also 
needs to publish its business services to other organisations. Such a dual-awareness 
requirement can be well supported using visibility control based perceptions. In 
addition, the “bottom-up” building mechanism of relative workflows suits this kind of 
alliances perfectly. 

7   Related Work 

Chiu et al. [10] borrowed the notion of ‘view’ from federated database systems, and 
employed a virtual workflow view for the inter-organisational collaboration instead of 
the real instance, to hide internal information. Our relative workflows approach 
extracts the explicit visibility constraints from the commercial contracts to restrict the 
information disclosure. Different from the workflow view model, the relative 
workflow approach distributes the macro business collaboration into interactions 
between neighbouring organisations, and these interactions are performed by the 
relative workflows designed from the perspective of individual organisations. 

van der Aalst and Weske [4] proposed a “top-down” approach for inter-
organisational workflow processes and adopted a public-to-private method to 
formalise the partition process. In this paper, we take a “bottom-up” approach to build 
up relative workflow processes from each individual organisation first, then to 
represent a collaborative business process as a series of relative workflow processes. 

Schulz and Orlowska [3] developed a cross-organisational workflow architecture, 
on the basis of communication between the entities of a view-based workflow model. 
In comparison, our relative workflow approach defines perceptions from the view of 
each participating organisation. The relative workflow processes can be dynamically 
generated by linking the local workflow processes using perceptions.  

The CrossFlow project [2] aimed to support cross-organisational workflow 
management in a dynamic virtual enterprise, with the cooperation based on dynamic 
service outsourcing specified in electronic contracts. However, the contracts in this 
project did not include explicit visibility parameters. Compared with this work, our 
relative workflow approach provides a more systematic support in visibility control. 

A business contract specification language (XLBC) was introduced in [11] to 
formally link the Component Definition Language (CDL) specification of business 
object based workflow systems. A brief discussion on object visibility specified by 
contracts was also given in that research. Nevertheless, no more detailed work in that 
regard could be found. Our relative workflows use perceptions to define a specific 
visibility of each workflow process to different organisations. Based on this visibility 
control mechanism, support of some advanced features, such as flexible 
collaborations, autonomy in collaborations, are now available. 

8   Conclusions 

This paper has presented a new approach on inter-organisational business 
collaboration, by proposing a novel concept called relative workflow. In this 



 An Organisational Perspective on Collaborative Business Processes 31 

 

approach, each organisation acts as an autonomous entity with the full control of 
choosing its partner organisations and defining its collaboration structure and 
behaviours. Instead of defining a collaborative business process as a whole, each 
participating organisation may define its relative workflow processes from its own 
perspective for business collaboration. Associated with a relative workflow process, a 
set of visibility constraints are defined for interaction and tracking. In this paper, both 
the formal definitions of relative workflows and the algorithms for generating relative 
workflows have been presented. The tracking on relative workflow processes has also 
been discussed.  

In the future, we plan to prototype this work in the Web service environment and to 
refine the relative workflow architecture to better support collaborative business 
processes. 

Acknowledgements 

The work reported in this paper is partly supported by the Australian Research 
Council discovery project DP0557572. 

References 

1. Osterle, H., Fleisch, E.Alt, R.: Business Networking - Shaping Collaboration between 
Enterprises. Springer Verlag (2001) 

2. Grefen, P., Aberer, K., Ludwig, H.Hoffner, Y.: CrossFlow: Cross-Organizational 
Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises. Data 
Engineering, 24(1) (2001) 52-57 

3. Schulz, K. and Orlowska, M.: Facilitating Cross-organisational Workflows with a 
Workflow View Approach. Data & Knowledge Engineering, 51(1) (2004) 109-147 

4. van der Aalst, W. and Mathias, W.: The P2P Approach to Inter-organizational Workflows. 
Advanced Information Systems Engineering, Proceedings (2001) 140-156 

5. Wetzel, I. and Klischewski, R.: Serviceflow beyond Workflow? IT Support for Managing 
Inter-organizational Service Processes. Information Systems, 29(2) (2004) 127-145 

6. Groiss, H. and Eder, J.: Workflow Systems for Inter-organizational Business Processes. 
SIGGroup Bulletin, 18(3) (1997) 23-26 

7. Business Process Execution Language for Web Services (BPEL4WS) Ver1.1. 
http://www.ibm.com/developerworks/library/ws-bpel/ (2003)  

8. Zhao, X., Liu, C.Yang, Y.: Web Service based Architecture for Workflow Management 
Systems. Database and Expert Systems Applications, Proceedings, LNCS 3180 (2004) 34-
43 

9. Anderson, M. and Allen, R.: Workflow Interoperability - Enabling E-Commerce. 
www.aiim.org/wfmc/mainframe.htm (1999)  

10. Chiu, D., Cheung, S., Karlapalem, K., et al.: Workflow View Driven Cross-organizational 
Interoperability in a Web-service Environment. Web Services, E-Business, and the 
Semantic Web, LNCS 2512 (2002) 41-56 

11. van den Heuvel, W. and Weigand, H.: Cross-Organizational Workflow Integration using 
Contracts. ACM Conference on Object-Oriented Programming, Systems, Languages, and 
Applications (2000)  



Mining Hierarchies of Models: From Abstract

Views to Concrete Specifications

Gianluigi Greco1, Antonella Guzzo2, and Luigi Pontieri2

1 Dept. of Mathematics, UNICAL,
Via P. Bucci 30B, 87036, Rende, Italy

2 ICAR-CNR, Via P. Bucci 41C, 87036 Rende, Italy
ggreco@mat.unical.it, {guzzo, pontieri}@icar.cnr.it

Abstract. Process mining techniques have been receiving great atten-
tion in the literature for their ability to automatically support process
(re)design. The output of these techniques is a concrete workflow schema
that models all the possible execution scenarios registered in the logs,
and that can be profitably used to support further-coming enactments.
In this paper, we face process mining in a slightly different perspective.
Indeed, we propose an approach to process mining that combines novel
discovery strategies with abstraction methods, with the aim of producing
hierarchical views of the process that satisfactorily capture its behavior
at different level of details. Therefore, at the highest level of detail, the
mined model can support the design of concrete workflows; at lower levels
of detail, the views can be used in advanced business process platforms
to support monitoring and analysis. Our approach consists of several al-
gorithms which have been integrated into a systems architecture whose
description is accounted for in the paper as well.

1 Introduction

The difficulties encountered in the design of complex workflows have recently
stimulated the development of process mining techniques [1,2,3,4,5,6,7,8], whose
aim is to automatically derive a model for the process at hand, based on log data
collected during its past enactments. Notably, when a large number of activities
and complex behavioral patterns are involved in the analysis, process mining
may be a rather trickish task, and the discovered model might fail in representing
the process in a clear and concise manner. Indeed, process mining algorithms
are generally designed to maximize the accuracy of the mined model, i.e., they
equip the model with as many variants as they are required to support all the
registered logs; therefore, the resultant schema is well-suited for supporting the
enactment, but is less useful for a business user who wants to monitor and
analyze the business operation at some appropriate level of abstraction.

To overcome this limitation, we propose an approach to process mining that
produces a hierarchical process model which satisfactorily captures the behavior
of the process at hand, by providing different views at different level of details.
Roughly speaking, the model is essentially a tree such that the root encodes the

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 32–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Mining Hierarchies of Models 33

most abstract view, which has no pretension of being an executable workflow,
whereas any level of internal nodes encodes a refinement of such an abstract
model, in which some specific details are introduced.

The capability of discovering a modular and expressive description for a pro-
cess can be a valid help in designing, monitoring, and analyzing process models,
and can pave the way for effectively reusing, customizing and semantically con-
solidating process knowledge. And, in fact, the need and the usefulness of process
hierarchies/taxonomies has already emerged in several applicative contexts, and
process abstraction is currently supported in some advanced platforms for busi-
ness management (e.g, iBOM [9], ARIS [10]), in which the designer can manually
define the relationships among the abstract and the actual process.

In the literature, the definition of process hierarchies was first consid-
ered in [11], envisaging a repository of process descriptions for supporting
both design and sharing of process models. The notion of process special-
ization/generalization (w.r.t some suitable behavioral semantics) has been in-
vestigated for different modelling formalisms, such as Object Behavior Di-
agrams [12], UML diagrams [13], process-algebra specifications and Petri-
nets [14,3], DataFlow diagrams [15]. Recently, some abstraction techniques aim-
ing at summarizing complex processes have been proposed in [9,16].

The main distinguishing feature of our approach with respect to the pro-
posals cited above is the combination of mining and abstraction methods for
automatically producing a hierarchical process model. This entails that no sub-
stantial human intervention is required while abstracting process schemas, so
that software modules implementing the algorithms described in the paper rep-
resent a valuable add on for advanced process management platforms. In more
details, the contribution of the paper is as follows:

– In Section 3, we introduce a top-down clustering algorithm that generates a
hierarchy of workflow schemas, by inducing each of them from a homogeneous
cluster of traces. Since, at each step, the algorithm greedily splits the cluster
equipped with the least sound schema, schemas at the leaves of the hierarchy
effectively model different usage-scenarios for the process.

– The whole hierarchy build by means of clustering is of great value in struc-
turing different execution classes into an effective taxonomical view. In Sec-
tion 4, we propose an algorithm for obtaining a taxonomy of schemas, by
producing, for each non-leaf node of the hierarchy, an abstract schema gen-
eralizing all those associated with the children.

– In Section 5, we present an abstraction algorithm and some associated met-
rics, which are meant to support the above generalization algorithm by prop-
erly replacing groups of “specific” activities with “higher-level” activities.

– Finally, in Section 6, we sketch the architecture of a system implement-
ing the whole approach, and discuss some concluding remarks and future
works.



34 G. Greco, A. Guzzo, and L. Pontieri

2 Formal Framework

In this section, we introduce the basic notions and notation for formally repre-
senting workflow models, which will be exploited in the rest of the paper. The
control flow graph of a process P is a tuple 〈A, E, a0, F 〉, where: A is a finite set
of activities, E ⊆ (A−F )× (A−{a0}) is a relation of precedences among activi-
ties, a0 ∈ A is the starting activity, F ⊆ A is the set of final activities. A control
flow graph defines the potential orderings according to which the activities of
P can be executed; it is often enriched with some kind of constraints impos-
ing further restrictions on the executions.1 For any a activity of the workflow
schema, the split constraint for a is: (S.i) AND-split if a activates all of its suc-
cessor activities, once completed; (S.ii) OR-split, if a may activate any number
(non-deterministically chosen) of its successor activities, once completed; (S.iii)
XOR-split if a activates exactly one out of all its successor activities, once com-
pleted. The join constraint for a is: (J.i) AND-join if a can be executed only
after all of its predecessors have notified a to start; (J.ii) OR-join, if a can be
executed as soon as one of its predecessors notifies a to start.

Let P be a process. A workflow schema for P , denoted by W(P ), is a tuple
〈A, E, a0, F, C〉, where 〈A, E, a0, F 〉 is a control flow graph for P , and C is a set of
constraints for the activities in A. Fig. 1 shows a possible workflow schema for the
OrderManagement process of handling customers’ orders in a business company.
Constraints are drawn by means of labels beside the tasks – e.g., accept order
is an and-join activity as it must be notified by its predecessors that both the
client is reliable and the order can be supplied correctly.

authenticate

client

check

stock

confirm

supplies

validate

order plan

decline

order

accept

order

fidelity

discount

fast

dispatch

prepare

bill

a

b

c

f

i

p

g

h

l

m

o

n

client

reliability

receive

order
AND

XOR

XOR

XOR

XOR

AND

OR
OR

OR

register

client

XOR

OR

OR

XOR
e

check previous

orders

ask

suppliers

d

Fig. 1. Workflow schema for the sample OrderManagement process

Each time a workflow is enacted in a workflow management system, it pro-
duces an instance, i.e., a suitable subgraph of the schema, containing both ini-
tial and final activity, that satisfies all the constraints. Actually, many process-
oriented commercial systems store partial information about the various in-
stances of a process, by tracing some events related to the execution of its ac-
tivities. In particular, the logs kept by most of such systems simply consist of
1 We do not refer to any specific syntax proposed for expressing constraints; rather,

we deal with some basic features occurring in the most typical workflow systems.



Mining Hierarchies of Models 35

sequences of event occurrences, which, in general, cannot allow to reconstruct
the structure of all workflow instances. Let AP be the set of task identifiers for
the process P ; then, a workflow trace s over AP is a string in A∗

P , representing
a task sequence. For instance, in our running example, a trace can be encoded
by the string acbgih. A workflow log for P , denoted by LP , is a bag of traces
over AP , i.e., LP = [ s | s ∈ A∗

P ].
We next formalize the relationship between traces and instances. Let I be an

instance of a workflow schema W , and s be a trace in LP . Then, s is compliant
with W through I, denoted by s |=I W , if the last activity of s is a final activity
w.r.t. to W and there exists a topological sort s′ of I such that s is a prefix of
s′. Furthermore, s is simply said to be compliant with W , denoted by s |=W, if
there exists an instance I such that s |=I W .

Finally, the following functions allow to evaluate the degree of conformance
of W w.r.t. a given log LP : (i) soundness(W,LP ), expressing the percent-
age of instances of W which have some corresponding traces in LP , and (ii)
completeness(W,LP ), which measures the percentage of traces in LP that are
compliant with W. It is worth noticing that both soundness and completeness
should be considered during the process mining task, in order to discover a
schema that satisfactorily model the input traces.

3 Mining Hierarchies of Workflow Schemas

Our approach to discover expressive process models at different level of details
is articulated in two phases. First, we mine a hierarchy of workflow schemas,
by means of a hierarchical top-down clustering algorithm, called Hierarchy
Discovery. Then, we visit the mined model in a bottom-up way, i.e., from the
leaves to the root, and we restructure it at several levels of abstraction, by means
of the algorithm BuildTaxonomy. Details on the former phase are reported in
this section, whereas details on the latter are reported in Section 4.

3.1 Algorithm HierarchyDiscovery

A process mining technique that is specifically tailored for complex process,
involving lots of activities and exhibiting different variants has been presented in
[8]. It relies on the idea of explicitly representing all the possible usage scenarios
by means of a collection of different, specific, workflow schemas, in order to
obtain a modular representation of the process itself, which is yet sounder than
a single workflow schema mixing all of them. We here propose a new algorithm
that extends the one presented in [8] by allowing the computation of hierarchical
process models rather than simple collections of workflow schemas. The mined
model is now meant to be a hierarchy of workflow schemas that collectively
represent the process at different levels of granularity and abstraction: the set
of schemas corresponding to children of any node v represents the same set of
execution as v, but in a more detailed and sounder way, as different subclass of
executions are separately described. We next formalize the notion of hierarchical
model.



36 G. Greco, A. Guzzo, and L. Pontieri

Input: A set of log traces LP , two natural numbers maxSize and k, a threshold γ.
Output: A schema hierarchy for P .
Method: Perform the following steps:

1 W0 :=mineWFschema(LP );
2 WS := {W0};
3 Traces[W0] := LP ; // Traces[Wi] refers to the log traces modelled by Wi, ∀Wi ∈ WS
4 T := 〈{ v0}, ∅, v0 〉;
5 λ(v0) := W0;

6 while |WS| ≤ maxSize and soundness(〈WS, T, λ〉,LP ) < γ do

7 let Wq be the least sound “leaf” schema a and vq=λ−1(Wq) be its associated node in T ;
8 let n=|WS| be the number of schemas currently stored in WS;
9 〈Ln+1, ..., Ln+k〉 := partition-FB(Traces[Wq ];

10 if k > 1 then
11 for h = 1..k do
12 Wn+h := mineWFschema(Ln+h);
13 WS := WS ∪ {Wn+h};
14 Traces[Wn+h] := Ln+h;
15 T.V := T.V ∪ {vn+h}; T.E := T.E ∪ {(vq , vn+h)};
16 λ(vn+h) := Wn+h;
17 end for
18 end if
19 end while
20 return 〈WS, T, λ〉;

a
i.e., Wq = argminW∈WS{soundness(W, traces(W )) | λ−1(W ) is a leaf of T}

Fig. 2. Algorithm HierarchyDiscovery

Definition 1. Let LP be a set of log traces for a process P . Then, a schema
hierarchy for P is a tuple H = 〈WS, T, λ〉, such that:

– WS is a set of workflow schemas for P ;
– T = 〈V, E, v0〉 is a tree, where V (resp. E) denotes the set of vertices (resp.

edges), and v0 ∈ V is the root;
– λ : V �→ WS is a bijective function associating each vertex v ∈ V with a

workflow schema λ(v) in WS;

Soundness and completeness of H are defined as follows: (i) soundness(H,
LP ) is the percentage of the instances modelled by the schemas associated with
the leaves of T that have some corresponding trace in LP , (ii) completeness(H,
LP ) is the percentage of traces in LP that are compliant with at least one schema
associated with a leaf of T . �	

Notice that for each vertex v in V , the set Sv of the schemas associated with
the children of v, i.e., Sv = {λ(vc

i ) | (v, vc
i ) ∈ E}, is essentially meant to model

the same set of instances modelled by λ(v), but in a sounder way. Therefore, the
union of all the schemas associated with the leaves constitute, as a whole, the
soundest model for the process.

Given a log LP , we can discover a schema hierarchy for P by recursively
partitioning the traces in LP into clusters, according to the different behavioral
patterns they exhibit, and building a schema for each of these clusters. This
is accomplished by the algorithm HierarchyDiscovery (see Fig. 2), where the
function mineWFschema is exploited for discovering each single workflow schema
in the hierarchy. Some possible implementations of mineWFschema are discussed



Mining Hierarchies of Models 37

in [1,2,3,4,5,6,7,8], and essentially consist in discovering precedence relationships
and constraints that involve the activities.

The meaning of the other input parameters is as follows: γ is a (lower) thresh-
old for the soundness of the mined hierarchy H , while maxSize and k bound the
total number of nodes in H and their out-degrees, respectively. Notice that we
here assume that the discovered model must have maximal completeness. Ob-
viously, we can straightforwardly extend the approach to discovering not fully
complete models, e.g., by introducing a threshold for completeness and using
some implementation of mineWFschema taking account for such a threshold.

The algorithm starts by building a workflow schema W0 (Line 1) which is
a first attempt to represent the behavior captured in the log traces, and which
will be the only component of WS (Line 2). The schema WS0 is associated
with the whole log via the auxiliary structure Traces (Line 3), which enables for
recording the set of traces each discovered schema was derived from. Moreover,
the tree T is initialized with a single node (its root) v0, which is associated with
W0 by properly setting the function λ (Lines 4-5).

In order to produce a more accurate model, we greedily chose to refine the
least sound schema Wq in WS and to derive a set of more refined schemas
(Lines 7-18) as children of node corresponding to Wq. To this purpose, the set of
traces modelled by the selected schema Wq is partitioned through the procedure
partition-FB (Line 9) into a set of clusters which, in a sense, are more homo-
geneous from a behavioral viewpoint. Roughly speaking, the procedure mainly
relies on the discovery of frequent rules representing behavioral patterns that
were unexpected with respect to Wq. Such rules are then used to map the traces
into a feature space, where classical clustering methods can be applied (see [8]
for more details).

For each new cluster Li+h a specific workflow schema Wi+h is extracted, by
using again function mineWFschema, and added to WS (Lines 10-11). Moreover,
Wi+h is associated with the cluster Li+h it was induced from, and with a new
node in the tree, which is a child of the node corresponding to the refined schema
Wq (Lines 14-16). The whole process of refining a schema can then be iterated
in a recursive way, by selecting again the least sound leaf schema in the current
hierarchy, until the desired value γ of soundness has been achieved or too many
schemas (i.e., maxSize or more) are already in WS (Line 6).

Example 1. In order to provide some insight on how the algorithm works, we
report a few notes on its behavior when used to mine a synthesized log. To this
purpose 100, 000 traces for the workflow schema shown in Fig. 1 were randomly
generated by means of the generator described in [17]. Notably, in the generation
of the log, we also required that task m could not occur in any execution trace
containing f , and that task o could not appear in any trace containing d and
p, thereby modelling the intuitive restriction that a fidelity discount in never
applied to a new customer, and that a fast dispatching procedure cannot be
performed whenever some external supplies were asked for. These additional
constraints allow us to simulate the presence of different usage scenarios that
cannot be captured by a simple workflow schema.



38 G. Greco, A. Guzzo, and L. Pontieri

v
0

v
0

v
1

v
3

v
4

v
2

(a) Tree

a

b

c g h

i l

m

n
AND

AND

XOR

XOR

OR

OR

XOR

p

x2

d

e

(b) Workflow schema W2 for node v2

a

b

c g h

i l

n

o

AND

AND

XOR

XOR

OR

OR

XOR

f

(c) Workflow schema W3 for node v3

a

b

c

p

f

g h

i l
n

AND

AND

XOR

XOR

OR
x1

d

(d) Workflow schema W4 for
node v4

Fig. 3. Hierarchy generated by HierarchyDiscovery (details for leaf schemas only)

The output of HierarchyDiscovery, for maxSize = 5 and γ = 0.85, is the
schema hierarchy reported in Fig. 3.(a), where each node logically corresponds
to both a cluster of traces and a workflow schema induced from that cluster by
means of traditional algorithms for process mining. Thus, node v0 corresponds
to the whole set of traces and to an associated (mined) workflow. Actually, the
algorithm HierarchyDiscovery finds that the schema of v0 is not as sound as
required by the user, and therefore partitions the traces by means of a clustering
algorithm (k-means in the implementation). In the example, we fix k = 2 and
the algorithm generates two children v1 and v2; then, v2 is not further refined
(due to its high soundness), while traces associated with v1 are split again into
v3 and v4. At the end, the schemas associated with the leaves of the tree are
those shown in the Figure. As a matter of fact, schemas W0 and W1 (associated
with v0 and v1, respectively) are only preliminary attempts to model executions
that are, indeed, modelled in a sounder way by the leaf schemas. Nevertheless,
the whole hierarchy is an important result as well, for it somehow structures
the discovered execution classes, and is a basis for deriving a schema taxonomy
representing the process at different abstraction levels, as it will be discussed in
Section 4. �

4 Restructuring Schema Hierarchies

In the second phase of our approach, we exploit the schema hierarchy produced
by HierarchyDiscovery, in order to restructure it for producing a description of
the process at different levels of details. Intuitively, leaf nodes stand for concrete
usage scenarios, whereas non-leaf nodes are meant to represent suitable general-



Mining Hierarchies of Models 39

izations of the different process models corresponding to their children. Relations
among activities are next formalized by means of abstraction dictionaries.

4.1 Abstraction Relationships

Let A be a set activities. An abstraction dictionary for A is a tuple D =
〈Isa,PartOf 〉, such that D.Isa ⊆ A × A, D.PartOf ⊆ A × A and, for each
a ∈ A, (a, a) 
∈ D.PartOf and (a, a) 
∈ D.Isa. Roughly speaking, for two ac-
tivities a and b, (b, a) ∈ D.Isa indicates that b is a refinement of a; conversely,
(b, a) ∈ D.PartOf indicates that b is a component of a.

Given two activities a and a′, we say that a generalizes a′ w.r.t. a given
abstraction dictionary D, denoted by a ↑D a′, if there is a sequence of activities
a0, a1, .., an such that a0=a′, an=a and (ai, ai−1) ∈ D.Isa for each i = 1..n;
we call such a sequence a genpath from a′ to a with length n. Moreover, the
generalization distance between a and a′ w.r.t. D, denoted by distDG, is the
minimal length of the genpaths connecting a′ to a, or vice-versa. As a special
case, we assume that distDG(a, a) = 0 for any activity a. Finally, the most specific
generalization of two activities x and y w.r.t. D, denoted by msgD(x, y), is the
closest activity, if there exists one, that generalizes them both, i.e., msgD(x, y) =
argminz{distDG(x, z) + distDG(y, z) | z ↑D x and z ↑D y}.

Given two activities a and a′ and an abstraction dictionary D, we say that a
implies a′ w.r.t.D, denoted by a −→D a′, if (a′, a) ∈ D.Isa or (a′, a) ∈ D.PartOf
or, recursively, there exists an activity x such that a −→D x and x −→D a′. The
set of activities implied by a w.r.t. D is referred to as implD(a), i.e., implD(a)
= {a′ | a −→D a′}. An activity a is then said to be complex if there exists at
least one activity x such that a −→D x; otherwise, a is a basic activity. In other
words, complex activities represent higher level concepts defined by aggregating
or generalizing basics activities actually occurring in real process executions.

The above relationship between activities is a basic block for building tax-
onomies that can significantly reduce the efforts for comprehending and reusing
process models, for they structuring process knowledge into different abstraction
levels. Let W1 and W2 be two workflow schemas over the sets of activities A1

and A2, respectively. Then, we say thatW2 specializes W1 (W1 generalizes W2)
w.r.t. a given abstraction dictionary D, denoted by W2 ≺D W1, if (i) for each
activity a2 in A2 there exists at least one activity a1 in A1 such that a1 −→D a2,
and (ii) there is no activity b1 in A1 such that a2 −→D b1.

The output of the restructuring of a schema hierarchy is an abstraction dic-
tionary and a schema taxonomy as for formalized below.

Definition 2. Let D be an abstraction dictionary for the activities of a given
process P , and H = 〈WS, T, λ〉 be a schema hierarchy for P . Then, H is a
schema taxonomy for P w.r.t. D if for any pair of nodes v and vc in V such that
(v, vc) ∈ T.E (i.e., vc is a child of v) λ(v) ≺D λ(vc). �	

4.2 Algorithm BuildTaxonomy

In Fig. 4 we illustrate an algorithm, called BuildTaxonomy, for restructuring
a schema hierarchy into a schema taxonomy, representing the process at hand



40 G. Greco, A. Guzzo, and L. Pontieri

at several abstraction levels. The algorithms takes in input a schema hierarchy
H and produces a taxonomy G and an abstraction dictionary D, which G has
been build according to. Roughly speaking, the basic task allowing for such a
generalization consists in replacing groups of “specific” activities, appearing in
the schemas to be generalized, with new “virtual” activities which represent
them at a higher level of abstraction. In this way, a more compact description
of the process is obtained, where portion of the actual workflow are represented
at a lower level of granularity. Indeed, during such a restructuring process, the
abstraction dictionary D is required to maintain the relationships between the
activities that were abstracted and the new higher-level concepts replacing them.

Input: A schema hierarchy H = 〈WS, T, λ〉;
Output: A schema taxonomy G, an abstraction dictionary D;
Method: Perform the following steps:

1 let T = 〈V, E, v0〉, and let D := ∅;
2 Done := { v ∈ V |� ∃v′ ∈ V s.t. (v, v′) ∈ E }; // Done initially contains the leaves of T ;
3 while ∃v ∈ V such that v �∈ Done, and {c | (c, v) ∈ E} ⊆ Done do
4 let ChildSchs = { λ(c) | v ∈ V and (v, c) ∈ E }, i.e., the schemas of all v’s children;
5 λ′(v) := generalizeSchemas(ChildSchs,D);
6 Done := Done ∪ {v};
7 end while
8 G := 〈WS, T, λ′〉;
9 normalizeDictionary(G,D);

10 return (G,D);

Procedure generalizeSchemas( WS = {W1, ..., Wn}: set of workflow schemas,
var D: abstraction dictionary ): workflow schema;

g1 let Wh = 〈Ah, Eh, a0
h, Fh, Ch〉 for h = 1..n;

g2 let I =
⋂n

i=1 Ai;

g4 W :=
〈 ⋃n

i=1 Ai,
⋃n

i=1 Ei,
⋃n

i=1 a0
i ,

⋃n
i=1 Fi, ∅ 〉

;

g5 mergeConstraints(W , {Ch | h = 1..n});
g6 for each i = 1..n do

g7 abstractActivities(Ai-I, W , D);
g8 end for

g9 abstractActivities(W.A-I, W , D);

g10 return W ;

Fig. 4. Algorithm BuildTaxonomy

The algorithm works in a bottom-up fashion (Line 2-7): starting from the
leaves of the input hierarchy, it produces, for each non-leaf node v, a novel
workflow schema that generalizes all the schemas associated with the children
of v. Notably, such a schema is meant to accurately represents only the features
that are shared by all the subsets of executions corresponding to the children of
v, while abstracting from specific activities, which are actually merged into new
high-level (i.e., complex ) activities. Such a generalization task is carried out by
providing the procedure generalizeSchemas with the schemas associated with
the children of v, along with the abstraction dictionary D, initially empty (Line
5). As a result, a new generalized schema is computed and assigned to v through
the function λ′; moreover,D is updated to suitably relate the activities that were
abstracted with the complex ones replacing them in the generalized schema.

As a final step, after the schema taxonomy G has been computed, the al-
gorithm also restructures the abstraction dictionary D by using the procedure



Mining Hierarchies of Models 41

a

b

c

f

g h

i l

AND

AND

XOR

XOR

OR

x1

n

o

OR

XOR

(a) Workflow schema W 1 for node v1

a

b

c g h

i l

m

n

o

AND

AND

XOR

XOR

OR

OR

OR

XOR
XOR

f

x4

x1

e

XOR
OR

x3

(b) Workflow schema W 0 for node
v0

Fig. 5. Generalized workflow schemas in the resulting taxonomy

normalizeDictionary (Line 9), which actually removes all “superfluous” ac-
tivities that were created during the generalization. In particular, this step will
eliminate any complex activity a not appearing in any schema of G, which can
be abstracted into another, higher-level, complex activity b, provided that this
latter can suitably abstract all the activities implied by a.

Clearly enough, the effectiveness of the technique depends on the way the
generalization of the activities and the updating of the dictionary are carried out.
Procedure generalizeSchemas (reported in Fig. 4 as well) first merges all the
input workflow schemas into a preliminary workflow schema W (Line g4), which
represents all the possible flow links in the input workflows by roughly performing
the union of their corresponding control flow graphs. Subsequently, the set of con-
straints of W (initially empty) is populated by suitably combining the constraints
specified in the input schemas, by means of procedure mergeConstraints (Line
g5); as a matter of fact, this latter procedure derives a split (resp., join) con-
dition for each activity a of W , based on the split (resp., join) conditions a is
associated with in each input schema, yet taking into account all the control flow
relationships a takes part to, in the involved schemas.

The main task in the generalization process is performed by repeatedly ap-
plying the procedure abstractActivities, which transforms W by merging
activities in the reference set it receives as the first parameter, and by updating
the associated constraints and the abstraction dictionary D as well. In particu-
lar, abstractActivities is first applied for merging only activities that derived
from the same input schema – at step i only activities coming from the i-th
schema can be merged (Line g7). A further application of abstractActivities
is then performed to possibly abstract any non-shared activity in the current
schema, independently of its origin. Due to its relevance to the generalization
algorithm, abstractActivities is illustrated in details in Section 5; however,
we conclude this description by providing an intuition on its behavior.

Example 2. Consider again the schema hierarchy shown in Fig. 3. Then, algo-
rithm BuildTaxonomy starts generalizing from the leafs, thus first processing
the schemas W3 and W4 associated with v3 and v4, respectively. The result of
this generalization is the schema W 1 shown in Fig. 5.(a), which is obtained by
first merging all the activities and flow links contained in either W3 or W4, and
by then performing a series of abstractions steps over all non-shared activities,



42 G. Greco, A. Guzzo, and L. Pontieri

namely o, d and p. As we shall formalize in Section 5, in general, we iteratively
abstract a pair of activities into a complex one, trying to minimize the num-
ber of spurious flow links that their merging introduces between the remaining
activities, and yet considering their mutual similarity w.r.t. the contents of the
abstraction dictionary. When deriving the schema W 1, only the activities d and
p are abstracted, by aggregating them both into the new complex activity x1;
consequently, d and p are replaced with x1, while the pairs (d, x1) and (p, x1)
are inserted in the PartOf relationship. The schema W 1 is then merged with
the schema W2 associated with v2, and a new generalized schema, shown in
Fig. 5.(b), is derived for the root v0. In fact, when abstracting activities coming
from W2, d and p are aggregated again together, into a new complex activ-
ity x2; however, in a subsequent step x2 is incorporated into x1, as these two
complex activities have the same set of sub-activities and the same control flow
links. Furthermore, the activities e and f are aggregated into the complex ac-
tivity x3, while m and o are aggregated into x4. As a consequence, the pairs
(e, x3), (f, x3), (m, x4) and (o, x4) are added to the PartOf relationship. �

5 Abstracting Workflow Activities

In this section, we discuss the implementation of the abstractActivities pro-
cedure. To this aim, we preliminary introduce some metrics that we exploit for
singling out those activities that can be safely abstracted into higher-level ones.

5.1 Matching Activities for Abstraction Purposes

We next describe a series of functions which are meant to provide different ways
for evaluating how much two activities are suitable to being abstracted by a
single higher-level activity. Roughly speaking, simD

P and simD
G aims at capturing

semantical affinities based on the contents of a given abstraction dictionary D;
on the contrary, simE just compares two activities from a topological viewpoint
according to a set E of control flow edges.

While merging tasks in a workflow schema, a major concern is to limit the
creation of spurious control flow paths among the remaining activities in the
workflow schema, yet admitting to lose some precedence relationships involving
the abstracted ones. In this respect, we focus on two cases that can lead to a
meaningful merging without upsetting the topology of the control flow graph,
as formalized in the following definition.

Definition 3. Given a set of edges E , we say that an (unordered) pair of
activities (x, y) is merge-safe if one of the following conditions holds:

a) x and y are directly linked by some edges in E and after removing these
edges no other path exists connecting x and y, i.e., {(x, y), (y, x)} ∩ E 
= ∅
and {(x, y), (y, x)} ∩ (E − {(x, y), (y, x)})∗ = ∅

b) there is no path in E connecting x and y, i.e., {(x, y), (y, x)} ∩ E∗ = ∅
where E∗ denotes the transitive closure of E. �	



Mining Hierarchies of Models 43

Notably, only in the case (b) of Definition 3 the merging of x and y may
lead to spurious dependencies among other activities in the schema. Indeed, this
happens when there are two other activities z and w such that (z, w) 
∈ E∗, and
either {(z, x), (y, w)} ⊆ E or {(z, y), (x, w)} ⊆ E.

By the way, a straight way for preventing this problem, consists in requiring
that at least one of the following conditions holds: (i) Px = Py, (ii) Sx = Sy,
(iii) Px ⊆ Py and Sx ⊆ Sy, (iv) Py ⊆ Px and Sy ⊆ Sx, where Pa (resp. Sa)
denotes the set of predecessors (resp. successors) of activity a, according to the
arcs in E. Actually, in order to also deal with the presence of complex activities
in the set of predecessors (resp., successors), we extend the above expressions by
replacing Pa (resp., S) with P+

a (resp., S+
a ), defined as follows:

P+
a =

⋃
b∈Pa

impl(b) S+
a =

⋃
b∈Sa

impl(b)

However, the above requirements on the flow relationships of two activities
could not allow for an appreciable level of abstraction. Therefore, we somehow
incorporate them, in a smoothed way, into the function simE(x, y), reported
below, which is meant to evaluate a pair of activities according to the number
of spurious flows that would be generated when merging them, in an inverse
manner (i.e, the more spurious flows are introduced, the lower is the score):

simE(x, y) =
α(P+

x ,P+
y )× α(S+

x ,S+
y ) + β(P+

x ,P+
y )× β(S+

x ,S+
y )

2

where, for any two sets B and C, α(B, C) = |B∩C|
min(|B|,|C|) and β(B, C) = |B∩C|

|B∪C| .
As a matter of facts, simE produces a maximal value whenever one of the

“strong” conditions discussed before holds, and, in general, tends to attribute
high similarity to activities matching in most of their predecessors (successors).

On the contrary, function simD
P provides a way for measuring “semantical”

similarities between two activities x and y, based on the implied activities they
actually share. It is defined as:

simD
P (x, y) = β(implD(x) ∪ {x}, implD(y) ∪ {y})

Moreover, function simD
G, which is instead devoted to compare two activities

based on the generalization relationships recorded in D.Isa , is defined as follows:

simD
G(x, y) = 1− distDG(x, msgD(x, y)) + distDG(y, msgD(x, y))

max{distDG(a, b) | a, b ∈ A and b ↑D a}
Finally, an overall score can be assigned to each pair of activities in order to

rank them for abstraction purposes, as follows:

scoreD,E(x, y) =
{

0, if (x, y) is not a merge-safe pair of activities
max{simE(x, y), simD

P (x, y), simD
G(x, y)}, otherwise



44 G. Greco, A. Guzzo, and L. Pontieri

5.2 Abstracting Activities

Fig. 6 provides a detailed description of procedure abstractActivities, that
is meant to merge activities in S for a given schema W̄ and to abstract them via
higher-level, complex, activities. To this aim, besides W̄ and S, the procedure
takes in input an abstraction dictionary D. As a result, it transforms W̄ by re-
placing the abstracted activities with the associated complex ones, and modifies
D in order to suitably record the performed abstraction transformations.

Procedure abstractActivities(S: set of activities; var W̄ = 〈A, E, a0, F, C〉: a workflow schema;
var D = 〈PartOf , Isa〉: abstraction dictionary; )

1 let E′ = {(x, y) ∈ E s.t. x ∈ S and y ∈ S};
2 〈m1, m2, p, mode〉 :=getBestAbstraction(S,E′,D);
3 while p �= ε do
4 let ActuallyAbstracted = {m1, m2} − {p};
5 if mode = ISA then
6 Isa := Isa ∪ {(x, p) s.t. x ∈ ActuallyAbstracted};
7 else
8 PartOf := PartOf ∪ {(x, p) s.t. x ∈ ActuallyAbstracted};
9 end if

10 deriveConstraints(C,m1, m2, p, E);
11 arrangeEdges(E,ActuallyAbstracted, p);
12 A := A − ActuallyAbstracted ∪ {p};
13 S := S − ActuallyAbstracted ∪ {p};
14 〈p, m1, m2〉 :=getBestAbstraction(S,E′,D);
15 end while

Procedure getBestAbstraction(S: set of activities; E: set of activity pairs;
D: abstraction dictionary): a tuple in S × S × {Isa,PartOf , ε} × A; a

b1 if |S| < 2 then
b2 return 〈ε, ε, ε, ε〉;
b3 else

b4 let a and b be two activities s.t. score(a, b) = max{scoreD,E(x, y) | x, y ∈ S};
b5 if scoreD,E(a, b) < ρ then return 〈ε, ε, ε, ε〉;
b6 else if simD

G(a, b) ≥ ρs then return 〈a, b, Isa, msgD(a, b)〉;
b7 else if implD(b) ⊆ implD(a) then return 〈a, b,PartOf , a〉;
b8 else if implD(a) ⊆ implD(b) then return 〈a, b,PartOf , b〉;
b9 else if simD

P (a, b) ≥ ρs then return 〈a, b, Isa, a new activity〉;
b10 else return 〈a, b,PartOf , a new activity〉;
b11 end if
b12 end if

a
in any tuple 〈m1, m2, M, p〉 the procedure returns, m1 and m2 are the abstracted activity, p is the
abstracting one, and M indicates the abstraction mode – A denotes the universe of all activities.

Fig. 6. Procedure abstractActivities

The procedure abstractActivities works in a pairwise fashion by repeat-
edly abstracting two activities m1 and m2, both taken from S, by means of a
complex activity p. All such activities are identified with the help of the function
getBestAbstraction that returns a tuple indicating, besides p, m1 and m2, the
kind of abstraction relationship to be used, i.e., PartOf or Isa. As a special
case, procedure getBestAbstraction will return the tuple 〈ε, ε, ε, ε〉 if there is
no pair of activities in S that can be suitably abstracted. In such a case the con-
dition p = ε will hold, thus causing the termination of the abstraction procedure.



Mining Hierarchies of Models 45

Fig. 7. System Architecture.

Otherwise, in the resulting tuple 〈m1, m2, mode, p〉, m1 and m2 denote the two
activities to abstract, and p is the complex activity which will replace them both,
while mode denotes which kind of abstraction must be stored in D: aggregation,
via the PartOf relationship, or specialization, via the Isa relationship.

Procedure getBestAbstraction, still shown in Figure 6, essentially relies on
the matching measures defined in Section 5.1. In more detail, the procedure takes
as input a set S of activities and an associated set E of control flow edges, along
with an abstraction dictionary D. If there is no merge-safe pair in S that receives
a sufficient score (w.r.t. a threshold ρ), then getBestAbstraction returns the
tuple 〈ε, ε, ε, ε〉 (Lines b2 and b5), simply meaning that no abstraction can be
performed over the activities in S. Otherwise, the procedure computes a tuple
whose elements, respectively, specify the two activities to be abstracted, the kind
of abstraction relationship to be used (i.e., PartOf or Isa), and the complex
activity which will abstract both of them. As a matter of facts, the choice of the
abstracting activity and of the abstraction mode is based again on the similarity
values computed via simD

P and simD
G. In principle, if either of these measures is

above the threshold ρS , the two activities are deemed similar enough to be looked
at as two variants of some activity that generalizes them both. In particular, if
simG > ρS such an activity already exists: that is msgD(m1, m2), which is indeed
returned in the resulting tuple (Line b6). Before considering the creation of a
new activity for generalizing m1 and m2 (Line b9), we check whether one of them
implies the other: in such a case the implied activity can be abstracted by the
other via an aggregation relationship (Lines b7-b8); we can, indeed, exclude that
the implied activity is a specialization of the other, since such a condition was



46 G. Greco, A. Guzzo, and L. Pontieri

tested previously (Line b6). If none of the above cases applies, the two activities
are eventually abstracted by a new activity via aggregation (Line b10).

As concerning the remainder of procedure abstractActivities, since either
m1 or m2 might coincide with p, the set ActuallyAbstracted is used to keep trace
of which of them should be really abstracted, for it actually being distinct from p
(Line 4). Procedure deriveConstraints (see Line 20) is then applied to suitably
derive the split and join conditions for p, based on those of the activities m1 and
m2 that are being merged into it. Notice that, in principle, a looser join (resp.,
split) condition might be computed for p than those associated with m1 and m2,
whenever these latter activities do not exactly match in their predecessor (resp.,
successor) nodes and in their join (resp., split) conditions. For space reasons, we
skip here a detailed description of this procedure. In order to properly replace
the abstracted activities, the control flow graph is properly settled by using
procedure arrangeEdges, which simply transfers the edges of the abstracted
activities to p (Line 11). Finally, m1 and m2 are removed from both A and the
reference set S (Lines 12-13), and a novel activity pair is searched for, in order
to reiterate the whole abstraction procedure.

6 Discussion and Conclusions

We proposed a process mining approach that is meant to discover a hierarchical
model representing the analyzed process through different views, at different ab-
straction levels. The approach consists of several mining and abstraction tech-
niques, which are exploited in an integrated way. In particular, a preliminary
schema hierarchy, accurately modelling the process at hand, is first discovered,
by using a divisive clustering algorithm; the hierarchy is then restructured into
a taxonomy, by equipping each non leaf node with an abstract schema that
generalizes all the different schemas in the corresponding subtree.

The algorithms proposed in the paper have been implemented in JAVA and
integrated into a stand-alone system architecture that is sketched in Fig. 7.
For the sake of clarity and conciseness, major modules in the architecture are
labelled with the names of the algorithms and procedures previously presented in
the paper. Notably, different repositories are exploited to specifically manage the
main kinds of information involved in the process mining task: log data, schema
taxonomies, and abstraction relationships. Actually, a separate administration
suite allows for effectively browsing and exploiting all such data. By the way, two
further, “internal”, repositories are used to maintain and share data on the trace
clusters produced by the clustering algorithm and, respectively, the schemas
generated during both the mining phase and the restructuring one. Currently,
in order to offer the functionalities presented to a larger community of users, we
are working at integrating the architecture into the ProM [18] process mining
framework. At the time of writing, the hierarchical clustering module is already
available as an additional, plug-in, component for ProM.



Mining Hierarchies of Models 47

References

1. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE) 16 (2004) 1128–1142

2. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., G.Schimm, Weijters,
A.: Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering 47 (2003) 237–267

3. van der Aalst, W., Hirnschall, A., Verbeek, H.: An alternative way to analyze
workflow graphs. In: Proc. 14th Int. Conf. on Advanced Information Systems
Engineering. (2002) 534–552

4. van der Aalst, W., van Dongen, B.: Discovering workflow performance models from
timed logs. In: Proc. Int. Conf. on Engineering and Deployment of Cooperative
Information Systems (EDCIS 2002). (2002) 45–63

5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proc. 6th Int. Conf. on Extending Database Technology (EDBT’98).
(1998) 469–483

6. Cook, J., Wolf, A.: Automating process discovery through event-data analysis. In:
Proc. 17th Int. Conf. on Software Engineering (ICSE’95). (1995) 73–82

7. Muth, P., Weifenfels, J., M.Gillmann, Weikum, G.: Integrating light-weight work-
flow management systems within existing business environments. In: Proc. 15th
IEEE Int. Conf. on Data Engineering (ICDE’99). (1999) 286–293

8. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Mining expressive process models
by clustering workflow traces. In: Proc. 8th Pacific-Asia Conference (PAKDD’04).
(2004) 52–62

9. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: ibom: A platform for business
operation management. In: Proc. Intl. Conf. on Data Engineering (ICDE05). (2005)

10. IDS Prof. Scheer, G.: (Aris-tool set. version 2.0 manual.) Saarbrücken 1994.
11. Malone, T.W., et al.: Tools for inventing organizations: Toward a handbook of

organizational processes. Management Science 45 (1999) 425–443
12. Stumptner, M., Schrefl, M.: Behavior consistent refinement of object life cycles.

ACM Transactions on Software Engineering and Methodology 11 (2002) 92–148
13. Stumptner, M., Schrefl, M.: Behavior consistent inheritance in uml. In: Proc. 19th

Int. Conf. on Conceptual Modeling (ER 2000). (2000) 527–542
14. Basten, T., van der Aalst, W.: Inheritance of behavior. Journal of Logic and

Algebraic Programming 47 (2001) 47–145
15. Lee, J., Wyner, G.M.: Defining specialization for dataflow diagrams. Information

Systems 28 (2003) 651–671
16. Liu, D.R., Shen, M.: Workflow modeling for virtual processes: an order-preserving

process-view approach. Information Systems 28 (2003) 505–532
17. Greco, G., Guzzo, A., Manco, G., Saccà, D.: Mining frequent instances on work-

flows. In: Proc. 7th Pacific-Asia Conference (PAKDD’03). (2003) 209–221
18. ProM: http://www.daimi.au.dk/PetriNets/tools/db/promframework.html.



Flexible Business Process Management Using

Forward Stepping and Alternative Paths

Mati Golani and Avigdor Gal�

Technion - Israel Institute of Technology
{iemati, avigal}@ie.technion.ac.il

Abstract. The abilty to continuously revise business practices is es-
sential to organizations aiming at reducing their costs and increasing
their revenues. Rapid and continuous changes to business processes re-
sult in less control over the executed activities. As a result, the ability
of process designers to produce solid, well-validated workflow models is
limited. Workflow management systems (WfMSs), serving as the main
vehicle of business process execution, should recognize these risks and
become more dynamic to allow the required business flexibility. In this
paper, we propose a dynamic mechanism that allows backtracking and
forward stepping at an instance level. This mechanism analyzes the feasi-
bility of applying certain modifications to running instances and provides
an efficient algorithm that avoids redundant operation activation. We be-
lieve that this mechanism can bolster the ability of a business process
management system to deal with unexpected situations and to resolve,
in runtime, scenarios in which such resolution both is called for and does
not violate any business process constraints. Throughout this paper, we
use the paradigm of Web services to demonstrate the capabilities of the
proposed mechanism.

1 Introduction

Rapidly changing business environments require organizations to continuously
revise their business practices, seeking better business opportunities and con-
tinuously aiming at reducing their costs and increasing their revenues. In the
last decade, businesses have turned to technological solutions to assist them in
this task. The use of electronic means to commerce, data mining, and customer
profiling are all recent technological developments that penetrate business ac-
tivities. One of the most recent technological developments is the use of Web
services, components with a well-defined interface that are embedded in cross-
organizational business processes. Using Web services, the functional aspects of
business applications are encapsulated [19], with interfaces defined using stan-
dards such as BPEL4WS [3], and invocation controled using approaches such as
Service Oriented Architecture (SOA). Web services promise to deliver greater
choice and flexibility to business processes.
� The work of Gal was partially supported by two European Commission 6th Frame-

work IST projects, QUALEG and TerreGov, and the Fund for the Promotion of
Research at the Technion.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 48–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Flexible Business Process Management 49

Rapid and continuous changes to business processes carry with it risks, due to
shorter (or even nonexistent) design time and less control over the executed activ-
ities. As a result, the ability of process designers to produce solid, well-validated
workflow models is limited. Workflow management systems (WfMSs), serving as
the main vehicle of business process execution, should recognize these risks and
become more dynamic to allow the required business flexibility. To illustrate this
point, we next present two examples, involving Web services. First, we observe
that the development of Web services is an ongoing task, and new and improved
services are continuously replacing existing ones. Currently, WfMSs provide little
support to the reexecution of successfully processed tasks for running instances,
even if the gains from such reexecution outweigh the costs. As another example,
observe that Web services merely provide syntactic information regarding their
input, output and processing logic, through standards such as WSDL [20]. In
most cases, such descriptions fail to convey all necessary constraints and restric-
tions. Modeling using Web services, therefore, is likely to make the validation of
workflow models more difficult [8], and more exceptions at run-time are to be
expected. Efficient exception handling is a fundamental component of WfMSs
and is critical to their successful implementation in real-world scenarios [1].

The motivation for this work, as illustrated above, is the need for flexible
and dynamic WfMSs to support the growing number of exceptions that cannot
be designed a priori, due to poor design or the lack of sufficient information
regarding the internal logic of Web services. In this paper, we propose a dy-
namic workflow mechanism that allows backtracking and forward stepping at an
instance level. This mechanism works by analyzing the feasibility of applying cer-
tain modifications to running instances and implementing an efficient algorithm
that avoids redundant operation activation as a result of instance modification.
In particular, the introduction of a new Web service may trigger backtracking
of an instance to an activity in which the new Web service is performed, and
then forward stepping while utilizing, to the extent possible, previously executed
activities. In the case of an exception, the proposed algorithm identifies a feasi-
ble alternative that avoids the failing activity or communication channel. In this
scenario, again, we backtrack to an activity from which it is considered safe to
step forward.

Our approach is based on and extends the approach described in [7]. There-
fore, we provide a rollback mechanism followed by a forward execution. We
extend the existing proposal by providing a precise location in the workflow
graph for the rollback target and a semi-automated forward execution (involv-
ing relevant agents when needed). We believe that this mechanism can bolster
the ability of a business process management system to deal with unexpected
situations and to resolve, in runtime, scenarios in which such resolution is both
called for and does not violate any business process constraints.

We base our workflow model on ADEPT WSM nets [13]. It combines a
graphical representation with a solid formal foundation, taken from graph theory,
allowing both reasoning and an execution engine [14].



50 M. Golani and A. Gal

Our specific contributions are as follows:

– We provide an analysis of a workflow model, based on WSM nets, that gen-
erates a conceptual framework in which backtracking and forward stepping
can be evaluated and implemented.

– We provide efficient algorithms for alternative route identification (at design
time or run time) and forward stepping (at run time), to allow dynamic
modifications to workflows.

– We introduce the concept of a meta-process, an efficient and a fully automatic
mechanism (at the WfMS level) for activating the proposed algorithms.

1.1 Related Work

Exception and modification handling – i.e., the way a workflow system responds
once an exception or a modification notification occurs – has been discussed in
the literature for some time. The system may react in such cases either by ter-
minating a process or handling an exception [10,4]. Sadiq et al. in [15] classified
the latter option as one of the available modification policies (which was called
Adapt) to a given change in a running process. This change is due to an unex-
pected exception, so the process should be handled differently than originally
designed. Yet the authors do not define how to infer this modification.

Generally speaking, exception handling involves compensation flows [5].
Compensation flows provide rollback, a set of undo actions. These flows are
predefined. If compensation does not exist, the workflow operator may be will-
ing to accept inconsistencies in which a completed activity is not voided. For
example, assume an activity provides a customer with bonus points, on the as-
sumption that a purchase will be made. Then another activity is chosen, which
also awards bonus points. For a successful termination of the workflow (e.g., a
sale), an operator may be willing to grant double bonus points in this case.

Eder et al. describe several types of compensation in [6], and provide a three-
step mechanism to handle exceptions [6, workflow recovery] [7]. The first step
entails rollback based on compensation type of activities in the workflow graph.
In the next step, an agent determines whether to continue backward or to take
an alternative path. The final step is a forward execution (which could lead
to the same point of failure). In the event of rollback, existing work [7] does
not specify the stop point, implying that this point represent the decision on
whether to continue. However, in many cases the parameter which drives this
decision has been set before this point. Furthermore, these mechanisms are static
(e.g., during build time) [5,12,6]. Our approach detects the actual/optimal stop
point (via analysis), and can provide in run time an alternative execution that
overtakes the failed activity.

A dynamic approach was presented by Hwang et al. [11]. Here, a failure
recovery language supports multiple exceptions per activity, and applies rollback
using ECP (end compensation point). This language uses the process parameters
in order to determine its flow. The drawback of this approach is that it fails to
make use of the user’s insight (and output). It is impossible to accurately forecast



Flexible Business Process Management 51

all user intentions, and under different circumstances, individual users may make
different choices based on the same input. Thus, the user’s output is essential.

The rest of the paper is organized as follows: Section 2 introduces a mo-
tivating example. In Section 3 we present the workflow graph-based model. In
Sections 4-6 we present forward stepping, alternative path, and parametric anal-
ysis mechanisms, respectively. Finally, in Section 7, we introduce the architecture
for implemention, and show the use of meta-processes.

2 Illustrative Example

As an example, consider a process that handles registrations for package tours
(see Figure 1). This process uses some local applications (member deals), as
well as Web services (hotel registration: activity 0, flight reservation: activity
1) with some special offers available to gold members only (activities 5-8). We
use two examples to illustrate the needs of a flexible business process. The first
involves introduction of a new Web service that offers better hotels for cheaper
prices, at a time when the process instance is already handling membership
registration (activity 4), and hotel registration and flight ticket activities are
already completed. The second event involves a failure of the special offer system
for a gold customer (activity 6).

In the first example, nothing has gone wrong, but the “world” has changed
(a new service has become available). Taking advantage of this new service may
affect the customer’s total cost, given penalties for canceling an existing order and
the cost of creating a new one. Other activities or services may also need to be
compensated or reexecuted as a result of this update. For instance, activity 1 may
require compensation if the original flight dates were modified based on the new
hotel reservations. These costs must be quantified before the customer decides
whether to continue with the original plan or to use the newly available service.

In the second event, the system will benefit by using a different path that
allows successful completion of the business process while bypassing the special
offers. Consider the example depicted in Figure 1. Activities 0, 1, 5, and 7 were
performed in this instantiation, yet a failure at activity 6 blocks the process and

3 4

5 6

7
8

9

1
v

1

v

22

X0
v

0
v

Type

Data                      activity                     Data flow Control Flow
4Type

1. Type =Regular And ship = air

2. Type =Gold And ship = air

v

2

1

Fig. 1. An example of a business process



52 M. Golani and A. Gal

prevents its completion. Alternative paths to the current path, to be formally
defined in Section 3, are those paths in the graph that possibly lead to a successful
termination of the business process, yet do not contain activity 6. Since activity 1
leads to activities 2 and 5 using a Xor condition, a rollback procedure to activity
1 would enable use of an alternative path to 9 through activities 2, 3, and 4.

In this paper we address only processes in which the alternative path has a
real semantic alternative meaning. That means that an executed instance along
one path can be logically executed (albeit, at a possibly higher cost) along the
alternative path as well (as in the Regular/Gold customer example).

3 Workflow Model

In this section we define basic constructs in workflow graphs, to be used later
in the paper. The classification of workflow constructs is not new and has been
discussed in various works (e.g., [16]).

A workflow model can be described as a graph (ADEPT WSM net) G(V, E)
(V = (Va ∪ Vd); E = (Ec ∪ Ed)), where Va is a set of activities, Vd is a set of
data parameters, Ec is a set of control edges, and Ed is a set of data edges. For
simplicity, whenever possible, we will refer to the reduced graph G‘ = G(Va, Ec).
Data flows (as appear in Figure 1) are discussed in Section 6.

An activity a in Va has in-degree(G‘, a) incoming edges and out-
degree(G‘, a) outgoing edges. Whenever it becomes clear from the context, we
eliminate the graph reference and refer to in-degree(a) and out-degree(a). A
path in G is a set of activities such that any two consecutive activities on the path
are connected by an edge in Ec. We denote a path from ai to aj by (ai , . . . , a j ).
The length of a path(ai , . . . , aj ) (denoted length(ai , . . . , a j )) is the number of
edges in (ai , . . . , a j ). Finally, Minlength(ai , a j ) is the length of the shortest path
in G that starts at ai and ends at aj .

We next define two graph constructs, namely splits and joins, based on the
Workflow Management Coalition standard [17]. A Xor split a is a node (activ-
ity) with multiple outgoing edges (out-degree(a)>1), only one of which can be
followed in the execution flow. The decision as to which edge to follow is based
on the satisfaction of mutually exclusive conditions that are typically associated
with the outgoing edges. Let ca,a′ be a DNF (Disjunctive Normal Form) Boolean
statement with a set of variables V ar(ca,a′,) that must be satisfied in order to
pass from activity a to activity a′. Activity 1 in Figure 1 is an example of a Xor
split. Each Xor split a is associated with a Xor join (e.g., activity 9 in Figure
1), an activity common to all paths that start from a. During runtime, when
reaching a, the workflow engine evaluates the conditions on each of a’s outgoing
edges, and continues the execution along the edge whose associated condition is
satisfied. The Xor join activity acts as a synchronization point in the execution.

An And split is a node with multiple outgoing edges whose execution flow
follows all outgoing edges by parallel threading. Activity 5 in Figure 1 is an
example of an And split. Threads of an And split a need to be synchronized at
an And join, which is also a node in the graph that is common to all paths that
start from a. Activity 8 is an example of an And join for activity 5.



Flexible Business Process Management 53

Definition 1. Xor split point Let G‘ = (V, E) be a workflow graph, and a be
an activity in V. A Xor split point of a is a Xor split ai with a Xor join aj such
that ai is a predecessor of a and aj is a successor of a.

Definition 2. NXSP Nearest Xor split point of a (NXSP (a)), is a Xor split
point of a, ai , which satisfies that any other Xor split point of a (aj ) is also a
Xor split point of ai .

And split point and NASP are similarly defined. Using the basic definitions
given above, we now define blocks in a graph. Let G‘ = (V, E) be a workflow
graph and let ai be a Xor split and aj be the Xor join associated with ai . A
Xor block of ai is a subgraph of G‘ induced by the nodes of all paths (ai , . . . a j )
in G‘. Similarly, given an And split ai and the associated And join of ai , aj , an
And block of ai is a subgraph of G‘ induced by the nodes of all paths (ai , . . . a j )
in G‘. For example, the induced subgraph of activities {5, 6, 7, 8} in Figure 1
(marked with grey rectangle) is an And Block. It models two threads that start
after the execution of activity 5 and synchronize before the execution of activity
8.

Clearly, any activity a is within a Xor block defined by its Xor split point
(can be null) and its associated Xor join. In particular, a is within a Xor block
defined by NXSP (a) and its associated Xor join.

Definition 3. Alternative paths Let G‘ = (V, E) be a workflow graph with a
sink f , and let P1 = (ai , . . . , a j ) and P2 = (ai , . . . , ak ) be paths in G‘. P1 is an
alternative to P2 (and vice versa) if the following four conditions hold:
1. ai is of type Xor Split.
2. There is no activity a in V \{ai} such that a is in P1 and a is also in P2.
3. Any path (aj , . . . f ) in G‘ does not include an activity in P2.
4. Any path (ak , . . . f ) in G‘ does not include an activity in P1.

It is worth noting that P1 and P2 share a common initial activity ai. As an
example, consider the alternative paths (1, 2, 3, 4) and (1, 5, 6, 7, 8) in Figure
1. Note that the paths (5, 6) and (5, 7) are not alternative paths, since activity
5 is not of type Xor Split (both activity 6 and activity 7 are part of the same
And block).

The importance of Xor blocks in our analysis is related to the ability to
provide an alternative paths analysis. In Figure 1, the Xor Block includes the
entire graph save activity 0, and thus an alternative path for any activity (exlud-
ing activity 9) will start from activity 1. Therefore, once activity 6 fails, the Xor
Block to which activity 6 belongs allows an alternative execution, using the paths
that contains activities {1, 2, 3, 4}. We will present an algorithm for identifying
alternative paths in Section 5.

We next discuss the normalization of Xor and And blocks. A normalized (Xor
or And) block is a block in which neither the outgoing edges of the split activity,
nor the incoming edges of the join activity, are connected to any activities outside
the block. This property matches the WFMC definition (in interface 1) of full-
blocked workflows. Formally,



54 M. Golani and A. Gal

Definition 4. Normalized Block Let G‘(V, E) be a workflow graph with a
source s and a sink f , and B a Block (either Xor or And) with split activity ai

and join activity aj . B is normalized if aj is on all paths (ai , . . . , f ) in G and
ai is on all paths (s , . . . , aj ) in G‘.

It is easy to show that if B is normalized, then out-degree(G‘, ai) = out-
degree(B, ai) = in-degree(G‘, aj ) = in-degree(B, aj ). For brevity, we refrain
from presenting the algorithm for block normalization in this paper.

Given a workflow graph G‘(V, E), Inst(G‘) represents an instance of G‘.
Inst(G‘) encapsulates instance-related data, such as activity state and in-
put/output parameter values. Inst(G‘) is a DAG and loop constructs in G‘(V, E)
are removed by duplicating loop blocks and re-labeling of activities.

An activity in Inst(G‘) can be classified into one of the following states:
uninitiated (yet, but on an execution path), void (on path that was not invoked),
completed (finished on current path), compensated, or failed.

4 Forward Stepping

In this section we present an efficient algorithm for forward stepping. Consider
a path that begins from activity ai, and assume that activity ai needs to be re-
exceuted due to exception or modification. Analyzing the state and dependencies
of the activities (or Web services) that participate in a given process instance
can help determine which activities have not yet been executed, and which need
to be reexecuted. When we deal with exceptions, a stop (target) activity (ax)
is provided, so the forward stepping is executed until reaching this activity. In
other scenarios, it is possible that no end point is given.

We assume validity, as follows. Activity ai is valid if for a given input it
has provided an output in the original instance, and this output is required for
the forward stepping with the same input parameters values. Therefore, activ-
ities/services that have the same input as in the original process are valid and
should not be reexecuted, but rather semantically executed at the workflow level
without invoking the underling application/service (e.g., given that flight tick-
ets have been ordered and been approved in the original instance, then if the
forward stepping invokes this activity with the same destination and dates as
input, it can use the confirmed reservation from the previous execution). In this
case the WF system is notified by the client that the activity was executed, while
no application/service was invoked. The required execution mode of activity ai

is evaluated (during run time) below, using the following notation.

– Inst(G‘) is the original instance
– Inst′(G‘) is the new/modified instance
– input(a, p, Inst(G‘)) returns the value of p, which is an input parameter to

activity a in Inst(G‘).

Exec(ai)=

⎧⎪⎪⎨
⎪⎪⎩

Reexecute

Semantic

∃p input(ai, p, Inst′(G‘)) 
=
input(ai, p, Inst(G‘))

Otherwise

(1)



Flexible Business Process Management 55

Algorithm 1 Forward stepping
Input: G(Va ∪ Vd, Ec ∪ Ed), ai -first activity path, ax - the stop activity (optional)
Output: potentialList - a list of potential activities to be reexecuted, semanticList
- a list of activities to be semantically executed

add ai.successors into Q // Q is a Queue
put ai into visitedList.
put ai.outputParameters into D.
while Q not empty do

put ak = dequeue(Q) into visitedList
if ∃ak.inputParameter ∈ D then

add ak to potentialList
add ak.outputParameter to D

else
add ak to semanticList

end if
if ak �= ax then

add ak’s executed successor activities (as appear in Inst(G)) to Q. Add only
activities that satisfy predecessor(a) ⊂ visited

end if
end while
return potentialList, semanticList

The forward stepping algorithm is given in Algorithm 1. Looking at the pro-
cess structure, this algorithm - given it doesn’t use instance data - can be invoked
asynchronically with runtime instances (e.g., in advance). PotentialList holds
potential activities (derived from the process structure) for reexecution, of which
only those satisfying the Reexecute condition in Eq 1 should be reexecuted. Dur-
ing runtime, some of these activites may receive the same input values as in the
original execution. Therefore, despite their dependecy on other reexecuted activ-
ities, we expect their previous output to be valid (due to the validity property).
In such cases, semantic execution is sufficient, and there is no overhead cost for
reexecution.

5 Alternative Paths Detection

In the case of an exception, undefined in advance, the workflow engine should
rollback to an activity in the graph from which it can provide an alternative
path to complete execution of the business process. We will refer to this activity
as a rol lback point. In an extended version of this work, we will elaborate on the
heuristics of finding the best rollback point, and design time considerations in
determining the suitability of alternative paths. This section details the necessary
steps for rollback.

Definition 5. Rollback point: Let ai be an activity in a normalized workflow
graph G‘ = (V, E) with a sink f . A rollback point of ai in a given instance
Inst(G‘) is an activity aj that satisfies the following conditions:



56 M. Golani and A. Gal

1. aj was activated during Inst(G‘) (i.e., a′
j s state in Inst(G‘) is “comp-

leted”).
2. There is a path P1 = (aj , . . . , ai) in Inst(G‘) of which all activities in

P1\ai are in state “completed”.
3. There is a path P2 = (aj , . . . f ) in G‘, such that P2 is an alternative path

to P1.

A nearest rollback point of ai in a given instance (Inst(G‘) of G‘) is a rollback
activity ak such that minlength(ak , ai) ≤ minlength(al , ai) for any rollback
point al of ai .

Theorem 1. Let ai be an activity in a workflow graph G‘ = (V, E). The nearest
rollback point of ai is NXSP (ai).

We refrain from presenting the proof of Theorem 1 in this paper due to space
considerations.

Rollback can be classified into three types, namely single threaded, parallel
threaded, and hybrid. We will define each of these types and specify the rollback
activities needed for each type, using Theorem 1 as a guideline.

Single-threaded rollback is a rollback in which the failing activity falls
within a single thread. This means that upon failure, the rollback procedure
should be applied only to this thread. The following rollback activity should be
taken in a single-threaded type:

aj = NXSP (ai). Rollback until reaching aj

Parallel-threaded rollback refers to a rollback in which the failing activity
falls in one of multiple running threads. That means that there is an And split
(NASP (ai)) in the path(NXSP (ai),ai). In this case, the rollback is performed
for all parallel threads within the same And block, until the And split activity of
the block containing the failing activity (marked as Ba) is reached. At this point
it continues as single-threaded until reaching the nearest Xor split point. In the
example given in Figure 1, there are two parallel threads running when activity
6 fails. The other thread, which executes activity 7, is forced to rollback until
reaching activity 5, at which point the process continues as single-threaded. The
following rollback activity should be taken in a parallel-threaded type:

Rollback all current executing and completed activities
within Ba and proceed rollback as single-threaded.

Hybrid rollback is a rollback in which the failing activity a in Inst(G‘) is
part of a single thread, but some activities in Inst(G‘) are part of an And block
prior to the execution of a. For example, in Figure 1 assume that activity 8, which
runs as single-threaded, fails. Since the process contains an And-block (activities
6 and 7 running in parallel), the rollback mechanism should apply to the entire
And block and continue with the rollback until reaching NXSP (8) = 1. The
following rollback activity should be taken in a hybrid-threaded type:



Flexible Business Process Management 57

aj = NXSP (ai). Rollback until reaching aj . For each
And-block, rollback all activities in the block and continue.

Algorithm 2 summarizes the mechanism for rollback discussed above. The
correctness of Algorithm 2 stems immediately from Theorem 1. It is worth noting
that single-threaded rollback is a special case of hybrid-threaded rollback, and
therefore the algorithm refers only to the latter.

Algorithm 2 Rollback
1: Input: G, Inst(G) -Instantiation, ai -activity from which the rollback starts.
2: Output: Inst′(G) - revised instantiation. Rollback of activities is performed to

ai’s nearest rollback point.
3: Process:
4: On the failure of activity ai, aA = NASP (ai) and aX = NXSP (ai), if exist.
5: if aA = null then
6: Rollback as Hybrid threaded.
7: else if lenght(aX , ai) < lenght(aA, ai) then
8: Rollback as Hybrid threaded.
9: else

10: Rollback as parallel threaded.
11: end if

In case of a failure in one of the threads of an And block (e.g., activity 6), one
needs to rollback other threads as well (e.g., activity 7 in Figure 1). However,
there can be scenarios in which there is no need for rollback of the concurrent
threads. In particular, if the failing activity occurs in a Xor block within an And
block, an alternative path that does not require the rollback of all of the And
block activities can be provided. This case is handled in Line 8 of the algorhithm.

NASP and NXSP can be pre-assigned by analyzing the graph at de-
sign time. At each rollback step the compensation activity is assumed to
execute in O(1) (a more refined approach which addresses more compli-
cated executions is deferred to an extended version of this work). There are
minlength(NXSP (ai), ai) steps to be taken, which is bounded by the cardinal-
ity of E. Therefore, the algorithm complexity is O(E).

6 Parametric Modification Analysis

This section discusses scenarios, such as exception handling, that are handled
with alternative paths. Once an alternative path has been discovered (see Section
5), it is necessary to evaluate the pre-conditions for performing this new path,
and to request a change of values to satisfy these pre-conditions. We therefore
turn our attention to the data flow of a business process. As an example, consider
once more Figure 1, which introduces a data flow of a single data item, Type.
This data item is updated during the execution of activity 0, and is retrieved by
activity 1. Using common notation [14], the data flow is marked using dashed
double-line arrows. In what follows, we denote by Update(var , a) the nearest



58 M. Golani and A. Gal

predecessor of a in which the variable var has been updated. This information
can be generated offline and kept with each node, so that accessing it can be
done in O(1).

The parametric modification analysis is performed in two steps. The first
entails identifying a set of variables whose modification would allow the use of
an alternative path. The next is to identify the agents that have assigned the
original values to these variables, and to request a change that would allow the
use of the alternative path. We here detail each of these steps.

6.1 Satisfying Changes

Going back to Figure 1, recall that the original path to be taken was the path (0,
1, 5, 6, 7, 8, 9). Once activity 1 has been performed, the decision on whether to
continue to activity 2 or to activity 5 is based on a mutually exclusive condition
(regular or gold customer). Therefore, it becomes evident that the condition
that enables us to proceed to activity 2 cannot be satisfied unless some of the
variables are assigned different values.

For a given instance Inst(G‘), each variable var in V ar(ca,a′ ) is assigned
a value. Let D(ca,a′ , Inst(G‘)) be a set of sets of assignments of the type
var = val from Inst(G‘), for which ca,a′ cannot be satisfied. In the exam-
ple given in Figure 1, V ar(c1,2) = {Type, Shipping}, and D(c1,2, Inst(G‘)) =
{Type =“Regular”}, since under this instance, Type =“Gold”.

Given an instance Inst(G‘) with an assignment var = val, where var is in
V ar(ca,a′), one may consider a modified instance Inst′(G‘) = Inst(G‘)\{var =
val}∪{var = val′} in which var = val is replaced with var = val′. For example,
a modified instance may include Type =“Regular” instead of Type =“Gold”.

Definition 6. minimal satisfying change: Let cu,v and Inst(G‘) be defined
as before and let

D(ca,a′ , Inst(G‘)) = {set1{var11 = val11, . . . , var1n = val1n}, set2{var21 =
val21, . . . , var2m = val2m}, ...}. Note that each set may be in different length,

and some sets may share the same variables. A satisfying change to Inst(G‘) is
a set of assignments {vari1 = val′i1, . . . , varin = val′in} such that ca,a′ can be

satisfied under
Inst′(G‘) = Inst(G‘)\{vari1 = vali1, . . . , varin = valin}∪{vari1 =

val′i1, . . . , varin = val′in}

A minimal satisfying change is a satisfying change such that L (Eq 2) is the
minimal of all possible satisfying changes. The max function is required since a
DNF expression contains sets of predicates. Each set contain simple predicates
with an And relation between them. All predicates in this set have to be satisfied
in order to satisfy the set.

L =
n

max
i=1

(
minlength

(
Update

(
var

i
, a

)
, a

))
(2)



Flexible Business Process Management 59

Definition 6 defines a minimal change to be the set of assignments in Inst(G‘)
that can satisfy ca,a′ . Consider, for example, c1,2 that includes the following
statement:

(Type=“Regular” ∧ Shipping=“air”)∨(Destination = 972 ∧ City = “TLV”)

and assume that all variables but Type are updated before activity 0. In this
case, V ar(C1,2) = {Type, Shipping, Destination, City}. Assume an instance in
which Type =“Gold”, Shipping =“air”, Destination = 33, and City =“Nancy”.
Therefore, D(c1,2, Inst(G‘)) = {{Type =“Regular”}, {Destination = 972,
City =“TLV”}}. The minimal satisfying change would be {Type =“Regular”}.

It is worth noting that Definition 6 minimizes the maximal number of activ-
ities for which rollback is needed. Such a definition seems reasonable when the
rollback of any activity has the same cost, from the user’s point of view. A more
general approach would require the definition of a cost model to evaluate the
impact of an activity rollback as well as a variable change, and to minimize this
impact. We defer the introduction of this approach to the extended version of
this work.



60 M. Golani and A. Gal

6.2 Variable Modification

Once the minimal satisfying change is computed, we can identify the variables
that need to be modified. From the workflow model, using either a-priori infor-
mation or mining procedures [9,2,18], one can identify the activity where those
variables are modified. For example, in Figure 1 an exception occurs while ex-
ecuting activity 6. NXSP is detected as activity 1 and the minimal satisfying
change is {Type =“Regular”}. This change can be set in activity 0. Let ai be an
activity in which a variable change is required. There are two possible sources
for updated values, as follows:

A user-defined value: This is a value inserted by the agent that executed ai .
In this case, the user will be presented with a request for reexecution of the activity,
with the specific condition needed to allow execution of the alternative path.

A derived value: This is an expression whose input includes both data flow
and user input. If the user input affects the data value in such a way that the
desired data value is feasible, the user’s approval is requested for reexecution of
ai with a specific range of valid input to allow the alternative path execution.

Upon approval, the business process rollbacks to aX (see Section 5), and
forward stepping is performed from aX to NXSP (ai). Once NXSP (ai) is com-
pleted, the expression is evaluated again, but this time the evaluation result
redirects the execution to the alternative path.

In the case the modifying change request is rejected, the next minimal sat-
isfying change is checked, and so on, until all changes have been exhausted.
Then, the second nearest rollback point is computed, and the same procedure
is applied to it. The second nearest rollback point (based on Definition 5), can
be computed recursively as the nearest rollback point of NXSP (ai). Thus, the
algorithm will recursively compute the same actions over the next nested Xor
block (i.e., NXSP (NXSP (ai))). This process is summarized in Algorithm 3.

In the worst case the algorithm will iterate over all Xor split points, scanning
all graph edges (O(E)). For each edge we generate (line 11) a list L of cardinality
|L|, sorted (line 11) in O(|L|log|L|). Therefore, the total complexity of Algorithm
3 is O(E|L|log|L|). It is worth noting that L may be exponential in V ar(C).
However, under a reasonable assumption of rather simple conditions with a small
V ar(c) with a constant upper limit, the algorithm complexity is O(E).

6.3 Forward Stepping - Revisited

Given that a change to activity ai was approved by the relevant agent, at least
one of the output parameters (Pi) of an activity ai must have been modified. The
näive approach assumes that the process can move forward in a semantic manner
(see Section 4) until reaching the relevant Xor split point (ax). However, along the
path (ai, ax) there are activities which may be affected by the modified value of
one of the output parameters of ai. An activity which uses a modified parameter
value as input should not be executed semantically, since the output parameters
values may have been revised based on the modified input data. The mechanism
for such an approach has been discussed in Algorithm 1 (combined with Eq 1). In
this case, the algorithm is executed with a known stop activity ax.



Flexible Business Process Management 61

7 Architectural Considerations

We used the core functionality of a WfMS system to orchestrate our solution.
A meta process is a process that manages other processes. Figure 2 presents a
description of a meta process for exception handling. Slight modifications are
needed to generalize it to the more general case. In our case, once a prob-
lem/opportunity is monitored, the meta process is invoked and its activities
are executed to provide the best solution. Each solution should be confirmed
by the relevant agents prior to the semi-automated execution of the underlying
process. Upon approval, those activities that are not affected by user input are
semantically executed (assuming validity), while other activities are referred to
their original responsible agent for execution. The result is a single meta process
that can interact with all running processes using the system infrastructure and
constructs, and that provides a transparent mechanism to handle such ad-hoc
changes via backtracking and forward stepping.

A meta process invokes a monitor that acts as a special workflow client
(see Figure 3(a)). The monitor receives modification notifications and exception-
oriented messages (e.g., work items), and in response creates an instance of a
process that requests a parameter change from the relevant agent. If the re-
ply (again as work item) is negative, then the monitor seeks the next available
solution and makes another request to an appropriate agent. This continues it-
eratively until there are no more solutions to suggest (as discussed in Algorithm
3). Once a positive answer arrives at the monitor, it rolls back to the required
activity ay (or creates a new instance that imitates and semantically executes
the original instance activities until reaching ay), and then starts the reexection
and semantic execution of the proceeding activities, until reaching an activity
that was not on the original path.

A prototype was built over the ADEPT workflow system (see Figure 3(b)).
The BP monitor reads messages from the work items list. An exception is stored
in the exception Store, while the analyzer analyzes the process graph and creates
a list of solutions (for this exception) sorted from best to worst according to an
estimation function (one of many within a repository). This list is stored in the
solution store. At each iteration the exception store requests a new solution from
the solution store.

Get
Exception

Get
Next

Solution

Get
User

Approval

Check
approval

RollBack/
Create

new instance

Abort
Process

EndForward
Stepping

approved

No solutions

Fig. 2. The Meta-process description for exception handling



62 M. Golani and A. Gal

(a) (b)

Analyzer

BP
Monitor

Work
Items

WF Server

DB

Work
Items

Log

Func1

Func2

Func3

BP client

Solution
store

Exception
store

Fig. 3. (a) Business process monitor prototype (b) Architecture

8 Conclusion

In this paper, we propose a mechanism for efficient management of felxible busi-
ness processes – in particular, for forward stepping and backtracking. For illus-
tration purposes, we demonstrate our techniques with two somewhat different
scenarios. First, we show how changes in Web services can be dynamically em-
bedded into a workflow model, minimizing the costs related to reexecution of
previously performed activities. Second, we propose an improved exception han-
dler using forward stepping, backtracking, and alternative paths. Alternative
paths, while not the only possible exception handling tool, can serve in a broad
variety of cases, and can be easily produced automatically, either in design time
(serving as a recommendation) or at run-time (serving as a crisis management
tool, in the absence of immediate valid solutions). Our goal is to develop an
approach that allows (semi-) automatic dynamic management for arbitrarily
complex business processes, balancing the difficulties faced by current workflow
models and the control of a designer over the business process.

Future work involves a thorough analysis of utility in the context of reexe-
cution and compensation of activities. Another intriguing direction is data inte-
gration for required services, since a replacement service may require data not
needed by the original service.

References

1. A. Agostini and G. De Michelis. Improving flexibility of workflow management
systems. In W. van der Aalst and J. Oberweis, editors, BPM: Models, Techniques,
and Empirical Studies, pages 218–234. Springer Verlag, 2000.

2. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In O. Etzion and P. Scheuermann, editors, Advances in Database Technology
- EDBT’98, 6th international Conference on Extending Database Technology, Va-
lencia, Spain, March 23-27, 1998,Proceedings, Lecture Notes in Computer Science
1337, pages 469–483. Springer, 1998.



Flexible Business Process Management 63

3. Specification: Business process execution language for web services version 1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel/.

4. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implementa-
tion of exceptions in workflow management systems. ACM Trans. Database Syst.,
24(3):405–451, 1999.

5. W. Du, J. Davis, and M.C. Shan. Flexible specification of workflow compensation
scopes. In GROUP, pages 309–316. ACM, 1997.

6. J. Eder and W. Liebhart. Workflow recovery. In CoopIS, pages 124–134, 1996.
7. J. Eder and W. Liebhart. Contributions to exception handling in workflow man-

agement. In O. Burkes, J. Eder, and S. Salza, editors, Proceedings of the Sixth In-
ternational Conference on Extending Database Technology, Valencia, Spain, March
1998, pages 3–10, 1998.

8. W. Gaaloul, S. Bhiri, and C. Godart. Discovering workflow transactional behav-
ior from event-based log. In On the Move to Meaningful Internet Systems 2004:
CoopIS, DOA, and ODBASE, pages 3–18. Springer, October 2004.

9. M. Golani and S.S. Pinter. Generating a process model from a process audit
log. In M. Weske W. van der Aalst, A. ter Hofstede, editor, Lecture Notes on
Computer Science, 2678, pages 136–151. Springer Verlag, 2003. Proceedings of the
Business Process Management International Conference, BPM 2003, Eindhoven,
The Netherlands, June 26-27, 2003.

10. C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Trans. Software Eng., 26(10):943–958, 2000.

11. G.H. Hwang, Y.C. Lee, and B.Y. Wu. A new language to support flexible failure
recovery for workflow management systems. In Jesús Favela and Dominique De-
couchant, editors, CRIWG, volume 2806 of Lecture Notes in Computer Science,
pages 135–150. Springer, 2003.

12. M. Kamath and K. Ramamritham. Failure handling and coordinated execution of
concurrent workflows. In ICDE, pages 334–341. IEEE Computer Society, 1998.

13. M. Reichert and P. Dadam. Adeptf lex-supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems (JIIS), 10(2):93–
129, March-April 1998.

14. S. Rinderle, M. Reichert, and Peter Dadam. Correctness criteria for dynamic
changes in workflow systems - a survey. Data Knowl. Eng., 50(1):9–34, 2004.

15. S. Sadiq, O. Marjanovic, and M. E. Orlowska. Managing Change and Time in
Dynamic Workflow Processes. International Journal of Cooperative Information
Systems, 9(1-2):93–116, 2000.

16. W.M.P van der Aalst et al. Advance workflow patterns. In O. Etzion and
P. Scheuermann, editors, Cooperative Information Systems, 8th International Con-
ference, CoopIS 2000, Eilat, Israel,Proceedings, Lecture Notes in Computer Science
1901, pages 18–29. Springer, 2000.

17. Worflow management coalition. the workflow reference model (wfmc-tc-1003),
1995.

18. workflow management coalition 1998. interface 5 - audit data specification. tech-
nical report wfmc-tc-1015 issue 1.1. workflow management coalition.

19. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M ter Hostede. Analysis of
web services composition languages: The case of bpel4ws. In Song et al., editor,
Conceptual Modeling - ER 2003 - 22nd international Conference on Conceptual
Modeling, Chicago, IL USA, October, 2003,Proceedings, Lecture Notes in Computer
Science 2813, pages 200–215. Springer, 2003.

20. Specification: Web services description language (wsdl) version 2.0.
http://www.w3.org/TR/wsdl.



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 64 – 79, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Semi-automatic Generation of Web Services and BPEL 
Processes - A Model-Driven Approach 

Rainer Anzböck1 and Schahram Dustdar2 

1 D.A.T.A. Corporation,  
Invalidenstrasse 5-7/10, 1030 Wien, Austria 

ar@data.at 
2 Distributed Systems Group, Vienna University of Technology, 

Argentinierstrasse 8/184-1, 1040 Wien, Austria 
dustdar@infosys.tuwien.ac.at 

Abstract. With the advent of Web services and orchestration specifications like 
BPEL it is possible to define workflows on an Internet-scale. In the health-care 
domain highly structured and well defined workflows have been specified in 
standard documents. To reduce the complexity of creating Web service orches-
tration specifications, we provide a model-driven design approach, consisting of 
manual and automatic transformations. Security and transaction requirements 
are covered additionally. The resulting Web services can be bound dynamically 
at run-time. Therefore, we gain the flexibility to integrate processes that are al-
ready established with specific business protocols. Parts of this approach should 
be applicable to other domains, too. 

1   Introduction 

1.1   Motivation 

Healthcare workflows are distributed across several locations and executed by a large 
number of applications. Most scenarios in the past covered the inter-hospital execution 
of processes, such as exchanging patient information or diagnosis data. With the advent 
of Web services the Internet is capable of providing an infrastructure including a plat-
form for patient social security cards and for supporting healthcare workflows. One way 
to reach this goal is to enable existing business protocols (HL7 [1], DICOM [2]) to be 
executed using Web services. Furthermore, the definition of Web service processes is a 
time-consuming and error-prone task. A semi-automatic, model-driven approach re-
duces the steps involved. Dynamic run-time behavior of a process enables a single Web 
service to bridge existing business protocols between business partners which further 
reduces the complexity of the solution. For our solution we focus on Web service stan-
dards that turn out to receive most support from the industry, for example BPEL [6], 
WSDL [5], WS-security [12], WS-transaction [13] and WS-policy [14]. 

1.2   Goals 

In this paper we provide a model-driven approach for semi-automatic Web service 
descriptions with run-time binding and a Web service process. The goals we want to 



 Semi-automatic Generation of Web Services and BPEL Processes 65 

 

reach are, (i) to define a modeling process for Web service orchestration. The steps in 
the modeling process are supported by automatic transformations to reduce the effort 
that has to be put into the process; (ii) to specify the Web service orchestration in a 
way that it can be dynamically invoked by all applications that currently interact using 
established processes with specific business protocols; (iii) to integrate additional 
security and transaction properties of the orchestration, to satisfy requirements of real-
world scenarios; and (iv) to complement this design-time process with a run-time 
perspective, to gain a better understanding of the execution of the orchestration. 

Overall, this approach supports the implementation of Internet-scale healthcare 
workflows by reducing the complexity of creating Web service orchestration specifi-
cations. Although, we use an example from the healthcare domain, valuable parts of 
this model-driven approach should be applicable to other domains, too. 

The paper is structured as follows. Section 2 introduces an example and the basic 
idea of our model-driven approach. Section 3 describes the modeling process in an 
overview and with each step in detail. Section 4 provides additional information about 
the run-time behavior of the Web service orchestration. Section 5 concludes the re-
sults and states topics of further research. 

1.3   Related Work 

Our previous work covers interorganizational workflow in the medical imaging do-
main [4]. The paper covers the separation of a workflow layer using WSDL and 
BPEL, and a domain layer using DICOM and HL7. Subsequent papers then focused 
on Web service modeling and the mapping between BPEL activities and DICOM and 
HL7 messages [9, 10]. Besides our work, Artemis [26], an EU supported project, 
develops Semantic Web services for the healthcare domain. Its main focus is semantic 
mediation of services, in contrast to our process modeling oriented approach. 

Furthermore, one paper [9] compares classical workflow models for medical im-
aging with Biztalk. This work is related to the middleware paradigm in an intranet 
based environment. One paper on application integration [10] helps understanding the 
“large picture” of medical workflows and the IHE framework but does not focus on 
modeling Web services. Another paper covers a model-driven approach for Web 
service transactions that supports more sophisticated scenarios of interaction [23]. 

Finally, there is work related to the medical industry and Web services standards 
as referenced throughout this paper. However, the focus of our paper on modeling 
BPEL processes based on the IHE framework is, to the best of our knowledge, not 
covered in the literature so far. 

2   Example Workflow 

2.1   Overview 

In the healthcare domain highly structured and well defined workflows have been 
specified through the HL7 and the DICOM protocol standards. Those standards have 
been extended with the IHE (Integrating the Healthcare Enterprise) [3] framework 
that defines scenarios and profiles for these standards and specifies the most common 



66 R. Anzböck and S. Dustdar 

 

application roles and workflows in detail. This is the source for our modeling process. 
In other domains similar specific sources have to be identified or created. Most IHE 
roles used in the workflow are covered by HIS and RIS (Hospital and Radiology 
Information System) and PACS (Picture Archiving and Communication System) 
applications. They are comparable to ERP (Enterprise Resource Planning) or SCM 
(Supply Chain Management) applications. For a more detailed description of the 
domain and the capabilities of these applications refer to [9, 10]. 

2.2   Example 

For our example we focus on a specific workflow within the IHE framework, the IHE 
administrative workflow. Figure 1 shows an overview of roles and transactions, the 
grey-shaded area, the patient registration IHE transaction, is where we dive into. The 
lighter-shaded area is also mentioned as it is part of the same workflow. An IHE 
transaction is comparable to a BPEL process (Appendix C, Table 1 [27]). 

 

 

Fig. 1. IHE administrative workflow - focus of our example 

The patient registration transaction is performed between two systems: ADT (Ad-
mission, Discharge and Transfer) and the DSS (Department System Scheduler). The 
ADT corresponds to an administration application that provides patient data to 
different subsystems. The DSS is responsible for scheduling medical examinations. 
The transaction transfers patient registration information from the ADT to the DSS. 
The ADT and the DSS are IHE roles, an application (IHE actor) can act as several IHE 
roles. There is a direct relation to the BPEL partner model (Appendix C, Table 1 
[27]). As shown in Figure 1, several roles and transactions are involved in a specific 
implementation scenario. Our model-driven approach is appropriate for this environ-



 Semi-automatic Generation of Web Services and BPEL Processes 67 

 

ment in general. Next, we provide an overview of the source and result of our model-
ing approach (see Figure 2). 

 

 

Fig. 2. source and result of our model-driven approach 

The HL7, DICOM and IHE standard documents serve as the starting point for the 
modeling process. In our example, the two main sources are the IHE transaction UML 
sequence diagrams and (for our example) the HL7 message scheme definition (on the 
left side). The modeling result should be an executable BPEL process (on the right 
side). Of course, this basis cannot be mapped directly to a Web service orchestration. 
It provides process information, structure and data which have to be extended manu-
ally and transformed automatically in several steps. From the sequence diagram we 
derive the business process. This source has to be transformed and extended with 
orchestration flow constructs and security and transaction requirements manually. 
From the HL7 message we extract the structure and data for message correlation, 
business partner and communication port configuration. It also provides data to con-
trol the orchestration itself. In non-Internet environments, application providers im-
plement the workflow according to the IHE framework sequence diagrams. They 
provide a native HL7 (over TCP/IP) interface business protocol. The outcome of our 
approach is to execute the processes and exchange the messages using Web services 
and BPEL orchestration. Section 3 describes the modeling process in detail. 

2.3   Requirements of Further Workflows 

Healthcare workflows have different requirements. A model-driven approach should 
be evaluated using several examples with different requirements. For example, the 



68 R. Anzböck and S. Dustdar 

 

IHE framework contains transactions using the DICOM protocol, where large 
amounts of medical image data (more than 100MB per transaction) have to be trans-
ferred and, therefore, be compressed. In [9, 10] we investigated the requirements of 
healthcare workflows in a Web service environment. Conclusions have been consid-
ered in our approach. 

3   Modeling Process 

In this chapter we provide the modeling process for our orchestration. We use our 
example, the IHE patient registration transaction (BPEL process). First, we provide 
an overview with a short description before we show the modeling steps in detail. 

3.1   Process Overview 

The modeling steps are described throughout the sections as shown in Figure 3.  

 

 

Fig. 3. Modeling process steps 

The modeling process occurs at design-time. The run-time behavior of an execut-
ing BPEL process is shown in Section 4. The process starts with the available stan-
dard documents (Step 1) as shown in the introduction of the example. In Step 2 and 3 
the UML sequence diagrams and HL7 message schemes are stored in a database or 
file-system. Step 4 converts the diagrams to a process oriented UML activity diagram 
and applies transaction and security concerns. Step 5, on the other hand, classifies the 
message attributes. The classification covers structured activities (for structured  
activities, like BPEL switch statements), the business partner and partner-link defini-
tions (corresponding to the sections in the BPEL process definition), correlation  
attributes (used in BPEL correlation-sets) and routing attributes that define the desti-



 Semi-automatic Generation of Web Services and BPEL Processes 69 

 

nation of the messages and are used to configure the ports in the BPEL process. The 
payload contains the whole HL7 message that is sent as an attachment to the SOAP 
[25] message by the Web service. Step 6 merges the information of the process and 
the message attributes and generates three output files, a BPEL process description, a 
WSDL file that defines the communication end-points and an XML containing addi-
tional security and transaction properties using WS-policy. 

3.2   Step 1-3: Digital Source Representation 

We start with a digital representation of the IHE transaction and HL7 message. Figure 
4 shows the source representation of the patient registration transaction. 

 

 

Fig. 4. IHE patient registration transaction and HL7 message 

In general, from the sequence diagram we extract the process, from the message 
we extract a design-time configuration and run-time properties of the process. The 
information has to be digitized into a file-based or database storage. 

The UML diagrams of the IHE framework are of proprietary file format (in our 
case Microsoft Visio). The diagrams contain several ambiguities and errors that have 
to be resolved. For example, the arrows represent more than one message. Further-
more, a sequence diagram is not appropriate for a BPEL process as it contains more 
than two business partners for which an interface should be defined. In the next sec-
tion we show how an activity diagram and several adaptations solve these problems. 

The HL7 message has a hierarchical format that consists of several modules 
(which are reused between messages) and each module consists of a set of attributes. 
The attributes are of specific (simple and complex) data types that can be represented 
in XML [11]. DICOM messages for comparison contain data and service descriptions, 
but nevertheless, can be broken down to data types and payload data (images, docu-
ments). Also some XML messages carry documents as attachments. However, to 
setup our process we are only interested in those parts of the messages that contain 
information to identify partners, configure and control our process and route mes-
sages. All other data resides in the HL7 message, which is sent as an attachment of 
the SOAP message. 



70 R. Anzböck and S. Dustdar 

 

3.3   Step 4: Service-Oriented Process Description 

In this step we convert the sequence diagram into an activity diagram. 

  

 

Fig. 5. IHE administrative flow 

The following sub-steps are performed during the manual transformation: 

• resolve errors in the standard document 
• select partner to define a public process 
• convert to an activity diagram and skip private activities 
• apply security requirements 

(repeat the next steps for each IHE transaction) 
• select a specific IHE transaction 
• extend the diagram to represent different control flows 
• extend the diagram to represent acknowledgement messages 
• apply transaction requirements 

Each sub-step is described in more detail throughout the rest of this section. In 
contrast to the introduction the sequence diagrams of the IHE standard are provided at 
two levels of detail. We start with the coarse-grained level to perform several sub-
steps of the transformation for multiple transactions at once. Figure 5 shows the se-
quence diagram of the IHE administrative workflow which is the “large-picture” 
where the patient registration transaction (grey-shaded are) is performed. From here 
we start with the following changes. 

Substep 1: Resolve errors in the standard document: In this diagram of the IHE 
framework we found, that a transaction has been drawn in the wrong direction (mo-



 Semi-automatic Generation of Web Services and BPEL Processes 71 

 

dality worklist provided transaction). Manually created sources always have to be 
reviewed in detail. 

Substep 2: Select partner to define a public process: As we model executable BPEL 
processes, it is necessary to select an IHE actor (BPEL partner), whose public process 
has to be represented. We select the DSS actor and skip all activities that are not sent 
or received by this actor. 

Substep 3: Convert into activity diagram and skip private activities: Compared to the 
sequence diagrams, each arrow (IHE transaction) is represented with two activities, 
one BPEL invoke and receive. For each IHE actor a lane is generated. Furthermore, 
internal activities, activities that are performed by an actor on itself, are skipped, as no 
BPEL process related activity is necessary. The resulting diagram is shown in Figure 
6. 

Substep 4: Apply security requirements: Next, security requirements between busi-
ness partners are defined. In [8] we defined security zones and boundaries to represent 
groups of applications that trust each other. The organizational trust information 
might be modelled using WS-Trust and stored globally in a database for all modelled 
processes. However, this is out of the scope of this paper. Figure 6 shows the result 
after these four sub-steps. 

In our case, the DSS actor is in the same zone as several other actors but in a differ-
ent one as the ADT actor. Therefore, we require message encryption using WS-
security when executing the register patient transaction. 

Substep 5: select a specific IHE transaction: We select the patient registration trans-
action and now focus on the sequence diagram provided by IHE on the fine-grained 
level (diagram shown in Figure 4). 

Substep 6: Extend the diagram to represent different control flows: In our case the 
transaction consists of sending one of three HL7 messages (ADT_A01, ADT_A04 and 
ADT_A05). Which message is sent depends on the class of patient which is repre-
sented as the PatientClass attribute within the HL7 message. This decision can be 
modelled in BPEL using a switch structured activity. It is represented in the activity 
diagram accordingly. 

Substep 7: Extend the diagram to represent acknowledgement messages: In HL7 each 
message sent is followed by receiving an acknowledgment message (ACK_A01, 
ACK_A04, ACK_A05). Therefore, the diagram has to be extended to represent this 
behavior. DICOM uses status messages to represent similar behavior. Figure 7 shows 
the resulting diagram. The outer frame corresponds to the original invoke-receive 
pairs (compare to Figure 6), which has been extended through the substeps 6 and 7. 

Substep 8: Apply transaction requirements: Referring to the requirements stated in 
Section 3.2 we integrate transaction requirements using compensation activities. 
Atomic transactions are currently not considered, although, there are several opera-
tions in the DICOM standard suited for it. We currently refer to the work presented in 
[23] for an extended transaction modeling approach. Figure 8 shows the resulting 
diagram. 

 
 



72 R. Anzböck and S. Dustdar 

 

 

Fig. 6. Administrative flow - BPEL public process of DSS (Department System Scheduler) 

 

 

Fig. 7. patient registration transaction - public process 

 



 Semi-automatic Generation of Web Services and BPEL Processes 73 

 

 

Fig. 8. Compensation-based transaction for the patient registration transaction 

For HL7 negative acknowledge messages (ACK_A11) are generated in case of er-
rors. Transactional behavior is directly expressed in the process definition, as it is part 
of the BPEL specification, while security parameters have to be configured for inter-
faces and are later on stored in the policy file (see Section 3.5.3). 

3.4   Step 5: Message Attribute Classification 

In the next step we turn to the HL7 message itself. Not all parts of the message are 
equally important for a process definition. We can distinguish the following five cate-
gories for message attributes (which are also valid for other business protocols): 

• Class 1: attributes required for binding (WSDL interfaces binding informa-
tion) 

• Class 2: attributes required for partner definition (BPEL partner definitions) 
• Class 3: attributes required for complex activities (complex BPEL activities) 
• Class 4: attributes required for correlating the message (BPEL correlation-

sets) 
• Class 5: other message attributes (used by the underlying business protocol) 

As stated in Section 3.2 the hierarchical structure of message attributes can be rep-
resented in XML. Related to our example we classify the HL7 ADT_A04 message as 
shown in Figure 9. The structure of all ADT messages is the same regarding attribute 
classification. 

On the left, the original message structure is shown. Through an analysis of the at-
tribute descriptions in the HL7 standard and the IHE framework the attributes listed 
on the right side have been selected for each class respectively. An XML scheme file 
for this structure can be found in Appendix A [27]. The result of this step is a classifi-
cation file for each message used in the process. The file is required in the next step of 



74 R. Anzböck and S. Dustdar 

 

 

Fig. 9. Message attribute classification of HL7 ADT^A04 

orchestration definition and during run-time execution (Section 4) for message pars-
ing. It is stored together with the message scheme files in a database. 

The Class 1-3 attributes are the same for every business partner. For Class 4 it is 
possible that the receiving partner requires different attributes for BPEL complex 
activities. Therefore the analysis has to take into account the processing of all partners 
involved in the transaction. In our case no extension to the definition is necessary. A 
further conclusion is that Class 1-4 attributes have to be part of the SOAP message 
and Class 5 attributes reside in the attachment. However, the security requirements 
(see previous section) are always defined for the whole SOAP message (the parame-
ters and the attachments). 

 

Fig. 10. BPEL process definition 



 Semi-automatic Generation of Web Services and BPEL Processes 75 

 

3.5   Step 6: Orchestration Definition 

The orchestration definition step is split into three sub-steps which are described in 
detail throughout this section. We present parts of the files for illustration, a complete 
listing can be found in Appendix B [27]. 

3.5.1   BPEL Process Definition 
The first sub-step is the definition of the BPEL process. Figure 10 points out which 
parts of the model contribute to the content of the file and how the file is structured. 

One part of the BPEL definition is created by converting the activity diagram into 
BPEL constructs. Several conversions are performed to create parts of the flow sec-
tion of the BPEL file from the process (see Table 2 in Appendix C [27]). The second 
part is extracted from the message attribute classifications partner and binding sec-
tions. Therefore, the table also lists the mapping between message attributes and 
BPEL sections and tags. Conversions of IHE activity diagrams into BPEL flows have 
been covered in detail in an earlier paper (see [7]). There is also a paper that covers 
UML conversions in general [22]. Of special interest here are the components for the 
partner definition, which are directly derived from the IHE roles and transactions. 
Those names are generic and allow, together with a run-time generation of WSDL 
interfaces (see next section), a dynamic model of BPEL process execution (see Sec-
tion 4). Finally, XPath [17] expressions are generated using a lookup in the message 
attribute classifications complexactivities section. In our example the value for the 
PatientClass variable is “HL7_A04_TYPE/PV1-132”, if an A04 type message is sent 
by the application. 

3.5.2   WSDL Interface Definition 
The second part is the WSDL interface definition. Here we have to distinguish be-
tween design-time and run-time operations. During design-time the portTypes, which 
are required by the BPEL process, are defined. As Figure 11 shows, message attrib-
utes are used here. 

 

 

Fig. 11. WSDL process definition as design-time 

Appendix C, Table 3 [27] contains the mapping between those elements and the 
WSDL content. We want to focus on the dynamic binding part in the WSDL defini-
tion, which contains the information about the communication endpoint. Selection of 
a specific endpoint can be performed dynamically during run-time by configuring the 
WSDL file. This can be done by the Web service or the BPEL engine, if it supports 



76 R. Anzböck and S. Dustdar 

 

dynamic endpoint configuration. The dynamic parts of the WSDL file are the binding 
and port sections. The definition consists of a base URI and an extension that refer-
ences the specific service. 

• WSDL section: operation, element: soap:address, attribute: location 
• WSDL section: port, soap:operation, attribute: soapAction 

As each business partner always uses the same generic Web service, it is only nec-
essary to store a mapping for one destination URI. The source for the URI mappings 
can be any value of the HL7 and DICOM message attributes that have been classified 
in the bindings section of the message classification document. During run-time the 
values are extracted from the messages. Then the mapped URI is calculated and the 
WSDL file is configured for the required endpoint. In the next step, BPEL processes 
can perform activities with the dynamically added business partner using the newly 
configured port. 

3.5.3   Policy Definitions 
The third part is the policy definition. Security and attachment requirements have to 
be converted to WS-security and proprietary constructs (see Figure 12). 

 

 

Fig. 12. WS-policy definition 

 
For the WS-policy definition we use the WS-SecurityPolicy [21], WS-Encryption 

[19] and WS-Signature [20] standards. For attachments we defined a proprietary pol-
icy description. The attachment requirement is constant, all messages contain attach-
ments. Currently, the DIME [15] standard is specified but is supposed to be super-
seded by MTOM [16] soon. 

For the security part the process diagram has to be parsed and for all security 
boundaries the properties for encryption and authentication have to be applied (Ap-
pendix C, Table 4 [27]). The security credentials are provided at run-time (Section 4). 

4   BPEL Process at Run-Time 

We split the run-time activities into 3 phases. Figure 13 shows phase 1.  
First, a component (that we call workflow engine) receives a HL7 message from an 

application using the business protocol. Then it has to lookup and cache the message 
classification and perform a classification of message attributes on the received mes-



 Semi-automatic Generation of Web Services and BPEL Processes 77 

 

sage instance. According to the XSL scheme (Appendix A [27]), classification values 
are extracted and stored. The next phases 2 and 3 are shown in Figure 14. 

 

Fig. 13. Run-time phase 1: receiving a message 

 

    

Fig. 14. Run-time phase 2 and 3: start and execute BPEL process 

In Phase 2, the BPEL process is initialized (if it is a start message of a BPEL proc-
ess) using its process definition and configured with the values of the message classi-
fication. For each initial and subsequent message the dynamic ports are bound accord-
ing to the values of the binding section in the message classification. Next, depending 
on the capabilities of the BPEL engine, the security requirements are selected by the 
engine (in Phase 2) or the Web service (in Phase 3) and are used to configure secure 
ports. Biztalk Server 2004 [18] for example supports secure ports with an additional 
Web service adapter. The security credentials (for example asymmetric keys) depend 
on the communicating applications. Information from the partner section of the mes-
sage classification is used to lookup credentials in a database (via UDDI [24] for 
example). The credentials are inserted into the SOAP message before the Web service 
calls the partner. The same steps occur on the receiving Web service. As the sending 
port is now identified by the initiating application, a lookup to a database can be per-
formed to decode and validate the SOAP message, before it is passed to the BPEL 
engine for workflow processing. Additionally, both partners have to insert the busi-
ness protocol message into the attachment part of the SOAP message. 



78 R. Anzböck and S. Dustdar 

 

5   Conclusions and Future Work 

In this paper we presented a model-driven approach to define Web service orchestra-
tion in the healthcare domain. We were able to meet our goals, to define a design-time 
modeling process. Through semi-automatic modeling steps we produced results out of 
standard documents of the business protocols and applied security and transaction 
requirements. We created several artifacts: a BPEL file for the process definition, a 
WSDL file with a dynamic port configuration, a WS-policy file containing security 
and attachment requirements. We have also shown the run-time behavior of the sug-
gested solution using the artifacts produced during modeling. The benefits stated 
initially, the reduction of complexity and required effort can be concluded from our 
work. Further, the modeling steps public process definition and message classification 
can be applied to other domains, too. We find it especially noticeable, that it is possi-
ble to execute several BPEL processes using one generic Web service. For future 
work we plan to extend our current prototype implementation to encompass a model-
driven toolset. Currently, several steps need more standardization before we can pro-
ceed. Furthermore, atomic transaction requirements should be investigated and an 
executable example transaction should proof our approach. 

References 

1. HL7 Organization: Health Level 7, http://www.hl7.org (2000) 
2. NEMA and Global Engineering Group: DICOM 3 Standard, http://www.nema.org (1998) 
3. Radiological Society of North America: IHE Technical Framework 1.1, http://www. 

rsna.org /IHE/index.shtml (2003) 
4. Anzböck, R., Dustdar, S.: Interorganizational Workflow in the Medical Imaging Domain. 

Proceedings of the 5th International Conference on Enterprise Information Systems 
(ICEIS), Angers, France, Kluwer Academic Publishers (2003) 

5. W3C: Web services Description Language 1.1, http://www.w3.org/TR/wsdl.html (2001) 
6. BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems: Business Process Execution 

Language for Web services version 1.1, http://www-128.ibm.com/developerworks/library/ 
specification/ws-bpel/ (2003) 

7. Anzböck, R., Dustdar, S.: Modeling Medical Web services, BPM 2004 - Conference on 
Business Process Management (2004), Springer LNCS 3080, pp. 49 – 65. 

8. Anzböck, R., Dustdar, S.: Modeling and Implementing Medical Web services. Data and 
Knowledge Engineering, Elsevier, forthcoming (2005)  

9. Von Berg, et.al.: Business Process Integration for Distributed Applications in Radiology, 
Philips Research; Hamburg, Germany (2001) 

10. From PACS to integrated EMR: Osman Ratiba, Michael Swiernik, J. Michael McCoy, 
Computerized Medical Imaging and Graphics 27 Pages 207–215 (2003)  

11. HL7 Organization: HL7 XML encoding scheme: http://www.hl7.org/ (2003) 
12. BEA, IBM, Microsoft: Web Services Security (WS-Security), www-106.ibm.com/  

develop-perworks/webservices/library/ws-secure/ (2002) 
13. BEA, IBM, Microsoft: Web Services Transactions (WS-Transactions), http://www.ibm. 

com/developerworks/library/ws-transpec/ (2002) 
14. BEA, IBM, Microsoft, SAP, Sonic, VeriSign: http://msdn.microsoft.com/library/ 

default.asp?url=/library/en-us/dnglobspec/html/WS-policy.asp (2004) 



 Semi-automatic Generation of Web Services and BPEL Processes 79 

 

15. Microsoft: Direct Internet Message Encapsulation (DIME), http://msdn.microsoft.com/ 
library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt (2002) 

16. BEA, Canon, IBM, Microsoft: http://www.w3.org/TR/soap12-mtom (2005) 
17. W3C: XPath, www.w3.org/TR/xpath (1999) 
18. Microsoft Biztalk Server 2004: Microsoft Corporation, www.mirosoft.com (2004) 
19. XML-Encryption: W3C Working Draft, "XML Encryption Syntax and Processing,", 

http://www.w3.org/TR/xmlenc-core/ (2002) 
20. XML-Signature: W3C Proposed Recommendation, "XML Signature Syntax and Process-

ing,", http://www.w3.org/TR/2001/PR-xmldsig-core-20010820 (2001) 
21. Microsoft, IBM, Verisign, RSA Security: WS-SecurityPolicy, http://msdn.microsoft.com/ 

webservices/default.aspx?pull=/library/en-us/dnglobspec/html/WS-Securitypolicy.asp 
(2002) 

22. IBM: From UML to BPEL, http://www.ibm.com/developerworks/webservices/library/ 
ws-uml2bpel/ (2003) 

23. Schmit, B.A., Dustdar, S. (2005). Model-driven Development of Web service Transac-
tions, XML4BPM 2005 - XML for Business Process Management Workshop, 11th GI 
Konferenz Business, Technologie, und Web (BTW 2005), 1 March 2005, Karlsruhe, Ger-
many. 

24. IBM/Microsoft/SAP, et.al.: UDDI 3.0.2, http://www.oasisopen.org/specs/index.php#ud-
div3 (2005) 

25. W3C: SOAP Version 1.2, http://www.w3.org/TR/soap12-part1/ (2003) 
26. Dogac, A., et.al.: Artemis: Deploying semantically enriched Web services in the health-

care domain, Elsevier, Information Systems, (2005), Article in Press 
27. Appendix see http://www.infosys.tuwien.ac.at/Staff/sd/papers/BPM2005Appendix.pdf 



A Human-Oriented Tuning of Workflow

Management Systems

Irene Vanderfeesten and Hajo A. Reijers

Eindhoven University of Technology, Department of Technology Management,
PO Box 513, NL-5600 MB Eindhoven, The Netherlands

{i.t.p.vanderfeesten, h.a.reijers}@tm.tue.nl

Abstract. Workflow Management Systems (WfMS’s) offer a tremen-
dous potential for organizations. Shorter lead times, less mistakes in work
handoffs, and a better insight into process execution are some of the most
notable advantages experienced in practice. At the same time, the intro-
duction of these systems on the work floor undoubtedly brings great
changes in the way that professionals work. If a WfMS’s work coordina-
tion is experienced as too rigid or mechanistic, this may negatively affect
employees’ motivation, performance and satisfaction. In this paper, we
propose a set of measures to “tune” functioning workflow systems and
minimize such effects. The measures we propose do not require undue
cost, time, or organizational changes, as they characteristically lie within
the configuration options of a WfMS. We have asked an expert panel to
select and validate the 6 most promising measures, which we present in
this paper. From our evaluation of three commercial WfMS’s, we con-
clude that it depends on the specific system to what level these general
measures can be easily implemented.

1 Introduction

A workflow management system (WfMS) is a software system that supports
the specification, execution, and control of business processes [19]. Commercial
WfMS’s have been around since the early nineties, while their conceptual prede-
cessors range back even further, see e.g. [6]. They have become “one of the most
successful genres of systems supporting cooperative working” [5]. The worldwide
WfM market, estimated at $213.6 million in 2002, is expected to redouble by
2008 [38]. Furthermore, WfM functionality has been embedded by many other
contemporary systems, such as ERP, CRM, and call-center software. WfM tech-
nology, in other words, has become quite successful and widespread. The reason
for this popularity is fourfold [33]:

– The coordination of work becomes easier. A WfMS liberates human actors
from the efforts to coordinate their work (“what do I do have to do next?”,
“where is the *#& client file?”, “who must check this proposal next?”)

– A higher quality of service is delivered. The WfMS will ensure that the pro-
cess is executed in correspondence with the intended procedure: important
steps can no longer be forgotten, work will not get lost, and authorization
policies are automatically enforced.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 80–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Human-Oriented Tuning of Workflow Management Systems 81

– The work is executed more efficiently. Work items will only be allocated to
workers by the WfMS if and when they are required to be executed.

– The process becomes more flexible. Ejecting the business control flow from
traditional applications and moving it towards a WfMS simplifies the re-
design of the process.

Recent successful implementations of WfMS’s are e.g. reported within the bank-
ing, automotive and IT industry [2,3,25]. Despite its success, WfMS’s have re-
ceived their share of criticism as well, see e.g. [5,7]. Skeptical arguments are
mainly raised by employees - the potential users - and work psychologists, who
fear that workflow systems might lead to a mechanical approach to office work
where man is seen as an exchangeable resource, e.g. like a machine, and not
as a human being. In a study by Küng [24], an interviewee at an organization
described the effects of a WfMS introduction within his organization as follows:

“Jobs became more monotonous. The system forces the employees to
work strictly according to the process definition. Through the use of the
workflow system, we now have some kind of ‘chain production’ in the
office.”

The image of a WfMS as a rigid system is also produced very glaringly in the
well-known case study of a WfMS implementation in the UK print industry [1].
The respective system was not accepted by the end users, who invented various
ways to work around the intended procedures. The previous examples illustrate
that through the rigid structure of a workflow system there is a risk of creating
similar problems as to mass production and assembly line work in the previous
19th and 20th century, e.g. boring work, decreasing performance, unsatisfied and
unmotivated employees.

This paper proposes measures that can be taken to reconfigure an imple-
mented WfMS so that it becomes more agreeable to the needs of performers
working with such a system. An important driver in the creation and selection
of these proposals was to come up with measures that have a wide applicability
and are easy to implement. The proposals have emerged from the confrontation
of mainly two perspectives. On the one hand, we have considered the general
characteristics that positively influence the motivation, performance and job
satisfaction of performers. On the other hand, we looked at the policies that
WfMS’s generally use for distributing and assigning work to performers. Even
though such policies do not affect the work that has to be executed itself - as
specified in an underlying workflow definition - they have a direct impact on the
way people experience performing that work.

The paper is organized as follows. In the following section, we will give the
theoretical background of the perspectives we mentioned, as used for generating
the proposals. In Section 3, we will describe the various proposals, how they have
been selected, and how they were validated by an expert panel. In Section 4, we
present the evaluation of three current, commercially available WfMS’s to de-
termine to what extent these specific systems can be reconfigured in accordance
with the presented general proposals. This paper ends with our conclusions and
recommendations.



82 I. Vanderfeesten and H.A. Reijers

2 Background

In this section, we will present the theoretical background for the development
of the “tuning” measures. In particular, we will introduce a frame of reference
which captures the scope of the various measures. In addition, we will discuss the
two theoretical models that have been most fruitful for developing the proposed
tuning measures. They focus on small adaptations of an already implemented
WfMS and as such improve on how the system meets human needs. The needs
we focus on go beyond primary needs like e.g. physiological needs. The proposed
measures, instead, focus on the improvement of a person’s esteem (i.e. the need
for a feeling of self-worth and for respect and admiration from others) and self-
actualization (i.e. the need to make the most of one’s life, i.e. the need to obtain
self-fulfillment) [27].

Our first observation is that the way that people perceive the use of a WfMS
is influenced by more than merely the characteristics of the technology itself.
Consider, as an extreme example, an organizational policy enforcing that the
WfMS can be accessed through one specific work station only. As a result, work-
ers may have to move to and from, stand in line, etc. The irritation that this
policy may cause is not due to a technical characteristic of the system, but
will affect people’s perception of using the WfMS nonetheless. Therefore, we see
an implemented WfMS as being part of a more abstract, larger system, which
involves organizational, process, human, and technical components. Inspired by
the well-known reference model of the Workflow Management Coalition (WfMC)
[37], we consider an abstract workflow system as shown in Figure 1. The abstract
workflow system consists of four levels:

– Organizational structure - On this level the structure of the organization
is defined. This includes for example, the division in departments or busi-
ness units, hierarchical relations, functions, physical employees, geographical
position, competencies, authorization and rules.

– Roles - This level contains the roles that can be performed by employ-
ees in the organization. To fulfil a certain role an employee has to meet
the accompanying requirements (e.g. concerning competencies or the proper
organizational unit).

– Process automation layer - The process automation layer can be di-
vided into two parts: the distribution of work items and the automatic and
computer supported execution of work items. This includes: the workflow
enactment service, the automatic execution of work items, the computer ap-
plications an employee needs to perform an activity, the shared or individual
worklists and the administration and monitoring tools.

– Workflow definition - The workflow definition is a static representation of
the process. It consists of the process model, the resource classification and
the relationships between those two.

In comparison with the reference model of the WfMC [37], this model explicitly
adds the organizational context. Also, it more clearly separates the build-time
from the run-time components of a WfMS.



A Human-Oriented Tuning of Workflow Management Systems 83

administration
and monitoring

tools

c
a

s
e

s

wf-engine /
workflow

enactment
service

applications

automatic
execution
work item

inbox / worklist
(private /
shared)

c
a

s
e

s

organizational structure process automation layer workflow definitionroles

H
ie

ra
rc

h
ic

a
l 

s
tr

u
c

tu
re

B
u

s
in

e
s

s
 u

n
it

s
G

e
o

g
ra

p
h

ic
a

l 
p

o
s

it
io

n

Fig. 1. Scope of measures

The presented abstract workflow model has been used to settle the scope and
as a reference model to generate ideas on tuning measures, focusing on each of
the separate layers as well as on their interactions. A wide variety of sources has
been used for this purpose, e.g. [12,13,14,15,34]. The process of generating and
evaluating these measures will be described in more detail in Section 3. While
this process and the consultation of literature sources have rendered ideas for all
parts of the abstract workflow model, two sources have been particularly fruitful
to establish ideas that seemed both effective and easy to implement. Therefore,
we will deal with these two sources in more detail in the remainder of this section.

2.1 JCM Model

In general, employees experience their work based on their perception of the
work and their values1. Such experiences lead to job attitudes (i.e. evaluative
statements or judgements concerning the work), such as job satisfaction and
well-being. These attitudes affect an employee’s motivation [34]. In turn, the
behavior and especially the performance of an employee are influenced by his or
her motivation.

Personality, well-being, job satisfaction and motivation of an employee are
correlated to job performance [20,21,22]. Even though the correlation between
1 In every day life these terms are not clearly defined. For the purpose of this paper we

use the definitions as they are used in psychology. Perception is defined as a process
by which individuals organize and interpret their sensory impressions in order to
give meaning to their environment [34]. Values are defined as basic convictions that
a specific mode of conduct or end-state of existence is personally or socially preferable
to an opposite or converse mode of conduct or end-state of existence [34].



84 I. Vanderfeesten and H.A. Reijers

job satisfaction and performance is not always obvious [17,20,35], it is generally
believed that a users’ satisfaction and motivation is a very important part in
making the implementation of automation systems a success [35].

In their overview of job design theory Holman et al. [16] show that, although
many theories on job design exist, up till now little research has been done on im-
plementing and applying job design theory in concrete automation systems. We
believe a human-oriented design of the technical system indeed can contribute
to the success of information systems, particularly by improving an employee’s
experience of the work he or she performs. Therefore we consider the important
dimensions on which a job can be assessed in order to determine the degree to
which a job is pleasant to the performer.

Based on theory of human needs (for instance [27]), Hackman and Oldham de-
veloped the Job Characteristics Model (JCM) [9,10]. Today this model is known
as the dominant framework for defining task characteristics and understanding
their relationship to employee motivation, performance and satisfaction. Accord-
ing to this theory a job can be characterized in terms of five core job dimensions
[11,34]:

– Skill variety - the degree to which the job requires a variety of different
activities so the worker can use a number of different skills and talent.

– Task identity - the degree to which the job requires completion of a whole
and identifiable piece of work.

– Task significance - the degree to which the job has a substantial impact
on the lives or work of other people.

– Autonomy - the degree to which the job provides substantial freedom,
independence, and discretion to the individual in scheduling the work and
in determining the procedures to be used in carrying it out.

– Feedback - the degree to which carrying out the work activities required
by the job results in the individual obtaining direct and clear information
about the effectiveness of his or her performance.

