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Preface

The Annual Conference of the European Association for Computer Science Logic
(EACSL), CSL 2005, was held at the University of Oxford on 22–25 August
2005. The conference series started as a programme of International Workshops
on Computer Science Logic, and then in its 6th meeting became the Annual Con-
ference of the EACSL. This conference was the 19th meeting and 14th EACSL
conference; it was organized by the Computing Laboratory at the University of
Oxford.

The CSL 2005 Programme Committee considered 108 submissions from 25
countries during a two-week electronic discussion; each paper was refereed by at
least three reviewers. The Committee selected 33 papers for presentation at the
conference and publication in these proceedings.

The Programme Committee invited lectures from Matthias Baaz, Ulrich
Berger, Maarten Marx and Anatol Slissenko; the papers provided by the invited
speakers appear at the front of this volume.

Instituted in 2005, the Ackermann Award is the EACSL Outstanding Dis-
sertation Award for Logic in Computer Science. The award winners for the in-
augural year, Miko�laj Bojańczyk, Konstantin Korovin and Nathan Segerlind,
were invited to present their work at the conference. Citations for the awards,
abstracts of the theses, and biographical sketches of the award winners are at
the end of the proceedings.

I thank the Programme Committee and all the referees for their work in re-
viewing the papers; Jolie de Miranda for her sterling work as editorial assistant;
the other members of the local organizing team (William Blum, Matthew Hague,
Andrzej Murawski and Sam Sanjabi), as well as many other Computing Lab-
oratory colleagues who helped in various ways, for arranging the event itself;
the organizers of CSL 2004; Andrei Voronkov, whose EasyChair system greatly
facilitated the handling of submissions and reviews; and the British Logic Col-
loquium for financial support for a number of student bursaries.

Finally, I thank Merton College and the Computing Laboratory, which pro-
vided both financial support and much time from their staff.

June 2005 Luke Ong
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XML Navigation and Tarski’s Relation Algebras

Maarten Marx

Informatics Institute, Universiteit van Amsterdam
The Netherlands

Navigation is at the core of most XML processing tasks. The W3C endorsed nav-
igation language XPath is part of XPointer (for creating links between elements
in (different) XML documents), XSLT (for transforming XML documents) and
XQuery (for, indeed, querying XML documents). Navigation in an XML docu-
ment tree is the task of moving from a given node to another node by following a
path specified by a certain formula. Hence formulas in navigation languages de-
note paths, or stated otherwise binary relations between nodes. Binary relations
can be expressed in XPath or with first or second order formulas in two free
variables. The problem with all of these formalisms is that they are not compo-
sitional in the sense that each subexpression also specifies a binary relation. This
makes a mathematical study of these languages complicated because one has to
deal with objects of different sorts. Fortunately there exists an algebraic formal-
ism which is created solely to study binary relations. This formalism goes back
to logic pioneers as de Morgan, Peirce and Schröder and has been formalized by
Tarski as relation algebras [7]. (Cf., [5] for a monograph on this topic, and [8]
for a database oriented introduction). A relation algebra is a boolean algebra
with three additional operations. In its natural representation each element in
the domain of the algebra denotes a binary relation. The three extra operations
are a constant denoting the identity relation, a unary conversion operation, and
a binary operation denoting the composition of two relations. The elements in
the algebra denote first order definable relations. Later Tarski and Ng added the
Kleene star as an additional operator, denoting the transitive reflexive closure
of a relation [6].

We will show that the formalism of relation algebras is very well suited for
defining navigation paths in XML documents. One of its attractive features is
that it does not contain variables, a feature shared by XPath 1.0 and the regular
path expressions of [1]. The connection between relation algebras and XPath
was first made in [4].

The aim of this talk is to show that relation algebras (possibly expanded
with the Kleene star) can serve as a unifying framework in which many of the
proposed navigation languages can be embedded. Examples of these embeddings
are

1. Every Core XPath definable path is definable using composition, union and
the counterdomain operator ∼ with semantics ∼R = {(x, x) | not ∃y : xRy}.

2. Every first order definable path is definable by a relation algebraic expression.
3. Every first order definable path is definable by a positive relation algebraic

expression which may use the Kleene star.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 1–2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Maarten Marx

4. The paths definable by tree walk automata and certain tree walk automata
with pebbles can be characterized by natural fragments of relation algebras
with the Kleene star.

All these results hold restricted to the class of finite unranked sibling ordered
trees. The main open problem is the expressive power of relation algebras ex-
panded with the Kleene star, interpreted on this class of models. Is this formalism
equally expressive as binary first order logic with transitive closure of binary for-
mulas? Whether the latter is equivalent to binary monadic second order logic
is also open [2, 3]. So in particular we do not know whether each regular tree
language can be defined in relation algebras with the Kleene star.

References
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Verification in Predicate Logic with Time:
Algorithmic Questions

Anatol Slissenko1,2,�

1 Laboratory for Algorithmics, Complexity and Logic, University Paris-1, France
2 Dept. of Informatics, University Paris-12

61 Av. du Gén. de Gaulle, 94010, Créteil, France
slissenko@univ-paris12.fr

Abstract. We discuss the verification of timed systems within predicate
logics with explicit time and arithmetical operations. The main problem
is to find efficient algorithms to treat practical problems. One way is
to find practically decidable classes that englobe this or that class of
practical problems. This is our main goal, where we concentrate on one
approach that permits to arrive at a kind of small model property. We
will also touch the question of extension of these results to probabilistic
systems that will be presented in more detail elsewhere.

1 Introduction

Even not so long ago testing was the main, uncontestable practical method of
program validation [14, 16]. Though the foundations of testing pose interesting
theoretical problems, the field of theoretical footing of the testing process re-
mains, in some way, secondary with respect to the development of foundations
of verification, that is regrettable. We mention this question, that is out of the
scope of the present text, because it is clearly related to the concept of ‘small
model property’ whose particular realization will be discussed below.

Nowadays the verification, one of the activities aimed at software validation,
is gaining ground. Verification based on model checking becomes more and more
widespread. Logic based verification, though less represented in conference activ-
ities, is of growing importance. The both approaches have their success stories.
Their advantages and disadvantages are well known.

Verification presumes that, given a requirements specification ΦReq and a
program specification ΦPrg, we have to prove that ΦPrg verifies ΦReq . And “to
prove” involves some logic.

Suppose that a sufficiently expressible logic is at our disposal. Denote by
ΦRuns a formula representing the runs (executions) of our program. We may
suppose that we have some notion of time (here we speak about ‘physical’ time)
represented by a linearly ordered set T, and every run is a mapping from T
to an interpretation of the vocabulary of our program. “Formula ΦRuns repre-
sents runs” means that every model of this formula is a run of the program,
� Member of St Petersburg Institute for Informatics, Russian Academy of Sciences,

St-Petersburg, Russia

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 3–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



4 Anatol Slissenko

and inversely. Requirements usually consist of two parts (see, e.g., [16]), namely,
requirements on functioning (e.g., safety, liveness) and a description of the en-
vironment where our program works – this part of requirements can be also
viewed as a part of the description of the set of runs. We will denote a formula
representing the environment by ΦEnv and a formula describing the demands
on functioning by ΦFunc. Formula ΦEnv may describe properties that restrict
the types of input signals or may relate the input and output signals to some
functions introduced for the user convenience.

The most essential part of the verification problem can be formulated as
proving the formula F=df ((ΦRuns ∧ ΦEnv) → ΦFunc). But this is not all. An
important property to prove, without which proving Φ may become trivial, is
that the program has a run for each input. If a program has no runs at all then
any property of its runs is true. For a control program, the existence of runs
means that for any input signal that satisfies ΦEnv, the program computes an
output. This is a second-order property, as it is formulated in terms of second
order quantifiers over input/output signals, and each signal in this context is a
function of time. The verification literature rarely mentions this problem.

The formula ΦRuns is relatively easy to get, even automatically, from a pro-
gram specification written in a language with a rigorous semantics. As for ΦEnv

and ΦFunc, it is harder and usually demands some abstractions. The more pow-
erful is our formal language of verification, the easier is the task.

Having arrived at F we can start the verification using proof search proce-
dures or other ones, e.g., decidability or quantifier elimination algorithms. This is
a logic based approach. Model checking approach usually demands to construct
simplified abstractions of the set of runs and that of requirements. It may be la-
borious. The advantage is in many practical automatic tools that can be applied
thereafter. But the results are much more relative than in the case of logical
proof, even a found error may happen to be an error in the chosen abstraction.

The methodological disadvantage of the existing model-checking approaches
is in enormous number of logics to (partially!) model the requirements and in a
big amount of formalisms to model the programs.

Since a longtime one can see a trend of convergence of the both approaches,
and we discuss one way to go in this direction.

We are interested in the verification of timed systems whose specification
involves arithmetical operations and parameters. The parameters may represent
abstract time constants, the number of processes etc. These just mentioned two
types of parameters are often used in high level specifications.

We will mainly speak about continuous time, though many of our methods
work also for discrete time. Continuous time will be represented by non negative
reals, and discrete time – by natural numbers. For some systems, like real time
controllers, some protocols, continuous time is more intuitive. Notice that in our
reasoning about programs we always use time, and often continuous one. The
unpleasant feature of algorithms with continuous time is that it is not so easy
to find a mathematically precise definition of their semantics. For the present
there is no ‘universal’ semantics that works in all situations relevant to practical
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verification. A detailed discussion of algorithms with continuous time can be
found in the special issue of Fundamenta Informaticae, 2004, vol. 69.

Moreover, algorithmics of arithmetics over continuous time is simpler that
that of discrete time. The known worst-case complexity bound for the theory
of real addition is exponentially better than the one for the theory of integer
addition (Presburger arithmetic). For the theory of real addition and multipli-
cation (Tarski algebra) these bounds, that are the same as for the theory of real
addition, are even ‘infinitely’ better than those for the theory of integer addi-
tion and multiplication (formal arithmetics) that is undecidable, and even not
enumerable.

The approach that will be presented embeds all the specifications into a spe-
cial type of predicate logic that will be called FOTL (First Order Timed Logic).
Such a logic takes a theory that represents necessary mathematical functions and
that has ‘good algorithmic properties’, and extends it with abstract functions
needed to describe our systems. ‘Good algorithmic properties’ means decidabil-
ity, quantifier elimination or simply practically efficient algorithms to deal with
it. We will mainly speak about theories that have quantifier elimination algo-
rithms.

FOTL turns to profit the quantifier elimination for the theories we use. This
procedure provides a quantifier-free description of counter-models (of a given
complexity) when the verification formula is not true – a property highly ap-
preciated in the verification domain, as counter-models help to identify errors.
Moreover, if the verification formula contains parameters for reals, this proce-
dure returns a description of the scope of parameters for which the formula is
true, or the ‘forbidden parameters’ for which it is false.

On the basis of FOTL we describe classes of verification problems that are
not only decidable, but have the mentioned property of a quantifier-free de-
scription of counter-models. These classes are described in terms of what we call
finiteness properties: finite refutability and finite satisfiability. The properties re-
lated to the functioning of a program, like safety or liveness, are usually finitely
refutable: if there is a counter-model for such a property then the contradiction
is concentrated on a small piece of this counter-model. For example, consider a
distributed algorithm with N processes, and a property R(t, p) that says that
at moment t a particular event (R-event) occurs in p. We can express that “an
R-event cannot be absent in the same process for a duration greater than d” by
the formula

∀ p¬∃ t ∃ t′
(

(t′ − t) > d ∧ ∀ τ ∈ [t, t′)¬R(τ, p)
)
. (1)

This formula (1) is an example of ΦFunc. If the property (1) is false then there
is a process p0 and 2 time instants t0 and t1 such that(

(t1 − t0) > d ∧ ∀ τ ∈ [t0, t1)¬R(τ, p0)
)
. (2)

So whatever be the behavior of processes different from p0 or whatever be the
behavior of p0 at other time instants, the property will remain false. Hence,
the ‘core’ of the counter-model is concentrated on a piece of interpretation of
complexity O(1).
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A more complicated finiteness property concerns the behavior of programs.
It is called finite satisfiability. Its simpler version [8] looks as follows. Take a
run and some finite partial sub-run in it. Finite satisfiability means that we can
extend this partial sub-run to a total finite run with a controlled augmentation
of complexity.

In general this property is false even for rather simple timed systems, for
example for timed automata [1] as shown in [7]. However, for practical systems
we often have this property or the more general one [6]. This more general finite
satisfiability property deals with runs that have a finite description involving
infinitely many time intervals. It says that if we take a run and some finite
partial sub-run in it, then we can extend this partial sub-run to a run consisting
of ultimately repetitive pieces with a controlled augmentation of complexity. We
will describe this property in section 4.

Combining both properties, namely finite refutability and finite satisfiabil-
ity, we define a decidable class of implications

(
Φ → Ψ

)
, where Φ is finitely

satisfiable and Ψ is finitely refutable with a fixed complexity. The verification
formulas from these decidable classes can be efficiently reduced to quantifier-free
formulas that describe all counter-models of a given complexity, and we know
that if a counter model exists then there is a counter-model of this complexity.
This is our finite model property, though it is better to speak about bounded
complexity model property, as the models we consider are not finite.

FOTL permits to describe rather directly (see [3, 4, 8]) the runs of basic timed
Gurevich Abstract State Machines (ASM) [12] (we used this type of ASMs in[8]).
Such a basic ASM consists of one external loop inside which one executes in
parallel If -Then-operators whose Then-part is a list of assignments executed
again in parallel. The parallelism is synchronous. The runs of timed parallel
while-programs can be also represented in FOTL without complications.

The decidability algorithm for the simpler class (without infinite models of
bounded complexity) was implemented and showed encouraging results [2], [3].

A shortcoming of the approach is that the finiteness properties are undecid-
able in general [7]. Finite refutability is a typical property of safety, and for safety
it is usually quite evident, but it is less evident for liveness. Finite satisfiability
may be hard to prove even for practical systems. For example, for usual abstract
specifications of practical cryptographic protocols it is a hard open question.

One can use our approach along the lines of bounded model-checking. Recall
that the basic idea of bounded model checking is to check the requirements
for runs whose length is bounded by some integer k. It is feasible if the set
of these runs of bounded length is of reasonable size, or if we can use some
symbolic representation of these runs. In some cases we know that if there is a
counter-model run, i.e., a run that does not satisfy the requirements, then there
exists such a run whose length is bounded by a constant known a priory. This
constant is called a completeness threshold [10, 17]. Otherwise, we can increase
k until we can process the runs of length k in a feasible way, and stop when a
counter-model is found or the checking becomes unfeasible. In the latter case we
have some partial verification. Our analogue of such procedure is to increase the
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complexity of models to consider and to check whether there exists a counter-
model of the chosen complexity.

Bounded model checking is being developed first of all as a practical tool
which accelerates symbolic model checking. Completeness threshold was esti-
mated in cases when the verification is a priory decidable, and the found bounds
are very high. In our setting we deal with logics for which the verification prob-
lem is undecidable in general, and that are much more expressive than the logics
used in model checking. Our notion of bounded model is also much more general.
So when we proceed, like in practical bounded model-checking, by increasing the
complexity of models to try, we seek counter-models in a much larger class. For
the concrete problems that we studied, the complexity bounds on models to con-
sider are very small, and thus, the search for such models is feasible. Moreover,
these concrete problems are out of the scope of model-checking.

The structure of text below, that mainly presents results of my colleagues
and myself cited above, is as follows. Section 2 briefly describes decidable the-
ories of arithmetical operations that underlay our FOTLs. We mention also a
particular theory that is conjectured to be decidable and that features a way
to look for theories adequate to the applications. Section 3 gives an example of
FOTLs that are well supported by decidability algorithms, even better to say, by
counter-model constructing algorithms. These algorithms are based on finiteness
properties described in section 4. In Conclusion we discuss some open problems
and draw attention to logics with probability.

2 Decidable Theories with Arithmetical Operations

We briefly summarize some known decidable theories that are apt to the pre-
sented approach and give an example of a theory whose conjectured decidability
would put the verification of parametric clock synchronization in a decidable
class.

One of the simplest theories that deal with arithmetics and have quantifier
elimination is the theory of real addition. It may be defined as a theory with
real addition, unary multiplications by rational constants, arithmetical order
relations and rational numbers as constants. With this set of constants only
rational numbers are representable. The known quantifier elimination procedures
have worst-case complexity (roughly) of the form LnO(α)

, where L is the length
of formula, n is the number of variables, and α is the number of quantifier
alternations. In practice, with good simplification algorithms, some implemented
procedures work well.

The worst-case lower bound is exponential. I repeat my argument that all
known proofs of lower bounds (absolute or relative, like hardness) are irrelevant
to computational practice as they concern diagonal algorithms that never appear
in practice. Thus, these bounds say something useful about the theory under
consideration but not about instances that we are interested in.

We can add to the theory of real addition linearly independent constants, for
example, a finite number of infinitesimals, and we will have the same algorithmic
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properties. Adding real constants whose linear dependence is unknown may pose
problems.

The theory of integer addition (Presburger arithmetic) has similar algorith-
mic properties, but its known complexity is one exponent tower higher.

The theory of mixed real/integer addition has both real addition and inte-
ger addition, and rational (or natural) constants. If to add integer part to the
vocabulary this theory has a quantifier elimination [19] whose complexity is the
same as for Presburger arithmetic.

This theory can be combined with finite automata representation of numbers
to resolve constraints [9]. We do not go into details of this kind of theories as we
have not yet studied how to use them in our framework.

The theory of real addition and multiplication (Tarski algebra) has the same
theoretical complexity of quantifier elimination as the theory of real addition. If
the constants are rational numbers then one can represent algebraic numbers.
One can add transcendental constants and represent the corresponding rational
functions. Practical complexity of quantifier elimination is better for Collin’s
cylindrical decomposition than for the algorithms that are the best from the-
oretical viewpoint (remark that the complexity of cylindrical decomposition is
exponent tower higher than that of the theoretically best algorithms).

Now we describe a quantifier-free theory that is sufficient to represent the ver-
ification of a clock synchronization algorithm. We mean the Mahaney–Schneider
protocol as it is described in [18]. This theory is conjectured to be decidable.
We do not need to go into details (see [15]), and just describe some important
points. The protocol deals with N processes P=df {1, 2, . . . , N}, each one having
its clock. At the beginning the clocks are δ-synchronized for some δ. There are
delays in communications that are much smaller than δ.

The processes start to synchronize the clocks not simultaneously but with
some shifts in time implied by these non deterministic delays. They exchange
messages that arrive again with some non deterministic shifts of time. However,
for a process p only N + 1 time instants are important: the arrival of starting
signal and the instants of receiving clock values from other processes. Some
processes are Byzantine, their number is B < N

3 . To calculate its clock update a
correct process filters the received data evaluating the cardinality of some finite
sets (subsets of P) and calculating at the end the mean value of N individual
updates calculated before.

Notice that N is a parameter, and that δ, the delays, etc. are also parame-
ters. If N is concrete, then we can use our decidability algorithms (because of
arithmetics even this case is out of the reach of model checking). However it is
more interesting to resolve the parametric case. The decidability of the following
quantifier-free theory (modulo minor technical details) of parametric addition
would suffice for it.

Atomic formulas of the theory are constructed in the following way:

• Inequalities of the form η · N + ξ · B + a1 · α1 + · · · + ak · αkω0, where η
and ξ are real abstract constants or rational numbers; ai are rational constants;
αi are expressions of the form f(p) or f(p, q) constructed from a symbol of real
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valued function f , and of abstract constants p, q for processes from P; ω is any
usual order relation. Below we will refer to such inequalities as basic inequalities,
and each basic inequality is a formula. The left part of the inequality above is a
simple sum.

• An expression #{p : L(p)}, where L(p) is a basic inequality, and # means
the cardinality, is a cardinality term. A cardinality term can be used to construct
formulas of the form
#{p : L(p)}ω(a ·N + b · B + c), where a, b and c are rational constants, and ω
is an order relation, as above.

• An expression
∑

(p, L(p), θ(p)), where p and L(p) are as above, and θ(p) is
a simple sum of the form a1 ·α1 + · · ·+ ak ·αk ( here we use the same notations
as above). This expression means a sum of θ(p) over p from the set {p : L(p)}.
Such a sum is a parametric sum and can be used to construct a formula with
the help of an order relation over reals: either we compare two parametric sums,
or a parametric sum and a simple sum.

Formulas are constructed from atomic formulas with the help of propositional
connectors. The set of all these formulas constitutes our theory.

In a less studied domain of verification of probabilistic systems we can also
find some particular restricted theories with exponential functions that may be
decidable.

3 First Order Timed Logic (FOTL)

The starting idea of FOTL is to choose a decidable theory to treat arithmetics
or other concrete mathematical functions, and then to extend it by abstract
functions of time that are needed to specify the problems under consideration. In
some way, the theory must be minimal to be sufficient for a good expressivity. For
concreteness we take, as such an underlying theory of arithmetical operations,
the theory of mixed real/integer addition with rational constants and unary
multiplications by rational numbers. This theory is known to have quantifier
elimination [19] if one extends it with the floor function 	 
.

Syntax and Semantics of FOTL

The vocabulary W of a FOTL consists of a set of sorts, a set of function symbols
and a set of predicate symbols. A set of variables is attributed to each sort, these
sets are disjoint. The sorts for numbers and Boolean values are sorts by default,
as well as the corresponding constants (see below).

If a finite sort has a fixed cardinality it can be considered as pre-interpreted
because it is defined modulo notations for its elements. Interesting finite sorts
are those whose cardinality is not concrete, say, given by an abstract natural
constant (or not given at all). For example, the set of processes in a distributed
algorithm. It is often convenient, without loss of generality, to interpret such a
sort as an initial segment of natural numbers.
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FOTL Syntax

A FOTL syntax is defined by a vocabulary composed of:

Pre-interpreted sorts : R (reals), Z (integers), N (natural numbers), T (time,
i.e., non negative reals), Bool (Boolean values), Nil = {nil} (a sort to represent
the ‘undefined’, included in all other sorts), and of a finite number of finite sorts
of concrete cardinality
Abstract sorts : finite number of symbols maybe supplied with abstract natu-
ral constants that denote their respective cardinalities (strictly speaking, these
constants must be declared below among the functions of the vocabulary).

Pre-interpreted functions :
– Constants : true, false, nil, and integers Z (each of type → Z) and rational

numbers Q (each of type → R).
– Arithmetical operations and relations : +, −, =, <, ≤ over reals and integers.
– Boolean operations : ∧, ∨, ¬.

Abstract functions and predicates : function symbols of type T ×X → S or X → S
or → S, where X is a direct product of finite sorts and S is an arbitrary sort
(recall that T is time).

Semantics of FOTL

A priori, we impose no constraints on the admissible interpretations. Thus, the
notions of interpretation, model, satisfiability and validity are treated as in first
order predicate logic modulo the pre-interpreted part of the vocabulary.

Remark that an interpretation of a function f of type T ×X → S describes a
family of temporal processes with values in the interpretation of S parameterized
by the elements of the interpretation of X .

Clearly, even a FOTL based on the theory of real addition with two unary
predicates is undecidable (this follows from [13]).

4 Finiteness Properties and Decidability

Here we introduce specific classes of interpretations of a finite complexity. These
interpretations play a key role in our decidability algorithm.

From the point of view of an algorithm that we wish to verify all functions
are piecewise constant. However, their ‘physical’ interpretation may be of other
nature. For example, to represent a piece of linear function a · t+b on an interval
σ, we give two values a and b for the coefficients and two values σ− and σ+

for the end of σ. And these values remain constant up to the instant when the
algorithm calculates the next linear piece of this function. But the ‘physical’
interpretation of this function, that may be used in guards of the algorithm, is
not constant – however, it is described as a term of the vocabulary, for example,
it may appear in a guard as a term (a ·CT + b), where CT is Current Time (the
value of ‘physical time’).

A U-FOTL is a FOTL extended in the following way. For every abstract
function f of type T × X → S there is associated a finite set Uf of terms with
values of type S constructed only from variables and pre-interpreted functions.
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The vocabulary of FOTL does not give many possibilities to construct a term
Uf ∈ Uf . We will consider the following types of terms: first, those of the form z
with z being a variable for an abstract sort, if S is an abstract sort, and second,
the terms of the form a0τ + a1λ + z, where a0, a1 ∈ Q and τ , λ and z are real
variables whose role is defined as follows: τ is a time variable, λ is the left end
of the interval on which we consider our function, and z is a real parameter.

Below a U-FOTL is supposed to be fixed. For technical simplicity we assume
that the types T × X → S of functions contain only one abstract sort X , not
a direct product (direct products can be treated as in [8]) We will write Uf of
real type also as Uf(τ, λ, z) to make the parameters explicit. We say that fx is
Uf -defined on an interval ζ by z0 ∈ R, if for t ∈ ζ, the value fx(t) is defined as
fx(t) = Uf (t, ζ−, z0).

A partition of T is a sequence π = (ζi)i∈N of non empty disjoint intervals
such that:

– N is a prefix of N,
–
⋃

i∈N ζi = T ,
– ζ+

i = ζ−i+1 for 0 ≤ i ≤ |N | − 1,
– ζ−0 = 0, ζ+

k = ∞ if N is finite and k is its last element.

Repetitive Interpretations

We define the interpretations that will be used in the description of our decidable
class of formulas of FOTL. Below we use the following abbreviations:
PI for partial interpretation; FPI for finite partial interpretation.

For an abstract function f of type T × X → S and an interpretation X ∗ of
X , a (finite) partial interpretation f∗x∗ of fx∗ , where x∗ ∈ X ∗ , is given by

– a (finite) set of disjoint intervals
and for each interval by

– a term Uf ∈ Uf and by a value of z to be put into Uf to define fx∗ on this
interval.

This set of intervals is called the support of the (F)PI f∗x∗ .

A FPI has complexity c if the number of intervals in its support is c. In the
context of several complexity parameters, that will be introduced later, we will
call this complexity interval complexity.

A (finite) partial interpretation of f : T × X → S is a subset Y∗ of an
interpretation X ∗ of X and a collection of (F)PIs, one for each fy∗ , y∗ ∈ Y∗.

A (finite) partial interpretation of vocabulary V is a collection of (F)PIs, one
for each abstract function of V .

A PI M′ of a function fx∗ is an extension of a PI M of fx∗ if every interval
of M is contained in an interval of M′, and the restriction of M′ on intervals of
M gives M. In a similar way we define an extension of a PI of a vocabulary.

Now we go to more general finitely definable interpretations.

An interpretation M of fx∗ is ultimately repetitive of complexity c and period
h if it is a finite interpretation with complexity c or it is a concatenation of a



12 Anatol Slissenko

finite interpretation of complexity c on some interval, say [0, h0), followed by an
interpretation of the following ‘almost periodic’ structure:

– any interval Ii = [h0 + i · h, h0 + (i + 1) · h), i ≥ 0, is partitioned into c
consecutive intervals ζi,j , 0 ≤ j ≤ (c− 1) such that |ζi,j | = |ζi+1,j | (that means
that the partition has a periodic structure starting from h0)

– moreover, on each ζi,j the function fx∗ is defined by a Uf,j(t, ζ−i,j , zj) ,
where Uf,j ∈ Uf and zj do not depend on i.

The intervals ζi,j are called period defining intervals and Ii is called defining
interval of this ultimately repetitive interpretation.

Our main notion concerning interpretations of finite complexity is that of a
chain of repetitive interpretations.

A finite prefix of an ultimately repetitive interpretation of a fx∗ is exact if
its end coincides with the end of one of its defining intervals Ii. Its complexity
is defined similar to the complexity of ultimately repetitive interpretations (in
fact, this complexity is the maximum of the interval complexity of the prefix and
of the interval complexity of the period.)

We say that an interpretation of a fx∗ is a chain of ultimately repetitive
interpretations with complexity (L, c) if it is a concatenation of at most (L − 1)
finite exact prefixes of repetitive interpretations and of one infinite ultimately
repetitive interpretation, each of complexity c. We will sometimes refer to L as
to chain complexity.

Equivalence

To reduce the complexity of interpretations in spite of a possibly large amount of
elements in abstract sorts we introduce a notion of equivalence of interpretations,
and on this basis we will generalize the complexity measures for PI of individual
fx∗ . Given an interpretation of the vocabulary, such an equivalence is defined
over elements of the interpretation of abstract sorts for each f .

Without loss of generality, an abstract sort X is interpreted as an initial
segment X ∗ on natural numbers.

In Definitions that follow, X ∗ stands for an interpretation of a sort X .
An equivalence E over Y∗ ⊂ X ∗ is interval-wise if its classes of equivalence

are intervals. An equivalence E over Y∗ is f -compatible if for any two elements
u∗, v∗ ∈ Y∗ the equivalence u∗Ev∗ implies that the functions f∗u∗ and f∗v∗ are
equal.

Complexity of Partial Interpretations

A PI of f over Y∗ ⊂ X ∗ is a FPI of complexity (m, c) if there is an interval-wise
equivalence E on Y∗ with at most m classes which is f -compatible, and such
that each f∗y∗ , y∗ ∈ Y∗, has complexity c (without loss of generality we assume
that the partition of time, the terms from Uf and parameters z that define f∗y∗

are the same for all y∗ of the same equivalence class).
A FPI of V of complexity (m, c) is a collection of FPIs with complexity (m, c),

one for each abstract function. A FPI of complexity (m, c) will be also called a
(m, c)-PI.
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The parameter m is called equivalence complexity.
An interpretation of f over X ∗ is ultimately repetitive with complexity (m, c)

if there is an interval-wise equivalence E on X ∗ with at most m classes which
is f -compatible, and such that for each class, all f∗x∗ with x∗ in this class are
ultimately repetitive with complexity c.

An interpretation of f over X ∗ is a chain of ultimately repetitive interpreta-
tions with complexity (m,L, c) if there is an interval-wise equivalence E on X ∗

with at most m classes, which is f -compatible and such that for any class, all
f∗x∗ with x∗ in the class are chains of ultimately repetitive interpretations with
complexity (L, c).

An interpretation of V of complexity (m,L, c) is a collection of interpretations
with complexity (m,L, c), one for each abstract function.

We introduce classes of interpretations used below, in particular, the class
used in our decidability result.

Notations
• Below K is a complexity of the form (m, c), and L is a complexity of the

form (m,L, c).
• For a class C of interpretations we denote by C(κ) the set of interpretations

in the class C with complexity κ, where κ has the form defined for this class of
interpretations.

• UR is the class of ultimately repetitive interpretations.
• UR∗ is the class of chains of ultimately repetitive interpretations.
• UR∗(L, Λ), where Λ ⊂ Q>0 , is the set of interpretations from UR∗

with complexity L whose period lengths are from Λ. (Recall that for a given
ultimately repetitive interpretation f∗x∗ , the period length is fixed, so the set Λ
specifies possible period lengths for interpretation of different functions fx.)

• UR∗(Λ) is the union of all UR∗(L, Λ) over L. �

Finite Refutability and Finite Satisfiability

Recall that we fixed some FOTL so when we speak about a formula then, by
default, we mean a formula of this FOTL.

A formula F is K-refutable if for every its counter-model M there exists a
K-FPI M′ such that M is an extension of M′, and any extension of M′ to a
total interpretation is a counter-model of F .

Finite satisfiability, defined just below, is a notion that is, in some way, dual to
finite refutability. It represents the following property. If in a model we take any
piece of a given complexity (imagine that this piece is defined on some number
of separated intervals) then we can fill the gaps between these defined parts to
get a total model whose complexity is bounded as a function of the complexity
of the given initial piece. This bounding function is the augmentation function
used below. The main point is with what kind of interpretations we will fill the
gaps.

By α we will denote a total computable function transforming a complexity
value of the form (m, c) into a complexity value of the form (m, c), when we
speak about class UR, or into a complexity value of the form (m,L, c), when we
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speak about class UR∗. Such a function will serve as an augmentation function
in the notion of finite satisfiability below.

A formula F is (C, K)-satisfiable with augmentation α if for every K-FPI
M extendable to a model of F there is an extension M′ of M from C(α(K))
that is a model of F .

A formula F is C-satisfiable with augmentation α if for every K, for every
K-FPI M extendable to a model of F , there is an extension M′ of M from
C(α(K)) that is a model of F .

The finiteness properties introduced above permit to describe our class of
formulas, such that the validity of closed ones is decidable, and for any formula we
can effectively describe its counter-models of a given complexity as a quantifier-
free formula in a theory with ‘good’ algorithmic properties. The class is motivated
by the verification problem, that is why it consists of implications that tacitly
refer to the structure of verification formulas explained in Introduction.

Class V ERIF (Λ,K, α) of FOTL-Formulas

• Ch=df UR∗(h · Λ), where h is a real number, Λ is a finite set of rational
numbers and h · Λ is the set of reals of the form h · λ with λ ∈ Λ.

• V ERIFh(Λ,K, α) is the class of FOTL-formulas of the form (Φ → Ψ),
where formula Ψ is K-refutable and Φ is (Ch, K)-satisfiable with augmentation
α.

• V ERIF (Λ,K, α) =
⋃

h∈R>0
V ERIFh(Λ,K, α).

Notice that our description of V ERIF (Λ,K, α) admits not closed formulas
in the class.

Decidability and Quantifier-Free Description of Counter-Models

Theorem 1 Given a complexity K, a computable augmentation function α
and a finite set of positive rational numbers Λ ⊂ Q>0, the validity of (closed)
formulas from V ERIF (Λ,K, α) is decidable. Moreover, for any formula of this
class, its counter-models of complexity α(K) can be described by a quantifier-free
formula.

For the class V ERIF that uses ultimately repetitive models the quantifier-
free formulas may contain 	 
. For the class V ERIF that uses only finite models
and is based on the theory of real addition, the quantifier-free formulas are
formulas of the theory of real addition that are much easier to deal with. The
worst case complexity of our algorithms is the same as that of the underlying
theory of arithmetical operations.

Theorem 2 below gives precisions on the role of h in this description (h is a
parameter of V ERIFh(Λ,K, α)

Theorem 2 Given a FOTL-formula F and a complexity L, one can construct
a quantifier-free formula that describes all h and all repetitive models (we mean
chains of ultimately repetitive interpretations) of F of complexity L in Ch.
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Corollary 1 The existence of h for which there is a model of complexity L in Ch
for a formula F , or the existence of a model of F of complexity L for a concrete
h, is decidable.

Conclusion

Several questions important for practical application of the presented methods
remain open.

How to describe formulas corresponding to practical problems of verification
and what is their complexity?

A related question is to find sufficient syntactical conditions on programs
that ensure finite satisfiability.

What about decidability of the second order properties that were mentioned
in Introduction and that are formulated in a theory that is clearly undecidable
in general?

What are other practically relevant finiteness properties?
As for theoretical questions, one question seems to be of a growing impor-

tance: verification of probabilistic systems. For many protocols and especially
for the security properties, the models are probabilistic. The argument that we
rarely know the probabilities is not a real objection, as we can try different plau-
sible distributions if we have good algorithms to deal with them. On the basis
of the results of verification for these various distributions and our experience,
we can make conclusions about practical value of the system that we analyze. It
is even better to treat probability distributions as parameters and to try to find
a description of these parameters for which the property we are interested in, is
true.

Logics with probabilities that are decidable (see [11] that gives an excellent
presentation of the subject) are not sufficiently powerful; the same is true for
predicate logics. But for logic of probability it is much harder to find decidable
classes of practical value. Even decidable model checking is not so easy to find
(e.g., see [5]).

Continuous time that is quite intuitive also in the probabilistic framework
poses a problem of semantics from the very beginning because quantification over
non countable domain may give non measurable sets, and because arithmetical
operations over stochastic processes are problematic. Thus, we have to define the
syntax of theories more carefully, maybe without composition and iteration all
the used constructors. To ensure measurability it is better to avoid, for example,
formulas like P{∀ t ϕ(t)} > p, where P stands for probability. Imagine that
∀ t ϕ(t) is a safety property. On the other hand, can we be satisfied with proving
∀ tP{ϕ(t)} > p that is a property different from the first one?

In order to be able to define finiteness properties we have to consider finitely
definable probability spaces. This is the case in applications of the probability
theory. Usually, a ‘practical’ probability space is either finite or countable or is
a sub-interval of reals or a mixture of the previous ones. But for stochastic pro-
cesses we have a product RT of simple spaces R over time T, and the probability
measure is over this RT.
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However all these difficulties seem to be surmountable, at least, in some
cases of practical interest. So how to define finite refutability for a formula with
probability?

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. D. Beauquier, T. Crolard, and E. Prokofieva. Automatic verification of real time
systems: A case study. In Third Workshop on Automated Verification of Critical
Systems (AVoCS’2003), pages 98–108. University of Southampton, 2003.

3. D. Beauquier, T. Crolard, and E. Prokofieva. Automatic parametric verification of
a root contention protocol based on abstract state machines and first order timed
logic. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems: 10th International Conference, TACAS 2004,
Barcelona, Spain, March 29 – April 2, 2004. Lect. Notes in Comput. Sci., vol. 2988,
pages 372–387. Springer-Verlag Heidelberg, 2004.

4. D. Beauquier, T. Crolard, and A. Slissenko. A predicate logic framework for me-
chanical verification of real-time Gurevich Abstract State Machines: A case study
with PVS. Technical Report 00–25, University Paris 12, Department of Informatics,
2000. Available at http://www.univ-paris12.fr/lacl/.

5. D. Beauquier, A. Rabinovich, and A. Slissenko. A logic of probability with decid-
able model-checking. Journal of Logic and Computation. 24 pages. To appear.

6. D. Beauquier and A. Slissenko. Periodicity based decidable classes in a first order
timed logic. Annals of Pure and Applied Logic. 38 pages. To appear.

7. D. Beauquier and A. Slissenko. Decidable verification for reducible timed automata
specified in a first order logic with time. Theoretical Computer Science, 275(1–
2):347–388, March 2002.

8. D. Beauquier and A. Slissenko. A first order logic for specification of timed algo-
rithms: Basic properties and a decidable class. Annals of Pure and Applied Logic,
113(1–3):13–52, 2002.

9. B. Boigelot and P. Wolper. Representing arithmetic constraints with finite au-
tomata: An overview. Lecture Notes in Computer Science, 2401:1–19, 2002.

10. E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and com-
plexity of bounded model checking. In Levi G. Steffen, B., editor, Proceedings of
the 5th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’2004), Venice, Italy, January 11-13, 2004, volume 2937
of Lecture Notes in Computer Science, pages 85–96. Springer-Verlag Heidelberg,
2004.

11. R. Fagin and J. Halpern. Reasoning about knowledge and probability. J. of the
Assoc. Comput. Mach., 41(2):340–367, 1994.

12. Y. Gurevich and J. Huggins. The railroad crossing problem: an experiment with
instantaneous actions and immediate reactions. In H. K. Buening, editor, Computer
Science Logics, Selected papers from CSL’95, pages 266–290. Springer-Verlag, 1996.
Lect. Notes in Comput. Sci., vol. 1092.

13. J. Halpern. Presburger arithmetic with unary predicates is π1
1-complete. J. of sym-

bolic Logic, 56:637–642, 1991.

14. J. Sanders and E. Curran. Software Quality. Addison-Wesley, 1994.



Verification in Predicate Logic with Time: Algorithmic Questions 17

15. A. Slissenko. A logic framework for verification of timed algorithms. Fundamenta
Informaticae, 69:1–39, 2004.

16. I. Sommerville. Software Engineering. Addison-Wesley, 4th edition, 1992.
17. M. Sorea. Bounded model checking for timed automata. Electronic Notes in The-

oretical Computer Science, 68(5), 2002.
http://www.elsevier.com/locate/entcs/volume68.html.

18. G. Tel, editor. Introduction to Distributed Algorithms. Cambridge University Press,
1994.

19. V. Weispfenning. Mixed real-integer linear quantifier elimination. In Proc. of the
1999 Int. Symp. on Symbolic and Algebraic Computations (ISSAC’99), pages 129–
136. ACM Press, 1999.



Note on Formal Analogical Reasoning
in the Juridical Context

Matthias Baaz

Technische Universität Wien, A-1040 Vienna, Austria
baaz@logic.at

Abstract. This note describes a formal rule for analogical reasoning
in the legal context. The rule derives first order sentences from partial
decision descriptions. The construction follows the principle, that the
acceptance of an incomplete argument induces the acceptance of the
logically weakest assumptions, which complete it.

“The common law is tolerant of much il-
logicality. especially on the surface, but no
system of law can be workable if it has not
got logic at the root of it.” (Lord Devlin in
Hedley Byrne and Co. Ltd. v. Heller and
Partners Ltd. (1964))

1 Introduction

4000 Years ago, mathematical arguments were given by examples. When Sume-
rian and Babylonian mathematicians wanted to present a general statement,
they provided examples such that scholars were able to grasp the principle by
calculating these particular cases (Gericke [6]).

4000 years ago, legal reasoning developed along the same lines, but for dif-
ferent reasons. In mathematics, the general principle relates to the one-for-all
validity of the single case, in legal systems, to the stability of the system, or in
more traditional terms: to justice.

Although this fact is nowadays generally overlooked, mathematics and law
have remained connected throughout the history of human civilizations, with
law being for the majority of the time, the methodologically more developed
part. When the notions of argument and proof were established in Greek logic,
they used expressions from law. The Greek notion of proof is the ancestor of
modern mathematics.

Nowadays, both of the renowned sciences of mathematics and jurisprudence
look at each other with suspicion. Some law schools disclaim even the admis-
sibility of general principles in judgments (Holme’s Maxim), relating this to a

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 18–26, 2005.
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reductive argument of Kant1, which would apply to the general principles in
mathematics as well if valid. Mathematicians on the other hand reject the pos-
sibility of formally correct reasoning in law, since they are unable to explain
the effectiveness, both at the theoretical and practical level, of the interplay of
deductions and actions in juridical procedures.

In this note we try to establish a bridge between mathematical logic and
jurisprudence by developing a proof theoretic concept of analogical reasoning,
which we consider as the most fundamental deduction principle of juridical logic.

2 Analogical Reasoning in Mathematics

Analogical reasoning occurs frequently in mathematics (cf. Kreisel [11]) but is
rarely documented. A notable exception is Eulers computation of the sum

∞∑
n=1

1
n2

=
π2

6
(1)

that made him famous [5], cf. Polya [13, page 17 ff.]. The problem of computing
this sum, which was readily seen to be convergent but for which nobody could
guess the value, was posed by Jacques Bernoulli.

Let us consider Eulers reasoning. Consider the polynomial of even degree

b0 − b1x
2 + b2x

4 − . . . + (−1)nbnx2n. (2)

If it has the 2n roots ±β1, . . .± βn �= 0 then (2) can be written as

b0

(
1 − x2

β2
1

)(
1 − x2

β2
2

)
. . .

(
1 − x2

β2
n

)
. (3)

By comparing coefficients in (2) and (3) one obtains that

b1 = b0

(
1
β2

1

+
1
β2

2

+ . . . +
1
β2
n

)
. (4)

Next Euler considers the Taylor series

sinx

x
=

∞∑
n=0

(−1)n
x2n

(2n + 1)!
(5)

1 “General logic contains and can contain no rules for judgment . . . If it sought to give
general instructions how we are to subsume under these rules, that is, to distinguish
whether something does or does not come under them, that could only be by means
of another rule. This, in turn, for the very reason that it is a rule, again demands
guidance from judgment, And thus it appears that, though understanding is capable
of being instructed, and of being equipped with rules, judgment is a peculiar talent
which can be practiced only, and cannot be taught.” [7]
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which has as roots ±π,±2π,±3π, . . . Now by way of analogy Euler assumes
that the infinite degree polynomial (5) behaves in the same way as the finite
polynomial (2). Hence in analogy to (3) he obtains

sinx

x
=
(

1 − x2

π2

)(
1 − x2

4π2

)(
1 − x2

9π2

)
. . . (6)

and in analogy to (4) he obtains

1
3!

=
(

1
π2

+
1

4π2
+

1
9π2

+ . . .

)
. (7)

which immediately gives the expression (1). This solution of the problem caused
much amazement and astonishment at the time. The “leap of faith” used by
Euler to arrive at the solution was later rigorously justified, but it is important
to realize the role that reasoning by analogy played in finding the initial solu-
tion. Using analogy Euler found a proof scheme that would lead to the desired
conclusion2. This proof scheme suggested to him the preconditions he had to
prove to formally justify his solution.

The structure of Eulers argument is the following.

(a) (2) = (3) (mathematically derivable)

(b) (2) = (3) ⊃ (4) (mathematically derivable)

(c) (2) = (3) ⊃ (5)=(6) (analogical hypothesis)

(d) (5) = (6) ⊃ (4) (modus ponens)

(e)
(
(2) = (3) ⊃ (4)

)
⊃
(
(5) = (6) ⊃ (7)

)
(analogical hypothesis)

(f) (5) = (6) ⊃ (7) (modus ponens)

(g) (7) (modus ponens)

(h) (7) ⊃ (1) (mathematically derivable)

(i) (1) (modus ponens)

To transform Eulers argument in a rigid proof in the sense of mathematics it is
sufficient to verify (c) and (e). On the other hand, if one is determined to uphold
this argument one has at least to uphold the weakest preconditions that verify
(c) and (e). This provides a connection to juridical reasoning.

3 The Derivation of Weakest Preconditions from Proofs

The main logical problem of legal reasoning lies in the conflict of the following:
2 In mathematical terms the scheme can be formulated as follows. To calculate∑

v∈Γ
1

v2 search a function f such that f(x) =
∑∞

i=0 cix
i, Γ = {x|f(x) = 0, x > 0},

and f(x) = 0⇔ x ∈ Γ ∧ −x ∈ Γ . Then
∑

v∈Γ
1

v2 = c1
c0

.
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(i) Arguments should be demonstrably sound.
(ii) Decisions have to be achieved within a priori limited time and space.

The solution is provided by minimalist systems such as English Common Law
and maximalist systems such as continental legal systems. In minimalist systems,
completeness is achieved by the admitted generation of legal norms from juridical
decisions (stare decis), which logically represent preconditions of the decisions
(ratio decidendi) in the sense of incomplete reasoning. In maximalist systems
extensive interpretations treat the inherent incompleteness of the system. The
system obtains stability by the application of teleological interpretations, which
restrict the derivable conclusions in conflicting situations.

Let us consider how the ratio decidendi is established according to the English
doctrine of precedent3 (Wambaugh’s test):

“First frame carefully the supposed proposition of law. Let him then
insert in the proposition a word reversing its meaning. Let him then
inquire whether, if the court had conceived this new proposition to be
good, and had had it in mind, the decision would have been the same. If
the answer be affirmative, then, however excellent the original proposi-
tion may be, the case is not a precedent for that proposition, but if the
answer be negative the case is a precedent for the original proposition
and possibly for the other propositions also. In short, when a case turns
only on one point the proposition or doctrine of the case, the reason for
the decision, the ratio decidendi, must be a general rule without which
the case must have been decided otherwise.” [4, p52]

In a mathematical sense the ratio decidendi of a decision is the weakest rea-
sonable precondition completing the otherwise incomplete argument. We will
formally specify the notion of weakest precondition as follows. Let a proof sys-
tem be given by schematic axioms and rules.

A partial proof skeleton with respect to T , T a set of formulas, is a rooted
tree whose vertices are labelled by the inference rules. Further, the order of the
given vertices is marked on the tree. Some of the initial nodes are designated
by axiom schemes or formulas from T . If all initial nodes are designated in this
way the partial skeleton is called total. The information which the skeleton does
not contain are the terms and variables used in quantifier rules. Every proof
determines uniquely its partial skeleton with respect to T , but we do not require
a skeleton to be determined by some proof.

A1 . . . An are preconditions with respect to the partial proof skeleton S, T ,
and end formula E, if the assignment of A1 . . . An to the non-designated initial
nodes of S can be extended to a proof of the end formula E.

To calculate (weakest) preconditions is however not sufficient to represent
analogy in legal reasoning. Decisions by judges should be general in the sense that
3 In continental e.g. German legal practice analogical reasoning occurs less explicit.

However all specific rules of German legal reasoning such as argumentum a simile,
argumentum e contrario, argumentum a fortiori, argumentum ad absurdum [9], are
easily reducible to analogical reasoning.
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they are independent4 of the concrete persons etc. involved. This is completely
(but in practice tacitly) specified before the decision is taken. We represent this
constraint by a (possible empty) set of constants Γ .

W1 . . .Wn are weakest preconditions with respect to the partial proof skeleton
S, T , end formula E, and Γ , if they are preconditions in the above sense and
whenever {W1 . . .Wn}σ, Γ � Δ then {A1 . . . An}σ, Γ � Δ, for any Γ , Δ in the
original language of the derivation, and any choice of preconditions A1 . . . An.
This includes all substitutions σ for the free variables in E and the constants in
Γ (considered as variables).

We need therefore a proof system that allows for the calculation of weakest
preconditions as a formal basis of analogical reasoning: The weakest precondition
will allow for the derivation of new information in subsequent decisions and
therefore enforce stare decis.

4 LK Is Not Suitable
for Calculating Weakest Preconditions

A first proof theoretic approach is to consider LK as theoretical basis. We define
partial proof skeletons with respect to T , T a set of sequents, preconditions,
weakest preconditions, as above, only that for the exchange rule the label con-
tains also the number of the pair to which it should be applied.

In this section we show that LK in the full first order language with cuts
does not allow for the calculation of weakest preconditions.

Theorem 1. Let L be a language containing a unary function symbol s, a con-
stant 0, and a binary function symbol. There is a partial skeleton S and a given
end sequent such that it is undecidable whether a sequent may serve as precon-
dition and where no weakest precondition exists.

Proof. By Orevkov [12] and Krajicek and Pudlak [10] we have that for every
recursively enumerable set X ⊆ ω there exists a sequent Π → Γ, P (a) and a
total skeleton S′ such that n ∈ X iff Π → Γ, P (sn(0)) has an LK proof with
skeleton S′. The argument however uses the concrete form of Π → Γ, P (a).
We therefore extend the proof skeleton S′ as in Figure 1. This guarantees that
P (sn(0)) is doubled and the form is preserved in the end sequent Π → Γ, ∃xA(x).
Preconditions are consequently {P (sn(0)) → |n ∈ X}. The property of being a
precondition is therefore undecidable if X is undecidable, and there are in general
no weakest preconditions.

5 A Model Calculus for Analogical Reasoning

We consequently restrict to propositional LK with schematic sets of sequents
T 5 in the definition of partial proof skeleton, preconditions, and weakest pre-
4 Independence can be considered as a proof theoretic interpretation of justice.
5 Alternative approaches in full first order languages can be based on LK without

the cut rule [10], [3], or on LK with blockwise inferences of quantifiers with the cut
rule [2].
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Fig. 1. Proof skeleton S′

conditions. A derivation from T is therefore a derivation from instances of the
schemata in T . We construct the weakest preconditions with respect to partial
proof skeleton S, T , end sequent E, and Γ as follows.

1. (Reconstruction step) Reconstruct the propositional matrix of the deriva-
tion using the end sequent and the partial proof skeleton. When passing
applications of the cut rule represent the cut formula by a new propositional
variable in the premises. This reconstruction is possible as otherwise there
would be no proof with this partial proof skeleton.

2. (Unification step) Unify both sides of the logical axiom sequents and unify
initial sequents with the appropriate schemata from T if the partial proof
skeleton assigns them in this way. (The schemata from T have to be chosen
variable disjoint.) Apply the most general unifier to the propositional matrix.

3. (Introduction of Skolem terms) Extract the initial sequents correspond-
ing to the initial nodes in the partial proof skeleton which are not as-
signed logical axioms or schemata in T . Replace all constants in c1, . . . , cn
in Γ by new variables a1, . . . , an Replace all first order variables y differ-
ent from {a1, . . . , an} which do not occur in the end sequent by Skolem



24 Matthias Baaz

terms fy(a1, . . . , an, x1, . . . , xm), where x1, . . . , xm are the free variables in
the end sequent. Replace propositional variables X by Skolem predicates
FX(a1, . . . , an, x1, . . . , xm), where x1, . . . , xm are the free variables in the
end sequent. Here fy is a new function symbol and FX is a new predicate
symbol.

Proposition 1. The construction above is adequate.

Proof. The extracted initial sequents are obviously preconditions. To switch from
a derivation from the extracted initial sequents to a derivation from arbitrarily
chosen preconditions replace the Skolem terms and Skolem predicates under σ
everywhere in the derivation by adequate terms and formulas.

We consequently define the analogical reasoning with respect to a proof P ,
T , and independence conditions Γ .

First, read the partial proof skeleton S and the end sequent E from P . Then
calculate weakest preconditions W1, . . . ,Wn with respect to Γ . Then

(S, T,E, Γ ) � Wi

for all i by analogical reasoning.

Example 1. Brown vs. Zürich Insurance (1977). The plaintiff claimed compen-
sation for a car damage which was denied given the established principle that
a car is not insured if it is not in roadworthy condition and the fact that the
plaintiff’s car had bald tires. The formalization of this decision might look as
follows.

pc plaintiff’s car

bt bald tires

rw roadworthy

I(x) x is insured

COND(x, y) x is in condition y

S: �

��
��
��
� ¬COND(x,rw) → ¬I(x)

			
			

			
		

→ COND(pc, bt)
















 cut

��
��
��
�

cut
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T =
{
→ COND(pc, bt),¬COND(x,rw) → ¬I(x)

}
E = ¬I(pc)
Γ = {pc}.

σ =
{
X ⇒ COND(pc, bt), Y ⇒ ¬COND(pc, rw), x ⇒ pc

}
(S, T,E, Γ ) � COND(x,bt) → ¬COND(x,rw)

6 Conclusion

The rule for analogical reasoning as described in this note suggests the devel-
opment of a calculus based on formulas and partial decision descriptions. The
question remains why not to represent the partial decision descriptions by the
generalized weakest preconditions and to omit the partial decision descriptions
altogether. The reason is, that with respect to the hierarchy of courts and to
the development of the legal apparatus in time6 regulations and decision have
to be canceled to keep the apparatus consistent. This might affect other partial
decision descriptions, because accepted statements might become free precon-
ditions, and therefore generalized weakest preconditions have to be calculated
again. (This continuous adaption of the calculus can be considered as a math-
ematical interpretation of Kelsen’s Stufenbau der Rechtsordnung, cf. Kelsen [8]
und Baaz und Quirchmayr [1].)
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Abstract. We prove a strong normalization theorem for abstract term
rewriting systems based on domain-theoretic models. The theorem ap-
plies to extensions of Gödel’s system T by various forms of recursion
related to bar recursion for which strong normalization was hitherto un-
known.

1 Introduction

In his seminal paper [1] Plotkin introduced a domain-theoretic method for prov-
ing termination of higher-order rewrite systems. His Adequacy Theorem says
that if a closed PCF term of ground type does not denote ⊥, then its call-
by-name reduction sequence terminates. Similar domain-theoretic methods were
developed in [2] and [3] to prove strong normalization for simply and polymor-
phically typed rewrite-systems.