The higher a job scores on each of these characteristics, the better it is and
the higher the motivation, performance and satisfaction of the person executing
this job will be [34]. Therefore, it makes sense to design and improve working
environments considering the impact on these characteristics.

The JCM-model has proven its validity, because it is used in many kinds of
research on the quality of jobs (see for example [30]). Moreover, [8] shows that
there is quite a strong correlation between the job characteristics and job satis-
faction and a small correlation between the job characteristics and performance.

2.2 Assignment and Synchronization Policies

While the JCM model has been valuable to assess the effect of generated tuning
measures, another model turned out to be the most fruitful source for tuning
measures that seemed both effective and easy to implement. This model de-
scribes the policies that WFMS’s generally use for distributing and assigning
work to performers, as published by zur Muehlen in 2004. It is part of a paper



A Human-Oriented Tuning of Workflow Management Systems 85

on organizational management in workflow applications [28], as modified from
the research of Hoffman et al [15]. The paper in question describes the assign-
ment and synchronization policies in a very detailed way, listing a number of
properties that can be used to characterize the various policies and their range
of values. We will refer to this model as “AS-policies”.

The AS-policies model consists of two parts. The first part, assignment poli-
cies, deals with the distribution of work to a shared work list, accessible by
qualified employees. The second part, synchronization policies, explains how a
work item that is placed on such a shared worklist, can be accessed by indi-
vidual workflow participants (according to [28]). Although the author does not
claim universal applicability of the AS-policies, we believe these policies are rec-
ognizable and general for most WfMS’s. The AS-policies only denote possible
configuration changes, but do not elaborate on the way to implement them.

In Figure 2 and Figure 3, the policies are depicted. For clarity, we will shortly
discuss three policies (one assignment policy and two synchronization policies)
and refer the reader to the original paper [28] for further information.

Property

Decison
hierarchy

Activity execution

Queuing of new
work items

Time of
notification

Planning of new
work items

Possible Values

Final Assignment

Individual

Queue

Upon availability

Net change Re-planning

Between availability
and latest start time

At latest start time

Pool Combination

Collaborative

Delegation possible

Fig. 2. Assignment policies (from [28])

Property

Assignment of
work items

Assignment
specification

Participant
selection

Allocation
mechanism

Coordination

Possible Values

Push

Static

w/o
substitution

Fully automated Partially automated Manual

Role

Dynamic

Combination

Participant
autonomy

Assignment is finalRejection of assignment possible

Pull

Direct Indirect
w/

substitution Or. Pos. Org. Unit Other

System

Hierarchy

Manager Market

Group negotiation

Auction FCFS

Schedule

Other

Fig. 3. Synchronization policies (from [28])

A policy can be seen as an axis on which a certain variable can be varied.
First, consider the “planning of new work items” policy from Figure 2. This
variable can be set to a net change strategy or a re-planning strategy. In a net
change strategy, the workflow system assigns available work items to certain
people and places them in their worklists. The work items stay there until they
are performed. However, if a re-planning strategy is implemented in the system
the work items are assigned to worklists, but when they have not been picked
up by the performer they can be recalled and together with the newly available
work items they are re-distributed among the employees and their worklists.
This might mean that a work item then is assigned to another employee.

The “assignment of work items” in Figure 3 describes the way in which work
items are offered to an employee. When a push-mechanism is used the system
determines who is going to work on what work item at what time. When a



86 I. Vanderfeesten and H.A. Reijers

pull-manner is used the employees can decide themselves when they are going
to work on which of the available work items.

Finally, “participant autonomy” describes to what degree the assignment of
a work item is final. When rejection of assignment is possible an employee can
reject to perform a work item that is assigned to him or her. When the assignment
is final the employee has no choice and has to execute the work item.

The differences between the two parts of the AS-policies model are subtle
and policy implementation decisions may affect each other. For example, when
a work item is directly pushed from a shared worklist to a certain employee
(this is a specific synchronization policy), then this precludes the effective use
of the assignment policy of “pooling” where resources can choose freely between
work items. Nonetheless, the AS-policies model can be seen as a fairly complete
overview of configuration policies in WfMS’s. Although the original paper [28]
does not give much justification about its correctness and generalizability, it has
been very useful as a steppingstone to think about a human-oriented configura-
tion of WfMS’s.

By showing the scope of the tuning measures on the one hand and the two
theoretical models on the other, we have shown our framework for developing
easy-to-implement, human-oriented “tuning” measures for WfMS’s. In the next
section, the development of these measures is elaborated.

3 Tuning Measures

In this section, we present the most promising set of measures to “tune” a work-
flow system in such a way that working in the system becomes more pleasant.
We will illustrate how these ideas have been generated and clarify the validation
process.

3.1 Method Description: Idea Generation, Selection, Validation

The generation of ideas to “tune” a workflow system in a human-oriented way
has been a creative process. By mainly considering the various options to im-
plement the AS-policies, we tried to identify those options that would affect
people’s job characteristics most positively. In addition to the AS-policies, we
occasionally used additional sources for idea generation, as will become clear in
this section. To illustrate the process of generating “tuning” measures, we will
give two examples. In the explanation of the re-planning strategy in planning
new work items, zur Muehlen [28] states:

“... while a re-planning strategy would re-allocate all work items that
have not yet been started, possibly removing work items from some per-
former’s worklists and placing them on other worklists”.

We think an employee will not like the fact that work that is allocated to him/her
suddenly is removed or changed. The re-planning may decrease the experienced
level of self-determination or control with employees. Therefore, one of the ideas
we generated is: “Do not re-plan work items by workflow enactment service”.



A Human-Oriented Tuning of Workflow Management Systems 87

As a second illustration, we adopted the idea from Hoffmann and Loser [14]
that “meaningful decisions in the process should be made by the employees,
even if they could be performed by the workflow system”. In their paper they
describe a case study at a transport company where parcels are received, checked
and distributed. In this process two scenarios are considered: a workflow process
design in which decisions about the received parcels are made by the system and
the same process in which the decisions are made by employees. It turned out
the latter situation performed best.

In this way 32 ideas for tuning measures have been generated. In Appendix
A the complete list can be found. Next, we have critically assessed these ideas on
ease of implementation. We defined ease of implementation as an intervention
that does not take too much time nor too much money to be realized. 21 ideas
survived this assessment and 11 were eliminated (see Appendix A). In partic-
ular, the ideas that caused changes in the abstract workflow system’s layers of
organizational structure or workflow definition were eliminated (see Figure 1).
For example, the measure “Do not over-specify the content of an activity” is one
of the eliminated ideas. This measure requires a different way to define and enact
a workflow process with a workflow system. These kind of decisions are usually
made during the design phase of a workflow implementation. When they need
to be changed for a running system, probably the system has to be shut down
and implemented from the start again. Typically, change projects affecting the
organization or workflow definition are costly and time-consuming.

The remaining ideas from the assessment are particularly located in the pro-
cess automation layer of the abstract workflow system model (the workflow en-
gine, worklist and administration and monitoring tools), and its interfaces to the
employees. These are mainly the parts that are described by the AS-policies.

In the next step, the 21 remaining ideas have been validated by a qualitative
expert validation. The goal of this validation was to gain qualitative feedback
on the proposed measures. Six experts (with diverse backgrounds, from both
psychology and IT, practice and research) were willing to give their view on the
ideas during an interview. All interviews were taken in May and June 2004. We
used a face-to-face interview approach, providing the possibility to give more
explanation where needed, except for one interview: respondent R5 answered
the questions by e-mail.

The six experts can be divided into two categories: three of them are re-
searchers (two females, one male) and the other three are people with practical
experience in the area of workflow management. Respondent 1 (R1) and re-
spondent 4 (R4) are workflow designers with a Dutch consultancy firm and a
Dutch bank, respectively. R6 is a workflow project manager with a Dutch insur-
ance and banking company. R2, R3 and R5 are researchers at respectively Delft
University of Technology (area of information systems/business processes), Eind-
hoven University of Technology (organizational behavior) and Stevens Institute
of Technology (process automation and workflow management). The background
of the experts is summarized in Table 1. We have to note that R2 also has a lot
of practical experience in workflow projects and that R3 is an expert on work



88 I. Vanderfeesten and H.A. Reijers

psychology and organizational behavior. Her expertise in technical systems is
less, which made it not very feasible to answer the question of ease of implemen-
tation for each idea.

During the interview the respondents were asked to indicate if they thought
the proposed measure would have a positive impact on the employee, if it would
be easy to implement and if they could rank a list of the top five ideas from
the twenty-one presented ideas. The outcomes of the interviews can be found in
Appendix B. Based on these expert rankings we selected the six most promising
measures for further research.

Table 1. Background of interview respondents

Respondent Gender Category Function Company / Institute

R1 Male Practice Workflow designer Dutch consultancy
firm

R2 Female Research Researcher Delft University
of Technology

R3 Female Research Researcher Eindhoven University
of Technology

R4 Male Practice Workflow designer Dutch bank
R5 Male Research Researcher Stevens Institute

of Technology
R6 Male Practice Workflow project Dutch insurance

manager & banking company

3.2 Six “Tuning” Measures and Their Aimed Effect on JCM
Characteristics

Below we will shortly describe the most promising measures, selected by the
experts, and we will explain their expected impact on the job characteristics
from the JCM-model in Section 2. Primarily, these measures provide workers
with more autonomy or, in other words, with more self-determination, while the
WfMS stays in control of process coordination.

SH PULL - Use a shared worklist, from which an employee can choose
himself: pull-manner. The first measure gives the worker more autonomy.
By using a pull mechanism (in stead of a push-mechanism) the employee
can decide for himself or herself when he or she starts which work item.
The execution of work is not forced by the system and thus the employee
has more freedom. Through this freedom the worker can also ensure that
the work he or she is doing is alternating, which may positively affect skill
variety.

TARGET - Show an employee if he or she works hard enough, if he
or she is satisfying the targets. This measure is improving feedback to
employees. In many settings, performers have to satisfy targets with respect
to the amount of cases they have to process every hour or every day. It is



A Human-Oriented Tuning of Workflow Management Systems 89

good for an employee to know if he or she meets the requirements that are
asked. This information should of course be private.

RESUB - When a work item has to be performed again after a (neg-
ative result of a) check, return it to the same employee to execute
it again. The aim of this measure also is to improve feedback. Often the
execution of important steps in a process is checked by, for instance, a super-
visor. In such a case, the supervisor determines whether the step has been
performed properly. If that is not the case, the step has to be redone. When
an employee has made a mistake or error in executing an activity for a cer-
tain case, it can be very valuable to know what went wrong and why it went
wrong. Therefore, the case should be sent back to the same employee that
made the mistake, so he or she can learn from it.

TEAMBAT - Create ‘team batches’ of work items. A team of em-
ployees (having the same competences/role) can divide the work
according to their own preferences. (Here we assume the allocation
mechanism is manual, but is not necessarily controlled by a team leader
or manager.) By creating “team batches”, employees will experience more
autonomy, skill variety and task significance. In “team batches”, the work
that is assigned to the team still has to be divided amongst the members of
the team. By negotiating and discussing who should do what, employees can
have more influence on the work they are supposed to perform and they can
experience more task significance.

APPEAR - Give employees the opportunity to adjust the ordering
of work items in their worklists to their own preferences: FIFO,
earliest due date, random, etc. (Here we assume the assignment of work
items is in a pull manner and the worklist is private.) This measure provides
an employee with more autonomy. When there is a possibility to adjust
the appearance of work items in the worklist the employee can create a
better overview of the things he or she has to do according to his or her
own preferences. This makes it easier to decide for oneself which work item
should be performed next.

CASEMAN - Case management: let an employee work on the same
case as much as possible. Finally, case management improves the task
identity and task significance for employees. When employees work as much
as possible on the same case they know the ins and outs of the case, they
will get more involved with the customer’s interests and they will feel more
helpful.

The final step we conducted in this research is an evaluation of the measures
in terms of current workflow technology. This evaluation will be described in
section 4.

4 Evaluation

To test these theoretical ideas to tune a workflow system, we have evaluated the
most promising measures using three commercially available WfMS’s: Staffware



90 I. Vanderfeesten and H.A. Reijers

(Tibco), COSA (Transflow) and FLOWer (Pallas Athena). Based on the docu-
mentation of these systems [18,26,31,36] we have identified to what degree the six
measures are supported by these systems. The goal of this validation is to deter-
mine whether the ideas are practically feasible with current workflow technology.
In the first sub section, we will explain why we selected these systems. Next, we
will present the results of this evaluation and this section will be concluded with
a short discussion.

4.1 Selection of Systems

An important criterion for selecting the three WfMS’s we mentioned in the
introduction is their popularity. At the moment, Staffware and COSA both have
a substantial market share in Europe. They are suited for production workflow,
i.e. handling a large number of cases that all have to be processed in a similar,
structured way. Furthermore, we felt FLOWer is an interesting system because
of its rapid growth in popularity and its case handling paradigm [33], which
provides more flexibility in the system. The differences between those systems
with respect to the measures are discussed in the next section.

Table 2. Summary of the results of implementability of the six best ideas

Acronym Staffware 9.0 FLOWer 3.0 COSA 4.2

SH PULL + - +
TARGET - - +/-
RESUB - + +
TEAM BAT - - -
APPEAR + - +
CASEMAN +/- +/- +/-

4.2 Outcome Evaluation

Based on documentation of the systems we identified whether an idea could be
implemented or configured in the system. First we will give an overview of the
evaluation results and next we will shortly discuss the outcome. Table 1 shows
to which degree the actual WfMS is able to support a measure. This degree is
expressed by the following symbols:

+ The idea can be directly supported by the WfMS itself.
+/- The idea can be partly supported by the WfMS, some small adaptations

to the WfMS have to be made or some “add-on’s” have to be installed.
- The idea can not be supported by the WfMS, or the underlying concept

of the WfMS makes the facilitation of the idea not possible.



A Human-Oriented Tuning of Workflow Management Systems 91

As turns out from Table 2, not all the ideas can be implemented or supported
(yet) by the three contemporary WfMS’s we considered. For instance, it is not
possible in Staffware to send a work item back to the employee who previously
worked on the case (cf. measure RESUB). This is a dynamic way to assign
work items, while Staffware only provides a static way to assign work items,
i.e. up front at design time it can be stated to which person (by this person’s
name) a work item has to be sent. In contrast, FLOWer and COSA support the
resubmission measure.

Overall, we can conclude that COSA provides the best support for realizing
these ideas. A remarkable result is the difference between the two production
workflow systems, COSA and Staffware. Although they are based on the same
concept, they do not have the same support for the measures.

Moreover, FLOWer - as the newer type of workflow management system -
seems to provide less support. This is due to the difference in concept. The
case handling paradigm [33] already provides a lot of flexibility and autonomy
to users, but this is done in a way that makes some of the tuning measures
impossible to realize. For instance, FLOWer provides a “Case Query” mechanism
through which employees can search for cases that are available. This is rather
similar to the idea of a shared worklist (“pool”) with a pull-mechanism, but it
shows cases in stead of work items. Therefore, an employee can not see what kind
of work (which step in the process) has to be performed for a particular case.
We considered the “Case Query” as different from a work items worklist. Thus,
FLOWer can not support measure [SH PULL] because there is no worklist of
work items. In this case FLOWer gets a somewhat negative result, but we should
note that it may actually provide more flexibility and autonomy than we initially
aimed for through the measures.

5 Conclusion

Although workflow systems are very successful in companies lately, many cri-
tiques are raised too. Especially when it concerns workers and their experience
of the workflow system, the views are not necessarily positive. The schism around
WfMS’s is in our eyes accurately captured as follows [5]:

“On the one hand, they are perhaps the most successful form of group-
ware technology in current use; but on the other, they have been subject
to sustained and cogent critiques, particularly from perspective of the
analysis of everyday working activities.”

In this paper, we have looked for practical ways to make these type of systems
more agreeable for those who have to use them in their everyday work. We have
taken an approach that is uncharacteristic for much of the active workflow re-
search, where substantial attention is devoted to make WfMS’s more flexible
(for an overview of the various approaches, see [23]). The driving idea is that the
rigidity of WfMS’s makes them unsuitable to deal with exceptional situations,
in this way frustrating end users. However, this research direction is perhaps



92 I. Vanderfeesten and H.A. Reijers

not the most effective way to go. Firstly, despite the broadness of the flexibility
research, few research results make their way to commercially available WfMS’s.
This raises the question whether this type of research, aside from being intel-
lectually satisfying, addresses organizational needs. Secondly, current research
seems to indicate that the perceived usefulness of WfMS’s by end users is not
primarily determined by the flexibility it provides. On the basis of various case
studies of workflow implementations and an extensive survey among end users,
Poelmans [32] concludes that the provision of flexible features will likely not rule
out the necessity of appropriating a WfMS in more thorough ways. A tentative
conclusion from his research is that not the selection of the right WfMS, but
the way it is configured and implemented is crucial in the success of a workflow
implementation:

“The most important factor is giving the end-users sufficient influence,
after implementation, to have the system appropriated to their needs.”
(p.160)

This attention for reconfiguration possibilities is in line with earlier insights into
the successfulness of IT technologies in general (see e.g. [29]).

The measures we have proposed in this paper are simple ways to reconfigure
existing WfMS implementations to address the needs of end users. All of them are
thought to positively affect the factors that make work enjoyable and satisfactory.
The measures’ validation by experts from both research and practice, IT and
psychology, adds credibility to their usefulness and feasibility. Taking a general
model of workflow policies as starting point, a wide applicability of the measures
among WfMS’s was aimed for. From the limited system evaluation we carried
out, we can conclude that the specific brand of WfMS determines the ease of
actually implementing a measure.

This also identifies the opportunities for further research. It would be valu-
able to broaden the scope of systems we considered to provide insight which
measures can be used in what situations. Also, a more thorough evaluation of
the various WfMS’s will give a better insight into their reconfiguration capa-
bilities. Additionally, it seems worthwhile to perform an actual validation in
practice, i.e. an experiment with real workflow users in a realistic setting, to see
if the measures really improve an employee’s experience and satisfaction. Two
recommendable designs to execute such a field study are an untreated control
group design with pretest and posttest, and a nonequivalent dependent variables
design [4]. A closer study of the other generated ideas may provide organizations
with broader means to improve the efficiency of their existing operations with
an eye for the human perspective.

To conclude, we have achieved our aims with this paper if it manages to
inspire researchers and practitioners to look for those simple reconfiguration
options that make working with a WfMS more enjoyable. In doing so, the orga-
nizational benefits of WfMS’s can be exploited to their full potential.



A Human-Oriented Tuning of Workflow Management Systems 93

References

1. J. Bowers, G. Button, and W. Sharrock. Workflow From Within and Without:
Technology and Cooperative Work on the Print Industry Shopfloor. In: Proceedings
of the Fourth European Conference on Computer-Supported Cooperative Work,
51-66, 1995.

2. C.T. Caine, T.W. Lauer, and E. Peacock. The T1-Auto Inc. production part testing
(PPT) process: A workflow automation success story. Annals of Cases on Informa-
tion Technology ,.5: 74-87, 2003.

3. J.L. Caro, A. Guevara, and A. Aguayo. Workflow: A solution for cooperative infor-
mation system development. Business Process Management Journal. 9(2): 208-220,
2003.

4. T.D. Cook, D.T. Campbell. Quasi-experimentation: design and analysis issues for
field settings. Rand McNally, 1979.

5. P. Dourish. Process descriptions as organizational accounting devices: the dual use
of workflow technologies. In: C.A. Ellis and I. Zigurs (Eds.), Proceedings of the
ACM 2001 Int. Conference on Supporting Group Work (pp. 52-60). New York,
ACM Press, 2001.

6. C.A. Ellis. Information control nets: a mathematical model of office information
flow. In: P.F. Roth and G.J. Nutt, Proceedings of the ACM Conference on Simula-
tion, Measurement and Modeling of Computer Systems (pp. 225-240). New York:
ACM Press, 1979

7. C.A. Ellis and J. Wainer. Goal-based Models of Collaboration. Collaborative Com-
puting 1, 61-86, 1994.

8. Y. Fried. Meta-Analytical Comparison of the Job Diagnostic Survey and Job
Chracteristcs Inventory as Correlates of Work Satisfaction and Performance. Jour-
nal of Applied Psychology, 76 (5), pages 690-697, 1991.

9. J.R. Hackman, G.R. Oldham. Development of the Job Diagnostic Survey. Journal
of Applied Psychology, 60, pp. 159-170, 1975.

10. J.R. Hackman, G.R. Oldham. Motivation through the design of work: test of a
theory. Organizational Behavior and Human Performance, 15, pp. 250-279, 1976.

11. J.R. Hackman, J.L. Suttle. Improving Life at Work: Behavioral Science Approaches
to Organizational Change. Goodyear Publishing, 1977.

12. T. Herrmann, M. Hoffmann. Augmenting Self-Controlled Work Allocation in
Workflow-Managmenet-Applications. Proceedings of HCI ’99, pp. 288-292, 1999.

13. T. Herrmann. Evolving Workflows by User-driven Coordination. In: R. Reichwald,
J. Schlichter (eds.): Verteiltes Arbeiten - Arbeiten der Zukunft. Tagingsband D-
CSCW, pp. 103-114, 2000.

14. M. Hoffmann, K.-U. Loser. Mitarbeiter-orientierte Modellierung und Planung von
Geschäftsprozessen bie der Einführung von Workflow-Management. Proceedings of
EMISA-Fachgruppentreffens 1997, pp. 39-57. (In German)

15. M. Hoffmann, T. Löffeler, Y. Schmidt. Flexible Arbeitsverteilung mit Workflow-
Management-Systemen. In: T. Herrmann, A.-W. Scheer and H. Weber,
eds. Verbesserung von Geschäftsprozessen mit flexiblen Workflow-Management-
Systemen, Physica, Heidelberg, Germany, 1999, pp. 135-159. (In German).

16. D. Holman, C. Clegg, P. Waterson. Navigating the territory of job design. Applied
Ergonomics, 33. pp. 197-205, 2002.

17. M.T. Iaffaldano, P.M. Muchinsky. Job Satisfaction and Job Performance: A Meta-
Analysis. Psychological Bulletin, 97(2), pp. 251-273, 1985.



94 I. Vanderfeesten and H.A. Reijers

18. IDS Scheer. ARIS Process Performance Manager (ARIS PPM). Presentation and
whitepaper, http://www.ids-scheer.de/PPM/ , 2004.

19. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture, and Implementation. Int. Thomson Computer Press, London, 1996.

20. T.A. Judge, C.J. Thoresen, J.E. Bono, G.K. Patton. The Job Satisfaction - Job
Performance Relationship: A Qualitative and Quantitative Review. Psychological
Bulletin, 127 (3), pages 376-407, 2001.

21. T.A. Judge, D. Heller, M.K. Mount. Five-Factor Model of Personality and Job
Satisfaction: A Meta-Analysis. Journal of Applied Psychology, 87 (3), pages 530-
541, 2002.

22. T.A. Judge, R. Ilies. Relationship of Personality to Performance Motivation.: A
Meta-Analytical Review. Journal of Applied Psychology, 87 (4), pages 797-807,
2002.

23. M. Klein, C. Dellarocas, and A. Bernstein. Introduction to the Special Issue on
Adaptive Workflow Systems. Computer Supported Cooperative Work, 9(3 4): 265-
267, 2000.

24. P. Küng. The Effects of Workflow Systems on Organizations: A Qualitative Study.
In: Wil M. P. van der Aalst, Jörg Desel, Andreas Oberweis (Eds.): Business Pro-
cess Management, Models, Techniques, and Empirical Studies. Lecture Notes in
Computer Science 1806 Springer 2000, p. 301-316.

25. P. Küng and C. Hagen. Increased performance through business process manage-
ment: an experience report from a swiss bank. In: Neely, A. et al. (Eds.): Perfor-
mance Measurement and Management - Public and Private, Cranfield, 1-8, 2004.

26. Ley GmbH. COSA 4, User’s Guide, 2002 and Business-Process Designer’s Guide,
2003.

27. A.H. Maslow. A theory of human motivation. Psychological review, 50, 1943, 370-
96.

28. M. zur Muehlen. Organizational Management in Workflow Applications - Issues
and Perspectives. Information Technology and Management Journal 5(3), pp. 271-
291, 2004.

29. W. Orlikowski. The Duality of Technology: Rethinking the Concept of Technology
in Organizations. Organization Science, 3(3): 398-427, 1992.

30. R.J. van Ouwerkerk, T.F. Meijman, G. Mulder. Industrial Psychological Task Anal-
ysis. Lemma, Utrecht, 1994. (In Dutch).

31. Pallas Athena. Administrator Guide, Designer’s Guide, User Guide FLOWer 3.0.
Pallas Athena, the Netherlands, 2004

32. S. Poelmans. Making Workflow Systems Work: An Investigation into the Impor-
tance of Task-appropriation Fit, End-user Support and other Technological Char-
acteristics. Ph.D. thesis. Doctoral dissertation series Faculty of Economic and Ap-
plied Economic Sciences nr 161., Katholieke Universiteit Leuven, 2002.

33. H.A. Reijers, J.H.M. Rigter, and W.M.P. van der Aalst. The Case Handling Case.
Int. Journal of Cooperative Information Systems, 12(3): 365-391, 2003.

34. S.P. Robbins. Organizational behavior. Prentice Hall, New Jersey, 2001.
35. F.E. Saal, P.A. Knight. Industrial/Organizational Psychology. Brooks/Cole Pub-

lishing Company, California, 1995.
36. Staffware. Staffware Process Suite, Using the Staffware Process Client, Issue 2, and

Defining Staffware Procedures, Issue 2, 2002.
37. Workflow Management Coalition. WFMC Home Page: http://www.wfmc.org. The

Workflow Reference Model (WFMC-TC-1003). 1995.
38. Wintergreen. Business process management (BPM) market opportunities, strate-

gies, and forecasts, 2003 to 2008. Lexington: WinterGreen Research, 2003.



A Human-Oriented Tuning of Workflow Management Systems 95

A List of Tuning Measures

A list of all generated human-oriented tuning measures, including the eliminated
ideas, can be found on http://is.tm.tue.nl/staff/ivanderfeesten/tuningmeasures.
htm.

B Results of Expert Validation

Table 3. Results of expert validation

Number of
R1 R2 R3 R4 R5 R6 Total number of * selections

1 **** *** ******* (7) 2
2 * **** ***** (5) 2
3 * * ** (2) 2
4 (0) 0
5 **** **** (4) 1
6 ** ** * *** ******** (8) 4
7 ** ** (2) 2
8 *** *** ***** ***** **************** (16) 4
9 (0) 0
10 (0) 0
11 (0) 0
12 ***** ** ******* (7) 2
13 ** **** * ******* (7) 3
14 ***** * ****** (6) 2
15 *** *** (3) 1
16 *** *** (3) 1
17 **** **** (4) 2
18 * ** *** (3) 2
19 ***** ***** (5) 1
20 (0) 0
21 ***** *** **** ************ (12) 3



The Price of Coordination in Resource Management

Kees van Hee, Alexander Serebrenik, Natalia Sidorova,
Marc Voorhoeve, and Jan van der Wal

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{K.M.v.Hee, A.Serebrenik, N.Sidorova, M.Voorhoeve, Jan.v.d.Wal}@tue.nl

Abstract. We propose a resource management policy that grants or refuses
requests for resources based only on the request made and the number of free
resources. Computations at runtime are independent of the number of active
cases. The policy requires little coordination and is therefore easy to implement
in workflow management systems. This policy has been shown to be successful in
avoiding deadlocks. In this paper we investigate its performance characteristics.

1 Introduction

Workflow nets [11,12,13,14], a special class of Petri nets, are frequently used to model
business processes. In business processes, three elements are essential: cases to be pro-
cessed, tasks to be performed on the cases and resources needed to perform these tasks.
Typical examples of such resources are money, machinery and manpower. Tradition-
ally, models of workflow nets emphasise the partial ordering of activities (i.e. execut-
ing a task for a case) in the process and abstract from the resources needed for them.
The resources, however, cannot be ignored in many practical applications [1,3,5,6,10].
Resource-constrained workflow nets have been introduced in [15] for resources that are
durable instead of consumable. Bad resource management may cause deadlocks, even
if the workflow net is well-designed, i.e. the workflow net is sound (cf. [14]).

Assessment of business process models involves correctness and efficiency. Cor-
rectness requirements include proper termination, i.e. that given some minimal initial
number of resources, in each reachable state of the business process it is possible to
release all claimed resources and complete all open cases. Efficiency criteria are quality
of service (e.g. the time between the arrival and the completion of cases) and costs of
operation (e.g. the number of resource-hours needed).

We consider business processes where an arbitrary number of cases is handled and
the resources belong to a single class. Cases are independent, i.e. they only communi-
cate with the resource manager by claiming and releasing resources in various quan-
tities. A resource manager, a human being or a software component in a workflow
management system, may either grant or refuse these resource claims. In principle the
resource manager may base its decisions on the global state of the process, i.e. the
number of cases, the state of each case and the number of available resources. The first
task of resource management is to ensure correctness of the resulting business process.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 96–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The Price of Coordination in Resource Management 97

This involves scheduling. Note that we are not dealing with a static scheduling prob-
lem in which all cases to be handled are known. Instead we are dealing with a dynamic
scheduling problem, in which new cases arrive according to a random process and the
routing and resource consumption of cases are largely unknown to the resource man-
ager. The banker’s algorithm of E.W. Dijkstra [4] ensures correctness in this way. This
algorithm considers for each case only the maximal number of resources needed by it
(credit limit) and the number of resources claimed and not yet returned so far (debt),
plus the number of available resources.

The original paper [4] does not consider efficiency, but it leaves room for prioritising
between cases that need resources, when they become available. Such a choice can be
based on heuristics like FIFO (first in first out), SPT (shortest rest processing time) or
EDD (earliest due date).

In [15], a property for cases is defined that we call solidity. When all cases are solid,
the business process is guaranteed to terminate properly. Cases that are not solid can be
solidified by setting a threshold for the number of resources that need to be available for
each claim to be successful. In practise, solidification amounts to the following policy:
before committing resources to a case, make sure that there are enough resources avail-
able to allow its completion independently of other cases. This is akin to a well known
approach in production control [2]. The thresholds can be chosen in advance, when the
business process is defined.

In this paper, we investigate resource scheduling based on solidification. Resources
are granted to a task when the number of available resources exceeds a given threshold.
To determine thresholds that perform well, an iterative, simulation-based approach is
proposed. We illustrate our approach with a small example inspired by the building
industry.

The sketched approach leads to a robust “uncoordinated” resource management.
Note that the computation time needed at runtime by the resource manager is indepen-
dent of the number of active cases. It is interesting to compare the performance of these
robust resource managers w.r.t. more sophisticated ones, thus investigating the price of
coordination (cost of robustness). For a very small (tandem queue) example, it is possi-
ble to compute an optimal global scheduler by Markov decision theory [9]. We compare
the performance of the robust and optimal approaches.

The remainder of the paper is organised as follows. We describe our motivating
example in Section 2. Basic notions from Petri net theory are defined in Section 3.
Correctness and solidification are introduced in Section 4. Then, efficiency criteria are
proposed and assessed by means of two examples in Section 5. Finally, we discuss the
results presented.

2 Motivating Example

The business processes investigated are modelled as workflow nets. Our example model
describes the business process of a building contractor, who constructs buildings of a
similar nature in large numbers for various clients. Each building under construction
represents a case. Each case is divided into tasks, that are performed by subcontractors
and require a certain amount of time to complete. The resource considered is money; the



98 K. van Hee et al.

contractor has an account at his bank with a fixed credit limit. At the onset of a task, an
amount of money has to be paid to the subcontractor. At termination of a task, the client
pays some amount of money (not necessarily the same as paid to the subcontractor). All
payments pass through the contractor’s bank account. So each construction task can be
characterised by three parameters: payment to a subcontractor, duration and payment
from the client. The net model for each task is shown in Figure 1. Horizontally, the
control flow is depicted; the remaining edges describe the resource flow. Initially money
is transferred to the account of the subcontractor and money is received at the end.

begin end

bank

subcontractor client

Fig. 1. A typical construction task

Construction starts by paying a subcontractor 2 mu (units of money, e.g. 20.000
euro) for the groundwork. This process takes twenty days and upon completion the
client pays 1 mu. The next task is known as framing and includes building walls, win-
dows and a roof. For this stage 4 mu is required by a subcontractor, and after thirty
days the work is finished and 2 mu is paid by the client. Next, additional commissions
(add-ons) of ten days long may be requested by the client. Each add-on requires 1 mu as
initial payment to the subcontractor. The same amount is charged from the client when
the task is finished. The independence of add-ons is modelled as a loop with 45% exit
chance. Then, the internals of the building are installed (plumbing, heating, electricity).
This task takes thirty days, requiring an initial sum of 1 mu for the subcontractor. This
sum is payed by the client at termination of this task. Finally, when the construction
is approved by the customer, she pays back the remaining 3 mu. The workflow net
corresponding to this process description is presented in Figure 2. When considering
correctness, we treat the tasks as transitions. However, when treating performance, the
indicated timing delays must be observed and tasks are treated as subnets defined by
Figure 1. For the sake of simplicity we abstract from the communication with subcon-
tractors and clients, including money transfers.

The process described can deadlock and thus is not guaranteed to terminate prop-
erly. Suppose the credit limit equals 16 mu and the groundwork is started for 8 clients
on days 1 to 8. On days 9 to 15, applications of 7 more clients are received, but these
cases cannot start due to a lack of resources. On day 22, the groundwork for the first



The Price of Coordination in Resource Management 99

2
1 4 2

1
1 1

0
3

30

20 10
0

bank

30

addons

1

internal

i f

handover

p q

groundwork

sframing

Fig. 2. Workflow of a building construction

two clients has terminated, 2 mu is available and the groundwork for client 9 is started.
By immediately starting groundwork for new clients as soon a 2 mu becomes available
rather than waiting for 4 mu and starting framing activities, we will arrive at a state
where only 1 mu is available and 15 clients are in state p, which is a deadlock state.
Such a deadlock can be achieved for larger credit limits as well.

As explained in the introduction, several deadlock avoidance policies can be im-
plemented. Dijkstra’s scheduling algorithm [4] will prevent groundwork for the 13-th
client to start in the above scenario. This will allow framing to start for at least one
client, eventually freeing the resources invested. Deadlock is likewise avoided by solid-
ifying the process, setting a threshold of 3 mu for the groundwork task. Groundwork is
started for a new client, investing 2 mu, only if 5 mu (the required 2 plus the threshold
amount) are available.

However, deadlock avoidance alone does not guarantee a good performance. As-
sume that all cases have one add-on option. With the threshold 3 and 16 mu, it is possi-
ble to reach a global state where 12 cases are waiting in state p and for one case framing
has started. After 70 days, 5 mu becomes available, which allows either to start ground-
work for a new case or to start framing for a waiting case. If the groundwork option is
chosen, 3 mu are left, so framing has to wait 20 more days, upon which framing can
start for one case and we are back in the initial state. Thus, only one case in 90 days is
completed. It is not difficult to find a different resource management scenario allowing
the completion of 3 cases every 70 days. The reason for the bad performance of the
sketched scenario is that the number (13) of active cases is too high. By increasing the
minimum threshold of 3 for starting the groundwork of a new case, the number of active
cases can be reduced.

3 Preliminaries

We adopt standard notation for sets, bags and transition systems. A Petri net is a tuple
N = 〈P,T,F+,F−〉, where:

– P and T are two disjoint non-empty finite sets of places and transitions respectively,
the set P∪T are the nodes of N;

– F+ and F− are mappings (P×T )→ N that are flow functions from transitions to
places and from places to transitions respectively.

We present nets with the usual graphical notation.



100 K. van Hee et al.

Markings are states (configurations) of a net. We denote the set of all markings
reachable in net N from marking m as R (N,m). We will drop N and write R (m) when
no ambiguities can arise. Given a transition t ∈ T , the preset •t and the postset t• of t
are the bags of places where every p ∈ P occurs F−(p, t) times in •t and F+(p, t) times
in t•. Analogously we write •p, p• for pre- and postsets of places. We will say that a
node n is a source node if and only if •n = /0 and n is a sink node if and only if n• = /0.

A transition t ∈ T is enabled in marking m if and only if •t ≤m. An enabled transi-
tion t may fire. This results in a new marking m′ defined by m′ def= m−•t +t•. We interpret
a Petri net N as a transition system/process where markings play the role of states and
firings of the enabled transitions define the transition relation, namely m+•t t−→m+t•.
The notion of reachability for Petri nets is inherited from the transition systems. A net
N = 〈P,T,F+,F−〉 is called a state machine if •t and t• are singleton bags for all t ∈ T .

Given a Petri net, a place invariant is a row vector I : P→Q such that I ·F = 0.
In this paper we primarily focus upon the Workflow Petri nets (WF-nets) [11]. As

the name suggests, WF-nets are used to model the processing of tasks in workflow
processes. The initial and final nodes indicate respectively the initial and final states of
processed cases.

Definition 1. A Petri net N is a Workflow net (WF-net) if and only if :

1. N has two special places: i and f . The initial place i is a source place, i.e. •i = /0,
and the final place f is a sink place, i.e. f • = /0.

2. For any node n ∈ (P∪T ) there exists a path from i to n and a path from n to f .

We extend the notion of WF-nets in order to include information about the use of
resources into the model. A resource belongs to a type; we have one place per resource
type in the net where the resources are located when they are free. We assume that
resources are durable, i.e. they can neither be created nor destroyed, they are claimed
during the handling procedure and then released again. By abstracting from the resource
places we obtain the WF-net that we call production net.

Definition 2. We will say that a WF-net N = 〈Pp∪Pr,T,F+
p ∪F+

r ,F−p ∪F−r 〉 with initial
and final places i, f ∈ Pp is a Resource-Constrained Workflow net (RCWF-net) with the
set Pp of production places and the set Pr of resource places if and only if

– Pp∩Pr = /0,
– F+

p and F−p are mappings (Pp×T)→N,
– F+

r and F−r are mappings (Pr×T)→N, and
– Np = 〈Pp,T,F+

p ,F−p 〉 is a WF-net, which we call the production net of N.

The processes that we consider can be modelled as WF nets with only one resource
place, where the production net is a state machine (SM1WF-nets). In [15] it is shown
that a business process modelled by an arbitrary workflow net can be converted to a
state machine workflow net, provided that cases are independent.

Definition 3. An RCWF-net N = 〈Pp∪Pr,T,F+
p ∪F+

r ,F−p ∪F−r 〉 is called a state ma-
chine workflow net with one resource type (SM1WF-net) if Pr = {r} and the production
net Np of N is a state machine.

Observe that the net in Figure 2 is indeed an SM1WF-net.



The Price of Coordination in Resource Management 101

4 Correctness

As explained in the introduction the correctness criterion we consider is proper termina-
tion, also known as soundness in WF-nets. Proper termination is the property that every
marking reachable from an initial marking can reach the corresponding final marking.
Initial markings of the net have some tokens (say k) in the initial place and a number
of resource tokens on each resource places. The corresponding final marking has k to-
kens in the final place; the resource places must contain the same number of tokens as
initially. We assume that the number of resource available initially is sufficient.

Another correctness requirement that should be reflected by the definition is that
resource tokens cannot be created during the processing, i.e. at any moment of time the
number of available resources does not exceed the number of initially given resources.
The definition of proper termination reads thus as follows:

Definition 4. Let N be an RCWF-net.
N is (k,r)-sound for some k ∈ N,r ∈ NPr if and only if for all m ∈ R (k[i] + r) holds:
mr ≤ r and m

∗−→ (k[ f ]+ r).
N is sound if and only if there exists r ∈ NPr such that it is (k,r′)-sound for all k,r′ ∈
N,r′ ≥ r.

In [15], it is proved that for any sound SM1WF-net there exists a unique place
invariant W such that W (i) = W ( f ) = 0, W (r) = 1 and for all p ∈ Pp, W (p)≥ 0. Given
a place p we call W (p) the weight of p.

Example 1. Recall the construction Petri net presented in Figure 2. Then, W (i) =W ( f )
= 0, W (p) = 1, W (q) = W (s) = 3.

The discussion in Section 2 shows that the existence of a place invariant is necessary
but not sufficient.

4.1 Solidity

The key ingredient in determining proper termination of SM1WF nets, called solidity,
is the possibility that all resources claimed are eventually released. Important in the
algorithm is the path concept. A path is a sequence of transitions such that the output
state of a transition is the input state of the next transition. A path has an input and
output state, resp. the input state of the first transition and the output state of the last
transition. A path p is a successor of a path q if the input state of p equals the output
state of q. If the weight of the input state of a path is less than the weight of its output
state, the path is called a consumption path, if it is more than the weight of the output
state the path is called a production path. Finally, we define the resource need of a path.
This is the minimum number of resources needed for the execution of the path.

In our example net, the sequence (framing,addons, internal) is a path with input
place p and output place s. Since p has weight 1 and s has weight 3, it is a consumption
path. Its resource need is 5, since 4 free resources plus 1 resource occupied in the input
place p are sufficient to fire the sequence, leading to s occupying 3 resources plus 2 free
resource.



102 K. van Hee et al.

The above definition allows to formulate the necessary and sufficient condition for
solidity: Each consumption path produces enough resources to fulfil the resource need
of at least one successive production path.

Our example net does not satisfy this condition: the path σ = (groundwork) (con-
sisting of only one transition) is a consumption path, since its input place i has weight
0 and its output place p has weight 1. Its resource need equals 2. Any production path
succeeding σ has input place p and thus must start with transition framing needing 4
free resources, so the resource need of such a production path is at least 5 (4 free ones
and one occupied by p). So σ has no production successor with a resource need not
exceeding 2.

In order to verify solidity, given an SM1WF-net with Pp production places, we
introduce a matrix M, such that M(p, p) is defined to be W (p) for all p∈Pp and M(p,q)
is defined as the sum of W (q) and the minimal resource production of transitions from
p to q. If there are no such transitions M(p,q) is defined to be ω (denoting infinity).
The condition above has considered paths rather than individual transitions. Therefore,
we need to extend the definition of M to include paths of arbitrary length. To do so, we
have introduced a binary operation ◦ such that for any A,B : Pp×Pp→ N, the product
A◦B is defined as C : Pp×Pp→N where C(p,q) = min{max(A(p,r),B(r,q)) | r ∈ Pp}.
We denote A ◦A by A2 etc. One can show that M,M2,M4, . . . converges to a fixpoint,
which we call μ. Then, the intuitive condition for solidity stated above can be expressed
as follows:

Corollary 1. ([15]) The SM1WF-net N is solid if and only if

∀x ∈ Pp : miny{μ(y,x) |W (y) < W (x)} ≥minz{μ(x,z) |W (x) > W (z)}.
In our running example, the following holds:

M =

i p q s f
i 0 2 ω ω ω
p ω 1 5 ω ω
q ω ω 3 4 ω
s ω ω ω 3 3
f ω ω ω ω 0

M2 =

i p q s f
i 0 2 5 ω ω
p ω 1 5 5 ω
q ω ω 3 4 4
s ω ω ω 3 3
f ω ω ω ω 0

M4 =

i p q s f
i 0 2 5 5 5
p ω 1 5 5 5
q ω ω 3 4 4
s ω ω ω 3 3
f ω ω ω ω 0

M4 is the fixpoint. Soundness condition is violated by p since

min{μ(y, p) |W (y) < W (p)}= 2 < 5 = min{μ(p,z) |W (p) > W (z)}.
However, it is possible to solidify SM1WF nets with a resource invariant. This is

done by thresholding some of its transitions. A transition is thresholded by not firing
it when the resources it needs are available unless some additional resources are avail-
able too. The amount of required extra resources is called the threshold. Thresholding
replaces scheduling as by Dijkstra’s algorithm ([4]; it is similar to the order acceptance
strategy of ([2]). We have developed a method to find algorithmically minimal thresh-
olds for a net to become solid. It should also be noted that any threshold exceeding the
minimal one makes the net solid too.

The threshold solution proposed at the end of Section 2 has been obtained by the
solidification technique.



The Price of Coordination in Resource Management 103

5 Efficiency

5.1 Defining Efficiency

In order to estimate the quality of resource management, we need to define efficiency
criteria. As mentioned in the introduction, we distinguish two kinds of criteria: those
considering the quality of service, and those considering the cost of operation. Quality
of service is focused towards minimising the throughput or cycle time of a case, i.e.
the time between the arrival and the completion of the case. In our case minimising the
throughput is equivalent to minimising the waiting time of a case, since the processing
times of tasks are independent of the resource allocation. For a random stream of cases
it is natural to consider as quality of service the average cycle time or waiting time:

lim
n→∞

∑n
i=1 w(i)

n
,

where w(i) is a waiting time of case i. An alternative for the minimising the average
expected time is minimising the probability that a case has a waiting time larger than
some given bound.

For the cost of operation we consider as criterion the average expected use of re-
sources. However we need an additional condition for this criterion to eliminate the
situation when the cost of operation is zero but no cases are handled. There are at least
two approaches to deal with this: one can assume some minimum level of service as
a boundary condition (like the average expected waiting time) or one can assign cost
to resources and rewards for handling cases. Then the cost of operation is transformed
into the value of the operation by subtracting the the reward of handled cases from the
average cost of resource usage. We choose this last option; a negative cost of operation
corresponds to making profit.

To evaluate the solidification technique, we computed an optimal scheduler de-
scribed in Section 5.2, comparing it to the solidification approach. Unfortunately, opti-
misation is only feasible for very small examples, like the tandem queue described in
the next subsection. To tackle our building example, only simulation techniques have
been used (Section 5.3).

5.2 Tandem Queue Example

In order to determine what extra cost we incur in case of the solidification approach,
we need to find an optimal resource allocation strategy. Such a strategy defines for each
possible global state a decision for resource assignment. Finding an optimal strategy is,
in general, an extremely difficult task. Therefore, we consider a tandem queue example.

The tandem queue example has two sequential tasks as shown on Figure 3. Like
in Figure 2, numbers inside the task boxes denote the duration of the task. We assume
exponential service times with mean service times equal to 1 for both tasks. 1 The arrival

1 In order that the system satisfies the Markovian property, we need at least phase type service
time distributions. However, since each extra phase adds an extra dimension to the state space,
the number of phases has to be limited so that the Markov decision approach is still feasible.
For random service times with a squared coefficient of variation larger than 0.5, two phases
suffice to mimic the first two moments. Here we have chosen for exponential service times.



104 K. van Hee et al.

sq

1 0 1 2

1
task1

1
task2p

Fig. 3. Tandem queue example

process is Poisson with 4 arrivals per time unit on average. For this example the optimal
strategy can be calculated by means of a Markov decision process theory [9,7], using
techniques such as successive approximation.

To model this workflow system as a Markov decision process with continuous time
we consider the two tasks as multi-server service stations, where the servers are the
resources. The state of the Markov decision process is a quadruple 〈q1, t1,q2, t2〉 where
q1 and q2 are the number of waiting cases for the first and the second tasks and t1 and
t2 are the number of cases treated in these service stations respectively. The possible
actions are: admission of a newly arrived case, assigning resources to a waiting case
in the queue q1 and assigning resources to a waiting case in the queue q2. Using the
well-known uniformisation technique [7] we translate the model with continuous time
into a Markovian decision process with discrete time. In order to determine the optimal
strategy we need a finite state space, so we need to add some more restrictions. We
assume q1 ≤ 3 and q2 ≤ 3. These assumptions imply that when a new case arrives to
a queue but the queue is full, the case is lost. In order to achieve finiteness of the state
space, t1 and t2 should be bounded as well. We set t1 ≤ 4 and t2 ≤ 7. Under these
restrictions, the number of states space of the system is bounded.

The boundedness restrictions are not too severe if the loss of cases lost is penalised.
High penalties imply that queue overflow is avoided as much as possible. Case loss
in q1 is punished by 5 cost units, case loss in q2 by 10 cost units. We consider these
penalties as opportunity costs.

Finally, to complete the specification of the Markov decision process, the perfor-
mance measures have to be chosen. We consider two different measures, namely qual-
ity of service (QoS) and cost of operation (CoO). For the QoS measure, the waiting
times at q1 and q2 plus the opportunity costs for queue overflow are added. For the
CoO measure, we consider the average resource occupation of a case, i.e. the process-
ing time of the first station plus the waiting time at q2 (where one resource is occupied
by the case) plus twice the processing time of the second station (where two resources
are occupied). As explained earlier, we subtract the reward for completed cases, which
equals 7. After the subtraction, the cost of operation becomes negative for successful
executions. Hence, minimising the cost of operation reflects the best possible scenario
from “a case’s point of view”.

Using the standard successive approximation techniques (c.f. [7]), we derive an op-
timal strategy: it defines an action for each possible state. Since the state space consists



The Price of Coordination in Resource Management 105

of 640 states, the strategy becomes rather complex. Recall that the Bellman equation
describes successive approximations v0, . . . as follows:

v0(s) = 0

vn+1(s) = min
a∈A
{c(s,a)+ ∑

s′∈S

P(s′ | s,a)vn(s′)},

where s ∈ S.
In the equations above, S is the set of all possible states, i.e. the set of quadruples
〈q1,t1,q2,t2〉, A is the set of all possible actions: {reject,assign to q1,assign to q2},
P(s′ | s,a) is the probability to move from the state s to state s′ by executing an ac-
tion a, and c(s,a) is the cost per time unit when the system is in state s and action a
is taken. The value vn(s) is the total cost for running the system for n time units from
state s under an optimal strategy. We consider the two cost functions QoS and CoO as
described above.

We note that the average cost g per time unit under an optimal strategy satisfies:

min
s∈S

(vn+1(s)− vn(s))≤ g≤max
s∈S

(vn+1(s)− vn(s))

In case the process is recurrent, which means that from every state one can reach every
other state, these two bounds converge to the same value. In this way one can compute
the exact values of quality of service and cost of operation for the tandem queue. The
optimal values found are

QoS : 1.73
CoO : −2.88.

Next, we apply our solidification approach. We start by observing that the place in-
variant W exists and satisfies W (p) = W (s) = 0, W (q) = 1. Therefore, the solidification
approach is applicable. The powers of the matrix M are defined as follows:

M =

p q s
p 0 1 ω
q ω 1 2
s ω ω 0

M2 =

p q s
p 0 1 2
q ω 1 2
s ω ω 0

The fixpoint μ is reached with M2. This net is unsound since

min{μ(y,q) |W (y) < W (q)}= 1 < 2 = min{μ(q,y) |W (y) < W (q)}.

Solidification requires that the resource request of the first task is granted only if
there is at least one more resource available. In this way one guarantees that at least
one resource is available when a case arrives at place q in the net, so that the second
transition can fire. Observe that if more than one additional resource is available, proper
termination is guaranteed as well. Therefore, we have performed a number of simula-
tion runs for different values of the parameter k—the number of additional resources—
ranging from one to three. For each one of the values of k, two priority configurations
were considered. The first uses FCFS (first come first served) priority for all tasks of
all cases. The second uses SPT priority for tasks (i.e. the second task has priority over



106 K. van Hee et al.

Table 1. QoS and CoO for the tandem queue example

Strategy Threshold QoS CoO
Optimal 1.73 -2.88
Solidification; 0 3.02 -2.13
FCFS 1 2.14 -2.67

2 2.09 -2.72
3 2.53 -2.44

Solidification; 0 2.23 -2.60
SPT+FCFS 1 1.94 -2.80

2 2.09 -2.72
3 2.53 -2.44

the first one) and FCFS for the same task of different cases. In both cases, “greedy”
resource allocation takes place: if the set of tasks that can be started (i.e. for which the
number of resources is at least the requested number plus the threshold) is nonempty,
some task will start immediately.

Finally, for each one of the cases two values have been measured: cost of operation
(CoO) and quality of service (QoS).

Table 1 represents our results for quality of service and cost of operation. The perfor-
mance w.r.t. the optimal strategy is given at the top. Then come solidification strategies
with various threshold values. The thresholds indicated represent the extra number of
available resources required for entering the queue of the first task or station. Since the
mathematical model has queues with finite capacity, no deadlocks are possible, so so-
lidification is not required. The cases that are waiting in the queues are treated in FCFS
order; when resources become available, the longest waiting case that can be served is
selected. The third group of results stem from the solidification extended with the SPT
priority rule. When resources become available, the second station has priority. Cases
of that station are treated in FCFS order.

We observe that the simulation minima are obtained for QoS for a threshold value
of 1 for the prioritised configuration and 2 without SPT priorities, and for CoO for
threshold value 2, either with or without priorities. The exact values are 1.94 for QoS
and -2.80 for CoO.

While comparing the theoretical results with the results of simulation, we observe
that the relative error is quite small for CoO and somewhat larger for QoS. Probably,
this difference is caused by the penalty for lost opportunities.

By examining scenarios where the solidification approach makes suboptimal de-
cisions, it is possible to arrive at heuristics that improve upon the decisions made. It
seems that information predicting the future availability of resources can be of some
use here. Of course, improving performance in this way decreases the robustness, i.e.
more information is needed and a less straightforward computation.

5.3 Simulation Results for the Construction Example

A simulation study in Arena [8] has been conducted to determine the optimal solidi-
fication of the example net from Figure 2. We assumed that the credit limit is 50 mu



The Price of Coordination in Resource Management 107

Table 2. QoS and CoO for the construction example

Strategy Threshold QoS CoO
Solidification; 1 deadlock
FCFS 2 deadlock

3 106.05 17.59
4 43.48 6.93
5 51.19 6.89

Solidification; 1 deadlock
SPT+FCFS 2 50.93 7.71

3 45.66 6.77
4 38.79 5.97
5 51.15 6.49

and that the arrival of new customers is Poisson with the average time between arrivals
being 8.5 days.

In Table 2, the simulation results for resource management in our building example
are given. In the first series of simulations, resources are assigned to transitions based on
the FCFS principle. This means that when the resources become available, the longest
waiting case that has become enabled can continue. In the second series, this FCFS
strategy is extended with the SPT priority rule, like in the tandem queue example. The
first task (groundwork) gets lowest priority, next comes the framing task and the other
two tasks have highest priority. Parameter of the simulation is again the threshold value
for the groundwork task, which ranges from one to five. Thresholds one and zero yield
deadlock in both cases. With a threshold of two, the simulation does not deadlock in
combination with the SPT priority rule, although this is theoretically possible. Thresh-
olds greater than three do solidify the net. For thresholds above five, both the CoO and
QoS performance measure increase rapidly, so they have not been listed.

Summarising these results, we observe that the best quality of service is always
achieved for threshold four: 43.48 in the FCFS case and 38.79 for SPT extension. Unlike
this, the optimal threshold for the lowest cost of operation depends on the resource
assignment policy. For FCFS, the minimum is obtained for threshold five (6.89), while
for the SPT extension it happens for threshold four (5.97).

6 Conclusion

In this paper, we have presented a way, called solidification, to obtain a deadlock free
scheduler that requires minimal coordination. The computation of this scheduler needed
at runtime are independent of the number of active cases. This can be of importance in
the implementation of workflow management systems.

We have studied the price of coordination in resource management, i.e. the dif-
ference in performance between the optimal (global) and the robust (local) scheduler
based on the solidification approach. The performance criteria studied did correspond
to quality of service and cost of operation respectively. Our experiments indicate that
the performance loss due to a minimal coordination scheduler is not too high, but more



108 K. van Hee et al.

convincing realistic case studies are sorely needed. The solidification scheduler can be
significantly improved by extending it with an SPT priority rule.

For further research, it is interesting to apply our method to real-life resource
scheduling problems. As it is computationally infeasible to compute an optimal sched-
uler for such processes, comparisons have to be made with heuristic schedulers used in
practice. A second line of investigation is the improvement of our resource allocation
strategy by adding more information without compromising robustness too much.

References

1. K. Barkaoui and L. Petrucci. Structural analysis of workflow nets with shared resources. In
Workflow management: Net-based Concepts, Models, Techniques and Tools (WFM’98), vol-
ume 98/7 of Computing science reports, pages 82–95. Eindhoven University of Technology,
1998.

2. J. Bertrand, J.C.Wortmann, and J.Wijngaard. Production Control, A Structural and Design
Oriented Approach. Educatieve Partners, 1998. Second revised edition.

3. J. Colom. The resource allocation problem in flexible manufacturing systems. In W. van der
Aalst and E. Best, editors, Application and Theory of Petri Nets 2003, ICATPN’2003, volume
2679 of Lecture Notes in Computer Science, pages 23–35. Springer-Verlag, 2003.

4. E. W. Dijkstra. Selected Writings on Computing: A personal Perspective. Texts and Mono-
graphs in Computer Science. Springer Verlag, 1982.

5. J. Ezpeleta. Flexible manufacturing systems. In C. Girault and R. Valk, editors, Petri nets
for systems engineering. Springer-Verlag, 2003.

6. J. Ezpeleta, J. M. Colom, and J. Martı́nez. A Petri net based deadlock prevention policy for
flexible manufacturing systems. IEEE Transactions on Robotics and Automation, 11(2):173–
184, 1995.

7. E. Feinberg and A. Shwartz. Handbook of Markov Decision Processes: Methods and Algo-
rithms. Kluwer, 2002.

8. W. Kelton, R. Sadowski, and D. Sadowski. Simulation with Arena. McGraw-Hill, 1998.
9. M. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley,

New York, 1994.
10. M. Silva and E. Turuel. Petri nets for the design and operation of manufacturing systems.

European Journal of Control, 3(3):182–199, 1997.
11. W. M. P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo, editors,

Application and Theory of Petri Nets 1997, ICATPN’1997, volume 1248 of Lecture Notes in
Computer Science. Springer Verlag, 1997.

12. W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

13. W. M. P. van der Aalst. Workflow verification: Finding control-flow errors using Petri-net-
based techniques. In W. M. P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161–183. Springer-Verlag, 1999.

14. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT Press, 2002.

15. K. van Hee, A. Serebrenik, N. Sidorova, and M. Voorhoeve. Soundness of resource-
constrained workflow nets. In G. Ciardo and P. Darondeau, editors, Application and The-
ory of Petri Nets 2005, ICATPN’2005, Lecture Notes in Computer Science. Springer Verlag,
2005. accepted.



W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 109 – 119, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

sPAC (Web Services Performance Analysis Center): 
Performance Analysis and Estimation Tool  

of Web Services 

Hyung Gi Song1 and Kangsun Lee2,*

1R&D Institute, Netville Co., Ltd., 
161-7 Yeomni Mapo, Seoul, 

121874 South Korea 
joshuasong@netville.co.kr

2 Dept. of Computer Engineering, Myongji University, 
San 38-2 Namdong Yongin, Kyungki, 

449728 South Korea 
ksl@mju.ac.kr

(tel) +82-31-330-6444 (fax) +82-31-330-6432

Abstract. Web service is a promising technology to efficiently integrate dispa-
rate software components over various types of systems and to exchange vari-
ous business artifacts among business organizations. As many web services are 
nowadays available on Internet, quality of services (QoS) becomes increasingly 
important to distinguish different service providers. Performance mainly char-
acterizes QoS especially in mission critical services. However, performance 
analysis is a very difficult job, since it involves nondeterministic networks, fre-
quent changes on workload intensity and unexpected usage patterns. In this 
work, we introduce sPAC (Web Services Performance Analysis Centre) and 
show how customers can verify timeliness of their web services semi-
automatically. sPAC 1) graphically describes the workflow of web services, 2) 
automatically generates test codes for the web services and invokes them for 
performance tests using Java threads, 3) automatically generates a simulation 
model for the specified workflow model, and conducts extensive simulations 
for various load conditions and usage patterns, and 4) reports analysis and esti-
mation results to help customers determine if the composed web services can 
meet the performance requirements.

Keywords: Process simulation, Quality of Service in business processes, Proc-
ess verification and validation, Processes and service composition. 

1   Introduction 

Web services are expected to provide the ideal platform for integrating business arti-
facts disparate platforms, systems, and organization [1]. As many web services with 
similar functionalities are available on the Internet, QoS (Quality of Services) and the 

* Corresponding author.  



110 H.G. Song and K. Lee 

performance/cost will distinguish service providers from each other when a customer 
makes decisions of selecting suitable web services [2]. Therefore, QoS analysis be-
comes increasingly more important to provide accurate QoS information and to estab-
lish SLAs (Service Level Agreements) between service customers and service provid-
ers, accordingly. 

QoS of web services is a combination of several qualities or properties of the com-
prising web services, for example, availability, security, reliability and performance 
[3,4]. These QoS properties are inherently dynamic and change in real time depending 
on how these services are actually performing. Among the dynamic QoS factors, 
performance may be the most difficult factor to access, since it involves nondetermin-
istic network, abrupt changes on load intensity, and unexpected usage patterns.  

In this work, we propose a simulation-based methodology to analyze and estimate 
the performance of web services. Our methodology tests web services by actually 
invoking the web services and analyses the resulting response time under low load 
conditions. Then, the given web services are automatically translated into a simulation 
model, while the test results are fed into our simulation engine as simulation parame-
ters. The simulation model is used for extended performance analysis; we make vir-
tual heavy load and estimate the expected performance of the web services without 
actually invoking them on networks and system resources to save time and cost. 
sPAC (Web Services Performance Analysis Center) is a performance analysis and 
estimation tool to support our methodology. We introduce useful facilities of sPAC
and show how a customer uses sPAC to design, reengineer, verify their web services 
and finally produce a new business process (or web process) with guaranteed per-
formance. The methodology of sPAC can be the foundation of SLA automation [2] 
(i.e., automatic SLA creation, SLA monitoring and control) if SLAs are mainly de-
scribed by performance requirements as in the case of mission-critical services. 
This paper is organized as follows. In Section 2, we present the related work in this 
area and highlight key features of our methodology. In Section 3, sPAC architecture 
is introduced with detailed explanation on key components. Section 4 demonstrates 
sPAC with an example. Section 5 concludes this paper with future works to achieve. 

2   Related Research 

Building web processes is an active area of research and development. Many research 
groups have developed flow languages for composing web services into web process, 
including WSFL [5], XLANG [6] and BPEL4WS [7]. One of the problems in the 
flow languages is that they do not have explicit supports to guarantee QoS in the 
composition of web services. Supporting QoS in web services is an active research 
area due to this reason, but is still at its infancy.  

QoS issues have been addressed from the perspective of the Service providers of web 
services, and from the perspective of the Service consumers of these services [8]. Many 
research groups have been studying QoS of web services with the perspective of service 
providers. Shuping Ran [9] and Peter Farkas [10] researched a new web services discov-
ery model, which enables QoS-based composition of web services by enhancing standard 
UDDI specification. Tao Yu [11] proposed a framework and algorithm for providing 
QoS information of web services by designing QoS broker module for web service serv-



sPAC (Web Services Performance Analysis Center) 111 

ers. These research results have been advancing QoS-guaranteed composition of web 
services, but the specification of standard web services technology or web services serv-
ers have to be modified accordingly in order to enable the proposed methods. John A. 
Miller [4] researched on estimating performance of web services and developed SCET 
(Service Composition and Execution Tool) to support the perspective of service custom-
ers. SCET works without modifications on web services standards, and provides many 
convenient facilities to help service customers to estimate performance of the composite 
web services. SCET estimates the performance of web services by building and execut-
ing a simulation model. However, the simulation model and necessary parameters are not 
validated against the real data, and therefore it might be possible to produce wrong esti-
mation data. Test-based analysis evaluates the performance of web services more accu-
rately by actually executing web services in real world conditions [12]. However, it re-
quires high cost and time, and cannot be used when a given test load exceeds resource 
capability of the test-host computer. Combining simulation-based analysis with test-
based analysis might be the best way to produce accurate performance estimation and to 
save cost, at the same time. 

3   sPAC (Web Services Performance Analysis Centre) 

In this section, we present the methodology, performance metrics, and the architecture 
of sPAC (Web Services Performance Analysis Centre).  sPAC works with the per-
spective of service consumers and mixes simulation and test-based analysis method to 
evaluate and estimate the performance of web services. Followings are the important 
features of sPAC:

Automatic generation of simulation models: Customers specify how web ser-
vices are formed into a new web process with UML (Unified Modeling Lan-
guage)’s [13] activity diagram. Then, the activity diagram is automatically 
translated into a simulation model. The simulation model is equivalent to the 
activity diagram by following translation rules briefly explained in Section 
3.1. This feature guarantees the validity of the simulation model and thereby 
increases the accuracy of performance evaluation. 
Simulations with testing results: A new web process is executed by actually 
invoking the web services with low load intensity. Then, the testing results 
are fed into the simulation model as simulation parameters to increase esti-
mation accuracy in heavy load conditions. 

Detailed explanations are found in Section 3.1 

3.1   sPAC Methodology 

sPAC is performed with the following steps: 

Step 1: A customer defines how web services are formed into a new business process 
(or web process). We use UML’s activity diagram to represent workflow of 
web services. With activity diagrams, web services are represented as nodes,
while the execution path is represented as links with decorations to specify 
fork, join, parallel and sequential execution, and other various conditions. 



112 H.G. Song and K. Lee 

Step 2: sPAC dynamically invokes the web services and executes them to get DRT 
(Dissected Response Time) and TRT (Traced Response Time) with low load 
intensity. DRT and TRT are our performance measurements and will be ex-
plained in Section 3.2. 

Step 3: sPAC automatically generates a simulation model for the web process. Our 
simulation model is constructed based on Simjava [14], a process-based 
discrete event simulation package for Java. With Simjava, nodes and links of 
the activity diagram are represented as entities and ports, respectively. The 
execution order and types are exactly preserved as they are in the activity dia-
gram. More details on the generation of the simulation model are found in 
Reference [15].  

Step 4: Results from DRT and TRT tests produced in Step 3 are fed into the parame-
ters of the simulation model generated in Step 3. 

Step 5: A series of simulations are performed to estimate the performance of the web 
process under heavy and complex load conditions. 

Step 6: sPAC analyzes the test and simulation results, and normalizes them as DRT, 
TRT and TPM (Transactions per Minute). Analysis results are reported to cus-
tomers with text and graphical forms and used to decide if the web process sat-
isfies the performance criteria 

3.2   sPAC Performance Metrics 

DRT (Dissected Response Time) and TRT (Traced Response Time) are the perform-
ance metrics of sPAC.

DRT divides response time into three factors: Network Time (N), Messaging Time 
(M) and Service Time (S). The response time, T, for a single web service, s, is de-
fined in Equation 1. 

T(s) = N(s) + M(s) + S(s) (1)

Network Time is the amount of delay determined by bandwidth of network path be-
tween customers and the providers of web services, network traffic and performance 
of network equipments. Messaging Time is the amount of time taken by service pro-
viders to process SOAP messages. SOAP is an XML-based protocol. Therefore, the 
size of the exchanging message is usually bigger than other binary-based protocols, 
and the time to process SOAP messages is not negligible. Service Time is the amount 
of time for a web service to perform its designated task. It depends on efficiency of 
business logic, hardware capability, framework for web services and/or operating 
system of web services.

When a web process is commercialised with packaged software or in the form of 
web application, each web service is expected to experience heavy load intensity. 
TRT performance analysis creates virtual users with Java threads, lets them invoke 
web services simultaneously, and collects DRT for various load conditions. While 
TRT test can answer how the composed web process performs well in various user 
load, it costs time and system resources. Moreover, the maximum testable load always 
has a limit; the testable load is determined by physical memory size, operating sys-
tem’s memory management policy, network conditions, and/or framework for web 
services of the test host computer. We use simulation to tear this barrier away. A 



sPAC (Web Services Performance Analysis Center) 113 

simulation model is automatically generated as explained in Section 3.1 and used for 
testing out heavy load conditions without actually invoking web services through 
physical resources and networks. To achieve better accuracy, the real test results are 
normalized and fed into the simulation model as simulation parameters. With the TRT 
tests and simulation results, software architects could be aware of the performance of 
the web process in various conditions and foresee if the web process performs well 
after deployment. 

3.3 sPAC Architecture 

Figure 1 shows the system architecture of sPAC. Two major components of sPAC,
Web Process Composer and Performance Evaluator, are explained in Section 3.3.1 – 
Section 3.3.2. 

3.3.1   Web Process Composer 
Web Process Composer helps users to specify their web process with UML’s activity 
diagram. Web Process Specification Interface is a set of graphical interfaces allowing 
users to compose web process conveniently. Users also determine desired values of 
parameters to control tests and simulations (for example, minimum load, maximum 
load, and test & simulation frequency). WSDL Analyzer fetches WSDL file from 
remote web services and analyses it to recognize the interface of web services. 

Fig. 1. System architecture of sPAC



114 H.G. Song and K. Lee 

3.3.2   Performance Evaluator 
Performance Evaluator controls DRT and TRT test for the specified web process. 
Web Service Proxy Generator creates proxy classes of web services in runtime. With 
the help of Common Language Runtime (CLR) of the Microsoft .NET Framework, 
Web Service Proxy Generator creates corresponding source codes of proxy classes in 
C# language, compiles them as Dynamic Link Library, and loads the DLLs onto the 
memory so that Test Engines can communicate with each web service. Test Engines 
invoke web services, bind and execute them to perform DRT and TRT tests under 
fairly low load intensity. Simulation Model Generator creates a simulation model for 
the given web process, and interacts with Simulation Engine to perform extended 
TRT performance analysis under heavy load conditions. Result Analyzer summarizes 
the analysis and estimation results with graphs and text reports. 

4   Example: My Travel Planner 

In this section, we illustrate sPAC with an example of My Travel Planner.  Suppose 
My Travel Planner will provide services for booking a flight, reserving an accommo-
dation, renting a car, finding out the current currency rate between Korea and France, 
exchanging travel money, and processing credit cards. Also, we would like to create 
My Travel Planner just by integrating the existing web services available on the web.  

As shown in Figure 2, users can search reusable web services in UDDI and graphi-
cally specify how they are formed into a new web process.  

After the web process is composed, users set execution parameters (i.e., input and 
parameters for the composite web services) and environment parameters (i.e., maxi 

Fig. 2. Web Process Specification 



sPAC (Web Services Performance Analysis Center) 115 

Fig. 3. Web Process Information 

Fig. 4. TRT test results 



116 H.G. Song and K. Lee 

Fig. 5. DRT test results 

mum load, minimum load, and testing and simulation frequency) with appropriate 
values. Detailed information on each web service is summarized as shown in Figure 
3, including available methods, input and output parameters of web services, and 
return types. 

For the given web process, sPAC first conducts DRT and TRT tests with low load 
intensity. In My Travel Planner example, DRT and TRT tests are conducted with 10 – 
50 numbers of simultaneous users, and take 40 second to complete. Figure 4 - 5 show 
DRT and TRT test results for My Travel Planner example. As shown in Figure 4, 
FlightBooking web service becomes the performance bottleneck of My Travel 
Planner as the number of simultaneous requests increases. According to DRT tests in 
Figure 5, the response time of FlightBooking web service is mainly dominated 
by service time (78.89% of the response time) compared to messaging time (20.46 %) 
and network time (0.64%). This observation suggests us to reengineer the business 
logic of FlightBooking, or to increase hardware capability, or to find other ser-
vice alternatives for better performance. 

Then, sPAC creates the corresponding simulation model automatically, compiles 
the simulation model and runs a series of simulations to foresee if the web process 
performs well in heavy user load conditions. Figure 6 shows the difference between 
test-based analysis and simulation-based analysis under the low load intensity of 10 – 
50 simultaneous requests. The graph shows our simulation-based analysis is accurate 
enough to estimate the performance of My Travel Planner under the heavy load inten-
sity of 50 – 300 simultaneous requests. Figure 7 shows simulation-based TRT estima-
tion for the web services. Under heavy load of 200 simultaneous requests, Flight-



 sPAC (Web Services Performance Analysis Center) 117 

 

 

 

Fig. 6. Simulation Accuracy and Estimation Results 

 

Simulation Results 
vs. Test Results 

Fig. 7. Simulation-based TRT estimation 

 

FlightBooking 

Creditcard-
Validation 

100 simultaneous 
requests 



118 H.G. Song and K. Lee 

bottlenecks. Also, Figure 7 indicates that the overall response time of My Travel 
Planner drastically increases as the number of simultaneous requests exceeds 100.
All the estimation data will be used for software architects to foresee the perform-
ance of My Travel Planner after deployment, and to reengineer the web services, 
accordingly. 

5   Conclusion 

In this paper, we introduced sPAC, a performance analysis and estimation tool for 
web services. sPAC enables software architects to evaluate performance without re-
modeling or modifying existing web service standard technology or web service serv-
ers. We defined DRT and TRT as the performance metrics for web processes and 
embodied them in sPAC. In order to save time and cost, performance analysis has 
been done in dual mode: test-based mode for low load intensity and simulation-based 
mode for heavy load intensity. The given web process was automatically translated 
into a process-based discrete event simulation model, while the results from test-
based analysis were fed into the simulation parameters to increase estimation accu-
racy. The methodology of sPAC can be the foundation of SLA (Service Level 
Agreement) automation (i.e., automatic SLA creation, SLA monitoring and control) if 
SLAs are mainly described by performance requirements as in the case of mission-
critical services.  

We will extend our QoS analysis methods to other dynamic QoS properties, such 
as, availability, reliability and security for future work. Reference [16] is part of our 
achievement for this research direction. 

Acknowledgement 

This work was supported by grant No. R05-2004-000-11329-0 from Korea Research 
Foundation. 

References 

1. Preeda Rajasekaran, John A. Miller, Kunal Verma and Amit P. Sheth, Enhancing Web 
Services Description and Discovery to Facilitate Composition, In Proceedings of 
the First International Workshop on Semantic Web Services and Web Process Composi-
tion (SWSWPC'04), San Diego, California, 2004, pp. 34-47 

2. Li-jie Jin, Vijay Machiraju, Akhil Sahai, Analysis on Service Level Agreement of Web ser-
vices, Software Technology Laboratory, HP Laboratories, Palo Alto, HPL-2002-180, 
Hewlett Packard Company, 2002, June 

3. Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Quality Driven Web Services Com-
position, In Proceedings of WWW2003, 2003, Budapest, Hungary, pp. 411 - 421 

Booking and CreditcardValidation are expected to be the performance 



sPAC (Web Services Performance Analysis Center) 119 

4. Gregory. Silver, A. Maduko, R. Jafri,  and et. al, Modeling and Simulation of Quality of 
Service for Composite Web Services, Proceedings of the 7th World Multiconference on 
Systems, Cybernetics, and Informatics (SCI'03), Orlando, Florida, pp. 420-425, July 2003 

5. Frank Leymann, Web Services Flow Language (WSFL 1.0), http://www-3.ibm.com/      
software/ solutions/Webservices/pdf/WSFL.pdf, 2001 

6. Satish Thatte, XLANG: Web services for business process design, http://www.gotdotnet.com/team/ 
xml_wsspecs/xlang-c/default.htm, 2001 

7. Tony Andrews, Francisco Curbera, and et. al, Specification: Business Process Execution Lan-
guage for Web Services Version 1.1, http://www-128.ibm.com/developerworks/library/ws-
bpel, 2003 

8. Daniel A. Menasce, QoS Issues in Web services, IEEE Internet Computing, Nov. 2002, pp. 
72-75 

9. Shuping Ran, A model for Web services discovery with QoS, ACM SIGecom Exchanges, 
Volume 4, Issue 1, Spring, 2003, pp. 1-10 

10. Peter Farkas, Hassan Charaf, Web Services Planning Concepts, Journal of WSCG, Vol.11, 
No.1, 2003, ISSN 1213-6972 

11. Tao Yu, Kwei-Jay Lin, The Design of QoS Broker Algorithms for QoS-Capable Web Ser-
vices, International Journal of Web Services, Vol. 1, No. 4, 2004, pp. 17-24 

12. J.D. Meise, Srinaath Vasireddy, Ashish Babbar, Alex Mackman, How to: Use ACT to Test 
Web Services Performance, Microsoft Developer Network, Microsoft Corporation, 2004 

13. Object Management Group, UML (Unified Modeling Language) TM Resource Page,
http://www.uml.org/, January 2005 

14. Fred Howell, Ross McNab, Simjava Library, http://www.dcs.ed.ac.uk/home/hase/simjava, 
1996 

15. Hyunggi Song, sPAC: Web Services Performance Analysis Center, Master Thesis, De-
partment of Computer Engineering, MyongJi University, Korea, 2004 

16. Heejung Chang, Hyungki Song, Kangsun Lee and et. al, Simulation-Based Web Service 
Composition: Framework and Performance Analysis, Lecture Notes in Computer Science, 
Springer Verlag, vol. 3398/2005, Feb. 2005, pp. 352-361 



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 120 – 136, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Specifying Web Workflow Services for Finding Partners 
in the Context of Loose Inter-organizational Workflow 

Eric Andonoff, Lotfi Bouzguenda, and Chihab Hanachi 

IRIT Laboratory,  
University Toulouse 1, 1 Place Anatole France 

31042 Toulouse Cedex, France 
{andonoff, lotfi.bouzguenda, hanachi}@univ-tlse1.fr 

Abstract. This paper deals with Web Workflow Services (W2S) description 
languages that help organizations to find partners in the context of loose Inter-
Organizational Workflow (IOW). Loose IOW refers to occasional cooperation 
between organizations, free of structural constraints, where the partners in-
volved and their number are not pre-defined. Such a dynamic and heterogene-
ous context requires the definition of a W2S description language allowing 
workflow service providers to publish their capabilities and workflow service 
requesters to express their needs. Current Web services languages do not permit 
to describe adequately workflow services (structure and behavior) by lack of 
expressive power and/or formal semantics. In this paper, we show how the ap-
propriate combination of Petri Nets with Objects (PNO) and OWL-S allows the 
specification, validation and publication of workflow services. On the one hand, 
PNOs permit the formal and graphical specification of workflow services, their 
simulation and validation. On the other hand, OWL-S permits the publication of 
workflow services on the Web. OWL-S has also the advantage to include the 
ontology concept which can be used to solve semantic problems between IOW 
partners. Moreover, we provide rules and algorithms which automatically de-
rive OWL-S specifications from PNOs ones. This work has been implemented. 

1   Introduction 

Inter-Organizational Workflow (IOW) is a key technology for helping the necessary 
cooperation of organizations facing the emergence of the open and dynamic world-
wide economy. The different organizations involved in such cooperation need to put 
resources and skills in common, and coordinate their respective business processes in 
order to reach a common goal corresponding to a value-added service. In such a con-
text, IOW is an adequate technology since it supports the cooperation of distributed 
and heterogeneous business processes running in different organizations [1].  

A fundamental problem for IOW is the coordination of the different distributed 
and heterogeneous processes. By coordination, we mean all the work needed for put-
ting all these processes together in order to provide the value-added service in an 
efficient way. This coordination can be investigated in the context of two different 
scenarios: loose IOW and tight IOW [2]. In this work, we focused on loose IOW 



 Specifying Web Workflow Services for Finding Partners  121 

 

which refers to occasional cooperations between organizations, free of structural con-
straints, where the organizations involved and their number are not pre-defined but 
are selected at run time in an opportunistic way.   

Coordination in loose IOW raises several problems such as the finding of partners, 
the negotiation of the processes themselves between partners according to certain 
criteria (due time, precision, visibility of the evolution process, way of doing it…), 
and the synchronization of the distributed and concurrent execution of these different 
processes. In this work, we focused on the finding of partners. One possible way to 
select organizations is to sub-contract the research to a mediator, as it is presented in 
[3], thanks to a matchmaker. The aim of the matchmaker is to connect workflow ser-
vice requesters to workflow service providers according to the following protocol: (i) 
a workflow service provider advertises the offered service to the matchmaker, (ii) the 
matchmaker stores the advertisement, (iii) a workflow service requester asks the 
matchmaker whether it knows providers offering the desired service, and finally (iv) 
the matchmaker matches the request against the stored advertisements and returns the 
result as a set of workflow service providers. For this protocol to work, in this highly 
heterogeneous environment, an ontology is required to assist semantic interoperability 
between partners, i.e. by allowing them to adopt a shared business view through a 
common terminology. In this way, the use of a matchmaker finally requires the defini-
tion of a workflow service description language allowing providers to publish their 
capabilities and requesters to express their needs, capabilities and needs being ex-
pressed in the terms of a common ontology. 

As the Web provides many widely available facilities for inter-organizational 
communication, we propose to define a Web Workflow Service (W2S) description 
language. By W2S description language, we mean a language able to describe work-
flow services of which description and execution are accessible through the web. 
Such a language must permit the expression of three workflow complementary as-
pects, usually described through three different interacting models: the organizational, 
informational and process models. The organizational model structures the workflow 
actors and authorizes them, through the notion of role, to perform tasks making up the 
processes. The informational model defines the structure of the documents and data 
required and produced by the processes. The process model defines component tasks, 
their coordination as well as the required resources (information, actors).  

The problem addressed in this paper is “what language for W2S description: do we 
define a new language or do we chose an existing one?”. 

Most of the existing languages proposed in the context of Web services do not 
meet the previous requirements. Indeed, Web services languages, such as WSDL [4], 
do not allow the expression of the process concept as it is defined in the workflow, i.e. 
as a set of coordinated tasks. Regarding composition Web service languages, such as 
BPEL4WS [5] or WSFL [6], they neither completely describe the organizational and 
informational models, nor integrate semantics aspects through ontology. If we con-
sider workflow technology, the proposed languages, such as YAWL [7] or XPDL [8], 
describe the three workflow models, and tools are provided to derive XML workflow 
specifications. Unfortunately, these XML specifications solve only syntactic conflicts 
between organizations, while in loose IOW, the heterogeneous context requires se-
mantic conflicts solving mechanisms. 



122 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

Conversely, languages proposed in the context of semantic Web services [9], and 
more particularly OWL-S [10], which is recommended by the World Wide Web con-
sortium, seem to be appropriate for W2S. Indeed, first, OWL-S captures the concepts 
involved in the three workflow models, second, it allows the description of workflow 
services referencing ontology, and third, it enables them to be published in a Web 
accessible format.  

However, OWL-S has two main drawbacks: first, it does not provide any graphical 
tool to specify workflow services, and, second, it lacks theoretical foundations with an 
operational semantics to simulate and validate the workflow services.  

The aim of the paper is to compensate the previous drawbacks by proposing a solu-
tion based on the three following principles: 

- (i) The use of a graphical and formal language, namely Petri Nets with Objects 
(PNO), to specify and validate workflow services. PNO [11] are used as a graphical 
tool to help a designer to define a workflow service; they also provide formal and 
executable specifications to analyze, simulate, check and validate the described work-
flow service behavior. 
- (ii) The automatic derivation of the previous workflow services specifications onto  
OWL-S specifications. 
- (iii) The publication of the workflow services by means of OWL-S. 

Thus, PNO can be seen as a graphical tool for specifying OWL-S services and as a 
formalism providing an operational semantics to OWL-S.  

The remainder of this paper is organized as follows. Section 2 briefly introduces 
the PNO formalism and explains why this formalism is convenient for workflow 
service specification and validation. Section 3 presents OWL-S and explains the rea-
sons of this choice  for publication. Section 4 gives an operational semantics to OWL-
S by formalizing its service profile and service process using PNO. This section first 
presents our approach, and then specifies the rules and algorithms we propose to de-
rive a PNO onto OWL-S service profile and service process specifications. Section 5 
describes some aspects of the implementation of this work. Section 6 briefly com-
pares our proposition to related works and concludes the paper. 

2   Petri Nets with Objects: A  Convenient Language for Workflow 
     Service Specification and Validation 

This section is dedicated to the presentation of the Petri Nets with Objects formalism 
and gives the reasons of the choice of this language for workflow service description 
and validation. However, the comparison of this language with others closed lan-
guages, such as YAWL [7] or UML Activity diagrams for instance, is briefly dis-
cussed in section 6. 

2.1   What Are Petri Nets with Objects? 

Petri Nets with Objects (PNO) [11] are a formalism combining coherently Petri nets 
(PN) technology and the Object-Oriented (OO) approach. While PN are very suitable 
to express the dynamic behavior of a system, the OO approach permits the modeling 
and the structuring of its active (actor) and passive (information) entities. In a 



 Specifying Web Workflow Services for Finding Partners  123 

 

conventional PN, tokens are atomic, whereas they are objects in a PNO. As any PN, a 
PNO is made up of places, arcs and transitions, but in a PNO, they are labeled with 
inscriptions referring to the handled objects. More precisely, a PNO features the fol-
lowing additional characteristics:  
- Places are typed. The type of a place is a (list of) type of an (list of) object(s). A 
token is a value matching the type of a place such as a (list of) constant (e.g. 2 or 
‘hello’), an instance of an object class, or a reference towards such an instance. The 
value of a place is a set of tokens it contains.  
- Arcs are labeled with parameters. Each arc is labeled with a (list of) variable of the 
same type, as the place the arc is connected to. The variables on the arcs surrounding 
a transition serve as formal parameters of that transition and define the flow of tokens 
from input to output places. Arcs from places to a transition determine the possible 
condition of the transition: a transition may occur (or is possible) if there exists a 
binding of its input variables with tokens lying in its input places.  
- Each transition is a complex structure made up of three components: a precondi-
tion, an action and emission rules. A transition may be guarded by a precondition, i.e. 
a side-effect free Boolean expression involving input variables. In this case, the tran-
sition is only permitted by a binding if this binding evaluates the precondition to be 
true. Passing a transition through depends on the precondition, on the location of 
tokens and also on their value. Most transitions also include an action, which consists 
in a piece of code in which transitions’ variables may appear and object methods be 
invoked. This action is executed at each occurrence of the transition and it  processes 
the values of tokens. Finally, a transition may include a set of emission rules i.e. side-
effect free Boolean expressions that determine the output arcs that are actually acti-
vated after the execution of the action.  

Figure 1 gives an example of a PNO describing a simple task providing the references 
of a flight, given the departure and arrival airports, the traveling date and the agency in 
charge of finding the flight. This PNO is composed of a transition, four input places and 
two output places. Each place is typed with one of the four following object classes: 
Airport, Date, TravelAgency and Result. Each input place contains a token of which 
value is indicated by a comment linked to it by an arrow. From left to right, the first two 
input places called DepartureAirport and ArrivalAirport contain one token correspond-
ing to an Airport. The object class Airport has two attributes {Name,City} and we can 
read that the flight requested is between Tunis and Toulouse. With the same principle, we 
can deduce from the DepartureDate and Agency input places that the travel date is 
01/01/2005 and the travel agency in charge of finding the flight is Bravo Agency. Let us 
also remark that the TravelAgency object class, in addition to three attributes 
{Name,Phone,Address}, features a method {GetFlightDetails} as well. Now let us con-
sider the transition GetDesiredFlightDetails. It has a precondition {(DD.DateD>Date()) 
and (DA.Name<>AA.Name)} which indicates that the departure date must be in the 
future and departure and arrival airports are different. Let us notice that this precondition 
is expressed with the formal parameter of the input arcs (DD, DA and AA). If this pre-
condition is satisfied, the action is executed and the object Travel Agency is asked to 
execute the GetFlightDetails method. According to the result R, returned by this method, 
the emission rules will direct the process through one path or another. If a flight is found, 
the result R is not null and then a token is put in the Success output place. In the other 
case, a token is put in the Fail output place.  



124 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

DA

DD

Departure Airport
<Airport>

Arrival Airport
<Airport>

AA

Departure Date
<Date>

AG

Agency
<Travel Agency>

R = AG.GetFlightDetails(DA.Name,AA.Name,DD.DateD)

(DD.DateD>Date()) and (DA.Name <>AA.Name)

Success
<Result>

Fail
<Result>

GetDesiredFlightDetails
Pre-condition

Action
Emission Rules

R R

R <> null R=null

Name: Blagnac Airport
City:  Toulouse

Name: Carthage Airport
City:  Tunis

Name: BravoAgency
Phone: 412 268 8750
GetFlightDetails(---,---,---): Result

DateD:01/01/2005

 

Fig. 1. Example of a PNO  

2.2   Motivations for Using Petri Nets with Objects 

Petri nets are widely used for workflow service specification [12]. Several good rea-
sons justify their use: 
- An appropriate expressive power that permits the description of the different tasks 
involved in a workflow service and their coordination.  
- A graphical representation that eases the workflow service specification. 
- An operational semantics making an easy mapping from specification to imple-
mentation possible.  
- Theoretical foundations permitting analysis and validation of behavioral properties 
and simulation facilities.  

Unfortunately, conventional Petri nets focus on the process definition and do not 
perfectly capture the organizational and the informational dimensions of a workflow. 
As mentioned previously, Petri nets with Objects extend Petri nets by integrating 
high-level data structure represented as objects, and, therefore provide the possibility 
to integrate in a coherent way the two dimensions missing in Petri nets. Thus, using 
PNO, actors of the organizational model are directly represented as objects and they 
may be invoked through methods in the action part of a transition. In the same way, 
data and documents of the informational model are also represented by objects flow-
ing in the PNOs and transformed by transitions. In the previous example (cf. figure 1), 
the object Agency refers to an actor of the organizational model while the Depar-
tureAirport, ArrivalAirport and DepartureDate objects are data of the informational 
model. 

To summarize, PNOs are convenient for workflow service specification because 
they really are a strong link between the three workflow models since they permit the 
description, in a same representation, of actors of the organizational model, data and 
documents of the informational model, and tasks of the process model. Moreover, we 
use PNO as a graphical tool to specify a workflow service, and as a formal tool to 
define executable specifications in order to analyze, simulate, check and validate a 
workflow service.  



 Specifying Web Workflow Services for Finding Partners  125 

 

3   OWL-S: A Semantic Web Service Language for W2S 
     Publication 

3.1   Brief Overview of OWL-S  

OWL-S is a semantic markup language that enables the description of Web services 
in order to be selected, invoked and composed [10]. OWL-S refers to an ontology of 
services that defines and structures the concepts for handling Web services. The re-
sulting conceptual model is defined through a hierarchy of classes that may be varia-
bly refined according to the business domain considered. The essential properties of a 
service are described by the three following classes: ServiceProfile, ServiceModel and 
ServiceGrounding. 

The ServiceProfile provides all the necessary information for a service to be found 
and possibly selected. The Service Profile is described by three groups of attributes. 
The first group describes the identity of the service with attributes such as service-
Name, textDescription or contactInformation defining respectively the identity of the 
service, a natural-language description of it, and the organization providing it. The 
second group gathers attributes to classify a service (e.g. serviceCategory, service-
Parameter) or to evaluate or compare it to others having the same capabilities (eg. 
qualityRating). The third group expresses the functional capabilities of the service 
with four attributes that are inputs, outputs, preconditions and effects. These attributes 
respectively define the required entries for starting the service, the results the service 
is able to produce, the constraints that must be satisfied by the inputs, and the output 
properties guaranteed after the service execution. 

In OWL-S, services are viewed as processes. So, the ServiceModel describes the 
service in terms of a process model composed of two specifications: a service process 
and a process control. The ServiceProcess defines the structure of the process using 
three types of processes: atomic, simple and composite processes. Atomic processes 
correspond to operations that the service can directly execute; they have no sub-
processes. Simple processes correspond to abstractions of atomic processes and are 
not directly invocable. Composite processes are collections of processes coordinated 
by control constructs including sequence, loops, conditionals and concurrency. Four 
attributes are defined for these processes: inputs, outputs, preconditions and effects 
having the same semantic as the functional capabilities of the ServiceProfile. Regard-
ing the ProcessControl, OWL-S informally represents all the useful attributes for 
monitoring the execution of the service, notably its possible states at run-time (e.g. 
ready, ongoing, suspended, aborted…).  

The ServiceGrounding defines how to access to the service by specifying the 
communication protocols and messages, and the port numbers to be used.  

3.2   Motivations for Using OWL-S 

OWL-S is appropriate to workflow service publication for two main reasons. The first 
reason that led us to choose OWL-S is that OWL-S has an adequate expressive power 
to describe workflow services as illustrated in figure 2. Indeed, it is possible to de-
scribe, using the service profile and the service model of OWL-S, the three different 
  



126 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

OWL-S
describes

includes

Semantic Aspects

Interconnected Workflow Models

Informational
Model

Process
Model

Organizational
Model

 

Fig. 2. Adequate Expressive Power of OWL-S for Workflow Service Publication 

interrelated models of a workflow i.e. the organizational, informational and process 
models. Regarding the process, there is a direct mapping between the service model 
of OWL-S and the process model of a workflow. In OWL-S, the described service is 
broken down into tasks and their coordination is specified using control constructs 
such as sequence, loops, conditional, concurrency. In the process model of a work-
flow, the process is also broken down into tasks and workflow patterns are used to 
coordinate them. Even if OWL-S does not include all the PNO patterns, it provides 
the control constructs necessary to describe the majority of workflow process models 
since it allows the modeling of  sequence, loops, conditional and concurrency. Re-
garding the informational and organizational aspects, OWL-S, through the service 
profile and the service process, gives a support for the description of actors, informa-
tion (data or documents) and their availability as required in a workflow. This is pos-
sible thanks to the set of inputs (actors, data and documents), preconditions (actors 
able to play specific roles, empty documents), outputs (data and documents) and ef-
fects (documents well filled, compliant with a specific norm).  

Moreover, OWL-S, which is a semantic Web service language, enriches Web ser-
vices description based on WSDL with semantic information about the properties 
(ServiceProfile) and the structure of the service (ServiceModel). Moreover, this se-
mantic information is based on an ontology, extensible according to the domain and 
described with a well defined mark up language. Ontology makes possible, in the 
context of loose IOW in which several heterogeneous organizations cooperate, to 
solve semantic conflicts between these organizations by defining a shared business 
view based on a common vocabulary. Moreover, OWL-S ontology has a first-order 
logic representation [13] that permits deduction and eases the implementation of 
matchmaking mechanisms useful to compare workflow services. Such mechanisms 
are very important when selecting partners.  

The second reason that led us to choose OWL-S is that OWL-S is recommended 
by the  World Wide Web consortium, which is not the case for WSMO [14], another 
interesting semantic Web language, still in the process of specification (v0.1).  

Besides, as we will show later, there is an easy mapping of PNO onto OWL-S con-
cepts. Roughly speaking, the OWL-S service profile can be derived from the input 
and output places of a PNO, the OWL-S service process can be built from the places 
and transitions of a PNO, and all the OWL-S control constructs have a corresponding 
PNO pattern. 



 Specifying Web Workflow Services for Finding Partners  127 

 

4   Formalizing Service Profile and Service Process Using PNO 

4.1   Our Approach 

The idea was to use PNO as a graphic tool to specify, simulate and validate a work-
flow service and then to deduce the corresponding OWL-S service profile and service 
process automatically. 

The design process of a PNO workflow service, i.e. a workflow service designed 
using PNO, is a hierarchical construction as it is the case for a OWL-S service process 
specification. The designer first specifies a unique transition with input and output 
places. If this transition does not correspond to an atomic task (immediately executa-
ble), the designer refines it, using only the PNO patterns which have a corresponding 
control construct in OWL-S, that is sequence, split, split-join, choice, iterate, unor-
dered, repeat-until, repeat-while, and if-then-else. The result is the definition of other 
transitions expanding the previous one, and having input places and producing output 
places. The so-defined transitions can themselves be refined if necessary. This top-
down decomposition approach is repeated until we obtain only atomic transitions.  

Figure 3a below illustrates this hierarchical design process. The first transition, 
named T, is defined first. It includes one input and two outputs with their correspond-
ing conditions (respectively preconditions and post-conditions). This transition is 
refined using the sequence pattern. Three new transitions, named T1, T2 and T3, are 
defined and replace the previous one. Among these three transitions, T1 and T3 are 
 

T1.3T1.2

T1.1

T1.4

T3.1

T2

T3.23T3.22

T3.21

T3.24

1)

T

2)

T2

sequence

split
join

T1.3T1.2

T1.1

3)

choice
T3.1

4)

T1

T3

T3.2
T3.23T3.22

T3.21

5)

T1.4

T3.24

a) b)

split
join

 

Fig. 3. Hierarchical Design of a Workflow Service and Final PNO  

 



128 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

refined while T2 is atomic. T1 is refined using the split-join pattern while T3 is re-
fined using the choice pattern. These transitions replace the refined ones. Finally, a 
new transition of T3, named T3.2, is in turn refined using the split-join pattern. 

The final result is a global PNO describing a workflow service (cf. figure 3b). This 
PNO can be represented as a tree where non-terminal nodes are the refined transitions 
and terminal nodes (leaves) are atomic transitions. Every node (terminal or non-
terminal) of the PNO tree include a data structure which indicates the name of the 
transition, the PNO pattern used when refining the transition (null for atomic transi-
tions), and its corresponding inputs, outputs, preconditions and post-conditions. More 
precisely, for each input place of each transition we have a couple (InputName, Pre-
Condition) where InputName is the name of the considered input place and PreCondi-
tion is the precondition of the transition in case this input place is involved in the 
precondition. In a similar way, for each output place of each transition, we have a 
couple (OutputName, EmRule) where OutputName is the name of the considered 
output place and EmRule is the emission rule associated to the considered output 
place. Figure 4 below visualizes the tree corresponding to the previous PNO.  

Finally, before deriving the OWL-S service profile and service process specifica-
tions, the designer can use one of the PNO analysis techniques to simulate, check and 
validate the corresponding workflow service. Validation concerns a certain number of 
properties such as Ending (does a process effectively end?), Liveness (is a given task 
(transition) always possible?), Boundedness (is the number of possible configurations 
of a process finite?), Reachability (is there an evolution in the process leading to a 
given configuration (desired or not)?), and Quasi-Liveness (does a configuration exist 
where a given task is possible?). 

<T3.24,Null,
InT3.24,OutT3.24>

<T3.2,Split-Join,InT3.2,OutT3.2>

<T,Sequence,InT,OutT>

<T1,Split-Join,InT1,OutT1> <T2,Null,InT2,OutT2>

<T3,Choice,InT3,OutT3>

<T3.1,Null,InT3.1,O
utT3.1>

<T1.2,Null,InT1.2,Ou
tT1.2>

<T1.3,Null,InT1.3,O
utT1.3>

<T1.4,Null,InT1.4,Out
T1.4> <T3.21,Null,

InT3.21,OutT3.21>

<T3.22,Null
,InT3.22,OutT3.22>

<T3.23,Null
,InT3.23,OutT3.23>

<T1.1,Null,
InT1.1,OutT1.1>

InTi = {(InputName,PreCondition)}
OutTi = {(OutputName,EmRule)}

 

Fig. 4. PNO Tree 

4.2   From PNO to OWL-S Service Profile  

4.2.1   Principle and Rules 
The starting point of the derivation is the global PNO. We considered three types of 
places: begin places which are exclusively input places, intermediate places which are 
input and output places, and finally end places which are exclusively output places.  
In this step, only begin and end places are to be considered. Table 1 below summa-



 Specifying Web Workflow Services for Finding Partners  129 

 

rizes the different derivation rules. In this table, the variable I represents the set of 
input places of the global PNO, while O represents its set of output places.  

Table 1. Mapping PNO with OWL-S Service Profile  

PNO OWL-S Service Profile 
Begin place b ∈ B, B=I-(I∩O) Parameter Name of an Input 
End place e ∈ E, E=O-(O∩I) Parameter Name of an Output 
Precondition associated to  
a Begin place b ∈ B 

Parameter Name of a Precondition 

Emission rule associated to  
an End place e ∈ E 

Parameter Name of an Effect 

4.2.2   Algorithm 
Algorithm 1 below explains how we deduce a OWL-S service profile from a PNO. 
The algorithm has two inputs. Its first input is the PNO itself, which is defined as a 9-
uplet (C,P, T, V, PreCond, A, EmR, Pre, Post) as follows [11]: 
- C is a set of object classes (which correspond to the ontology classes1), 
- P is a set of places, typed by a function P C*, 
- T is a set of transitions, each transition being identified by a name, 
- V is a set of object variables, typed by a type function V C, 
- PreCond is a set of preconditions, each one being necessary to trigger a transition, 
- A is a set of actions, each action being triggered by a transition,  
- EmR is a set of emission rules, each one corresponding to a logical expression  
- Pre is the forward incidence function: PxT MultiSet(V*); Pre associates a multi-
set of object variables to a (place, transition) couple,  
- Post is the backward incidence function: PxTxEmR MultiSet(V*); Post associ-
ates a multi-set of object variables to a (place, transition, emission rule) triplet. 

The second input of the algorithm is the urlProcess (file name of the service proc-
ess) which is necessary to the OWL-S specification. Its unique output is the generated 
service profile.  

The algorithm implements the rules presented in Table 1. Its first step produces the 
general tags of the OWL-S service profile along with its non-functional attributes 
while its second step generates its functional attributes (i.e. input, output, precondition 
and effect). 
 
ALGORITHM From_PNO_To_OWL-S_ServiceProfile 
INPUT PNO, urlProcess 
OUTPUT SP  % is the generated service profile 
 
 

                                                           
1 There is a close correspondence between PNO object classes and OWL-S ontology classes 

(which define the concepts used by a workflow service). Because of space limitation, this pa-
per does not give the algorithm to derive OWL-S ontology classes of a service from PNO ob-
ject classes. 



130 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

BEGIN  
% B is the set of begin places and ComputeBeginPlaces 
% calculates it from P, Pre and Post; E is the set of end  
% places and ComputeEndPlaces calculates it from P, Pre and  
% Post 

 B  ComputeBeginPlaces(P,Pre,Post) 
  E  ComputeEndPlaces(P,Pre,Post) 
 

% Step 1 generates general information of the service  
% such as rdf files along with its non functional  
% attributes serviceName, textDescription, contactInforma 
% tion, serviceParameter, qualityRating, and serviceCategory  

 SP  Generate_Profile_GeneralInformation()  
 
 SP  SP + Generate_Profile_Non_Functional_Attributes()  
 % Step 2 generates functional attributes of the service 

% i.e. inputs, outputs, preconditions and effects 
 For each begin place b ∈ B Do   
  SP  SP + Gener ate_Profile_HasInput(urlProcess+"#"+b.Name) 
 End for  
 For each end place e ∈ E Do  
  SP  SP + Generate_Profile_HasOutput(urlProcess+"#"+e.Name) 
 End for 
 For each precondition pco ∈ PreCond associated to b ∈ B Do  
  SP  SP + Generate_Profile_HasPrecondition 
  (urlProcess+"#"+pco.Name) 
 End for 
 For each emission rule er ∈ EmR associated to e ∈ E Do  
  SP  SP + Generate_Profile_HasEffect 
     (urlProcess+"#"+er.Name) 
 End for 
END 

Algorithm 1: From PNO to OWL-S Service Profile 

4.3   From PNO to OWL-S Service Process  

4.3.1   Principle and Rules 
As shown previously in section 4.1, the result of the decomposition process used for 
designing a PNO workflow service is a PNO tree. This tree is the starting point to 
derive the OWL-S service process. We consider two types of nodes: terminal nodes 
and non-terminal nodes. Table 2 below summarizes the different derivation rules. In 
this table, N is the set of the PNO tree nodes (terminal and non terminal) and T is the 
set of its terminal nodes. 
 



 Specifying Web Workflow Services for Finding Partners  131 

 

Table 2. Mapping PNO tree with OWL-S Service Process 

PNO tree OWL-S Service Process 
Name of a Node n ∈ N Name of a Process 
(InputName, PreCondition) of a node   
n ∈ N 

Input of a Process 
Precondition associated to the Input 

(OutputName, EmRule) of a node   
n ∈ N 

Output of a Process 
Effect associated to the Output 

Terminal Node t ∈ T Atomic Process 
Non Terminal Node n ∈ N-T    Composite Process 

4.3.2   Algorithm 
Algorithm 2 below explains how we deduce, from the PNO tree, the corresponding 
OWL-S service process. The algorithm has two inputs. Its first input is the PNO tree 
itself whose nodes have the following data structure: 
- Name is the name of the node (corresponding to the name of a transition), 
- Pattern is the PNO pattern of the node, 
- In is a set of (InputName, PreCondition) couples which correspond to the input 
places of the PNO and their corresponding preconditions, 
- Out is a set of (OutputName, EmRule) couples which correspond to the output 
places of the PNO and their corresponding emission rules. 

We also have a set of functions permitting the handling of a tree: 
- Depth(t) returns the depth of a tree t, 
- Root(t) returns the root of a tree t, 
- ListOfChildren(n) returns the children of a node n (non-terminal or terminal 
nodes), 
- ListOfParents(t) returns the non-terminal nodes of a tree t, 
- ListOfLeaves(t) returns the terminal nodes (leaves) of a tree t. 

The second input of the algorithm is the urlOntology (file name of the ontology) 
which is necessary to the OWL-S specification. Its unique output is the generated 
service process. The algorithm implements the rules presented in Table 2. Its first step 
produces the general information of the OWL-S service process. Its second and the 
third steps generate a definition of a top level process as a composite process (for the 
root) along with composite processes for non terminal nodes. The last step of the 
algorithm generates the atomic processes. 

 

ALGORITHM From_PNO_To_OWL-S_ServiceProcess 
INPUT PNOTree, urlOntology 
OUTPUT SP   % is the generated service process 
 
BEGIN  

% Step 1 generates general information of the service 
% such as rdf files, instance definition process model 

 SP  Generate_Process_GeneralInformation() 
 % Step 2 and step 3 only for a PNOTree whose depth > 1  



132 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

 If (Depth(PNOTree)>1) 
 % Step 2 generates a definition of top level process as a 
 % composite process for the root of PNOTree     

  SP SP +Generate_Definition_TopLevel_Process(root 
     (PNOTree).Name,root(PNOTree).pattern) 
   For each cn ∈ ListOfChildren(root(PNOTree)) Do 
   SP  SP + Generate_Component_Process(cn.Name) 
  End For 
  % Step 3 generates a composite process from the non 
  % terminal nodes expect the root 
  For each node n ∈ ListOfParents(PNOTree)-root(PNOTree) Do 
   % ControlConstruct returns the OWL-S control construct 
   % corresponding to a PNO pattern 
   % n.In allows to deduce OWL-S inputs and preconditions 
   % n.Out allows to deduce OWL-S outputs and effects
       SP  SP + Generate_Composite_Process(n.Name, 
            ControlConstruct(n.Pattern), n.In, n.Out) 
   For each cn ∈ ListOfChildren(n) Do 
    SP  SP + Generate_Component_Process(cn.Name) 
   End For 
   % ClassOf is a function which returns the corresponding 
   % class of an object 
   For each prein ∈ n.In Do 
    SP  SP + Generate_Input_Precondition(prein.Input 
         Name, prein.PreCondition, ClassOf(prein), urlOntology) 
   End For 
   For each preout ∈ n.Out Do 
    SP  SP + Generate_Output_Effect(preout.OutputName, 
         ClassOf(preout), preout.EmRule, urlOntology) 
   End For 
  End For 
 End If  

% Step 4 generates Atomic Process from terminal nodes  
 For each node n ∈ ListOfLeaves(PNOTree) Do 
  % SP is completed with an atomic process  
  SP  SP + Generate_Atomic_Process(n.Name,n.In, n.Out)  
  For each prein ∈ n.In Do 
   SP  SP + Generate_Input_Precondition(prein.Input 
       Name, prein.PreCondition, ClassOf(prein), urlOntology) 
  End For 
  For each preout ∈ n.Out Do 
   SP  SP + Generate_Output_Effect(preout.OutputName, 
   ClassOf(preout), preout.EmRule, urlOntology)  
   End For 

 End For  
END 

Algorithm 2: From PNO to OWL-S Service Process 



 Specifying Web Workflow Services for Finding Partners  133 

 

5   Implementation 

This work has been implemented as part of the MatchFlow project [3], whose objec-
tive is to connect workflow service requesters to workflow service providers, offers 
and requests being specified using PNOs and stored by a matchmaker in the OWL-S 
format. In the current version of MatchFlow, the matchmaker compares the offers’ 
and requests’ service profiles: it establishes flexible comparisons (exact, plug in, re-
laxed) based on an ontology.  

MatchFlow has been implemented with the Madkit platform [15], which permits 
the development of distributed applications using multi-agent principles. Indeed, 
the agent technology provides natural abstractions to deal with autonomy, distri-
bution, heterogeneity and coordination which are inherent to loose IOW. More-
over, Madkit is based on an organizational paradigm that provides high-level con-
cepts to describe loose IOW coordination, thanks to notions such as role, agent and 
group. A group is an interaction space, governed by coordination laws, where each 
agent  (representing an organization in our case) can enter, under certain condi-
tions, to play a specific role. 

Figure 5 above shows some screenshots of MatchFlow. The middle window (num-
ber 1) represents the matchmaker implemented as an agent. The top left Window 
(number 2) corresponds to an agent implementing a workflow service requester. 
 

 

  

Fig. 5. Overview of the Implementation 



134 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

Through this interface, the requester can i) specify a workflow service request (Speci-
fication menu), ii) advertise this request to the matchmaker (Submission menu), iii) 
visualize the providers offering services corresponding to this request (Visualization 
menu), iv) establish peer-to-peer connections with one of these providers (Contact 
menu), and, v) launch the execution of the selected service (WorkSpace menu). In a 
symmetric way, the top right window (number 3) represents an agent playing the role 
of a workflow service provider and a set of menus enables it to manage its offered 
services. As shown by window 3, the Specification menu includes three commands to 
support the specification and derivation process. The first command permits the speci-
fication of a PNO, the second one visualizes its corresponding PNO Tree (as shown 
by window 4), and the third one derives the corresponding OWL-S specification (as 
shown by window 5).  

The example partially shown in windows 4 and 5 is based on the well-known Bra-
voAirReservation case study proposed by the OWL-S Coalition. This example has 
been implemented. Windows 4 and 5 respectively give the BravoAirReservation PNO 
Tree and a partial view of its OWL-S service process. We do not give here the corre-
sponding PNO, but figure 1 in section 2 is an extract of this net, restricted to the Get-
DesiredFlightDetails transition.  

6   Discussion and Conclusion 

This paper deals with Web Workflow Services description languages devoted to or-
ganizations involved in a loose IOW in order to help them describe their workflow 
needs and/or capabilities. In this paper: 

- (i) We use PNOs since they permit workflow services specification, simulation and 
validation. First, PNOs are convenient to workflow service specification: PNOs are a 
glue between the different workflow models since they ease the description and the 
interaction, in a same representation, of actors of the organizational model, data and 
documents of the informational model, and tasks of the process model. Moreover, the 
graphical representation of PNOs reduces the complexity of workflow service defini-
tion. Second, PNOs are convenient to workflow services analysis, simulation and 
validation since they describe formal and operational  (executable) specifications.   
- (ii) We use OWL-S for W2S publication. First, OWL-S has an appropriate expres-
sive power for workflow service description (as shown in section 3.2). Second, OWL-
S includes ontology that eases semantic interoperability. Using an ontology, it is pos-
sible to build a shared business view based on a common vocabulary to solve seman-
tic conflicts between IOW partners, and ease matchmaking mechanisms useful to 
compare workflow services.  
- (iii) We provide rules and algorithms to derive PNO specifications onto OWL-S 
service profile and service process specifications.  

Thus, PNO can be seen both as a graphical tool for specifying OWL-S services and 
as a formalism providing an operational semantics to OWL-S.  

We found in the literature some works about specification of Web workflow ser-
vices. Some of them concern workflow technology while others concern Web service 
technology.  



 Specifying Web Workflow Services for Finding Partners  135 

 

Regarding workflow technology, the main proposition is YAWL [7]. YAWL per-
mits a graphical specification of workflow services, validates them using a Petri Net 
representation, and provides tools to derive XML specifications. However, this propo-
sition has two drawbacks. First, YAWL mainly focuses on the modeling of the proc-
ess model and pay less attention to the informational and organizational models, and 
their interactions. So, we strongly believe that the PNO formalism is a better glue 
between the three workflow models than the YAWL one. Second, YAWL derive 
XML specifications, which solve only syntactic conflicts between organizations, 
while in loose IOW, the heterogeneous context requires semantics conflicts solving 
mechanisms. 

Regarding Web services technology, [16] describes the OWL-S Editor Tool for 
visual modeling of OWL-S services. This tool permits the description of semantic 
Web services using standard UML Activity Diagrams and derives the corresponding 
OWL-S specifications. However, the UML Activity Diagrams notation (versus for-
malism) is not adequate for workflow services specification and does not provide a 
well-founded and operational semantics to validate the described services. Besides, 
OWL-S has a first-order logic representation  [13], which is insufficient to capture 
and validate the behavior of business processes. [17] gives an operational semantics to 
DAML-S [18] using conventional Petri Nets. Unfortunately, DAML-S was discontin-
ued in favor of OWL-S some while ago. Moreover, we believe that conventional Petri 
nets used in [17] are less adequate to workflow services specification than PNO as 
shown in section 2.2. Finally, [19] derives BPEL4WS specifications onto PNML 
specifications. The drawback of this proposition is to only consider syntactic aspects 
both at the specification and execution levels. Indeed, BPEL4WS [5], which is a 
composition Web service language, does not include ontology mechanism. PNML 
[20] is an XML specification which solves only syntactic conflicts between organiza-
tions. As seen before, such drawbacks are restrictive. 

As future works, we plan to complete this work refining the OWL-S ontology in order 
to integrate some workflow processes particularities. Indeed, the analyze and simulation 
of a PNO enable the deduction of process properties (ending, reachability, quasi-liveness, 
…) and some performance evaluations (average throughput time, average waiting time, 
occupation rates of resources, …) which are not taken into account in the current OWL-S 
ontology. This information is however relevant and useful to workflow requesters to 
compare and select providers. Hence, we propose to refine the Service Model class by 
adding a specific sub-class describing these process properties.  

References 

1. van der Aalst, W.: Inter-Organizational Workflows: An Approach Based on Message Se-
quence Charts and Petri Nets. Int. Journal on Systems Analysis, Modeling and Simulation 
34(3) (1999) 335–367 

2. Divitini, M., Hanachi, C., Sibertin-Blanc, C.: Inter Organizational Workflows for Enter-
prise Coordination. In: Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds): Co-
ordination of Internet Agents, Springer-Verlarg, Berlin Heidelberg New-York (2001)  
46–77 



136 E. Andonoff, L. Bouzguenda, and C. Hanachi 

 

3. Andonoff, E., Bouzguenda, L., Hanachi, C., Sibertin-Blanc, C.: Finding Partners in the 
Coordination of Loose Inter-Organizational Workflow. 6th Int. Conference on  the Design 
of Cooperative Systems (2004) Hyères (France) 147–162 

4. World Wilde Web Coalition: the Web Service Description Language. Documentation 
available at: http://xml.coverpages.org/wsdl.html  

5. BEA, IBM, Microsoft: Business Process Execution Language for Web Services. 
Documentation available at: http://xml.coverpages.org/bpel4ws.html  

6. IBM: Web Services Flow Language. Documentation available at: http://xml.coverpages. 
org/wsfl.html 

7. van der Aalst, W., Alderd, L., Dumas, M., ter Hofstede, A.: Design and Implementation of 
the YAWL System. 16th Int. Conference on Advanced Information System Engineering 
(2004) Riga (Latvia) 142–159 

8. Workflow Management Coalition: XML Process Definition Language. Documentation 
available at: http://xml.coverpages.org/XPDL20010522.pdf  

9. McIlraith, S., Son, TC., Zeng, H.: Semantic Web Services. Int. Journal on Intelligent Sys-
tems 16(2) (2001) 46–53 

10. OWL Services Coalition: Ontology Web Language for Services Version 1.0. Documenta-
tion available at: http://xml.coverpages.org/ni2004-01-08-a.html  

11. Sibertin-Blanc, C.: High Level Petri Nets with Data Structure. 6th Int. Workshop on Petri 
Nets and Applications (1985) Espoo (Finland) 

12. van der Aalst, W.: The application of Petri Nets to Workflow Management. Int. Journal on 
Circuits, Systems and Computers 8(1) (1998) 21–66 

13. Berardi, D., Gruninger, M., Hull, R., McIlraith, S.: Flows: A First-Order Logic Ontology 
for Web Services. Available at: www.wsmo.org/papers/presentations/FLOWS-WSMO-06-
30-04.ppt  

14. Lara, R., Roman, D., Polleres, A., Fensel, D.: A Conceptual Comparison of WSMO and 
OWL-S. 2nd International Conference on Web Services Europe (2004) Erfurt (Germany) 
254–269 

15. Ferber, J., Gutknecht, O.: TheMadKit Project: a Multi-Agent Development Kit. 
Documentation available at: http://www.madkit.org 

16. Scicluna, J., Abela, C., Montebello, M.: Visual Modeling of OWL-S Services. Available 
at: http://www.daml.org/services/owl-s/pub-archive.html 

17. Narayanan, S., McIlraith, S.: Simulation, Verification and Automated Composition of 
Web Services. 11th Int. World Wild Web Conference (2002) Honolulu (Hawaii) 77–88 

18. Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., McIlraith, 
S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web Service Description 
for the Semantic Web. 6th Int. Semantic Web Conference (2002) Sardinia (Italy) 348–363 

19. Vidal, JM., Buhler, P., Stahl, C.: Multi Agent Systems with Workflows. Int. Journal on 
Internet Computing 8(1) (2004) 76–82 

20. Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O., Petrucci, L., Post, R., 
Stehno, C., Weber, M.: The Petri Net Markup Language: Concept, Technology and Tools. 
23rd Int. Conference on Applications and Theory of Petri Nets (2003) Eindhoven (The 
Netherlands) 483–505 

 



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 137 – 152, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Intuitive Formal Approach to Dynamic Workflow  
Modeling and Analysis  

Jiacun Wang1, Daniela Rosca1, William Tepfenhart1, Allen Milewski1, 
and Michael Stoute2 

1 Department of Software Engineering, 
Monmouth University, 

West Long Branch, NJ 07762, USA 
{jwang, drosca, btepfenh, amilewsk}@monmouth.edu   

2 Intellipro, Inc. 
255 Old New Brunswick Road, 

Piscataway, NJ 08854, USA 
jason@intellipro.com 

Abstract. The increasing dynamics and the continuous changes of business 
processes raise a challenge to the research and implementation of workflows. 
The significance of applying formal approaches to the modeling and analysis of 
workflows has been well recognized and many such approaches have been pro-
posed. However, these approaches require users to master considerable knowl-
edge of the particular formalisms, which impacts the application of these 
 approaches on a larger scale. This paper presents a new formal, yet intuitive 
approach for the modeling and analysis of workflows, which attempts to over-
come the above problem. In addition to the abilities of supporting workflow 
validation and enactment, this new approach possesses the distinguishing fea-
ture of allowing users who are not proficient in formal methods to build up and 
dynamically modify the workflow models that address their business needs.  

1   Introduction 

Although workflow is an old concept [13] its research and implementation are gaining 
momentum due to the increasing dynamics and the continuous changes of the market 
places. The business environment today is undergoing rapid and constant changes. 
The way companies do business, including the business processes and their underly-
ing business rules, ought to adapt to these changes flexibly with minimum interrup-
tion to ongoing operations [3,5]. This flexibility becomes of a paramount importance 
in applications such as an incident command system (ICS). An ICS would support the 
activities necessary for the allocation of people, resources and services in the event of 
a major natural or terrorist incident. An ICS would need to deal with frequent changes 
of the course of actions dictated by incoming events, a predominantly volunteer-based 
workforce, the need to integrate various software tools and organizations, a highly 
distributed workflow management. 

Dealing with these issues generates many challenges for a workflow management 
system. The need of making many ad-hoc changes calls for an on-the-fly verification of 
the correctness of the modified workflow. This cannot be achieved without an underlying 



       J. Wang et al.  

 

138

formal approach of the workflow, which does not leave any scope for ambiguity and sets 
the ground for analysis. Yet, since our main users will be volunteers from various back-
grounds, with little computer experience, we need to provide a tool with highly intuitive 
features for the description and modification of the workflows. 
     A number of formal modeling techniques have been proposed in the past decades 
[1, 6, 8, 10, 11, 12]. Van der Aalst [9] identifies three reasons for using Petri Nets in 
workflow modeling. Firstly, Petri Nets possess formal semantics despite their graphi-
cal nature. Secondly, instead of being purely event-based, Petri Nets can explicitly 
model states, and lastly it is a theoretical proven analysis technique. Other than Petri 
Nets, techniques such as state charts have also been proposed for modeling WFMS 
[4]. Although state charts can model the behavior of workflows, they have to be sup-
plemented with logical specification for supporting analysis. Singh et al [7] use event 
algebra to model the inter-task dependencies and temporal logic. Attia et al [2] have 
used computational tree logic to model tasks by providing their states together with 
significant events corresponding to the state transitions (start, commit, rollback etc) 
that may be forcible, rejectable, or delayable. 

As indicated in [10], it is desirable that a business process model can be understood 
by the various stakeholders involved in an as straightforward manner as possible. 
Unfortunately, a common major drawback that all the above formal approaches suffer 
is that only users who have the expertise in these particular formal methods can build 
their workflows and dynamically change the business rules within the workflows. For 
example, in order to add a new task to a Petri-net based workflow, one must manipu-
late the model in terms of transitions, places, arcs and tokens, which can be done 
correctly and efficiently only by a person with a good understanding of Petri-nets. 
This significantly affects the application of these approaches on a large scale. This 
paper attempts to define a new formalism for the modeling and analysis of workflows, 
which, in addition to the abilities of supporting workflow validation and enactment, 
possesses the distinguishing feature of allowing users who are not proficient in formal 
methods to build up and dynamically modify the workflows that address their busi-
ness needs.  

The paper is organized as follows: Section 2 presents the new workflow formalism 
(WIFA – Workflows Intuitive Formal Approach), its state transition rules and its 
modeling power. Section 3 introduces well-formed workflows and how to build up a 
well-formed workflow. Section 4 gives a brief description of our tool for workflows 
modeling and analysis. Section 5 presents conclusions and ideas for the continuation 
of this work. 

2   The WIFA Workflow Model 

In general, a workflow consists of processes and activities, which are represented by 
well-defined tasks. The entities that execute these tasks are humans, application pro-
grams or database management systems. These tasks are related and dependent on one 
another based on business policies and rules [4]. In this section, we introduce the 
WIFA workflow model which captures tasks and relations among them in a work-
flow. We also define a set of state transition rules to facilitate the analysis of the dy-
namic behavior of a workflow. 



An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis      

 

139 

2.1   WIFA Workflow Model Definitions 

The control dependencies among tasks contain the order in which they can execute. 
Two tasks are said to have precedence constraints if they are constrained to execute 
in some order. As a convention, we use a partial-order relation <, called a precedence 
relation, over the set of tasks to specify the precedence constraints among tasks. A 
task Ti is a predecessor of another task Tj (and Tj a successor of Ti) if Tj cannot begin 
execution until the execution of Ti completes. A short-hand notation for this fact is Ti 
< Tj. Ti is an immediate predecessor of Tj (and Tj an immediate successor of Ti) if Ti < 
Tj and there is no other task Tk such that Ti < Tk < Tj. We denote this fact with notation 
pij = 1. Naturally, the fact that Ti is not an immediate predecessor of Tj is denoted by 
pij = 0. Two tasks are independent when neither Ti < Tj nor Tj < Ti. A classic way to 
represent the precedence constraints among tasks in a set T is by a directed graph G = 
(T, <), in which each vertex represents a task in T, and there is a directed edge from 
vertex Ti to vertex Tj if Ti is an immediate predecessor of Tj. The graph is called a 
precedence graph. 

Definition 1 (preset of a task): The preset of a task Tk, denoted by *Tk, is  

*Tk = {Ti | pik = 1}.  

Definition 2 (postset of a task): The postset of a task Tk, denoted by Tk*, is  

Tk* = {Ti | pki = 1}. 

Basically, the preset of a task is the set of all tasks that are immediate predecessors 
of the task, while the postset of a task is the set of all tasks that are immediate succes-
sors of the tasks. If |Tk*| ≥ 1, then the execution of Tk might trigger multiple tasks. 
Suppose {Ti, Tj} ⊆ Tk*. There are two possibilities: (1) Ti and Tj can be executed si-
multaneously, and (2) only one of them can be executed, and the execution of one will 
disable the other due to the conflict between them. We denote the former case by cij = 
cji = 0, and the latter case by cij = cji = 1.  

If |*Tk| ≥ 1, then based on the aforementioned classic precedence model, the exe-
cution of Tk won’t start until all of its immediate predecessors are executed. This 
precedence constraint is also called AND precedence constraint. An extension to this 
classic precedence model is to allow a task to be executed when some of its immedi-
ate predecessors are executed. This loosens the precedence constraints to some extent, 
and the loosened precedence constraint is also called OR precedence constraint. Ob-
viously, the OR precedence model provides more flexibility than the classic AND 
precedence model in describing the dependencies among tasks. So in this paper, the 
OR precedence model is adopted. The AND precedence model can be viewed as a 
special case of the OR precedence model. 

Suppose *Tk = {Tk1, Tk2, … Tkn}, n ≥ 1. Define A(Tk) = {A1, A2, … Ah},  h ≥ 1 such 
that 

1) Ai ⊆ *Tk, i = 1, 2, …, h, i.e. A(Tk) is a set of subsets of *Tk. 

2) Ai ≠ Aj, ∀i ≠ j, i, j ∈ {1, 2, …, h}, i.e. these subsets are all different. 



       J. Wang et al.  

 

140

3) Tk is executable if and only if all tasks in any Ai ∈ A(Tk) are executed. In other 
words, Tk can be triggered by any subset in A(Tk), but only after all tasks in 
that subset are executed.  

The set A(Tk) is used to specify the pre-condition set for Tk to become executable. 

The state of a workflow can be described as an array whose elements are the states 
of all individual tasks in the workflow. Denote by S a state of a workflow, then S = 
(S(T1), S(T2), …, S(Tm)). 

Now we are ready to formally define our WIFA workflow model. 

Definition 3 (workflow): A workflow is WF = (T, P, C, A, S0), where 

1) T = {T1, T2, …, Tm} is a set of tasks, m  1. 

2) P = (pij)mxm is the precedence matrix of the task set. If Ti is the direct prede-
cessor of Tj, then pij = 1; otherwise, pij = 0. 

3) C = (cij)mxm is the conflict matrix of the task set. cij ∈ {0, 1} for i = 1, 2, …m 
and j =1, 2, … m.  

4) A = (A(T1), A(T2), …, A(Tm)) defines pre-condition set for each task. ∀Tk ∈ T, 

A(Tk): *Tk → kT*2 . Let set A’ ∈ A(Tk). Then Ti ∈ A’ implies pik = 1.  

5) S0 ∈ {0, 1, 2, 3}m is the initial state of the workflow. 

Definition 4 (state values): Denote a state of the WF by S = (S(T1), S(T2), …, S(Tm)), 
where S(Ti) ∈ {0, 1, 2, 3}.  

1) S(Ti) = 0 means Ti is not executable at state S and not executed previously.   

2) S(Ti) = 1 means Ti is executable at state S and not executed previously. 

3) S(Ti) = 2 means Ti is not executable at state S and executed previously.  

4) S(Ti) = 3 means Ti is executable at state S and executed previously.  

By the definition of state values, at any state, only those tasks whose values are ei-
ther 1 or 3 can be selected for execution. Suppose task Ti at state Sa is selected for 
execution, and the new state resulted from the execution of Ti is Sb, then the execution 
of Ti is denoted by Sa(Ti)Sb. 

Now we can have a more accurate explanation on the conflict matrix C and the 
precondition set A of a task. Let tasks Ti, Tj and Tk ∈ T with pki = pkj = 1. Suppose 
there are three states Sa, Sb and Sc such that either Sa(Ti) = Sa(Tj) = 1 or Sa(Ti) = Sa(Tj) 
= 3, and Sa(Ti)Sb and Sa(Tj)Sc.  

1) If Sa(Ti) = Sa(Tj) = 1, then cij = cji= 1 implies Sb(Tj) = Sc(Ti) = 0, and cij = cji = 0 
results in Sb(Tj) = Sc(Ti) = 1.  

2) If Sa(Ti) = Sa(Tj) = 3, then cij = cji= 1 implies Sb(Tj) = Sc(Ti) = 2, and cij = cji = 0 
results in Sb(Tj) = Sc(Ti) = 3. 

On the other hand, suppose A(Tk) = {A1, A2, … Ah},  h ≥ 1. Then Sa(Tk) ∈ {1, 3} if 
∃Ai ∈ A(Tk) such that Sa(Tj) = 2 for ∀Tj ∈ Ai.  

Definition 5: (initial state) At the initial state S0, for any task Ti ∈ T, if there is no Tj 
such that pji = 1, then S0(Ti) = 1; otherwise S0(Ti) = 0. 



An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis      

 

141 

Note that tasks that have no predecessor do not need to wait for any other task to 
execute first. In other words, these tasks are executable immediately. We assume that 
there is always such kind of tasks in a workflow. They are the initial triggers or “start-
ing” tasks of workflows. In Definition 1 there is no restriction on the preset and post-
sets of tasks. Therefore, there may be multiple tasks whose presets are empty, and 
there may be multiple tasks whose postsets are empty. In other words, this formalism 
supports multiple “starting” tasks and “ending” tasks in a workflow. 

2.2   State Transition Rules 

The dynamics of a workflow can be captured by state transitions. Of course, state 
transitions should be guided by a set of state transition rules. In this subsection, we 
define the rules. 

Definition 6: (state transition rules) If Sa(Ti)Sb, then ∀ Tj ∈ T,  

1) If Tj = Ti then Sb(Tj) = 2; 

2) If Tj  Ti then the state value of Tj at new state Sb depends on its state value at 
state Sa. We consider four cases: 

Case A – Sa(Tj) = 0: 
If pij = 1 and ∃A’ ∈ A(Tj) such  that Sb(Tk) = 2 for any Tk∈A’, then Sb(Tj) = 
1; otherwise Sb(Tj) = 0. 

Case B – Sa(Tj) = 1 
If cij = 0 then Sb(Tj) = 1; otherwise Sb(Tj) = 0. 

Case C – Sa(Tj) = 2 
If pij = 1 and ∃A’ ∈ A(Tj) such  that Sb(Tk) = 2 for any Tk∈A’, then Sb(Tj) = 
3; otherwise Sb(Tj) = 2. 

Case D – Sa(Tj) = 3 
 If cij = 0 then Sb(Tj) = 3; otherwise Sb(Tj) = 2. 

According to the above state transition rules, a task’s state value at a given state 
other than the initial state is 0 iff one of the following holds: 

1) Its state value is 0 in the previous state, and it is not the successor of the task 
which is just executed.  

2) Its state value is 0 in the previous state, and it is the successor of the task which 
is just executed, but for each of its precondition sets there is at least one task 
that is not executed.  

3) Its state value is 1 in the previous state but it conflicts with the task which is 
just executed.  

A task’s state value at a given state other than the initial state is 1 iff one of the fol-
lowing holds: 

1) Its state value is 0 in the previous state, it is the successor of the task which is 
just executed, and in at least one of its precondition sets all tasks are executed.  

2) Its state value is 1 in the previous state and it does not conflict with the task 
which is just executed.  



       J. Wang et al.  

 

142

A task’s state value at a given state other than the initial state is 2 if and only if one 
of the following holds: 

1) It is just executed. 

2) Its state value is 2 in the previous state, and it is not the successor of the task 
which is just executed.  

3) Its state value is 2 in the previous state, and it is the successor of the task which 
is just executed, but for each of its precondition sets there is at least one task 
that is not executed.  

4) Its state value is 3 in the previous state but it conflicts with the task which is 
just executed.  

A task’s state value at a given state other than the initial state is 3 if and only if one 
of the following holds: 

1) Its state value is 2 in the previous state, it is the successor of the task which is 
just executed, and there is at least one of its precondition sets in which every 
task is executed.  

2) Its state value is 3 in the previous state and it does not conflict with the task 
which is just executed.  

Note that a state value can increment from 0 to 1, from 1 to 2 or from 2 to 3; it can 
also decrement from 1 to 0 or from 3 to 2. But it cannot decrement from 2 to 1. Fig. 1 
illustrates possible state value changes for a given task when a workflow changes 
from one state to another state due to the execution of some task. 

 

 

 

 

Fig. 1. State transition of an individual task 

2.3   Example 

We now illustrate how to apply the WIFA approach to workflow modeling and analy-
sis through an example. Assume that we have a workflow with eight tasks, namely T1, 
T2, … T8. Its specification is as follows: 

• T1 is the direct predecessor of T2 and T3, T2 is the immediate predecessor of T4, 
T4 is the immediate predecessor of T5, T5 is the immediate predecessor of T6 and 
T7, T6 is the second immediate predecessor of T2, T3 is the immediate predeces-
sor of T7, and T7 is the second immediate predecessor of T8. See Fig. 2. 

• T6 and T7 conflict with each other. In other words, after T5 is executed, if T6 is 
selected for execution, then the execution of T6 will make T7 not executable and 
vice versa.  

 

 0 1 2 3 



An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis      

 

143 

 

 

 

 

 

Fig. 2.  Precedence graph of an eight-task workflow 

• T1 is executable when the workflow is started. T2 and T3 become executable 
when T1 is executed. T2 also becomes executable when T6 is executed. T4 be-
comes executable when T2 is executed. T5 becomes executable when T4 is exe-
cuted. T6 and T7 become executable when T5 is executed. T4 becomes executa-
ble when T2 is executed. T5 becomes executable when T4 is executed. And T8 
becomes executable when both T3 and T7 are executed. 

This workflow is formulated in the WIFA framework as: 

T = {T1, T2, T3, T4, T5, T6, T7, T8}, 

=

00000000

10000000

00000010

01100000

00010000

10000000

00001000

00000110

P
, 

=

00000000

00100000

01000000

00000000

00000000

00000000

00000000

00000000

C
 

A(T1) = Ø, A(T2) = {{T1}, {T6}}, A(T3) = {{T1}},  

A(T4) = {{T2}}, A(T5) = {{T4}},  

A(T6) = A(T7) = {{T5}}, A(T8) = {{T3, T7}}. 

S0 = (1, 0, 0, 0, 0, 0, 0, 0). 

Now let us examine the execution of this workflow. At S0, T1 is the only executa-
ble task. Let S0(T1)S1, then based on the state transition rule, we have 

S1(T1) = 2 (Rule 1) 

S1(T2) = S1(T3) = 1 (Rule 2A) 

S1(T4) = S1(T5) = S1(T6) = S1(T7) = S1(T8) = 0 (Rule 2A) 

So S1 = (2, 1, 1, 0, 0, 0, 0, 0). 
At S1, T2, T3 are executable, because their state values are 1. Let S1(T2)S2, then 

based on the state transition rule, we have 

T1 

T2 

T3 

T6 

T4 T5 
T7 

T8 



       J. Wang et al.  

 

144

S2(T1) = 2 (Rule 2C) 

S2(T2) = 2 (Rule 1) 

S2(T3) = 1 (Rule 2B) 

S2(T4) = 1 (Rule 2A) 

S2(T5) = S2(T6) = S2(T7) = S2(T8) = 0 (Rule 2A) 

So S2 = (2, 2, 1, 1, 0, 0, 0, 0). 
At S2, T3 and T4 are executable, because their state values are 1. Let S2(T3)S3, then 

based on the state transition rule, we have 

S3(T1) = S3(T2) = 2 (Rule 2C) 

S3(T3) = 2 (Rule 1) 

S3(T4) = 1 (Rule 2B) 

S2(T5) = S2(T6) = S2(T7) = S2(T8) = 0 (Rule 2A) 

So S3 = (2, 2, 2, 1, 0, 0, 0, 0). Notice that T6 is not executable now because neither T4 

nor T5 is executed.  
At S3, only T4 is executable, because it is the only task with state value 1 or 3. Let 

S3(T4)S4, then it follows from the state transition rules that S4 = (2, 2, 2, 2, 1, 0, 0, 0). 
At S4, only T5 is executable. Let S4(T5)S5, then it follows from the state transition rules 
that S5 = (2, 2, 2, 2, 2, 1, 1, 0).  

At S5, T6 and T7 are executable, because their state values are 1. The execution T6 

causes the workflow to proceed along the T2-T4-T5-T6-T2 loop. Let S5(T6)S6, then 
based on the state transition rule, we have 

S6(T1) = S5(T3) = S5(T4) = S5(T5) = 2 (Rule 2C) 

S6(T2) = 3 (Rule 2C) 

S6(T6) = 2 (Rule 1) 

S6(T7) = S6(T8) = 0 (Rule 2A) 

So S6 = (2, 3, 2, 2, 2, 2, 0, 0). Notice that T7 becomes not executable now because T6 

and T7 are in conflict.  

Task T2 will execute at S6, which results in S7 = (2, 2, 2, 3, 2, 2, 0, 0). Then task T4 

will execute at S7, which results in S8 = (2, 2, 2, 2, 3, 2, 0, 0). Then task T5 will  
execute at S8, which results in S9 = (2, 2, 2, 2, 2, 3, 1, 0). Let S9(T7)S10, then based on 
the state transition rule, we have 

S10(T1) = S5(T2)= S5(T3) = S5(T4) = S5(T5) = 2 (Rule 2C) 

S10(T6) = 0 (Rule 2A) 

S10(T7) = 2 (Rule 1) 

S10(T8) = 1 (Rule 2A) 



An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis      

 

145 

So S10 = (2, 2, 2, 2, 2, 2, 2, 1). Notice that T8 is executable now because both T3 and T7 

are executed. The execution of T8 results in S11 = (2, 2, 2, 2, 2, 2, 2, 2). At this state, 
no more tasks are executable. 

The above analysis only traces one execution path. The entire state transition 
graph of this workflow is depicted in Fig. 3, which contains 22 states in total. The 
workflow may either stop at state (2, 2, 2, 2, 2, 2, 2, 2) if the workflow is looped or at 
state (2, 2, 2, 2, 2, 0, 2, 2) if it doesn’t go through the loop. 

Discussion: This example shows that our formal workflow model can be directly 
formulated from the users’ specification of the workflow. The importance of this fact 
lies in that the proposed approach supports automated formulation from users’ work-
flow description to a formal model of the workflow. More discussion will be provided 
in next section. 

2.4   WIFA Modeling Power 

The characteristics exhibited by the task executions of workflows such as concurrency, 
decision making, synchronization and loops are modeled very effectively with the WIFA 
model. These characteristics are represented using a set of simple constructs:  

1) Sequential execution: In the example, tasks T1 and T2 are executed sequen-
tially. This relationship is specified by p12 = 1 in the precedence matrix. Such 
precedence constraints are typical of execution tasks in a workflow. Also, 
this construct models the causal relationships among activities.  

2) Conflict: In the example, tasks T6 and T7 conflict with each other. This is 
specified by c67 = c76 = 1 in the conflict matrix. Such a situation will arise, 
for example, when a user has to choose among multiple possible actions.      

3) Concurrency: In example, tasks T2 and T3 are concurrent. Concurrency is an 
important attribute of a workflow. A sufficient condition for two tasks to be 
concurrent is that they are successors of some other task, and they are not in 
conflict.  

4) Synchronization: Oftentimes, a task in a workflow has to wait for execution 
results of two or more other tasks before it can be executed. The resulting 
synchronization of tasks can be captured by the pre-condition set of a task. In 
the example, A(T8) = {T3, T7},means T3 is synchronized with T7 for T8. 

5) Loop: Loop is a common characteristic within a workflow structure where 
some tasks are executed repeatedly. As an example shown in Fig. 2, tasks T2, 
T4, T5 and T6 could be executed again and again. 

6) Mutual exclusion: Mutual exclusion is defined as following. 

Definition 7 (mutual exclusion) Two tasks Ti and Tj are said to be mutual exclusive 
based on the following recursive definition: 

1) Ti and Tj are mutual exclusive if cij = 1. 

2) If Ti and Tj are mutual exclusive and *Tk = {Ti}, then so are Tk and Tj. 
 
 



       J. Wang et al.  

 

146

 

 

 

                

 

 

       

 

       

 

       

 

 

 

 

 

  

  

 

Fig. 3. State transition graph of the example workflow 

 
 
 
 
 
 
 

Fig. 4.  A precedence graph where T2 and T3 are in conflict 

T1 

T2 T4 T5 

T3 T6 

T7 

T1 

T2 T3 

T3 T2 T4 

T5 

T6 

T4 

T2 

T4 

T5 

T6 

T2 

T4 

T3 

T3 

T3 

T3 

(1 0 0 0 0 0 0 0) 

(2 1 1 0 0 0 0 0) 

(2 2 1 1 0 0 0 0) (2 1 2 0 0 0 0 0) 

(2 2 2 1 0 0 0 0) 
(2 2 2 2 1 0 0 0) (2 2 1 2 1 0 0 0) 

(2 2 1 2 2 1 1 0) (2 2 2 2 2 1 1 0) 

(2 3 1 2 2 2 0 0) (2 3 2 2 2 2 0 0) (2 2 2 2 2 0 2 1) 

(2 2 1 3 2 2 0 0) (2 2 2 3 2 2 0 0) (2 2 2 2 2 0 2 2) 

T5 T5 
T3 

(2 2 1 2 3 2 0 (2 2 2 2 3 2 0 0) 

T7 T7 
T3 

(2 2 1 2 2 3 1 0) (2 2 2 2 2 3 1 0) 

T3 
(2 2 1 2 2 2 2 0) (2 2 2 2 2 2 2 1) 

T8 
(2 2 2 2 2 2 2 2) 

T6 

T7 

T8 

T6 



An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis      

 

147 

According to this definition, any two mutual exclusive tasks are rooted from two 
conflicting tasks. For example, assume that tasks T2 and T3 in Fig.4 are in conflict. 
Then any task from set {T2, T4, T5} and any task from set {T3, T6} are mutual 
exclusive. So, when T2 and T3 are triggered by T1, either the branch T2-T4-T5 or the 
branch T3-T6 will be chosen to execute. 

3   Well-Formed Workflows 

In this section, we introduce well-formed workflows which have no dangling tasks and 
are guaranteed to finish. We particularly discuss confusion-free workflows, which are 
a class of well-formed workflows and have some distinguishing properties. We intro-
duce how to build confusion-free workflows, and how to ensure a workflow remains 
confusion-free when it needs to be changed. 

3.1   Well-Formed Workflow Definitions 

Definition 8 (reachable set): A state S of a workflow is reachable from the initial 
state if and only if there is a sequence of tasks that are executable sequentially from 
the initial state and the execution of these tasks leads the workflow to state S. The set 
of all reachable states, including the initial state, is called the reachable set. It is de-
noted by .  

Definition 9 (well-formed workflow): A workflow is well-formed if and only if the 
following two behavior conditions are met: 

1)  ∀Ti ∈T, ∃ S ∈  such that S(Ti) = 1. (i.e. there is no dangling task.) 

2) ∃ S ∈  such that S(Ti) ∈ {0, 2} for ∀Ti ∈ T. (i.e. there is at least one ending 
state.) 

The example workflow given in Section 2.3 is well-formed, because every task in 
this workflow is executable, and there are two ending states. In general, the validation 
of a workflow being well-formed requires the reachability analysis of the workflow. 
Below we introduce confusion-free workflows, which are a class of well-formed 
workflows with some restrictions imposed on their structure.  

Definition 10 (confusion-free workflow): A well-formed workflow is confusion-free 
if and only if the following two structural conditions are met: 

1) ∀Tk ∈ T with |Tk* |  3, if ∃ Ti, Tj ∈ Tk* such that cij = 1 (or cij = 0), then for 
∀Ta, Tb ∈ Tk* cab = 1 (or cab = 0) (i.e., either all tasks triggered by the same task 
are in conflict, or no pair of them are in conflict.) 

2) ∀Tk ∈T with *Tk = {Tk1, Tk2, …, Tkn}, n  2, either  

A(Tk) = {{ Tk1, Tk2, …, Tkn}},            (1) 

or  

A(Tk) = {{Tk1}, {Tk2}, …, {Tkn}}           (2) 

(i.e., Tk becomes executable either when all of its predecessor tasks are exe-
cuted, or when any one of them is executed.) 

R

R
R



       J. Wang et al.  

 

148

Based on this definition, the example workflow in Section 2.3 is also confusion-
free. As will be described next in Theorem 1, it is easy to construct and validate a 
confusion-free workflow. 

From the perspective of triggering condition and relation among triggered tasks, 
tasks in a confusion-free well-formed workflow can be classified into four types: 

1) And-In-Parallel-Out A task belongs to this class iff it is not executable until 
all its direct predecessor tasks are executed, and after it is executed, all its di-
rect successor tasks can be executed in parallel.  

2) And-In-Conflict-Out A task belongs to this class iff it is not executable until 
all its direct predecessor tasks are executed, and after it is executed, only one 
of its direct successor tasks can be executed. 

3) Or-In-Parallel-Out A task belongs to this class iff it is executable as long as 
one of its direct predecessor tasks is executed, and after it is executed, all its 
direct successor tasks can be executed in parallel. 

4) Or-In-Conflict-Out A task belongs to this class iff it is executable as long as 
one of its direct predecessor tasks is executed, and after it is executed, only 
one of its direct successor tasks can be executed. 

Without loss of generality, a task with only one direct predecessor is treated as an 
“And-In” task, and a task with only one direct successor treated as a “Parallel-Out” 
task. Denote by set TAP for all And-In-Parallel-Out tasks, TAC for all And-In-Conflict-
Out tasks, TOP for all Or-In-Parallel-Out tasks, and TOC for all Or-In-Conflict-Out 
tasks. Then in the example workflow, we have TAP = {T1, T3, T4, T6, T7, T8},  TAC = 
{T5}, TOP = {T2}, and TOC = ∅. 

3.2   Build a Well-Formed Workflow 

Theorem 1: Given a confusion-free, well-formed workflow WF = (T, P, C, A, S0), by 
adding a new task Tk to it, the obtained new workflow is denoted by WF’ = (T’, P’, 
C’, A’, S0’). Then WF’ is also a confusion-free workflow if it matches one of the fol-
lowing cases:  

1) *Tk = Tk* = ∅, i.e., p’ki = p’ik = 0 for all Ti ∈ T’ \ {Tk}. 

2) *Tk = ∅, Tk*  ∅, and ∀Ti ∈ Tk*, if A(Ti) is defined in the form of (1) in Defi-
nition 10, then A’(Ti) is also defined in the form of (1) by adding Tk to the only 
set. If A(Ti) is defined in the form of (2), then A’(Ti) is also defined in the form 
of (2) by adding {Tk} to A(Ti).  

3) *Tk  ∅, Tk* = ∅. If A(Tk) is defined in the form of (1) in Definition 10, then 
there exists a Sa in WF such that all tasks in *Tk have state value of 2; If A(Tk) 
is defined in the form of (2) in Definition 10, then there exists a Sa in WF such 
that at least one task in *Tk has state value of 2.  In addition, ∃Ti ∈ *Tk, if Ti 

triggers two or more conflicting tasks, then Tk conflicts with each of these 
tasks, otherwise, ckj = 0 for any Tj ∈ Ti*. 

4) *Tk  ∅, Tk*  ∅, with all other conditions appear in 2) and 3). Besides, ∀Ti ∈ 
Tk*, if Ti is also a predecessor of Tk (i.e., Tk introduces a loop), then A(Ti) can 
only be in the form of (2) in Definition 10. 



An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis      

 

149 

Proof:  

Case 1): Tk is an isolated task. Based on Definition 3, Tk will not be in any other 
task’s pre-condition set, so it has no impact to the original workflow WF, and the two 
structural conditions of confusion-free workflows are all met in WF’. Because Tk has 
no predecessors, so it is executable in S’0. Since WF is well-formed, there must be an 
ending state Sq∈ R(WF), then state S’q = Sq U {S(Tk) = 2} is an ending state of WF’. 
Therefore, WF’ is confusion-free. 

Case 2) In this case, Tk has no predecessors, so it is executable in S’0. We need to 
make sure that all tasks that are successors to Tk are still executable after adding in Tk. 
∀Ti ∈ Tk*, if A’(Ti) is defined in the form of (1) by adding Tk to the only set, then that 
WF is confusion-free indicates that there is a state Sa in WF such that all tasks in *Ti 
have state value of 2. Because Tk is unconditionally executable, so there must be a 
corresponding state Sa’ in WF’ such that Sa’ = Sa U {Sa’(Ti) =2}. Thus Ti is still execu-
table in WF’. If A’(Ti) is defined in the form of (2) by adding {Tk} to A’(Ti), then the 
execution of any task in *Ti in WF’ can still trigger Ti as it does in WF, and Tk is just 
an additional task to trigger Ti. Thus Ti is still executable in WF’. Since WF is well-
formed, there must be an ending state Sq∈ R(WF), then state S q’ = Sq U {S(Tk) = 2} is 
an ending state of WF’. In addition, A’(Ti) is defined in one of the two desired forms. 
Therefore, WF’ is also confusion-free. 

Case 3) In this case, Tk has no successors. The other conditions guarantee already 
that task Tk is executable, and the two structural conditions of confusion-free work-
flows are also met. We only need to prove that the introduction of Tk won’t cause 
other tasks to become non-executable. It is easy to understand that the state transition 
behavior of WF’ from any state S’ in which S’(Tk) = 0 is not affected due to the intro-
duction of Tk. Suppose that at state Sa’ we have Sa’(Tk) = 1 and Tk is triggered by Ti (Ti 

∈ *Tk). If all tasks triggered by Ti are able to execute in parallel with Tk (ckj = 0 for 
any Ti ∈ Ti*), then Tk has no impact to the execution of other triggered tasks. The 
other possibility is that Tk is in conflict with any other task triggered by Ti. In this 
case, if Tk is not chosen for execution, the state transition behavior from S’ will be just 
like the case in state S = S’ \ { S’(Tk) = 1} of WF. All these suggests that WF’ is also a 
confusion-free workflow.  

Case 4) This case is a combination of Case 2 and Case 3. The WF’ can be proved 
confusion-free by jointly applying the reasoning for these two cases if Tk does not 
introduce a loop to the workflow, In case Tk introduces a loop, since we already re-
strict that ∀Ti ∈ Tk*, if Ti is also a predecessor of Tk, then A(Ti) can only be in the 
form of (2) in Definition 10, Ti can be triggered as it is without Tk in place. Adding Tk 
simply introduces one more trigger to Ti. So the loop does not cause any task un-
executable.  

The theorem is proved.  
Theorem 1 can serve as a rule in building a confusion-free workflow. At the be-

ginning, the task set is empty. When the first task is introduced, the workflow is well-
formed, because this single task has no predecessors and successors and it is executa-
ble. Then we add a second task. This second task can either be an isolated one (Case 1 
of Theorem 1), or be a successor of the first task (Case 2 of Theorem 1), or be a 
predecessor of the first task (Case 3 of Theorem 1),  or even be both a predecessor 



       J. Wang et al.  

 

150

and successor to the first task (Case 4 of Theorem 1). Since the first task is the only 
possible successor or predecessor to the second task, the new workflow (with these 
two tasks) is still confusion-free. When we continue to introduce more tasks to the 
workflow, as long as we make sure each new task is added in such a way that it satis-
fies the conditions defined in one of the four cases, then the new workflow is guaran-
teed to be confusion-free. 

4   Tool Support 

We are currently in the process of developing a visual tool to automate the workflow 
editing and enactment. In this section we briefly introduce the tool.  

The tool has three components: an editor, a simulator and a validator. The editor 
enables users to create a workflow with an easy to use drag and drop interface. As 
shown in Fig. 5, the editor has a Tool Box which contains all the objects available for 
dragging and dropping into the Working area, with each of the four types of tasks 
represented by a unique icon. Connections add the directional flow from one task to 
the next.  Every connection must have one start task and one end task. When a user is 
 

 

 

Fig. 5.  Screenshot of the workflow editor 
 

 



An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis      

 

151 

adding a connection, the working area will change into “connection start mode”.  The 
user will then select the start task by clicking on an existing task in the working area.  
Once a start task has been selected, the working area will change to “connection end 
mode”.  A phantom connection will follow the user until an end task is selected or the 
connection adding has been cancelled.  Once the connection has been established, the 
connection is drawn and the working area returns to “normal mode”.  

Each object in the working area has general properties such as position, text, de-
scription among others.  The general Properties area allows the user to see at a glance 
and change the properties of an object.  This Properties area will be populated with 
the currently active object. Specially, the properties of each task can be seen by right-
clicking a task and selecting the Task Properties.  The task properties will show the 
tasks that the current task is triggered by, tasks that this task triggers, any conflicts 
with this task, and any business rules associated with the task. 

A complete workflow can be saved as either an XML file or an image. 
The simulator allows users to simulate the execution of a workflow. The users can 

set the simulation speed with the Speed command, and have options on Play, Back, 
Pause, and Stop.  

The validator allows users to verify if their workflows are well-formed. The users 
can perform the validation at any stage of workflow construction. 

5   Concluding Remarks 

In this paper we presented a new formal, yet intuitive, approach for the modeling and 
analysis of workflows. We introduced our representation of tasks, relations among 
tasks, state transition rules, and the expressive power of this framework that enables 
the creation and enactment of workflows. We have showed our definition of well-
formed workflows and how to build them, such that whenever a new task is added, it 
will not alter the well-formedness property of the workflow. 

We are currently developing theorems on deleting a task from a well-formed 
workflow and changing some business rules in a well-formed workflow such that the 
modified workflow is still well-formed. Meanwhile, we are designing and implement-
ing a visual tool to automate the workflow editing and enactment. The tool will allow 
the recording of an audit log that will permit the analysis and improvement of current 
workflows. We will also be working on extending our approach to the inter-
organizational workflow modeling and analysis, to be able to represent the interac-
tions between different people and organizations that need to work together for 
achieving different business goals. 

References 

1. N. R. Adam, V. Atluri and W. Huang, “Modeling and Analysis of Workflows Using Petri 
Nets”, Journal of Intelligent Information Systems, pp. 131-158, March 1998. 

2. P. C. Attie, M. P. Singh, A. Sheth and M. Rusibkiewicz, “Specifying Interdatabase De-
pendencies,” Proceedings 19th International Conference on Very Large Database, 
pp.134-145, 1993. 



       J. Wang et al.  

 

152

3. P. Dourish, “ Process Descriptions as Organizational Accounting Devices: The Dual use of 
Workflow Technologies”, Paper presented at GROUP'01, (ACM), Sept. 30-Oct. 3, 2001, 
Boulder, Colorado, USA 

4. P. Lawrence, editor, “Workflow Handbook 1997, Workflow Management Coalition”, John 
Wiley and Sons, New York, 1997. 

5. D.C. Marinescu, Internet-Based Workflow Management: Towards a Semantic Web, Wiley 
Series on Parallel and Distributed Computing, vol. 40, Wiley-Interscience, NY, 2002 

6. D. Rosca, S. Greenspan, C. Wild, “Enterprise Modeling and Decision-Support for Auto-
mating the Business Rules Lifecycle”, Automated Software Engineering Journal, Kluwer 
Academic Publishers, vol.9, pp.361-404, 2002. 

7. M.P. Singh, G. Meredith, C. Tomlinson, and P.C. Attie, “An Event Algebra for Specifying 
and Scheduling Workflows,” Proceedings 4th International Conference on Database Sys-
tem for Advance Application, pp. 53-60, 1995. 

8. W.M.P. van der Aalst, “Verification of Workflow Nets”, Proceedings of Application and 
Theory of Petri Nets, Volume 1248 of Lecture Notes in Computer Science, pp. 407-426, 
1997. 

9. W.M.P. van der Aalst, “Three Good Reasons for Using a Petri Net-Based Workflow Man-
agement System”, Proceedings of the International Working Conference on Information 
and Process Integration in Enterprises (IPIC’96), pp. 179–201, Nov 1996. 

10. W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, “Business Process Manage-
ment: A Survey.” International Conference on Business Process Management (BPM 
2003), volume 2678 of Lecture Notes in Computer Science, pages 1-12. Springer-Verlag, 
Berlin, 2003. 

11. J. Wang, Timed Petri Nets: Theory and Application, Kluwer Academic Publishers, 1998, 
ISBN: 0-7923-8270-6.  

12. D. Wodtke and G. Weikum, “A Formal Foundation for Distributed Workflow Execution 
Based State Charts,” Proceedings 18th International Conference on Database theory, 
1997. 

13. M.D. Zisman, “Representation, Specification and Automation of Office Procedures”, PhD 
thesis, University of Pennsylvania, Warton School of Business, 1977. 



Using the π-Calculus for Formalizing

Workflow Patterns�

Frank Puhlmann and Mathias Weske

Hasso-Plattner-Institute for IT Systems Engineering,
at the University of Potsdam,
D-14482 Potsdam, Germany

{puhlmann, weske}@hpi.uni-potsdam.de

Abstract. This paper discusses the application of a general process
theory – the π-calculus – for describing the behavioral perspective of
workflow. The π-calculus is a process algebra that describes mobile sys-
tems. Mobile systems are made up of components that communicate
and change their structure as a result of communication. The ideas be-
hind mobility, communication and change can also enrich the workflow
domain, where flexibility and reaction to change are main drivers. How-
ever, it has not yet been evaluated whether the π-calculus is actually
appropriate to represent the behavioral patterns of workflow.

This paper investigates the issue and introduces a collection of work-
flow patterns formalizations, each with a sound formal definition and
execution semantics. The formalizations can be used as a foundation for
pattern-based workflow execution, reasoning, and simulation as well as
a basis for future research on theoretical aspects of workflow.

1 Introduction

Recently, the π-calculus has been discussed as a formal foundation for work-
flow [1,2]. The advocators of the so called Third Wave claim that the π-calculus
is a natural foundation for workflow as it is based on communication and change.
Indeed, communication is required for inter-organizational workflow and service
oriented languages like BPML, XLang, or BPEL4WS [3,4,5]. The ability to dy-
namically change workflows on demand is already an important topic in workflow
research [6,7,8]. Despite these discussions, no formal and reasonably complete in-
vestigation of the π-calculus regarding the workflow domain has been made. This
paper takes a first step by analyzing the capabilities of the π-calculus regarding
workflow patterns [9]. It introduces a collection of workflow patterns formaliza-
tions, each with an unambiguous formal definition and execution semantics.

The formalizations can be used in two major directions. First, they build
a foundation for pattern-based workflow execution, reasoning, and simulation,
which is based upon the execution semantics and proving capabilities of a formal

� The work reported in this paper has been supported by the German Ministry of
Research and Education (BMBF) by the PESOA project.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 153–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



154 F. Puhlmann and M. Weske

algebra. Second, the formalizations show that the π-calculus is indeed a base for a
precise definition of behavioral workflow requirements. At the same time it might
open the door for future research, i.e. integrating other workflow perspectives
like organizational, operational, or informational [10,11].

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. A brief introduction to the π-calculus is given in Section 3. Section
4 contains the formal definitions of workflow patterns; the main concepts are
illustrated by examples. This paper is concluded with an outlook and directions
for future work.

2 Related Work

Another approach of giving a detailed representation of the workflow patterns
has been made with YAWL [12]. Starting as an endeavor as a workflow language
of high expressiveness, YAWL has received considerable attention recently. The
focus of YAWL is the convenient representation of all workflow patterns, as
well as tool support and interfacing to various workflow tools. In the context of
YAWL, a detailed representation of workflow patterns has been proposed [12]. As
such, it is an important area of related work. However, the work presented in this
paper aims at providing a broader exploitation and areas for future work, since
the concepts provided by π-calculus allow for further representation, analysis,
and reasoning, such as compliance of multiple processes.

From the context of process algebra, there has little been done for workflow
purposes up to now. A Ph.D. thesis by Twan Basten researches basic process
algebra and Petri nets [13]. A more practical approach of using CCS [14] to for-
malize web service choreography can be found in [15]. The only approach known
to the authors on the use of the π-calculus for workflow definitions is from Yang
Dong and Zhang Shen-Sheng and centers on basic control flow constructs and
the definition of activities [16]. An approach close to process algebra is the logic
based modeling and analysis of workflows by the use of concurrent transaction
logic [17]. However, the expressiveness of this approach regarding to the workflow
patterns has still to be investigated. Further approaches regarding the formaliza-
tion of workflow patterns might include procedural techniques, which combine
imperative, object–oriented and concurrent programming, logic–based attempts
as well as graphgrammar– and net–based ones. Some approaches could be com-
bined like the event–based and the process algebra has been used together in
this paper.

3 The π-Calculus

The π-calculus is a modern process algebra that describes mobile systems in
a broader sense [18]. The calculus is based on the concept of mobility, which
includes communication and change. Communication takes place between dif-
ferent π-calculus processes. The structure of the processes changes over time by
communication e.g., a process can dynamically include other processes which



Using the π-Calculus for Formalizing Workflow Patterns 155

he received through communication. The communication itself is based on the
concept of names. A name is a collective term for previous existing concepts like
links, pointers, references, identifiers, etc., each of which has a scope. Assuming
a name represents the reference to a process that currently processes a workflow
activity, the scope of the name includes at that time only the active process. As
soon as the process has finished, the scope is extruded to the process that han-
dles the next workflow activity. Based on the flexibility of the π-calculus, which
has only been sketched, many different possibilities arise to formalize the work-
flow patterns. We adopt an event, condition, action (ECA) approach, where each
activity of a workflow is mapped conceptually to an independent π-calculus pro-
cess. Those processes use events in the form of communication to coordinate the
behavior of a workflow. Several processes together form a pattern of behavior,
which represents a workflow pattern.

Syntax

As several different notations of the π-calculus exist [18,19,20,21], the one used
throughout this paper is outlined. Details can be found in [22].

Basically, the π-calculus consists of processes and names, where names define
links. The processes are defined through:

P ::= M | P |P | vzP | !P .

The composition P |P is the concurrent execution of P and P , vzP is the
restriction of the scope of the name z to P , which is also used to generate a
unique, fresh name z and !P is the replication operator that satisfies the equation
!P = P | !P . M contains the summations of the calculus:

M ::= 0 | π.P |M + M

where 0 is inaction, a process that can do nothing, M +M is the exclusive choice
between M and M ′, and the prefix π.P is defined by:

π ::= x 〈y〉 | x(z) | τ | [x = y]π .

The output prefix x 〈y〉 .P sends the name y over the name x and then con-
tinues as P . The input prefix x(z) receives any name over x and then continues
as P with z replaced by the received name (written as {name/z}). The unob-
servable prefix τ.P expresses an internal action of the process, and the match
prefix [x = y]π.P behaves as π.P , if x is equal to y.

Throughout this paper, upper case letters are used for process identifiers
and lower case letters for names. Some additional process identifiers and names
that represent special functions are introduced later on. Furthermore defined
processes from the original paper on the π-calculus are used for parametric
recursion, that is A(y1, ..., yn) [18]. For the definitions given in this paper, defined
processes are more applicable than the recent form with recursive definitions



156 F. Puhlmann and M. Weske

Event

ActionDo

On
a) Event

ActionDo

On
b)

ConditionIf

Event

Actionthen
Do

On
c)

ConditionIf

alternative
Action

else
Do

e1

a1Do

On
d)

...Do

On

e2

e2

e1

a1Do

On
e)

e2

...Do

On e2

...Do

On e3

e3

e1

a1a
then
Do

On
f)

c1If

a1b
else
Do

e2

e3

...Do

On e2

...Do

On e3

Fig. 1. The EA (a), ECA (b), and ECAA (c) notation for business rules and sequential

(d), parallel (e), and optional (f) control flow

K
�= (x̃).P and constant applications K �ã� where x̃ and ã represent sets of

names [22].
We use the abbreviation

∑m
1 (M) to denote the summation of m choices;

e.g.
∑3

1(Mi) = M1 + M2 + M3. The abbreviation
∏m

1 (P ) is used to denote
the composition of m parallel copies of P , e.g.

∏3
1(P ) = P | P | P . Also, {π}m1

denotes m subsequent executions of π, e.g. {π}31 = π.π.π. All abbreviations
could be used with an indexing variable, e.g.

∏3
i=1(di(x)) = d1(x) | d2(x) | d3(x).

Round brackets are used to define the ordering of a process definition. Given τ.P
for instance, P might be expanded to M +M ′ by using the summation rule from
the π-calculus grammar. To avoid ambiguity, round brackets are put around the
expanded symbol, e.g. τ.(M + M ′) instead of τ.M + M ′.

4 Pattern Representation

The formalization of the workflow patterns in the π-calculus starts with a map-
ping from activities to π-calculus processes1. Let every activity be an indepen-
dent process. Each process has pre– and postconditions. A precondition for a
process B could be that it should only start working after a process A has fin-
ished. A postcondition for process B could state that B has completed execution
and then signals this to other processes.

The core idea is based on the ECA approach that originates from active
database systems. ECA means Event, Condition, Action [23]. The event compo-
nent specifies when a rule must be evaluated. After the rule has been evaluated,
the conditional component must be checked and if it matches, the action compo-
nent is executed. This approach has been adapted to specify control flow between

1 We abbreviate the term π-calculus process to process in the following.



Using the π-Calculus for Formalizing Workflow Patterns 157

different activities in a workflow [24]. The adapted paradigm is called ECmAn. It
allows m conditions and n actions. In the workflow domain ECAA, ECA and EA
rules are most common (see figure 1). The figure also shows sequential, parallel,
and optional control flow.

We can now map the ECA approach to process definitions. The preconditions
of the processes comply to the event and conditional part of the ECA rules.
Every process that has no event part represents an initially starting activity, as
the process has no further dependencies. The events are modeled in the process
definitions as input prefixes. After the input prefixes have been triggered (that is,
the event has occurred) an optional condition has to be checked. This is modeled
by a match prefix. It can be used to model global constraints like testing a
cancellation flag. The action part is divided into two parts. First, the functional
perspective of the activity is represented as an unobservable action. Second, the
process can trigger other processes by output prefixes. Output prefixes represent
postconditions. If a process does not trigger other processes it represents a final
workflow activity. The complete process definition for a basic activity is:

x.[a = b].τ.y.0 . (1)

A process receives a trigger x mapping to an event, makes a comparison
[a = b] mapping to a condition, does some internal work τ and finally triggers
another process with y as the resulting action. This notation can be generalized
to:

{xi}mi=1.{[a = b]}n1 .τ.{yi}oi=1.0 . (2)

A generic process can have m incoming triggers, n conditions, and o outgoing
triggers. A process that represents an activity must have a functional part rep-
resented by τ . Note that it is explicitly allowed to have zero incoming triggers,
conditions or outgoing triggers. The consequences have been discussed earlier. If
a process representing an activity can be triggered more than once, the replica-
tion operator must be used.

The description given applies only to basic control flow structures. Advanced
structures require slightly different approaches. Additionally to the processes
that represent the workflow activities, system and helper processes are required.
Those processes do not belong directly to the workflow, but are needed for
reasoning and execution control.

The patterns given in the next paragraphs can be seen as small pieces of
a workflow definitions. The postconditions of the processes that link to other
processes are indicated by a process identifier with an apostrophe, like the process
A has process A′ as a postcondition. The process A′ might represent any other
workflow pattern.

4.1 Basic Control Flow Patterns

The basic control flow patterns capture elementary aspects of workflow control
flow. They are structured like shown in equation 2.



158 F. Puhlmann and M. Weske

Sequence. A sequence between two processes A and B is achieved by A sending
a name over b to process B, which executes τB and afterward activates the
continuation as B′:

A = τA.b.0
B = b.τB.B′ A B

b

As can be seen, the actual process definition transmits no name, because the
name is irrelevant for triggering another process. We abbreviate b 〈x〉 | b(x).B′

to b | b.B′, when the argument count is zero. As explained earlier, this is called
triggering.

Parallel Split. To achieve a parallel split from a process A to two processes B
and C, A triggers two names b and c at the processes B and C.

A = τA.(b.0 | c.0)
B = b.τB.B′

C = c.τC .C′
A

B

C

b

c

Synchronization. The synchronization between two processes B and C at an-
other process D is represented by B and C each triggering the names d1 or d2

at D. The process D waits on those two names until it can continue as D′.

B = τB.d1.0
C = τC .d2.0
D = d1.d2.τD.D′

B

C

D

d1

d2

Exclusive Choice. The exclusive choice between two alternative processes B or
C after A is modeled by the π-calculus summation operator. Thereby A triggers
either b or c.

A = τA.(b.0 + c.0)
B = b.τB.B′

C = c.τC .C′
A

B

C

b

c

Simple Merge. The simple merge of two control flows from either processes
B or C in D is achieved by B and C triggering a name d. Per definition of
this pattern, B and C will never be executed in parallel, so D only needs to
wait on one incoming name d. If B and C should be executable in parallel, the
synchronizing merge pattern applies.

B = τB .d.0
C = τC .d.0
D = d.τD.D′

B

C

D
d



Using the π-Calculus for Formalizing Workflow Patterns 159

4.2 Advanced Branching and Synchronization Patterns

This section covers advanced branching and synchronization patterns. They re-
quire advanced concepts and map only partly to equation 2. One pattern, the
synchronizing merge, needs to know the number of incoming flows that depend
on preceding multi–choices. However, this is only important at the execution
level. At the design level considered here, all possibilities must be captured.

Multi–choice. The choice between processes B or C or B and C after A is
modeled by A having three possibilities of execution. Either A triggers B or C
or both, B and C.

A = (vexec)τA.(A1 | A2)
A1 = exec 〈b〉 .0+

exec 〈c〉 .0+
exec 〈b〉 .exec 〈c〉 .0)

A2 = !exec(x).x.0
B = b.τB.B′

C = c.τC .C′

A

B

C

b

c

Note that this pattern uses the concept of an executor (exec) represented
by process A2. An executor receives a name and afterward triggers that name.
The executor always immediately responds and decouples the triggering of the
subject received in a parallel thread, thus not blocking the original caller. The
executor workaround is needed, because a process b.0 + c.0 + (b.0 | c.0) cannot
be derived from the π-calculus grammar given. If we just specify b.c.0 to denote
that both names, b and c should be triggered, the semantic is incorrect. For
example image a more complicated construct. The preconditions of process B
are extended so that he has to wait additionally on a name b1. This could be
written as B = b1.b.τB.B′. The name b1 has not yet been triggered, so the
process b.c.0 could not yet trigger the name c. Process C that only has c as
a precondition cannot start execution. This is clearly not the intention of the
multi–choice pattern.

Synchronizing Merge. The triggers for activating a process D can either come
from B or C as well as from B and C. If B and C are executed in parallel, D
has to wait on d1 and d2, otherwise only for d1 or d2.

B = τB.d1.0
C = τC .d2.0
D = d1.τD.D′+

d2.τD.D′+
d1.d2.τD.D′

B

C

D

d1

d2

This pattern has no synchronization problem. Even if process C is able to
signal d2 earlier then B can signal d1, the process C is blocked until B has
signaled d1. This confirms with the reduction rules of the π-calculus. Note that
the semantics of this pattern does not describe how a runtime actually decides
which summation of D is chosen.



160 F. Puhlmann and M. Weske

Multi-merge. Process D can be triggered arbitrary times by incoming triggers
from B or C. Each time D gets triggered, a new copy of D is created by repli-
cation.

B = τB .d.0
C = τC .d.0
D =!d.τD.D′

B

C

D
d

Note that by using the replication operator to create multiple copies of a
process D, all processes that are triggered by D must also support replication
and so on. This also refers to all other patterns that create multiple copies by
replication.

Discriminator. The discriminator pattern activates τD by triggering D2 if pro-
cess D1 receives either d1, d2 or d3. After D2 has activated τD it waits for the
triggers h from the remaining incoming branches of D1. Finally D2 resets the
discriminator by using recursion.

A = τA.d1.0
B = τB.d2.0
C = τC .d3.0
D = (vh, exec)(D1 | D2)
D1 = d1.h.0 | d2.h.0 | d3.h.0
D2 = h.exec.h.h.D | exec.τD.D′

A

C

D

d1
d2

B
d3

The process definitions A, B and C are trivial. The process definition D
that represents the discriminator is split into two parts D1 and D2 with two
fresh names h and exec. D1 waits in parallel for all incoming triggers d1, d2

and d3. If a trigger is received, D1 anonymizes the trigger by signaling h to
D2. Afterward process D1 waits for the remaining triggers. If another process
signals a name that D1 has already received, the signaling process is blocked.
The process D2 waits for an incoming name h and afterward executes τD in
parallel, achieved through an internal trigger exec. This is needed due to the
decoupling of the subsequent actions represented by D′. Afterward it waits for
the remaining triggers from D1 and then resets itself by the use of recursion.
Note that all processes that are called by D′ must have the capability of multiple
execution.

A generic discriminator with m incoming control triggers is defined by:

D = (vh, r)((
m∏

i=1

di.h.0) | h.r.{h}m−1
1 .D | r.τD.D′).

The generic discriminator uses the product operator
∏

from 1 to m to denote
m different incoming triggers. After receiving the first h trigger, it uses the
sequence operators {} to wait on m − 1 anonymized incoming triggers. Those
operators are just notational sugar; they have to be expanded before the process
can be executed.



Using the π-Calculus for Formalizing Workflow Patterns 161

Example: Discriminator. To illustrate the discriminator, one possible evolution2

of the system defined by A, B, C, D1 and D2 is given:

DISC = A | B | C | (vh, exec)(D1 | D2) .

The processes are defined initially as given in the discriminator paragraph.
The evolution of DISC begins with either A, B or C signaling a name to D1.
We start with A signaling name d1 to process D1:

DISC −→ DISC1
def
= B | C | (vh, exec)(D11 | D2) .

The process A has vanished as no more prefixes other than 0 exist after
signaling the name d1. The process D1 has evolved to D11 and is defined by
D11

def
= h.0 | d2.h.0 | d3.h.0. Immediately after, a communication between D11

and D2 is possible:

DISC1 −→ DISC2
def
= B | C | (vh, r)(D12 | D21) .

D11 signals the name h to D2 and evolves to D12
def
= d2.h.0 | d3.h.0. The left

hand component has vanished as it reached inaction. The process D2 evolves to
D21

def
= exec.h.h.D | r.τD.D′. Now exec can be triggered inside D21:

DISC2 −→ DISC3
def
= B | C | (vh, exec)(D12 | D22) .

D22 is given by D22
def
= h.h.D | D′. Note that the right hand side of D22 now

only consists of D′. We can assume D′ to be 0 in our example. So the right hand
side of D22 vanishes. Now process B can trigger d2 and D12 can trigger h:

DISC2 −→ DISC3
def
= C | (vh, exec)(D13 | D23) .

Process B vanishes after triggering d2. D12 evolves to D13
def
= d3.h.0. Process

D23 is given by D23
def
= h.D. Finally process C can trigger d3:

DISC3 −→ DISC4
def
= D .

Process C vanishes after triggering d3. D13 vanishes after receiving d3 and
triggering h. The only process now left is D which resets the discriminator
through recursion. To make the discriminator work another time, we need new
processes that trigger d1, d2 and d3 again. A, B and C could also declared
replicative, e.g. A =!τA.d1.0, etc. We could further trace other evolutions of the
system described, e.g. starting with d2 or d3.

2 We use the π-calculus semantics of reduction for this example, see [22].



162 F. Puhlmann and M. Weske

N–out–of–M–Join. The n–out–of–m join generalizes the discriminator by exe-
cuting the activity τD after n out of m triggers have arrived at process D. After
the remaining triggers have been received, D resets itself by recursion.

D = (vh, r)((
m∏

i=1

di.h.0) | {h}n1 .r.{h}mn+1.D | r.τD.D′)

The n–out–of–m–join simply expands the middle expression of the generic
discriminator by waiting for m incoming triggers in a sequence. The remaining
triggers are then counted from n + 1 to m.

4.3 Structural Patterns

Structural patterns show restrictions on workflow languages, as for instance that
arbitrary loop are not allowed or that only one final node should be present. The
π-calculus easily handles both of the following patterns.

Arbitrary Cycles. Arbitrary cycles are inherently given by the event based ap-
proach. The only thing that must be taken care of is the re–instantiation of
processes that execute repeatedly.

A =!a.τA.b.0
B =!b.τB.c.0
C =!c.τC(a.0 + d.0)
D = d.τD.D′

A B C D
b c d

a

The re–instantiation is modeled using the replication operator for all pro-
cesses that could be executed more then once (A, B, C). Process C must decide
if the loop is called another time by triggering a or to continue by triggering d.
If arbitrary cycles are allowed in a workflow definition, the formal reasoning will
be much more difficult.

Implicit Termination. The implicit termination pattern terminates a sub–process
if no other activities can be made active. The π-calculus contains the special sym-
bol 0 for this purpose. As 0 is the only final termination symbol of the π-calculus
grammar, each (sub)–process must finally have an implicit termination.

4.4 Multiple Instance Patterns

Multiple instance patterns create several copies of workflow activities. A trivial
pattern uses no synchronization whereas more advanced patterns synchronize
the created copies afterward.

Multiple Instances without Synchronization. Any amount of multiple copies of a
process B can easily spawn from a process A by replication.

A = τA.!b.0
B =!b.τB.B′ A B

b *

A recursive definition for A could be A = τA.A1 with A1 = b.A1 + 0. This
notation explicitly states that A1 can spawn of new copies of B or stop execution.



Using the π-Calculus for Formalizing Workflow Patterns 163

Multiple Instances with a priori Design Time Knowledge. When the number of
copies of B is known at design time and the copies have to be synchronized
before the execution of τC , the following pattern is used (the example shows
three copies of B).

A = τA.b.b.b.0
B =!b.τB.c.0
C = c.c.c.τC .C′

A B
b * C

c

For n design time copies, the pattern is as follows:

A | B | C ≡ τA.{b}n1 .0 | !b.τB.c.0 | {c}n1 .τC .C′ .

Multiple Instances with a priori Runtime Knowledge. This pattern is runtime
dependent like the synchronizing merge. At design time it can be modeled that
A can spawn of an unknown number of processes B and only after A has finished
creating the processes, τB gets activated by receiving a start trigger each. After
all copies of B have finished, the name initially passed to A is triggered. The
pattern needs a fresh name start private to A and B to work: (vstart)(A | B).
Note that this pattern uses defined processes for recursion.

A = (vrun)τA.A1(c) | run.!start.0
A1(x) = (vy)b 〈y〉 .y 〈x〉 .A1(y) + run.x.0

B = !b(y).y(x).start.τB .y.x.0
C = c.τC .C′

A B
b * C

c

This pattern works like a dynamic linked list:

A Bi CB2 B1...
bi b2 b1 c

Initially A holds the name of the next process, that is c. An arbitrary number
of processes B can be inserted between A and C using recursion. The created
copies are started by triggering run in A which results in triggering start in
all copies of B. Each copy of B triggers his predecessor after finishing τB . The
initial predecessor is passed as a parameter to A; it is the name of the trigger
that is activated after all copies of B have successfully executed τB . This pattern
is a special case of the multiple instances without a priori runtime knowledge;
an example is given later on.

Multiple Instances without a priori Runtime Knowledge. This pattern is much
the same as the preceding one, with the difference that copies of B could be
created all the time and start immediately.

A = τA.A1(c)
A1(x) = (vy)b 〈y〉 .y 〈x〉 .A1(y) + x.0

B = !b(y).y(x).τB .y.x.0
C = c.τC .C′

A B
b * C

c



164 F. Puhlmann and M. Weske

The only difference is the removal of the start and run triggers as well as
the depending process parts.

Example: Multiple Instances without a priori Runtime Knowledge. We derive a
trace of the multiple instances without a priori runtime knowledge pattern. The
example shows how the recursive structure of the processes is build up while
creating instances and how it is broken down while completing.

The process A is initialized with the link to the process that should be exe-
cuted after all copies of B have been completed. That is c in our case:

A = τA.A1(c) .

Process A calls process A1 with c as a parameter. A1 has the choice between
creating a copy of the process B or call the final process, that is c:

A1(c) = (vy)b 〈y〉 .y 〈c〉 .A1(y) + c.0 .

We suppose process A1 to create a new copy of process B. Therefore the
left part of A1 is executed: (vy1)b 〈y1〉 .y1 〈c〉 .A1(y1). First, a fresh name y1

is generated. We enumerate y with a subscript to mark different fresh names.
The name y1 is sent to process B which creates a new copy of itself through
replication. Afterward, A1 sends the name of the predecessor (that is c) to the
new copy of process B. A1 then calls itself with the fresh name y1 as a parameter.
Thereby the fresh name y1 acts as the new predecessor. The processes A1 and
B now look like:

A1(y1) = (vy2)b 〈y2〉 .y2 〈y1〉 .A1(y2) + y1.0

B =!b(y).y(x).τB .y.x.0 | τB .y1.c.0︸ ︷︷ ︸
1st copy

.

The process A1 now has again the choice between creating a new copy of the
process B or call the previous created process by y1. Note that the 1st copy of
B is already executing τB. We choose to create yet another copy of B:

A1(y2) = (vy3)b 〈y3〉 .y3 〈y2〉 .A1(y3) + y2.0

B =!b(y).y(x).τB .y.x.0 | τB .y1.c.0︸ ︷︷ ︸
1st copy

| τB.y2.y1.0︸ ︷︷ ︸
2nd copy

.

This is continued until A1 decides to call the previous fresh name that was
created; that is the parameter of A1. In our example this is y2. We suppose the
τB of the copies of B to have been finished by now. So a communication between
A1 and B by y2 could take place; otherwise we had to wait until the τB of the
second copy has finished:

A1(y2) = 0
B =!b(y).y(x).τB .y.x.0 | y1.c.0︸ ︷︷ ︸

1st copy

| y1.0︸︷︷︸
2nd copy

.



Using the π-Calculus for Formalizing Workflow Patterns 165

Now the second copy of B has reduced to y1.0. A communication between
the second and first copy by y1 is now possible:

A1(y2) = 0
B =!b(y).y(x).τB .y.x.0 | c.0︸︷︷︸

1st copy

| 0︸︷︷︸
2nd copy

.

The second copy of B has reached inaction. The first copy can trigger the name
c that references to the process that should be executed after all copies of B
have finished. Thereafter the first copy reaches inaction. If we suppose A1 as the
only source of names b than no further communication is possible. The multiple
instances without a priori runtime knowledge pattern is completed.

4.5 State Based Patterns

State based patterns capture implicit behavior of processes that is not based
on the current case rather than the environment or other parts of the process.
Some of the following patterns require the existence of an external process that
represents the environment. This process is used as a source for external events.
We denote the environmental process with the special process identifier E . The
names that are triggered from within E are marked with a subscripted env, as
for instance aenv denotes an environmental trigger.

Deferred Choice. A deferred choice is much like the exclusive choice with the
distinction that the choice if τB or τC get executed is not made explicit in A
rather than by the environment. The environment is modeled as an external
process E that signals either the name benv or cenv but not both. The moment
of choice is thereby as late as possible. Afterward the successful process signals
the name kill to the other process which leads to the empty process 0. B and
C must share a fresh name kill: (vkill)(B | C)

A = τA.(b.0 | c.0)
B = b.(benv.kill.τB.B′ + kill.0)
C = c.(cenv.kill.τC .C′ + kill.0)

A

B

C

b

c

benv

cenv

Interleaved Parallel Routing. The interleaved parallel routing or unordered set
is achieved by non–determinism in the π-calculus. A, B and C share two fresh
names (vx, y)(A | B | C) of which x is used to trigger B and C in any order.
The name y is used to signal the complete execution of the triggered process.
After all activities have been executed, the control is again at A.

A = τA.x.y.x.y.A′

B = x.τB .y.0
C = x.τC .y.0 A C

c
B

b

A B
b

C
c

OR



166 F. Puhlmann and M. Weske

Milestone. A milestone is a test for a process A, if another parallel process B is
in a given state. Thereby the two parallel processes share a private name check
which returns either true (represented by the special name �) if the condition
holds or false (⊥) if not. A process definition M(x) is used as a memory cell that
keeps the condition. It is called by a private name m with (vm)(B):

A =check(x).([x = �]τA1.A
′ + [x = ⊥]τA2.A

′′)
B =M(⊥) | b.m 〈�〉 .τB.m 〈⊥〉 .B′

M(x) =m(x).M(x) + check 〈x〉 .M(x) .

4.6 Cancellation Patterns

The cancellation pattern describe the withdrawal of one or more processes that
represent workflow activities.

Cancel Activity. The cancel activity pattern allows a process, that is waiting to
get triggered, to be canceled. This pattern is modeled by the optional reception of
a cancel trigger from an external environment process E with (vcancel)(A | E):

A | E ≡ a.τA.A′ + cancel.0 | !τE .cancel.0 .

Note that currently executed activities represented by τ could not be canceled
due to the unobservability of τ .

Cancel Case. The cancel case pattern cancels a whole workflow instance. This is
equal to Cancel Activity with the exception that all remaining processes receive
a global cancel trigger.

5 Conclusion

In this paper, we introduced a formal semantics for workflow patterns, which
is based on the π-calculus. All of the documented workflow patterns from [9]
have been formalized with concise and unambiguous expressions. Based on the
execution semantics of the π-calculus, the behavior of each workflow pattern has
been defined precisely.

However, this paper is not to be understood as the formal semantics of the
workflow patterns. Other notations, like Workflow Nets [25] or YAWL [12] use
different approaches from Petri nets to transition systems to realize a formal
specified behavior for some or all of the workflow patterns. Rather, this paper
can be seen as a foundation for using modern process algebra in the workflow
domain. The π-calculus supports mobility, communication and change. While it
has not yet been shown how mobility can actually enrich the workflow domain,
requirements like flexibility and reaction to change are ever more challenging [1].
Since the π-calculus was designed to model such highly dynamic systems, it



Using the π-Calculus for Formalizing Workflow Patterns 167

might offer new ways to face the challenges in the workflow domain. As a starting
point, this paper showed that the π-calculus is indeed able to handle all of the
behavioral workflow requirements given by workflow patterns.

Based on the formalizations presented in this paper, further research has
to be made. The π-calculus could be used as a formal foundation for graphical
notations. Furthermore, formalized workflows can opening the door for reasoning
on workflow process structures.

References

1. Smith, H., Fingar, P.: Business Process Management – The Third Wave. Meghan-
Kiffer Press, Tampa (2002)

2. van der Aalst, W.M.P.: Pi calculus versus petri nets: Let us eat ”humble pie” rather
than further inflate the ”pi hype”. (http://is.tm.tue.nl/research/patterns/
download/pi-hype.pdf (May 31, 2005))

3. BPMI.org: Business Process Modeling Language. Technical report (2002)
4. Microsoft: XLang Web Services for Business Process Design. (2001)
5. BEA Systems, IBM, Microsoft, SAP, Siebel Systems: Business Process Execution

Language for Web Services Version 1.1. (2003)
6. van der Aalst, W.: Flexible Workflow Management Systems: An Approach based

on Generic Process Models. In Bench-Capon, T., Soda, G., Tjoa, A., eds.: Database
and Expert Systems Applications: 10th International Conference, DEXA’99, vol-
ume 1677 of LNCS, Berlin, Springer (1999) 186–195

7. van der Aalst, W.M.P.: Exterminating the Dynamic Change Bug: A Concrete
Approach to Support Workflow Change. Information System Frontiers 3 (2001)
297–317

8. Rinderle, S., Reichert, M., Dadam, P.: Evaluation of Correctness Criteria for Dy-
namic Workflow Changes. In van der Aalst, W.e.a., ed.: Business Process Manage-
ment 2003, volume 2678 of LNCS, Berlin, Springer (2003) 41–57

9. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-
flow patterns. Distributed and Parallel Databases 14 (2003) 5–51

10. Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Communications of the ACM
35 (1992) 75–90

11. Weske, M.: Workflow Management Systems: Formal Foundation, Conceptual De-
sign, Implementation Aspects. Habilitationsschrift, Fachbereich Mathematik und
Informatik, Universität Münster, Münster (2000)

12. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane (2003)

13. Basten, T.: In Terms of Nets: System Design with Petri Nets and Process Alge-
bra. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands
(1998)

14. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
15. Brogi, A., Canal, C., E.Pimentel, Vallecillo, A.: Formalizing Web Service Chore-

ographies. In: Proceedings of First International Workshop on Web Services
and Formal Methods. Electronic Notes in Theoretical Computer Science, Elsevier
(2004)

16. Dong, Y., Shen-Sheng, Z.: Approach for workflow modeling using π-calculus. Jour-
nal of Zhejiang University Science 4 (2003) 643–650



168 F. Puhlmann and M. Weske

17. Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic Based
Modeling and Analysis of Workflows. In: Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, ACM
Press (1998) 25–33

18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I/II.
Information and Computation 100 (1992) 1–77

19. Milner, R.: The polyadic π–Calculus: A tutorial. In Bauer, F.L., Brauer, W.,
Schwichtenberg, H., eds.: Logic and Algebra of Specification, Berlin, Springer-
Verlag (1993) 203–246

20. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge
University Press, Cambridge (1999)

21. Parrow, J.: An Introduction to the π–Calculus. In Bergstra, J.A., Ponse, A.,
Smolka, S.A., eds.: Handbook of Process Algebra, Elsevier (2001) 479–543

22. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

23. Dayal, U., Hsu, M., Ladin, R.: Organizing long-running activities with triggers and
transactions. In: Proceedings of the 1990 ACM SIGMOD international conference
on Management of data, New York, ACM Press (1990) 204–214

24. Knolmayer, G., Endl, R., Pfahrer, M.: Modeling Processes and Workflows by
Business Rules. In Aalst, W.v.d., Desel, J., Oberweis, A., eds.: Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of LNCS,
Berlin, Springer-Verlag (2000) 16–29

25. van der Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)



Mining Workflow Recovery from Event Based Logs

Walid Gaaloul and Claude Godart

LORIA - INRIA - CNRS - UMR 7503
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{gaaloul, godart}@loria.fr

Abstract. Handling workflow transactional behavior remains a main problem
to ensure a correct and reliable execution. It is obvious that the discovery, and
the explanation of this behavior, would enable to better understand and control
workflow recovery. Unfortunately, previous workflow mining works have con-
centrated their efforts on control flow aspects. Although powerful, these propos-
als are found lacking in functionalities and performance when used to discover
workflow transactional behavior.

In this paper, we describe mining techniques, which are able to discover a
workflow model, and to improve its transactional behavior from event based logs.
First, we propose an algorithm to discover workflow patterns. Then, we propose
techniques to discover activities transactional dependencies that allow us to mine
workflow recovery techniques. Finally, based on this mining step, we use a set of
rules to improve workflow design.

Keywords: workflow mining, workflow recovery, transactional workflows, work-
flow patterns.

1 Introduction

Workflow Management Systems (WfMSs) are being increasingly used by many com-
panies to improve the efficiencies of their processes and reduce costs. However, due
to the overall complexity of workflows specification, deployment of a process without
validation may lead to undesirable execution behavior that compromises process goals.
WfMSs are expected to recognize and handle errors to support reliable and consistent
execution of workflows, but as has been pointed out in [1], up to now, most WfMSs
lack such functionalities. The introduction of some kind of transactions in WfMSs is
unavoidable to guarantee reliable and consistent workflow executions. In contrast to
advanced transaction models, transactional workflows focus on issues of consistency
from the business point of view rather than from the database point of view. They are
applied in case of failures and define mechanisms supporting the automation of failure
handling during runtime. Basically they specify activities transactional interactions in
order to resume correctly workflow execution.

The main problem at this stage is how to ensure that the specified workflow model
guaranties reliable executions. Generally, formal previous approaches develop, using
their workflow modelling formalisms, a set of techniques to analyze and check model
correctness [2,3,4]. Although powerful, these approaches may fail, in some cases, to

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 169–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



170 W. Gaaloul and C. Godart

ensure workflow reliable executions. Besides, it is neither possible nor intended by
most workflow designers to model all failures; the process description will in any case
become complex very soon - especially if the original process is more complex [5]. Fur-
thermore, workflow errors and exceptions are commonly not detected until the work-
flow model is performed. By gathering and analyzing information about workflow pro-
cessing as they took place in run time, we can first identify these errors and related
recovery techniques and second propose solutions to improve them.

The work described in this paper presents a new workflow mining [6] technique
to discover workflow transactional behavior from logs and to be alerted of design gaps
especially about failure handling and recovery techniques. This kind of analysis is very
useful in showing cause effect relationships. In the next section, we present a motivating
example showing the need for discovering transactional behavior to improve workflow
reliability.

1.1 Motivating Example

Consider a simplified example of a bank loan request processing. The workflow for
the loan request processing is represented in graphical form in figure 1. First, the cus-
tomer specifies the amount and loan terms through the EnLR activity. Then the work-
flow instance retrieves client information and assesses the credit worthiness through the
CCW activity. After that, the bank makes its decision choosing exclusively between
these three options : (i) It evaluates the risk to the bank (REv) and updates the value
of the banks total involvement (RUp) or (ii) The client may be important and have a
convincing argument why the loan should be granted, without risk evaluation or despite
the evaluation failing. Under these circumstances an executive officer of the loan de-
partment would have to approve the risk (REx) or (iii) rejects the loan (ReL). Then the
EnD activity enters the decision to either grant or reject the loan request and records
the relevant information on the agreed terms of the loan in bank database. The delivery
of decision to the customer (loan contract or reject notification) ICl cannot be done
without supervisor (bank direction) approval. Indeed, a human agent activity SuD is
present along the decision process to supervise these activities. Thus, the loan can only
be granted if the supervisor agent agrees. This agent may reject the loan request even if
we have a positive decision in EnD. The supervisor can give freely his decision at any
time during the loan process and thus achieve the SuD activity.

To deal with workflow failures and ensure a reliable execution, designers specify
additional transactional workflow interactions (dotted arrow). In our example, it was
specified that if EnD fails then RUpC compensates the effects RUp and the loan deci-
sion process should be restarted. Also, in case of REv failure, the workflow continues
the execution by an exceptional loan grant (REx) or a loan reject decision (ReL). Be-
sides, ICl has the capability to be (re)executed until success in case of failure. As for
CCW failure, the workflow terminates its execution by performing ICl and aborting
the execution of SuD (the loan request is rejected). Finally, workflow designers did
not provide failure handling mechanisms for the other activities and suppose that these
activities are reliable (i.e. never fail).

Let suppose now that in reality (by observation of sufficient execution cases) CCW
never fails but Sud can fail. This means there is no need to specify a recovery mech-



Mining Workflow Recovery from Event Based Logs 171

Fig. 1. Example of workflow

anism for CCW and we should abort concurrent activities of decision process and
resume workflow execution when SuD fails. Starting from workflow logs (sufficient
workflow execution cases), we propose workflow mining techniques detecting these
transactional design gaps and providing help to correct them.

The remainder of this paper is structured as follows. First, we describe the struc-
ture of workflow event logs. After that, we detail our approach for mining workflow
recovery techniques. We mainly proceed in three steps. First, we discover workflow
patterns (see section 3) using logs statistical analysis. After that, we extract, in section
4, workflow transactional dependencies after failure. Then based in these mined results,
we use a set of rules to improve workflow failures handling and recovery, and finally the
application reliability. We discuss the related work, in section 5, and we conclude the
paper by summarizing the main results and describing our future work. We illustrate
the applicability of each one of these mining points through the previous motivating
example.

2 Workflow Event Logs

The workflow specification might not be concerned with the details of the activities
however it would have to at least deal with the externally visible completion events of
activities (such as aborted, failed and completed ). Currently, most of WfMSs log every
events occurring during process execution. We expect the activities to be traceable,
meaning that the system should in one way or another keep track of ongoing and past
executions. As shown in the UML class diagram in figure 2, WorkflowLog is composed
of a set of EventStreams (definition 1). Each EventStream traces the execution of one
case (instance). It consists of a set of events (Event) that captures the activities life
cycle performed in a particular workflow instance. An Event is described by the activity
identifier that it concerns, the current activity state (aborted, failed and completed)
and the time when it occurs (TimeStamp). A Window defines a set of Events over
an EventStream. Finally, A Partition builds a set of partially overlapping Windows
partition over an EventStream.



172 W. Gaaloul and C. Godart

Definition 1. (EventStream)
An EventStream represents the history of a worflow instance events as a tuple stream=
(begin, end, sequenceLog, SOccurrence) where:

�begin : TimeStamp is the moment of log beginning of the workflow instance ;
�end : TimeStamp is the moment of log end of the workflow instance;
�sequenceLog : Event* is an ordered Event set belonging to a workflow instance;
�SOccurrence : int is the instance number.

A WorkflowLog is a set of EventStreams. WorkflowLog=(workflowID,{EventStreami,
0 ≤ i ≤ number of workflow instances}) where EventStreami is the event stream of the
ith workflow instance.

An example of 5th EventStream extracted from the workflow example of figure 1
in its 5th instantiation:

L = EventStream((13/5,5:42:12),(14/5, 14:01:54), [Event(”EnLR”, completed, (13/5,
5:42:12)), Event(”CCW”, completed, (13/5,11:11:12)), Event(”REv”, completed,

(13/5,14:01:54)), Event(”SuD”, completed, (14/5, 00:01:54)), Event(”RUp”,
completed, (14/5,5:45:54)), Event(”EnD”, completed, (14/5,10:32:55)), Event(”ICl”,

completed,(14/5,14:01:54))],5)

Fig. 2. Structure of a workflow event Logs

3 Control Flow Mining

The workflow mining process should be able to discover and analyze efficiently events
dependencies (see definition 1). Based on event states, there is several kinds of events
dependencies. However, we are interested, in this section, in discovering ”elementary”
routing workflow patterns: Sequence, AND-split, OR-split, XOR-split, AND-join, OR-
join, and M-out-of-N Join patterns inspired from workflow patterns [7]. These patterns
describe control flow interactions for activities executed without ”exceptions” (i.e. they



Mining Workflow Recovery from Event Based Logs 173

reached successfully their completed state). Thus, there is no need to use the events
dependencies relating to failure executions (failed or aborted) states which con-
cern only workflow transactional behavior (see section 4). For these reasons, we need
to filter workflow logs and take only EventStreams of instances executed without
activities failure or abortion. We denote by workflowLogcompleted this workflow logs
projection. Thus, the minimal condition to discover workflow patterns is to have work-
flow logs containing at least the completed event state. This feature allows us to
mine control flow from ”poor” logs which contain only completed event state. Any
information system using transactional systems such as ERP, CRM, or workflow man-
agement systems offer this information in some form [8].

Definition 1 Events Dependency
Let ei, ej be two events in WorkflowLog, ej depends on ei iff there is an
EventStream where the occurrence of ei provokes directly the occurrence of ej .

Our control flow mining approach proceeds in two steps : Step (i) the construction of
statistical dependency table SDT, and Step (ii) the mining of workflow patterns through
a set of rules using these statistical calculus.

3.1 Construction of the Statistical Dependency Table SDT

As we state before, we build through statistical techniques the statistical dependency ta-
ble SDT that expresses control flow dependencies. Since discovered workflow patterns
specify interactions for activities executed without ”exceptions”, SDT captures only
events dependencies with completed state in successful executions. In consequence
we confuse, in this section, between activities dependencies and events dependencies.

For each activity A, we extract From workflowLogcompleted the following infor-
mation : (i) The overall frequency of this activity (denoted #A) and (ii) The causal
dependencies to previous activities Bi (denoted P (A/Bi)). The size of SDT is N*N,
where N is the number of workflow activities. The (m,n) table entry (notation P(m/n)) is
the frequency of the nth activity immediately preceding the mth activity. Table 5 rep-
resents a fraction of the initial SDT of our motivating example workflow. For instance,
in this table P(RUp/REv)=0.67 expresses that if RUp occurs then we have 67% of
chance that REv occurs directly before RUp in the workflow logs.

As it is computed, the initial SDT presents some problems to express correctly ac-
tivities dependencies especially relating to concurrent or parallel behavior. In the fol-
lowing, we detail these issues and propose solutions to correct them.

Erroneous dependencies: If we assume that each EventStream from WorkflowLog
comes from a sequential (i.e no concurrent behaviour) workflow, a zero entry in
SDT represents a causal independence and a non-zero entry means a causal depen-
dency (i.e. sequential or conditional dependency). But, in case of concurrent behavior
EventStreams may contain interleaved events sequences from concurrent threads. As
consequence, some entries, in initial SDT, can indicate non-zero entries that do not cor-
respond to dependencies. For example, the EventStream given in section 2 ”suggests”
erroneous causal dependencies between REv and SuD in one side and SuD and RUp
in another side. Indeed, REv comes just before SuD and SuD comes immediately be-
fore RUp in this EventStream. These erroneous entries are reported by P(SuD/REv)



174 W. Gaaloul and C. Godart

and P(RUp/SuD) which are different to zero. These entries are erroneous because there
is no causal dependencies between these activities. Underlined values in SDT report this
behavior for other similar cases.
Formally, two activities A and B are in concurrence iff P (A/B) and P (B/A) entries
in SDT are different from zero. Based on this definition, we propose an algorithm to
discover activities parallelism and then mark the erroneous entries in SDT. Through
this marking, we can eliminate the confusion caused by the concurrent behaviour pro-
ducing these erroneous non-zero entries. The algorithm (A) in figure 3 scans the initial
SDT and marks concurrent activities dependencies by changing their values to (−1).

Table 1. Fraction of Statistical Dependencies Table SDT (P(x,y)) and activities Frequencies (#)

Initial SDT Final SDT
P(x,y) EnLR CCW REv RUp REx ReL EnD SuD EnLR CCW REv RUp REx ReL EnD SuD
EnLR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CCW 0.94 0 0 0 0 0 0 0.06 1 0 0 0 0 0 0 -1
REv 0 0.71 0 0 0 0 0 0.29 0 1 0 0 0 0 0 -1
RUp 0 0 0.67 0 0 0 0 0.33 0 0 1 0 0 0 0 -1
REx 0 0.87 0 0 0 0 0 0.13 0 1 0 0 0 0 0 -1
ReL 0 0.92 0 0 0 0 0 0.08 0 1 0 0 0 0 0 -1
EnD 0 0 0 0.48 0.22 0.18 0 0.12 0 0 0 0.58 0.23 0.19 0 -1
SuD 0.06 0.1 0.14 0.2 0.04 0.06 0.4 0 1 -1 -1 -1 -1 -1 -1 0

EnLR = CCW = EnD = SuD = 100
REv = RUp = 69REx = 21ReL = 10

Undetectable dependencies: For concurrency reasons, an activity might not de-
pend on its immediate predecessor in the EventStream, but it might depend on another
”indirectly” preceding activity. As an example of this behavior, SuD is logged between
REv and RUp in the EventStream given in section 2. As consequence, REv does
not occur always immediately before RUp in the workflow logs. Thus we have only
P (RUp/REv) = 0.67 that is an under evaluated dependency frequency. In fact, the
right value is 1 because the execution of RUp depends exclusively on REv. Similarly,
values in bold in SDT report this behavior for other cases. To discover these indirect
dependencies, we introduce the notion of activity concurrent window (definition 2). An
activity concurrent window (ACW) is related to the activity of its last event and covers
its directly and indirectly preceding activities. Initially, the width of ACW of an activity
(i.e. the number of activities within) is equal to 2. Every time this activity is in concur-
rence with an other activity we add 1 to this width. If this activity is not in concurrence
with other activities and has preceding concurrent activities, then we add their number
to ACW width. For example the activity RUp is in concurrence with SuD the width of
its ACW is equal to 3. Based on this the algorithm (B) in figure 3 calculates the ACW
width for each activity and regroups them in the ACW table. This algorithm scans the
”marked” SDT and updates the ACW table.



Mining Workflow Recovery from Event Based Logs 175

Fig. 3. SDT Algorithms

Definition 2. Window
A log window defines a log slide over an events stream S : stream (bStream, eStream,
sLog, workflowocc). Formally, we define a log window as a triplet window(wLog, bWin,
eWin) :

�(bWin : TimeStamp) and (eWin : TimeStamp) are the moment of the window
beginning and end (with bStream≤ bWin and eWin ≤ eStream)

�wLog ⊂ sLog and ∀ e: event ∈ S.sLog where bWin ≤ e.TimeStamp ≤ eWin⇒ e
∈ wLog.

After that, we proceed through an EventStream partition (definition 3) that builds
a set of partially overlapping Windows over the EventStream using the ACW table.
Finally, the algorithm (C) of figure 3 computes the final SDT. For each ACW, It com-
putes for its last activity the frequencies of its preceded activities. The final SDT will
be found by dividing each row entry by the frequency of its activity. Note that, our
approach adjust dynamically, through the width of ACW, the process calculating activ-
ities dependencies. Indeed, this width is sensible to concurrent behavior : it increases in
case of concurrence and is ”neutral” in case on concurrent behavior absence. Now by
applying these algorithms, we can compute the final SDT (table 5) which will be used
to discover workflow patterns.



176 W. Gaaloul and C. Godart

Definition 3. Partition
A partition builds a set of partially overlapping Windows partition over an events
stream.
Partition : WorkflowLog→ (Window)*
S : EventStream(bStr, eStr, sLog: (Evti 1≤i≤n), wocc) → {wi :Window; 1≤i≤n}
where : Evti= the last event in wi ∧ width(wi)= ACWT[Evti.ActivityID].

3.2 Workflow Patterns Mining

The last step is the identification of workflow patterns through a set of rules. In fact,
each pattern has its own statistical features which abstract statistically its causal de-
pendencies, and represent its unique identifier. These rules allow, if workflow logs is
completed, the discovery of the whole workflow patterns included in the mined work-
flow. Our control flow mining rules are characterized by a ”local” workflow patterns
discovery. Indeed, these rules proceed through a local log analyzing that allows us to
recover partial results of mining workflow patterns. In fact, to discover a particular
workflow pattern we need only events relating to pattern’s elements. Thus, even using
only fractions of workflow logs, we can discover correctly corresponding workflow pat-
terns (which their events belong to these fractions). We divided the workflow patterns
in three categories : sequence, fork and join patterns. In the following we present rules
to discover the most interesting workflow patterns belonging to these three categories.

Table 2. Rules of sequence workflow pattern

Rules workflow patterns

(#B = #A) Sequence pattern

(P (B/A) = 1)

Sequence pattern: In this category, we find only the sequence pattern (table 2)
where the enactment of the activity B depends only on the completion of activity A.

Fork patterns: The three patterns of this category (table 3) have a ”fork” point
where a single thread of control splits into multiple threads of control which can be,
according to the used pattern, executed or not. The causality between the activities A
and Bi before and after ”fork” point is shared by the three patterns of this category.
This causality is ensured by the statistical property (∀0 ≤ i ≤ n; P (Bi/A) = 1).
The non-parallelism between Bi, in the xor-split pattern are ensured by (∀0 ≤ i, j ≤
n; P (Bi/Bj) = 0). The or-split and and-split patterns differentiate themselves by the
frequencies relation between the activity A and the activities Bi. Effectively, only a
part of activities are executed in the or-split pattern after ”fork” point, while all the Bi

activities are executed in and-split pattern.
Join patterns: The three patterns of this category (table 4) has a ”join” point where

multiple threads of control merge in a single thread of control. The number of necessary



Mining Workflow Recovery from Event Based Logs 177

Table 3. Rules of fork workflow patterns

Rules workflow patterns

(Σn
i=0 (#Bi)=#A) xor-split pattern

(∀0 ≤ i ≤ n;P (Bi/A) = 1) ∧
(∀0 ≤ i, j ≤ n; P (Bi/Bj) = 0)

(∀0 ≤ i ≤ n;#Bi=#A) and-split pattern

(∀0 ≤ i ≤ n; P (Bi/A) = 1)∧
(∀0 ≤ i, j ≤ n P (Bi/Bj) = −1)

(#A ≤ Σn
i=0 (#Bi)) ∧

(∀0 ≤ i ≤ n; #Bi ≤ #A) or-split pattern

(∀0 ≤ i ≤ n; P (Bi/A) = 1)∧
(∃0 ≤ i, j ≤ n;P (Bi/Bj) = −1)

branches for the activation of the activity B after the ”join” point depends on the used
pattern. The enactment of activity B after the ”join” point in the and-join requires the
execution of all the Ai activities (∀0 ≤ i ≤ n; P (B/Ai) = 1). In contrary of xor-join
and M-out-of-N-Join patterns where a ”partial” parallelism between Ai activities can
be only seen in the M-out-of-N-Join pattern (∃0 ≤ i, j ≤ n; P (Ai/Aj) = −1).

4 Workflow Recovery Mining

4.1 Workflow Transactional Behavior

The integration of transactions into workflows was motivated by research efforts con-
cerning database transaction models for advanced applications, as for example summa-
rized in [9]. The term ”transactional workflows” has been introduced in [10] to clearly
recognize the relevance of transactions in the context of workflows. Transactional work-
flows involve coordinated execution and suggest selective use of transactional proper-
ties for individual activities or entire workflows. Basically, they use advanced transac-
tion models as a core concept to specify workflow correctness, data consistency and re-
liability [11,12,13]. The motivation behind modelling workflow transactional behavior
is to add the capability in the workflow to handle exceptional circumstances that would
otherwise leave the workflow in an unacceptable state. Within transactional workflow
behavior, we distinguish between activity transactional properties and transactional
flow (interactions).



178 W. Gaaloul and C. Godart

Table 4. Rules of join workflow patterns

Rules workflow patterns

(Σn
i=0 (#Ai)=#B) xor-join pattern

(Σn
i=0 P(B/Ai)=1) ∧

(∀0 ≤ i, j ≤ n; P (Ai/Aj) = 0)

(∀0 ≤ i ≤ n; #Ai=#B) and-join pattern

(∀0 ≤ i ≤ n; P (B/Ai) = 1)∧
(∀0 ≤ i, j ≤ n P (Ai/Aj) = −1)

(m ∗ #B ≤ Σn
i=0 (#Ai))

∧ (∀0 ≤ i ≤ n; #Ai ≤ #B)
M-out-of-N-Join pattern

(m ≤ Σn
i=0 P (B/Ai) ≤ n)

∧ (∃0 ≤ i, j ≤ n; P (Ai/Aj) = −1)

Activities transactional properties: During the workflow execution, an activity
can pass through several stages defined as activity states (aborted, failed and com-
pleted). The transactional properties of an activity depend on the set of its internal states
transitions. The main transactional properties that we are considering are retriable and
pivot [14]. An activity a is said to be retriable (ar) iff it is sure to complete even if it
fails. a is said to be pivot (ap) iff if once it successfully completes, its effects remain
for ever and cannot be semantically undone or reactivated.

Transactional flow: After failure, transactional external transitions are fired by ex-
ternal entities (scheduler, human intervention, etc.) and allow to the failed activity to
interact with the outside to recover a consistent state. The goal is to bring the failed
process back to some semantically acceptable state. Thus, failure inconsistent state can
then be fixed and the execution resumed with the hope that it will then complete suc-
cessfully. For instance, in our example, in case of CCW failure, it was specified that
the workflow terminates its execution by performing ICl and aborting the execution of
SuD.

4.2 Mining Transactional Dependencies

As we have done to discover workflow patterns, we build statistical transactional de-
pendencies tables STrD that report only events dependencies captured after activities
failures. These dependencies provide a convenient way to specify and reason about
workflow transactional behavior expressed in terms of activities transactional proper-
ties and transactional flow. To calculate these dependencies we use the same definition



Mining Workflow Recovery from Event Based Logs 179

Table 5. Fractions of Statistical Transactional Dependencies tables of End Activity

ITREnd table ATREnd tables

ITREnD EnD,f RUpC,c REv,c REx,c ReL,c RUp,c
EnD,f 0 0 0 0.56 0.34 0.1

RUpC,c 1 0 0 0 0 0
REv,c 0 1
REx,c 0 1
ReL,c 0 1
RUp,c 0 0

ATRREv
End c f a

c 1 0 0
f 0 0 0
a 0 0 0

ATRRUp
End c f a

c 1 0 0
f 0 0 0
a 0 0 0

ATRREx
End c f a

c 1 0 0
f 0 0 0
a 0 0 0

ATRReL
End c f a

c 1 0 0
f 0 0 0
a 0 0 0

c=completed, f=failed, a=aborted

(used in section 3.1), except that we capture only event dependencies after activities
failures. In practical terms, each STrD is related to an activity ”act” and captures statis-
tically workflow behavior after ”act”’s failures. Within we distinguished between inter
activities transactional dependencies and intra activity transactional dependencies (see
definition 2).

Definition 2 Activity Transactional Dependencies
We denote by ITRact the inter activities transactional dependencies table that reports
event dependencies after the ”act”’s failures. Each ITRact(e1, e2) entry is an event
dependency where :

�(ei.state= failed and ei.activity = ”act”; i=1,2) OR
�(ei.activity; is a ”new” activity (i.e not appear in control flow mining); i=1,2 )
We denote by ATRA

act the intra activities transactional dependencies table that re-
ports the states transitions of the ”A” activity after ”act”’s failures. These transitions
are extracted from a workflow logs projection that take only events of ”A”.

The table 5 represents a fraction of the STrD tables of our motivating example work-
flow after End’s failures. For instance, in the ITREnD there is a ”new” RUpC activity
that is executed after the End’s failures. ATRREv

EnD indicates that REv activity is re-
executed after End’s failures.

Fig. 4. Activity transactional properties



180 W. Gaaloul and C. Godart

Discovering activity transactional properties: Every activity can be associated to a
life cycle statechart that models the possible states through which the executions of this
activity can go, and the possible transitions between these states. This structure, i.e. life
cycle statechart, has an initial state and, on the start transition, moves into the executing
state. There could be one or more transitions after this. Thus, the relationships between
the significant events of an activity can be represented by a state transition diagram,
which serves as an abstraction for the actual activity by hiding irrelevant details of its
internal computations. The significant events transitions of an activity depend on the
characteristics of its transactional proprieties.

Based on this, retriable and pivot are identified by an unique statechart life cycle.
Figure 4.a illustrates the states/transitions diagram of a pivot activity. When a pivot
activity is activated, the instance can normally continue its execution or it can be can-
celled during its execution. In the first case, it can achieve its objective and successfully
completes or it can fail. Once it successfully completes, its effects remains for ever
and cannot be semantically undone or reactivated. Thus, if it completes successfully it
keeps forever the completed state (i.e the completed state is a persistent state that can
not be compensated by the workflow). The states/transition diagram of a retriable activ-
ity (figure 4.b) has in addition a transition that specifies a retry operation after observing
failure. Indeed, the failure state in retriable activity can not be a persistent state, the ac-
tivity should be re-executed after each failure until success. We can specify statistically
these properties :

�An activity a is said to be retriable (ar) iff ATRa
a(completed, failed)=1 ∧

ITRa((a, completed), (a, failed)) = 1.
�An activity a is said to be pivot (ap) iff 
 ∃ act : activity where act 
= a ∧

ATRa
act(”x”, c) 
= 0; ”x”= completed or aborted or failed.

Now using these statistical specifications we can discover activities transactional
properties from StrD tables. For instance, we can deduce from table 5 that the REv,
RUp, REx and ReL activities are not pivot.

Discovering transactional flow: Basically, the workflow has to decide, after an activ-
ity failure, whether an inconsistent state is reached. Depending on this decision either a
complex recovery procedure has to be started or the process execution can continues.
The main challenge thereby is to identify and reach a consistent state from where the
workflow can be continued. A consistent state point is an execution step of the work-
flow (equivalent to a save point in database transactions) which represents an accept-
able intermediate execution state that is determined to be acceptable from a business
perspective and hopefully also a decision point where certain actions can be taken to
either fix the problem that caused the failure or choose an alternative execution path to
avoid this problem [15].

The recovery procedure is initialized by an alternative dependency (see definition
3). Depending on the localization of the consistent point, we have identified two kinds
of alternative dependencies : backward alternative and forward alternative. Bringing
the workflow back to a semantically acceptable state can also entail compensating the
already completed activities until the acceptable state is reached through ”new” com-
pensation activities which semantically undo the failed activity [16]. Furthermore, an
activity failure can cause a non regular, abnormal termination (abort) of one or more



Mining Workflow Recovery from Event Based Logs 181

active activities. If such a situation happens, the failure of an activity induces the abor-
tion of other activities. This behavior is described through the abortion dependency (see
definition 4). For instance, table 5 indicates that the bank loan process in figure 1 per-
forms a backward recovery after the failure of EnD and there is an alternative depen-
dency between EnD and RUpC. RUpC is a compensation activity that it is executed
for compensating the failure of EnD.

Definition 3 Alternative Dependency: There is an alternative dependency from A1 to
A2 if the failure of A1 can fire the activation of A2. Statistically expressed we have
ITRA1 ((A2,completed), (A1,failed)) 
= 0. We distinguished two kind of alternative
dependencies:

�a backward alternative : if the consistent state is located before the failed activity
�a forward alternative : if the consistent state is located after the failed activity

Definition 4 Abortion Dependency: There is an abortion dependency from A1 to A2 if
the failure of A1 can fire the abortion of A2. Using statistical transactional dependen-
cies we have: ITRA1((A2,aborted), (A1,failed) ) 
= 1

Summarizing up, after an activity failure, we have the following possibilities:

– The activity is no vital. The workflow can continue without any specific recovery
mechanism.

– The activity is vital and a recovery mechanism is activated. Then, the activity be-
comes recoverable (see definition 5). This investigation distinguishes between three
different recovery mechanisms:

• The activity is retriable : It is rolled back automatically until success. Such
mechanism is generally used if the failed activity is idempotent. An idempotent
activity can be executed one or more times without changing the result which
is a very comfortable feature within workflow execution.
• Backward recovery : If the failed activity has a vital relationship then a complex

recovery procedure is necessary in order to reach a previous consistent state
again. It may be necessary to start a compensation activity which removes in-
consistent side effects and semantically ”undoes” the effect of the correspond-
ing failed activity. This backward recovery is initialized through a backward
alternative dependency.
• Forward recovery : If the failed activity has no vital relationship then a positive

and consistent termination of the corresponding activity can be achieved by
making forward progress. Instead, it may be necessary to start another activ-
ity which tries to terminate correctly the workflow execution in an alternative
way. Thus the workflow will enforce regular process execution, probably along
another execution path. This forward recovery is initialized through a forward
alternative dependency.

Definition 5 : a is said to be recoverable (arc) iff if this activity fails then there is a
recovery mechanism to resume the workflow execution.



182 W. Gaaloul and C. Godart

4.3 Improving Workflow Recovery

The goal of recovery techniques is to minimize the amount of effort resuming the work-
flow execution. However, the applicability of these techniques depends on the semantics
of the process. In this section, we propose techniques giving help for that and correcting
potential design errors detected after workflow mining. In fact, we use the transactional
behavior mining as a feed back loop to correct wrong transactional behaviors. By wrong
transactional behaviors we mean activity transactional properties and transactional flow
initially specified and which do not coincide with the reality. These wrong transactional
behaviors can be simply costly but also source of error. We proceed through a set of
rules that allow us to :

�correct or remove the wrong transactional behavior,
�add relevant transactional behavior for a better failure handling and recovery.

These rules depend on both discovered workflow patterns and discovered transac-
tional behavior. Indeed, workflow transaction behavior specification must respect some
semantic ”regulations” partially depending on the discovered control flow. Concretely,
workflow recovery is tightly related to the control flow (i.e workflow patterns) as fol-
lowing rules:

1. R1 : For all workflow patterns : if a vital activity can fail then it must be recov-
erable;

2. R2 : For all workflow patterns except some parallel threads of M-out-of-N Join and
OR-Join patterns : all the activities are essential and therefore vital;

3. R3 : For XOR-split, XOR-join, sequence patterns : There is no cancellation de-
pendencies between the activities. A cancellation dependency can exist only in
case of failure and between parallel activities;

4. R4 : For AND-split, AND-join patterns combination : If an activity fails then
the consistent point must be out of the parallel threads between the ”join” and
”fork” point;

5. R5 :For all workflow patterns : If we have a backward recovery then the consis-
tent point cannot be before an executed pivot activity.

To illustrate the applicability of our rules we go back to our motivating example.
We have discovered that CCW never fails and SuD can fail. Then we can suggest that:

�By applying R1 there is no need for CCW to be recoverable.
�By applying R3 we remove the abortion dependency between CCW and SuD.
�By applying R1 and R2 we should specify that SuD is recoverable.
�By applying R4 the consistent point after SuD failure is localized just before

ICl or just after EnLR
�By applying R5 we can suggest only a forward recovery, after SuD failure, if

EnD or CCW are pivot activities.
�By applying R3 we can suggest to specify abortion dependencies between SuD

in one side and (CCW , REv, RUp, REx and ReL) activities in another side.

5 Related Work

Prior art in process mining field focus on control flow mining perspectives. Van der
Aalst et al. propose in [6] an exhaustive survey. Compared to these previous work



Mining Workflow Recovery from Event Based Logs 183

[17,18,19,8,20] our control flow mining (see section 3) approach deal dynamically
with concurrent behavior through concurrent windows that gives necessary additional
calculus only where we need that. Furthermore, we give an original control flow mining
approach through the discovery of workflow patterns witch are well-formed structures
giving an abstract description of recurrent class of control flow interactions. Besides,
we propose a set of control flow mining rules that are characterized by a ”local” work-
flow patterns discovery. These rules proceed through a local log analyzing that allow
us, if we have only fractions of workflow log, to recover correctly partial results.

Mining transactional workflows is still in its early phase. So far previous works in
workflow mining seem to emphasize only flow control within applications. To the best
of our knowledge, there are practically no approaches to transactional workflow mining
and correction based on event based logs that discuss the correctness of transactional
interactions or address the issue of failures handling and recovery, except [21] which
proposed techniques for discovering workflow transactional behaviour.

Concerning workflow recovery there are only a few research activities to name. A
first discussion was presented in [22] and the necessity of workflow recovery concepts is
slightly addressed in [1]. Especially, the concept of business transactions, introduced in
[23], describes some basic workflow recovery ideas in detail (above all partial backward
recovery). More recent work in this area is presented in [23,24,5,25,26]. Nevertheless,
there exists no broad discussion about the mining of workflow recovery and this paper
may be seen as a first deep step in this important area.

6 Conclusion

In this paper we presented an original approach for ensuring reliable workflow exe-
cutions. Different from previous works, our approach starts from effective executions,
while previous works use only specification properties (which remain assumptions). In-
deed, our approach starts from workflow executions log and uses a set of mining tech-
niques to discover the workflow control flow and the workflow transactional behavior.
Then, based on this mining step, we use a set of rules to improve workflow recovery.

However, the work described in this paper represents an initial investigation. In our
future works, we hope to enhance workflow recovery mining techniques by enriching
workflow logs and extracting data flow dependencies. We are also interested in the mod-
elling and the discovery of more complex transactional characteristics of cooperative
workflows.

Acknowledments. The authors would like to thank Sami Bhiri for the fruitful discus-
sions we had during the writing of this paper.

References

1. Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of workflow man-
agement: from process modeling to workflow automation infrastructure. Distrib. Parallel
Databases, 3(2):119–153, 1995.

2. A. H. M. ter Hofstede, M. E. Orlowska, and J. Rajapakse. Verification problems in conceptual
workflow specifications. Data Knowl. Eng., 24(3):239–256, 1998.



184 W. Gaaloul and C. Godart

3. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

4. Nabil R. Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Modeling and analysis of
workflows using petri nets. J. Intell. Inf. Syst., 10(2):131–158, 1998.

5. Johann Eder and Walter Liebhart. Workflow recovery. In Conference on Cooperative Infor-
mation Systems, pages 124–134, 1996.

6. Wil M. P. van der Aalst and B. F. van Dongen. Workflow mining: A survey of issues and
approaches. In Data and Knowledge Engineering, 2003.

7. W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

8. W.M.P. van der Aalst and L. Maruster. Workflow mining: Discovering process models from
event logs. In QUT Technical report, FIT-TR-2003-03, Queensland University of Technology,
Brisbane, 2003.

9. Ahmed K. Elmagarmid. Database transaction models for advanced applications. Morgan
Kaufmann Publishers Inc., 1992.

10. Sheth A and Rusinkiewicz M. On transactional workflows. Special Issue on Workflow and
Extended Transaction Systems IEEE Computer Society , Washington DC, 1993.

11. D. Agrawal and A. El. Abbadi. Transaction Management in Database Systems. In A. K.
Elmagarmid, editor, Database transaction models for advanced applications. Morgan Kauff-
man, 1990.

12. Moss J. Nested transactions and reliable distributed computing. In Proceedings Of The 2nd
Symposium on Reliability in Distributed Software and database Systems. IEEE CS Press,
1982.

13. Helmut Wachter and Andreas Reuter. The contract model. pages 219–263, 1992.
14. A. Elmagarmid, Y. Leu, W. Litwin, and Marek Rusinkiewicz. A multidatabase transaction

model for interbase. In Proceedings of the sixteenth international conference on Very large
databases, pages 507–518. Morgan Kaufmann Publishers Inc., 1990.

15. Weimin Du, Jim Davis, and Ming-Chien Shan. Flexible specification of workflow compensa-
tion scopes. In Proceedings of the international ACM SIGGROUP conference on Supporting
group work : the integration challenge, pages 309–316. ACM Press, 1997.

16. Bartek Kiepuszewski, Ralf Muhlberger, and Maria E. Orlowska. Flowback: providing back-
ward recovery for workflow management systems. In Proceedings of the 1998 ACM SIG-
MOD international conference on Management of data, pages 555–557. ACM Press, 1998.

17. Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process models from
workflow logs. Lecture Notes in Computer Science, 1377:469–498, 1998.

18. Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes from
event-based data. ACM Transactions on Software Engineering and Methodology (TOSEM),
7(3):215–249, 1998.

19. Joachim Herbst. A machine learning approach to workflow management. In Machine Learn-
ing: ECML 2000, 11th European Conference on Machine Learning, Barcelona, Catalonia,
Spain, volume 1810, pages 183–194. Springer, Berlin, May 2000.

20. Guido Schimm. Mining exact models of concurrent workflows. Comput. Ind., 53(3):265–
281, 2004.

21. W. Gaaloul, S. Bhiri, and C. Godart. Discovering workflow transactional behaviour
event-based log. In 12th International Conference on Cooperative Information Systems
(CoopIS’04), LNCS, Larnaca, Cyprus, October 25-29, 2004. Springer-Verlag.

22. W. Woody Jin, Marek Rusinkiewicz, Linda Ness, and Amit Sheth. Concurrency control and
recovery of multidatabase work flows in telecommunication applications. In Proceedings of
the 1993 ACM SIGMOD international conference on Management of data, pages 456–459.
ACM Press, 1993.



Mining Workflow Recovery from Event Based Logs 185

23. F. Leymann. Supporting business transactions via partial backward recovery in workflow
management systems. In Proceedings of BTW95, pages 51–70. Springer, 1995.

24. G. Alonso, M. Kamath, D. Agrawal, A. E. Abbadi, R. Gunthor, and C. Mohan. Failure
handling in large scale workflow management systems. Technical report, IBM Almaden
Research Center, 95.

25. Qiming Chen and Umeshwar Dayal. Failure handling for transaction hierarchies. In ICDE
’97: Proceedings of the Thirteenth International Conference on Data Engineering, pages
245–254. IEEE Computer Society, 1997.

26. Jian Tang and San-Yih Hwang. A scheme to specify and implement ad-hoc recovery in work-
flow systems. In EDBT ’98: Proceedings of the 6th International Conference on Extending
Database Technology, pages 484–498. Springer-Verlag, 1998.



Behavior Based Integration of Composite Business
Processes�

Georg Grossmann, Yikai Ren, Michael Schrefl, and Markus Stumptner

University of South Australia, Advanced Computing Research Centre,
Mawson Lakes, SA 5095, Adelaide, Australia

{cisgg, reny, cismis, mst}@cs.unisa.edu.au

Abstract. Integration of autonomous object-oriented systems requires the inte-
gration of object structure and object behavior. Past research in the integration of
autonomous object-oriented systems has so far mainly addressed integration of
object structure. During our research we have identified business process corre-
spondences and have given proper integration operators. So far these integration
operators are suited for creating generalized models but not for creating or deal-
ing with the composition of business processes. In this paper we propose integra-
tion operators which are able to create, deal, and finalize composition between
them. For modeling purposes we use the Unified Modeling Language (UML),
especially activity diagrams.

Keywords: business process modeling, behavior based integration, federated in-
formation systems, business process integration, web services.

1 Introduction

“Integration” is one of the driving themes in current database and applied computing
research in general. A special issue of the Communications of the ACM [2] and sev-
eral articles in subsequent issues dealt with integration topics. Whether at the level of
classical database applications, web services, workflows, integration of applications is
a matter of significant concern. However, past research in this area has concentrated
almost exclusively on structural aspects, e.g.[1,4,9,11,14,20,21]). Integration of object
behaviour has received some attention, but only at the level of single operations (or
“activities” at the conceptual level) [5,27].

In [25], we described a generic approach and resulting architecture for the behaviour
oriented integration of business processes. It is based on a meta-class architecture that
uses inheritance and instantiation relationships to describe high-level integration oper-
ators that can adapt and produce individualized integration plans (i.e., groups of opera-
tions) for the integration of processes from a particular domain.

In [10], we have described an integration process which consists of the identifi-
cation of business process correspondences and associated integration operators. The
correspondences are specified via relationships between equivalent and non equivalent
business processes and their activities respectively. For each identified relationship we

� This research was partially supported by the Australian Research Council under Discovery
Grant DP0210654.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 186–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Behavior Based Integration of Composite Business Processes 187

proposed proper integration options which build a new integrating model. This resulting
integrated model is a generalization of the input models. Our approach resulted in the
first coherent categorisation of integration options [10], building on a history of detailed
examination of individual options using generalisation [16,15,7].

However, while generalisation (or inheritance) is a crucial and (due to its unique
characteristics) extensively studied structural building block of current day information
system models, it is not the only one, rather it stands besides the two other major kinds
of relationships solidly embedded in conceptual models for more than a decade: compo-
sition (part-of relationships) and association (the generic category of all other, usually
domain-dependent relationships). The goal of this paper is to extend the rigorous cat-
egorisation approach employed in [10], to adapt it to composition, and to examine its
effects on a process-oriented view of the integration task.

The concept of composition is the creation of a part-of hierarchy of business pro-
cesses. A main business process consists of subprocesses which may again have sub-
processes of their own. The integration task is to build an integrated hierarchy of such
processes and coordinate the control and data flow between them. As preliminary work
in this area, [17,18] dealt with the composition of internal and external services and
verification of consistency criteria. The recent special issue on “Coordination” in Data
& Knowledge Engineering [26] pointed out that actual coordination of processes is still
a missing aspect in current integration research, and suggested solutions such as that
of [23] who propose event-based coordination and [22], who use state- and control flow
dependencies between public and private workflows.

In this paper we use a similar integration approach that we used for generaliza-
tion [10] but for the composite business processes. This approach consists of the fol-
lowing steps:

– Observation: At the beginning we examine possible relationships between two
business processes.

– Integration options: The next step offers several integration options. These inte-
gration options contain basic integration operators which can be combined to com-
posite operators. The integration options are independent from the relationships
identified in the observation step.

– Integration option mapping: In a following step the results of the observation
and the integration options are combined together. We receive integration choices
which are the requirement for the last step in the integration process, the model
transformation. For each relationship we suggest preferred and alternative integra-
tion options.

– Model transformation: For each identified relationship the model is transformed
by using the integration operators. The proper operators are selected given by the
integration choices.

We now describe the different steps in more detail.

2 Observation

The observation is the first step in the integration approach and deals with the analysis
of semantic relationships between business processes, their activities, and their states.



188 G. Grossmann et al.

In [10] we examined pairs of objects which represent the same real world object or
have common behavior. In the composition and association of business processes, the
semantic relationship between different objects are observed.

We assume that the composite object and its business process are known which
means that the structure of the composite object, i.e. its relationship to the types of
components, and its behavior are given. The business process of each component is
also given but the connection between the composite and the component business pro-
cesses are unknown. This is the part where our approach sets in. It supports the business
process designer in identifying the places where synchronization between the compos-
ite and the component business processes is needed to achieve a proper communication.
This support is also applicable to the case of associations where only loosely connec-
tions between business processes are created.

In the next section we give for each proposed synchronization point a list of syn-
chronization options which can be achieved. Our approach is a first step towards an
automatic integration of composite and component business processes and leads to a
faster and less error-prone integration.

First we list relationships between activities and states within a composition and
second we discuss relationships between business processes in an association.

2.1 Observation of Composite Business Processes

We mentioned in the previous section that the concept of composition is the creation of a
part-of hierarchy between objects, the assumption being that there exists one composite
object which normally is related to multiple component objects. Depending on how
many different types of components are included in a composite object, we distinguish
between heterogeneous and homogeneous relationships. A homogeneous relationship
means that an object consists of only one object type of components, e.g., a complete
set of car wheels consists of 4 wheels. If a composite object is made of several different
types of components, e.g., a computer is made of a hard disk, a cdrom drive, etc., then
we talk about a heterogeneous part-of relationship. Note that, as shown above, this is
independent of the cardinality of the relationship at instance level, i.e., the homogeneous
car-wheel relationship still is a 1:n relation ship. Although the cardinality of most part-
of relationships will be 1:n, 1:1 and m:n relationships could be considered; although the
latter will usually be limited to organisational contexts. In such a m:n relationship the
components are shared by different composite objects, e.g., two car rental companies
share the same pool of cars.

In this section we are dealing with integration of business processes which belong to
composite and component objects. Because one business process may deal with several
types of objects, we suggest that in a projection phase all activities which are dealing
with the same type of objects are identified and build a sub business processes [10]. So
in the following we are talking about business processes which deal with only one type
of object. In this paper a business process that belongs to a composite object is called
”composite business process” and a business process which belongs to a component is
called ”component business process”. For space reasons we only deal with composite
business processes that have a 1:1 or a 1:n relationship to component business processes,
but the results generalize directly.



Behavior Based Integration of Composite Business Processes 189

We explain our approach based on the example of a computer retailer BPC . BPC

sells cheap computers by assembling computer parts from cheap vendors together to a
complete system. The process of identifying which is the cheapest vendor and which
parts of which vendor fit together are given. However the prices of the computer parts
change rapidly and so the vendors who deliver the parts may change often. It is im-
portant for BPC to have a model which tells them when a communication to potential
new vendors should be established and how this communication can be coordinated.
Furthermore BPC offers a second hand market for computer parts and a service center
for warranty purposes.

The life cycle of a business process composition consists of three phases, (a) the
construction, (b) the coordination of composite and component business processes,
and (c) the destruction. Each phase is partitioned into subparts and for each subpart we
define a semantic relationship between activities and business processes:

1. Construction: At the beginning the composite object is constructed. This means in
the context of business processes that a first connection between the composite and
the component business processes is established. The construction is separated into
two parts:

– Creation: A create operation is needed if the component objects do not exist
yet.

– Assembly: If the component objects have existed before the composition was
formed, an assembly function fits the components to a composite object to-
gether.

2. Coordination: After the composite object is created, the composite and component
business processes must be coordinated so the coherence and the communication
between the components and their composite object can be administrated and is
observable. The coordination occurs along two dimensions:

– Complex activity decomposition: This construct deals with the synchronization
between composite and component activities.

– State synchronization: deals with the coordination of composite or component
activity execution with state conditions.

3. Destruction: The last phase of a composite object life cycle is the destruction of
the composite object. Depending on the future existence of the components there
are two possibilities:

– Disassembly: If the components continue to exist after the decomposition they
will be separated from the composite object.

– Destruction: If the components are not going to persist they will be destroyed.

In the following we explain the three phases in more detail and give examples.

2.2 Construction

To create a composite object, all parts must be obtained first and are assembled together.
In our computer retailer example we assume that BPC is aware of the components, how
they fit together, and of the order in which to assemble them. An overview of a possible
sequence of create and assembly activities between BPC and three different vendors
BP1, BP2, and BP3 is shown in Figure 1. The construction consists of two steps, the
creation and the assembly step:



190 G. Grossmann et al.

assembly

create create create

assembly

create

order

confirm

confirm

order

order

deliver

deliver

deliver

motherboard manufacture (BP-2) CPU manufacture (BP-3)computer retailer (BP-C) CD-ROM manufacture (BP-1)

Fig. 1. Example for the sequence of order, create, and assembly operations

Creation: In the computer retailer example, creation consists of obtaining the com-
ponents from different vendors who create and deliver them to BPC . Ordering the com-
posite object consists of ordering each component. Figure 2 illustrates a section of the
order process for PC components. In this example, BPC orders some motherboards,
CPUs, and graphic cards. Between the order activities we identified the relationship
Component commit (cn comm). A CPU depends on the type of motherboard because
it does not fit on all sockets. We assume for the BPC example that the retailer does
not want to order components on stock. So if no motherboard is available on which
the chosen CPU fits, the CPU should not be ordered. A cn comm relationship holds
between two activities if both activities must be executed successfully or none of them.
If an activity A1 succeeds, an activity A2 fails, and there exists a cn comm relationship
between them, then A1 must be canceled. This relationship holds between the activities
A1 and A4 in Figure 2.

Assembly: The assembly activities for each component are placed after receiving
the component from the vendors as shown in Figure 2. Depending on the composite
object, the components must be assembled in a specific order, e.g., before installing
interface cards on the motherboard, it must be installed in the case first. For specifying
this order, we have identified the relationship component history (cn hist) between
the activities A3 and A6, as well as between A8 and A3 shown in Figure 2. The ar-
row indicates the direction of the dependency. Two activities A1 and A2 in different
component business processes hold a cn hist relationship if A1 is only allowed to be
executed after A2 has finished execution successfully. A similar approach is described
in [24,23] where sequence constraints define the possible orders of activity execution.
An object life cycle consists of a set of states which are connected through activities.
Certain activities can be applied on an object depending on its state and either changes
the state of the object or not. The sequence constraints in [24,23] are modeled by state
machines which assure that only certain activities can be executed in each state and can-
not be executed in another state again. These constraints hold in cn hist as well where



Behavior Based Integration of Composite Business Processes 191

order (A4)

receive (A5)

assembly (A6)

order (A1)

receive (A2)

assembly (A3)

order (A6)

receive (A7)

assembly (A8)

ordered (S1)

received (S2)

ordered (S3)

received (S4)

ordered (S5)

received (S6)

cn_comm

graphics cardmotherboard CPU

C
R

E
A

T
E

 ST
E

P
A

SSE
M

B
L

Y
 ST

E
P

cn_hist

cn hist

Fig. 2. Construction phase: Examples for cn hist and cn comm

activities are executed in a specific order but can only be carried out once. So cn hist
relationships do not allow modelling loops which are possible in [24,23] as long as an
object stays in the same state.

At the end of the assembly phase, the composite object is created. The next phase
in the life cycle of a composite object deals with relationships between the composite
objects and its components. Therefore the activities of the composite and the component
business processes need to be coordinated.

2.3 Coordination of Composite and Component Business Processes

For modeling purposes we use the activity diagrams of the UML 2.0 specification [13]
and describe the coordination on level of activities. The base concept is that there is
an activity Ac in the composite business process BPc which consists of one or several
other activities A1, . . . , An located in component business processes BP1, . . . , BPn.

We extend this hierarchical concept by introducing states to the activity diagrams.
By adding the stereotype!state" to the UML metamodel as explained in Section 5.1
we can build conditions between activities and states of two business processes, e.g.,
while the composite business process remains in a certain state, component activities
can be executed.

We define the two expressions ”situation” and ”Situation Invariant” which are used
later in the paper:

– Situation: A situation is defined as the set of nodes which are occupied by an object
at a specific point of time in a business process.



192 G. Grossmann et al.

check (A1)

check (A2)

check (A3)

check (AC)

computer (BP-C) CD-ROM (BP-1) motherboard (BP-2) CPU (BP-3)

subact

subact

subact

Fig. 3. Example for subactivity condition

– Situation Invariant: Describes a state which must be present in any situation dur-
ing the synchronization of a given set of composite and component business pro-
cesses.

In the following we describe these two coordination aspects in more detail:

1. Complex activity decomposition (subact): The first part deals with the coordina-
tion of activities in composite and in component business processes. A composite
activity, which is an activity executed in a composite business process, consists of
subactivities which may again consist of subactivities, a hierarchical structure that
frequently occurs, e.g., in supply chains [12]. We refer to this as a subact hierarchy.
Figure 3 shows an example of the service centre of the computer retailer BPC . A
customer brought his computer to the service because it does not boot anymore.
At the service centre an activity ”check” starts which consists of the subactivities
”check the CD-ROM” in the component process BP1, ”check the motherboard”
in BP2, and ”check the CPU” in BP3. BP1, BP2, and BP3 are performed at the
manufacturer of each component. We define the subact hierarchy as follows: Two
activities AC and A1 in the business process BPC and BP1 hold a subact hierarchy
where BPC represents the composite and BP1 a component business process if A1

is started by AC and has to be finished before AC can finish. If the object in BPC

is only present in AC , then we call AC the ”Situation Invariant”.
The order of subactivity execution plays an important role in complex activity de-
composition. It is decided during the business process design and restricted by con-
straints [12]. In the example shown in Figure 3, the motherboard might be checked
first, because in most cases of a non-bootable computer, the motherboard is damaged.