In this paper we isolate what one could call the essence of these methods.
It turns out that the common idea of these methods, namely the simultaneous
approximation of the operational and the denotational semantics, is not tied
to a particular typing discipline or λ-calculus. The argument works for very
abstract notions of term, reduction and denotational semantics which can be
characterized by simple functoriality and naturality conditions.

Given such an abstract term system T and a domain-theoretic model of it
we introduce the notion of a rewrite structure, which is a triple R = (C,→, α)
consisting of a set of constants C, an operational semantics of the constants given
by an abstract reduction relation → on T(C), and a denotational semantics given
by an interpretation α of the constants in the model. We formulate conditions
expressing that the two semantics nicely fit together. Monotonicity says that
reducing a term can only increase its denotational semantics, while strong nor-
malization says that if a term does not denote ⊥, then it is strongly normalizing
with respect to →.

Furthermore we define what it means for a rewrite structure Rω to approx-
imate a rewrite structure R. Typically, Rω will have for every constant c of R
a sequence of constants cn corresponding to the finite stages of the (usually)
recursive definition of c. Theorem 1 says that through approximation strong
normalization is transferred from Rω to R. Because the proof of strong nor-
malization of Rω is usually easy (recursion is replaced by finite iteration), or,
more precisely, can be easily inferred from strong normalization of the underlying
typed λ-calculus, we obtain a method for proving strong normalization for R.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 27–35, 2005.
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As an application we show that our method can be used to prove strong
normalization for various extensions of Gödel’s system T which were used in [4–
8] to give computational interpretations of classical analysis in finite types.

The paper is organized as follows. Sections 2 and 3 introduce the general
method and prove the main abstract result (Theorem 1). The abstract definitions
are accompanied by examples in which the method is applied to a simply typed
λ-calculus with an (unspecified) higher-order rewrite system based on pattern
matching. In Section 4 we choose a concrete example of a higher-order rewrite
system and prove its strong normalization using a (technically) simple totality
argument. Section 5 gives an informal summary of the method in form of a
‘recipe’ for further applications and compares it with other approaches.

2 Abstract Term Systems
and Their Domain-Theoretic Models

In this section we introduce an abstract notion of a ‘term over a set of constants’
and its domain-theoretic models. The approach is extremely loose, in particular
no initiality assumptions are made. We just collect the minimal set of conditions
sufficient for our purpose.

Definition 1. Let Const be a subcategory of the category CountSet of countable
sets. An object C of Const is called a system of constants, a Const-morphism
θ: C → C′ is called a constant substitution. A term system is a (covariant) functor

T: Const → CountSet.

For every system of constants C the set T(C) is called the set of terms with
constants in C. If θ: C → C′ is a constant substitution and M ∈ T(C), then we
write Mθ for T(θ)(M) and call Mθ the result of applying θ to M .

Note that the functoriality of T means that M id = M , where id: C → C is the
identity, and M(θ ◦ θ′) = (Mθ′)θ.

Example 1. Consider simple types generated from the base types boole and nat
by the formation of function types, ρ → σ. Let an object C of Const be a count-
able set of typed constants cρ, and a morphism θ: C → C′ a type respecting
constant substitution. Terms (and their types) over C are built from typed vari-
ables, xρ, and constants, cρ ∈ C, by the formation of constructor terms, 0nat,
S(Mnat)nat, #tboole, #fboole, definition by cases, (if P boole thenMρ elseNρ)ρ), ab-
straction, (λxρMσ)ρ→σ , and application, (Mρ→σNρ)σ. We let T(C) be the set
of closed terms over C. For a constant substitution θ: C → C′ we let T(θ)(M)
be the result of replacing each constant cρ in M by θ(cρ). Clearly this defines a
term system, i.e. a functor T: Const → CountSet.

Definition 2. A model of a term system T consists of a Scott domain D [9–11]
together with a family of continuous functions

valC :DC → DT(C) (C ∈ Const)
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which is ‘natural in C’. More precisely, val is a natural transformation between
the contravariant functors D., DT(.): Const → DOM where DOM is the category
of Scott domains and continuous functions (which has countable products). If
α ∈ DC and M ∈ T(C), then we write [M ]Cα, or just [M ]α, for valC(α)(M) and
call this the value of M under the constant interpretation α.

Note that the naturality condition for val means that for all M ∈ T(C), θ: C → C′,
and α ∈ DC′

we have
[M ]C(α ◦ θ) = [Mθ]C′α

which is the usual substitution lemma (restricted to constant substitutions) in
denotational semantics. Note also that by continuity the function [M ]:DC → D
is monotone, i.e. α � β implies [M ]α � [M ]β, and

[M ]
⊔
n∈N

αn =
⊔
n∈N

[M ]αn

for every increasing sequence of constant interpretations αn ∈ DC .

Example 2. We define a model (D, val) for the term system T of Example 1 as
follows. For every type ρ we define a Scott domain Dρ by Dboole = {⊥,#t,#f},
Dnat = {⊥, 0, 1, 2, . . .}, the flat domains of booleans and natural numbers, Dρ→σ

= Dρ → Dσ, the domain of continuous functions from Dρ to Dσ. For every
constant interpretation α assigning to each cρ ∈ C some α(c) ∈ Dρ, and every
variable environment η assigning to each variable xρ some η(x) ∈ Dρ we define
the strict semantics, [M ]αη ∈ Dρ, as follows.

[x]αη = η(x)
[c]αη = α(c)

([λxM ]αη)(a) = [M ]αηax

[MN ]αη =
{

([M ]αη)(a) if a := [N ]αη �= ⊥
⊥ otherwise

[b]αη = b (b ∈ {0,#t,#f})

[S(M)]αη =
{
n + 1 if n := [M ]αη �= ⊥
⊥ otherwise

[if P thenM elseN ]αη =

⎧⎨⎩
[M ]αη if [P ]αη = #t
[N ]αη if [P ]αη = #f
⊥ otherwise

We let D be the coalesced sum of the domains Dρ, i.e. all bottoms of the Dρ

are identified. We define valC :DC → DT(C) by valC(α)(M) := [M ]α′⊥ where
⊥(xρ) := ⊥ρ and α′(cρ) := α(cρ) if α(cρ) ∈ Dρ, and α′(cρ) := ⊥ρ otherwise. It
is easy to see that valC is natural in C.

3 Strong Normalization by Approximation

Definition 3. Let T: Const → CountSet be a term system and (D, val) a model
of T. A rewrite structure for T and (D, val) is a triple R = (C,→, α) where C is
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a constant system, → a binary relation on T(C) and α ∈ DC . R is monotone if
M → N implies [M ]α � [N ]α for all M,N ∈ T(C). R is strongly normalizing if
every term M ∈ T(C) with [M ]α �= ⊥ is strongly normalizing w.r.t. →, i.e. there
is no infinite reduction sequence beginning with M .

Note that M is strongly normalizing w.r.t. → iff the restriction of → to the set
{N | M →∗ N} is wellfounded. Therefore it makes sense to speak of ‘induction
on the strong normalizability of M ’.

Example 3. Continuing examples 1 and 2, we fix a set of typed constants C ∈
Const. Consider a set E of equations of the form cP = M where each Pi is either
a variable, or one of #t,#f, 0, or of the form S(x), and such that all equations are
left linear, the left-hand sides of the equations are mutually non-unifiable, and
every free variable in a right-hand side also occurs in the corresponding left-hand
side (see [2, 3]). Then E defines a constant interpretation α: C → D in a canonical
way. Take, for example, the constant <: nat → nat → boole with the equations
x < 0 = #f, 0 < S(y) = #t, S(x) < S(x) = x < y. Then α(<) ∈ Dnat→nat→boole

is recursively defined by

k α(<) m =

⎧⎪⎪⎨⎪⎪⎩
#f if m = 0
#t if k = 0 and m > 0
(k − 1) α(<) (m− 1) if k > 0 and m > 0
⊥ otherwise (i.e. k = ⊥ or m = ⊥)

On the other hand E also defines a reduction relation → between terms through
the rules below, where M [N/x] denotes (variable capture avoiding) substitution
and Inst(E) is the set of all substitution instances of equations in E .

M = N ∈ Inst(E)
E

M → N
β

(λxM)N → M [N/x]

P → P ′If
if P thenM elseN → if P ′ thenM elseN

If-#t
if #t thenM elseN → M

If-#f
if #f thenM elseN → N

M → M ′
App-L

MN → M ′N
N → N ′

App-R
MN → MN ′

M → M ′
Abst

λxM → λxM ′

Altogether we have defined a rewrite structure R = (C,→, α) (restricting →
to closed terms). It is easy to see that R is monotone: by induction on the
definition of → one easily proves that M → N implies [M ]αη � [N ]αη for all
variable environments. For the β-rule one needs that [M [N/x]]αη = [M ]αη[N ]αη

x ,
which can be proven by a straightforward induction on M . In Example 4 we will
prove that that R is also strongly normalizing.

Definition 4. Let Rω = (Cω,→ω, αω) and R = (C,→, α) be rewrite structures.
We say that Rω approximates R if there exists a constant substitution θ: Cω → C
and a sequence of constant substitutions θn: C → Cω such that the following
approximation conditions are satisfied.
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1. θ ◦ θn = idC for all n.
2. For all n, αω ◦ θn � αω ◦ θn+1 and

⊔
n∈N

αω ◦ θn = α.
3. For all A ∈ T(Cω) and N ∈ T(C), if Aθ → N and [A]αω �= ⊥, then A →ω B

for some B ∈ T(Cω) with Bθ = N .

Theorem 1. Let Rω = (Cω,→ω, αω), R = (C,→, α), be rewrite structures for
a term system T and a model (D, val) of T. If Rω is monotone, strongly nor-
malizing and approximates R, then R is strongly normalizing.

Proof. Let Rω approximate R via θ: Cω → C and θn: C → Cω, and assume
that Rω is monotone and strongly normalizing. To show that R is strongly
normalizing, assume [M ]α �= ⊥. We have

[M ]α = [M ]
⊔
n∈N

αω ◦ θn =
⊔
n∈N

[M ](αω ◦ θn) =
⊔
n∈N

[Mθn]αω

by approximation condition 2, continuity and the substitution lemma. Hence
[Mθn]αω �= ⊥ for some n ∈ N. Since Mθnθ = M , by approximation condition 1,
it suffices to show the following claim: for any A ∈ T(Cω), if [A]αω �= ⊥, then Aθ
is strongly normalizing. Since Rω is strongly normalizing we may use induction
on the strong normalizability of A for proving the claim. Assume [A]αω �= ⊥ and
Aθ → N . We have to show that N is strongly normalizing. By approximation
condition 3 we have A →ω B for some B with Bθ = N . Since Rω is monotone
we have [B]αω �= ⊥. Hence N is strongly normalizing, by induction hypothesis.

Remark 1. Under the additional assumption that for every d ∈ Cω there exists
n such that θn(θ(d)) = d (which holds in the example below) one can prove that
monotonicity of Rω implies monotonicity of R.

Example 4. We define an approximation Rω = (Cω,→ω, αω) of the rewrite struc-
ture R = (C,→, α) of Example 3 as follows. Rω is constructed from a constant
set Cω and a set Eω in the same way as R was constructed from C and E . There-
fore it suffices to define Cω and Eω. We set

Cω := {cn | c ∈ C, n ∈ N}

(cn is just c with label n attached), and

Eω := {cn+1P = Mθn | cP = M ∈ E}

where θn(c) := cn. Since there is no equation for c0 we set αω(c0) := ⊥ (one
could also argue that this follows from the general way αω is defined). Because
the equations in Eω are free of recursive calls, it is easy to see that all terms in
T(Cω) are strongly normalizing with respect to →ω: the usual strong normaliza-
tion proof for the simply typed λ-calculus with β-reduction via computability
predicates á la Tait can be easily extended to →ω (see [2] for details). In partic-
ular Rω is strongly normalizing (and monotone, according to Example 3).

Now we show that Rω approximates R via the constant substitutions θn
defined above and θ: Cω → C, θ(cn) := c. Approximation condition 1 clearly



32 Ulrich Berger

holds. For approximation condition 2 we need to show that αω(cn) � αω(cn+1)
and α(c) =

⊔
n∈N

αω(cn). The constant interpretation α is defined as the least
fixed point of a continuous functional Γ :DC → DC , i.e. α =

⊔
n∈N

Γn(⊥). An
easy induction on n shows that αω(cn) = Γn(⊥)(c) (see [2] for details). Since
Γn(⊥) � Γn+1(⊥) we are done. Finally we show that approximation condition 3
holds. Let A ∈ T(Cω) such that [A]αω �= ⊥ and Aθ → N . The constant c0
cannot occur in A since otherwise the strictness of the semantics (easily proven
by induction on terms) and the fact that αω(c0) would imply [A]αω = ⊥. But
then A →ω B for B ∈ T(Cω) such that Bθ = N as one easily proves by induction
on the definition of Aθ → N .

Since we have shown that Rω is monotone, strongly normalizing and approx-
imates R, it follows, by Theorem 1, that R is strongly normalizing.

4 Application: Termination of Higher-Order
Rewrite Systems

The results of the previous section, in particular their application described
in Example 4, give us a convenient method for proving strong normalization of
higher-order rewrite systems in the format of Example 3: it suffices to prove that
every term has a defined (�= ⊥) value in a strict domain-theoretic semantics. Now
we apply this to prove strong normalization for a group of higher-order rewrite
systems emerging from problems in proof theory. Since the proofs are similar in
all cases we will carry this out in detail for one particular example only.

In [8] the axiom scheme of open induction

OI ∀f (∀g <lex f U(g) → U(f)) → ∀f U(f)

was used to interpret classical analysis in finite types in a corresponding intu-
itionistic system. In this axiom scheme U ranges over open predicates on N → ρ
(where ‘open’ refers to the N-fold product of the discrete topology on ρ) and
g <lex f := ∃n (∀k < n gk = fk ∧ gn <ρ fn) with some wellfounded relation
<ρ on ρ. Open induction was introduced in a slightly different form in [12] and
analysed intuitionistically in [13, 14]. Classically, open induction can be proven
using Nash-Williams’ minimal-bad-sequence argument [15]. It was shown in [8]
that intuitionistic arithmetic plus OI, can be (modified) realizability interpreted
by open recursion

OR RoFf =N Ff(λn, y, h.if y<ρfn thenRoF (fy
nh) else 0)

where

fy
nh := λk.

⎧⎨⎩
fk if k < n
y if k = n
hk if k > n

To see the connection with open induction observe that {g | g <lex f} = {fy
nh |

n: N, y: ρ, h: N → ρ, y <ρ fn}.
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We let C consists of constants for Gödel primitive recursive functionals (for
example <: nat → nat → boole) and the constants Ro:σ → ρω → nat where ρω :=
nat → ρ and σ := ρω → (nat → ρ → ρω → nat) → nat.

E consists of the usual defining equations for the primitive recursive constants
(see example 3) and the defining equation OR for the constants Ro (setting, e.g.
fy
nh := λk.if k < n then fk else if k < S(n) then y elsehk).

Theorem 2. Gödel’s system T extended by open recursion is strongly normal-
izing.

Proof. Since, according to Example 4, R is strongly normalizing, it suffices to
show that [M ]α �= ⊥ for every term M ∈ T(C). This can be done using the
notion of totality. For every type ρ the total elements of Dρ are defined in the
obvious way by recursion on ρ. For example, a function f ∈ Dρ→σ is total if it
maps total arguments to total values. Obviously, ⊥ is not total. Furthermore,
by induction on terms it follows that [M ]α is total provided all constants are,
i.e. α(cρ) is total in Dρ for all cρ ∈ C. Our problem therefore reduces to showing
that all constants are total. For the primitive recursive constants this follows
by straightforward induction on the natural numbers. For Ro one applies open
induction, using the fact that for any continuous function F :Dρ→nat → Dnat the
set U := {f ∈ Dρ→nat | Ff �= ⊥} is open.

In a similar way one can show that various forms of bar recursion [4–8, 16] lead
to strongly normalizing extensions of Gödel’s T [2]. In [3] it is furthermore shown
that the domain-theoretic model can be modified so as to work for polymorphic
second-order types (system F [17]) instead simple types.

The restriction of the rewrite relation defined in Example 3, which is due to
the presence of the if-then-else construct, can be avoided by replacing if-then-else
by pattern matching using an auxiliary function. For open recursion this would
result in the following.

RoFf = Ff(λn, y, h.R̃oFfnyh(y<ρfn))

R̃oFfnyh#t = RoF (fy
nh)

R̃oFfnyh#f = 0

For this variant strong normalization, with respect to unrestricted reduction, can
be proven with the same method (see [2] for the analogous case of bar recursion).

5 Conclusion

We introduced a general domain-theoretic method for proving termination for a
wide class of term-rewriting systems. The main result, Theorem 1, is formulated
more abstractly than the corresponding results in [2] and [3] making it clear that
the essence of the method is independent of typing disciplines, the particular
structure of terms, or particular rewrite strategies.

In summary, the method reduces the strong normalization proof to the fol-
lowing two tasks.
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1. Construct a domain-theoretic model that interprets the constants according
to the given rewrite rules (this will ensure monotonicity of the rewrite struc-
ture) and such that there is a strict dependency of the value of a term on the
interpretation of a constant occurring at a position where the given strategy
allows for a reduction (this will ensure approximation condition 3 – the ap-
proximation conditions 1 and 2 are automatic if one follows the construction
given in Example 4).

2. Prove that all constants are total.

Note that the proof-theoretic strength necessary to prove termination for a par-
ticular rewrite system goes entirely into the proof of totality. Therefore one can
say that our method reduces termination proofs to (technically much simpler)
totality proofs. The gain in simplicity through this method becomes apparent if
one compares it with weak normalization proofs for related systems given e.g.
in [6, 16, 18]. In addition, the method not only simplifies existing proofs, but also
leads to new results, such as the strong normalization proof for open recursion
presented here.

Since our normalization results for higher-order rewrite systems depend on
a given proof of strong normalization for the underlying typed λ-calculus our
method does not compete with generic approaches to strong normalization for
type theories [19, 20]. It is however conceivable that our method, because of its
generality, can be extended to also prove strong normalization for the underlying
typed λ-calculus.
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Abstract. We describe a polymorphic extension of the substructural
lambda calculus αλ associated with the logic of bunched implications.
This extension is particularly novel in that both variables and type vari-
ables are treated substructurally, being maintained through a system
of zoned, bunched contexts. Polymorphic universal quantifiers are intro-
duced in both additive and multiplicative forms, and then metatheo-
retic properties, including subject-reduction and normalization, are es-
tablished. A sound interpretation in a class of indexed category models is
defined and the construction of a generic model is outlined, yielding com-
pleteness. A concrete realization of the categorical models is given using
pairs of partial equivalence relations on the natural numbers. Polymor-
phic existential quantifiers are presented, together with some metatheory.
Finally, potential applications to closures and memory-management are
discussed.

1 Introduction

In recent years, substructural logics and type systems have become firmly estab-
lished as fundamental tools in the analysis of programming languages. The most
prominent are linear logics and types [5], but there are more ad hoc systems,
designed for low-level languages and memory management, for example [18].

The logic of bunched implications, BI, as exposed in [10], [11], [13] is a
substructural logic of growing importance. BI provides a logic of resource, which
treats the sharing of resource, rather than the number of uses treated by linear
logic. The resource-sensitive aspect of BI has led to it being adopted as the basis
of the assertion language of new program logics, notably separation logic [15],
which allow for safe-reasoning about imperative languages with pointers.

BI has several well-understood classes of models, both truth-functional and
categorical, and like linear logics, has an elegant proof-theory. In particular, there
is an associated lambda calculus, αλ, giving a propositions-as-types correspon-
dence. The calculus is presented using derivations of typing judgements in which
contexts of typed variables are certain trees, called bunches. The way to under-
stand αλ is through a reading of the terms known as the sharing interpretation
which emphasizes the use of some computational resource. As an example of
this, αλ has both additive and multiplicative function types. A function of the
additive kind may make use of the same computational resource as its argument,

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 36–50, 2005.
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but this is not the case for the multiplicative. In [10], αλ was used to unify the
Algol-like languages Syntactic Control of Interference (SCI) and Idealized Algol
(IA), which had hitherto appeared to have irreconcilable features.

Whilst it has been demonstrated that BI has applications to program logic
for imperative programming and to type systems for small, idealized languages,
the full power of the type-system remains unexploited. The possibility exists to
build a functional programming language along the lines of ML, but based on
bunched rather than simple types. The typing of a program should then make
guarantees about the use of resources (for example, memory, in the presence
of references) as well as the compatibility of sub-expressions. This paper takes
some of the first steps in that direction.

Polymorphism must be added to αλ in order to give a language with the
expressivity of ML. We present a calculus which bears the same relationship to
αλ as the Girard-Reynolds polymorphic lambda calculus λ2 [3], [14] does to the
simply-typed lambda calculus. Adding ordinary, impredicative polymorphism to
αλ amounts to adding a further zone to typing contexts which manages the use
of type variables. In this paper we take a further step, by considering a calculus
in which the type variable zone consists of a bunch. This gives extra flexibility
in the type system, for it allows us to consider both additive and multiplicative
polymorphism. The additive polymorphism allows us to recover all standard uses
of polymorphism, whilst the multiplicative polymorphism enforces non-sharing
of resources associated with type variables. Multiplicative quantification closely
resembles the freshness quantifier of Pitts and Gabbay [6]. Further steps and
features are required before we have a genuinely ML-like type system, including
predicative polymorphism, recursive types, references and typechecking.

In §2, we add polymorphic universal quantifiers to αλ. We follow this with
some of the more important metatheoretical results in §3. In §4, we describe an
extension of the usual notion of categorical model. The additives are modelled
in the usual way, and in a similar way, the multiplicatives are modelled by the
right-adjoints to certain substitutions. In §5, we give an instance of such a model
using the category PER of partial equivalence relations on the natural numbers.

In §6, we introduce polymorphic existential quantification. The desire to ex-
tend the sharing interpretation, together with metatheoretic concerns, governs
the design of the multiplicative quantifier. The multiplicative existential is less
semantically neat than the universal, but hints strongly at a number of appli-
cations, for it enables the hiding not just of a type, but also of the resources
that accompany it. Thus there is an appealing intuition for multiplicative exis-
tentials as a kind of closure. We discuss connections to work on type systems for
memory-management, specifically alias types [18] and regions [17], [19], where
the use of location and region variables leads to forms of polymorphism. For
alias types, this polymorphism appears to be multiplicative.

The work reported herein was carried out under the project ‘Bunched ML’,
funded by the United Kingdom EPSRC. We acknowledge help and suggestions
given by our collaborators, Josh Berdine and Peter O’Hearn of Queen Mary
University London. We also thank the anonymous referees.
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2 The Calculus

The calculus, which we shall call α2λ2, has three levels of judgement. A first level
judgement X � τ gives a type τ over a bunch of type variables X . The second
level, which has judgements of the form X � Γ generates the contexts Γ of
ordinary variables over X . The third level comprises judgements X | Γ � M : τ
which show that a term M is well-typed with τ , given X and Γ .

Assume a countable collection of type variables α, β, . . . to be given. The
types used in the calculus are generated by

τ := � | I | α | τ ∧ τ | τ ∗ τ | τ → τ | τ −−∗ τ | ∀α.τ | ∀∗α.τ ,

where α is any type variable. The connectives �, ∧, → and ∀ are the additive
unit, product, function space and polymorphic universal quantifier, respectively.
There are multiplicative unit I, product ∗, function space −−∗ and universal ∀∗
connectives. We allow the letters σ, τ to range over types.

A hub is a bunch of type variables, generated as follows

X := ∅ | α | X,X | X ;X ,

subject to the restriction that every type-variable may occur at most once in a
bunch. Let X,Y, Z range over hubs.

Assume a countable collection of variables x, y, z, . . . to be given. A (typing)
context is a bunch of typed variables, generated by

Γ := ∅ | ∅∗ | x : τ | Γ, Γ | Γ ;Γ ,

where x is a variable, τ is a type and any variable occurs at most once. The units
∅ and ∅∗ are distinct from the unit ∅ for hubs. The typing contexts are nothing
more than the contexts of αλ, but such that types may contain type variables.

Bunches are always subject to a pair of equivalence relations [13]. The first
equivalence ≡ on bunches is used to build structural rules that allow us to per-
mute variables in hubs or contexts. It is given by commutative monoid rules for
“;”, for “,” and by a congruence to ensure that the monoid rules can be applied
at arbitrary depth in any bunch. The second relation ∼= is used to control con-
traction rules. The equivalence ∼= on hubs is simply renaming of type variables:
X ∼= Y if Y can be obtained from X by renaming bijectively with type variables.
The relation Γ ∼= Δ between contexts holds just when Δ can be obtained by
relabelling the variables of the leaves of Γ in a type preserving way: any leaf
x : τ of Γ must correspond to a node y : τ of Δ.

There is an obvious notion of sub-bunch of a bunch. Let B(B1 | . . . | Bn) be
the notation for a bunch B with distinct, distinguished sub-bunches B1, . . . , Bn.
Write B[B′

1/B1, . . . B
′
n/Bn] for the bunch formed by replacing each bunch Bi in

B with B′
i.

The rules for generating type formation judgements, which specify types
which are well-formed over hubs, are shown in Figure 1. A critical design deci-
sion is evident at this level. The formation rules for ∧, →, ∗ and −−∗ are kept as
simple as possible, in that formation takes place over a single, fixed hub.



On Bunched Polymorphism 39

(TAx)
α � α

(T�) ∅ � � ∅ � I
(TI)

(T	)
X � σ X � τ

X � σ 	 τ
(	 is any of ×,→, ∗,−−∗)

(T∀)
X; α � τ

X � ∀α.τ

X, α � τ

X � ∀∗α.τ
(T∀∗)

(TC)
X(Y ; Y ′) � τ

X(Y ) � τ [Y/Y ′]
(Y ∼= Y ′) (TW )

Y � τ

X(Y ) � τ
(Z ≡ Z′)

Z � τ

Z′ � τ
(TE)

Fig. 1. Type formation rules

The construction of contexts which are valid over hubs is generated from
the type-formation judgements. These are presented as judgements of the form
X � Γ where X is a hub and Γ is a context and are characterised by: X � Γ
holds if and only if X � τ for each variable x : τ in Γ .

The terms of the language are given by the following grammar

M := x | � | I | let I be M in M
| 〈M,M〉 | π1M | π2M | M ∗M | let (x, y) be M in M
| λx : τ.M | app(M,M) | λ∗x : τ.M | app∗(M,M)
| Λα.M | App(M,X, τ) | Λ∗α.M | App∗(M,X, τ) ,

where α is a type variable, τ is a type, X is a hub and x is a variable.
Let FV (−) be the set of variables which are in a context (−) or free (not

bound by a lambda abstraction) in a term (−). We use the notation FTV (−)
for the set of type variables which occur free in a bunch (−), type (−), the types
of the variables in the context (−) or the type of the term (−), respectively.
In a term App(M,X, τ) or App∗(M,X, τ), the type variables of X are free, so
substitution must take account of this.

We introduce a syntactic measure μ which assigns to each term the set of type
variables which are free and which occur in some application of the multiplicative
universal quantifier. Formally, this is given by a recursive definition, where

μ(Λα.M) = μ(Λ∗α.M) = μ(M)�{α} μ(App∗(M,X, τ)) = μ(M)∪FTV (X)

are the informative clauses.
The typing of terms uses the term and context formation judgements. The

term formation judgements are derived according to a system of rules, a sam-
ple of which are shown in Figure 2. In addition to the rules shown, there are
introduction and elimination rules for rules for additive (�) and multiplicative
(I) units, additive (∧) and multiplicative (∗) conjunction, additive lambda ab-
straction (→), contraction (C) and equivalence (E) for contexts. All of the rules
other than the quantifier rules and the hub structurals use a fixed hub X . That
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is to say, they are essentially the familiar rules for αλ, but parameterised by
the hub. The elimination rules (∧E), (∗E), (→ E), (−−∗E) are each subject to a
side-condition

μ(N) ∩ FTV (M) = ∅ (†)

which requires the separation of certain of the free type variables present.

(Ax)
X � x : τ

X | x : τ � x : τ

X | Γ (Δ) �M : τ X � Δ′

X | Γ (Δ; Δ′) �M : τ
(W )

(−−∗I)
X | Γ, x : σ �M : τ

X | Γ � λ∗x : σ.M : σ −−∗ τ
(†)

X | Γ � N : σ −−∗ τ X | Δ �M : σ

X | Γ, Δ � app∗(N, M) : τ
(−−∗E)

(∀I)
X; α | Γ �M : τ

X | Γ � Λα.M : ∀α.τ
(α /∈ FTV (Γ ))

X, α | Γ �M : τ

X | Γ � Λ∗α.M : ∀∗α.τ
(∀∗I)

(∀E)
X | Γ �M : ∀α.τ Y � σ

X; Y | Γ � App(M, Y,σ) : τ [σ/α]

X | Γ �M : ∀∗α.τ Y � σ

X, Y | Γ � App∗(M, Y,σ) : τ [σ/α]
(∀∗E)

(FW )
Y | Γ �M : τ

X(Y ) | Γ �M : τ
(X ≡ Z)

X | Γ �M : τ

Z | Γ �M : τ
(FE)

(FC )
X(Y ; Y ′) | Γ �M : τ

X(Y ) | Γ [Y/Y ′] �M [Y/Y ′] : τ [Y/Y ′]
(Y ∼= Y ′)

Fig. 2. Sample of the term formation rules

The usual rules for βηζ-conversions for αλ are retained, see [13]. In addition,
we have four conversions for quantifiers,

App(Λα.M,X, α) →β M Λα.App(M,X,α) : τ →η M
App∗(Λ∗α.M,X, α) →β M Λ∗α.App∗(M,X,α) : τ →η M ,

where these terms are all typed over the same hub X and context Γ such that
α is not free in Γ . Let � be the reduction relation generated by the single step
conversions. As usual, these relations give rise to a system of βηζ-equalities.

3 Metatheory

Many of the standard properties of a lambda calculus hold for α2λ2. In partic-
ular, the fact that hubs are affine (weakening is allowed around ‘,’ and additive
and multiplicative units are identified) yields admissible substitution rules.
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Proposition 1. (Substitution Laws)

1. If X | Γ (x : σ) � N : τ and X | Δ � M : σ are derivable and the condition
μ(N) ∩ FTV (M) = ∅ holds then X | Γ [Δ/x] � N [M/x] : τ .

2. If Y | Γ � M : τ and Z � σ then Y [Z/α] | Γ [σ/α] � M [(Z, σ)/α] : τ [σ/α].

The side-condition on the first part is essential, because the derivation of N
may have used (∀∗E). This makes the side-condition (†) on the elimination laws
necessary for subject-reduction.

Proposition 2. The four rules below are admissible.

X | Γ � λx : σ.M : σ → τ

X | Γ ;x : σ � M : τ
X | Γ � λ∗x : σ.M : σ −−∗ τ

X | Γ, x : σ � M : τ

X | Γ � Λα.M : ∀α.τ
X ;α | Γ � M : τ

X | Γ � Λ∗α.M : ∀∗α.τ
X, α | Γ � M : τ

The propositions above can be used to prove subject-reduction.

Theorem 1. If X | Γ � M : τ and M � N then X | Γ � N : τ is derivable.

All reductions of the calculus terminate, as is shown by translation into the
polymorphic lambda calculus λ2.

Theorem 2. The calculus is strongly normalizing.

The reduction relation can be extended to include ζ-reductions (commuting
conversions) for ∗, following [13], and the subject-reduction and normalization
theorems continue to hold. Similarly, the extension of α2λ2 with the additive
disjunction ∨ of αλ causes no difficulties.

4 Categorical Semantics

We now give a categorical semantics to α2λ2. This is a hybrid of the indexed
category semantics of λ2 with the doubly closed category semantics of αλ.

Before giving the modified version of hyperdoctrine, we introduce some ter-
minology for a certain structure on a category. Consider a symmetric monoid
(⊗, I, a, l, r, s) on a category B. Let 1B : B −→ B be the identity functor. The
monoid ⊗ is a pseudoproduct if for every object B in B there is a (first) pseudo-
projection, that is, a natural transformation ψ1

B : 1B ⊗ B =⇒ 1B satisfying the
two coherence diagrams given below.

(X ⊗ Y ) ⊗ Z
a� X ⊗ (Y ⊗ Z) X ⊗ I

r � X

X ⊗ Y

ψ1

� ψ1
�

�

1X
⊗ ψ

1

X
�

ψ1

X ⊗ I

1X⊗I

� ψ1
� X

�

1X
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We write the component at an object A as ψ1
A,B : A ⊗ B −→ A. Using

the symmetry isomorphisms s, it is easy to construct a second pseudoprojection
ψ2
A : A⊗ 1B =⇒ 1B with components ψ2

A,B where A,B are any objects of B. We
frequently omit both subscripts and superscripts on pseudoprojections.

All products are pseudoproducts, but not vice versa. The category Set⊥ of
pointed sets X⊥ and functions which preserve the distinguished element ⊥ has
a pseudoproduct given by the coproduct. A pseudoprojection from X⊥ + Y⊥ to
X⊥ may be taken to be ⊥, y  → ⊥, x  → x for all x ∈ X, y ∈ Y .

A cartesian doubly closed category (CDCC) is a category with a pair of sym-
metric monoidal closed structures, one of which is cartesian. A functor between
CDCC’s is strict if it preserves both the cartesian closed and the monoidal
closed structure on-the-nose. Let CDCC be the category of cartesian doubly
closed categories and strict functors.

A split indexed category consists of a contravariant functor from a base cat-
egory B to some category of categories, see [8] for a detailed account. A hy-
perdoctrine [16] is a categorical model of λ2 consisting of a split indexed cat-
egory with certain properties, including a system of adjunctions for modelling
quantification. It also requires a distinguished base object Ω, called the generic
object, which is characterized by the property that there is a natural bijection
ιJ : (PJ)0

∼=−→ hom(J,Ω), where hom(−, Ω) is the contravariant hom functor
for B and (PJ)0 is the set of objects of the fibre PJ .

An α2λ2-hyperdoctrine is a split indexed category P : Bop −→ CDCC with:
generic object; finite products and binary pseudoproducts in the base; the unit
of ⊗ is �, the terminal object; for any projection π in the base, the functor
P (π) has a right-adjoint Π which satisfies the Beck-Chevalley condition; for any
pseudoprojection ψ in the base, the functor P (ψ) has a right-adjoint Ψ which
satisfies an appropriate, weak form of the Beck-Chevalley condition.

Interpret hubs X as objects in the base B, with

�∅� = � �α� = Ω �X ;Y � = �X� × �Y � �X,Y � = �X� ⊗ �Y � .

Interpret type formations as objects �X � τ� of the fibre P (�X�). An instruc-
tive fragment of the interpretation is given by

�∅ � T : T � = � �∅ � I : I� = I �α � α� = ι−1
Ω (1Ω)

�X � τ ∗ τ ′� = �X � τ� ⊗ �X � τ ′� �X � τ −−∗ τ ′� = �X � τ� � �X � τ ′�

�X � ∀α.τ� = Π�X ;α � τ� �X � ∀∗α.τ� = Ψ�X,α � τ� ,

where �, I, ⊗ and � are from the doubly closed structure of fibres, Π is
adjoint to π : �X� × Ω −→ �X�, and Ψ is adjoint to ψ : �X� ⊗ Ω −→ �X�.
The interpretations of the omitted rules are quite standard. In particular, the
interpretation of the rule (TW ) makes use of projections and pseudoprojections.

Interpret contexts as objects �X � Γ � of P (�X�) by extension of the inter-
pretation of types, using the product and monoidal structure of the fibre.
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Morphisms �X | Γ � M : τ� : �X � Γ � −→ �X � τ� in P (�X�) are used to
interpret term formations. A fragment of the interpretation is given below.

�X | x : τ � x : τ� = 1�X�τ� �X | ∅ � � : �� = 1� �X | ∅∗ � I : I� = 1I

�X | Γ, x : φ � M : ψ� = f : �X � Γ � ⊗ �X � φ� −→ �X � ψ�

�X | Γ � λ∗X : φ.M : φ−−∗ ψ� = f� : �X � Γ � −→ (�X � φ� � �X � ψ�)

�X ;α | Γ � M : τ� = g : �X ;α � Γ � −→ �X ;α � τ�

�X | Γ � Λα.M : ∀α.τ� = g� : �X � Γ � −→ �X � ∀α.τ�

�X,α | Γ � M : τ� = h : �X,α � Γ � −→ �X,α � τ�

�X | Γ � Λ∗α.M : ∀∗α.τ� = h� : �X � Γ � −→ �X � ∀∗α.τ�

�X | Γ � M : ∀α.τ� = m : �X � Γ � −→ �X � ∀α.τ� �Y � ρ� = B ∈ P (�Y �)
�X,Y | Γ � App(M,Y, ρ)� = P (1�X� × ι(B))(m�)

�X | Γ � M : ∀∗α.τ� = m : �X � Γ � −→ �X � ∀∗α.τ� �Y � ρ� = B ∈ P (�Y �)
�X,Y | Γ � App∗(M,Y, ρ)� = P (1�X� ⊗ ι(B))(m�)

Here, f� is the linear exponential mate of f , (−)� and (−)� give the trans-
poses of π∗ ! Π , (−)� and (−)� give the transposes of ψ∗ ! Ψ , and the morphism
ι(B) : �Y � −→ Ω in the base arises from the fact that Ω is generic.

4.1 Soundness and Completeness

In any α2λ2-hyperdoctrine, every judgement can be interpreted.

Proposition 3. (Weak Soundness) Every judgement X | Γ � M : τ has an
interpretation as a morphism �X � Γ � −→ �X � τ� in P (�X�).

Substitution of a term for a variable takes place in a fixed hub, so its inter-
pretation is modelled in the corresponding CDCC as in [13]. The interpretation
of substitution for type variables uses reindexing functors and the generic object.

Proposition 4. (Equational Soundness) If X | Γ � M = M ′ : τ is derivable
then �X | Γ � M : τ� = �X | Γ � M ′ : τ� holds.

The syntactic equalities are generated by the βηζ-conversions. All of these
take place over a fixed hub, except for the reductions for the quantifiers. We know
that the equalities over any hub are all validated in the corresponding CDCC.
The β- and η-rules for the multiplicative quantifier are witnessed, respectively,
by the equations

(P (1�X� ⊗ 1Ω))((m�)�) = m ((P (1�X� ⊗ 1Ω))(n�))� = n ,
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given interpretations �X,α | Γ � M : τ� = m : �X,α � Γ � −→ �X,α � τ�
and �X | Γ � N : ∀∗α.τ� = n : �X � Γ � −→ �X � ∀∗α.τ�. These equalities
follow because the indexed category is split. The relevant equalities for additive
quantification follow by the obvious modifications.

Completeness with respect to α2λ2-hyperdoctrines is established by the usual
method. That is, we build a generic model from the syntax such that if an
equation holds between interpreted terms then it must also hold in the theory.
The main novelty here is the construction of the base category, although this
follows essentially the same pattern as the construction for λ2 hyperdoctrines:
objects are (bunches of) type variables and morphisms are substitutions derived
from type formation judgements.

We construct the base B from the syntax of hubs and type formations. The
objects of B are taken to be the equivalence classes of hubs under the congru-
ence relation ∼=, which handles α-conversion of type variables. Throughout this
construction, we use hubs as representatives of equivalence classes. Let Ω be the
equivalence class of α and � be the equivalence class of ∅.

The congruence ∼= on hubs extends to type formation judgements using sub-
stitution: (X � τ) ∼= (Y � τ ′) ⇐⇒ (X ∼= Y ) & (τ ′ = τ [Y/X ]) for all hubs X
and Y . Again, we will tend to use representatives for equivalence classes in what
follows. Define a mapping (−) : (X � τ)  → τ from type formations to types.

The morphisms of B from X to Y are certain trees with the same shape
(internal node structure) as Y and with equivalence classes of type formations
at the leaves. These morphisms are generated by an inductive definition.

There are a number of parts to the base case. These are identity, terminal,
diagonal, projection, pseudoprojection, right unit, associativity, associativity in-
verse, symmetry. For brevity, we give only the diagonal and pseudoprojection
clauses below. From these, the forms of the other cases may be easily inferred.
Diagonal: for every X there is a morphism ΔX : X −→ X ;X ′, where X ′ is
any hub which is disjoint from X and with X ′ ∼= X . The morphism is given
by fX ; fX′ where fX is formed by replacing every leaf α of X with X � α.
Pseudoprojection: for all X and Y there is an arrow ψ1 : X,Y −→ X formed by
replacing each leaf α of X with X,Y � α.

The inductive definition has three step cases: product, pseudoproduct and
composite. Product: if there are arrows f : X −→ Y and g : X −→ Y ′ then
there is a morphism X ;X ′ f ;g−→ Y ;Y ′. It is formed as the tree f ′; g′ where f ′ is
formed from f by replacing each leaf X � τ with X ;X ′ � τ , and similarly for
g′. Pseudoproduct: If there is a morphism f : X −→ Y and there is a morphism
g : X ′ −→ Y ′ then there is a morphism X,X ′ f,g−→ Y, Y ′. It is formed as the tree
f ′, g′ where f ′ is formed from f by replacing each leaf X � τ with X,X ′ � τ , and
similarly for g′. Composite: the composite in B of a pair of arrows f : X −→ Y ,
g : Y −→ Z is an arrow g ◦f : X −→ Z constructed by replacing each leaf Y � ρ
of g with the leaf X � ρ[f/Y ], where the mapping (−) is extended to trees in
the obvious way.

Some comments and observations about the above definition are in order. In
a number of the clauses above we have formed a morphism from X to Y using
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some words like “replace any variable α of Y with the judgement X � τ” and it
is to be understood that any leaves of Y which are units ∅ should be replaced
by the judgement X � �. Composition is a well-defined operation, independent
of choices of representatives. The hom-sets of B are guaranteed to remain small.

It is a matter of lengthy calculation to verify that B is a category, has finite
limits and has a symmetric monoid which is a pseudoproduct. These structures
are suggested by the notation in the recursive definition.

Write P (X) for the fibre over the equivalence class of X . The construction
of each P (X) follows the construction of a CDCC from αλ, see [13]. Objects
are equivalence classes of type formations X � τ , represented by pairs (X, τ).
A morphism from (X,σ) to (X, τ) is an equivalence class of term formations
X | x : σ � M : τ , where the equivalence is generated by α-equality for variables,
the βηζ-rules (without the quantifier cases) and the congruence extended from
the congruence ∼= on hubs.

Every arrow u : X −→ Y of B yields a functor P (u) : P (Y ) −→ P (X)
between fibres. The functor acts as P (u)(Y, τ) = (X, τ [u/Y ]) on any object (Y, τ)
in P (Y ). The arrow assignment is given by P (u)(Y, x,M) = (X,x,M [u/Y ]) for
any arrow (Y, x,M) in P (Y ). Both the object and arrow assignments can be
verified to be well-defined and calculuations can be performed to show that
P (u) is indeed functorial.

Further calculations show that the functors P (u) preserve the CDCC struc-
ture on-the-nose. Moreover, the functors induced by projections π : X×Ω −→ X
and pseudoprojections ψ : X ⊗ Ω −→ X can be shown to have right-adjoints
which satisfy the Beck-Chevalley conditions. The identity gives a natural bijec-
tion between the hom-sets B(X,Ω) and fibres P (X).

Theorem 3. The functor P : Bop −→ CDCC is an α2λ2-hyperdoctrine.

The completeness theorem follows as a corollary, since P is constructed from
the syntax and each term is interpreted, essentially, by itself.

Corollary 1. (Completeness) If �X | Γ � M : τ� = �X | Γ � M ′ : τ� holds in
every α2λ2-hyperdoctrine then X | Γ � M = M ′ : τ is derivable in the calculus.

5 A PER Model

Partial equivalence relations on the natural numbers give rise to one of the
simplest and most elegant models of the polymorphic lambda calculus [4]. We
show how to produce a PER model for α2λ2.

A partial equivalence relation, PER for short, consists of a symmetric, tran-
sitive, binary relation R ⊆ N×N on the natural numbers. Define the domain of
R to be dom(R) = {n ∈ N | nRn}. A map between PERs consists of an equiv-
alence class of codes for recursive functions that track from the source PER to
the target PER, that is, functions which preserve the relation. Let PER be the
category of partial equivalence relations and PER0 be its set of objects. The cat-
egory is cartesian closed. It also has binary coproducts: embed isomorphically
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the two given PERs into PERs with disjoint domains, then take the union of the
relations.

Since PER is cartesian closed and has a symmetric monoid (given by the
coproduct) we might think that we can use these two structures to model αλ.
However, the monoid fails to be closed. This can be remedied by moving to a
model based on pairs of PERs, motivated by a similar construction for sets. The
category Set × Set of pairs of sets is a CDCC, see [11], [13]. Finite products and
exponentials are given pointwise. Moreover, there is an additional symmetric
monoidal closed structure with

(A0, A1) ⊗ (B0, B1) = ((A0 ×B0) + (A1 ×B1), (A0 ×B1) + (A1 ×B0))
(A0, A1) � (B0, B1) = ((A0 → B0) × (A1 → B1), (A0 → B1) × (A1 → B0)) ,

for all A0, A1, B0, B1 ∈ Set , where A + B is the coproduct of A and B in Set .
This can be viewed as an instance Set2 of Day’s closure construction [1], [2],
where 2 = {0, 1} is the discrete category with monoid given by addition modulo
two. Now PER×PER can be viewed as PER2 and so is doubly closed by [1]. Its
operations are defined in the same way as those of Set × Set , remembering that
the + in the definition of ⊗ is now the coproduct in PER. For any pair (A0, A1)
of PERs let (A0, A1)0 = A0 and (A0, A1)1 = A1. Extend the notion of domain
to pairs of PERS with dom(A,B) = dom(A)× dom(B) for any PERs A and B.
For any function f : A −→ B and C ⊆ A let f�C be the restriction of f to C.

Let X be a bunch of type variables. Let dom(ρ) =
⋃

α∈FTV (X) ρ(α) for any
function ρ : FTV (X) −→ PER0 × PER0. An environment for X is a function
ρ : FTV (X) −→ PER0×PER0 such that if any (Y, Z) is a sub-bunch of X then
dom(ρ�Y )∩ dom(ρ�Z) = ∅ holds. Let Env(X) be the set of environments for X .

A semantic type (over X) is a function τ : Env(X) −→ PER0 × PER0 from
environments to pairs of PERs. These definitions give a natural generalization
of the ordinary PER model of polymorphism, in which an environment consists
of a tuple of PERs and a semantic type consists of a map from environments
to PERs. A map from τ to τ ′ (over X) is an equivalence class [e] of codes for
pairs of codes, ([e0], [e1]), where the recursive function corresponding to each ei

tracks from (τρ)i to (τ ′ρ)i for all environments ρ. This gives a category P (X)
of semantic types over X .

Let α1, . . . , αn be the variables of X . A substitution (−)[τ1/α1, . . . , τn/αn] for
X consists of semantic types τ1, . . . , τn over some bunch Y such that: if X has a
sub-bunch (W,Z), where W has type variables with αi1 , . . . , αip and Z has type
variables with αj1 , . . . , αjq then (−)[τi1/αi1 , . . . , τip/αip , τj1/αj1 , . . . , τjq/αjq ] is
a substitution for (W,Z) if (−)[τi1/αi1 , . . . , τip/αip ] is a substitution for W and
(−)[τj1/αj1 , . . . , τjq/αjq ] is a substitution for Z and dom(τil(ρ))∩dom(τjm (ρ)) =
∅ for all ρ ∈ Env(Y ) and 1 ≤ l ≤ p and 1 ≤ m ≤ q. A map from Y to X is just
such a substitution. This gives a category Bun of bunches of type variables.

If ρ is an environment for X and A ∈ PER0 × PER0 then define a function
ρA : FTV (X)∪{α} −→ PER0×PER0 by α  → A and β  → ρ(β) for β �= α. Now
ρA is an environment for X ;α. If A satisfies A ∩ dom(ρ) = ∅ then ρA is also an
environment for X,α.
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Define semantic types ταi over X,α by ταi(ρ) = ρ(αi), for each 1 ≤ i ≤
n. Now (−)[τα1/α1, . . . , ταn/αn] defines a map from X ;α to X , called π, and
also a map from X,α to X , called ψ. Each of these induces a functor, with
P (π)(τ)(ρ) = τ(ρ�FTV (X)) for ρ ∈ Env(X ;α) and P (ψ)(τ)(ρ) = τ(ρ�FTV (X))
for ρ ∈ Env(X,α), respectively.

If τ ′ is a semantic type over X ;α or, respectively, X,α then a semantic type
over X is given, respectively, by

(Πτ ′)ρ =
⋂

A∈PER0×PER0

τ ′(ρA) (Ψτ ′)ρ =
⋂

A∈PER0×PER0

A∩dom(ρ)=∅

τ ′(ρA) ,

for each environment ρ for X . These assignments, which illustrate the distinction
between additive and multiplicative quantification, extend to functors which are
right-adjoints to π and ψ, respectively.

Let τ be a semantic type over X and τ ′ be a semantic type over X ;α or
X,α respectively. In the first case, a map from τ to Π(τ ′) is precisely the same
thing as a map from P (π)(τ) to τ ′. In the second case, a map from τ to Ψ(τ ′) is
precisely the same thing as a map from P (ψ)(τ) to τ ′. We therefore have natural
bijections between arrows

τ −→ Π(τ ′)
P (π)(τ) −→ τ ′

τ −→ Ψ(τ ′)
P (ψ)(τ) −→ τ ′

,

given by identity maps.
The above model is not quite a categorical model as described in the previous

section. We produce an α2λ2-hyperdoctrine by taking a suitable quotient on
bunches to make the interpretation of all type variables identical.

6 Existential Quantifiers

Existential quantifiers may be defined in the polymorphic lambda calculus λ2 and
are closely connected to the concept of abstract data type [9]. In this section, we
describe existential quantification in the bunched polymorphic setting, leading
to both additive and multiplicative existentials.

First-order additive and multiplicative existential quantifiers have been stud-
ied in [11], [13]. Proof-theoretic considerations drive the design of the polymor-
phic existentials, just as they do in the first-order case.

Additive existential quantification, ∃, is quite straightforward to add to the
system α2λ2. However, the multiplicative quantifier, ∃∗, is very delicate. In par-
ticular, it requires a number of side-conditions which can interfere with the
side-condition (†) used for α2λ2. Rather than describing such a system in its full
complexity, we first remove the universal quantifiers and instances of (†) before
adding the existentials. However, in general, both universals and existentials can
be considered together.
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The grammars generating types and terms are extended with

τ ::= . . . | ∃α.τ | ∃∗α.τ
M ::= . . . | 〈φ,M〉 | unpack M as 〈α, x〉 in M

| 〈Y, φ,M〉∗ | unpack∗ M as 〈α, x〉 in M ,

where α and x are bound in unpack and unpack∗ terms.
Just as with the multiplicative universal quantifier, we are forced to use an

additional syntactic measure with the multiplicative existential. The set WR(M)
of witnessing resources of a term M is the set of type-variables which occur in
in the left component Y of any sub-term 〈Y, φ,N〉∗. This can be made precise
with a recursive definition.

The rules for existentials, which follow the generalized forms for natural de-
duction introduced by Prawitz [12], are presented in Figure 3. Both of (∃E)
and (∃∗E) are subject to the side-condition α /∈ FTV (Δ) ∪ FTV (σ), which is
standard for the elimination of existentials. In addition, both are subject to the
side-condition WR(M)∩WR(N) = ∅, because of the presence of the multiplica-
tive. Furthermore, the condition α /∈ WR(N) is required for (∃∗E).

(T∃)
X; α � τ

X � ∃α.τ

X | Γ �M : ∃α.τ X; α | Δ(x : τ ) � N : σ

X | Δ(Γ ) � unpack M as 〈α, x〉 in N : σ
(∃E)

(∃I)
X | Γ � (M : τ )[φ/α] X � ∃α.τ

X | Γ � 〈φ, M〉 : ∃α.τ

(T∃∗)
X, α � τ

X � ∃∗α.τ

X | Γ �M : ∃∗α.τ X, α | Δ(x : τ ) � N : σ

X | Δ(Γ ) � unpack∗ M as 〈α, x〉 in N : σ
(∃∗E)

(∃∗I)
X, Y (Z) | Γ � (M : τ )[φ/α] Y (Z) � φ X, Z � Γ X � ∃∗α.τ

X, Z | Γ � 〈Y (Z), φ, M〉∗ : ∃∗α.τ

Fig. 3. Existential rules

The additive quantifier behaves essentially as the standard polymorphic ex-
istential. The multiplicative is more unusual. This partially hides the resources
(type variables) used in its formation. The work on first-order BI suggests a
form in which Y is completely hidden. This rule is derivable from the one given.
The more general version is adopted in order to give a corresponding η-rule.

The βη-conversions for existentials are

(X | unpack 〈φ,M〉 as 〈α, x〉 in N) →β (X | N [M/x][φ/α])
(X | unpack M as 〈α, x〉 in (N [〈α, x〉/z])) →η (X | N [M/z])

(X | unpack∗ M as 〈α, x〉 in (N [〈α, α, x〉∗/z]) →η (X | N [M/z])
(X,Z | unpack∗ 〈Y (Z), φ,M〉∗ as 〈α, x〉 in N) →β (X,Y (Z) | N [M/x][φ/α])
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and suitable ζ-conversions for existentials are also possible, provided no universal
quantifiers are present. Notice how the hub changes in the β-conversion for the
multiplicative. Let � be the reduction relation generated by →β and →η.

Most of the metatheory goes through as it did for the system with universals
rather than existentials. In particular, strong normalization can again be proved
by the translation method. However, there are a few important changes, notably
to substitution and subject-reduction.

Proposition 5. If X | Γ (x : τ) � N : σ and X | Δ � M : τ are both derivable
and WR(M) ∩WR(N) = ∅ then X | Γ (Δ) � N [M/x] : σ is derivable.

The condition on the substitution law forces us to place the side-condition
WR(M)∩WR(N) = ∅ on the binary elimination rules (∧E), (→ E), (∗E), (−−∗E)
and is the reason why we need the same condition for the existentials.

Proposition 6. If X | Γ � M : τ is derivable and (X | M) � (Y | N) then
Y | Γ � N : τ is derivable.

The existential does not have a simple α2λ2-hyperdoctrine interpretation
and, in particular, we cannot just use a left-adjoint to the pseudoprojection
substitution. However, an interpretation can be given to each judgement by
requiring the existence of certain assignments and arrows.