2. State condition (stat cond): If a business process must stay in a specific state so
that another business process can start an activity or enter a state, we talk of a state
condition. Because the condition is determined by another business process we
also call it an interprocess dependency (IPD). There exist three different kinds of
IPDs.
Composite state IPDs (cs ipd): A cs ipd is given if the execution of a component
activity depends on the state of the composite object, e.g., to call the support of
a software, the computer’s OEM licence must be valid. The example shown in
Figure 4 describes the business process of computer retailer BPC at the instant of
checking the software of a customer’s computer. For further help the process needs
to call the software support of the installed software.



Behavior Based Integration of Composite Business Processes 193

cs_ipd
(S1)

OEM is not valid OEM is valid
(S2)

check for 

licence (A1)

support (A2)

software company (BP-1)computer retailer (BP-C)

Fig. 4. Example for cs ipd condition

Component state IPDs (cn ipd): A cn ipd between a composite activity and com-
ponent state holds if the composite activity can only be executed if the component
is in a certain state, e.g., a computer can only sell computers with a OEM licence if
he has bought the licence at the software company first, as shown in Figure 5.
State component state IPDs (st cn ipd): The st cn ipd condition between a com-
posite state SC and a component state S1 holds, if as a result of the component
entering S1, the composite object must enter SC, e.g., if a CD-ROM is detected as
damaged, then computer is damaged as well, as shown in Figure 6.

2.4 Destruction

The last phase of a composite object’s lifecycle is the destruction phase which covers
the disassembly and the demolition of the components. As a result, the composite object
is destroyed and the components might be destroyed as well or kept for other purposes.
In the BPC example, the retailer offers PC hardware on a second hand market. He buys
old computers, dismantles them, sorts out which hardware parts can still be used, and
resells them. Similar to the example of the construction phase, Figure 7 illustrates part
of the destruction phase of a PC.

cn_ipd

sell PC
with OEM (A2)

sell PC with-
-out OEM (A1)

sell (A3)

licence valid (S1)

computer retailer (BP-C) software company (BP-1)

Fig. 5. Example for cn ipd condition



194 G. Grossmann et al.

ok (S1) ok (S3)damaged (S2) damaged (S4)

computer retailer (BP-C) CD-ROM manufacture (BP-1)

check (A2)check (A1) subact

st_cn_ipd

Fig. 6. Example for st cs ipd condition

D
ISA

SSE
M

B
L

Y
D

E
ST

R
U

C
T

IO
N

store (A3)

disassembly (A1) disassembly (A5)

motherboard graphics cardCPU

Destruct? (A2)

disassembled (S1)

yesno

Destruct? (A6)

disassembled (S2)

yesno

Destruct? (A10)

disassembled (S3)

yesno

destruct (A8) store (A11) destruct (A12)destruct (A4) store (A7)

disassembly (A9)

cn_hist

cn_hist

Fig. 7. Destruction phase: Examples for cn hist relationship

1. Disassembly: The Disassembly step destroys the composite object by removing all
components from it. Figure 7 shows the disassembly activities of each component
according to the example which we demonstrated in the construction phase. Com-
pared to this phase, the assembly activities have to be executed in reverse order. We
have identified the semantic relationship cn hist which is described in Section 2.2
between the pairs of activities (A1, A5) and (A9, A1).

2. Demolition: After the components are separated from the composite object, they
can be destroyed. In case of the BPC example the different parts are either stored
and filed for the second hand market, or they are recycled as shown in Figure 7.

3 Integration Options

In the previous observation step we have examined different dependencies between
business processes and described them as semantic relationships. In the next step we



Behavior Based Integration of Composite Business Processes 195

list integration options which are later mapped to the semantic relationships. They trans-
form the models to an integrated business process and create the actual composition.

The integration options depict three different situations where synchronization is
needed, (1) synchronization of activities, (2) synchronization of activities and states,
and (3) synchronization of states. We explain the situations on three business processes
BP1, BP2, and BP3 where (w.l.o.g.) BP1 is always holding the ”Situation Invariant”.

3.1 Synchronization of Activities (synch act)

The first case of integration options deals with the synchronization of activities
synch act. Depending on the behavior of the object in the BP1 (”Situation Invariant”)
we distinguish between blocking, non-blocking, and future synchronization integration
options. The fourth synchronization option deals with ordering invocations of activi-
ties in different business processes. Finally, the last two more synchronization options
ensure atomicity: either all activities are executed successfully or none of them are.

1. Blocking (block): A blocking synchronization holds the object in activity A1 in
BP1 as long as several other activities A2, . . . , An in BP2 and BP3 are executed.
After A2, . . . , An have finished execution, the object is able to continue the flow
in BP1. We use the UML construct link for realizing this type of synchronization.
A link is a tuple of object references that is an instance of an association or of a
connector [19]. Semantically, a link is an individual connection among two or more
objects and may be used for navigation and sending messages. We adopted this con-
struct for Activity Diagrams by extending the UML meta model with stereotypes
as explained in Section 5.1. A link defined in our Activity Diagram extension rep-
resents a connection between two activities of two business processes over which
messages can be sent. For realizing block we define two types of links:

– An invoke link Linvoke = (N1, N2) between two business processes BP1 and
BP2 specifies an activity or a state N1 in BP1 which triggers an activity or a
state N2 in BP2. The link is directed from N1 to N2 where N1 represents the
”Situation Invariant”. If an object reaches N1, a message is sent over the link
and executes N2.

– A finished link Lfinished = (A3, N1) between two business processes BP1

and BP2 consists of an activity A3 in BP2 which was directly or indirectly
triggered by an activity or state N1 in BP1. After A3 has finished execution
a message is sent over Lfinished to N1. The object waiting in N1 can only
continue the flow in BP1 if a message was received before.

The block synchronization is defined as Sblock(Linvoke(A1, A2), Lfinished

(A3, A1)) and consists of an invoke link Linvoke and an finished link Lfinished.
A1 is an activity in BP1 and A2 and A3 are activities in BP2 such that A2 = A3

or A2 
= A3. If A2 
= A3 then all objects which have entered A2 must reach A3.
2. Non blocking (nblock): A non blocking synchronization between two activities A1

and A2 where A1 belongs to BP1 and A2 to BP2 ensures that starts of A1 and A2

execution is synchronized. There exist three different cases of nblock depending on
the execution state of A1:



196 G. Grossmann et al.

– A1 has not started: nblock s: The executions of A1 and A2 are synchronized
by a join and fork combination JF . JF synchronizes the edges leading to A1

and A2 and ensures the synchronous execution of both activities according to
the UML specification.

– A1 has started nblock sed: In this case a message is sent from A1 to A2 over
an invoke link Linvoke(A1, A2).

– A1 has finished nblock f : This synchronization option is used for enabling the
execution of A2 after A1 has finished its execution. nblock f is realized by join
and fork combination JF where JF synchronizes the edges E1 and E2 where
E1 leaves A1 and E2 leads to A2. From JF two edges E3 and E4 leaves where
E3 leads to the state following A1 and E4 leads to A2.

3. Future synchronization (future): The future synchronization offers the opportu-
nity to finish the synchronization at a later point of time. The involved business
processes can continue their execution between the start and end of synchroniza-
tion. A similar example is shown in [8] but in that case the execution of the business
processes is finished after the synchronization has ended.
The future synchronization is defined as Sfuture(Linvoke(A1, A3), Lfinished

(A4, A2)) where A1 and A2 are activities in BP1, and A3 and A4 are activities
in BP2.
Four constraints are associated with Sfuture: (a) N1 
= N2, (b) N3 
= N4, (c)
All objects which have reached N3 must reach N4, and (d) All objects which have
reached N1 must reach N2.

4. Ordering (order act): For ordering the invocation of activities we use the order act
synchronization. It is defined as Sorder(C, I, F ) and consists of a set of activity
calls C 
= 0, set of numbers I 
= 0, and an allocation of numbers to activity calls
F ⊆ (I × C) where ∀c ∈ C: (∃o ∈ O: (c, o) ∈ F . A number n ∈ O represents
the order in which an activity call should be executed. An activity call c ∈ C is
an activity which invokes another activity e in a different business process. c is
synchronized with e either by a block, nblock, or future synchronization option.
order act represents a separate business process where two activity calls c ∈ C and
d ∈ C are executed synchronously if (c, o) ∈ F ∧ (d, o) ∈ F . The activity c and d
are set in sequence if (c, o) ∈ F ∧ (d, p) ∈ F ∧ o < p.

5. Execute if available (avail): This option is used for synchronizing activities where
either both must finish execution successfully or none of them. We use a business
process template which first checks the availability of a successful execution of
an activity A and then executes A as shown in Figure 8(a). In this example two
activities A1 and A2 from two business processes BP1 and BP2 are checked for
availability first and then executed synchronously similar to a two phase commit
protocol. If a further activity A3 need to be synchronized following steps must be
conducted:

– Insert an activity A3avail that checks the availability of A3 and leads to S1.
– Insert new edge E1 leading from F2 to a new inserted merge M3 that again

leads to A3avail.
– Insert a new edge E2 leading from F1 to activity A3.

6. Cancel if unsuccessful (cancel): An alternative solution to avail is proposed by
cancel. Here as well the synchronization of two activities A1 and A2 ensures that



Behavior Based Integration of Composite Business Processes 197

either both activities finish successfully or none of them. The difference to avail is
that instead of checking the availability the activities are executed first and if one of
them finishes with an error, all other activities are canceled, similar to a rollback.
An example is shown in Figure 8(b). If a third activity A3 need to be synchronized
following changes to Figure 8(b) must be carried out:

– Insert a new edge E1 leading from A3 to J1.
– Insert a new edge E2 leading from D1 to a new inserted activity A3cancel that

cancels A3.
– Insert a new edge E3 leading from A3cancel to M3.
– Insert a new edge E4 leading from M3 to a new inserted merge M4 that again

leads to A3.

M1

M2

D1

Try again?

D2

ALL are available?

A2

A1 available? A2 available?

A1

J1

yes no

no yes

F2

F1

BP1 BP2

(a) Synchronization avail.

A1 A2

M1

M2

D1

Exec. successful?

cancel A2 cancel A1

M3

J1

yes A2 failed

F1

A1 failed

F2

BP1 BP2

(b) Synchronization cancel.

Fig. 8. Synchronization of activity execution

3.2 Synchronization of Activities and States

The synchronization of activities and states deals with the synchronization of one ac-
tivity and several states or one state and several activities. In this section we explain
the examples with three different business processes BP1, BP2, and BP3. Again, BP1

is the ”Situation Invariant”, but it could be represented by a state or an activity in the
diagram.

1. synch state act stands for the synchronization of a state S in BP1 and one or sev-
eral activities A1, . . . , An in BP2 and BP3. If an object is staying in S, A1, . . . , An

are invoked or enabled by sending a message over a link. We define two different



198 G. Grossmann et al.

synchronization possibilities within synch state act depending on the active or pas-
sive invocation of A1, . . . , An:
The synchronization with an active invocation active is defined as
Sactive(Linvoke(S, A1),Lfinished(A2, S)).Sactive consistsofan invokelinkLinvoke

and an hasFinised link Lfinished. S represents the state in BP1. A1 and A2 represents
an activity in BP2 where A1 = A2 or A1 
= A2. If A1 
= A2, it must be ensured that
all objects reaching A1 must reach A2.
The synchronization including a passive invocation enable consists of three differ-
ent links, (a) Lenable(N, A), (b) Lstarted(N1, N2), and (c) Lfinished. Lenable is
defined by a state or activity N in BP1 and an activity A in BP2. As long as an
object is staying in N, the link Lenable to A is active and enables the execution of
A. Lstarted consists of two activities or states N1 and N2 in two different business
processes. N1 sends a message over Lstarted to N2 when an object has entered N1,
i.e., entered a state or started the execution of an activity. Lfinished is defined in
Section 3.1. We define the synchronization as
Senable(Lenable(S, A1), Lstarted(A1, S), Lfinished(A2, S)) where S is a state in
BP1 and A1 and A2 are two activities in BP2. A1 = A2 is possible. If A1 
= A2

then all objects which has entered A1 must reach A2. A1 can only be executed
if Lenable is active. An object can only leave S if either there was no message
received from Lstarted or there was a message received from Lstarted and from
Lfinished.

2. The synchronization synch act states deals with synchronization of an activity A
in BP1 and a state S in BP2. If an object is entering A, the object in BP2 is set to
the state S. synch act states is realized with a link Linvoke(A, S) where A and S
are the corresponding activity and state.

3.3 Synchronization of States

The last case of integration options deals with the synchronization of states s states in
different business processes. Like in previous sections we use three different business
processes BP1, BP2, and BP3 as an example where BP1 contains a state S1, BP2

contains S2, and BP3 contains S3. S1 signifies the ”Situation Invariant”.
We define s states as a set of invoke linksSL 
= 0. If the function getSource(Linvoke)

returns the source node of the invoke link Linvoke then ∀Linvoke ∈ SL: getSource
(Linvoke) = S1. In the example of the three business processes, the s states consists of
Linvoke(S1, S2) and Linvoke(S1, S3).

4 Integration Option Mapping

In this step we choose the proper integration option explained in Section 3 on the basis
of the semantic relationships described in Section 2. For each relationship we propose
one or more synchronization solutions which integrate the business processes.

For composite business processes as described in Section 2.1, states and activities
must be synchronized. An overview of the integration decision for particular relation-
ships is shown in Table 1. The semantic relationships are identified by the line header



Behavior Based Integration of Composite Business Processes 199

and the integration decision by the column header. P stands for “preferred integration
option” and A for “alternative integration option”.

Table 1. Integration decision for particular semantic relationship

block nblock s nblock sed nblock f future order act avail cancel active passive s states
cn comm P P
cn hist P
cs ipd A P
cn ipd A P
st cn ipd P
subact P A A A P P

5 Model Transformation

The last step deals with the integration decision for each identified relationship and the
application of the chosen synchronization option on the model. According to Table 1
we have chosen a preferred integration options for each semantic relationship that we
explained in Section 2:

– cn comm: For the cn comm relationship that we identified in the example shown
Figure 2 we have chosen the avail synchronization. Because of limited space we
cannot provide a figure of the solution but refer to Figure 8(a) which shows a similar
example. The activities A1 and A2 in Figure 8(a) correspond to shortcuts of the
order activities in Figure 2.

– cn hist: The cn hist identified in Figure 2 is integrated by order act. Sorder

(C, I, F ) consists of C = CA3, CA6, CA8 where CA3 stands for invoking A3,
I = 1, 2, 3, and F = 1− > A6, 2− > A3, 3− > A8. The activity calls are syn-
chronized with the corresponding activity by block as shown in Figure 9.

– subact: In Figure 3 we identified the subact relationship. The activities in this ex-
ample are synchronized by the integration option block as shown in Figure 10.

– cs ipd: For the cs ipd relationship that we have identified in the example shown
Figure 4 we have chosen the passive synchronization. The result is illustrated in
Figure 11.

– cs ipd: The cs ipd identified in Figure 4 is integrated by passive as well. The same
links are used as in the integrated model shown in Figure 11.

– st cn ipd: In Figure 6 we identified the st cn ipd relationship. The activities in this
example are synchronized by the integration option s states as shown in Figure 12.

– cn hist: The cn hist identified in Figure 7 is integrated by order act. The destruc-
tion is arranged in the opposite order to the assembly step of the composite ob-
ject. Sorder(C, I, F ) consists of C = CA1, CA5, CA9, I = 1, 2, 3, and F =
1− > A9, 2− > A1, 3− > A5. The activity calls are synchronized with the cor-
responding activity by block.



200 G. Grossmann et al.

5.1 A Note on Notation

The representation we use is based on UML 2.0 Activity Diagrams, one of the standard
representations for software system behavior. However, we make certain changes. First,
of the nodes defined as part of the UML 2.0 AD standard, we use a simplified subset
that is sufficient to express business process semantics and preserves or even enhances
the underlying Petri-net-resembling semantics of activity diagrams.

On the other hand, we have to make a significant extension. Diagram notations used
for conceptual behavior modeling are based on two complementary notational prim-
itives, states and activities. UML behavior representation notations either emphasise
states (in the case of Statecharts) or activities (in the case of activity diagrams) and at-
tempt to minimise the use of the respective opposite primitive. While these representa-
tions are useful for particular facets of the software development process they typically
cannot be used in pure form without overly restricting the modeler, resulting in the in-
troduction of different kinds of “pseudostates” (really particular types of transitions) in
Statechart modeling and different types of “locations” (really, intermediate states) in
Activity Diagrams. Instead, we use a symmetric notation that permits both states and
activities to occur explicitly in the same diagram. As we have found, this significantly
facilitates the clear separation between the different integration options compared to
“state-biased” or “activity-biased” diagrams. It also helps in several other aspects.

First, states represent a situation of an object between two activities. The activity be-
fore the state S has finished and the activity following S has not started yet. In contrast
to Petri net based models activities need time in UML-AD. However an activity edge
just emit a token from one activity to another without taking time. If synchronization
between the execution of two activities is needed we need a state element that represents
this situation. One possibility is to insert a join node but in this case at least a second
token is needed which is may not available, e.g., send a message to business process P
when activity A has finished but activity B has not started yet. Second, Activities are

invoke A3

A6 finished

A3 finished

invoke

finished

invoke

finished

assembly (A6)

assembly (A8)

computer

invoke A8

invoke A6

finished

invoke

CPU

assembly (A3)

graphics card

motherboard

Fig. 9. Synchronization order act of cn hist relationship



Behavior Based Integration of Composite Business Processes 201

check (A1)

check (A2)

check (A3)

check (AC)

computer (BP-C) CD-ROM (BP-1) motherboard (BP-2) CPU (BP-3)

invoke

finished

finished

invoke

invoke

finished

Fig. 10. Synchronization block of subact relationship

(SC-1)
OEM is not valid OEM is valid

(SC-2)

check for 

licence (AC-1)

support (A1-1)

software company (BP-1)computer retailer (BP-C)

enable

started

finished

Fig. 11. Synchronization passive of cs ipd relationship

ok (SC-1) ok (S1-1)damaged (SC-2) damaged (S1-2)

computer retailer (BP-C) CD-ROM manufacture (BP-1)

check (A1-1)check (AC-1)

invoke

Fig. 12. Synchronization s states of st cn ipd relationship

executed by events. So we do not know when an activity will be executed. A state can
hold a token which is waiting for an event. In UML-AD is not defined where to find a
token after an activity has finished but the event for the next activity has not been trig-
gered yet. Lastly,, States offer the possibility of interrupting a business process before
an activity can start. By synchronization techniques that we explained in this paper a
business process can be forced to stay in a state even if an event triggers an activity.
Note that in [6] states were represented by “wait activities”. This is a possible solution



202 G. Grossmann et al.

for introducing states to activity diagrams but the expression “activity” is misleading in
this context and “wait activities” also do not posses their own shape in the model. So it
is difficult to distinguish them from normal activities.

The actual extension was handled by adding an appropriate stereotype to the activity
diagram metamodel. For space reasons, this topic is dealt with in more detail in the
technical report version of this paper.

6 Related Work

Related work can be found in [22,23,3]. The integration approaches in [22,3] deals with
the coordination of public and internal processes by inter-organizational workflows.
Compared to our research the integration is not based on semantic relationships and
does not support the reuse of integration options on the level of activities. Furthermore
the integration of composite business processes where one activity in a business process
consist of several subactivities located in different business processes is not mentioned
there.

An interesting approach is explained in [23] where object events between com-
ponents are coordinated. However because of verification issues there is no graphical
notation used for integration which might be difficult to understand for the process de-
signer.

7 Conclusion and Further Research

In this paper, we have described an approach to categorize integration situations be-
tween business processes that are a related by a part-of or composition relationship,
in a manner similar to our work on integrating business processes that are involved in
generalisation relationships [10]. We have given a structured sequence of integration
steps that analyzes the relationships between these process. Based on the behavior of
the processes involved, this results in limiting the choice from a set of integration op-
tions, thus giving direct guidance to the integration designer. Choice of an integration
option then leads to the use of a specific high-level integration operator that applies the
required modifications and guarantees synchronisation conditions. Together with [10],
this work forms part of our metaclass architecture for semantic, i.e., behavior-based,
integration [25]. Part of our ongoing work is the implementation of our framework in a
meta modeling tool and the application of our results to Web services.

References

1. Omran A. Bukhres and Ahmed Elmagarmid. Object-Oriented Multidatabase Systems: A
Solution for Advanced Applications. Prentice Hall, 1996.

2. CACM. Special Issue on Enterprise Application Integration. CACM, 45(10), October 2002.
3. Issam Chebbi, Schahram Dustdar, and Samir Tata. The view-based approach to dynamic

inter-organizational workflow cooperation. Data and Knowledge Engineering, 2005. Article
in press. Available online at http://www.sciencedirect.com.



Behavior Based Integration of Composite Business Processes 203

4. Stefan Conrad. Föderierte Datenbanksysteme. Konzepte der Datenintegration. Springer
Verlag, 1997. Only available in German.

5. Stefan Conrad, Barry Eaglestone, Wilhelm Hasselbring, Mark Roantree, Felix Saltor, Martin
Schonhoff, Markus Strassler, and Mark W. W. Vermeer. Research issues in federated database
systems: Report of EFDBS ’97 workshop. SIGMOD Record, 26(4):54–56, 1997.

6. H. Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow Modelling.
PhD thesis, University of Twente, Enschede, The Netherlands, 2002.

7. Heinz Frank and Johann Eder. Towards an Automatic Integration of Statecharts. In Proc.
ER’99, LNCS 1728, pages 430–444, Paris, 1999. Springer-Verlag.

8. G. Kappel G. Engels, L. Groenewegen. Coordinated Collobaration of Objects, chapter 1,
pages 307–332. Advances in Object-Oriented Modeling. MIT Press, 2000.

9. Manuel Garcı́a-Solaco, Fèlix Saltor, and Malú Castellanos. A structure based schema in-
tegration methodology. In Philip S. Yu and Arbee L. P. Chen, editors, Proceedings of the
Eleventh International Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan,
pages 505–512. IEEE Computer Society, 1995.

10. Georg Grossmann, Michael Schrefl, and Markus Stumptner. Classification of business pro-
cess correspondences and associated integration operators. In Proc. Int’l Workshop on
Conceptual Modeling Approaches for e-Business (eCOMO), LNCS 3289, pages 653–666,
November 2004.

11. W. Klas and M. Schrefl. Metaclasses and their Applications: Data Model Tailoring and
Database Integration. LNCS 943. Springer-Verlag, Berlin, Heidelberg, 1995.

12. Takashi Kobayashi, Masato Tamaki, and Norihisa Komoda. Business Process Integration
as a Solution to the Implementation of Supply Chain Management Systems. Information
Management, 40(8):769–780, 2003.

13. Object Management Group (OMG). UML 2 Superstructure Final Adopted specification,
August 2003. http://www.omg.org/uml, 2003-08-02.

14. Christine Parent and Stefano Spaccapietra. Issues and approaches of database integration.
Communications of the ACM, 41(5es):166–178, 1998.

15. G. Preuner, S. Conrad, and M. Schrefl. View Integration of Behavior in Object-Oriented
Databases. Data and Knowledge Engineering, 36(2):153–183, 2001.

16. G. Preuner and M. Schrefl. Observation consistent integration of views of object life-cycles.
In Proceedings of the 16th British National Conferenc on Databases, pages 32–48. Springer-
Verlag, 1998.

17. G. Preuner and M. Schrefl. Behavior-consistent composition of business processes from in-
ternal and external services. In Proc. Int’l Workshop on Conceptual Modeling Approaches for
e-Business (eCOMO), Lecture Notes in Computer Science. Springer-Verlag, October 2002.

18. M. Preuner and M. Schrefl. Requester-centered Composition of Business Processes from
Internal and External Services. Data and Knowledge Engineering, 2004.

19. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Refer-
ence Manual, 2nd edition. Object Technology Series. Addison-Wesley Publishing Company,
2004.

20. I. Schmitt. Schema Integration for the Design of Federated Databases. Dissertationen zu
Datenbanken und Informationssystemen, Vol. 43. infix-Verlag, Sankt Augustin, 1998.

21. Michael Schrefl and Erich J. Neuhold. Object class definition by generalization using upward
inheritance. In Proceedings IEEE ICDE, pages 4–13. IEEE Computer Society, 1988.

22. Karsten A. Schulz and Maria E. Orlowska. Facilitating cross-organisational Workflows with
a Workflow View Approach. Data and Knowledge Engineering, 51(1):109–147, October
2004.

23. M. Snoeck, W. Lemahieu, F. Goethals, G. Dedene, and J. Vandenbulcke. Events as atomic
contracts for component integration. Data and Knowledge Engineering, 51(1):81–107, Oc-
tober 2004.



204 G. Grossmann et al.

24. Monique Snoeck. Sequence constraints in business modelling and business process mod-
elling. pages 194–201, 2003.

25. Markus Stumptner, Michael Schrefl, and Georg Grossmann. On the road to behavior-based
integration. In Proceedings 1st Asia-Pacific Conference on Conceptual Modelling, pages
15–22, 2004.

26. Willem-Jan van den Heuvel and Hans Weigand. Contract-driven coordination and collabo-
ration in the internet context. Data and Knowledge Engineering, 51(1):1–3, October 2004.

27. Mark W. W. Vermeer and Peter M. G. Apers. Behaviour specification in database interoper-
ation. In Conference on Advanced Information Systems Engineering, pages 61–74, 1997.



Visualization Support for Managing Large
Business Process Specifications

Alexander Streit, Binh Pham, and Ross Brown

Faculty of Information Technology,
Queensland University of Technology,

2 George St, Brisbane Australia
{a.streit, b.pham, r.brown}@qut.edu.au

Abstract. This paper proposes a visualization technique to support the
modelling and management of large business process specifications. The
technique uses a set of criteria to produce views of the specification that
exclude less relevant features. The proposed approach consists of three
steps: assessing the relevance of nodes, reducing the specification, and
presenting the results. Algorithms and methods are presented for these
steps along with examples.

1 Introduction

There are multiple graphical business process modelling techniques such as EPC
(Event-driven Process Chain) and YAWL (Yet Another Workflow Language).
Graphical business process modelling languages are elegant solutions because
the user can visually interpret the process. For a more detailed discussion of
graphical modelling languages see [1] pp.3. However, as the process grows in
size the graph becomes difficult to deal with. This problem is well known to
fields that use graphical languages [2]. While zooming initially solves the issue of
gaining an overview perspective, there is a finite limit to the amount of zooming
that can be performed before information becomes obscured. Screen real estate
is limited and the specification given in Figure 7, for example, does not fit clearly
on a standard computer display.

Features requiring controlled visual processing, such as interpretation of text,
are dominant in business process modelling languages. The ability to interpret
controlled visual processing is particularly affected as more information is added.
Automatic processing features, such as colour, find limited use in specification
languages such as EPC and YAWL. In the case of EPC, where colour is used,
colour does not contribute to the overall structural interpretation of the graph.

The traditional solution to this has been to allow decomposition of tasks to
sub-specifications. This approach requires that the user construct a deliberate
hierarchical structure to support what is in essence a multi-resolution model.
Another approach is the conversion of the information into another format, but
this loses the benefits of user familiarity, requiring users to learn a new repre-
sentation.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 205–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



206 A. Streit, B. Pham, and R. Brown

For large models to be understood it is necessary that the level of controlled
processing required is reduced. The approach explored in this paper is to provide
views of the specification that exclude less relevant information. This filtering
of information produces a model with lower complexity, but introduces a degree
of uncertainty. This uncertainty reflects the lower resolution model’s potential
for representing variations of the original model. This use of uncertainty mimics
human reasoning [3], where decisions are made on relevant information instead
of relying upon a detailed and precise model.

The discipline of 3D computer graphics has conducted extensive research
into level of detail algorithms [4]. These algorithms construct simplified repre-
sentations of a full scale model. The purpose of simplification is to maintain a
representation of the model that is recognisable while reducing the processing
and data requirements of the system (see Figure 1). Typically, lower level detail
versions of a model are substituted for the object when it is further away from
the observer, where the change is indiscernible.

Fig. 1. The structure of the 3D model of a plane is evident, even at four different levels

of detail. (from [5])

The approach in this paper is motivated by the success of level of detail
methods in the 3D graphics field. The proposal is a simplification approach for
business process specifications by constructing a reduced graph that captures the
most relevant information of the original graph. By using this approach the user
avoids learning a new notation, because it uses the same graphical notation as
the original graph. However, the reduced graph must also preserve the semantics
of the original graph to avoid being misleading.

This reduction process presents an opportunity to not only preserve the
overview of structure, but to actually provide different views of the same graph
according to different interests of the user. Reduction should therefore be di-
rected by criteria that represent the interest of the user, which is governed by
the task of the user. For example, the user may wish to see only those processes
that are involved in a possible dead-lock situation, or alternatively the user may
wish to see nodes that are relevant to a text search term. A graphical search
engine can be constructed by creating reduced views of business process models
according to search terms. This effectively allows the user to browse the business
process similar to using a web search engine.



Visualization Support for Managing Large Business Process Specifications 207

To expand on the example of the search engine, consider the prototype shown
in Figure 2. The user is able to enter a search term that is used to direct the cri-
terion function. The resulting display is a reduced view of the specification that
includes only the most relevant nodes and their relationships to one another.
Should the user enter a different term, the process is repeated, starting from the
original specification every time. No changes are made to the original specifi-
cation, instead a temporary reduced view of the specification is constructed for
display to the user. Such a tool might be incorporated into the modelling pack-
age, to aid the user’s understanding and construction of large or complicated
specifications.

The mechanics of the reduction algorithm is based on first determining a
relevancy factor for each node, followed by analysing the paths through the
process model and removing the least relevant nodes. Once the graph has been
reduced it must be prepared for display, which requires an aesthetically pleasing
and intuitive layout for the graph.

Fig. 2. Prototype for a system that allows users to query specifications in a similar

manner to a web search engine

Section 2 provides background material, section 3 details the techniques and
approach, while section 4 provides a summary of the work and points to future
work.



208 A. Streit, B. Pham, and R. Brown

2 Background

2.1 Workflow Specifications

Business process management (BPM) is about the management of business pro-
cesses. BPM is receiving increased attention due to improvements in information
systems [6]. Workflow management systems (WFMS) are computerised tools to
support BPM and workflow specifications drive the WFMS.

Workflow specifications can be observed from different perspectives: control-
flow, data, resource, and operational. The control-flow perspective describes the
order of execution of tasks. Tasks can either be atomic or decompose to sub-
specifications, which creates a hierarchical view of the process. The data per-
spective deals with the flow of objects such as documents and can overlay the
control flow perspective. The resource perspective links tasks to the resources
required to perform them. The operational perspective details the practical exe-
cution of tasks, such as the underlying software services involved.

There are a number of workflow specification languages, both commercial and
academic (see [1]). WF-nets were proposed [6] as a specification language based
on Petri-nets. The advantage of using Petri-nets is that they provide a formal
basis, which enforces precise definition. The disadvantage to this approach is
that some patterns do not map well onto high-level Petri-nets [7]. YAWL [7]
is a progression from WF-nets that overcomes these disadvantages by adding
mechanisms to support the workflow patterns in [8]. The YAWL environment is
freely available1.

The YAWL environment currently provides support for the control-flow per-
spective, data perspective, and the operational perspective. The formal under-
pinnings and expressiveness of YAWL make it an ideal choice for visualization
research. The former allows for a formal analysis of techniques, while the latter
implies that successful development of techniques for YAWL will translate to
other workflow specification languages.

The constructs of the YAWL language are given in Figure 3.

2.2 Visualization

A visualization program is analogous to a looking glass through which the user
inspects an underlying system. In other words, it is the “bringing out of meaning
in data” [9]. Examples of visualization techniques are given in [9]. Traditionally,
visualization research has produced visualization techniques that were classi-
fied according to data type [10,11,12,13]. However, recent opinion has criticised
this approach as producing “showy” images that are insufficiently useful to the
user [14].

Suggestions for overcoming this include working more closely with the appli-
cation domain [14] and creating task-oriented visualization systems [15]. Task-
oriented visualizations are driven by the task of the user rather than the com-
position of the underlying data. The user-centric approach of task-oriented vi-

1 The YAWL environment is available through http://www.yawl-system.com



Visualization Support for Managing Large Business Process Specifications 209

Fig. 3. Constructs of the YAWL language [7]

sualization requires an understanding of the user’s requirements. This in turn
requires closer cooperation with the application domain.

Visual elements can be classified into two categories [12]: automatic visual
processing elements are easily interpreted and include colour, shape, and width,
whereas controlled visual processing requires additional user interpretation and
include features such a text, icons, and arrows.

2.3 Mesh Simplification Algorithms

Real-time computer graphics applications use 3D mesh structures to model 3D
objects. The mesh structure consists of a collection of convex surfaces defined by
their vertices. The visible surfaces of the mesh are rasterized, to produced a raster
image, which is subsequently shown to the user. To maintain interactive frame
rates, this process must be performed for every visible 3D object, in under 83
milliseconds. The sheer mesh complexity required for acceptably accurate models
creates processing challenges and has lead to the creation of novel techniques to
reduce complexity.

Simplification algorithms reduce the mesh complexity while maintaining the
important characteristics of the model. These techniques are used to reduce
computation requirements for uses such as fluid flow simulation, shadow volume
extrusion, and particularly preserving visual appearance. Several techniques ex-
ist (see [4]), which can be placed into two broad categories: decimation and
collapse. Decimation techniques remove numerous elements and reconstruct sur-
faces over the holes this creates, whereas collapse methods incrementally reduce
the mesh through atomic operations.

The progressive mesh [5] is a collapse technique designed for progressive
transmission of mesh data. Partially received progressive meshes can be displayed
to give the user a low resolution model and the model is refined as more data
is received. The edge collapse technique used has an inverse operation, called a



210 A. Streit, B. Pham, and R. Brown

vertex split. Given vertex split information, in the correct order, the mesh can
be reconstructed to the desired level of detail.

All simplification algorithms make use of an error metric to choose the appro-
priate reductions. The error metric varies depending upon the intended applica-
tion of the simplified mesh. For example, the error metric used to generate the
appearance preserving meshes given in Figure 1 uses an energy function that
measures the squared distance of the proposed vertices to the original mesh,
tempered by a spring function to distribute collapses across the mesh [5]. For
further reading on this topic see [4].

2.4 Other Related Work

Researchers have previously identified comprehension issues with large concep-
tual schemas. Their solution builds abstractions for conceptual schemas through
recursive derivation of simplified representations [16]. Each derived representa-
tion is termed an abstraction level. The abstraction mechanism introduces an
importance rating for roles. Objects are weighted according to the sum of their
anchored role weights. Object weights that exceed the current abstraction level
threshold are identified as important and are included in the abstraction level,
whereas a series of production rules are used to remove the remaining objects
and their associated roles.

3 Approach

This section details the approach including the underlying algorithms. Section
3.1 describes methods for assessing the relevance of nodes, section 3.2 provides
algorithms for reducing graphs based on the relevance of nodes, and section 3.3
discusses methods for presenting the results to the user.

The aim is to construct a reduced representation for a given input specifi-
cation. Two methods are proposed to achieve this construction, both of which
are guided by a criterion function that reflects the requirements of the user. The
reduced graph is then presented to the user, who may alter their requirements or
request a different level of detail in response. The input specification is hereafter
referred to as the original graph. This process is called the visualization process
and is illustrated in Figure 4.

This paper proposes the following visualization process:

1: Calculate the relevance of each node according to the criteria
2: Reduce the graph by either the collapse or decimation methods
3: Display the graph to the user for inspection

The original graph is a graph G(V, E), where V is the set of vertices and
E is the set of edges. Each node v ∈ V is either a condition or a task. There
is always one start condition, s, and one end condition, t. For the purposes
of this paper, a completed graph has at least one task and every node v can
be reached on a directed path from s to t. In other words ∀v ∈ V : p(s, v) �=



Visualization Support for Managing Large Business Process Specifications 211

Original
Graph

1
Criterion
Function

2
BPM

Reduction

Reduced
Graph

3
Presentation

User

Fig. 4. Visualization support using the reduced graph approach

Fig. 5. Any valid process model can be abstracted to the level of a single task P , which

stands for “execute the process”

∅ ∧ p(v, t) �= ∅, where p(vi, vj) ⊂ E returns the edges on a directed path from
vi to vj . Partial graphs are those graphs where not all nodes can be reached
from the start condition, or the end condition is not reachable from any node, or
both. During the modelling process, where the user is still building the process
specification, the graph may not necessarily be completed. Both of the graph
reduction strategies proposed here support these partial graphs, however, the
criterion function requires additional care to ensure that it also supports partial
graphs. In practice the end condition is typically unreachable in a partial graph.

Any valid workflow specification, which must be a completed graph, can be
abstracted to the level start → P → end (see Figure 5), which is the minimum
valid specification possible.

The aim is to build a reduced graph GR(VR, ER), where the R subscript
denotes reduction. The reduced graph is built such that it contains a subset of
the nodes of the original graph. In other words, a reduced graph GR(VR, ER) is
built from an original graph G(V, E), such that VR ⊂ V . A relevance factor, ε, is
calculated by εi = C(vi) for each node vi ∈ V , where C is the criterion function
C : V → IR and IR is the set of real numbers. C orders the nodes according to
their relevance to the task of the user.

3.1 The Criterion Function

The criterion function is formulated according to the task of the user. For ex-
ample, if the task of the user is to identify deadlocks, then neighbourhood nodes



212 A. Streit, B. Pham, and R. Brown

that contribute to the deadlock state are of greater interest to the user than
the overall graph structure. Contrast this with a user that wishes to see only
those nodes that contain a particular search term and closely related nodes.
Consequently we assign each task a different criterion function, whose effects
dictate the degree to which the preservation of structure overrides the relevance
of neighbouring nodes.

Structural Importance. Preservation of the overall structure of the graph is
achieved through identifying important control flow nodes. The control perspec-
tive defines the flow of control through the graph.

A promising structural importance heuristic is based on the connectedness,
χ : V → ZZ, of the node and its estimated position in the routing hierarchy,
φ : V → ZZ. ZZ is the set of integers and φ is calculated by counting the number
of splits and subtracting the number of joins on the shortest path from s to the
node, excluding this node. χ is simply the sum of all connected nodes to this
node. ε is calculated as follows:

εi =
χ(vi)

min(φ(vi), 1)

An example application of the heuristic structural importance criteria is
shown in Figure 8.

Text Retrieval. Text retrieval algorithms perform best when there are a num-
ber of words in a document. Business process models rarely include much text for
each node, limiting the applicability of traditional text retrieval ranking meth-
ods. However, the context for a node can be viewed as the neighbouring nodes.

One approach to take advantage of this neighbourhood is to introduce a
notion of relevance flow, which increases the relevance of nearby nodes. The
amount of the contribution drops off with distance travelled including loops.
The amount of the drop off is arbitrary and a constant rate, β, gives adequate
results. This algorithm to assign relevance factors based on a text search term
for graph G(V,E) is as follows:

1: Find ST , the set of all nodes that contain the search term.
2: For each v ∈ ST ,
3: Initialise the contribution value, c ← 1.
4: Initialise the neighbourhood node set, SN ← {v}.
5: While c > 0 and SN �= ∅,
6: update ε for all neighbours: ε′(n) ← ε(n) + c for all n ∈ SN .
7: reduce future contributions: c′ ← c − β.
8: update neighbour list: SN ← {n ∈ SN : w ∈ V, {nw} ∈ E}.
9: End while.
10: End for.

An example using the text retrieval criteria is shown in Figure 9.



Visualization Support for Managing Large Business Process Specifications 213

Graphical Considerations. The business process model is a graphical repre-
sentation, meaning that the modeller has assigned the positions of the nodes.
These positions hold meaning, for example, invoicing related tasks will commonly
be grouped together spatially. This meaning can be included in the criterion
function by measuring the relative change in the position of a node.

3.2 Business Process Model Reduction

This section describes model transformation techniques that produce reduced
models based on the criterion function.

The reduced graph must preserve the semantics of the original graph to avoid
being misleading. Semantics are preserved if all possible orders of execution of
the remaining nodes are unchanged from the original graph. In other words, the
dependencies between nodes cannot change.

Two methods are described: the collapse method, which incrementally re-
duces the graph until a threshold value for ε is reached, and the decimation
method, which removes all nodes below a threshold value and reconstructs the
paths between remaining nodes.

The threshold value is assigned by the user and is called the alpha-cut value,
denoted α.

Collapse. The principle behind the collapse technique is to incrementally reduce
the graph. Each incremental change in the graph is selected on the basis of
removing the least relevant (minimum ε) node from the current model GR

n to
produce next GR

n+1, according to conditions described next.
A non-join node is selected for removal at each increment. A split node is

only selected if its predecessor is a task. The removal is performed by merging
the node with its predecessor. Figure 6 illustrates how this is done under various
circumstances. Split and join decorators are removed from a node when a single
inflow or outflow, respectively, results from the collapse, yielding a sequence
operation. Given the selection pattern under the heading ‘Original YAWL’ in
Figure 6, the first selected node is y, which is merged with a to produce the
version shown under the heading ‘Reduced (introduce ε)’. Subsequently, x is
chosen and merged with a to produce the sequence pattern of a → b.

One advantage of the collapse technique is that the order of collapses can be
stored. The inverse operation of a collapse, called a node-split, can then be per-
formed to restore GR

n+1 to GR
n. Another advantage is that since collapses relate

one level of detail to another, the presentation can animate changes to increase
interpretability of the technique. The calculation of collapses can be performed
in a pre-processing step and since the actual collapse operation requires minimal
processing, the visualization system can allow interactive navigation between
various levels of detail.

An example application of the collapse algorithm is shown in Figure 8.

Decimation. The decimation approach selects a number of nodes that will be
included in GR. All other nodes are removed. The original graph is then analysed



214 A. Streit, B. Pham, and R. Brown

Pattern Original YAWL Reduced (introduce ε)

Sequence

Selection

Parallel

Multi-choice

Iteration

Fig. 6. Selected reduction patterns for the collapse technique

to reconstruct the paths between the remaining nodes. Nodes are selected for
inclusion if their relevance is α or higher. A concurrent path is defined as any
path from one node to another where a split exists on the path that was not
synchronised before reaching the destination node. A direct path from x ∈ S to
y ∈ S is a path from x to y without going through any other element of S.

The decimation-construction algorithm is given as follows:

1: Initialise the set of included nodes, SI ← {s, t}
2: add all vi where C(vi) > α to SI .
3: Initialise output edges, ER ← ∅
4: For x ∈ SI , y ∈ SI , x �= y,
5: V ′

R ← VR ∪ {y}
6: if there is a direct path from y to y, E′

R ← ER ∪ {yy}
7: if there is a direct path from x to y, E′

R ← ER ∪ {xy}
8: if a concurrent path {x..y} includes any z ∈ SI (z �= x �= y),

add the offending split node(s) before x and y to SI ,
add the matching join node(s) after x and y to SI .

9: End for



Visualization Support for Managing Large Business Process Specifications 215

Fig. 7. An example workflow specification that is too large to fit on a computer screen

In practice, the detection of concurrent paths in step 8 is implemented by per-
forming a search for elements of SI − {x} in the original graph G, starting at x
and following the directions of edges in E. Split nodes will spawn multiple paths



216 A. Streit, B. Pham, and R. Brown

Fig. 8. A reduced version of specification graph in Figure 7 showing structure built

using the collapse approach (α = 2.5)

leading away from them, whereas join nodes reunite paths back together. Since
the graph is cyclic, the search must keep a set of traversed edges to ensure they
are not pursued again. Any path is terminated if it reaches y, or there are no
untraversed outflows to follow. If any path finds an element of SI − {x, y}, the
path is recorded then terminated. The search is terminated when all paths termi-
nate. The offending split nodes are found by backtracking recorded paths until a
forward path to y is found. The matching join nodes are found using a similar ap-
proach that starts a path at every element of SI −{x} that was previously found,
including y. The algorithm continues until all paths terminate or there is a single
path. It records join nodes that combine the paths along the way.

An example application of the decimation algorithm is shown in Figure 9
where the task ‘Negotiate on claim’ is an offending split node and ‘Complete
settlement documentation’ is the matching join node.

3.3 Presentation Techniques

This section considers issues of presenting the reduced graph to the user. The
reduction techniques described previously produce a reduced graph, but do not
alter the position of the nodes. The role of the presentation algorithm is to
produce a visually pleasing layout of the reduced graph while preserving the
intuitiveness of the result.

Producing an appropriate layout is the subject of ongoing work and prelim-
inary results are described here. The method used in figures 8 and 9 adjusts
the length of the edges in ER to seek an even length among all edges. Nodes
also carry a localised repellent force that push nodes apart and keeps them from
overlapping. The system is then allowed to stabilise, which will occur when all



Visualization Support for Managing Large Business Process Specifications 217

Fig. 9. A reduced version of the specification in Figure 7 for the text query ‘legal’ built

using the decimation approach (β = 0.5, α = 1)

edges have expanded or contracted until the repellent force of each node equals
the force on its edges.

The aim of presentation is to ensure that the user is able to interpret the
results, which depends largely on the user easily being able to relate the graph
back to the original. The original position of the nodes was chosen by the mod-
eller and holds associated meaning. Whenever automated changes to the graph
are performed, it is necessary to preserve the user’s mental map [17]. The relative
position of nodes to one another should not alter considerably, since this would
also reduce the ability of users to relate the reduced graph to the original graph.

To improve fidelity to the original graph, another force can be modelled as an
attracting force between the node and its relative position in the original graph,
called the scaled original position. The scaled original position Ps(i) of node i is
the position in the original graph Po(i) scaled by the ratio of the extents of the
graphs γ:

Ps(i) = γPo(i)
where γ is given by the ratio of the extents of the current graph Ec to the

extents of the original graph Eo:
γ = Ec

Eo

4 Conclusions and Future Work

This paper proposed the use of a visualization process to support the under-
standing of large business process specifications. The process was divided into
three steps that together provide the user with a simplified specification that is
relevant to the task of the user.

The visualization process can be used to allow users to browse the speci-
fication in a similar manner to the way in which the web is explored through
web search engines. The techniques presented in section 3 work with partial
graphs, allowing the process to be used during modelling of the business process
specification.



218 A. Streit, B. Pham, and R. Brown

The notion of a criterion function allows for rich and flexible expression
of relevance. Section 3.1 provided two criterion functions: one favouring the
overall structure of the graph and another for locating nodes related to a text
search term. Section 3.2 described two methods for actually building the re-
duced graphs: the collapse technique, which is incremental, and the decimation
technique. Section 3.3 covered aesthetic and interpretability issues involved with
presenting the reduced graph to the user. Two examples were given in figures 8
and 9 for the original graph in figure 7.

Future work would explore additional criteria functions and presentation
algorithms. User interaction with the system can also be extended, such as to
allow users to ‘brush’ over nodes to reveal their neighbourhood. The applicability
of this visualization process is not limited to modelling large processes. It can
be extended to work with run-time data or process mining results.

Acknowledgements. The authors wish to acknowledge Arthur ter Hofstede
for his feedback and Michael Roseman for providing access to real world large
business process specifications. Thanks also go to Alexander Campbell, Rune
Rasmussen, and Frederic Maire for their suggestions on graph theory.

References

1. W. van der Aalst, “Business process management demystified: A tutorial on mod-
els, systems and standards for workflow management,” in Lectures on Concurrency
and Petri Nets, vol. 3098, pp. 1–65, Springer Verlag, Berlin, 2004.

2. M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, and P. van Zee,
“Scaling up visual programming languages,” Computer, vol. 28, no. 3, pp. 45–54,
1995.

3. J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems. Prentice Hall PTR,
2001.

4. D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner,
Level of Detail for 3D Graphics. Morgan Kaufman Publishers, 2003.

5. H. Hoppe, “Progressive meshes,” in SIGGRAPH ’96: Proceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques, (New York, NY,
USA), pp. 99–108, ACM Press, 1996.

6. W. van der Aalst and K. van Hee, Workflow Management: Models, Methods, and
Systems. MIT Press, 2002.

7. W. van der Aalst and A. ter Hofstede, “Yawl: Yet another workflow language,” in
Information Systems, vol. 30, June 2005.

8. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. P. Barros, “Workflow
patterns,” Distrib. Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

9. P. Keller and M. Keller, Visual Cues. IEEE Press, 1992.

10. S. Henderson, “Vised: Visaulization techniques.” Retrieved 25 June 2004 from
http://www.siggraph.org/education/materials/HyperVis/vised/VisTech/

vtmain.html, 1996.

11. M. Reed and D. Heller, “Olive: Online library of information visualization environ-
ments.” Retrieved 15 May 2004 from http://www.otal.umd.edu/Olive/, 1997.



Visualization Support for Managing Large Business Process Specifications 219

12. S. Card and J. Mackinlay, “The structure of the information visualization design
space,” in IEEE Symposium on Information Visualization, pp. 92–99, IEEE Press,
Oct 1997.

13. E. Chi, “A taxonomy of visualization techniques using the data state reference
model,” in IEEE Symposium on Information Visualization, pp. 69–75, IEEE Press,
Oct 2000.

14. K.-L. Ma, “Visualization - a quickly emerging field,” ACM Computer Graphics,
vol. February, pp. 4–7, 2004.

15. R. Brown and B. Pham, “Visualisation of fuzzy decision support information: A
case study,” in IEEE International Conference on Fuzzy Systems, 2003.

16. L. J. Campbell, T. A. Halpin, and H. A. Proper, “Conceptual schemas with ab-
stractions: Making flat conceptual schemas more comprehensible.,” Data Knowl.
Eng., vol. 20, no. 1, pp. 39–85, 1996.

17. K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment and the mental
map,” Visual Languages and Computing, vol. 6, no. 2, pp. 183–210, 1995.



Transforming BPEL to Petri Nets

Sebastian Hinz, Karsten Schmidt, and Christian Stahl

Humboldt–Universität zu Berlin,
Institut für Informatik, D–10099 Berlin

{hinz, kschmidt, stahl}@informatik.hu-berlin.de

Abstract. We present a Petri net semantics for the Business Process
Execution Language for Web Services (BPEL). Our semantics covers the
standard behaviour of BPEL as well as the exceptional behaviour (e.g.
faults, events, compensation). The semantics is implemented as a parser
that translates BPEL specifications into the input language of the Petri
net model checking tool LoLA. We demonstrate that the semantics is
well suited for computer aided verification purposes.

keywords: Business process modeling and analysis, Formal models in
business process management, Process verification and validation, BPEL,
Petri nets.

1 Introduction

The Business Process Execution Language for Web Services (BPEL) is part
of ongoing activities to standardize a family of technologies for web services. A
textual specification [1] appeared in 2003 and is subject to further revisions. The
language contains features from previous languages, for instance IBM’s WSFL [2]
and Microsoft’s XLANG [3]. The textual specification is, of course, not suitable
for formal methods such as computer aided verification. With computer aided
verification, in particular model checking, it would be possible to decide crucial
properties such as composability of processes, soundness, and controllability (the
possibility to communicate with the process such that the process terminates
in a desired end state). For a formal treatment, it is necessary to resolve the
ambiguities and inconsistencies of the language which occurred particularly due
to the unification of rather different concepts in WSFL and XLANG.

Several groups have proposed formal semantics for BPEL. Among the ex-
isting attempts, there are some based on finite state machines [4,5], process
algebras [6], and abstract state machines [7,8]. Though all of them are success-
ful in unravelling weaknesses in the informal specification, they are of different
significance for formal verification. The semantics based on abstract state ma-
chines are feature-complete. However, Petri nets provide a much broader basis
for computer aided verification than abstract state machines. Most of the other
approaches typically do not support some of BPEL’s most interesting features
such as fault, compensation, and event handling.

In this paper, we consider a Petri net semantics for BPEL. The semantics
is complete (i.e., covers all the standard and exceptional behaviour of BPEL),

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 220–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Transforming BPEL to Petri Nets 221

and formal (i.e., feasible for model checking). With Petri nets, several elegant
technologies such as the theory of workflow nets [9], a theory of controllability
[10,11], a long list of verification techniques [12] and tools [13,14,12] become
directly applicable. The Petri net semantics provides patterns for each BPEL
activity. Compound activities contain slots for the patterns of their subactivities.
This way, it is possible to translate BPEL processes automatically into Petri nets.
Using high-level Petri nets, data aspects can be fully incorporated while these
aspects can as well be ignored by switching to low-level Petri nets.

We first explain the general concepts of BPEL. Afterwards we introduce the
principles of our Petri net semantics and explain the Petri net patterns for a few
typical BPEL activities. Then we report first experiences with an automated
translation of BPEL into Petri nets, and subsequent model checking. Finally, we
discuss some ideas for an extension of our technology that aims at models which
are better suitable for model checking.

2 Introduction to BPEL

BPEL is a language for describing the behaviour of business processes based on
web services. Such a business process can be described in two different ways: ei-
ther as executable business process or as business protocol. An executable business
process which is the focus of this paper models the behaviour and the interface
of a partner (a participant), in a business interaction. A business protocol, in
contrast, only models the interface and the message exchange of a partner. The
rest of its internal behaviour is hidden. Throughout this paper, we will use the
term BPEL process instead of “executable business process specified in BPEL”.
Executing a BPEL process means to create an instance of this process which is
executed.

For the specification of the internal behaviour of a business process, BPEL
provides two kinds of activities. An activity is either an elementary activity or a
structured activity. The set of elementary activities includes: empty 1 (do noth-
ing), wait (wait for some time), assign (copy a value from one place to another),
receive (wait for a message from a partner), invoke (invoke a partner), reply
(reply a message to a partner), throw (signal a fault) and terminate (terminate
the entire process instance).

A structured activity defines a causal order on the elementary activities. It
can be nested with other structured activities. The set of structured activities
includes: sequence (nested activities are ordered sequentially), flow (nested ac-
tivities occur concurrently to each other), while (while loop), switch (selects
one control path depending on data) and pick (selects one control path depend-
ing either on timeouts or external messages). The most important structured
activity is a scope. It links an activity to a transaction management. It provides
a fault handler, a compensation handler, an event handler, correlation
sets and data variables. A process is a special scope. More precisely, it is
the outmost scope of the business process.
1 We use this type-writer font for BPEL constructs.



222 S. Hinz, K. Schmidt, and C. Stahl

A fault handler is a component that provides methods to handle faults
which may occur during the execution of its enclosing scope. In contrast, a
compensation handler is used to reverse some effects which happened during
the execution of activities. With the help of an event handler, external message
events and specified timeouts can be handled. A correlation set is used for
identifying the instance of a BPEL process only by the content of a message.
Thus, a correlation set is an identifier – more precisely, it is a collection of
properties – and all messages of an instance must contain it. It is either initialized
by the first incoming or outgoing message.

Another important concept in BPEL are links. A link can be used to define
an order between two concurrent activities in a flow. It has a source activity and
a target activity. The source may specify a boolean expression, the status of the
link. The target may also specify a boolean expression (the join condition)
which evaluates the status of all incoming links. The target activity is only
executed when it evaluates its join condition to true. BPEL provides dead-path-
elimination [15], i.e. the status of all outgoing links of a source activity that
is not executed anymore is set to negative. Consider, for instance, an activity
within a branch that is not taken in a switch activity.

3 Petri Net Semantics for BPEL

Our goal is to translate every BPEL process into a Petri net. The translation is
guided by the syntax of BPEL. In BPEL, a process is built by plugging instances
of language constructs together. Accordingly, we translate each construct of the
language separately into a Petri net. Such a net forms a pattern of the respective
BPEL construct. Each pattern has an interface for joining it with other patterns
as is done with BPEL constructs. Some of the patterns are used with a param-
eter, e.g. there are some constructs that have inner constructs. The respective
pattern must be able to carry any number of inner constructs as its equivalent in
BPEL can do. We aim at keeping all properties of the constructs in the patterns.
The collection of patterns forms our Petri net semantics for BPEL.

In the following subsections, we give a glimpse on our semantics, using a basic
activity (receive), a structured activity (flow) and the stop pattern as examples.
The complete version of the Petri net semantics is reported in [16,17].

3.1 Example of a Basic Activity

Let us have a more detailed look at the general design of a pattern. Figure 1
depicts the pattern for the BPEL’s receive activity. receive is responsible for
receiving a partner’s request. To identify whether the request is sent to this
receive pattern and not to another instance of the process, BPEL’s receive
specifies at least one correlation set. The pattern in Fig. 1 presents a receive
with one correlation set which is already initialized2.
2 The pattern of BPEL’s receive where a correlation set is initialized by the in-

coming message is very similar to Fig. 1 and can be found in [17].



Transforming BPEL to Petri Nets 223

initial

running

{guard}

{!guard}

failed

stop

final

fault

stopped

t1

obj3

p5t4

t5

<MessageType>

<MessageType> <PropertyType>

[Variable]

obj2
[Channel]

X

V

receive

[CorrelationSet]

p3

t3

p4

p2
(X,CS)

p6

p7

t7

t6

p1

t2

obj1 X

(X,CS)

(X,CS) (X,CS)

CS

CS

Fig. 1. Pattern for BPEL’s receive. When the pattern is activated, it is executed in

two steps. First, the message is taken from the channel (obj1) and the correlation

set (obj2) is read (t1). Both values are saved in variables X and CS, respectively. In the

second step, this information is analyzed. Either the message is saved in the variable

(t2) or a fault occurs (t3). With it variable V holds the old value of obj3 and fault holds

the fault information. In both cases, the pattern is finished.

Before we discuss details of the receive pattern, we give some general com-
ments on the notion of patterns. Firstly, we use the common graphical notations
for Petri nets. Places and transitions are labelled with an identifier, e.g. p1 3

or t1 which are depicted (contrary to common notation) inside the respective
Petri net node. In addition, some nodes have a second label depicted outside the
node, e.g. initial. This label is used to show the purpose of the node in the net.
Secondly, a variable with small letter in arc inscriptions, e.g. fault, symbolizes a
single variable and a variable with a capital letter, e.g. X, symbolizes a tupel of
variables. Thirdly, there are transitions, e.g. t2 which have a transition guard.
Such a transition can only fire when its guard, a boolean expression, is evaluated
to true. A guard is depicted (in braces) next to the transition it belongs to, e.g.
{!guard}.

In general, a pattern is framed by a dashed box. Inside the frame, the struc-
ture of the corresponding BPEL construct is modelled. The interface is estab-
lished by the nodes depicted directly on the frame. Positive control flows from top

3 We use this serif-free font for labels in a Figure.



224 S. Hinz, K. Schmidt, and C. Stahl

to bottom while communication between processes flows horizontally. In Fig. 1
the positive control flow starts with a token on initial and it ends either with a
token on finish or failed. Outside the frame, there are external objects, e.g. obj1.
An object is either a place of a scope pattern (variable, correlation set) or
of the process pattern (channel). An activity’s pattern as the receive pattern in
Fig. 1 relates to those places. The label on the top of an object defines its sort
whereas the role is defined at the bottom of the object. A sort is the domain of
the tokens lying on and arriving at this place. The object’s role is independent
of its sort.

The pattern shown in Fig. 1 takes a message from the channel, reads the
correlation set and either updates its variable by saving this message or
a fault is thrown because of a mismatch between the values of the receive’s
correlation set and the correlation set in the message or some other error.

The meaning of place stop, stopped and failed in Fig. 1 needs to be explained.
In BPEL, a process is forced to stop its positive control flow, e.g., when a fault
occurs or activity terminate is activated. However, the BPEL specification [1]
tells only informally the requirements how to stop a scope. For instance, activity
receive “is interrupted and terminated prematurely” [1, p. 79]. The specifica-
tion does not describe how to realize those requirements. Thus, we had to make
some modelling decisions in our model: The pattern of BPEL’s scope is extended
by a stop pattern (see Sect. 3.3 for more details), which has no equivalent con-
struct in BPEL. If a scope needs to be stopped, the stop pattern controls this
procedure. Our idea is to remove all tokens from the patterns, embedded in the
scope pattern; thus the patterns of BPEL’s activities and event handler con-
tain a subnet – a so called stop component. In contrast, the patterns of BPEL’s
compensation handler and fault handler do not contain a stop component,
because they both need not to be stopped. In [16] we proved that every process
can be stopped using stop components. In the case of Fig. 1, the stop compo-
nent is established by transitions t4 – t7 using the interface stop and stopped.
Throughout this paper, we will call this the negative control flow of an activity.

In order to explain how a stop component works, consider a scope that
contains just a receive and the latter throws a fault. This leads to place failed

being marked – the token is an object that consists of the fault’s name. This
place is joined with a place in the stop pattern; thus this pattern gets the control
of the scope. First of all it stops the inner activity of the scope and consequently
a token is produced on the receive’s stop place. Transition t6 fires and stopped

is marked. This place is also joined with a place in the stop pattern. In contrast,
transitions t4, t5, t7 consume the token on stop by stopping the receive pattern
wherever the control flow is in this pattern. As a result, a token is produced on
stopped, too. One might assume that t4 obtains priority before t1 and t5 before t2.
Indeed, this would destroy the model’s asynchronous behaviour without changing
the possible set of runs. We use this asynchronous behaviour in our patterns
to model the aspect that sending the stop signal needs time, too. Consider,
for instance, two receive patterns executed sequentially. It is possible that the
first receive is finished (and so the second receive is activated) exactly in the
moment signal stop is sent. In our patterns, however, this possibility is taken into



Transforming BPEL to Petri Nets 225

account. Alternatively, a different modelling approach is possible: A transition
of the receive pattern’s positive control flow is only enabled when no fault has
been occurred in the surrounding scope pattern. This fact could be modelled
by a place marked when no fault has been occurred. But this, of course, would
destroy the asynchronous character of any BPEL process.

3.2 Example of a Structured Activity

Next we show the general pattern of BPEL’s flow. flow is used to execute
subtasks concurrently. The subtasks can be further synchronized by so-called
links.

The pattern in Fig. 2 can carry n inner activities which are executed concur-
rently. An embedded activity can be any BPEL construct; thus only the interface
is visualized and all other information of the pattern is hidden. Therefore only
the frame and places initial, final, stop, stopped and if needed negLink are visible
(see, for instance innerActivity1 in Fig. 2). The interface of each embedded pattern
is joined with the surrounding flow pattern.

negLink is an abbreviation of negative link. It is an optional place that is
only part of a pattern’s interface when it embeds at least one activity that is
source of a link. With the help of negLink the status of all outgoing links of

innerActivity1 innerActivityn

sync

innerStopped

stopped

final

stop

initialnegLink

running

flow
p1

p2 p3

p4

p5

p6

t1 t2

t3

t4

p8

t6

t7

t5

p15

p13

p14

p11p10

p7

p9

p16

p12

Fig. 2. Pattern for BPEL’s flow embeds n inner activities. There are two possible

scenarios: Either all inner activities are executed concurrently (t2) and afterwards they

are synchronized (t3) or the status of all source links embedded in the flow is set to

negative (t1)



226 S. Hinz, K. Schmidt, and C. Stahl

an inner activity (i.e. all links for that the inner activity is source) that is not
executed anymore are set to negative. Consider an activity within a branch that
is not taken in a switch activity. In other words, negLink is a place for modelling
dead-path-elimination. In Fig. 2 we assume that innerActivity1 and innerActivityn

contain at least one activity that is source of a link.
In our semantics, we model a link by a place of sort Boolean. If the link is

set, the place is marked. The value of the token is the status of the link that
depends on how the transition condition is evaluated. The join condition
determines whether a target activity is executed or not. It is modelled by a
transition guard. For modelling dead-path-elimination, we build a link pattern
that embeds an activity.

If there is a token on stop, the flow and its embedded activities are stopped.
After t5 has fired, the token on running is consumed; thus t3 cannot be activated.
Furthermore the stop place of each inner activity is marked. So innerActivity1,
. . . , innerActivityn can be stopped concurrently. Firing t6 synchronizes them.

3.3 The Stop Pattern

After an activity has thrown a fault, the fault handler of the enclosing scope
has firstly to finish the positive control flow inside the scope and secondly it
has to handle the fault. We preserve this division and extend every scope by
a so-called stop pattern which has no equivalent construct in BPEL. When the
stop pattern receives the fault, it finishes its enclosing scope and afterwards it
signals the fault to the scope’s fault handler. Furthermore the stop pattern
is used to realize BPEL’s terminate activity, i.e. to stop the entire process.

Figure 3 depicts the pattern of the stop pattern. It is quite complex, because
the scope can be in different states when the fault signal occurs. For example,
a fault can occur in the positive control flow or in a fault handler. For each
scenario the stop pattern behaves differently. In order to explain how this pattern
works it is useful to make the following commitment: The pattern we have a look
at is embedded in a scope B. B itself embeds a scope C called the child scope
of B. Furthermore B is child scope of A or in other words: A is the parent scope
of B.

First of all we have a look at the interface of Fig. 3 which differs from the
former patterns. On top there are four important places: ft in (marked if A wants
B to be stopped), fault in (a fault is occurred in an enclosing activity of B, i.e.
either a token on a failed place or C’s fault handler rethrows a fault it can-
not handle), terminate up (a terminate activity embedded in A is activated) and
terminate (a terminate activity either embedded in C or in B is activated). The
place fault in results from joining the failed places of all activities enclosed by B.
All other interface places on top are state places of B. For the most part the
state places take inspiration from the business agreement protocol (BAP) [18].
The BAP specifies a set of signals serving for communication between a scope
and its parent scope. The places on the right are used to remove all tokens in
B’s compensation handler (cleanCH, ch cleaned) and to stop the positive con-
trol flow of B (stop, stopped). On the bottom there are places to activate other



Transforming BPEL to Petri Nets 227

!Ended

Faulted

x

x

upperFHrethrowupperTerminatestopped_sfaultSave

Faulted

x

x

x

x

fault

!EndedCompensated

!Faulted

Ended
!Faulted

terminate!Activeterminate_upfault_inft_in

ft

Active

x

ftSave

x stopped

stop

faultInCH

X
x

x

x

ch_cleaned

cleanCH

x

kill

x

stop

p9

p11

p29

t2

t8

t9

t10

t12

t15

p15 p22 p24

t11

p26

p25

p30

p32

p4p3

t1

p2

p1 p14

p13

p9

p28
p5

p20 p23

p5

t7

t6

p10 p21p18

p16 p19 t13

t14

t16

p29

p31

p27p17p12

t3

p8

t5

t4

p7

p6

Fig. 3. Stop pattern embedded in a scope

patterns. ft and ft fault (signalling that A wants to stop B), fault and faultSave

(signalling the occurrence of a fault) and rethrow (signalling the occurrence of a
fault during the execution of B’s fault handler) activate the fault handler
of B. In contrast, upperTerminate (signals scope A that it has to be terminated)
and upperFH (rethrows a fault to A’s fault handler that could not be handled
by B’s fault handler) activate the parent scope and the parent scope’s fault
handler, respectively. stopped s is the stopped place of B.

The arc connecting p10 and t5 differs from the other arcs in its notation (a
little circle at its source) and also in its semantics. It consumes all tokens of
p10 making no difference if there are 0, 1 or more tokens on this place. In other
words, p10 is emptied. This arc is a so-called reset arc [19].

Altogether 8 possible scenarios are modelled in this pattern: Either a fault is
thrown, an activity terminate is activated or A wants to stop B. In the case of



228 S. Hinz, K. Schmidt, and C. Stahl

an activated terminate activity we distinguish if this activity is embedded in an
enclosing scope (here A) or not and if B’s fault handler is activated or not.
In the case of a thrown fault we distinguish a fault in the positive control flow,
in the compensation handler, and in the fault handler. In this paper, we
restrict ourselves to explain how a scope can be stopped if a fault in the positive
control flow occurs. For details of the remaining scenarios, the interested reader
is referred to [17].

Let us continue the scenario described in Sect. 3.1: Let B be the scope that
encloses the receive. If the receive throws a fault, its failed place is marked –
the token is an object that consists of the fault’s name. As already mentioned,
the failed place and the place fault in in Fig. 3 are identical. It is the first fault
occurred; thus B is in state Active, i.e. Active is marked. t6 can fire and variable
x holds the fault information. Firing t4 produces a token on stop which leads to
removing all tokens inside the receive pattern and to produce a token on place
stopped. Place stopped in the receive pattern and stopped in Fig. 3 are identical,
too. So t5 can fire and the positive control flow of B is finished. By firing t7 the
stop pattern invokes the fault handler by signalling the fault information.

4 BPEL2PN

In [20], we translated a small BPEL process – it was a modification of the
Purchase Order Process presented in the BPEL specification [1, pp. 14] – into
a Petri net. This BPEL process consists of 17 activities. The resulting Petri net
consists of 158 places and 249 transitions and it was generated manually. In fact
this transformation was very laborious and took hours. Therefore tool support
was necessary to transform a BPEL process automatically into a Petri net.

We built a parser, BPEL2PN [21], that can automatically transform a given
BPEL process into a Petri net. The way BPEL2PN works is shown in Fig. 4: It
takes a BPEL process process.bpel as an input. Then this process is transformed
into a Petri net according to the Petri net semantics. In more detail, for each
activity of process.bpel an instance of the corresponding pattern is generated and
all these patterns are stuck together as done in the BPEL process. The resulting
Petri net, process.lola, is the output of BPEL2PN where .lola is the data format
of our model checker LoLA [12]. LoLA offers the user the opportunity to write
out the net into the standard interchange format for Petri nets, the Petri Net
Markup Language (PNML) [22].

As explained in Sect. 3.3, in the stop pattern a reset arc is used to remove all
tokens from place fault in. In the following we draft the idea how such an arc can
be modelled as a high-level construct which can be, in turn, unfolded into a low-
level construct: It is possible to safely over-approximate the maximal number k
of tokens, i.e. the number of faults that can be produced on place fault in. This
is the number of activities of the enclosing scope that can throw a fault. Every
scope encloses only a finite number of activities. Consequently k is bounded. So
place fault in is a high-level place that is k-bounded, i.e. the number of tokens on
fault in is never greater than k. Then, unfolding the reset arc means to replace



Transforming BPEL to Petri Nets 229

transformationread write

BPEL2PN

process.bpel process.lola

Petri net 
semantics

Fig. 4. Mode of operation of BPEL2PN

fault in by k+1 places (0 tokens are possible, too). Furthermore every transition
of the pre-set or post-set of fault in has to be replaced by k + 1 transitions. It
can be easily seen that a reset arc causes an increasing of the net size. The value
of k can be narrowed, for instance, in the case of a sequence. Unaffected by
the number of its inner activities only one fault can be thrown, because after
this fault is thrown the control flow within the sequence is blocked. Calculating
the best possible k of place fault in is ongoing research. In order to avoid an
increasing net size due to unfolding we could build an abstract stop pattern. In
this pattern we could restrict the number of faults (and therefore k) to 1. Those
ideas are explained in more detail in Sect. 6.

The current version of BPEL2PN has the following limitations: Firstly, as
already mentioned in [20] we decided to abstract from data, i.e. messages and
data are modelled as black tokens, because we directed our attention to the
control flow. Consequently, all other high-level constructs like transition guards
and variables were left out, too. So selecting one of two control pathes in the Petri
net semantics, solved by the evaluation of data, is modelled by a nondeterministic
choice, e.g. t2 or t3 in Fig. 1. Therefore the resulting Petri net is low-level4. Data
aspects can be integrated later in our tool or analyzed by methods of static
analysis. Secondly, every activity is limited to one correlation set (except
the synchronous invoke that is limited to two correlation sets). And last,
attribute enableInstanceCompensation is ignored. Therefore it is not possible to
compensate a process instance, i.e. the entire BPEL process. This is, however,
no real limitation: You only need to redefine the process as a scope and embed
this scope in a process. Then, the old process can be compensated.

In fact, these are no serious limitations, because the control flow of the BPEL
process is preserved. In the next section, we want to give the reader an impression
what complex processes can be translated by BPEL2PN and analyzed by our
model checker LoLA.

4 Due to the high-level construct of the reset arc the net generated by BPEL2PN is
high-level, but it is unfolded to a low-level Petri net by LoLA. Generating a low-level
net by BPEL2PN would be possible, too. As a consequence, the complexity of the
parser would be increased.



230 S. Hinz, K. Schmidt, and C. Stahl

5 Case Study: Online Shop

In this section we present a case study. It shows how a given, realistic BPEL
process can be analyzed by the use of our semantics. We generated a business
process and verified several relevant properties of this process. We use the Petri
net based model checker LoLA that features powerful state space reduction tech-
niques like symmetries [23] partial order reduction using stubborn sets [24] and
the sweep-line method [25].

In Fig. 5 our example process is depicted – a modification of the Online Shop
Process presented in [10]. A box frames an activity. In the case of a scope or
the process itself we use a bold frame. Sequential flow is depicted by dashed
arcs, whereas concurrent activities are grouped in parallel. Arcs with solid lines
symbolize links. The two nested scopes of the Online Shop Process are depicted
in Figures 6(a) and 6(b).

This is a medium-sized example. It consists of 53 activities, yet most of
BPEL’s activities including fault handler, event handler, nested scopes,
and links occur.

The Petri net of the example process consists of 410 places and 1069 transi-
tions. It was generated by our tool BPEL2PN. LoLA takes this Petri net as an
input and generates the state space, i.e. it calculates the reachability graph of the
Petri net. The whole state space consists of 6,261,684 states and is calculated
in ca. 96 minutes. By using LoLA’s state space reduction techniques (partial
order reduction and sweep line method in combination) a reduced state space
consisting of 443,218 states could be generated in 50 minutes. More detailed,
these reduction techniques do not work on the Petri net patterns, but on the
reachability graph of the Petri net. We also generated a variant of the Online
Shop Process where every place fault in was 1-bounded, i.e. safe. That means,
in every scope only one fault can occur. As a consequence, the net consists of
only 382 places and 495 transitions. The state space reduced to 6,246,601 states
(full state space) and 412,731 states (reduced state space), respectively.

If the state space can be fully explored by our tool, it is possible to analyze
Petri net specific properties like dead places and dead transitions as well as any
temporal property of the underlying process that can be expressed by a formula
of the temporal logic CTL.

LoLA calculated dead places and dead transitions. These resulting places and
transitions show which aspects of the patterns have been unused. Furthermore
this result was used to prove whether there are activities inside the process that
can never be activated. In fact, this is possible due to incorrect use of links. As
an example consider the switch in Fig. 6(b). If the two assigns were ordered by
a link, the target activity would never be activated: On the one hand the branch
of the source activity is chosen and so the target activity is not executed. On
the other hand the branch of the target activity is chosen, but due to dead-path-
elimination the link is set to false. Thus, this activity is never activated, but the
process will deadlock neither. In our example all activities can be activated.

We further verified relevant properties of the Online Shop Process like ter-
mination and “the customer will always get an answer”. Of course, the formula



Transforming BPEL to Petri Nets 231

receive

switch

syn.
invoke

reply
syn.

invoke

reply

scope A

replyscope B
syn.

invoke reply

scope A

reply

asyn.
invoke

assign

Fault Handler

reply

Process

Fig. 5. When the Online Shop Process receives an order from a customer, it retrieves

the customer’s data. These data are analyzed, because the business strategy of the

shop distinguishes new and already known customers. If it is a known customer (left

switch branch) the shop initiates two tasks concurrently: The marketing department

sends a special offer (on the left) and the customer department (right sequence) firstly

takes the order and secondly send its discount level. Afterwards the shop invites offers

from the suppliers (scope A). In the case of a new customer (right switch branch),

the shop initiates four tasks concurrently: It collects the customer’s bank data (scope

B), the marketing department sends the customer a special offer (second task on the

left). Furthermore the shop takes the order and then it invites offers from the suppliers

(scope A). In addition, the terms of trade are sent to the customer (right task). After

the completion of the flow the tasks of both, new and known customer are joined.

The price information are saved and then the shop sends the supply information to

the customer. The process finishes after the shop has invoked the shipper. There is a

dependency between two tasks in the case of a new customer, realized by a link: The

terms of trade are only sent after the shop has received the customer’s order.



232 S. Hinz, K. Schmidt, and C. Stahl

Fault Handler

reply

termi-
nate

while
asyn.
invoke

pick

onMessage onAlarm

empty empty

scope A

(a) scope A

syn.
invoke

switch

onAlarm EH

syn.
invoke

assign

reply

assign

reply

reply

termi-
nate

scope B

(b) scope B

Fig. 6. (a) The shop invokes one supplier after the other to invite offers for the product.

If the supplier does not answer in time, the next supplier is invoked. Additionally, if

a fault occurs during the execution of the process, the customer is informed and the

process instance is terminated. (b) The customer’s bank data are analyzed whether he

is credit worthy. The result is sent to the customer. If he is credit worthy, the process

goes on. Otherwise, the process stops. If the bank does not reply in time, the process

is terminated after the customer gets a message. One further dependency is modelled

by a link (not depicted in the figure): The shop starts invoking the suppliers (scope A)

only when the customer is credit worthy.

of the respective temporal properties were generated manually by ourself. The
Online Shop behaves as expected: it always comes to an end and the costumer
will always get an answer. By abstracting from data aspects as we did, a single
process must always terminate, because a deadlock is not possible. Termination
plays a more important role if we compose several BPEL processes. Then, it is
possible that the composed processes run into a deadlock.

We also tried to analyze a business process that consists of 132 activities.
Due to the huge net size we were not able to calculate the full state space of this
process. In order to check such an extremely huge process it is necessary to get
a smaller model. The next section presents some ideas how to do so.



Transforming BPEL to Petri Nets 233

6 Advanced Translation

The models generated by the present version of our parser can be seen as brute
force models. The generated models are significantly larger than typical manually
generated models. This is due to the fact that the Petri net patterns are complete,
i.e. applicable in every context. For a particular process, many of the modelled
features are unused. For instance, if a basic activity cannot throw any error,
many of the error handling mechanisms in the surrounding compound activity
can be spared. Furthermore, to decide if a specific property holds, it is often
sufficient to restrict the patterns to specific aspects. To prove the correct inter-
operation of two BPEL processes, for instance, it is sufficient to restrict the
attention to communication aspects of the patterns, while internal actions can
be abstracted away.

In ongoing projects, we aim at an improved translation where several Petri
net patterns with different degree of abstraction are available for each BPEL
activity. Using static analysis on the BPEL code, we want to select the most
abstract pattern applicable in a given context. We believe that model sizes can
be drastically reduced this way thus alleviating the state explosion problem
inherent to model checking.

Data flow equations, the basis of static analysis, are already available for
many features of BPEL [26]. It is, however, still necessary to select suitable
abstraction techniques in order to make static analysis run.

7 Conclusion

We presented first experimental results for generating Petri net models of BPEL
processes. The translation of BPEL to Petri nets follows a feature-complete Petri
net semantics of BPEL. The translation is implemented, and we were able to
present first results. The results show that it is necessary to complement the
technology with an improved model generation. We have proposed the use of
static analysis as a tool for providing process-specific information that can be
exploited in a flexible model generator.

Our goal is a technology chain that, starting at a BPEL process, performs
static analysis. Based on the analyzed information, the translator selects the
most abstract pattern for each activity that is feasible in the analyzed context
and synthesizes a Petri net model. On the Petri net model, a model checker
evaluates relevant properties. The analysis results (e.g., counter example paths)
are translated back to the BPEL source code.

References

1. Curbera, Goland, Klein, Leymann, Roller, Thatte, Weerawarana: Business Process
Execution Language for Web Services, Version 1.1. Technical report, BEA Systems,
International Business Machines Corporation, Microsoft Corporation (2003)



234 S. Hinz, K. Schmidt, and C. Stahl

2. Leymann, F.: WSFL – Web Services Flow Language. IBM Software Group,
Whitepaper. (2001) http://ibm.com/webservices/pdf/WSFL.pdf.

3. Thatte, S.: XLANG – Web Services for Business Process Design. Microsoft
Corporation, Initial Public Draft. (2001) http://www.gotdotnet.com/team/

xml wsspecs/xlang-c.
4. Fisteus, J.A., Fernández, L.S., Kloos, C.D.: Formal Verification of BPEL4WS

Business Collaborations. In: Proceedings of the 5th International Conference on
Electronic Commerce and Web Technologies (EC-Web ’04). LNCS, Springer (2004)

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: WWW
’04: Proceedings of the 13th international conference on World Wide Web, ACM
Press (2004) 621–630

6. Ferrara, A.: Web services: a process algebra approach. In: ICSOC, ACM (2004)
242–251

7. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative Control
Flow. In D. Beauquier, E.B., Slissenko, A., eds.: Proc. 12th International Work-
shop on Abstract State Machines, Paris, March 2005. Lecture Notes in Computer
Science, Springer-Verlag (to appear, 2005)

8. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the Busi-
ness Process Execution Language for Web Services. In: Abstract State Machines.
Volume 3052 of Lecture Notes in Computer Science., Springer (2004) 78–94

9. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers 8 (1998) 21–66

10. Martens, A.: Verteilte Geschäftsprozesse – Modellierung und Verifikation mit Hilfe
von Web Services. Dissertation, WiKu-Verlag Stuttgart (2004)

11. Schmidt, K.: Controlability of Business Processes. Technical Report 180,
Humboldt-Universität zu Berlin (2004)

12. Schmidt, K.: LoLA – A Low Level Analyser. In Nielsen, M., Simpson, D., eds.:
International Conference on Application and Theory of Petri Nets. LNCS 1825,
Springer-Verlag (2000) 465 ff.

13. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In: Proceedings of the 24th International
Conference on Applications and Theory of Petri Nets (ICATPN 2003), Eindhoven,
The Netherlands, June 23-27, 2003 — Volume 2679 of Lecture Notes in Computer
Science / Wil M. P. van der Aalst and Eike Best (Eds.), Springer-Verlag (2003)
450–462

14. Starke, P.H., Roch, S.: Ina et al. In Mortensen, K.H., ed.: Tool Demonstrations 21st
International Conference on Application and Theory of Petri Nets, Department of
Computer Science, University of Aarhus (2000) 51–56

15. Leymann, F., Roller, D.: Production Workflow – Concepts and Techniques. Pren-
tice Hall (1999)

16. Stahl, C.: Transformation von BPEL4WS in Petrinetze. Diplomarbeit, Humboldt-
Universität zu Berlin (2004)

17. Stahl, C.: A Petri Net Semantics for BPEL. Technical report, Humboldt-
Universität zu Berlin (to appear June, 2005)

18. Cabrera, Copeland, Cox, Freund, Klein, Storey, Thatte: Web Services Trans-
action. Vorschlag zur Standardisierung, Version 1.0. (2002) http://ibm.com/

developerworks/webservices/library/ws-transpec/.



Transforming BPEL to Petri Nets 235

19. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In Spies, K., Schätz, B., eds.: Proc. 25th Int. Coll. Automata,
Languages, and Programming (ICALP’98), Aalborg, Denmark, July 1998. Lecture
Notes in Computer Science 1443, Springer (1998) 103–115

20. Schmidt, K., Stahl, C.: A Petri net semantic for BPEL4WS - validation and
application. In Kindler, E., ed.: Proceedings of the 11th Workshop on Algorithms
and Tools for Petri Nets (AWPN’04), Universität Paderborn (2004) 1–6

21. Hinz, S.: Implementation einer Petrinetz-Semantik für BPEL4WS. Diplomarbeit,
Humboldt-Universität zu Berlin (2005)

22. Billington et al., J.: The Petri Net Markup Language: Concepts, Technology, and
Tools (2003)

23. Schmidt, K.: How to calculate symmetries of petri nets. Acta Informatica (2000)
545–590

24. Schmidt, K.: Stubborn set for standard properties. In: Proc. 20th Int. Conf.
Application and Theory of Petri nets. Volume 1639 of LNCS., Springer-Verlag
(1999) 46–65

25. Schmidt, K.: Automated Generation of a Progress Measure for the Sweep-Line
Method. In: Proc. 10th Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Volume 2988 of LNCS., Springer-Verlag (2004)
192–204

26. Heidinger, T.: Statische Analyse von BPEL4WS-Prozessmodellen. Studienarbeit,
Humboldt-Universität zu Berlin (2003)



Event-Based Coordination of Process-Oriented

Composite Applications

Marlon Dumas1, Tore Fjellheim1, Stephen Milliner1, and Julien Vayssière2

1 Queensland University of Technology, Australia
(t.fjellheim, s.milliner, m.dumas)@qut.edu.au

2 SAP Research Centre, Brisbane, Australia
julien.vayssiere@sap.com

Abstract. A process-oriented composite application aggregates func-
tionality from a number of other applications and coordinates these ap-
plications according to a process model. Traditional approaches to de-
velop process-oriented composite application rely on statically defined
process models that are deployed into a process management engine.
This approach has the advantage that application designers and users
can comprehend the dependencies between the applications involved in
the composition by referring to the process model. A major disadvantage
however is that once deployed the behaviour of every execution of the
composite application is expected to abide by its process model until this
model is changed and re-deployed. This makes it difficult to enrich the
application with even minor features, to plug-in new applications into
the composition, or to hot-fix the composite application to meet special
circumstances or demands (e.g. to personalise the application). This pa-
per describes a technique for translating a process-oriented application
into an event-based application which is more amenable to such runtime
adaptation. The process-based and event-based views of the application
can then co-exist and be synchronised offline if the changes become per-
manent and it is found desirable to reflect them in the process model.
Keywords: flexible process execution, activity diagram, event-based co-
ordination, coordination middleware, object space.

1 Introduction

Process-oriented composite applications aggregate functionality from a number
of other applications by specifying interconnections between these applications
through a process model. This model determines how the underlying applica-
tions should be orchestrated, most notably their dependencies in terms of flow
of control and data. Mainstream infrastructures for developing and executing
process-oriented composite application include workflow management systems
and process management modules embedded within Enterprise Application In-
tegration (EAI) solutions. Predefined process models can be deployed into the
runtime environments associated to these infrastructures for execution.

A major advantage of using a process-oriented approach for composite appli-
cation development is that it provides an easy-to-comprehend and global view

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 236–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Event-Based Coordination of Process-Oriented Composite Applications 237

of the dependencies between the underlying applications. However, in existing
process-oriented systems these dependencies have to be completely specified be-
fore deployment [1]. In certain environments, such as mobile computing, changes
occur frequently and exceptions are numerous. A just-in-case approach where the
designer specifies all possible paths in the process model is impractical, leading
to models that are large and unintelligible. Applications operating in such envi-
ronments may be better served by a just-in-time approach, where adaptation and
personalization may be done after the process has been deployed and without
requiring all executions to perfectly align with the process model.

Existing methods and techniques in the area of adaptive, dynamic, and flex-
ible workflow systems have addressed issues such as specifying exception han-
dling mechanisms within process models [6,13] or migrating running processes
when replacing a previously deployed process model with a new one [1,14]. How-
ever, these prior proposals do not provide mechanisms to alter the behaviour of
process-oriented composite applications after deployment without changing the
process model, that is, without requiring alignment between each execution of
the composite application and its process model (whether the originally deployed
model or a modified version of it). Such ad hoc flexibility mechanisms are in-
strumental for a number of purposes including: (i) personalising applications to
suit the requirements or preferences of specific users; (ii) adapting the behaviour
of composite applications based on the users’ context (e.g. location, device or
network connection) without overloading the process model with such details;
and (iii) hot-fixing the composite application to address unforeseen errors, as
opposed to predicted exceptions, or to add new features (e.g. to plug-in new
applications or to re-route tasks and data).

To overcome the above limitations of existing systems, we propose to adopt
an event-based coordination approach to execute process-oriented composite ap-
plications. Due to its finer-grained nature, event-based coordination approaches
has several advantages over process-based ones when it comes to runtime adap-
tation and re-configuration [12]. By translating process models of composite
applications into event-based models and using the latter in the runtime envi-
ronment, it becomes possible by adding and removing event-based rules (e.g.
event subscriptions related to a specific task) to overlay behaviour on top of
already deployed composite applications in response to special requirements or
unforeseen situations. In this way, users, administrators and/or developers can
re-route data and control in an already deployed composite application in or-
der to steer it into executions paths not foreseen in the process model, thereby
facilitating the personalization and adaptation of these applications.

The main contribution of this paper is a technique for translating a process
model described in a mainstream process modelling notation (UML Activity Di-
agrams) into an event-based model described through coordination rules made
up of composite event specifications, predicates, and a small number of publish-
ing/sharing primitives. We also discuss how the resulting event-based model can
be executed on top of a shared object space infrastructure and how adaptation
and personalization is achieved by adding rules (encoded as active objects) into
the shared space. We illustrate the proposed technique and its supporting infras-



238 M. Dumas et al.

tructure through a use case scenario drawn from the area of mobile computing,
where the need for adaptation and personalization is often prominent.

The paper is structured as follows. First, we outline a use case scenario
(Section 2) and describe the coordination primitives and infrastructure upon
which our proposal relies (Section 3). In Section 4 we introduce a technique for
translating a process model captured as a UML activity diagram into an event-
based coordination model. We then discuss how adaptation can be achieved
by adding, enabling and disabling rules in the event-based model (Section 5).
Finally, we discuss related work (Section 6) and conclude (Section 7).

2 Use Case Scenario

This section presents a use case that will be used as a motivating and working
example in the rest of the paper. The scenario is described as a UML activity
diagram1 in Figure 1. We chose UML activity diagrams as a process modelling
notation because of its status as a de jure standard and because its constructs
are representative of those found in other process modelling and process execu-
tion languages (e.g. sequence, fork, join, decision and merge nodes). Thus the
proposed techniques can be adapted to other languages that rely on these con-
structs. Moreover, a recent study shows that UML activity diagrams (version
2.0) provide direct support for many common workflow patterns [17].

Download Notes

Go To Train

Catch Taxi

Pay Catch Train

Pay

Display NotesCheck Presentation Time

Postpone Meeting 1 hour

Check Train Availabilty

Check Traffic Conditions

[ontime & train]: 

[not ontime & train]: 

[traffic=NOK | postponed]: 

[no train]: 

[traffic=OK & not postponed]: 

Fig. 1. UML Activity Diagram describing the working example

The scenario is an example of a personal workflow [11], i.e. a process aimed
at assisting a user in the achievement of a goal that requires the execution of a
number of tasks. Most of the tasks composing the process (but not necessarily the
process itself) are intended to be executed in a mobile device. Thus the scenario
is also an example of a mobile workflow. We have chosen this scenario because,
1 http://www.uml.org. Note that in this paper, we refer to UML version 2.0.



Event-Based Coordination of Process-Oriented Composite Applications 239

putting aside their futuristic nature, mobile and personal workflows constitute
a class of process-oriented composite applications in which personalization and
runtime adaptation are prominent requirements. Such requirements can also be
found to varying degrees in more traditional applications (e.g. order handling)
and the proposed techniques are also applicable in these settings.

In this scenario, a user is on a trip to attend a meeting. Before the meeting
commences he runs this process-oriented application so that it assists him in
the lead-up to the meeting. The process starts with three activities in parallel:
1) checking the presentation time, 2) checking the availability of trains to the
destination, and 3) downloading meeting notes to the user’s device (which may
take some time due to low bandwidth).

After the presentation time and the train availability of the train have been
checked three options are available: 1) If the user is “on time” AND “there is a
train” that would take the user near the meeting’s location, the user is directed
to the train station; 2) If there is “no train”, a taxi is automatically ordered;
3) If the user is “late” AND “there is a train”, two new activities are started
to determine if a taxi or a train is the best option for the user. At this point,
the process checks the traffic conditions and tries to postpone the meeting by
one hour (both actions in parallel). If the traffic is adverse, there is no point in
catching a taxi, and the application will advise the user to catch the train. The
same applies if the meeting is postponed. If however, there is favorable traffic and
the meeting can not be postponed, the user will catch a taxi to get there sooner.
Each transportation requires a payment. Payment is automatically arranged by
the application and the details of the payment are sent to the finance department
to arrange for a refund (both of these steps are modelled as a single task “pay”).
Finally, once all the user is on his/her way to the meeting and the meeting notes
have been downloaded, the application displays the notes.

3 Infrastructure for Event-Based Model Execution

This section presents the coordination infrastructure upon which the proposed
technique relies and the framework to describe event-based coordination models.

3.1 The Active Object Space

To be able to execute the event-based coordination models that will be derived
from process models, we require an execution infrastructure with support for :
(i) event publishing, data transfer/sharing, and complex event subscription; (ii)
association of reactions to event occurrences; and (iii) runtime re-configuration
so that new event subscriptions and reaction rules can be added anytime. For
reasons outlined below, we have chosen the Active Object Space (AOS) [7,8] as
our target infrastructure. The AOS is an exemplar of a family of communication
infrastructure known as coordination middleware which has its roots in the tuple



240 M. Dumas et al.

space model underlying the Linda system [10]. Other exemplars of coordination
middleware include Sun’s JavaSpaces2 and IBM’s TSpaces3.

At the centre of the AOS is a shared memory (the space). Coordination
between applications occurs through objects being written and taken from the
space. Some of these objects may correspond to data that needs to flow from
one application to another, while others may serve as signposting, indicating
that a given step of work has been completed or that a given step of work is
enabled but has not yet started. The AOS supports undirected decoupled com-
munication based on four elementary operations, namely read, write, take and
notify. A read operation copies an object from the space matching a given object
template; a take operation moves an object matching a given object template
out of the space; a write operation puts an object on the space; and a notify
operation registers a subscription for a composite event expressed as a set of ob-
ject templates: Whenever there is a combination of objects present in the space
that matches these object templates, an event occurrence will be raised and a
notification will be sent to the subscriber. An object template is an expression
composed of a class name and a set of equality constraints on the properties of
that class. An object matches a template if its class is equal to or is a sub-class
of the class designated by the template and it fulfills the template’s constraints.

An originality of the AOS with respect to other object-oriented coordination
middleware lies in its support for active objects, that is, objects with their own
thread of control that run on the space. Active objects can be deployed, sus-
pended, resumed, and destroyed by applications running outside the space at
any time. Active objects can read and write passive objects to/from the space,
subscribe to events, and receive notifications from the space. At the implemen-
tation level, the difference between active objects and “passive” objects is that
an active object has a special execute method that is invoked on a dedicated
thread of control when the object is written into the space.

As illustrated in the rest of the paper, the deployment of active objects
operating on a shared memory and writing and taking objects to/from this space,
constitutes a powerful paradigm not only for executing event-based coordination
models, but also for re-configuring these models after their deployment. Re-
configuration is facilitated by two features of the AOS infrastructure: (i) the
use of undirected (also known as “generative”) communication primitives which
allows data and events to be produced and consumed without a priori determined
recipients (and thus allows data and control to be “re-routed”); and (ii) the
ability to add, remove, suspend and resume individual active objects and thus
alter the behaviour of an application.

This having been said, we recognize that other coordination middleware or
publish/subscribe middleware supporting composite events (e.g. Elvin4) consti-
tute suitable alternatives to the AOS. To adapt our proposal to such alternative
infrastructures, active objects would have to be replaced by dedicated applica-

2 http://java.sun.com/developer/products/jini/index.jsp
3 http://www.almaden.ibm.com/cs/TSpaces
4 http://elvin.dstc.edu.au



Event-Based Coordination of Process-Oriented Composite Applications 241

tions operating outside the space (or operating on top of the messaging bus in
the case of a pub/sub middleware).

3.2 Coordinators

Having introduced the basic concepts and functionality of the AOS, we now
define a higher-level concepts that we use to explicate the execution of event-
driven coordination models.

A coordinator is an active object that is deployed in the space to coordinate
work (e.g. to perform synchronization or data transfer) and operates in an infinite
loop until suspended or destroyed, with each iteration comprising three phases:

1. Waiting for an event, which could be either the addition to the space of an
object matching a given template or an interaction initiated by an external
application;

2. Performing internal processing and/or interacting with external applications;
3. Writing one or several objects to the space.

For methodological reasons, it is useful to distinguish two types of coordinators,
namely connectors and routers. This way, internal coordination steps within the
space (which is the responsibility of the routers) are separated from communi-
cation with external applications (which is the responsibility of the connectors).
The following paragraphs explain these types of coordinators in turn.

Connectors. A connector is a type of coordinator dedicated to enabling a con-
nection between the space and one or several external applications. Connectors
are necessary because external applications will generally not be programmed to
interact with the space but will instead they rely on other communication proto-
cols and interfaces. Thus, a way of wrapping external applications so that they
can be coordinated through the space is necessary and this is what connectors
achieve. For example, a connector could be placed on the space for the purpose
of relaying context data between a sensor and the space. This connector would:
(i) receive or poll data from the sensor; (ii) encode these data as a passive object;
and (iii) write this object in the space, possibly overriding the object containing
the previous known state of the context data. Another example of a connector
is an active object that calls an external web service when an object of a certain
type is written to the space, like for example an object that indicates that a
certain task has completed. This latter example shows that connectors can be
used as a mechanism to detect that a given task is enabled and thus that a given
application has to be invoked to perform this task.

Control Routers. Control routers (or routers for short) react to the arrival of
an object or a combination of objects to the space and perform some processing
before producing a set of new objects and writing them onto the space. The
processing that a router performs is generally translation of data using a specified
operation. This can be a simple operation such as an arithmetic operation, or
more complex operations such as checking that a purchase order is valid, but in



242 M. Dumas et al.

any case, this operation should not involve interaction with external applications,
since interactions with external applications are handled by the connectors.

A router is described by the following elements:

– Input set: A set made up of a combination of object templates and boolean
conditions.

– Output: A set of expressions, each of whichs evaluates into an object.
– Stop set: A set containing a combination of object templates and boolean

conditions.
– Replace set: A set of coordinators.

The way these elements are used is as follows. Upon creation, the router will
place a subscription with the space for the set of object templates contained in
its input set (i.e. the set obtained after removing the boolean conditions from
the input set). Subsequently, the router will be notified whenever a set of objects
matching these templates are available on the space. At this point, the router
evaluates the set of conditions in its input set. If all these conditions are true,
the router proceeds to “take” the set of objects in question and if it succeeds
to take them, it will evaluate the transformation functions (i.e. the expressions
in the “Output”) taking these objects as input. The objects resulting from the
transformation are then written back to the space. The “input set” thus captures
the events and conditions that lead to the activation of a router (where an event
corresponds to the arrival of an object to the space). The “Output” on the other
hand encodes the events that the router will produce upon activation, i.e. the
objects to be placed in the space for consumption by other coordinators. Finally,
if a set of objects matching the object templates in the stop set is found on the
space, the router will terminate its execution and replace itself by the set of
routers specified in the replace set.

A set of routers can be deployed and interconnected with existing applications
(through connectors) in order to coordinate the execution of the instances of a
process. During the execution of a process instance, routers read and take from
the space, objects denoting the completion of tasks (i.e. task completion objects)
and write into the space objects denoting the enabling of tasks (i.e. task enabling
objects). Connectors on the other hand read and take task enabling objects,
execute the corresponding task by interacting with external applications, and
eventually write back task completion objects, which are then read by routers.
To make sure that routers only correlate task completion events relating to
the same instance of a process, every object template in the input set of the
router will contain a constraint stating that all the matched task completion
objects must have the same value for the attribute corresponding to the process
instance identifier (piid). In addition, when a router (connector) writes a task
enabling (task completion) object to the space, it includes the corresponding
piid. A process instance is created when a “process instantiation” object with
the corresponding process and process instance identifier is placed on the space
by a connector. It is the responsibility of the connectors which place such objects
to ensure that process instance identifiers are unique.



Event-Based Coordination of Process-Oriented Composite Applications 243

4 From Process-Based to Event-Based Models

This section focuses on the issue of generating coordinators for process orchestra-
tion from UML activity diagrams. We first describe the technique for generating
coordinators from UML activity diagram restricted to control-flow constructs.
We then show how data-flow aspects are incorporated.

4.1 Translating Control-Flow Constructs into Input Sets

For each action5 in an activity diagram, a connector will be generated to handle
its execution, which in the case of process-oriented composite applications will
involve an interaction with an external application. Connectors thus encapsulate
the execution of actions in the process.

On the other hand, a number of routers are generated for each action. The
input sets for these routers are generated according to the algorithm sketched
using a functional programming notation in Figure 2 and explained below. The
main function defined by this algorithm (namely AllInputSets) takes as input an
activity diagram represented as a set of nodes (action, decision, merge, fork, join,
initial, and final nodes) inter-linked through transitions. From there, it generates
a set of input sets (see definition of input set in Section 3.2). The input sets
produced by this algorithm can then be used to create a collection of routers
(one router per input set) that collectively are able to coordinate the execution
of instances of the process in question. Intuitively, each input set encodes one
possible way of arriving to a given node in the process.

Given the set of connectors and routers deployed for a process-oriented com-
posite application, execution occurs as follows. A router corresponding to an
action node will wait until the object templates in its input set are all matched,
at which point if all the boolean expressions in the input set evaluate to true, it
will place an object on the space to indicate that the action is enabled and thus
that the corresponding external application invocation may be performed by a
connector. Once the connector has completed its interaction with the external
application, it will put an object in the space to signify this completion. Such
completion objects will then match the object templates of the input set of an-
other router, eventually causing the activation of this other router. In this way
the execution of the process moves from a router corresponding to a given ac-
tion, to another. The initial and final states are mapped trivially to two routers
that respectively detect the commencement of the process instance and perform
clean-up (i.e. delete all remaining objects related to the completed instance).

Algorithm for Input Sets Generation. The algorithm focuses on a core subset of
activity diagrams covering only initial and final nodes, action nodes, and control
nodes (i.e. decision, merge, fork, and join nodes) connected by transitions. In
particular, the algorithm does not take into account object flow (which is dis-
cussed later) nor swimlanes (which are irrelevant for the purposes of this paper).
Without loss of generality, the algorithm assumes that all conditional guards in
5 Action is the term used in UML activity diagrams to refer to a “task”.



244 M. Dumas et al.

the activity diagram are specified in disjunctive normal form. Also without loss
of generality, the algorithm assumes that there are no “implicit” forks and joins
in the diagram. An implicit fork (join) occurs when several transitions leave from
(arrive to) an action node. In this case, the semantics of this fragment of the
diagram is the same as that of a diagram in which this action node only has one
outgoing (incoming) transition leading to (originating from) a fork node (a join
node). Thus implicit forks and joins should be eliminated from a diagram and
replaced by explicit fork and join nodes prior to applying this algorithm.

AllInputSets(p: Process) :
let {x1, . . . , xn} = ActionNodes(p) in

InputSets(x1) ∪ . . .∪ InputSets(xn)
InputSets(x : Node) :

let {t1, . . . tn} = IncomingTrans(x) in
return InputSetTrans(t1) ∪ . . . InputSetTrans(tn)

InputSetsTrans(t : Transition) :
let x = Source(t)

if NodeType(x) = “action”
return CompletionObject(x)

else if NodeType(x) = “initial”
return ProcessInstantiationObject(Process(x))

else if NodeType(x) ∈ {“decision”, “fork”}
let {c1, . . . , cn} = Disjuncts(Guard(t)),

{i1, . . . , in} = InputSets(Source(t)) in
return {{c1} ∪ i1, . . . , {c1} ∪ in},

. . .
{cn} ∪ i1, . . . , {cn} ∪ in}

else if NodeType(x) = “merge”
let {t1, . . . , tn} = IncomingTrans(x) in

return InputSetsTrans(t1) ∪ . . .∪ InputSetsTrans(tn)
else if NodeType(x) = “join”

let {t1, . . . , tn} = IncomingTrans(x),
{〈 i1,1, . . . , i1,n〉,
. . .
〈 im,1, . . . , im,n〉} =

InputSetsTrans(t1) × . . .× InputSetsTrans(tn) in
return {i1,1 ∪ . . .∪ i1,n,

. . .
im,1 ∪ . . .∪ im,n}

Fig. 2. Algorithm for deriving input sets from an activity diagram.

Figure 2 defines three functions: the first one, namely AllInputSets gener-
ates all the input sets for a process by relying on a second function, namely
InputSets, which generates a set of input sets for a given node of the diagram.
This latter function relies on a third (auxiliary) function named InputSetsTrans,
which produces the same type of output as InputSets but takes as parameter a
transition rather than a set. This definition of InputSetsTrans operates based on



Event-Based Coordination of Process-Oriented Composite Applications 245

the node type of the source of the transition, which may be an action node, an
initial node, or one of the four types of control nodes. If the transition’s source
is an action node, a single input set is returned containing a completion object
(see Section 3.2) for that action. Intuitively, this means that the transition in
question may be taken when a completion object corresponding to that action
is placed on the space. Similarly, if the source of the transition is the initial
node of the activity diagram, a single input set with a “process instantiation”
object is created, indicating that the transition in question will be taken when
an object is placed on the space signalling that a new instance of the process
must be started. If the transition’s source is a control node, the algorithm keeps
working backwards through the diagram, traversing other control nodes, until
reaching action nodes. In the case of a transition originating from a decision or
a fork node, which is generally labelled by a guard (or an implicit “true” guard
if no guard is explicitly given), the transition’s guard is decomposed into its dis-
juncts, and an input set is created for each of these guards. This is done because
the elements of an input set are linked by an “and” (not an “or”) and thus an
input set can only capture a conjunction of elementary conditions and comple-
tion/instantiation objects (i.e. a disjunct). Finally, in the case of a transition
originating from a “merge” (resp. a “join”), the function is recursively called for
each of the transitions leading to this merge node (join node), and the resulting
sets of input sets are combined to capture the fact that when any (all) of these
transitions is (are) taken, the corresponding merge node (join node) may fire.

The following notations are used in the algorithm:

– ActionNodes(p) is the set of action nodes contained in process p (described
as an activity diagram).

– Source(t) is the source state of transition t
– Guard(t) is the guard on transition t
– Disjuncts(c) is the set of disjuncts composing condition c
– IncomingTrans(x) is the set of transitions whose target is node x
– NodeType(x) is the type of node x (e.g. “action”, “decision”, “merge”, etc.)
– Process(x) is the process to which node x belongs.

Example. Figure 3 describes the router for the “CheckTraffic” using a concrete
XML syntax. This action node will only have one router associated to it because
there is only one path leading to the execution of this action. Indeed, to execute
this action, it is necessary that both the “check presentation time” and the “check
train availability” actions have completed, and in addition that the condition
“not ontime and train” evaluates to true, and this condition does not contain
any disjunction. When all these conditions are satisfied, the router will produce
an enabling object that will eventually be picked up by the connector associated
to action “check traffic”.

It can be noted in this example that the process instance identifier (piid)
attribute of the completion object templates are associated with a variable. In
the concrete XML syntax, an XML namespace (aliased “var”) is reserved to refer
to variables. The AOS is capable of interpreting collections of object templates



246 M. Dumas et al.

where some of the atttributes are associated with such variables and to match
these templates in a way that if the same variable is associated with attributes
of two different templates, then the objects matching these templates should
contain the same values for these attributes.

<Router name = ‘‘CheckTrafficEnabler’’>

<Input>

<Template>

<CompletionObject actionName=’’CheckPresentationTime’’ piid=’’var:X’’/>

</Template>

<Template>

<CompletionObject actionName=’’CheckTrainAvailability’’ piid=’’var:X’’/>

</Template>

<Condition>

<Equality variable=’’ontime’’ value=’’false’’/>

</Condition>

<Condition>

<Equality variable=’’train’’ value=’’true’’/>

</Condition>

</Input>

<Output>

<EnablingObject action=’’CheckTraffic’’ piid=’’var:X’’/>

</Output>

</Router>

Fig. 3. Sample router

4.2 Incorporating Data-Flow

Data flow (or more precisely object flow) in activity diagrams is represented by
object nodes, represented as rectangles as illustrated in Figure 4. Object nodes
are directly linked to a “producing” action preceding the object node. They are
also linked, either directly or through the intermediary of a number of control
nodes, to one or several “consuming” action node(s) following the object node. In
the example of Figure 4, the user pays using his mobile device and this produces
a receipt object which is then forwarded to the finance department so that the
user may obtain a refund.

In terms of the proposed technique, object flows are treated as follows. The
production of objects for a given object node is the responsibility of the con-
nector corresponding to the action node directly preceding this object node (i.e.
the producing action). In other words, the corresponding object would appear
as one of the elements in the “output” of this coordinator (see Section 3.2).
In the example at hand, the production of objects of type “Receipt” is done
by the connectors of the action nodes labelled “Pay”. On the other hand, the
consumption of objects corresponding to an object node is carried out by the
connectors of action nodes that follow this object node, either directly or through
the intermediary of a number of control nodes (i.e. the consuming actions). In



Event-Based Coordination of Process-Oriented Composite Applications 247

the example at hand, this means that the connector of the action node labelled
“Request Refund” will take an object of type “Receipt” from the space when
this action is enabled.

Since object flow is handled exclusively by connectors, the algorithm pre-
sented above does not have to deal with object nodes. Accordingly, object nodes
should be removed from the activity diagram before applying the algorithm for
deriving input sets. Removing object nodes from an activity diagram is trivial
since they always have only one incoming and one outgoing transition.

Fig. 4. Working example with object nodes

5 Achieving Adaptation

In certain situations, some functionality may or should be made unavailable.
A context change may mean that some processing can not be performed, or
a user moving outside a firewall may prevent him/her from executing certain
applications. In our working example, it may happen that the system takes too
much time to contact the other meeting participants to check if the meeting can
be postponed (i.e. the execution of the “postpone meeting” may take more time
than the user is willing to wait for). In this case, a user may indicate that (s)he
does not wish to be delayed by this action, but instead, if the “Check Traffic”
action is completed and if the traffic conditions are OK, (s)he would immediately
take a taxi. This adaptation can be achieved by activating the router specified in
a concrete XML syntax in Figure 5. In this XML fragment, we assume that the
piid of the process instance for which this modification is to be done is 1. The
element StopSet indicates that this router is disabled if the “Postpone Meeting”
action is completed. Thus this router will only place an enabling object to trigger



248 M. Dumas et al.

action “Catch Taxi” if the action “Check Traffic” completes before “Postpone
Meeting” and the corresponding boolean expression evaluates to true.

The above adaptation could arguably be achieved by modifying the process
model.6 However, in this case, significant tool support would be required and
model versioning may become an issue. In contrast, enabling an event-based rule
(encoded as a router) provides a more lightweight adaptation mechanism.

More radical changes may also be made. For example, consider a user that
prefers taxis over trains in any case and so would always catch taxis regardless
of traffic conditions and amount of time before the meeting. In this case, a
router may be introduced that enables the action “CatchTaxi” immediately upon
process instantiation when the process instance is started by the user in question.
At the same time, all other routers for that process instance would be disabled,
except the ones for download notes and display notes.

<Coordinator name = ‘with participants’’>

<Input>

<Template>

<CompletionObject action=’’CheckTraffic’’ piid=’’1’’/>

</Template>

<Condition>

<Equality variable=’’traffic’’ value=’’OK’’/>

</Condition>

</Input>

<Output>

<EnablingObject action=’’CatchTaxi’’ piid=’’1’’/>

</Output>

<StopSet>

<CompletionObject action=’’PostponeMeeting’’ piid=’’1’’/>

</StopSet>

</Coordinator>

Fig. 5. Sample router for process adaptation

How the user actually specifies “dynamic” changes to composite applications
is a user interface issue outside the scope of this article. This may be achieved, for
example, by means of personalization applications running as active objects and
disabling or enabling routers or placing completion or enabling objects according
to an adaptation logic previously coded by a developer. Another option is to
provide users with options for adapting/personalising applications. When a user
manually selects one of these options, a number of coordinators are enabled
and/or completion and enabling objects are written to or taken off the space.
Of course, this mechanism may be abused and lead to undesirable effects such
as deadlocked executions. However, as shown above, adaptation may be scoped
6 Note that expressing this type of discriminator (or 1-out-of-2) join in UML activity

diagrams requires the use of advanced constructs (namely signals) not covered by
our algorithm [17]. However, this is not the point that we try to make here.



Event-Based Coordination of Process-Oriented Composite Applications 249

to specific process instances to avoid affecting a wider user base. In addition,
as certain adaptations become permanent, they may be propagated back to the
process model resulting in a new process model being deployed.

6 Related Work

Process-oriented application development has been the subject of significant at-
tention in the last decade, prompting the emergence of a large number of process
modelling and execution languages, some of which have been the subject of stan-
dardisation initiatives such as the Business Process Execution Language for Web
Services (BPEL4WS).7 However, the platforms supporting these languages adopt
an approach to process-oriented application development that is not suitable in
scenarios where personalization and adaptation are prominent requirements. In-
deed, these platforms typically rely on the static definition of process models
and allow little change to occur without a significant redeployment effort.

As discussed in the Introduction, proposals in the area of adaptive and flex-
ible workflow [14] generally focus either on a priori adaptation (e.g. attaching
exception handling policies to a process model) or on dealing with changes in the
process model. In contrast, we advocate that adaptation should not be handled
at the level of the process model. Our proposal shows that if an event-based coor-
dination model is used at the execution layer, it is possible to make fine-grained
changes to specific parts of the process and to confine these changes to specific
process instances, without altering the process model. In other words, the pro-
cess model can be used as a reference to deal with the majority of cases but
deviations can occur for specific cases based on the activation or de-activation
of the rules composing the event model. Parallels can be drawn between our ap-
proach and the one followed in case handling systems [3] where human workers
route cases (i.e. process instances) manually based on information associated to
each case and contextual information such as workload and resource availabil-
ity. However, case handling is targeted at processes composed mostly of manual
tasks. In contrast, our proposal is targeted at processes in which tasks are del-
egated to software applications so that it is not possible to count on human
intervention at each step of the process.

There exist a large body of proposals in the area of coordination architectures,
and in particular space-based ones. Some of these architectures (e.g. Mars [5]
and Limone [9]) support the definition of reaction rules to coordinate application
components, similar to the way coordinators operate in our framework. However,
despite their potential synergies, proposals in the areas of coordination architec-
tures on the one hand, and process-oriented application development on the
other, have so far evolved independently – a notable exception being the work
by Tolksdorf [16] who describes a space-based architecture for routing XML
documents through processing steps encoded in XSL. A major novelty of our
proposal is that it seamlessly combines techniques from coordination-based and
from process-oriented software architectures.
7 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel



250 M. Dumas et al.

This paper partly builds upon previous work on decentralised orchestration
of process-oriented composite services specified as UML statecharts [4]. In this
prior work, an algorithm was proposed that bears some similarities with the one
presented in Figure 2. In addition to technical differences between the algorithms,
stemming in part from the use of activity diagrams (version 2.0) rather than
statecharts, the proposal of this paper differs from the previous one in the use
that it makes of the output of the algorithm: Instead of using this output for
decentralised orchestration, it uses it for event-based centralised orchestration
based on coordination middleware. The proposal in this paper can also be seen
as a refinement of the architecture presented in [15], where agents and tuple
spaces are combined in an architecture for service composition. In the present
paper, we have presented a concrete approach to encode and execute event-based
models and we have detailed a method for generating event-based models from
process-based ones. We have also shown that by encoding event-based models
as active objects it is possible to achieve various forms of adaptation.

7 Conclusion and Future Work

This paper has shown how a process model specified using UML activity di-
agrams can be translated into an event-based model that can be executed on
top of a coordination middleware. Specifically, a process model is encoded as a
collection of active objects that interact with each other through a shared object
space. We have argue and illustrated that this approach is suitable for under-
taking post-deployment adaptation of process-oriented composite applications.
In particular, new control dependencies can be encoded by dropping new (or
enabling existing) active objects into the space and/or disabling existing ones.

A possible direction for future work is to extend the proposed algorithm
for input sets generation to cover a larger set of process modelling constructs
such as signals in UML activity diagrams or advanced control-flow constructs
such as those found in YAWL [2]. Another direction for future work is to de-
sign a mapping from event-based models to process models. The idea would
be to automatically derive a process model from a collection of routers. This
“reverse” mapping would assist developers in propagating changes in the event-
based model to the process model, when it is decided that these changes should
be made permanent. Techniques such as those developed in the setting of process
mining, where process models are derived from causal relations extracted from
execution traces, could provide insights for designing this reverse mapping.

Acknowledgments. The first author is funded by a Queensland Government
Smart State Fellowship co-sponsored by SAP. The second author is funded by
an SAP-sponsored scholarship.



Event-Based Coordination of Process-Oriented Composite Applications 251

References

1. W. M.P. van der Aalst. How to handle dynamic change and capture management
information: An approach based on generic workflow models. Computer Systems
Science and Engineering, 15(5):295–318, 2001.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2004.

3. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: A
new paradigm for business process support. Data and Knowledge Engineering,
53(2):129–162, 2005.

4. B. Benatallah, M. Dumas, and Q.Z. Sheng. Facilitating the rapid development
and scalable orchestration of composite web services. Distributed and Parallel
Databases, 15(1):5–37, January 2005.

5. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive tuple spaces for mobile agent
coordination. In Proceedings of the Second International Workshop on Mobile
Agents (1998), pages 237–248, Stuttgart, Germany, 1999. Springer Verlag.

6. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implementation
of exceptions in workflow management systems. ACM Transactions on Database
Systems, 24(3):405–451, 1999.

7. K. Elms, S. Milliner, and J. Vayssiere. Object spaces with active objects. U.S.
Patent Application # 2004P00851US, filed 29 December 2004.

8. T. Fjellheim, S. Milliner, M. Dumas, and K. Elms. The 3DMA middleware for mo-
bile applications. In Proceedings of the 2004 International Conference on Embedded
and Ubiquitous Computing, Aizu, Japan, August 2004. Springer Verlag.

9. C-L. Fok, G-C. Roman, and G. Hackmann. A lightweight coordination middle-
ware for mobile computing. In Proceedings of the 6th International Conference on
Coordination Models and Languages, pages 135–151, Pisa, Italy, February 2004.
Springer Verlag.

10. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming, 2(1):80–112, January 1985.

11. S-Y. Hwang and Y-F. Chen. Personal workflows: Modeling and management. In
Proceedings of the 4th International Conference on Mobile Data Management, 2003.

12. D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, 2002.

13. R. Muller, U. Greiner, and E. Rahm. AgentWork: a workflow system supporting
rule-based workflow adaptation. Data and Knowledge Engineering, 51(2):223–256,
November 2004.

14. S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems - a survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

15. Q.Z. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and A.H.H. Ngu. Enabling
personalized composition and adaptive provisioning of web services. In Proceedings
of the International Conference on Advanced Intormation Systems Engineering,
pages 322–337, Riga, Latvia, June 2004. Springer Verlag.

16. R. Tolksdorf. Coordination technology for workflows on the web: Workspaces.
In Proceedings of the 4th International Conference on Coordination Models and
Languages, pages 36–50, Limassol, Cyprus, September 2000. Springer Verlag.

17. P. Wohed, W. M.P. van der Aalst, M. Dumas, A. H.M. ter Hofstede, and N. Rus-
sell. Pattern-based Analysis of the Control-flow Perspective of UML Activity Di-
agrams. In Proceedings of the International Conference on Conceptual Modelling
(ER), Klagenfurt, Austria, October 2004. Springer Verlag.



Integrating Process Learning and Process

Evolution – A Semantics Based Approach

Stefanie Rinderle1, Barbara Weber2, Manfred Reichert3, and Werner Wild4

1 Dept. Databases and Information Systems, University of Ulm, Germany
rinderle@informatik.uni--ulm.de

2 Quality Engineering Research Group, University of Innsbruck
Barbara.Weber@uibk.ac.at

3 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

4 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

Abstract. Companies are developing a growing interest in aligning their
information systems in a process-oriented way. However, current process-
aware information systems (PAIS) fail to meet process flexibility require-
ments, which reduces the applicability of such systems. To overcome this
limitation PAIS should capture the whole process life cycle and all kinds
of changes in an integrated way. In this paper we present such a holis-
tic approach providing full process life cycle support by combining the
ADEPT framework for dynamic process changes with the concepts and
methods provided by case-based reasoning (CBR) technology. This al-
lows expressing the semantics of process changes, their memorization
and their reuse to perform similar changes in the future. If the same or
similar process instance changes occur frequently, potential process type
changes are suggested to the process engineer. The process engineer can
then perform a schema evolution and migrate running instances to the
new schema version by using the ADEPT framework. Finally, the case–
base related to the old schema version is migrated as well.

1 Introduction

Adaptive process management technology offers a promising approach for realiz-
ing highly flexible, process–oriented information systems [1,2,3,4]. In particular,
it enables dynamic process changes during runtime to handle exceptional situ-
ations and changing needs. Basically, such process changes can be made at two
levels – the process type and process instance level [5].

In our experience an adaptive process management system (PMS) must sup-
port both kinds of changes in an integrated way [6]. In the ADEPT project we
have elaborated a conceptual framework which enables changes at the process
instance and at the process type level. For the latter we support the subsequent
migration of both unbiased and biased process instances to the changed process
type schema. This is especially important for long–running process instances [7].

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 252–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Integrating Process Learning and Process Evolution 253

We denote process instances as unbiased if they are running according to the
original process schema they were derived from [8], whereas process instances
are denoted as biased when they have been individually modified by an ad–hoc
change [6].