The introduction rule (∃∗I) for the multiplicative existential hides not only
the representation type, but also the resources associated with the representation
type. Once hidden, these resources are not visible to terms formed over the same
hub (see the substitution rule) and are only revealed by a subsequent use of the
elimination rule (∃∗E), leading to a hub-changing β-conversion, as above. In
this respect the formation of multiplicative existentials is reminiscent of the
formation of function closures. Furthermore, the elimination of ∃∗ is reminiscent
of the application of function closures, though perhaps with some side-effects.

We conjecture that bunched polymorphism is an appropriate setting to de-
velop type systems for memory-management. One approach to this is alias typing
[18] which allows the programmer to issue instructions that safely allocate and
deallocate chunks of memory, known as locations. Locations are used as param-
eters in types, for example x : ptr(l), which asserts that a program variable is
a pointer to the location l. A form of polymorphism is introduced through the
use of location variables, which range over locations. Instructions are typed in
contexts of aliasing constraints : these specifiy the types of entities contained in
certain locations and location variables. It is difficult to formalize direct trans-
lations of such systems into the bunched setting because of the complexity of
their type systems. However, it seems relatively clear that what the authors in-
tend to enforce are non-sharing (anti-aliasing) constraints on chunks of memory.
Consider, for example, the following statement, taken from [18]:

The existential ∃[ρ : Loc | {ρ  → τ1}].τ2 may be read “there exists some
location ρ, different from all others in the program, such that ρ contains
an object of type τ1, and the value contained in this data structure has
type τ2.
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What is intended to be different is surely not the location variable ρ itself, but
rather the memory assigned to it by the environment. Under such a reading, it
would seem more appropriate to use bunching rather than linearity as a founda-
tion for the type system. Bunched alternatives to the linear approaches to type
systems for regions [17], [19], should be equally interesting.
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Abstract. In previous work we presented a foundational calculus for
spatially distributed computing based on intuitionistic modal logic. With
the modalities � and � we were able to capture two key invariants:
the mobility of portable code and the locality of fixed resources. This
work investigates issues in distributed control flow through a similar
propositions-as-types interpretation of classical modal logic. The result-
ing programming language is enhanced with the notion of a network-wide
continuation, through which we can give computational interpretation of
classical theorems (such as �A ≡ ¬�¬A). Such continuations are also
useful primitives for building higher-level constructs of distributed com-
puting. The resulting system is elegant, logically faithful, and computa-
tionally reasonable.

1 Introduction

This paper is an exploration of distributed control flow using a propositions-
as-types interpretation of classical modal logic. We build on our previous intu-
itionistic calculus, Lambda 5 [8], which is a simple programming language (and
associated logic) for distributed computing. Lambda 5 focuses particularly on
the spatial distribution of programs, and allows the programmer to express the
place in which computation occurs using modal typing judgments. Through the
modal operators � and � we are then able to express invariants about mo-
bility and locality of resources. Our new calculus, C5, extends Lambda 5 with
network-wide continuations, which arise naturally from the underlying classical
logic. These continuations create a new relationship between the modalities �

and �, which we see with several examples, and serve as building blocks for
other useful primitives. Before we introduce C5, we begin with a short reprise
of Lambda 5.

Lambda 5. The Lambda 5 programming model is a network with many dif-
ferent places, or nodes. In order to be faithful to this model, we use a style of
logic that has the ability to reason simultaneously from multiple perspectives,
namely, modal logic. Compared to propositional logic, which is concerned with
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truth, modal logic deals with truth from the perspective of different worlds. These
worlds are related by an accessibility relation, which affects the strength of the
modal connectives; different assumptions about accessibility give rise to different
modal logics. For modeling a network where the worlds are nodes, we choose In-
tuitionistic S5 [14], whose relation is reflexive, symmetric, and transitive – every
world is related to every other world. Therefore, except when comparing it to
other systems, we essentially dispense with the accessibility relation altogether.
This leads to a simpler explanation of the judgments and connectives.

A true @ω is the basic judgment, meaning that the proposition A is true at
the world ω (we abbreviate this to A@ω). There are two new proposition forms
for quantifying over worlds. �A is the statement that A is true at every world.
�A means that A is true at some world. Because we think of these worlds as
places in the network, operationally we interpret type �A as representing mobile
code or data of type A, and the type �A as an address of a value of type A.

Propositions must be situated at a world in order to be judged true, so it is
important to distinguish between the proposition �A and the judgment �A@ω,
the latter meaning that A is true in every world from the perspective of ω. In
S5, every world has the same perspective with regard to statements about all
or some world(s). But operationally this will be significant, as there is no true
“global” code, only mobile code that currently exists at some world.

Though the logic distinguishes between �A@ω and �A@ω′, both have pre-
cisely the same immediate consequences. The typical rule for eliminating �, for
instance as given by Simpson [14] is

�A@ω
A@ω′

�E (Simpson)

With this rule, it never really matters where �A exists, since we can eliminate
it instantly to any world. However, we do care operationally where mobile code
resides, and so we adjust the natural deduction rules to reflect this bias. The logic
features a novel decomposition into locally-acting introduction and elimination
rules as well as motion rules for moving between worlds, i.e.

�A@ω
A@ω

�Elim
�A@ω
�A@ω′

�Move

We argue [8] that this results in a more appropriate operational interpretation.
Our classical system also features this decomposition, and like Lambda 5, we are
able to retain a crisp connection to the underlying logic.

Although distributed computing problems are often thought of as being con-
current, both Lambda 5 and our new calculus are sequential. We consider con-
currency an orthogonal issue, although we give remarks on how it can be accom-
plished in Section 5.

Classical Control Flow. The notion that control operators such as Scheme’s
call/cc or Felleisen’s C can be given logical meaning via classical logic is well
known. Essentially, if we interpret the type ¬A as a continuation expecting
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a value of type A, then the types of these operators are classical tautologies.
Griffin first proposed this in 1990 [4] with later refinements by (for example)
Murthy [9]. Parigot’s λμ-calculus [10] takes this idea and develops it into a full-
fledged natural deduction system for classical logic1. It soon became clear that
this was no accident – classical logic is the logic of control flow.

Therefore, a natural next step is to look at classical S5 to see what kind
of programming language it gives us, which is the topic of this paper. We find
that the notion of a network-wide continuation arises naturally, giving a com-
putational explanation to (intuitionistically ridiculous) classical theorems such
as �A ≡ ¬�¬A. We also believe that such primitives are useful for building
distributed computing mechanisms such as asynchronous message passing.

The paper proceeds as follows. We first present classical S5 judgmentally,
giving a natural deduction system and intuition for its operational behavior.
Next we give proof terms for some classical theorems, to elucidate the new con-
nection between � and � made possible by network-wide continuations. In order
to make these intuitions concrete, we then give an operational semantics based
on an abstract network. We follow with some ideas about concurrency and how
network-wide continuations can be used by distributed applications, and con-
clude with a discussion of related work. The appendix contains a proof that C5
really is classical S5 (along with establishing the existence of normal forms), by
relating it to a sequent calculus that admits cut.

All of the proofs in this paper have been formalized in the Twelf system [11]
and mechanically verified by its metatheorem checker [13]2. Extended discussion
of some of the proofs can be found in the accompanying technical report [7].

2 Classical S5

We wish to take a propositions-as-types interpretation of modal logic, so a judg-
mental proof theory for our logic is critical. In this section we give such a pre-
sentation of Classical S5.

Because modal logic is concerned with truth relativized to worlds, our judg-
ments must reflect that. We have two main judgments in our proof theory.

A true @ ω A false � ω

The first simply states that the proposition A is true at the world ω, as we had in
Lambda 5. The second, which is new, says that the proposition A is false at the
world ω. Although these two judgments are dual, the natural deduction system
is deliberately biased towards deducing that propositions are true. We will only
make assumptions about falsehood for the purpose of deriving a contradiction.
As is standard, we reify the hypotheses about truth and falsehood into contexts
(eliding true and false), and the central judgment of our proof theory becomes

Γ ;Δ � A@ω

1 Our calculus is quite similar to his (extended to the modal case!), although we prefer
to present it with an emphasis on truth and falsehood judgments.

2 They can be found at http://www.cs.cmu.edu/~concert/.
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Γ, ω′; Δ �M : A@ω′

Γ ; Δ � box ω′.M : �A@ω
�I

Γ ;Δ �M : �A@ω

Γ ; Δ � unboxM : A@ω
�E

Γ, x:A@ω, Γ ′; Δ � x : A@ω
hyp

Γ ; Δ �M : �A@ω′ Γ � ω′

Γ ; Δ � get�[ω′]M : �A@ω
�M

Γ ;Δ �M : A@ω

Γ ; Δ � hereM : �A@ω
�I

Γ ; Δ �M : �A@ω′ Γ � ω′

Γ ;Δ � get�[ω′]M : �A@ω
�M

Γ ; Δ �M : �A@ω
Γ, ω′, x:A@ω′; Δ � N : B@ω

Γ ; Δ � letdω′.x = M inN : B@ω
�E

Γ ; Δ � N : A@ω
Γ ; Δ �M : A ⊃ B@ω

Γ ;Δ �MN : B@ω
⊃ E

Γ, x:A@ω; Δ �M : B@ω

Γ ;Δ � λx.M : A ⊃ B@ω
⊃ I

Γ ;Δ, u:A�ω �M : A@ω

Γ ; Δ � letcc u inM : A@ω
bc

Γ ; Δ, u:A�ω, Δ′ �M : A@ω

Γ ; Δ, u:A�ω, Δ′ � throwM tou : C @ω′ #
Γ ;Δ �M : ⊥@ω′ Γ � ω′

Γ ; Δ � go[ω′]M : C @ω
⊥E

Γ ;Δ �M : A@ω Γ ; Δ � N : B@ω

Γ ;Δ � 〈M, N〉 : A ∧B@ω
∧I

Γ ; Δ �M : A1 ∧A2 @ω

Γ ; Δ � πiM : Ai @ω
∧Ei

Fig. 1. Classical S5 natural deduction (“C5”)

where we deduce that A is true at world ω under truth assumptions of the form
B@ω′ appearing in Γ and falsehood assumptions of the form C �ω′′ appearing
in Δ. We also have hypotheses about the existence of worlds. It is cumbersome
to write a separate context of world hypotheses, so these assumptions (written
merely as ω) appear in Γ as well. We also take the common shortcut of only
permitting mention of worlds that exist. Therefore, all judgments are hypothet-
ical in at least some world (the world at which the conclusion is formed), until
we introduce world constants in Section 4.

Operationally, we will think of a falsehood assumption A�ω as a continuation,
living at world ω, that expects something of type A.

Our natural deduction system appears in Fig. 1. These rules include proof
terms, which we will explain shortly. Aside from the falsehood context, the rules
for �, � and ⊃ are the same as in Lambda 5. The new connectives ⊥ (discussed
below) and ∧ are treated as they would be in the intuitionistic case. The major
additions are the structural rules bc (by contradiction) and # (contradict), which
enable classical reasoning.

The bc rule is read as follows: In order to prove A@ω, we can assume that
A is false at ω. This corresponds directly to the classical axiom (¬A ⊃ A) ⊃ A.
Operationally, this names the current continuation – we use a distinct class of
“falsehood” or “continuation” variables u for this. The # rule may be alarm-
ing at first glance, because it requires the assumption A�ω to appear in the
conclusion. This is because the # rule is actually the hypothesis rule for false-
hood assumptions, and will have a corresponding substitution principle3. The

3 A theory of hypothetical hypotheticals would be able to express this in a less awkward
– but perhaps no less alarming – way. Abel [1] for instance gives such a third-order
encoding of the λμ-calculus.
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rule simply states that if we have the assumption that A is false and are able
to prove that A is true (at the same world), then we can deduce a contradiction
and thus any proposition. The # rule is realized operationally as a throw of
an expression (not a value, even though this is a call-by-value language) to a
matching continuation. Note that continuations are global – we can throw from
any world to a remote continuation A�ω, provided that we are able to construct
a proof of A@ω.

The rules for � and � are key to the system. � elimination is the easiest to
understand: If we know that �A is true at some world, then we know A is true
at the same world. To prove �A, we must prove A at a hypothetical world about
which nothing is known (rule �I). Operationally, we realize �A as a piece of
suspended code, with the hypothetical world ω′ bound within it. Introduction
of � is simple; if we know A then we know that A is true somewhere (namely
here). Operationally this will record the value in a table and return an address
that witnesses its existence. Elimination of � is as follows: if we know �A, then
we know there is some world where A is true (but we don’t know anything else
about it). Call this world ω′ and assume A@ω′ in order to continue reasoning.
Finally, we provide motion rules (as per our decomposition) �M and �M . Both
simply allow knowledge of �A or �A at one world to be transported to another.
Operationally these move the values between worlds.

Bottom has no introduction form, but we allow the remote elimination of it
(rule ⊥E). This is similar to the motion rules for � and �, but is called go to
indicate a transfer of control with no return4.

Despite the fact that our proof theory is specially constructed to give rise
to a good operational semantics, it really embodies classical S5. To see this, we
observe that it is equivalent to a symmetric multiple-conclusion sequent calculus
that is more straightforwardly classical S5. The sequent calculus has the sub-
formula property and admits (a dual form of) cut, which also establishes the
existence of normal forms for our proof terms. The argument is mostly similar
to the one used for our previous calculus, and is not the focus of this paper.
Interested readers can find this material in the Appendix; otherwise, we’ll begin
to motivate the operational semantics of our calculus with some examples.

3 Examples

In this section we give proof terms showing the new connection between � and
� made possible by network-wide continuations. A full operational semantics is
forthcoming in Section 4.1, but let us review our informal interpretation of the
modal connectives now.

A value of type �A is a suspended expression that makes sense anywhere.
We call such values boxes, and we can open them at any world using the unbox
primitive, which begins evaluating the expression. A value of type �A is an
address of a value that has been published in a table at some world. In order to
4 We could have equivalently had a get⊥ and a local abort, but there appears to be

no practical use to this decomposition.
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make addresses, we use the here construct to publish a value in the local table
and generate a new address for it. We have the ability to travel and move certain
data between worlds by using the get and go constructs.

Finally, because our examples involve negation (¬A), we first briefly explain
how we treat it.

Negation. Although we have not given the rules for the negation connective, it
is easily added to the system. Here we take the standard shortcut of treating ¬A
as an abbreviation for A ⊃ ⊥. We computationally read ¬A@ω as a continuation
expecting A, although this should be distinguished from a primitive continuation
assumption u:A�ω: the former is introduced by lambda abstraction and elimi-
nated by application, while the latter is formed with letcc and eliminated by
a throw to it. The two are related in that we can reify a falsehood assumption
u:A�ω as a negated formula ¬A@ω by forming a function that throws to it:
λa. throwa tou. Likewise, we can create a falsehood assumption from a term
M : ¬A@ω, namely M(letccu in . . .).

Classical Axioms. As examples, we give proof terms for several classical ax-
ioms. To implement one of these axioms, the programmer engages in a little
theorem proving puzzle. Because we are dealing with classical logic, we have two
sorts of resources in solving the puzzle: values of type A, as in intuitionistic logic,
but also contexts expecting terms of type A. We can capture such contexts with
letcc, so sometimes we go out of our way to create them; thus the the need for
a value of some type can be as useful as the presence of one.

Our first example comes from the standard practice in classical modal logic
of defining � in terms of � through the equivalence �A ≡ ¬�¬A. From left to
right the implication is intuitionistically valid, so we’ll look at the proof of the
implication right to left. In C5, the proof term tells an interesting story:

λd. box ω′. (d : (�¬A) ⊃ ⊥@ω; need to return A@ω′)
letccu ingo[ω] (applying d will yield ⊥)
d(get�[ω′](here(λa. throwa tou)))

In each example, we’ll assume that the whole term lives at the world ω. Opera-
tionally, the reading of ¬�¬A ⊃ �A is that given a continuation d (expecting the
address of an A continuation), we will return a boxed A that is well-formed any-
where. It is easiest to understand this term from the perspective of the consumer
of the resulting �A. When it is unboxed at some world ω′, it grabs the current
continuation u, which expects an A. It then publishes this continuation (reified
as a function); the address is what we require as an argument for d. (What hap-
pens next depends on what d does with its argument!) The intervening go and
get� accomplish the transfer of control between the two worlds.

Dually we can define � in terms of �. Again, one direction is intuitionistically
valid. The other, ¬�¬A ⊃ �A, is asked to conjure up an address of an arbitrary
A given a continuation (that expects a boxed A continuation). It is implemented
by the following proof term:
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λb. letccu in (b : (�¬A) ⊃ ⊥@ω;u : �A�ω)
go[ω] b(box ω′.λa. (a : A@ω′)

throw(get�[ω′](herea)) to u)

Here, we immediately grab the �A continuation with letcc. Since we will be
calling b (proving ⊥ and never returning), we “go” to the current world. We
then form a box to pass to the function b. It contains a function of type A ⊃ ⊥,
which takes the address of its argument and throws it to the saved continuation
u. Thus the location of A that we ultimately return is any world that calls the
¬A function that we’ve boxed up.

Excluded “Modal.” The following example uses disjunction, which we’ve left
out of our calculus so far. A description of some ways it can be added is given in
Section 6, but for now we will be somewhat less formal and simply assume that
we have constructors inl and inr for forming proofs of A ∨B.

Our example is a modal version of the excluded middle axiom: �A ∨ �¬A.
We will again return a box that does something when opened.

letccuo in (uo : �A ∨ �¬A�ω)
inl(box ω′. letccu in (u : A�ω′)

throw(inr(get�[ω′] here(λa. throwa tou)))
touo)

First, we save the current continuation as uo, since we will need to “change
our minds” and return multiple different disjuncts. When asked for �A ∨ �¬A,
the program initially says �A.If the box is opened, the program uses context
expecting an A to produce a �¬A, time travels back to when it was asked about
the disjunction, and returns this different answer.If that ¬A continuation is ever
invoked, the program goes back and uses the A to fulfill the outstanding request
for an A at the world where the box was opened.

In the style of sci-fi storytelling popular when describing such things, we
conclude our examples with the following fable (with apologies to Wadler [15]):

A magician who purports to be from the future is making bold claims. Asking
for a volunteer, he offers the following prize to anyone who comes on stage:

“I’m going to hand you a box that has you inside it! Either that, or I’ll
give you the address of a place with a magical time travelling portal.”

Being questionably brave, you volunteer and walk onto the stage. The ma-
gician hands you your prize – a large cardboard box. Noting your skepticism,
he adds, “You can open it anywhere, and you’ll be inside.”

You decide to take the box home. It’s much too light to have anything in
it, let alone yourself! You open the box and look inside, wondering what sort
of gag he has planned. But suddenly you find that the box has vanished, and
you’re standing on stage waiting for him to tell you what you’ve won, again.

“The address of the time-travelling portal is,” he begins, rattling off your
home address. You are startled that he could have known your address, but
when you later arrive home, you see an open cardboard box waiting. Is this
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world vars ω world names w labels 
value vars x, y cont labs k cont vars u
types A, B ::= A ⊃ B | �A | �A | A ∧B | ⊥
networks N ::= W; R world exps w ::= ω | w
configs W ::= {w1 : 〈χ1, b1〉, · · · }
cursors R ::= w : [k ≺ v] | w : [k �M ]
tables b ::= • | b,  = v cont tables χ ::= • | χ,k = k
config types Σ ::= {w1 : 〈X1, β1〉, · · · }
table types β ::= • | β,  : A ctable types X ::= • | X,k : A
cont exps Z ::= w.k | u
conts k ::= returnZ | finish | abort | k � f
values v ::= λx.M | box ω.M | w. | 〈v, v′〉
frames f ::= ◦ N | v ◦ | here ◦ | unbox ◦

| letdω.x = ◦ inN | πn ◦ | 〈◦, N〉 | 〈v, ◦〉
exps M, N ::= v | MN | x |  | get�[w]M | hereM | get�[w]M

| unboxM | letdω.x = M inN | throwM toZ
| go[w]M | letcc u inM | 〈M, N〉 | πnM

Fig. 2. Syntax of type system

supposed to be the portal? Knowing it to be harmless, but insisting on proving
the magician to be a fraud, you step into it.

A hot flash of embarrassment passes over you as you realize that you are
now standing in a cardboard box, in your house, as promised.

4 Type System and Operational Semantics

Our deductive proof theory corresponds to a natural programming language
whose syntax is the proof terms from Fig. 1. In order to give this language
an operational interpretation, we need to introduce a number of syntactic con-
structs, which are given in Fig. 2.

As in Lambda 5, the behavior of a program is specified in terms of an abstract
network that steps from state to state. The network is built out of a fixed number
of worlds, whose names we write as bold w. Because we can now mention specific
worlds in addition to hypothetical worlds ω, we introduce world expressions,
which are written with a Roman w. A network state N has two parts. First is a
world configuration W which identifies two tables with each world wi present.
The first table χi stores network-wide continuations by mapping continuation
labels k to literal continuations k. The second table bi maps value labels � to
values in order to store values whose address we have published. These tables
have types X and β respectively (which map labels k and � to types), and so we
can likewise construct the type of an entire configuration, written Σ.

Aside from the current world configuration, a network state also contains a
cursor denoting the current focus of computation. The cursor either takes the
form w : [k ≺ v] (returning the value v to the continuation k) or w : [k $ M ]
(evaluating the expression M in continuation k). In either case it selects a world
w where the computation is taking place.
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Σ; Γ ; Δ �M : A@w The expression M has type A at world w
Σ � k : A�w The continuation k expects a value of type A at world w

Σ; Δ � Z : A�w The continuation expression Z is well-formed with type A at w
Σ � b@w The value table b is well-formed at the world named w
Σ � χ�w The continuation table χ is well-formed at the world named w

Σ � R The cursor is well-formed
Σ � N The network is well-formed

Fig. 3. Index of judgments. In each judgment Σ is a configuration typing, Γ is a context
of truth hypotheses, and Δ is a context of falsehood hypotheses

Continuations themselves are stacks of frames (expressions with a “hole,”
written ◦) with a bottommost return, finish or abort. The finish contin-
uation represents the end of computation, so a network state whose cursor is
returning a value to finish is called terminal. The abort continuation will be
unreachable, and return will send the received value to a remote continuation.

Most of the expressions and values are straightforward. As in Lambda 5, the
canonical value for � abstracts over the hypothetical world and leaves its body
unevaluated (box ω′.M). The canonical form for � is a pair of a world name
and a label w.�, which addresses a table entry at that world. Such an address is
well-formed anywhere (assuming that w’s table has a label � containing a value
of type A) and has type �A@w′. On the other hand we have another sort of
label, written just �, which is disembodied from its world. These labels arise from
the letd construct, which deconstructs an address w.� into its components w
and � (see the �E rule from Fig. 1). Disembodied labels only make sense at a
single world – here � would have type A@w.

Although the external language only allows a throw to a continuation vari-
able, intermediate states of evaluation require that these be replaced with the
continuation value w.k, which pairs a continuation label with the world at which
it lives. These continuation values are filled in by letcc.

The type system is given in Fig. 4 (we omit for space the rules that are the
same as in Fig. 1 except for the configuration typing Σ). The index of judgments
in Fig. 3 may be a useful reference in understanding them.

The rules addr and lab are used to type run-time artifacts of address pub-
lishing. In either case, we look up the type in the appropriate table typing β. As
mentioned, throw allows a continuation expression Z, which is either a variable
(typed with hyp�, as in the logic) or an address into a continuation table.

Typing of literal continuations k is fairly unsurprising. Note that the judg-
ment Σ � k : A�w means that the continuation k expects a value of type A at
w. The return continuation arises only from a get� or get�, and so it allows
only values of type �A or �A. We use the network continuation mechanism to
name the the outstanding get� or get� request on the remote machine.

For an entire network to be well-formed (rule net), all of the tables must
have the type indicated by the configuration type Σ, which means that they
must have exactly the same labels, and the values or continuations must be
well-typed at the specified types (rules b and χ). Finally, the cursor must be
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Σ(w) = 〈X, β〉 β() = A

Σ; Γ ; Δ � w. : �A@w′ addr
Σ(w) = 〈X, β〉 β() = A

Σ; Γ ; Δ �  : A@w
lab

Σ; Γ ; Δ �M : A@w Σ; Δ � Z : A�w

Σ; Γ ;Δ � throwM toZ : C @w′ throw
Σ; Γ ; Δ, u : A�w �M : A@w

Σ; Γ ; Δ � letcc u inM : A@w
letcc

Σ(w) = 〈X, β〉 X(k) = A

Σ; Δ � w.k : A�w
addr�

Σ; Δ, u : A�w � u : A�w
hyp�

Σ � k : B �w Σ; ·; · � N : A@w

Σ � k � ◦ N : A ⊃ B �w
kapp1 Σ � finish : A�w

kfinish

Σ � k : B �w Σ; ·; · � v : A ⊃ B@w

Σ � k � v ◦ : A�w
kapp2 Σ � abort : ⊥�w

kabort

Σ � k : C �w
Σ; ω, x : A@ω; · � N : C @w

Σ � k � letdω.x = ◦ inN : �A�w
kletd

Σ � k : �A�w
Σ � k � here ◦ : A�w

khere

Σ � k : A ∧B �w Σ; ·; · � N : B@w

Σ � k � 〈◦, N〉 : A�w
k∧1

Σ � k : A�w
Σ � k � unbox ◦ : �A�w

kunbox

Σ � k : A ∧ B �w Σ; ·; · � v : A@w

Σ � k � 〈v, ◦〉 : B �w
k∧2

A = �A′ or �A′ Σ; · � Z : A�w′

Σ � returnZ : A�w
kret

β = (1 : A1, . . .) Σ; ·; · � v1 : A1 @w . . .

{· · · ,w : 〈X, β〉, · · · }︸ ︷︷ ︸
Σ

� 1 = v1, . . .︸ ︷︷ ︸
b

@w
b

w ∈ dom(Σ)
Σ; ·; · � v : A@w Σ � k : A�w

Σ � w : [k ≺ v]
ret

X = (k1 : A1, . . .) Σ � k1 : A1 �w . . .

{· · · ,w : 〈X, β〉, · · · }︸ ︷︷ ︸
Σ

� k1 = k1, . . .︸ ︷︷ ︸
χ

� w
χ

w ∈ dom(Σ)
Σ; ·; · �M : A@w Σ � k : A�w

Σ � w : [k �M ]
eval

Σ � R Σ � χi@wi . . . Σ � bi@wi . . .

Σ � {w1 : 〈χ1, b1〉, · · · ,wm : 〈χm, bm〉}; R
net

Fig. 4. Type system

well-formed: it must select a world that exists in the network, and there must
exist a type A such that its continuation and value or expression both have type
A and are closed.

Having set up the syntax and type system, we can now give the operational
semantics and type safety theorem. After the following section we remark on how
the semantics can be made concurrent, and give some thoughts on applications
of distributed continuations.

4.1 Operational Semantics

The operational semantics of our language is given in Fig. 5, as a binary rela-
tion  → between network states. The semantics evaluates programs sequentially,
though we give a concurrent semantics in Section 5.
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⊃e-p W;w : [k �MN ] �→ W;w : [k � ◦N �M ]
⊃e-s W;w : [k � ◦N ≺ v] �→ W;w : [k � v ◦ � N ]
⊃e-r W;w : [k � (λx.M)◦ ≺ v] �→ W;w : [k � [v/x]M ]
value W;w : [k � v] �→ W;w : [k ≺ v]
�i-p W;w : [k � hereM ] �→ W;w : [k � here ◦ �M ]
�i-r {w : 〈χ, b〉, · · · };w : [k � here ◦ ≺ v] �→

{w : 〈χ, (b,  = v)〉, · · · };w : [k ≺ w.] ( fresh)
-r {w : 〈χ, b〉, · · · };w : [k � ] �→

{w : 〈χ, b〉, · · · };w : [k ≺ v] (b() = v)
�e-p W;w : [k � letdω.x = M inN ] �→ W;w : [k � letdω.x = ◦ inN �M ]
�e-r W;w : [k � letdω.x = ◦ inN ≺ w′.] �→ W;w : [k � [/x][w′/ω]N ]
�e-p W;w : [k � unboxM ] �→ W;w : [k � unbox ◦ �M ]
�e-r W;w : [k � unbox ◦ ≺ box ω.M ] �→ W;w : [k � [w/ω]M ]
letcc {w : 〈χ, b〉, · · · };w : [k � letcc u inM ] �→

{w : 〈(χ,k = k), b〉, · · · };w : [k � [w.k/u]M ] (k fresh)
throw {w′ : 〈χ, b〉, · · · };w : [k � throwM tow′.k] �→

{w′ : 〈χ, b〉, · · · };w′ : [k′ �M ] (χ(k) = k′)
rpc W;w : [k � go[w′]M ] �→

W;w′ : [abort �M ] (w ∈ dom(W))
�m {w : 〈χ, b〉, · · · };w : [k � get�[w′]M ] �→

{w : 〈(χ,k = k), b〉, · · · };w′ : [returnw.k �M ] (k fresh)
�m {w : 〈χ, b〉, · · · };w : [k � get�[w′]M ] �→

{w : 〈(χ,k = k), b〉, · · · };w′ : [returnw.k �M ] (k fresh)
ret {w : 〈χ, b〉, · · · };w′ : [returnw.k ≺ v] �→

{w : 〈χ, b〉, · · · };w : [k ≺ v] (χ(k) = k)

Fig. 5. Selected rules from the operational semantics

Not surprisingly, the semantics is continuation-based. At any step, the cursor
is selecting a world and continuation, with a value to return to it or an expression
to evaluate. The rules generally fall into a few categories, as exemplified by the
(standard) rules for ⊃: There are (p)ush rules, in which we begin evaluating
a subexpression of some M , pushing the context into the continuation, (s)wap
rules, where we have finished evaluating one sub-expression and move onto the
next, and (r)eduction rules, where we finally have a value and eliminate it. Every
well-typed machine state will be closed with respect to truth, falsehood, and
world hypotheses, so we don’t have rules for variables.

The first interesting rule is �i-r. It publishes the value v by generating a new
label �, mapping that label to v within its value table, and returning the pair
w.�, where w is the current world. Whenever we try to evaluate a label (rule �-r),
we look it up in the current world’s value table in order to find the value. A key
consequence of type safety (Theorems 1, 2) is that labels are only evaluated in the
correct world. To eliminate an address (rule �e-r) we substitute the constituent
world and label through the body of the letd. Note that this step is slightly
non-standard, because we substitute the expression � for a variable rather than
some value. But because the variable is in general at a different world, we are
not in a position to get its value yet. We instead wait until the expression � is
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sent to its home world (perhaps as part of some larger expression) to be looked
up. The rules for � are much simpler: box ω.M is already a value (rule �i-v),
and to unbox we simply substitute the current world for the hypothetical one
(rule �e-r).

When encountering a letcc, we grab the current continuation k. Because
the continuation may be referred to from elsewhere in the network, we publish
it in a table and form a global address for it (of the form w.k), just as we did
for � addresses. This value is substituted for the falsehood variable u.

Throwing to a continuation (rule throw) is handled straightforwardly. The
continuation expression will be closed, and therefore of the form w′.k. We look
up the label k in w′ – or rather, cause w′ to look it up – and pass the expression
M to it. Note that we do not evaluate the argument before throwing it to the
remote continuation. In general we can not evaluate it, because it is only well-
typed at the remote world, which may be different from the world we’re in.

Finally, we have the rules that move between worlds. The rule for go is easiest;
since the target world expression must be closed it will be a world constant in the
domain of W. We simply move the cursor to that world (destroying the current
continuation, which can never be reached), and begin evaluating the expression
M under the unreachable continuation abort. The rules for get� and get�

work similarly, but they need to save the current continuation since they will
be returned to! These steps push a return frame, which reduces like throw. In
contrast, however, the argument (of type �A or �A) will be eagerly evaluated,
because such values are portable. (After all, the whole point is to create the box
at one world and then move it to another.)

In order for our language to make sense it must be type safe; any well-typed
program must have a well-defined meaning as a sequence of steps in the abstract
network. Type safety is stated as usual in terms of progress and preservation:

Theorem 1 (Progress)
If Σ � N then either N is terminal or ∃N′.N  → N′.

Theorem 2 (Preservation)
If Σ � N and N  → N′ then ∃Σ′. Σ′ ⊇ Σ and Σ′ � N′.

Progress says that any well-formed network state can take another step, or
is done. (Recall a terminal network is one where the cursor is returning a value
to a finish continuation.) Preservation says that any well-typed network state
that takes a step results in another well-typed state (perhaps in an extended5

configuration typing Σ′). By iterating alternate applications of these theorems
we see that any well-typed program is able to step repeatedly and remain well-
formed, or else eventually comes to rest in a terminal state.

5 Σ′ ⊇ Σ iff Σ′ and Σ each describe the same set of worlds, and for each world, if
X(k) = A then X ′(k) = A, and likewise for β and β′.
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5 Concurrency and Communication

Many distributed computing problems benefit from concurrency, with one or
more processes running on each node in the network. This section gives some
brief thoughts on concurrency in our classical calculus.

First-class continuations are often used in the implementation of coroutines.
With primitives for recursion and state we could also implement coroutines in
C5, however, such an implementation is silly because it would require the im-
plementation of a global scheduler, and would anyway defeat the purpose of
concurrency on multiple nodes – only one coroutine would be running at any
given time!

Fortunately, our operational semantics admits ad hoc concurrency easily. If
we simply replace the cursor R in our network state “W;R” with a multiset of
cursors &, then we can permit a step on any one of these cursors essentially
according to the old rules:

W;R  → W′;R′

W; {R} ' &  →c W′; {R′} ' &

We can then add primitives as desired to spawn new cursors. A very simple one
evaluates M and N in parallel and returns each one to the same continuation.

Γ ;Δ � M : A@w Γ ;Δ � N : A@w
Γ ;Δ � M |N : A@w

par

W;& ' {w:[k $ M |N ]}  →c W;& ' {w:[k $ M ]} ' {w:[k $ N ]}
A suitable extension of type safety holds for  →c.

With concurrency in place we can implement asynchronous CML-style chan-
nels [12] with the help of continuations (and a few other features for developing
mutable recursive structures). The type of a channel that allows sending and
receiving of values of type A could be

A chan
.= �(A queue∧ (¬A) queue)

Here a channel is represented as the address of a pair of queues. In order to
send to this channel, the sender must be able to bring a value of type A to the
world where the channel lives. Therefore it must be a box or diamond type itself
(although the class of types that are mobile in this way can be easily extended;
see the technical report for details [7]). The first queue holds the values that have
been sent on the channel and not yet received; the second holds the continuations
of outstanding recieves. To implement recieve (assuming no values are waiting
in the first queue), we grab the current continuation, enqueue it, and abort.

This is a standard technique; our point is to emphasize the utility of contin-
uations as primitives for implementing useful distributed computing features.



64 Tom Murphy VII, Karl Crary, and Robert Harper

6 Disjunction

To add disjunction to C5, we need to use the following elimination form in order
to preserve the correspondence with classical S5:

Γ ;Δ � M : A ∨B@ω′
Γ, x:A@ω′;Δ � N1 : C@ω
Γ, x:B@ω′;Δ � N2 : C@ω

Γ ;Δ � caseM of inlx ⇒ N1 | inrx ⇒ N2 : C@ω
∨E

This rule is completely unsurprising except that the case object M is at a dif-
ferent world, ω′. In our logic we’ve tried hard to avoid this sort of action-at-
a-distance, instead preferring to have our introduction and elimination rules
compute locally. However, a motion rule for disjunction is out of the question,
because it is unsound: it is not the case that if Γ ;Δ � A∨B@ω then necessarily
Γ ;Δ � A ∨ B@ω′. In our previous paper we speculated that the remote case
analysis could be implemented nonetheless by sending back merely a bit telling
the case-analyzing world which branch it should enter, but this requires some
suspicious operational machinery. The same is true in the classical case, which
is why we have avoided treating disjunction so far.

As it turns out, support for disjunction and remote disjunction elimination
is already present in C5, via one of de Morgan’s laws. We define A ∨ B as
¬(¬A∧¬B), and A∨B thus becomes a continuation that takes two continuations:
one if the disjunct is A, and one if the disjunct is B. This technique is well-known
for CPS conversion, and first-class continuations let us employ it without having
to CPS-convert the entire program. Encoding the injections is easy:

inlM
.= λx.(π1x)M inrM

.= λx.(π2x)M

By grabbing the continuation at the point of case analysis, we can allow ourselves
to move to a remote world (via go) to do the case analysis and rely on throw to
get us back:

caseM of inlx ⇒ N1

| inrx ⇒ N2

.=
letccu ingo[ω′]M〈λx. throwN1 tou,

λx. throwN2 tou〉

This has exactly the same typing conditions as the remote rule above; x is bound
to the remote type A@ω′, even though the expression N1 is evaluated at ω.

Classical logic is ripe with possibilities for definition. It is interesting to con-
sider their implications. Recall that in Section 3 we proved �A equivalent to
¬�¬A. This means that, like classical logicians, we could then just consider �A
a derived form. This would amount to a roundabout way of using the continu-
ation table to publish values rather than the value table. Clearly, we could also
take the even stranger route of defining �A in terms of �, which gives us a
mobile code “server” that sends code to our continuation whenever we like.
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7 Conclusions

Related Work. Parigot’s λμ-calculus has inspired many computational proof
systems for classical logic, including Wadler’s dual calculus [15]. The calculus is
sequent-oriented and contains cut as a computational primitive, emphasizing the
duality of computing with values and covalues (continuations). For programming
in C5, we choose a natural deduction system which is deliberately non-dual. We
bias the logic towards truth, which corresponds to computing mainly with values
(as is typical) rather than covalues. Nevertheless, we expect that a dual version
of classical S5 could be easily made to work, perhaps starting from the sequent
calculus presented in the Appendix.

Because our calculus extends Lambda 5 [8], it is also related to the same
mobile calculi, for example Moody’s distributed S4 calculus [6], and Jia and
Walker’s S5-like hybrid logic [5]. Both calculi employ the � and � connectives
with similar interpretations, though aspects of the underlying logics differ. Both
give operational interpretations via concurrent process calculi with passive syn-
chronization, and both systems use non-local introduction and elimination forms.
In contrast, we achieve explicit active synchronization (in the form of get�, etc.)
along with what we feel are more primitive operations for constructing and de-
constructing objects of the modal types. With regard to the classical extensions,
we know of no prior modal system that features distributed continuations.

Future Work. Our language now has a full arsenal of connectives and control
operators, each connected to logic. Much work remains before C5 can be a prac-
tical programming language rather than exploratory calculus. Some are routine
– adding extra-logical primitives like recursion and references – and some are
difficult – compilation of mobile code fragments, distributed garbage collection,
failure recovery, and certification.

Although we believe that C5 accommodates concurrency easily, it would be
nice to have a logically-inspired account of it. Some other directions remain
open to try. Proof search in linear logic sequent calculus [3] is known to admit
an interpretation as concurrent computation [2]. Perhaps linear S5 in sequent
style would be able to elegantly express both spatial properties and concurrency
in logic?

We have presented a proof theory and corresponding programming language,
C5, based on the classical modal logic S5. By exploiting the modalities we are
able to give a logical account of mobility and locality, and thus an expressive
programming language for distributed computing. From the logic’s classical na-
ture we derive the mechanism of distributed continuations, which creates a new
connection between the � and � connectives, and forms a basis for the imple-
mentation of distributed computing primitives.
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Appendix

This appendix contains sketches of the proofs relating C5 to a classical S5 sequent
calculus. This serves two purposes. First, because the sequent calculus is purely
logical and does not feature our decomposition of the � and � rules, it is more
obviously S5. Second, because the sequent calculus has the subformula property
and admits cut, we get some standard results for our proof theory, such as the
existence of normal forms and soundness. To begin, we need a few substitution
theorems for our natural deduction system, one of which is interesting.
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Γ, A@ω # A�ω, Δ
contra

Γ,⊥@ω # Δ
⊥T

Γ, A ⊃ B@ω, B@ω # Δ
Γ, A ⊃ B@ω # A�ω, Δ

Γ, A ⊃ B@ω # Δ
⊃ T

Γ, A@ω # B �ω, A ⊃ B �ω, D

Γ # A ⊃ B �ω, D
⊃ F

Γ, �A@ω,A@ω′ # Δ

Γ, �A@ω # Δ
�T

Γ, ω′ # A�ω′, �A�ω, Δ

Γ # �A�ω, Δ
�F

Γ, ω′, �A@ω, A@ω′ # Δ

Γ, �A@ω # Δ
�T

Γ # A�ω′, �A�ω, Δ

Γ # �A�ω, Δ
�F

Γ, A ∧B@ω,A@ω, B@ω # Δ

Γ, A ∧B@ω # Δ
∧T

Γ # A�ω, A ∧B �ω, Δ
Γ # B �ω, A ∧ B �ω, Δ

Γ # A ∧B �ω, Δ
∧F

Fig. 6. Classical S5 sequent calculus

Falsehood Substitution. For each sort of hypothesis we have a substitution
theorem. Worlds can be substituted for hypothetical worlds, and substitution
[M/x]N for truth hypotheses is defined in the standard way. Substitution for
falsehood hypotheses warrants special attention, however:

Theorem 3 (Falsehood Substitution)
If ∀C, ω′′. Γ, x:A@ω;Δ � M : C@ω′′

and Γ ;Δ,u:A�ω � N : B@ω′

then Γ ;Δ � [[x.M/u]]N : B@ω′.

This principle is dual to the # rule just as truth substitution is dual to the
hyp rule. The # rule contradicts an A�ω with an A@ω, so when substituting for
a falsehood assumption, we are able to assume A@ω and must produce another
contradiction.We write falsehood substitution as [[x.M/u]]N where x is a binder
(with scope through M) that stands for the value thrown to u. Just like truth
substitution, it is defined pointwise on N except for the appropriate variable
case (rule #):

[[x.M/u]] throwN ′ tou
.= [N ′/x]M

Operationally, we see this as replacing the throw with some other handler for
A. Since the new handler must have parametric type, typically it is a throw
to some other continuation, perhaps after performing some computation on the
proof of A.

Sequent Calculus. Our sequent calculus is motivated by simplicity and duality
alone, because we will not give it a computational interpretation. One traditional
way of doing classical theorem proving is to negate the target formula and prove
a contradiction from it. Our sequent calculus (Fig. 6) is based on this view:
the sequent Γ # Δ means that the truth assumptions in Γ and the falsehood
assumptions in Δ are mutually contradictory6. We treat contexts as unordered
6 Our rules are also consistent with the more traditional multiple-conclusion reading,

“if all of Γ are true, then one of Δ is true.”
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multisets, so the action can occur anywhere in either context. World hypotheses
are placed in Γ , although to get a notationally dual system, we would place them
in a third context “in the middle” of the sequent.

These rules should be read bottom-up, as if during proof search. The contra
rule allows us to form a contradiction whenever a proposition is both true and
false at the same world. The �T rule says that if we know �A@ω, then we know
A@ω′ for any ω′ that exists. On the other hand, if we know that �A is false,
then we know A is false at some world ω′. However, we must treat this world
as hypothetical and fresh since we don’t know which one it is. The rules for �

are perfect mirror images of the rules for �. The treatment of implication is
standard, and follows from the classical truth tables.

We then wish to prove that the natural deduction and sequent calculus are
equivalent (Theorem 5). The translation from natural deduction to the sequent
calculus requires a lemma. In an intuitionistic calculus this would be cut ; for
the symmetric classical calculus it turns out to be the familiar classical notion
of excluded middle.

Theorem 4 (Excl. Middle) If Γ,A@ω # Δ and Γ # A�ω,Δ then Γ # Δ.

Proof of Theorem 4 is by lexicographic induction on the proposition A and
then simultaneously on the two derivations. �

Theorem 5 (Equivalence)
(a) If Γ ;Δ � M : A@ω then Γ # A�ω,Δ.
(b) If Γ # Δ then ∃M. ∀C, ω. Γ ;Δ � M : C@ω.

It is easy to see why 5(b) is the right statement. Since we think of Γ # Δ as
a proof of contradiction, this corresponds to a natural deduction derivation that
proves any proposition at any world. Theorem 5(a) is more subtle. We show that
if A is true under assumptions Γ and Δ, then A being false at the same world
is contradictory with those assumptions. Computationally, we can think of this
as the “final continuation” to which the result computed in natural deduction
is passed. Putting these two theorems together, we have that Γ ;Δ � M : A@ω
gives Γ # A�ω,Δ, which then gives ∀C, ω′. Γ ;Δ,u:A �ω � M ′ : C@ω′. In
particular, we choose C = A and ω′ = ω, and then by application of bc we have
the original judgment (with a normalized proof term letccu inM ′). Thus �
and # are really equivalent.

The proof of Theorem 5(a) is by straightforward induction on the derivation,
using Theorem 4 where necessary. (The structural rules bc and # just become
uses of contraction and weakening in the sequent calculus.) �

Proof of 5(b) is interesting because of its manipulation of continuations
through the use of falsehood substitution (Theorem 3). Uses of T rules are easy;
they correspond directly to the elimination rules7 in natural deduction. But since
our natural deduction is biased towards manipulating truth rather than false-
hood, the F rules are more difficult and make nontrivial use of the falsehood
substitution theorem. For instance, in the ∧F case we have by induction:
7 Except for implication, which is phrased differently in the sequent calculus.
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Γ ;Δ,up:A ∧B�ω, ua:A�ω � N1 : C@ω′ (∀C, ω′)
Γ ;Δ,up:A ∧B�ω, ub:B�ω � N2 : C@ω′ (∀C, ω′)

By two applications of Theorem 3, we get that the following proof term has any
type at any world: [[

x.[[y. throw 〈x, y〉 toup/ub]]N2 /ua

]]
N1

We form an innermost throw of the pair 〈x, y〉 to our pair continuation up. This
has free truth hypotheses x : A and y : B. Therefore, we can use it to substitute
away the ub continuation in N2 (any throw of M to ub becomes a throw of 〈x,M〉
to up). Finally, we can use this new term to substitute away ua in N1, giving us a
term that depends only on the pair continuation up. This pattern of prepending
work onto continuations through substitution is characteristic of this proof.

The case for �F is interesting because it uses letcc 8. By induction we have:

∀ω′. Γ ;Δ,u:A�ω′, ub:�A�ω � N : C@ω′′ (∀C, ω′′)

Then the proof term witnessing the theorem here is:

throw(box ω′. letccu inN) toub

It is not possible to use falsehood substitution on u in this case. To do so we
would need to turn a term of type A@ω′ into a �A@ω to throw to ub. Although
at a meta-level we know that we can choose any ω′, it won’t be possible to
internalize this in order to create a �A. Instead we must introduce a new box,
and choose ω′ to be the new hypothetical world that the �I rule introduces. At
that point we use letcc to create a real A�ω′ assumption to discharge u. The
remaining cases are similar or straightforward, and can be found in full detail in
the Twelf code9. �

8 In fact, this is the only place in the proof where a letcc is necessary. This gives
a normal form for natural deduction terms where letcc appears only once at the
outermost scope and immediately inside each box.

9 The most natural LF encoding of falsehood is 3rd-order [1]; we use a 2nd-order
encoding in our proofs (proving the falsehood substitution theorem by hand) because
third-order metatheorem checking is not yet available in the distribution.
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Abstract. By Rutten’s dualization of the Birkhoff Variety Theorem,
a collection of coalgebras is a covariety (i.e., is closed under coprod-
ucts, subcoalgebras, and quotients) iff it can be presented by a subset of
a cofree coalgebra. We introduce inference rules for these subsets, and
prove that they are sound and complete. For example, given a polynomial
endofunctor of a signature Σ, the cofree coalgebra consists of colored Σ-
trees, and we prove that a set T of colored trees is a logical consequence
of a set S iff T contains every tree such that all recolorings of all its
subtrees lie in S. Finally, we characterize covarieties whose presentation
needs only n colors.

1 Introduction

In the theory of systems as coalgebras (in the category of sets) presented for
example by Jan Rutten [14], cofree coalgebras C(k) consist of “possible behavior
patterns” of states of systems colored by k (observable) colors. Given a system A
and a coloring, the corresponding homomorphism from A to C(k) assigns to
every state its behavior pattern. J. Rutten used subsets S of cofree coalgebras as a
means of presentation of systems: a system A satisfies S iff every homomorphism
f : A �� C(k) factorizes through S

� � �� C(k). And he proved the dual of the
famous Birkhoff Variety Theorem: a collection of systems has a presentation via
subsets of C(k) iff it is a covariety, i.e., it is closed under coproducts, subsystems,
and quotients. This holds for systems as coalgebras on an arbitrary k-accessible
functor.

Several authors studied logical properties of subsets S ⊆ C(k). Peter Gumm
[10] observed that one can restrict to the coatomic subsets C(k)−{t}, for which
we use the notation � t (read: avoid t). A system A satisfies � t iff under an
arbitrary coloring all states avoid the behavior pattern t. Every subset S is
logically equivalent to the conjunction of all � t where t ranges through the
complement C(k)−S. Whereas subsets of cofree coalgebras dualize the concept

collection of equations = quotient of a free algebra,

the coatomic subsets � t dualize the concept
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equation = atomic quotient of a free algebra.

In fact, in the lattice of congruences of a free algebra every atom is a congruence
generated by a single equation. We call the expressions � t coequations.

Peter Gumm and Tobias Schröder showed in [12] that for presentations of
systems we can restrict ourselves to subcoalgebras of C(k), and Steve Awodey
and James Hughes [7] then proved that (dually to Birkhoff’s characterization
of equational theories in [9]) invariant subcoalgebras are precisely the coequa-
tional theories. They based their result on the theory of invariance of predicates
developed by Bart Jacobs [13].

In the present paper we formulate two simple inference rules for coequations,
and prove that they form a sound and complete system. We do this in three
steps:

(1) Logic for polynomial functors HΣ (of a k-ary signature Σ, where k is
an infinite cardinal): Recall that a cofree HΣ-coalgebra CΣ(k) is the algebra of
all k-colored Σ-trees, see [5]. The two inference rules for coequations � t are:
if a tree s is (a) a subtree of t, or (b) a recoloring of t, then � t is a logical
consequence of � s. We conclude that for every subset S of CΣ(k), the logical
consequences of S are precisely those sets T of trees which contain every tree t
such that all recolorings of all subtrees of t lie in S.

(2) Logic for k-accessible functors H : We express H as a quotient of HΣ for
a k-ary signature and conclude that the cofree coalgebra C(k) is a canonical
quotient of CΣ(k). Thus, elements of C(k) are congruence classes of Σ-trees.
We prove that � t is a consequence of � s iff every tree congruent to t is a
recoloring of a subtree of a tree congruent to s. Unlike the previous case, we see
no way how to formulate the inference rules for general subsets of C(k). This
is the reason why, in contrast to the authors cited above, we concentrate on
coequations, rather than general subsets, in our paper (in spite of the fact that
the negative way a coequation formulates properties of systems makes it less
intuitive for applications).

(3) Logic for arbitrary endofunctors of Set: Here we use generalized co-
equations, i.e., transfinite chains of “approximations of coequations”, introduced
in [3], where we proved that every covariety has a presentation by generalized
coequations. We now derive a logic of generalized coequations analogous to that
for accessible functors. In the proof we use the extension of Set to the cate-
gory Class of classes, and the fact that every endofunctor of Set has a unique
extension to Class, as established in [4].

In the final section we characterize, for every cardinal n, those covarieties
which can be presented by coequations using n colors. For n = 1 these are
precisely the covarieties closed under bisimulation, as proved by Peter Gumm
and Tobias Schröder [12]. Our characterization is analogous: we call two H-
coalgebras equipped with a coloring by n colors n-color-bisimilar if they are
bisimilar as coalgebras of H(−)×n. An we prove that covarieties presentable by
n-color-coequations are precisely those closed under n-color-bisimilarity.
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2 Logic for Polynomial Functors

2.1. Recall from the expository paper of J. Rutten [14] that for every endofunc-
tor H of Set a coalgebra A = (Q,α) is a system given by a set Q of states
and a structure map α : Q �� HQ. A homomorphism from (Q,α) to a coal-
gebra (Q′, α′) is a function f : Q �� Q′ with α′·f = Hf ·α. For example, a
deterministic system with a binary input and halting states is expressed as a
coalgebra of HQ = Q × Q + 1. Given a coalgebra α : Q �� Q × Q + 1 and a
state q in it, if αq = (q0, q1), then qi is the next state of q for the input i = 0, 1;
if αq ∈ 1, then q is a halting state.

A covariety is a collection of coalgebras closed under coproducts, subcoalge-
bras, and quotient coalgebras. For k-accessible functors J. Rutten proved that
covarieties are precisely the classes of coalgebras which have a presentation by a
subset of a cofree coalgebra as follows:

Given a set k (of colors, finite or infinite), a cofree coalgebra on k is a coal-
gebra C(k) with a structure map

τk : C(k) �� HC(k)

and a universal “coloring” map

γk : C(k) �� k .

The universal property states that for every coalgebra A = (Q,α) and every
coloring f : Q �� k there exists a unique homomorphism

f# : A �� C(k) with f = γkf
#.

2.2 Definition. (i) Suppose that a subset m : S � � �� C(k) of the cofree coalgebra
is given. We say that a coalgebra A satisfies S provided that for every coloring
f : Q �� k the homomorphism f# factorizes through m. For example, given
t ∈ C(k), then A satisfies � t iff for every coloring f : A �� k all states a fulfil
f#(a) �= t.

(ii) A class of coalgebras is presented by m : S � � �� C(k) if it contains pre-
cisely those coalgebras which satisfy S.

(iii) By a logical consequence of S is meant any subset m′ : S′ � � �� C(k)
such that whenever a coalgebra satisfies S, then it also satisfies S′. Notation:

S � S′

2.3. Recall that a set functor H is called k-accessible if it preserves k-filtered
colimits (for an infinite cardinal k); or, equivalently, if every element of HX lies
in Hm [HM ] for some subset m : M � � �� X of cardinality smaller than k. If
H is k-accessible then every covariety requests only one subset of C(k) for its
presentation:

Theorem. For a k-accessible set functor H, a class of coalgebras is a covariety
iff it can be presented by a subset of C(k).
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This theorem was stated by J. Rutten [14] for functors bounded at k and
weakly preserving pullbacks, but the latter assumption can be left out, see [12],
and “bounded at k” (which is equivalent to being k+-accessible, see [5]) can be
weakened to k-accessible.

2.4 Example. Let Σ be a k-ary signature, i.e., all arities are cardinals smaller
than k (k an infinite cardinal). Then the polynomial functor HΣ defined on
object X by

HΣX =
∐
σ∈Σ

Xn (n = arity of σ)

is k-accessible.
Recall (e.g. from [5]) that a terminal coalgebra (= cofree coalgebra on one

color) can be described as the coalgebra of all Σ-trees, i.e., trees, finite or infinite,
whose nodes are labeled by Σ in such a way that every node with an n-ary label
has precisely n children. Trees are considered up to isomorphism throughout the
paper. Analogously, a cofree coalgebra CΣ(k) is the coalgebra of all k-colored
Σ-trees. That is, elements are Σ-trees whose nodes are additionally labelled by
colors i (where i < k is an ordinal). The coalgebraic structure τΣk assigns to every
tree t whose root carries an n-ary operation label σ the n-tuple of its children ti
in the σ-summand of HΣCΣ(k), notation:

τΣk (t) = σ(ti)i<n

And the universal coloring γΣ
k : CΣ(k) �� k assigns to every tree the color of

its root.
A Σ-coalgebra A is a set Q of states together with a structure map α : Q ��

HΣQ assigning to every a ∈ Q an n-tuple σ(ai)i<n in the σ-summand Qn for
some n-ary operation σ ∈ Σ. Given a coloring f : Q �� k, the homomorphism
f# : A �� CΣ(k) takes every node a to the Σ-tree-unfolding of a using the
colors given by f .

2.5 Example. The functor HQ = Q × Q + 1 of 2.1 above is finitary, i.e., ω-
accessible (k = ω). The cofree coalgebra C(ω) can be described as the coalgebra
of all binary trees, finite or infinite, whose nodes are colored by natural numbers.
The structure map τω : C(ω) �� C(ω) × C(ω) + 1 has as halting states all
singleton trees, and it assigns to every non-singleton tree the pair of its children,
while γω : C(ω) �� ω is the color of the root.

The coequation � t0 where t0 is a singleton tree presents all systems without
halting states. The coequation � t1 where t1 is the one-colored complete binary
tree presents all systems which starting from every state can halt in finitely many
steps. The coequation

�
1�������	

1�������	
��
��
�

1�������	






74 Jiri Adámek

presents all systems such that for no state both successors are halting states.
The coequation
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presents all systems such that for every state whose both successors are halting
states, these successors must be equal.

2.6 Example. Deterministic acceptors with the input set S are precisely the coal-
gebras of the polynomial functor

HX = XS × bool .

In fact, given a set Q of states with the next state function δ : Q × S �� Q
(expressed in the curried from δ̂ : Q �� QS) and a predicate accept : Q ��

bool, we obtain a coalgebra structure map

α = 〈δ̂, accept〉 : Q �� QS × bool .

The functor H is ω-accessible if S is finite, and k-accessible for k = (cardS)+

(the cardinal successor of cardS) otherwise.
The terminal coalgebra is the coalgebra C(1) = P(S∗) of all languages

over S, see [6]: for every acceptor A the unique homomorphism into C(1) takes
a state q to the language Lq(A) accepted by A with q as the initial state. Thus,
every language L ⊆ S∗ presents a class �L of acceptors A: those with Lq(A) �= L
for all states q. Examples:

(i) �S∗: all acceptors having a non-accepting state;
(ii) �{ε}: all acceptors such that from any accepting state we can reach an

accepting state in n > 0 steps.

2.7 Definition. Two nodes of a k-colored tree t ∈ CΣ(k) are called equivalent
provided the two k-colored subtrees of t they represent are isomorphic.

2.8 Lemma. For two trees t, s ∈ CΣ(k) the following conditions are equivalent:

(i) s = h(t) for some coalgebra homomorphism h : CΣ(k) �� CΣ(k) and
(ii) s and t have the same underlying Σ-tree, and any two equivalent nodes of t

are also equivalent in s.

Proof. (i) �� (ii). The coalgebra TΣ ( CΣ(1) of all (uncolored) Σ-trees is
terminal, and the unique homomorphism u : CΣ(k) �� TΣ assigns to every
colored Σ-tree the underlying Σ-tree. The equality of the underlying Σ-trees of
s and t follows from the fact that u = u·h : CΣ(k) �� TΣ . Furthermore, if the
root of t is labelled by (σ, i) where σ is an n-ary operation, then since h is a
homomorphism, the root of s is labelled by (σ, j), and h takes the m-th child of t
to the m-th child of s. Consequently, for every node x of t, the corresponding
subtree t|x is taken to the subtree s|x of s:

h(t|x) = s|x for all nodes x of t.
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Therefore, if two nodes are equivalent in t, they are equivalent in s.
(ii) �� (i). Choose a function h0 : C(k) �� k by the following rule, where

t|x denotes the subtree of t at a node x:

h0(r) =

{
color of x in s if r = t|x for some node x

arbitrary else.

By (ii) such a function exists. The unique homomorphism h : CΣ(k) �� CΣ(k)
with h0 = γk · h fulfils

h(t) = s .

In fact, since u(t) = u(s), all we have to verify is that for every node x of t the
colors of x in the trees h(t) and s are equal. This is clear for the root: the root
color of h(t) is h0(t), which is the root color of s by definition of h0. For nodes x
of depth 1 this follows from h being a homomorphism: suppose t = σ(ti)i<n,
then s = σ(si)i<n (because u(t) = u(s)) and h(t) = σ(h(ti))i<n has the j-th
child h(tj), whose root color h0(tj) is the color of the j-th child of s by definition
of h0. A formal proof by induction on the depth of x is left to the reader. )*

2.9 Definition. By a recoloring of a colored Σ-tree t is meant any tree s
satisfying the equivalent conditions of 2.8. Given colored Σ-trees t, t′ we write

t′ � t

provided that t′ is a recoloring of a subtree of t.

2.10 Remark. The relation � is a preorder: it is obviously reflexive, and transi-
tivity follows from the fact that “recoloring of” is transitive due to 2.8(i), and
“subtree of” is clearly transitive too. The relation � is, however, not antireflex-
ive:

2.11 Example. The following trees
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are recolorings of each other. And each of them has a recoloring having the same
shape and all nodes of equal color.

2.12 Lemma. For every k-colored Σ-tree t let At be the HΣ-coalgebra of all
equivalence classes [x] of nodes x of t (see 2.7) with α : At

�� HΣAt defined
by

α[x] = σ([xi])i<n

if x has label (σ, u) and xi are the children of x. Then
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(i) At � � t, and
(ii) f#[x] � t for every coloring f : At

�� k and every state [x] ∈ At.

The above algebras At are analogous to the tree coalgebras of [5].

Proof. The above α is well-defined because given equivalent nodes x and y,
the operations labelling x and y are equal, and the corresponding children are
again equivalent. For every coloring f : At

�� k the homomorphism f# : At
�� CΣ(k) is defined by the following rule: f#[x] is the subtree t|x of t at x

recolored by f . (In fact, this function f# is easily seen to be a homomorphism:
suppose α[x] = σ([xi])i<n, then

HΣf#·α[x] = σ
(
f#[xi]

)
i<n

= τΣk
(
f#[x]

)
,

see 2.4. Moreover, γΣ
k ·f# = f .) Therefore, (ii) is clear. For (i), use the original

coloring, more precisely, the function g : At
�� k assigning to [x] the color of x

in t. By the above rule applied to f = g we see that g# assigns to the equivalence
class of the root of t the value t. Therefore, A � � t. )*

2.13 Theorem. For a polynomial endofunctor a coequation � t is a logical con-
sequence of coequations � si (i ∈ I) iff some sj is a recoloring of a subtree of t.
Shortly:

{� si; i ∈ I} � � t iff sj � t for some j ∈ I.

Proof. Denote by k∗ the set of all words formed by ordinals smaller than k. Then
a colored Σ-tree t can be formalized as a partial function from k∗ to Σ× k such
that the set Def t of all words where t is defined has the following properties:

(i) Def t contains the empty word ε,
(ii) Def t is prefix-closed, i.e., if t is defined in xy, then it is defined in x, and
(iii) if t(x) = (σ, u) for an n-ary operation symbol σ, then xi ∈ Def t for all

ordinals i < n and xi /∈ Def t for any i ≥ n.

In particular, a subtree t|x of t at the node x ∈ Def t is characterized as follows:

Def(t|x) = {y ∈ k∗;xy ∈ Def t}

and
t|x(y) = t(xy) for all y ∈ Def(t|x).

(1) Sufficiency. We only need to prove that for two colored trees s and t we
have � s � � t whenever s is either a recoloring of t or a subtree of t.

(1a) Let s be a subtree of t. Without loss of generality, we can assume that s is
a child (i.e., a maximum proper subtree) of t – by repeating the same argument
finitely many times we obtain the general case.

We have τΣk (t) = σ(tr)r<n and s = tr0 for some σ ∈ Σn and some r0 < n.
Let A be a coalgebra satisfying � s. If for some coloring f : A �� k we had
f#(a) = t then, since f# is a homomorphism, α(a) would have the form σ(ar)r<n

where f#(ar) = tr – this is impossible because then f#(ar0) = s.
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(1b) Let s = h(t) be a recoloring of t, where h is an endomorphism of CΣ(k).
For every coalgebra A and every coloring f : A �� k we have

h · f# = (γk · h · f#)# : A �� CΣ(k)

In fact, this follows from the universal property of γk: h is a homomorphism, thus,
so is h · f#, and both sides composed with γk yield γk·h·f#. If A satisfies � s,
then h · f#(a) �= s = h(t) which implies f#(a) �= t for all a ∈ A. Therefore
A satisfies � t.

(2) Necessity. Assuming {� si; i ∈ I} � � t, the coalgebra At of Lemma 2.12
does not satisfy all of � si for i ∈ I. Thus, there exists j ∈ I with f#[x] = sj for
some coloring f and some [x] ∈ At. Then Lemma 2.12 implies sj � t. )*

2.14 Corollary. Given a polynomial functor HΣ, the following deduction rules
are sound and complete for the logical deduction of coequations:

(1) Child Rule

� tj
� t

(if tj is the j-th child of s)

and
(2) Recoloring Rule

� s

� t
(if s is a recoloring of t).

In fact, for each subtree s of t by applying the Child Rule finitely many times,
we derive that � t is a logical consequence of � s.

2.15 Corollary. Given sets S and T of k-colored Σ-trees, then S � T iff T con-
tains every tree t such that

every recoloring of every subtree of t lies in S. (1)

In fact, recall that S ⊆ CΣ(k) is logically equivalent to the conjunction
of � si, i ∈ I, where {si; i ∈ I} is the complement of S; analogously with T .
Now it is easy to see that S � T holds iff for every tree t we have

T � � t implies S � � t . (2)

From Theorem 2.13 we know T � � t iff there exists a tree s � t with s ∈
CΣ(k) − T ; analogously for S � � t. Thus, (2) tells us that

(∃s)(s � t ∧ s /∈ T ) =⇒ (∃s)(s � t ∧ s /∈ S) .

Or, equivalently,

(∀s)(s �� t ∨ s ∈ S) =⇒ (∀s)(s �� t ∨ s ∈ T ) .

The premise of the last implication is only true for trees t with the above prop-
erty (1) – and for such trees t the conslusion is that t ∈ T : in fact, since t � t
we conclude t ∈ T (and, moreover, s ∈ T whenever s � t – but this can be left
out due to the universal quantification of t).
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3 Coequational Logic for Accessible Functors

3.1 Assumption. Throughout this section H denotes an accessible endofunctor
of Set, i.e., one that preserves k-filtered colimits for some infinite regular cardi-
nal k. As shown in [5], this is equivalent to the statement that H is a quotient
of a k-ary polynomial endofunctor. That is, a k-ary signature Σ and a natural
transformation

ε : HΣ
�� H

with surjective components exist.

3.2 Example. (i) The finite-power-set functor Pf , given on objects by X � ��

{A ⊆ X;A finite} is finitary (k = ω). Let Σ be the signature with a single n-ary
symbol σn for every natural number n. Then we have a “canonical” presenta-
tion Pf as a quotient of HΣ : ε takes every n-tuple σn(x0, . . . , xn−1) to the subset
{x0, . . . , xn−1}.

Pf -coalgebras are precisely the finitely branching graphs.
(ii) For the countable-power-set functor Pc, given on objects by X � �� {A ⊆

X ;A countable} we can use the signature with one nullary symbol and one ω-ary
symbol. Here

εX : 1 + XN �� PcX

takes the left-hand summand to ∅ and every sequence f : N �� X to the image
of f . Pc-coalgebras are precisely the countably branching graphs.

3.3 Remark. The presentation of H as a quotient of HΣ yields a presentation
of the cofree coalgebra τk : C(k) �� HC(k) of H as a quotient of the cofree
coalgebra of HΣ . In fact, the unique homomorphism ε̂ of H-coalgebras with
γkε̂ = γΣ

k is surjective:

k

C(k)

��

γk ��
��

��
��

CΣ(k)

k

γΣ
k

����
��
��
��
CΣ(k)

C(k)

ε̂

��

CΣ(k) HΣCΣ(k)
τΣ

k �� HΣCΣ(k) HCΣ(k)
εCΣ (k) ��HΣCΣ(k)

HΣC(k)

HΣ ε̂

��

HCΣ(k)

HC(k)

Hε̂

��
C(k) HC(k)τk

��

HΣC(k)

HC(k)

εC(k)

����
���

���
���

�

(Proof: choose u : HC(k) �� HΣC(k) with εC(k)u = id. The unique homo-
morphism u# : C(k) �� CΣ(k) of HΣ-coalgebras with γk = γΣ

k u#, where we
use the structure map uτk, splits ε̂. In fact, ε̂u# is an endomorphism of C(k)
commuting with γk, thus, ε̂u# = id.)

Consequently, the elements of C(k) are the congruence classes [t] of Σ-trees t
modulo the kernel congruence of ε̂. In case H is finitary, this congruence has
a concise description: one applies ε-equations fintely or infinitely many times,
where ε-equations are equations between terms in HΣX merged by εX . See [2].
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3.4 Example. For the functor Pf the terminal coalgebra T = C(1) has been
described by M. Barr [8] by presenting the corresponding congruence on Σ-trees.
J. Worell presents a direct description in [15]: T is the coalgebra of all finitely
branching, strongly extensional trees. Here a (rooted, nonordered) tree is called
strongly extensional provided that for every pair of distinct children of any node
the two subtrees are not bisimilar. The coalgebra structure T �� PfT takes
every tree to the set of its children. Analogously, for a set k of colors we have
a coalgebra C(k) of all finitely branching k-colored nonordered trees which are
strongly extensional. The latter means that for every pair of distinct children of
any node the two k-colored subtrees are not bisimilar (as colored trees).

Examples of coequations:
(i) The class of all finitely branching graphs without leaves (i.e., nodes having

no neighbour) is presented by � t where t is the single-node tree.
(ii) The coequation � t where t is a one-colored infinite path presents all

graphs such that from every node a path leads into a leaf.
(iii) The coequation � t where t is an infinite path colored one-toone with N

presents all graphs such that every node b from which no leaf is reachable has
two paths of unequal lengths from b to a common target.

3.5 Theorem. A coequation � t is a logical consequence of coequations � si
(i ∈ I) iff for every Σ-tree t′ with t = [t′] there exists a Σ-tree r � t′ with
sj = [r] for some j ∈ I.

Proof. (1) We prove a preliminary result first. Let A
α �� HA be an H-coalge-

bra. Choose u : HA �� HΣA with

εAu = id

and consider the corresponding HΣ-coalgebra uα : A �� HΣA. For every col-
oring f : A �� k we have the unique homomorphisms f# : A �� C(k) and
f#
Σ : A �� CΣ(k), and they are related by

f# = ε̂f#
Σ .

In fact, this follows from the universal property of γk since the right-hand side
fulfils

γk(ε̂f
#
Σ ) = γΣ

k f#
Σ = f

and is a homomorphism of H-coalgebras: using Remark 3.3 we see that the
diagram
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HA HΣC(k)
Hf#

Σ

��

HΣA

HA

εA

��

HΣA HΣCΣ(k)
HΣf#

Σ �� HΣCΣ(k)

HΣC(k)

HΣ ε̂

��

HΣA HΣCΣ(k)��

A

HΣA

α

��

A CΣ(k)
f#

Σ �� CΣ(k)

HΣCΣ(k)

τΣ
k

��

CΣ(k) C(k)ε̂ ��

HΣC(k) HC(k)
Hε̂

��

C(k)

HC(k)

τk

��

(3.3)

commutes.
(2) Sufficiency: suppose that for every tree t′ with t = [t′] the above condition

holds. Let A be an H-coalgebra satisfying every � si (i ∈ I). If A does not satisfy
� t, we derive a contradiction as follows. Let

t = f#(a) for some f : A �� k and a ∈ A.

The tree t′ = f#
Σ (a) fulfils t = [t′], since f# = ε̂f#

Σ , therefore there exists r � t′

with sj = [r] for some j ∈ I. Since A as a Σ-coalgebra does not satisfy � t′,
it follows from Theorem 2.13 that it does not satisfy � r. Thus, there exists a
coloring g and a state b ∈ A with g#

Σ (b) = r. Then g#(b) = ε̂g#
Σ (b) = [r] = sj , a

contradiction.
(3) Necessity. Suppose {� si; i ∈ I} |= � t. For every tree t′ with t = [t′] form

the HΣ-coalgebra

A = At′

of Lemma 2.12. The corresponding H-coalgebra

A
α �� HΣA

εA �� HA

fulfils f# = ε̂f#
Σ for every coloring f : A �� k. In fact, this follows easily

from the universal property of γk: by Remark 3.3 ε̂f#
Σ is a homomorphism of

H-algebras with f = γk · ε̂f#
Σ . Since A does not satisfy � t′, see Lemma 2.12,

we conclude that the H-coalgebra A does not satisfy � t. Therefore, there exists
j ∈ I and a coloring g : A �� k with

g#(a) = sj for some a ∈ A.

The tree r = g#
Σ(a) fulfils sj = [r], and by Lemma 2.12 we have r � t. )*

3.6 Remark. We do not know how to formulate a corollary analogous to 2.15
here: the trouble is that in Theorem 3.5 different representatives t′ can lead to
different choices of j ∈ I.
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4 Arbitrary Set Functors

4.1 Cofree-Coalgebra Chain. For an arbitrary endofunctor H of Set we cannot
work with C(k) because cofree coalgebras need not exist. Instead, we work with
a transfinite chain W (k) : Ordop �� Set “approximating” C(k), dual to the
free-algebra chain introduced in [1]. It is the essentially unique chain such that
for its objects Wp (p an ordinal) and connecting morphisms wpq : Wp

�� Wq

(p ≥ q) the following transfinite induction holds:

W0 = 1,
Wp+1 = HWp × k and wp+1,q+1 = Hwp,q × idk;

and for every limit ordinal q

Wq = lim
p<q

Wp with the limit cone wqp : Wq
�� Wp (p < q).

We call W (k) the cofree-coalgebra chain of H . Given a collection tp ∈ Wp (p ∈
Ord) of elements, we call it compatible if wpq(tp) = tq for all ordinals p ≥ q.

4.2 Notation. Given a coalgebra HA
α �� A and a coloring f : A �� k define

the cone (f#
p )p∈Ord of the chain W (k) (“approximating” the homomorphism f#)

to be the unique cone f#
p : A �� Wp, p ∈ Ord, for which

f#
p+1 = 〈Hf#

p ·α, f〉 : A �� Wp × k (for all p ∈ Ord).

HWp HWp × k�� outl
HWp × k k

outr ��

A

HA

α

��			
			

		

HA

HWp

Hf#
p

��			
			

	

A

HWp × k

f#
p+1

��

A

k

f

		�
��

��
��

��
��

��
��

�

4.3 Definition. A generalized coequation in k colors is an expression � t
where

t =
(
ti
)
i∈Ord

with ti ∈ Wi

is a compatible collection of elements of the cofree-coalgbra chain.
A coalgebra A is said to satisfy the generalized coequation � t if for every

coloring f : A �� k and every state a the compatible collections f#
i (a) is non-

equal to t. That is: for every state a there exists p ∈ Ord with f#
p (a) �= tp.

4.4 Theorem (see [3]). For every endofunctor H of Set a collection of coalge-
bras can be presented by generalized coequations iff it is a covariety.

4.5 Example. Let us consider the power-set functor P. Its coalgebras are graphs.
We have a compatible collection t with tp+1 = ∅ (∈ PWp) for all ordinals p. The
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generalized coequation � t describes all graphs without leaves. Another compat-
ible collection is s with sp+1 = Wp for all p. Here, obviously, every graph A
satisfies � s: the cardinalities of Wp strictly grow with growing p, thus, there
exists p with cardWp > cardA. It follows that f#

p+1(a) �= sp+1 for all a ∈ A.

4.6 Remark. We follow [4] and assume that we work in ZFC (Zermelo-Fraenkel
set theory with Axiom of Choice); we denote by Class the category of classes
and functions. We proved in [4] that

(i) every endofunctor H of Set has an extension Ĥ : Class �� Class unique
up to natural isomorphism,

and

(ii) every endofunctor of Class has cofree coalgebras.

Thus, given a set functor H and a (small) set k of colors we have the cofree
coalgebra C(k) of Ĥ in Class. The universal coloring γk : C(k) �� k yields a
cone1

gp =
(
γk
)#
p

: C(k) �� Wp (p ∈ Ord)

of the cofree-coalgebra chain W (k) of H .

4.7 Example. Let Σ be a large signature, i.e., a class Σ = (Σn)n∈Card of oper-
ation symbols each having a prescribed arity n, which is a small cardinal. We
obtain the polynomial endofunctor HΣX =

∐
σ∈Σ Xn of Class. For every small

cardinal k the cofree coalgebra CΣ(k) is, precisely as in Example 2.4, the coalge-
bra of all k-colored Σ-trees. Observe that each such tree is an object within Set.
But the collection CΣ(k) of all of them is a proper class.

4.8 Observation. For every endofunctor H of Set the functor Ĥ is a quotient of
a polynomial functor, ε : HΣ

�� Ĥ . A cofree Ĥ-coalgebra C(k) is a quotient
of the Σ-tree coalgebra CΣ(k) modulo ker ε̂ for ε̂ defined in Remark 3.3.

In fact, define Σ by Σn = H(n) for all small cardinals n, then the Yoneda
Lemma yields a natural transformation ε : HΣ

�� Ĥ with surjective compo-
nents. And then apply Remark 3.3.

4.9 Notation. Given a presentation ε : HΣ
�� H as above, for every k-colored

Σ-tree s ∈ CΣ(k) we denote by [s] ∈ W (k) the compatible collection whose p-th

component is the image of s under CΣ(k) ε̂ �� C(k)
gp �� Wp(k), see 4.6:

[s]p = gp
(
ε̂(s)

)
(p ∈ Ord)

4.10 Theorem. A generalized coequation � t is a logical consequence of gener-
alized coequations � si (i ∈ I) iff for every Σ-tree t′ with t = [t′] there exists a
Σ-tree r � t′ with sj = [r] for some j ∈ I.

1 Card and Ord denote the classes of all small cardinals and small ordinals, respec-
tively.
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The proof of this theorem is completely analogous to that of Theorem 3.5
except that we do not claim that t has the form [t′] for some Σ-tree t′. However,
if t does not have that form, then � t is trivial, i.e., satisfied by every coalgebra
– and there is nothing to prove then. In fact, whenever � t is not trivial, we
choose a coalgebra A and a coloring f : A �� k with f#(a) = t for some a ∈ A.
Then arguing as in 3.5 we get f# = ε̂·f#

Σ : A �� C(k) in Class. Moreover,
f#
p = gp·f# (easy induction on p) which implies that

tp = gp·f#(a) = [t′]p (p ∈ Ord)

for the Σ-tree t′ = f#
Σ (a). Consequently, t = [t′].

5 How Colorful Are Covarieties?

Throughout this section H denotes a k-accessible endofunctor of Set. All exam-
ples of covarieties above used one or two colors for the coequational presentation.
However, there are simple covarieties requiring infinitely many colors:

5.1 Example. A finitary covariety which does not fulfil any coequation � t such
that t lies in C(n) for n finite. We consider again the functor HQ = Q×Q + 1
from 2.1. A state q in a coalgebra is called 1-based provided that the repeated
input 1 leads from q (= q0) to non-deadlock states q1, q2, q3, . . . , but the input 0
leads from any qk to a deadlock q̄k for k = 0, 1, 2, . . . . Let A be the covariety of
all coalgebras in which for every 1-based state q there exist k �= � with q̄k = q̄�.
It is easy to see that A is presented by the single coequation

�

0�������	

1�������	
��
��
�

0�������	
��

��
�

0�������	

2�������	
��
��
�

0�������	
��

��
�

0�������	

3�������	
��
��
�

��
��

�

..
.

(In fact, if A satisfies the above coequation � s and q is a 1-based state in A,
then the deadlock states q̄k are not pairwise distinct – otherwise by coloring q̄k
with k + 1 and all other states by 0 we obtain f : A �� ω with f#(q) = s, a
contradiction. Thus, A ∈ A . The converse is obvious.)

In this covariety A for every finite-colored tree t there exists a coalgebra
Bt ∈ A not satisfying � t. In fact, suppose first that t has a 1-based node, q0.
Since t is finitely colored, some of the colors i has the property that infinitely
many of the deadlock states q̄k have color i; let ∼ be the equivalence on the
nodes of t whose one class is formed by all the i-colored leaves of t, and all other
classes are singleton sets. Then we obtain a coalgebra Bt whose states are the
equivalence classes of ∼ with the obvious coalgebra structure and an obvious
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coloring f : Bt
�� ω obtained from the coloring of t. It is easy to see that

f#(q0) = t and Bt ∈ A : every 1-based state of Bt has the form qk and we have
two different deadlock states of t of depth bigger than k. Conversely, if no node
of t is 1-based, then the coalgebra Bt obtained from the nodes of t (ignoring the
coloring) lies in A , and the coloring of t yields f : Bt

�� ω with f#(ε) = t.
Consequently, the covariety A cannot be presented by finite-colored coequa-

tions.

5.2 Remark. One-colored covarieties have a beautiful characterization: they are
precisely the covarieties closed under bisimilarity, as proved by Peter Gumm
and Tobias Schröder in [12]. Recall that two coalgebras A and A′ are called
bisimilar if there exists a bisimulation between them such that every state of A
is bisimilar to a state of A′, and vice versa. In particular, given an epimorphic
homomorphism e : A �� A′, then A and A′ are bisimilar.

For n-colored covarieties, where n ≤ k is any cardinal, the appropriate con-
cept is the following:

5.3 Definition. (1) An H-coalgebra A
α �� HA equipped with a coloring f : A

�� n is considered as a coalgebra of H(−) × n via 〈α, f〉 : A �� HA × n.
Given another H-coalgebra A′ with a coloring in n, we call A and A′ n-color
bisimilar provided that they are bisimilar as H(−) × n-coalgebras.

(2) A covariety A is said to be closed under n-color bisimilarity provided that
it contains every H-coalgebra A with the following property: for every coloring
f : A �� n there exists a coalgebra A′ ∈ A and a coloring g : A′ �� n such
that A and A′ are n-color bisimilar.

5.4 Proposition. A covariety can be presented by n-color coequations, i. e., by
� t for t ∈ C(n), iff it is closed under n-color bisimilarity.

Proof. Without loss of generality we can assume that H preserves monomor-
phisms: if we change the value of H at ∅ to be ∅, the new functor preserves
monomorphisms and has the category of coalgebras isomorphic to CoalgH .

(1) Let A be a covariety closed under n-color bisimilarity. Denote by M ⊆
C(n) the union of all images of homomorphisms f# : A �� C(n), where A is
a coalgebra in A and f is a coloring of A. We prove that A is presented by the
subobject m : M �� C(n). Since every coalgebra in A clearly satisfies M , we
only have to verify the converse. We first observe that M is a coalgebra in A .
More precisely, let us choose, for every element x of M , a homomorphism f#

x : Ax
�� C(n) with Ax ∈ A and x lying in f#

x [Ax], then the induced homomorphism
h :
∐

x∈M Ax
�� C(n) has image M , i.e., h = m·k for some epimorphism k.

Here B =
∐

Ax carries the coalgebra structure β : B �� HB of a coproduct of
coalgebras. Since H preserves monomorphisms, the image of a homomorphism
is a subcoalgebra of the codomain: there is a unique μ : M �� HM making
k and m coalgebra homomorphisms. And M ∈ A because it is a quotient of∐

x∈X Ax ∈ A .
Let A be a coalgebra satisfying M , then for every coloring f : A �� n we

are to find a coalgebra A′ ∈ A and a coloring g : A′ �� n such that A and A′
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are n-color bisimilar (thus proving that A lies in A ). We factorize the homomor-
phism f# into an epimorphism e : A �� A′ followed by a monomorphism i : A′

�� C(n), then A′ carries the unique structure α′ : A′ �� HA of a coalgebra
such that e and i are homomorphisms:

C(n) HC(n)τn

��C(n)

M

��
m

��������

M HM
μ �� HM

HC(n)

Hm


�

��
��

��
�

A′

C(n)

��

i

��

A′

M

j



�
��

��
��

�A′ HA′
α′

������������ HA′

HM

Hj

����
��
��
��
HA′

HC(n)

��

Hi

��

A′ HA′

A

A′

e

����

A HA
α �� HA

HA′

He

��

Since A satisfies M , the subobject i is contained in m, say, i = m·j, and j is a
homomorphism because i is one and Hm is a monomorphism. Therefore A′ is
a subcoalgebra of M , which proves A′ ∈ A . The coloring g = γn · i : A′ �� n
defines an n-color coalgebra which is n-color bisimilar to (A, f). In fact, the
epimorphic homomorphism e : A �� A′ fulfils f = g·e, since i·e = f#. There-
fore, e is a homomorphism of the corresponding H(−) × n-coalgebras. Being
epimorphic, it defines the the required bisimulation. This proves A ∈ A .

(2) Let A be a covariety presented by n-color coequations � ti, i ∈ I. Given a
coalgebra A with the property of the above definition, we prove A ∈ A . In fact,
given a coloring f : A �� n, there is A′ ∈ A and a coloring g : A′ �� n such
that (A, f) and (A′, g) are bisimilar H(−) × n-coalgebras. Let R ⊆ A×A′ be a
bisimulation such that every a ∈ A is related to some a′ ∈ A′. The corresponding
homomorphism h : R �� C(n) has the property that f# = h·π and g# = h·π′
for the projections π, π′. Therefore, given a ∈ A, we have f#(a) = g#(a′). And
g#(a) �= ti, since A′ satisfies � ti. This proves that A satisfies � ti. Consequently,
A ∈ A . )*
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3. Adámek, J.: Birkhoff’s covariety theorem without limitation. Commentationes
Mathematicae Universitatis Carolinae 46 (2005) 197–215
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A Semantic Formulation of ��-Lifting
and Logical Predicates for Computational Metalanguage
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Abstract. A semantic formulation of Lindley and Stark’s ��-lifting is given.
We first illustrate our semantic formulation of the ��-lifting in Set with sev-
eral examples, and apply it to the logical predicates for Moggi’s computational
metalanguage. We then abstract the semantic ��-lifting as the lifting of strong
monads across bifibrations with lifted symmetric monoidal closed structures.

1 Introduction

Logical predicates are a method for extracting submodels of the pure simply typed
lambda calculus (λ⇒ for short) by induction on type. Logical predicates are widely
applied to the reasoning of the properties of λ⇒ [9, 16, 23, 24].

We are interested in extending logical predicates to Moggi’s computational meta-
language (λml for short) [18], which has additional types Tτ called monadic type. To
do so, we need to consider a scheme to calculate a predicate at type Tτ from a predicate
at type τ . Recently, Lindley and Stark develop the leapfrog method and show the strong
normalisation of λml in the style of Tait-Girard reducibility [11, 12]. The novelty of
the leapfrog method is the operation called ��-lifting, which calculates a reducibility
predicate at type Tτ from a reducibility predicate at type τ .

However, Lindley and Stark’s ��-lifting is defined with respect to the syntactic
structure of λml, and is designed for the proof of the strong normalisation. This paper
attempts to provide a semantic aspect of their ��-lifting. The main contribution of this
paper is twofolds:

1. We provide a semantic formulation of Lindley and Stark’s ��-lifting in set theory
(section 3). This formulation is carried out by finding a semantic counterpart for
each of the building block in ��-lifting. We instanciate ��-liftings with well-
known strong monads over Set, and show that the logical predicates using the
semantic ��-lifting implies the basic lemma of logical predicates.

2. We re-formulate the above semantic ��-lifting as a construction of liftings of
strong monads, and give a categorical account of this construction within the frame-
work of fibred category theory (section 4). We then show that the above semantic
��-lifting and Abadi’s ��-closure operation are instances of ��-lifting.

2 Preliminaries

Moggi’s Computational Metalanguage
We begin with the syntax of λml. We define the set of types Typml by the following
BNF (we consider a single base type b for simplicity):

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 87–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Typml + τ ::= b | τ ⇒ τ | Tτ.

Monadic types Tτ are for the programs yielding values of type τ with some com-
putational effect. A typing context (ranged over by Γ ) is simply a finite sequence of
variable-type pairs without any duplication of variables.

The calculus λml has two new term constructions related to monadic types: [−] and
“let xτ be M in N”. Their typing rules are the following:

Γ � M : τ
Γ � [M ] : Tτ

Γ � M : Tτ Γ, x : τ � N : Tτ ′

Γ � let xτ be M in N : Tτ ′

The term [M ] expresses the value of M involving the trivial computational effect. The
term “let xτ be M in N” expresses a sequential computation of M and N ; the term M
is first computed, its value is then bound to xτ and next the term N is computed.

Equational theory of λml extends βη axioms of λ⇒ with the following axioms:

let xτ be [M ] in N = N [M/x] (T.β)
let xτ be M in [xτ ] = M (T.η)

let xτ be (let yτ
′

be L in M) in N = let yτ
′

be L in let xτ be M in N (T.assoc)

Categorical Semantics of λml

A categorical semantics of λml is given in a Cartesian closed category C equipped with
a strong monad T = (T, η, μ, θ). We omit the formal definition of strong monads;
see e.g. [18]. For a morphism f : A → TB in C, we write f# for the morphism
μB ◦ Tf : TA → TB.

Let B be an object in C. We first assign to each type τ an object [[τ ]] in C by
induction on type:

[[b]] = B, [[τ ⇒ τ ′]] = [[τ ]] ⇒ [[τ ′]], [[Tτ ]] = T [[τ ]].

We extend this assignment to typing contexts by

[[x1 : τ1, · · · , xn : τn]] = [[τ1]] × · · · × [[τn]].

The semantics of λml in C is an extension of the standard categorical semantics of λ⇒

with the following rules:

– For a well-formed term Γ � [M ] : Tτ , we define

[[[M ]]] = η[[τ ]] ◦ [[M ]].

– For a well-formed term Γ � let xτ be M in N : Tτ ′, we define

[[let xτ be M in N ]] = [[N ]]# ◦ θ[[Γ ]],[[τ ]] ◦ 〈id[[Γ ]], [[M ]]〉



A Semantic Formulation of ��-Lifting and Logical Predicates 89

3 A Semantic Formulation of ��-Lifting

In [12], Lindley and Stark prove the strong normalisation of λml by extending the
reducibility predicate technique. The novelty of their method is the operation called
��-lifting, which calculates a reducibility predicate at a monadic type from that at an
ordinary type.

Definition 3.1 ([12], section 3.1).

1. We define the set of raw continuations by the following BNF:

K ::= Id | K ◦ (xτ .N)

where the notation (xτ .N) indicates that N is a term with a distinguished free
variable xτ .
A judgement for a raw continuation is a triple Tτ �C K : Tτ ′. Raw continuations
are typed by the following rules:

Tτ �C Id : Tτ

x : τ � N : Tτ ′ Tτ ′ �C K : Tτ ′′

Tτ �C K ◦ (xτ .N) : Tτ ′′

We write Tτ �C K to mean that there exists a (unique) type Tτ ′ such that Tτ �C

K : Tτ ′ is derived from the above rules.
2. We define an application K@M of a term M to a continuation K by

Id@M = M, (K ◦ (xτ .N))@M = K@(let xτ be M in N).

3. Given a set P of terms of type τ , we define a set P�� of terms of type Tτ by

P� = {Tτ �C K | ∀M ∈ P . K@[M ] ∈ SN}
P�� = {M : Tτ | ∀K ∈ P� . K@M ∈ SN}

where SN is the set of strongly normalising terms.

From this point, we let T = (T, η, μ, θ) be a strong monad over Set, and fix a
categorical semantics of λml with respect to the strong monad T and the evident CCC
structure in Set. We give a semantic formulation of the syntactic ��-lifting by finding
semantic counterparts of continuations, applications and the set SN . This formulation
is carried out with respect to the strong monad T . We introduce the following notation:
for subsets X ⊆ I and Y ⊆ J , by X ⇒̇ Y we mean the subset {f | ∀x ∈ X . f(x) ∈ Y }
of I ⇒ J .

To simplify the situation, we assume that all continuations in definition 3.1 have the
same type Tρ (this restriction will be relaxed in section 5). We let R = [[ρ]].

Continuation We formulate a continuation as a function

f ∈ [[τ ]] ⇒ TR.
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We explain the idea of this formulation below. We notice that a continuation Tτ �C

Id ◦ (xτ .M) : Tρ is equivalent to a context let xτ be − in M , and an application
of a term to the continuation is equivalent to plugging the term in the hole of the
context. The essential information of the context is the body M , and it has the
following typing:

x : τ � M : Tρ.

Our formulation represents this information as a function f ∈ [[τ ]] ⇒ TR.
Application We define an application of an element x ∈ [[Tτ ]] to a continuation f ∈

[[τ ]] ⇒ TR to be f#x.
The Set SN The set SN is hard-coded in the definition of P� and P�� since the

syntactic ��-lifting is designed for the proof of the strong normalisation of λml.
We replace SN with some subset S ⊆ TR, and call S a result predicate.
We also relax the condition that the set R is given by [[ρ]] with some type ρ; we
simply allow R to be any set and call R a result type.

Once continuations, applications and the set SN are semantically formulated, it is
straightforward to define P� and P��. We summarise the above discussion as follows:

Definition 3.2. Let R be a set (called result type) and S ⊆ TR be a subset (called
result predicate).

1. A continuation is a function f ∈ [[τ ]] ⇒ TR.
2. We define an application of x ∈ [[Tτ ]] to a continuation f ∈ [[τ ]] ⇒ TR to be f#x.
3. Let P ⊆ [[τ ]] be a subset. We define a subset P�� ⊆ [[Tτ ]] by

P� = {f ∈ [[τ ]] ⇒ TR | ∀x ∈ P . f(x) ∈ S} = P ⇒̇ S

P�� = {x ∈ [[Tτ ]] | ∀f ∈ P� . f#(x) ∈ S},

which is equivalent to

P�� = {x ∈ [[Tτ ]] | ∀f ∈ P ⇒̇ S . f#(x) ∈ S}.

We call the operation (−)�� the ��-lifting of T with R and S ⊆ TR.

We can also consider the semantic ��-lifting for binary relations (binary ��-lifting
for short) over the semantics of λml. Let R be a set and S ⊆ (TR)2 be a subset. A
continuation is a pair (f, g) of functions from [[τ ]] to TR. An application of (x, y) ∈
[[Tτ ]]2 to a continuation (f, g) is defined to be (f#x, g#y). For a binary relation P ⊆
[[τ ]]2, we define P�� as follows:

P� = {(f, g) ∈ ([[τ ]] ⇒ TR)2 | ∀(x, y) ∈ P . (fx, gy) ∈ S}
P�� = {(x, y) ∈ [[Tτ ]]2 | ∀(f, g) ∈ P� . (f#x, g#y) ∈ S}.

Examples of Semantic ��-Liftings

An interesting point is that we can obtain ��-liftings for various strong monads and
result type/predicate pairs. We see some concrete examples of the semantic ��-lifting
below.
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Example 3.3. We consider the lifting monad T⊥, which simply adjoins an extra element
⊥ to a given set. We calculate a ��-lifting of T⊥ with the following data:

– The result type R is {∗} (thus T⊥R = {∗,⊥}).
– The result predicate S is {∗}.

For a subset P ⊆ [[τ ]], we have P�� = P .

Example 3.4. We consider the state monad Ts whose functor part is given by TsI =
M ⇒ I ×M for some set M . We let M0 ⊆ M be a subset and calculate a ��-lifting
of Ts with the following data:

– The result type R is some set.
– The result predicate S is M0 ⇒̇ R × M0, the set of functions f ∈ TsR such that
∀x ∈ M0 . f(x) ∈ M0 ×R.

For a subset P ⊆ [[τ ]], we expand the definition of P�� and obtain

P�� = {f ∈ Ts[[τ ]] | ∀g ∈ P ×M0 ⇒̇ R×M0 . g ◦ f ∈ M0 ⇒̇ R×M0}.

In fact, P�� can be characterised as follows:

P�� =
{
M0 ⇒̇ P ×M0 (∅ � R×M0 � R×M)
Ts[[τ ]] (otherwise)

Below we prove the first case of this characterisation; the second case is trivial. We first
prove

P ×M0 = {i ∈ [[τ ]] ×M | ∀g ∈ P ×M0 ⇒̇ R ×M0 . g(i) ∈ R×M0}.

(⊆) Easy. (⊇) Let x �∈ P × M0. From the assumption on R × M0, we can take two
elements s ∈ R × M0 and s′ ∈ (R × M)\(R × M0). We then define the following
function g ∈ [[τ ]] ×M ⇒ R×M :

g(x) =
{
s (x ∈ P ×M0)
s′ (x �∈ P ×M0)

which is clearly included in P × M0 ⇒̇ R × M0. However g(x) �∈ R × M0, so we
conclude that x �∈ (r.h.s.). Therefore

f ∈ M0 ⇒̇ P ×M0

⇐⇒ ∀x ∈ M0 . ∀g ∈ P ×M0 ⇒̇ R×M0 . g(f(x)) ∈ R×M0

⇐⇒ f ∈ P��.

Example 3.5. We calculate a binary ��-lifting of the lifting monad T⊥ with the fol-
lowing data:

– The result type R is a one-point set {∗}. We have T⊥R = {⊥, ∗}.
– The result predicate S ⊆ (T⊥R)2 is {(x, y) ∈ (T⊥R)2 | (x = ∗ =⇒ y = ∗)}.
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For a subset P ⊆ [[τ ]], we obtain P�� = P ∪ {(⊥,⊥)}.

Example 3.6. We consider the finite powerset monad Tp, whose functor part is given
by Tp(X) = {x ⊆ X | x is a finite set}. We calculate a binary ��-lifting wf Tp with
the following data:

– The result type R is a one-point set {∗}. We have TpR = {∅, R}.
– The result predicate S ⊆ (TpR)2 is {(x, y) ∈ (TpR)2 | x = R =⇒ y = R}.

We identify a function f ∈ [[τ ]] ⇒ TpR and a subset (written with the capital letter of
the function) F = {x ∈ [[τ ]] | f(x) = R} ⊆ [[τ ]]. Under this identification, for each
x ∈ Tp[[τ ]], we have

f#x = R ⇐⇒
⋃
e∈x

fe = R ⇐⇒ ∃e ∈ x . e ∈ F.

For a subset P ⊆ [[τ ]], we expand the definition of P�� and obtain

P�� = {(p, q) ∈ (Tp[[τ ]])2 | ∀F,G ⊆ [[τ ]] . (∀(x, y) ∈ P . x ∈ F =⇒ y ∈ G) =⇒
∀e ∈ p . e ∈ F =⇒ ∃e′ ∈ q . e′ ∈ G}.

This is not intuitive, but interestingly we have the following characterisation of P��:

P�� = {(p, q) | ∀a ∈ p . ∃b ∈ q . (a, b) ∈ P}. (1)

This appears in the pattern of defining pre-bisimulation relation in concurrency.
The rest of this example is the proof of equation 1. (⊆) Let (p, q) ∈ P�� and a ∈ p.

We show ∃b ∈ q . (a, b) ∈ P . We supply {a} and {b | (a, b) ∈ P} to F and G in the
definition of (p, q) ∈ P��. We obtain

(∀(x, y) ∈ P . x = a =⇒ (a, y) ∈ P})
=⇒ (∀e ∈ p . e = a =⇒ ∃e′ ∈ q . (a, e′) ∈ P})

whose premise part is trivially true. By letting e be a in the conclusion part of the
above formula, we obtain ∃e′ ∈ q . (a, e′) ∈ P . (⊇) We take p, q ∈ Tp[[τ ]] such that
∀a ∈ p . ∃b ∈ q . (a, b) ∈ P . Let F,G ⊆ [[τ ]], e ∈ p and assume ∀(x, y) ∈ P . x ∈
F =⇒ y ∈ G (we call this assumption (*)) and e ∈ F . We show ∃e′ ∈ q . e′ ∈ G.
Since e ∈ p, there exists e′ ∈ q such that (e, e′) ∈ P . From (*), we have e ∈ F =⇒
e′ ∈ G. Thus e′ gives a witness of ∃e′ ∈ q . e′ ∈ G.

Logical Predicates for λml Using ��-Lifting

The semantic ��-lifting constructs a subset of [[Tτ ]] from a subset of [[τ ]]. This con-
struction is suitable for extending the concept of logical predicates to λml. We show that
a logical predicate using the semantic ��-lifting extract a submodel of λml. We fix a
result type R and a result predicate S ⊆ TR, and consider the ��-lifting determined
by R and S.



A Semantic Formulation of ��-Lifting and Logical Predicates 93

Definition 3.7. A ��-logical predicate is a type-indexed family {P τ ⊆ [[τ ]]}τ∈Typml

of subsets satisfying

PTτ = (P τ )��, P τ⇒τ ′
= P τ ⇒̇ P τ ′

.

For a typing context Γ = x1 : τ1, · · · , xn : τn, by PΓ we mean the product P τ
1 ×· · ·×

P τ
n , which is a subset of [[Γ ]].

Theorem 3.8 (Basic Lemma). Let P be a ��-logical predicate. For any well-formed
term Γ � M : τ , we have [[M ]] ∈ PΓ ⇒̇ P τ .

Proof. We show the following properties on the ��-lifting. Let X ⊆ I and Y ⊆ J be
subsets.

1. ηI ∈ X ⇒̇ X��. Let x ∈ X . Then for any f ∈ X ⇒̇ S, we have f#(ηI(x)) =
f(x) ∈ S. Therefore ηI(x) ∈ X��.

2. μI ∈ (X��)�� ⇒̇ X��. Let x ∈ (X��)�� and f ∈ X ⇒̇ S. We show
f#(μI(x)) ∈ S. It is easy to show that f ∈ X ⇒̇ S implies f# ∈ X�� ⇒̇ S,
hence (f#)# ∈ (X��)�� ⇒̇ S. Notice that f#(μI(x)) = (f#)#(x). Therefore
f#(μI(x)) ∈ S.

3. θI,J ∈ X × Y �� ⇒̇ (X × Y )��. Let a ∈ X, b ∈ Y �� and f ∈ X × Y ⇒̇ S. We
show f# ◦ θI,J(a, b) ∈ S. We note that the strength θI,J is given by θI,J(a, b) =
T (λb ∈ B . (a, b))(b) as Set is a well-pointed category (see e.g. [18]). Thus f# ◦
θI,J(a, b) = (λb ∈ B . f(a, b))#(b). Since λb ∈ B . f(a, b) ∈ Y ⇒̇ S, for each
b ∈ Y �� we have (λb ∈ B . f(a, b))#(b) ∈ S. Therefore f# ◦ θI,J(a, b) ∈ S

4. f ∈ X ⇒̇ Y implies Tf ∈ X�� ⇒̇ Y ��. Let x ∈ X�� and g ∈ Y ⇒̇ S. We
show g#(Tf(x)) = (g ◦ f)#(x) ∈ S. This holds from g ◦ f ∈ X ⇒̇ S and the
definition of x ∈ X��.

5. From 2 and 4, f ∈ X ⇒̇ Y �� implies f# ∈ X�� ⇒̇ Y ��.

We prove the theorem by induction on derivation of a well-formed term Γ � M : τ .
We omit the cases for the syntax constructions inherited from λ⇒; see e.g. [2]. The
cases new to λml is the following.

– Case Γ � [M ] : Tτ . From IH, we have [[M ]] : PΓ ⇒̇ P τ . From 1, we have
[[[M ]]] = η[[τ ]] ◦ [[M ]] : PΓ ⇒̇ PTτ .

– Case Γ � let xτ be M in N : Tτ ′ with well-formed terms Γ � M : Tτ and Γ, x :
τ � N : Tτ ′. From IH, [[M ]] : PΓ ⇒̇PTτ and [[N ]] : PΓ×P τ ⇒̇PTτ ′

. From 3 and
5, we have [[N ]]#◦θ[[Γ ]],[[τ ]] : PΓ ×PTτ ⇒̇ PTτ ′

. Therefore [[let xτ be M in N ]] =
[[N ]]# ◦ θ[[Γ ]],[[τ ]] ◦ 〈id[[Γ ]], [[M ]]〉 : PΓ ⇒̇ PTτ ′

.
)*

4 A Categorical Generalisation of ��-Lifting

In the proof of theorem 3.8, we notice that the operation (−)�� resembles an endofunc-
tor (claim 4) equipped with morphisms constituting a strong monad (claim 1,2,3). It is
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indeed a strong monad over the category Sub(Set) of subsets and functions respect-
ing subsets (example 4.3). Furthermore, the strong monad (−)�� makes the following
diagram commute:

Sub(Set)
(−)��

��

π

��

Sub(Set)

π

��
Set

T
�� Set

where π : Sub(Set) → Set is the evident forgetful functor. This suggests that we can
understand the semantic ��-lifting as a construction of such a strong monad from T .

We give a categorical generalisation of this construction using fibrations and sym-
metric monoidal closed structures. We replace π with a bifibration p : E → B equipped
with a lifted symmetric monoidal closed structure (definition 4.2). We then capture the
semantic ��-lifting as a construction of a strong monad over E from that over B.

We borrow some notations from 2-category theory. We use • and ∗ for the vertical
and horizontal compositions of natural transformations, respectively. We overload ◦
with the notation for the composition of functors, as well as for the composition of a
functor and a natural transformation.

4.1 Preliminaries

Symmetric Monoidal Close Category. We assume that the reader is familiar with
symmetric monoidal closed categories. We reserve symbols I,⊗,� for unit objects,
tensor products and exponentials. A symmetric monoidal functor is a functor F : C →
D between symmetric monoidal categories C,D together with morphisms mI : ID →
F IC and mX,Y : FX ⊗D FY → F (X ⊗C Y ) satisfying certain coherence laws (see
e.g. [14]).

Example 4.1. 1. The category Set has a symmetric monoidal closed structure given
by a chosen CCC structure.

2. The category ωCPPO of pointed ω-CPOs and strict ω-continuous functions has
a symmetric monoidal closed structure given by Sierpinski space O = {⊥ � �},
smash products and strict ω-continuous function spaces.

3. The functor × : (ωCPPO)2 → Set sending a pair (X,Y ) of pointed ω-CPOs to
the binary product X × Y of carrier sets is a symmetric monoidal functor.

Strong Monad. A strong monad T over a symmetric monoidal category B is a tuple
(T, η, μ, θ) such that (T, η, μ) is an ordinary monad over B and θX,Y : X ⊗ TY →
T (X ⊗ Y ) is a natural transformation called tensorial strength satisfying certain co-
herence laws (see e.g. [10]). A strong monad morphism from T = (T, η, μ, θ) to
T ′ = (T ′, η′, μ′, θ′) is a natural transformation σ : T → T ′ satisfying

μ′ • (σ ∗ σ) = σ • μ, η′ = σ • η, θ′X,Y ◦ (X ⊗ σY ) = σX⊗Y ◦ θX,Y .
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Fibration. We assume that the reader is familiar with preliminaries on fibration. A
good reference is [7].

Definition 4.2. A functor p : E → B is a bifibration with a lifted symmetric monoidal
closed structure if p is a preordered bifibration, E and B are symmetric monoidal closed
categories and p strictly preserves the symmetric monoidal closed structure in E. We
use dot notation İ, ⊗̇ , �̇ to denote the symmetric monoidal closed structure in E
which are sent to the symmetric monoidal closed structure I,⊗,� in B by p.

Example 4.3. We define a category Sub(Set) by the following data: an object is a pair
(X, I) where X is a subset of I , and a morphisms from (X, I) to (Y, J) is a function
in X ⇒̇ Y . The category Sub(Set) has the following CCC structure:

1̇ = ({∗}, {∗})
(X, I) ×̇ (Y, J) = ({(i, j) | i ∈ X ∧ j ∈ Y }, I × J)
(X, I) ⇒̇ (Y, J) = (X ⇒̇ Y, I ⇒ J).

(here the reader should not worry about the confusion caused by a clash of the no-
tation ⇒̇ ). This structure is strictly preserved by the evident forgetful functor π :
Sub(Set) → Set, which is actually a partial-order bifibration. Therefore π is a bifi-
bration with a lifted symmetric monoidal closed structure.

One good property of the class of bifibrations with lifted symmetric monoidal closed
structures is the closure under change-of-base along symmetric monoidal functors.

Proposition 4.4 (e.g. [5]). Let p : E → B be a bifibration with a lifted symmetric
monoidal closed structure and F : C → B be a symmetric monoidal functor. Then the
change-of-base of p along F is again a bifibration with a lifted symmetric monoidal
closed structure.

Example 4.5. We consider the following change-of-base of π along ×:

Rel(ωCPPO)
��

��

π2

��

Sub(Set)

π

��
(ωCPPO)2 ×

�� Set

From proposition 4.4, π2 is again a bifibration with a lifted symmetric monoidal closed
structure. An object in Rel(ωCPPO) is a triple (X, I, J) where I, J are pointed ω-
CPOs and X is an arbitrary subset of I × J , that is, a binary relation between I and J .
A morphism in Rel(ωCPPO) from (X, I, J) to (X ′, I ′, J ′) is a pair (f : I → I ′, g :
J → J ′) of strict ω-continuous functions such that f × g ∈ X ⇒̇X ′. We can similarly
derive the category of n-ary relations between ω-CPOs by change-of-base.

4.2 ��-Lifting as a Construction of Liftings of Strong Monads

We fix a bifibration p : E → B with a lifted symmetric monoidal closed structure.
We define a fibration of lifted strong monads which is suitable for characterising the
��-lifting.
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Definition 4.6. 1. We say that a strong monad Ṫ = (Ṫ , η̇, μ̇, θ̇) over E is a lifting of
a strong monad T = (T, η, μ, θ) over B if the following holds:

p ◦ Ṫ = T ◦ p, p ◦ η̇ = η ◦ p, p ◦ μ̇ = μ ◦ p, p(θ̇X,Y ) = θpX,pY .

2. We write Mon(B) for the category of strong monads over B and strong monad
morphisms between them.

3. We define a category Monl(E) using the following data:
– An object in Monl(E) is a pair of a strong monad Ṫ over E and a strong

monad T over B such that Ṫ is a lifting of T . We sometimes represent an ob-
ject in Monl(E) simply by a strong monad over E when its underlying strong
monad over B is clear from the context.