So far, our work on adaptive processes (e.g., [7,8,9]) has not incorporated
application semantics, i.e., it has not considered the reasons for and the con-
text of a change. Instead, very similar to database technology, all checks and
procedures necessary to perform a dynamic change have been applied solely at
the syntactical level, which, nevertheless, is an important prerequisite for any
adaptive process management technology. To provide more intelligent support
to its users and to reuse knowledge about previously applied process changes
semantical aspects must be considered as well. This paper shows how adding
semantics contributes to the seamless integration of process changes into the
process life cycle (cf. Fig. 1).

Lab

test

Add / Reuse 

Case LabTest

I ( = 1...n)

I ( = 1...n)

Changed Process

Instances

Lab

test

CCBR

In
st

a
n
tia

tio
n

P
ro

c
e
s
s

T
y
p
e

C
h
a
n
g
e

Process Instance Change

Notific
ation

Threshold exceeded

Process Instances

Process User

Process Engineer

Process

Engineer

Migrate

case-base

Prepare

Patient

Examine

patient

Make

appointment

Schema S‘:

Enter

order Inform

patient

Lab

Test

Make

appointment

Deliver

report

Prepare

Patient

Schema

S:

Enter

order Inform

patient

Prepare

Patient

Examine

patient

Deliver

report

Make

appointment

Fig. 1. Process Life Cycle

In this paper we combine the ADEPT framework for process changes with
the concepts and methods provided by CBRFlow [10], a process change ap-
proach using case-based reasoning (CBR) technology. This allows us to express
the semantics of process changes and to provide users with information about
the context of and the reasons for process changes, ensuring the traceability of
instance changes. The latter is a crucial requirement in many domains (e.g., hos-
pitals have strict guidelines regarding the documentation of deviations from the
predefined treatment process). Respective change information is stored as cases



254 S. Rinderle et al.

in a process schema specific case–base. This information can be used to sup-
port process actors in reusing information about similar ad-hoc changes which
have been applied to previously executed process instances. Change definition
requires significant user experience, especially when further adaptations become
necessary (e.g., when deleting a particular activity, data-dependent activities
may have to be deleted as well [9]). Therefore, reuse of existing knowledge about
previous ad-hoc changes is highly desirable.

Furthermore, case–bases are continuously monitored in order to automati-
cally derive suggestions for process type changes from previously applied process
instance changes. In practice, necessary type changes are frequently indicated by
process instances whose execution deviates from the original process type schema
over and over again. In such a situation a process type change is desirable to
move the respective optimizations up to the process type level.

In the ADEPT framework a process type change is performed by deriving a
new version of the process type schema and – if possible and desired – by au-
tomatically migrating the already running process instances to this new schema
version [7,8]. This may include the migration of both unbiased and biased process
instances. Interestingly, not only processes but also case-bases evolve over time.
When a case–base is ”migrated” to a new process schema version, it should only
keep information which is still relevant for instances of the new process schema
(and for changes to them). In our approach a process schema evolution is al-
ways accompanied by the evolution of the related case-base. This poses several
challenges which will be discussed later in this paper.

In Section 2 we provide background information. Section 3 presents funda-
mentals of CBR and their application to process instance changes. In Section 4
we show how to learn from instance changes by using CBR techniques and we
provide an overview of our process evolution approach. The evolution of case–
bases is described in Section 5. We discuss related work in Section 6 and close
with a summary and an outlook in Section 7.

2 Background Information

In this section we give basic definitions for process type schemes and process
instances as needed for our further considerations. To improve readability we
restrict the discussion to Activity Nets [11]; however, our approach is applicable
to more complex process meta models as well (e.g., WSM Nets [7]).

For each business process to be supported a process type T is defined. It is
represented by a process type schema which may exist in different versions.

Definition 1 (Process Type Schema). A tuple S with S = (N, D, CtrlEdges,
DataEdges, EC) is called a process schema, if the following holds:

– N is a set of activities and D a set of data elements
– CtrlEdges ⊂ N × N is a precedence relation

(notation: nsrc → ndst ≡ (nsrc, ndst) ∈ CtrlEdges)



Integrating Process Learning and Process Evolution 255

– DataEdges ⊆ N × D × {read, write} is a set of read/write data links between
activities and data elements

– EC: CtrlEdges → Conds(D) where Conds(D) denotes the set of all valid
transition conditions on data elements from D.

For a process type schema several correctness constraints exist, e.g., (N,
CtrlEdges) must be an acyclic graph to ensure the absence of deadlocks.

At runtime new process instances are created from a process schema S and
are then executed. Each instance I is associated with an instance-specific schema
SI := S + ΔI

1. S = S(T,V) denotes the original process schema S from which
instance I was derived, whereby T is the process type of I and V the version of
the process type schema. ΔI = {op1, ..., opn} comprises the change operations
opi (i = 1, ..., n) applied to I so far (cf. Fig. 4). In this context a change operation
opi = (opType, s, paramList) (i = 1, ..., n) is specified by an operation type (e.g.,
insertion of an activity), a subject (e.g., the newly inserted activity), and a list
of parameters (e.g., position of the newly inserted activity). Selected change
operations are shown in Table 1.

The execution state of I is captured by marking function MSI =(NSSI , ESSI ).
It assigns to each activity n its current status NS(n) and to each control edge
e its marking ES(e). Markings are determined according to well defined rules,
markings of already passed regions and skipped branches are preserved.

Definition 2 (Process Instance). A process instance I is defined by a tuple
(T, V, ΔI , MSI , V alSI ) where

– T denotes the process type of I and V the version of the process schema S
:= S(T,V) = (N, D, CtrlEdges, ...) instance I was derived from. We call S
the original schema of I.

– ΔI comprises the instance-specific changes op1, . . . , opm that have been ap-
plied to I so far2. We call ΔI the bias of I. Schema SI := S + ΔI (with
SI = (NI , DI , . . .)) which results from the application of ΔI to S, is called
the instance–specific schema of I.

– MSI = (NSSI , ESSI ) describes node and edge markings of I:
NSSI : NI → {NotActivated, Activated, Running, Completed,
Skipped}
ESSI : (CtrlEdgesI) → {NotSignaled, TrueSignaled, FalseSignaled}

– ValSI is a function on DI. It reflects for each data element d ∈ DI either
its current value or the value UNDEFINED (if d has not been written yet).

Table 1 presents a selection of high-level change operations on process
schemes which can be used to create or modify schemes at the type as well
as at the instance level. These change operations also include formal pre- and

1 For unbiased instances ΔI(S) = ∅ and consequently SI = S holds.
2 Thereby an operation opj := (opTypej, sj , paramListj) (j = 1, ..., m) consists of

an operation type opTypej , the subject sj of the change, and a parameter list
paramListj (cf. Tab. 1).



256 S. Rinderle et al.

post-conditions. They automatically perform the necessary schema transforma-
tions while ensuring schema correctness. An example for such a change operation
is the insertion of an activity and its embedding into the process context.

Table 1. A Selection of High-Level Change Operations on Process Schemes

Change Operation opType subject paramList Effects on S
op Applied to S

Additive Change Operations
sInsert(S, X, A, B) Insert X S, A, B inserts activity X between two directly

succeeding activities A and B
cInsert(S, X, A, B, sc) Insert X S, A, B, sc inserts activity X between two directly

succeeding activities A and B as a new
branch with selection code sc; edge (A,
B) gets selection code ”default”

Subtractive Change Operations
delAct(S, X) Delete X S deletes activity X from schema S

Order-Changing Operations
sMove(S, X, A, B) Move X S, A, B moves activity X from its current posi-

tion to position between directly suc-
ceeding activities A and B

3 Providing Change Semantics Through CCBR

In this section we describe how CBR can be used to capture the semantics of
process changes, how these changes can be memorized, and how they can be
retrieved and reused when similar changes become necessary in the future.

3.1 Introduction to Case-Based Reasoning

Case-based reasoning (CBR) is a contemporary approach to problem solving
and learning [12]. New problems are dealt with by drawing on past experiences
– described in cases and stored in case–bases – and by adapting their solutions
to the new problem situation. Reasoning by using past experiences is a powerful
and frequently applied way to solve problems by humans [13]. A physician, for
example, remembers previous cases to determine the disease of a new patient. A
banker working on a difficult loan decision uses her experiences about previous
cases in order to decide whether to grant a loan or not.

A case is a contextualized piece of knowledge representing an experience [12],
which typically consists of a problem description and the corresponding solution.
As opposed to most other approaches in Artificial Intelligence, CBR uses spe-
cific knowledge of past experiences to solve new problems. CBR also contributes
to incremental and sustained learning: every time a new problem is solved, in-
formation about it and its solution is retained and therefore immediately made
available for solving future problems [13].

Conversational CBR (CCBR) is an extension of the CBR paradigm, which
actively involves users in the inference process [14]. A CCBR system can be char-
acterized as an interactive system that, via a mixed-initiative dialogue, guides
users through a question-answering sequence in a case retrieval context (cf.



Integrating Process Learning and Process Evolution 257

Title

Description

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

What is the patient’s age? > 40

Actions

sInsert LabTest S, PreparePatient, Examine Patient

Operation Type Subject Parameters

Select Operation Type Insert

Select Activity/Edge Lab Test

Please Answer the Questions

Question Answer

Patient has diabetes? Yes

What is the patient’s age? > 40

Lab Test required

Title

125

Case ID

100%

Similarity

25

Reputation Score

Display List of Cases

Fig. 2. CCBR User Dialogs - Adding a New Case and Retrieving Similar Cases

Fig 2). Unlike traditional CBR, CCBR neither requires the user to provide a
complete a priori problem specification for case retrieval nor requires him to
provide knowledge about the relevance of each feature for problem solving. In-
stead, the system assists the user in finding relevant cases by presenting a set of
questions to assess the given situation. It guides users who can supply already
known information on their initiative. Therefore, CCBR is especially suitable for
handling exceptional or unanticipated situations that cannot be dealt with in a
fully automated way.

3.2 Conversational Case-Based Reasoning and Adaptive Workflows

In our approach CCBR is used to provide semantical information about changes
to process instances. This information can be reused when either similar ad-hoc
modifications become necessary or to trigger process type changes.

Case Representation. In our context, a case c represents a concrete ad-hoc
modification to one or more process instances providing the context of and the
reasons for the deviation (cf. Fig. 2). It consists of a textual problem description
pd which briefly describes the exceptional or unanticipated situation which made
the ad-hoc modification necessary. The reasons for the change are described as
question-answer pairs {q1an1, . . . , qnann}. Each question-answer pair denotes
a condition under which the modification has become necessary; they are used
to retrieve similar cases when a problem arises in the future. The solution part
sol (i.e., the list of actions) contains the change operations (and related context
information) to be executed to deal with the exceptional or unanticipated situ-
ation. Finally, the reputation score rScore of a case indicates how successfully
it has been reused in the past, i.e., the trust users can have into the semantical
correctness of this case. The reputation score is calculated as the sum of the
feedback scores (see below).

Definition 3 (Case). A case c is a tuple (pd, {q1an1, . . . , qnann}, sol, rScore)
where

– pd is a textual problem description
– {q1an1, . . . , qnann} denotes a set of question-answer pairs



258 S. Rinderle et al.

– sol = { opj | opj = (opTypej, sj, paramListj), j = 1, ..., k} is the solution
part of the case denoting a list of change operations (i.e., the changes that
have been applied to one or more process instances; cf. Def. 2)

– rScore indicates how successfully case c has been applied in the past. It is
calculated as the sum of the feedback scores.

All information on process instance changes related to a process schema
version S are stored as cases in the associated case-base of S.

Definition 4 (Case–Base). A case–base cbT,V is a tuple (T, V, {c1, . . . , cm},
freqT,V )) where

– S := S(T,V) denotes the schema version cbT,V is currently associated with
– {c1, . . . , cm} denotes a set of cases
– freqT,V (ci) denotes the frequency ci was reused in connection with schema

version S(T,V) in the past, formally:
freqT,V : {c1, . . . , cm} → N

Case Retrieval. When deviations from the predefined process schema become
necessary, the user initiates a case retrieval dialog in the CCBR component.
The system then assists her in finding already stored similar cases (i.e., change
scenarios in our context) by presenting a set of questions. The user may apply
a filter to the case-base and/or answer any of the questions in arbitrary order.
Filtering is done by specifiying an operation type opType and a subject s on
which the operation is supposed to operate on. Cases not matching the filter
criteria are removed from the displayed list of cases. The system then searches
for similar cases by calculating the similarity for each case in the filtered case-
base and displays the top n ranked cases (ordered by decreasing similarity) as
well as their reputation scores. This is repeated for any other question answered
by the user. Case similarity is calculated by dividing the number of correctly
answered questions minus the number of incorrectly answered questions by the
total number of questions in the case [15].

Case Reuse. When a user decides to reuse an existing case, the actions specified
in the solution part of the case are forwarded to and performed by the ADEPT
change engine. The reuse counter is incremented and a work item is created for
this user for evaluating the ad-hoc change later on to maintain the quality of the
case-base.

Adding a New Case. If no similar cases can be found when performing a
process instance change, the user adds a new case c = (pd, {q1an1, . . . ,}, sol, 1)
to case-base cbT,V . She enters this case by briefly describing the current problem
pd and by entering a set of question-answer pairs to describe the reasons for the
ad-hoc deviation. Question-answer pairs can be entered either by selecting the
question from a list of previously defined questions (i.e., reusing questions from
existing cases) or, if there is no suitable question in the system, by defining a new
one and by giving the appropriate answer. The user then specifies the actions
to perform by selecting the desired operation types opType1, . . . , opTypep. She



Integrating Process Learning and Process Evolution 259

further defines the subjects s1, . . . , sp they operate on (e.g., activities and control
edges), and provides the parameters for each selected operation. Moreover, the
reuse counter of the case is initialized to 1. Finally, the case is stored in case-base
cbT,V of process schema S = S(T, V ) and thus immediately made available for
future reuse.

Ensuring Semantical Correctness through Evaluation Mechanisms. In
our approach we use the concept of reputation to indicate how successfully an ad-
hoc modification represented by a case has been applied in the past. Whenever a
user adds or reuses a case she is encouraged to provide feedback on the performed
process instance change. For this, a work item representing the feedback task
is generated and inserted in the worklist of this particular user. She then can
later rate the performance of the respective ad-hoc modification either with 2
(highly positive), 1 (positive), 0 (neutral) , -1 (negative) or -2 (highly negative),
and may optionally specify additional comments. The reputation score of a case
is calculated as the sum of feedback scores regarding the ad-hoc modification
specified in this case. While a high reputation score of a case is an indicator
for its semantical correctness, negative feedback probably results from problems
after performing a process instance change. As ADEPT ensures the syntactical
correctness of changes, a negative feedback thus indicates semantical problems.
Negative feedback therefore results in an immediate notification of the process
engineer, who can then deactivate the case to prevent its further reuse. The case
itself, however, remains in the system to allow for learning from failures as well
as to maintain traceability.

Example 1. As depicted in Fig. 3 the examination of a patient usually takes
place after a preparation step. Before an examination the physician recognizes
that the patient suffers from diabetes and he detects several other important risk
factors. The physician decides to request an additional lab test for this patient
to be performed after activity Prepare patient and before activity Examine
Patient. As the system contains no similar cases, the physician enters a new
case describing the situation and the action to be taken (cf. Fig. 2). ADEPT then
checks whether inserting activity Lab Test is possible for the respective process
instance, and, if so, applies the specified insert operation to that instance. The
latter includes updating the instance markings and all user worklists. If, for
example, Prepare patient is completed and Examine Patient is activated,
this activation will be undone (i.e., respective work items are removed from all
user worklists) and the newly inserted activity Lab test becomes immediately
activated. In any case, the newly inserted activity is treated like any other process
step, i.e., the same scheduling and monitoring facilities exist.

When talking with another diabetic patient later on, the physician vaguely
remembers that there has been a similar situation before and initiates the CCBR
sub-system to retrieve similar cases. For example, as he still remembers that he
had performed an additional lab test he selects the Insert operation type as well
as the Lab Test activity to optionally filter the case-base. He then answers the
questions presented by the system, finds the previously added case, and reuses
it (cf. Fig. 2).



260 S. Rinderle et al.

Enter

order

Examine

patient

Deliver

report

Make

appointment

Prepare 

Patient

Prepare 

Patient
Examine

patient

Make

appointment

Deliver

reportPrepare 

Patient
Examine

patient

Make

appointment Prepare 

Patient
Examine

patient

Make

appointment

Lab

test
Process Instance I:

Enter

order

Prepare 

Patient
Examine

patient

Make

appointment

Lab

test

Prepare 

Patient
Examine

patient

Make

appointment

Deliver

reportPrepare 

Patient
Examine

patient

Make

appointment Prepare 

Patient
Examine

patient

Make

appointment

Lab

test
Process Instance I:

Enter

order

Prepare 

Patient
Examine

patient

Make

appointment

Lab

test

Prepare 

Patient
Examine

patient

Make

appointment

Deliver

report
Prepare 

Patient
Examine

patient

Make

appointment Prepare 

Patient
Examine

patient

Make

appointment

Lab

test
Process Instance I:

Enter

order

Prepare 

Patient
Examine

patient

Make

appointment

Reuse Frequency 104

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

What is the patient’s age? > 40

Actions

sInsert LabTest S, PreparePatient, Examine Patient

Operation Type Subject Parameters

Case ID 1

Title Lab test required

Reputation Score 104

Perform Process Type Changes

Lab

test

Deliver

patient

Schema Version S := S(T,1) 

Enter

order

Lab test

Examine

patient
Deliver

report

Make

appointment

sc1: age > 40 

diabetes =„yes“

Prepare 

Patient

patData patData

sc2: default

Process Engineer

Schema Version S‘ := S(T,2) 

Process 

User

Fig. 3. Perform Process Type Change

4 Process Learning and Seamless Process Evolution

When the same or similar changes occur frequently, the process engineer is noti-
fied about the potential need for a process type change (Sect. 4.1). The process
engineer can then perform a change of the process type schema and migrate
running instances to the new schema version by using the ADEPT framework
(Sect. 4.2).

4.1 On Suggesting Process Optimizations

To derive suggestions for process type changes from a collection of previous
instance changes we need the following information:

– Case–base cbT,V = (T, V, {c1, ..., cm}, freqT,V )
– rIT,V denoting the number of process instances created from schema version

S := S(T, V)
– thr denoting a configurable threshold (0 ≤ thr ≤ 1)

If there is a case cj ∈ cbT,V with

freqT,V (cj)
rIT,V

≥ thr (1)



Integrating Process Learning and Process Evolution 261

the process engineer is notified that a process type change should be considered.
In this notification the system suggests the solution part solj of the respective
case cj as the process type change to be applied, but allows the process engineer
to customize it if desired.

Example 2. Let rIT,V = 10397, thr = 0.01, cbT,V = {c1 = (..., sol1 = {insert(S,
X, A, B)},...)}, and freqT,V (c1) = 104. As

freqT,V (cj)
rIT,V

= 104
10397 exceeds threshold

0.01, the system suggests to pull change operation sInsert(S, X, A, B) up to the
process type level.

Generally, the situation is more complex, as a certain change operation may
have been applied to several instances for different reasons. Note that in our
approach this is reflected by sets of different question-answer pairs in separate
cases. As a consequence the respective case–base contains distinct cases, i.e.,
cases with the identical solution parts but different question-answer pairs. Then
equation (1) is no longer adequate and must be adapted for a set of cases.

Example 3. Let rIT,V = 10397 and thr = 0.01; cbT,V now becomes:
cbT,V = {c1 = (..., sol1 = {sInsert(S, X, A, B)}, ...),

c2 = (..., sol2 = {sInsert(S, X, A, B)}, ...),
c3 = (..., sol3 = {sInsert(S, X, A, B)}, ...), ... } with

freqT,V (c1) = 48, freqT,V (c2) = 23, and freqT,V (c3) = 33

Exceeding the threshold thr can be determined by summing over the frequen-
cies of all cases which have the same solution part, i.e., if there is a set of cases
cbT,V (sol) := {csol = (..., sol, ...) ∈ cbT,V ) } with∑

cj∈cbT,V (sol) freqT,V (cj)

rIT,V
≥ thr (2)

Thus, in the example above a process type change is indicated and the system
suggests sol as process type change to the process engineer (e.g., sInsert(S,
X, A, B)).

Equation (2) still does not reflect the most general scenario as the solution
parts of the cases indicating a process type change may not be identical but may
have one or more overlapping changes.

Example 4. Assume the following example (rIT,V = 10397 and thr = 0.01):
cbT,V = {c1 = (..., sol1 = {sInsert(S, X, A, B), delAct(S, C)}, ...),

c2 = (..., sol2 = {sInsert(S, X, A, B)}, ...),

c3 = (..., sol3 = {sInsert(S, X, A, B)}, ...), ... } with
freqT,V (c1) = 48, freqT,V (c2) = 23, and freqT,V (c3) = 33

All cases contain the same change operation sInsert(S, X, A, B) but case
c1 contains an additional change operation delAct(S, C). This is not relevant
for the evaluation of the case-base and the suggested process type change. (Note
that the migration of the respective process instances is handled by the process



262 S. Rinderle et al.

schema evolution framework [7].) This can be taken into account by determining
the following set

cbT,V (sub sol) := {c = (..., sol, ...) ∈ cbT,V ) | sub sol ⊆ sol }
and by applying equation (3):∑

cj∈cbT,V (sub sol) freqT,V (cj)

rIT,V
≥ thr (3)

In this case sub sol is suggested to the process engineer as the process type
change to perform (sInsert(S, X, A, B) in our example).

The process engineer has to examine the cases that exceeded the threshold
as well as the cases with overlapping solution parts in order to decide how to
perform the process type change. When a change operation is relevant for all
process instances it can be pulled up to the process type level. In most situations
the change operations cannot directly be applied to the process schema as the
changes have been performed in a particular context. Examining the question-
answer pairs allows the process engineer to gain valuable insights into the context
of a change operation as each question-answer pair represents a (semantic) con-
dition under which the case was applied. Assume, for example, that a particular
change operation has been primarily performed for patients older than 40 years
who suffer from diabetes. Therefore, the solution part of the case is not directly
pulled up to the process type level, but the process engineer inserts the neces-
sary XOr nodes and transitions (cf. Fig. 3). However, it must be ensured that
the necessary data, e.g., patient’s age and diabetes (yes/no), is provided to the
running process instances after applying the respective process type change, i.e.,
to guarantee that all necessary data is available within the system.

In the ADEPT approach change operations have formal pre- and postcon-
ditions which ensure their correct application, in particular a correct data flow
after applying the changes. Therefore, if we can insert a new XOrSplit at the
process type level it is guaranteed that all necessary data is available at runtime,
as ADEPT allows the application of correct changes only. Data availability can
be achieved if either the activities preceding the XOr-Split set the respective
data elements (e.g., activity admit patient writes patient age and diseases)
or parameter provisioning services are inserted directly before the XOrSplit. At
runtime these services ask the user for the missing information.

4.2 Process Schema Evolution and Process Instance Migration

Assume that the process engineer decides to apply change operation cInsert(S,
Lab test, Prepare Patient, sc1) as depicted in Fig. 3 and 4. The challenge
is then to migrate the already running process instances to the new schema
version S’. As we can see from Fig. 4 we are confronted with different kinds
of running process instances: instances still running according to their original
schema (unbiased instances, e.g., I1) and instances which have already been indi-
vidually modified (biased instances, e.g., I2 – I4). We further have to distinguish
between biased instances for which their instance–specific change (bias) overlaps
the process type change (e.g., I3, I4) and biased instances with a disjoint bias



Integrating Process Learning and Process Evolution 263

Process Type Level:

Enter

order

Examine

patient

Deliver

report

Make

appointment

Prepare

Patient

Schema Version S := S(T,1) 

Enter

order

Lab test

Examine

patient

Make

appointment

sc1: age > 40 

diabetes =„yes“

Prepare

Patient

patData patData

sc2: default

Schema Version S‘ := S(T,2) 

I1 on S: Migration Policy 1: 

adapt markings

Migration Policy 1: 

adapt markings

CompletedActivated

Process Instance Level:

Lab test

Lab test

T = cInsert(S, Lab test, Prepare Patient,

Examine Patient, sc1)

I1 on S‘:unbiased

I3 on S: I3 on S‘:

I2 on S: disjoint bias Migration Policy 2: 

adapt markings + 

keep bias on S‘

Migration Policy 2: 

adapt markings + 

keep bias on S‘

I2 on S‘:

subsumption equivalent bias
Migration Policy 3: 

adapt markings +

bias on S‘ = 

Migration Policy 3: 

adapt markings +

bias on S‘ = 

I4 on S: I4 on S‘:

I3(S)= {sInsert(S, Lab test, Prepare Patient, Examine Patient)} I3(S‘)=

I4(S)= {sInsert(S, Lab test, Prepare Patient, Examine Patient),

delAct(S, deliver Report)

I4(S‘)= [delAct(S‘, deliver Report)}

provide suggestion

to user

provide suggestion

to user

partially equivalent

Deliver

report

I2(S)= {delAct(S, deliver Report)}

Fig. 4. Process Instance Migration

(e.g., I2). Process instances with overlapping bias have already anticipated the
process type change (cf. Sect. 4.1) and require a different migration policy than
the process instances with disjoint bias (for details see [16]).

For unbiased process instances state–related compliance with the new schema
version has to be checked [8]. Compliant instances are then migrated to the new
schema version by applying marking adaptations (as, for example, depicted in
Fig. 4 for instance I1). Process instances with disjoint bias can be migrated to
the new schema version S′ if they are compliant regarding their state and their
structure [6]. In Fig. 4 instance I2 has a disjoint bias and is compliant with S′.
Therefore I2 is migrated to the new schema version by adapting its marking and
keeping its instance–specific bias in the new schema version (cf. Tab. 2).

The most interesting question is how to deal with the process instances which
have totally or partially anticipated the process type change (resulting in an
overlap of process type and instance–specific changes). The migration policy to
be applied to such instances depends on the particular degree of overlap between
process type and instance–specific changes, which can be determined precisely by
a hybrid approach (for details see [7,16]). Table 2 shows the different degrees of
overlap and the related migration policies; default migration policies for partially
equivalent changes can only be provided in certain situations.

In Fig. 4, for example, instance I3 would be classified as having a subsumption
equivalent bias related to type change ΔT . ΔI3 and ΔT both insert activity lab



264 S. Rinderle et al.

Table 2. Degrees of Overlap Between Changes and Related Migration Policies

Degree of Overlap between ΔT and ΔI Migration Policy

ΔT and ΔI disjoint, i.e., ΔT ∩ ΔI = ∅ • apply ΔT on SI := S + ΔI

• migrate I to S’
• ΔI(S

′) = ΔI(S)
ΔT and ΔI equivalent, i.e., ΔT ≡ ΔI • migrate I to S’

• ΔI(S
′) = ∅

ΔT subsumes ΔI , i.e., ΔT ≺ ΔI • migrate I to S’
• calculate ΔI(S

′)
ΔI subsumes ΔT , i.e., ΔI ≺ ΔT • migrate I to S’

• ΔI(S
′) = ∅

ΔT and ΔI partially equivalent, i.e., ΔT � ΔI default policies not always possible
→ provide suggestion to user

test, but ΔT additionally creates an alternative branching. According to Table
2, I3 can be migrated to S′ by adapting the instance markings of I3. The instance-
specific bias ΔI3(S′) becomes empty after the migration. Comparing ΔT with
ΔI4 we see that both changes are partially equivalent, thus we cannot provide a
default migration strategy [7], but only make a suggestion to the user (cf. Fig.
4). Note that there are optimizations regarding the determination of the precise
degree of overlap [7].

In total, we provide a complete framework for migrating process instances to
a new schema version even if they have anticipated the type change. This closes
the process life cycle depicted in Fig. 1.

5 Case–Base Evolution

Process type changes are accompanied by migrating compliant process instances
to the new schema version S′ as well as migrating the associated case-base cb to
cb′. The challenge is to decide which cases of case-base cb should be transfered
to cb′ and which ones are already covered by the new schema version S′ and can
therefore be dropped.

If a case or a group of cases exceeds the predefined threshold the resulting
process type change can either be relevant for all process instances or only for
a particular subset (cf. Section 4.1). In the former scenario the solution parts
of the cases that triggered the change are directly reflected in the new process
schema S′. Therefore, cases whose solution part is a subset of ΔT are not trans-
ferred to the new case-base version cb′. Cases whose solution parts are a true
superset of ΔT are presented to the process engineer who then decides whether
to transfer these cases or not. Cases without overlapping solution parts are auto-
matically transferred to cb′ as they are not covered by S′. In the latter scenario
the migration from cb to cb′ is more complicated. It involves finding the regions
of the process graph that are affected by the process type change ΔT . In our
example the change region corresponds to the subgraph induced by the newly



Integrating Process Learning and Process Evolution 265

CCBR:

cb := cbT,1:

c1: (..., {sInsert(S, X, C, D)}), freqS(c1) = 48

c2: (..., {sInsert(S, X, C, D)}), freqS(c2) = 23

c3: (..., {sInsert(S, X, C, D)}), freqS(c3) = 33

c4: (..., {sInsert(S, Y, A, B)}), freqS(c4) = 5

c5: (..., {deleteAct(S, D)}), freqS(c5) = 60

c6: (..., {deleteAct(S, E), 

sInsert(S, Y, A, B)}), freqS(c6) = 2

cb‘ := cbT,2:

Case-Base MigrationCase-Base Migration

T1 = {sInsert(S, X, C, E), deleteAct(S, D)} T2 = {deleteAct(S‘, F)}

Process Type Level:

Enter

order

Examine

patient

Deliver

report

Make

appointment

A C D E
Prepare

Patient

B

Schema Version S := S(T,1) 

Enter

order

Lab test

Examine

patient
Deliver

report

Make

appointment

A C

X

D E

sc1: age > 40 

diabetes =„yes“

Prepare

Patient

B

patData patData

sc2: default

Schema Version S‘ := S(T,2) 

Process Type 

Change T

c4: (..., {sInsert(S, Y, A, B)}), 

c5: (..., {deleteAct(S, D)})

c6: (..., {deleteAct(S, E), 

sInsert(S, X, C, D)})

c7: (..., {sInsert(S, Y, A, B)})

c8: (..., {deleteAct(S, B)})

c1, c2, c3 

c4, c6

c5

c7, c8

dropped by process engineer

automatically transferred

transfered by process engineer

new cases for instances based on S'

Migration

T = cInsert(S, Lab test, Prepare Patient, Examine Patient, sc1)

Fig. 5. Case–Base Evolution

inserted activity X and the insertion context (i.e., activities C and D). It can be
determined by applying the hybrid approach described in [7]. The cases which
contain change operations referring to activities or edges within these regions
as subjects or parameters are presented to the process engineer who then can
manually transfer relevant cases. All other case are automatically transferred to
case-base cb′.

Example 5. As illustrated in Fig. 5 the process engineer has been notified to
perform a schema evolution as cases c1, ..., c3 exceed the predefined threshold
value. After migrating schema S to S′ the process engineer has to migrate case-
base cb to cb′ as well. Cases c4 and c6 are automatically transferred to cb′ as
they do not use activities or edges within the affected process graph region. All
other cases are presented to the process engineer, who then decides to drop cases
c1, ..., c3 which are already covered by the process type change and to transfer
case c5. Of course, new cases may be added to cb′ due to ongoing ad-hoc changes
of instances based on S′. Later on, migrating cb′ will become necessary when
another process schema evolution takes place.

6 Related Work

Process Mining [17] and Delta Analysis [18,19] are techniques to improve the
quality of business processes. Though these approaches are very inspiring, they
do not answer how they feed the improved process type schemes into the system.
To our best knowledge this is accomplished by establishing the mined process
schemes as new process type schema versions. Already running process instances



266 S. Rinderle et al.

are then completed according to the ”old” (suboptimal) process type schema and
new instances are started according to the improved one. This leads to a ”gap”
within the process life cycle which can be closed by applying the derived process
optimization to the current process type schema. Already running process in-
stances are then smoothly migrated to the improved process type schema [15,20].

Related work also includes approaches dealing with process schema evolution
[1,2,4,21]. However, none of them covers the interplay between process type and
process instance changes, i.e., there is no approach which allows to migrate biased
process instances to a changed process type schema.

This paper is based on the idea of integrating ADEPT [9] and CCBR [10] (see
also [15]). In related work traditional CBR has been applied to configure com-
plex core processes by using process components [22]. Workflows are configured
during their instantiation by combining predefined process components in order
to reduce the number of possible process variants. As each process instance has
to be configured before its start, this approach is more suitable for long-running,
complex core processes with a limited number of process instances; the process
configuration is similar to a project planning task. Similarily, Madhusudan et al.
[23] use CBR to provide workflow modeling support by facilitating the reuse of
existing models and their components. In contrast to our approach, CBR tech-
niques are applied to support the modeling of business processes and not their
execution.

7 Summary and Outlook

The integration of ADEPT and CBRFlow offers promising perspectives, as pro-
cess instance changes are enriched with semantic information. This, on the one
hand ensures the traceability of instance changes and on the other hand supports
users in reusing information about previous instance changes. Furthermore, our
approach provides techniques to automatically derive suggestions for process
type changes from previously applied instance changes. If the process engineer
decides to pull up an instance change to the process type level, already running
process instances can be smoothly migrated to the new process schema version.
Finally an evolution of the associated case–base is done.

Currently we implement a prototype integrating the concepts of ADEPT and
CBRFlow and plan to evaluate the resulting prototype in different application
scenarios. Future work will focus on the semantic compliance of process type
and process instance changes when they are concurrently applied to the same
process schema. In this context the representation and the evaluation of semantic
information stored for process changes are challenging research topics.

References

1. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

2. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proc. Int’l COOCS’95, Milpitas, CA (1995) 10–21



Integrating Process Learning and Process Evolution 267

3. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. DKE 50 (2004) 9–34

4. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: Proc. HICSS-34. (2001)

5. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type
and instance changes under correctness constraints. In: Proc. Int’l CoopIS’03.
LNCS 2888, Catania, Italy (2003) 407–425

6. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: Proc. BPM’04, Potsdam (2004) 274–289

7. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

8. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. DPD 16 (2004) 91–116

9. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

10. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: Proc. ECCBR’04, Madrid
(2004) 434–448

11. Leymann, F., Altenhuber, W.: Managing business processes as an information
ressource. IBM Systems Journal 33 (1994) 326–348

12. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann (1993)
13. A. Aamodt, E.P.: Case-based reasoning: Foundational issues, methodological vari-

ations and system approaches. AI Communications 7 (1994) 39–59
14. Aha, D.W., Muñoz-Avila, H.: Introduction: Interactive case-based reasoning. Ap-

plied Intelligence 14 (2001) 7–8
15. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process

evolution. In: Proc. Int. Conf. on Cased based Reasoning (ICCBR’05), Chicago
(2005)

16. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: Proc. CoopIS’04, Cyprus (2004) 101–120

17. v.d. Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.: Workflow mining: A survey of issues and approaches. DKE 27 (2003) 237–267

18. v.d. Aalst, W.: Inheritance of business processes: A journey visiting four notorious
problems. In: Proc. Petri Net Technology for Communication Based Systems.
LNCS 2472 (2003) 383–408

19. Guth, V., Oberweis, A.: Delta analysis of petri net based models for business
processes. In: Proc. Applied Informatics. (1997) 23–32

20. Weber, B., Reichert, M., Rinderle, S., Wild, W.: Towards a framework for the agile
mining of business processes. In: Proc. of BPM 05 BPI workshop. (2005)

21. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. DKE 24 (1998)
211–238

22. Wargitsch, C., Wewers, T., Theisinger, F.: An organizational memory-based ap-
proach for an evolutionary workflow management system. In: Proc. HICCS-31.
(1998) 174–183

23. Madhusudan, T., Zhao, J.: A case-based framework for workflow model manage-
ment. In: Proc. Int’l Conf. BPM’03, Eindhoven (2003) 354–369



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 268 – 284, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Analysis and Taxonomy of Unstructured Workflows 

Rong Liu and Akhil Kumar 

Smeal College of Business, Penn State University, University Park, PA 16802, USA 
{rongliu, akhilkumar}@psu.edu 

Abstract. Most workflow tools support structured workflows despite the fact 
that unstructured workflows can be more expressive.  The reason for this is  
that unstructured workflows are more prone to errors.  In this paper, we 
describe a taxonomy that serves as a framework for analyzing unstructured 
workflows.  The taxonomy organizes unstructured workflows in terms of two 
considerations: improper nesting and mismatched split-join pairs.  Based on this 
taxonomy we characterize situations that are well-behaved and others that are 
not.  We also discuss well-behaved unstructured workflows that have equivalent 
structured mappings.  Finally, we also introduce a relaxed notion of corr- 
ectness called quasi-equivalence that is based on one-directional bisimulation.  
The results of our research will be useful for researchers investigating 
expressiveness and correctness issues in unstructured workflows. 

1   Introduction  

Workflow technology has emerged as an important tool for businesses to integrate 
and automate business processes, not only within the company, but also across the 
entire supply chain, giving rise to complex inter-organizational processes. Process 
modeling involves methodologies for designing business process models [5]. In doing 
so, business processes must be properly modeled before they are implemented as 
workflows. It is essential that process models not only precisely capture business 
requirements but also ensure successful workflow execution. If a process is put into 
production before being properly checked and verified, it could fail to execute 
properly and cause considerable loss to a business. A correct process model is one 
without structural flaws, such as deadlocks, dead-end paths, incomplete terminations, 
etc [8]. Therefore, it is very important that the correctness of workflows be verified 
systematically before the process models are implemented.  

Workflows allow coordination of various activities in a process through control 
elements such as AND-splits, AND-joins, OR-splits, OR-joins, etc. One accepted 
notion of correctness is structuredness. A structured workflow is one in which each 
split control element (e.g., AND, OR) is matched with a join control element of the 
same type, and such split-join pairs are also properly nested.  However, not all 
workflows are structured; some unstructured workflows give more expressive power 
than structured ones, and are also well behaved. Thus, the requirement of 
structuredness is restrictive. Following the pioneering work of Kiepuszewski, 
Hofstede, and Bussler [6],  our objective is to study what kinds of unstructured 
workflows are well-behaved; which ones have equivalent structured mappings; and, 



 An Analysis and Taxonomy of Unstructured Workflows 269 

 

which ones have what we call quasi equivalent structured mappings.  Quasi-
equivalence is a relaxed notion of equivalence based on uni-directional bisimulation 
[6], and it allows multiple instances of an activity to exist concurrently.  We will show 
later that in certain situations, multiple instances do not cause correctness problems.  
We also introduce notions of improper nesting and mismatched pairs as a means to 
organize our taxonomy of unstructured workflows, and to understand them in a 
systematic way. The taxonomy serves as a means of analyzing the main building 
blocks that constitute a given workflow model.  Moreover, this approach helps us in 
identifying causes of various flaws in workflow models, and also determining cases in 
which unstructured workflows have equivalent structured mappings.  

Related work in this area is still limited, some notable studies being [6, 7, 9]. A 
graph reduction technique is proposed in [9]. Although this technique can detect 
structural conflicts through a reduction process, it gives no details about the causes of 
these conflicts, and, therefore, provides no help for further improvement. [6] defines a 
restrictive group of workflows as structured workflows, which never lead to structural 
flaws. It also addresses the possibility that an unstructured workflow can be mapped 
to a structured one through equivalence preserving transformations. Aalst et al [3] 
have compared 15 main workflow management systems in terms of a set of selected 
workflow patterns, and showed none of these systems supports all these patterns, but 
all of them can support structured workflows. Since most workflow products impose 
different structural constraints, while structured workflows are widely supported, the 
mapping may bridge the gap between process modeling and workflow 
implementation. However, in [6] the possibility of the transformation is discussed 
mainly through examples, and lacks generality. Our goal in this paper is to mainly 
extend previous efforts and develop a more general framework to describe and 
understand the situations considered there. Structural consistency and correctness is 
also addressed in the context of the ADEPTflex model [7].  Logic-based approaches 
for workflow verification are discussed by Bi and Zhao [4].  The approach of Aalst 
and Verbeek is based on converting a workflow into a Petri net and then checking 
correctness using a tool like Woflan [2, 10].  The drawback with this approach is that 
after the workflow is converted into a Petri-net, it loses its natural structure.   

This paper is organized as follows. Section 2 describes our notations and the 
assumptions made in this paper. In addition, the concept of structured workflows and 
workflow correctness are reviewed. In Section 3, we introduce our taxonomy for 
unstructured workflows and give some results. Section 4 considers situations where 
loops are present. Section 5 discusses possible future work and concludes the  
paper.  

2   Workflows and Correctness Issues 

2.1   Workflow Definition and Semantics 

Definition 1 (Workflows). A workflow is a directed graph consisting of activities, 
arcs, and control elements. The control elements are of the following types: start, 
finish, split-parallel, join-parallel, split-choice, and join-choice where:  
 



270 R. Liu and A. Kumar 

 

(1) Arcs are used to connect activities and control elements.  
(2) In-degree d -(n) and out-degree d +(n) indicate the number of arcs entering and 

leaving a workflow node n respectively. 
(3) Each workflow has only one start node and one end node. For a start node s, 

d -(s)=0 and d +(s)=1; For an end node e, d -(e)=1 and d +(e)=0.  
(4) For any activity a, d -(a)=1 and d +(a)=1. 
(5) For any join element j, we require d -(j)=2 and d +(j)=1. Similarly, for any split 

element s, d -(s)=1 and d +(s)=2. The in-degree (d -) and out-degree (d +) of an 
element can determine whether it is a split or a join.  

(6) To avoid triviality, in any path from a split element to a join element, there exists 
at least one activity.  

(7) Every activity or control element is in at least one path from the start node to the 
end node.  

Fig. 1 shows the graphical notation for workflow nodes. For simplicity, and 
without loss of generality, we assume that each control element has only two 
incoming (or outgoing, as the case may be) branches. A join with d -(j)>2 can be 
represented by a combination of multiple join elements. Similarly, a split with d +(j)>2 
can be achieved by a combination of multiple split elements. In addition, Definition 1 
also implies that, in a workflow, there is at least one path between any two nodes. 
Based on this definition, we will develop a systematic approach to verifying 
workflows, detecting causes of structural flaws (if any), and showing equivalent 
structured mappings. This rigorous workflow definition by no means limits the 
application of this approach. Other relaxed workflow models [4, 9] can also be 
verified by this approach after simple conversions in accordance with Definition 1.  

(c) Activity

or

(f) Split-choice

and

(e) Join-parallel(a) Start (b) End

and

(d) Split-parallel (g) Join-choice

or

 

Fig. 1. Graphical representations of workflow control elements (or nodes) 

2.2   Semantics of Control Elements 

Next, we discuss the semantics of the workflow control elements. Semantically, after 
a split-parallel element, both of its branches can be executed concurrently. Moreover, 
a join-parallel element can be executed only after both of its incoming branches have 
been executed. We also assume a split-choice element has the semantics of exclusive 
choice, i.e., both branches of a split-choice are exclusive and only one branch can be 
executed at one time. An inclusive choice can be achieved by a combination of split-
parallel and exclusive choice [3]. The semantics of a join-choice element can be one 
of the following: 

(1) Single execution: The join-choice element is executed only once after whichever 
branch is done first. The other branches are discarded when they finish.  

(2) Multiple executions: Whenever any of its incoming branches is done, the join-
choice element is executed.  This may create multiple instances.  



 An Analysis and Taxonomy of Unstructured Workflows 271 

 

If both the incoming branches of a join-choice can be active at the same time, the 
“multiple executions” semantics may cause correctness problems, as we will discuss. 

2.3   Structured Workflows 

Structured workflows impose certain restrictions on the relationships between control 
elements. In particular, in a structured workflow, each split-parallel element must 
have a corresponding join-parallel element, and each split-choice element has a 
corresponding join-choice element. There are four basic types of structured workflows 
[6]: sequence, decision structure, parallel structure, and structured loop, as shown in 
Fig. 2. A structured workflow can be composed inductively based on these four types 
or patterns. In addition, any structured workflow (or sub-workflow) can be treated as 
a single composite activity [9]. Therefore, we will also use the symbol of activity (see 
Fig. 1(c)), to denote any structured workflow, or sub-workflow. 

Sequence

and and

Parallel structure

or or

Decision structure

or or

Structured loop  

Fig. 2. Basic types (or patterns) of structured workflows 

2.4   Notions of Correctness 

In general, in an unstructured workflow, there may not be a strict one-to-one 
correspondence between a split control element and a join control element.  Hence, it 
is called unstructured, and this lack of structuredness may cause structural flaws that 
may lead to problems in execution. There are two typical structural flaws in 
workflows: deadlocks and multiple active instances of the same activity [6, 9]. A 
workflow is considered to be well behaved if it can be shown that it does not produce 
deadlocks and also does not allow multiple instances of the same activity [6]. A 
deadlock means that the workflow will never end.  Multiple instances can lead to 
some undesirable results, such as redundant activities, competition for resources, and 
dangling activities (e.g. one instance is synchronized with an activity, and then the 
other instances are left dangling). A structured workflow, on the other hand, is well 
behaved and does not suffer from these problems. Therefore, unstructured workflows 
must be carefully verified. In addition, although some unstructured workflows do not 
have any structural flaws, yet workflow products may not support execution of such 
workflows.  However, by transforming them into their equivalent structured 
mappings, they can be implemented by such products. 

Typically, a deadlock results from a split choice element being followed by a join-
parallel element (see Workflow wf1 in Fig. 3), where a deadlock may occur at the 
join-parallel element.  This simple example shows how an unstructured workflow 
might fail to execute.  On the other hand, a join-choice element following a split-
parallel element (see Workflow wf2 in Fig. 3) could result in multiple instances of the 
same activity. However, this structure should be analyzed in detail based on the 
semantics of the join-choice element as follows: 



272 R. Liu and A. Kumar 

 

Case 1: If the join-choice has the “single execution” semantics, only one instance of B 
is created, after either A1 or A2 is done. Therefore, there are no structural flaws.  
Case 2: If the join-choice element has the semantics of “multiple executions” (see 
Section 2.2), A1 and A2 will produce two instances of activity B. 

The first case may sometimes be very useful in business processes because it can 
make workflows more expressive. For example, in a process, suppose a job can be 
handled by two alternative approaches, say, A1 and A2. To save time, these two 
approaches can be tried in parallel. Whenever one approach is successful, the other 
approach is ignored, and the process proceeds with its subsequent tasks.  

or and

A

B

C1S C1J

Workflow wf1 Workflow wf2

and or

A1

A2

B

C1S C1J

and and

A1

A2

B

Workflow wf3

C1JC1S

 

Fig. 3. Workflows with correctness issues present 

Since the semantics of the join-choice in the first case is somewhat similar to a 
join-parallel, in that it proceeds only once, although both its incoming branches can be 
executed, to help our correctness analysis, we can temporarily map it to a join-parallel 
element. This mapping is called a quasi-equivalent mapping. In Fig. 3, Workflow wf3 
is the quasi-equivalent mapping of the Workflow wf2. 

Definition 2 (Quasi-equivalent or q-equivalent mapping). A mapping from 
workflow A to workflow B is quasi-equivalent if A can simulate B, but B cannot 
simulate A.  

Based on the concept of bisimulation games, workflow A can simulate workflow B 
if A can imitate any movement (e.g., starting or finishing the workflow, or completing 
an activity,) of B. If A can simulate B, and B can also simulate A, then we say A and B 
are equivalent, or A is the equivalent mapping of B [6]. As an example, consider the 
two workflow patterns in Fig. 3. Here, based on bisimulation games, Workflow wf2 
can simulate Workflow wf3, but wf3 cannot simulate wf2. In wf2, the possible 
completed execution paths (or interleavings) are A1A2B, A2A1B, A1BA2, and A2BA1, 
but only A1A2B and A2A1B are the possible paths of wf3.  In other words, wf2 is more 
expressive than wf3. Thus, this mapping is not completely equivalence preserving. 
However, such a quasi-equivalent mapping can help in the verification of complicated 
workflows involving join-choice elements as we will see later.     

2.5   Structural Flaws – Notions of Corresponding Control Elements  

Next, we study causes of structural flaws with the help of some definitions.   

Definition 3 (Corresponding control elements). A split element s corresponds to a 
join element j, if two minimal paths, starting along two different outgoing arcs of s, 
first join at j.  This corresponding pair s and j is denoted by (s, j).  

By minimal we mean that any node on a subpath of these paths does not have the 
correspondence property with s.  For example, in Fig. 4(a), Workflow wf1 has (C1S, 



 An Analysis and Taxonomy of Unstructured Workflows 273 

 

C1J), (C2S, C2J) and (C3S, C3J), but not (C1S, C2J), since a path from C1 to C2J 
(C1S A2 C3S A5 C1J A6 C2J) is not minimal as it already contains C1J, a 
corresponding element of C1S. Similarly, we do not have a correspondence (C1S, 
C3J). Next, we state some simple lemmas without proof.  

Lemma 1: Every split control element must have at least one corresponding join 
control element.  

Lemma 2: In general (unstructured) workflows, the split and join control elements 
need not be of the same type  

Lemma 3: A split control element may have multiple unique corresponding join 
control elements.  

Lemma 4: A join control element may correspond to more than one split control 
elements. 

orA1 A2

or or

A3

A4

or

A5

A6

A8

A7

or

or

C1S

C2S C3S

C1J

C2J

C3J

(a) Workflow wf1

orA1 A2

or or

A3

A4

or

A5

A6 A8

A7

or

or

C1S

C2S C3S

C1J

C2J

C3J

(b) Workflow wf2

A6

orA1 A2

or or

A3
A4

or

A5

A6 A8

A7

or

or

C1S

C2S C3S

C1J

C2J

C3J

(c) Workflow wf3

A6

A7

 

Fig. 4. Steps in mapping an unstructured workflow wf1 into a structured wf3 

Definition 4 (Mismatched pair). A pair of corresponding control elements (s, j) is 
mismatched if s is a split-choice and j is a join-parallel element, or s is a split-parallel 
and j is a join-choice element. (s, j) is called a mismatched pair.   

Definition 5 (Improper nesting). A pair of matching control elements (s, j) is 
improperly nested with another pair of matching control elements (u, v), if s (or j) is 
in a path from u to v, but j (or s) is not in this path. This is denoted as (u, v) [

] (s, j).    

Definition 6 (Order of Improper nesting). (u, v) [
] (s, j) is called first-order improper 

nesting, if there is no (x, y), such that (u, v) [
] (x, y), where (x, y)  (s, j). (u, v) [

] (s, j) is 
called nth-order improper nesting if there exist (u, v) [

] (xi, yi), where (xi, yi)  (s, j) and 
i=1, 2, …, n-1. We use (u, v) [

] {(x1, y1), (x2, y2),…, (xn, yn)} to denote n pairs of 
corresponding elements nested into (u, v).  

Fig. 5 shows two examples of improper nesting. In both examples, a pair of 
corresponding control elements (C2S, C2J) is nested with another pair of 
corresponding control elements (C1S, C1J), constructing a first-order improper 
nesting (C1S, C1J) [

] (C2S, C2J). In this figure, A, B, C, D represent any activities or 



274 R. Liu and A. Kumar 

 

tasks, while the dotted lines represent other activities or control elements. In addition, 
mismatched pairs can be combined with improper nesting to create other 
combinations of pairs as we will see in the next section.   

3   Scenarios for Unstructured Workflows 

3.1   General Forms of Unstructured Workflows 

As discussed above, split and join control elements are always paired, i.e. every split 
control element has a corresponding join control element.  If the control elements are 
properly nested, and the corresponding elements are of the same type, then it is a 
structured workflow; however, if they are of different types, then it is an unstructured 
workflow. An (And, Or) pair produces a q-equivalent mapping. However, an (Or, 
And) pair will lead to a deadlock.  Therefore, if control elements are properly nested, 
then it is possible to determine whether a workflow is q-equivalent or whether it will 
deadlock by looking at all pairs that are present.   

or

or

B
A

or

E
D

or

C1S

C1J

C2S

C2J

(b) Workflow wf2

and

and

BA

and

E

D

and

C2S

C1S

C1J

C2J

(a) Workflow wf1        

Fig. 5. Two patterns of improper nesting  

Algorithm 1: If a workflow is properly nested, then compare each split and join pair: 

(1) If only (And, Or) pairs exist, it has a q-equivalent mapping.   
(2) If any (Or, And) pair exists, then the workflow will deadlock and is incorrect.    

On the other hand, if the workflow is improperly nested, then we need to consider 
the nesting patterns based on split-join combinations in each pair.  In the context of 
Fig. 5, each control element can either be an AND or an OR.  Thus, each control node 
can take two values, and there are 16 combinations.  Next, we will discuss each 
combination in detail. Our purpose is to investigate the possible correctness issues for 
each combination, determine which combinations can be mapped to structured ones, 
and develop equivalent or quasi-equivalent mappings for them. We also want to 
determine whether an unstructured workflow is well behaved, and if it is well 
behaved, whether a structured mapping exists for it. We will show later how this can 
be done in some cases.  

 



 An Analysis and Taxonomy of Unstructured Workflows 275 

 

3.2   Enumerating All Combinations 

Table 1 shows the 16 different scenarios for improperly nested structures, both 
matched and mismatched.  Here we consider a (C1S,C1J) [

] (C2S,C2J) control 
structure. We consider all possible combinations of the four control elements 
involved.  We also assume that there is a one-to-one correspondence between the split 
and the join control elements.  This means that C1J(C2J) is the only join element 
corresponding to C1S(C2S), and vice-versa.   

Table 1. First-order improper nesting and mismatched pairs and their behaviors 

Type (C1S C1J) (C2S C2J) Correctness issues Structured transformation 
1 OR OR OR OR  well-behaved Yes 
2 OR OR OR AND deadlock No 
3 OR OR AND OR multiple instances q-equivalent mapping 
4 OR OR AND AND deadlock No 
5 AND AND OR OR deadlock No 
6 AND AND OR AND deadlock No 
7 AND AND AND OR multiple instances q-equivalent mapping 
8 AND AND AND AND well-behaved No 
9 OR AND OR OR deadlock No 
10 OR AND OR AND deadlock No 
11 OR AND AND OR deadlock No 
12 OR AND AND AND deadlock No 
13 AND OR OR OR multiple instances q-equivalent mapping 
14 AND OR OR AND deadlock No 
15 AND OR AND OR multiple instances q-equivalent mapping 
16 AND OR AND AND multiple instances q-equivalent mapping 

As the table shows, all combinations where there a split-choice node is followed by 
a join-parallel node lead to deadlock. This explains the behavior in 9 of the 16 cases.  
Among the remaining 7 cases, two are well-behaved, and 5 involve multiple 
instances. The well-behaved ones are those where all four control elements are 
identical (either all ANDs or all ORs).  Next we look at some examples to illustrate 
some cases from Table 1. 

3.3   Approach and Examples 

Here we first give some examples to illustrate our approach.   

Example 1: Fig. 6 shows a workflow example of Type 1 (from Table 1) and its 
equivalent structured mapping. In this mapping, the activity that lies between the two 
join-choice nodes (activity E) is duplicated and pushed up. Thus the two join-choice 
nodes are together, and can be interchanged. In this way, improper nesting (C1S, C1J) 

[
] (C2S, C2J) is corrected. 



276 R. Liu and A. Kumar 

 

or

or

BA

or

E

D

or

C2S

C1S

C1J

C2J

E

Workflow wf2
(Mapping of wf1)

or

or

BA

or

E

D

or

C2S

C1S

C1J

C2J

Workflow wf1 (Type 1)  

Fig. 6. Example workflow to illustrate case 1 from Table 1 

The general approach applicable to Type 1 workflows is to push the activities that 
lie between two join-choice nodes up, and thus create a structured mapping.  

Example 2: Fig. 4(a) shows a workflow with 3 split and 3 join control elements.  The 
correspondence between the three pairs of control elements is denoted as: (C1S, C1J), 
(C2S, C2J), (C3S, C3J).  The improper nesting relationships are as follows:  

(C1S, C1J) [] {(C2S, C2J), (C3S, C3J)},  
(C2S, C2J) [] (C1S, C1J), and  
(C3S, C3J) [] {(C1S, C1J), (C2S, C2J)}.  

Only (C2S, C2J) [
] (C1S, C1J) belongs to first-order improper nesting, and it is of 

Type 1 in Table 1. Therefore, we can remove this improper nesting using the 
technique above, and get workflow wf2 of Fig. 4(b). In wf2, only one improper 
nesting (C3S, C3J) [

] (C1S, C1J) (or say (C1S, C1J) [
] (C3S, C3J)) remains. Again, 

this improper nesting is of Type 1. We continue this procedure and get the final 
transformation shown as Workflow wf3 in Fig. 4(c).   

Therefore, this approach for detecting structural flaws and developing a structured 
mapping is as follows: 

(1) Find all pairs of corresponding elements and determine improper nesting and 
mismatching pair relationships.   

(2) For any first-order improper nesting or mismatched pairs, look up Table 1 for its 
corresponding type and correct it, if possible.  

(3) Repeat this process until all improper nestings have been fixed. 

However, some unstructured workflows may only have second-order and higher 
improper nestings. These cases are discussed next. 

3.4   Results and Handling Second- and Higher-Order Improper Nesting 

Before discussing our approach for handling higher-order improper nesting, we give 
the definition of adjacent join nodes.  



 An Analysis and Taxonomy of Unstructured Workflows 277 

 

Definition 7 (Adjacent join nodes): Two join nodes are adjacent, if there are only 
activity nodes, but no other control nodes between them.   

For example, in Fig. 4(a), (C1J, C2J) and (C2J, C3J) are pairs of adjacent join 
nodes. An intuitive observation is that, for example, if C1J can be pushed down below 
C2J, at least we can remove one improper nesting (C2S, C2J) [

] (C1S, C1J). By this 
approach, we can reduce a higher order of improper nesting eventually to a first order, 
and then determine the correctness of this workflow by using Table 1. However, we 
need certain rules to switch locations of two adjacent join nodes in order to preserve 
the equivalence.  In a workflow with improper nesting, two adjacent join nodes 
always exist, and we need to determine if they can be switched. 

For two adjacent join nodes, there are four possible cases. Fig. 7 shows these four 
cases. For simplicity, this figure only shows the join nodes and omits all the 
corresponding split nodes. These cases will be illustrated with examples. Note that 
Case 4 requires two upstream join-choice nodes adjacent to a join-parallel node 
downstream. Later on, we will show that when parallel structures are nested into 
decision structures, only improper nesting of Case 4 possibly has transformations. 
Next, we handle each case one by one and we discuss some of our results. 

Case 1 Case 2 Case 3

and

and

B

A j

v
and

or

B

A j

v
or

or

B

A j

v
or

and

BA j

v1
or

v2

Case 4  

Fig. 7. Different cases of adjacent join nodes 

3.4.1   Cases 1 and 2 
Theorem 1: In a workflow that contains a (u, v) [

] (s, j) nesting, where u is a split-
parallel, v is a join-parallel, and s is in a path from u to v, if there is at least one 
activity between u and s, and at least one activity between v and j, this workflow does 
not have an equivalent structured mapping. 

Proof sketch: The proof is based on construction and uses Fig. 8.  Two scenarios are 
constructed for creating a structured mapping by: removing activity D and pushing v 
down (Fig. 8(b)), or removing activity B and pushing s up (Fig. 8 (c)).  Then, we 
argue that in either case the removed activity cannot be reinserted without disturbing 
the order of activities in Fig. 8 (a). Therefore, a structured mapping is not possible.  

Theorem 1 can be used to check whether an unstructured workflow has an 
equivalent structured mapping, and shows that Cases 1 and 2 (of Fig. 7) do not have 
structured mappings. However, Theorem 1 says nothing about situations in Fig. 8(a) 
where either B or D does not exist. In such cases, structured mappings are possible as 
shown in Fig. 9. This is possible because there is no activity between the two split-
parallel nodes u and s. 



278 R. Liu and A. Kumar 

 

(a) Improper nesting
example

and

and

u

v

s

j

A C

E

D
Note: s and j can
be either parallel
or choice node

A

and

and

B

C

E

D

u

v

s

j

and

and

u

v

s

A

B

C E
j

(b) Pushing v down
(Node D removed)

(c) Pushing s up
(Node B removed)  

Fig. 8. A workflow with improper nesting inside AND elements, and its unsuccessful 
structured mappings 

A

and

and

and

C

and

E

D

u

v

s

j

(a) Improper nesting
example

A

and

and

and

C

and

E

D

u

v

s

j

(b) Structured mapping
 

Fig. 9. Workflow with improper nesting and its equivalent structured mapping 

Note that while we just showed Cases 1 and 2 do not have structured mapping, yet 
they may still be well behaved. We further note that problems of deadlocks and 
multiple instances arise only when choice nodes are present. For example, in Figure 
8(a), if s and j are OR nodes, this workflow leads to deadlocks at node v. However, a 
workflow without choice nodes is free of these structural flaws. Therefore, we state 
Lemma 5 (without proof) as follows.  

Lemma 5: If a workflow contains only AND nodes, it must be well behaved. 
However, it does not have a structured mapping if it contains improper nesting (u, v) [

] 

(s, j) and there is at least one activity between u and s and at least one activity 
between v and j. 

3.4.2   Case 3 
Case 3 is a generalization of an example already discussed in Fig. 4, and it does have 
an equivalent structured mapping.  As discussed there, the general strategy for this is 
as follows: the activities that lie between the two adjacent join-choice nodes are 



 An Analysis and Taxonomy of Unstructured Workflows 279 

 

duplicated and pushed up above the upper join-choice, and the two join-choice nodes 
are interchanged.  This produces an equivalent structured mapping.   

3.4.3   Case 4  
This is a case of second order nesting such as (s, j) [

] {(u, v), (x, y)} where (s, j) are 
AND nodes and the other two pairs are OR nodes (Fig. 7).  We first state some 
definitions.  

Definition 8 (parallel paths and exclusive paths): Two paths p and q are parallel if, 
when p is taken, then q must be taken simultaneously; p and q are exclusive if, when p 
is taken, it implies that q cannot be taken.   

In this situation, a structured mapping is possible if the adjacent join-choice and 
join-parallel nodes can be interchanged.  To check if this is possible, we consider all 
combinations of path pairs from a split-parallel to the join-parallel node. The 
combinations that consist of parallel paths between the split-parallel and join-parallel 
nodes are feasible.  Each path combination can thus form a structured AND sub-
workflow, which can be inserted inside the original split-choice and join-choice 
nodes, to give an equivalent structured mapping. If even one such combination exists, 
then a structured mapping is possible.  If no such combination exists, it means the 
workflow will deadlock and is incorrect. More details of the algorithm are omitted for 
space reasons, but an example will illustrate our idea.  

Fig. 10(a) is an example of a (s, j) [
] {(u, v), (x, y)} workflow from [6]. We apply 

our method to analyze this workflow by finding all paths between a split-parallel (C2S 
or C2S') and the join-parallel (C2J) nodes. Next, we find combinations where all 
paths within a combination are in parallel with each other, and exclude the other 
combinations of paths.  Obviously, DI and GJ, and FI and EJ are two pairs of 
exclusive paths, and can be eliminated. However, there are other two combinations 
with two parallel paths in each. These are shown along with the final structured 
mapping in Fig. 10(b). 

and

and

ED

or

I J

K

C1J C1J’

C2J

or

A

B C

and

GF

or

and

and

ED

or

I J

K

or

A

B C

and

GF

and

IJ

(a) Overlapping Structure (b) Structured mapping

C1S

C2S C2S’

C1S

C2S C2S’

C1J

C2J C2J’

 

Fig. 10. An overlapping structure and its mapping 



280 R. Liu and A. Kumar 

 

4   Introducing Loops 

So far we only considered acyclic workflows, i.e. in these workflows, there were no 
paths that created cycles.  Next, we turn to consider workflows where cycles or loops 
exist. Loops are normally created between a join-choice element and a split-choice 
element as shown in Fig. 11. These two elements do not have corresponding elements 
to them in the sense of Definition 3.  However, they are said to correspond to each 
other (for loops), and every loop will have such a pair of choice elements. In Fig. 11, 
C1S and C1J are such distinguished nodes and they are said to correspond to each 
other. In a structured loop (see Fig. 2), there are no other exits from or entrances into 
the loop path.  However, in a general loop additional entrances and exits may exist.  
We call these as situations of improper nesting into the loop. In this section, we are 
primarily interested in loops with at least one join-choice element that serves as an 
entrance, and one split-choice that serves as an exit from the loop.  Then, we consider 
scenarios involving additional entrances and exits.   

4.1   Scenarios and Taxonomy 

Fig. 11 shows the corresponding scenarios of interest.  In both these figures there is a 
correspondence between C2S and C2J nodes.  In Fig. 11(a), C2J lies on the loop and 
C2S is outside the loop, while in Fig. 11(b), it is the other way around.  There are four 
combinations of values for the C2S and C2J pairs, and these are considered in Tables 
2 and 3, which correspond to Fig. 11(a) and Fig. 11(b) respectively.  The tables show 
that in both scenarios, 2 out of 4 cases behave similarly and are acceptable.  When the 
split-join combination is OR-OR, the workflow is well-behaved and also has a 
corresponding structured representation.  The AND-OR combination leads to multiple 
instances, and in an entering structure, it has a q-equivalent mapping. A third 
combination AND-AND, causes a deadlock for an entering structure, but works well 
in the exit structure.  The semantics in this case is as follows: if there are multiple 
passes through the loop, then activity D will get invoked repeatedly.  However, when 
the loop is exited, then the AND control element C2J will be activated. From a 
 

or

or

B

A
or

E

D

or

C2S

C1J

C1S

C2J

or

or

B

A or

E
D

or

C1J

C1J

C2S

C2J

(a) Entering structure into a loop (b) Exit structure from a loop  

Fig. 11.  Structures entering and leaving loops 



 An Analysis and Taxonomy of Unstructured Workflows 281 

 

semantic perspective, the results from the most recent execution of D should be 
regarded, while the earlier ones can be ignored. The last structure in the table is OR-
AND that leads to deadlock. Clearly the behavior in the case of an entrance versus an 
exit from the loop is not symmetric. Next, we see how equivalent mappings of 
structures with loops can be created. 

4.2   Mappings 

Next, to appreciate how a q-equivalent structured mapping can be created for a Type 
1N workflow from Table 2, consider Fig. 12(a). In the mapping shown here, the loop 
E A B E is duplicated and C2J, a join-choice node is mapped to a join-parallel 
node. In this mapping, multiple instances can arise of activities E, A and B, which lie 
inside the loop.   

Similarly, a type 3N structure from Table 2 has an equivalent structured mapping  
as shown in Fig. 13. A Type 3X workflow, as shown in Fig. 14, is well behaved, but 
we will show that it has no structured mapping without using auxiliary variables.   

Table 2. Behavior of structures entering a loop 

Type (C2S C2J) Correctness issues Structured Transformation 
1N AND OR multiple instances q-equivalent mapping 
2N OR AND deadlock No 
3N OR OR well-behaved Yes 
4N AND AND deadlock No 

Table 3. Behavior of structures exiting a loop 

Type (C2S C2J) Correctness issues Structured Transformation 
1X AND OR multiple instances No 
2X OR AND deadlock No 
3X OR OR well-behaved Yes 
4X AND AND well-behaved  No  

or

A

or

E

D

and
C2S

C1J

C2J

E

and

(a) Type 1N with a loop

or

or

B

A or

E

D

and

C2S

C1J

C2S

C2J

(b) Q-equivalent mapping

B

or

or

A

B

C1S

C1J’

C1S’

 

Fig. 12. Type 1N with a loop and its quasi-equivalent mapping 



282 R. Liu and A. Kumar 

 

or

or

B

A
or

E

D

or

C2S

CIJ

C1S

C2J

 (a) Type 3N with a loop

or

B

A

or

E

D

or

C2S

C1J

C1S

C2J

B or

(b) Equivalent mapping  

Fig. 13. Type 3N with a loop and its equivalent structured mapping 

4.3   Results 

Finally, we give two main results related to loops.  

Lemma 6: A workflow pattern of type 3X with a loop cannot be mapped to structured 
workflows (without using auxiliary variables).  

Proof sketch: (by contradiction) The proof is based on arguing that this loop has two 
exit nodes, and a different activity follows after each of these exit nodes. A structured 
mapping of the loop will have only one exit node, and an auxiliary variable would be 
required to determine which of the two exits was taken in order to make sure that the 
correct activity follows the exit.   

Fig. 14(a) gives an example of how a mapping for this situation can be produced 
with auxiliary variables. It is also observed in [6] that certain forms of unstructured 
workflows cannot be transformed without the use of auxiliary variables.  

or B

A

orE

D

or

C1J

or

or

or

p

q=b

~q

~p

q=true

q

p=a

~p p

C3S

C3J

C1S

C2S

C2J

(b) Structured mapping

or

or

B

A or

E
D

or

C1J

C1S

C2S

C2J

a
~a

~b
b

(a) Type 3X (loop)  

Fig. 14. Type 3X (loop) and its structured mapping using auxiliary variables 



 An Analysis and Taxonomy of Unstructured Workflows 283 

 

or

or

B

A and

E
D

or

C1J

C1S

C2S

C2J~b
b

 

Fig. 15. Type 1X (loop) 

Lemma 7: A Type 1X (or 4X) workflow cannot have a q-equivalent (or equivalent) 
structured mapping.  

Proof sketch: (by contradiction) This result is proved by arguing that for a workflow 
of Type 1X (see Fig. 15), any structured mapping must contain a structured loop and a 
parallel structure. The parallel structure would contain E and D in parallel. If such a 
structure were inside the loop, then both E and D would be part of the loop (but D is 
not); while, if it were outside the loop, then both would be outside (but E is in the 
loop)!   

5   Discussion and Conclusions 

In this paper, we have tried to create formal taxonomy of unstructured workflows based 
on a notion of improper nestings and mismatched pairs.  The notion of nestings is 
developed in terms of first- and higher-order nestings.  We have shown how this 
taxonomy can help in analyzing unstructured workflows and determining whether they 
are well-behaved, and if so, whether they can be transformed into equivalent structured 
mappings.  Such an equivalent structured mapping may involve some redundancies, but 
it allows us to verify that a workflow is correct.  Moreover, as mentioned earlier most 
tools do not support unstructured workflows; however, if certain kinds of unstructured 
workflows can be mapped into structured ones (even at the cost of duplicating some 
activites), this can provide an easy way to increase the expressive power of the 
workflows that can be supported by these tools. We have extended previous research by 
putting it into a framework, and also developed some new results. 

We have also given results for analyzing situations with higher-order nestings. 
However, there are still some open issues. One conjecture we are still trying to verify 
is that: if the structures involved in a higher-order nesting have one-to-one 
correspondence between them, then each pair of nesting can be analyzed separately as 
a first-order nesting, using Table 1, to determine whether the workflow is correct. 
Some examples bear this out but more work is required to prove it formally.   

Acknowledgment. The authors thank Henry H. Bi for discussions and comments.  



284 R. Liu and A. Kumar 

 

References 

1. Aalst, W.M.P. van der, “The application of Petri nets to workflow management,” The 
journal of Circuits, Systems and Computes, 7(1):21-66, 1997. 

2. Aalst, W.M.P. van der, and B., Hofstede. “Verification of Workflow Task Structures: A 
Petri-net- based approach,” Information Systems, 25(1):43-69, 2000. 

3. Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barro, A.P. 
“Workflow patterns,” Distributed and Parallel Databases, 14(3):5-51, July 2003. 

4. Bi, H. and Zhao, L. “Process logic for verifying the correctness of business process 
models,” Proceedings of International Conference on Information Systems (ICIS 2004), 
Washington, D.C. ,  December 12-15, 2004. 

5. Georgakopoulos, D. and Hornick, Mark “An Overview of Workflow Management From 
Process Modeling to Workflow Automation Infrastructure,”  Distributed and Parallel 
Database, 3:119-153, 1995 

6. Kiepuszewski, B., Hofstede, A.H.M, and Bussler, C. “On Structured Workflow Modeling” 
In Proceedings CAiSE'2000, LNCS Vol. 1797, Springer Verlag. 

7. M. Reichert and P. Dadam, "ADEPTflex---Supporting dynamic changes of workflows 
without losing control," Journal of Intelligent Information Systems---Special Issue on 
Workflow Managament, 10(2):93-129, 1998. 

8. Sadiq, W. and Orlowska, M. E. “On correctness issues in conceptual modeling of 
workflows,” In Proceedings of the 5th European Conference on Information    Systems 
(ECIS `97), Cork, Ireland, June 19-21, 1997, pp. 943-964. 

9. Sadiq, W, and Orlowska, M. E. “Analyzing process models using graph reduction 
techniques,” Information Systems, 25(2):117-134, 2000. 

10. Verbeek, H.M.W., Basten, T. and Aalst, W.M.P. van der. “Diagnosing Workflow 
Processes using Woflan,” The Computer Journal, 44(4):246-279. British Computer 
Society, 2001. 



A Framework for Document-Driven

Workflow Systems

Jianrui Wang and Akhil Kumar

Smeal College of Business,
Pennsylvania State University, University Park, PA 16802, U.S.A.

{JerryWang, AkhilKumar}@psu.edu

Abstract. We propose and demonstrate the feasibility of a framework
for document-driven workflow systems that requires no explicit control
flow and the execution of the process is driven by input documents.
The framework can assist workflow designers to discover the data de-
pendencies between tasks in a process and achieve more efficient control
flow design. The framework also provides an architecture to separate the
workflow system from application data and facilitate inter-organizational
processes. Document-driven workflow systems are more flexible than tra-
ditional control flow processes, easier to verify and work better for ad
hoc workflows. We also implemented a prototype workflow system using
the framework entirely in a RDBMS using Transact-SQL in Microsoft
SQL Server 2000. A detailed comparison with control driven workflows
has also been done.

1 Introduction

Academic interest in workflow systems has increased considerably in the past
decade, especially with the boom in e-business and supply chain management.
Workflow is built into most commercial e-business and supply chain management
software, and functions as a foundation module to support business process
performance and coordination.

ARIS (Architecture of Integrated Information Systems) [17] developed a pio-
neering approach to model business processes, and also served as a foundation of
SAP/R3. ARIS takes five views of business processes: functional, organizational,
data, output, and control. The Workflow Management Coalition views workflows
as interactions of process, information and resource [9]. Depending on the di-
mension used for modeling, workflow systems can be viewed from one of the
following perspectives:

1. Process based perspective. This perspective tends to emphasize process as
the dominant dimension; processes consume, produce or transform informa-
tion under a set of business rules.

2. Information based architectures. This perspective emphasizes the informa-
tion dimension, viewing processes as operations that are triggered as a result
of information changes.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 285–301, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



286 J. Wang and A. Kumar

3. Organization perspective. This perspective views workflow as a mapping of
organization structures and focuses on the utilization of organization re-
source.

Unfortunately, although it is well accepted that workflow systems are an
integration of data, control, and resource, most workflow modeling languages
such as WSBPEL [16] (formerly BPEL4WS) and XPDL [19] focus on control
flow, and give less attention to other dimensions. One popular control flow study
is the one on workflow patterns by Aalst [1]. There are only a few studies on
data flow modelling [4,6,7,11,12]. However, for the most part, data and resource
flow research has received little attention compared with control flow [15].

In this paper, we take the information based perspective, and extend the
ideas in the WIDE approach [8]. As noted there, workflow systems must be
able to respond to data events, temporal events and external events. One logical
development of this idea is to consider the possibility of implementing a complete
workflow system inside a database using events as the main mechanism to drive
the workflow. In our study, we propose a framework and implementation of
document-driven workflow systems. This framework is more flexible than control
flow oriented workflow systems and works much better for ad hoc workflows. The
rest of the paper is organized as follows. In Section 2 we provide a motivation
for our approach with a clear example. Then in Section 3, we give a framework
and meta-models for document-driven workflow systems. An implementation
of this framework is described in Section 4. Here we discuss our SQL-based
implementation for a document-driven workflow system. Finally, in section 5 we
discuss the advantages and disadvantages of document-driven workflow systems
compared with control flow based systems. The paper is concluded in Section 6.

2 Motivation

In this section, we motivate our approach with a detailed example that compares
a control flow based workflow with the corresponding data flow based approach.
Fig. 1(a) shows an order process using control flow design. In this process, an
order is received, and then the customer’s credit rating is checked. Based on the
result of the credit check, either the order is cancelled or the steps of warehouse
pickup, shipping, invoicing and close order are performed. (To simplify the case,
we ignore the exception handling issues.)

The control flow design puts emphasis on the process, that is, the execution
sequence of the tasks. It does not explicitly explain why a task should be per-
formed before another. For example, it is not clear why the Warehouse Pickup
task is done before Ship (in Fig. 1(a)), or Invoice is done after Ship. In gen-
eral, control flow diagrams assume that the process designer has the business
knowledge to layout the task sequence. Tasks have various kinds of dependen-
cies between them. Zlotkin [20] summarizes three basic types of dependencies:
Fit, Flow, and Sharing, as shown in Fig. 2. Using Zlotkin’s dependency theory,
we can find that the tasks Warehouse Pickup and Ship have a flow dependency
between them, i.e. the output of task Warehouse Pickup is one of the required



A Framework for Document-Driven Workflow Systems 287

inputs of task Ship. A sharing dependency arises when several tasks compete
for the same resource. Fit dependencies arise when multiple activities collec-
tively produce a single resource, and they do not occur very often in workflow
situations.

Receive Order

Check Credit

Warehouse Pickup

Invoice

Ship

Close Order

Approve Reject

Cancel Order

OR

OR

ReceiveOrder

Check Credit
Warehouse Pickup

Invoice Ship

Order

Payment Order Items Shipping advice

Package List

Close Order

Invoice Shipping Report

Payment
(approved)

AND

ANDAND

AND

AND
Payment
(rejected)

OR

Cancel Order

Order Summary
(canceled) Order Summary(fulfilled)

OR

soft constraint

(a) (b)

Fig. 1. Order processing workflow with the control and document flow approaches

Fig. 2. Three basic types of dependencies among activities (Zlotkin [20])

If we take the dependency analysis approach one step further, and focus on
data dependencies, then we can develop a data flow chart as shown in Table
1 for the order process of Fig. 1(a). The data flow analysis provides the input
data for a task to be executed, and its output data. Then we can draw a new
process diagram using data flow analysis. This is shown in Fig. 1(b). As can be
seen from Fig. 1(b), the task Invoice does not have to be performed after task
Ship because there is no data dependency between them. However, a seller may



288 J. Wang and A. Kumar

have a policy that invoicing can only be done after shipment. Thus, we have
two types of constraints which determine the sequence of tasks: data dependency
constraints and business policy constraints. We call data dependency as a hard
constraint and business policy as a soft constraint because the former applies to
all organizations, while the latter may vary from one organization to another.

Table 1. Data flow analysis for tasks in an order process

Task Input Data Output Data

Receive order Order Information:
– Payment information(i.e. Cus-

tomer ID, credit card.)
– Order items(i.e. SKUs, unit price,

quantity.)
– Shipping Advice(i.e. UPS ground.)

The order information in the in-
put document is split into three
documents:

– Payment information
– Order items
– Shipping Advice

Check credit Payment Approved or rejected

Warehouse pickup Order items Pickup List

Invoice Payment, Package List, and Shipping
Advice

Invoice

Ship Pickup List and Shipping Advice Proof of Shipment

The process in Fig. 1(b) also raises two important questions about informa-
tion flow. The first question is: Why did the task Receive Order split the original
order data into three documents (payment, order items and shipping advice),
instead of handling it as one document? There are two advantages of doing so.
First, it is more efficient. If we simply send the whole order to task Warehouse
Pickup, then the whole order is locked when the task is executing, which pre-
vents others from making changes to any part of the order. However, such a lock
is unnecessary because change of shipping advice has nothing to do with Ware-
house Pickup. Second, it is more secure. The payment information is sensitive
and should be only released to relevant staff, i.e. the Credit Check staff. The
second question is: Can the two tasks, Invoice and Ship, be performed concur-
rently? Since both tasks require Shipping Advice and Package List information,
the question actually is, can Shipping Advice and Package List information be
accessed at the same time? The answer in this case is yes, because both tasks
only need read access to the data in the documents. In the next section, we will
introduce a document meta-model to go deeper into these issues.

The above data flow analysis has two advantages. First, it provides a partial
ordering for the tasks. Second, it imposes restrictions on the way in which the
process can be reconfigured because of soft constraints.

3 A Framework for Document-Driven Workflow Systems

We propose a four-layer architecture for modeling document-driven workflow
systems as shown in Fig. 3. The four layers are schema, runtime, scheduling, and



A Framework for Document-Driven Workflow Systems 289

application layer. The schema layer defines workflow processes, which consist of
tasks, documents and resources. The runtime layer specifies how processes and
tasks are started and ended. The scheduling layer contains algorithms to assign
documents and resources to a task so they can be executed. The application layer
provides links between the workflow system and the applications. It defines how
application data can be linked to the corresponding documents. Since there is
a clear separation between workflow data and application data, the details of
the application data are not important in the context of the workflow architec-
ture and are not discussed in detail here. The significant differences between our

Activity

change

trigger

activate

assign to

has
Process Task DocumentClass ResourceClass

perform

input

Schema layer

Runtime layer

Scheduling layer

Case

<<Process>>

Workitem

<<Task>>

Document

<<DocumentClass>>

Resource

<<ResourceClass>>

Application Data
change

Application layer

folder

role

initiate

trigger

instantiate

terminate

instantiate

change

Fig. 3. Document-driven workflow framework

document-driven workflow systems and conventional control flow based workflow
systems lie in the runtime and the application layers. In document-driven work-
flow systems, a process is instantiated into a case when certain external events
arrive (say, along with a message or a document). The process also creates a
set of initial documents of the process instance (or case). A task is instantiated
into a workitem when its input documents exist. The input documents required
by one task are usually the output documents from a previous task, except the
initial documents for the first task, which are generated by the process reposi-
tory when the process is instantiated. After a workitem gets its input documents
and associated resources (at the scheduling layer), it becomes an activity, which
can be executed. An activity changes input documents or produces new docu-
ments, which drives the next task. A process ends when its desired documents
are produced and its exit constraints are satisfied.

It is important to realize that the input documents may not be available
for the workitem when it is instantiated (because someone else may be using
them). Therefore, multiple workitems can be created concurrently if their input
documents exist, and they will compete for both resources and documents to
become executable activities.

The application layer serves as a bridge between the workflow system and the
applications. It should be noted that users cannot change application documents



290 J. Wang and A. Kumar

directly, rather it is done under the control of the workflow system. When an
attempt is made to change a document (by a user or another application), each
document has its own event adapter that will capture the changes and check
the associated constraints, and then update the document if the constraints are
satisfied. Although the architecture encompasses resource and scheduling, the
main focus is on documents in this paper. However, it is important to incorporate
resource and scheduling in the future research.

DocumentDocLockState

1..*

1..*

transition

DocCopyState
1..*

1..*

transition

DocElement

DataField

1..*
has

Version

1..*

applies to

1..*applies to

1..*
applies to

1..*
has

1..*

applies to

1..*

applies to

EventAdapter

1..*

updates

1..*
updates

1..*
updates

child+
1..*

parent +

Fig. 4. Document meta-model

To support this framework, we develop a meta-model for documents as shown
in Fig. 4. A Document is a set of information pieces which are composed to-
gether to serve a well defined business purpose. A Document consists of several
DocElements. A DocElement is a group of DataFields which have certain busi-
ness meaning. For example, address can be a DocElement which may consist of
street number, street, city, state, and zip code. A DataField is a piece of infor-
mation which is treated atomically. Moreover, changing a zip code from 16801 to
16802 is an example of an atomic change. A document may receive events from
its DocElements and DataFields, or from other documents. Not all the received
events will produce changes in the document. For example, an order form will
not be changed if the order has already been shipped. This is managed by the
use of constraints (to be discussed shortly). A document generates update events
if its content is changed. EventAdapters along with theirs constraints are used
to determine which events documents should respond to.

Fig. 4 also shows that a document has Versions. A version is used to model
the traceable history of workflow data. Since workflow transactions have long
transaction time, it is very common that some of the original data have been
changed before the transaction is completed. Therefore, keeping the data trace-
able is necessary and helpful. An order may also be split into two sub orders,
which result in two new documents with their own versions. A version may ap-
ply to a DataField, DocElement, or Document, but it is most relevant for a
Document. In general, a series of related data field changes will lead to a new



A Framework for Document-Driven Workflow Systems 291

document version. Documents can also have a link or parent-child relationship
between them. It is the responsibility of the application to keep the historical
data; the workflow system only provides a link to the application.

Unlocked

ShareLocked

ExclusiveLocked

read

modify

release

modify

release

release

AppendLockedappend

relase

append

release

(a) DocLockState

Original

Duplicate

Split

Duplicate

Merge

Split

Merge

(b) DocCopyState

Fig. 5. State diagram of DocLockState and DocCopyState

We also introduce DocCopyState and DocLockState to model concurrent ac-
cess to a Document. The different values of DocLockState (ShareLocked, Exclu-
siveLocked and AppendLocked) and the permissible transitions between them
can be found in Fig. 5(a). The DocCopyStates are Duplicate (which means an
identical copy of the original) and Split which divides the DocFields into sep-
arate documents. ShareLocked means that the lock mode is shared between
multiple tasks, while ExclusiveLock mode can be held by only one task. Finally
AppendLock mode means that the task can attach (or append) data into the
document, but not change any existing data. Multiple access is allowed in this
mode. DocCopyState can be used to trace and monitor documents when several
copies are distributed in the workflow system. The two types of states are related;
however, in a manual workflow system or in an inter-organizational system, the
DocCopyState is needed in addition to the DocLockState to keep track of how
many copies of a physical document are in circulation.

Fig. 5(b) shows the state diagram of DocCopyState. If a document has to
be used by more than one task (say, in a manual system), copies must be made,
thus the document enters the Duplicate state. Once a task is done, its duplicate
copy must be destroyed to avoid inconsistency. A document can also be split,
for example, if an order is partially fulfilled, then the order can be divided into
two parts: the fulfilled part and the back order part. The former can be shipped
immediately and the latter will still remain in process. In this case, the split
documents require no merge. However, there are other situations in which merge
may be necessary. For example, if the customer asks for all items to be sent in
one shipment, then split documents (corresponding to individual item orders)
should be merged.

DocLockState and DocCopyState together play a key role in determining the
control flow. A parallel split is only feasible when the document supports certain
state combinations given in Table 2. For example, row 1 of this table shows that
if the DocCopyState is Duplicate and the DocLockState is ShareLocked, then



292 J. Wang and A. Kumar

Table 2. State combinations that support parallel split

DocCopyState DocLockState

Duplicate SharedLocked

Duplicate AppendLocked

Split SharedLocked

Split AppendLocked

Split ExclusiveLocked

it is possible to access the document simultaneously in parallel. However, if the
DocCopyState is Duplicate and the DocLockState is Exclusive then sharing is
not possible. Hence, there is no entry for this combination. On the other hand,
when the DocCopyState is Split, then all three lock states are permissible.

The impact of application data changes on documents can be very complex
and has not been fully studied. From a systems perspective, the application data
is dynamic and subject to change over time. Any time some application data
changes, all associated tasks may be triggered. For example, a customer may
change his shipping address after he submits the order. Then, the order form
may be changed depending on the order status and the seller’s business policy
(i.e. the order form will not be changed if the order has already been shipped;
otherwise, it can be changed).

EventAdapter

Constraint

EventListener EventAction

1..*

register

1..*
invoke

1..*

*

Fig. 6. EventAdapter and Constraint meta-model

Next, we turn to the EventAdapter and Constraint meta-model shown in
Fig. 6. All the workflow entities (e.g. process, task, resource, document) in a
document-driven workflow system communicate with each other through events.
Fig. 6 shows that the EventAdaptor registers itself with EventListener and re-
ceives specified events. If an event arrives and all the constraints are satisfied,
then an EventAdaptor performs one or more EventActions. An EventAction is a
set of SQL statements. A constraint is an SQL statement that returns a Boolean
value. For example, we may have a constraint that says that an order can only
be changed when it is open. The constraint for order #99 can be written in a
Transact-SQL [14] statement as:



A Framework for Document-Driven Workflow Systems 293

Exists(Select * from Orders Where ID= 99 and State=’open’)

If this constraint returns FALSE, the EventAdaptor will ignore the order
change event, and the corresponding action will not be executed. In general,
this constraint language is powerful because any kind of constraint that can be
expressed in SQL can be handled by this system. In the next section, we turn
to implement this framework.

4 Implementation

We implemented the document-driven workflow system using Transact-SQL on
Microsoft SQL Server 2000. We use triggers to enact the workflow system. The
framework presented in Fig. 3 is mapped into a RDBMS using the architecture
described in Fig. 7. It shows that when a database table is changed (through an
insert, update, or delete operation), a corresponding trigger is fired. This trigger
generates appropriate events and puts them into the event queue table. Then
the trigger associated with the event queue table sends new event messages to
event listeners and the listeners execute all the event adapters that registered
for these events. Finally, the event adapters update the associated tables and
start the next iteration. The architecture shown in Fig. 7 consists of two loops:
workflow layer loop and application layer loop. The workflow layer loop updates
the workflow tables (through the workflow event adapter) and the application
layer loop updates the application table (through the application event adapter).
There are two types of triggers shown in Fig. 7, the system triggers (i.e. work-
flow and event triggers) and application triggers. Both use the same underlying
technology. However, it is the user’s responsibility to supply application triggers,
event adapters and tables for the application layer.

Event Triggers

Workflow Tables

EventListeners

Application EventAdapters

Application Tables

Event Queue Table

Workflow layer loop Application layer loop

Workflow Triggers Application Triggers

Workflow EventAdapters

fire

send event

insert insert

update update

execute execute

fire fire

Fig. 7. Workflow system execution architecture in RDBMS



294 J. Wang and A. Kumar

Fig. 8. Workflow system entity schema

Fig. 8 shows the tables for entities presented in the document meta-model
arranged by the layers of the framework (the scheduling layer is not shown
because it was not implemented). The entities in the schema layer are Process,
Tasks, DocumentType and associated tables. The entities in the runtime layer
are: Case, Workitem, Document and associated tables. There are no entities at
the scheduling level. Finally, the entities at the application layer are: DataField
and DataFieldType. DataField also serves as a link between the workflow system
and the application data by mapping a document data field into a cell in the
application data tables. This is indicated by the TableName and ColumnName
attributes in the DataFieldType table, and the RowId in the DataField table.
Therefore, we can link application data back to the workflow system by looking
up these two tables. This is also how a clean separation between the workflow
system and the application is achieved.

Fig. 9 shows the mechanism that drives the workflow system and belongs to
the runtime layer. It shows the implementation of the architecture in Fig. 7. The
main entities are: Event, EventAdapter and EventListener. The EventAction
entity in the meta-model is implemented as an attribute (called CommandText)
in the EventAdapter table.

Fig. 10 shows the trigger used to fire events when new documents arrive.
The trigger is fired when a new record is inserted into table Document by the
workflow system. It first retrieves the new document context into the @docId
variable using the select query in line 10. Then it retrieves the corresponding



A Framework for Document-Driven Workflow Systems 295

Fig. 9. Workflow system event schema

Fig. 10. System trigger for new document arrival

event into the variable @eventType using the select query in lines 12-13. Then it
generates a new event and inserts it into the event queue (i.e. the Events table)
in lines 15-16.

Fig. 11 demonstrates another system trigger used to activate event adapters
when events arrive. A cursor is declared to retrieve all the event adapters regis-
tered to listen to this event in lines 11-16. Then a loop is used to execute each
entry in the cursor in lines 18-27. Each iteration through the loop will retrieve
the event action stored in the variable @commandText, and attach the case Id
to the event action as a part of the SQL statement stored in the new string
@commandText (line 22). Then this SQL statement is executed in line 24. It
should be noted that no application data or tables are directly touched in the
above system triggers.

The workflow designer has to supply a process definition file to load the pro-
cess into the workflow system. The process is defined in an XML file that includes
three sections: interfaces, documents and tasks. The interfaces section describes
the events and event adapters for the process repository. The documents and
tasks sections define all the documents and tasks related to the process. Fig. 12



296 J. Wang and A. Kumar

shows parts of an order process definition file. The top part of this file describes
the interfaces section. There can be multiple interfaces in this section. Each in-
terface consists of an event element and the associated eventAdapter element.
For example, the definition shows that the order Arrives event is an external
event and the event type is Order. The corresponding event adapter has an action
called dbo.wfEAOrderArrives. This event adapter looks for an external event of
type order in listen mode (as opposed to send mode). This interface defines the
event that triggers the process repository to instantiate the process into a case.
The actual code of instantiating the process is implemented in the adapter action
(e.g. dbo.wfEAOrderArrives). The constraints associated with each adapter can
also be defined as child elements of the eventAdapter element. Each constraint
has a name attribute and a constraintText attribute as shown in line 12.

Fig. 11. System trigger for new event arrival

The next section of the file describes an Order Form document. Two events
are associated with this document. When a new instance of this document is
created, it will generate the New Document event. When an existing instance
of this document is updated, it will generate the Document Updated event. A
document may also have other events such as Split and Duplicate as described
in the document meta-model.

The last section of the file describes a Receive Order task. A task has at
least three definition subsections: inputDocument, outputDocument, and even-
tAdapter. The inputDocument subsection specifies the input documents for a



A Framework for Document-Driven Workflow Systems 297

Fig. 12. Sample process description file

task (i.e. the Receive Order task requires an Order Form document as its input
document). In general, a task must have at least one input document. The out-
putDocument subsection defines the output of the task. There are three output
documents: Payment, Pickup List, and Shipping Advice. The last subsection is
eventAdapters, which describes all the eventAdapters for the task. A task has at



298 J. Wang and A. Kumar

least one eventAdapter that instantiates the task into a workitem. For example,
the eventAdapter waiting for a new document event of type Order (lines 44-45)
creates an instance for the task (e.g. workitem) when it receives such an event.
A task may have entryConstraints and exitConstraints which are not shown in
Fig. 12. An example of an entryConstraint could be some business rules such as:
if the shipping option is UPS ground, then the Receive Order will wait for one
day to instantiate.

In this section we have demonstrated that the framework proposed in Section
3 can be implemented entirely inside a database system using SQL. The general
methodology consists of the workflow designer creating a process definition file
such as the one in Fig. 12 (using a text editor), and loading it into the workflow
system. Then the application developer supplies the application triggers and
event adapters to operate on the application data. After that the system triggers
enable the execution of the process, and react to events from the application.

5 Discussion and Related Work

It is evident that researchers are realizing the importance of integrating data
flow (document) into workflow modeling as indicated by some recent work on
document-centric workflows [6,7,11,12]. These studies present useful concepts for
modeling aspects of documents; however, the role of document (and it’s more
general concept, resource) and the dependencies between documents are not
addressed. Therefore, it is unclear how documents can be integrated fully into
workflow systems in the design stage.

Flexibility is one of the most important issues in a workflow management sys-
tem. Different approaches such as structured processes [10], workflow patterns
[1], and Petri-Nets [2,3] offer varying degrees of flexibility. All these approaches
are based on control flow, and try to achieve better flexibility by using complex
flow structures built upon split, join, loop, and wait-for constructs [3]. However,
they cannot predict the upper boundary of the flexibility. In the document-driven
architecture, this upper boundary is obviously the dependency between docu-
ments. For example, a customer cannot start to eat unless the food is produced,
but whether the customer should pay before or after eating may vary from one
restaurant to another. Therefore, the food dependency is a hard dependency,
and the payment policy is a soft one. The document-driven design can easily
discover the hard dependencies and provides the upper boundary of flexibility.

This flexibility makes document-driven workflows especially suitable for ad
hoc workflow processes as opposed to production workflows. Voorhoeve and Aalst
[18] define an ad-hoc workflow as an intermediate between well-structured, high
volume production workflow and less-structured cooperative groupware systems.
They also note that traditional workflow management systems (mostly based on
control flow) could be error-prone when the processes require frequent changes.
As an example, document-driven workflows may work well for most maintenance
processes which have a few tasks and no strict control flow. There are two issues
here. On the one hand, verification of document driven workflow is easier than



A Framework for Document-Driven Workflow Systems 299

Table 3. Comparison between document-driven workflow and control flow workflow

Document-Driven Workflow Control Flow Workflow

Process is driven by the documents. Process is driven by the control flow.

The process is very flexible and can be
changed instantly by changing constraints.

The process is less flexible because of the limi-
tation of flow patterns. It is difficult to change
a control flow of an instance because all the
instances share the same control flow pattern.

There are no fork/join design issues since
there is no control flow.

Fork/join elements are used to describe con-
trol flow. The control flow may not be feasible
because resource dependencies are ignored.

Application Data is separated from the pro-
cess.

In most case, the application data are at-
tached to the control flow.

Suited for ad hoc workflows. Good for production workflows with mature
processes and a large number of tasks.

Verification is relatively easy. Verification could be hard.

Need conflict resolution in complex workflows. No need for conflict resolution.

Difficult to visualize the process. Process can be visualized easily.

for a control driven workflow. However, document driven workflows can lead
to multiple triggers being enabled simultaneously when a document is created
or updated. In this situation, it is necessary to use priorities with triggers in
order to choose between enabled triggers. Table 3 shows a detailed comparison
between document-driven and control flow methodologies.

A drawback of document-driven workflows is that they lack visualization
of processes since there is no explicit control flow. The lack of visualization
makes document-driven workflows unsuitable for modeling processes with a large
number of tasks. Besides, a control flow diagram is still needed to get the big
picture when designing the process.

Another advantage of our approach is that it produces a clean separation
of application data from workflow processes. The DataField and DataFieldType
tables with associated events and eventAdpaters act as a middle layer between
the workflow system and the application. Any changes on each side only require
the middle layer to be changed and will not affect the other side. This strict
separation of application data from the process can facilitate the implementa-
tion of inter-organizational processes because no control information needs to be
exchanged between organizations.

The use of triggers in workflow system has been discussed in the WIDE
project [8]. Triggers are used to capture events and handle exceptions in addi-
tion to the normal workflow which is designed as a control flow. However, our
study takes this approach one step further by the use of database triggers as
mechanisms to drive and enact the workflow system, and removing the need for
a workflow “engine”. As a result, the workflow system can be implemented en-
tirely inside the database. The concept of constraints has been studied in most
workflow systems and they are usually represented as ECA (Event-Condition-
Action) rules [13]. Finally, a State Entity Activity Model (SEAM) was developed



300 J. Wang and A. Kumar

by Bajaj and Ram [5] to model workflows at the conceptual level. While SEAM
provides a direct mapping between the SEAM models and RDBMS, it is unclear
whether SEAM could support complex workflows such as the ones in [1].

6 Conclusion and Future Research

We proposed a framework for document-driven workflow systems. In addition we
implemented this framework to demonstrate that it is feasible to build a work-
flow system entirely inside a RDBMS. The most important difference between
this approach and conventional workflows is that, in document-driven workflow
systems there is no predefined control flow. All the tasks are executed based on
the availability of their input documents and associated resources. Therefore,
the extra work of checking the correctness of control flow can be reduced. In
addition, the framework provides a simple way to find deadlock and dangling
tasks through the input/output documents analysis.

The prototype workflow system was implemented entirely in a RDBMS using
Transact-SQL. The enactment depends on various events fired by database trig-
gers. The RDBMS based workflow system can be embedded into any database
application easily.

The document-driven approach may not work well when a large number
of data changes occur concurrently. This may lead to concurrency and conflict
resolution issues. Moreover, as mentioned above, lack of visualization is also a
drawback. While this approach may not be appropriate in all environments,
we feel that for the most part it is especially suitable for ad hoc workflows. The
concept of a document-driven model can be extended into a more comprehensive
resource-based model by viewing documents as a type of resource along with
other resources such as people, machines, facilities and equipment. Information
about all these resources can be kept in a database, and tasks would be enabled
only when all the resources are available. Thus, the same approach presented
here can be easily extended to encompass multiple types of resources.

References

1. Aalst, W.M.P. van der: Workflow Patterns. http://is.tm.tue.nl/research/

patterns/.

2. Aalst,W.M.P. van der and Hee, K.van: Workflow Management: Models, Methods,
and Systems. The MIT Press, January,2002.

3. Aalst, W.M.P. van der, and Kumar, A.: XML-Based Schema Definition for Support
of Interorganizational Workflow. Information System Research, Vol. 14, No. 1,
March 2003, 23-46.

4. Bae, H., et al.: Document configuration control process captured in a workflow.
Computers in Industry, No. 53, 2004, 117-131.

5. Bajaj, A. and Ram, S.: SEAM: A state-entity-activity-model for a well-defined
workflow development methodology. Knowledge and Data Engineering, IEEE
Transactions on Volume 14, Issue 2, March-April 2002 Page(s):415 - 431.



A Framework for Document-Driven Workflow Systems 301

6. Botha, R.A., Eloff, J.H.P., 2001. Access control in document-centric workflow
systems–an agent-based approach. Computers and Security 20 (6), 525-532.

7. Paul Dourish, W. Keith Edwards, Anthony LaMarca, et al., Extending document
management systems with user-specific active properties. ACM Trans. Inf. Syst.
18(2): 140-170 (2000).

8. Grefen, P., et al.: Database Support for Workflow management - The WIDE
Project. Kluwer Academic Publishers, 1999.

9. Hollingsworth, D.: The Workflow Reference Model 10 Years On. http://www.wfmc.
org/standards/model.htm.

10. Kiepuszewski, B., Hofstede, A.H.M, and Bussler, C.: On Structured Workflow Mod-
eling. In Proceedings CAiSE’2000, LNCS Vol. 1797, Springer Verlag.

11. Krishnan, R., Munaga, L., and Karlapalem, K., 2002, ”XDoC-WFMS: A Frame-
work for Document Centric Workflow Management System,” Lecture Notes on
Computer Science, 2465, pp. 348-362.

12. Mazumdar, S. and AbuSafiya, M., 2004. A Document-Centric Approach to Busi-
ness Process Management. In Proc. Intl. Conf. on Information and Knowledge
Engineering, pages 461-466.

13. McCarthy, D.R. and Dayal, U.: The Architecture of an Active Database System. in
Proc. ACM SIGMOD Conf. on Management of Data, Portland, 1989, pp. 215-224.

14. Micorsoft Corporation: SQL Server Books Online:Transact-SQL Reference. 2000.
15. Muehlen, M. zur: Resource Modeling in Workflow Applications. http://

www.workflow-research.de/Publications/PDF/MIZU-WF99.PDF.
16. OASIS: Web Services Business Process Execution Language (WSBPEL).

http://www.oasis-open.org.,fig:Architecture
17. Scheer, A.W.: ARIS - Business Process Frameworks. 2ed, Springer, 1998.
18. Voorhoeve, M. and van der Aalst, W.: Ad-hoc workflow: Problems and solutions.

International Conference on Database and Expert Systems Applications - DEXA,
1997, p 36-40

19. WFMC: XML Processing Description Language (XPDL). http://www.wfmc.org/
standards/XPDL.htm.

20. Zlotkin, G.: Organizing Business Knowledge - The MIT Process Hand-book. Edited
by Malone, T.W., et al, The MIT Press, 2003, pp. 20.



Service Interaction Patterns

Alistair Barros1, Marlon Dumas2, and Arthur H.M. ter Hofstede2

1 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

2 Queensland University of Technology, Australia
{m.dumas, a.terhofstede}@qut.edu.au

Abstract. With increased sophistication and standardization of model-
ing languages and execution platforms supporting business process man-
agement (BPM) across traditional boundaries, has come the need for
consolidated insights into their exploitation from a business perspective.
Key technology developments in BPM bear this out, with several web
services-related initiatives investing significant effort in the collection of
compelling use cases to heighten the exploitation of BPM in multi-party
collaborative environments. In this setting, we present a collection of
patterns of service interactions which allow emerging web services func-
tionality, especially that pertaining to choreography and orchestration,
to be benchmarked against abstracted forms of representative scenarios.
Beyond bilateral interactions, these patterns cover multilateral, compet-
ing, atomic and causally related interactions. Issues related to the imple-
mentation of these patterns using established and emerging web services
standards, most notably BPEL, are discussed.

1 Introduction

Process modeling languages have emerged as a key instrument for achieving
integration of business applications both within and across organizations in a
service-oriented architecture (SOA) setting. This trend is reflected in a number
of standardization initiatives such as the set of WS-* Specifications [11], OMG’s
Enterprise Collaboration Architecture1 and RosettaNet2, all of which position
processes at the highest level of abstraction. Process modeling languages provide
an abstract means of specifying complex sequences of execution steps, leaving
lower layers to deal with details like software interfacing, quality of messaging
and transport protocol binding. From the SOA prism, process steps result in
interactions with (web) services that encapsulate the business logic associated
to the step. Processes that rely on services to realize process steps can themselves
be deployed as services, a practice known as process-based service composition.

Through different insights from various initiatives over the last few years,
different aspects of process-based service composition have evolved. In partic-

1 http://www.omg.org/technology/documents/formal/edoc.htm
2 http://www.rosettanet.org

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 302–318, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Service Interaction Patterns 303

ular, the developments of the Business Process Execution Language (BPEL)3

and W3C’s Web Services Choreography Definition Language (WS-CDL)4, have
been accompanied by requirements and use cases gathering. However these have
largely steered towards technical concepts and implementation concerns, with
documented use cases and examples reflecting little more than simple processes
involving basic “buyer-supplier-shipper” interactions.

For service composition technology to progress further, more requirements
gathering is needed to shed light into the nature of service interactions in col-
laborative business processes. In particular, it must be considered that there is
often a large number of parties in such collaborative processes and thus the na-
ture of interactions may be multilateral rather than bilateral. Furthermore, the
assumption of strict synchronization of all canvassed responses breaks down due
to the independence of the parties. More realistically, responses are accepted as
they arrive or a minimum number is required for an interaction to be successful.
Another crucial feature is that not all service providers have comparative advan-
tage and collaborate. Not untypically, they compete. Hence, canvassed requests
to competing service providers may require exclusivity – e.g the first response
is accepted and the rest ignored. Finally, not all interactions follow a requestor-
respondent-requestor structure. Instead, a sender may redirect interactions to
nominated delegates and services may outsource requests choosing to “stay in
the loop” and partially observe follow-ups. More generally, it may only be possi-
bly to determine the order of interactions at runtime given the message contents.

This paper aims at contributing to this requirements gathering activity by
proposing a set of service interaction patterns. Patterns have proved invaluable
in the reuse of requirements, design and programming knowledge. They were tra-
ditionally the province of software design, but have recently emerged in the BPM
field [1]. The collected service interaction patterns apply primarily to the ser-
vice composition layer (orchestration, and choreography) but also to lower layers
(e.g. message typing and addressing). They have been derived and extrapolated
from insights into real-scale B2B transaction processing, use cases gathered by
standardization committees (e.g. BPEL and WS-CDL), generic scenarios iden-
tified in industry standards (e.g. RosettaNet Partner Interface Protocols), and
case studies reported in the literature. It is not claimed that the proposed set
of patterns is complete: the aim is rather to consolidate recurrent scenarios and
abstract them in a way that provides reusable knowledge. Furthermore, the pat-
terns allow the assessment of emerging web services standards. Specifically, we
use the patterns to analyze the scope and capabilities of BPEL and to some
extent of related specifications such as WSDL and WS-Addressing (WS-A) [11].

The proposed patterns are classified according to the following dimensions:

– The maximum number of parties involved in an exchange, which may be
either two (bilateral interactions, covering both one-way and two-way inter-
actions) or unbounded (multilateral interactions).

3 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel. In this
paper, we use the acronym BPEL to refer to WS-BPEL version 2.0.

4 http://www.w3.org/TR/ws-cdl-10



304 A. Barros, M. Dumas, and A.H.M. ter Hofstede

– The maximum number of exchanges between two parties involved in a given
interaction, which may be either two (in which case we use the term single-
transmission interactions) or unbounded (multi-transmission interactions).

– In the case of two-way interactions (or aggregations thereof) whether the re-
ceiver of the “response” is necessarily the same as the sender of the “request”
(round-trip interactions) or not (routed interactions).

Based on these dimensions, we identify four groups of patterns. The first one
encompasses single-transmission bilateral interaction patterns. These correspond
to elementary interactions where a party sends (receives) a message, and as a
result expects a reply (sends a reply). This group covers one-way and round-trip
bilateral interactions but not routed interactions which are covered in a separate
group. The second group of patterns stays in the scope of single-transmission
non-routed patterns, but deals with multilateral interactions. In this case, a party
may send or receive multiple messages but as part of different interaction threads
dedicated to different parties. The third group is dedicated to multi-transmission
(non-routed) interactions, where a party sends (receives) more than one message
to (from) the same party. The final group is dedicated to routed interactions.

The proposed patterns may be composed through operators expressing flow
dependencies such as sequence, choice, and synchronization. In this paper how-
ever, we do not deal with patterns composition. Also, it is not in the scope of
the proposed patterns to capture internal steps performed by a service that do
not directly contribute to nor directly result from interactions. Also, we abstract
from data representation and manipulation issues as these deserve a separate
elaboration. For the same reason, the patterns do not cover security issues.

The structure of the paper follows the groups of patterns outlined above. For
space reasons, we omit the first group which comprises three well-known patterns
(send, receive and send/receive) as detailed in [3]. Thus the next section starts
directly with Pattern 4.

2 Single-Transmission Multilateral Interaction Patterns

Pattern 4: Racing incoming messages.

Description. A party expects to receive one among a set of messages. These
messages may be structurally different (i.e. different types) and may come from
different categories of partners. The way a message is processed depends on its
type and/or the category of partner from which it comes.

Example. A manufacturing process involves remote subcontractors and uses
a pull-strategy to streamline its operations. Each step in the manufacturing
process is undertaken by a subcontractor. A subcontractor signals intention to
execute a step when it becomes available through a request. At the same time,
progress is monitored by a quality assurance service. The service randomly issues
quality check requests in addition to the pre-established quality checkpoints in
the process. When a quality check request arrives, it is processed in full before
processing any new quality check request or subcontractor intention. Similarly,



Service Interaction Patterns 305

when a subcontractor intention arrives, it is processed in full before processing
any other check request or subcontractor intention. Thus, there are points in the
process where quality checks and subcontractor intentions compete.

Issues/design choices.

– The incoming messages may be of different types.
– The processing that follows the message consumption (which we term the

continuation) may be different depending on the consumed message.
– When one of the expected messages is received, the corresponding contin-

uation is triggered. The remaining messages may or may not need to be
discarded.

– Depending on the underlying communication infrastructure, several of the
expected messages may be simultaneously available for consumption. In
this case, two approaches may be adopted: (i) let the system make a non-
deterministic choice, or (ii) provide a “ranking” among the competing mes-
sages. In any case, only one message is chosen for consumption.

Solution. This pattern is directly captured by the pick activity in BPEL. The
pick activity simultaneously enables the consumption of several types of message
events and allows at most one message event to be consumed. Specifically, a pick
activity is composed of multiple branches, each of which has a corresponding
handler which acts as the trigger of the branch. Occurrences of message events
are consumed by onMessage handlers. An onMessage handler is associated with
a type of message, identified by a partner link and a WSDL operation. When
a message of the type associated to an onMessage handler is available for con-
sumption, a message event may occur which is immediately consumed by the
handler. The pick enforces that at most one of its associated onMessage handlers
will consume an event. It is also possible to associate a timer with a branch of
a pick activity through an onAlarm handler. The corresponding branch is taken
if the timeout event occurs before any of the other branches is taken.

In the current version of BPEL, it is not possible to express a ranking among
the competing types of message event handlers under a given pick. Although in
the concrete syntax of BPEL the handlers under a pick are ordered, this order
is not significant. Hence, should there be several onMessage handlers able to
consume message events when the pick activity is executed, the system may
choose any of them non-deterministically. What is needed to capture the fourth
issue of this pattern is a way of ranking message events so that when several of
them enter into a race, the one with highest ranking is chosen.

Related pattern.

– Deferred choice [1]. The deferred choice pattern corresponds to a point in
a process where one among a set of branches needs to be taken, but the
choice is not made by the process execution engine (as in a “normal choice”).
Instead, several alternatives are made available to the environment and the
environment chooses one of these alternatives. The Racing Messages pattern
can be seen as a specialization of the deferred choice where the choice of
branch is determined by the receipt of a message.



306 A. Barros, M. Dumas, and A.H.M. ter Hofstede

Pattern 5: One-to-many send.
Description. A party sends messages to several parties. The messages all have
the same type (although their contents may be different).
Synonyms. Multicast, scatter [10].
Example. A purchasing service sends a call for tender to all known trading
parties that provide a given type of product or service.
Issues/design choices.

– The number of parties to whom the message is sent may or may not be
known at design time. In the extreme case, it may only be known just before
the interaction occurs.

– As for the one-to-one send, reliable delivery may or may not be required. In
the case of reliable delivery, the individual send actions may result in faults
and thus fault handling routines should be associated to each of the individ-
ual send actions. The logic of these fault handlers is application-dependent:
some applications may choose to terminate the whole one-to-many send when
one of the individual “send actions” fail, while others may simply record the
failures that occur and proceed.

Solution. A natural approach to address this pattern is to use the One-to-
one Send pattern as a basic building block. Thus, a number of one-to-one send
actions are scheduled in parallel or sequentially depending on the capabilities of
the underlying language. For example:

– If the number of parties is known at design time, it is possible to capture
this pattern in BPEL through a parallel block (i.e. a flow activity) such
that each thread contains a one-to-one send action with its associated fault
handler. Otherwise, the individual send actions would need to be scheduled
sequentially (using a while) thus contradicting the essence of the pattern.

– In certain proprietary extensions of BPEL, such as Oracle BPEL5, special
constructs are provided to capture the situation where an arbitrary number
of executions of an activity need to be performed in parallel, such that this
number is only determined when these parallel executions are started (see
for example the FlowN construct in Oracle BPEL).6 The pattern can be
captured using such a construct.

– In WSCI and BPML7, a construct known as “spawn” is provided to start an
instance of a sub-process asynchronously. By embedding the “spawn” within
a “while” loop, it is possible to start a number of “send sub-processes”, each
of which would be responsible for sending one of the messages and dealing
with any possible fault. These sub-processes would execute in parallel and
return back to the parent process upon completion through a “signal”. These
signals can then be gathered by a dedicated activity in the parent process.

5 http://www.oracle.com/technology/products/ias/bpel
6 A similar construct (namely parallel foreach) has been proposed for introduction

into the BPEL standard; see Issue 147 in the list of BPEL issues available from
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

7 http://www.bpmi.org



Service Interaction Patterns 307

This pattern requires a “dynamic binding by reference” mechanism [2] since in
some cases the set of potential parties to which messages will be sent is not
known at design/build time. Instead, the identity and location of the partners
may be given as parameter, or retrieved from a local database, or from a remote
service registry. In BPEL, this is achieved by treating service endpoints references
(described in WS-A) as first-class citizens that can be associated with predefined
partner links at runtime.
Related pattern.

– Multiple instances with a priori runtime knowledge (MIRT) (van der Aalst
et al. 2003). In this pattern, several instances of a task are created and
allowed to execute in parallel with synchronization occurring when all in-
stances have completed. The number of task instances to be created is only
known at runtime, just before the instantiation starts. The one-to-many send
can be expressed by composition of the MIRT pattern and the one-to-one
send pattern discussed above. The FlowN construct of Oracle BPEL (see
discussion above) is a realization of the MIRT pattern.

Pattern 6: One-from-many receive.
Description. A party receives several logically related messages arising from
autonomous events occurring at different parties. The arrival of messages must be
timely so that they can be correlated as a single logical request. The interaction
may complete successfully or not depending on the messages gathered.
Synonyms. Event aggregation [8], gather [10].
Example. A group buying service receives requests for buying different types of
items. When a request for buying a given type of product is received, and if there
are no other pending requests for this type of item, the service waits for other
requests for the same type of item. If at least three requests have been received
within five days, a “group request” is created and an order handling process is
started. If on the other hand less than three requests are received within the five
days timeframe, the requests are discarded and a fault notification is sent back
to the corresponding requestors.
Issues/design choices:

– Since messages originate from autonomous parties, a mechanism is needed
to determine which incoming messages should be grouped together (i.e. cor-
related). This correlation may be based on the content of the messages (e.g.
product identifier).

– Correlation of messages should occur within a given timeframe. The receiver
should avoid waiting indefinitely.

– The number of messages to be received may or may not be known at design
time or run-time. Instead, after a certain condition is fulfilled, the received
messages are processed without waiting for subsequent related messages (i.e.
proceed when X amount of orders for a given product have been received).

– In some cases, a timeout occurs before any message is received.

Solution, The first issue implies that the payload of the messages received
should contain a piece of information that determines with which other messages



308 A. Barros, M. Dumas, and A.H.M. ter Hofstede

it should be grouped (i.e. in which group should it be placed). At an abstract
level, this can be captured through a function Group: Message → GroupID,
which associates a “group identifier” to a message. Messages with the same group
identifier are to be correlated. When a message of the expected type is received,
its group ID is inspected and one of three options may be taken: (i) a new group
is created for the message if no group for that group ID exists; (ii) the message
is added to an existing group; (iii) the message may be discarded because the
group ID is not valid (e.g. the group existed before but it is no longer accepting
new messages). The latter option entails that the recipient should maintain a
list of invalid group IDs (or equivalently a set of valid ones).

Because the number of messages to be received is not necessarily known
in advance, it is necessary to incorporate a notion of stop condition. The stop
condition may be expressed as a predicate over the set of messages received.
The stop condition is evaluated each time a message is received. As soon as the
stop condition evaluates to true, the interaction is considered to be complete.
In a tender scenario, to capture that as soon as 5 bids have been received the
interaction completes and subsequent bids are ignored, the corresponding stop
condition would be |R| = 5, where R denotes the set of messages received.

A solution to this pattern should associate timers to message groups. The
timer for a group is started when the group is created. A group may be created
either explicitly by the service (e.g. when the service enters a given state) or by
the receipt of a message which mapps to a group ID for which no corresponding
group is open. In the former case, it is possible that a timeout occurs even if no
message has been received.

When a timeout occurs, depending on the set of messages gathered at that
point, the interaction may be considered to have succeeded or failed. For exam-
ple, a tender may be considered as successful if there are at least 3 bids and at
least one of them is below a given limit price. Thus, a generic solution to the
pattern also needs to incorporate a notion of success condition which is evalu-
ated when the interaction completes and determines whether the interaction is
considered as successful or not. Again, the success condition can be expressed
as a predicate over the set of messages received. In the example at hand, the
success condition would be: |R| ≥ 3∧∃r ∈ R : Price(r) ≤ limitPrice. Note that
in theory, it may happen that the stop condition evaluates to true (and thus the
interaction stops), while the success condition evaluates to false, so the interac-
tion is considered to have failed. When a group completes successfully, the set
of responses gathered for that group constitute the output of the interaction.

In the “group buying” example above, the stop and success conditions are
identical (“at least three requests should be received”), the timeframe is five
days, groups are created when the first message for the group arrives, and group
IDs are never flagged as invalid since it is always possible to process requests for
a type of product whether previous groups for this type have been filled or not.
Related pattern.

– Multiple instances with a priori runtime knowledge (MIRT). See discussion
in the “Related patterns” paragraph of the previous pattern. Note that exist-



Service Interaction Patterns 309

ing realizations of the MIRT pattern, such as the FlowN construct of Oracle
BPEL (see discussion above) do not support arbitrary stop and success con-
ditions as defined above. Instead, these conditions appear as lower and upper
bounds on the number of task instances that are required to complete.

Pattern 7: One-to-many send/receive.
Description. A party sends a request to several other parties, which may all be
identical or logically related. Responses are expected within a given timeframe.
However, some responses may not arrive within the timeframe and some parties
may even not respond at all. The interaction may complete successfully or not
depending on the set of responses gathered.
Synonyms. Scatter-gather [10,6].
Example. An insurance company outsources some aspects of its claims valida-
tion to its external search brokers. Brokers are typically small agencies and have
variable demands. For efficiency, the insurance company sends search requests
to all the brokers, and accepts the first three responses to undertake the search.
Issues/design choices.

– The number of parties to which messages are sent may or may not be known
at design time.

– Responses need to be correlated to their corresponding request.
– The sender should avoid waiting indefinitely or “unnecessarily” for responses.
– It is possible that no response is received.
– Reliable delivery may or may not be required during sending. In the case of

reliable delivery, the individual send actions may result in faults.