– A morphism in Monl(E) is a pair of strong monad morphisms α̇ : Ṫ → Ṫ ′

and α : T → T ′ such that p ◦ α̇ = α ◦ p.
4. We write Mon(p) : Monl(E) → Mon(B) for the following forgetful functor:

Mon(p)(Ṫ , T ) = T , Mon(p)(α̇, α) = α.

Theorem 4.7. Mon(p) is a fibration.

Proof. See appendix A.1 )*

We are ready to give a categorical account of the semantic ��-lifting. We capture
the ��-lifting as a construction of a lifting of a strong monad over E from that over B.
For this construction, continuation monads play a crucial role. We observe the following
facts.

– For each object I in B, an endofunctor (− � I) � I over B is a strong monad
(called continuation monad). Particularly, for a strong monad T over B and an
object R in B, we have a continuation monad (− � TR) � TR and a strong
monad morphism

σ : T �� (− � TR) � TR

whose component at an object I in B is given by the following transposition (object
annotations are omitted):

TI ⊗ (I � TR)
s �� (I � TR)⊗ TI

θ �� T ((I � TR)⊗ I)
@#

�� TR

σI = λ(@# ◦ θ ◦ s) : TI �� (I � TR) � TR

where s and @ are a symmetry and an evaluation morphisms in B, respectively.
– Let S be an object in E above TR and consider a continuation monad (− �̇ S)�̇S

over E. It is a lifting of (− � TR) � TR since p strictly preserves the symmetric
monoidal closed structure in E.

The following diagram summarises these facts in Mon(p):

(− �̇ S) �̇ S Monl(E)

Mon(p)

��
T σ

�� (− � TR) � TR Mon(B)
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We now consider a Cartesian lifting of σ.

σ∗((− �̇ S) �̇ S) σ �� (− �̇ S) �̇ S Monl(E)

Mon(p)

��
T σ

�� (− � TR) � TR Mon(B)

We claim that the vertex σ∗((− �̇ S) �̇ S), which is by definition a lifting of T ,
gives the ��-lifting of T . There are two sets of evidence supporting our claim.

– The set-theoretic ��-lifting in section 3 is an instance of this generalised ��-
lifting. We work in the fibration π : Sub(Set) → Set from example 4.3. Subse-
quently, for any strong monad T and subsets X ⊆ I and S ⊆ TR, we have:

σ∗((X ⇒̇ S) ⇒̇ S) = {x ∈ TI | σ∗(x) ∈ ((X ⇒̇ S) ⇒̇ S)}
= {x ∈ TI | ∀f ∈ X ⇒̇ S . σ∗(x)(f) ∈ S}
= {x ∈ TI | ∀f ∈ X ⇒̇ S . f#x ∈ S}
= X��.

– Let D,E be pointed ω-CPOs and R be an arbitrary subset of D×E. In [1], Abadi
considered the following closure operation (−)�� as a semantic abstraction of
Pitts’ syntactic ��-closure operation [21]:

R� = {(f, g) ∈ [D →⊥ O] × [E →⊥ O] | ∀(x, y) ∈ R . fx = gy}
R�� = {(x, y) ∈ D × E | ∀(f, g) ∈ R� . fx = gy}

where [− →⊥ −] denotes strict ω-continuous function spaces.
The above closure operation is an instance of our semantic ��-lifting. We work
in the fibration π2 : Rel(ωCPPO) → (ωCPPO)2 from example 4.5. The ��-
lifting of the identity monad over (ωCPPO)2 with the following data coincides
with Abadi’s ��-closure operation.
• The result type R is (O,O).
• The result predicate S is ({(⊥,⊥), (�,�)}, (O,O)).

We write T �� for σ∗((− �̇ S) �̇ S).

5 Multiple Result Types

We relax the restriction we imposed on the result type in section 3. Let p : E → B be a
bifibration with a lifted symmetric monoidal closed structure and T be a strong monad
over B.

Theorem 5.1. If p has fibred (finite/small) products, then so does Mon(p).

Proof. See appendix A.2. )*
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Let {(Sk, Rk)}k∈K be a set of pairs of objects in E and B such that pSk = TRk for all
k ∈ K . For each k ∈ K , the pair (Sk, Rk) determines a ��-lifting T ��k . They are all
liftings of T , so we consider the following fibred product in Monl(E)T :∧

k∈K
T ��k

which is again a lifting of T .

Example 5.2. We flip the relationS in example 3.6 and obtain the following��-lifting:

P��
′
= {(p, q) | ∀b ∈ q . ∃a ∈ p . (a, b) ∈ P}.

The intersection

P��∧P��′
= {(p, q) | (∀b ∈ q . ∃a ∈ p . (a, b) ∈ P )∧(∀a ∈ p . ∃b ∈ q . (a, b) ∈ P )}

coincides with the pattern of bisimulation.

6 Related Work

This work has been inspired by Lindley and Stark’s paper [12] and Lindley’s thesis
[11]. Lindley and Stark introduce the syntactic ��-lifting for λml and prove the strong
normalisation of λml. In the latter part of [12], they also discuss an extension of the
syntactic ��-lifting to other types such as sum types. However, this extension has not
been covered here.

Operations which are similar to Lindley and Stark’s ��-lifting have previously
appeared in several other studies. Some examples of these studies are: the reducibility
technique for linear logic by Girard [4], Parigot’s work on the second order classical
natural deduction [20], Pitts’ ��-closure operation [21] and Melliès and Vouillon’s
biorthogonality [15]. In addition, Abadi gives a semantic formulation of Pitts’ ��-
closure operation and discusses the relationship between ��-closed relations (those
which satisfy R = R��) and admissibility [1]. The ��-closed relations are applied
to the verification of the correctness of program transformations [8, 19], and to the
characterisation of the observational equivalence for a language with local states [22].

Categorical study of logical predicates established in [13, 17] is generalised by Her-
mida using fibrational category theory [6]. The key observation of his generalisation is
that logical predicates with respect to a fibration p : E → B employ a CCC structure
in E which is strictly preserved by p. This observation leads us to consider liftings of
strong monads and bifibrations with lifted symmetric monoidal closed structures.

In general, there are many liftings of a strong monad. In [3], Larrecq, Lasota and
Nowak propose a construction method of liftings of strong monads using factorisation
systems. Their method appears to be fundamentally different from our semantic ��-
lifting. However, some of their examples of liftings of strong monads over Set can also
be calculated with our method. It will be interesting to establish a formal relationship
between their lifting of strong monads and the semantic ��-lifting developed by us.
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7 Conclusion

We semantically formulated Lindley and Stark’s ��-lifting and showed that it provides
a satisfactory construction method of logical predicates for λml. We also examined
several examples of the semantic ��-lifting of strong monads over Set.

We then categorically re-formulated the ��-lifting as a lifting of a monad along
a bifibration with a symmetric monoidal closed structure using continuation monads.
This generalisation subsumes the set-theoretic ��-lifting in section 3 and Abadi’s ��-
lifting.
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A Proof

A.1 Proof of Theorem 4.7

When p : E → B is a fibration, p ◦ − : [E,E] → [E,B] is also a fibration. Then an
endofunctor F over E is a lifting of an endofunctor G over B if and only if F is above
G ◦ p in the fibration p ◦ −.

Let T , T ′ be strong monads over B, α : T → T ′ be a strong monad morphism
and Ṫ ′ be a strong monad over E which is a lifting of T ′. We construct a monad Ṫ =
(Ṫ , η̇, μ̇, θ̇) together with a strong monad morphism α̇ : Ṫ → Ṫ ′ which is Cartesian
above α.

– We define the endofunctor Ṫ : E → E to be the vertex (α ◦ p)∗Ṫ ′ of the following
Cartesian lifting of α ◦ p in the fibration p ◦ −:

(α ◦ p)∗Ṫ ′
(α◦p)(Ṫ ′) �� Ṫ ′

T ◦ p
α◦p

�� T ′ ◦ p

We define α̇ = (α ◦ p)(Ṫ ′).

– We define the unit η̇ and the multiplication μ̇ by the morphisms obtained from the
universal property of the Cartesian morphism α̇ in the fibration p ◦ −:
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IdE

η̇
��

η̇′

		

Ṫ ◦ Ṫ

μ̇
��

μ̇′ • (α̇∗α̇)


Ṫ α̇

�� Ṫ ′ Ṫ α̇
�� Ṫ ′

p

η◦p
���

��
��

��
�� η′◦p

		

T ◦ T ◦ p

μ◦p
����

��
��

��
� (μ′ • (α∗α))◦p


T ◦ p

α◦p
�� T ′ ◦ p T ◦ p

α◦p
�� T ′ ◦ p

– For objects X,Y in E above objects I, J in B respectively, we define the strength
θ̇X,Y as follows:

X⊗̇Ṫ Y θ̇′
X,Y ◦(X⊗̇α̇Y )

��θ̇X,Y ��
Ṫ (X⊗̇Y )

α̇X⊗̇Y

�� Ṫ ′(X⊗̇Y )

I ⊗ TJ θ′
I,J◦(I⊗αJ )

��θI,J ����
���

���
��

T (I ⊗ J) αI⊗J

�� T ′(I ⊗ J)

We can easily verify that η̇, μ̇, θ̇ satisfy the law of strong monad using the fact that p is
faithful (since p is a preordered fibration). For example, to show μ̇X ◦ Ṫ (η̇X) = idX

for each object X in E, we calculate:

p(μ̇X ◦ Ṫ (η̇X)) = μpX ◦ T (ηpX) = idpX = p(idX).

Since p is faithful, we conclude that μ̇X ◦ Ṫ (η̇X) = idX .
The morphism α̇ is clearly a monad morphism from the construction of η̇, μ̇, θ̇.
To see that α̇ is a Cartesian morphism, we consider a situation in Mon(p) described

in the left diagram:

Ṫ ′′ β̇

��

Ṫ ′′

γ̇


β̇

��
Ṫ α̇

�� Ṫ ′ Ṫ α̇
�� Ṫ ′

T ′′ β

��
γ



�
��

��
��

� T ′′ ◦ p β◦p

��
γ◦p


















T α
�� T ′ T ◦ p

α◦p
�� T ′ ◦ p
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This situation induces the right diagram in p ◦ −. From the universal property of α̇,
we obtain a unique morphism γ̇ : Ṫ ′′ → Ṫ above γ ◦ p satisfying α̇ • γ̇ = β̇. To
verify that γ̇ is a strong monad morphism, we use the universal property of α̇. We show
γ̇ • η̇′′ = η̇ as an example. First, γ̇ • η̇′′ and η̇ are above η ◦ p in the fibration p ◦ −.
Next, we have

α̇ • γ̇ • η̇′′ = β̇ • η̇′′ = η̇′ = α̇ • η̇

From the universal property of α̇, we have γ̇ • η̇′′ = η̇. We can similarly verify the
other equations of the law of strong monad morphism. )*

A.2 Proof of Theorem 5.1

(Sketch) Let T = (T, η, μ, θ) be a strong monad over B, K be a (finite) set and suppose
that we have a lifting Ṫk = (Ṫk, η̇k, μ̇k, θ̇k) of T for each k ∈ K .

The fibred product ˆ̇T = ( ˆ̇T, ˆ̇η, ˆ̇μ, ˆ̇θ) of Ṫk is given as follows.

– The functor part is defined by ˆ̇TX =
∧

k∈K ṪkX . We write πk
X : ˆ̇TX → ṪkX for

the k-th projection.
– We observe that for objects X,Y in E and a morphism f : pX → pY in B, we

have the following natural isomorphism:

Ef (X, ˆ̇TY ) ∼= EpX(X, f∗( ˆ̇TY )) ∼= EpX

(
X,

∧
k∈K

f∗Ṫk

)
∼=
∏
k∈K

Ef (X, ṪkY ).

We write φ for the right-to-left part of the above isomorphism. The unit, multipli-
cation and strength is then defined by:

ˆ̇ηX = φ〈(η̇k)X〉k∈K
ˆ̇μX = φ〈(μ̇k)X ◦ Ṫk(πk

X) ◦ πk
X〉k∈K

ˆ̇
θX,Y = φ〈(θ̇k)X,Y ◦ (X ⊗̇ πk

Y )〉k∈K

The reader can verify that ˆ̇T is indeed a strong monad, and is a fibred product of
{Ṫk}k∈K .
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Abstract. We are interested in the question whether the models in-
duced by the infinitary lambda calculus are orderable, that is whether
they have a partial order with a least element making the context opera-
tors monotone. The first natural candidate is the prefix relation: a prefix
of a term is obtained by replacing some subterms by ⊥. We prove that six
models induced by the infinitary lambda calculus (which includes Böhm
and Lévy-Longo trees) are orderable by the prefix relation. The following
two orders we consider are the compositions of the prefix relation with
either transfinite η-reduction or transfinite η-expansion. We prove that
these orders make the context operators of the η-Böhm trees and the∞η-
Böhm trees monotone. The model of Berarducci trees is not monotone
with respect to the prefix relation. However, somewhat unexpectedly, we
found that the Berarducci trees are orderable by a new order related to
the prefix relation in which subterms are not replaced by ⊥ but by a
lambda term O called the ogre which devours all its inputs. The proof of
this uses simulation and coinduction. Finally, we show that there are 2c

unorderable models induced by the infinitary lambda calculus where c is
the cardinality of the continuum.

1 Introduction

In this paper we give order structure to some models induced by the infinitary
lambda calculi. Our starting point are lambda calculi that extend finite lambda
calculus with infinite terms and transfinite reduction. The β and η reduction
rules apply to infinite terms in much the same way as they apply to finite terms.
However, characteristic for these calculi is that they contain a ⊥-rule that maps a
certain set U of meaningless terms to ⊥. Without such an addition the extension
of finite lambda calculus with infinite terms and reductions immediately would
result in loss of confluence [8]. All infinite calculi that we consider have the same
set of finite and infinite terms Λ∞⊥ . The variation comes from the choice of the
set U and the strength of extensionality.

Figure 1 summarises the infinitary lambda calculi studied so far [3, 7–9,
13, 15]. An interesting aspect of infinitary lambda calculus is the possibility of
capturing the notion of tree (such as Böhm and Lévy-Longo trees) as a normal
form. These trees were originally defined for finite lambda terms only, but in the
infinitary lambda calculus we can also consider normal forms of infinite terms.
The three infinitary lambda calculi mentioned in the first three rows of Figure 1
capture the well-known cases of Böhm, Lévy-Longo and Berarducci trees [3, 8, 9].
In the fourth row, there is an uncountable class of infinitary lambda calculi with

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 103–118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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REDUCTION RULES NORMAL FORMS NF

Beta and ⊥ for terms without tnf Berarducci trees BerT = PT N

Beta and ⊥ for terms without whnf Lévy-Longo trees LLT = PWN

Beta and ⊥ for terms without hnf Böhm trees BT = PHN

Beta, ⊥ parametric on U Parametric trees PU

Beta, ⊥ for terms w.o. hnf and Eta η-Böhm trees ηBT
Beta, ⊥ for terms w.o. hnf and EtaBang ∞η-Böhm trees ∞ηBT

Fig. 1. Infinitary Lambda Calculi

a ⊥-rule parametrised by a set U of meaningless terms [7, 10]. By changing the
parameter set U of the ⊥-rule, we obtain different infinitary lambda calculi. If
U is the set of terms without head normal form, we capture the notion of Böhm
tree. If U is the set of terms without weak head normal form we obtain the Lévy-
Longo trees. And if U is the set of terms without top head normal form to ⊥, we
recover the Berarducci trees. The infinitary lambda calculus sketched in the one
but last row incorporates the η-rule [13]. This calculus captures the notion of
η-Böhm tree. The last row in Figure 1 mentions the infinitary lambda calculus
incorporating the η!-rule, a strengthened form of the η-rule [15]. The normal
forms in this calculus capture the notion of ∞η-Böhm trees. In this paper we
give some new examples of parametric trees.

When the infinite extensions are confluent and normalising (normal forms
can now be infinite too!) they induce a function NF : Λ∞⊥ → Λ∞⊥ mapping a
term to its unique normal form. The normal form functions NF induce λ-models
(models of the finite lambda calculus): just interpret a term M by its normal
form NF(M) and application M ·N of two terms M and N by NF(MN).

Figure 2 summarizes the results proved in this paper. The first order we
consider is the prefix relation ,. This is a natural order on terms. If terms
are represented as trees, prefixes of a tree are obtained by pruning some of its
subtrees and replacing them by ⊥. Whereas application in the model of Böhm
trees is well-known to be continuous with respect to the Scott topology induced
by the prefix relation, it is perhaps less well-known that in case of the model of
Berarducci trees, the normal form function BerT : Λ∞⊥ → Λ∞⊥ and the application
operator are not even monotone [6] and it is not clear how to define a domain-
theoretic model whose local structure is represented by Berarducci trees, though
some attempts have been made via types and filter models [4]. We prove that
PU : Λ∞⊥ → Λ∞⊥ preserves , provided U is quasi-regular and ⊥P is equal to
⊥. This generalizes the proof of monotonicity of BT and LLT given in [14]. We,
then, conclude that the prefix relation makes the context operators of six models
monotone including the models of Böhm and Lévy-Longo trees.

We also define two orders for the extensional models and prove that they
make the context operators monotone. The partial order ,η on the set of η-
Böhm trees is the composition of the prefix relation with transfinite η-reduction
and it corresponds to the order on D∗

∞ [5]. The partial order ,η! on the set
of ∞η-Böhm trees is the composition of the prefix relation with transfinite η!-
reduction and it corresponds to the order on Scott’s model D∞.
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The next step is to find an order for Berarducci trees. We prove that the
least element of an arbitrary orderable model induced by NF should be either ⊥
or a term O called the ogre which eats all its inputs. In case the least element
is ⊥ then ⊥P should reduce to ⊥ for all P ∈ Λ∞⊥ . Hence, ⊥ cannot be the least
element of an order on Berarducci trees and the only possible candidate is O.
The term O is the solution to the recursive equation O = λx.O and it can be
obtained by applying any fixed point operator to the combinator K = λxy.x. In
the lambda model induced by Böhm trees, the ogre is interpreted as bottom.
But there are many other lambda models such as the ones induced by Lévy-
Longo and Berarducci trees that give a different interpretation to ogre. In these
models, O is identified with the infinite sequence of abstractions λx1.λx2.λx3 . . ..
We consider an order called � on terms related to the prefix relation in which
subterms are not replaced by ⊥ but by the term O. We prove that the parametric
trees PU : Λ∞⊥ → Λ∞⊥ preserve � provided U is quasi-regular and O ∈ PU(Λ∞⊥ )
using simulations and coinduction. We, then, conclude that � makes the context
operators monotone of five models including the model of Berarducci trees. We
can see in Figure 2 that the relations , and � make the context operators of
some models simultaneously monotone.

Finally, we show that there are 2c unorderable models induced by the infini-
tary lambda calculus where c is the cardinality of the continuum. In [12] Salibra
proves that there is a continuum of unorderable λ-models by considering the
equation ΩMM = Ω. This idea does not work for infinitary lambda calculus
because this equation interpreted as a reduction rule is not left linear and adding
it to the infinitary lambda calculus of Berarducci trees would destroy confluence,
as can be seen with help of a variant of Klop’s counterexample in [11]. In our
case, the trick consists in equating ⊥P sometimes to ⊥ and sometimes not. We
consider the set B0 of closed Böhm trees without ⊥ which has cardinality c and
construct infinitary lambda calculi whose normal form functions UX are indexed
on X ⊆ B0 by stating that ⊥P reduces to ⊥ if P ∈ X .

2 Infinite Lambda Calculi

We will now briefly recall some notions and facts of infinite lambda calculus
from our earlier work [7–9, 13, 15]. We assume familiarity with basic notions
and notations from [1]. Let Λ be the set of λ-terms and Λ⊥ be the set of finite
λ-terms with ⊥ given by the inductive grammar:

M ::= ⊥ | x | (λxM) | (MM)

where x is a variable from some fixed set of variables V . We follow the usual
conventions on syntax. Terms and variables will respectively be written with
(super- and subscripted) letters M,N and x, y, z. Terms of the form (M1M2)
and (λxM) will respectively be called applications and abstractions. A context
C[ ] is a term with a hole in it, and C[M ] denotes the result of filling the hole
by the term M , possibly by capturing some free variables of M . If σ : V → Λ∞

then Mσ is the simultaneous substitution of the variables in M by σ.
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Normal forms Prefix Ogre order Prefix up to η Prefix up to η! Orderable
NF � � �η �η! models

∞ηBT − − − + +
ηBT − − + − +
BT = PHN + − − − +
PHN−O + + − − +
PHA∪O + − − − +
PHA + + − − +
LLT = PWN + + − − +
PSA + + − − +
UX − − − − −
BerT = PT N − + − − +

Fig. 2. Orderability of the models induced by NF

The set Λ∞⊥ of finite and infinite λ-terms is defined by coinduction using the
same grammar as for Λ⊥. This set contains the three sets of Böhm, Lévy-Longo
and Berarducci trees. In [7, 9, 10], an alternative definition of the set Λ∞⊥ is
given using a metric. The coinductive and metric definitions are equivalent [2].
In this paper we consider only one set of λ-terms, namely Λ∞⊥ , in contrast to
the formulations in [9, 10] where several sets (which are all subsets of Λ∞⊥ )
are considered. The paper [7] shows that the infinitary lambda calculi can be
formulated using a common set Λ∞⊥ , confluence and normalisation still hold since
the extra terms added by the superset Λ∞⊥ are meaningless and equated to ⊥.

We define several rules used to define different infinite lambda calculi. The β,
η and η−1-rules are extensions of the rules for finite lambda calculus to infinite
terms. The η!-rule does not appear in the finite lambda calculus. The ⊥-rule is
parametric on a set U ⊂ Λ∞ of meaningless terms [7, 10] where Λ∞ is the set of
terms in Λ∞⊥ that do not contain ⊥ (see Section 4).

Definition 1. We define the following rewrite rules on Λ∞⊥ :

(λx.M)N → M [x := N ] (β)
M [⊥ := Ω] ∈ U M �= ⊥

(⊥)
M → ⊥

x �∈ FV (M)
(η)

λx.Mx → M

x �∈ FV (M)
(η−1)

M → λx.Mx

x →→→η−1 N x �∈ FV (M)
(η!)

λx.MN → M

In this paper we need various rewrite relations constructed from these rules
on the set Λ∞⊥ . These are defined in the standard way, eg. →β⊥η! is the smallest
binary relation containing the β, ⊥ and η!-rules which is closed under contexts.
Reduction sequences can be of any transfinite ordinal length α: M0 → M1 →
M2 → . . .Mω → Mω+1 → . . .Mω+ω → Mω+ω+1 → . . .Mα. This makes sense if
the limit terms Mω,Mω+ω, . . . in such sequence are all equal to the corresponding
Cauchy limits, limβ→λ Mβ , in the underlying metric space for any limit ordinal
λ ≤ α. If this is the case, the reduction is called Cauchy converging. We need
the stronger concept of a strongly converging reduction that in addition satisfies
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that the depth of the contracted redexes goes to infinity at each limit term:
limβ→λ dβ = ∞ for each limit ordinal λ ≤ α, where dβ is the depth in Mβ of
the contracted redex in Mβ → Mβ+1. Any finite reduction is, then, strongly
converging. We use the following notation:

1. M → N denotes a one step reduction from M to N ;
2. M →→ N denotes a finite reduction from M to N ;
3. M →→→ N denotes a strongly converging reduction from M to N .

Variations on the reduction rules give rise to different calculi (see Figure 1).
The resulting infinite lambda calculus (Λ∞⊥ ,→ρ) we will denote by λ∞ρ for any
ρ ∈ {β⊥, β⊥η, β⊥η!}. Since the ⊥-rule is parametric, each set U of meaningless
terms gives a different infinitary lambda calculus λ∞β⊥.

Definition 2. 1. We say that a term M in λ∞ρ is in ρ-normal form if there is
no N in λ∞ρ such that M →ρ N .

2. We say that λ∞ρ is confluent (Church-Rosser) if (Λ∞⊥ ,→→→ρ) satisfies the dia-
mond property, i.e. ρ←←← ◦ →→→ρ ⊆ →→→ρ ◦ ρ←←←.

3. We say that λ∞ρ is normalising if for all M ∈ Λ∞⊥ there exists an N in
ρ-normal form such that M →→→ρ N .

Theorem 3. [7, 9, 10] Let U be a set of meaningless terms. The calculi λ∞β⊥
with a parametric ⊥-rule on the set U are confluent, normalising and satisfy
postponement of ⊥ over β.

In [7] confluence of the parametric calculi is proved for Cauchy converging
reduction as well as for strongly converging reduction.

Theorem 4. [13, 15] The infinite lambda calculi of ∞η-Böhm and η-Böhm
trees are confluent and normalising.

Assumption. In the rest of the paper whenever we refer to NF : Λ∞⊥ → Λ∞⊥ , we
are assuming that the infinitary lambda calculus in question is confluent and
normalising and that NF is the function that maps a term to its unique normal
form. We denote by M =NF N if NF(M) = NF(N).

3 Basic Forms

In this section we introduce new forms of terms analogous to the notions of head,
weak head and top normal forms and define certain specific subsets of Λ∞ (terms
of Λ∞⊥ without ⊥) containing the respective forms.

Definition 5. Let M ∈ Λ∞⊥ . We define that

1. M is a head normal form (hnf) if M = λx1 . . . xn.yP1 . . . Pk.
2. M is a weak head normal form (whnf) if M is a hnf or M = λx.N .
3. A term M is a top normal form (tnf) if it is either a whnf or an application

(NP ) if there is no Q such that N →→β λx.Q.
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4. M is a rootactive form (with respect to β) if for all M →→→β N there exists a
redex (λx.P )Q such that N →→→β (λx.P )Q.

5. M is a head bottom form (hbf) if M = λx1 . . . xn.⊥P1 . . . Pk.
6. M is a head active form (haf) if M = λx1 . . . xn.RP1 . . . Pk and R is rootac-

tive.
7. M is a strong active form (saf) if M = RP1 . . . Pk and R is rootactive.
8. M is a strong active form relative to X (X-saf) if M = RP1 . . . Pk and R is

rootactive and P1, . . . , Pk ∈ X .
9. M is an infinite left spine form (ilsf) if M = λx1 . . . xn.((. . . P2)P1.

10. M is a strong infinite left spine form (silsf) if M = ((. . . P2)P1.
11. M is a basic form if it is either a head normal form, a head bottom form, a

head active form, an infinite left spine or the ogre.

We now define some subsets of Λ∞ for the previous defined forms.

Definition 6. We define the following subsets of Λ∞:

HN = {M ∈ Λ∞ | M →→β N and N in head normal form}
WN = {M ∈ Λ∞ | M →→β N and N in weak head normal form}
T N = {M ∈ Λ∞ | M →→β N and N in top normal form}

By HN , WN and T N we denote their respective complements.

Definition 7. 1. The basic sets are the following subsets of Λ∞:

HA = {M ∈ Λ∞ | M →→β N and N is head active}
IL = {M ∈ Λ∞ | M →→→β N and N is an infinite left spine form}
O = {M ∈ Λ∞ | M →→→β O}

2. The strongly basic sets are the following subsets of Λ∞:

R = {M ∈ Λ∞ | M is rootactive} = T N
SA = {M ∈ Λ∞ | M →→β N and N is strong active }
SIL = {M ∈ Λ∞ | M →→→β N and N is a strong infinite left spine form }

3. Finally we define a family of subsets of Λ∞ depending on some X ⊆ Λ∞:

SAX = {M ∈ Λ∞ | M →→→β N and N is a strong active form relative to X}

Note that R[⊥ := Ω] ∈ R iff R is ⊥ or R is rootactive with respect to β.

Definition 8. The skeleton of a term M ∈ Λ∞⊥ is defined by coinduction:

skel(M) = y if M →→β y
skel(M) = ⊥ if M →→β ⊥
skel(M) = λx.skel(N) if M →→β λx.N
skel(M) = skel(N) skel(P ) if M →→β NP and N �→→β λx.Q for any Q
skel(M) = M if M does not have a top normal form

The skeleton of a term is essentially the Berarducci tree of a term but instead
of replacing rootactive terms by ⊥, we leave rootactive terms untouched.

Lemma 9. Let M ∈ Λ∞⊥ . Then M →→→β skel(M) and skel(M) is a basic form.



Order Structures on Böhm-Like Models 109

4 Axioms of Meaningless Terms

In this section we recall the axioms of meaningless terms [7, 10] and give new
examples of parametric infinite lambda calculi. Let U ⊆ Λ∞ be an arbitrary set.
The axioms of meaningless terms on the set U are:

1. Closure under β-reduction. If M ∈ U and M →→→β N then N ∈ U .
2. Overlap. If λx.M ∈ U then (λx.M)N ∈ U .
3. Closure under substitution. If M ∈ U then Mσ ∈ U .
4. Rootactiveness. R ⊆ U .
5. Indiscernibility. Let M U↔ N denote that if N is obtained from M by replacing

some (possibly infinitely many) subterms in U by other terms in U . Then,
M ∈ U iff N ∈ U .

Definition 10. A set U ⊆ Λ∞ of meaningless terms is a set that satisfies the
five axioms of meaningless terms.

Hence, the parametric infinitary lambda calculi are the calculi λ∞β⊥ with a
parametric ⊥-rule on a set U satisfying the axioms of meaningless terms given
above. The normal form of these calculi is denoted by PU . If U = Λ∞ then
M =PU ⊥ for all M ∈ Λ∞⊥ and PU induces the trivial theory. Since indiscernibility
is not easy to prove, we will reduce it to some property which is easier to prove.
For this, we need the following properties on a set U ⊆ Λ∞:

1. Closure under β-expansion. If N ∈ U and M →→→β N then M ∈ U .
2. Indiscernibility on skeletons. Let P be a skeleton such that P ,U M and

P ,U N . Then, M ∈ U iff N ∈ U .

Definition 11. A set U of strongly meaningless terms is a set that satisfies:
closure under β-reduction, overlap, closure under substitution, rootactiveness,
closure under β-expansion and indiscernibility on skeletons.

Theorem 12. [7, 10] HN , WN and T N = R are sets of meaningless terms.

Definition 13. Let U ⊆ Λ∞, M,N ∈ Λ∞⊥ . Then, M ,U N if M is obtained
from N by replacing some subterms of N which belong to U by ⊥.

Lemma 14. Let U be closed under substitution. If M ,U N and M →→→β M ′

then N →→→β N ′ and M ′ ,U N ′ for some N ′.

Proof. This is proved by induction on the length of the reduction sequence. )*

The following lemma may not hold for terms that are not rootactive. For
instance, take (λx.Ω) ∈ U , M = ⊥P and N = (λx.Ω)P . Then M ,U N and
N →β N ′ = Ω but there is no M ′ such that M →→β M ′ ,U N ′.

Lemma 15. Let U be closed under substitution and M rootactive. If M ,U N
and N →→β N ′ then there exists M ′ such that M →→β M ′ and M ′ ,U N ′.
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Proof. We do only one step of β-reduction. Since M is rootactive, we then have
that M = (λx.M0)M1 . . .Mk. But then N = (λx.N0)N1 . . .Nk and Mi ,U Ni.
We contract the β-redex in the head position in N and in M . Since U is closed
under substitution, M0[x := M1]M2 . . .Mk ,U N0[x := N1]N2 . . . Nk. )*

Lemma 16. Let U be closed under substitution. If M ,U N and M rootactive
then N is rootactive.

Proof. Suppose now that N is not rootactive, then there exists a top normal form
N ′ such that N →→β N ′ by contracting only head redexes. Then, by Lemma 15
there exists M ′ such that M →→β M ′ and M ′ ,U N ′. If N ′ is a top normal form
then so is M ′. )*

Theorem 17. If U ⊂ Λ∞ is a set of strongly meaningless terms then it is also
a set of meaningless terms.

Proof. Both definitions have the first four axioms in common. We prove indis-
cernibility. Let M

U↔ N . Then there exists P such that P ,U M and P ,U N .
By Lemma 9 and Lemma 14, we have that skel(P ) ,U M ′ and skel(P ) ,U N ′ for
some M ′, N ′ such that M →→→β M ′ and N →→→β N ′. By indiscernibility on skele-
tons M ′ ∈ U iff N ′ ∈ U . Since U is closed under β-reduction and β-expansion,
we have that M ∈ U iff N ∈ U . )*

Theorem 18. The following sets are sets of strongly meaningless terms:

1. HA, SA, HA∪ IL and HA∪O
2. SAX if X is a subset of closed terms in BerT(Λ∞⊥ ) without ⊥.

Proof. The first five axioms are not difficult to prove. We prove indiscernibility
on skeletons for SAX . Suppose P is a skeleton and P ,SAX M,N .

1. If P is either a head normal form, the ogre or an infinite left spine so are M
and N . Hence, M,N �∈ SAX .

2. If P = λx1 . . . xn.RP1 . . . Pk is a head active form. By Lemma 16, M and
N are also head active forms. Then M = λx1 . . . xn.R

′M1 . . .Mk, N =
λx1 . . . xn.R

′′N1 . . .Nk. and Pi ,SAX
Mi, Ni for 1 ≤ i ≤ k. If M ∈ SAX

then n = 0 and Mi = BerT(Mi) ∈ X ⊆ Λ∞. Since Mi = BerT(Mi), we have
that Mi does not contain subterms in SAX and hence Pi = Mi. Then, Pi

does not contain ⊥ and also Pi = Ni. Clearly, Ni ∈ X and N ∈ SAX .
3. Suppose P = λx1 . . . xn.⊥P1 . . . Pk is a head bottom form. The bottom in

the head of P has to be replaced by some term in SAX to get M and N .
Then, we proceed as in the previous part to prove that Pi = Mi = Ni ∈ X .

)*

5 Regular and Quasi-regular Sets

In this section we define and give examples of regular and quasi-regular sets of
meaningless terms. Figure 3 summarizes and shows all these sets. ordered by
inclusion. We use the notation U → U if U ⊃ U ′.
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Fig. 3. Sets of meaningless terms ordered by inclusion

Definition 19. Let U ⊆ Λ∞ be a set of meaningless terms.

1. U is regular if for all basic sets X , if X ∩ U �= ∅ then X ⊆ U .
2. U is quasi-regular if for all strongly basic sets X , if X ∩ U �= ∅ then X ⊆ U .

If a set is regular then it is quasi-regular. The sets SAX are neither regular
nor quasi-regular provided X �= ∅ and X �= Λ∞.

Theorem 20. Let U be a set of meaningless terms.

1. If λx.M ∈ U then M ∈ U .
2. If λx.M ∈ U then HA ⊆ U . In particular, if O ∈ U then HA ⊂ U .
3. If SIL ⊆ U then SA ⊆ U .
4. If IL ⊆ U then HA ⊆ U .
5. If a head normal form is in U then U = Λ∞.

Proof. We only prove the first three parts. The rest are similar.

1. By the overlap and closure under β-reduction axioms, (λx.M)x →β M ∈ U .
2. By the overlap axiom, (λx.M)Q ∈ U for all Q ∈ Λ∞. By indiscernibil-

ity we have that RQ ∈ U for R ∈ R and also RQ1 . . .Qk ∈ U for all
Qi ∈ Λ∞. By the previous part and indiscernibility, λx.R ∈ U and hence
λx1 . . . xn.RQ1 . . . Qk ∈ U .

3. Let (ωQ) = ((. . .)Q)Q). We have that (ωQ) = (ωQ)Q ∈ U By indiscernibility,
RQ ∈ U for any R ∈ R and also RQ1 . . . Qk ∈ U for all Qi ∈ Λ∞. )*

Corollary 21. The regular sets are: HA ∪ IL ∪ O = HN , HA ∪ IL = HN −
O, HA ∪ O and HA. The quasi-regular sets are the regular ones and the sets
SA ∪ SIL = WN , SA and R = T N .
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6 Explicit Definition of the Normal Forms

Figure 4 shows the difference between the normal forms of the different para-
metric infinitary lambda calculi considered in this paper.

In the figure we make the abbreviations: λx.M = λx1 . . . xn.M and MP =
MP1 . . . Pk. For simplicity we assume that Pi ∈ PU(Λ∞⊥ ) for all i. The case of
head bottom forms is not shown in the table but it is as the case of head active
forms where ⊥ plays the role of the rootactive term R. The cases U = HN ,WN
and T N correspond to the cases of Böhm, Lévy-Longo and Berarducci trees
respectively.

Set U Head normal form Ogre Head active form Inf left spine form
PU (λx.yP ) PU (O) PU (λx.RP ) PU (λx.((. . . P2)P1))

HN λx.yP ⊥ ⊥ ⊥

HN −O λx.yP O ⊥ ⊥

HA ∪O λx.yP ⊥ ⊥ λx.((. . . P2)P1)

HA λx.yP O ⊥ λx.((. . . P2)P1)

WN λx.yP O λx.⊥ λx.⊥

SA λx.yP O λx.⊥ λx.((. . . P2)P1)

SAX λx.yP O

{
λx.⊥ if P ∈ X

λx.⊥P otherwise
λx.((. . . P2)P1)

T N λx.yP O λx.⊥P λx.((. . . P2)P1)

Fig. 4. Definition of PU (M) when M is a skeleton

7 Models Induced by NF

There are many ways of making models of lambda calculus, i.e. λ-models. In
this paper we will emphasise yet another method where the lambda calculus
itself does the job. The idea is simple: any confluent and normalising extension
of lambda calculus gives rise to a model: namely the set of normal forms. Taking
the normal form of the application of two normal forms then is the application
for this semantics.

Definition 22. The model induced by NF, denoted by M(NF), is the applica-
tive structure (NF(Λ∞⊥ ), . , [[ ]]) defined as follows:

1. M.N = NF(MN) for all M,N ∈ NF(Λ∞⊥ ),
2. [[M ]]σ = NF(Mσ) for all M ∈ Λ.
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It is easy to prove that M(NF) is a λ-model using confluence and normaliza-
tion (see Definition 5.2.7, Definition 5.3.1 and Theorem 5.3.6 in [1]).

Definition 23. A partial order � on a set A is a relation on A that reflexive,
transitive and antisymmetric. If the partial order � on A has a least element we
say that � is a pointed poset on A.

We consider partial orders on the set Λ∞⊥ or NF(Λ∞⊥ ). If M is the least element
of a pointed poset � on NF(Λ∞⊥ ) then, obviously, M is in normal form. Domain
Theory usually follows the convention of denoting the least element by ⊥. In
our case, ⊥ is a special constant in the syntax which equates the undefined or
meaningless terms but we will see that it is not necessarily the least element. In
some cases, the least element could be the ogre O (if O ∈ NF(Λ∞⊥ )).

Definition 24. Let C[ ] be a context in Λ∞⊥ . The context operator C[ ] restricted
to NF is the function λλM∈NF(Λ∞⊥ ).NF(C[M ]) : NF(Λ∞⊥ ) → NF(Λ∞⊥ ).

For the models induced by NF, it makes sense to define a notion of mono-
tonicity that considers all context operators and not only the application.

Definition 25. The partial order � makes the context operators of M(NF)
monotone if the following hold:

1. (NF(Λ∞⊥ ),�) is a pointed poset and
2. the context operators C[ ] restricted to NF are monotone in (NF(Λ∞⊥ ),�) for

all context C[ ] ∈ Λ∞⊥ .

Definition 26. We say that M(NF) is orderable (by �) if there exists a partial
order � on NF(Λ∞⊥ ) that makes the context operators monotone. We say that
M(NF) is unorderable if it is not orderable.

8 The Prefix Relation

Definition 27. Let M,N ∈ Λ∞⊥ . We say that M is a prefix of N (we write
M , N) if M is obtained from N by replacing some subterms of N by ⊥.

The prefix relation , is a pointed poset on NF(Λ∞⊥ ) with ⊥ as least element.

Lemma 28. If M , N then there exists N ′ such that PU(M) , N ′ and N →→→β

N ′.

Proof. Using Lemma 9 and by taking U = Λ∞ in Lemma 14, we have that
skel(M) , N ′ for some N ′ such that N →→→β N ′. Hence PU(M) , skel(M) , N ′.

)*

The following theorem is a generalization of the proof of monotonicity of BT
and LLT given in [14]. It is possible to give an alternative proof of this theorem
using a simulation similar to Theorem 42.
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Theorem 29. Let U be quasi-regular and SA ⊆ U . Then, PU : Λ∞⊥ → Λ∞⊥ is
monotone in (Λ∞⊥ ,,).

Proof. Let M,N ∈ Λ∞⊥ such that M , N . We prove that P = PU (M) , PU (N).
By Lemma 28 we have that P , Q and N →→→β Q for some Q. It is enough to
prove that Pn , PU(Q) (where Pn denotes the truncation of P at depth n).
Then, P =

⋃
n∈ω Pn , PU (Q). We prove Pn , PU (Q) fo all n by induction.

1. P = λx1 . . . xn.yP1 . . . Pm. Then Q = λx1 . . . xn.yQ1 . . .Qm and for all i,
Pi , Qi. Hence, PU (Q) = λx1 . . . xn.yPU(Q1) . . .PU (Qm). By induction hy-
pothesis, (Pi)h , PU (Qi) for all h < n. It is easy to see that Pn , PU (Q).

2. P = O. Then P = Q = O.
3. P = λx1 . . . xn.⊥P1 . . . Pm. Then, Q = λx1 . . . xn.Q0. Since SA ⊆ U , we

have that m = 0. If n > 0 then by Theorem 20 no abstraction belongs to U
and hence PU (Q) = λx1 . . . xn.PU (Q0).

4. P = λx1 . . . xn.((. . .)P2)P1. Then, Q = λx1 . . . xn.((. . .)Q2)Q1. Suppose
towards a contradiction that Q ∈ U . Then ((. . .)Q2)Q1 ∈ U by Theo-
rem 20. Since U is quasi-regular, all infinite left spine should belong to U
and contradicts the fact that P is an infinite left spine in β⊥-normal form.
Hence, PU (Q) = λx1 . . . xn.((. . .)PU (Q2))PU (Q1). By induction hypothesis,
(PU (Pi))h , PU (Qi) for all h < n. It is easy to see that (P )n , PU(Q). )*

The next corollary is deduced from Corollary 21 and the previous theorem.

Corollary 30. The functions NF ∈ {BT,PHN−O,PHA∪O,PHA, LLT,PSA} are
monotone in (Λ∞⊥ ,,).

Theorem 31. If NF : Λ∞⊥ → Λ∞⊥ is monotone in (Λ∞⊥ ,,) then the prefix relation
, makes the context operators of M(NF) monotone.

Proof. If M , N then C[M ] , C[N ]. Since PU is monotone, we have that
PU (C[M ]) , PU (C[N ]). )*

Corollary 32. The prefix relation , makes the context operators of M(NF)
monotone for NF ∈ {BT,PHN−O,PHA∪O,PHA, LLT,PSA}.

Corollary 33. The models induced by BT,PHN−O,PHA∪O,PHA, LLT and PSA
are all orderable.

We show some examples in which the prefix relation does not make all the
context operators monotone:

1. The prefix relation , does not make the application monotone of M(BerT),
though it makes the abstraction monotone. Take M = ⊥, N = λx.⊥ and
P = y. Then M , N but M · P �, N · P .

2. The prefix relation , does not make either the abstraction or the application
of M(ηBT) and M(∞ηBT) monotone.
(a) Take M = y⊥ and N = yx. Then M , N but λx.M �, λx.N .
(b) Take M = λxy.z(x⊥y)y, N = λxy.z(xyy)y and P = (λxy.x). Then

M , N but M · P �, N · P .
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9 Orders for Extensionality

We define two partial orders for which the context operators of the extensional
models will be monotone.

Definition 34. 1. Let M,N ∈ ηBT(Λ∞⊥ ). Then, M ,η N if M η ←←← P ,
Q →→→η N for some P,Q ∈ BT(Λ∞⊥ ).

2. Let M,N ∈ ∞ηBT(Λ∞⊥ ). Then, M ,η! N if M η!←←← P , Q →→→η! N for some
P,Q ∈ BT(Λ∞⊥ ).

Lemma 35. [13, 15] Let M,N ∈ Λ∞⊥ . If M →→→η N , then BT(M) →→→η BT(N).
And if M →→→η! N , then BT(M) →→→η! BT(N).

Theorem 36. 1. ,η makes the context operators of M(ηBT) monotone.
2. ,η! makes the context operators of M(∞ηBT) monotone.

Proof. We only prove (1). The proof of (2) is similar. Suppose that M ,η N .
Then BT(M) →→→η P , Q η←←← BT(N). By Lemma 35 and monotonicity of BT
(Corollary 30), BT(C[M ]) →→→η BT(C[P ]) , BT(C[Q]) η←←← BT(C[N ]). )*

Corollary 37. The models induced by ηBT and ∞ηBT are orderable.

10 Ogre as Least Element

In order to make the application of Berarducci trees monotone, the ogre should
be the least element and not ⊥. This is a consequence of the following theorem:

Theorem 38. If � makes the application of M(NF) monotone then we have
that:

1. either ⊥ is the least element of � and ⊥P →⊥ ⊥ for all P ∈ Λ∞⊥ or
2. O is the least element of �.

Proof. Suppose that M ∈ NF(Λ∞⊥ ) is the least element. Then M � λx.M and we
choose x �∈ fv(M). If application is monotone then M · P � (λx.M) · P =NF M
and hence MP =NF M for all P for all P ∈ NF(Λ∞⊥ ). Now either M = ⊥ in
which case ⊥P →⊥ ⊥ for all P ∈ Λ∞⊥ . Or M �= ⊥ and then Mx = M for all x.
Hence M is the solution of the recursive equation M = λx.M and so M = O. )*

We define a partial order making the model of Berarducci trees monotone:

Definition 39. Let O ∈ NF(Λ∞⊥ ). We define � on NF(Λ∞⊥ ) as follows: M � N
if M is obtained from N by replacing some subterms of N by O.

It is easy to see that � is partial order and that O is the least element.

Definition 40. An ogre simulation is a relation S on Λ∞⊥ such that MSN im-
plies:
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1. If M = λx1 . . . xn.y then N = λx1 . . . xn.y.
2. If M = λx1 . . . xn.⊥ then N = λx1 . . . xn.⊥.
3. If M = λx1 . . . xn.PQ then N = λx1 . . . xn.P

′Q′, PSP ′ and QSQ′.

The relation � is the maximal ogre simulation.

Lemma 41. Let M � N .

1. If M →→→β M ′ then there exists N ′ such that M ′ � N ′ and N →→→β N ′.
2. If N →→→β N ′ then there exists M ′ such that M ′ � N ′ and M →→→β M ′.
3. If M is rootactive then N is rootactive.

Proof. The first two parts are proved by induction on the length of the reduction
sequence. The last part uses the second one. )*

Theorem 42. Let O ∈ PU (Λ∞⊥ ). If U is quasi-regular then PU : Λ∞⊥ → Λ∞⊥ is
monotone in (Λ∞⊥ ,�).

Proof. Let M,N ∈ Λ∞⊥ such that M � N . We prove that PU(M) � PU (N). Let
U = skel(M). By Lemma 41 we have that U � V and N →→→β V for some V .
We define S as the set of pairs (PU (P ),PU (Q)) such that P and Q are subterms
of respectively U and V at the same position p and they are not subterms of
rootactive terms. Note that if U � V then P � Q. We prove that S is an ogre
simulation. Suppose (P,Q) ∈ S. Then,

1. P = λx1 . . . xn.yP1 . . . Pm. Then Q = λx1 . . . xn.yQ1 . . .Qm and for all i,
Pi � Qi. Hence, PU(P ) = λx1 . . . xn.yPU (P1) . . .PU(Pm) and PU(Q) =
λx1 . . . xn.yPU(Q1) . . .PU (Qm). By definition of S, (PU (Pi),PU (Qi)) ∈ S.

2. P = O. Then PU (P ) = O.
3. P = λx1 . . . xn.RP1 . . . Pm. Then, Q = λx1 . . . xn.Q0Q1 . . . Qm, also

R � Q0 and Pi � Qi for 1 ≤ i ≤ m. By Lemma 41, if R is
rootactive so is Q0. Hence, PU (P ) = λx1 . . . xn.⊥PU (P1) . . .PU (Pm) and
PU (Q) = λx1 . . . xn.⊥PU(Q1) . . .PU (Qm). By definition of S, we have that
(PU (Pi),PU (Qi)) ∈ S.

4. P = λx1 . . . xn.⊥P1 . . . Pm. Similar to the previous case.
5. P = λx1 . . . xn.((. . .)P2)P1. Then Q = λx1 . . . xn.((. . .)Q2)Q1. We have two

cases:
(a) If PU (P ) = λx1 . . . xn.⊥ then PU (Q) = λx1 . . . xn.⊥ by Theorem 20 and

the fact that U is quasi-regular.
(b) PU (P ) = λx1 . . . xn.((. . .)PU (P2))PU (P1). By Theorem 20 and since U

is quasi-regular, we have that PU (Q) = λx1 . . . xn.((. . .)PU (Q2))PU (Q1).
By definition of S, (PU (Pi),PU (Qi)) ∈ S. )*

The next corollary is deduced from Corollary 21 and the previous theorem.

Corollary 43. BerT, PSA, LLT, PHA and PHN−O are monotone in (Λ∞⊥ ,�).

Theorem 44. If NF : Λ∞⊥ → Λ∞⊥ is monotone in (Λ∞⊥ ,�) then � makes the
context operators of M(NF) monotone.
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Proof. If M � N then C[M ] � C[N ]. Since PU is monotone, we have that
PU (C[M ]) � PU (C[N ]). )*

Corollary 45. � makes the context operators monotone of the models induced
by BerT, PSA, LLT, PHA and PHN−O.

Corollary 46. The model induced by BerT is orderable.

The order � does not make the context operators of the models induced
by PSAX

monotone if X �= ∅ and X �= Λ∞. For instance, if X = {I} then
⊥O �� ⊥ =PSAX

⊥I.

11 Unorderable Models

In this section we construct 2c unorderable models induced by the infinitary
lambda calculus where c is the cardinality of the continuum. We consider the
set B0 of closed terms in BT(Λ∞⊥ ) without ⊥ which has the cardinality c of the
continuum. For each subset X of B0, we construct an infinitary lambda calculus
as follows. By Theorem 18, SA(X∪O) is a set of meaningless terms and PSA(X∪O)

is a parametric tree which we abbreviate as UX .

Theorem 47. Let X ⊆ B0 be non-empty. The models induced by the parametric
trees UX are unorderable.

Proof. Suppose there exists a partial order � that makes the context operators
of M(UX) monotone. By Theorem 38, we have that O is the least element of
�. Since X is non-empty, there exists M ∈ X and M = λx1 . . . xn.xiM1 . . .Mk.
Take N = λx1 . . . xn.xiO . . .O. On one hand, both head bottom forms ⊥O and
⊥M reduce to ⊥. On the other hand, the head bottom form ⊥N does not reduce
to ⊥. We have that N �∈ X∪O because the terms in X ⊆ B0 are Böhm trees that
have a head normal form at any depth. Hence, ⊥O =UX ⊥ � ⊥N � ⊥ =UX ⊥M .

)*

Corollary 48. There are 2c unorderable models induced by the infinitary lambda
calculus where c is the cardinality of the continuum.
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Abstract. We provide a game-theoretic characterisation of higher-order
matching. The idea is suggested by model checking games. We then
show that some known decidable instances of matching can be uniformly
proved decidable via the game-theoretic characterisation.

Keywords: games, higher-order matching, typed lambda calculus.

1 The Matching Problem

Assume simply typed lambda calculus with base type 0 and the definitions of
α-equivalence, β and η-reduction. A type is 0 or A → B where A and B are
types. A type A always has the form (A1 → (. . . An → 0) . . .) which is usually
written A1 → . . . → An → 0. We also assume a standard definition of order :
the order of 0 is 1 and the order of A1 → . . . → An → 0 is k + 1 where k is the
maximum of the orders of the Ais.

Terms are built from a countable set of variables x, y, . . . and constants,
a, f, . . .: each variable and constant is assumed to have a unique type. The set
of simply typed terms is the smallest set T such that if x (f) has type A then
x : A ∈ T (f : A ∈ T ), if t : B ∈ T and x : A ∈ T , then λx.t : A → B ∈ T , and if
t : A → B ∈ T and u : A ∈ T then tu : B ∈ T . The order of a typed term is the
order of its type. A typed term is closed if it does not contain free variables.

A matching problem has the form v = u where v, u : A for some type A, and
u is closed. The order of the problem is the maximum of the orders of the free
variables x1, . . . , xn in v. A solution of a matching problem is a sequence of terms
t1, . . . , tn such that v{t1/x1, . . . , tn/xn} =β η u. The decision question is: given
a matching problem, does it have a solution? The problem is conjectured to be
decidable in [3]. However, if it is decidable then its complexity is non-elementary
[9, 11]. Decidability has been proven for the general problem up to order 4 and
for various special cases [5, 6, 8]. Loader proved that the matching problem is
undecidable for the variant definition of solution that uses just β-equality [4].
An excellent source of information about the problem is [2].

Throughout, we slightly change the syntax of terms and types. The type
A1 → . . . → An → 0 is rewritten (A1, . . . , An) → 0 and we assume that all
terms in normal form are in η-long form. That is, if t : 0 then it either has the
form u : 0 where u is a constant or a variable, or has the form u(t1, . . . , tk)
where u : (B1, . . . , Bk) → 0 is either a constant or a variable and each ti : Bi

is in η-long form. And if t : (A1, . . . , An) → 0 then t has the form λy1 . . . yn.t0

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 119–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where t0 : 0 is a term in η-long form. A term is well-named if each occurrence
of a variable y within a λ abstraction is unique.

An interpolation equation has the form x(v1, . . . , vn) = u where each vi is a
closed term in normal form and u : 0 is also in normal form. The type of the
equation is the type of the free variable x, which has the form (A1, . . . , An) → 0
where vi : Ai. An interpolation problem P is a finite family of interpolation
equations x(vi1, . . . , vin) = ui, i : 1 ≤ i ≤ m, all with the same free variable x.
The type of P is the type A of the variable x and the order of P is the order of
A. A solution of P of type A is a closed term t : A such that t(vi1, . . . , vin) =β ui

for each i. We write t |= P if the closed term t solves the problem P .
An interpolation problem reduces to matching: there is the equivalent prob-

lem f(x(v1
1 , . . . , v

1
n), . . . , x(vm1 , . . . , vmn )) = f(u1, . . . , um), when f : 0m → 0.

Schubert shows the converse, that a matching problem of order n is reducible to
an interpolation problem of order at most n + 2 [7]. A dual interpolation prob-
lem includes inequations x(vi1, . . . , vin) �= ui. Padovani proved that a matching
problem of order n is reducible to dual interpolation of the same order [6]. In the
following we concentrate on the interpolation problem for orders greater than 1.
If P has order 1 then it has the form x = ui, 1 ≤ i ≤ m. Consequently, P only
has a solution if ui = uj for each i and j.

In the following we develop a game-theoretic characterisation of t |= P . The
idea is inspired by model-checking games (such as in [10]) where a structure, a
transition graph, is navigated relative to a property and players make choices
at appropriate positions. In section 2 we define some preliminary notions and in
section 3 we present the term checking game and prove its correctness. Unlike
transition graphs, terms t involve binding which results in moves that jump
around t. The main virtue of using games is that they allow one to understand
little “pieces” of a solution term t in terms of subplays and how they thereby
contribute to solving P . In section 4 we identify regions of a term t that we call
“tiles” and define their subplays. In section 5 we introduce four transformations
on tiles that preserve a solution term: these transformations are justified by
analysing subplays. In section 6 we then show that the transformations provide
simple proofs of decidability for known instances of the interpolation problem
via the small model property: if t |= P then t′ |= P for some small term t′.

2 Preliminaries

A right term u of an interpolation equation may contain bound variables: an
example is f(a, λx1 . . . x4.x1(x1(x2))). Let X = {x1, . . . , xk} be the set of bound
variables in u. Assume a fresh set of constants C = {c1, . . . , ck} such that each
ci has the same type as xi.

Definition 1 The ground closure of a closed term w, whose bound variables
belong to X , with respect to C, written Cl(w,X,C), is defined inductively:

1. if w = a : 0, then Cl(w,X,C) = {a}
2. if w = f(w1, . . . , wn), then Cl(w,X,C) = {w} ∪

⋃
Cl(wi, X,C)

3. if w = λxj1 . . . xjn .u, then Cl(w,X,C) = Cl(u{cj1/xj1 , . . . , cjn/xjn}, X,C)
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The ground closure of u = f(a, λx1 . . . x4.x1(x1(x2))) with respect to {c1, . . . , c4}
is the set of ground terms {u, a, c1(c1(c2)), c1(c2), c2}.

Next, we wish to identify subterms of the left-hand terms vj of an interpola-
tion equation relative to a finite set of constants C.

Definition 2 The subterms of w relative to C, written Sub(w,C), is defined
inductively using an auxiliary set Sub′(w,C):

1. if w is a variable or a constant, then Sub(w,C) = Sub′(w,C) = {w}
2. if w is x(w1, . . . , wn) then Sub(w,C) = Sub′(w,C) = {w} ∪

⋃
Sub(wi, C)

3. if w is f(w1, . . . , wn), then Sub(w,C) = Sub′(w,C) = {w} ∪
⋃

Sub′(wi, C)
4. if w is λy1 . . . yn.v, then Sub(w,C) = {w} ∪ Sub(v, C)
5. if w is λy1 . . . yn.v, then Sub′(w,C) =

⋃
Sub(v{ci1/y1, . . . , cin/yn}, C) where

each cij ∈ C has the same type as yj

For the remainder of the paper we assume a fixed interpolation problem P
of type A whose order is greater than 1. P has the form x(vi1, . . . , v

i
n) = ui,

1 ≤ i ≤ m, where each vij and ui are in long normal form. We also assume that
terms vij and ui are well-named and that no pair share bound variables. For
each i, let Xi be the (possibly empty) set of bound variables in ui and let Ci

be a corresponding set of new constants (that do not occur in P ), the forbidden
constants. We are interested in when t |= P and t does not contain forbidden
constants.

Definition 3 Assume P : A is the fixed interpolation problem:

1. T is the set of subtypes of A and the subtypes of subterms of ui

2. for each i, the right subterms are Ri = Cl(ui, Xi, Ci)
3. for each i, the left subterms are Li =

⋃
Sub(vij , Ci) ∪Ci

3 Tree-Checking Games

Using ideas suggested by model-checking we present a characterisation of inter-
polation. This is not the first time that such techniques have been applied to
higher-order matching. Comon and Jurski define (bottom-up) tree automata for
the 4th-order case that characterise all solutions to a problem [1]. The states
of the automata essentially depend on Padovani’s representation of the observa-
tional equivalence classes of terms up to 4th-order [6]. The existence of such an
automaton not only guarantees decidability, but also shows that the set of all
solutions is regular.

We now introduce a game-theoretic characterisation of interpolation for all
orders. The idea is inspired by model-checking games where a model (a transition
graph) is traversed relative to a property and players make choices at appropriate
positions. Similarly, in the following game the model is a putative solution term
t that is traversed relative to the interpolation problem. However, because of
binding play may jump here and there in t. Consequently, our games lack the
simple control structure of Comon and Jurski’s automata where flow starts at
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the leaves of t and proceeds to its root. Moreover, the existence of the game does
not assure decidability. Its purpose is to provide a mechanism for understanding
how small pieces of a solution term contribute to solving the problem.

A. tm = λy1 . . . yj and tm ↓1 t′ and qm = q[(l1, . . . , lj), r]. So, tm+1 = t′ and θm+1 =
θm{l1ηm/y1, . . . , ljηm/yj} and qm+1 and ηm+1 are by cases on tm+1.

1. a : 0. So, ηm+1 = ηm. If r = a then qm+1 = q[∃ ] else qm+1 = q[∀ ].
2. f : (B1, . . . , Bk) → 0. So, ηm+1 = ηm. If r = f(s1, . . . , sk) then qm+1 = qm

else qm+1 = q[∀ ].
3. y : B. If θm+1(y) = lηi, then qm+1 = q[l, r] and ηm+1 = ηi.

B. tm = f : (B1, . . . , Bk) → 0 and qm = q[(l1, . . . , lj), f(s1, . . . , sk)]. So, θm+1 = θm

and ηm+1 = ηm and qm+1 and tm+1 are decided as follows.
1. ∀ chooses a direction i′ : 1 ≤ i′ ≤ k and tm ↓i′ t′. So, tm+1 = t′.

If si′ : 0, then qm+1 = q[( ), si′ ]. If si′ is λxi1 . . . xin .s then qm+1 =
q[(ci1 , . . . , cin ), s{ci1/xi1 , . . . , cin/xin}].

C. tm = y and qm = q[l, r]. If l = λz1 . . . zj .w and tm ↓i t′i, 1 ≤ i ≤ j, then ηm+1 =
ηm{t′1θm/z1, . . . , t

′
jθm/zj} else ηm+1 = ηm. The remaining components tm+1, qm+1

and ηm+1 are by cases on l.
1. a : 0 or λz.a. So, tm+1 = tm and θm+1 = θm. If r = a then qm+1 = q[∃ ] else

qm+1 = q[∀ ].
2. c : (B1, . . . , Bk)→ 0. So, θm+1 = θm. If r �= c(s1, . . . , sk) then tm+1 = tm and

qm+1 = q[∀ ]. If r = c(s1, . . . , sk) then ∀ chooses a direction i′ : 1 ≤ i′ ≤ k and
tm ↓i′ t′. So, tm+1 = t′. If si′ : 0, then qm+1 = q[( ), si′ ]. If si′ is λxi1 . . . xin .s
then qm+1 = q[(ci1 , . . . , cin), s{ci1/xi1 , . . . , cin/xin}].

3. f(w1, . . . , wk) or λz.f(w1, . . . , wk). So, tm+1 = tm and θm+1 = θm. If r �=
f(s1, . . . , sk), then qm+1 = q[∀ ]. If r = f(s1, . . . , sk) then ∀ chooses a direction
i′ : 1 ≤ i′ ≤ k. If si′ : 0 then qm+1 = q[wi′ , si′ ]. If wi′ = λz′

1 . . . z′
n.w and si′ =

λxi1 . . . xin .s, then qm+1 = q[w{ci1/z′
1, . . . , cin/z′

n}, s{ci1/xi1 , . . . , cin/xin}].
4. z′(l1, . . . , lk) or λz.z′(l1, . . . , lk). If ηm+1(z

′) = t′θi then θm+1 = θi and tm+1 =
t′ and qm+1 = q[(l1, . . . , lk), r].

Fig. 1. Game moves

We assume that a potential solution term t for P has the right type, is in
long normal form, is well-named (with variables that are disjoint from variables
in P ) and does not contain forbidden constants. The term t is represented as a
tree, tree(t). If t is y : 0 or a : 0 then tree(t) is the single node labelled with t.
In the case of u(v1, . . . , vk) when u is a variable or a constant, we assume that
a dummy λ with the empty sequence of variables is placed before any subterm
vi : 0 in the tree representation. With this understanding, if t is u(v1, . . . , vn),
then tree(t) consists of the root node labelled u and n-successor nodes labelled
with tree(vi). We use the notation u ↓i t′ to represent that tree t′ is the ith
successor of the node u. If t is λy.v, where y is a possibly empty sequence of
variables y1 . . . yn, then tree(t) consists of the root node labelled λy and a single
successor node tree(v): in this case we assume λy ↓1 tree(v). We also assume that
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each node labelled with an occurrence of a variable yj has a backward arrow ↑j
to the λy that binds it: the index j tells us which element is yj in y.

The tree representation of λy1y2.f(f(y2, y2), y1(y2)) is tantamount to the
syntax tree of λy1y2.f(λ .f(λ .y2, λ .y2), λ .y1(λ .y2)). In the following we use t to
be the λ-term t, or its λ-tree or the label (a constant, variable or λy) at its root
node.

The tree-checking game G(t, P ) is played by one participant, player ∀, the
refuter who attempts to show that t is not a solution of P . The game appeals to a
finite set of states involving elements of Li and Ri. There are three kinds of states:
argument, value and final states. Argument states have the form q[(l1, . . . , lk), r]
where each lj ∈ Li (and k can be 0) and r ∈ Ri. Value states have the form q[l, r]
where l ∈ Li and r ∈ Ri. A final state is either q[ ∀ ], the winning state for ∀, or
q[ ∃ ], the losing state for ∀.

The game appeals to a sequence of supplementary look-up tables θj and ηj ,
j ≥ 1: θj is a partial map from variables in t to elements wηk where w ∈ Li and
k < j, and ηj is a partial map from variables in Li to elements t′θk where t′ is a
node of the tree t and k < j. The initial elements θ1 and η1 are both the empty
table.

A play of G(t, P ) is a sequence of positions t1q1θ1η1, . . . , tnqnθnηn where each
ti is a node of t and t1 = λy is the root of t, and each qi is a state, and qn is
a final state. A node t′ of the tree t may repeatedly occur in a play. The initial
state is decided as follows: ∀ chooses an equation x(vi1, . . . , v

i
n) = ui from P and

q1 = q[(vi1, . . . , vin), ui]. If the current position is tmqmθmηm and qm is not a final
state, then the next position tm+1qm+1θm+1ηm+1 is determined by a move of
Figure 1.

Moves are divided into three groups that depend on tm. Group A covers the
case when tm = λy, group B when tm = f and group C when tm = y. We
assume standard updating notation for θm+1 and ηm+1: β{α1/y1, . . . , αm/ym}
is the function similar to β except that β(yi) = αi. Moreover, in the case of rules
B1, C2 and C3 we assume that the constants cij belong to the forbidden sets Ci.
The look-up tables are used in rules A3 and C4. If tm = λy and tm ↓1 tm+1 = y,
then ηm+1 and qm+1 are determined by the entry for y in θm+1: if the entry is
lηi, then l is the left element of qm+1 and ηm+1 = ηi. In the case of C4, if tm = y
and qm = q[l, r] and l = z′(l1, . . . , lk) or λz.z′(l1, . . . , lk), then θm+1 and tm+1

are determined by the entry for z′ in the table ηm+1: if the entry is t′θi then
tm+1 = t′ and θm+1 = θi. It is this rule that allows the next move to be a jump
around the term tree (to a node labelled with a λ). The moves A1-A3, B1 and
C2 traverse down the term tree while C1 and C3 remain at the current node.

Example 1 Let P be the problem x(v) = u where v = λz.z and u = f(λx.x).
Let X = {x} and C = {c} and let t be the term λy.y(y(f(λy1.y1))) and so,
tree(t) is

(t1)λy ↓1 (t2)y ↓1 (t3)λ ↓1 (t4)y ↓1 (t5)λ ↓1 (t6)f ↓ (t7)λy1 ↓1 (t8)y1

There is just one play of G(t, P ), as follows.
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t1 q[(λz.z), f(λx.x)] θ1 η1

t2 q[λz.z, f(λx.x)] θ2η2 θ2 = θ1{(λz.z)η1/y} η2 = η1 A3
t3 q[( ), f(λx.x)] θ3η3 θ3 = θ2 η3 = η2{t3θ2/z} C4
t4 q[λz.z, f(λx.x)] θ4η4 θ4 = θ3 η4 = η1 A3
t5 q[( ), f(λz.z)] θ5 η5 θ5 = θ4 η5 = η4{t5θ4/z} C4
t6 q[( ), f(λz.z)] θ6 η6 θ6 = θ5 η6 = η5 A2
t7 q[(c), c] θ7 η7 θ7 = θ6 η7 = η6 B1
t8 q[c, c] θ8 η8 θ8 = θ7{cη7/y1} η8 = η7 A3
t8 q[ ∃ ] θ9 η9 θ9 = θ8 η9 = η8 C1

The game rule applied to produce a move is also given. �

A partial play of G(t, P ) finishes when a final state, q[ ∀ ] or q[ ∃ ], occurs.
Player ∀ loses a play if the final state is q[ ∃ ] and ∀ loses the game G(t, P ) if she
loses every play. The following result provides a characterisation of t |= P .

Theorem 1 ∀ loses G(t, P ) if, and only if, t |= P .

Proof. For any position tiqiθiηi of a play of G(t, P ) we say that it m-holds (m-
fails) if q = q[ ∃ ] (q = q[ ∀ ]) and when qi is not final, by cases on ti and qi (and
look-up tables become delayed substitutions)

– if ti = λy and qi = q[(l1, . . . , lk), r] and t′ is (tiθi)(l1ηi, . . . , lkηi) then t′ = r
(t′ �= r) and t′ normalises with m β-reductions

– if ti = f and qi = q[(l1, . . . , lk), r] and t′ is tiθi then t′ = r (t′ �= r) and t′

normalises with m β-reductions
– if ti = z and qi = q[l, r] and ti ↓j t′j and t′ is lηi(t′1θi, . . . , t

′
kθi) then t′ = r

(t′ �= r) and t′ normalises with m β-reductions.

The following are easy to show by case analysis.

1. if tiqiθiηi m-holds then qi = q[ ∃ ] or for any next position ti+1qi+1θi+1ηi+1

it m′-holds, m′ < m, or it m′-holds, m′ ≤ m + 1, and the right-term in qi+1

is smaller than in qi
2. if tiqiθiηi m-fails then qi = q[ ∀ ] or there is a next position ti+1qi+1θi+1ηi+1

and it m′-fails, m′ < m, or it m′-fails, m′ ≤ m + 1, and the right-term in
qi+1 is smaller than in qi

For instance, assume tiqiθiηi m-holds and ti = λy1 . . . yk and ti ↓1 ti+1 = y and
ti+1 ↓j t′j and qi = q[(l1, . . . , lk), r]. So, θi+1 = θi{ljηi/yj} and qi+1 = q[l, r] if
θi+1(y) = lηn and ηi+1 = ηn. So, ti = λy1 . . . yk.y(t′1, . . . , t

′
m) and by assumption

(tiθi)(l1ηi, . . . , lkηi) = r. With a β-reduction we get θi+1(y)(t′1θi+1, . . . , t
′
mθi+1)

which is (lηi+1)(t′1θi+1, . . . , t
′
mθi+1) and so position ti+1qi+1θi+1ηi+1 (m − 1)-

holds. Next, assume tiqiθiηi m-holds, ti = f , qi = q[(l1, . . . , lj), f(s1, . . . , sk)] and
ti ↓j t′j . By assumption, f(t′1. . . . , t′k)θi = f(s1, . . . , sk). So, t′jθi = sj . Consider
any choice of next position. If sj : 0 then qi+1 = q[( ), sj ], ti+1 = t′j and θi+1 = θi.
Therefore, t′jθi+1 = sj and so this next position either m′-holds, m′ < m or m-
holds and sj is smaller than f(s1, . . . , sk). Alternatively, sj = λx.s. Therefore,
t′j = λz.t′ and t′θi{ci/zi} = s{ci/xi} where the cis are new, m′-holds for m′ ≤ m.
And so t′jθi(c1, . . . , cn) = s{ci/xi} (m′ + 1)-holds, as required. Assume tiqiθiηi
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m-holds and ti = y, qi = q[l, r], l = λz1 . . . zk.w, w = z(l1, . . . , lm), ti ↓j t′j and
ti+1θi+1 = ηi+1(z). By assumption, (λz1 . . . zk.w)ηi(t′1θi, . . . , t

′
kθi) = r. With one

β-reduction ηi+1(z)(l1ηi+1, . . . , lmηi+1) = r, that is t′i+1θi+1((l1ηi+1, . . . , lmηi+1)
= r and so the next position (m − 1)-holds. All other cases of 1 are similar to
one of these three, and the proof of 2 is also very similar.

The result follows from 1 and 2: if t |= P then for each initial position there
is an m such that it m-holds and if t �|= P then there is an initial position that
m-fails. �

The tree checking game can be easily extended to characterise dual inter-
polation by including a second player ∃ who is responsible for choices involving
inequations.

Assume that t0 |= P , so ∀ loses the game G(t0, P ). The number of plays is
the number of branches in the right terms of P . We can index each play with
iα when α is a branch of the right-term of the ith equation of P containing
forbidden constants: πiα is the play where all ∀ choices are dictated by α. This
means that two plays πiα, πiβ have a common prefix and differ after a position
involving a ∀ choice, when the branches α and β diverge.

We also allow π to range over subplays which are consecutive subsequences of
positions of any play of G(t0, P ). The length of π, |π|, is the number of positions
in π. We let π(i) be the ith position of π, π(i, j) be the interval π(i), . . . , π(j)
and πi be its ith suffix, the interval π(i, |π|). For ease of notation, we write
t ∈ π(i), q ∈ π(i), θ ∈ π(i) and η ∈ π(i) if π(i) = tqθη and t �∈ π(i) means that
π(i) = t′qθη and t �= t′. If q = q[(l1, . . . , lk), r] or q[l, r] then its right-term is r.

Definition 1 A subplay π is ri, right-term invariant, if q ∈ π(1) and q′ ∈ π(|π|)
share the same right-term r.

Definition 2 Table θ′ extends θ if for all y ∈ dom(θ), θ′(y) = θ(y). Similarly, η′

extends η if for all z ∈ dom(η), η′(z) = η(z).

We widen the usage of “extends” to positions: π(j) θ-extends π(i) if θ′ ∈ π(j)
extends θ ∈ π(i), π(j) η-extends π(i) if η′ ∈ π(j) extends η ∈ π(i) and π(j)
extends π(i) if π(j) θ-extends and η-extends π(i).

If π(i)’s look-up table is called when move A3 or C4 produces π(j) then π(j)
is a child of π(i).

Definition 3 Assume π ∈ G(t0, P ). If π(i) = t q[(l1, . . . , lk), r] θ η, π(j) =
t′q[lm, r′]θ′η, θ′(t′) = lmη and t′ ↑m t, then π(j) is a child of π(i). If π(i) =
y q[λz1 . . . λzk.w, r] θ η, π(j − 1) = y′ q[l, r′] θ′ η′, l = λx.zm(l) or λx.zm or zm(l)
or zm and η′(zm) = t′η and y ↓m t′, then π(j) is a child of π(i).

Fact 1 If π(j) is a child of π(i) then π(j) extends π(i).

4 Tiles and Subplays

Assume that t0 |= P . We would like to identify regions of the tree t0. For this
purpose, we define tiles that are partial trees.
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Definition 1 Assume B = (B1, . . . , Bk) → 0 ∈ T.

1. λ is an atomic leaf of type 0
2. if xj : Bj then λx1 . . . xk is an atomic leaf of type B
3. a : 0 is a constant tile
4. if f : B and tj : Bj are atomic leaves then f(t1, . . . , tk) is a constant tile
5. y : 0 is a simple tile
6. if y : B and tj : Bj are atomic leaves then y(t1, . . . , tk) is a simple tile

A region of t0 can be identified with a constant or simple tile. A leaf u : 0
of t0 is the tile u. If B �= 0 then an occurrence of u : B in t0, u = f or y,
with its immediate children λx1, . . . , λxk, where xi may be empty, is the tile
u(λx1, . . . , λxk) in t0.

Tiles in t0 induce subplays of G(t0, P ). A play on t = f(λx1, . . . , λxk) is a pair
of positions π(i, i + 1) with t ∈ π(i): q[(l1, . . . , lm), r] ∈ π(i), r = f(s1, . . . , sk),
λxj ∈ π(i+1) is a leaf of t and q[( ), sj ] or q[(c1, . . . , cn), sj{ci′/zi′}] is the state
in π(i + 1), depending on the type of sj .

Definition 2 A subplay π is a play on y(λx1, . . . , λxk) in t0 if y ∈ π(1) and
π(|π|) is a child of π(1). It is a j-play if λxj ∈ π(|π|).
A play π on y(λx1, . . . , λxk) in t0 can have arbitrary length. It starts at y and
finishes at a leaf λxi. In between, flow of control can be almost anywhere in
t0 (including y). Crucially, π(|π|) extends π(1): the free variables in the sub-
tree of t0 rooted at y preserve their values, and the free variables in w when
q[λz1 . . . zk.w, r] ∈ π(1) also preserve their values. If π ∈ G(t0, P ) and y ∈ π(i)
then there can be numerous plays π(i, j) on y(λx1, . . . , λxk) in t0, including no
plays at all. We now examine some pertinent properties of plays

Proposition 1 Assume π ∈ G(t0, P ), π(i,m) and π(i, n), n > m, are plays on
y(λx1, . . . , λxk) and λxj ∈ π(m).

1. There is a position π(m′), m′ < n, that is a child of π(m).
2. If π(m′) is the first position that is a child of π(m), t′ ∈ π(m′), y1 occurs on

the branch between λxj and t′, t′ is an i′-descendent of y1 and y1 ↓i′ λzi′ ,
then there is an i′-play π(m1, n1) on y1(λz1, . . . , λzk′) such that m < m1

and n1 < m′.
3. If π(m +m′) is the first position that is a child of π(m), π(m,m +m′) is ri

and π(i, n) is a j-play then π(n + m′) is the first position that is a child of
π(n), π(n, n + m′) is ri and for all n′ ≤ m′, t ∈ π(m + n′) iff t ∈ π(n + n′).

4. If π(m + m′) is the first position that is a child of π(m), π(m,m + m′) is
not ri and π(i, n) is a j-play then there is a π′ ∈ G(t0, P ) with π′(n) = π(n),
π′(n + m′) is the first position that is a child of π′(n), π′(n, n + m′) is not
ri and for all n′ ≤ m′, t ∈ π(m + n′) iff t ∈ π′(n + n′).

Proof. 1. Assume π(i) = y q[λz1 . . . zk.w, r] θ ηi and π(i,m), π(i, n) are plays
on y(λx1, . . . , λxk) with λxj ∈ π(m). The table η = ηi{λx1θ/z1, . . . , λxkθ/zk}
belongs to π(i + 1) and positions π(m − 1), π(n − 1) both η-extend π(i + 1).
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because π(m), π(n) are children of π(i). No look-up table ηl ∈ π(l), l < i + 1,
has these entries η(zi′) = λxi′θ. Consider the first position π(m1) after π(m)
that is at a variable y1 ∈ π(m1). Clearly, y1 is a descendent of λxj in t0. If
y1 is bound by λxj then π(m1) is a child of π(m) and the result is proved.
Otherwise, there are two cases π(m1) is a child of π(l), l < i, and, so, by move
A3 its look-up table η′ cannot extend η. Play may jump anywhere in t0 by move
C4. If there is not a play π(m1, n1) on the simple tile headed with y1 then for
all later positions π(m2), m2 > m1, π(m2) cannot η-extend π(i + 1) which is
a contradiction. Therefore, play must continue with a position π(n1) that is a
child of π(m1). Secondly, y1 is bound by a λy that is below λxj. But then y1 is
bound to a leaf of a constant tile that occurs between λxj and y1 and so move
C3 must apply and play proceeds to a child of y1. This argument is now repeated
for the next position after π(n1) that is at a variable y2 ∈ π(m2): y2 must be a
descendent of λxj . The argument proceeds as above, except there is the new case
that π(m2) is a child of π(n1). However, by move A3, π(m2) cannot η-extend
π(i + 1). Therefore, eventually play must reach a child of π(m).

2. This follows from the proof of 1.
3. Assume π(m+m′) is the first position that is a child of π(m), π(m,m+m′)

is ri and π(i, n) is a j-play. Consequently, π(m) = λxj q θ η and π(n) = λxj q
′ θ η′

and both η-extend π(i + 1) because they are both children of π(i). Consider
positions π(m + 1), π(n + 1). If m′ = 1 the result follows. Otherwise, by move
A3, π(m + 1) = y1 q[l, r] θ1 η1 and π(n + 1) = y1 q[l, r′] θ′1 η1. These positions
have the same look-up table η1, the same left-terms in their state, and θ1, θ′1
only differ in their values for the variables that are bound by λxj . Therefore,
play must continue from both positions in the same way until a child of π(m)
and π(n) is reached.

4. Assume π = πiα. The argument is similar to 3 except that the same ∀
choices in the non ri play π(m,m+m′) need to be made. Therefore, there must
be a π′ = πiβ such that π′(n) = π(n) and the same ∀ choices are made in
π′(n, n + m′). �

Tiles can be composed to form composite tiles. A (possibly composite) tile
is a partial tree which can be extended at any atomic leaf. If t(λx) is a tile with
leaf λx and t′ is a constant or simple tile, then t(λx.t′) is the composite tile that
is the result of placing t′ directly beneath λx in t. Throughout, we assume that
tiles are well-named. We now define a salient kind of simple or composite tile.

Definition 3 A tile is basic if it contains one occurrence of a free variable and
does not contain any constants. A tile is an (extended) constant tile if it contains
one occurrence of a constant and no occurrences of a free variable.

The single occurrence of a free variable in a basic tile must be its head variable
and the single occurrence of a constant in a constant tile must be its head
occurrence.

A contiguous region of t0 can be identified with a basic or constant tile: a
node y with its children and some, or all, of their children and so on (as long
as children of a variable y′ : B �= 0 are included) is a larger region that is a



128 Colin Stirling

basic tile if y is its only free variable and it contains no constants. We write
t(λx1, . . . , λxk) if t is a basic tile with atomic leaves λx1, . . . , λxk. A basic or
constant tile in t0 induces subplays of G(t0, P ) that are compositions of plays of
its component tiles.

Definition 4 A subplay π is a play on t(λx1, . . . , λxk) in t0 if t ∈ π(1), for some
i, λxi ∈ π(|π|), there is the branch t = y1 ↓j1 λx1

j1 ↓1 y2 . . . yn ↓jn λxn
jn

= λxi
and π can be split into plays π(im, jm) on ym(λxm

1 , . . . λxm
km

) where i1 = 1,
im+1 = jm + 1 and jn = |π|. It is a j-play if λxj ∈ π(|π|).
The definition for constant tiles is similar. Properties of plays of simple tiles lift
to plays of basic tiles.

Corollary 1 Assume π ∈ G(t0, P ), π(i,m′) and π(i, n′), n′ > m′, are plays on
t(λx1, . . . , λxk) and λxj ∈ π(m′), t = y1 ↓j1 λx1

j1 ↓1 y2 . . . yn ↓jn λxn
jn

= λxj

and π(i,m′) is split into plays π(im, jm) on ym(λxm
1 , . . . λxmkm

) where i1 = i,
im+1 = jm + 1 and jn = m′.

1. π(m′) extends π(i).
2. There is a position π(m1), m′ < m1 < n′, that is a child of π(ji) for some i.
3. If π(m1) is the first position that is a child of π(ji) for some i, t′ ∈ π(m1),

y′ occurs on the branch between λxj and t′, t′ is an i′-descendent of y′ and
y′ ↓i′ λzi′ , then there is an i′-play π(m2, n2) on y′(λz1, . . . , λzk′) such that
m′ < m2 and n2 < m1.

4. If π(m′ + m1) is the first position that is a child of π(ji), for some i,
π(m′,m′+m1) is ri and π(i, n′) is a j-play then π(n′+m1) is the first position
that is a child of any position π(n′′) such that λxiji

∈ π(n′′), π(n′, n′ + m1)
is ri and for all n1 ≤ m1, t ∈ π(m′ + n1) iff t ∈ π(n′ + n1).

5. If π(m′ + m1) is the first position that is a child of π(ji), for some i,
π(m′,m′ + m1) is not ri and π(i, n′) is a j-play then then there is a π′ ∈
G(t0, P ) with π′(n′) = π(n′) and π′(n′ + m1) is the first position that is a
child of any position π′(n′′) such that λxi

ji
∈ π′(n′′), π′(n′, n′ + m1) is not

ri and for all n1 ≤ m1, t ∈ π(m′ + n1) iff t ∈ π′(n′ + n1).

Definition 5 Assume π is a j-play (play) on t. It is a shortest j-play (play) if
no proper prefix of π is a j-play (play) and it is an ri j-play (play) if π is also
ri. It is a canonical j-play (play) if each t′ ∈ π(i) is a node of t. Two plays π and
π′ on t are independent if one is not contained in the other: that is, π �= π1π

′π2

and π′ �= π1ππ2.

Definition 6 Two basic tiles t and t′ in t0 are equivalent, written t ≡ t′ if they
are the same basic tiles with the same free variable y (bound to the same λy).
A tile t′ is a j-descendent of t(λx1, . . . , λxk) in t0 if there is a branch in t0 from
λxj to t′.

Definition 7 The tile t(λx1, . . . , λxk) is j-end in t0, if every free variable below
λxj in t0 is bound above t. It is an end tile if it is j-end for all j. The tile
t(λx1, . . . , λxk) is a top tile in t0 if its free variable y is bound by the initial
lambda λy of t0.
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A shortest play on a top tile is canonical. The following is a simple consequence
of Corollary 1.

Fact 1 If π ∈ G(t0, P ) and t is a j-end tile and t ∈ π(i), then there is at most
one j-play π(i,m) on t.

We also want to classify tiles according to their plays.

Definition 8 The tile t(λx1, . . . , λxk) is sri if every shortest play on t is ri. It is
j-ri if every shortest j-play on it is ri.

Definition 9 Assume t(λx1, . . . , λxk) is a basic tile in t0 and π is a subplay. We
inductively define when t is j-directed in π

1. if t �∈ π(i) for all i, then t is j-directed in π
2. if π(i) is the first position with t ∈ π(i) and there is a shortest j-play π(i,m)

on t and π(i,m) is ri and t is j-directed in πm+1, then t is j-directed in π.

Definition 10 Tile t is j-directed in t0 if it is j-directed in every π ∈ G(t0, P ).

If t is j-directed in t0 then π ∈ G(t0, P ) is partitioned uniquely into a sequence
of ri inner regions π(ik,mk) which are shortest j-plays on t.

π(1) . . . π(i1) . . . π(m1) . . . π(in) . . . π(mn) . . . π(|π|)
t λxj t λxj

By definition, t cannot occur outside these regions. If π = πiα then any play
πiβ will have the same intervals πiβ(ik,mk) until the point that πiα, πiβ diverge
(which is outside a region). A tile can be j-directed in t0 for multiple j.

We now pick out an interesting feature about embedded end tiles.

Proposition 2 If t1 ≡ t2 are end tiles in t0 and t2 is a j-descendent of t1, then
either t2 is j-directed in t0 or there are π, π′ ∈ G(t0, P ) and j-plays π(m1, n1)
on t1, π′(m2, n2) on t2 that are not ri and m2 > n1.

Proof. Assume t1 ≡ t2 are end tiles and t2 is a j-descendent of t1. Both t1
and t2 have the same head variable bound to the same λy above t1 in t0. Let
π ∈ G(t0, P ). Consider the first position t2 ∈ π(m). There must be an earlier
position t1 ∈ π(i) such that π(m) extends π(i) and a j-play π(i, i + k) on t1. If
this play is ri then because t1 ≡ t2 are end tiles there is the same j-play on t2,
π(m,m+ k). This argument is repeated for subsequent plays or until the j-play
on t1 is not ri. If the play on t1 is not ri then for some play π′ with π′(m) = π(m)
there is the same j-play π′(m,m + k) on t2. �

5 Transformations

In this section we define four transformations. A transformation T changes a
tree s into a tree t, written sT t. Each transformation preserves the crucial
property: if sT t and s |= P then t |= P which is proved using the game-
theoretic characterisation. The first transformation is easy. Let t′ be a subtree
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of t0 whose root node is a variable y or a constant f : B �= 0. G(t0, P ) avoids t′

if t′ �∈ π(i) for all positions and plays π ∈ G(t0, P ). Let t0[a/t′] be the result of
replacing t′ in t0 with the constant a : 0.

T1 If G(t0, P ) avoids t′ then transform t0 to t0[a/t′]

Assume that t0 |= P . The other transformations involve basic tiles. If a j-end
tile is j-directed then it is redundant and can be removed from t0.

T2 Assume t(λx1, . . . , λxk) is a j-directed, j-end tile in t0 and t′ is the subtree
of t0 rooted at t. If tj is the subtree directly beneath λxj then transform t0 to
t0[tj/t′].

The next transformation separates plays.

Definition 1 Assume t = t(λx1, . . . , λxk) is a basic sri tile in t0 that is not an
end tile. Tile t is a separator if there are two independent shortest plays that
end at different leaves of t.

T3 If t(λx1, . . . , λxk) is a separator in t0 and t′ is the subtree of t0 rooted at t
then transform t0 to t0[t(λx1.t

′, . . . , λxk.t
′/t′].

Here, we have added an extra copy of t directly below each λxj : we assume
that the head variable of this copy of t is bound by the λy that binds the head
variable of the original t and we assume that all variables below λxj that are
bound in t in t0 are now bound in the copy of t: this means that the original t
becomes an end tile.

The next transformation, in effect, allows tiles to be “lowered” in t0.

Definition 2 Assume t(λx1, . . . , λxk) is j-ri and not j-end in t0 and directly
below λxj is the constant or basic tile u(λz1, . . . , λzm) whose head variable, if
there is one, is not bound in t. Tile t is j-permutable with u in t0 if whenever
π(i,m) is a shortest j-play on t then either (1) there are no other j-plays π(i,m′)
on t or (2) π(m + 1, n) is a shortest play on u and it is ri and u is an end tile.

T4 Assume t(λx1, . . . , λxk) is j-permutable with u(λz1, . . . , λzm) in t0 and t′

is the subtree rooted at u in t0. If ti and t′i are the subtrees of t0 directly
below λxi and λzi then transform t0 to t0[u(λz1.w1, . . . , λzm.wm)/t′] where wi =
t(λx1.t1, . . . , λxj−1.tj−1, λxj .t

′
i, λxj+1.tj+1, . . . , λxk.tk).

The tile t is copied below u: however, in the copy of t below λzi of u t′i (and not
ti) occurs below λxj of t. We assume that the free variables of ti and t′i retain
their binders in the transformed term and that the copies of t below u bind the
free xj .

Consider the case when the j-ri tile t is not j-permutable with the constant
tile f(λz1, . . . , λzm). There is a shortest j-play π(i,m) on t and another j-play
π(i, n) on t.

π(i) . . . π(m) π(m + 1) . . . π(n) π(n + 1)
t λxj f λxj f

Consequently, permuting t with f is not permitted: the transformed term would
exclude the extra play on f .
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In an application of T4, if t is a top j-ri tile and every shortest j-play is
canonical then after its application t will be j-end and j-directed, and therefore
can be removed by T2. In this case, the tile t does percolate down the term tree
t0.

We now show that the four transformations preserve interpolation.

Proposition 1 For 1 ≤ i ≤ 4, if sTi t and s |= P then t |= P .

Proof. This is clear when i = 1. Consider i = 2. Assume t(λx1, . . . , λxk) is
a j-directed, j-end tile in t0, t′ is the subtree of t0 rooted at t and tj is the
subtree directly beneath λxj , t′0 = t0[tj/t′] and t0 |= P . We shall convert π =
πiα ∈ G(t0, P ) into the play σ = σiα ∈ G(t′0, P ) that ∀ loses. The play π is split
uniquely into regions.

π(1) . . . π(i1) . . . π(m1) . . . π(i2) . . . π(m2) . . . π(in) . . . π(mn) . . . π(|π|)
t λxj t λxj t λxj

The play σ is just the outer subplays (modulo minor changes to the look-up
tables) because each π(mk) extends π(ik).

π(1) . . . π(i1 − 1)π(m1 + 1) . . . π(in − 1)π(mn + 1) . . . π(|π|)

We show, using a similar argument as is used in Proposition 1.1 of Section 4,
that if s is a node in t or is a descendent of a leaf λxm, m �= j, of t then s
cannot occur in any outer subplay of π. If s were to appear in an outer subplay
then move C4 must have applied: there is then a variable y and a position in an
outer subplay y ∈ π(n) and θ ∈ π(n) and θ(y) = lη and there is a free variable
z in l such that η(z) = sθ′. However, this is impossible. Consider θ1 ∈ π(i1):
clearly, there is no free variable in the subtree rooted at t with this property.
When play reaches π(m1) because t is a j-end tile and because π(m1) extends
π(i1) there cannot be a free variable in the subtree tj with this property either.
This argument is now repeated for subsequent positions π(ik) and π(mk).

Let i = 3. Assume t(λx1, . . . , λxk) is a separator in t0, t′ is the subtree of
t0 rooted at t and t′0 = t0[t(λx1.t

′, . . . , λxk.t
′)/t′]. We shall convert π = πiα ∈

G(t0, P ) into σ = σiα ∈ G(t′0, P ) that ∀ loses. Consider any shortest play on t in
πiα, π(m, k) and assume it is a j-play. By definition this play is ri. Therefore,
this interval is transformed into the following interval for t′0.

π(m) . . . π(k) π(m) . . . π(k)
t λxj t λxj

where the second t is the copy of t directly beneath λxj in t′0.
Finally, i = 4. Assume t(λx1, . . . , λxk) is j-permutable with u(λz1, . . . , λzm)

in t0, t′ is the subtree rooted at u in t0, ti and t′i are the subtrees of t0 directly
below λxi and λzi and t′0 = t0[u(λz1.w1, . . . , λzm.wm)/t′] where wi is as in T4.
We shall convert π = πiα ∈ G(t0, P ) into σ = σiα ∈ G(t′0, P ) that ∀ loses. The
play π can be divided into non-overlapping regions π(ik,mk).

π(1) . . . π(i1) . . . π(m1) π(m1 + 1) . . . π(in) . . . π(mn) π(mn + 1) . . . π(|π|)
t λxj u t λxj u
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where π(ik,mk) are shortest j-plays: such a region may also contain other short-
est j-plays on t:

. . . π(ik) . . . π(i′) . . . π(m′) . . . π(mk) . . .
t t λxj λxj

If u = f(λz1, . . . , λzn) is a constant tile then (1) of Definition 2 applies: so
each π(ik,mk) only contains a single occurrence of λxj because the play is ri.
Moreover, there are no further j-plays π(ik,m′) on t. Therefore, σ includes the
following change to π for each interval π(ik,mk) where we ignore the minor
changes to look-up tables

π(ik) . . . π(mk) π(mk + 1) π(mk + 2) π(ik) . . . π(mk) π(mk + 3) . . .
t λxj f λzki t λxj t′ki

where t′ki
∈ π(ik) is the copy of t directly beneath λzki in t′0.

Next, let u be a basic tile. To obtain σ we iteratively do additions and dele-
tions to π starting with π(i1,m1) and then recursively transforming inner j-plays
on t within this region. Let π be the result of the changes to the initial π for the
intervals π(ij ,mj), j < k. Consider the interval π(ik,mk). Consider case (1) of
Definition 2. Let π(mk + 1, ni

k) be all plays on u ∈ π(mk + 1). If there are no
plays then π is initially unchanged. Otherwise, π has the following structure:

. . . π(ik) . . . π(mk) π(mk + 1) . . . π(ni
k) π(ni

k + 1) . . .
t λxj u λzki t′ki

To obtain the new π, we do the following addition for each i

π(ik) . . . π(mk) π(mk + 1) . . . π(n1
k) . . . π(ni

k) π(ik) . . . π(mk) π(ni
k + 1) . . .

t λxj u λzk1 λzki t λxj t′ki

where t immediately after π(ni
k) is its copy in t′0 directly beneath λzki .

Finally, we consider the case that u is an end tile. Let π(mk + 1,mk + n) be
the unique play on u with λzi ∈ π(mk + n). Consider all j-plays π(ik,mi

k) on
t ∈ π(ik) where m1

k = mk:

π(ik) . . . π(m1
k) . . . π(mi

k) π(mi
k + 1) . . . π(mi

k + n) π(mi
k + n + 1) . . .

t λxj λxj u λzi t′i

There must be the same play on u at each π(mi
k + 1) because the value of the

head variable of u is always the same and u is an end tile. So initially we do the
following addition

π(ik) . . . π(m1
k) π(m1

k + 1) . . . π(m1
k + n) π(ik) . . . π(m1

k) π(m1
k + n + 1)

t λxj u λzi t λxj t′i

where the second t ∈ π(ik) is the copy of t directly below λzi in t′0, and for subse-
quent i > 1 we delete the ri region π(mi

k+1,mi
k+n). To complete the argument,

we recursively apply this technique to shortest j-plays on t within π(ik,m1
k): note

that j-plays on t below λzi within π(ik,m1
k) will include additional ri plays on

on t and on u. �
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6 Decidable Instances

We now briefly sketch how the the game-theoretic characterisation of matching
provides uniform decidability proofs for two instances of interpolation that are
known to be decidable, the 4th-order problem and the atoms case where in each
equation x(v1, . . . , vn) = u the term u is a constant a : 0 [5, 6]. In both cases
the proof establishes the small model property (if t0 |= P then there is a small
t |= P ) via the transformations of the previous section. In neither case do we
need to appeal to observational equivalence.

Figure 2 presents the algorithm for both cases. The procedure is initiated
by marking all leaves of t0 and recursively proceeds towards its root. At each
stage, a lowest marked node u is examined for transformations: the algorithm
has, therefore, already ascended all branches below u.

Assume t0 |= P

1. mark all leaves u : 0 of t0
2. choose a marked node u such that no descendent of u is marked
3. if t0T1t′ at u then t0 = t′ and unmark all nodes and return to 1
4. identify basic or constant tile t = t(λx1, . . . , λxk) rooted at u
5. if t0Tit′ at t for i ∈ {2, 3} then t0 = t′ and unmark all nodes and return to 1
6. identify successor basic or constant tiles ti below λxi

7. if t0T4t′ at t and a successor then t0 = t′ and unmark all nodes and return to 1.
8. if u′ ↓i1 λy ↓1 u then unmark u and mark u′ and return to 2
9. finish

Fig. 2. The algorithm

Clearly, the procedure must terminate with t0 |= P and where no transfor-
mation applies anywhere in t0. Assume t0 is such a term.

Proposition 1 If t′ is a subterm of t0 such that t′ only contains sri tiles, leaves
y : 0 and a : 0 then t′ consists of sri end tiles and leaves a : 0.

Proof. By a simple induction. A leaf u may be a constant or a variable. Consider
u′ such that u′ ↓i1 λy ↓1 u. By repeating the argument for other directions ij
from u′, the tile rooted at u′ will be an end tile. Consider the first time that a
tile isnt an end tile. Either T3 or T4 must apply, which is a contradiction.

Hence for the atoms case, as all tiles are sri, every end tile is also a top tile.
There can be at most m separators where m is the number of equations. Finally,
Proposition 2 of Section 4 provides a simple upper bound both on the size
of an end tile in t0 and the number of embedded end tiles. The details are
straightforward.

Next we consider the 4th-order case. The term t0 consists of top tiles, leaves
and constant tiles. Shortest plays on a top tile are canonical. The number of
top tiles that are not sri is bounded (by the sum of the sizes of the sets Ri of
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section 2). Again there can be at most m separators. Now, the crucial property is
that given a sequence of sri top tiles ti(λxi

1, . . . , λx
i
ki

) such that for each i, ti+1 is
directly below λxi

ji
then most of the tiles ti are ni-end and ni-directed for some

ni which follows easily from Proposition 1 of Section 4. (If a shortest ri j-play
on ti, π(k,m), is such that there is a child π(m′) of π(m), so y : 0 ∈ π(m′), then
every j-play π(k, n) of ti is such that there is a child π(n′) of π(n) and y ∈ π(n′)
or π(k,m′) is not ri and for some n′, π(k, n′) is also not ri.)

References

1. Comon, H. and Jurski, Y. Higher-order matching and tree automata. Lecture Notes
in Computer Science, 1414, 157-176, (1997).

2. Dowek, G. Higher-order unification and matching. In A. Robinson and A. Voronkov
ed. Handbook of Automated Reasoning, Vol 2, 1009-1062, North-Holland, 2001.
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Abstract. Since Val Tannen’s pioneering work on the combination of
simply-typed λ-calculus and first-order rewriting [11], many authors have
contributed to this subject by extending it to richer typed λ-calculi and
rewriting paradigms, culminating in the Calculus of Algebraic Construc-
tions. These works provide theoretical foundations for type-theoretic
proof assistants where functions and predicates are defined by oriented
higher-order equations. This kind of definitions subsumes usual inductive
definitions, is easier to write and provides more automation.

On the other hand, checking that such user-defined rewrite rules, when
combined with β-reduction, are strongly normalizing and confluent, and
preserve the decidability of type-checking, is more difficult. Most ter-
mination criteria rely on the term structure. In a previous work, we
extended to dependent types and higher-order rewriting, the notion of
“sized types” studied by several authors in the simpler framework of ML-
like languages, and proved that it preserves strong normalization.

The main contribution of the present paper is twofold. First, we prove
that, in the Calculus of Algebraic Constructions with size annotations,
the problems of type inference and type-checking are decidable, provided
that the sets of constraints generated by size annotations are satisfiable
and admit most general solutions. Second, we prove the latter proper-
ties for a size algebra rich enough for capturing usual induction-based
definitions and much more.

1 Introduction

The notion of “sized type” was first introduced in [20] and further studied by
several authors [1, 3, 19, 29] as a tool for proving the termination of ML-like
function definitions. It is based on the semantics of inductive types as fixpoints
of monotone operators, reachable by transfinite iteration. For instance, natural
numbers are the limit of (Si)i<ω , where Si is the set of natural numbers smaller
than i (inductive types with constructors having functional arguments require
ordinals bigger than ω). The idea is then to reflect this in the syntax by adding
size annotations on types indicating in which subset Si a term is. For instance,
subtraction on natural numbers can be assigned the type − : natα ⇒ natβ ⇒
natα, where α and β are implicitly universally quantified, meaning that the size

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 135–150, 2005.
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of its output is not bigger than the size of its first argument. Then, one can
ensure termination by restricting recursive calls to arguments whose size – by
typing – is smaller. For instance, the following ML-like definition of 1 x

y+12:

letrec div x y = match x with
| O -> O
| S x’ -> S (div (x’ - y) y)

is terminating since, if x is of size at most α and y is of size at most β, then x′

is of size at most α− 1 and (x′ − y) is of size at most α− 1 < α.
The Calculus of Constructions (CC) [16] is a powerful type system with

polymorphic and dependent types, allowing to encode higher-order logic. The
Calculus of Algebraic Constructions (CAC) [8] is an extension of CC where func-
tions are defined by higher-order rewrite rules. As shown in [10], it subsumes the
Calculus of Inductive Constructions (CIC) [17] implemented in the Coq proof
assistant [14], where functions are defined by induction. Using rule-based def-
initions has numerous advantages over induction-based definitions: definitions
are easier (e.g. Ackermann’s function), more propositions can be proved equiv-
alent automatically, one can add simplification rules like associativity or using
rewriting modulo AC [5], etc. For proving that user-defined rules terminate when
combined with β-reduction, [8] essentially checks that recursive calls are made
on structurally smaller arguments.

In [6], we extended the notion of sized type to CAC, giving the Calculus of
Algebraic Constructions with Size Annotations (CACSA). We proved that, when
combined with β-reduction, user-defined rules terminate essentially if recursive
calls are made on arguments whose size – by typing – is strictly smaller, by
possibly using lexicographic and multiset comparisons. Hence, the following rule-
based definition of 1 x

y+12:

0 / y → 0
(s x) / y → s ((x − y) / y)

is terminating since, in the last rule, if x is of size at most α and y is of size
at most β, then (s x) is of size at most α + 1 and (x − y) is of size at most
α < α + 1. Note that this rewrite system cannot be proved terminating by
criteria only based on the term structure, like RPO or its extensions to higher-
order terms [21, 27]. Note also that, if a term t is structurally smaller than a term
u, then the size of t is smaller than the size of u. Therefore, CACSA proves the
termination of any induction-based definition like CIC/Coq, but also definitions
like the previous one. To our knowledge, this is the most powerful termination
criterion for functions with polymorphic and dependent types like in Coq. The
reader can find other convincing examples in [6].

However, [6] left an important question open. For the termination criterion to
work, we need to make sure that size annotations assigned to function symbols
are valid. For instance, if subtraction is assigned the type − : natα ⇒ natβ ⇒
natα, then we must make sure that the definition of − indeed outputs a term
whose size is not greater than the size of its first argument. This amounts to
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check that, for every rule in the definition of −, the size of the right hand-side
is not greater than the size of the left hand-side. This can be easily verified by
hand if, for instance, the definition of − is as follows:

0 − x → 0
x − 0 → x

(s x) − (s y) → x − y

The purpose of the present work is to prove that this can be done automat-
ically, by inferring the size of both the left and right hand-sides, and checking
that the former is smaller than the latter.

nil : (A : �)listαA 0
cons : (A : �)A⇒ (n : nat)listαA n⇒ listsαA (sn)

if _in_then_else : bool⇒ (A : �)A⇒ A⇒ A
insert : (A : �)(≤: A⇒ A⇒ bool)A⇒ (n : nat)listαA n⇒ listsαA (sn)

sort : (A : �)(≤: A⇒ A⇒ bool)(n : nat)listαA n⇒ listαA n

if true in A then u else v → u
if false in A then u else v → v
insert A ≤ x _ (nil _) → cons A x 0 (nil A)

insert A ≤ x _ (cons _ y n l) → if x ≤ y in list A (s (s n))
then cons A x (s n) (cons A y n l)
else cons A y (s n) (insert A ≤ x n l)

sort A ≤ _ (nil _) → nil A
sort A ≤ _ (cons _ x n l) → insert A ≤ x n (sort A ≤ n l)

Fig. 1. Insertion sort on polymorphic and dependent lists

We now give an example with dependent and polymorphic types. Let � be
the sort of types and list : � ⇒ nat ⇒ � be the type of polymorphic lists of fixed
length whose constructors are nil and cons. Without ambiguity, s is used for the
successor function both on terms and on size expressions. The functions insert
and sort defined in Figure 1 have size annotations satisfying our termination
criterion. The point is that sort preserves the size of its list argument and thus
can be safely used in recursive calls. Checking this automatically is the goal of
this work.

An important point is that the ordering naturally associated with size anno-
tations implies some subtyping relation on types. The combination of subtyping
and dependent types (without rewriting) is a difficult subject which has been
studied by Chen [12]. We reused many ideas and techniques of his work for
designing CACSA and proving important properties like β-subject reduction
(preservation of typing under β-reduction) [7].

Another important point is related to the meaning of type inference. In ML,
type inference means computing a type of a term in which the types of free and
bound variables, and function symbols (letrec’s in ML), are unknown. In other
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words, it consists in finding a simple type for a pure λ-term. Here, type inference
means computing a CACSA type, hence dependent and polymorphic (CACSA
contains Girard’s system F), of a term in which the types and size annotations of
free and bound variables, and function symbols, are known. In dependent type
theories, this kind of type inference is necessary for type-checking [15]. In other
words, we do not try to infer relations between the sizes of the arguments of a
function and the size of its output like in [4, 13]. We try to check that, with the
annotated types declared by the user for its function symbols, rules satisfy the
termination criterion described in [6].

Moreover, in ML, type inference amounts to solve equality constraints in
the type algebra. Here, type inference amounts to solve equality and ordering
constraints in the size algebra. The point is that the ordering on size expressions
is not anti-symmetric: it is a quasi-ordering. Thus, we have a combination of
unification and symbolic quasi-ordering constraint solving.

Finally, because of the combination of subtyping and dependent typing, the
decidability of type-checking requires the existence of minimal types [12]. Thus,
we must also prove that a satisfiable set of equality and ordering constraints has
a smallest solution, which is not the case in general. This is in contrast with
non-dependently typed frameworks.

Outline. In Section 2, we define terms and types, and study some properties of
the size ordering. In Section 3, we give a general type inference algorithm and
prove its correctness and completeness under general assumptions on constraint
solving. Finally, in Section 4, we prove that these assumptions are fulfilled for the
size algebra introduced in [3] which, although simple, is rich enough for capturing
usual inductive definitions and much more, as shown by the first example above.
Missing proofs are given in [9].

2 Terms and Types

Size Algebra. Inductive types are annotated by size expressions from the fol-
lowing algebra A:

a ::= α | sa | ∞

where α ∈ Z is a size variable. The set A is equipped with the quasi-ordering
≤A defined in Figure 2. Let (A= ≤A ∩ ≥A be its associated equivalence.

Let ϕ, ψ, ρ, . . . denote size substitutions, i.e. functions from Z to A. One can
easily check that ≤A is stable by substitution: if a ≤A b then aϕ ≤A bϕ. We
extend ≤A to substitutions: ϕ ≤A ψ iff, for all α ∈ Z, αϕ ≤A αψ.

We also extend the notion of “more general substitution” from unification
theory as follows: ϕ is more general than ψ, written ϕ � ψ, iff there is ϕ′ such
that ϕϕ′ ≤A ψ.

Terms. We assume the reader familiar with typed λ-calculi [2] and rewriting [18].
Details on CAC(SA) can be found in [6, 8]. We assume given a set S = {�,�} of
sorts (� is the sort of types and propositions; � is the sort of predicate types),
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(refl) a ≤A a (trans)
a ≤A b b ≤A c

a ≤A c

(mon)
a ≤A b

sa ≤A sb
(succ)

a ≤A b

a ≤A sb
(infty) a ≤A ∞

Fig. 2. Ordering on size expressions

a set F of function or predicate symbols, a set CF� ⊆ F of constant predicate
symbols, and an infinite set X of term variables. The set T of terms is:

t ::= s | x | Ca | f | [x : t]t | (x : t)t | tt

where s ∈ S, x ∈ X , C ∈ CF�, a ∈ A and f ∈ F \ CF�. A term [x : t]u is
an abstraction. A term (x : T )U is a dependent product, simply written T ⇒ U
when x does not occur in U . Let t denote a sequence of terms t1, . . . , tn of length
|t| = n.