Solution. A solution to this pattern can be obtained by combining patterns
one-to-many send and one-from-many receive through parallel composition (e.g.
“flow” construct in BPEL). Since outgoing and incoming messages need to be
correlated, it is necessary to include correlation data in the outgoing messages
and retrieve these data from the incoming messages. BPEL provides a declarative
mechanism, namely correlation sets, for correlating communication actions (e.g.
correlating an invoke action with a receive action). Unfortunately, this mecha-
nism can not be employed if the actions to be correlated are executed in different
loops located in different branches of a flow activity8, which is the case for this
pattern since an a priori unknown number of invoke and receive actions need to
be executed in an arbitrary order. Thus the correlation between the send and
the receive actions implied by this pattern needs to be handled at the applica-
tion level, i.e. by introducing actions that insert and extract the correlation data
into/out of the incoming/outgoing messages.

The “stop condition” and the “success condition” for the one-from-many
receive may involve both the set of requests (to be) sent (say RQ) and the set
of responses gathered at a certain point (say RS). For example, to capture that

8 Specifically, in BPEL the invoke and the receive actions to be correlated must be
enclosed under a common scope activity such that each of these actions is executed
at most once per execution of the scope.



310 A. Barros, M. Dumas, and A.H.M. ter Hofstede

as soon as 10 responses have been received the interaction stops and subsequent
responses are ignored, the stop condition can be set to: |RS| = 10. Meanwhile,
to ensure that at least 50% of the parties need to respond the success predicate
should be set to: |RS| = 0.5 × |RQ|.

In the absence of a “stop condition” (i.e. if the stop condition is always true)
the pattern can be expressed by combining several elementary send and receive
actions through parallel composition which may be preempted by a timeout. As
discussed in the previous pattern, this would mean that the underlying language
provides a mechanism for executing an a priori unknown number of activities
in parallel, such as for example the “FlowN” construct in Oracle BPEL or the
“spawn” construct in BPML. Such a mechanism is not present in standard BPEL
and a workaround solution where the various one-to-one send/receive would be
executed sequentially does not properly address the pattern.

In the case of reliable delivery, fault handling routines (BPEL fault handlers)
may be attached either to each individual send actions or to the whole set of
send actions. A possible fault handling routine is to record that the message in
question was not delivered so that this information can be used in the stop and
success conditions. This way, it is possible to express conditions such as “stop
as soon as half of the parties who actually received a request have responded”.

Related pattern.

– Scatter-gather [6]. The scatter-gather pattern is a special case of the one-to-
many send/receive. The scatter-gather assumes that all parties respond in
a timely manner and that all responses must be gathered. Thus it does not
address issues related to timeout, stop and success conditions.

– One-from-many receive/send. This is the dual of the One-to-many
send/receive. Its description, issues, design choices, and solution are ana-
logue to those of the One-to-many send/receive.

3 Multi-transmission Interaction Patterns

Pattern 8: Multi-responses.
Description. A party X sends a request to another party Y. Subsequently, X
receives any number of responses from Y until no further responses are required.
The trigger of no further responses can arise from a temporal condition or mes-
sage content, and can arise from either X or Y’s side. Responses are no longer
expected from Y after one or a combination of the following events: (i) X sends
a notification to stop; (ii) a relative or absolute deadline indicated by X; (iii) an
interval of inactivity during which X does not receive any response from Y; (iv)
a message from Y indicating to X that no further responses will follow. From
this point on, no further messages from Y will be accepted by X.
Synonyms. Streamed responses, message stream
Example. A goods deliverer provides an urgent transportation service on behalf
of suppliers to customers in a city. For optimization of travel, it subscribes to
a local traffic reporting service provides its destination nodes (goods dispatch



Service Interaction Patterns 311

and customer locations) and obtains regular feeds on traffic bottlenecks, until it
indicates that no feeds are required.
Issues/design choices.

– Party X should be capable of receiving multiple messages from party Y
including ones that arrive simultaneously. The number of responses accepted
will depend on a condition to be evaluated at runtime.

– As with Pattern 4, the messages may be of different types. The way each
message is processed depends on its type.

– As with the One-from-many Receive pattern, a stop condition is pertinent.
However, unlike the One-from-many Receive, a success condition does not
apply since faults messages received by X are treated individually just as
“normal” messages. It is assumed that X and Y establish an a priori under-
standing of the stop condition.

– In the case where X determines when the multi-transmission should stop,
there is an interval between the moment when X decides to stop and the
moment when Y becomes aware of this decision. During this interval, Y may
send messages that will then be rejected by X. Hence, a mechanism should
be in place for Y to know that its messages have been rejected.

Solution. As for Pattern 4, the core of this pattern can be captured in BPEL
through a pick activity with a onMessage handler per type of message (whether
a normal message or a fault message). To capture the fact that several messages
may be accepted, the pick activity must be embedded within a “while” activity.
The encoding of the stop condition depends on its nature:

– If the stop condition is based on data available at the receiver’s side and/or
messages’ content, the stop condition can be encoded as the exit condition
of the while loop (like in the One-from-many receive pattern).

– If the stop condition is an absolute or a relative deadline (with respect to the
beginning of the interaction), the while activity must itself be embedded in a
scope activity containing an onAlarm handler corresponding to the deadline.

– If the stop condition corresponds to a period of inactivity between responses,
it can be captured as a branch in the pick activity associated with an on-
Alarm handler capturing the maximum duration of inactivity. If this branch
is taken, the while loop is interrupted (e.g. by setting an appropriate flag).

– If the stop condition is determined by the Y, a pre-agreed type of message
will signal the end of the interaction to X and thus the stop condition will
be encoded as an onMessage handler corresponding to this type of message.

In the case where the stop condition is determined by X, or in the case where
it is determined by Y but the underlying messaging infrastructure or interaction
policies do not guarantee ordered delivery of messages, X should be able to return
fault messages to Y for responses that are ignored. In BPEL, this can be done
by activating a thread of control after bespoke while/scope activity, which upon
receiving any of the expected types of messages from Y, returns a fault message.
This additional coding is necessary because in BPEL, while it is possible to state



312 A. Barros, M. Dumas, and A.H.M. ter Hofstede

that a process is expecting a type of message from a given party, it is not possible
to express that a process expects not to receive a given type of message and that
such messages should be discarded and a fault returned to their sender.
Pattern 9: Contingent requests.
Description. A party X makes a request to another party Y. If X does not
receive a response within a certain timeframe, X sends a request to another
party Z, and so on.
Synonyms. Send with failovers.
Example. A travel agency allows contingent reservations of flights in particu-
lar situations - urgent requests and busy flight paths. Customers nominate the
preference of flight carriers. In order of preference, reservations are sought in
short-timeframes. If a reservation is secured, the interaction ends.
Issues/design choices.

– There is a race between receiving a response and a timer.
– After a contingency request has been issued, it may be possible that a re-

sponse arrives (late) from a previous request. This means that more than
one response may arrive; in all, as many responses may potentially arrive as
requests have been sent. The question is when to accept a response if more
than one request has been made and more than one response arrives.

Solution. The first issue is generally well-understood and in fact BPEL pro-
vides direct support for it through the pick construct containing onMessage and
onAlarm handlers. For the second issue, several choices are available. One is to
accept the first response even if it is late and stop outstanding requests. An-
other is to accept the first arriving response, trigger the end of outstanding
requests, but receive any further responses that arrive (before the “contingent
send” process terminates). Yet another possibility is to disallow late arrivals al-
together, and receive only the response of the current request. For these choices,
the pattern does not pre-dispose which prevails. In some situations accepting
late responses is desirable, while in others it may cause problems of integrity in
remote parties particularly if requests are non-idempotent (involving database
updates and extending interactions even further with other parties).
Pattern 10: Atomic multicast notification.
Description. A party sends notifications to several parties such that a cer-
tain number of parties are required to accept the notification within a certain
timeframe. For example, all parties or just one party are required to accept the
notification. In general, the constraint for successful notification applies over a
range between a minimum and maximum number.
Synonyms. Transactional notification
Examples.

– Classical “all-or-none” atomicity. A business venture service9 supports the
process of business license applications for small business endeavors (e.g.

9 This example reflects the Queensland Government’s SmartLicence initiative
(http://www.sd.qld.gov.au/dsdweb/htdocs/slol/)



Service Interaction Patterns 313

opening a restaurant). After the steps of obtaining and verifying applica-
tion details, relevant agencies involved in the approval or registration of
the application are notified. All of them must receive notification as there
are inter-dependent aspects of the application leading to cross-consultation.
There may also be competing applications for the same business. Therefore,
all agencies should receive the notification in a timely fashion. In this exam-
ple, the minimum and maximum equal the number of all agencies notified.

– Exclusive choice. A legal firm has automated its property conveyance process
for various loan types. The process utilizes a number of search brokers who
have the same level of service agreements with the firm. Each of the brokers
competes for conveyance applications. Therefore, only one of the notified
brokers is selected, namely the first to accept the request. The minimum
and maximum both are one.

Issues/design choices.

– The set of parties to which the notification will be sent may not be known
at design time nor a priori at run-time.

– Specification for the minimum and maximum bounds should be supported.
– The constraint that all parties should have received the notification, means

that if any one party received the notification, all the other parties also
received it. Thus, some kind of transactional support is required for this
aspect of the interaction.

– Following from the above point, two steps in the interaction can be seen,
both of which need to be formalized. The first send-receive establishes the
intention to accept a request while the second acts of the decision following
an examination of received intentions - parties are notified about whether
they have been selected or not.

– The maximum number of parties required to accept the notification may
be less than the number of parties that notifications were sent to. Thus,
more responses than the maximum allowed may be willing to accept the
notification and a preference function may be needed to prune some of them.

Solution. The central issue of this pattern (third issue above) clearly relates to
transactional atomicity. At present, BPEL does not provide support for transac-
tional atomicity. However, it does provide support for a related notion, known as
quasi-atomicity [5] through the notion of compensation handler. Quasi-atomicity
refers to the ability to “undo” certain parts of a process execution. Using this
mechanism, the receiving parties, when they receive the initial request, may ac-
tually perform the work associated with this request. Later on during the second
round, if the sender decides not to proceed with the request to a given party,
then that party may compensate for the work that it had previously done. How-
ever, in between these two rounds, the effects of the initial request would be
visible to other parties, thus violating the principle of atomicity underlying this
pattern. Supporting atomic interactions is the aim of a dedicated WS specifi-
cation known as WS-AtomicTransaction10, which provides a realization of the
10 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwebsrv/html/wsacoord.asp



314 A. Barros, M. Dumas, and A.H.M. ter Hofstede

distributed two-phase commit (2PC) protocol. However, this specification has
not yet matured into a standardization initiative.

4 Routing Patterns

Pattern 11: Request with referral.

Description. Party A sends a request to party B indicating that any follow-up
should be sent to a number of other parties (P1, P2, ..., Pn) depending on the
evaluation of certain conditions. By default, faults are sent to these parties, but
they could alternatively be sent to another nominated party (possibly party A).

Examples.

– Referral to single party: As part of a purchase order processing, a supplier
sends a shipment request to a transport service. Subsequently, the transport
service reports shipment status (e.g. as per RosettaNet’s PIP 3B1) directly
to the customer who then correlates these with its initial purchase order.

– Referral to multiple parties: After processing its inventory re-stocking for a
week, a supermarket’s warehouse contacts a supplier for order and dispatch
of goods, notifying it of the different transport services available (differ-
ent services specialize in transport of different sorts of goods). The sup-
plier directly interacts with these transport services regarding the scheduled
dispatch times (arranged by the supermarket). Faults related to order ful-
fillment are sent by the supplier to the warehouse, while faults related to
delivery are sent by the corresponding transport services to the warehouse.

Issues/design choices.

– Party B may or may not have prior knowledge of the identity of the other
parties. The information transferred from A to B must therefore allow B to
fully identify and to interact with the other parties.

– The referred parties (P1, ..., Pn) and the party nominated to process faults
(if different from A) may receive messages related to interactions that they
did not initiate. These messages should then be related to internal processes
at these parties. Sometimes, messages received through referral trigger new
process instances, while other times, they will be routed to an activity within
an already running process instance. The data transferred must allow the
referred parties to route the message to the correct internal process.

Solution. At the messaging level, this pattern is partially addressed by WS-A
which defined (among others) two fields that can be included in SOAP message
headers, namely reply-to and fault-to. Using these fields, it is possible to specify
the service endpoint(s) to which replies and faults should be sent. The informa-
tion allowing the referred service to correlate the incoming message with its in-
ternal processes may be transferred in one of two ways depending of the adopted
state representation style [4]: (i) it may be encoded in the endpoint reference it-
self (as per the REST architectural style); or (ii) it may be encoded somewhere



Service Interaction Patterns 315

else in the message (e.g. in the message body). In the supplier-shipper-customer
example, the supplier passes to the transport service, a reference to the cus-
tomer’s procurement service endpoint. In the first style above, this endpoint
reference would contain a data item (e.g. the original purchase order ID) allow-
ing the customer to correlate the message with its internal activities, while in the
second style, this data item would be encoded inside the shipment notification.

At the service composition level (specifically in BPEL), endpoint references
can be manipulated as ordinary data. They can be included in the contents of
a message and can be dynamically bound with partner links (e.g. the partner
link defined between the transport service and the customer). In addition, BPEL
offers a notion of correlation set, which corresponds to information sent along
a message that is used on the receiver’s end to correlate that message with its
internal process instance. Correlation sets can thus be used to encode correlation-
related information that it not included as part of the endpoint reference.

Related pattern.

– Channel mobility. Channel mobility in pi-Calculus [9] refers to the ability for
a process X to pass a channel name to another process Y. Passing channel
names along with requests provides a means of realizing the Request with
Referral pattern. In fact, this is the way the pattern is captured in BPEL,
where channels names are coded as endpoint references and correlation data.

Pattern 12: Relayed request.
Description. Party A makes a request to party B which delegates the request
to other parties (P1, ..., Pn). Parties P1, ..., Pn then continue interactions with
party A while party B observes a view of the interactions including faults. The
interacting parties are aware of this view (as part of the condition to interact).
Example. Some supportive work of managing regulatory provisions outsourced
by government agencies to external agencies fits this pattern. Party A is a client
seeking some outcome pending regulation, e.g. obtaining particular land tenure.
Party B is the government authority concerned with the regulation. e.g. lands
department. Parties P1, ..., Pn are outsourced service providers from the gov-
ernment authority’s regulation process, e.g. brokers who validate applications
and external land management experts who can provide independent audit of
applications. The government authority stipulates that interactions between the
client and outsourced service providers associated with key points of processing,
such as the start and end of activities, and key reports, be sent to it.
Issues/design choices.

– The delegated parties (P1, ..., Pn) may or may not have prior knowledge of
the identity of the request originator, party A.

– A mechanism is needed to express party B’s view of interactions between
party A and the delegated parties. This may include all interactions or spe-
cific ones deemed to be of interest as indicated by the content of the messages.

– The view is defined at design time, but may be modified at run-time (party
B may adjust what it needs to see depending on progress of activities).



316 A. Barros, M. Dumas, and A.H.M. ter Hofstede

– Party B could apply referrals for redirecting interactions or faults to other
parties, however this issue is orthogonal to this pattern and is covered in
Pattern 11.

Solution. This pattern, like the request with referral (pattern 11), involves indi-
rection through delegation (party B passes party A’s endpoint service reference
to delegated parties for further interactions) and can be effected through WS-A
or exchanged message data as previously discussed. The correlation strategies
similarly apply. The comparative requirement for relayed requests is representing
party B’s view and enforcing it, including changing it, as interactions execute as
identified through the second and third issues above.

Unfortunately, WS-A does not provide direct support for including party B in
the interactions due to its lack of a “Cc field”. But even if WS-A offered such Cc
field, it would not cover a key requirement of the pattern: The messages passed
between party A and the delegated parties would be exactly the same as what
party B sees. Of course, not all messages have to be “Cc-ed” to party B, but
this remains a rather limited solution since whole message, not filtered messages,
are transmitted to B. It is furthermore possible that B do the filtering rather
than pushing this up to the level where interactions are generated. We argue,
however, that view filtering decoupled from interaction generation, is deficient
since party A and the delegated parties no longer have an understanding of what
they are obliged to reveal to B, as required by the pattern.

This brings us to the core issue of how to specify views such that they could
be deployed and utilized as part of the interaction cycle. Simple views could be
specified through a querying language like XPATH while more sophisticated ones
could be supported through XQuery. Party A and the delegated parties would
either have static view definitions prior to run-time or they would be passed at
run-time when B establishes delegation.

For dynamically modified views, B would issue new views. These need to
be coordinated with A, so that both ends of interactions are subject to the new
version of the view. An obvious solution is to accompany a send in an interaction
with a second send for party B, conditional upon the view filter applied to the
message passed through the first sent. The two sends must be atomic.
Pattern 13: Dynamic routing.
Description. A request is required to be routed to several parties based on a
routing condition. The routing order is flexible and more than one party can be
activated to receive a request. When the parties that were issued the request
have completed, the next set of parties are passed the request. Routing can be
subject to dynamic conditions based on data contained in the original request
or obtained in one of the intermediate steps.
Synonyms. Routing slip [6,7].
Example. After processing an order, the sales department sends a request to the
finance department to process the invoicing and payment receipt for the order.
This request contains a reference to the customer’s procurement service and
possibly also to a shipping service nominated by the customer. After arranging
invoicing and payment by interacting directly with the customer, the finance



Service Interaction Patterns 317

service forwards the order to the warehouse service. If the order is marked “for
pick-up”, the warehouse eventually sends a notification of availability for pick-up
to the customer’s procurement service. Otherwise, the warehouse issues a request
to a shipping service which may be either the company’s default shipping service,
or the one originally nominated by the customer. The shipping service eventually
sends a shipping notification directly to the customer.
Issues/design choices.

– The set of parties through which the request will circulate may not be known
in advance and these parties may not know each other at design time.

– The specification of ordering should support service-to-role late binding, par-
allelism and interleaved parallel routing [1], synchronization points between
parallel steps, and dynamic conditions.

– A way of providing relevant (fragments of) documents to different parties
needs to be supported as well as a mechanism for controlling read-only and
write access to these document (fragments).

– The update of routing should be subject to role access permissions, e.g.
only a project coordinator is allowed to re-route a proposal review through
work-package leaders.

Solution. The requirements for dynamic routing are outside the scope of direct
support through BPEL. BPEL solutions are possible but would necessarily be
ad hoc and require significant amounts of hand-crafted application code. WS-
Routing11 (a proposal not yet under standardization) can serve to implement
some aspects of this pattern: Parallel routing, but not interleaved parallel rout-
ing, is possible; static, but not dynamic, conditions are supported, although this
and the relevant routing role matching becomes supplementary coding for the
full solution. Thus, WS-Routing can support simple dynamic orders, like those
of the Routing slip pattern [6]. However, the complex dynamic routes required
by our examples above, cannot currently be supported.

5 Conclusion

As service composition developments unfold in their objectives of making real-
scale B2B transactions a reality and ushering in newer exploitations of service
interoperability, it is striking how insufficiently guided these efforts are by well-
structured requirements. We sought in this paper to address this gap by estab-
lishing a reference for service interactions. We did so by distilling insights from
the literature, standardization activities, and use case scenarios, to derive a set
of patterns. These patterns allow relevant technologies to be benchmarked. In
this paper, we have investigated BPEL’s capabilities in terms of the patterns.

BPEL directly supports single-transmission bilateral patterns. For single-
transmission multi-lateral patterns, BPEL restricts the send-receives to be se-
quential and requires “house-keeping” code for correlation and for capturing stop

11 http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp



318 A. Barros, M. Dumas, and A.H.M. ter Hofstede

and success conditions. We recommend more effective support for these patterns
through a construct capturing parallel composition of an a priori unknown num-
ber of send-receives. Of the multi-transmission patterns, BPEL event handling
capabilities provide support for the multi-responses and contingent sends. How-
ever, lack of sufficient transaction support significantly compromises a BPEL
solution for atomic multi-cast. For the routing patterns, simple request referrals
are possible by passing endpoint references and implementing indirect interac-
tions through correlation identifiers. This also serves request relaying. In addi-
tion, WS-A provides some support for request referrals and relaying although
this support would be more direct if a Cc field was available. Dynamic routing
is outside the scope of BPEL but WS-Routing can serve to implement some
aspects of it, though not the flexible ordering and dynamic routing conditions.

Future work will extend the patterns by further extrapolations and will con-
sider conversation management, viz. create, cancel, undo, suspend, and resume
conversations. We are also drawing on insights from the patterns to design a
framework for conceptual modeling of service interactions.

Acknowledgments. The authors wish to thank Phillipa Oaks, Helen Paik and
Ivana Trickovic for their input and feedback. The second author is funded by a
Queensland Government “Smart State” Fellowship co-sponsored by SAP.

References

1. W. M.P. van der Aalst, A. H.M. ter Hofstede, B. Kiepuszewski, and A. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, archi-
tectures and applications. Springer Verlag, 2003.

3. A. Barros, M. Dumas, and A. H.M. ter Hofstede. Service Interaction Patterns:
Towards a Reference Framework for Service-based Business Process Interconnec-
tion. Technical Report FIT-TR-2005-02, Faculty of IT, Queensland University of
Technology, 2005. See: http://www.serviceinteraction.com.

4. R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000.

5. C. Hagen, and G. Alonso. Exception Handling in Workflow Management Systems.
IEEE Transactions on Software Engineering 26(10): 943-958, 2000.

6. G. Hohpe and B. Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley, 2004.

7. A. Kumar and J.L. Zhao. Workflow Support for Electronic Commerce Applications.
Decision Support Systems 32: 265-278, 2002.

8. D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, 2002.

9. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-
versity Press, 1999.

10. M. Snir and W. Gropp. MPI: The Complete Reference. MIT Press, 2nd edition,
1998.

11. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson (Editors).
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall, 2005.



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 319 – 333, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Modeling and Assessment of Production Printing 
Workflows Using Petri Nets 

Raju N. Gottumukkala 1, and Dr. Tong Sun2 

1 Louisiana Tech University, Computer Science Department,  
Ruston, LA 71270, USA 
nrg003@latech.edu 

2 Principal Scientist, Adaptive & Smart Document System Lab, Xerox Innovation Group, 
Xerox Corporation 

Webster, NY 14580, USA 
Tong.Sun@xeroxlabs.com 

Abstract. Production printing workflow is a high-volume and high-speed print-
ing process normally consisting of a set of complex and inter-related tasks 
namely pre-press, press and post-press procedures. Today many production 
printing vendors are increasingly offering heterogeneous devices and related 
software products that autonomously interoperate as a production printing 
workflow in a digital distributed environment. It is highly desirable in such en-
vironment that a detailed workflow assessment is performed either prior to the 
deployment or during real-time operations. A formal workflow model and as-
sessment capability would ultimately benefit the customers who directly man-
age these production printing workflows to make better-informed decisions, 
understand the efficiency of to-be-purchased or already-deployed workflows, 
foresee the performance implications under a variety of business conditions. 
Therefore in this paper, we have developed formal workflow models (in both 
abstract and execution) based on the colored Petri nets [4] that incorporate pro-
duction printing semantics. Based on these formal representations, we show 
how a production printing workflow can be assessed both analytically and 
quantitatively by leveraging existing Petri net tools. 

1   Introduction 

Production Printing Workflow (PPW) is a high-volume and high-speed printing proc-
ess where various printing related tasks namely pre-press, press and post-press coop-
erate with each other and perform collectively for producing printed materials like 
books, catalogs, manuals, financial statements, collaterals, etc.. Pre-press refers to a 
set of procedures that process documents before printing, such as composition, pre-
flight, imposition etc.. Press is the actual procedure of printing documents on a spe-
cific media. And post-press is the procedure involves finishing the printed materials, 
such as cutting, folding, and binding, etc.. Traditional production printing workflows 
are more of human-controlled manufacturing processes that are encompassed by a 
complex set of hardware machineries and manual interventions across all tasks. 



320 R.N. Gottumukkala and T. Sun 

 

Nowadays, the entire printing business is undergoing a major paradigm shift into a 
marketplace centered with more automated digital workflows, in which heterogene-
ous devices and increasing number of software applications seamlessly interoperate 
with each other. The ever-increasing challenges for today’s production printing busi-
ness include: 1) to make well-informed business decisions as to what products or 
workflow technologies to invest or acquire in order to improve their current produc-
tion process efficiency; 2) to maximize devices productivity and maintain the cost 
effectiveness; 3) to foresee the performance implications under a variety of conditions 
to meet changing business needs. Normally, static information regards each individual 
product capability and cost matrix is easily accessible, but the ability to effectively 
model and assess the implications of these interoperated products in the context of 
end-to-end production printing workflows against measurable indicators still remains 
a difficult and costly task. Most production printing workflows are represented in ad-
hoc models with sort of trail-and-error analysis. Therefore, it is highly desirable to 
have a formal workflow model that well captures the production printing workflow 
semantics and upon which both analytical and quantitative workflow assessment can 
be performed either before deployment or during the real-time operations.  

Representing a workflow model formally provides a powerful analytical capability 
in verifying the correctness of a workflow model syntactically and semantically. Petri 
nets are a well-established formalism for modeling concurrency, synchronization and 
non-determinism in distributed systems [12,13]. In this paper, we use colored Petri 
nets [4] to represent the basic building blocks of production printing workflow and the 
workflow itself in both abstract and execution perspectives. Based on these Petri net 
based models, we are able to leverage some existing Petri net tools [1,5,9,and 11] for 
formal model verification and discrete event simulation to assess the production print-
ing workflows. 

In this paper, we describe the applications of Petri nets in modeling, analysis and 
simulating production printing workflows. The remainder of this paper is organized as 
follows: First, we introduce the concepts in production printing workflows (PPW) and 
Petri nets.  In Section 3, we formalize the production printing workflow semantics in 
both abstract and executable Petri net models. Section 4 discusses both the analytical 
and quantitative workflow assessment based on the proposed Petri net based models. 
One example of a production printing workflow is also illustrated. Finally, we con-
clude our experiences and future works in Section 5. Note, we use “workflow” and 
“process” inter-changeable in this paper. 

2   Preliminaries 

This section introduces the basic concepts and semantics in PPW and the Petri net 
notations used in the remainder of this paper. 

2.1   Production Printing Workflow Concepts 

PPW usually consists of heterogeneous devices and software application that are 
inter-connected to streamline a Print Job in a centralized or distributed production 
environment. Each constituent devices and software applications provides one or 



 Modeling and Assessment of Production Printing Workflows Using Petri Nets 321 

 

more well-defined capabilities that accomplish one or more tasks within the PPW. 
Usually, such a well-defined capability is named as Service component. For instance, 
an imposition software application provides an imposition service that performs im-
position procedures on a given document before it gets printed. Therefore, the service 
component is a large-grained logical module that provides the basic building block for 
any workflows. In other words, a workflow can be viewed as a network of inter-
connected service components, with each performs certain task(s) in the workflow. 

There are three major concepts that provide the semantics foundation in the model-
ing and assessment of the production printing workflows: 

1) Print Job is a data structure that contains all the information required to complete 
the intended output in a printed media [15], such as the sequence of intended steps 
and their associated resource(s). It normally dictates and initiates an end-to-end con-
trol sequence of tasks necessary for satisfying the requested intention. Usually, a 
particular workflow is instantiated and started when a print job is received. 
2) Service is a large-grained logical module that provides a well-defined capability 
and performs a certain task(s) in the workflow. Usually, it is embodied in one or more 
physical devices or software applications. A workflow model can be constructed by 
recursively connecting service components in a proper sequence. 
3) Document is a representation of content element that flows through the entire 
production printing workflows, while print job is the control data representation. A 
document could be either electronic or hardcopy, could be in any possible formats 
(PDF, MS WORD, JPEG, etc.), could be stored in any media (repository, CD ROM, 
web page, etc.), could be in any size, etc.. A document can be categorized as various 
types (or document types) by the combination of its characteristics in size, format, 
finishing type, etc.. 

2.2   Petri nets 

Petri nets are a modeling mechanism that consists of two types of nodes: places and 
transitions, which are connected by arcs. Places hold tokens which indicate the state 
of the Petri net and transition change the state of the net which is a result of moving 
tokens between various places. There have been various extensions to the initial clas-
sical Petri nets developed by C.A Petri [8] to include color for modeling token types, 
time to introduce delays in firing transitions, and hierarchies for modular design of net 
at various levels of abstraction. We are using colored Petri nets [17] in this paper, 
which is a generalization of these high level Petri nets. 

3   Modeling Production Printing Workflows in Petri Nets 

In general, a production printing workflow can be modeled by a network of inter-
connected (either sequentially or in parallel) service components that are embodied in 
devices or software applications. Print jobs are processed by these service compo-
nents concurrently and/or asynchronously with respect to time and other dependen-
cies. While a print job transits through various service components in the workflow, it 
may be split into multiple sub-jobs, or merge with other job(s) as a single one for load 
balancing purpose. Also the print job, service component and document all have their 



322 R.N. Gottumukkala and T. Sun 

 

own lifecycle semantics, corresponding behaviors and characterization parameters 
[15]. Therefore, the modeling language should support these semantics at various 
levels of hierarchy. Petri nets are suitable for modeling PPW, as the characteristics of 
print job, service and document can be represented intuitively interpreting both ab-
stract and executable scenarios. We describe two sets of models: one at “abstract”, 
one at “execution”. The abstract models are a concise model that enables an efficient 
state space evaluation of the PPW and the executable models represent much detail 
behavior semantics to enable a discrete event simulation for PPW. 

3.1   Abstract Service Net (ASN) and Abstract Workflow Net (AWN) 

Each service component conforms to common lifecycle semantics while it delivers its 
defined capability. Generally, a service component has at least three states in its life-
time: “ready”, “processing” and “completed”. And upon the arrival of a print job, if 
the receiving service is “ready”, it can “start processing” the job and deliver its capa-
bility during the “processing” state, and then it cleans up while “finish processing”. 
Finally, service is “completed” processing, and gets back to “ready” for next job state. 
In this section, we first define an Abstract Service Net (ASN) that represents three 
service states (i.e. “ready”, “processing” and “completed”) in Petri net places, while 
“start processing” and “finish processing” in Petri net transitions (see Figure 1). The 
reason we called this model as “abstract” is that it only captures a simplified (or sub-
set of) service semantics to enable an efficient state-space based analysis [1,3,9]. 

Abstract Service Net (ASN) is a Petri net  (as shown in Fig. 1) that contains: a set of 
service states (i.e. “ready”, “processing”, “completed”) as Places; a finite set of ser-
vice transitions (i.e. “start processing”, “finish processing”) as Transitions;  a finite set 
of directed arcs connecting these service states and service transitions. 

An Abstract Workflow Net (AWN) is a high level Petri net representation composed 
by the ASN of its constituent service components. The AWN topology and the selec-
tive connections among the ASNs (i.e. AND_SPLIT, AND_JOIN, SEQ). could be 
obtained from a pre-defined workflow model (in BPMN, BPML or JDF, cre-
ated/generated by any existing Workflow Modeling tool). In summary, the Places in 
AWN is a finite union set of all places of its constituent; ASNs, the Transitions in 
AWN is a finite union set of all transitions of its constituent ASNs, plus the selective 
routing logics. An example of an AWN is shown in Fig. A.1. in Appendix 1. By lev-
eraging the Petri nets’ powerful formalism, the analytical assessment of PPW can be 
conducted upon AWN. We will discuss this in Section 3.1. 

 

Fig. 1. Abstract Service Net (ASN) : represents abstract service semantics 



 Modeling and Assessment of Production Printing Workflows Using Petri Nets 323 

 

3.2   Executable Service Net (ESN) and Executable Workflow Net (EWN) 

Two executable Petri net representations (Executable Service Net and Executable 
Workflow Net) defined in this section comprehend the execution semantics of each 
service component and the composed workflow correspondingly. The motivation 
behind the development of an execution model is to enable the behavior simulation so 
that a quantitative workflow assessment can be conducted against measurable indica-
tors (e.g. turn around time, through put, resource utilization, etc.). 

The integral components of an executable model include: 

1) The lifecycle semantics that describe the service’s and job’s behavior seman-
tics such as the states and transitions during their lifecycle. See Table 1 and 2 
for details. 

2) The job parameters include the parameters describing the characteristics of a 
particular job (i.e. job_id – a unique identity, and its associated document 
content), and the parameters capturing the dynamics of job execution (i.e. 
waiting time, turnaround time).  

3) The document parameters include doc_id (a unique identity for specific 
document type), no_of_pages (represents the size of a document in terms of 
number of pages). 

Figure 2 below shows the Executable Service Net (ESN). A job and its associated 
document are represented by a token in a Petri net  as a tuple [job_id, doc_id, 
no_of_pages, tatime, wttime], which contains the variables job id, doc type, number 
of pages for a job, current turn around time for the job, and the jobs current waiting 
time. Some of these variables are updated as the net is simulated. Places represent 
different states of the service and its corresponding job(s), and additional two places 
are also added as a parameter container for service’s setup time and job’s parameters. 
Transition represents various actions in the service component that change its states 
and job states as well. The transitions contain operations to be performed on a token, 
which may be simple arithmetic operations or java method calls to invoke a specific 
service processing capability. The arc inscriptions indicate the type of token or vari-
able that is being moved as a result of firing a transition.  
The execution behaviors that captured in the above ESN include the following five 
phases:  
1) setup phase, during which once the job arrives, the service component needs to 

perform necessary steps to prepare or setup job. 
2) queuing phase, during which the job is contained in a queue to wait for service 

to be ready; meanwhile, a queue object needs to be instantiated once service 
starts up. 

3) processing phase, during which the job is retrieved from the queue when service 
is ready, and service processes the job, after processing service needs to cleanup 
and release the processed the job to the subsequent service component, and make 
itself ready for next job from the queue. 

4) status feedback phase, during which the service status such as “Available” is 
fed back so that the next job can be continuingly retrieved from the queue. 

5) recovery phase, during which the service recovers from failure condition (such a 
behavior is modeled as a set of job parameters, such as a failure rate and recovery 
time for that job). 



324 R.N. Gottumukkala and T. Sun 

 

 
Fig. 2. The Executable Service Net (ESN) 

Table  1.    Detailed description of all places in the Executable Service Net (ESN) 

Place Name State Descriptions 

JobIn The initial place when the job arrives to the service 
component 

SetupTimes The place contains the setup time for a particular Job 

JobReadytoQueue The place contains job(s) that have completed setup 
and to be queued for processing 

JobReadyToProcess The place contains the queue object with the job(s) 
ready to be processed 

Processing The place contains the job that has been de-queued and 
is currently being processed 

JobParams The place contains the job parameters to calculate the 
average processing time for that job. JobParams are 
document type, processing time, failure rate and recov-
ery time. 

Completed The place contains the job that has completed process-
ing and is released from service component. 

ServiceReadytoPrepare The place indicates the service state is ready to 
cleanup. 

Ready The place indicates the service state is available for 
next job. 

QueueInit The place indicates the initiation of the queue object 
when service starts up 

QueueReady The place indicates the queue object is created for 
holding job. 

 



 Modeling and Assessment of Production Printing Workflows Using Petri Nets 325 

 

Table 2. Detailed description of all transitions in the Executable Service Net (ESN) 

Transition Name Action Descriptions 

PrepareJob Prepare the job for processing, i.e. it adds the setup times 
associated with that particular type of job. 

EnqueueJob Queues the prepared job in the order they arrive after the 
setup. 

StartProcessing De-queue the next job from the queue as long as the job is 
ready to be processed and service is available. The action 
inscriptions are used to retrieve the job attribute values. The 
waiting time is added here. 
 

FinishProcessing Remove the completed job from the service component and 
the average processing time is calculated here and added to 
the total turnaround time of the job. 

PrepareService Prepare the service component for the next job 

InitQueue Initialize the queue object once service starts up 

Similarly to the AWN, the EWN can be composed by inter-connecting the ESNs of 
its constituent services via selective connection logics (i.e. AND_SPLIT, AND_JOIN, 
and SEQ).  An example of an EWN is shown in Fig. A.2 in Appendix 2. In summary, 
the Places in EWN is a finite union set of all places in its constituent service compo-
nent’s ESN; the Transitions in EWN is a finite union set of all transitions in its con-
stituent service component’s ESN, plus the transitions in the selective connection 
logics. 

4   Model Based Assessment for Production Printing Workflows 

There are two primary perspectives for workflow assessment: (1) analytical assess-
ment, which is to verify the correctness of any given workflow model syntactically 
and semantically based upon an underlying theoretical model; (2) quantitative as-
sessment, which mimics the operation of a real workflow (such as the day-today op-
eration of a print-shop) and gathers/derives quantitative evaluation metrics in a simu-
lation model. In the previous section, we formulate the PPW and its semantics into 
Petri net representations at both abstract level and execution level, each of which 
serves a particular purpose in these two perspectives. 

4.1   Analytical Workflow Assessment 

Both abstract and executable workflow models inherit the powerful Petri net’s formal-
ism that enables not only the capability of the syntax model verification, but also the 
formal analytical techniques to prove certain properties like live-ness, safety, and 
bounded-ness [3,10,11,14]. However, all these properties are proved by generating an 
occurrence graph or invariants, which involve generating a state space of the given 



326 R.N. Gottumukkala and T. Sun 

 

model. The state space size generated increases exponentially with increase in the 
number of places. Therefore, analyzing the executable workflow model (EWN) would 
be very complex and time-consuming for this purpose. However, the Abstract Work-
flow Net (AWN) is more suitable for analytical workflow assessment purpose.  

There are several Petri net tools available [7] for Petri net based analysis. Woflan 
and Design/CPN are two widely used Petri net based analysis tools. Woflan is used to 
prove the soundness properties of the workflow. A workflow is sound if the net suc-
cessfully terminates, there are no tokens left in the net and there are no dead tasks 
[3,11]. Design/CPN [1,9] generates an occurrence graph to check bounded ness prop-
erties like dead locks and live locks. 

4.2   Simulation Based Quantitative Workflow Assessment 

Opposed to the analytical approach, where the method of analyzing the workflow 
system is purely theoretical, the simulation approach gives more flexibility and con-
venience. A simulation is the execution of a workflow model that gives the informa-
tion about the workflow being investigated [2]. Simulated experimentation accelerates 
and replaces effectively the “wait and see” anxieties in discovering new insights and 
explanations of future behavior of the real workflows. Therefore in this paper, the 
executable workflow Model (EWN) is built for enabling this simulation based quanti-
tative workflow assessment. We also use the Renew tool [5] as our underlying event-
driven simulation engine. 

4.2.1   Workflow Simulation Architecture 
We have built a workflow simulation tool based on the following architecture (see 
Fig. 3). There are three major parts in this architecture: 

1) Workflow model constructor - this module could be provided by any existing 
workflow modeling tool, from which a workflow model can be constructed either 
manually, or automatically; and the workflow model can be represented in any XML 
specification (e.g. BPMN, BPEL, JDF, etc.) 

2) Workflow simulation interface – this module is the core component we built 
and it contains a set of components to generate WEN from a given workflow model, 
to collect Simulation Profile Information (see Table 3), to interface the underlying 
simulation engine, to display the simulation results to the end users. 

3) Event-driven simulation engine – this module leverages the Renew tool [5], 
with three added on components: a simulation Trace Generator, a backend SQL data-
base, and a data analysis component. 

In order to simulate a variety of customer business conditions, four collections of 
parameters (or Simulation Profile Information) need to be considered (details see 
table in Appendix 3): 
1. Parameters provided by the end-user directly that describe the variety of business 

conditions for their PPWs; 
2. Parameters derived from the above user input data; 
3. Parameters provided by a pre-defined Service Component Capability data source 

(e.g. product function feature specification, pricing list, etc.) 
4. Parameters generated/tracked by simulation engines that describe the desired simu-

lation results or measurement indicators. 



 Modeling and Assessment of Production Printing Workflows Using Petri Nets 327 

 

 

Fig. 3. The Workflow Simulation Architecture 

4.2.2   Example Simulation Scenarios 
We consider a typical digital production printing workflow – Print On Demand, to 
illustrate the modeling and simulation of a distributed production workflow scenario. 
The workflow in Fig 4 consist of a digital library from which documents or images 
can be retrieved, an imposition software arranges the layout of images, content and 
page sequence for printing, a production color printer and a monochrome printer to 
print color pages and black and white pages in parallel, and a finishing device for 
binding the printed outputs.  

For a simple illustration, all simulation parameters used in this example are picked 
up randomly and simulation instances are small amount. But it doesn’t preclude the 
tool 
 

 

Fig. 4. A typical Print-On-Demand Workflow scenario 

3rdParty 
Workflow 
Modeling 
Tool (s) 

Petri Net 
Simulator 
(Renew) 

Data Analysis 
Component 

Simulation Components 

GUI Editor Simulation 
result reporter 

EWN Gen-
erator 

ESN Tem-
plates 

Event Driven Simulation Engine

Workflow Simulation Interface 

Workflow 
Model  

Constructor 

Database
Trace 

Generator 



328 R.N. Gottumukkala and T. Sun 

 

to simulate and analyze complex and high print volume PPWs. Assuming the cus-
tomer want to simulate 2 job instances over the above workflow scenario with follow-
ing assumed properties: Types of Jobs, No of pages, Run Length,  job split ratio, 
Document Type,  

• J1 – 100pages  -- Run Length 10 -- color 20% BW 80% --doc size 8.0 – 8.5’ 
• J2 – 80 pages  -- Run Length 30 -- color 40% BW 60% -- doc size 9.0 -10.5’ 

Table 4.  Parameters provided from a pre-defined Service Component Capability data source 
for intended two document types 

 Service 
Component 

Name 

Processing 
Time 
(ppm) 

Setup Time 
Per Job 
(min) 

Repair Time 
(min) 

Failure Prob-
ability 

Doc Type 1 Document 
Library 

500 15 120 0.00014 

8.0-8.5 Imposition 500 5 240 0.00014 
 BW Print 180 1 60 0.0001 
 Color Print 100 1 120 0.0002 
 Binder 100 10 240 0.00001 
 SaddleStitch 100 10 120 0.00014 
      

Doc Type 2 Document 
Library 

500 15 120 0.00014 

9.0-10.25 Imposition 500 5 240 0.00014 
 BW Print 154 1 60 0.0001 
 Color Print 85 1 120 0.0002 
 Binder 100 10 240 0.00001 
 SaddleStitch 1000 10 120 0.00014 

From simulations of the above two scenarios, Average turn around time, Average 
waiting time, utilization, Throughput, are obtained by the Workflow Simulation Tool 
as follows. 

Total Turn Around Time=1824.0 seconds: 
Max Waiting Time=620.0 seconds 
Run Length = 3400 
Average Turn Around=45.6 seconds 
Page Volume=1240 pages 
Throughput=1.47 pages per second 
Total Service Time=1340 seconds 
Utilization =0.73 

5   Conclusions 

In this paper, we have demonstrated the formal modeling of production printing work-
flows by using Petri nets. Two Petri net based PPW models are presented: Abstract 
Workflow Net (AWN) and Executable Workflow Net (EWN). This separation of the 



 Modeling and Assessment of Production Printing Workflows Using Petri Nets 329 

 

abstract model and the execution model enables two primary perspectives of work-
flow assessment seamlessly: analytical assessment and simulation-based quantitative 
assessment by leverage various existing Petri net tools.   A workflow simulation tool 
and its architecture are discussed, and a simple workflow simulation scenario is also 
illustrated. We have successfully demonstrated the flexibility and advantages of mod-
eling production printing workflows with colored Petri nets formalism. Concerning 
the future work, we would like to enrich the formal workflow models to take into 
account of more complex behaviors such as “pause job”, “resume job” semantics, and 
coordination between service components in a workflow, and also capture other op-
erational metrics for production printing workflows, such as operating cost, for further 
workflow assessment. We also plan to provide a more seamless and automated map-
ping from some standard XML-based workflow specifications (e.g. BPMN, BPEL, 
and JDF) into Petri Net Markup Language (PNML). This could allow a seamless 
integration between Workflow Simulation Tool with any existing workflow modeling 
tools that produce these standard workflow specifications. 

References 

1. K. Jensen, K. Christensen, S., Huber, P and Holla, M., Design/CPN Reference Manual, 
Department of Computer Science, University of Aarhus, Denmark, 
http://www.daimi.au.dk/designCPN/, 1995. 

2. E. Jim‚nez Mac¡as and M. P‚rez de la Parte, Simulation and Optimization of Logistic and 
Production Systems Using Discrete and Continuous Petri Nets SIMULATION, Vol. 80, 
No. 3, 143-152, 2004. 

3. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes 
using Woflan. The Computer Journal, 44(4):246–279, 2001. 

4. K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri Nets. In J. W. de 
Bakker, W.-P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency, volume 
803 of Lecture Notes in Computer Science, pages 230{272. Sprinter-Verlag, June 1993. 

5. O. Kummer and F. Wienberg. Renew - the Reference Net Workshop. Petri Net Newsletter, 
2004. see also:http://www.renew.de/. 

6. Miko Mikolajczak Boleslaw, Byrne Debora l, Workflow modeling and diagnosis with 
Petri nets - a case study of a manufacturing, Proceedings of the second IEEE International 
Conference on Systems, Man and Cybernetics (SMC'02), Volume: 5 ,6-9 Oct. 2002 

7. Petri Nets Tools Database Quick Overview, Petri Net World, 2003  
http://www.daimi.au.dk/PetriNets/tools/quick.html. 

8. C. A Petri (1962). kommunikation mit Automaten. PhD thesis. Bonn: University of Bonn 
(In German). 

9. Soren Christensen Jens B‘k Jorgensen Lars Michael Kristensen, Design/CPN - A Com-
puter Tool for Coloured Petri Nets, Proceedings of the Third International Workshop on 
Tools and Algorithms for Construction and Analysis of Systems, Lecture Notes In Com-
puter Science; Vol. 1217, Pages: 209 – 223,1997. 

10. W.M.P van der Aalst, and A.H.M. ter Hofstede,  2000. Verification of workflow task 
structures: A Petri-net-based approach. Information System 25 1, pp. 43-69. 

11. W.M.P. van der Aalst. Woflan: A Petri-net-based Workflow Analyzer. Systems Analysis - 
Modelling - Simulation, 35(3):345–357, 1999. 



330 R.N. Gottumukkala and T. Sun 

 

12. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes 
using Woflan. Computing Science Report 99/02, Eindhoven University of Technology, 
Eindhoven, 1999. 

13. W.M.P. van der Aalst. Making Work Flow: On the Application of Petri nets to Business 
Process Management. In J. Esparza and C. Lakos, editors, Application and Theory of Petri 
Nets 2002, volume 2360 of Lecture Notes in Computer Science, pages 1–22. Springer-
Verlag, Berlin, 2002. 

14. Wil M. P. van der Aalst: Workflow Verification: Finding Control-Flow Errors Using Petri-
Net-Based Techniques. Business Process Management 2000: 161-183,2000. 

15. Job Definition Format Specification, http://www.cip4.org 

Appendix 1: Abstract Workflow Net (AWN) Example  

 

Fig. A-1. An Example of an Abstract Workflow Net (AWN), constructed by connecting 5 
ASNs and 3 connection logics (SEQ, AND_SPLIT, AND_JOIN) 



 Modeling and Assessment of Production Printing Workflows Using Petri Nets 331 

 

Appendix 2: Executable Workflow Net (EWN) Example  

 

Fig. A-2. An Example of an Executable Workflow Net (EWN), constructed by connecting 5 
ESNs and 3 connection logics (SEQ, AND_SPLIT, AND_JOIN 



332 R.N. Gottumukkala and T. Sun 

 

Appendix 3: Simulation Profile Information  

Collection 
Number 

Parameter Data Element Note 

Job Arrival Rate ( λ ) -  It is the average number of jobs submitted 
to the workflow per day. The default job 
arrival rates are assumed to be in Poisson 
distribution. 

No. of Pages per Job ( p ) Number of pages per job 

Run Length per Job ( r ) Number of sets of each job 

Collection-1: 
Parameters pro-
vided by the end-
user directly 
 

Document type ( d ) This parameter captures the information 
regards the document output media type, 
size and finishing option etc.., which have 
direct impact on the actual processing time 
in the workflow. 

Collection-2:  
Parameters derived 
from Collection-1 

Total print volume per 
day V = 

=

n

i

ripi
1

*λ   where n is the total 

number of job per day 

Processing time ( pt ) 
A target processing rate for a specific ser-
vice component 

Set up Time ( st ) 
The time required for preparing the service 
component to prepare the incoming job, 
this set uptime for a service may vary with 
the job type. 

Failure Probability of 

Service ( fp ) 

Probability that a service component would 
fail . Failure probability is given by 

Rpf −=1 , where R is the reliability of 

a service component, which is given by 
mteR −= , where m is the mean of num-

ber of failures per year, and t is the time 
which is one year. 

Collection-3: 
Parameters pro-
vided from a pre-
defined Service
Component Capa-
bility data source 

Repair Time ( rt ) 
Time elapsed in repairing a failed service 
component up and making it available for 
the next job. 

Average Processing Time 
(per job) 

)1/( ffrp PPttTp −+=  

 
Turn Around Time per 
job 

It is generated directly from simulation 
engine (the duration from job arrives till job 
completed)

 

 
Average Turn Around 

Time ( avgTA ) 

Total turn Around Time/ Number of Jobs  

Collection-4: 
Parameters gener-
ated and/or tracked
by simulation
engines 

Throughput ( putTh )   
Page Volume (V)/ Time taken to process all 
the jobs 
 



 Modeling and Assessment of Production Printing Workflows Using Petri Nets 333 

 

Average Waiting Time  

tavgW _  
tW = Time spent by each job in the queue. 

tavgW _  = NW
N

toi
t /

1=
 

Service Time It is the time spent by the services perform-
ing useful work. The Service time of the 
workflow = Total Turn around time – Total 
idle time of all the services 

 

Utilization Ratio between service time and total 
turn around time. 

 



Process Management in Health Care: A System

for Preventing Risks and Medical Errors

Massimo Ruffolo1,3, Rosario Curia1, and Lorenzo Gallucci1,2

1 Exeura s.r.l.
2 Department of Electronics, Information science and Systems (DEIS)

3 Institute of High Performance Computing and Networking - Italian National
Research Council (ICAR-CNR),

Università della Calabria, 87036 Rende (CS), Italy
{ruffolo, curia, gallucci}@exeura.it

ruffolo@icar.cnr.it

http://www.exeura.com

Tel: +390984493094

Abstract. This work describes the architecture of a clinical processes
management system aimed to support a process-centered vision of health
care practices. At the heart of the system there is a formalism well suited
for representation of both processes and related domain knowledge. This
language allows the semantic description of clinical processes using on-
tology and workflow representation formalisms. The main goal of the
system is to assist in executing the clinical processes by providing in-
telligence functionalities, based on workflow mining techniques, and in
monitoring processes during their execution. Acquired process instances
can be analyzed to identify main causes of medical errors and high costs
and, potentially, to suggest clinical processes restructuring or improve-
ment able to enhance cost control and patient safety.

1 Introduction

Nowadays health care costs and risks management is a high priority theme for
health care professionals and providers. Across the world the whole issue of
patient safety, medical errors prevention and adverse events reporting is a very
challenging and widely studied research and development topic that stimulates
a growing interest in the computer science researchers community.

A strong research effort has been taken, in the recent past, to provide an
uniform representation of clinical knowledge useful in health care information
systems. Interesting results have been obtained in the field of medical knowl-
edge representation, where many ontologies, such as UMLS, MESH, ICD9-CM,
Snomed, OpenGALEN [2,3,6,7,17,18] have been developed on different medical
topics. The Evidence Based Medicine movement has stimulated the definition
of many guideline representation formalisms such as GLIF, PROFORMA, EON
based on different paradigms [1,4,19]; e.g. Proforma is a process description lan-
guage grounded in a logical model whereas GLIF is a specification consisting of

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 334–343, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Process Management in Health Care 335

an object-oriented model. The promising young project DeGel [16] aims to con-
struct a digital electronic guideline library extracted from descriptions available
in textual documents.

Health care practices are characterized by complex clinical processes in which
high risk activities take place. A clinical process can be seen as a particular work-
flow where medical (e.g. treatments, drugs administration, guidelines execution,
medical examinations, etc.) and non-medical (e.g. patient enrollment, medical
record instantiation, etc.) activities and events occur. A successful approach for
reducing cost and risk and enhancing patient safety is a process-oriented vision
of health care services and practices.

Systems providing clinical processes design, execution and analysis function-
alities can change clinical practices and can help diffusion of a process and quality
awareness in health care organizations. Both technologies at the state of the art
of the health care information systems and knowledge representation field are
required to build those systems able to support policies that ensure efforts of
the health care organizations are mainly focused on improving quality of clinical
governance, delivering high quality standards of care, service and patient safety.

This work describes the architecture of a clinical processes management sys-
tem aimed to support a process-centered vision of health care practices. At the
heart of the system there is a formalism well suited for representation of both
process and related domain ontologies. The system is built upon the results
coming from different fields of information technologies. Today, in fact, thanks
to natural language processing techniques, ontology and workflow representation
languages [8,9,10,15], data and workflow mining techniques [12,13], is possible to
create a new generation of information technologies capable of capturing, record-
ing, monitoring, classifying and analyzing events occurring in clinical processes.
In particular, the system is based on ontologies and workflows representation
mechanism enabling clinical processes and guidelines extraction, from textual
documents, and their formal representation in machine manageable form. The
system acquires and stores clinical processes and guidelines schema in a knowl-
edge base and classify them w.r.t. the concepts contained in the ontologies. The
main system goals are to assist in executing the clinical processes by providing
intelligence functionalities, based on workflow mining techniques, and to assist
in monitoring processes during their execution. Furthermore, acquired process
instances can be analyzed to identify main causes of risks, to control costs and,
potentially, to suggest clinical processes restructuring or improvement. Thanks
to the system health care professionals have knowledge management and decision
support functionalities able to enhance cost control and patient safety, reducing
risks due to medical errors and adverse events.

2 System Description

The clinical processes management system is designed to follow the clinical pro-
cesses life-cycle model shown in figure 1 based on three phases: design, execution
and monitoring, intelligence. The architecture, depicted in figure 2, is organized



336 M. Ruffolo, R. Curia, and L. Gallucci

Fig. 1. Clinical Processes Life-Cycle

using a classical three-layer information system structure with interface, control
and knowledge base layers. The packages Design, Execution & Monitoring and
Intelligence contain software modules providing main functionalities for clinical
processes life-cycle implementation that are based on support functionalities car-
ried out by the packages Data Storing & Retrieval and Administration. In the
following packages structure and functionalities are described in detail.

2.1 Clinical Processes Design

The Design Package contains software modules providing functionalities for the
representation of clinical processes, medical guidelines and related ontologies
obtained either by means of direct (on-screen) drawing and specification or using
a text-extraction and annotation facility. The obtained ontologies and clinical
processes models are stored in the repository contained in the knowledge base
layer.

Design functionalities allow a formal and machine-readable specification of
the clinical processes useful for their assisted and monitored execution. In partic-
ular, process activities and their parameters, decision steps, conditions, patient
states, patient data etc. can be represented and semantically indexed using con-
cepts contained in the ontologies. The indexing procedure allow the retrieval of
process and sub-process (e.g. guidelines) using concept-based queries.

The system manages two kind of ontologies the domain ontologies containing
the patients’ data structure, medical records data, hospital and ward data and
the medical ontologies. The latter concern a wide variety of concepts related
to the medical domain and to specific clinical knowledge areas (e.g. diseases,
drugs, medical examinations, medical procedures, laboratory terms, etc.) coming
from standard medical thesaurus such as: ICD9-CM, Loinc, MeSH, Snomed.
Ontologies are used for the semantic description of process activities and data.

Clinical processes, guidelines as well as domain ontologies are represented
using a developing ad hoc formalism called CPML (Clinical Processes Modeling
Language). The formalism is based on DLP+ [20] an ontology representation



Process Management in Health Care 337

language founded on Disjunctive Logic Programming extended with object ori-
ented capabilities and built upon the reasoning system DLV [21]. CPML allows
the definition of clinical processes and ontologies through the joint representa-
tion of both ontology elements (i.e. concepts, attributes, taxonomic and non-
taxonomic relations between concepts, instances, etc.) and workflow elements
(i.e. sub-processes, activities, events, conditional forks, conditional joins, process
participants, triggers, etc.). In the clinical processes ontologies sub-processes, ac-
tivities and data are indexed and classified w.r.t. medical and domain ontologies
concepts.

2.2 Clinical Processes Execution and Monitoring

The Execution & Monitoring package provide functionalities for the acquisition
of the process instances and the assisted execution of clinical processes. Process
instances are acquired following a schema already designed or selecting just-
in-time the activities and/or sub-processes to perform. The process evolution is
monitored during the execution using data and workflow mining techniques. The
execution, performed through a graphical user interface constituted of web-based
forms filled by doctors and nurses, is assisted in two different ways:

– through the execution of a clinical process schema as workflow enactment
where actors can be humans or machines (e.g. legacy systems supplying re-
sults of medical examinations). During the workflow enactment the designed
workflow schema is followed exactly producing clinical process instances
where each of them contains the values of activities and events parameters
related to a given cared patient;

– through a dynamic workflow composition. In this case, each activity or sub-
process instance is acquired selecting the most appropriate one to execute
in a given moment. The selection is supported by queries on the process
ontologies contained in knowledge base. The queries syntax lets specification
of the patient clinical data coming from anamnesis and medical examination,
and each significant information available in the particular moment of the
execution.

Adverse events and errors prevention, risks and costs reduction and patients
safety enhancement need, also, a monitored execution of clinical processes. Mon-
itoring lets the application of prediction models to running process instances, to
identify exceptions, unusual or undesired behavior and to inform the user. Moni-
toring clinical process during their evolution, using workflow mining techniques,
allows doctors and nurses to estimate the probability of errors or adverse events
occurrence or find if an error or an adverse event has took place.

2.3 Clinical Processes Intelligence

The package Intelligence aims to allow analysis of the clinical processes instances
after their execution. The software module Process & Workflow Mining provide



338 M. Ruffolo, R. Curia, and L. Gallucci

functionalities able to extract, from the workflow logs, relevant features charac-
terizing clinical process instances acquired during the execution and to represent
them in suitable datasets. This make available large amount of data on which
process intelligence [11], based on data and workflow mining techniques, can
be performed to discover patterns related to adverse events, errors and cost
dynamics, hidden in the structure of clinical processes, that are cause of risks
and of poor performances. When clinical process instances are obtained through
workflow composition of single activities or sub-processes the workflow mining
techniques are able to classify clinical process instances w.r.t. their behaviour
and, possibly, to suggest new schema able to reduce risks for patients and the
impact of errors to use as future reference.

The software module Clinical Processes Evaluation provide functionalities to
construct reports which can be customized defining performance indexes compar-
ing process instances to a reference clinical process on the base of costs and risks.

The process intelligence functionalities support medical and managerial deci-
sion making about cost- and risk-effective intervention and enable lesson learning
about health care practices that suggest clinical processes restructuring or im-
provement criterions.

2.4 Administration and Knowledge Storing and Retrieving

The packages Knowledge Storing and Retrieval and Administration contain soft-
ware modules providing support functionalities that assist clinical processes de-
sign, execution and intelligence. In particular:

– the data storing and retrieving services are built on top of high-level informa-
tion representation techniques, such as ontologies (either domain and med-
ical ontologies or process ontologies) and process workflows. The software
components contained in the package are suited to represent, manipulate
and query process ontologies, domain and medical ontologies. Repositories
include Relational DB and semi-structured (XML) DB positioned in the Kn-
woledge Base Layer; the access is mediated by the ontomapper component
a library for ontology interface;

– the administration services are provided to properly co-ordinate simultane-
ous work from many users, by means of system management in terms of
known users and their associated permissions. A dedicated web console lets
administrative-role users to manage permissions, thus directing the whole
working on knowledge base.

3 An Application to the Oncological Domain

This section describs an application of the system to a real case concerning
a clinical process for caring the mammary carcinoma. The clinical process is
referred to the practices carried out in the oncological ward of an italian hospital,
for this reason it is not general but specific for the domain of the considered ward.



Process Management in Health Care 339

Fig. 2. System Architecture

The application suggests how the system can improve patient safety and cost
control.

The clinical process which the patient is subjected to, depicted in figure 3, can
be organized and represented using the following 10 activities and sub-process:

1. Patient enrollment (acceptance). The patient arrives to the ward with a
previous clinical diagnosis of a mammary carcinoma; patient personal data
are being collected and stored into a clinical records folder (CRF), initialized
in this step.

2. Anamnesis. This sub-process is divided in three parts:
– general anamnesis, in which general data, like physiological (allergies,

intolerances, etc.) or personal data, are being collected;
– remote pathological anamnesis, concerning past pathologies;
– recent pathological anamnesis, in which each data or result derived from

examinations concerning the current pathology (or pathologies) are ac-
quired.

Every information collected is stored, as in previous step, into CRF.
3. The patient is examined by an oncologist (Initial clinical evaluation). The

results of the check-up are registered in the CRF.
4. Additional clinical tests (Other exams), if requested, are being conducted to

find out general or particular conditions of the patient, if they are not fully
deducible from the test results already available.

5. The physician picks a therapeutic strategy: the strategy itself depends upon
actual pathology state as well as other patient data collected and is selected
from one or more libraries among the guidelines available therein. The final



340 M. Ruffolo, R. Curia, and L. Gallucci

Fig. 3. A clinical process for caring the mammary carcinoma

choice among them descends from an agreement between the patient and
the physician, given that different guidelines may cause variated side effects
and have different associated recovery probabilities. Pathology stage and,
in case, metastasis diffusion constitutes key information in this process, so
there is an agreement at international level to code them strictly.

6. The patient is asked to sign one or more agreements, which may concern:
understanding and acceptance of consequences (either side effects or bene-
fits) which may derive from the therapy chosen (e.g. chemotherapy), privacy
agreements, etc.

7. Prescription of drugs (chemotherapy prescription) as designed in the cho-
sen guideline. This implies computation of doses, which may depend on
patient’s biomedical parameters, such as body’s weight or skin’s surface.
Cross-checking doses is fundamental here, because if a wrong dose is given
to the patient the outcome could be lethal;

8. Drug preparation (chemotherapy preparation), which must include an addi-
tional check on appropriateness of prescription.

9. The prepared drug is administered to the patient (chemotherapy administra-
tion), following the scheme (sub-process) outlined in the selected guideline.

10. discharging of patient from the ward (dimission).

Steps 8th and 9th are repeated till therapy’s end; due to drug inherent toxicity,
before each dose follows the preparation/giving chain, the oncologist must visit
the patient to check for actual severity of side effects. At this point, he/she could
decide changes in therapy, which may range from dose reduction to therapy
suspension or termination. In the latter case, the guideline applied must be
switched, possibly with subsequent changes in drugs needed for the therapy.
The Systems described in this paper make viable:



Process Management in Health Care 341

Fig. 4. An example of a computerized guideline

– the formal representation of the whole clinical process and its classification
in an ontology containing all noteworthy processes that take place in the
hospital;

– computer-aided choice of the applicable guidelines; the user, having patient
and pathology data available in electronic form, can query the knowledge
base which contains one or more guidelines’ ontologies, getting as result a
collection of every guideline applicable to the patient. Final selection per-
tains to the oncologist and the patient, because it depends on side effects
level considered ”bearable”, but also wanted results. In this phase, availabil-
ity of domain ontologies concerning drugs’ interactions, side effects and con-
traindications for some patients could reduce dramatically the probability of
fatal mistakes. The guidelines ontology is built through the extraction from
natural language text sources, and the representation in structured form. In
Figure 4 is depicted the system guidelines editor. This enable agile guidelines
browsing and automatic clinical workflow enactment. The guidelines are also
classified using different cost and risk evaluation criteria;

– assisted prescription of chemotherapy drugs; the doses, computed as men-
tioned, would be double checked against information extracted from drug
ontologies, which could specify maximum absolute ratings for certain drug
(e.g. ”max -nnn- mg in a whole life”) or other ratings relative to biomedical
parameters of the patient. A change in a prescribed dose can be flagged im-
mediately as dangerous, or even lethal, and the associated risk is notified to
the oncologist;

– chemotherapy drugs preparation and dispensing; for a given patient, no am-
biguity (e.g. due to handwriting) can arise on each dose to prepare or dis-
pense;

– assisted acquisition and monitoring of clinical process instances; the system
could also help in acquisition of personal data, anamnesis data as well as



342 M. Ruffolo, R. Curia, and L. Gallucci

any other data acquired from examinations and tests. When the number of
acquired clinical process instances is significant clinical processes evaluation
can take place and restructuring or improvement of the clinical processes
can be suggested by the system to prevent risk and excessive cost.

4 Conclusions and Future Works

The practical application of the developed clinical processes management system
show that is possible to improve risk prevention and cost control performing:

– the selection of the correct guideline to apply on a patient through queries
on the guideline library based on data available about patient state and
pathology;

– clinical processes intelligence activity for analyzing and discovering patterns
and trends across all reported process instances, making possible to identify
behaviors that pose risks for the patients;

– the benchmarking of processes and activities, obtaining comparative data to
support the identification of practices that lead to good patient outcomes
and the identification of further opportunities for improving patient safety;

– the identification and understanding of the human and system factors, which
cause unintended harm to patients;

– the classification of errors and adverse events useful for the definition of a
common understanding and the development of an agreed definition of terms
relating to error, adverse event, risk and patient safety;

– the discovering of poor outcomes of care that are not just the result of adverse
events and sub-optimal performances of the health service, but depend on a
bad execution of related processes.

The main challenging research and development problems to approach in the
future work are the development of an efficient query engine working on the
conjunct representation of workflows and ontologies and the definition of further
suitable ad hoc workflow mining algorithms.

References

1. Guide Line Interchange Format (GLIF). http://www.glif.org
2. UnifiedmedicalLanguageSystem(UMLS). http://www.nlm.nih.gov/research/umls
3. Medical Subject headings (MeSH). http://www.nlm.nih.gov/mesh/meshhome.html
4. Sutton D.R. and Fox J. The Syntax and Semantics of the PROforma guideline

modelling language. JAMIA, Sep-Oct;10(5):433-43, 2003.
5. Logical Observation Identifiers Names and Codes (LOINC). http://www.loinc.org
6. World Health Organization (WHO). http://www.who.int/whosis/icd10
7. National Center for Health Statistic (NCHS). http://www.cdc.gov/nchs/icd9.htm
8. Workflow Management Coalition (WfMC). http://www.wfmc.org
9. Business Processe Management Initiative (BPMI). Business Process Modelling

Language (BPML) specification. http://www.bpmi.org



Process Management in Health Care 343

10. Casati F. and Ming-Chien S. Semantic Analysis of Business Process Executions.
Proceedings of EDBT’02, Prague, Czech Republic, March 2002.

11. Casati F., Dayal U., Sayal M., Shan MC. Business Process Intelligence.
http://www.hpl.hp.com/techreports/2002/HPL-2002-119.pdf

12. Greco G., Guzzo A., Manco G., Sacca’ D. Mining Frequent Instances on Workflows.
Proc. Seventh Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), Seoul, South Korea, 2003.

13. Wil M.P., van der Aalst B.F., et al. Workflow mining: A survey of issues and
approaches. Data Knowl. Eng. 47(2): 237-267, 2003.

14. Maruster L., van der Aalst W.M.P., et al. Automated Discovery of Workflow
Models from Hospital Data. Proceedings of the ECAI Workshop on Knowledge
Discovery and Spatial Data, pages 32-36, 2002.

15. Zamil K.Z. and Lee P.A. Taxonomy of Process Modeling Languages. CS-TR: 725,
Department of Computing Science, University of Newcastle, 2001.

16. Shahar Y., Young O., Shalom E. et al. DeGeL: A Hybrid, Multiple-Ontology
Framework for Specification and Retrieval of Clinical Guidelines. Proceedings
of the 9th Conference on Artificial Intelligence in Medicine Europe (AIME) 03,
Protaras, Cyprus, Springer-Verlag Heidelberg, pp. 122-131, Oct. 2003.

17. Rector A.L., Rogers J.E., Zanstra P.E., Van Der Haring E. OpenGALEN: Open
Source Medical Terminology and Tools. Proc AMIA Symposium, 2003.

18. Systematized Nomenclature of Medicine (SNoMed). http://www.snomed.org
19. Tu S.W. and Musen M.A. From Guideline Modeling to Guideline Execution: Defin-

ing Guideline-Based Decision-Support Services. Proc. AMIA Symposium, Los An-
geles, CA, 863-867, 2000.

20. Dell’Armi T., Leone N. Il Linguaggio DLP+ Exeura Internal Report, Cosenza,
(June) 2004.

21. Faber W., Leone N. and Pfeifer G. The DLV homepage (www.dlvsystem.com)
since 1996.



A Pathway for Process Improvement Activities

in a Production Environment:
A Case Study in a Rework Department

Onur Özkök, Fatma Pakdil, Fahri Buğra Çamlıca, Tolga Bektaş,
and İmdat Kara

Başkent University, Department of Industrial Engineering, 06530 Ankara, Turkey
{ozkok, camlica, fpakdil, tbektas, ikara}@baskent.edu.tr

Abstract. In this study, we describe our experience in process improve-
ment in a study of one of the foremost manufacturing firms in Turkey.
The firm is faced with a large increase in its inventory of returned prod-
ucts. To arrive at solutions to the problem and suggest improvements
in the system under consideration, we offer a three-phase methodology
which consists of identifying all the sub-problems that lead to the main
problem and then solving those sub-problems. Although their solution in-
volves the use of well-known techniques, the uniqueness of the approach
lies in offering a systematic methodology that unifies these techniques
from different disciplines in a sequential and integrated fashion.

1 Introduction

In this study, we describe a step-by-step business improvement experience in one
of the foremost dishwasher production firms in Turkey. The firm is faced with
a major problem of a huge amount of inventory of returned products due to a
product takeback policy. For the solution to this problem, we propose a three-
phase methodology. We also identify the tools that could or should be used in
performing each step of the proposed methodology. Various studies, such as that
performed by Rohleder and Silver [1], have focused on constructing a methodol-
ogy for business improvement. However, none of them proposes any methodology
as proposed in the present study. In very brief terms, our methodology includes
three phases (see Figure 1). Phase 1 consists of organizational issues, such as
describing and analyzing the system in order to find out the root and sub-causes
of the problem, and their effects on the process. Connected to Phase 1, Phase
2 deals with the possible solutions regarding workforce planning related issues.
The last phase constitutes a framework to address material handling related
issues. Phase 3 is rather specific for this problem, whereas the first two phases
are more general in the sense that they can be adapted to other firms. One
important aspect of the methodology is that although it consists of well-known
techniques belonging to different disciplines such as Total Quality Management
(TQM), time and motion study, simulation, operations planning and material
requirements planning, all the elements are combined in an integrated manner.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 344–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Pathway for Process Improvement Activities in a Production Environment 345

Fig. 1. Outline of the proposed methodology

Details on product takeback services can be found in Geyer and Van Wassen-
hove [2] and Klausner et al. [3]. More specifically, the former investigates product
recovery strategies in product takeback schemes and the latter involves the inte-
gration of product takeback and technical service. Stevels et al. [4] report on the
takeback and recycling costs of discarded television sets, and indicate that they
can be brought down substantially by a combination of design improvements,
technology improvements and by achieving economy of scale in the process. In



346 O. Özkök et al.

what follows, we will describe in detail the system that is studied in this paper
and the methodology proposed for the solution to the main problem considered.

2 Phase 1: Organizational Issues

This phase consists of system description, analysis of the current situation, iden-
tification of problems and possible solutions. Each are described in detail below.
The heart of the study is in this phase. Any mistakes made at this phase cause
further failures. It should be realized that if the problem and causes are not
clear, further analysis cannot be performed.

2.1 Description and Analysis of the System

The firm in this study produces a single product, namely dishwashers. The firm
has a specific policy to take back a sold product if the customer finds it to be
defective or otherwise unsatisfactory. For such products, the revision department
performs the re-work, repair and repacking operations, after which all of the
products can be sold again. The current layout of the department is depicted
in Figure 2. The revision department has three employees and its surface area
is 189m2. The department is divided into two sections. One section is used for
repairing-packing and the other is for storing the products.

Fig. 2. Current layout of the rework department

The repairing-packing section consists of a working-tooling area, a spare part
storage area, standard product elements and tool shelves, eight usable control
vanes, a packing area, a packed product storage area and an office. The current
workflow in the department can be roughly described as follows. The products
that arrive at the department are transported from a storage area to the working
area, which is in the middle of this section. After the employees identify the type



A Pathway for Process Improvement Activities in a Production Environment 347

of defect in each product, the product is subjected to a function test. There are
eight vanes on which the function test can be performed. After the function test
is completed and the related damage/defect is fixed, the products are stored for
packing. Packing is performed in units of four, i.e. packing does not start until
four products are revised. An outline of the workflow can be found in Figure 3.

Fig. 3. Workflow diagram

The products that are returned to the rework department are classified with
respect to their reason for refusal (either defective or found unsatisfactory). For
this purpose, the firm uses 20 code groups, where each code group refers to a
defect or damage found in the product. Each code group is further composed
of specific subcategories, describing in detail the main source of the defect or
damage. Table 1 shows all the code groups used in the firm, the number of
subcategories included in each, and their explanations. For instance, the code
group 140X refers to electronic defects. There are 5 subcategories of defects
in this group, namely 1400, 1401, 1402, 1403 and 1409, which refer to general
electrical, main card, control button, lamp and display card defects, respectively.

The rework department is now faced with a major problem of an unexpect-
edly large inventory of returned products. This inventory occupies a significant
amount of workfloor space that is not allocated for it. Based on quality re-
ports and a brainstorming session, the main problem was determined to be a
lack of systematic workflow, which encompasses many specific and detailed sub-
problems in the revision department. Based on this specific problem, we first
analyzed the organizational structure to determine whether there were any orga-
nizational deficiencies in terms of the organization chart, job descriptions, work-
flow chart, standard times for each sub-process, or daily operations planning.
Previous documentation on these was limited and had not been implemented.



348 O. Özkök et al.

2.2 Identifying the Root Cause, Sub-causes, and Their Effects

By means of several comprehensive brainstorming sessions performed with the
employees and engineers, various sub-problems, sub-causes and their effects on
the whole process were determined. Based on this, we constructed the cause-
and-effect (fish-bone) diagram given in Figure 4. The remaining part of this
study was formed by analyzing and offering solutions to problems identified in
the cause-and-effect diagram.

Table 1. Description of the code groups

Code Explanation Code Explanation
Group Group

10X Button defects 20X External damages
30X Detergent, polish box defects 40X Salt box defects
50X Motor defects 60X Cable defects
70X Water spilling 80X Water system defects
90X External and internal trunk defects 110X Program errors
100X Heater, thermostat, controller defects 120X Performance errors
130X Furnace errors 140X Electronic defects
150X Dissatisfaction or misusage errors 160X General machine defects
170X Basket defects 180X Emptying hose defects
190X Door lock defects 9999 Unknown errors

2.3 Finding Possible Solutions

With a TQM approach in mind, we focused on using all possible techniques to
eliminate the root cause and the main problem. At this step, all analysis results
led to the rest of the study. As seen in Figure 1, we constituted this step in two
phases, namely workforce planning issues and material handling issues, which
seemed to cover the reasons for most of the problems.

3 Phase 2: Workforce Planning Issues

At this phase, we focused on re-organizing the revision department. This con-
sisted of drawing the organization and the workflow charts, writing job descrip-
tions (not already documented), performing a Pareto analysis to identify prod-
ucts that constitute a significant amount of inventory, determining standard
times for such products through a time and motion study, and finally creating
alternative scenarios through simulation for workforce and operations planning.

3.1 Organization Chart, Job Analysis, and Job Description

The organization chart and job descriptions are important parts of the orga-
nization structure. It should be remembered that a job description typically



A Pathway for Process Improvement Activities in a Production Environment 349

Fig. 4. Cause-and-effect diagram

describes job content, environment, and conditions of employment [5], [6]. In
addition to this, the heart of the organization structure is the organization chart
[7]. In analyzing the whole system, it appeared that there was no written orga-
nizational documentation, such as that mentioned in Phase 1 (section 2.1). As
there were no job descriptions available, the employees were doing their jobs in
individual ways which differed markedly from one employee to another in terms
of process times. At this step, in order to eliminate this unorganized working
system and pave the way for a standard process organization, we simultaneously
monitored the whole process and the workflow, after which we performed a job
analysis. Based on this, we structured an organization chart and a standard job
description for the revision department employees.

3.2 Pareto Analysis

Each day, a number of products with varying defects and/or damages arrive at
the revision department. As Table 1 indicates, the number of damages or defects
is in the order of tens, and there are a total of 130 subcategories describing
the defects, let alone those that cannot be appropriately identified. This makes
the analysis too complicated to be carried out. Therefore, in order to properly



350 O. Özkök et al.

distinguish the main sources of the problem and the bulk of the inventory sitting
on the work floor, a Pareto analysis has been carried out with respect to the
amount of products belonging to different code groups, and covering a period of
10 months (January - October 2004). The Pareto principle states that in general
80% of the errors in a system is caused by 20% of the problems [8]. According
to the results of Pareto analysis, the main sources of the problem were found to
be related to code groups 20X, 120X and 150X.

Table 2. Results of Pareto Analysis

Code Explanation Group % Cumulative %

201 Packing has a defect 12.41
202 Side trunk has a defect 49.64 14.63
204 External door has a defect 18.01

1204 Product does not wash properly 44.50
1205 Program does not work 15.81 11.68
1208 Product does not work 25.68

1505 No problem, product working properly 43.65
1508 Product change due to customer dissatisfaction 40.65 20.87

Product is classified as scrap, no revision 24.62

These are presented in detail in Table 2, in which the column Group % indicates
the percentage of the code in the code group (for instance, products with code
201 constitute 12.41% of all the products in group 20X). On the other hand, the
last column labeled Cumulative % indicates the percentage of the code group
among all the possible code groups (for instance, products in the code group 20X
constitute 14.63% of all the products in the system). We found that products
with defect/damage codes 201, 202, 204, 1204, 1205, 1208, 1505, or 1508 domi-
nate the others in terms of their quantity on the workfloor. All the other code
groups have a corresponding percentage of 6% or less. Therefore, in the ensuing
analysis, we focused on these codes. Besides the previously mentioned defects,
a significant amount of products are classified by the firm as scrap (24.62%). In
this study we ignore this class since the decision is made by the firm.

3.3 Simulation Results

The solution to this problem should bear two aspects. Firstly, the amount of
inventory must be reduced, and secondly a systematic workflow should be es-
tablished so that a throughput, which will prevent an increase in the inventory,
can be achieved. To get an idea of the state of the revision department, one
needs to know its daily capacity. By comparing the daily capacity of the revision
department with the rate of inflow, one can get an idea about changes in inven-
tory. In order to determine the revision department’s daily capacity, a simulation
model was constructed with Arena 5.0 simulation software. Using such a model,



A Pathway for Process Improvement Activities in a Production Environment 351

one can estimate the department’s average daily capacity for different scenarios
with different workforces.

In order to develop the simulation model, the required standard times for
each operation were determined with a time and motion study. The sample for
the study consists of 15 observations for the packing operation and 10 obser-
vations for the rest of the process. We have also used this data to determine
the probability distributions for each operation. In this way, the probabilistic
nature of the revision process could be included in the capacity of the depart-
ment. In the simulation study, two assumptions were made for all scenarios. The
first related to working hours. The revision department works one 8-hour shift
per day, with two 10-minute breaks and a 40-minute break for lunch. The sec-
ond assumption concerned the packing operation, in which two employees work
together and pack revised products in batches of 4.

From the simulation results, four workforce schedules, one of which was the
current situation, were evaluated. The revision department currently has one
part-time and two full-time employees. Full-time employees of the firm perform
all operations of the revision process and the part-time employee only disassem-
bles the returned products that are classified as scrap. In the first alternative
the role of the part-time employee is changed to help the other employees pack
the revised products, so that one full-time employee is sufficient for the packing
operation and the other employee can continue the revision process. In the sec-
ond alternative, there are two part-time employees and the packing operation is
assigned exclusively to them. In the last alternative there are three full-time em-
ployees and one part-time employee who again helps pack the revised products.
From the results of the simulation, daily capacities of the revision department
were determined as in Table 3. The third alternative seems to be the most ap-
propriate, as there is a huge inventory of returned products. However, after the
amount of inventory is reduced to a reasonable level, the workforce schedule can
be varied on the basis of the firm’s decision.

Table 3. Comparison of alternatives via simulation

Scenario Daily # of Reworked Products

Current Situation 32 products
Alternative 1 (2 full-time, 1 part-time employees) 45 products
Alternative 2 (2 full-time, 2 part-time employees) 68 products
Alternative 3 (3 full-time, 1 part-time employees) 65 products

4 Phase 3: Material Handling Issues

Even though simulation results indicate that 32 products can be repaired in the
current situation, this quantity cannot be achieved in reality due to the lack
of operations planning. That causes disorder in the revision department, as the
employees do not know which machines are to be repaired in sequence. Also,



352 O. Özkök et al.

spare parts are supplied by main production lines since there is no inventory
for them. Both this disorder and the lack of spare parts result in inefficiency.
To overcome these sub-problems, it is obvious that operations planning and an
inventory system are required.

Knowing the department’s daily capacity permits a daily operations plan to
be made which includes information about the numbers and types of defects to
be revised. With such a plan, one can easily see whether there is a problem in
the process by comparing actual production to planned production. In terms of
the inventory system, bills of materials were determined. Using these, material
requirements were planned with software developed in MS Excel VBA. Using this
software, material requirements can be determined according to the production
plan, and the inventory in the revision department can be tracked. The number
of products and defect types can differ according to the revision planning.

The other problem in material handling is that the products are placed ran-
domly in the unrevised machine storage area. Random storage has major dis-
advantages and is used due to the fact that there is no planned storage policy.
Products to be revised are also chosen randomly. These practices are not suitable
for the proposed process, in which defect types to be repaired are determined
before the retrieval of the products. To overcome these problems a dedicated
storage policy [9] is proposed, where each defect type has a dedicated storage
area. As we give higher priorities to products with the most frequent defects,
they are placed as near as possible to the entrance of the working area. The
placement of other products is less important, so they can be placed farther
from the working area. In addition to this, to make material handling easier, the
plan is to place the products on pallets and to use a hand forklift to transport
them to the repair work area. In the current system two employees handle a
product on the floor, due to its weight. However, with the use of pallets and a
hand forklift, one employee could handle a product alone.

5 Conclusions

In this paper, we have described our experience in process improvement for a
rework department in a production firm. We have proposed a methodology in
which different techniques are integrated in a systematic manner. The appli-
cation of the methodology results in an improved rework operation unit with
a higher productivity and less work in process. The major contribution of this
study lies in developing a specific methodology that improves a practical process
of any firm. The steps of this methodology can be summarized as follows:

– Defining the main and sub-problems and root causes clearly,
– Establishing a well-documented process definition through a systematic ap-

proach (including job descriptions and organizational charts),
– Offering a well-built work-schedule in order to have a smooth workflow

through Pareto analysis and extensive simulations, and
– Re-organizing the layout of the department and offering a storage policy that

would result in a more productive and efficient working environment.



A Pathway for Process Improvement Activities in a Production Environment 353

The generality of the proposed methodology, particularly that of Phases 1
and 2, shows that it can be applied to similar settings in many production envi-
ronments. The success of Phases 1 and 2 affects the problem solving procedure’s
performance. What could be perceived as lessons derived from this study can
be stated in two categories. Firstly, the problem and system should be compre-
hensively analyzed with an internal customer approach. In this specific case, the
input rate of this department depends on the other relevant departments such as
purchasing, manufacturing, quality control, and services network after sales. On
this point, implementation of an internal customer performance measurement
system seems to be an area for further research. The second lesson is that an
analysis should be performed as to whether the system can reach its theoretical
capacity or increase its actual capacity without further investments.

References

1. Rohleder, T.R., Silver, E.A.: A tutorial on business process improvement. Journal
of Operations Management 15 (1997) 139-154

2. Geyer, R., Van Wassenhove, L.N.: Product take-back and component reuse, INSEAD
Working Paper 2000/34/TM/CIMSO 12 (2000)

3. Klausner, M., Grimm, W.M., Horvath, A.: Integrating product takeback and techni-
cal service, Proceedings of the 1999 IEEE International Symposium on Electronics
and the Environment, 1999, 48-53, Danvers, MA, USA

4. Stevels, A.L.N., A.A.P. Ram, Deckers, E.: Take-back of discarded consumer elec-
tronic products from the perspective of the producer Conditions for success. Journal
of Cleaner Production 7 (1999) 383-389

5. Robbins, S.P. Coulter, M.: Management. 8th ed. Prentice Hall, New Jersey (2005)
6. Kreitner, R.: Management. Houghton Mifflin Co., Boston (1989)
7. Maynard, H.B.: Handbook of Business Administration. Mc-Graw Hill, New York

(1970)
8. Kolarik, W.J.: Creating Quality. 3rd ed. McGraw-Hill, Berlin Heidelberg New York

(1995)
9. Francis, R.L.: Facility layout and location : an analytical approach. 2nd ed. Prentice

Hall, New Jersey (1992)



IT Support for Healthcare Processes

Richard Lenz1 and Manfred Reichert2

1 Institute for Medical Informatics, University of Marburg, Germany
lenzr@mailer.uni-marburg.de

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. Patient treatment processes require the cooperation of differ-
ent organizational units and medical disciplines. In such an environment
an optimal process support becomes crucial. Though healthcare pro-
cesses frequently change, and therefore the separation of the flow logic
from the application code seems to be promising, workflow management
technology has not yet been broadly used in healthcare environments.
In this paper we discuss why it is difficult to adequately support patient
treatment processes by IT systems and which challenges exist in this
context. We identify different levels of process support and distinguish
between generic process patterns and medical guidelines / pathways.
While the former shall help to coordinate the healthcare process among
different people and organizational units (e.g., the handling of a medical
order), the latter are linked to medical treatment processes. Altogether
there is a huge potential regarding the IT support of healthcare processes.

1 Introduction

Process-oriented information systems have been demanded for more than 20
years and terms like ”continuity of care” have even been discussed for more
than 50 years. Yet, healthcare (HC) organizations are still characterized by an
increasing number of medical disciplines and specialized departments. The pa-
tient treatment process requires interdisciplinary cooperation and coordination.
The recent trend towards HC networks and integrated care even increases the
need to effectively support interdisciplinary cooperation along with the patient
treatment process.

Healthcare heavily depends on both information and knowledge. Thus, infor-
mation management plays an important role in the patient treatment process.
Numerous studies have demonstrated positive effects when using IT systems in
healthcare. In particular the preventability of adverse events in medicine has
been in the focus of recent studies. Adverse events are defined as unintended
injuries caused by medical management rather than the disease process [1]. It
turned out that insufficient communication and missing information are among
the major factors contributing to adverse events in medicine [2,3,4,5]. IT sup-
port for HC processes therefore has the potential to reduce the rate of adverse
events by selectively providing accurate and timely information at the point of

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 354–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



IT Support for Healthcare Processes 355

care [6]. Yet, there is a discrepancy between the potential and the actual usage
of IT in healthcare. A recent IOM report even states that there is an ”absence
of real progress towards applying advances in information technology to improve
administrative and clinical processes” [7].

Why is it so difficult to build IT systems that support a seamless flow of infor-
mation along a patient’s treatment process? In this paper we try to answer this
question by identifying different levels of process support and by distinguishing
between generic process patterns and the medical treatment process. Generic
process patterns, such as medical order entry and result reporting, help to coor-
dinate the HC process among different people and organizational units. Though
clinical and administrative processes change over time, these generic patterns are
a part of the fundamental processes of clinical practice, which basically remains
the same for longer periods of time.

The specific patient treatment process, however, depends on medical knowl-
edge and case specific decisions. Decisions are made by interpreting patient spe-
cific data according to medical knowledge. This decision process is very complex,
as medical knowledge includes medical guidelines of various kinds and evidence
levels, as well as individual experience of physicians. Moreover, medical knowl-
edge continuously evolves over time. It is generally agreed that medical decision
making cannot be automated. Yet, the patient treatment process can be im-
proved by selectively providing medical knowledge in the context of the patient
treatment process. The problem is to offer current knowledge, to only offer rel-
evant knowledge according to the current context, to include the underlying
evidence, and to support all of this in a way which seamlessly integrates with
the physicians work practice.

In Section 2 we describe how traditional HC information systems support the
fundamental processes in HC organizations and how standards contribute to in-
tegration. To find out how IT can support medical processes we will have a closer
look on medical decision making and its implications for process-oriented IT ar-
chitectures in HC environments in Sections 3– 5. Section 6 discusses demanding
challenges with respect to the use of BPM technologies in the HC domain.

2 Generic Process Patterns in Healthcare

The architecture of typical hospital information systems is characterized by many
different departmental systems, which are usually optimized for the support of
different medical disciplines (e.g. radiology, cardiology, or pathology). The need
to consolidate the data produced by these ancillary systems to a global patient-
centered view and to support the cross-departmental processes has motivated the
development of standards for data interchange in healthcare. These standards
also play an important role when not only cross-departmental but also cross-
organizational HC processes are to be supported. Today, HL7 is the leading
standard for systems integration in healthcare. The name ”Health Level 7” refers
to the application layer in the OSI reference model [8].



356 R. Lenz and M. Reichert

HL7 is a message-based standard for the exchange of data among hospital
computer applications. The standard defines which data items are to be in-
terchanged when certain clinical trigger events occur (admission, discharge, or
transfer of a patient are examples for such events). Since version 2.3 (1997) the
standard has covered trigger events for patient administration, patient account-
ing, order entry, medical information management, clinical observation data,
patient and resource scheduling, and others. The standard is continuously ex-
tended and newly arising topics, such as the integration of genomic data in
Electronic Health Records, are handled in special interest groups (SIGs). Yet,
the HL7 trigger events are intended to support standard communication pat-
terns that will occur in any HC organization in basically the same way. Today’s
commercially available HC software usually only covers a relatively small portion
of HL7, covering those communication patterns that are typically requested as
essential basis for interconnecting disparate applications.

Despite well accepted standards for data integration (e.g., HL7, DICOM),
HC applications are still far from plug and play compatibility (which is essential
for realizing process-oriented clinical information systems). One reason is that
existing standards do not address functional integration issues sufficiently. In or-
der to avoid these difficulties common application frameworks are required which
serve as a reference for programmers to create functionally compatible software
components. Requirements for an application framework directed towards open
systems in the HC domain are described in [9]. In general such a framework must
provide specifications of interfaces and interaction protocols which are needed
for embedding a software component into a system of cooperating components.

The best example for such a standard in the HC domain is the IHE initia-
tive (”Integrating the Healthcare Enterprise”) [10]. IHE does not develop new
standards for data interchange but specifies integration profiles on the basis of
HL7 and DICOM. Thereby actors and transactions are defined independently
from any specific software product. An integration profile specifies how different
actors interact via IHE transactions in order to perform a special task. These
integration profiles serve as a semantic reference for application programmers,
so that they can build software products that can be functionally integrated into
an IHE conformant application framework. The core integration profile of IHE is
called ”Scheduled Workflow”. The Scheduled Workflow Integration Profile estab-
lishes a seamless flow of information in a typical imaging encounter, by precisely
specifying the actors and transactions that are involved in the process of image
acquisition. By fixing the required workflow steps and the corresponding trans-
actions, IHE ensures the consistency of patient information from registration
through ordering, scheduling, imaging acquisition, storage, and viewing. This
consistency is also important for subsequent workflow steps, such as reporting.
However, this kind of workflow support has nothing to do with the traditional
idea of workflow management systems: to separate the flow of control from ap-
plication logic in order to keep the workflow maintainable [11]. The idea of these
standards is to establish stable generic communication patterns that help to
integrate autonomously developed IT components.



IT Support for Healthcare Processes 357

3 Medical Decision Making

The HC process is often called a diagnostic-therapeutic cycle comprising obser-
vation, reasoning, and action. Each pass of this cycle is aimed at decreasing the
uncertainty about the patient’s disease or the actual state of the disease process
[12]. Thus, the observation stage always starts with the patient history (if it is
available) and proceeds with diagnostic procedures which are selected based on
available information. It is the job of an (Electronic) Patient Record to assist
HC personnel in making informed decisions. Consequently, the system should
present relevant information at the time of data acquisition and at the time of
order entry. Thereby, an important question to be answered is how to determine
what is relevant. Availability of relevant information is a precondition for deci-
sions - medical knowledge guides these decisions. Medical knowledge, however,
is not limited to what is found in medical textbooks. A large part of medical
knowledge is not explicit but tacit, and tacit knowledge heavily influences infor-
mation needs by care providers as well as the course of the care process [13,14].
Moreover, medical knowledge evolves over time. According to [15] knowledge
is created and expanded through social interaction between tacit and explicit
knowledge (cf. Fig. 1). This process, called ”knowledge conversion”, is a social
process between individuals, rather than a process within an individual. Ste-
fanelli describes this process of knowledge creation in [14]. In order to make
medical knowledge broadly available, medical experts need to externalize their
tacit knowledge. Thus, improving HC processes has a lot to do with stimulating
and managing the knowledge conversion processes.

Fig. 1. The knowledge conversion process in a knowledge creating organization [15]

Supporting the HC process by bringing explicit medical knowledge to the
point of care is closely related to developing and implementing medical practice
guidelines. The MeSH (Medical Subject Headings) dictionary defines medical
practice guidelines as ”work consisting of a set of directions or principles to as-
sist the health care practitioner with patient care decisions about appropriate
diagnostic, therapeutic, or other clinical procedures for specific clinical circum-
stances”. Guidelines are aimed at an evidence-based and economically reason-
able medical treatment process, and at improving outcomes and decreasing the



358 R. Lenz and M. Reichert

undesired variation of HC quality [16]. Developing guidelines is essentially a
consensus process among medical experts. Yet, there is a gap between the in-
formation contained in published clinical practice guidelines and the knowledge
and information that are necessary to implement them [16,17]. Methods for clos-
ing this gap by using information technology have been in the focus of medical
informatics research for decades (e.g. [17,18,19]).

Fig. 2. Influence of explicit medical knowledge on the HC process

Medical pathways can be used as a basis for implementing guidelines [20] and
sometimes they are confused with guidelines. In contrast to guidelines, though,
pathways are related to a concrete setting and include a time component: Path-
ways are planned process patterns that are aimed at improving process quality
and resource usage. Pathways are not standardized generic processes like those
described within the IHE integration profiles (cf. Section 2). Pathways need a
consensus process; they must be tailored to local and individual circumstances,
which requires a cooperative initiative of clinical experts, process participants,
and managers. Pathways can be used as a platform to implement guidelines
(e.g., by routinely collecting the information required by a guideline). Selecting
a guideline for implementation also requires an agreement of HC professionals
and patients, because there are different kinds of guidelines with different ori-
gins and goals, and sometimes even conflicting recommendations. Likewise, to
improve a patient treatment process across organizational borders, consensus on
common practices is required in the first place. Once this consensus is achieved,
the next question is how to implement it in practice. To be effective, a guideline
must be easily accessible. Ideally, it should be embedded into the clinical work



IT Support for Healthcare Processes 359

practice, and the physician should not need to explicitly look it up. Otherwise,
there is always a risk of overlooking important information while the patient
is in the office. Previous work has primarily demonstrated a positive influence
of computer-generated alerts and reminders [21], which can be integrated into
clinical work practice. Recent research indicates that this is exactly the major
difficulty with implementing more complex multi-step guidelines: How to inte-
grate them into the clinical workflow [19]?

The influence of different levels of explicit medical knowledge on the patient
care process is illustrated in Fig. 2: Medical guidelines are distinguished from
site specific treatment plans (e.g. clinical pathways). A treatment plan comprises
multiple diagnostic or therapeutic steps (procedures). Instances of a treatment
plan need to be adapted to the specific needs of an individual patient. The actual
treatment process may still deviate from the individual treatment plan, because
it is also led by tacit knowledge and not only by explicit knowledge. Yet, explicit
medical knowledge can still be brought to the point of care: Documentation of
performed or ordered procedures may trigger alerts or reminders. An alert (e.g.,
”Lab alert” for values out of bounds or about to evolve into dangerous areas)
requires some kind of notification system to inform the physician. Reminders
can be used to inform the person who enters data instantaneously if data are
entered which are not plausible or if expected data entries have not been made.

4 Integrating Knowledge and Information Management

Medical pathways are one attempt to establish a platform for implementing
complex guidelines. Thereby, predefined checklists that ask the right questions in
the right context, predefined order sets, and well placed reminders are some of the
techniques that can be used to improve process quality and reduce the required
documentation overhead. All these techniques require the computer to be able to
make use of the patient’s clinical data. The first obstacle to achieving this is to
represent guidelines in a computer-interpretable form, i.e., translating narrative
guidelines into equivalent ones that use coded data. This task is cumbersome
and also bares the risk of distorting the intent of the original guideline.

To overcome such problems numerous models have been developed to for-
mally represent medical guidelines and medical knowledge (e.g., Arden Syntax
[22], GLIF [23] PROforma [24], EON [25], Asbru [26]). Recent surveys have
compared these approaches [27,28] One of the central goals is to define standard
representation formats for medical knowledge in order to be able to share guide-
lines among different information systems in different organizations. In practice,
however, it turned out that the main obstacle to be solved here is - once again
- an integration problem: The data definitions in pre-defined formal guidelines
may not map to the data available in an existing electronic health record system
[29]. Typically, operational systems have to be modified and extended in order
to acquire the necessary information needed for guideline implementation. Few
guidelines have been successfully implemented into real clinical settings by using
these systems and predefined, formally specified guidelines. Recent research has



360 R. Lenz and M. Reichert

recognized these difficulties and focuses on process models for transforming text-
based guidelines into clinical practice [17]. Standard formats for guideline rep-
resentation do have their place in guideline implementation, but the integration
problems to be solved are a matter of semantics rather than format. Guideline
implementation requires a high level of data integration, because computerized
reminders typically refer to both type and instance level semantics. More com-
plex guidelines also need to refer to a formally established context comprising
status information. The challenge to be solved for distributed HC networks is to
establish a sufficient degree of integration as basis for guideline implementation,
and to find practical solutions to cope with the evolving HC domain.

5 Implications for Process-Oriented IT Architectures

The adequate support of HC processes raises a number of requirements for
process-oriented IT architectures. In particular, an integrated process support,
information management, and knowledge management on different levels is
needed.

In order to adequately support generic process patterns (cf. Section 2) and to
provide the needed information at the point of care, responsive IT architectures
must consider the cross-departmental nature of clinical processes. To avoid me-
dia breaks we either need highly integrated systems or semantically compatible
application components. Semantic compatibility, in turn, subsumes functional
integration. Besides application integration comprehensive process support is
needed for coping with clinical and administrative processes. Process support
functions should comprise both standard services (e.g., process enactment and
monitoring, worklist management) and advanced features (e.g., ad-hoc changes
of single process instances during runtime).

The handling of medical guidelines and pathways requires an approach which
allows reaching an organization-specific consensus on them. Due to the evolv-
ing nature of guidelines and pathways, in addition, responsive IT infrastructures
must enable their continuous extension and adaptation (cf. [11]). This should
be accomplished under the control of the respective HC organization and its
medical staff. In order to achieve this, we need sophisticated tools for (graph-
ically) specifying the flow logic of guidelines and pathways at a high semantic
level. Furthermore, patient treatment processes (and their monitoring) as well
as patient information must be linked to the defined guidelines and pathways.

IT infrastructures, which support medical guidelines, should allow the ex-
plicit definition of medical knowledge and enable its combined use with patient-
related information. This requires a minimum of semantic control. In order to
avoid problems at the operational level (when linking guidelines with patient in-
formation), we need tools for defining guidelines based on the medical concepts
and medical terminology already used within the operational systems. Doing
so, again we must consider the evolving nature of the HC domain. In particu-
lar, we must support the evolution (and versioning) of ontologies and controlled
vocabularies, to which the different guidelines refer, as well.



IT Support for Healthcare Processes 361

Current hospital information systems are far from having realized such
process-oriented architectures. This has led to pragmatic solutions and
workarounds in order to reduce the overall effort for integrating heterogeneous
application components and to enable a requirements-driven system evolution.

6 Challenges for Process Management Technologies

Recently, we have seen an increasing adoption of BPM technologies and workflow
management systems (WfMS) by enterprises. Respective technologies enable the
definition, execution, and monitoring of operational processes. In connection
with Web service technology, in addition, the benefits of process automation
and optimization from within a single enterprise can be transferred to cross-
organizational processes as well. In principle, WfMS offer promising perspectives
for the support of HC processes as well. By separating the process flow logic
from the application code, processes can be quicker implemented and adapted
when compared to conventional approaches. Current WfMS, however, are far
from being applicable to a broader range of HC processes. Existing WfMS are
either too rigid or they do not meet the various requirements discussed above. In
particular they are not able to cope with the dynamics and the evolving nature
of HC processes. In any case, we need a more advanced process management
technology, which enables the integrated support of medical processes, medical
knowledge and patient-related information on different levels.

Though the scope of generic process patterns and medical pathways is differ-
ent there are several commonalities. Graphical descriptions of the respective flow
logic are useful and in both cases these descriptions must be linked with other
components of the system architecture (e.g., application systems or patient-
related information). At the process instance level, in addition, in both cases
deviations from the pre-defined flow logic may become necessary and should
therefore be supported. As mentioned, variations in the course of a disease or
a treatment process are deeply inherent to medicine; the unforeseen event is to
some degree a ”normal” phenomenon. Medical personnel must be free to react
and is trained to do so. However, respective deviations from the pre-planned
process must not lead to errors or inconsistencies. Tools enabling them must be
easy to handle, self-explaining and - most important - their use in exceptional
situations should be not more cumbersome and time-consuming than simply
handling the exception by a telephone call to the right person. Altogether we
need adaptive process management technology which allows to rapidly set up
new HC processes and to quickly adapt existing ones.

When deviations from predefined process patterns or medical pathways occur
they should be documented and logged. A logical next step then is to continu-
ously monitor, analyze, and mine this change log and to ”learn” from it. Best
case, based on this data necessary decisions can be made quickly and accurately
to modify HC processes, to dynamically allocate resources, or to prioritize work.

Healthcare more and more changes from isolated patient treatment episodes
towards continuous treatment involving multiple HC professionals and HC in-



362 R. Lenz and M. Reichert

stitutions. Therefore hospitals need to be linked with other HC organizations
and general practioners, but also with insurance companies and governmental
organizations, over wide area networks transporting sensitive patient data. The
adequate support of distributed HC networks will result in novel workflow sce-
narios raising a number of challenging issues. A sufficient degree of process and
information integration and the semantic interoperability of the different HC
systems are crucial in this context. The same applies to privacy and security
issues in connection with the exchange of patient data.

With advances in technology we can further observe that HC processes, which
were previously confined to the hospital, will more and more be provided out-
side it. In this context technologies like mobile devices and wearable computing
will be important drivers of change. Examples of upcoming application scenar-
ios include the contactless monitoring of patients, the provision of smart agents
collecting patient data during homecare, and the automatic detection of emer-
gency situations. All these scenarios will demand further challenges with respect
to the management of HC processes, ranging from the support of mobile and
distributed processes to the seamless integration of different devices.

7 Summary

Based on many years of first-hand knowledge of the HC domain and our personal
working experience in hospitals, based on the experiences made in numerous clin-
ical projects, and having also deep insights into existing BPM technologies, we
believe that the IT support of HC processes offers a huge potential. However,
a number of challenges exist and new ones will arise in connection with novel
technologies, which must be carefully understood and which require basic re-
search before we can come to a complete solution approach. We believe that the
realization of process-oriented IT architectures in HC is a great challenge for the
BPM community - if not even the ”killer application” for this type of technology.

References

1. Vincent, C., Neale, G., Woloshynowych, M.: Adverse events in british hospitals:
preliminary retrospective record review. BMJ 322 (2001) 517–519

2. Brennan, T., Leape, L., Laird, N., Hebert, L., Localio, A., Lawthers, A.: Incidence
of adverse events and negligence in hospitalized patients. results of the harvard
medical practice study. N Engl J Med 324 (1991) 370–376

3. Kohn, L., Corrigan, J., Donaldson, M.: To Err Is Human. Building a Safer Health
System. National Academy Press (2000)

4. Bhasale, A., Miller, G., Reid, S., Britt, H.: Analysing potential harm in australian
general practice: an incident-monitoring study. Med J Aust 169 (1998) 73–76

5. Wilson, R., Runciman, W., Gibberd, R., Harrison, B., Newby, L., Hamilton, J.:
The quality in australian health care study. Med J Aust 163 (1995) 458–471

6. McDonald, C., Hui, S., Smith, D., Tierney, W., Cohen, S., Weinberger, M.: Re-
minders to physicians from an introspective computer medical record. a two-year
randomized trial. Ann Intern Med 100 (1984) 130–138



IT Support for Healthcare Processes 363

7. Committee on Quality of Health Care in America IoM: Crossing the Quality
Chasm: A New Health System for the 21st Century. IOM (2001)

8. Tanenbaum, A.: Computer networks. Englewood Cliffs (1988)
9. Lenz, R., Huff, S., Geissbuehler, A.: Report of conference track 2: pathways to

open architectures. Int J Med Inf 69 (2003)
10. Vegoda, P.: Introducing the ihe (integrating the healthcare enterprise) concept. J

Healthcare Information Management 16 (2002) 22–24
11. Lenz, R., Kuhn, K.: Towards a continuous evolution and adaptation of information

systems in healthcare. Int J Med Inf 73 (2004) 75–89
12. van Bemmel, J., Musen, M.: Handbook of Medical Informatics. Springer (1997)
13. Stefanelli, M.: Knowledge and process management in health care organizations.

Methods Inf Med 43 (2004) 525–535
14. Stefanelli, M.: The socio-organizational age of artificial intelligence in medicine.

Artif Intell Med 23 (2001) 25–47
15. Nonaka, I., Takeuchi, H.: The knowledge creating company. Oxford University

Press (1995)
16. Gross, P., Greenfield, S., Cretin, S., Ferguson, J., Grimshaw, J., Grol, R.: Optimal

methods for guideline implementation: conclusions from leeds castle meeting. Med
Care 39 (2001) 85–92

17. Shiffman, R., Michel, G., Essaihi, A., Thornquist, E.: Bridging the guideline im-
plementation gap: a systematic, document-centered approach to guideline imple-
mentation. J Am Med Inform Assoc 11 (2004) 418–426

18. Bates, D., Kuperman, G., Wang, S., Gandhi, T., Kittler, A., Volk, L.: Ten com-
mandments for effective clinical decision support: making the practice of evidence-
based medicine a reality. J Am Med Inform Assoc 10 (2003) 523–530

19. Maviglia, S., Zielstorff, R., M, M.P., Teich, J., Bates, D., Kuperman, G.: Automat-
ing complex guidelines for chronic disease: lessons learned. J Am Med Inform Assoc
10 (2003) 154–165

20. Schriefer, J.: The synergy of pathways and algorithms: two tools work better than
one. Jt Comm J Qual Improv 20 (1994) 485–499

21. Shiffman, R., Liaw, Y., Brandt, C., Corb, G.: Computer-based guideline imple-
mentation systems: a systematic review of functionality and effectiveness. J Am
Med Inform Assoc 6 (1999) 104–114

22. Jenders, R., Hripcsak, G., Sideli, R., DuMouchel, W., Cimino, J.: Medical de-
cision support: experience with implementing the arden syntax at the columbia-
presbyterian medical center. In: Proc. SCAMC. (1995) 169–173

23. Ohno-Machado, L., Gennari, J., Murphy, S., Jain, N., Tu, S., Oliver, D.: The
guideline interchange format: a model for representing guidelines. J Am Med
Inform Assoc 5 (1998) 357–372

24. Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the pro-
forma approach. Artif Intell Med 14 (1998)

25. Musen, M.: Domain ontologies in software engineering: use of protege with the eon
architecture. Methods Inf Med 37 (1998)

26. Votruba, P., Miksch, S., Kosara, R.: acilitating knowledge maintenance of clinical
guidelines and protocols. In: Proc. Medinfo. (1998) 57–61

27. De Clercq, P., Blom, B., Korsten, H., Hasman, A.: Approaches for creating
computer-interpretable guidelines that facilitate decision support. Artif Intell Med
31 (2004) 1–27

28. Van de Velde, R., Degoulet, P.: Clinical Information Systems. Springer (2003)
29. Pryor, T., Hripcsak, G.: Sharing mlm’s: an experiment between columbia-

presbyterian and lds hospital. In: Proc. SCAMC’93. (1993) 399–403



From RosettaNet PIPs to BPEL Processes: A

Three Level Approach for Business Protocols

Rania Khalaf

IBM TJ Watson Research Center, Hawthorne, NY 10532, USA
rkhalaf@us.ibm.com

Abstract. Business protocols in n-party interactions often require cen-
tralized protocol design but decentralized execution without the inter-
vention of the designing party. In this paper, we tackle the problem for
RosettaNet PIPs by creating a BPEL solution. We do so using a three–
level approach, based on BPEL, for defining such multi–party protocols:
templating for high–level patterns, specialization for particular protocols,
and implementation for particular realizations of a protocol.

1 Introduction

Business protocols in n-party interactions often require the design of the protocol
to be centralized but the execution to be done without the intervention of the
designing party. In such cases it is desirable that instead of distributing one
description from a global (neutral) point of view, or one description from a single
point of view that mediates with all (hub-and-spokes), to distribute a package
with an abstract business process for each party involved in the interaction and
that defines its own required behavior. When plugged together, these processes
show the complete behavior of all involved parties.

It is also desirable to easily derive compliant implementations at each party
from the abstract definition. This lowers the bar for parties to participate, basi-
cally shifting the burden from the participating party to the protocol designer.
In such a set-up, the latter’s task now includes checking whether the created
processes are in fact compatible while the participant, which may be a small
business, has very little to do.

We present the mapping RosettaNet Partner Interface Processes (PIPs) [4],
which match our target environment above, to BPEL processes using a three–
level approach for creating such protocol definitions. For details on mapping the
quality of service requirements of PIPs that are not at the business process level
by using the appropriate additional Web services specifications, see [1].

2 Background

2.1 RosettaNet

RosettaNet (http://rosettanet.org) is a consortium of companies from the Elec-
tronics industry that defines an open e-business environment using an open–
standards approach for the requirements and behavior of business partners. The

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 364–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



From RosettaNet PIPs to BPEL Processes 365

RosettaNet Implementation Framework (RNIF) represents requirements of a
middleware infrastructure that supports the RosettaNet approach. Partner In-
terface Processes (PIPs) [4] are RosettaNet documents specifying two-party in-
teractions to meet a business goal, such as processing a purchase order (PIP
3A4) or inquiring about a price (PIP 3A2). A PIP definition consists of a text
document describing the expected requirements of the involved parties, includ-
ing Message Sequence Charts (MSCs), DTD definitions of these messages, and
quality of service requirements such as time-outs, security considerations, non-
repudiation, and retries.

2.2 BPEL

The Business Process Execution Language for Web Services, BPEL for short
[2], is an XML workflow-based composition language for Web services. A BPEL
process is exposed as one or more Web services with WSDL portTypes (in-
terfaces), with typed “partnerLinks” defining its connections with other par-
ties. BPEL activities are of two types: Primitive activities with pre–defined
behavior like invoking a Web service(invoke), receiving and replying to invo-
cations(receive/reply), waiting (wait), throwing faults(throw); Structured activ-
ities impose control on activities nested within them, such as strict sequencing
(sequence), or parallelism (flow). Conditional control links may impose addi-
tional ordering within a “flow”. “Scopes” provide additional capabilities to their
activities, such as data scoping, fault handling (detailed in [3]), compensation
handling, and event handling. Instance management is done using “correlation
sets”, basically using fields in incoming messages to route the messages to one
of possibly several running instances of the same process.

BPEL Processes can be either abstract and executable. A BPEL “abstract
process” provides a specification of a service’s behavior and may hide private
information that is not relevant to the other participants in the interaction. For
example, an abstract process may initialize a variable with an opaque value. The
abstract process then only has the other parties it interacts with in the interac-
tion protocol as partners. On the other hand, the executable variant provides a
process definition with enough information to be interpreted.

3 Premise

We propose a “templating-specialization-implementation” approach for the de-
sign and implementation of processes that follow patterns, such PIPs:

1. Templating: Creating BPEL abstract “templates” that capture the message
exchange and behavioral pattern of each party involved.

2. Specialization: Making use of such patterns by creating full valid abstract
BPEL processes from these templates that represent a specialization of that
pattern. For RosettaNet, these constitute the definition of a particular PIP.

3. Implementation: Creating executable artifacts from these abstract BPEL
processes so that each party can have an implementation of the PIP with



366 R. Khalaf

minimal effort and low adoption barrier. Simple derivation rules are provided
by the designing party for participants to follow.

4 Related Work

[6,14,5] provide “neutral” models of interaction protocols. BPSS[5] has been
used to map PIPs. Drawbacks include: no tie–in to back–end systems, requiring
a translation, limited fault handling, lack of separation of concerns where one
party can get only its own requirements for participation. A hub–and–spokes
model (single mediating process) is also clearly undesirable for our scenarios.
Approaches combining a neutral definition with individual behavior definitions
are in [12] and [7]. There does not seem to be a straight–forward mechanism to
derive a fully executable processes from these abstractions. [9] use “RosettaNet
Controls”, Java entities that simplify process creation, to encode PIP patterns.
They can exchange messages as prescribed by RNIF, but seem to be proprietary
to BEA’s products.

We presented a demo of part of this approach to the RosettaNet board and
the BPEL Committee in Dec. 2003, focusing on combining multiple PIPs using
a master proces. Each run kicked off 7 executable BPEL processes. These were
manually created from abstract process, in turn manually created from the PIP
definitions. It was a motivator for a RosettaNet working–group for PIPs over
Web Services, and provided input to the BPEL standardization committee for
abstract processes in V2.0. This paper adds to the demo and [1] in that they
did not go into the details of deriving executables and did not use templates for
process patterns.

5 Creating the Process Templates

A template consists of a single “pseudo-abstractBPEL” file for each partner
involved. These are similar to abstract BPEL files, except for highlighting points
of variability that a full abstract BPEL process would have to include. These
are specified by omitting the BPEL elements/attributes required to be filled in.
A schema validation of the process quickly shows where those points are, and
could be done by a graphical editor. One should also provide any additional
information needed in order to interpret hints about missing information, such
as how to know which reply and receive activities match if the operation name
is omitted.

Ongoing work such as [10] and [8] addresses the challenges of proving com-
patibility when starting with behavioral definitions of each partner separately.

5.1 Creating the Templates for Two–Action PIPs

PIPs can be separated into several patterns. We focus on “asynchronous two-
action PIPs”.In a two-action PIP party A sends a message to party B. Party B
then sends a response back to party A. Business level acknowledgements for both



From RosettaNet PIPs to BPEL Processes 367

<scope>

<process> <process>

<receive

name=“PIPRequest”

createInstance=“yes/”>

<flow>

<flow>

Event Handler

name=“failure”

<throw

faultName=

“ns:sellerFailure”>

<assign>

from opaque=“yes”

to reqAck

<invoke>

provider

<invoke

name=“reqAck”/>

<invoke>

Seller

sendPO

<invoke

variable=respAck>

Alarm Handler:

<sequence>

<invoke failure >

< invoke 0A1>

<throw faultName=

“ns:timeoutAll>”

</sequence>

faultHandler:

“ns:timeoutAck”

<sequence>

<invoke failure>

<invoke 0A1 >

<throw faultName=

“ns:timeoutAck”>

</sequence>

<assign>

from opaque=“yes”

to respVar

<assign>

from opaque=“yes”

to reqValid

reqValid
reqValid

<assign>

from opaque=“yes”

to respAck

<assign>

from opaque=“yes”

to respValid

respValid respValid

faultHandler:

“ns:failedValidation”

<sequence>

<invoke failure>

<throw faultName=

“ns:failedValidation”>

</sequence>

<receive

name=reqAck/>

<invoke>

Seller

sendPO

<invoke

name=PIPRequest>

<receive>

Seller

confirm

<receive

name=PIPResponse/>

<receive>

privateP

rcvPO

<receive

name=“outsideInit”

createInstance=yes/>

<receive

name=“respAck”/>

invoke name=“PIPResponse”

inputVariable=“respVar”/>

<scope>

variables: (respValid, xsd:boolean), (respAck, ?) variables: (reqValid, xsd:boolean), (respVar, ?)

<throw

faultName=

“ns:failedValidation”>

<throw

faultName=“ns:failedValidation”>

Alarm Handler

<throw

faultName=

“ns:timeoutAck”>

Alarm Handler

<throw

faultName=

“ns:timeoutAck”>

Event Handler

name=“failure”

<throw

faultName=

“ns:buyerFailure”>

faultHandler:

“ns:timeoutAck”

<sequence>

<invoke failure>

<invoke 0A1 >

<throw faultName=

“ns:timeoutAck”>

</sequence>

faultHandler:

“ns:failedValidation”

<sequence>

<invoke failure>

<throw faultName=

“ns:failedValidation”>

</sequence>

PIP ProviderPIP Requestor

Fig. 1. Template of all asynchronous two-action PIPs

messages must also occur within a given time-frame. Based on this information
and RosettaNet’s message handling framework(RNIF), we can create a template
for all asynchronous two-action PIPs and illustrated in Figure 1.

The points of variability between PIPs of this class, shown in the figure, are:

– PartnerLinks the process would be easier to read if these had names from
the specific PIP definitions. Since PIPs are always two-party (except for 0A1,
but the interactions with that are clear), it is straight–forward to know the
activities with the other party.

– Operation names based on the portType and operation on the WSDL files
created from the PIP.

– Variables with Message Types come from the mapping of the specific PIP’s
DTDs to schema and the resulting WSDL files.

– Timer values on the alarm handlers.
– Correlation sets. These will depend on the messages in the WSDL.

Since the names of the operations and portTypes are dependent on the specific
PIP, we use the names of “receive” and “invoke” activities to hint that activities on



368 R. Khalaf

the different processes must match. For example, the invoke named “PIPRequest”
sends a message from the PIPRequestor to be received by PIPProvider’s receive
named “PIPRequest”. The next section show how this is used to create the full
BPEL abstract processes for each type of PIP from these templates.

Validation placeholders are seen at the conditions named *Valid. This valida-
tion is optional for some PIPs, going beyond the usual schema/XML validation.

Retries are not in the business processes, because PIP retries are at the net-
work level in RNIF. However, acknowledgements are business level since they
are used not for “message received” but “message received and processed”, for
example after having done an external dictionary validation. To faithfully repre-
sent the PIP, we require that any implementing system have a reliable delivery
mechanism with configurable retry intervals. Alternate approaches for handling
retries are discussed in [1].

Time-outs are represented as alarm handlers on scopes containing the cor-
responding receive activity, and throwing the relevant fault if time runs out.
The fault is caught at the process level, sending failure notification to all parties
involved so they don’t block. The fault is then rethrown. A message handler
is defined for each of the processes that can receive this fault message and re-
act accordingly. The fault rethrow and the message handler provide plugpoints
for implementations created from this to react to the fault and perform any
necessary clean–up with back–end systems. Note the ’invokes’ to “0A1”, the
“Notification of Failure PIP”. This PIP is used if the partner to be notified of
failure may have stopped executing. It receives a single error notification mes-
sage that is supposed to come out of band, and is modeled here as a separate
Web service.

6 Creating the Abstract BPEL Processes from a
Template

In this step, one creates the complete abstract BPEL files that together encode
the behavior of a subclass of the protocols represented by the template. The
templates must be filled in using the information about these protocols. We will
use the Purchase Order PIP, PIP3A4, to illustrate modeling of a two–action PIP
from the template above. The resulting abstract processes are shown in Figure 2.

6.1 Abstract BPEL for PIP3A4 from Above Templates

The 3A4 has two parties: a buyer and a seller. The buyer sends a purchase
order, expecting an acknowledgement and a confirmation that the order has
been processed both within given time-frames. Upon receiving the confirmation,
the buyer acknowledges its receipt.