Every term variable x is equipped with a sort sx and, as usual, terms
equivalent modulo sort-preserving renaming of bound variables are identified.
Let V(t) be the set of size variables in t, and FV(t) be the set of term vari-
ables free in t. Let θ, σ, . . . denote term substitutions, i.e. functions from X
to T . For our previous examples, we have CF� = {nat, list, bool} and F =
CF� ∪ {0, s, /, nil, cons, insert, sort}.

Rewriting. Terms only built from variables and symbol applications ft are said
to be algebraic. We assume given a set R of rewrite rules l → r such that l is
algebraic, l = f l with f /∈ CF� and FV(r) ⊆ FV(l). Note that, while left hand-
sides are algebraic and thus require syntactic matching only, right hand-sides
may have abstractions and products. β-reduction and rewriting are defined as
usual: C[[x : T ]u v] →β C[u{x  → v}] and C[lσ] →R C[rσ] if l → r ∈ R. Let
→ = →β ∪ →R and →∗ be its reflexive and transitive closure. Let t ↓ u iff there
exists v such that t →∗ v ∗← u.

Typing. We assume that every symbol f is equipped with a sort sf and a type
τf = (x : T )U such that, for all rules f l → r ∈ R, |l| ≤ |T | (f is not applied
to more arguments than the number of arguments given by τf ). Let Fs (resp.
X s) be the set of symbols (resp. variables) of sort s. As usual, we distinguish
the following classes of terms where t is any term:

– objects: o ::= x ∈ X � | f ∈ F� | [x : t]o | ot
– predicates: p ::= x ∈ X� | Ca ∈ CF� | f ∈ F� \ CF� | [x : t]p | (x : t)p | pt
– kinds: K ::= � | (x : t)K

Examples of objects are the constructors of inductive types 0, s, nil, cons, . . .
and the function symbols −, /, insert, sort, . . .. Their types are predicates: induc-
tive types bool, nat, list, . . ., logical connectors ∧,∨, . . ., universal quantifications
(x : T )U, . . . The types of predicates are kinds: � for types like bool or nat,
� ⇒ nat ⇒ � for list, . . .
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An environment Γ is a sequence of variable-term pairs. An environment is
valid if a term is typable in it. The typing rules of CACSA are given in Figure 4
and its subtyping rules in Figure 3. In (symb), ϕ is an arbitrary size substitution.
This reflects the fact that, in type declarations, size variables are implicitly
universally quantified, like in ML. In contrast with [12], subtyping uses no sorting
judgment. This simplification is justified in [7].

In comparison with [7], we added the side condition V(t) = ∅ in (size). It
does not affect the properties proved in [7] and ensures that the size ordering
is compatible with subtyping (Lemma 2). By the way, one could think of tak-
ing the more general rule Cat ≤ Cbu with t (A u. This would eliminate the
need for equality constraints and thus simplify a little bit the constraint solving
procedure. More generally, one could think in taking into account the monotony
of type constructors by having, for instance, list nata ≤ list natb whenever
a ≤A b. This requires extensions to Chen’s work [12] and proofs of many non
trivial properties of [7] again, like Theorem 1 below or subject reduction for β.

(refl) T ≤ T (size) Cat ≤ Cbt (C ∈ CF�, a ≤A b, V(t) = ∅)

(prod)
U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′ (conv)
T ′ ≤ U ′

T ≤ U
(T ↓ T ′, U ′ ↓ U)

(trans)
T ≤ U U ≤ V

T ≤ V

Fig. 3. Subtyping rules

(ax) � � : � (prod)
Γ � U : s Γ, x : U � V : s′

Γ � (x : U)V : s′

(size)
� τC : �

� Ca : τC
(C ∈ CF�, a ∈ A) (symb)

� τf : sf

� f : τfϕ
(f /∈ CF�)

(var)
Γ � T : sx

Γ, x : T � x : T
(x /∈dom(Γ )) (weak)

Γ � t : T Γ � U : sx

Γ, x : U � t : T
(x /∈dom(Γ ))

(abs)
Γ, x : U � v : V Γ � (x : U)V : s

Γ � [x : U ]v : (x : U)V
(app)

Γ � t : (x : U)V Γ � u : U

Γ � tu : V {x �→ u}

(sub)
Γ � t : T Γ � T ′ : s

Γ � t : T ′ (T ≤ T ′)

Fig. 4. Typing rules

∞-Terms. An ∞-term is a term whose only size annotations are ∞. In par-
ticular, it has no size variable. An ∞-environment is an environment made of
∞-terms. This class of terms is isomorphic to the class of (unannotated) CAC
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terms. Our goal is to be able to infer annotated types for these terms, by using
the size annotations given in the type declarations of constructors and function
symbols 0, s, /, nil, cons, insert, sort, . . .

Since size variables are intended to occur in object type declarations only,
and since we do not want matching to depend on size annotations, we assume
that rules and type declarations of predicate symbols nat, bool, list, . . . are made
of ∞-terms. As a consequence, we have:

Lemma 1. – If t →R t′ then, for all ϕ, tϕ →R t′ϕ.
– If Γ � t : T then, for all ϕ, Γϕ � tϕ : Tϕ.

We make three important assumptions:
(1) R preserves typing: for all l → r ∈ R, Γ , T and σ, if Γ � lσ : T then

Γ � rσ : T . It is generally not too difficult to check this by hand. However,
as already mentioned in [6], finding sufficient conditions for this to hold in
general does not seem trivial.

(2) β ∪ R is confluent. This is for instance the case if R is confluent and left-
linear [23], or if β ∪R is terminating and R is locally confluent.

(3) β∪R is terminating. In [6], it is proved that β∪R is terminating essentially
if, in every rule f l → r ∈ R, recursive calls in r are made on terms whose
size – by typing – are smaller than l, by using lexicographic and multiset
comparisons. Note that, with type-level rewriting, confluence is necessary
for proving termination [8].

Important Remark. One may think that there is some vicious circle here: we
assume the termination for proving the decidability of type-checking, while type-
checking is used for proving termination! The point is that termination checks
are done incrementally. At the beginning, we can check that some set of rewrite
rules R1 is terminating in the system with β only. Indeed, we do not need to use
R1 in the type conversion rule (conv) for typing the terms of R1. Then, we can
check in β ∪R1 that some new set of rules R2 is terminating, and so on. . .

Various properties of CACSA have already been studied in [7]. We refer the
reader to this paper if necessary. For the moment, we just mention two important
and non trivial properties based on Chen’s work on subtyping with dependent
types [12]: subject reduction for β and transitivity elimination:

Theorem 1 ([7]). T ≤ U iff T↓ ≤s U↓, where ≤s is the restriction of ≤ to
(refl), (size) and (prod).

We now give some properties of the size and substitution orderings. Let →A
be the confluent and terminating relation on A generated by the rule s∞ → ∞.

Lemma 2. Let a↓ be the normal form of a w.r.t. →A.
– a (A b iff a↓= b↓.
– If ∞ ≤A a or sk+1a ≤A a then a↓= ∞.
– If a ≤A b and ϕ ≤A ψ then aϕ ≤A bψ.
– If ϕ ≤A ψ and U ≤ V then Uϕ ≤ V ψ.

Note that ∞-terms are in A-normal form. The last property (compatibility
of size ordering wrt subtyping) follows from the restriction V(t) = ∅ in (size).
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3 Decidability of Typing

In this section, we prove the decidability of type inference and type-checking for
∞-terms under general assumptions that will be proved in Section 4. We begin
with some informal explanations.

How to do type inference? The critical cases are (symb) and (app). In (symb),
a symbol f can be typed by any instance of τf , and two different instances may be
necessary for typing a single term (e.g. s(sx)). For type inference, it is therefore
necessary to type f by its most general type, namely a renaming of τf with fresh
variables, and to instantiate it later when necessary.

Assume now that we want to infer the type of an application tu. We naturally
try to infer a type for t and a type for u using distinct fresh variables. Assume that
we get T and U ′ respectively. Then, tu is typable if there is a size substitution
ϕ and a product type (x : P )Q such that Tϕ ≤ (x : P )Q and U ′ϕ ≤ P .

After Theorem 1, checking whether A ≤ B amounts to check whether A↓ ≤s

B↓, and checking whether A ≤s B amounts to apply the (prod) rule as much
as possible and then to check that (refl) or (size) holds. Hence, Tϕ ≤ (x : P )Q
only if T↓ is a product. Thus, the application tu is typable if T↓ = (x : U)V and
there exists ϕ such that U ′↓ϕ ≤s Uϕ. Finding ϕ such that Aϕ ≤s Bϕ amounts
to apply the (prod) rule on A ≤s B as much as possible and then to find ϕ such
that (refl) or (size) holds. So, a subtyping problem can be transformed into a
constraint problem on size variables.

We make this precise by first defining the constraints that can be generated.

Definition 1 (Constraints). Constraint problems are defined as follows:

C ::= ⊥ | � | C ∧ C | a = b | a ≤ b

where a, b ∈ A, = is commutative, ∧ is associative and commutative, C ∧ C =
C ∧� = C and C ∧⊥ = ⊥. A finite conjunction C1 ∧ . . .∧ Cn is identified with �
if n = 0. A constraint problem is in canonical form if it is neither of the form
C ∧ �, nor of the form C ∧ ⊥, nor of the form C ∧ C ∧ D. In the following, we
always assume that constraint problems are in canonical form. An equality (resp.
inequality) problem is a problem having only equalities (resp. inequalities). An
inequality ∞ ≤ α is called an ∞-inequality. An inequality spα ≤ sqβ is called a
linear inequality. Solutions to constraint problems are defined as follows:
– S(⊥) = ∅,
– S(�) is the set of all size substitutions,
– S(C ∧ D) = S(C) ∩ S(D),
– S(a = b) = {ϕ | aϕ = bϕ},
– S(a ≤ b) = {ϕ | aϕ ≤A bϕ}.
Let S�(C) = {ϕ | ∀α, αϕ↓ �= ∞} be the set of linear solutions.

We now prove that a subtyping problem can be transformed into constraints.

Lemma 3. Let S(U, V ) be the set of substitutions ϕ such that Uϕ ≤s V ϕ. We
have S(U, V ) = S(C(U, V )) where C(U, V ) is defined as follows:
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– C((x : U)V, (x : U ′)V ′) = C(U ′, U) ∧ C(V, V ′),
– C(Cau, Cbv) = a ≤ b ∧ E0(u1, v1) ∧ . . . ∧ E0(un, vn) if |u| = |v| = n,
– C(U, V ) = E1(U, V ) in the other cases,
and E i(U, V ) is defined as follows:
– E i((x :U)V, (x :U ′)V ′) = E i([x :U ]V, [x :U ′]V ′) = E i(UV,U ′V ′)

= E i(U,U ′) ∧ E i(V, V ′),
– E1(Ca, Cb) = a = b,
– E0(Ca, Cb) = a = b ∧∞ ≤ a,
– E i(c, c) = � if c ∈ S ∪ X ∪ F \ CF�,
– E i(U, V ) = ⊥ in the other cases.

Proof. First, we clearly have ϕ ∈ S(E1(U, V )) iff Uϕ = V ϕ, and ϕ ∈ S(E0(U, V ))
iff Uϕ = V ϕ and V(Uϕ) = ∅. Thus, S(U, V ) = S(C(U, V )). )*

(ax) Γ �Ya � : � (prod)
Γ �Ya U : sx Γ, x : U �Ya V : s′

Γ �Ya (x : U)V : s′

(size) Γ �Ya C∞ : τC (C ∈ CF�) (symb) Γ �Ya f : τfρY (f /∈ CF�)

(var) Γ �Ya x : xΓ (x∈dom(Γ )) (abs)
Γ �Ya U : sx Γ, x : U �Ya v : V

Γ �Ya [x : U ]v : (x : U)V
(V �= �)

(app)
Γ �Ya t : T Γ �Y∪V(T)

a u : U ′

Γ �Ya tu : V ϕρY {x �→ u}
(T↓ = (x : U)V , C = C(U ′↓, U),

S(C) �= ∅, ϕ = mgs(C))

Fig. 5. Type inference rules

For renaming symbol types with variables outside some finite set of already
used variables, we assume given a function ρ which, to every finite set Y ⊆ Z,
associates an injection ρY from Y to Z\Y. In Figure 5, we define a type inference
algorithm �Ya parametrized by a finite set Y of (already used) variables under the
following assumptions:
(1) It is decidable whether S(C) is empty or not.
(2) If S(C) �=∅ then C has a most general solution mgs(C).
(3) If S(C) �= ∅ then mgs(C) is computable.

It would be interesting to try to give a modular presentation of type inference
by clearly separating constraint generation from constraint solving, as it is done
for ML in [24] for instance. However, for dealing with dependent types, one
at least needs higher-order pattern unification. Indeed, assume that we have a
constraint generation algorithm which, for a term t and a type (meta-)variable
X , computes a set C of constraints on X whose solutions provide valid instances
of X , i.e. valid types for t. Then, in (app), if the constraint generation gives
C1 for t : Y and C2 for u : Z, then it should give something like C1 ∧ C2 ∧
(∃U.∃V. Y =βη (x : U)V x ∧ Z ≤ U ∧X=βη V u) for tu : X .
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We now prove the correctness, completeness and minimality of �Ya , assuming
that symbol types are well sorted (� τf : sf for all f).

Theorem 2 (Correctness). If Γ is a valid ∞-environment and Γ �Ya t : T ,
then Γ � t : T , t is an ∞-term and V(T ) ∩ Y = ∅.

Proof. By induction on �Ya . We only detail the (app) case.
(app) By induction hypothesis, Γ � t : T , Γ � u : U ′ and t and u are ∞-terms.

Thus, tu is an ∞-term. By Lemma 1, Γ � t : Tϕ and Γ � u : U ′ϕ. Since
Tϕ↓= (x : Uϕ)V ϕ, we have Tϕ �= � and Γ � Tϕ : s. By subject reduction,
Γ � (x : Uϕ)V ϕ : s. Hence, by (sub), Γ � t : (x : Uϕ)V ϕ. By Lemma 3,
S(C) = S(U ′↓, U) and U ′↓ϕ ≤s Uϕ. Since Γ � Uϕ : s′, by (sub), Γ � u : Uϕ.
Therefore, by (app), Γ � tu : V ϕ{x  → u} and Γ � tu : V ϕρY{x  → u} since
V(u) = ∅. )*

Theorem 3 (Completeness and minimality). If Γ is an ∞-environment, t
is an ∞-term and Γ � t : T , then there are T ′ and ψ such that Γ �Ya t : T ′ and
T ′ψ ≤ T .

Proof. By induction on �. We only detail some cases.
(symb) Take T ′ = τfρY and ψ = ρ−1

Y ϕ.

(app) By induction hypothesis, there exist T , ψ1, U ′ and ψ2 such that Γ �Ya
t : T , Tψ1 ≤ (x : U)V , Γ �Y∪V(T )

a u : U ′ and U ′ψ2 ≤ U . By Lemma 2,
V(U ′) ∩ V(T ) = ∅. Thus, dom(ψ1) ∩ dom(ψ2) = ∅. So, let ψ = ψ1 ' ψ2. By
Lemma 1, T↓ψ ≤s (x : U↓)V ↓. Thus, T↓ = (x : U1)V1, U↓ ≤ U1ψ and V1ψ ≤
V ↓. Since U ′ψ ≤ U and U↓ ≤ U1ψ, we have U ′↓ ψ ≤ U1ψ and, by Lemma 1,
U ′↓ ψ ≤s U1ψ. Thus, ψ ∈ S(U ′↓, U1). By Lemma 3, S(U ′↓, U1) = S(C) with
C = C(U ′↓, U1). Thus, S(C) �= ∅ and there exists ϕ = mgs(C). Hence, Γ �Ya
tu : V1ϕρYθ where θ = {x  → u}. We are left to prove that there exists ϕ′ such
that V1ϕρYθϕ

′ ≤ V θ. Since ϕ = mgs(C), there exists ψ′ such that ϕψ′ ≤A ψ.
So, let ϕ′ = ρ−1

Y ψ′. Since V(u) = ∅, θ commutes with size substitutions. Since
V1ψ ≤ V ↓ ≤ V , by Lemma 2, V1ϕρYθϕ

′ = V1ϕψ
′θ ≤ V1ψθ ≤ V θ. )*

Theorem 4 (Decidability of type-checking). Let Γ be an ∞-environment,
t be an ∞-term and T be a type such that Γ � T : s. Then, the problem of
knowing whether there is ψ such that Γ � t : Tψ is decidable.

Proof. The decision procedure consists in (1) trying to compute the type T ′

such that Γ �Ya t : T ′ by taking Y = V(T ), and (2) trying to compute ψ =
mgs(C(T ′, T )). Every step is decidable.

We prove its correctness. Assume that Γ �Ya t : T ′, Y = V(T ) and ψ =
mgs(C(T ′, T )). Then, T ′ψ ≤ Tψ and, by Theorem 2, Γ � t : T ′. By Lemma 1,
Γ � t : T ′ψ. Thus, by (sub), Γ � t : Tψ.

We now prove its completeness. Assume that there is ψ such that Γ � t : Tψ.
Let Y = V(T ). Since Γ is valid and V(Γ ) = ∅, by Theorem 3, there are T ′ and
ϕ such that Γ �Ya t : T ′ and T ′ϕ ≤ Tψ. This means that the decision procedure
cannot fail (ψ ' ϕ ∈ S(T ′, T )). )*
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4 Solving Constraints

In this section, we prove that the satisfiability of constraint problems is decidable,
and that a satisfiable problem has a smallest solution. The proof is organized
as follows. First, we introduce simplification rules for equalities similar to usual
unification procedures (Lemma 4). Second, we introduce simplification rules for
inequalities (Lemma 5). From that, we can deduce some general result on the
form of solutions (Lemma 7). We then prove that a conjunction of inequalities has
always a linear solution (Lemma 8). Then, by using linear algebra techniques,
we prove that a satisfiable inequality problem has always a smallest solution
(Lemma 11). Finally, all these results are combined in Theorem 5 for proving
the assumptions of Section 3.

Let a state S be ⊥ or a triplet E|E ′|C where E and E ′ are conjunctions of
equalities and C a conjunction of inequalities. Let S(⊥) = ∅ and S(E|E ′|C) =
S(E ∧ E ′ ∧ C) be the solutions of a state. A conjunction of equalities E is in
solved form if it is of the form α1 = a1 ∧ . . . ∧ αn = an (n ≥ 0) with the
variables αi distinct from one another and V(a) ∩ {α} = ∅. It is identified with
the substitution {α  → a}.

(1) E ∧ sa = sb | E ′ | C � E ∧ a = b | E ′ | C
(2) E ∧ a = a | E ′ | C � E | E ′ | C
(3) E ∧ a = sk+1a | E ′ | C � ⊥
(4) E ∧∞ = sk+1a | E ′ | C � ⊥
(5) E ∧ α = a | E ′ | C � E{α �→a} | E ′{α �→a} ∧ α = a | C{α �→a} if α /∈V(a)

Fig. 6. Simplification rules for equalities

The simplification rules on equalities given in Figure 6 correspond to the usual
simplification rules for first-order unification [18], except that substitutions are
propagated into the inequalities.

Lemma 4. The relation of Figure 6 terminates and preserves solutions: if S1 �
S2 then S(S1) = S(S2). Moreover, any normal form of E|�|C is either ⊥ or of
the form �|E ′|C′ with E ′ in solved form and V(C′) ∩ dom(E ′) = ∅.

We now introduce a notion of graphs due to Pratt [25] that allows us to detect
the variables that are equivalent to ∞. In the following, we use other standard
techniques from graph combinatorics and linear algebra. Note however that we
apply them on symbolic constraints, while they are generally used on numerical
constraints. What we are looking for is substitutions, not numerical solutions.
In particular, we do not have the constant 0 in size expressions (although it
could be added without having to change many things). Yet, for proving that
satisfiable problems have most general solutions, we will use some isomorphism
between symbolic solutions and numerical ones (see Lemma 10).

Definition 2 (Dependency graph). To a conjunction of linear inequalities
C, we associate a graph GC on V(C) as follows. To every constraint spα ≤ sqβ,
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we associate the labeled edge α
p−q−→ β. The cost of a path α1

p1−→ . . .
pk−→ αk+1 is

Σk
i=1pi. A cyclic path (i.e. when αk+1 = α1) is increasing if its cost is > 0.

(1) C ∧ a ≤ sk∞ � C
(2) C ∧ D � C ∧ {∞ ≤ α | α ∈ V(D)} if GD is increasing
(3) C ∧ sk∞ ≤ slα � C{α �→ ∞} ∧∞ ≤ α if α ∈ V(C)

Fig. 7. Simplification rules for inequalities

A conjunction of inequalities C is in reduced form if it is of the form C∞ ∧ C�
with C∞ a conjunction of ∞-inequalities, C� a conjunction of linear inequalities
with no increasing cycle, and V(C∞) ∩ V(C�) = ∅.

Lemma 5. The relation of Figure 7 on inequality problems terminates and pre-
serves solutions. Moreover, any normal form is in reduced form.

Lemma 6. If C is a conjunction of inequalities then S(C) �= ∅. Moreover, if C
is a conjunction of ∞-inequalities then S(C) = {ϕ | ∀α ∈ V(C), αϕ↓= ∞}.

Lemma 7. Assume that E|�|C has normal form �|E ′|C′ by the rules of Figure
6, and C′ has normal form D by the rules of Figure 7. Then, S(E ∧ C) �= ∅,
E ′ = mgs(E) and every ϕ ∈ S(E ∧ C) is of the form E ′(υ ' ψ) with υ ∈ S(D∞)
and ψ ∈ S(D�).

Proof. The fact that, in this case, S(E) �= ∅ and E ′ = mgs(E) is a well known
result on unification [18]. Since S(E ∧ C) = S(E ′ ∧ D), V(E ′) ∩ V(D) = ∅ and
S(D) �= ∅, we have S(E ∧C) �= ∅. Furthermore, every ϕ ∈ S(E ∧C) is of the form
E ′ϕ′ since S(E ′ ∧ D) ⊆ S(E ′). Now, since V(D∞) ∩ V(D�) = ∅, ϕ′ = υ ' ψ with
υ ∈ S(D∞) and ψ ∈ S(D�). )*

Hence, the solutions of a constraint problem can be obtained from the solu-
tions of the equalities, which is a simple first-order unification problem, and from
the solutions of the linear inequalities resulting of the previous simplifications.

In the following, let C be a conjunction of K linear inequalities with no
increasing cycle, and L be the biggest label in absolute value in GC . We first
prove that C has always a linear solution by using Bellman-Ford’s algorithm.

Lemma 8. S�(C) �= ∅.

Proof. Let succ(α) = {β | α
p−→ β ∈ GC} and succ∗ be the reflexive and

transitive closure of succ. Choose γ ∈ Z \ V(C), a set R of vertices in GC such
that succ∗(R) covers GC , and a minimal cost qβ ≥ KL for every β ∈ R. Let
the cost of a vertex αk+1 along a path α1

p1−→ α2
p2−→ . . . αk+1 with α1 ∈ R

be qα1 + Σk
i=1pi. Now, let ωβ be the maximal cost for β along all the possible

paths from a vertex in R. We have ωβ ≥ 0 since there is no increasing cycle.
Hence, for all edge α

p−→ β ∈ GC , we have ωα + p ≤ ωβ. Thus, the substitution
ϕ = {α  → sωαγ | α ∈ V(C)} ∈ S�(C). )*
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We now prove that any solution has a more general linear solution. This
implies that inequality problems are always satisfiable and that the satisfiability
of a constraint problem only depends on its equalities.

Lemma 9. If ϕ ∈ S(C) then there exists ψ ∈ S�(C) such that ψ ≤A ϕ.

We now prove that S�(C) has a smallest element. To this end, assume that
inequalities are ordered and that V(C) = {α1, . . . , αn}. We associate to C an
adjacency-like matrix M = (mi,j) with K lines and n columns, and a vector
v = (vi) of length K as follows. Assume that the i-th inequality of C is of the
form spαj ≤ sqαk. Then, mi,j = 1, mi,k = −1, mi,l = 0 if l /∈ {j, k}, and
vi = q − p. Let P = {z ∈ Qn | Mz ≤ v, z ≥ 0} and P ′ = P ∩ Zn.

To a substitution ϕ ∈ S�(C), we associate the vector zϕ such that zϕi is the
natural number p such that αiϕ = spβ.

To a vector z ∈ P ′, we associate a substitution ϕz as follows. Let {G1, . . . , Gs}
be the connected components of GC . For all i, let ci be the component number
to which αi belongs. Let β1, . . . , βs be variables distinct from one another and
not in V(C). We define αiϕz = sziβci .

We then study the relations between symbolic and numerical solutions.

Lemma 10.
– If ϕ ∈ S�(C) then zϕ ∈ P ′. Furthermore, if ϕ ≤A ϕ′ then zϕ ≤ zϕ

′
.

– If z ∈ P ′ then ϕz ∈ S�(C). Furthermore, if z ≤ z′ then ϕz ≤A ϕz′ .
– zϕz = z and ϕzϕ � ϕ.

Finally, we are left to prove that P ′ has a smallest element. The proof uses
techniques from linear algebra.

Lemma 11. There is a unique z∗ ∈ P ′ such that, for all z ∈ P ′, z∗ ≤ z.

An efficient algorithm for computing the smallest solution of a set of linear
inequalities with at most two variables per inequality can be found in [22]. A
more efficient algorithm can perhaps be obtained by taking into account the
specificities of our problems.

Gathering all the previous results, we get the decidability.

Theorem 5 (Decidability). Let C be a constraint problem. Whether S(C) is
empty or not can be decided in polynomial time w.r.t. the size of equalities in C.
Furthermore, if S(C) �= ∅ then S(C) has a smallest solution that is computable
in polynomial time w.r.t. the size of inequalities.

5 Conclusion and Related Works

In Section 3, we give a general algorithm for type inference with size annotations
based on constraint solving, that does not depend on the size algebra. For having
completeness, we require satisfiable sets of constraints to have a computable most
general solution. In Section 4, we prove that this is the case if the size algebra is
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built from the symbols s and ∞ which, although simple, captures usual inductive
definitions (since then the size corresponds to the number of constructors) and
much more (see the introduction and [6]).

A natural extension would be to add the symbol + in the size algebra, for
typing list concatenation in a more precise way for instance. We think that the
techniques used in the present work can cope with this extension. However, with-
out restrictions on symbol types, one may get constraints like 1 ≤ α+β and loose
the unicity of the smallest solution. We think that simple and general restric-
tions can be found to avoid such constraints to appear. Now, if symbols like ×
are added to the size algebra, then we lose linearity and need more sophisticated
mathematical tools.

The point is that, because we consider dependent types and subtyping, we are
not only interested in satisfiability but also in minimality and unicity, in order
to have completeness of type inference [12]. There exist many works on type
inference and constraint solving. We only mention some that we found more or
less close to ours: Zenger’s indexed types [30], Xi’s Dependent1 ML [28], Odersky
et al ’s ML with constrained types [24], Abel’s sized types [1], and Barthe et al ’s
staged types [4]. We note the following differences:

Terms. Except [4], the previously cited works consider λ-terms à la Curry,
i.e. without types in λ-abstractions. Instead, we consider λ-terms à la Church,
i.e. with types in λ-abstractions. Note that type inference with λ-terms à la
Curry and polymorphic or dependent types is not decidable. Furthermore, they
all consider functions defined by fixpoint and matching on constructors. Instead,
we consider functions defined by rewrite rules with matching both on constructor
and defined symbols (e.g. associativity and distributivity rules).

Types. If we disregard constraints attached to types, they consider simple or
polymorphic types, and we consider fully polymorphic and dependent types.
Now, our data type constructors carry no constraints: constraints only come up
from type inference. On the other hand, the constructors of Zenger’s indexed
data types must satisfy polynomial equations, and Xi’s index variables can be
assigned boolean propositions that must be satisfiable in some given model (e.g.
Presburger arithmetic). Explicit constraints allow a more precise typing and
more function definitions to be accepted. For instance (see [6]), in order for
quicksort to have type listα ⇒ listα, we need the auxiliary pivot function to have
type nat∞ ⇒ listα ⇒ listβ×listγ with the constraint α = β+γ. And, if quicksort
has type list∞ ⇒ list∞ then a rule like f (cons x l) → g x (f (quicksort l)) is
rejected since (quicksort l) cannot be proved to be smaller than (cons x l). The
same holds in [1, 4].

Constraints. In contrast with Xi and Odersky et al who consider the constraint
system as a parameter, giving DML(C) and HM(X) respectively, we consider a
fixed constraint system, namely the one introduced in [3]. It is close to the
one considered by Abel whose size algebra does not have ∞ but whose types
have explicit bounded quantifications. Inductive types are indeed interpreted
1 By “dependent”, Xi means constrained types, not full dependent types.
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in the same way. We already mentioned also that Zenger considers polynomial
equations. However, his equivalence on types is defined in such a way that, for
instance, listα is equivalent to list2α, which is not very natural. So, the next
step in our work would be to consider explicit constraints from an abstract
constraint system. By doing so, Odersky et al get general results on the com-
pleteness of inference. Sulzmann [26] gets more general results by switching to
a fully constrained-based approach. In this approach, completeness is achieved
if every constraint can be represented by a type. With term-based inference and
dependent types, which is our case, completeness requires minimality which is
not always possible [12].

Constraint Solving. In [4], Barthe et al consider system F with ML-like defi-
nitions and the same size annotations. Since they have no dependent type, they
only have inequality constraints. They also use dependancy graphs for eliminat-
ing ∞, and give a specific algorithm for finding the most general solution. But
they do not study the relations between linear constraints and linear program-
ming. So, their algorithm is less efficient than [22], and cannot be extended to
size annotations like a + b, for typing addition or concatenation.

Inference of Size Annotations. As already mentioned in the introduction,
we do not infer size annotations for function symbols like [4, 13]. We just check
that function definitions are valid wrt size annotations, and that they preserve
termination. However, finding annotations that satisfy these conditions can easily
be expressed as a constraint problem. Thus, the techniques used in this paper
can certainly be extended for inferring size annotations too. For instance, if we
take − : natα⇒natβ⇒natX , the rules of − given in the introduction are valid
whenever 0 ≤ X , α ≤ X and X ≤ X , and the most general solution of this
constraint problem is X = α.
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Abstract. In proof systems like Coq [16], proof-checking involves com-
paring types modulo β-conversion, which is potentially a time-consuming
task. Significant speed-ups are achieved by compiling proof terms, see [9].
Since compilation erases some type information, we have to show that
convertibility is preserved by type erasure. This article shows the equiv-
alence of the Calculus of Inductive Constructions (formalism of Coq)
and its domain-free version where parameters of inductive types are also
erased. It generalizes and strengthens significantly a similar result by
Barthe and Sørensen [5] on the class of functional Domain-free Pure
Type Systems.

1 Introduction

In proof systems based on the Curry-Howard isomorphism, proof-checking boils
down to type-checking in a system with dependent types. Such systems usually
include a conversion rule of the form:

Γ � t : τ τ (β τ ′

Γ � t : τ ′
[conv]

where (β stands for β-convertibility. This rule can be used to make complex
computation. Examples of that usage include reflection tactics [6] in Coq and
the proof of the four-colors theorem. This conversion rule is generally imple-
mented in a purely interpretative way1, because it is a hard task to perform
strong β-reduction (reduction occurs also under binders) in a compiled setting.
In [9] Grégoire and Leroy show how to strongly normalize and how to decide
β-equivalence on terms, by compiling proof-terms towards an abstract machine
(a slightly modified version of OCaml’s ZAM) and analyzing computed values
with a readback procedure.

This scheme raises a problem: compilation has the effect of erasing type anno-
tations (used to ensure the decidability of type checking and so the impossibility

1 By interpretative, we mean algorithms that perform the conversion test by explicitly
manipulating proof terms represented as trees.
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of runtime error). So, while conversion is defined over Church-style terms (ab-
stractions carry a type annotation λx :τ. t), the abstract machine based version
of conversion works on Curry-style terms (λx. t, also called domain-free terms).
The correctness of such compilation scheme with respect to the original formal-
ism relies on a general issue of proving the equivalence of a given type system
with its domain-free counterpart. This problem has already been studied in the
case of Pure Type Systems [2] (PTS, Church-style) and their domain-free ver-
sion, the Domain-Free Pure Type System [5] (DFPTS) by Barthe and Sørensen.
The authors prove an equivalence theorem under the assumption that the sys-
tem is normalizing (so we can reason on normal terms) and functional. The
latter condition is used to ensure type uniqueness. Earlier, Streicher [15] proved
this result for Calculus of Constructions, still based on normalization and type
uniqueness.

Our paper enhances previous work in two ways. Firstly, we extend the results
of [5] to a richer class of systems that feature cumulativity2 and inductive types.
A notable point of our notion of type erasure is that we erase parameters of
constructors3, since they do not participate in the computation. Our results
apply to the Calculus of Inductive Constructions (CIC), and yield an efficient
sound and complete convertibility test for Coq.

Secondly, our results do not rely on type uniqueness, which does not hold
any more due to subtyping (even without subtyping, type uniqueness does not
hold for any PTS). Instead, we introduce an equivalence on types to recover a
loose notion of type uniqueness.

This equivalence theorem also has consequences on implementation. Many
proof systems prefer to use Church-style λ-terms, in particular because type
inference is decidable under simple conditions and it is often easier to build a set
theoretic model of those formalisms. On the other hand, Curry-style terms reflect
the computational behavior of λ-terms better. This is related to the fact that
pure λ-calculus is the execution model of the core of many functional languages.
But type inference is generally not decidable, and type checking fails on non-
normal terms. The equivalence theorem shows that we can have a system with
good properties such as type decidability, and compare terms as Curry-style
terms, allowing compilation techniques. Regarding inductive types, parameters
can be erased in constructors, which leads to the same representation as in a
compiled language like OCaml [10].

We prove the equivalence between a type annotated system where conversion
compares type decorations (we call it β) and a second type system (we call it
ε) where annotations are in the syntax but conversion ignores them. Then it is
trivial to define a third system (the domain free version) where type decorations
are not in the syntax and then prove the equivalence with the system ε. This
way, we separate the problems of changing the term representation and that of
actually changing the conversion.

2 Cumulativity is a simple notion of subtyping that reduce need to duplicate definition
across the various universes of the PTS.

3 For instance, the first argument of the ternary constructor of lists cons : ∀α, α →
list α→ list α can be erased.
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For explanatory purposes, we will distinguish the strengthening of Barthe’s
and Sørensen’s result (removing the functionality hypothesis) and the extension
to a broader class of systems. Section 2 introduces Cumulative Type Systems
(CTS), which are PTS with cumulativity and an abstract notion of conversion.
Then, we briefly give metatheoretical properties of CTS. Section 3 shows how
both ω and ε systems can be represented by instantiating this abstract conver-
sion in two ways. It ends by proving Preservation of Equational Theory (PET),
Preservation of Subtyping (PS) and Preservation of Typing (PT) between both
systems. These properties simply state that conversion, subtyping and typing
are equivalent notions. Then, we will extend these results to inductive types
(Sect. 4) and conclude.

2 A Generic Version of Cumulative Type Systems (CTS)

Pure Type Systems (PTS, [2]) are a generalization of several type systems such
as simply typed λ-calculus, system F , Calculus of Constructions, etc. Since some
systems have dependent types (type parameterized by expressions or programs),
they use the same syntax for terms and types and types are also subject to a
type discipline.

2.1 Syntax of Terms
As for PTS, Cumulative Type Systems [3] are generated from specifications. To
the three parameters of the PTS, we add two extra parameters. The first one
≺ allows subtyping over sorts: if s1 ≺ s2, then any type of s1 is also a type of
s2, without any explicit coercion. This is called cumulativity. The second extra
parameter (, called conversion, is a relation between types indicating which
types are identified. In the rest of this paper we will instantiate this parameter
with different relations. This follows the same idea as in [12, 14].

Let us make this more precise by simultaneously defining the syntax of terms
(T ) and specifications of CTS (S). Let V be an infinite set of variables.

Definition 1 (term and specification).
A specification is a tuple S = (S ,A ,R,≺,() where
– S is a set of sorts.
– A ⊆ S × S is a set of axioms.
– R ⊆ S × S × S is a set of rules
– ≺⊆ S × S is an inclusion relation between sorts.
– (⊆ T ×T is an equivalence relation between terms. It should be a congru-

ence: ∀x,M,N,N ′. N ( N ′ ⇒ M{x←N} ( M{x←N ′}
The set T of expressions (over S) is given by the abstract syntax :

T ::= V | S | ΠV :T .T | λV :T .T | T T

We use t, A,B,M,N, T, U, V , etc. to denote elements of T ; x, y, z, etc. to denote
elements of V ; s, s′, etc. to denote elements of S . The substitution of variable x
for a term N in M will be written M{x←N}. As usual, we consider β-reduction
on terms, written →. We write ∗→ its reflexive and transitive closure, and (β

the smallest equivalence relation including → (β-conversion). PTS are a special
case of CTS where ≺ is ∅ and ( is β-conversion.
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2.2 Cumulativity

As already stated, cumulativity introduces some kind of subtyping. Let us now
define the subtyping relation induced by our CTS parameters:

Definition 2 (cumulativity). The one step subtyping relation , over an
equivalence relation ( and an inclusion relation between sorts ≺ is given by
the rules below.

T ( U

T , U

s1 ≺∗ s2

s1 , s2

T ( T ′ U , U ′

Πx :T . U , Πx :T ′. U ′

This relation is also named cumulativity. We write ,S to refer to the equivalence
relation and the inclusion relation between sorts of S. When ≺ is fixed, we use
the notation ,� or just , if ( is clear from the context.

Note that following Luo’s Extended Calculus of Constructions [11], the sub-
typing relation is not contravariant w.r.t. the domain of functions (the domains
of a function type and its subtype are convertible). Contravariance is rejected
because it would invalidate our proof as we shall in section 3.3.

At that point, we define several properties of relations related to abstract
rewriting systems.

Definition 3 (commutation, reducibility). Let R1, R2 be two binary rela-
tions.
• R1, R2 commute, written (R1, R2) ∈ C, iff

∀x, x1, x2. x R1 x1 ∧ x R2 x2 ⇒ ∃y. x2 R1 y ∧ x1 R2 y

• R1 is reducible to R2 modulo β-reduction, written R1 ∈ RR2 , iff

∀t, u. t R1 u ⇒ ∃t′, u′. t ∗→ t′ ∧ u
∗→ u′ ∧ t′ R2 u′

Lemma 1. For any equivalence relation R, cumulativity preserves commutation
with β-reduction

(R,
∗→) ∈ C ⇒ (,R,

∗→) ∧ (,−1
R ,

∗→) ∈ C

Lemma 2. Cumulativity preserves reducibility to any equivalence relation com-
muting with β-reduction:

(R2,
∗→) ∈ C ∧ R1 ∈ RR2 ⇒ ,∗R1

∈ R�∗
R2

Proof: See appendix A.

2.3 Typing

Definition 4 (Typing judgment). Let S be the specification (S ,A ,R,≺,()

– A context is a list: Γ ::= [] | Γ ; (x :T )
(x :T ) denotes a local declaration of a variable x of type T .
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WF ([])
[WE]

Γ � T : s s ∈ S

WF (Γ ; (x :T ))
[WS− LOCAL]

WF (Γ ) (s1, s2) ∈ A

Γ � s1 : s2
[SORT]

WF (Γ ) (x :T ) ∈ Γ

Γ � x : T
[VAR]

Γ � T : s1 Γ ; (x :T ) � U : s2 (s1, s2, s3) ∈ R

Γ � Πx :T. U : s3
[PROD]

Γ � Πx :T. U : s Γ ; (x :T ) � M : U

Γ � λx :T. M : Πx :T. U
[LAM]

Γ � M : Πx :T. U Γ � N : T

Γ � M N : U{x←N} [APP]

Γ � M : T Γ � U : s T �∗ U

Γ � M : U
[CONV]

Γ � M : T T �∗ s

Γ � M : s
[CONVs]

Fig. 1. Typing rules for CTS

– The typing relation � is given by the rules in Fig. 1. There is also a judgment
WF () to mean that a context is well formed. Both two judgments are simul-
taneously defined by mutual induction. We occasionally write �S to explicit
the dependency with the specification S.

The rules are the same as for PTS except that in our CTS, CONV should
rather be seen as a subsumption rule, and CONVs is necessary when cumulativity
is used towards a non-typable sort.

Figure 2 lists the fundamental meta-theoretical properties of CTS. They
are easy generalizations of PTS’s properties. First equation expresses that type
derivations of CTS are preserved by substitution. The second one shows that
typing is preserved by well-typed context narrowing. Equation (3), that a type
is a sort or typable by a sort. Then we have the well-known subject reduction
property. The last one is the inversion lemma. We will not give their proofs since
they have been formally checked using Coq in [3]4.

Later on, we will study the relation between different CTS which differ on
the inclusion between sorts and conversion. We say that S1 is included in S2 if
they are included component-wise. In that case ,S1⊆,S2 and �S1⊆�S2. Put it
in another way, subtyping and typing are monotonic w.r.t. the specification.

3 β-Conversion and Conversion Modulo
Type Annotations

Now we have this general framework of CTS, we can instantiate it with the
parameters corresponding to the considered logical formalisms. For the rest of
this paper we suppose that S ,A ,R and ≺ are fixed. In the case of typeful
systems, terms are identified modulo β:

4 The complete source of that formalization is available online at http://logical.

inria.fr/∼barras/pts proofs/PTS/main.html. All subsequent URLs will be rela-
tive to http://logical.inria.fr/∼barras/pts proofs/PTS/.
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Substitution Γ � N : T ∧ Γ ; (x :T ) � M : U ⇒ Γ � M{x←N} : U{x←N} (1)
Metatheory.html#substitution

Context conversion Γ � M : T ∧ Δ �∗ Γ ⇒ Δ � M : T (2)
Metatheory.html#subtype in env

Correctness of types Γ � A : B ⇒ B ∈ S ∨ ∃s ∈ S . Γ � B : s (3)
Metatheory.html#type correctness

Subject reduction Γ � t : T ∧ t
∗→ t′ ⇒ Γ � t′ : T (4)

LambdaSound.html#beta sound

Inversion lemmas
Γ � s1 : T ⇒ ∃s2. (s1, s2) ∈ A ∧ s2 �∗ T
Γ � x : T ⇒ ∃T ′. (x :T ′) ∈ Γ ∧ T ′ �∗ T

Γ � λx :A. M : T ⇒ ∃B, s. Γ ; (x :A) � M : B ∧ Γ � Πx :A. B : s ∧Πx :A. B �∗ T
Γ � M N : T ⇒ ∃A, B. Γ � M : Πx :A. B ∧ Γ � N : A ∧B{x←N} �∗ T

Γ � Πx :A. B : T ⇒ ∃(s1, s2, s3) ∈ R. Γ � A : s1 ∧ Γ ; (x :A) � B : s2 ∧ s3 �∗ T
Metatheory.html#inversion lemma

Fig. 2. Meta-theoretical properties of CTS

Definition 5 (specification β). Since β-conversion is a congruence, we can
build a CTS upon it. Let β be the specification (S ,A ,R,≺,(β).

Lemma 3. ,∗β is reducible to ,=.
Proof: Since ,= is transitive, we only have to show ,∗β ∈ R�∗

=
, which

is a consequence of Lemma 2 and the well known Church-Rosser property of
β-conversion.

3.1 ε-Conversion

To define the notion of convertibility that do not take type annotations into
account we first define equality modulo type annotation. It captures the essence
of domain-free conversion but within a type-carrying syntax.

Definition 6 (ε-equality, ε-convertibility). Two terms are ε-equal if they are
equal modulo type annotations. We write =ε this equality. ε-convertibility is the
smallest equivalence relation including ε-equality and β-reduction. We write (ε

this relation.

x =ε x s =ε s

T =ε T
′ U =ε U

′

T U =ε T
′ U ′

T =ε T
′

λx :A. T =ε λx :A′. T ′

T =ε T
′ U =ε U

′

Πx :T . U =ε Πx :T ′. U ′
T =ε U

T (ε U

T (ε U U → V

T (ε V

T (ε U V → U

T (ε V

Definition 7. It is trivial to see that ε-equality and (ε are equivalence relations
and congruences. Let ε be the specification (S ,A ,R,≺,(ε).

This conversion enjoys reducibility results similar to β:
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Lemma 4. (ε is reducible to =ε and ,∗ε is reducible to ,=ε .
Proof: First prove (=ε,

∗→) ∈ C and using the confluence of β-reduction, we
extend the result to (ε. For the second statement, we prove ,∗ε∈ R�∗

=ε
using

Lemma 2, and remark that ,=ε is reflexive and transitive.

3.2 Uniqueness of Types

It is well known that any functional PTS (a PTS where A and R are functional
relations) enjoys the type uniqueness property:

Γ � M : T ∧ Γ � M : T ′ ⇒ T (β T ′

This has been already formally proved in Lego by Pollack [14]. Unfortunately,
non trivial subtyping (including cumulativity) breaks this property. Let alone
CTS, the property does not hold for non functional PTS, which include the
well-known (and useful) Calculus of Constructions with universes.

However, we can remark that we only need type uniqueness regarding the
domain types of functions. This relaxed uniqueness notion holds for CTS because
subtyping can occur only on sorts in the codomain (as Luo already noticed for
the Extended Calculus of Constructions [11]). This uniqueness of domain types
is formalized by a relation ≈β which ensures convertibility of domain types, but
allows any change of sort in the codomain. It reuses Definition 2.

Definition 8. We write ≈β the reflexive and transitive closure of the cumula-
tivity relation derived from (β and S × S , and ≈= the cumulativity relation
derived from S × S and =. We say that t1 is close to t2 if t1 ≈β t2.

The important facts are ≈β is an equivalence relation, ≈= is transitive and
≈β is reducible to ≈= (Lemma 2).

Lemma 5 (type uniqueness modulo ≈β). Specification β has type unique-
ness modulo ≈β:

Γ �β t : T ∧ Γ �β t : T ′ ⇒ T ≈β T ′

Proof: by induction on Γ �β t : T , then inversion on Γ �β t : T ′. In all cases,
we use the fact that ,∗β⊂≈β (by monotonicity) and that ≈β is a symmetric and
transitive relation. Application case uses the fact that Πx :T . U ≈β Πx :T ′. U ′ ⇒
T (β T ′ ∧ U ≈β U.

3.3 Equivalence of ε and β

Proving Γ �β t : T ⇒ Γ �ε t : T is trivial by monotonicity of typing. The
converse is more difficult to derive. The first idea is to proceed by induction on
the typing judgment. The only difficulty is with the conversion rules. It is of
course false that ,∗ε is included in ,∗β , even for well typed terms: take λx :A. x :
A → A and λx :B. x : B → B. So we have to do some induction loading.
We can remark that if we compare only objects of same type, then we would
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necessarily have A (β B (note that it would not be the case if cumulativity
was contravariant w.r.t. the domain of functions). In order to have the weakest
invariant we only assume that their types are close. But this invariant has to
propagate to subterms. Consider c : C and

(λf :A → A. c) (λx :A. x) (λf :B → B. c) (λx :B. x).

Both terms have type C, but not their subterms: arguments respectively have
type A → A and B → B. This example shows that β-redexes break the proposed
invariant. If we assume our terms are in normal form, λ-abstractions are found
only as argument of a variable. Since two ε-equal variables are equal, domain
type uniqueness can establish the invariant that ε-convertible abstraction are
compared only when we know their types are convertible, hence close. So, we
can prove:

Lemma 6.
Γ �β t : T Γ �β t′ : T ′

t =ε t
′ t, t′ ∈ NF

t �∈ λ ∨ T ≈β T ′

⎫⎬⎭⇒ t = t′

where λ is the set of lambda abstraction terms.
Proof: by induction on t, inversion of hypotheses t =ε t′, Γ �β t : T and
Γ �β t′ : T ′. We do only the interesting cases.
– Cases for sorts, variables and products are trivial.
– Case t = λx :A.M we have t′ = λx :A′.M ′; A,M,A′,M ′ ∈ NF ; M =ε M

′.
Inversion of type judgments yields:
Γ �β Πx :A.B : s; Γ ; (x :A) �β M : B;
Γ �β Πx :A′. B′ : s′; Γ ; (x :A′) �β M ′ : B′;
Πx :A.B ,∗β T Πx :A′. B′ ,∗β T ′

Thanks to last premise, we get Πx :A.B ≈β Πx :A′. B′, so A (β A′ and
B ≈β B′. Since A,A′ are in normal form, they are equal (Lemma 3). Equality
of bodies holds using the induction hypothesis.

– Case t = M N and t′ = M ′ N ′; inversion of type judgments yields: Γ �β M :
Πx :A.B; Γ �β N : A; Γ �β M ′ : Πx :A′. B′; Γ �β N ′ : A′

Since t ∈ NF , M is not an abstraction, so by induction hypothesis M = M ′.
By uniqueness of type (Lemma 5) Πx :A.B ≈β Πx :A′. B′ so A (β A′.
Equality of arguments holds using the induction hypothesis.

The invariant is weaker than in Barthe and Sørensen [5], and leads to a
simpler proof.

Theorem 1 (PET ε w.r.t. β). If specification β is normalizing, Γ �β M : T
and Γ �β M ′ : T ,

M (β M ′ ⇔ M (ε M
′

Proof: M (β M ′ ⇒ M (ε M
′ holds by monotonicity. Now assume M (ε M

′.
Since specification β is normalizing, M (resp. M ′) has a normal form N (resp.
N ′) which has type T by subject reduction. We have N (ε N

′ and also N =ε N
′

by reducibility. (Lemma 4). Lemma 6 proves N = N ′, so M (β M ′.
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In fact, we can replace the two premises of this theorem by Γ �β M : T and
Γ �β M ′ : T ′ and T ≈β T ′. We only need T ≈β T ′ to apply Lemma 6.

We extend Lemma 6 to the cumulative subtyping relation:

Lemma 7.
Γ �β t : T Γ �β t′ : T ′

t ,=ε t′ t, t′ ∈ NF
t �∈ λ ∨ T ≈β T ′

⎫⎬⎭⇒ t ,= t′

Proof: By induction over t ,=ε t′. Obviously we use Lemma 6.

Corollary 1 (PS ε w.r.t. β). If specification β is normalizing, Γ �β T : s and
Γ �β U : s′, then

T ,∗ε U ⇔ T ,∗β U

Note that the normalization hypothesis is required for the same reason as for
Theorem 1.

Lemma 8. If specification β is normalizing then
Γ �ε t : T ⇒ Γ �β t : T and WFε(Γ ) ⇒ WFβ(Γ )

Proof: by mutual induction over Γ �ε t : T , all cases are trivial but (CONV)
and (CONVs).

– Case of (CONVs): by induction hypothesis Γ �β t : T . Reducibility property
(Lemma 4) yields T

∗→ T ′ ,=ε s, so by inversion T
∗→ T ′ = s′ ≺ s, we

conclude T ,∗β s
– Case of (CONV): by induction hypothesis we get Γ �β t : T and Γ �β U : s.

By correctness of type, either T is a sort s1 and by an argument similar
to (CONVs) we prove s1 ≺ s′

∗← U and conclude, or there exists a sort s′

such that Γ �β T : s′. Preservation of subtyping entails T ,∗β U and we can
conclude.

Theorem 2 (PT ε w.r.t. β). If specification β is normalizing then

Γ �ε t : T ⇔ Γ �β t : T

4 Extension to Calculus of Inductive Constructions

The goal of this section is to extend preservation of typing results about CTS to
the Calculus of Inductive Constructions (CIC). The extra features are inductive
types, which are a generalisation of ML’s datatypes. To be precise, CIC is not
parameterized by a sort hierarchy, but since the latter has very few impact on the
syntactic metatheory, we do not define it, but rather use it abstractly. See [16]
for a precise definition.

The proof follows exactly the same steps, so we will only mention places
where there are additional cases. Since we still consider conversion as a param-
eter we will be able to share many properties between the usual CIC and its ε
counterpart. Let us first define the syntax, reduction rules and typing rules of
this common core.
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4.1 Syntax of CIC

Inductive types allow to build (well founded) data structures with variants using
constructors. It is also possible to analyze variants and access constructors argu-
ments by shallow pattern-matching. Finally, there is a facility to build recursive
functions (fixpoints). Some care is needed not to break the logical consistency of
the formalism.

Definition 9 (Terms and specifications of CIC). Let I be a set of names.
We extend expressions with inductive constructions:

Terms : T ::= . . . | I | Ci
I (T ,T ) | 〈T 〉case T of

−−−−−→
V ⇒ T | fixn(V :T := T )

We use I to denote elements of I . Notation X denotes a vector of X (#(v)
is the length of v).

Specifications have a sixth field Elim ⊆ I × S that controls the range of
pattern-matching for each inductive type.

Set I is the set of names of inductive types (e.g. list, prod, etc.). Construc-
tors are not identified by name, but by a couple formed of the inductive type it
belongs to, and a number identifying which variant it builds: Ci

I(p,a) is the i-th
constructor of inductive type I. Since they represent datastructures, we enforce
that they are always fully applied to arguments (a). Vector p is the value of
the parameters, they can be thought of as the explicit instantiation of polymor-
phic parameters of ML datatypes. They are syntactically separated from “real
arguments” for convenience. A built-in case construct allows shallow pattern-
matching on terms of inductive types, in the construction 〈P 〉case M of

−−−→
x ⇒ b,

M is the term to destruct, xi are bounded variables for each branch bi, and
denote the arguments of the i-th constructor. P is called a predicate and is here
only to ensure decidability of type-checking in the case of dependent elimination.
This will be explained later on.

The reduction rule for case construct allows to select the branch correspond-
ing to the constructor of an object. If the latter is a constructor then a reduction
can occur:

〈P 〉case Ci
I(p,a) of

−−−→
x ⇒ t → ti{xi←a} if #(xi) = #(a)

where t{x←a} is the parallel substitution of terms a for variables x in t.
Note that P, I and p do not participate in the reduction, so they would be

erased at compile-time. We will show that I and p can be erased, but not P .
Finally, the calculus supports recursive functions via guarded fixpoints

fixn(f :T := M)

T represents the type of the fixpoint, M its body; f is the name of the vari-
able used in M to make recursive calls, and n is the position of the recur-
sive argument. The usual reduction rule for fixpoints is F → M{f ← F} for
F = fixn(f :T := M), but such definition instantly breaks strong normalization.
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To avoid infinite unrolling of the fixpoint, reduction is allowed only when the n-
th argument is in constructor form. This guard associated to a typing condition
that ensures that M makes a structural recursion over its n-th argument will
preserve normalization. The guarded reduction is

F t → (M{f←F}) t if #(t) = n ∧ tn = Ci
I(p,a) ∧ F = fixn(f :T := M)

Here we can also remark that T does not participate in the reduction, but as for
the case predicate, type of fixpoints will not be erasable.