One WSDL portType is created for each party, to exchange the PIP mes-
sages. Add two more portTypes: one to be used by the external initiator of
the processes, and the other for the 0A1 PIP. For 3A4, we create a sellerPort-
Type with three operations: purchaseOrderRequest, failure, and purchaseOrder-
Acknowledgment. On the other side, we have a buyerPortType that will have



From RosettaNet PIPs to BPEL Processes 369

0A1

0A1

<scope>

<process>
<process>

<flow>

<flow>

Event

Handler:

…

<assign>

from opaque=“yes”

to reqAck

Event

Handler:

…

<invoke

partnerLink=“sellerPL”

operation=“confAck” variable=respAck>

Alarm Handler:

…

faultHandler

… faultHandler

…

<assign>

from opaque=“yes”

to reqValid

reqValid
reqValid

<assign>

from opaque=“yes”

to respAck

<throw

faultName=“ns:failedValidation”>

<assign>

from opaque=“yes”

to respValid

respValid respValid

faultHandler

… faultHandler

…

<receive name=reqAck

partnerLink=“sellerPL”

operation=“confirm”

variable=“confVar”/>

<invoke name=“PIPRequest”

partnerLink=“sellerPL” operation=“PORequest”

inputVariable=“POVar”>

Alarm Handler

For 8 hours

<throw

faultName=

“ns:timeoutAck”> <receive>

Seller

confirm

<receive name”PIPResponse”

partnerLink=“sellerPL”

operation=“POAck”

variable=“POAckVar”>

<receive name=“outsideInit”

partnerLink=“initPL” operation=“init”

variable=“POVar” createInstance=yes>

<receive

name=“respAck”

partnerLink=“buyerPL”

operation=“confAck”

variable=“respAckVar”/>

<invoke name=“PIPResponse”

inputVariable=“respVar” partnerLink=“buyerPL”

operation=“confirm”>

<scope>

partnerLinks: sellerPL,0a1PL,initializerPL

<receive name=“PIPRequest”

partnerLink=“buyerPL” operation=“PO”

variable=“POVar” createInstance=yes>

<invoke name=“reqAck”

partnerLink=“buyerPL”

operation=“POack”

variable=“reqAck”>

<assign>

from opaque=“yes”

to respVar

variables: (respValid, xsd:boolean), (respAck, ns:poAckMsg),

(POVar, ns:po), (confVar, ns:confMsg)

correlationSets: (RN_IDs, properties: PIP_ID, PIP_INSTANCE_ID)
partnerLinks: buyerPL,0a1PL

variables: (reqValid, xsd:boolean), (POVar, ns:po),

(reqAck, ns:confAckMsg), (confVar, ns:confMsg)

correlationSets: (RN_IDs, properties: PIP_ID, PIP_INSTANCE_ID)

<throw

faultName=

“ns:failedValidation”>

Alarm Handler

For 8 hours

<throw

faultName=

“ns:timeoutAck”>

Initiator

Initiator

PIP Requestor: Buyer PIP Provider: Seller

Fig. 2. Abstract processes of 3A4 PIP

another three operations: purchaseOrderInitiate, failure, and purchaseOrderCon-
firmation. These operations are all one–way. Now we have the information to
define the BPEL partnerLinks in our templates. For each of the two process
templates:

– Add a partnerLink for interacting with the other PIP participant, with a
’myRole’ with the portType the process offers to the other participant, and
a ’partnerRole’ with the portType it requires from that participant.
• Add this partnerLink, along with the corresponding portType, on all the

activities that interact with the other participant. For example, in the
buyer process add the partnerLink attribute with value “sellerPL” to
the invoke named PIPRequest.

– Add a partnerLink on the PIP requestor with a myRole with the portType
offered to the external initiator that will kick–off the process.
• Add this partnerLink and its corresponding “myRole” portType to the

receive named outsideInit.



370 R. Khalaf

0A1

0A1

<scope>

Event Handler: partnerLink=“sellerPL”

operation=“failure”

<throw faultName=“ns:sellerFailure”/>

faultHandler: faultName=“ns:timeoutAck”

<sequence>

<invoke name=“failure”

partnerLink=“sellerPL”

operation=“failure”/>

<invoke name=“0A1”

partnerLink=“0A1”

operation=“notifyFail”/>

<throw faultName=“ns:timeoutAck”/>

</sequence>

fault Handler: faultName=“ns:failedValidation”

<sequence>

<invoke name=“failure”

partnerLink=“sellerPL”

operation=“failure”

inputVariable=“failVar”/>

<throw faultName=“ns:failedValidation”

faultVariable=“failVar”/>

</sequence>

Alarm Handler:

for 24 hours

<sequence>

<invoke name=“failure”

partnerLink=“sellerPL”

operation=“failure”/>

<invoke name=“0A1”

partnerLink=“0A1PL”

operation=“notifyFail”/>

<throw faultName=“ns:timeoutAll”/>

</sequence>

<scope>

Event Handler: partnerLink=“buyerPL”

operation=“failure”

<throw faultName=“ns:buyerFailure”/>

faultHandler: faultName=“ns:timeoutAck”

<sequence>

<invoke name=“failure”

partnerLink=“buyerPL”

operation=“failure”/>

<invoke name=“0A1”

partnerLink=“0A1”

operation=“notifyFail”/>

<throw faultName=“ns:timeoutAck”/>

</sequence>

fault Handler: faultName=“ns:failedValidation”

<sequence>

<invoke name=“failure”

partnerLink=“buyerPL”

operation=“failure”/>

<throw faultName=“ns:failedValidation”/>

</sequence>

PIP Requestor: Buyer PIP Provider: Seller

Fig. 3. Handlers on the scope

An example of a partnerLink for the seller is:

partnerLink name=’’buyerPL’’ partnerLinkType=’’ns:PIP3A4plt’’ myRole=’’seller’ partnerRole=’’buyer’’

Then, add the operations. The PIPRequest is the message with the main
business document. The invoke on the PIPRequestor and the receive on the
PIPProvider will therefore refer to the operations and messages that deal with
the PurchaseOrder. Variables come next. Each message that will be exchanged
results in one variable with that message type, with the corresponding interac-
tion activity(ies) adding the variable attribute. Also, if the PIP does not require
dictionary validation, we replace the assignment into one that copies “true” in-
stead of an opaque value into the validation variable in each of the two processes.

Consider the wait times for the alarm handlers. The global handler gets its
value directly from the PIP document (24 hours for the 3A4 buyer). The other
time-outs are on the acknowledgements. Since we assume a reliable messaging
infrastructure, these values are the result of multiplying the ’retry count’ in the
PIP document by the interval between retries (8 hours for 3A4). Such a failure
would terminate the PIP, kicking off the 0A1.

Finally, we need to choose the correlation sets. In RosettaNet PIPs, two
values uniquely identify a PIP instance: the PIP Code and the PIP Instance
ID. We use these as our correlation tokens.initiator). Note that correlations and
portType names are not in the figure to lessen clutter.



From RosettaNet PIPs to BPEL Processes 371

7 Creating Compliant Executable BPEL Processes

Up to here, the definitions are created by the designing party which is expected
to have experienced business process designers. However, implementations are
created by customers, who may be small and medium businesses whose core busi-
ness is not technology and possibly lack expensive business modeling expertise
or tools.

The abstract processes created above enable protocol implementers to gener-
ate compliant BPEL implementations simply by following an easy set of comple-
tion rules defined by the designers. This leverages the fact that BPEL abstract
and executable processes share the same semantic and syntactic base. These
compliant BPEL processes can be executed in any product supporting BPEL,
thereby lowering the bar for an entity to participate.

Creating compliant executables is one of the main complexities of such ap-
proaches. By providing simple but strict rules for creating the executables from
the abstract processes, we ensure that an entry level user can create compliant
executables without much difficulty.

7.1 Creating the Executables for Our Class of PIPs

The real work is forwarded from the executable to the company’s back–end
systems, exposed as Web services. The partnerLink joining these systems to
the process has the same type as that joining the two PIP processes together,
but with roles reversed. The rules for creating the executables for our PIP are
provided below. Adding anything else (ie: new links, lifecycle activities, ...) is
prohibited.

– flip the abstractProcess attribute to “false”.
– replace all opaque assign activities with a sequence activity containing either:

• Interactions (invoke, invoke+receive) with backend systems for necessary
data: In our asynchronous case, a one way invoke followed by a receive
activity. The partnerLink on both these activities is that of the back–end
systems.Added invokes are not allowed to throw faults. Or,

• Any assignment activities to any necessary data adaptation or copying
of values (except endpoint references), especially those to propagate cor-
relation set fields.

– Add, in the handlers only, any assigns (in sequence) required for setting
values of the variables used by activities in the handlers.

– Add any variables and correlation sets that are needed for the new activities
and partnerLink, and for the activities in the handlers.

– Optionally add fault handlers at the top process level to do any required
clean–up and notification of one’s back–end systems in case of process errors.

7.2 Compliance of the Executables

Different notions of equivalence between artifacts [13] have been proposed based
on the class of problems addressed. In this section, we show that the executable



372 R. Khalaf

processes created by the steps above are equivalent to the abstract processes
at hand according to a notion of conformance by Martens [11]. Martens states
that the behavior of two processes is equivalent if an executable model could
replace the abstract one without requiring changes to the environment in which
the process operates. This is done by comparing “Communication Graphs” con-
taining each process’s externally visible behavior. It simple to show that this is
true: The additions provided above are one–to–one replacements of existing ac-
tivities. The new activities do not affect lifecycle since they cannot throw faults,
and do not affect control because they are contained inside “sequence”. Con-
sider the externally visible behavior for the communication graph. The original
(assign) activities did not have externally visible behavior. New invokes and re-
ceives may only interact with new partnerLinks not in the abstract process, and
are therefore not visible to the environment(other PIP process). The communi-
cation graph of the executable is hence identical to that of the abstract making
the processes equivalent with respect to the other PIP party.

8 Discussion and Future Work

BPEL abstract processes in V1.1 were created with ‘observable behavior’ in
mind, leading to the current restrictions on syntax and semantics. The templates
we define in section 5 are not valid abstract BPEL processes: They omit informa-
tion essential for specifying full message exchanges. In response to requests for
enabling a syntactic fill–in–the–blank templating usage, the BPEL committee is
considering proposals for more ‘opaque’ tokens, and syntactic completion rules
for the next version .

The RosettaNet case shows that there are legitimate, simple cases where one
needs a mix between purely the externally observable behavior or pure fill–in–
the–blank templating. For example, one must not change the timer values, but
should still be allowed add new partnerlinks and fault handlers. Neither of these
would be acceptable for this case.

Future work topics include wiring BPEL processes together (particularly rel-
evant in more than 2 party interactions), looking into other classes of protocols
for which this approach can be generalized, how each step can be generalized or
parameterized, and expanding the approach for multiple parties.

9 Conclusion

This paper presents BPEL processes for RosettaNet PIPs, using a three–level ap-
proach that can generalize to similar environments with multi–party processes.
We cover the creation from overall design, to specialization, to implementa-
tion. We highlight two main challenges in creating such bottom–up approaches,
namely compatibility of the different processes and compliance between the ab-
stract and executable artifacts. We focused on the usage of multiple levels of
refinement using BPEL processes, levaraging a single language with wide–spread
industry support (BPEL) due to the proliferation of tools and its abstract and



From RosettaNet PIPs to BPEL Processes 373

executable variants with related semantics. We provide a real and practical il-
lustrative example of using the BPEL abstract–executable continuum and show
how it one can express various levels of abstractions through iterative refinement.

Acknowledgments. Paul Bunter and Sreedhar Janaswamy especially. Also
Keeranoor Kumar, Ralph Hertlein, Peter Williams, Shishir Saxena for work on
project. Francisco Curbera, Axel Martens and Frank Leymann for advice.

References

1. P. Bunter, R. Hertlein, R. Khalaf, and A. Nadalin. An approach to moving in-
dustry business messagung standards to web services. To appear online on IBM
DeveloperWorks.

2. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Service v1.1. Online at
http://www.ibm.com/developerworks/library/ws-bpel, May 2003.

3. F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana. Exception handling
in the BPEL4WS language. In Proc. of BPM 2003, LNCS 2678, Eindhoven, the
Netherlands, June 2003. Springer.

4. S. Damodaran. B2B integration over the internet with XML: RosettaNet successes
and challenges. In Proc. of WWW 2004, Alternate Track Papers and Posters, pages
188–195, New York, NY, May 2004. ACM Press.

5. ebXML. ebXML business process specification schema version 1.01. Online at
http://www.ebxml.org/specs/ebBPSS.pdf, May 2001.

6. X. Fu, T. Bultan, and J. Su. Conversation specification: A new approach to design
and analysis of e-service composition. In Proc.WWW2003, Budapest, Hungary,
May 2003.

7. X. Fu, T. Bultan, and J. Su. A top-down approach to modeling global behaviors
of web services. In Requirements Engineering for Open Systems Workshop (REOS
2003), Monterey, California, sep 2003.

8. X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In Proc. of
WWW 2004, New York, NY, May 2004. ACM Press.

9. BEA Systems Inc. BEA weblogic workshop help online: Building RosettaNet par-
ticipant business processes. Technical report, dec 2003.

10. A. Martens. On compatibility of web services. Petri Net Newsletter, 65:12–20,
October 2003.

11. A. Martens. Consistency between executable and abstract processes. In Proc. of
the IEEE Conference on e-Technology, e-Commerce and e-Service (EEE 2005),
Hong Kong, Mar 2005.

12. W.M.P. van der Aalst and M. Weske. The P2P approach to interorganizational
workflow. In Proc. of the Conference On Advanced Information Systems Engineer-
ing (CAiSE 2001), volume 2068 of LNCS, Berlin, Germany, 2001. Springer.

13. R. J. van Glabbeek. The linear time - branching time spectrum. In Proc. of
CONCUR 90, number 458 in LNCS. Springer-Verlag, 1990.

14. W3C. Web Service Choreography Interface (WSCI) 1.0. Online at http://wwws.

sun.com/software/xml/developers/wsci/wsci-spec-10.pdf.



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 374 – 379, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Using Software Quality Characteristics 
to Measure Business Process Quality 

A. Selcuk Guceglioglu and Onur Demirors 

Informatics Institute, Middle East Technical University, Inonu Bulvari,  
06531, Ankara, Turkey 

+90 312 210 3741 
aselcuk@ieee.org, demirors@metu.edu.tr 

Abstract. Organizations frequently use product based organizational perf-
ormance models to measure the effects of information system (IS) on their 
organizations. This paper introduces a complementary process based approach 
that is founded on measuring business process quality attributes. These quality 
attributes are defined on the basis of ISO/IEC 9126 Software Product Quality 
Model. The new process quality attributes are applied in an experiment and 
results are discussed in the paper. 

1   Introduction 

IS capabilities have been advancing at a rapid rate and motivating organizations to 
accomplish much more investment. In 2002, $780 billion was spent for IS in the 
United States alone [1]. Although IS expenditures seem quite high, there are few 
systematic guidelines to measure the organizational impact of IS investments [2], [3]. 
The available studies on organizational impact of IS focus on the product based 
organizational performance models to manage IS investment. These studies provide 
organizations with guidelines for measuring cost and time related issues, but they 
have some constraints in identifying IS effects, isolating the contributions of IS 
effects from other contributors and using the performance measures in specific 
categories of organizations such as in public organizations.  

In this paper, a complementary process-based approach is developed to measure 
the effects of IS on business process. This new approach focuses on the quality 
aspects of the processes. As it is known that business processes are one of the most 
fundamental assets of organizations, modifications performed on them whether in the 
way of improvements or innovations cause immediate effects on the success of the 
organizations. This approach therefore enables organizations to get early feedback 
about the potential IS investment. In the remaining chapters of the paper firstly, 
related search is summarized as a background to depict the relation of our model to 
the IS literature. Secondly, the new model is introduced and its measurement 
categories are given. Thirdly, implementation of the model and its results are 
summarized. Finally, conclusions and future works are stated. 

2   Related Research 

One of the most widely known models for measuring the effects of IS is DeLone and 
McLean IS Success Model [2]. The available studies in Organizational Impact 



 Using Software Quality Characteristics to Measure Business Process Quality 375 

 

dimension include organizational performance based models and measures. These 
studies concentrate on the effects of IS for creating organizational changes and 
relations of these changes with the firm level output measures such as productivity 
growth and market value [3]. In this circumstance, DeLone & McLean IS Success 
Model states that the studies in this dimension are at beginning stage and much works 
are required to be done in categorizing and measuring the changes in the 
organizations and work practices. Another well-known model is Seddon’s IS 
Effectiveness Matrix [4]. In similar to the DeLone & McLean model, this model 
focuses on organizational performance based measures such as firm growth, return on 
assets, percent change in labor, and market share. There is also a process oriented 
study for assessing IS effects on organizations [5]. Although IS effects on business 
processes are dealt with in the study, it is not precisely defined to measure the effects 
on the process. The changes occurred in organizations due to IS effects are given in 
only conceptual level. 

There are some factors which affect business processes, and IS is one of the most 
considerable of them [5]. IS affects both operational and managerial processes. IS 
influences operational processes by automating them with providing technologies of 
work flow systems, flexible manufacturing, data capture devices, and computer aided 
design tools (CAD). Similarly, IS influences managerial processes by providing 
electronic mail, database and decision support tools. These effects can be categorized. 
For instance, Davenport [6] concentrates on the effects of IS in the business process 
reengineering perspective and identifies nine opportunities for business process 
innovation through IS effects as automational, informational, sequential, tracking, 
analytical, geographical, integrative, intellectual, and disintermediating. In another 
categorization [5], IS can have three separate but complementary effects on the 
business processes. These are automational, informational and transformational 
effects. 

3   A Process Based Model for Measuring IS Effects on Business  
     Process Quality 

The structure of the model that we have developed is based on the ISO/IEC 9126 
Software Product Quality Model [7]. There are close relationships between software 
and business process [8]. For instance, both of them have logical structures with 
inputs, operations and outputs whether in the form of functions or activities. The 
“software product” logically matches with “business process”, and “function” of 
software product with “activity” of business process. A similar relation between 
software product and function exists in the business process and activity. 

After the evaluation of the ISO/IEC 9126, some appropriate software quality 
metrics are chosen. The business process quality attributes are defined according to 
these selected business process specific metrics and, guidelines of how they can be 
measured are detailed. The model is designed in four-leveled structure [9]. The first 
level is called as category. There is one category as “quality”. The second level is 
called as characteristic. The quality category includes Functionality, Reliability, 
Usability and Maintainability characteristics. The third level is for subcharacteristics  
 



376 A.S. Guceglioglu and O. Demirors 

 

M o n ito ra b ility

U n d o a b ility

C a n c ellab ility

A ttra c tive  In te ra c t io n

C o m p lex i ty

C o u p lin g

F u n c tio n a l A d eq u a c y

F u n c tio n a l  C o m p le ten ess

IT  U sag e

F u n c tio n a l  A c c u ra c y

D ata  E x c h an g ea b ility

A c cess  A u d ita b ility

F a ilu re

F a ilu re  A vo id a n c e

R esto ra b i lity

D escrip t io n  C o m p le ten ess

S u ita b i lity  M etr ic s

IT  B a sed  F u n c tio n a lity
M etric s

A c c u ra cy  M etric s

In te ro p erab ility  M etric s

S ec u rity M etric s

M a tu r ity  M etrics

R ec o vera b ility  M etric s

U n d ers ta n d a b ility M etric s

O p era b i lity  M etr ic s

A ttra c tiv en ess  M etr ic s

A n a lyzab ility  M etric s

F u n c tio n a lity

R eliab ility

U sa b ility

M a in ta in ab ility

Q

U

A

L

I

T

Y

 

Fig. 1. Measurement categories and metrics of the model 

and finally, fourth level is for metrics to measure the business process quality 
attributes. The quality category is given with its levels in Figure 1. 

Functionality characteristic is defined for evaluating the capability of the process to 
provide functionality properties in the subcharacteristics of Suitability, Information 
Technology (IT) based Functionality, Accuracy, Interoperability and Security. 
Reliability characteristic is used for evaluating the capability of the process to provide 
reliability properties in the subcharacteristics of Maturity and Recoverability. Usability 
characteristic is used for evaluating the capability of the process to provide usability 
properties in the subcharacteristics of Understandability, Operability and Attractiveness. 
Maintainability characteristic is used for evaluating the capability of the process to 
provide maintainability properties in the subcharacteristic of Analyzability. 

4   An Experiment for Measuring Process Quality Attributes 

The implementation of the model is accomplished on a sample business process in an 
organization [9]. In the implementation, a business process, named as “Meeting 



 Using Software Quality Characteristics to Measure Business Process Quality 377 

 

Material Request”, is selected from Warehouse Department of the organization. 
While the departments are performing their tasks in the organization, they meet 
material needs from this department. The department is organized to meet these 
material requests and also purchase new material, repair and maintain existing 
material. It has approximately 80 staff and 7 basic business processes about material 
operations including Material Purchasing, Material Registration, Material Return, 
Material Repair and Maintenance. In the implementation of the model, static business 
process definitions are used. The present state (AS-IS) of the process is taken into 
consideration. This process has 29 activities. Each activity is clearly identified by 
explaining with actors who take part in, forms, tools and applications that are used in. 
Unified Modeling Language (UML) Activity Diagram is used for modeling the 
process.  

Table 1. Results of the functionality characteristic 

Subcharacteristic Attribute Formula Result 
Functional Adequacy X = 1 – (6 /29) 0.793 Suitability 
Functional Completeness X = 1 – (7 /29) 0.759 

IT Based Functionality IT usage X = 1 – (22/29) 0.241 
Accuracy Functional Accuracy X = 1 – (14/29) 0.518 
Interoperability Data Exchangeability X = 1 – (1 /7  ) 0.857 
Security Access auditability X = 1 – (2 /29) 0.931 

 

The results of the first characteristic, functionality, are given in Table 1. The 
common desirable features of the functionality metrics are their closeness to the 1. 
The results of the functional characteristics can reveal some beneficial insights about 
the present state of the process. Access Auditability of the activities is near to 1 that is 
considered as satisfactory. The accesses of the users to the resources such as reading 
or updating inventory records and document record books are under the control. 
Unlike the Access Auditability, IT Usage is the most far away from 1. This low value 
shows improvement opportunities. On the other hand, another low value is about 
Functional Accuracy. It shows that process has critical functional accuracy problems 
and needs to be improved. The results of Functional Adequacy and Functional 
Completeness are close to each other and also to 1. It can be said that process 
activities are almost adequate and complete. The last result is for Data 
Exchangeability. Its value emphasizes that the process can be interoperable with other 
processes. 

The results of the reliability characteristics are given in Table 2. Failure attribute 
shows the number of user based errors. According to the measurement, 23 Failures 
may be happened in the process (one activity may have more than one error). When 
the failures are investigated, it is recognized that most of the failures are user based 
failures such as writing incorrect material name and updating incorrect material 
number. The second attribute is Failure Avoidance. 6 Failure Avoidance mechanisms 
are detected in the present state of the process such as using the previous document 
template. The last attribute is about Restorability. There is 1 Restorability 
mechanisms as daily backups of inventory records to floppy disks.  



378 A.S. Guceglioglu and O. Demirors 

 

Table 2. Results of the reliability characteristic 

Subcharacteristic Attribute Result 
Failure X = 23 Maturity 
Failure Avoidance X = 6 

Recoverability Restorability X = 1 

Table 3. Results of the usability characteristic 

Subcharacteristic  Attribute Formula Result 
Understandability Description Completeness X = 1 – (5/29) 0.828 

Cancellability X = 1 – (6/29) 0.793 
Undoability X = 1 – (6/29) 0.793 

Operability 

Monitorability X = 1 – (25/29) 0.138 
Attractiveness Attractive Interaction 4 good,  

4 very good 
4 good,  
4 very good 

Table 4. Results of the maintainability characteristic 

Subcharacteristic Attribute Result 
Analyzability Complexity X = 3 

 Coupling X =2 

 

The results of the third characteristic, usability, are given in Table 3. According to 
the results, Description Completeness attribute is near to 1 considered as 
understandable with its present definitions. This thought may be supported by 
Attractiveness Interaction attribute with its high value. The other attributes that are 
close to 1 are Cancellability and Undoability. These attributes show that the process 
activities can be undone or canceled before they are completed. On the other hand, 
Monitorability attribute has the lowest value. This indicates that status of the process 
activities cannot be monitored satisfactorily.  

The results of the fourth characteristic, maintainability, are given in Table 4. 
Complexity attribute indicates the number of decision points as 3. The other attribute, 
Coupling, implies the number of business processes that are communicated as 2.  

In order to give additional information about the process, cycle time and cost 
values are measured. Cycle time is calculated by adding the elapsed time in each 
activity. According to the result, the cycle time is 260 minutes. The other information 
is about cost. Although cost concept includes wide range coverage, we only calculate 
actors’ salary-based cost. The actors’ salaries and elapsed time in each activity are 
multiplied to find the cost. The cost is $25.340 for one cycle. 

5   Conclusions 

In this paper, a new process based model is proposed as a complementary to the 
available product based models. The model can be used with product based models to 
evaluate different IS investment alternatives. The product based measurements and 



 Using Software Quality Characteristics to Measure Business Process Quality 379 

 

results of the model can help the organizations for selecting the most suitable 
alternatives to their processes. When the effects of IS on processes are considered in 
process improvement (PI) scope, the implementation of the model shows that the 
model can be useful in PI purpose studies. The changes in the process quality 
attributes after implementation of a PI study demonstrate the impacts of the study. 

As a prerequisite, organizations must model their business processes to apply the 
model. It may be thought as a possible restriction, but, today, organizations should 
already have modeling of their processes to follow and improve them. Another 
possible restriction may be high number of process. This makes difficult the 
implementation of the model. In this case, a sample business process set can be 
formed according to the criticality of the processes before applying the model. 

In the future, further experiments will be performed to improve the model. These 
studies provide significant feedbacks to the model. By means of the feedbacks, the 
definitions of the attributes will be more clear and concrete. New measurement 
categories or attributes can be added to extent the scope of the model. The 
correlations between the attributes can also be examined and identified. 

References 

1. Jeffery, M., Leliveld, I., Best Practices in IT Portfolio Management, MIT Sloan 
Management Review (2004) 

2. DeLone, W.H., McLean, E.R., The DeLone and McLean Model of Information Systems 
Success: A Ten-Year Update, Journal of Management Information Systems, Vol. 19, No. 4 
(2003) 9-30 

3. Brynjolfsson, E., Hitt L., The Three Faces of IT Value: Theory and Evidence, Proceedings 
of the Fifteenth International Conference on Information Systems, Vancouver, BC (1994) 
263-276 

4. Seddon P.B., Staples S., Patnayakuni R., Bowtell M., Dimensions of Information Systems 
Success, Communications of the Association for Information Systems, Vol.2 Article 20 
(1999) 

5. Mooney J.G., Gurbaxani V., Kraemer K.L., A Process Oriented Framework for Assessing 
the Business Value of Information Technology, The Data Base for Advances in 
Information Systems, Vol. 27, No. 2 (1996) 

6. Davenport, T.H., Process innovation: reengineering work through information technology, 
Boston, Mass: Harvard Business School Press, 062117110523 (1993) 

7. ISO/IEC FCD 9126-1.2: Information Technology - Software product quality -Part 1: 
Quality model 

8. Osterweil, L., Software Processes are Software Too, Proceedings of the Ninth International 
Conference on Software Engineering, Monterey, CA (1987) 2-13 

9. Demirors, O., Guceglioglu, A.S., A Model for Using Software Quality Characteristic to 
Measure Business Process Quality, Technical Report, METU/II-TR-2005-08, Department 
of Information System, University of METU (2005) 



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 380 – 385, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Business Process Modelling and Improvement  
Using TAD Methodology 

Nadja Damij1 and Talib Damij2 

1 Faculty of Economics, University of Ljubljana, Kardeljeva ploscad 17, 
1000 Ljubljana, Slovenia 

nadja.damij@gmail.com 
2 Faculty of Economics, University of Ljubljana, Kardeljeva ploscad 17, 

1000 Ljubljana, Slovenia 
talib.damij@ef.uni-lj.si 

Abstract. This paper aims at carrying out business process modelling and busi-
ness process improvement using TAD methodology. The methodology consists 
of six phases; the first three deal with business process modelling and im-
provement, and the last three phases continue with the implementation of the 
improved business processes by developing an information system, which cov-
ers the areas discussed. To make the methodology capable of carrying out busi-
ness process modelling and improvement, the first three phases of the method-
ology are intended to solve this problem successfully. The problem of 
Sales_Claim is used as an example to show the implementation of the new con-
cepts of the methodology. The results of this work are very encouraging.   

1   Introduction 

The aim of this work is to present the use of a methodology called TAD (Tabular Ap-
plication Development) in the field of business process modelling and improvement. 
To make the methodology capable of carrying out business process modelling and 
improvement, the first three phases of the methodology are aimed at a complete solu-
tion of this problem. The first phase identifies the business processes of the enterprise 
discussed, the second phase presents a new idea of business process modelling, and 
the third phase shows an interesting way to improve business processes. The last three 
phases deal with implementing changes identified in the first three phases by develop-
ing the information system of the enterprise. The fourth phase develops a systems ob-
ject model, the fifth phase designs the systems, and the last phase implements the sys-
tem. The TAD methodology presents a new concept, which is simple and very 
different from the ideas used in other approaches. This paper discusses the first three 
phases in detail to cover the field of business process modelling and improvement. 

2   TAD Methodology  

TAD is an object-oriented methodology, which consists of six phases. The first three 
deal with problem definition, process modelling, and process improvement. And the 



 Business Process Modelling and Improvement Using TAD Methodology 381 

 

last three concern object model development, design of the system, and implementa-
tion of the system. 

The created tables describe the functioning of the enterprise by showing business 
processes, work processes and activities. These tables are then analysed in order to 
identify the necessary changes that have to be implemented to improve the function-
ing of the enterprise. 

2.1   Problem Definition 

In the first phase, the real world of the problem to be solved is identified and reduced 
to understandable terms. This is achieved by identifying the business processes of the 
system discussed. To do that, we have to conduct interviews with the management at 
strategic, business and operational levels. The purpose of these interviews is to define 
the strategic goals and objectives of the enterprise. After defining the goals and objec-
tives at the enterprise level, we continue conducting interviews with the management 
at business and operational levels with the aim of identifying business processes, and 
the goals of the management at business level. 

TAD methodology uses the term “entity” to define a user, group of users, a unit 
department or any source of information. An entity may be internal or external.  

To connect the identified strategic and business goals we define one or more analy-
ses related to the each goal or business process. These analyses are collected into a ta-
ble called the analysis table. The analysis table is structured as follows: the columns 
of the table represent the entities, and rows of the table represent the analyses defined. 
An asterisk in any square(i,j) in the analysis table means that the entity defined in col-
umn j requires analysis defined in row i. 
Sales_Claim. Many customers are not satisfied with the solution obtained considering 
their claim application, and the process is time consuming. Corresponding to the first 
phase of the methodology, interviews were conducted at different management levels 
and strategic, business, and operational goals identified.  

Table 1. The Analysis Table of Sales_Claim 

Entity  
Analysis 

Sales 
Management 

Purchasing 
Management 

Dispatch 
Management 

Quality 
Coordinator 

1. Analysis of 
claims by sales units 

* *   

2. Analysis of 
claims by customers 

* *  * 

3. Analysis of 
claims by products g 

* *  * 

4. Analysis of 
claims by suppliers 

* *  * 

5. Information about 
causes of claims 

* * * * 

6. Information about 
solution of claims 

* * *  

7. Information about  
duration of claims 

* *   



382 N. Damij and T. Damij 

 

2.2   Business Process Modelling 

The second phase of TAD methodology deals with modelling the business processes 
of the enterprise for which we intend to carry out business process improvement or to 
develop an information system. To do that, we continue with organising interviews 
with the management at operational level corresponding to the plan of interviews de-
veloped in the first phase. The purpose of the interviews is to identify work processes.  

A work process is the lowest-level group activity within the organisation [5]. A 
work process is a collection of activities followed in a determined order in carrying 
out distinguishable work to produce a certain output. 

Activity Table. An effective way to carryout business process modelling is achieved 
by developing two tables called the activity table and the task table [4]. The activity 
table is organised as follows: the first column represents business processes, the sec-
ond column shows work processes, the activities are listed in the rows of the third 
column, and the entities are introduced in the remaining columns of the table grouped 
by the departments to which they belong. Such organisation of the activity table en-
ables us to create a clear and visible picture of every business process and its work 
processes, and also of each work process and its activities (see Table 2).  

To make the activity table represent the real world, we link the activities horizon-
tally and vertically. Horizontal linkage means that each activity must be connected 
with those entities in the columns which are involved in performing it. To indicate 
this, letters S and T are used. Letter S in square(i,j) means that entity(j) is a source en-
tity for activity(i). This means that entity(j) performs activity(i), otherwise entity(j) 
starts the activity(i). For example, S1 in square(2,1) means that internal entity(1) per-
forms activity(2). Letter T in square(i,j) means that entity(j) is a target entity for activ-
ity(i). This entity(j) performs activity(i) if it is an internal entity, otherwise entity(j) 
accepts an output from other entity. For example, S6 in square(1,6) and T1 in 
square(1,1) mean that external entity(6) start activity(1) and internal entity(6) per-
forms it; see Table 2. Any activity may have one or more source entities and also a 
number of target entities. For this reason the letters S and T are also indexed by the 
index of the source entity of the treated activity. 

Vertical linkage is used to define the order in which the activities are performed. 
Vertical linkage is used only in connection with the internal entities. This is achieved 
by using the letters P and U to connect the activities. Letter P in square(i,j) means that 
activity(i) is a predecessor to some activity indicated by U. Letter U in square(i,j) 
means that activity(i) is a successor to another activity indicated by P. 

Any activity may have one or more predecessors and also one or more successors. 
The letters P and U are indexed by the index of the predecessor activity. For example, 
to define that activity(1) is a predecessor to activity(2), we write P1 in square(1,1) and 
U1 in square(2,1); see Table 2. Furthermore, an activity may have several successors. 
In this case, an OR operator is used to indicate each of the alternative successors. An 
OR operator is represented by an asterisk written on the right side of letter U. An OR 
operator can also be used with letters S and T.   
Sales_Claim. The first column of Table 2 shows the business process Sales_Claim 
and the second column shows its four work processes. Table 2 has 21 activities and 6 
entities. The first 5 entities, belong to the Sales and Warehouse departments, are in-
ternal and the last one is external. The first activity "Receive Claim_Note" means the 



 Business Process Modelling and Improvement Using TAD Methodology 383 

 

Sales_Claim clerk receives a claim note from a customer. The second activity means 
that the Sales_Claim clerk registers the claim note. The third activity means that 
Sales_Claim clerk prints a claim form. Thus we write S6 in square(1,6), T6 in 
square(1,1) and S1 in square(2,1) and square(3,1) to indicate the first, second and third 
activity. Furthermore, concerning the Sales_Claim clerk we find that the first activity 
is a predecessor to the second activity and third activity. For this reason we write P1 in 
square(1,1), U1 in square(2,1), and square(3,1).  

Task Table. As we develop the activity table we simultaneously develop another ta-
ble, the task table, which is very important in describing activities in detail. The task 
table is organised as follows: the activities are represented in the rows and the charac-
teristics of the activities are defined in the columns. Activity characteristics are: 

Description: this is used to write a short description of the activity defined in the 
current row of the task table.  

Time: this is used to denote that the activity discussed needs a determined time to 
be accomplished.  

Business Rule: Business rules are precise statements that describe, constrain and 
control the structure, operations and strategies of a business.  

Input/Output: this is used to indicate which inputs and outputs are connected with 
the activity described.  

Cost: this is sum of the costs of the resources needed to accomplish an activity.  
Sales_Claim. Table 3 describes in detail all parameters determined in the above de-
fined organisation of the task table. Because of space limitations, only the first 6 ac-
tivities of the activity table (Table 2) are described in Table 3.   

2.3   Business Process Improvement 

The third phase of TAD methodology deals with carrying out business process im-
provement (BPI) in the enterprise concerned. More precisely, this phase deals with 
identifying and implementing changes to improve the functioning of the enterprise. 
The third phase has two steps. The first step deals with partitioning of the activity ta-
ble. The second carries out BPI in the analysis, activity and task tables. 

Business process improvement is achieved by precise analysis of the analysis and 
activity tables, suggesting changes and improvements, and giving solutions for exist-
ing problems. To make our work easier the activity table could be divided by using an 
approach called table partitioning. The concept of table partitioning is based on the 
idea of identifying basic work processes in the framework of each business process. A 
basic work process is a work process performed in all circumstances and related to 
different alternative work processes for performing alternative options. A non-basic 
work process is recognized in the activity table by an OR operator indicating the row 
of its first activity. 

Thus the result of table partitioning is the creation of several parts (subtables) of 
the activity table. Each of these parts could be analysed separately. Therefore, the 
analyst analyses each part carefully in order to understand it completely.  
Sales_Claim. Tables 1, 2 and 3 were analysed carefully. We found that the claim 
documentation is in a state of permanent movement between the three different enti-
ties which are involved in performing similar activities. For this reason, we suggested 



384 N. Damij and T. Damij 

 

unifying these jobs by defining one entity; this is claim clerk, who takes care of the 
claim.  

Table 2. Activity Table of Sales_Claim business process 

 Department Sales Warehouse 
 

 

 
 
 

B
us

in
es

s 
Pr

oc
es

s 

W
or

k 
Pr

oc
es

s 

Entity 
 

 
Activity 

1. 
Sales Claim 

Clerk 

2. 
Sales 
Clerk 

3. 
Warehouse  
Claim Clerk

4. 
Manager of 
Dispatch D.

5. 
Stock 

Keeper 

6. 
Customer 

1. Receive Claim_ 
    Note 

T6  
P1 

  

 
  S6 

2. Register  
    Claim_Note 

S1  
U1 

     

3. Print Claim_Form  S1  
U1, P3 

     

4. Collect Claim  
    Documentation 

S1  
U1, P4 

     

5. Send Claim  
    Documentation 

S1  
U3, U4, P5 

T1 

 
    

6. Determine Claim  
    Solution Path 

 S2 

U5,P6 
    

 1.
 R

ec
ep

tio
n 

of
 S

al
es

_ 
C

la
im

 

7. Return Claim 
    Documentation 

T2 
 

S2 

U6, P7 
    

8. Forward Claim 
    Documentation 

S1 
U7*, P8 

 T1 

 
   

9. Analyse Quantity  
    of  Products 

  S3 

U8, P9 
   

10. Approve the  
      Claim 

  S3 

U9*, P10 
  

11. Reject the Claim   S3 

U9*, P11 
   

 
12. Return Claim 

Documentation 
T3 

 
 S3 

U10,U11,P12 
   

 
13. Check Approval 

 
S1 

P13,U12 
     

14. Issu Credit_Note S1 

U13* 
    T1 

 

2.
 U

nd
er

-R
ec

ei
ve

d 
Pr

od
uc

ts
 

15. Send Explantion S1 

U13* 
    T1 

 
16. Create Addiional  
      Invoice 

S1 

U7*, P16 
     

 

3.
 O

ve
r-

R
ec

ei
ve

d 
Pr

od
uc

ts
 

17. Send Additional 
 Invoice 

S1 

U16 
    T1 

18. Require Tranport 
 Products Back 

S1 

U7*, P18 
 T1 T1 

 
  

19. Create Transport 
 Schedule  

  S3 

U18, P19 
 

 
  

20. Send Transport 
Schedule 

  S3 

U19, P20 

 T1 

 
 

Sa
le

s_
C

la
im

 

4.
 W

ar
eh

ou
se

 P
ro

d-
uc

t R
et

ur
n 

21. Inform about 
Shipment Recepion 

 

 
 T5 ,S3 

 
T3 S5 

U20 
 



 Business Process Modelling and Improvement Using TAD Methodology 385 

 

Table 3. Task Table of Sales_Claim business process 

Charac-
teristic 

 
Activity 

Description Time Business Rule Input/ Output 
Cost 
($) 

1. Receive 
    Claim_Note 

Sales claim clerk receives a 
Claim_Note from customer 

10 m Check  Order 
and Shipment 

Claim_Note, 
Order, Shipment 

14 

2. Register 
    Claim_Note 

Sales claim clerk registers 
customer’s Claim_Note 

10 m  Claim_Note 14 

3. Print 
    Claim_Note 

Sales claim clerk prints a 
Claim_form 

5 m  Claim_Form   7 

4. Collect  
    Claim Docs 

Sales claim clerk collects the 
rest of claim documentation 

30 m  Dispatch Order 
Invoice 

42 

5. Send Claim   
    Docs 

Sales claim clerk sends claim 
doc. to Sales clerk 

5 m  Claim Docu-
mentation 

  7 

6. Determine 
Solution Path 

Sales clerk determines the 
cause of the claim 

30-
60m 

Determine the 
claim cause  

Claim Docu-
mentation 

45-90 

3   Conclusion 

The main problem of business process modelling is the visibility of the model ob-
tained and the follow-up of its activities, particularly when the model of the process 
contains hundreds of activities. 

The use of TAD methodology contributes a great deal in solving the problem of 
process visibility and follow-up of its activities.  This is achieved by using the parti-
tioning approach to create subtables. Each of them shows an alternative path, where 
the follow-up of the activities of each path is clear and manageable. This is essential 
in inventing improvements and solving problems of the process discussed. 

We found that using TAD methodology for modelling and improving business 
processes could be very successful and enabled us to comprehend the process dis-
cussed in an easy manner. 

References 

1. Aguilar-Saven R.: Business Process Modeling. Review and Framework. Internatinal Jour-
nal of Production Economics, Vol. 90, No. 2, (2003) 129–149 

2. Anapindi R., Chopra S., Deshmukh S. D., van Mieghem J. A., Zemel E.: Managing Busi-
ness Process Flows. Upper Saddle River, NJ: Pretence Hall, (1999) 

3. Chan M.: A Framework to Develop an Enterprise Information Portal for Contract Manu-
facturing. International Journal of Production Economics, 75 (1–2), (2002) 113–126 

4. Damij T.: An Object-Oriented Methodology for Information Systems Development and 
Business Process Reengineering, Jounal of Object-Oriented Programming, Vol. 13, No. 4, 
pp. 23-34 

5. Watson H.G.: Business Systems Engineering. Managing Breakthrough Changes for Pro-
ductivity and Profit. John Wiley & Sons, New York (1994) 



On the Suitability of Correctness Criteria

for Business Process Models

Juliane Dehnert1 and Armin Zimmermann2

1 Fraunhofer ISST Berlin
juliane.dehnert@isst.fhg.de
2 Technische Universität Berlin

azi@cs.tu-berlin.de

Abstract. A popular requirement for the validation of workflow models
is soundness. As soundness can not be easily seen on the model level, dif-
ferent correctness criteria have been proposed in the literature to bridge
the gap between the modeling process and a executable workflow model.
Well-structuredness and relaxed soundness are investigated in the paper.
Relationships between the properties are derived.

Keywords: Workflow, Validation of business process models, Petri nets.

1 Introduction

An increasing number of companies have adopted process-aware information
systems during the past years. By doing so, complex and distributed business
processes can be managed and improved easier. Standard ERP software tools
have been enhanced by a workflow module, while other examples like Staffware
are dedicated workflow management systems (WfMS).

The basis of any of these systems is a model of the company’s business pro-
cesses in a machine-readable manner: the workflow definition. Modeling workflow
requires a deep inside into the application context. Domain experts are often
put in charge of the modeling, although they do not necessarily are modeling
experts. The models describe the processes with the modelers view, and thus do
not necessarily adhere strictly to sound models.

Soundness [Aal98] guarantees that there are no faulty executions at run-
time, like deadlocks or processes that leave dangling documents when termi-
nating. The soundness of a workflow definition can be checked, but is not easy
to see on the model level. To bridge that gap, different properties have been
proposed in the literature to assist non-expert modelers in creating sound busi-
ness process models. Maybe the most commonly used property in this context is
well-structuredness [Aal98, CWBH+03, Ver04]. The advantage of this property is
that it can be checked easily on the structural level of the model. Well-structured
process descriptions are guaranteed to be sound if they are live. However, well-
structuredness is quite restrictive, and does not support all workflow patterns.

Relaxed soundness [DR01] has been proposed as a property which is claimed
to be better suited for this task. It is a weaker property than soundness, thus

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 386–391, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On the Suitability of Correctness Criteria for Business Process Models 387

allowing more workflow structures. However, an additional step is required to
achieve a sound WF-net. It has been shown recently how methods from Petri
net controller synthesis can be adopted to automatically generate a sound model
from a relaxed sound one [DZ04, DvdA04]. The question for workflow modelers
as well as WfMS tool designers is now which one of the existing criteria —
soundness, well-structuredness or relaxed soundness — should be used to guide
the modeler in creating a sound workflow definition. This discussion is the main
motivation for this paper. The main contribution is the theoretical background
for the comparison. Proofs are provided that put the criteria in relation to each
other. Based on these considerations, the usability of the properties is briefly
compared from the modeler’s point of view.

2 Soundness - Well-Structuredness - Relaxed Soundness

For the modeling of business processes we refer to WF-nets, cf. [Aal98]. WF-nets
are a special class of Petri nets characterized by a source place (•i = ∅) and a
sink place o (o• = ∅). Furthermore, short-circuiting the net by an additional
transition t′ the resulting net is strongly connected.

Figure 1 shows a WF-net modeling the business process initiated by incoming
goods. The process is assigned to two departments, the accountancy and the
storage, which may work in parallel. The thread of control is split accordingly in
the beginning. In the accountancy (c.f. upper thread in the figure) the receipt of
the goods is recorded. The incoming goods are checked and stored in the other
department (lower thread). In case the check is negative, a notification is sent
to the accountancy. Finally, the threads are joined again.

In the following we introduce some relevant process properties.
Well-structuredness is a property that has been proposed in the literature
(e.g. [Aal98, Ver04]) to assist non-expert modelers in formalizing their business
processes. Well-structuredness is a property requiring a strict block structuring
of a process description. It is satisfied if every split (OR, AND etc.) is followed
be a corresponding join of the same type. The restriction to well-structuredness
is also present in UML v1.4 [UML02] activity diagrams, BPEL4WS [BEA03]
and ADEPT [RD98]1. In terms of Petri-net theory, well-structuredness is char-
acterized by the absence of handles2 [ES90].

Definition 1 (Well-structured). A WF-net PN is well-structured if the
short-circuited net PN does not contain any handles, i.e. PN is well-handled.

The WF-net of Figure 1 is not well-structured. Examples for existing handles
are the transition-place pair (t1, p5) and the place-transition pair (p2, t10).

1 In the latter two, the strict block structuring conditions are relaxed by allowing
control links (resp. synchronization edges) to synchronize tasks belonging to different
parallel control flow paths.

2 A handle is a pair of two different nodes (a place and a transition) that are connected
via two elementary paths sharing only these two nodes.



388 J. Dehnert and A. Zimmermann

 goods 
arrived

i

check
goods

not_ok

ok

complaint

revised
  data

  record 
receipt of
  goods

recorded
  goods

t1

t2

t3

t4

t5

t8

t9

t10

p1

p2

p3

p4 p5

p6

p7

o

distribution
to stock

distributed
  goods

t6

Fig. 1. WF-net ”Processing of incoming goods”

Soundness has been introduced in [Aal98]. A WF-net is sound if termination
is always possible and once terminated there are no residual tokens outside o.
Furthermore, there are no dead transitions and neither deadlocks nor livelocks.

Definition 2 (Soundness). A WF-system (PN, i) is sound iff:

(i) For every state M reachable from state i, there is a firing sequence leading
from state M to state o: ∀M : (i ∗−→ M) ⇒ (M ∗−→ o).

(ii) State o is the only state reachable from state i with at least one token in
place o (proper termination)3: ∀M : (i ∗−→ M ∧ M ≥ o) ⇒ (M = o)

(iii) There are no dead transitions in PN : ∀t ∈ T ∃M, M ′ : (i ∗−→ M
t−→ M ′)

The WF-net “Processing of incoming goods” (c.f. Figure 1) is not sound. There
are firing sequences that do not terminate properly.
Relaxed soundness was introduced with the intention to represent a more
pragmatic view of correctness. Relaxed soundness does not require the absence
of residual tokens, livelocks or deadlocks. A process is relaxed sound if each task
of the business process is part of a properly terminating sequence.

Definition 3 (Relaxed soundness). A workflow system (PN, i) is relaxed
sound iff each transition t of PN appears in some sound firing sequence σ:
∀t ∈ T ∃σ : i

σ−→ o with t ∈ σ

The process specification shown in Figure 1 is relaxed sound. There are enough
sound firing sequences, i.e. all transitions are covered.

3 Relations Between the Properties

Clearly, soundness implies relaxed soundness. This can be derived directly from
the definitions. Another proposition relates all three properties. We will show
that a process description is sound if it is well-structured and relaxed sound.
3 Note that this statement from the original definition already follows from require-

ment (i) [HSV04].



On the Suitability of Correctness Criteria for Business Process Models 389

relaxed sound
WF−nets

sound
WF−nets

well−structured
WF−nets

free− choice
WF−nets

state machines 

marked
graphs

Fig. 2. Relations between different Petri net-properties

Proposition 1. Let PN be a WF-net with input place i. If PN is well-structured
and (PN, i) is relaxed sound, then (PN, i) is sound.

The proof of this claim is provided in two steps. It is first proved for free-
choice4 WF-nets. The result is then applied to the unrestricted class of WF-nets.

Proof 1 (PN is free-choice): Because PN is well-structured, the short-circuited
net PN is well-handled and strongly connected. With [ES90] (Theorem 3.1 &
3.2) we can conclude that PN is well-formed, i.e. structurally bounded and
structurally live. Soundness of (PN, i) coincides with liveness and boundedness
of (PN, i) [Aal98]. Boundedness of (PN, i) follows directly from the fact that
(PN, i) is structurally bounded. It thus remains to prove that (PN, i) is live.

As (PN, i) is relaxed sound, there is an infinite firing sequence σ of (PN, i)
which supports each transition. σ can be constructed, linking the set of sound
firing sequences in (PN, i) via firing of transition t∗. This is done infinitely often:
σ = σ1t

∗σ2t
∗...t∗σnt∗σ1t

∗σ2t
∗...t∗σn.... With [ES90] (Theorem 3.2) we know that

PN is covered by S-components5. The infinite firing sequence σ is enabled in
i and contains all transitions. Since PN is strongly connected, every place and
therefore every trap is marked during the occurrence of σ. Since marked traps
remain marked, every trap and therefore every S-component is marked in i.
With [DE95] (Theorem 5.8), it can be concluded that PN is live. �

In order to transfer the result to the class of non-free-choice WF-nets we
first establish some prerequisites. We recall a transformation rule ([DE95]) that
transforms a non-free choice net PN into a free-choice net PN ′. According to this
rule, every arc (p, t) ∈ F in PN is replaced by a sequence (p, t′)(t′, p′)(p′, t) ∈ F ′.
The sets P and T are extended appropriately. Note that this transformation
preserves well-structuredness (I) and relaxed soundness (II), whereas it does not
hold for liveness. However, the properties liveness and boundedness are preserved
during the backward direction of the considered transformation (III).

Proof 2 (PN is not free-choice): We apply the free-choice transformation rule
to PN and obtain a well-structured (I) and relaxed sound (II) WF-net (PN ′, i),
which is additionally free-choice. We short-circuit PN ′ and obtain the strongly

4 A Petri net PN = (P, T, F ) is a free-choice net (basically extended free-choice) iff
∀t, t′ ∈ T : •t ∩ •t′ = ∅ ∨ •t = •t′.

5 A Subnet PN ′ = (P ′, T ′, F ′) is an S-component of the net PN = (P, T, F ) iff PN ′

is a strongly connected state machine and ∀p ∈ P ′ : •p ∪ p• ⊆ T ′.



390 J. Dehnert and A. Zimmermann

connected, well-handled and free-choice net PN ′. Using again [ES90], we can
conclude that PN ′ is well-formed. Exploiting the result of the first proof, we can
infer that (PN ′, i) is live and bounded. As the reverse direction of the free-choice
transformation preserves these properties (III), we can conclude that (PN, i) is
also live and bounded. Therefore, PN is sound. �

Figure 2 shows an Euler diagram depicting the established relations between
Petri net classes considered in workflow modeling.

4 Usability of the Properties

Supporting the modeler, meaningful but possibly loose modeling restrictions
should be posed, such that a wide range of process descriptions can be defined
having a sensible/useful interpretation. However, this means especially that all
process descriptions which are sound (c.f. [Aal98]) should satisfy the used cri-
terion. On the other hand, all process descriptions not satisfying the property
should clearly contain design faults.

Soundness is now widely accepted as a necessary requirement for any ex-
ecutable workflow model. However, soundness is not easily seen on the model
level. The reason for this is that soundness requires complete knowledge of all
possible behavior. As a consequence, the modeler is required to think about the
“how” of the execution. This contradicts the argument that the specification of
business processes should be as abstract as possible.

Demanding a strict hierarchical design, as done using well-structuredness,
seems to be a valuable help in the modeling process. The modeler must only fol-
low simple structural rules to get a correct process description. However, some
business processes can hardly be matched by a well-structured process descrip-
tion. The demand for a strict hierarchical design ignores the need to assign the
tasks according to their organizational assignment. Modeling in a well-structured
manner requires overview of the whole process. This can hardly be assumed if
the process to be described is spanning different organizational units of the com-
pany, involving various modelers. The mentioned shortcoming can be character-
ized also as follows: When modeling in a well-structured manner, some useful
process descriptions are disregarded right from the beginning. Figure 2 shows
that there are processes which are sound but not well-structured.

In previous publications (e.g. [DZ04]), it is argued that relaxed soundness
meets the modeling capabilities of modelers, as it does not require high model-
ing knowledge but acknowledges the process view of domain experts. The main
reason for that is that relaxed soundness does not impose operational semantics.
Whereas the users point of view should be reflected, it is clear that formally cor-
rect process descriptions, such as described by the soundness criterion, should
as well assessed to be correct. This holds for relaxed soundness. All sound pro-
cess descriptions are relaxed sound by definition, c.f. Figure 2. Therefore, no
sound process description is disregarded already at design time. On the other
hand, WF-nets which are not relaxed sound are not sound either. Such process
descriptions contain transitions which are not contained in any sound firing se-
quence. Such redundant transitions clearly constitute a design flaw. They relate



On the Suitability of Correctness Criteria for Business Process Models 391

to tasks that have been modeled but do not contribute to any proper terminating
execution. It is hardly imaginable that such modeling is intended. Such WF-nets
clearly needs revision.

5 Conclusion

In this paper themain criteria forPetri networkflowmodels havebeenput into rela-
tion.The formalpart relates soundness,well-structurednessandrelaxedsoundness.
It is shown that relaxed soundness and well-structuredness together imply sound-
ness. The shown relations are briefly interpreted from the modeler’s point of view.

References

[Aal98] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21–66,
1998.

[BEA03] BEA Systems, IBM Corporation, Microsoft Corporation, SAP AG,
Siebel Systems. Business Process Execution Language for Web Services
(Version 1.1, 2003.

[CWBH+03] P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, M. O’Dell, and
A. Susanto. A top-down petri net-based approach for dynamic workflow
modeling. In W. van der Aalst, A. ter Hofstede, and M. Weske, editors,
Int. Conf. on Business Process Management, volume 2678 of LNCS,
pages 336–353. Springer, 2003.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University
Press, 1995.

[DR01] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes.
In K.L. Dittrich, A. Geppert, and M.C. Norrie, editors, Advanced Infor-
mation System Engineering, CAISE 2001, volume 2068 of LNCS, pages
157–170. Springer, 2001.

[DvdA04] J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Busi-
ness Models and Workflow Specifications. Int. Journal of Cooperative
Information Systems (IJCIS), 13(3):289–332, 2004.

[DZ04] J. Dehnert and A. Zimmermann. Making Workflow Models Sound Us-
ing Petri Net Controller Synthesis. In R. Meersman and Z. Tari et.al.,
editors, Int. Conf. Cooperative Information Systems (CoopIS) 2004, vol-
ume 3290 of LNCS, pages 139–154, Cyprus, 2004.

[ES90] J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of LNCS,
pages 210–242. Springer, 1990.

[HSV04] K. van Hee, N. Sidorova, and M. Voorhoeve. Generalised Soundness
of Workflow Nets is Decidable. In W. Reisig J. Cortadella, editor, Int.
Conf. on Application and Theory of Petri Nets, volume 3099 of LNCS,
pages 197–216. Springer, 2004.

[RD98] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes
of Workflow without Loosing Control. Journal of Intelligent Information
Systems, 10(2):93–129, 1998.

[UML02] Unified Modeling Language: version 1.4.2, ISO, 2002.
[Ver04] Eric Verbeek. Verification of WF-nets. PhD thesis, TU Eindhoven, 2004.



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 392 – 397, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Service Retrieval Based on Behavioral Specifications and 
Quality Requirements 

Daniela Grigori, Verónika Peralta, and Mokrane Bouzeghoub 

Laboratoire PRiSM, Université de Versailles 
45, avenue des Etats-Unis, 78035 Versailles Cedex, France 

{Daniela.Grigori, Veronika.Peralta, 
Mokrane.Bouzeghoub}@prism.uvsq.fr 

Abstract. The capability to easily find useful services becomes increasingly 
critical in several fields. In this paper we argue that, in many situations, the 
service discovery process should be based on both behavior specification (that 
is the process model which describes each composite service) and quality 
features of services. The idea behind is to develop matching techniques that 
operate on process models and allow delivery of partial matches and evaluation 
of semantic distance between these matches and the user requirements. To do 
so, we reduce the problem of service behavioral matching to a graph matching 
problem and we adapt existing algorithms for this purpose. The matching 
algorithm is extended by a flexible quality evaluation procedure which checks 
whether a given service is worth to be delivered or not.  

1   Introduction 

The capability to easily find useful services becomes increasingly critical in several 
fields. Examples of such services are numerous: (i) software applications as web 
services which can be invoked remotely by users or programs; (ii) programs and 
scientific computations which are important resources in the context of the Grid; (iii) 
software components which can be downloaded to create a new application.  

In all these cases, users are interested in finding suitable services in a library or in a 
catalog of services. Service retrieval may be based on their inputs/outputs and their 
constraints (pre and post conditions) or on some high level attributes which 
characterize, at some extent, their functional semantics. Recent publications have 
demonstrated that this approach is not sufficient to discover relevant services [2]. 
Many services with different semantics may have the same inputs/outputs or the same 
constraints, therefore leading to a lack of relevance of the retrieval process. To go 
beyond the limits of this approach, a substantial effort has been done by different 
works on semantic web and ontologies by exploiting more knowledge on the 
semantics of the services [1][7]. High level conceptual graphs and assertions intend to 
capture more meaning of supplied services. However, this effort still remains 
insufficient and does not fulfill user needs as many functional or quality aspects are 
hidden within the specification of services behavior.  

In this paper we argue that, in many situations, the process of service discovering 
should be based on both behavior specification and quality features of services. 



 Service Retrieval Based on Behavioral Specifications and Quality Requirements 393 

 

Behavior specification abstracts the functional semantics of the components while 
quality features describes non-functional aspects, i.e. their added-value, constraints in 
terms of performance, reliability, data consistency, data freshness, etc. The idea 
behind is to develop matching techniques that operate on process models as well as 
the associated quality features and allow delivery of partial matches and evaluation of 
semantic distance between these matches and the user requirements. Consequently, 
even if a service satisfying exactly the user requirements does not exist, the most 
similar ones will be retrieved and proposed for reuse by extension or modification.  

In the approach presented in this paper, we reduce the problem of service 
behavioral matching to an adorned graph matching problem, where the graph 
represents the functional process of a service and the adornment represents quality 
constraints. Our approach is based on existing algorithms on graph matching [6] 
which are adapted to workflow diagrams. The matching algorithm is extended by a 
flexible quality evaluation procedure which checks whether a given service is worth 
to be delivered or not. A set of similarity metrics based on functional and non-
functional requirements are defined. 

The rest of the paper is organized as follows: Section 2 presents a graph 
representation of the process models, shows how the behavioral matching problem 
can be reduced to a graph matching problem and defines a structural similarity 
measure. Section 3 presents the data quality evaluation principle and defines a 
qualitative similarity measure that is added to the matching approach. Finally, section 
4 presents ongoing work and conclusions. 

2   Behavioral Matching 

In this section, we present our approach to service retrieval based on their behavioral 
models. Behavioral models are process models that describe user requirements as well 
as provided services. We assume that the formal models are workflow models 
although the approach can easily be adapted to other formal models such as Petri nets 
or state chart diagrams, provided that it is a uniform model. After giving the 
preliminary definitions, we describe the principles of service matching algorithm. 

2.1   Background 

Most of existing proposals (standard and research models) for process specification 
are graph based. For this reason, we choose to base our service retrieval approach on 
process graphs. A process is represented as a directed graph, whose vertices are 
activities or data repositories. Activities associated to web services consume input 
data elements and produce output data elements which may persist in repositories. 
There are two types of edges: (i) control edges that have associated transition 
conditions expressing the control flow dependencies between activities, and (ii) data 
edges representing data flow between activities.  

Using graphs as representation formalism for both user requirements and service 
models, the service retrieval problem turns into a graph matching problem. We want 
to compare the process graph representing user requirements with the process graphs 
in the library. The matching process can be formulated as a search for graph or 



394 D. Grigori, V. Peralta, and M. Bouzeghoub 

 

subgraph isomorphism. However, it is possible that it does not exist a process model 
such that an exact graph or subgraph isomorphism can be defined. Thus, we are 
interested in finding process models that have similar structure, if models that have 
identical structure do not exist. The error-correcting graph matching integrates the 
concept of error correction (or inexact matching) into the matching process [6]. 

In order to compare the graphs in the library (that will be called catalog graphs in 
the following) to the graph expressing user requirements (called query graph) and 
decide which model is more similar to the latter, it is necessary to define a distance 
measure for graphs. Similar to the string matching problem where edit operations are 
used to define the string edit distance, the subgraph edit distance is based on the idea 
of edit operations that are applied to the catalog graph altering it until there exists a 
subgraph isomorphism to the query graph. A certain cost is assigned to each graph 
edit operation. The subgraph edit distance from a model to an input graph is then 
defined to be the minimum cost taken over all sequences of edit operations that are 
necessary to obtain a subgraph isomorphism. It can be concluded that the smaller the 
subgraph edit distance between a model and an input graph, the more similar they are. 
The subgraph isomorphism detection is based on a state-space search by means of an 
algorithm similar to A*. Different algorithms have been proposed for error correcting 
graph matching in order to reduce the computation complexity (see for example [6]). 

2.2   Service Retrieval Based on Behavioral Matching 

In this section we begin by showing how the error-correcting subgraph isomorphism 
algorithm can be used for behavioral matchmaking. Then we define a similarity 
measure based on the subgraph edit distance allowing ranking models in the library.   

Suppose that a user needs to develop a new composite web service. He specifies 
his composition model as a query graph that he submits to the service retrieval system 
to find in the library similar web services or fragments that could be composed to 
develop his application or a new web service. If we assume that existing services are 
represented as graphs (e.g. workflows), the problem of service matchmaking is 
transformed into a problem of graph matching. If user defines input/output parameters 
and operation name for the new composite web service, then a first filter could be 
applied for components retrieval based on these properties. The behavioral matching 
will be applied either to the set of services retrieved in the first step or independently.  

We use the algorithm for error correcting subgraph isomorphism to retrieve the 
most similar models. For the error correcting algorithm, the cost function for each 
graph operation has to be defined. The costs are application dependent and reflect the 
likelihood of graph distortions. The more likely a certain distortion is to occur the 
smaller is its cost. 

The cost for deletion/insertion of an edge and a vertex can be set to constants. The 
cost for substituting a label and its attributes is defined as follows. If the labels are not 
identical then the substitution cost is set to the corresponding constant. If they are 
identical and they have the same number of attributes, the substitution cost is defined 
to be the weighted mean of distances between the corresponding attributes. For each 
attribute of a service, the cost function of substituting an attribute value has to be 
defined. In [4], we showed how this cost can be defined if service attributes are 



 Service Retrieval Based on Behavioral Specifications and Quality Requirements 395 

 

annotated with ontological concepts. Attributes being associated with concepts in the 
ontology, the cost function is the distance between these concepts in the ontology. 

In order to rank the catalog graphs, a similarity measure has to be defined. The 
total distance between the two graphs can be defined as the sum of the subgraph edit 
distance and the cost of inserting the vertices of the query graph not covered by the 
error correcting subgraph. The similarity measure is the inverse of this distance. For 
more details on behavioral matching see [4]. 

3   Data Quality Evaluation 

The relevance of the service retrieval process can be enhanced by adorning service 
behavior with quality features. Section 2 has shown how the retrieval process is 
reformulated as a graph matching problem. However, if the matching algorithm is 
only based on functional requirements, the resulting services may not necessarily 
fulfill user expectations in terms of performance, reliability and consistency. 
Additionally, if some of these services are data providers, freshness and accuracy of 
this data could be of high importance to their users. This section goes further to 
improve such matching by introducing quality measures which help to discriminate 
between several matches.  

The idea behind this approach is to adorn catalog graphs with quality features (e.g. 
costs, delays, data freshness, data accuracy) which allow estimating the quality of the 
data that can be produced by the graphs. The calculated quality values are compared 
to the quality constraints of the query graph (also used as adornments).  

In this section we present an example that illustrates how we utilize these 
adornments for evaluating a concrete quality factor: data freshness and then we 
describe the matching approach using a similarity metric based on data quality.  

3.1   Evaluating Freshness Within the Adorned Graph 

Data freshness is a quality factor which is very important in many data centric 
applications. Decision making may not be relevant if it is based on stale data. Data 
freshness can be measured as the time passed since the creation of data or as the time 
elapsed since the last delivery of data; an extensive study of this has been done in [3].  

The freshness of result data depends on the freshness of input data but also on the 
amount of time the service needs for executing its activities. The latter depends on the 
processing cost of activities and on the synchronization delays that can exist between 
their executions due to control flow constraints. Then, the quality features used as 
graph adornments mainly are: 

− Processing cost: It is the amount of time, in the worst case, that an activity needs 
for reading input data, executing and building output data.  

− Synchronization delay: It is the amount of time passed between the executions of 
two consecutive activities.  

− Input actual freshness: It is a measure of the actual freshness of source data.  

We propose an evaluation algorithm that estimates the freshness of result data 
based on the graph adornments. The algorithm traverses the graph following the sense 



396 D. Grigori, V. Peralta, and M. Bouzeghoub 

 

of the edges, calculating the freshness of the data resulting from each activity. The 
principle is the following (algorithm pseudocode can be read in [5]):  

− If an activity A reads external input data, result data freshness is calculated adding 
the actual freshness of input data and the processing cost of the activity.  

− If an activity A has one predecessor B, result data freshness is calculated adding  
the freshness of the data produced by B, the synchronization delay between B and 
A and the processing cost of A. 

− In the general case, if activity A has several predecessors, the freshness of data 
coming from each predecessor (plus the corresponding synchronization delay) 
should be combined and added to the processing cost of the activity A. If activity A 
also reads external data, actual freshness of input data should also be considered 
and combined. Typical combination functions are maximum, average or weighted 
average, but other user-specific functions can be considered, for example, for 
ignoring some predecessor because its data is stable (ex. country names).  

3.2   Using Quality Requirements in Behavioral Service Retrieval  

In this section we extend the behavioral matching procedure in order to take into 
account quality requirements. We distinguish two scenarios: (i) the query 
requirements express constraints, i.e. the catalog graphs that do not fulfill quality 
constraints should not be returned, and (ii) the quality requirements express 
expectations, i.e. a catalog graph that does not fulfill quality expectations but offers 
the most similar values can be returned. In the former, the user prefers retrieving a 
graph that is structurally less similar (and then having more development cost) but 
satisfying his quality requirements. In the latter, quality expectations are more 
flexible, and can be balanced with structural similarity. In the following we discuss 
both approaches. 

Matching under Quality Requirements: In this scenario, quality requirements are 
expressed as quality thresholds that catalog graphs must verify to be retrieved. The 
retrieval steps are: (i) match the catalog graphs in order to obtain the isomorphic 
subgraphs and calculate the structural similarity measure; (ii) evaluate data freshness 
and eliminate the candidates that do not achieve freshness requirements; and (iii) rank 
the candidate graphs according to their structural similarity and retrieve the best one. 

Matching with Quality Expectations: In this scenario, the model graphs can be 
ranked according to a similarity measure that takes into account both structural 
similarity and freshness expectations. A qualitative similarity measure can be defined 
in order to express the degree in which freshness expectations are achieved. 
Depending on the application, the similarity measure can be defined in different ways.  

An example of such a measure is given in the following formula: 

SQ = (ExpectedFreshness – ActualFreshness) / ExpectedFreshness (1) 

The formula calculates the difference between expected and actual freshness values 
and normalizes it dividing by the expected values. When freshness expectations are 
achieved, the similarity is a positive value that will act positively in the global 
similarity measure. When freshness expectations are not achieved the similarity is a 
negative value having the opposite effect.  



 Service Retrieval Based on Behavioral Specifications and Quality Requirements 397 

 

Having defined a qualitative similarity measure, we can build a global similarity 
measure that combines structural and qualitative ones in a weighted sum. The weights 
should indicate user preference for structural over quality criteria. The retrieval steps 
are: (i) match the catalog graphs in order to obtain the isomorphic subgraphs and 
calculate the structural similarity measure; (ii) evaluate data freshness and calculate 
the qualitative similarity measure; and (iii) rank the candidate graphs according to 
their global similarity and retrieve the best one. 

4   Conclusion 

In this paper we proposed a solution for service retrieval based on behavioral 
specification and quality requirements. First, we proposed to use a graph error 
correcting matching algorithm in order to allow an inexact matching. Then, we 
showed how the quality factors can be used in the matchmaking process. 

We implemented the behavioral matchmaking as a web service. The prototype 
takes as input the graph representations of two services and calculates the degree of 
similarity between them, also returning the sequence of transformations needed to 
transform one service into the other. We also implemented a prototype of a quality 
evaluation tool, which takes as input the graph representation of a service and returns 
a measure of its data quality. Current work addresses the integration of the two 
functionalities in the perspective of the ideas presented in this paper.  

While in this paper we dealt with the semantics aspects of behavioral 
matchmaking, we did not address the operational aspects. The graph matching 
computation is a NP-complete problem. In our future work we will try to apply 
constraints and heuristics to cut down the computational effort to a manageable size. 

References 

1. Benatallah, B., Hacid, M.S., Rey, C., Toumani, F.: Semantic Reasoning for Web Services 
Discovery. In Proc. of the Workshop on E-Services and the Semantic Web (ESSW), 
Hungary (2003) 

2. Berstein, A., Klein, M.: Towards High-Precision Service Retrieval. In Proc. of the 1st Int.  
Semantic Web Conference (ISWC), Italy (2002) 

3. Bouzeghoub, M., Peralta, V.: A Framework for Analysis of Data Freshness. In Proc. of the 
1st Int. Workshop on Information Quality in Information Systems (IQIS), France (2004) 

4. Grigori, D., Bouzeghoub, M.: Service Retrieval Based on Behavioral Specifications. In 
proc. of  Int. Conf. Of  Service Computing, USA (2005) 

5. Grigori, D., Peralta, V., Bouzeghoub, M.: Service Retrieval Based on Behavioral 
Specifications and Quality Constraints. Technical report, University of Versailles (2005) 

6. Messmer, B.: Graph Matching Algorithms and Applications. PhD Thesis, University of 
Bern (1995) 

7. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web Services 
Capabilities. In Proc. of the 1st Int. Semantic Web Conference (ISWC), Italy (2002) 



On the Semantics of EPCs:

Efficient Calculation and Simulation

Extended Abstract

Nicolas Cuntz1 and Ekkart Kindler2

1 University of Siegen, Computer Graphics and Multimedia Systems Group
nicolas.cuntz@uni-siegen.de

2 University of Paderborn, Software Engineering Group
kindler@upb.de

Abstract. Recently, we have defined a formal semantics of Event driven
Process Chains (EPCs) that, for the first time, faithfully captures the
non-local behaviour of the XOR- and OR-join connectors. This fixed-
point characterisation of the semantics of EPCs, however, does not pro-
vide an efficient algorithm for calculating the semantics of an EPC and
for simulating it.

In this paper, we will show how to calculate this semantics of an EPC
in an efficient way by employing Kleene’s fixed-point theorem and dif-
ferent techniques from symbolic model checking. These algorithms have
been implemented in an open source tool for simulating and analysing
EPCs: EPC Tools.

1 Introduction

Event driven Process Chains (EPCs) have been introduced in the early 90ties for
modelling business processes [1]. Initially, EPCs have been used informally only,
without a fixed formal semantics. For easing the modelling of business processes
with EPCs, the informal semantics proposed for the OR-join and the XOR-join
connectors of EPCs was non-local. This non-local semantics, however, results in
severe problems when it comes to a formalisation of the semantics of EPCs and,
recurrently, resulted in a debate on the semantics of EPCs [2,3]. It turned out
that these problems are inherent to the informal non-local semantics of EPCs.
In [4], we pin-pointed these arguments, which render a formal semantics that
exactly captures the non-local semantics of an EPC in terms of a single transition
relation impossible. But, we could define a semantics for an EPC that consists
of a pair of two correlated transition relations by using fixed-point theory [5].

Due to the non-local semantics, an EPCs cannot be simulated by looking
at its current state only; rather it requires calculating the transition relations
of the EPC beforehand. In principle, the two transition relations defined as the
semantics of an EPC can be calculated by fixed-point iteration. The problem,
however, is that the calculation of the two transition relations by naive fixed-
point iteration is very inefficient and intractable in practise. In this paper, we

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 398–403, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On the Semantics of EPCs: Efficient Calculation and Simulation 399

sketch the main idea how techniques from symbolic model checking [6] can be
used for calculating the semantics of an EPC in a more efficient way. For details,
we refer to [7,8].

2 Syntax and Semantics of EPCs

In this section, we informally introduce the syntax and the semantics of EPCs
as formalised in [5], which is a formalisation of the informal ideas as presented
in [1,9].

2.1 Syntax

Figure 1 shows an example of an EPC. It consists of three kinds of nodes : events,
which are graphically represented as hexagons, functions, which are represented
as rounded boxes, and connectors, which are represented as circles. The dashed
arcs between the different nodes represent the control flow. The two black circles
do not belong to the EPC itself; they represent a state of the EPC. A state,
basically, assigns a number of process folders to each arc of the EPC. Each black
circle represents a process folder at the corresponding arc.

Mathematically, the nodes are represented by three pairwise disjoint sets E,
F , and C, which represent the events, functions, and connectors, respectively.
We denote the set of all nodes by N = E ∪F ∪C. The type of each connector is
defined by a mapping l : C → {and, or, xor}. The control flow arcs are a subset
A ⊆ N ×N . Note that there are some syntactical restrictions on EPCs. But, we
omit these restrictions for lack of space, since they are not so important for our
semantical considerations.

A state of an EPC assigns zero or one process folders to each arc of the EPC.
So a state σ is a mapping σ : A → {0, 1}. The set of all states of an EPC will
be denoted by Σ.

2.2 Semantics

The semantics of an EPC defines how process folders are propagated through
an EPC. This can be formalised by a transition relation R ⊆ Σ ×N ×Σ, where
the first component denotes the source state, the third component denotes the
target state, and the middle component denotes the involved node.

For events and functions, a process folder is simply propagated from the
ingoing arc to the outgoing arc as shown in Fig. 2 a. and b. The semantics of
the other nodes is shown in Fig. 2, too. For lack of space, we discuss only the
XOR-join connector (case h.): An XOR-join connector waits for a folder on one
ingoing arc, which is then propagated to the outgoing arc. But, there is one
additional condition: The XOR-join must not propagate the folder, if there is or
there could arrive a folder on the other ingoing arc. This additional condition is
graphically indicated by the label at the other arc. Note that this condition
cannot be checked locally in the current state: whether a folder could arrive on



400 N. Cuntz and E. Kindler

f1

Start1

Inner1

f’1

Stop1

f2

Start2

Inner2

f’2

Stop2

c2c1

Fig. 1. An EPC

f fe ea. b.

c. d.

e. f.

g. h.

Fig. 2. The transition relations for the different nodes

the other arc depends on the overall behaviour of the EPC. Therefore, we call
the semantics of the XOR-join connector non-local.

Note that, in this informal definition of the transition relation, we refer to the
transition relation itself when we require that no folders can arrive at some arc
according to the transition relation. Therefore, we cannot immediately translate
this informal definition into a mathematically sound definition. In order to re-
solve this problem, we assume that some transition relation P is given already,
and whenever we refer to the non-local condition, we refer to this transition rela-
tion P . Thus, Fig. 2 defines a mapping R(P ): for some given transition relation
P , it defines the transition relation R(P ).

The most important property of R(P ) is that it is monotonously decreasing
in P . This property guarantees that there exists a least transition relation P and
a greatest transition relation Q such that R(Q) = P and R(P ) = Q, where P is
called the pessimistic transition relation and Q is called the optimistic transition
relation of the EPC. The pair of these two transition relations (P, Q) was defined
as the semantics of the EPC. In most cases, we have P = Q, which means that
P is a fixed-point of R. If P and Q are different, there are some ambiguities in
the interpretation of the EPC (see [5] for details). Therefore, we call an EPC
unclean if P and Q are different, and we call it clean if P and Q are equal.



On the Semantics of EPCs: Efficient Calculation and Simulation 401

3 Calculating the Transition Relations

In [5], we have shown that the pair (P, Q) exist and is uniquely defined for each
EPC; but it was not clear how to calculate it. In this section, we will show how
to actually calculate P and Q.

3.1 Iterative Fixed-Point Characterisation

A first idea for calculating P and Q comes from Kleene’s fixed-point theorem,
which gives us an iterative characterisation of P and Q: Let P0 = ∅ and Q0 =
Σ × N × Σ. For each i ∈ N, we define Pi+1 = R(Qi) and Qi+1 = R(Pi). Since
R(P ) is a monotonously decreasing function and since the set of possible states
is finite, eventually, we will have Pi+1 = Pi and Qi+1 = Qi. And it turns out
that this Pi and Qi are the pessimistic and the optimistic transition relations of
the EPC, respectively.

Unfortunately, an explicit representation of the transition relations Pi and Qi

and an explicit calculation of Pi+1 = R(Qi) and Qi+1 = R(Pi) is extremely inef-
ficient. For realistic EPCs, there are millions of potential states Σ and billions1

of potential arcs in the transition relation. Moreover, an explicit calculation of
R(P ) involves a reachability analysis on P . So a naive explicit implementation
does not work in practise.

3.2 Symbolic Calculation

Therefore, we use techniques from symbolic model checking for calculating the
relations P and Q. The idea is that the transition relation can be represented and
calculated symbolically. For example, the transition relation for an AND-split
connector with ingoing arc i and outgoing arcs o1 and o2, can be represented by
the following formula (cf. Fig. 2 (c)):

i ∧ ¬o1 ∧ ¬o2 ∧ ¬i′ ∧ o′1 ∧ o′2

In this formula, i and o1 and o2 are boolean variables. The values of these
variables represent the state before the transition, where value true means that
there is a process folder on the corresponding arc, and value false means that
there is no process folder. The primed variables i′, o′1, and o′2 represent the state
after the transition. Altogether, this formula represents the state change of an
AND-split connector, where the use of primed variables is a standard technique
for representing transition relations by formulas. The transition relations for all
nodes with a local semantics can be expressed in this way.

For the connectors with non-local semantics, however, we need a new idea.
We must formalise that no folder can reach some arc i (with respect to some
transition relation). This can be expressed by a temporal formula2 ¬EF i. With
this idea, the transition relation for an XOR-join connector with ingoing arcs

1 Remember that the iteration starts with Q0 = Σ × N × Σ.
2 To be precise, EF is a temporal operator from CTL.



402 N. Cuntz and E. Kindler

i1 and i2 and outgoing arc o can be formalised by the following formula (cf.
Fig. 2 (h)):

((i1 ∧ ¬EF i2) ∨ (¬EF i1 ∧ i2)) ∧ ¬o ∧ ¬i′1 ∧ ¬i′2 ∧ o′

The formulas ¬EF i1 resp. ¬EF i2 express that a transition is only possible
when no folder can arrive on the other arc, respectively. Note that this exactly
captures the graphical notation in Fig. 2. The transition relation for the
OR-join connector can be expressed in a similar way (see [8] for details).

By interpreting these formulas on transition relation Qi, we can calculate the
next transition relation Pi+1 in a symbolic way; by interpreting them on Pi, we
can calculate the next transition relation Qi+1 in a symbolic way. The interpre-
tation of a temporal formula in some transition relation is usually calculated by
a model checker; we implemented it by the help of our own MCiE model checker
[10].

3.3 Optimisation

For lack of space, we cannot go into the details of this implementation. In order
to make the calculation more efficient, we employed two different kinds of op-
timisations. The first replaces chains of functions and events by a single node,
which reduces the number of arcs of the EPC. Since each arc will be a variable in
the formulas, the reduction of arcs reduces the number of variables in the formu-
las, which in turn reduces the computation time. Unfortunately, this technique
is not always applicable (see [8] for a detailed discussion).

The other optimisation used standard techniques from model checking. We
investigated several schemes for optimising the variable order in the underlying
ROBDDs and we partitioned the set of transitions in order to reduce the size of
the ROBDDs representing the transition relations.

We implemented the algorithm with all of the above optimisations, which
could calculate the complete transition relation of a medium sized EPCs within
seconds. With the transition relation calculated, the EPC can be simulated in
virtually no time. Precise figures are discussed in [8].

4 Conclusion

In this paper, we have sketched the idea of an algorithm for calculating the se-
mantics of an EPC. With the presented optimisations, the simulation of medium
size EPCs works quite well and is practically feasible.

The presented algorithm is implemented in a new Eclipse based tool for sim-
ulating EPCs: EPC Tools. This tool comes with a graphical editor and visually
simulates the EPC. EPC Tools also provides some simple analysis features. For
example, it checks whether the EPC is clean. EPC Tools is open source and
published under the GNU Public License, which might make it a good starting
point for an open source tool for EPCs. It can be downloaded from [11].



On the Semantics of EPCs: Efficient Calculation and Simulation 403

Once the semantics of an EPC is calculated, it would be easy to use it for
verifying all kinds of properties by model checking (which would take less time
than calculating the semantics itself). The only question is what kind of prop-
erties should be verified for EPCs; this needs to be discussed with people using
EPCs in practise.

References

1. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung
auf der Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report
Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi), Heft 89, Univer-
sität des Saarlandes (1992)

2. Langner, P., Schneider, C., Wehler, J.: Petri Net Based Certification of Event
driven Process Chains. In Desel, J., Silva, M., eds.: Application and Theory of
Petri Nets 1998. LNCS 1420. Springer (1998) 286–305

3. Rittgen, P.: Quo vadis EPK in ARIS? Wirtschaftsinformatik 42 (2000) 27–35
4. van der Aalst, W., Desel, J., Kindler, E.: On the semantics of EPCs: A vicious

circle. In Nüttgens, M., Rump, F.J., eds.: EPK 2002, Geschäftsprozessmanagement
mit Ereignisgesteuerten Prozessketten. (2002) 71–79

5. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In Desel, J.,
Pernici, B., Weske, M., eds.: Business Process Management, Second International
Conference, BPM 2004. LNCS 3080. Springer (2004) 82–97

6. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. Information and Computation 98 (1992) 142–170

7. Cuntz, N.: Über die effiziente Simulation von Ereignisgesteuerten Prozessketten.
Master’s thesis, University of Paderborn, Department of Computer Science (2004)

8. Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calculation and simula-
tion. In Nüttgens, M., Rump, F.J., eds.: EPK 2004, Geschäftsprozessmanagement
mit Ereignisgesteuerten Prozessketten. (2004) 7–26

9. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In: PROMISE 2002, Prozessorientierte Methoden und Werkzeuge für die
Entwicklung von Informationssystemen. GI Lecture Notes in Informatics, Vol. P-
21. Gesellschaft für Informatik (2002) 64–77

10. Kindler, E.: The Model Checking in Education (MCiE) project: Home page.
http://www.upb.de/cs/kindler/Lehre/MCiE (2004)

11. Cuntz, N., Kindler, E.: The EPC Tools project: Home page.
http://www.upb.de/cs/kindler/research/EPCTools (2004)



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 404 – 409, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Towards Integrating Business Policies with Business 
Processes 

Zoran Milosevic  

CRC for Enterprise Distributed Systems Technology (DSTC)       
The University of Queensland, Brisbane, Q 4072, Australia 

zoran@dstc.edu.au 

Abstract. We present a framework for augmenting business process 
specifications with policy expressions such as obligations, permissions and 
prohibitions. One use of such a combined model is to support monitoring of 
participants’ behaviour against agreed policies as in business contracts. 

1   Introduction 

One limitation of current business process (BP) initiatives, e.g. [1, 2, 3], is their lack 
of positioning of BP models within a broader enterprise model covering organisa-
tional structures, policies and contracts. This paper partly addresses this limitation by 
applying our community model [4] to a behavioural style typical of BP approaches. 
The aim of the paper is to augment BPs with policy expressions to support monitoring 
of participants’ behaviour against agreed policies. Section 2 introduces key concepts 
from ebXML’s BP specification (ebBP) [1] and BP modelling notation (BPMN) [3] 
of relevance for business policies, and illustrate them with a simple example (Fig. 1). 
Section 3 introduces our policy concepts and maps them onto the relevant BPMN and 
ebBP concepts. Section 4 discusses open issues and future work.  

2   Key Collaborative Business Process Concepts 

An end-to-end BP model can cover both private (internal) and collaborative (global) 
sub-models [3].  We outline key collaborative concepts in the ebBP and BPMN stan-
dards to show the role of business policies. In ebBP, a business collaboration defines 
a set of roles and a set of business transactions between participants filling these roles. 
We use BPMN pool (shown as a rectangle, Fig. 1) to represent the participants.  An 
ebBP business transaction (BT) is a basic unit of work in business collaboration. It 
specifies how business documents are exchanged between the participants.  We use a 
BPMN event to denote the start and end of the collaboration and the arrival of busi-
ness documents [3]. Each BT has a requesting document flow from the requesting to 
responding activity and can have a response document flow in the opposite direction. 
A BT may involve exchange of one or more business signals that support synchroni-
sation of the business states between parties, e.g. to indicate that a document was suc-
cessfully delivered but cannot be processed by the receiving application because of an 
invalid document schema. Business signals are separate from lower protocol and 



 Towards Integrating Business Policies with Business Processes 405 

 

transport infrastructure. We use BPMN message flow to show ebBP messages and 
signals (dashed line arrows, Fig.1). A business transaction activity (BTA) denotes the 
use of a BT within the collaboration. The same BT can be performed by multiple 
BTAs in the same or multiple collaborations. A BTA may specify that a document in-
terchange has a legal intent indicating a commitment by the trading partners. The 
ebBP standard does not provide any recommendation as to how it should be inter-
preted or enforced, leaving it as a concern of an external contractual framework such 
as the one proposed in [8]. Choreography is the ordering of BTAs, defining the ex-
pected flow of business documents and signals and can be shown using UML activity 
diagrams or other notations like BPMN, as in the ebBP specification. 

T
ra

ns
po

rt
er

P
ur

ch
as

er
S

up
pl

ie
r

Place 
order

Need
occurs

Receive
Order

Fill 
Order

Ready for
Shipment
Notification

Send 
Goods

Receive 
Shipment
Notification

Notify
Purchaser

Shipment
Notifications

OC

OT

Policy: Supplier is obliged to fill PO within one day of PO request

P
O

 R
eq

ue
st

S
hi

pm
en

t R
ea

dy
 N

ot
if.

S
hi

pm
en

t S
en

t N
ot

if.

N
ot

ify
 P

ur
ch

as
er

ebBPRequest
Message

ebBPAcceptanceAck
Signal

ebBPReceiptAck
Signal

ebBP
Business 

Transaction

T
ra

ns
po

rt
er

P
ur

ch
as

er
S

up
pl

ie
r

Place 
order
Place 
order

Need
occurs

Receive
Order

Fill 
Order
Fill 
Order

Ready for
Shipment
Notification

Send 
Goods
Send 
Goods

Receive 
Shipment
Notification

Receive 
Shipment
Notification

Notify
Purchaser
Notify
Purchaser

Shipment
Notifications

OC

OT

Policy: Supplier is obliged to fill PO within one day of PO request

P
O

 R
eq

ue
st

S
hi

pm
en

t R
ea

dy
 N

ot
if.

S
hi

pm
en

t S
en

t N
ot

if.

N
ot

ify
 P

ur
ch

as
er

ebBPRequest
Message

ebBPAcceptanceAck
Signal

ebBPReceiptAck
Signal

ebBP
Business 

Transaction

 

Our example depicts four BTs with their requesting and responding activities. The 
PlaceOrder activity initiated by the purchaser sends an ebBPRequest message carry-
ing the purchase order (PO) to the supplier. The RecieveOrder activity carried out by 
the supplier, validates the PO schema and logs this request, if valid, for subsequent 
processing. This BT involves ReceiptAcknowledgment and AcceptanceAcknowl-
edgment signals. The former acknowledges that the PO is received, while the latter 
acknowledges PO validity. The signals provide assurance to the purchaser of the suc-
cessful delivery and acceptance of the PO by the supplier. After the supplier has proc-
essed the PO and is ready to supply goods, it sends a Shipment Ready Notification to 
the transporter. The BPMN sequence flow shows the ordering between these two 
BTAs and between subsequent transactions. The figure also shows the FillOrder pri-
vate activity for the supplier and includes a business policy, i.e. Supplier is obliged to 

Fig. 1. End-to-end business process model 



406 Z. Milosevic 

 

fill the PO within one day of the PO request (BMPN text annotation). This places an 
additional constraint on the supplier’s FillOrder activity, triggered by successful vali-
dation of the PO. The completion of the FillOrder triggers another BTA, between the 
supplier and transporter.  

3   Linking Policies and Business Processes 

BPMN and ebBP standards allow the specification of the ‘normal’ flow of control and 
data between business activities, i.e. a computationally complete process where points 
of failure are identified in advance and explicitly represented in the collaboration. 
Typically, these are network or application failures. In addition, ebBP business sig-
nals discussed previously, support the expression of business failures. For a success-
ful BT, both its network/application and business aspects must be successful. Al-
though business signals support predictability of interactions when crossing 
technology and organisational boundaries, they are not sufficient to specify whether 
business failures are caused by participants not fulfilling their commitments as agreed 
in the collaboration. Namely, there is a weak link between the specification of busi-
ness policies that apply to the participants and the ‘normal’ flows in the collaboration. 
This is a limitation because a complete specification of the collaboration needs to ex-
plicitly state policies that apply to the constituent roles. Consider a situation where a 
purchaser has received both ReceiptAcknowledgment and AcceptanceAcknowledg-
ment signals. A success of this first BTA only provides guarantees to the purchaser 
that the supplier is in a position to start executing its own process. However, the pur-
chaser cannot determine whether the supplier has fulfilled their PO and thus satisfied 
the constraint from the agreement, e.g. ‘supplier is obliged to fill the PO within one 
day of the PO request’. Thus, an added mechanism is needed to deal with unpredict-
ability of behaviour of participants and to check (unintentional or deliberate) violation 
of their policies. Although ebBP’s labelling of BTAs with a ‘legal intent’ attribute 
gives special weight to such BTAs, the policy conditions in a collaboration are typi-
cally more complex and involve internal actions of parties. In our example, the obli-
gation applies to the supplier (although it is triggered by the purchaser) and it is the 
monitoring of this policy that determines correctness of their behaviour. In what fol-
lows we show how our policy language [4, 8] can be applied to the ebBP concepts to 
provide a model for the specification of both the normal behaviour and policy con-
straints.  

3.1   Specifying Policy Constraints  

A business policy specifies constraints on behaviour of a participant in an organisa-
tional context such as an ebBP collaboration. In our unified model [4] this context is 
called community. Community specifies the roles involved, their relationships and ba-
sic behaviour constraints, e.g. control and data flow between participants and/or busi-
ness steps in a BP. A community also supports the expression of policies applying to 
the roles, e.g. obligation constraints as mentioned before, or a permission constraint 
such as ‘The supplier is permitted to provide an invoice immediately after goods de-
livery’. A more complex policy expression involving the concept of state is: ‘The 



 Towards Integrating Business Policies with Business Processes 407 

 

purchaser has a credit limit with the supplier, which is a maximum outstanding 
amount with no particular time limit. The purchaser is not permitted to exceed the 
credit limit’ [5]. Basic behavioural constraints and policy constraints are specified us-
ing the concept of events and their relationships. An event can represent the actions of 
participants in the collaboration, either their internal actions or their interactions with 
other parties, or any other occurrence of interest, e.g. the events from the environment 
or timeouts.  Event relationships are called event patterns and they have many simi-
larities with the complex event processing ideas [6]. The main role of event patterns is 
to support event-based monitoring of activities of relevance to policies. An event pat-
tern is evaluated as events come into the system and its progressive evaluation is fin-
ished when it’s condition is matched. Event patterns range from simple relationships, 
e.g. sequence of events and logical event relationships to more complex events, e.g. 
quorum, event causality and temporally-oriented constraints like a sliding time win-
dow [4, 8]. Using a simplified version of our policy language, the last policy is: 

Policy: CreditLimitForPurchaser 
Role: Purchaser 
Modality: Not Permitted 
  Condition: PO (OutstandingDebt + PO.value > CreditLimit) 

Policy is defined in terms of a name, a role to which it applies, modality and event 
pattern condition (a singleton event of a PO type in this example). Its value is used as 
a parameter in the condition for checking the value of the OutstandingDebt state. 

State: OutstandingDebt 
CalculationExpression 
   UpdateOn: Payment 
   UpdateSpecification:  
       return (this - Payment.amount) 
CalculationExpression 
  UpdateOn: InvoicePurchaser 
  UpdateSpecification:  
       return (this + InvoicePurchaser.amount) 

The OutstandingDebt state value updates are triggered by the events that affect this 
state. The concept of state is significant for run-time monitoring of a contract since 
state variables can be embedded in policy checking expressions as above.  

3.2   Applying Policies to Business Collaborations  

One motivation for applying policies to the ebBP collaboration is to explicitly associ-
ate responsibilities, authorisations, permissions and other policies with collaboration 
roles which is, for example, needed when integrating contract conditions with the BPs 
governed by contracts. Another motivation is to support run-time monitoring of par-
ticipants’ behaviour to detect existing or potential violations of the agreed behaviour, 
as presented in [8] and which is of increasing importance for meeting compliance re-
quirements, e.g. [7]. A further value in separating policies from basic behaviour is the 
ability to change policies while preserving the fundamental properties of a BP.  

The first step in applying policies is to identify events in the collaboration that, via 
event patterns, are part of policies that apply to collaboration roles, in particular those 
that are involved in BTs labelled with ‘legal intent’. Such events can be part of ebBP 



408 Z. Milosevic 

 

transactions, shown as OT symbols in Fig.1 (denoting observation points in a transac-
tion), e.g. the sending of Request and Response messages and the generation of Re-
ceiptAcknowledgment and AcceptanceAcknowledgment signals. Each of these can 
have an associated timeout and their occurrences (e.g. as generated by an ebBP en-
gine) can be modelled as deadline events. These can then be used as input to the busi-
ness monitoring engine for subsequent management actions, e.g. generation of human 
readable notifications. The events in a collaboration can, on the other hand, corre-
spond to the transition between ebBP business states in an ebBP choreography. These 
events are as shown as Oc symbols (observation points in a choreography). Consider-
ing this, a possible implementation of the third policy from section 3.1 is: 

Policy PromptOrderFulfillment 
Role: Supplier 
Modality: Obliged 
Condition: 
      OrderFilled before (ReceiveOrder + 1 days) 

The successful receipt of the PO triggers an obligation for the supplier to fulfil the 
remaining part of the document. The RecieveOrder triggering event can be defined to 
be: i) the AcceptanceAcknowledgment signal (left arrow next to the Oc symbol) or ii) 
state transition at the sequence flow from the RecieveOrder activity to the FillOrder 
activity (middle arrow next to the Oc symbol). The OrderFilled event (right arrow 
next to the Oc symbol), if occurring within one day of the RecieveOrder event, signi-
fies the fulfilment of this obligation, otherwise, the violation occurs. In this policy the 
trigger event was generated by the purchaser and the obligation is on the execution of 
OrderFilled event by the supplier. Thus, the policy involved the events occurring 
within two roles in this cross-organisational BP and one is within the scope of the 
global BP, namely the ebBP transaction (i.e. RecieveOrder event) while the second is 
within the scope of a private BP (OrderFilled event).    

This analysis suggests that our policy language can be used to define additional 
constraints on the behaviour of trading partners in cross-organisational processes, 
provided all the events of relevance for the policies are available to the policy speci-
fier. However, the current ebBP standard only allows the specification of the choreog-
raphy of collaborative business activities. This means that the important events in a 
policy’s event pattern that correspond to private processes need to have their global 
counterparts, i.e. these need to be defined as part of ebBP BTAs.   An alternative 
would be to extend ebBP semantics to provide integration points with private proc-
esses, or allow for the specification of asynchronous events made visible to trusted 
third parties for monitoring purposes. 

4   Open Issues and Future Work 

If policies are to be applied to a cross-organisational BP then the private activities and 
their integration with the global activities need to be made visible (at least to process 
designers, not necessarily to end-users), because policy specifications often require 
the expression of event patterns that include events associated with either of the activ-
ity types. This is currently not possible in the ebBP models. Further, policy monitor-
ing requires: i) the concept of state in ebBP and BPMN and ii) definition of a concept 



 Towards Integrating Business Policies with Business Processes 409 

 

of event in ebBP so that ebBP message arrivals, signals and timeouts can be treated as 
a special kind of that event. BPMN provides a rich set of events and these can be used 
in ebBP models. Finally, the full power of the community model can further augment 
cross-organisational BP with other enterprise modelling constructs and provide input 
to the development of ebBP, BPMN and BPEL standards.  

In future we plan to develop a stronger link between ebBP and contract frame-
works to enable richer support for contract monitoring, as initially proposed in [9] and 
contribute to aligning ebXML and legalXML e-contracts [10] standards. We also plan 
to apply model-driven design for the mapping of policy language to ebBP.  

Acknowledgements 

The work reported in this paper has been funded in part by the Co-operative Research 
Centre for Enterprise Distributed Systems Technology (DSTC) through the Australian 
Federal Government's CRC Programme (Department of Education, Science, and 
Training). The author would also like to thank Andrew Berry and Andy Bond for their 
comments on an earlier version of this paper. 

References 

1. ebXML Business Process Specification Schema 3, v2.0 4 Working Draft 10, 23 February 
2005 (pre-notification Committee Draft) 

2. Business process execution language for web services, May 2003. 
http://www.ibm.com/developerworks/library/wsbpel/. 

3. Business process modelling notation, 2004. http://www.bpmn.org/.  
4. P. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, S. Neal, A unified behavioural 

model and a contract language for extended enterprise, Data Knowledge and Engineering 
Journal, Elsevier Science, October 2004 

5. A. Berry, Z. Milosevic, Extending choreography with business contract, special issue of 
the IJCIS journal on contract architecture and languages, to appear. 

6. D. Luckham, The Power of Events, Addison-Wesley, 2002 
7. http://www.sarbanes-oxley.com/ 
8. Z. Milosevic, S. Gibson, P. F. Linington, J. Cole, S. Kulkarni, On design and implementa-

tion of a contract monitoring facility, Proc. the 1st IEEE Workshop on e-contracting, July 
2004. 

9. J. Cole, Z. Milosevic, Extending Support for Contracts in ebXML, ITVE workshop, Aus-
tralian Computer Science Week, Jan 2001. 

10. www.oasis-open.org/committees/legalxml-econtracts/charter.php 



A Contract Layered Architecture for Regulating

Cross-Organisational Business Processes

Mohsen Rouached, Olivier Perrin, and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{mohsen.rouached, olivier.perrin, claude.godart}@loria.fr

Abstract. As technology infrastructure becomes available for electronic
exchange of contracts, the IT community is becoming more interested in
modeling of contracts as governance structures for inter-organisational
interactions and business processes. This paper investigates e-contract
modeling and monitoring. Subsquently, we propose a contract layered
model that allows for the convenient monitoring of multi-party contracts
during contract fulfillment and reduces complexity of interrelationships.
Communication between contract parties relies on a event-based mech-
anism which extends the scope and flexibility of our model.

Keywords: e-contract modeling and analysis, business process manage-
ment, event-based monitoring.

1 Introduction

Nowadays, there is a renewed interest for modeling and orchestrating cross-
organisational and cooperative processes using business contracts. This is moti-
vated by the fact that enterprises increasingly use the Internet for communication
with their partners and would like to leverage this technology in order to gain
efficiency in contracting processes. Moreover, contracts are important in the con-
text of loosely coupled structures (supply chains for instance). In fact, there is
no central authority that coordinates activities of independent entities making
up a supply chain, each entity being responsible to arrange a contract with their
partner for the collaboration to which they belong.

Usually, contracts define rights and obligations of parties as well as condi-
tions under which they arise and become discharged. The rights and obligations
concern either states of the affairs or actions that should be carried out. Often
contracts also specify secondary obligations (reparation) that come into force
when a party does not carry out an obligation. An e-contract is a contract reg-
ulating cross-organisational business processes over the Internet.

Problems in analysing contracts generally arise from ambiguity and fuzyness
of natural langages, the autonomous nature of individual organisations, and the
complexity due to the richness of the structures in business organisations. Events
that need to be monitored often come from counter parties in other organisations,
and might not be monitorable. Thus, cooperation and trust should be developed

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 410–415, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Layered Architecture for Regulating Cross-Organisational Business Processes 411

among trade partners to alleviate this problem. In general, this improves the
transparency of operations, services, and is therefore vital in contemporary e-
service providers under strong competitions. It may be the case in SOA (Service
Oriented Architecture) or BPM (Business Processes Management).

In this paper, we present a model and a platform to support contracts. We
adopt a layered and distributed event-based architecture for modeling and exe-
cuting electronic contracts. It is worth noting that our approach is completely
different from the workflow aspect because we do not specify how to manage the
business process but we concentrate on regulating cross-organisational business
processes over the Internet and determining the responsibility of each partner to
respect contract clauses. Our contract approach for coordinating business pro-
cesses is interesting because it allows the separation of the rules that govern the
behaviour of the overall process from the internal processes in the organisations.
This feature is important as it allows to ensure the autonomy of the partners,
and also to respect their privacy. An other benefit of this approach is the dy-
namic adaptation, this means that it is possible to adapt the behaviour of the
business process without the need to fully reconfigure it, and changes can be
applied without stopping the execution. Then, such an architecture for support-
ing contract is valuable as it permits to garantee several criteria required for
business processes such as expressivity, flexibility, reusability and completeness.

The rest of the paper is organized as follows. In section 2, we present our
contract model, while section 3 details contract events. In section 4, related work
will be discussed, and section 5 concludes this paper.

2 A Layered Contract Model

To reduce the degree of the complexity and alleviate problems introduced so far,
we propose the following contract model, illustrated in figure 1. It is based on a
three-layers architecture. This architecture is different from the one proposed by
Chiu & al. [CCT02] in the sense that we are not interested in contract negotiation

plays

update

resulting event

triggering event

ACTIVITIESROLES
executes

*

BUSINESS ACTIONS LAYER

ENFORCEMENT ACTIONSCONDITIONS trigger

CLAUSES

BUSINESS RULES LAYER

PARTIES OBJECTS
ORGANISATIONS

belongs to

BUSINESS ENTITIES LAYER

Fig. 1. Contract Model



412 M. Rouached, O. Perrin, and C. Godart

BR

BA

BE

BE−P1 BE−P2 BE−P3

generic

BA : Business Activities BR : Business Rules BA : Business Entities

generic

BR

BA

BR

BA

BR

BA

P3P2P1

Public
Private

Transformed to Model

instanciationabstracted

Fig. 2. Global View

nor contract automatic writing. In fact, we suppose these steps are already done.
We are rather interested in the instantiation of the execution infrastructure.
Our architecture consists of a business entities layer, a business actions layer,
and a business rules layer. Those three layers are coordinated by an event-based
interaction mechanism entailing a dispatching and coordination paradigm, which
offers the advantage of a complete separation of the coordination aspects and
functionality aspects (see section 3). Let us now detail each layer.

The business entities layer specifies the organisations involved in the con-
tract. An organisation consists of one or more parties and objects belonging to
the parties that are relevant to the e-contract. In the same organisation, each
party can participate in several contracts. Thus, our model supports a multi-
party contract, avoiding the need to break it down into a number of bilateral
contracts. The business actions layer captures the details of the actions required
in the contract, including the set of roles involved in each action and the set of
partners’s activities executed by each role. These activities are only those seen
from outside during the e-contract execution. We are not interested in internal
activities for each party. The business rules layer specifies the clauses stipulated
in the e-contrat. It consists of two parts: the conditions and the enforcement
actions that should be executed under these conditions. The evaluation of the
conditions is triggered by a generated event resulting from the execution of an
activity in the business actions layer or by an external event.

As such, the layered architecture allows an e-contract to be seamlessly defined
and enacted by considering an e-contract as an “abstracted” business process.
Then, to map the contract document into electronic format allowing automated
management, we carry out two operations, viz., instantiation and execution. The
first operation consists of determining elements of each layer. Then during the
execution, the parties start communicating and interacting.



Layered Architecture for Regulating Cross-Organisational Business Processes 413

Our approach of sharing the layers between contract parties, illustrated in
figure 2, consists of attributing only the business entities layer to each party
whereas the other layers are shared between all parties involved. In this figure, a
contract is established between three parties P1, P2, and P3. The term generic
precises that the layer is instantiated by each party whereas the term inherited
indiquates that the layer is shared by all parties. Thus, each party has its own
objects and only those necessary for enacting and enforcing the e-contract are
communicated to the others. At the same time all parties collaborate to apply
contract clauses and execute necessary activities to accomplish the desired ser-
vice. As such, we alleviate the problem of using a Third Trusted Party which
often could not have only external knowledge about parties which it supervises
and thus it could not apply relevant corrective actions. Moreover, this approach
permits facilitate update operations for each party. It allows contract parties
to be autonomous entities that encapsulate the integrality of their behaviors
without any centralized control.

3 An Event-Based Architecture to Support Contracts

Event-based communication is an interesting paradigm for building large-scale
distributed systems. It has the advantages of loosely coupling communication
partners, being extremely scalable. To synchronize the three levels (Figure 1),
we consider an event as a significant occurrence in time or instantaneous (punc-
tual). Events are relevant to roles within a context determined by the contract.
This context has attributes which can be repetition operators, detection mode,
composition operators, counting operators, negation operators, and temporal
management. We have also the possibility to express conditions on these op-
erators.

From an abstract point of view, an e-contract execution can be described by
the types and relative order of events occuring in each party. Therefore, after
defining events, it is necessary to study their relationships in order to ensure
the synchronization of the layered architecture and enable the communication
among contract parties.

3.1 Event-Driven Causality

Let Ei denote the set of events occurring in a party Pi, and let E = ∪i=1,...,NEi

denote the set of all events in the N e-contract parties. These event sets are
evolving dynamically during the e-contract execution. The causality relation ≺
onto E×E is the smallest transitive relation satisfying: (1) if eij , eik ∈ Ei occur
in the same party Pi and j < k, then eij ≺ eik, (2) if s ∈ Ei is a sent event and
r ∈ Ej is the corresponding received event, then s ≺ r.

Given two events e1 and e2, if neither e1 ≺ e2, nor e2 ≺ e1 holds, they are said
to be concurrent.The concurrency relation ‖ onto E × E is defined as e1 ‖ e2 ≡
¬((e1 ≺ e2)∨(e2 ≺ e1)). In general, an unspecified pair of events always satisfies
one and only one of the following relations ∀e1, e2 : e1 ≺ e2

⊕
e2 ≺ e1

⊕
e1 ‖ e2.



414 M. Rouached, O. Perrin, and C. Godart

3.2 Events Contract Model

For reliability and efficiency, our event-driven mechanism consists of two meta-
models. An Event Types Meta-model offers a grammar to describe event
types and formal tools to specify composition operators semantics. We speci-
fied an event as (instant, type, validity, cond, mask). The instant expresses the
observation granularity of a special situation. The type identifies primitive or
composite events defined by applying event operators the primitive ones. The
validity interval validity indicates the begining and the end moments of the
event effect. The cond contains information which informs about conditions un-
der which event occurs. The mask is a predicate expressing cond constraints
and temporal expressions that events must satisfy. An Event Management
Meta-Model describes how events are recognized and notified. The context
mentioned so far has several properties which include temporal characteristics,
semantic characteristics, space characteristics, and state characteristics. More-
over, event relationships are primarily based on concepts of causality and events
composition. This proves that the business process automation requires seman-
tic level monitoring, rather than system level monitoring. Therefore, we focus
on relationships between events to deal with monitoring issues, which makes it
possible to achieve the pro-active monitoring goal.

4 Related Work

There has been an important numbers of researches concerning the represen-
tation of contracts for the purpose of reasoning over, and monitoring, them
at run-time. In [Gro99], Grosof introduced a declarative approach to business
rules in e-commerce contracts by combining Courteous Logic Program and XML.
Marjanovic et Milosevic [MM01] modeled a contract with deontic logic, based on
obligation, permission and prohibition. Business Contract Architecture (BCA)
[AZAK95] does not provide generic monitoring facilities, expecting each appli-
cation to develop its own monitoring code to detect and signal non-conformance
to the contract monitor. In Seco (Secure electronic contracts) [MK00], the mon-
itoring services allow events to be triggered according to the current state of
the contract and informs enforcement service to initiate an enforcement activ-
ity. In paper [GLA02], the authors present a three-level process framework for
dynamic contract-based service outsourcing and discuss an abstract architecture
for dynamic service outsourcing. Comparing with our architecture, this paper did
a vertical level research which is involved with workflow system details. On the
other hand, our contribution is a horizontal level which interested in interactions
among several contractual parties in terms of complex events.

5 Conclusion and Future Work

This paper presents an approach to formalize electronic contracts into a meta-
model that enables automatic monitoring. We have detailed a pragmatic archi-



Layered Architecture for Regulating Cross-Organisational Business Processes 415

tecture for cross-organisational e-contract enforcement and enactement compris-
ing three layers. We have detailed elements contained in each layer. We have also
developed an event-based paradigm to facilitate the executable specification of
e-contracting applications.

At the same time, we are working on further details for complex events
management and their impact on electronic contracts monitoring. We are also
implementing the suggested model using Jena which is a Semantic Web frame-
work containing a reasoner subsystem for building Semantic Web applications,
allowing both backward and forward chaining.

References

[AZAK95] Bond A., Milosevic Z., Berry A., and Raymond K. Supporting business
contracts in open distributed systems. In 2nd International Workshop on
Services in distributed and Network Environments, (SDNE’95) Whister,
Canada, 1995.

[CCT02] Dickson K.W. Chiu, S.C. Cheung, and Sven Till. A three-layer archi-
tecture for e-contract enforcement in an e-service environment. In Pro-
ceedings of the 36th Hawaii International Conference on System Sciences
(HICSS’03), 2002.

[GLA02] P. Grefen, H. Ludwing, and S. Angelov. A framework for e-services: A
three-level approach towards process and data management. Technical
report, IBM Research Report RC22378, University of Twente, 2002.

[Gro99] B. N. Grosof. A declarative approach to business rules in contracts: Cour-
teous logic programs in xml. In Proceedings of the 1st ACM Conference
on Electronic Commerce (EC99), USA, pages 68–77, November 1999.

[MK00] Schopp B Greunz M and Stanoevska-Slabeva K. Supporting market
transactions through xml contracting containers. In Proceedings of the
Sixth Americas Conference on Information Systems (AMCIS 2000). Long
Beach, CA, 2000.

[MM01] O. Marjanovic and Z. Milosevic. Towards formal modeling of e-contracts.
In Fifth IEEE International Enterprise Distributed Object Computing
Conference, Seattle, USA, pages 59–68, September 2001.



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 416 – 421, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Effective Content Management Methodology 
for Business Process Management 

Young Gil Kim1, Sang Chan Park1, Chul Young Kim1, and Jin Ho Kim2 

1 Dept. of Industrial Engineering, Korea Advanced Institute of Science and Technology,   
373-1 Gusung-Dong, Yusong-Gu, Daejeon, Korea 305-701 
{ttaldul, sangchanpark, fezero}@kaist.ac.kr 

2 140-19 Samsong Bldg., Samsung-Dong, Kangnam-Gu, Seoul, Korea 135-090 
jhkim@dsrgroup.co.kr 

Abstract. BPM is considered as the suitable framework for today’s process-
centric trends because it addresses the interplay of people and organizations on 
the one hand and process-aware software on the other hand. In such an envi-
ronment, it is very important for each business participant to trace contents of 
total business processes. However, it has been a difficult problem for BPMS to 
support management of content usages because of limited storage, complex and 
dynamic process change, and absence of formal usage model. Content man-
agement technologies play an important role in e-business environment because 
they enable the seamless flow of information among business participants. Us-
ing these, we present a methodology that manages various process-related con-
tents for implementing business process management system. The proposed 
framework can enable real-time content integration between user’s workflow 
information, processing knowledge and various enterprise applications. 

1   Introduction 

In recent years, a lot of new technologies have become available for adopting the 
process-driven approaches. To gain a competitive advantage, many companies em-
phasis on their processes and process-driven approach. One of these approaches, the 
Business Process Management (BPM) is considered as the suitable framework for the 
process-centric methods because it addresses the interplay of people and organiza-
tions on the one hand and process-aware software on the other hand. Many people 
consider the BPM to be the “next step” after the workflow systems [8], and we think 
there is no doubt about the promise of BPM. 

However, there are two questions for BPM implementation: how to support the 
first step process setup of immature companies and how to support companies’ con-
tent reusability for other service processes. These two questions are basically how to 
support effectively management of content usage in BPMS. In this manner, we con-
sider the method for coping with these problems by incorporating content manage-
ment modules into BPMS. 

For companies to manage their processes effectively, they should identify and 
visualize their processes and collect overall process-related information. Content 
Management (CM) utilizing Web services could enable these activities. More specifi-



 An Effective Content Management Methodology for Business Process Management 417 

 

cally, the information acquisition, storage and distribution activities in content man-
agement enable the dynamic management and maintenance of process management 
activities. 

In this paper, we present a methodology for business process management system 
coupled with content management and apply to a market research service company 
for demonstrating the feasibility of the proposed methodology. The proposed system 
can enable real-time content integration among user’s workflow information, process-
ing knowledge, and various enterprise applications. 

2   Literatures Review 

2.1   Business Process Management (BPM) 

Aalst [1] defined Business Process Management as follow: Supporting business proc-
esses using methods, techniques, and software to design, enact, control, and analyze 
operational processes involving humans, organizations, applications, documents and 
other sources of information. The BPM can be used to integrate existing applications 
and support process change by merely changing the process diagram. As Lu and Chen 
introduced in their paper on web-based information system, the Web and Internet 
tools can support these aspects effectively. 

Recently, some useful tools for building BPMS are introduced. BPML [4], XPDL 
[10] and BPEL4WS [3] are XML-based process definition languages for this purpose. 
They provide a formal model for expressing executable processes that addresses all 
aspects of enterprise business processes, but they are based on significantly different 
paradigms. 

All of these tools utilize activity as the basic component of process definition. In 
each, activities are always part of some particular process. All Each has instance-
relevant data, property for BPML, workflow-relevant data (data fields) for XPDL and 
Containers for BPEL4WS, which can be referred to in routing logic and expressions. 
These give some chances to leverage the management of contents produced by the 
business process management systems, if we can manipulate the process activities and 
their properties as integrated content objects using a mediating facility. 

2.2   Content Management (CM) 

Content management (CM) is generally a term that describes the issues around creat-
ing, versioning, storing and disseminating semi-structured and unstructured informa-
tion owned by an enterprise, or it is often equated a repository based facility to store 
web content with some metadata management. 

Trappey et al. [9] proposed a global content management platform and Najmi [7] 
introduced content management using ebXML Registry standard. In other approaches, 
Fernández-García et al. [6] presented architecture for the management of distributed 
contents. While most researches are focused on managing transactions [9] [7] or man-
aging enterprise documents [6], we concentrate on content management to control the 
company’s total process-related information for supporting business process man-



418 Y.G. Kim et al. 

 

agement. A content management itself is not the source of knowledge, but it can be a 
very valuable enabler in knowledge-capturing processes. 

Although originally applied to data resources, metadata may refer to any kind of 
resource, such as applications or processes or people. The meaningful definition of 
metadata corresponding to our framework is the descriptive information about the 
structure and meaning of a resource [5]. Metadata used in content managements can 
function as follows: tracking content owners, capturing relationship & link, capturing 
classification information (keywords), tracking a range of business-specific informa-
tion. However, for applying metadata to process-aware content management, these are 
lacking in information about the structure and relationship of contents (dynamic as-
pects of contents). 

Although process definition languages for building BPMS are based on different 
paradigms, content management technologies give useful chances for coping with 
these gaps and so applying various environments, if we can incorporate content ag-
gregation model having metadata into above process definition languages using “activ-
ity” concept as the basic components of process definition. 

 

Fig. 1. Framework of Content Management Module incorporating into BPMS 

3   Methodology 

The BPMS is a single, unified modeling, integration, and execution environment. 
BPM can model not only computer-based processes, but also manual, abstract and 
real world processes. In order to implement BPM in process set-up of immature or 
dynamic change companies, it should be required that the companies capture, store, 
share, use and reuse their contents form present status to next improvement. Figure 1 
depicts the proposed content management framework within BPMS. 

 
 



 An Effective Content Management Methodology for Business Process Management 419 

 

 

Fig. 2. Content aggregation model for BPM and process-entity for dynamic metadata 

The primary role of the Content Management Module is to bind contents with syn-
thesized metadata and thus to acquire, manage, reuse, and service the various types of 
process-related contents. The proposed module has five major engines and two re-
positories for managing contents. 

When a user logs on the system and uploads his outputs, the Tracking engine 
searches appropriate contents form the two repositories. Then, the Adapting engine is 
used to infer the suitable rules for manipulating the retrieved contents. Also, the 
Tracking engine saves content usage data and its structures of the user, and the Adapt-
ing engine is used to support the user to a suitable interface and content through the 
analysis of the usage history. The Assembling engine packages contents retrieved 
content objects. The Publishing engine provides with packaged contents which can 
have various formats. The Editing engine supports to edit the content or content or-
ganizations. 

In this framework, the content aggregation can be used to aggregate information 
assets into a cohesive unit of work (e.g. process, activity, operator, data, etc.), and 
apply process structures and processing taxonomies. Content aggregation and content 
packaging concepts of SCORM specification [2] can be used in overcoming and ex-
panding the shortage of traditional metadata techniques. Figure 2 (left) shows how to 
package the process processing contents in our framework. We define object content, 
activity content and aggregated content for content packaging. The object content is 
the information asset of process-related information like as man, machine, material, 
method and environment (4M1E) depicted in figure 2 (right). 

Metadata should be used to describe the various parts that is managed by BPMS, 
such as available applications, service interfaces and their binding points, batch queu-
ing systems, hardware profiles, and so on. For streamlined and effective supports for 
building mature processes, our idea is firstly to embed the structure of information 
items into metadata template, which are then filled semi- or automatically on the fly 
doing daily work. 

Figure 3 (left) shows a web interface of metadata template. In this figure, the ele-
ments for applying the metadata to content objects in the proposed framework consist 
 



420 Y.G. Kim et al. 

 

  

Fig. 3. Web interface for metadata capturing and an example of extended process map 

of three major components: organization for content structure, description for static 
info and deployment for dynamic info. Using this capabilities, a company can accu-
mulate process-aware contents, so can achieve more extended process map for toward 
next step in improvement as depicted in figure 3 (right). 

4   Implementation 

In order to demonstrate the feasibility of the proposed framework, we design and 
implement an application for marketing research processes. A typical service process 
for a marketing research company consists of four consecutive stages: Marketing & 
sales, Planning, Fieldwork, and Reporting. 

For example, the typical marketing & sales process in a quantitative research pro-
ject begins with a contactor. When an opportunity is identified or a proposal sought 
by potential or existing clients is received, the contactor registers the receipt informa-
tion in the register. The manager of research center assigns the received information 
to a researcher, and the assigned researcher meets the client and reports the meeting 
results. After the proposal level is decided by the company’s marketing board, the 
researcher prepares a proposal and presents the proposal (see figure 3 right). 

     

Fig. 4. Upload (register), recompose content objects and process monitoring in the application 

 



 An Effective Content Management Methodology for Business Process Management 421 

 

In the application, users are allowed to upload their process-related contents and to 
verify the metadata according to their authority. They also retrieve appropriate con-
tents and re-compose the contents for other purposes. Furthermore, for automated 
process control and decision support, the system can extract process processing in-
formation through the deployment part of the process management metadata and 
present research status graphs and tables depicted in figure 4. 

5   Conclusions 

In this paper, we proposed the methodology that manages various process-related 
contents for implementing BPMS. In the proposed framework, the metadata and con-
tent aggregation methods could be used for better understanding a company’s proc-
esses and easily constructing a business process management system. Also, the meta-
data consisting of organization, description and deployment elements could be used 
for process control and content recomposing and reusing. The proposed methodology 
enables real-time content integration among user’s workflow information, processing 
knowledge, and various enterprise applications. 

With the growing technologies, such as semantic web and web services, the consti-
tution of ontologies for content management like as ontology about processes, knowl-
edge and content usage will be useful facilities of the e-business environment. 

References 

1. van der Aalst, W.M.P.: Business Process Management: A personal view. BPMJ, Vol. 10. 
No. 2 (2004) 248-253 

2. Advanced Distributed Learning: Sharable Content Object Reference Model (SCORM) ver. 
1.2 The SCORM Content Aggregation Model. ADLnet (2001) http://www.adlnet.org 

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, f., Liu, K., Roller, 
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Lan-
guage for Web Services Flow specification ver. 1.1 (2003) 

4. Arkin, A.: Business Process Modeling Language (BPML) specification. BPMI.org (2001) 
5. Calvalcanti, M. C., Targino, R., Baião, F., Rössle, S. C., Bisch, P. M., Pires, P. F., Cam-

pos, M. L. M., Mattoso, M.: Managing structural genomic workflow using Web services. 
Data & Knowledge Engineering, Vol. 53 (2005) 45-74 

6. Fernández-García, N., Sánchez-Fernández, L., Villamor-Lugo, J.: Next Generation Web 
Technologies in Content Management. Proceedings of the 13th international W3C confer-
ence (2004) 

7. Najmi, F.: Web Content Management Using the OASIS ebXML Registry Standard. XML 
2004, Amsterdam, the Netherlands (2004) 

8. Smith, H., Fingar, P.: Business Process Management – the third wave. 1st ed. Meghan-
Kiffer Press (2002) 

9. Trappey, A. J.C., Trappey, C. V.: Global content management services for product provid-
ers and purchasers. Computers in Industry, Vol. 53 (2004) 39-58 

10. Workflow Management Coalition (WfMC): Workflow Process Definition Interface  – 
XML Process Definition Language (XPDL) ver. 1.0 (2002) 



Specification and Management of Policies in

Service Oriented Business Collaboration

Bart Orriëns1 and Jian Yang2

1 Dept. of Information Management, Tilburg University,
PO Box 90153, 5000 LE, Tilburg, Netherlands

b.orriens@uvt.nl
2 Dept. of Computing, Macquarie University,

Sydney, NSW, 2109, Australia
jian@comp.mq.edu.au

Abstract. Current composite web service development and manage-
ment solutions, e.g. BPEL, do not cater for developing adaptive busi-
ness collaborations while adhering to the requirements imposed by the
business environment. In this paper we introduce the Business Collab-
oration Design Framework which uses a blend of design perspectives,
facets and aspects to provide designers with the means to develop and
deliver business collaborations in a effective and manageable manner.
We explain how policies can be defined in the BCDF to specify a wide
range of requirements. We also conceptually introduce policy manage-
ment mechanisms, which facilitate management of policy conformance
and consistency, alignment and compatibility.

Keywords: Business process modeling and analysis, processes and ser-
vice composition, process verification and validation, intra-organizational
process support.

1 Introduction

Recently there has been increasing focus on service oriented computing [12] to
deliver adaptive corporate business services by utilizing existing services cross or-
ganizational boundaries, i.e. via business collaboration. In order to realize this the
specifics of business collaborations and their associated policies must be properly
captured and modeled. Unfortunately, current composite web service develop-
ment and management solutions including the defacto standard BPEL4WS [5] do
not support specification and alignment of high (abstract) level requirements and
technical demands, definition and management of policies and their compatibility
among collaboration participants, and adaptiveness to environmental changes.
In this paper we introduce a Business Collaboration Design Framework
(BCDF) for designing business collaborations, which provides a systematic way
for analyzing the requirements and modeling the activities involved in business

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 422–427, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Specification and Management of Policies in Service Oriented BC 423

collaboration development. The ideas presented are illustrated using a complex
multi-party, insurance claim handling scenario [9]. 1

2 Business Collaboration Design Framework

This section introduces the framework for design of business collaborations, be-
ing the Business Collaboration Design Framework (BCDF). The BCDF,
displayed in Fig.1, employs a multi-layered approach where collaboration design
is facilitated through the usage of perspectives, facets and aspects.

Participant

Collaboration Aspect

Participant

Participation Behavior A
spect

Lo
ca

l 
A
sp

ec
t Local A

spect

ConstraintTriggerEndpointEndpointOperation 
+ Service

MessageLogical

RuleEventActorUnitTaskDocumentConceptual

GoalScheduleStakeholderEnterprizeStepResourceBusiness

Motivation 
(why)

Time
(when)

Resource
(who)

Location 
(where)

Tasks 
(how)

Structure 
(what)

ConstraintTriggerEndpointEndpointOperation 
+ Service

MessageLogical

RuleEventActorUnitTaskDocumentConceptual

GoalScheduleStakeholderEnterprizeStepResourceBusiness

Motivation 
(why)

Time
(when)

Participant 
(who)

Location 
(where)

Tasks 
(how)

Structure 
(what)

Design Facets

D
es

ig
n 

Pe
rs

pe
ct

iv
es Leads to

1..n
Divided in

1..n
Organized in

1..n
Controls

1..n
Split up into

1..n
Achieved via

1..n

Exchanged via
1..n

Structured in
1..n

Offers
1..n

Provides
1..n

Falls into
1..n

Enforced by
1..n

Pa
rt

ic
ip
at

io
n 

Be
ha

vi
or

 A
sp

ec
t

Fig. 1. Business Collaboration Design Framework (BCDF)

The Design Perspectives represent different levels of abstraction in a busi-
ness collaboration development, supporting ’separation of concern’: 1) business
perspective: from which the purpose and the requirements are modeled and speci-
fied in terms of Goal, Schedule, Resource, Enterprize, Stakeholder, Step.
2) conceptual perspective: from which a computational independent conceptual
model is generated that depicts the business activities in terms of Rule, Event,
Document, Unit, Actor, Task. 3) logical perspective: from which a service-
oriented business collaboration is modeled in terms of Constraint, Trigger,
Message, Endpoint, Service, Operation.

Design Facets express different, but equally valid points of view at a particular
perspective that emphasize the specification of different business description
elements (as described in e.g. [14]: what, how, where, who, when, why). The what
facet emphasizes the informational view. The functional standpoint is taken in
the how facet. The geographical facet is expressed in the where facet, whereas

1 This work was partially funded with an UNSW Australian ARC Discovery Research
Grant.



424 B. Orriëns and J. Yang

the who facet captures participants. The temporal aspect covers in the when
facet. The why facet describes rationale.

Design aspects accommodate different design considerations from different
viewpoints: 1) collaboration aspect: describes the externally visible behavior be-
tween participants in a business collaboration, specifying how its participants are
expected to behave in the collaboration, 2) participant behavior aspect: describes
how an individual participant can behave in a business collaboration, i.e. its ex-
ternally observable (public) behavior, and 3) local aspect describes the internal
(private) behavior which is only of the interest of a particular participant.

3 Modeling in the BCDF Framework

The BCDF uses two types of models to accommodate modeling of business
collaborations: meta models and instance models, both of which are defined
for individual perspectives. The meta models are generic which provide design
guidelines; while the models represent a particular design of an application, which
have to conform to the meta-model. Each meta-model describes the relevant
elements of (six) design facets as classes and their relationships. The relationships
connect the classes to indicate interactions between design facets. Meta-model
variants for each design aspect are defined by adding constraints to a meta-
model. Fig. 2 displays an example business perspective model represented based
on UML conventions. (Note: due to space limitations meta models as well as
additional example models are not shown).

Helpline 
Director

Gather
info

24hr
receipt

Process
claim

Supply
car

Europ Assist

Claim 
info

1 day < 
acceptance

Supply
claim

AGFIL

Insurance
Director

Consume
claim

Process
claim

Complete
claim

Supply
claim info

Get claim
evaluation

Customer plus
car info

Manage
claims

Repair eval.
information

Do 
repair

Get
repairs

Consume
car

Supply 
repair info

Handle
car

Damaged
car

Garage
Inc.

Garage Owner

Car repair
information

Supply 
repair info

Consume
repair info

Consume
claim info

Manage
claim

Make
report

Supply
evaluation

Consume
assessment Consultant

Supervisor

Assessor Manager

Consume 
repair info

Inspect
car Assess

Supply
assessment

Car repair
information

Assess
claims

Quick
assess

Assesor
Inc.

Assessment
information

Lee
C.S

Prevent 
modification

Fig. 2. AGFIL Business Model (AGFIL-BM)



Specification and Management of Policies in Service Oriented BC 425

To illustrate the working of the models look for a moment at the business
model in Fig. 2. A main class instantiated is the Goal class, representing concrete
goals such as 24hr receipt. Goals are pursued by stake holders (e.g. insurance
director) who serve for participating enterprizes. Information about an en-
terprize is captured in the Enterprize class like AGFIL. Stakeholders exchange
resources such as customer plus car, which are based on the Resource class.

Goals are achieved through steps representing high level functions such as
process claim. Steps can be dependent on one another or contain other steps.
Steps are of type ’internal’ or ’exchanged’. Internal steps like process claim
are enterprize specific and are not observable by others. Exchange steps provide
a definition mechanism for resource supply and/or consumption (e.g. consume
claim information).

Steps can have schedules linked to them like 1 day > performance. Sched-
ules for different steps must be synchronized to avoid conflicts, so that, for ex-
ample, the schedule of process claim does not interfere with that of supply
claim information. Conceptual and logical models can be interpreted in a
similar manner; however, naturally the semantics of the used elements will be
different as they describe different perspectives.

4 Policies in the BCDF

Policies facilitate definition of the conditions under which involved enterprizes
cooperate with one another. Policies are associated with the modeling descrip-
tion elements in the BCDF models, constraining the manner in which they can
be connected to other description elements. As such, when models adhere to
these different policies, this means that the described business collaborations
are compliant with the set out conditions. In this manner policy specification
gives empowerment with regard to managing and controlling collaborations.

4.1 Specification

In the BCDF different policies exist varying both in terms of design perspective
and aspect. To accommodate their specification BCDF offers a generic policy
language where policies are defined as sets of exclusive alternatives (each covering
a possible collaboration scenario). Each alternative constitutes a group of rules,
combinable using standard logical operators. Rules are defined using first order
predicate logic. This accommodates definition of a wide variety of rules in terms
of functionality ([10] [13]), optionality, genericity, and, perspective, facet and
aspect. The atoms referred to in the rules constitute the modeling description
elements used in BCDF to express business, conceptual and logical models, i.e.
elements, properties and links like ’resource’, ’modification’ and ’consumes’. By
constraining their existence and/or value, the rules can thus drive development
of business collaboration models compliant with the set out conditions.

To exemplify look for a moment at the policy of claim information (ex-
changed between helpline director and insurance director), which is de-
fined as PClaimInfoTrade: {PAHighClaim � PALowClaim}. This policy contains



426 B. Orriëns and J. Yang

alternatives ’HighClaim’ and ’LowClaim’, where the first is applicable to high-
valued claims and the second one to low-valued ones. PAHighClaim is defined as
{Rmodification ∧ Rlegitimation}, depicting that PAHighClaim contains the security
oriented rules Rmodification and Rlegitimation . Rmodification is itself defined as the
tuple (Content, ’5’,’Mandatory’) indicating that its application is mandatory and
has the highest priority. Its content is defined as ”resource(’ClaimInformation’)∧
value(’ClaimInformation’, ), ’≥’, ’1000’) → (modification(’ClaimInformation’),
’=’, ’true’)”; depicting that all claims with value greater than $1000 must be
sent in such a way that any modification will always be detected.

4.2 Policy Management

Policy management in the BCDF is facilitated in three ways: 1) policy confor-
mance to verify whether a model is valid with regard to a policy; and policy
consistency verification which in turn allows determining whether the model
resulting from the application of these rules is consistent. 2) policy alignment
by guarding the validness of mappings between perspectives, which express de-
pendencies among the classes in different meta-models and instance models at
different perspectives (also shown in Fig.1 in section 2). 3) policy compatibility
for maintaining consistency among policies from different design aspects, i.e. be-
tween internal and behavioral policies, and between behavioral and collaboration
policies.

To illustrate, suppose that claim information with value $1500 is sent without
modification protection. This is not conform to the policy of claim information,
since protection ismandated for all claims valuedhigher than $1000. In addition as-
sume that we have Rconfidentiality defined as ”(confidentiality(’ClaimFile’, ), ’=’,
’true’) ← document(’ClaimFile’) ∧ has(’ClaimFile’, ’ClaimValuePart’) ∧ (docu-
mentPart(’ClaimValuePart’), ’>’, ’750’)”. These rules are not properly aligned as
Rconfidentiality is too strict in comparison to Rmodification. Lastly, assume that
Rmodification constrains the potential behavior of AGFIL, and Rmodificationcol the
agreed collaboration stating ”resource(’ClaimInformation’) ∧ value(’ClaimInfor-
mation’, ), ’≥’, ’500’) → (modification(’ClaimInformation’), ’=’, ’true’)”. These
rules are not compatible since AGFIL supports modification protection only for
claims above $1000, whereas this is required for those at $500 already.

5 Conclusions

Current industry standards in business collaboration design, such as BPEL and
WS-Policy [5,2] and ebXML [6], as well as approaches proposed from academia
like [3,4,1,7,16,8,15] are not suitable for dealing with the complex and dynamic
nature of developing and managing business collaborations and their policies.

In this paper we have presented the Business Collaboration Design Frame-
work (BCDF), a framework that utilizes a three dimension approach (i.e. per-
spective, facet, aspect) to business collaboration design. The work presented
gives a very brief overview of the framework and its relevance for policy specifi-
cation and management. For more information the reader is referred to [11].



Specification and Management of Policies in Service Oriented BC 427

References

1. Business Process Management: A Survey, W. van der Aalst, A. ter Hofstede, M.
Weske, Proceedings of the International Conference on Business Process Manage-
ment, 2003

2. S. Bajaj, D. Box, D. Chappell, et all, Web Services Policy Framework (WS-Policy),
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/,
September 2004

3. P. Bresciani, A. Perini, P. Giorgini, et all, Tropos: An Agent-Oriented Software
Development Methodology, Autonomous Agents and Multi-Agent Sytems, Vol. 8,
No. 3, pp. 203236, 2004

4. F. Casati, E. Shan, U. Dayal, et all, Business-Oriented Management of Web Ser-
vices, Communications of the ACM, Vol. 46, No. 10, pp. 55-60, 2003

5. F. Curbera, Y. Goland, J. Klein, et all, Business Process Execution Language for
Web Services, http://www-106.ibm.com/developerworks/webservices/library/ws-
bpel/, July 31, 2002

6. ebXML, http://www.ebxml.org
7. D. Fensel, C.Bussler, The Web Service Modeling Framework WSMF, Electronic

Commerce Research and Applications, Vol. 1, No. 2, pp. 113-137, 2002
8. D. Georgakopoulos, H. Schuster, D. Baker, et all, Managing Escalation of Collab-

oration Processes in Crisis Mitigation Situations, Proceedings of the 16th Interna-
tional Conference on Data Engineering, San Diego, CA, USA, 2000

9. P. Grefen, K. Aberer, Y. Hoffner, et all, CrossFlow: Cross-Organizational Workflow
Management in Dynamic Virtual Enterprises, International Journal of Computer
Systems Science & Engineering, Vol. 15, No. 5, pp. 277-290, 2000

10. B. von Halle, Business rules applied: Building Better Systems Using the Business
Rule Approach, Wiley & Sons, 2002

11. B. Orriens, J. Yang, Establishing and Maintaining Compatibility in Service Ori-
ented Business Collaboration, To appear in Proceedings of the 7th International
Conference on Electronic Commerce, Xi’an, China, August 2005

12. M. Papazoglou, J. Dubray, A survey of web service technologies, Technical Report
DIT-04-058, Informatica e Telecomunicazioni, University of Trento, 2004

13. R. Ross, Principles of the Business Rule Approach, Addison-Wesley, 2003
14. A. Scheer, Architecture for Integrated Information Systems - Foundations of En-

terprise Modeling, Springer-Verlag New York, Secaucus, NJ, USA, 1992
15. P. Traverso, M. Pistore, M. Roveri, et all, Supporting the Negotiation between

Global and Local Business Requirements in Service Oriented Development, Pro-
ceedings of the 2d International Conference on Service Oriented Computing, New
York, USA, 2004

16. L. Zeng, B. Benatallah, H. Lei, et all, Flexible Composition of Enterprise Web
Services, Electronic Markets - The International Journal of Electronic Commerce
and Business Media, Vol. 13, No. 2, pp. 141-152, 2003



Yet Another Event-Driven Process Chain

Jan Mendling1, Gustaf Neumann1, and Markus Nüttgens2

1 Vienna University of Economics and Business Administration, Austria
{firstname.lastname}@wu-wien.ac.at

2 University of Hamburg, Germany
nuettgens@hwp-hamburg.de

Abstract. The 20 workflow patterns proposed by Van der Aalst et al.
provide a comprehensive benchmark for comparing control flow aspects
of process modelling languages. In this paper, we present a novel class
of Event-Driven Process Chains (EPCs) that is able to capture all of
these patterns. This class is called “yet another” EPC as a tribute to
YAWL that inspired this research. yEPCs extend EPCs by the introduc-
tion of the so-called empty connector; inclusion of multiple instantiation
concepts; and a cancellation construct. Furthermore, we illustrate how
yEPCs can be used to model some of the workflow patterns.

1 Introduction

The 20 workflow patterns gathered by Van der Aalst, ter Hofstede, Kiepuszewski
and Barros [1] are well suited for analyzing different workflow languages: work-
flow researchers can refer to these patterns in order to compare different process
modelling techniques. This is of special importance considering the heterogene-
ity of process modelling languages (see e.g. [2]). Building on the insight that no
language provides support for all patterns, Van der Aalst and ter Hofstede have
defined a new workflow language called YAWL [3]. YAWL takes workflow nets
as a starting point and adds non-petri-nets constructs in order to support each
pattern in an intuitive manner (except implicit termination).

Besides Petri nets, Event-Driven Process Chains (EPC) [4] are another pop-
ular technique for business process modelling. Yet, their focus is rather related
to semi-formal process documentation than formal process specification. The de-
bate on EPC semantics has recently inspired the definition of a mathematical
framework for a formalization of EPCs in [5]. As a consequence, we argue that
workflow pattern support can also be achieved by starting with EPCs instead
of Petri nets. This paper presents an extension to EPCs that is called yEPCs.
In Section 2 we introduce EPCs and yEPCs. yEPCs include three extensions to
EPCs that are sufficient to provide for direct support of the 20 workflow patterns
reported in [1]. In Section 3 we discuss in detail how workflow patterns can be
expressed with yEPCs. In particular, we highlight the non-local semantics of the
XOR join, and its implications for workflow pattern support. After a survey on
related work (Section 4), we give a conclusion and an outlook on future research
(Section 5). An extended version of this paper is available as [6].

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 428–433, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Yet Another Event-Driven Process Chain 429

2 Yet Another Event-Driven Process Chain (yEPC)

EPCs are introduced as a modelling concept to represent temporal and logical
dependencies in business processes [4]. Elements of EPCs may be of function
type (active elements), event type (passive elements), or of one of the three con-
nector types AND, OR, or XOR. These objects are linked via control flow arcs.
Connectors may be split or join operators, starting either with function(s) or
event(s). In EPCs both OR join and XOR join have non-local semantics (cf.
[5,7]). Concerning the XOR join, this implies that it blocks when there is one in-
coming branch finished and another still active. For a formal discussion of these
semantics refer to Kindler [5]. Furthermore, process interfaces and hierarchical
functions (see e.g. [7,8]) can be used to link different EPC models. A hierarchi-
cal function can be regarded as a synchronous call to a sub-process. After the
sub-process has completed, navigation continues with the next function subse-
quent to the hierarchical function. The process interface can be regarded as an
asynchronous spawning off of a sub-process. There is no later synchronization
when a sub-process completes. For more on EPC sub-processes refer to [7].

Figure 1 illustrates the syntax elements of Yet Another Event-Driven Process
Chain (yEPC). This extension of EPCs is motivated by incomplete workflow
pattern support of EPCs. yEPCs reflect three measures that suffice to provide for
direct support of all workflow patterns. These measures include the introduction
of the so-called empty connector; an inclusion of a general multiple instantiation
concept; and the introduction of a cancellation concept. The EPC extensions
differ from Petri net extensions that were needed to define YAWL: Petri nets also
had to be extended with multiple instantiation and cancellation concepts, but
they lacked advanced synchronization patterns. EPCs, in contrast, miss support
for state-based patterns. It should be mentioned that yEPC extensions have no
impact on the validity of existing EPC models: this means valid EPCs according
to the definitions in [7] are still valid with respect to this new class of EPCs.

As mentioned above, EPCs cannot explicitly represent state-based workflow
patterns. This shortcoming can be resolved by introducing a new connector type
that we refer to as the empty connector. This connector is represented by a
cycle, just like the other connectors, but without any symbol inside. Also the
same syntax rules as for other connectors hold. We follow control flow semantics
as defined by Kindler [5], this means process folders (the EPC analogue to tokens

Event

Function

Hierarchical 
Function

Process
Interface

OR-
Connector

XOR-
Connector

AND-
Connector

Empty
Connector

[min, max, required, creation]
Multiple instantiation parameters

Cancellation 
area

Fig. 1. yEPC Symbols



430 J. Mendling, G. Neumann, and M. Nüttgens

of Petri nets) are placed on arcs. The empty split then has to be interpreted as a
hyperarc e.g. from the event before the empty split to the functions subsequent
to it; the empty join analogously as a hyperarc from e.g. multiple functions before
it to its subsequent event. Consider an event that is followed by an empty split
linking to multiple functions. The empty split allows all subsequent functions to
pick up the event. As a consequence, there is a run between the functions: the
first function to consume the event causes the other functions to be no more
active. This split semantics match the deferred choice pattern. Consider the
other case of an empty join with multiple input events. The subsequent function
is activated when one of these events has been reached. This behavior matched
the multiple merge pattern. We will explain in Section 3 why such semantics are
needed as an EPC extension.

The lack of EPC support for multiple instantiation has been discussed before
(see e.g. [9]). In yEPCs we stick to multiple instantiation as defined for YAWL.
YAWL defines a quadruple of parameters that control multiple instantiation.
The parameters min and max define the minimum and maximum cardinality of
instances that may be created. The required parameter specifies an integer
number of instances that need to have finished in order to complete multiple
instantiation. The creation parameter may take the values static or dynamic
which specify whether further instances may be created at run-time (dynamic)
or not (static). In the context of multiple instantiation, it is helpful to define
sub-processes in order to model complex blocks of activities that can be executed
multiple times as a whole. Accordingly, multiple instantiation parameters can be
specified for functions as well as for hierarchical functions and process interfaces.

Cancellation patterns have not yet been discussed for EPCs. We adopt the
concept of YAWL. Cancellation areas (symbolized by a lariat) may include func-
tions and events. The end of the lariat has to be connected to a function. When
this function completes, all functions and events in the lariat are cancelled.

3 Workflow Pattern Analysis of EPCs

In this section we will consider the EPC control flow semantics of Kindler [5]
which reflect the ideas of [4,7]. For multiple instantiation and cancellation the
concepts from YAWL are adopted. In the following we illustrate workflow pat-
terns (WP) 4,5, and 17 and their yEPC representation. A full workflow pattern
analysis can be found in [10]. We will speak of EPCs each time we make a state-
ment that holds for both yEPCs and EPCs. Otherwise, we will explicitly refer
to yEPCs when we present concepts that are not included in EPCs.

WP 4 (Exclusive Choice) and 5 (Simple Merge): WP 4 describes a point in
a process where a decision is made to continue with one of multiple alterna-
tive branches. This situation can be modelled with the XOR split connector of
EPCs. There has been a debate on the non-local semantics of the XOR join.
While Rittgen [11] and Van der Aalst [12] proposes a local interpretation, recent
research agrees upon non-local semantics (see e.g. [5,7]). This means that the
XOR join is only allowed to continue if exactly one of the preceding functions



Yet Another Event-Driven Process Chain 431

B

A mutex

C

E

pre-C

pre-B post-B

post-C

Fig. 2. yEPC Model for WP 17 Interleaved Parallel Routing

have finished, and it is not possible that the other functions will ever be executed.
Accordingly, EPC’s XOR join works perfect when used in an XOR block started
with an XOR split, but may block e.g. when used after an OR split depending
on whether more than one branch has been activated. Due to these non-local
semantics it is similar to a synchronizing merge but with the difference that it
blocks when further process folders may be propagated to the XOR join.

In contrast to this, WP 5 defines a simple merge without synchronization,
but building on the assumption that the joined branches are mutually exclusive.
The XOR join in YAWL [3] can implement such behavior with local semantics:
when one of parallel activities is completed the next activity after the XOR
join is started. But when the assumption does not hold, i.e., when another of
the parallel activities has finished the activity after the XOR join is activated
another time, and so forth. This observation allows two conclusions. First, there
is a fundamental difference between the semantics of the XOR join in EPCs
and YAWL: the XOR join in EPCs has non-local semantics and blocks if there
are multiple paths activated; the XOR join in YAWL has local semantics and
propagates each incoming process token without ever blocking. Accordingly, the
YAWL XOR join can also be used to implement WP 8 (multiple merge). Second,
as the XOR join in EPCs has non-local semantics, it cannot be used to model
WP 8. Hence, yEPCs use the empty connector for WP 8.

WP 17 (Interleaved Parallel Routing): Empty connectors can be used for
state-based patterns. Figure 2 shows the process model of WP 17 following
the ideas presented in [1]. The event at the center of the model manages the
sequential execution of functions B and C in arbitrary order. It corresponds to
the “mutual exclusion place (mutex )” introduced in [1]. The AND split after
function A adds a folder to this mutex event via an empty connector. The AND
joins before the functions B and C consume this folder and put it back to the
mutex event afterwards. Furthermore, they consume the individual folders in
pre-B and pre-C, respectively. These events control that each function of B and
C is executed only once. After both have been executed, there are folders in post-
B, post-C, and mutex. Accordingly, E can be started. In [13] sequential split and



432 J. Mendling, G. Neumann, and M. Nüttgens

join operators are proposed to describe control flow behavior of WP 17. Yet, it
is no clear what the semantics of these operators are when not used pairwise.

Altogether, WP 1 to 7, 10, and 11 are supported by EPCs. In contrast, yEPCs
provides additional modelling support of WP 8 (multiple merge), 9 (discrimina-
tor), 12-15 (multiple instantiation), 16 (deferred choice), 17 (interleaved parallel
routing), 18 (milestone), and 19-20 (cancellation). As a consequence, business
processes including control flow behavior that is related to previously unsup-
ported workflow patterns can now be represented appropriately using yEPCs.

4 Related Work

The workflow patterns proposed by [1] provide a comprehensive benchmark for
comparing different process modelling languages. A short workflow pattern anal-
ysis of EPCs is also reported in [3], yet it does not discuss the non-local semantics
of EPCs XOR join. In this paper, we highlighted these semantics as a major dif-
ference between YAWL and EPCs. Accordingly, we propose the introduction of
the empty connector in order to capture workflow pattern 8 (multiple merge).
There is further research discussing notational extensions to EPCs. In Rittgen
[11] a so-called XORUND connector is proposed to partially resolve semantical
problems of the XOR join connector. Motivated by space limitations of book
pages and printouts, Keller and Teufel introduce process interfaces to link EPC
models on different pages [8]. We adopt process interfaces in this paper to model
spawning off of sub-processes. Rosemann [13] proposes the introduction of se-
quential split and join operators in order to capture the semantics of workflow
pattern 17 (interleaved parallel routing). While the informal meaning of a pair
of sequential split and join operators is clear, the formal semantics of each single
operator is far from intuitive. As a consequence, we propose a state-based rep-
resentation of interleaved parallel routing inspired by Petri nets. Furthermore,
Rosemann introduces a connector that explicitly models a decision table and a
so-called OR1 connector to mark branches that are always executed [13]. Ro-
denhagen presents multiple instantiation as a missing feature of EPCs [9]. He
proposes dedicated begin and end symbols to model that a branch of a process
may be executed multiple times. Yet, this notation does not enforce that a begin
symbol is followed by a matching end symbol. As a consequence, we adopt the
concept of YAWL that permits multiple instantiation only for single functions
or sub-processes, but not for arbitrary branches of the process model.

5 Conclusion and Future Work

In this paper, we presented a novel class of EPCs called yEPCs that is able to
capture all 20 workflow patterns. Basically, yEPCs introduce three extensions
to EPCs: the introduction of the empty connector; the inclusion of a multiple
instantiation concept; and the inclusion of a cancellation concept. These exten-
sions permit some conclusions on the relation of Petri nets and EPCs in general.



Yet Another Event-Driven Process Chain 433

Towards workflow pattern support, both include extensions for multiple instanti-
ation and cancellation. In addition, Petri nets had to be extended with advanced
synchronization concepts. On the other hand, EPCs had to be modified to ad-
dress the state-based patterns. As a consequence, yEPCs and YAWL are quite
similar concerning their modelling primitives. The XOR join is the major differ-
ence between both. In future research, we aim to implement a transformation
between yEPCs available in EPML format and the interchange format of YAWL.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5–51

2. Mendling, J., Neumann, G., Nüttgens, M.: A Comparison of XML Interchange
Formats for Business Process Modelling. In Feltz, F., Oberweis, A., Otjacques,
B., eds.: Proceedings of EMISA 2004 - Information Systems in E-Business and
E-Government. Volume 56 of Lecture Notes in Informatics. (2004)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30 (2005) 245–275

4. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany (1992)

5. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In J. Desel
and B. Pernici and M. Weske, ed.: Business Process Management, 2nd Interna-
tional Conference, BPM 2004. Volume 3080 of Lecture Notes in Computer Science.,
Springer Verlag (2004) 82–97

6. Mendling, J., Neumann, G., Nüttgens, M.: Yet Another Event-Driven Process
Chain (Extended Version). Technical Report JM-2005-05-27, Vienna University of
Economics and Business Administration, Austria (2005)

7. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In J. Desel and M. Weske, ed.: Proceedings of Promise 2002, Potsdam,
Germany. Volume 21 of Lecture Notes in Informatics. (2002) 64–77

8. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley (1998)

9. Rodenhagen, J.: Ereignisgesteuerte Prozessketten - Multi-Instantiierungsfähigkeit
und referentielle Persistenz. In: Proceedings of the 1st GI Workshop on Business
Process Management with Event-Driven Process Chains. (2002) 95–107

10. Mendling, J., Neumann, G., Nüttgens, M.: Towards Workflow Pattern Support of
Event-Driven Process Chains (EPC). In M. Nüttgens and J. Mendling, ed.: Proc.
of the 2nd Workshop XML4BPM 2005, Karlsruhe, Germany. (2005) 23–38

11. Rittgen, P.: Quo vadis EPK in ARIS? Ansätze zu syntaktischen Erweiterungen
und einer formalen Semantik. WIRTSCHAFTSINFORMATIK 42 (2000) 27–35

12. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41 (1999) 639–650

13. Rosemann, M.: Erstellung und Integration von Prozeßmodellen - Methodenspez-
ifische Gestaltungsempfehlungen für die Informationsmodellierung. PhD thesis,
Westfälische Wilhelms-Universität Münster (1995)



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 434 – 439, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Comparing the Control-Flow of EPC and  
Petri Net from the End-User Perspective  

Kamyar Sarshar and Peter Loos 

Johannes Gutenberg-University Mainz, 
Lehrstuhl für Wirtschaftsinformatik und BWL, 
ISYM – Information Systems & Management, 

D-55099 Mainz, Germany 
{sarshar, loos}@isym.bwl.uni-mainz.de 

 

Abstract. This contribution describes the results of a laboratory experiment 
which compares the Event-driven Process Chain (EPC) and Petri net (C/E net) 
regarding their approaches to represent the control-flow of processes. The out-
come of the experiment indicates that from end-user perspective the EPC  
approach of applying connectors is superior to the token game. However, the 
non-local semantic of the EPC OR-connector clearly had a negative impact on 
end-user comprehension. The experiment also illustrates that the perceived 
ease-of-use and the intention to use the EPC notation is higher than C/E net. 

1   Introduction 

Two notations have been widely used for business process modeling. The Event-
driven Process Chain (EPC) [13] which has been constructed on the basis of C/E net 
([23], p. 47; [24], p. 428) gained broad acceptance in commercial projects especially 
in the context of SAP R/3 [14] and ARIS-Toolset [7]. However, the EPC is criticized 
since it suffers from ambiguity [31], and as a consequence, lack of the possibility to 
be analyzed and simulated properly. Petri nets have been investigated extensively 
within the scientific community during the last four decades and have successfully 
been applied to the concept of process modeling and analysis [20, 30]. Despite a 
strong agreement on applying Petri nets for process analysis, there are some doubts on 
whether or not formal Petri nets are appropriate for the development of conceptual 
process models [9]. 

A major difference between the two notations is their representation of the control-
flow of processes. The control-flow deals with the order in which activities have to be 
executed. Petri nets use states and transitions in combination with the token game to 
represent the control-flow. The EPC in contrast applies different connectors as dis-
tinctive language primitives. This research aims to investigate which of these two 
approaches are more appropriate for conceptual modeling where processes are devel-
oped in cooperation with end-users [19]. Since EPC has been constructed on the basis 
of C/E net, it makes sense to compare the EPC notation with this Petri net type. 



 Comparing the Control-Flow of EPC and Petri Net from the End-User Perspective 435 

 

Among a variety of empirical and non-empirical approaches that could potentially 
be used to evaluate the notations [25], we have chosen the laboratory experiment to 
investigate the following hypotheses: 

H1: The EPC connectors are better comprehended by end-user than C/E net repre-
sentations with respect to AND-type situation (H1a) and XOR-type situation (H1b). 
H2: The EPC multi-level AND/XOR-connectors are comprehended by end-users as 
good as AND-connectors and XOR-connectors. 
H3: The EPC OR-connectors are comprehended by end-users as good as AND-
connectors and XOR-connectors. 
H4: The overall end-user comprehension of the control-flow of an EPC model is 
higher than an equivalent C/E net model. 
H5: The perceived ease-of-use of the EPC control-flow is higher than C/E net. 
H6: The perceived ease-of-use of the EPC notation is higher than C/E net. 
H7: The intention of end-user to use the EPC is higher than C/E net. 

The remainder of this paper is organized as follows. After this introduction, the 
next two sections describe previous research and the research methodology. A sum-
mery of finding and limitations are presented briefly in section 4. We refer to [22] for 
further details regarding the experiment. A number of suggested areas for future re-
search will be presented in the final section. 

2   Previous Research 

While aspects of conceptual data modeling have been explored reasonably by labo-
ratory experiments [1-3, 11, 12, 15, 26, 32], the weakness within the existing lit-
erature is the lack of equivalent studies on process modeling notations. Existing 
experiments on Petri nets focus on their application as a visual programming lan-
guage and for software specification rather than on business process modeling. 
Moher et al. [17] compared Petri nets with textual programming representations in 
a laboratory experiment with faculty members and graduates of computer science. 
In Boehm-Davis’ and Fregl’s study [4] professional programmers performed soft-
ware modification tasks based on a Petri net documentation of the software system. 
Swigger and Brazile examined the effect of ERM and Petri net based documenta-
tion as well as the absence of documentation on the performance of programmer 
carrying out software modification tasks in two separate studies [27, 28]. Empiri-
cal contributions on the EPC notation include the study of Davies et al. [6], which 
is based on interviews with ARIS modelers from different organization and institu-
tions throughout Australia and is founded on an analysis of ARIS against BWW 
constructs. Green & Rosemann [10] conduct a questionnaire based test with uni-
versity students in order to investigate propositions discussed in [8]. Additionally, 
a number of non-empirical contributions discuss formalization issues of the EPC 
based on the Petri net semantic [5, 16, 21, 29]. 

As far as we know, this research is the first laboratory experiment comparing Petri 
net and EPC notation. Hence, it extends the literature on the issue of usability of mod-
eling notations to the domain of business process modeling. It is complementary to 



436 K. Sarshar and P. Loos 

 

the experiments on end-user data modeling conducted in [11, 12] where record-
based and conceptual data modeling techniques were compared. Additionally, the 
study extends the experiments on Petri nets since it investigates the application of 
Petri nets in the context of business process modeling and from the perspective of 
the end-user. 

3   Research Methodology  

To test the hypotheses, a laboratory experiment was conducted with a two-group, 
post-test only experimental design which was adapted and modified from [18].  

Independent variables: in this study the type of process modeling notation was re-
garded as the only independent variable.  

Controlled variables: in this study task complexity, prior user experience and train-
ing were regarded as controlled variables.  

Dependent variable: according to the hypothesis, the dependent variables were 
model comprehension and perceived ease-of-use. Model comprehension was meas-
ured by the number of correct answers to process related questions in the question-
naire. The perceived ease-of-use of the notation was assessed by various process in-
dependent questions of the questionnaire whereby the subjective estimation of the 
participants regarding the notation was asked for.  

After recruiting 50 students with business and economy background with no or 
very limited prior knowledge on the notations, they were randomly separated into an 
EPC group and a C/E net group. Participants of each group got an experimental 
treatment consisting of general instruction for one of the modeling notations. During 
this introduction, the main elements of the each notation were presented to the par-
ticipants. Afterwards, a business process model which was represented respectively 
for one group in EPC notation and for the other in C/E net notation was handed out to 
the participants. Additionally, each participant got a multiple-choice questionnaire 
which consisted of anonymous questions, questions based on situations within the 
supplied business process and post-task questions. The experiment took place in a 
regular lecture room where participants of one group simultaneously conducted the 
experiment. The material and the procedure were tested prior to the experiment with 
four students. The distributed business process was taken from ([23], p. 433). The 
chosen model was a sales process modeled in EPC notation. The model has been 
extended in order to make it more complex. The transformation to an equivalent C/E 
net was based on [29] in term of events, functions, AND and XOR joint and split 
connector. All EPC OR-connectors were replaced by XOR-type situation within the 
C/E net model.  

4   Summary of Findings and Limitations 

The findings of the study are summarized in table 1. 
 



 Comparing the Control-Flow of EPC and Petri Net from the End-User Perspective 437 

 

Table 1. Summary of the findings 

 Results of the experiment 
H1a AND-type situation where equally well comprehended  No 
H1b XOR-type situation where significantly better comprehended 

within the EPC group 
Yes 

H2 EPC multi-level AND/XOR-connectors where as good compre-
hended by end-users as AND-connectors and XOR-connectors 

Yes 

H3 OR-connectors where significantly less comprehended than 
AND-connectors and XOR-connectors 

No 

H4 The overall comprehension of the control-flow of the EPC 
group was significantly better than the C/E net group 

Yes 

H5 No definitive result - 
H6 There is a tendency that the perceived ease-of-use of the EPC 

notation is higher than C/E net 
Yes 

H7 There is a tendency that the intention of end-user to use the EPC 
is higher then C/E net 

Yes 

The results of this empirical study have to be treated cautiously and considered in 
the context of several limitations regarding external and internal validity. Regarding 
external validity, the use of students as subjects clearly limits the generalisability of 
the results. The behavior of students, their learning style and motivation might not be 
representative for the population of end-users in practice even though the use of stu-
dent as subjects is a well-established practice of experimental studies. A further aspect 
is that the experimental task consisted of only one business process of a given com-
plexity limits the generalization of the results to more or less complex models. Addi-
tionally, the sample size used for the experiments can be considered as small. In order 
to ensure internal validity of the results, all variables except the independent variable 
had to be held constant between the groups. Even participants were separated ran-
domly it was unavoidable that some individual difference between the participants of 
the two groups occurred. Furthermore, the elimination of the OR-type situation in the 
C/E net representation of the business process indicates that the models distributed to 
the participants of the two groups were not identical. 

5   Future Research 

This research was a step towards empirical evaluation of process modeling notations 
regarding end-user comprehension. The outcomes indicate that obviously there is an 
essential need for particular notations for conceptual process modeling where end-
user comprehension and formal semantic are emphasized equally. The construction of 
such notations and the gradual transformation of their models to the analysis stage is 
not understood well and needs more investigation. Future research might be con-
ducted to overcome the limitations of this study which were mentioned in the previ-
ous section. Such research could seek to evaluate other notations or to provide more 
insight on the comprehension of more experienced end-users and professionals. 



438 K. Sarshar and P. Loos 

 

 Furthermore, the ability of the end-user to model rather than to comprehend business 
processes could be addressed in future research. 

References 

1. Batra, D. and Davis, J.G.: Conceptual Data Modelling in Database Design: Similarities 
and Differences between Expert and Novice Designers. International Journal of Man-
Machine Studies, Vol. 37, No. 1 (1992) 83-101 

2. Bock, D.B. and Ryan, T.: Accuracy in modeling with extended entity relationship and ob-
ject oriented data models. Journal of Database Management, Vol. 4, No. 4 (1993) 30-40 

3. Bodart, F., et al.: Should optional properties be used in conceptual modelling? A theory 
and three empirical tests. Information Systems Research, Vol. 12, No. 4 (2001) 384-405 

4. Boehm-Davis, D. and Fregly, A.: Documentation of Concurrent Programs. Human Fac-
tors, Vol. 27, No. (1985) 423-432 

5. Chen, R. and Scheer, A.-W.: Modellierung von Prozeßketten mittels Petri-Netz-Theorie, in 
Veröffentlichungen des Instituts für Wirtschaftsinformatik, Scheer, A.-W., (ed.): Saar-
brücken (1994) 

6. Davies, I., Green, P., and Rosemann:, M.: Exploring Proposed Ontological Issues of ARIS 
with Four Different Types of Modellers. In: Proc. Proceedings of the Australasian Confer-
ence on Information Systems (ACIS 2004). Hobart. (2004)  

7. Davis, R.: Business process modelling with ARIS : a practical guide. Springer, London et 
al. (2001) 

8. Green, P. and Rosemann, M.: Integrated Process Modeling: An Ontological Evaluation. 
Information Systems, Vol. 25, No. 2 (2000) 73-87 

9. Green, P. and Rosemann, M.: An Ontological Analysis of Integrated Process Modelling. 
In: Proc. Advanced Information Systems Engineering, 11th International Conference 
CAiSE'99, Proceedings. Heidelberg, Germany. Lecture Notes in Computer Science 1626 
(1999) 225-240  

10. Green, P. and Rosemann, M.: Perceived Ontological Weaknesses of Process Modeling 
Techniques: Further Evidence. In: Proc. Proceedings of the 10th European Conference on 
Information Systems (ECIS 2002). Gdansk, Poland. (2002) 312-321  

11. Jarvenpaa, S.L. and Machesky, J.J.: Data Analysis and Learning: An Experimental Study 
of Data Modeling Tools. International Journal of Man-Machine Studies, Vol. 31, No. 
(1989) 367-391 

12. Juhn, S.H. and Naumann, J.D.: The effectiveness of data representation characteristics on 
user validation. In: Proc. Proceedings of the Sixth International Conference on Information 
Systems. Indianapolis, Indiana. (1985) 212-226  

13. Keller, G., Nüttgens, M., and Scheer, A.-W.: Semantische Prozeßmodellierung auf der 
Grundlage "Ereignisgesteuerter Prozeßketten (EPK)", in Veröffentlichungen des Instituts 
für Wirtschaftsinformatik, Scheer, A.-W., (ed.): Saarbrücken (1992) 

14. Keller, G. and Teufel, T.: SAP R/3 Process Oriented Implementation: Iterative Process 
Prototyping. Addison-Wesley (1998) 

15. Kim, Y.-G. and March, S.T.: Comparing data modeling formalisms. Communications of 
the ACM, Vol. 38, No. 6 (1995) 103-115 

16. Langner, P., Schneider, C., and Wehler, J.: Petri Net Based Certification of Event-Driven 
Process Chains, in Application and Theory of Petri Nets 1998: 19th International Confer-
ence, ICATPN'98, Lisbon, Portugal, June 1998. Proceedings, Desel, J. and Silva, M., 
(eds.), Springer: Berlin (1998) 



 Comparing the Control-Flow of EPC and Petri Net from the End-User Perspective 439 

 

17. Moher, T., et al.: Comparing the Comprehensibility of Textual and Graphical Programs: 
The Case of Petri Nets. In: Proc. Empirical Studies of Programmers: Fifth Workshop. 
(1993) 137-161  

18. Moody, D.L.: Comparative Evaluation of Large Data Model Representation Methods: The 
Analyst.s Perspective. In: Proc. Conceptual Modeling - ER 2002, 21st International Con-
ference on Conceptual Modeling. Tampere, Finland. LNCS 2503 Springer-Verlag (2002) 
214-231  

19. Mylopoulos, J.: Information modeling in the time of the revolution. Information Systems, 
Vol. 23, No. 3-4 (1998) 127-155 

20. Oberweis, A., et al.: INCOME/WF A Petri Net Based Approach to Workflow Manage-
ment. In: Proc. Wirtschaftsinformatik '97. Internationale Geschäftstätigkeit auf der Basis 
flexibler Organisationsstrukturen und leistungsfähiger Informationssysteme. Physica-
Verlag Heidelberg (1997) 557-580  

21. Rodenhagen, J.: Darstellung ereignisgesteuerter Prozeßketten (EPK) mit Hilfe von Petri-
netzen. Masterthesis. Universität Hamburg, Hamburg (1997) 

22. Sarshar, K., Dominitzki, P., and Loos, P.: Comparing the Control-Flow of EPC and Petri 
Net from the End-User Perspective - Statistical Results of a Laboratory Experiment, In 
Working Papers of the Research Group Information Systems & Management Nr. 25 
(www.isym.de): Mainz (2005) 

23. Scheer, A.-W.: Business process engineering : reference models for industrial enterprises. 
Springer, Berlin et al. (1998) 

24. Scheer, A.-W., Nüttgens, M., and Zimmermann, V.: Rahmenkonzept für ein integriertes 
Geschäftsprozeßmanagement. Wirtschaftsinformatik, Vol. 37, No. 5 (1995) 426-434 

25. Siau, K. and Rossi, M.: Evaluation of Information Modeling Methods - A Review. In: 
Proc. Proceedings of the Thirty-First Annual Hawaii International Conference on System 
Sciences (HICSS). Kohala Coast, Hawaii, USA. (1998) 314-322  

26. Sinha, A.P. and Vessey, I.: An Empirical Investigation of Entity-based and Object-
oriented Data Modeling: A Development Life Cycle Approach. In: Proc. International 
Conference on Information Systems. Charlotte, North Carolina. (1999) 229-244  

27. Swigger, K. and Brazile, R.: Experimental Comparisons of Design/Documentation For-
mats for Expert Systems. International Journal of Man-Machine Studies, Vol. 31, No. 
(1989) 47-60 

28. Swigger, K.M. and Brazile, R.P.: An empirical study of the effects of de-
sign/documentation formats on expert system modifiability. In: Proc. Empirical Studies of 
Programmers: Fourth Workshop. Norwood, NJ. (1991) 210-226  

29. van der Aalst, W.M.P.: Formalization and verification of event-driven process chains. In-
formation and Software Technology, Vol. 41, No. 10 (1999) 639-650 

30. van der Aalst, W.M.P.: Modelling and analysing workflow using a Petri-net based ap-
proach. In: Proc. 2nd Workshop on Computer-Supported Cooperative Work, Petri nets and 
related formalisms, Proceedings. Zaragoza, Spain. (1994) 31-50  

31. van der Aalst, W.M.P., Desel, J., and Kindler, E.: On the semantics of EPCs: A vicious 
circle. In: Proc. EPK 2002 - Geschäftsprozessmanagement mit Ereignisgesteuerten Pro-
zessketten, Proceedings des GI-Workshops und Arbeitskreistreffens. Trier. (2002) 71-79  

32. Weber, R.: Are Attributes Entities? A Study of Database Designer’s Memory Structures. 
Information Systems Research, Vol. 7, No. 2 (1996) 137-162 

 



Overview of Transactional Patterns:
Combining Workflow Flexibility and Transactional

Reliability for Composite Web Services

Sami Bhiri, Khaled Gaaloul, Olivier Perrin, and Claude Godart

LORIA - INRIA - CNRS - UMR 7503
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{bhiri, kgaaloul, operrin, godart}@loria.fr

Abstract. In this paper, we present an approach to easily define flexible and re-
liable services compositions. We introduce a new concept called transactional
patterns to specify flexible and reliable composite Web services. A transactional
pattern is a convergence concept between workflow patterns and advanced trans-
actional models. It can be seen as a coordination pattern and as a structured trans-
action. Thus, it combines workflow flexibility and transactional processing reli-
ability. Designers can simply connect together a set of transactional patterns to
define a composite Web service. We use a set of techniques to ensure control and
transactional coherence between patterns inside a composition of services.

Keywords: Web services compositions, Workflow patterns, transactional pro-
cessing.

1 Introduction

Web services are a great technology for dealing with B2B business processes, such
as e-procurement for instance, but handling failures using the traditional transactional
model for long running, asynchronous, and decentralized activities has been proven to
be unsuitable. Advanced Transaction Models (ATMs) [1] have been proposed to man-
age failures, but, although powerful and providing a nice theoretical framework, ATMs
are too database-centric, limiting their possibilities and scope [2] in this context (e.g.
their inflexibility to incorporate different transactional semantics as well as different
behavioral patterns into the same structured transaction [3]).

In the same time, workflow [4] has became gradually a key technology for busi-
ness process automation [5], providing a great support for organizational aspects, user
interface, monitoring, accounting, simulation, distribution, and heterogeneity [2].

In this paper, we propose an approach to specify and orchestrate flexible and reli-
able Web services compositions based on the concept of transactional patterns.which
combines workflow flexibility and transactional reliability.

Section 2 presents a motivating example. Section 3 and 4 specify the transactional
composite Web services and workflow patterns concepts. Section 5 introduces the idea
of transactional patterns, and shows how to use them to specify composite Web services,
while guaranteeing the consistency. Section 6 concludes.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 440–445, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Transactional Patterns: Combining Workflow Flexibility and Transactional Reliability 441

2 Motivating Example

We consider an application for online travel arrangement, carried out by a composite
service as illustrated in figure 1. The customer specifies its requirements for destination
and hotels. The composite service launches in parallel hotel and flight booking. Then,
the customer is requested to pay online. Once this is done, travel documents are sent
to the customer. To avoid failures, the designers of the composite service may want to
augment the control flow described above with a set of transactional requirements. For
instance, they may require the services FB and TDU to be sure to complete, but also
the service FB to be compensatable (when an hotel booking is cancelled, or when it
fails). They may also specify that service TDU is an alternative for TDFE.

HB: Hotel
Booking

FB: Flight
Booking

CRS: Customer
Requirements
Specification

OP: Online
Payment

TDFE: Tickets
Delivery with

FedEx

TDU: Tickets
Delivery with

UPS

Compensate
A
N
D

A
N
D

X
O
R

Sure to complete,
compensatable Sure to complete

Activate

Fig. 1. A composite service for online travel arrangement

Modeling this example with ATM or workflow systems is not easy because ATM are
too rigid to enable a such control structure, and they do not support bottom-up applica-
tions design, starting from predefined business process and using pre-existing systems
or services with diverse semantics [3]. On the other hand, workflow systems lack func-
tionalities to assess that the specified transactional behavior ensure the required relia-
bility. In our example, if the service OP fails, causing the travel arrangement abortion,
flight and hotel booking should be undone.

3 Transactional Composite Web Services

3.1 Transactional Web Service

A Web service is a self-contained modular program built with XML, SOAP, WSDL and
UDDI specifications that can be discovered and invoked across the Internet ([6,7]). A
transactional Web service is a Web service that emphasizes transactional properties for
its characterization and correct usage.

The main transactional properties of a Web service we are considering are retri-
able, compensatable, pivot [8]. A service s is said to be retriable (sr) if it is sure to
complete after a finite number of activations. s is said to be compensatable (scp) if
it offers compensation policies to semantically undo its effects. Then, s is said to be
pivot (sp) if once it successfully completes, its effects remains for ever and cannot
be undone. A service can combine properties; the set of all possible combinations is
{∅; r; cp; p; (r, cp); (r, p)}.



442 S. Bhiri et al.

Given the transactional properties of a service, a set of operations is available. For
instance, a pivot service has a minimal set abort(), activate(), cancel(), fail(), termi-
nate() allowing respectively its abortion before activation, its activation, its cancellation
during its execution, its failure and its successful termination. A compensatable service
has in addition a compensate() operation for its compensation. A retriable service has a
retry() operation allowing to activate it after each failure.

3.2 Transactional Composite Web Service

A composite Web service is a conglomeration of existing Web services working in
tandem to offer a new value-added service [5]. It coordinates a set of services as a co-
hesive unit of work to achieve common goals. A Transactional Composite (Web) Ser-
vice (TCS) emphasizes transactional properties for composition and synchronization
of component Web services. It takes advantage of services transactional properties to
specify mechanisms for failure handling and recovery. A TCS defines orchestration be-
tween its services using dependencies to specify how services are coupled and how the
behavior of some given services influences the behavior of some others. These depen-
dencies are used to express the relationships (sequence, alternative, compensation,. . . )
between component services. In our proposition, we consider the following dependen-
cies: activation, alternative, abortion, compensation, cancellation, and we distinguish
between activation dependencies and transactional dependencies (compensation, can-
cellation and alternative). More details on dependencies can be found in [9].

3.3 Control Flow and Transactional Flow of a TCS

Distinguishing two classes of dependencies, we separate the TCS control flow and the
TCS transactional flow. The control flow specifies the partial ordering of component
services activations, and it is defined as the set of the TCS activation dependencies.

The Transactional Flow specifies interactions for failures handling and recovery,
and it is defined as the set of its transactional dependencies (compensation, cancellation
and alternative).

Of course, transactional dependencies depend on activation dependencies seman-
tics. Thus, a transactional flow is always defined according to a given control flow.

4 Workflow Patterns

As defined in [10], a pattern “is the abstraction from a concrete form which keeps re-
curring in specific non arbitrary contexts”. A workflow pattern [11] can be seen as an
abstract description of a recurrent class of interactions based on activation dependen-
cies. For example, the AND-join pattern (see figure 2.b) describes an abstract services
orchestration by specifying services interactions as follows: a service is activated after
the completion of several other services. Thus, a pattern explicitly defines activation
dependencies (i.e. the control flow) of a given set of services.

In this paper, we put emphasis on the following three patterns: AND-split, AND-join
and XOR-split1. Figure 1 illustrates the patterns AND-split applied to (CRS, HB, FB),
AND-join applied to (HB, FB, OP), and XOR-split applied to (OP, TDFE, TDU).

1 Our approach also considers the following list of patterns: sequence, AND-split, OR-split,
XOR-split, AND-join, OR-join, XOR-join and m-out-of-n [11].



Transactional Patterns: Combining Workflow Flexibility and Transactional Reliability 443

HB: Hotel
Booking

FB: Flight
Booking

CRS: Customer
Requirements
Specification

A
N
D

HB: Hotel
Booking

FB: Flight
Booking

OP: Online
Payment

A
N
D

OP: Online
Payment

TDFE: Tickets
Delivery with

FedEx

TDU: Tickets
Delivery with

UPS

X
O
R

Control flow

Compensation

Cancellation

Alternative

a) b)

c)

Fig. 2. AND-split, AND-join, and XOR-split patterns and their corresponding potential depen-
dencies

We argue that once defined, a workflow pattern implicitly defines a new class of
dependencies, called potential transactional dependencies, i.e. a set of dependencies
not initially defined by the pattern, and that can be used/added in order to tailor (or
modify) the control flow (see figure 2). In fact, these dependencies are directly related
to the semantics of the activation dependencies of the pattern.

5 Web Services Composition Using Transactional Patterns

5.1 Transactional Patterns

Given the transactional properties of a service, and a workflow pattern for a composite
service, we are able to deduce a new pattern, called a transactional pattern, that will be
used to specify both the control and transactional flows. The control flow is inherited
from the workflow pattern (i.e. the activation dependencies), while the transactional
flow is specified using a set of transactional dependencies for managing alternatives,
compensation, or cancellation.

From a transactional pattern, one can define several transactional pattern instances
which are the application of a transactional pattern to a given set of services, and where
the transactional dependencies of the instance is a subset of the set of transactional
dependencies of the transactional pattern. For instance, on figure 2.c, a designer may
choose to keep the alternative dependency for the delivery, while another may choose
the compensation dependency. The choice depends not only on the designer, but also
on the transactional properties of the compenent services.

5.2 Composition

Transactional patterns are interesting to compose a set of Web services to obtain a
transactional composite service (TCS) which is reliable from an execution point of



444 S. Bhiri et al.

view. Thus, we specify a TCS as a set of transactional patterns instances connected
together (sharing some component services). Figure 3 shows how we can specify the on-
line travel arrangement service using the following transactional patterns composition:
TransAND−split(CRS, HB, FB), TransAND−join(HB, FB, OP), TransXOR−split(OP,
TDFE, TDU).

However, connecting a set of transactional patterns instances can lead to a control
flow and/or a transactional flow inconsistencies. For instance, control consistency prob-
lem can raise when instances are disjoined (no shared services allowing to connect the
instances) or when an XOR-split instance is followed by an AND-join instance. Likewise,
transactional inconsistency can raise when a component service fails, causing the entire
TCS abortion, with remaining effects of the partial execution. For example, if we sup-
pose that OP is not retriable (it can fail) in the TCS defined in figure 3, this means that
FB should be compensated in order to be sure that it does not exist a remaining effect (a
flight is booked) after the abortion of the TCS. This implies that it exists the compensate
transactional dependency between OP and FB, and that FB is compensatable.

To manage these problems, we define a TCS as valid if it ensures both the control
flow consistency and the transactional flow consistency. In order to guarantee the reli-
ability of the TCS, we are using a set of rules to check both the control flow and the
transactional flow consistency. These rules are described in [9]. Briefly summarized,
the algorithm we are using is as follows:

1. after a component service failure, we are looking for an alternative dependency, if
it exists,

2. after a composite service failure, we try to compensate what can be compensated
given the transactional properties of the component services,

3. after a composite service failure, we cancel all the current executions of the TCS.

In order to compute the transactional consistency, we need not only these rules, but
also the transactional properties of each service introduced in 3.1. Thus, there are two
ways to use our approach. The first one is to fix the transactional dependencies for the
TCS, and to compute what are the possible transactional properties of the component
services. The second one is to choose a set of services and the transactional patterns,
and to detect the transactional inconsistencies.

HB: Hotel
Booking

FB: Flight
Booking

CRS: Customer
Requirements
Specification

OP: Online
Payment

TDFE: Tickets
Delivery with

FedEx

TDU: Tickets
Delivery with

UPS

Compensate
A
N
D

A
N
D

X
O
R

Activate

TransAND-Split
TransAND-Join

TransXOR-Split

Fig. 3. A TCS is defined as a composition of a set of transactional patterns instances



Transactional Patterns: Combining Workflow Flexibility and Transactional Reliability 445

6 Conclusion

In this paper, we propose a solution to ensure reliable and flexible a Web service com-
position. The main idea of our approach is to combine workflow flexibility and trans-
actional processing reliability. We introduce an extension of workflow patterns, the
transactional patterns, which can be seen as a convergence concept between work-
flow systems and transactional models to easily define flexible and reliable composite
Web services. Then, we propose a set of rules in order to avoid inconsistencies which
can result from the composition of the patterns.

Acknowledments. The authors would like to thank Walid Gaaloul for the fruitful dis-
cussions we had during the writing of this paper.

References

1. A. Elmagarmid. Transaction Models for Advanced Database Applications. Morgan-
Kaufmann, 1992.

2. G. Alonso, D. Agrawal, and A. El Abbadi. Process Synchronisation in Workflow Manage-
ment Systems. In 8th IEEE Symposium on Parallel and Distributed Processing (SPDS’97),
New Orleans, Louisiana, October 1996.

3. Nektarios Gioldasis and Stavros Christodoulakis. Utml: Unified transaction modeling lan-
guage. In Proceedings of the 3rd International Conference on Web Information Systems
Engineering, pages 115–126. IEEE Computer Society, 2002.

4. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: models, methods and
tools. Cooperative Information Systems. MIT Press, 2002.

5. B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. Elmagarmid.
Business-to-business interactions: issues and enabling technologies. The VLDB Journal,
12(1):59–85, 2003.

6. Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi, and San-
jiva Weerawarana. Unraveling the web services web: An introduction to soap, wsdl, and
uddi. IEEE Internet Computing, 6(2):86–93, 2002.

7. Paulo F. Pires, Mario R. F. Benevides, and Marta Mattoso. Building reliable web services
compositions. In Web, Web-Services, and Database Systems, pages 59–72, 2002.

8. Sharad Mehrotra, Rajeev Rastogi, Henry F. Korth, and Abraham Silberschatz. A transaction
model for multidatabase systems. In ICDCS, pages 56–63, 1992.

9. Sami Bhiri, Olivier Perrin, and Claude Godart. Ensuring required failure atomicity of com-
posite web services. In 14th International World Wide Web Conference, Japan, May 2005.

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995.

11. W. M. P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Workflow Modeling using
Proclets. In O. Etzion and Peter Scheuermann, editors, 5th IFCIS Int. Conf. on Coopera-
tive Information Systems (CoopIS’00), number 1901 in LNCS, pages 198–209, Eilat, Israel,
September 6-8, 2000. Springer-Verlag.



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 446 – 451, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Accelerated Enterprise Process Modeling Through a 
Formalized Functional Typology 

Avi Wasser, Maya Lincoln, and Reuven Karni  

ProcessGene Ltd. 
15303 Ventura Boulevard, Sherman Oaks, CA 91403 

{avi.wasser, maya.lincoln, reuven.karni}@processgene.com  
www.processgene.com 

Abstract. An enterprise process model encompasses a set of business processes 
implemented or to be implemented in the enterprise. As such, it expresses the 
requirements of the organization and thus constitutes a compulsory prerequisite 
for the successful implementation of process-based IT systems such as ERP, 
SCM and CRM. However, there is a lack of an enabling science to guide the 
generation of an individualized process model for a particular enterprise. Con-
ceptually, content based enterprise process modeling – itemizing the processes 
carried out within the enterprise – is based on the assumption of similarity be-
tween enterprises that operate within a given industrial sector, so that a generic 
model should be applicable, with some customization, to all enterprises within 
that sector. Our approach is based upon the premise that enterprises are charac-
terized by their functionalities, rather than by their end products or technolo-
gies. We thus propose a method which enables the functionality of a specific 
enterprise to be defined; and from this definition a unique enterprise process 
model can be generated to constitute a statement of the business processes of 
the enterprise. 

1   Process Modeling: Structural and Content Frameworks 

Modeling the business processes of an enterprise is an essential part of any IT 
development or implementation process [14], [16]. Due to the large number and 
different granularity levels of processes, business process models are most commonly 
described by an hierarchy. An industry common division is into four or five levels 
(demonstrated by a variety of enterprise software vendors and process standardization 
organizations) [8], [9], [12]. As there is no cross industry standard of hierarchal 
structure and terminology of the different levels, the hierarchal nomenclature varies; 
and terms categorizing processes are associated with the various levels.  

The fourth, less detailed layer of business process models enumerates and itemizes 
all the business processes carried out, or intended to be carried out, within the 
enterprise. Modeling in this context channels its focus towards the content layer of 
business process models – which we define as the suite of business processes 
constituting the framework of activity within the enterprise. Few scientific 
publications deal with such content frameworks [6], [11]. On the other hand, they 



 Accelerated Enterprise Process Modeling Through a Formalized Functional Typology 447 

 

have been extensively developed and applied by practitioners such as enterprise 
software vendors, IT integrators, consulting firms, and specialized BPM companies. 
Content models include, for example, SAP’s industry and cross-industry Business 
Solution Maps as depicted by SAP’s proprietary “Solution Composer” and “Solution 
Manager” tools [12], Intentia’s ERM (Enterprise Reference Models) managed by their 
proprietary DB and client [2], and Oracle’s OBM (Oracle Business Models) library 
managed by Oracle’s process flows system [9]. Other, collaborative (yet more 
restricted) content frameworks include Rosettanet [10], which covers a collection of 
B2B processes, and OAGIS [8], which incorporates a set of processes for logistics 
and general business administration demonstrated by predefined XML schemas. 
Within these frameworks the first, second and third layers deal with the categorization 
of the processes included in the process model (or enterprise process suite) at a major 
and main level of aggregation. In the SAP business solution maps, for example [12], 
the top level “solution map” for an industrial sector presents the major processes for 
that industry (about 8), and the corresponding main functions (about 7) for each major 
function. We refer to a top-level categorization map (encompassing the first three 
levels) as a “capstone model”. Presumably, practitioners have developed their process 
repositories on the basis of experience accumulated from implementing IT 
infrastructures in existing industries. This has led to a paradigm whereby these 
content frameworks are accepted as being generic – i.e. typical for each industrial 
sector. However, the existence of many reference models, even for a given sector, 
indicates a lack of scientific systematization in developing such models and raises the 
question as to whether these models have become too restricted or vendor oriented in 
an attempt to create a generic prototype, or reference model. 

Despite these concerns, there is little doubt regarding the practical necessity of 
such business process content frameworks, especially as creating an individualized 
(enterprise specific) process model ab initio is usually complex and daunting. The 
amount of detail (processes, entities and interrelations) is large, and this makes the 
formulation of an enterprise-specific model a challenging, if not cumbersome, task.  

2   Content-Based Process Modeling (CBPM): State of the Art 

Due to the relatively small amount of academic work carried out in the field, we 
mainly rely on the world of practice when describing the state of the art. We define 
content based business process modeling (CBPM) as the itemization of the suite of 
business processes constituting the framework of business activity within a particular 
industrial sector, or, alternatively, within a particular enterprise. CBPM is considered 
a compulsory pre-condition for integration and implementation software projects [14], 
[15] and is usually carried out by ERP/SCM/CRM vendors such as SAP [12], [17]and 
Oracle; system integrators such as EDS, IBM BCS (Business Consulting Services), 
and Accenture; and BPM specific companies such as Staffware, Pegasystems, FileNet 
and others. CBPM is based on the assumption of significant similarity between 
enterprises that operate within a certain industry. Oracle corporation for example, 
offers process flows that cover 19 industrial branches [9]; SAP offers Business 



448 A. Wasser, M. Lincoln, and R. Karni 

 

Solutions for 24 industrial branches [12]; and other ERP/SCM/CRM vendors 
similarly base their business models on a finite set of predefined business processes, 
that comprise fixed [4] “industry-specific” reference models. The industry specific 
templates are introduced to organizations, in order to facilitate a final product in the 
form of a customized, “enterprise specific” organizational business process model [7]. 
This approach assumes a (finite) “universe” of n possible business processes. These 
are allocated to the industrial branches (industries) in a manner that is intended to best 
represent the activity within each sector and constitute the reference models which 
encompass the IT support provided by ERP/CRM/SCM software vendors or BPM 
consultants. When a vendor, integrator or BPM specialist approaches, say, two 
enterprises x, y within a certain industrial branch (such as manufacturing, utilities, 
chemicals, healthcare, consumer goods products) both enterprises are first presented 
with the same reference content model. The next stage is a top-down (or middle-out) 
customization of the reference model, by eliminating unwanted functionalities or 
processes, so as to best cater to the needs of the implementing enterprise. The 
conventional procedure is based on a generic sectorial model: enterprises are 
presented with an integrator or vendor reference model as basis for developing an 
enterprise-specific content model that is aimed to have a high fit with the subsequent 
ERP system. This approach ignores the fact that sectorial classifications reflect the 
end-product of the enterprise, rather than on its modus operandi. For example, both 
Toyota and Aston-Martin would be presented with the automobile industry model, 
although their operations differ significantly. Production, marketing, sales and post-
sales service at Toyota are based on mass production (MtS – make to stock) and 
anonymous clients. Aston-Martin, on the other hand, operates on the basis of MtO 
(make to order) and full recognition of its clients and their requirements. It is clear 
that not only the core production functions differ between these two “automobile” 
organizations. It is safe to assume that also processes such as procurement, sales, 
marketing, service provision and CRM are carried out differently when comparing 
these two cases. This illustrates that focusing on what the enterprise produces (or 
supplies), instead of how this production is carried out, can be misleading and may 
result in inappropriate business process models. Therefore, as opposed to the 
experiential background underlying the scope of a sector-specific suite there seem to 
be little scientific evidence with regard to two basic assumptions: genericity 
(functions and processes are common to all enterprises in that sector) and additivity (a 
complete model can be constructed by combining different functionalities and their 
corresponding processes) of both reference and enterprise models. Moreover, current 
business process modeling projects require the execution of a cumbersome 
customization process that is usually carried out by consultants or implementers 
through a manual process that involves a significant amount of interviews with 
Subject Matter Experts (SMEs) within the organization. This procedure has made 
modeling projects notorious for long duration, high costs (25%-50% of ERP/SCM 
project total cost) and manual intensity [15]. Another concern is that ERP vendors and 
integrators offer a relatively small number of industry specific business process 
models, which provide only partial coverage of industries. SAP, for example, offers 



 Accelerated Enterprise Process Modeling Through a Formalized Functional Typology 449 

 

24 such industry maps [12] and Oracle offers 19 [9]. In contrast, the Israel Central 
Bureau of Statistics (CBS) publishes information regarding 79 industry sectors. 

3   A Functional Approach to CBPM 

Our paper suggests a solution to the above mentioned concerns. Instead of 
determining what organizations are producing and then tagging them according to 
their industrial classification, we determine in a general and then detailed way how 
organizations are operating, so that they are characterized by the processes which they 
implement – i.e. by their functionality. In order to establish the enterprise-specific 
business process suite, we analyze the existing or planned functionalities in the 
enterprise and create an enterprise-specific model. Our approach begins with a 
repository of business processes. It is constructed such that each process (level four in 
the hierarchy) is subsumed under a main process (level three in the hierarchy); and 
each main process is subsumed under a major process (level two) under a process 
category (level one). The current repository is gleaned from a survey of the content 
models published by vendors [12] and process modeling standardization bodies e.g. 
[10] & [8]. The top-down approach to CBPM is then based on two main principles: 
(1) separability: (a particular business process is classified under one main process 
only and a specific main process is classified under one major process only); and (2) 
addivity (as the functionalities and processes are separable, a model is formed from a 
conjunction of major processes, thus main processes, and thus business processes and 
corresponding activity flows). As the converse is not true – that associating a major 
process with the enterprise implies implementation of all its constituent main 
processes, and hence all its constituent business processes and activities – we employ 
an imbedded expert system methodology, based on the probability, assessed by the 
system, that an organization will carry out certain processes or groups of processes. 
This approach enables the quasi-automatic generation of a customized model for the 
enterprise. 

3.1   Generation of Enterprise-Specific Business Process Content Models 

The procedure for generating an enterprise specific model is as follows:  

a) Using an enterprise analyzer in the form of a comprehensive questionnaire, to 
identify the general operational characteristics of the enterprise. 

b) Using a matrix that describes the correlation between operational characteristics 
and business processes that are part of a process repository.  

c) Determining a threshold probability to automatically retrieve those business 
processes, having a probability equal to or greater than the threshold value. 

d) Based on the data accumulated in stages (a) to (c) automatically generate the 
initial content model for the enterprise. 

e) Fine tune the model – usually at the process and activity levels (levels four and 
five) – to ensure that all relevant processes have been included, and unnecessary 
processes eliminated, and that the suggested workflow (order of activities within 
a process) caters the need of the implementing organization. 



450 A. Wasser, M. Lincoln, and R. Karni 

 

4   Conclusion  

We claim that an enterprise must have a process model which faithfully represents 
and supports the “hows” of its particular modus operandi – how the operational aims 
and objectives are to be achieved. Our function-oriented CBPM paradigm contributes 
to this is in the following ways:   

 Both industry-specific and enterprise-specific models can be constructed on the 
basis of a common superset of business processes, and a uniform representation. 

 Its major processes are separable and generic, so that any derived model is 
composed of an additive set of major and main processes and their related 
business processes and activities. 

 Enterprises are differentiated mainly by their industrial functionalities  
Some of the challenges for the next generation of CBPM science include: 

 Improving the predictive capabilities of the model first by extending the 
repository’s representation level, and next by increasing the accuracy of the 
correlation matrix.  

 Adding holonic (real-time) trade-off capabilities triggered by the inclusion or 
exclusion of a certain process or group of processes from a content business 
process model. 

References 

[1] W.M.P. van der Aalst. Three Good Reasons for Using a Petri-net-based Workflow 
Management System. In S. Navathe and T. Wakayama, editors, Proceedings of the 
International Working Conference on Information and Process Integration in Enterprises 
(IPIC’96), pages 179–201, Cambridge, Massachusetts, Nov 1996. 

[2] G. K. Janssens, J. Verelst, B. Weyn. Techniques for Modeling Workflows and their 
Support of Reuse. In  In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, 
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 
of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, Berlin, 2000. 

[3] Intentia Reference Models, http://www.intentia.com/WCW.nsf/pub/tools_index, 2004. 
[4] D. Karagiannis, H. Kühn. MetaModeling Platforms. In: K. Bauknecht; A. Min Tjoa, G. 

Quirchmayer, Editors, Proceedings of the Third International Conference EC-Web 2002, 
volume 2455 of Lecture Notes in Computer Science, page 182. Springer-Verlag, Berlin, 
2002. (full version in http://www.dke.univie.ac.at). 

[5] B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of 
Control Flow in Workflows (Revised version). QUT Technical report, FIT-TR-2002-03, 
Queensland University of Technology, Brisbane, 2002. (Also see http://www.tm.tue.nl 
/it/research/patterns).  

[6] T. W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby, C. 
S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O'Donnell. Tools for Inventing 
Organizations: Toward a Handbook of Organizational Processes. Management Science 
45(3) pages 425-443, March, 1999. 

[7] T. W. Malone, The Future of Work: How the New Order of Business Will Shape Your 
Organization, Your Management Style, and Your Life. Boston, MA: Harvard Business 
School Press, 2004. 



 Accelerated Enterprise Process Modeling Through a Formalized Functional Typology 451 

 

[8] OAGIS. Best Practices and XML Content for Everywhere-to-Everywhere Integration, 
http://www.openapplications.org/, 2004. 

[9] Oracle. Business Models (OBM), http://www.oracle.com/consulting/offerings/  
implementation/methods_tools/, 2004. 

[10] Rosettanet. Lingua Franca for Business, http://www.rosettanet.org/, 2004. 
[11] A.W. Scheer, M. Nüttgens. ARIS Architecture and Reference Models for Business 

Process Management. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, 
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 
of Lecture Notes in Computer Science, pages 376-390. Springer-Verlag, Berlin, 2000. 

[12] SAP. Business Maps and Solution Composer, http://www.sap.com/solutions/ 
businessmaps/composer/, 2004. 

[13] G. Yang. Towards a Library for Process Programming. In W.M.P. van der Aalst, A.H.M. 
ter Hofstede, and M. Weske, editors, BPM 2003, volume 2678 of Lecture Notes in 
Computer Science, pages 120-135. Springer-Verlag, Berlin, 2003. 

[14] C.P. Holland, B. Light, A critical success factors model for ERP implementations, IEEE 
Software 16 (1999) 30–35. 

[15] B. Light, The maintenance implications of the customization of ERP software, J. Software 
Maintenance: Res. Practice 13 (2001) 415–429. 

[16] M. Krumbholz, N. Maiden, The implementation of enterprise resource planning packages 
in different organizational and national cultures, Inf. Systems 26 (2001) 185–204. 

[17] J. Ghosh, SAP Project Management, McGraw-Hill, New York, 2000. Eng. 41 (2000) 
180–193. 



 

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 452 – 457, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Introducing Business Process into Legacy 
Information Systems 

Marcos R.S. Borges1,#, A.F. Vincent1, Mª Carmen Penadés2, 
 and Renata M. Araujo1,3 

1 Graduate Program in Informatics, Federal University of Rio de Janeiro, Brazil 
mborges@nce.ufrj.br, andre.vincent@mba.berkeley.edu 

2 Department of Computer Science (DSIC), Technical University of Valencia, Spain 
mpenades@dsic.upv.es 

3 Department of Applied Informatics, Federal University of the Rio de Janeiro State, Brazil 
renata@nce.ufrj.br 

Abstract. The majority of legacy information systems running today were built 
without adopting a business process approach. In these systems, the control 
over the execution of the process activities is partial, leaving out all those 
activities that have not been automated. Moreover, the activities that constitute 
the process are not formally interconnected, causing loss of the overall business 
process context. This paper presents a method for gradually integrating the 
underlying business processes supported by these systems, without disrupting 
the automation they already support. The method is particularly attractive for 
legacy systems that are expected to last a long time and whose redevelopment 
costs are high. 

1   Introduction 

Many organizations have invested in a new approach for the development of 
information systems that is based on business process analysis [7] [9]. There are, 
however, many information systems that were developed before this new approach 
became popular and which are still fully operational [8] [10]. They are called legacy 
systems. They remain in operation because they provide the functionality needed and 
their redevelopment requires a significant investment [8]. On the other hand, these 
systems do not provide an explicit view of the underlying processes. In general, a 
legacy system supports some of the activities of the associated process, but without 
explicitly establishing the order of these activities (the process).  

Being aware of the best practices in new product development is one issue, but 
implementing these approaches in a company to reduce time to market is a different 
one [2]. Unless the entire company accepts the new working methods, improvements 
may not be achieved [5]. Therefore, regardless of strong recommendations against 
this practice [7] [9], many information systems have been and continue to be 
developed focusing only on the activities they automate. This still occurs in spite of 
the strong methodological support and tools that are now available [6]. The reasons 

                                                           
# On sabbatical leave at DSIC-Technical University of Valencia, Spain. 



 Introducing Business Process into Legacy Information Systems 453 

 

behind this attitude are mainly cultural, but lack of training and scepticism about the 
return on investment are also strong. How should these barriers be overcome? Can the 
preservation of legacy systems and the business process approach be combined? A 
revolutionary approach is an alternative, but past experience indicates a high rate of 
failure when the organization is not culturally prepared. 

This paper presents an alternative for introducing a business process culture while 
preserving the legacy systems with minimum changes. The redevelopment of new 
systems is delayed until the process approach has been assimilated by the 
organization. The method aims at preserving the existing systems while introducing 
the process culture. Our approach will reduce resistance within the organization and 
make it better prepared for future developments. It is important to emphasize that we 
believe that an effective approach to business architecture is very much needed and 
must include an integrated and seamless method of business engineering and software 
development [7]. We are simply proposing an alternative for those organizations that 
are not yet prepared to move towards a revolutionary approach. This is particularly 
true in small and medium-sized enterprises in which the benefits of a business process 
approach may differ significantly from their large enterprises [5]. 

The hypothesis of this work is that it is always possible to identify a subset of 
processes and integrate it with the existing information systems. This partial 
integration will generate some limited but important benefits that are associated with 
the business process approach. The most relevant problems caused by the absence of 
an explicit process-centric system development are: the difficulty that users have in 
evaluating the impact of their decisions and activities on the organization as a whole, 
because they don’t know the entire process [4]; the lack of process monitoring, that 
difficulty to identify opportunities for improvement; the control of manual activities; 
the absence of documentation for training of a new professional, because most 
knowledge about the organization’s processes is tacit.  

The method proposed in this paper integrates activities that are supported by legacy 
systems and business process activities. It is not a method aimed at supporting the 
development of new information systems based on a business process definition. 
Several initiatives on this direction already exist [3] [12]. Our proposal preserves the 
existing systems while introducing an integrated view of the business process. This 
approach extends the life of successful systems and, at the same time, prepares the 
organization for the business process approach. 

The rest of this paper is organized as follows. Section 2 describes our evolutionary 
approach. Section 3 presents the method for transforming legacy systems into a 
process support system; the first phase of our approach. Finally, Section 4 presents the 
conclusions of the paper.    

2   The Proposed Approach and Method 

In order to promote the integration between business process and legacy systems, first 
it is necessary to identify the processes and their activities. Some of these activities 
are manual, i.e., they are not automated by the legacy systems. Others are either 
totally or partially embedded in the legacy system. Our approach proposes the 
 



454 M.R.S. Borges et al. 

 

 

Fig. 1. Summary of the evolutionary phases 

modeling of theses processes and the implementation of their control by a Workflow 
Management System (WfMS) [13]. Although this is similar to a process-centric 
approach for new development, there are some significant differences. First, the 
processes are modeled and implemented as they are. Second, the WfMS is not in 
control of all activities. The workflow will receive notification from the system for 
automated activities, but it will not control them. Finally, in our approach, we keep 
the initial system changes to a minimum; they are performed gradually as activities 
are moved to the control of the WFMS. 

The complete evolutionary approach is summarized in Figure 1. Figure 1a 
represents the typical situation found in legacy systems. There is neither a workflow 
tool nor an explicit process representation. The process transactions are implemented 
in one or more systems. Users interact directly with the system interface. Figure 1d, 
on the other hand, represents what we consider to be an ideal situation. Processes are 
explicitly defined. The WfMS controls the process execution, and users interact 
directly with its interface. Whenever needed, the WfMS invokes an application, and 
the user interacts directly with it.  

The situation depicted in Figure 1a is quite different from the one depicted in 
Figure 1d. Moving from the typical to the ideal situation is not an easy task. In our 
evolutionary approach, we keep the current applications and introduce the business 
process approach gradually. We distinguish two phases.  

The first phase (Figure 1b) requires the introduction of a WfMS to control selected 
processes. The manual activities of theses processes are controlled directly by the 
WfMS, but those activities that are performed through the system are not under the 



 Introducing Business Process into Legacy Information Systems 455 

 

control of the WfMS. In this case, in order to proceed to the next step, the WfMS 
must be notified by the system upon completion of the activity. This is the change 
required in the legacy system and, in general, is very simple to perform. The system 
operations that are not involved in the process are not affected.  

The second phase (Figure 1c) is the transfer of control of some automated activities 
to run under the WfMS. The goal of this transfer is to move all activities that are 
embedded in a subprocess. The user does not have to interact with both the WfMS 
and the system for the same subprocess. Parts of the application will need to be 
redeveloped. With the continuity of the replacement procedure, the workflow will 
gradually take control of all the process activities. At the same time, the legacy 
system will reduce its routing function.  

3   The Transformation Method 

The method to support the evolutionary approach consists of a set of steps which are 
carried out by development teams. These teams are composed of specialists playing 
roles that are different from the typical system development process. The teams are: 
Project Committee, Users Team, Systems Team, WfMS Team and Process Team.  
Legacy Organization represents that all the teams are working together. The Project 
Committee should follow the project as a whole (defining the project goals, providing 
the necessary resources and following its development). The Users Team should 
provide the information about the current system and use the new function. The 
Systems Team should provide information about the system architecture and perform 
the changes required by the new approach. The WfMS Team should select the 
Workflow technology, translate the process models into workflow models, and 
configure the WfMS. Finally, the role of the Process Team is to elicit the processes 
and to represent them in a model. 

Figure 2 shows an overview of the first phase of the proposed method. The initial 
definitions made by the Project Committee refer to the scope and duration of the 
project, the priority areas and processes involved, the configuration of the teams, and 
the systems affected. Once these definitions are available, the other teams can start 
working. The Process Team can elicit the business processes selected. The process 
elicitation should identify the flow of all activities, both manual and automated and 
should not be based on the system functions. The Users Team should evaluate the 
impact the workflow control will generate on the business activities. The procedure 
changes and the need for training are part of this impact analysis. The System Team 
should perform an analysis on the complexity of the legacy system functions which 
serve as the basis for estimating the costs required to perform the system changes.  

With all the previous data at hand, all the teams can define an implementation 
strategy. The strategy should define the process and the activities affected by the first 
phase of the project, estimate the cost to perform these changes, and, include an 
impact and a risk analyses. This strategy will probably require approval from the 
executive board. If it is not approved, the scope of the project should be reduced. 

After approval, the next three steps can be performed at the same time. The Process 
Team can elicit in detail the processes involved; the System Team can define in detail 
 



456 M.R.S. Borges et al. 

 

 

Fig. 2. Overview of the proposed method activities 

the changes required in the legacy system; and the Workflow Team will have the 
elements to choose the workflow technology that will support the process control. 

The Workflow Team translates the process model generated by the Process Team 
to a workflow model. Unfortunately, this translation is not always straightforward as 
the modeling tools of workflow systems are not capable of representing all business 
situations. Actually, the richness of the model supported by the Workflow tool should 
be an important element in selecting workflow technology. The user training and the 
system changes can also be performed at the same time [1]. 

Finally, when all pieces have been completed, it is time to put them together and 
simulate the process as a preparation for the new environment. It is important to check 
the correct interaction between the legacy system and the WfMS and to check if the 
business processes are supported as expected.   

These steps can be repeated as many times as necessary until all the target 
processes have been integrated. The reaction of the users should be followed very 
closely as it will help support the decision to invest in a new process-driven system. 
We expect, however, that if the legacy system is running well, it will be redeveloped 
only if new functions are required.  

4   Conclusions 

This paper has presented an alternative to the revolutionary approach for introducing 
the BPM approach with new information systems development. For organizations 
with a high investment in legacy systems and which show signs of resistance to a BP 
approach, we suggest an evolutionary approach where business processes are 
introduced gradually with minimum change in existing systems. We consider that this 
will postpone the investment in system redevelopment and will increase the chances 
of success when complete process redefinition occurs. The alternative is described in 
the form of a method with a description of its activities and the roles played by the 



 Introducing Business Process into Legacy Information Systems 457 

 

specialists in charge of them. We believe that this method can be applied with simple 
adaptations to many organizations where legacy systems play an important role. 

A pilot experiment has been performed in a software company [11]. We carried out 
the first part of the method by adapting the existing systems to report their activities to 
a WfMS that was based on a process model designed by the process team. The results 
were in keeping with those predicted by our approach. 

Acknowledgements. We would like to thank the CICYT (Project DYNAMICA-
PRISMA TIC2003-07776-C02-02) for partial funding of this work. Marcos R.S. 
Borges was partially supported by a grant from the “Secretaria de Estado de 
Educación y Universidades” of the Spanish Government. 

References 

1. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow 
Patterns, Distributed and Parallel Databases, 14:1 (2003) 5-51 

2. Aversano, L., Canfora, G., De Lucia, A., Gallucci, P.: Business process reengineering and 
workflow automation: a technology transfer experience, Journal of Systems and Software 
63:1 (2002) 29-44 

3. Baresi, L. et al.: WIDE Workflow Development Methodology. In: International Joint 
Conference on Work activities Coordination and Collaboration. San Francisco, USA. 
(1999) 

4. Borges, M.R.S., Pino, J.A., Araujo, R.M.: Bridging the Gap between Decisions and their 
Implementations, In: Lecture Notes in Computer Science 3198 (2004) 153-165 

5. Dwyer, T. Revisiting the Process-centric Company. BPM Institute (2004) 
http://www.bpminstitute.org/article/article/revisiting-the-process-centric-company.html 

6. Fingar, P.: Component-based frameworks for e-commerce. Communications of the ACM. 
43:10 (2000) 61-66 

7. Jacobson, I., Ericsson, M., Jacobson, A.: The Object Advantage – Business Process 
Reengineering with Object Technology. USA. Addison Wesley  (1994) 

8. Rubinstein, D.: Breathing New Life Into Legacy Systems. Software Development Times: 
News & Top Stories. October (2003)  http://www.sdtimes.com/news/088/story9.htm 

9. Smith, H., Fingar, P.: Business Process Management: The Third Wave. Meghan-Kiffer 
Press (2003) 

10. Ulrich, W.M.: Legacy Systems: Transformation Strategies. Prentice Hall (2005) 
11. Vincent, A.F.: A method to make processes explicit in legacy information systems. M.Sc. 

Dissertation, Graduate Program in Informatics, Federal University of Rio de Janeiro 
(2002) 

12. Weske, M. et al.: A Reference Model for Workflow Application Development Processes. 
In: International Joint Conference on Work activities Coordination and Collaboration. San 
Francisco, USA  (1999)   

13. Workflow Management Coalition: Workflow Client Application (Interface 2) – 
Application Programming Interface (WAPI) Specification – Doc # TC-1009 – Issue 1.1. 
May (1996) 



Spheres of Isolation: Adaptation of Isolation

Levels to Transactional Workflow

Adnene Guabtni, François Charoy, and Claude Godart

LORIA - INRIA - CNRS, BP 239, 54506 Vandouvre-lès-Nancy Cedex, France
{guabtni, charoy, godart}@loria.fr

Abstract. In Workflow Management Systems (WFMSs), transaction
isolation is managed most of the time by the underlying database system
using ANSI SQL strategies. These strategies do not take sufficiently into
account process aspects. Our work consists in studying with more depth
the relation between isolation strategy and process dimension as well as
the real isolation needs in workflow environments. To carry out these
needs, we define ‘spheres of isolation’ inspired from ‘spheres of control’
proposed by C. T. Davies. Spheres of isolation take into account real
workflow isolation needs with separation of concerns between workflow
design and the specification of its transactional properties.

1 Introduction

The specification of transactional constraints in business processes is always
a paramount stake especially in co-operative processes or distributed and com-
posed e-services. In WFMSs, transactions are usually implemented by teh
DBMS. Those systems generally use standard ANSI SQL [1] to define the iso-
lation’s constraints of a transaction. The problem lies in the fact that these
isolation’s constraints cannot always satisfy those of a workflow process. The
process dimension in atomicity has been already analysed in [4] and give more
capabilities to transactional WFMS. Isolation [11] has been already studied in
cooperative process environment in a recent past (Contracts [9] and Coo [6]) but
has never been generalized to workflow processes.

To carry out that problem, we take as a starting point the approach of
‘Spheres of control’ proposed by C.T. Davies in [8]. This approach was re-used
in [4] to introduce spheres of atomicity allowing customised specification of atom-
icity in transactional workflow. We follow the same approach to define spheres
of isolation in order to allow a customized specification of isolation constraints
in transactional workflow. We consider a process as being the concurrent execu-
tion of sets of activities which can have various constraints regarding isolation.
We want to allow the workflow designer to decide on the degree of isolation
necessary for a group of activites. Our approach introduces also a separation
of concerns between process and transactional properties definition. The defini-
tion of the process should reflect the real organization of work in the company.
Transactional properties should reflect technical aspects of the execution and
consistency needs and should not influence the process definition.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 458–463, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Spheres of Isolation 459

In the following sections of the article, we analyze the stakes and needs of
isolation in workflow systems compared to database systems. Next we develop
our approach based on ‘spheres of isolation’ to allow customized isolation in
transactional workflow.

2 Transactions in Workflows: Current Approaches

Advanced transaction models were introduced to enhance transaction support
in WFMSs and provide more flexibility compared to traditional database trans-
actions (ACID). Their implementation in workflows was studied in [2]. These
models included process dimension on transaction management but were focused
mainly on atomicity property. Current implementations of transaction models in
WFMS are so heterogeneous and complex that a real taxonomy of transactional
workflow implementations was defined in [5]. This taxonomy is a representation
of the real practice of transactional properties in WFMSs.

Our approach is to study the real needs of WFMS for isolation properties.
These properties are usually confused with database transactional needs. Atom-
icity needs in WFMS has been already established in [4]. The crucial difference
between these needs and those of database systems is the definition of atomicity
constraints to groups of activities called spheres of atomicity. In the next section,
we perform a similar approach to study the real isolation needs in WFMSs.

3 Isolation Requirements in WFMS

3.1 Isolation Levels in Traditional Transactions

The isolation problem occurs when several transactions access to the same data.
In several information systems, the isolation stake grows when the data used are
accessed by more and more concurrent transactions and increasingly independent
transactions. The problem that occurs in this case is the lack of flexibility of
the isolation strategy. In database systems, isolation is guaranteed via isolation
levels [1]. There are four isolation levels: Read Uncommitted, Read Committed,
Repeateable Read and Serializable. These levels make it possible to provide more
or less undesired phenomena (dirty read, fuzzy read and phantom [1]).

Isolation levels suggested in (ANSI SQL, 1992)[1] were criticized in [3]. How-
ever they are largely used in current databases systems. Other approaches based
on timestamps were studied and are based on optimistic locking systems. Nev-
ertheless, all existing approaches do not express isolation requirements adapted
to transactional workflows. In the next section, we expose what are process di-
mension based isolation requirements in WFMSs.

3.2 Isolation Requirements for Transactional Workflow

Isolation problems are more and more obvious depending on the data visibility.
Indeed, the data used in WFMS were classified in 7 types according to their



460 A. Guabtni, F. Charoy, and C. Godart

visibility according to workflow data patterns[10]. The need of process support
in isolation strategy depends on the workflow data visibility starting at task data
visibility where there is no isolation needs and continue with this order : block,
scope, case, workflow, environment, multiple instance data visibility. Multiple
instance execution [7] produces the highest need of process dimension support.

The goal of our work is to adapt isolation levels to workflow. That becomes
possible if we take into account not only needs of single activities but also needs of
a group of activities of the process (collaborative work, distributed or composed
e-services). We identified two main needs consisting in the control of cohesion
and coherence of a group of activities.

Cohesion means the fact that activities of the same group use the same
reference for data access. Activities can then use data with ensurance that all
of them are using the same version and are seeing only changes made by them.
External activities (not part of the group) that may want to modify the same
data during the execution of the group will not influence the referencial used by
the group. The referential can be seen as a view of data, readable and writable
only by activities of a restricted group.

Coherence of data is another important need. Indeed, a group of activities
usually needs to ensure that the impact of its execution do not introduce some
mistakes or inconsistencies. These inconsistencies are usually due to the use of
temporary or uncommitted data produced by the group.

The coherence concerns the external environment of the group while cohesion
concerns the internal one. Based on these two main needs, we will introduce in
the next section the notion of ‘isolation spheres’.

4 Our Approach: Isolation Spheres

In the last few years, some work has been inspired from the sphere of control
proposed by Davies [8] to enhance expressivity of transactional properties, es-
pecially in [4] where the notion of atomicity sphere has been developed. In our
work, we take the same approach to define ‘spheres of isolation’ as follows:

Definition : An isolation sphere represents a group of activities in a workflow
process working in concurrency on some data. The sphere ensure the cohesion
(constraints on reference data) and the coherence of the sphere refering to con-
current activities or other spheres. The cohesion and coherence constraints allow
a process support in isolation strategy.

All or a part of the data used by sphere activities represents the data that
have to be controlled (data concerned by isolation on which necessary locks need
to be applied). To ensure cohesion and coherence on these data, we introduce
some cohesion levels and some coherence levels. Before introducing these levels
we need to define some notations:

A process (or workflow process) represents tasks called activities and these
tasks are executed following an execution order established throw a control flow
between activities. A sphere is defined as part of a process. In WFMSs, a sphere
is composed of activities of the workflow.



Spheres of Isolation 461

Let S the set of spheres and s ∈ S.
Δs is the set of data concerned by isolation sphere s ∈ S. This set of data is

defined by the workflow designer and is a subset of the data used by the group.
A(s) is the set of activities of s ∈ S.
The state of a data δ changes over time due to activities execution and

takes several values {δ0, δ1, ..., δn} corresponding respectively to several instants
{t0 < t1 < ... < tn}. If the value δi was written by an activity α, we note it δα

i .
We note δα the value validated (committed) of δ written by α.

4.1 Properties of Isolation Spheres

Isolation spheres properties are cohesion and coherence. Cohesion means the fact
that all activities of the sphere have the same view on data they access. The view
represent a reference data that all activities of the sphere will read or update.
External activities updates will not be visible from the sphere view. This com-
mon view represents the basis of cohesion in a group of activities but there are
different possible cohesion levels based on the initial view isolation constraints.
These levels of cohesion are as follows: Let s ∈ S and δ ∈ Δs ,

Level 0 : Read Uncommitted: if an activity of the sphere s reads δ it can
read only max(δs, δα

i ) such as α ∈ A(s) and δs corresponds to the value of δ
read the first time by an activity belonging to the sphere.
Level 1 : Read Committed: if an activity of the sphere reads δ then it can
read only the max(δs, δα

i ) such as α ∈ A(s) and δs corresponds to the validated
(committed) value of δ read the first time by an activity belonging to the sphere.
Level 2 : Repeatable Read: same case of Read Committed except that it is
also concluded that the value of δ is not modified by an activity external to the
sphere as long as the sphere did not finish its execution yet. The end of the
execution of a sphere occurs when all its activities finished their execution.
Level 3 : Serializable: emulates an execution in series of the sphere and its
external environment (activites, spheres or processes). This level ensure a seri-
alisability between the sphere and the external environment of the sphere but
does not ensure a serialisability between the activities of the sphere.

Coherence of sphere represents how activities share their data with their
external environment. Different levels of coherence can be defined as follows:
Level 0 : Atomic coherence: all the values of a data written by the activities
of the sphere are visible outside of the sphere. If an activity α of the sphere
writes δ then all δα

i are visible outside the sphere.
Level 1 : Selective coherence: only the validated values written by the
activities of the sphere are visible outside of the sphere. If an activity α of the
sphere writes δ then only δα is visible outside the sphere.
Level 2 : Global coherence: only the last validated value written by an
activity of the sphere is visible outside. If activities of the sphere s write δ then
only δα is visible outside the sphere, α being the last activity of s to write δ.



462 A. Guabtni, F. Charoy, and C. Godart

4.2 Phenomena Significance in Isolation Spheres Context

The undesired phenomena noted in database systems don’t have the same sig-
nificance when we use isolation spheres. Both cohesion and coherence release
isolation constraints and the significance of each phenomenon differs from a
classic transaction to an isolation sphere as follows:

For a classic transaction χ:
Dirty Read : Read of δα

i and α rollbacks
Fuzzy Read : Read of δα such as δα < δβ

i < δχ

Phantom : Ask for a request and the result is modified during execution by
insertion of new data by another transaction
For isolation Sphere s:
Dirty Read : Read of δα

i such as α ∈ A(s) and α rollbacks
Fuzzy Read : Read of δα such as δα < δβ

i < δs and β /∈ A(s)
Phantom : Ask for a request and the result is modified during execution by
insertion of new data by activity external to the sphere

The control of the two dimensions (cohesion + coherence) makes it possible to
define in a finer way isolation requirements for groups of activities. The choice of
cohesion and coherence levels influences the degree of divergence and the degree
of data exchange flexibility between activities of the sphere and its environment.
Divergence increases from (cohesion3/coherence0) to (cohesion0/coherence2).
Flexibility increases from (cohesion3/coherence2) to (cohesion0/coherence0).

4.3 Advanced Organization of Isolation Spheres: Nested Isolation
Spheres

Activities of a sphere are able to execute without worrying if somebody of the
outside environement will obstruct their work. However it is inevitable to have
requirements on isolation inside the sphere itself. A sphere can then contain
others sub soheres that have different isolation needs. Thus we introduced nested
isolation spheres. A sub sphere ensure its own cohesion and define its coherence
with the immediate top sphere. We think that this kind of organization increases
considerably the expressivity in term of isolation in a transactional workflow.

5 Conclusion and Perspective

In this article, we have focused on isolation in transactional workflow. Exist-
ing approaches use techniques of isolation adapted to databases and not really
to workflow context. We have made a specific adaptation of isolation levels to
transactional workflow increasing expressivity in term of isolation and allowing
process to get rid of long blocking due to database isolation methods. Our study
of the problem revealed that the basic isolation entity in current transactional
workflow systems is the single activity. We have established the importance of
isolation properties for groups of activities. Two main isolation properties have
been established for groups of activities in transactional workflow : Cohesion



Spheres of Isolation 463

and Coherence. Our approach to make these two propeties realizable is based
on ‘Isolation Spheres’ inspired from ‘Spheres of control’.

This work requires to be continued in order to consider several aspects as
the relation between the declaration of isolation spheres and the control flow
governing the workflow, a simple way to easy choose coherence and cohesion
levels, and finally an implementation of ‘isolation spheres’ functionalities must
be carried out in a WFMS in order to validate the feasibility of this approach.

References

1. Ansi x3.135-1992, american national standard for information systems - database
language - sql. November 1992.

2. Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, Mohan Kamath, Roger
Günthör, and C. Mohan. Advanced transaction models in workflow contexts. In
Stanley Y. W. Su, editor, Proceedings of the Twelfth International Conference on
Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana, pages
574–581. IEEE Computer Society, 1996.

3. Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ansi sql isolation levels. In Proceedings of the 1995 ACM SIG-
MOD international conference on Management of data, pages 1–10. ACM Press,
1995.

4. Wijnand Derks, Juliane Dehnert, Paul Grefen, and Willem Jonker. Customized
atomicity specification for transactional workflow. In Proceedings of the Third
International Symposium on Cooperative Database Systems for Advanced Applica-
tions (CODAS’01), pages 140–147. IEEE Computer Society, 2001.

5. Paul W. P. J. Grefen. Transactional workflows or workflow transactions? DEXA,
pages 60–69, 2002.

6. Daniela Grigori, François Charoy, and Claude Godart. Coo-flow: a process tech-
nology to support cooperative processes. International Journal of Software Engi-
neering and Knowledge Engineering - IJSEKE Journal, 14(1), 2004.

7. Adnene Guabtni and François Charoy. Multiple instantiation in a dynamic work-
flow environment. In Anne Persson and Janis Stirna, editors, Advanced Information
Systems Engineering, 16th International Conference, CAiSE 2004, Riga, Lavtia,
volume 3084 of Lectures Notes in Computer Science, pages 175–188. Springer, Jun
2004.

8. Charles T. Davies Jr. Data processing spheres of control. IBM Systems Journal
17(2): 179-198, 1978.

9. Andreas Reuter and Friedemann Schwenkreis. Contracts - a low-level mecha-
nism for building general-purpose workflow management-systems. IEEE Data Eng.
Bull., 18(1):4–10, 1995.

10. Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and W.M.P. van der
Aalst. Workflow data patterns. Technical Report FIT-TR-2004-01, Queensland
University of Technology, Brisbane, Australia, April 2004.

11. Heiko Schuldt, Gustavo Alonso, Catriel Beeri, and Hans-J&#246;rg Schek. Atomic-
ity and isolation for transactional processes. ACM Trans. Database Syst., 27(1):63–
116, 2002.



Verification of SAP Reference Models

B.F. van Dongen and M.H. Jansen-Vullers

Department of Technology Management, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{b.f.v.dongen, m.h.jansen-vullers}@tm.tue.nl

Abstract. To configure a process-aware information system (e.g., a
workflow system, an ERP system), a business model needs to be trans-
formed into an executable process model. Due to similarities in these
transformations for different companies, databases with reference mod-
els, such as ARIS for MySAP, have been developed. The models stored
in such a database can be customized to generate an executable model.
Since these customized models are typically used on an execution level,
it is of the utmost importance that both the reference models and their
customizations are free of erroneous constructs.

In this paper, we analyze a reference model for SAP R/3 that is stored
in the ARIS for MySAP database, and we verify whether it is correct.
Since the model is stored as an Event-driven Process Chains (EPC), we
use a verification approach tailored towards the verification of this lan-
guage to check for errors in the model. We show that using this approach
adds value to a set of reference models, such as ARIS for MySAP, since
modelling errors are discovered at an early stage and can be avoided on
an execution level.

Keywords: Event-driven Process Chains, Verification, SAP, Reference
Models.

1 Introduction

Nowadays, process-aware information systems such as Enterprise Resource Plan-
ning (ERP) [9] systems and Workflow Management (WFM) [1,10] systems are
used to support a wide range of operational business processes. On an opera-
tional level, these systems are often configured on the basis of a process model.
The design of such a process model is a complicated and error prone task. Fur-
thermore, the process models that are designed in difference companies are often
very similar. For this reason, databases with process models for many different
applications have been developed. These databases can be used as a reference
during process design, hence the term reference models.

Together with the business model of a company, a reference model is selected
that best fits the process under consideration. During the process model design
phase, a designer customizes that reference model to fit the business model of
the company. The result of this customization phase is an informal specification
of a process in terms of a customized process model. In the implementation

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 464–469, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Verification of SAP Reference Models 465

phase, this model is used to implement an executable specification for a specific
information system, such as SAP R/3. Since all the steps between selecting a
reference model and producing an executable specification are performed by
humans, errors are likely to be introduced.

The use of reference models does not eliminate the possibility of introducing
errors into the process model. It should, however, assist the designer in such a
way that errors are less likely to be introduced. Therefore, it is of the utmost
importance that the selected reference model is correct. Especially since, usually,
many processes are modelled independently of each other. When considering the
real life processes however, process models are highly dependent. Furthermore,
when errors in process models are implemented in an executable specification in
the implementation phase, they can have severe operational consequences.

To find errors in process models, many authors have developed verification
methods. Basically, all of these verification methods can be used to check whether
a process model is correct, in other words, they can be used to check for correct-
ness of a process model. In this paper, we focus on the correctness of reference
models for a specific information system, SAP R/3. The reference models are
available in the ARIS for MySAP database in the ARIS Toolset, a commercial
product of IDS-Scheer. As a modelling language, the ARIS Toolset uses Event-
driven Process Chains (EPCs) [8,9,14]. We selected SAP R/3, since EPCs are
used in a large variety of systems, including SAP R/3. Moreover, SAP R/3 is
market leader in the field of Enterprise Resource Planning systems. Furthermore,
many verification approaches exist for EPCs. The verification method we chose
looks at verification from a designers point of view and assumes the process
designer to know what he intends to model.

In the remainder of this paper, we take the SAP reference models as a start-
ing point, and use the verification approach presented in [5] as our verification
method. Using this combination, we analyze the “internal procurement” model
and show that this model contains an error. In Section 2 however, we first discuss
related work with respect to the verification of process models. In Section 3 we
describe our domain of analysis: SAP R/3 reference models. Next, in Section 4,
we describe the approach for the verification of these models as implemented in
the ProM framework1, and described in [4,5]. Following this approach we are
able to evaluate the SAP reference models in Section 5. Finally, in Section 6, we
draw some conclusions.

A longer version of the work presented here, including more extensive analysis
results, is available as an internal report [6].

2 Related Work

Since the mid-nineties, a lot of work has been done on the verification of process
models, and in particular workflow models. In 1996, Sadiq and Orlowska [13]
were among the first to point out that modeling a business process (or workflow)

1 See www.processmining.org for details.



466 B.F. van Dongen, M.H. Jansen-Vullers

can lead to problems like livelock and deadlock. In their paper, they present
a way to overcome syntactical errors, but they ignore the semantical errors.
Nowadays, most work that is conducted focusses on semantical issues, i.e. “will
the process specified always terminate” and similar questions. The work that
has been conducted on verification in the last decade can roughly be put into
three main categories, namely “verification of models with formal semantics”,
“verification of informal models” and “verification by design”. In [6] we present
these categories and give relevant literature for each of them.

In this paper, we use the technique presented in [5] that can be seen as a com-
bination of the first two categories. It assumes the designer to be able to decide
whether or not a specification is semantically correct. This technique has been
implemented in the Process Mining (ProM) Framework2, that is able to import
EPCs defined in the ARIS Toolset3 and provides the designer with feedback about
possible problems. Since SAP reference models are available in the ARIS Toolset
format, and the users of these reference models are typically consultants that have
a deep knowledge about the process under consideration, we found this to be the
best approach for the verification of the SAP R/3 reference models.

3 SAP R/3 Reference Models

Several authors researched the area of reference models before, see e.g.
[2,3,7,11,12,15,16,17,18]. In this paper we use the definition of reference models
based on [12]. Furthermore, we use the ARIS for MySAP reference databases,
that contains hundreds of reference models, all modelled as Event-driven Process
Chains (EPCs). These EPCs that can be used in many different situations, from
“asset accounting” to “procurement” and “treasury”. Since we cannot discuss
all these models here, we focus on one of the models, consisting of 12 events, 5
functions and 8 connectors. We analyze this model using the approach described
in [5]. Before we show the result in Section 5, we first briefly introduce this
verification approach in Section 4.

4 Verification Approach

For the verification of the EPCs in our reference model database, we use the
approach described in [5]. This verification approach is tailored towards the
verification of Event-driven Process Chains and it assumes the designer of an
EPC to be able to decide whether or not the EPC is correct. The approach is
implemented in the ProM framework ([4]) and it is freely available for download.

The verification process described in [5] consists of several steps. In the first
step, the designer of the EPC has to provide the tool with all combinations of
initial events that could initiate the modelled process. Using this, the tool calcu-
lates all the possible outcomes of the process (in terms of events that occurred

2 See www.processmining.org for details.
3 See www.ids-scheer.com for information about the ARIS toolset.



Verification of SAP Reference Models 467

A B

e2 e5

e4e3
XX

/\

/\

C D

e
1

/\

Fig. 1. EPC with choice synchronization

A B

e2 e5

X

C

e
1

/\

Fig. 2. EPC with erroneous routing

and have not been dealt with). Then, the tool requires the designer to divide
those outcomes in two groups, the first of which contains all the outcomes that
represent the desired behavior of the process. The second group contains the
undesired behavior.

The tool finally presents the designer with three possible answers. First, an
EPC can be semantically correct. Models that are semantically correct are models
of processes that, when started in any allowed state, will always terminate in one
of the allowed termination states, i.e. all choices can be made locally. Second,
an EPC can be syntactically correct. Syntactically correct EPCs are models of
processes that, when started in any allowed state, will always have the possibility
to terminate in one of the allowed termination states. In other words, not all
choices can be made locally, instead, the execution history limits the available
options. An example of such a construct can be found in Figure 1, where the
choices after functions A and B have to be synchronized in order to allow function
C or D to execute. Finally, an EPC can be incorrect. These models contain
syntactical errors, such as an AND-split followed by an XOR-join or the other
way around. An example of such an incorrect model is shown in Figure 2, where
functions A and B originate from an AND-split, and are later joined by an
XOR-join. As a result, function C will be carried out twice.

5 Verification of the “Procurement” Model

The application of the verification approach presented in Section 4 is based on
a basic assumption: It assumes that the designer of a model has a good under-
standing of the actual business process that was modelled, and he knows which
combinations of events may actually initiate the process in real life. Typically,



468 B.F. van Dongen, M.H. Jansen-Vullers

Fig. 3. Erroneous “Internal Procurement” Fig. 4. Repaired “Internal Procurement”

reference models are used by consultants that do indeed have a good under-
standing of the process under consideration. Besides, they know under what
circumstances processes can start, and which outcomes of the execution are de-
sired and which aren’t. Therefore, the approach seems to be well suited for the
verification of the SAP reference models.

As stated in Section 3 we focus on the “Internal Procurement” model of
the ARIS for MySAP reference model database. We analyzed the model using
the approach presented in Section 4. Surprisingly, the “Internal Procurement”
model contains structural errors. In Figure 3, we show a part of a screenshot of
the verification tool used. It shows part of the EPC in which an AND-split is
later joined by an XOR join. Recall Figure 2, where we have shown that this
is clearly incorrectly modelled. As a result, if this model would not be repaired,
payments could be made for goods that were never received. Obviously, this is
not desirable. In Figure 4 we show the repaired model, i.e. the XOR-join has
been changed into an AND-join. Now, the model is semantically correct, which
means that it can be used in a business environment without problems.

6 Conclusion

In this paper, we only looked at one EPC from the reference model database.
However, using the more extensive results from [6], we can draw two important
conclusions. First of all, it seems that problems are more easily introduced into
larger models than into smaller ones. The reason that we did not find many
problems in low level models can probably be explained by the fact that these
models are typically very small. However, when these models are combined by
higher level models, errors are easily introduced. As we saw in Section 5, these
errors can lead to severe complications, such as invoices being paid for goods
that were never received.

Second, the errors we found with our verification approach were all trivial to
repair. Therefore, we feel that the use of such a verification tool in the early stages



Verification of SAP Reference Models 469

of process modelling, or reference model development would greatly improve the
effectiveness and applicability of these models in later stages.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

2. P. Bernus. GERAM: Generalised Enterprise Reference Architecture and Method-
ology.

3. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Upper Saddle River, 1997.

4. B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool
support. In accepted tool presentation at ATPN 2005, Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2005.

5. B.F. van Dongen, H.M.W. Verbeek, and W.M.P. van der Aalst. Verification of
EPCs: Using reduction rules and Petri nets. In Conference on Advanced Infor-
mation Systems Engineering (CAiSE 2005), Lecture Notes in Computer Science,
pages 372–386. Springer-Verlag, Berlin, 2005.

6. B.F. van Dongen and M.H. Vullers-Jansen. EPC Verification in the ARIS for
MySAP reference model database. BETA Working Paper Series, WP 142, Eind-
hoven University of Technology, Eindhoven, 2005.

7. P. Fettke and P. Loos. Classification of Reference Models - a methodology and its
application. Information Systems and e-Business Management, 1(1):35–53, 2003.

8. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

9. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

10. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

11. M. Rosemann. Application Reference Models and Building Blocks for Management
and Control (ERP systems), pages 595–616. Springer-Verlag, Berlin, 2003.

12. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Lan-
guage. QUT Technical report, FIT-TR-2003-05, Queensland University of Tech-
nology, Brisbane, 2003.

13. W. Sadiq and M.E. Orlowska. Modeling and verification of workflow graphs. Tech-
nical Report No. 386, Department of Computer Science, The University of Queens-
land, Australia, 1996.

14. A.W. Scheer. Business Process Engineering, Reference Models for Industrial En-
terprises. Springer-Verlag, Berlin, 1994.

15. A.W. Scheer. Business Process Modelling. 3rd edition, 2000.
16. L. Silverston. The Data Model Resource Book, Volume 1, A Library of Universal

Data Models for all Enterprises. revised edition, 2001.
17. L. Silverston. The Data Model Resource Book, Volume 2, A Library of Data Models

for Specific Industries. revised edition, 2001.
18. U. Frank. Conceptual Modelling as the Core of Information Systems Discipline

- Perspectives and Epistemological Challanges. In Proceedings of the America
Conference on Information Systems - AMCIS ’99, pages 695–698, Milwaukee, 1999.



Author Index

Andonoff, Eric 120
Anzböck, Rainer 64
Araujo, Renata M. 452

Barros, Alistair 302
Bektaş, Tolga 344
Bhiri, Sami 440
Borges, Marcos R.S. 452
Bouzeghoub, Mokrane 392
Bouzguenda, Lotfi 120
Brown, Ross 205

Çamlıca, Fahri Buğra 344
Charoy, François 458
Cuntz, Nicolas 398
Curia, Rosario 334

Damij, Nadja 380
Damij, Talib 380
Dehnert, Juliane 386
Demirors, Onur 374
Dongen, B.F. van 464
Dumas, Marlon 236, 302
Dustdar, Schahram 64

Fjellheim, Tore 236

Gaaloul, Khaled 440
Gaaloul, Walid 169
Gal, Avigdor 48
Gallucci, Lorenzo 334
Godart, Claude 169, 410, 440, 458
Golani, Mati 48
Gottumukkala, Raju N. 319
Greco, Gianluigi 32
Grigori, Daniela 392
Grossmann, Georg 186
Gruhn, Volker 1
Guabtni, Adnene 458
Guceglioglu, A. Selcuk 374
Guzzo, Antonella 32

Hanachi, Chihab 120
Hee, Kees van 96

Hinz, Sebastian 220
Hofstede, Arthur H.M. ter 302

Jansen-Vullers, M.H. 464

Kara, İmdat 344
Karni, Reuven 446
Khalaf, Rania 364
Kim, Chul Young 416
Kim, Jin Ho 416
Kim, Young Gil 416
Kindler, Ekkart 398
Klawes, Robert 1
Köhler, André 1
Kumar, Akhil 268, 285

Lee, Kangsun 109
Lenz, Richard 354
Lincoln, Maya 446
Liu, Chengfei 17
Liu, Rong 268
Loos, Peter 434

Mendling, Jan 428
Milewski, Allen 137
Milliner, Stephen 236
Milosevic, Zoran 404

Neumann, Gustaf 428
Nüttgens, Markus 428

Orriëns, Bart 422
Özkök, Onur 344

Pakdil, Fatma 344
Park, Sang Chan 416
Penadés, Ma Carmen 452
Peralta, Verónika 392
Perrin, Olivier 410, 440
Pham, Binh 205
Pontieri, Luigi 32
Puhlmann, Frank 153

Reichert, Manfred 252, 354
Reijers, Hajo A. 80



472 Author Index

Ren, Yikai 186
Rinderle, Stefanie 252
Rosca, Daniela 137
Rouached, Mohsen 410
Ruffolo, Massimo 334

Sarshar, Kamyar 434
Schmidt, Karsten 220
Schrefl, Michael 186
Serebrenik, Alexander 96
Sidorova, Natalia 96
Song, Hyung Gi 109
Stahl, Christian 220
Stoute, Michael 137
Streit, Alexander 205
Stumptner, Markus 186
Sun, Dr. Tong 319

Tepfenhart, William 137

Vanderfeesten, Irene 80
Vayssière, Julien 236
Vincent, A.F. 452
Voorhoeve, Marc 96

Wal, Jan van der 96
Wang, Jiacun 137
Wang, Jianrui 285
Wasser, Avi 446
Weber, Barbara 252
Weske, Mathias 153
Wild, Werner 252

Yang, Jian 422
Yang, Yun 17

Zhao, Xiaohui 17
Zimmermann, Armin 386


	Frontmatter
	Research Papers
	Modeling and Analysis of Mobile Service Processes by Example of the Housing Industry
	An Organisational Perspective on Collaborative Business Processes
	Mining Hierarchies of Models: From Abstract Views to Concrete Specifications
	Flexible Business Process Management Using Forward Stepping and Alternative Paths
	Semi-automatic Generation of Web Services and BPEL Processes -- A Model-Driven Approach
	A Human-Oriented Tuning of Workflow Management Systems
	The Price of Coordination in Resource Management
	<Literal>sPAC</Literal> (Web Services Performance Analysis Center): Performance Analysis and Estimation Tool of Web Services
	Specifying Web Workflow Services for Finding Partners in the Context of Loose Inter-organizational Workflow
	An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis
	Using the $\pi$-Calculus for Formalizing Workflow Patterns
	Mining Workflow Recovery from Event Based Logs
	Behavior Based Integration of Composite Business Processes
	Visualization Support for Managing Large Business Process Specifications
	Transforming BPEL to Petri Nets
	Event-Based Coordination of Process-Oriented Composite Applications
	Integrating Process Learning and Process Evolution -- A Semantics Based Approach
	An Analysis and Taxonomy of Unstructured Workflows
	A Framework for Document-Driven Workflow Systems
	Service Interaction Patterns

	Industrial Papers
	Modeling and Assessment of Production Printing Workflows Using Petri Nets
	Process Management in Health Care: A System for Preventing Risks and Medical Errors
	A Pathway for Process Improvement Activities in a Production Environment: A Case Study in a Rework Department
	IT Support for Healthcare Processes
	From RosettaNet PIPs to BPEL Processes: A Three Level Approach for Business Protocols

	Short Papers
	Using Software Quality Characteristics to Measure Business Process Quality
	Business Process Modelling and Improvement Using TAD Methodology
	On the Suitability of Correctness Criteria for Business Process Models
	Service Retrieval Based on Behavioral Specifications and Quality Requirements
	On the Semantics of EPCs: Efficient Calculation and Simulation
	Towards Integrating Business Policies with Business Processes
	A Contract Layered Architecture for Regulating Cross-Organisational Business Processes
	An Effective Content Management Methodology for Business Process Management
	Specification and Management of Policies in Service Oriented Business Collaboration
	Yet Another Event-Driven Process Chain
	Comparing the Control-Flow of EPC and Petri Net from the End-User Perspective
	Overview of Transactional Patterns: Combining Workflow Flexibility and Transactional Reliability for Composite Web Services
	Accelerated Enterprise Process Modeling Through a Formalized Functional Typology
	Introducing Business Process into Legacy Information Systems
	Spheres of Isolation: Adaptation of Isolation Levels to Transactional Workflow
	Verification of SAP Reference Models

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