4.2 Typing

Before defining the typing rules of the inductive constructions, we introduce a
new judgment Γ � T @ u # A to type-check n-ary applications . It should read:
in context Γ , an expression of type T can be applied to arguments u, and this
application has return type A.

In traditional presentation of CIC, typing rules are configured by a signature
Σ which contains declarations of inductive types, that is a family name I with
his type and a type for each constructor of I.

Definition 10 (signature).

Σ ::= [] | Σ; Ind(I[Δp] : ΠΔa. s :=
−−−−−−−−−−−−−−→
ΠΔi. I Dom(Δp) ti)

Context Δp declares the parameters of the inductive definition. They are
global to the definition and constructor can refer to them. Context Δa is the
type of “real” arguments of I. s is the sort where the inductive objects lie. Then
for each constructor, Δi gives the type of arguments of the i-th constructor. The
inductive name I may appear in Δi. Finally, ti defines which instance of the
“real” arguments of I the constructor builds.

The same way contexts are subject to a typing judgment WF (), there is a
judgment to check that inductive declarations are well-formed. It includes type-
checking of the various components of the declaration and a syntactic criterion
called positivity to ensure strong normalization and consistency, but its exact
definition does not matter here. See [13] for details.

Definition 11 (typing of CIC). Typing rules for CTS are extended with the
new rule defined in Fig. 3.

Rule (IND) is like that of variables. Rule (CONSTR) is a combination of
a variable rule (i-th constructor has type ΠΔp. Ti) and n-ary application (we
do as if it was applied to pa). The side condition ensures that parameters and
arguments are splitted correctly. Rule (FIX) is as usual except there is a side
condition (Guarded) that ensures that the fixpoint proceeds by structural in-
duction over its n-th argument. It is a syntactic criterion we will not detail here.

Rule (CASE) is the most complicated. Because of dependent types, branches
may have different types. The type of the i-th branch is equal to P instanti-
ated with the particular instance of the i-th constructor. And the type of the
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WF (Γ )

Γ � A @ [] � A
[VNIL]

Γ � t : T Γ � U{x← t} @ u � A

Γ � Πx :T. U @ tu � A
[VCONS]

WF (Γ )

Ind(I [Δp] : A :=
−→
T ) ∈ Σ

Γ � I : ΠΔp. A
[IND]

Ind(I [Δp] : A :=
−→
T ) ∈ Σ

#(Δp) = #(p)
Γ � ΠΔp. Ti @ pa � I p u

Γ � Ci
I(p, a) : I p u

[CONSTR]

Ind(I [Δp] : ΠΔa. s :=
−−−−−−−−−−−−−−→
ΠΔi. I Dom(Δp) ti) ∈ Σ Γ � M : I p a

Elim(I, s′) ∀i. xi = Dom(Δi)

Γ � P : ΠΔa{Dom(Δp)←p}. Πx :I p Dom(Δa). s′

∀i. ΓΔi{Dom(Δp)←p} � bi : P ti{Dom(Δp)←p} Ci
I(p, xi)

Γ � 〈P 〉case M of
−−−→
x⇒ b : P a M

[CASE]

Γ ; (f :T ) � M : T Guarded(fixn(f :T := M))

Γ � fixn(f :T := M) : T
[FIX]

Fig. 3. New Typing rules for CIC

expression is P instantiated with the instance of the matched term (M). Side
condition Elim(I, s′) is used to restrict the class of objects that can be built
by pattern-matching. It may be necessary to be restricitve to avoid paradoxes.
However, its definition is not relevent to our purposes.

The metatheory of CIC has been studied by various authors. It was first
introduced by Paulin [13]. Substitution lemma, type correctness, subject reduc-
tion and type uniqueness also hold. Inversion lemma has to be extended to the
case of the inductive constructions. We do not define it here but it always follow
the same scheme. In his Ph.D., Barras [3] formalized the syntactic metatheory
(strong normalization excluded) of an alternative presentation of CIC in Coq5.
In particular, CIC enjoys the type uniqueness property modulo ≈β (the proof is
the same as 5).

Hypothesis 1 (strong normalization) CIC is normalizing.

The above hypothesis can be seen either as a claim that CIC is normalizing
(Werner [17] showed the strong normalization of CIC but with a subset of the
sort hierarchy6) or as an assumption on the sort hierarchy for the subsequent
lemmas to hold, if we see CIC as a general framework parameterized like CTSs.

4.3 ε-Equality

For CIC, apart from erasing domain types of functions, ε-equality also ignores
parameters and inductive names of constructors; the only relevant information
5 Of course, Gödel’s second incompleteness theorem shows that if CIC is consistent,

it is not possible to show this consistency within CIC.
6 Yet the trickiest part: it includes non degenerated impredicativity and strong elimi-

nation...
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for constructors are their constructor number and real arguments. As before we
can ensure the equality of the erased part of constructors from the equality of
their types. For instance, 0 and false are convertible and can have the same
representation (their constructor number 0). Moreover, lists (cons nat 0 (nil
nat)) and (cons bool false (nil bool)) are also convertible because their
parameters (here the polymorphic arguments nat and bool) are ignored. This
is what we call Calculus of Inductive Constructions with Implicit Parameters.

In this calculus, the conversion algorithm can safely implement constructors
by a pair formed with a constructor number and a list of real arguments. It
worths mentioning that it corresponds pretty well to how datatypes are compiled
in languages of the ML family.

Definition 12 (ε-equality). We extend ε-equality and ε-convertibility (Def. 6)
with the following rules:

I =ε I

P =ε P
′ M =ε M

′ ∀i, xi = x′
i ti =ε t

′
i

〈P 〉case M of
−−−→
x ⇒ t =ε 〈P ′〉case M ′ of

−−−−→
x′ ⇒ t′

i = i′ a =ε a′

Ci
I(p,a) =ε Ci′

I′(p′,a′)

T =ε T
′ M =ε M

′

fixn(f :T := M) =ε fixn(f :T ′ := M ′)

Remark that we do not erase type information of fixpoints and cases. This
is because it breaks Preservation of Equational Theory. For example terms

fix2(f : (B→B)→A→A := λg :B→B. λx :A. x) λx :B. x
fix2(f : (C→C)→A→A := λg :C→C. λx :A. x) λx :C. x

have the same type, are in normal form (they have no second argument), and are
not convertible, but would become equal if we ignore information of fixpoints.
The key point is that guarded fixpoints can behave as a non-reducible β-redex
(when partially applied or when recursive argument is not a constructor). We can
find some similar counter-examples where a non-reducible case blocks a β-redex,
so we cannot ignore case’s predicate.

4.4 Equivalence of CICε w.r.t. CIC

In Sect. 3 the proof relies on the ability to first infer the type of a head term
in normal form and second to verify the convertibility of abstractions with close
types. As a preliminary, we can extend the result of uniqueness of typing. And
as for product, we have a kind of inversion for close inductive types :

I a ≈β I ′ a′ ⇒ I = I ′ ∧ a (β a′

The premise regarding the type constraint is changed since we must know that
the types must be ≈β also in the case of constructors. Firstly regarding ε-equal
normal forms:
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Lemma 9.
Γ �β t : T Γ �β t′ : T ′

t =ε t
′ t, t′ ∈ NF

t �∈ {λ,C} ∨ T ≈β T ′

⎫⎬⎭⇒ t = t′

where C is the set of constructor terms.
Proof: The interesting cases are those for constructors and pattern-matching.
Convertibility of constructors do not imply convertibility of their parameters,
but last premise entails that their types are close (as for abstractions), so they
belong to the same inductive type with the same parameters.

For pattern-matching, we first prove the equality of arguments by induction
hypothesis, which can be neither a constructor (t is in normal form) nor an
abstraction (t is well-typed). By uniqueness of types, their types are close, which
implies that both t and t′ are pattern-matching over the same inductive with
same parameters. So, both predicates have close types. By induction hypothesis,
they are equal. So branches have close types pairwise. Finally we can prove the
equality of branches.

Again, the rest of the proof goes exactly as in Section 3.3, and we can conclude
to the equivalence of both systems:

Theorem 3 (PET,PS,PT for CIC). If specification β is normalizing then

(PET) Γ �β M : T ∧ Γ �β M ′ : T ⇒ M (β M ′ ⇔ M (ε M
′

(PS) Γ �β T : s ∧ Γ �β U : s′ ⇒ T ,∗ε U ⇔ T ,∗β U

(PT) Γ �ε t : T ⇔ Γ �β t : T

It is easy to show that CICε is equivalent to is “the Calculus of Inductive Con-
structions with Implicit Parameters” (defined has CIC where type decorations
and inductive parameters are remove from the syntax).

5 Conclusion and Future Work

We have introduced an (almost) type-free version of the Calculus of Inductive
Constructions. In this new formalism, conversion test is more efficient, and more-
over is compatible with compilation of proof terms as in [9]. We have shown that
it is equivalent to CIC (provided that the latter is normalizing), by generalizing
Barthe’s and Sørensen’s proof [5]. We can not get rid the normalization hypoth-
esis since, as shown by Barthe and Coquand [4], system U− (a non normalizing
PTS) is not equivalent to its domain-free version.

Our equivalence proof can be turned into an algorithm that reannotates a
type-free term in normal form given its (unannotated) type. This is useful for
toplevels to display the result of a normalization step. This algorithm has been
integrated to the current development version of Coq.

A first direction to investigate is what happens if we remove the predicate
of pattern-matching expressions and the type of fixpoints. We have shown that
preservation of typing does not hold in the way we stated it. Nonetheless, it
would be interesting to see how the formalism is affected regarding for instance
expressivity and consistency.
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Another direction is to study the case of contravariant subtyping. The prob-
lem here is that contravariance breaks our type uniqueness property and so
our main lemma 6. So, again, equational theory is not exactly preserved, but
we conjecture the equiconsistency of both systems. However, contravariant sub-
typing may radically change the way the proof works, so let us mention that
adding subtyping to depend types has already been studied by Aspinall and
Compagnoni [1] and by Castagna and Chen [7], and by Chen [8] for the Calculus
of Constructions. We might need some of the proof techniques developed there.
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A Proof of Lemma 2

First we prove by induction on ,R1

R1 ∈ RR2 ⇒,R1∈ R�R2
(∗)

Then by induction on the number of steps in T ,∗R1
U . The base cases are

trivial. The inductive case is explained in the following diagram:

T
∗

����
��
��
��

�R1

(2)

V
∗

��  
  
  
  ∗

		!
!!

!!
!!

! U
∗

		!
!!

!!
!!

!�∗
R1

(1)

T ′

∗
		"

""
""

""
"
�R2 V ′′

∗
		"
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"

(5)

(3) V ′

∗
����
��
��
��

(4)

U ′

∗
����
��
��
��

�∗
R2

T ′′ �R2 W U ′′�∗
R2

(1) existence of V ′, U ′ by induction hypothesis
(2) existence of T ′, V ′′ by (*)
(3) existence of W by confluence of β-reduction
(4) existence of U ′′ by (R2,

∗→) ∈ C and Lemma 1
(5) existence of T ′′ by (R2,

∗→) ∈ C, Lemma 1 and symmetry of R2



L-Nets, Strategies and Proof-Nets

Pierre-Louis Curien1 and Claudia Faggian2,�

1 CNRS - Université Paris 7
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Abstract. We consider the setting of L-nets, recently introduced by Faggian and
Maurel as a game model of concurrent interaction and based on Girard’s Ludics.
We show how L-nets satisfying an additional condition, which we call logical
L-nets, can be sequentialized into traditional tree-like strategies, and vice-versa.

1 Introduction

In the context of Game Semantics several proposals are emerging – with different mo-
tivations – towards strategies where sequentiality is relaxed to capture a more parallel
form of interaction, or where the order between moves in a play is not totally specified.
Such strategies appear as graphs, rather then more traditional tree-like strategies. We are
aware of work by Hyland, Schalk, Melliès, McCusker and Wall. Here we will consider
the setting of L-nets, recently introduced by Faggian and Maurel [8] as a game model
of concurrent interaction, based on Girard’s Ludics.

The idea underlying L-nets (as well as other approaches) is to not completely spec-
ify the order in which the actions should be performed, while still being able to express
constraints. Certain tasks may have to be performed before other tasks. Other actions
can be performed in parallel, or scheduled in any order.

More traditional strategies, and in particular Hyland-Ong innocent strategies [13],
are trees. In this paper we are interested in relating some representatives of these two
kinds of strategies. We show how strategies represented by graphs, with little ordering
information, can be sequentialized into tree-like strategies; conversely, sequential (tree)
strategies can be relaxed into more asynchronous ones.

Two Flavours of Views. It is known that tree strategies (innocent strategies) can be pre-
sented as sets of views with certain properties. A view is a linearly ordered sequence of
moves (again with certain properties), and the set of views forms a tree. Any interaction
(play) results into a totally ordered set of moves.

A graph strategy (an L-net) is a set of partially ordered views (p.o. views), where a
p.o. view is a partially ordered set of moves, which expresses an enabling relation, or
a scheduling among moves. The set of such p.o. views forms a directed acyclic graph.
Any interaction (play) results into a partially ordered set of moves.

In our setting a tree strategy is, in particular, a graph strategy. Hence we have an ho-
mogeneous space, inside which we can move, applying our proceduresSeq and Deseq,
which respectively add or relax dependency (sequentiality).
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From Graph Strategies to Tree Strategies and Vice-Versa. The graph strategies we will
consider are (a class of) L-nets. The tree-like strategies we will consider are Girard’s
designs [11] (syntactically, designs are particular sorts of Curien’s abstract Böhm trees
[4, 5]). As a computational object a design is a Hyland-Ong innocent strategy on a
universal arena, as discussed in [7]. An L-net is a graph strategy on the same arena.

We will show how to associate a design to certain L-net, in such a way that all
constraints expressed by the L-net are preserved. This is not possible for an arbitrary
L-net; it is easy to build a counter-example taking inspiration from Gustave function (a
well-known example of a non-sequential function, see e.g. [1]). For this reason, we first
introduce the notion of logical L-nets, which are L-nets satisfying a condition called
cycles condition1. We then make the following constructions: in section 4, we show
how to obtain a set of designs seq(D) from a logical L-net D, while in section 5, we
show how to obtain a logical L-net deseq(D) from a design D, in such a way that for
all designs D we have D ∈ seq(deseq(D)).

The Proof-Net Experience. Tree strategies can be seen as abstract (and untyped) se-
quent calculus derivations. By contrast, L-nets are graphs which can be seen as abstract
multiplicative-additive proof-nets. Indeed, there are two standard ways to handle proofs
in Linear Logic: either as sequent calculus derivations, or as proof-nets. Sequent calcu-
lus derivations can be mapped onto proof-nets, by forgetting some of the order between
the rules, and conversely proof-nets can be sequentialized into proofs. In this paper
we use similar techniques in the framework of game semantics. It is a contribution of
the paper to transfer the use of proof-net technologies to the semantic setting of Game
strategies. This appears to be a natural consequence of a general direction bringing
together syntax and semantics.

2 Tree Strategies (Designs) and Sequent Calculus Derivations

Designs, introduced in [11], have a twofold nature: they are at the same time semantic
structures (an innocent strategy, presented as a set of views) and syntactic structures,
which can be understood as abstract sequent calculus derivations (in a focusing calculus,
which we will introduce next).

While we do not recall the standard definitions of view and innocent strategy, in the
following we review in which sense a tree strategy is a sequent calculus derivation, and
viceversa.

2.1 Focalization and Synthetic Connectives

Multiplicative and additive connectives of Linear Logic separate into two families: pos-
itives (⊗,⊕, 1, 0) and negatives (

&

,&,⊥,�). A formula is positive (negative) if its
outermost connective is positive (negative).

A cluster of connectives with the same polarity can be seen as a single connec-
tive (called a synthetic connective), and a “cascade” of decompositions with the same

1 This condition is a simplified version Hughes and Van Glabbeek’s toggling condition [12].
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polarity as a single step (rule). This corresponds to a property known as focalization,
discovered by Andreoli (see [2]), and which provides a strategy in proof-search: (i) neg-
ative connectives, if any, are decomposed immediately, (ii) we choose a positive focus,
and persistently decompose it up to its negative sub-formulas.

Shift. To these standard connectives, it is convenient to add two new (dual) connectives,
called Shift2: ↓ (positive) and ↑ (negative). The role of the Shift operators is to change
the polarity of a formula: if N is negative, ↓ N is positive. When decomposing a positive
connective into its negative subformulas (or viceversa), the shift marks the polarity
change. The shift is the connective which captures “time” (or sequentiality): it marks a
step in computation.

Focusing Calculus. Focalization is captured by the following sequent calculus, orig-
inally introduced by Girard in [10], and closely related to the focusing calculus by
Andreoli (see [2]). We refer to those papers for more details.

Axioms: � x⊥, x
We assume, by convention, that all atoms x are positive (hence x⊥ is negative).

Any positive (resp. negative) cluster of connectives can be written as a ⊕ of ⊗ (resp. a
& of

&

), modulo distributivity and associativity. The rules for synthetic connectives are
as follows. Notice that each rule has labels; rather than more usual labels such as ⊗L,
⊗R, etc., we label the rules with the active formulas, in the way we describe below.

Positive Connectives: Let P (N1, . . . , Nn) =
⊕

I∈N (
⊗

i∈I(↓ Ni)), where I and N
are index sets. Each

⊗
i∈I(↓ Ni) is called an additive component. In the calculus, there

is an introduction rule for each additive component. Let us write NI for
⊗

i∈I(↓ Ni).

. . . � Ni, Δi � Ni′ , Δi′ . . .

� P,Δ
(P,NI)

A positive rule is labelled with a pair: (i) the focus and (ii) the ⊗ of subformulas which
appear in the premises (that is, the additive component we are using).

Negative Connectives: Let N(P1, . . . , Pn) = &I∈N (

&

i∈I(↑ Pi)). We have a premise
for each additive component. Let us write PI for

&

i∈I(↑ Pi).

. . . � PI , Δ � PJ , Δ . . .

� N,Δ
. . . , (N,PI), (N,PJ ), . . .

A negative rule is labelled by a set of pairs: a pair of the form (focus,

&

of subformulas)
for each premise.

2 The Shift operators have been introduced by Girard as part of the decomposition of the expo-
nentials.
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. . .
� a0, c

c

� a⊥, c
a⊥

. . .
� b0, d

d

� b⊥, d
b⊥

� c, d, a⊥ ⊗ b⊥
a⊥ ⊗ b⊥

� c

&

d, a⊥ ⊗ b⊥
c

&

d �
c

&

d

a⊥⊗b⊥

a⊥

c

b⊥

d

    
  

ξ

σ

σ2σ1

{1, 2}

{1, 2}

{0}

ξ2 {0}ξ1 {0}

{0}

σ � ξ

Fig. 1.

We call each of the pairs we used in the labels an action. (If a proof does not use
&, to each rule corresponds an action. Otherwise, there is an action for each additive
component.)

It is important to notice the duality between positive and negative rules: to each
negative premise corresponds a positive rule. For each action in a negative rule, there is
a corresponding positive action, which characterizes a positive rule.

2.2 Designs as (Untyped) Focusing Proofs

Given a focusing proof, we can associate to it a design (forgetting the types). Con-
versely, given a tree of actions which is a design, we have the “skeleton” of a sequent
calculus derivation. This skeleton becomes a concrete (typed) derivation as soon as we
are able to decorate it with types. Let us sketch this using an example.

First Example. Consider the (purely multiplicative) derivation on the l.h.s. of Figure
1. Each rule is labelled by the active formula. a⊥, b⊥ denote negative formulas which
respectively decompose into a0, b0. Notice that we deal with Shift implicitly, writing
a⊥ ⊗ b⊥ for ↓ a⊥⊗ ↓ b⊥, and so on.

Now we forget everything in the sequent derivation, but the labels. We obtain the
tree of labels (actions) depicted in Figure 1.

This formalism is more concise than the original sequent proof, but still carries all
relevant information. To retrieve the sequent calculus counterpart is immediate. Rules
and active formulas are explicitly given. Moreover we can retrieve the context dynami-
cally. For example, when we apply the Tensor rule, we know that the context of a⊥⊗b⊥

is c, d, because they are used afterwards (above). After the decomposition of a⊥ ⊗ b⊥,
we know that c (resp. d) is in the context of a⊥ because it is used after a⊥ (resp. b⊥).

Addresses (Loci). One of the essential features of Ludics is that proofs do not manipu-
late formulas, but addresses. An address is a sequence of natural numbers, which could
be thought of as a name, a channel, or as the address in the memory where an occurrence
of a formula is stored. If we give address ξ to an occurrence of a formula, its (imme-
diate) subformulas will receive addresses ξi, ξj, etc. Let a = ((p1

&

p2) ⊕ q⊥) ⊗ r⊥.
If we locate a at the address ξ, we can locate p1

&

p2, q, r respectively in ξ1, ξ2, ξ3 (the
choice of addresses is arbitrary, as long as each occurrence receives a distinct address).
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Let us consider an action (P,NI), where NI =
⊗

i∈I(↓ Ni) is (ξ,K). Its trans-
lation is (ξ,K), where ξ is the address of P , and K is the set of natural numbers
corresponding to the relative addresses of the subformulas Ni.

First Example, Continuation. Coming back to our example (Figure 1), let us abstract
from the type annotation (the formulas), and work with addresses. We locate a⊥ ⊗ b⊥

at the address ξ; for its subformulas a and b we choose the subaddresses ξ1 and ξ2. In
the same way, we locate c

&

d at the address σ and so on for its subformulas.
To indicate the polarity, in the pictures we circle positive actions (to remind that

they are clusters of ⊗ and ⊕). Our example leads to the tree of actions on the r.h.s. of
Figure 1, which is an actual design.

2.3 Understanding the Additives (Slices)

The treatment of the additive structure is based on the notion of slice.
A &-rule must be thought of as the superposition of two unary rules, &L,&R. We

write the two components of the rule which introduces a&b as (a&b, a) and (a&b, b).
Given a sequent calculus derivation in Multiplicative Additive Linear Logic (MALL), if
for each &-rule we select one of the premises, we obtain a derivation where all &-rules
are unary. This is called a slice [9]. For example, the derivation on the l.h.s. below, can
be decomposed into the slices on the r.h.s..

� a, c � b, c

� a&b, c

� (a&b)⊕ d, c �

� a, c

� a&b, c
(a&b, a)

� (a&b)⊕ d, c and

� b, c

� a&b, c
(a&b, b)

� (a&b)⊕ d, c

An &-rule is a set (the superposition) of unary rules on the same formula. For this
reason, we will write a&b also as {(a&b, a), (a&b, b)}.

A More Structured Example. Let a = (m⊗ n) ⊕ c,
m = (p1

⊥ &

p2
⊥)&(q1⊥

&

q2
⊥)&r⊥, n = b1

⊥ &

b2
⊥ &

b3
⊥, with pi, qi, bi positive for-

mulas. Consider the following derivation, where the set of labels R1 is
{(m, p1

⊥ &

p2
⊥), (m, q1

⊥ &

q2
⊥), (m, r⊥)} and R2 is {(n, b1⊥

&

b2
⊥ &

b3
⊥)}.

. . .
� p1, p2

p1
. . .
� q1, q2

q2
. . .
� r

r

� m
R1

. . .
� b1, b2, b3

. . .

� n
R2

� (m⊗ n)⊕ c
a,m⊗ n

It is immediate to obtain the corresponding typed design:

a,m⊗n

(m,p1⊥

&

p2⊥)

p1

(m,q1⊥

&

q2⊥)

q2

(m,r⊥)

r

(n,b1⊥

&

b2⊥

&

b3⊥)

...

Let us now give addresses to the subformulas of A. The counterpart of the previous tree
is the following one, which is actually a design.
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ξ,{1,2}

(ξ1,{1,2})

ξ11,...

(ξ1,{3,4})

ξ14,...

(ξ1,{5})

ξ15,...

(ξ2,{1,2,3})

...

Bipoles (Reading a Design). It is very natural to read a design (or an L-net) as built out
of bipoles, which are the groups formed by a positive action (say, on address ξ) and all
the negative actions which follow it (all being at immediate subaddresses ξi of ξ). Each
address corresponds to a formula occurrence. The positive action corresponds to a pos-
itive connective. The negative actions are partitioned according to the addresses: each
address corresponds to a formula occurrence, each action on that address corresponds
to an additive component.

Towards Proof-Nets. Let us consider a multiplicative design (a slice). We are given
two partial orders, which correspond to two kinds of information on each action κ =
(σ, I): (i) a time relation (sequential order); (ii) a space relation (prefix order), corre-
sponding to the relation of being subaddress (the arena dependency in Game Seman-
tics).

Let us look again at our first example of design. We make explicit the relation of
being a subaddress with a dashed arrow, as follows:

    
  

ξ

σ

σ2σ1

{1, 2}

{1, 2}

{0}

ξ1 {0} ξ2 {0}

{0}

σ

ξ

ξ1 ξ2
σ1 σ2

If we emphasize the prefix order rather than the sequential order, we recognize
something similar to a proof-net (see [6]), with some additional information on sequen-
tialization. Taking forward this idea of proof-nets leads us to L-nets.

3 Logical L-Nets

In this section, we recall the notion of L-net of Faggian and Maurel [8], but we replace
the acyclicity condition by the stronger cycles condition.

Actions (Arena and Moves). An action is either the special symbol † (called daimon)
or (cf. above) a pair k = (ξ, I) given by an address ξ and a finite set I of indices.
When not ambigous, we write just ξ for the action (ξ, I). In the following, the letters
k, a, b, c, d vary on actions.

We say that σ is a subaddress of ξ if ξ is a prefix of σ (written ξ � σ). We say that
an action (ξ, I) generates the addresses ξi, for all i ∈ I , and write a �1 b if the action
a generates the address of the action b (a is the parent of b). We will write a � b for
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the transitive closure of this relation. Actions together with the relation �1 define what
could be called a universal arena.

A polarized action is given by an action k together with a polarity, positive (k+) or
negative (k−). The action † is defined to be positive. When clear from the context, or
not relevant, we omit the explicit indication of the polarity.

L-Nets (Graph Strategies). L-nets have an internal structure, described by a directed
acyclic graph (d.a.g.) on polarized actions, and an interface, providing the names on
which the L-net can communicate with the rest of the world.

An interface is a pair of disjoint sets Ξ,Λ of addresses (names), which we write
as a sequent Ξ � Λ. We call Λ the positive (or outer) names, and Ξ the negative (or
inner) names. Ξ is either empty or a singleton. We think of the inner names as passive,
or receiving, and of the outer names as active or sending.

Directed graphs and notations. We consider any directed acyclic graph G up to its
transitive closure, and in fact we only draw the skeleton (the minimal graph whose
transitive closure is the same as that of G). We write a ← b if there is an edge from b to
a. In all our pictures, the edges are oriented downwards. We use

∗← for ←← ... ←.
A node n of G is called minimal (resp. maximal) if there is no node a such that

a ← n (resp. n ← a). Given a node n, we denote by 	n
G (the view of n) the sub-graph
induced by restriction of G on {n} ∪ {n′, n′ ∗← n} (we omit to indicate G whenever
possible).

It is standard to represent a strict partial order as a d.a.g., where we have an edge
from b to a whenever a < b. Conversely, (the transitive closure of) a d.a.g. is a strict
partial order.

Definition 1 (pre L-nets). A pre L-net is given by:

– An interface Ξ � Λ.
– A set A of nodes which are labelled by polarized actions3.
– A structure on A of directed acyclic bipartite graph (if k ← k′, the two actions have

opposite polarity) such that:

i. Parents. For any action a = (σ, J), either σ belongs to the interface (and then
its polarity is as indicated by the base), or it has been generated by a preceding
action c

∗← a of opposite polarity. Moreover, if a is negative, then c ← a.
ii. Views. For each action k, in 	k
 each address only appears once, i.e. all a’s

such that a
∗← k are on distinct addresses.

iii. Sibling. Negative actions with the same predecessor are all distinct.
iv. Positivity. If a is maximal w.r.t.

∗←, then it is positive.

To complete the definition of logical L-nets, we still need (i) a notion allowing us to
deal with multiple copies of the same action induced by the additive structure and (ii) a
correctness criterion on graphs. We first give a few definitions.

3 Hence nodes are occurrences of actions, but we freely speak of actions for brevity.
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Bipoles and Rules. The positive actions induce a partition of the d.a.g. D just described.
A bipole (cf. previous section) is the tree we obtain when restricting D either (i) to
a positive action and the actions which immediately follow it, or (ii) to the negative
actions which are initial (degenerated case).

Let us partition each bipole according to the addresses. A rule is a maximal set
{(ξ,Kj)} of actions which have the same address, and belong to the same bipole. A
rule is positive or negative according to the polarity of its actions. When a rule is not
a singleton, we call it an additive rule (think of each action as an additive component).
An additive pair is a pair (ξ, J)−, (ξ, J ′)− belonging to an additive rule. Observe that
if a rule is not a singleton, it must be negative. If we look at the bipole in the following
picture, we have two rules: R1 = {(σ1, J)} and R2 = {(σ2, J ′), (σ2, J ′′)}.

(σ,{1,2})

(σ1,J) (σ2,J′) (σ2,J′′)

Paths. An edge is an entering edge of the action a if it has a as target. If R is a negative
rule and e an entering edge of an action a ∈ R, we call e a switching edge of R. A
path is a sequence of nodes k1, ...kn belonging to distinct rules, and such that for each
i either ki → ki+1 (the path is going down) or ki ← ki+1 (the path is going up). A
switching path on a pre L-net is a path which uses at most one switching edge for each
negative rule. A switching cycle is a cycle (on a sequence of nodes k1, ...kn belonging
to distinct rules) which contains at most one switching edge for any negative rule.

Definition 2 (logical L-net). A logical L-net is a pre L-net such that

– Additives. Given two positive actions k1 = (ξ,K1), k2 = (ξ,K2) on the same
address, there is an additive pair w1, w2 such that k1

∗← w1, and k2
∗← w2.

– Cycles. Given a non-empty union C of switching cycles, there is an additive rule
W not intersecting C, and a pair w1, w2 ∈ W such that for some nodes c1, c2 ∈ C,
w1

∗← c1, and w2
∗← c2.

L-Nets as Sets of Views / Chronicles. We call chronicle (view) a set c of actions
equipped with a partial order, such that: c has a unique maximal element (the apex), and
satisfies the (analog of the) parent condition.

Any node k in a pre L-net D defines a chronicle, which is 	k
, where the overlining
operation is defined on directed acyclic graphs G whose nodes are injectively labelled,
as follows: replace all nodes of G by their labels, yielding a graph G′ isomorphic to G,
Then G is the transitive closure of G′, i.e., G′ viewed as a strict partial order (cf. above).
We can associate to each L-net D a set of chronicles φ(D), as follows:

φ(D) = {	n
 | n is a node of D}

The set φ(D) is closed downwards, in the following sense: if c ∈ φ(D), if k is the
maximal action of c, and if k′ ∈ c is such that k covers k′, i.e., k′ < k and there exists
no k′′ ∈ c such that k′ < k′′ < k, then 	k′
 (taken with respect to c) belongs to φ(D).

Conversely, given a set Δ of chronicles which is closed downwards, we define a di-
rected graph ψ(Δ) as follows: the nodes are the elements of Δ and the edges are all the
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pairs of the form (c′, c) such that, if k, k′ are the maximal actions of c, c′, respectively,
then k′ ∈ c′ and k covers k′ (in c). It is easy to see that for any downwards closed set
of chronicles Δ we have φ(ψ(Δ)) = Δ. Conversely, given an L-net D, we have that
ψ(φ(D)) is isomorphic as a graph to D.

The functions φ and ψ are inverse bijections (up to graph-isomorphisms of L-nets)
between the collection of L-nets and the set of downward closed sets of chronicles Δ
such that ψ(Δ) is an L-net.

In this paper, we will largely rely on the presentation of L-nets as sets of chronicles
(views). This in particular allows us to treat easily the superposition of two L-nets as
the union of the two sets of chronicles (see section 5.2). We shall write write c ∈ S and
S ⊆ D for c,S,D respectively a chronicle, a set of chronicles and an L-net.

Slices. A slice is an L-net in which there is no additive pair (or, equivalently, no repeti-
tion of addresses). A slice S of an L-net D is a maximal subgraph of D which is closed
under view (	k
S=	k
D) and it is a slice.

L-Nets and Logical L-Nets. Our definition of logical L-net differs from the definini-
tion of L-nets in [8] in the cycles condition, which replaces the acyclicity condition of
L-nets, which asserts that there are no switching cycles in a slice. It is immediate that
our cycles condition implies the acyclicity condition. Hence, a logical L-net is, in par-
ticular, an L-net. Notice that while acyclicity is a property of a slice, the new condition
speaks of cycles which traverse slices.

Designs. The designs of [11], can be regarded as a special case of L-nets: they are those
L-nets such that each positive node is the source of at most one negative node, and each
negative node has a single entering edge. Equivalently, the L-nets corresponding to
designs are those which are trees that branch only on positive nodes.

4 Sequentializing a Graph Strategy

A node in an L-net should be thought of as a cluster of operations which can be per-
formed at the same time. An edge states a dependency, an enabling relation, or a prece-
dence among actions. Let us consider a very simple example: a chronicle c, i.e. a par-
tially ordered view (p.o. view). A sequentialization of c is a linear extension of the
partial order. That is, we add sequentiality (edges) to obtain a total order. A total order
which extends c will define a complete scheduling of the tasks, in such a way that each
action is performed only after all of its constraints are satisfied.

Dependency between the actions of a slice, and of sets of slices (L-nets) is more
subtle, as there are also global constraints.

The aim of this section is to provide a procedure, which takes an L-net and adds
sequentiality in such a way that the constraints specified by the L-net are respected. In
particular, all actions in a p.o. view of D will be contained in a (totally ordered) view
of the tree Seq(D). The process of sequentialization is non-deterministic, as one can
expect, i.e. there are different ways to produce a design from a logical L-net.

As we have both multiplicative and additive structure, when sequentializing we will
perform two tasks: 1. add sequentiality (sequential links) until the order in each chron-
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icle is completely determined, 2. separate slices which are shared through additive su-
perposition.

The key point in sequentialization is to select a rule which does not depend on
others. This is the role of the Splitting lemma.

Lemma 1 (Splitting lemma). Given an L-net D which satisfies the cycles condition,
if D has a negative rule, then it has a splitting negative rule. A negative rule W =
{. . . , wi, . . .} is splitting if either it is conclusion of the L-net (each wi is a root), or if
deleting all the edges wi → w there is no more connection (i.e., no path) between any
of the wi and w.

The proof is an adaptation to our setting of the proof of the similar lemma in [12].
Moreover, the proof implies that

Proposition 1. The splitting negative rule W can always be chosen of minimal height:
either it is conclusion of the L-net, or it is above a positive action, which is conclusion.

Remark 1. A consequence of the previous proposition is that, when applying the split-
ting lemma, we are always able to work “bottom up”.

4.1 Sequentialization

An L-net does not need to be connected. This is a natural and desirable feature if we
want both parallelism and partial proofs, that is proofs which can be completed into
a proper proof. Actually, non-connectedness is an ingredient of Andreoli’s concurrent
proof construction. On the logical side, non-connectedness corresponds to the mix rule.

There is no special problem for sequentializing non-connected L-nets, except that
we need to admit the mix-rule. But as the (controversial) mix rule is refused by designs,
we distinguish logical L-nets which are connected.

Given an L-net D and a slice S ⊆ D, a switching graph of S is a subgraph obtained
from S by choosing a single edge for each negative node, and deleting all the other ones.
A slice is S-connected if all its possible switching graphs are connected. Finally, we call
an L-net S-connected if all its maximal slices are.

Proposition 2. A logical L-net D which is S-connected can be sequentialized into a
design, or (equivalently) into its sequent calculus presentation.

Remark 2. If we admit mix, it is easy to adapt the procedure below to sequentialize any
logical L-net.

Proof. The proof is by induction on the number N of negative nodes of the L-net D.

Case 1: N = 0. D consists of a single positive action k, which does not need further
sequentialization.

Case 2: N > 0 and There Are Negative Initial Nodes. By definition of L-net, all
negative nodes which are initial belong to the same rule W = {. . . , wi, . . . }.
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Let Di be the union of all slices S ⊆ D such that wi ∈ S. That is, Di is the
maximal L-net obtained as set of all chronicles c such that wj �∈ c, for any wj �= wi. It
is immediate that, operationally, Di is the graph obtained from D following these two
steps: (i) delete all nodes c such that wj ←∗ c, for j �= i; (ii) delete any negative node
which has become a leaf.

Di is S-connected. Let D′
i be the tree obtained from Di by removing wi and by

sequentializing the resulting L-net. Ci =
wi

D′
i

is a design. The forest given by the union
of all Ci is a design: . . .

� ξI , Δ
. . .

� ξJ , Δ

ξ � Δ
W

Case 3: N > 0 and There Are No Negative Initial Nodes. We select a splitting negative
rule X = {x1 = (ξi, J1), . . . , xn = (ξi, Jn)}. This rule is part of a bipole, with root
k = (ξ, I) and possibly other negative rules Yj . We delete the edges from x ∈ X to k,
disconnecting D.

Let us call GX the part of the graph containing X , and Gk the other part. Let us
check that the cycles condition is preserved for both GX and Gk (preservation of all
other properties is immediate). In the case of Gk it is obvious, in the case of GX it
comes from the fact that k determines a “bottle-neck” in the graph, as any path going
down from GX to Gk must traverse k. Let us assume that there are switching cycles in
GX , hence a fortiori in D. The cycles condition for D implies that there is an additive
pair w1, w2 such that each wi is below a node ci in one of the cycles. If w1, w2 were in
Gk, any path going down from ci to wi should traverse k. This would mean that there
is a path down from k to wi for each wi, and hence that both wi belong to 	k
, which
is against the definition of L-net.

We conclude by applying induction. Gk will sequentialize into a design containing
the node k. GX will sequentialize into a set of trees of roots respectively x1, . . . , xn.
We obtain a design by having each of these trees pointing to k.

ξi � Δi
X

. . . ξj,Δ
Yj

� ξ,Δ
(ξ, I)

. . .
. . .

4.2 Examples of Sequentialization

Let us consider the following L-net R, where we have two negative rules, both splitting:

X = {(ξ0, I), (ξ0, J)} and A = {(α0, {0})}. ξ, {0} α, {0}

α0, {0}ξ0, I ξ0, J

α00, {1} α00, {2}

If we choose X , we obtain the two trees on the left-hand side of Figure 2, and then
the design X. Instead, choosing A we obtain the design A (on the r.h.s.).
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X : A :

ξ0,I

α,0

α0,0

α00,1

ξ0,J

α,0

α0,0

α00,2

� ξ,0

ξ0,I

α,0

α0,0

α00,1

ξ0,J

α,0

α0,0

α00,2

α,0

α0,0

ξ,0

ξ0,I

α00,1

ξ0,J

α00,2

Fig. 2.

5 Desequentializing a Tree Strategy

Beyond the fact that an action can be seen as a cluster of operations that can be per-
formed together thanks to focalization, in a design (actually, in any tree strategy) re-
mains a lot of artificial sequentiality, just as in sequent calculus proofs for Linear Logic.
In the case of proofs, the solution has been to develop proof-nets, a theory which has
revealed itself extremely fruitful.

We want to apply similar techniques to designs. Our aim in this section is to remove
some artificial sequentialization, while preserving essential sequentialization, namely
that allowing to recover axioms and to deal with additives.

All dependency (sequentialization) which is taken away by desequentialization can
be (non-deterministically) restored through sequentialization (Theorem 1).

5.1 Desequentialization

It is rather immediate to move from designs to an explicit sequent calculus style rep-
resentation. We already sketched this with an example, and refer to [11] for the details
(notice that, because of weakening, there are several sequent calculus representations
of a design). To each node k in a design we can associate a sequent of addresses, cor-
responding to the sequent on which the action is performed. We choose an algorithm
which performs weakening as high as possible in the derivation, pushing it to the leaves.

Leaves. For each leaf k in a design, we can recover the sequent of addresses corre-
sponding to the sequent on which that action is performed.

Given a leaf k in the design, its translation k∗ is the same node k, to which we
explicitly associate a set of addresses, which we call link(k), in the following way:

if k is either the action of address ξ on the sequent � ξ, Γ
k = (ξ, I)

or the special

action † on � Γ
k = †

, we have link(k) = Γ .

Positive Conclusion. Let us condider a design whose root is a positive action (ξ, I), and
call Πi the forest of subtrees whose conclusions have address ξi. The design translates
into the L-net
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ξi, K2 ξj, J2ξj, J1

ξi, K1

ξ, I

Π∗
i Π∗

j

in the following way. Associate the L-net Π∗
i to each Πi. Take the union of all Π∗

i . Add
(ξ, I)+ to the nodes, and extend the set of edges with a relation (ξ, I) ← k for each
action k of address ξi.

Negative Conclusion. Let us consider a design having as conclusion the negative rule
X = {xi = (ξ, I)−, x2 = (ξ, J)−, ...}. Let us call ΠI the subtree above (ξ, I). A
design of negative conclusion translates into an L-net in the following way.

1. For each subtree (premiss) ΠI do the following.

– Associate the L-net Π∗
I to ΠI .

– Add (ξ, I)− to the nodes of Π∗
I .

– Extend the set of edges with a relation (ξ, I)− ← k for each action k such that:
- k has address ξi ( i ∈ I), or
- k is a leaf such that ξi ∈ link(k).

Let us call DI the resulting graph (which is an L-net).
2. Consider DI ,DJ , . . . . Obtain D′

I ,D
′
J , . . . by extending the set of edges of each DI

with a relation (ξ, I)− ← k for each positive node k such that 	k
 ∈ DI , 	k
 �∈
DJ , for some J �= I .

3. Superpose D′
I ,D

′
J , . . . . Superposition is obtained by taking the union of the chron-

icles (see [8] and the examples below).

Superposition is the only step which can introduce cycles. However, if a new cycle
C is introduced we find a node c > xi and a node c′ > xj , for xi, xj ∈ X .

We have the following result, relating desequentialization and sequentialization.

Theorem 1. Given (a sequent calculus representation of) a design D, let us desequen-
tialize it into the L-net R. There exists a strategy of sequentialization (section 4.1) which
allows us to sequentialize R into D.

The proof comes from the fact that for each step in the desequentialization there is a
step of sequentialization which reverses it.

5.2 Examples of Superposition

The superposition of two L-nets is their union as sets of chronicles. Let us see an ex-
ample. Consider the two L-nets D1,D2 in Figure 3. The superposition of D1 and D2

produces the L-net D = D1

⋃
D2.

In fact, the set of chronicles of D1 is the set of chronicles 	κ
 defined by each of its
actions κ, that is:
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α, {0}

α0, {0}ξ0, I ξ0, J

α00, {1} α00, {2}

α, {0}

α0, {0}ξ0, J

α00, {2}D2 :

α, {0}

α0, {0}ξ0, I

α00, {1}D1 : D :

�

Fig. 3.

{ α,0 , α,0

α0,0

, (ξ0, I), 	(α00, {1})
 = D1}. The set of chronicles of D2 is:

{ α,0 , α,0

α0,0

, (ξ0, J), 	(α00, {2})
 = D2}. The resulting union is:

{ α,0 , α,0

α0,0

, (ξ0, I), (ξ0, J),D1,D2}, which corresponds to D.

5.3 Examples of Desequentialization

Example 1. Desequentializing either of the designs A or X in our previous example of
sequentialization yields the original L-net R (cf. section 4.2).

Example 2. Let us consider the design in Figure 4, where we just omit an obvious
negative action at the place of . . . .

Following the procedure for desequentializing given

ξ,{0}

ξ0,I

α,{0}

α0,{0}

α00,{1}

...

b

ξ0,J

α,{0}

α0,{0}

α00,{2}

...

c

Fig. 4.

above, a few easy steps produce the two L-nets
D1,D2, represented in Figure 5. Observe that we
have a chronicle for each node; D1

⋂
D2 is equal to

{	(α, {0})
, 	(α0, {0})
}. We obtain D′
1 by adding the

relation (ξ0, I) ← (α00, {1}), and D′
2 in a similar way.

Remember that we consider each chronicle in the graph
modulo its underlying partial order, that is why it is not
necessary to explicitly write the edge (ξ0, b). The union
D′

1

⋃
D′

2 produces the L-net on the right-hand side of
Figure 5.

5.4 A Typed Example: Additives

The following (typical) example with additives illustrates what it means to have more
parallelism. Assume we have derivations Π1, Π2, Π3, Π4 of (respectively) � A,C, �
A,D, � B,C, � B,D. In the sequent calculus (and in proof-nets with boxes) there
are two distinct ways to derive � A&B,C&D, and the two derivations differ only by
commutations of the rules.
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b
cb c

α, {0}

α0, {0}

α00, {2}

ξ0, I ξ0, J

α00, {1}

α, {0}

α0, {0}ξ0, I

α, {0}

α0, {0}ξ0, J

α00, {1} α00, {2} �

D2:D1:

Fig. 5.

Π1

� A, C

Π2

� A, D

� A, C&D
C&D

Π3

� B, C

Π4

� B, D

� B, C&D
C&D

� A&B, C&D
A&B

Π1

� A, C

Π2

� A, D

� A&B, C
A&B

Π3

� B, C

Π4

� B, D

� A&B, D
A&B

� A&B, C&D
C&D

The same phenomenon can be reproduced in the setting of designs, or in the setting
of polarized linear logic. Very similar to the above derivations are the two following
(typed) designs, where we introduced some ↓ to have distinct binary connectives. We
write formulas instead of addresses, to make the example easier to grasp.

↓A&B

A&B,A

↓C&D

C&D,C

Π1

C&D,D

Π2

A&B,B

↓C&D

C&D,C

Π3

C&D,D

Π4

↓C&D

C&D,C

↓A&B

A&B,A

Π1

A&B,B

Π3

C&D,D

↓A&B

A&B,A

Π2

A&B,B

Π4

The desequentialization of either of the trees above is the following L-net R:

↓ A&B ↓ C&D

A&B, A A&B, BC&D, C C&D, D

AC AD BC BD
Π∗

1 Π∗
2 Π∗

3 Π∗
4

Conversely, when sequentializing R, we get back either one or the other, depending on
whether we choose to start from A&B or from C&D. Notice that both A&B and C&D
are splitting.

6 Discussion and Further Work

We can isolate two classes of L-nets, those of maximal sequentiality (the tree strategies),
which are idempotent with respect to Seq and those of minimal sequentiality. Notice
that while Seq applies to arbitrary L-nets, here we have defined Deseq only on trees.
This is still enough to characterize also the class of L-nets of minimal sequentiality, as
those for which we have Deseq(Seq(D)) = D, for any choice in Seq(D).
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We expect to be able to define the desequentialization of arbitrary L-nets, by using
the splitting Lemma. Moreover, we believe that sequentialization and desequentializa-
tion can be extended to infinite L-nets, by working bottom-up lazily, or stream-like.

In the setting we presented, if we have just enough sequentiality to recover axioms
and dependencies from the additives, we obtain (an abstract counter-part of) MALL
proof-nets. At the other extreme, all sequentiality can be made explicit, and we have
designs “à la locus solum” [11] (or abstract polarized MALL ↓↑ proof nets as in [14]).
L-nets allow us to vary between these extremes, and hence provide us with a framework
in which we can graduate sequentiality.

Here we are strongly inspired by a proposal by Girard, to move from proof-nets to
their sequentialization (sequent calculus derivation) in a continuum, by using jumps.
It must be noticed that edges inducing sequentiality in L-nets actually correspond to
Girard’s jumps.

We need to understand better this gradient of sequentiality. (i) In this paper we
saturate L-nets to maximal sequentiality. We intend to study ways to perform sequen-
tialization gradually, adding sequential edges progressively. (ii) We would like to have a
more precise understanding of what it means to have maximal or minimal sequentiality,
and to investigate the extent of our desequentialization.

In future work, we wish to investigate a typed setting. The immediate typed counter-
part of logical L-nets should be focusing proof-nets [3]. While previous work on fo-
cusing proof-nets was limited to multiplicative linear logic, our framework extends to
additive connectives.
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Abstract. Recent work establishes a direct link between the complexity
of a linear logic proof in terms of the exchange rule and the topologi-
cal complexity of its corresponding proof net, expressed as the minimal
rank of the surfaces on which the proof net can be drawn without cross-
ing edges. That surface is essentially computed by sequentialising the
proof net into a sequent calculus which is derived from that of linear
logic by attaching an appropriate structure to the sequents. We show
here that this topological calculus can be given a better-behaved logical
status, when viewed in the variety-presentation framework introduced
by the first author. This change of viewpoint gives rise to permutative
logic, which enjoys cut elimination and focussing properties and comes
equipped with new modalities for the management of the exchange rule.
Moreover, both cyclic and linear logic are shown to be embedded into
permutative logic. It provides the natural logical framework in which to
study and constrain the topological complexity of proofs, and hence the
use of the exchange rule.

1 Introduction

In order to study proofs as topological objects, notably proofs of linear logic [7],
one is naturally led to view proof nets as surfaces on which the usual proofs are
drawn without crossing edges [5, 13, 14]. Recent work by Métayer [14] estab-
lishes a direct link between the complexity of a linear logic proof in terms of
the exchange rule and the topological complexity of its corresponding proof net,
expressed as the minimal rank of the compact oriented surfaces with boundary
on which the proof net can be drawn without crossing edges and with the con-
clusions of the proof on the boundary. For instance, cyclic linear logic proofs [19]
are drawn on disks since they are purely non-commutative, and the standard
proof of � (A⊗B) � (B⊗A) is drawn on a torus with a single hole. In general,
exchange rules introduce handles or disconnect the boundary.

Gaubert [6] shows that that surface can be computed by sequentialising the
proof net into a sequent calculus, proposed by the third author, which is de-
rived from that of linear logic by incorporating an appropriate structure to the
� Research partly supported by Italy-France CNR-CNRS cooperation project 16251.
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sequents. Indeed, the above surfaces turn out to be oriented, and it is standard
that any oriented compact surface is homeomorphic to a connected sum of tori
(see, e.g., [12]). On the other hand, the conclusions of the proofs are drawn on
disjoint oriented circles, hence the appropriate structure in [6] is that of a per-
mutation (product of disjoint cycles) together with a natural number (number
of tori), actually a complete topological invariant of the surface.

Interestingly, these structures and the operations which are performed on
them constitute an instance of the variety-presentation framework introduced
in [3]: the varieties we consider in the present paper are the structures used
in [6], our presentations are simply varieties with a distinguished point, and
both are related by simple axioms, which sort of generalise the properties of
partial orders and order varieties in non-commutative logic [2].

We show that the calculus in [6] can be given a better-behaved logical status,
when viewed in this framework. This change of viewpoint gives rise to permu-
tative logic, PL for short, where connectives are presentations together with a
polarity (positive or negative): the usual pair ⊗,� of linear logic is naturally ex-
tended with new modalities #, % for (dis)connecting cycles and new constants h, �
for the management of handles. The sequents of PL are varieties and the sequent
calculus comes with structural rules, also considered in Melliès’ planar logic [13].
The sequent calculus of PL enjoys cut elimination and the focussing [4, 15]
property; these properties do not hold in [6] because the two par rules are not
reversible. Moreover, both cyclic and linear logic are shown to be embedded into
PL.

Unlike [6, 14] which enable to quantify the exchange and topological com-
plexities of a proof, PL provides control mechanisms and is the natural logical
framework in which to study and constrain these complexities. We believe in
particular that PL should be of interest to concurrent programming and com-
putational linguistics, two fields in which these issues matter [1, 8, 10, 11, 18].

2 Surfaces and Permutations

2.1 Q-Permutations

Surfaces (with or without boundary) are connected 2-dimensional topological
manifolds, and it is standard that any compact surface is homeomorphic to a
connected sum of tori and projective planes. In the case of orientable compact
surfaces, the above homeomorphism is simply with a connected sum of tori. For
instance, the sphere corresponds to a sum of 0 torus, etc. For a classical textbook
on algebraic topology, we refer the reader to, e.g., [12].

We consider here oriented compact surfaces with decomposed boundary, i.e.,
triples (S,X, ι) where S is a compact surface with boundary and a given ori-
entation, X is a finite set and ι : X → ∂S is an injective map from X into
to the boundary ∂S of S, such that any hole (i.e., connected component of the
boundary) contains at least one distinguished point (i.e., a point in the image
of ι). Since holes are circles topologically, the last condition says exactly that X
induces a cell decomposition of ∂S (into one or several edges).
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These surfaces with decomposed boundary are the objects of a category,
which is simply a subcategory of the category of pairs of CW-complexes con-
sidered for instance in relative homology: a morphism (resp. isomorphism) from
(S,X, ι) to (S′, X, ι′) is an orientation-preserving continuous map (resp. home-
omorphism) f : S → S′ such that f(ι(x)) = ι′(x) for each x ∈ X .

Now, an oriented compact surface with decomposed boundary (S,X, ι) in-
duces a cyclic order on each subset of X which is the inverse image by ι of a hole
of S. By taking the product of these disjoint cycles, we obtain a permutation
σ ∈ S(X). On the other hand, S comes with a natural number d called the
genre of S, the number of tori (handles) in the connected sum forming S. This
leads to the following definition of a q-permutation (where q is meant to remind
that a quantity, here a natural number, is attached to the permutation).

Definition 1 (q-permutation). A q-permutation is a triple (X,σ, d) where X
is a finite set, σ is a permutation on X and d is a natural number.

1

3

6

5
2

7
4

Hence, to each oriented compact surface
with decomposed boundary (S,X, ι) having
d handles is associated the q-permutation
(X,σ, d) with σ defined as above. For in-
stance, the surface with decomposed bound-
ary illustrated in the above figure induces the
q-permutation (X, {(1, 3, 6), (2, 5, 7, 4)}, 3) on X = {1, . . . , 7}. It is clear that
(X,σ, d) is invariant under isomorphism: the number of handles is a topological
invariant, and so is the cyclic order on each hole because orientation is preserved.
We actually have a complete invariant: (S,X, ι) is isomorphic to (S′, X, ι′) if, and
only if, the associated q-permutations are equal. In the sequel, all the operations
we define can be interpreted either in terms of q-permutations or in terms of
oriented compact surfaces with decomposed boundary up to isomorphism.

2.2 The Variety-Presentation Framework of q-Permutations

Q-permutations form a variety-presentation framework as defined in [3]. We give
here the ingredients of the variety-presentation framework of q-permutations,
i.e., the support set operator, the promotion, composition and decomposition
operators and the relaxation relation1.

We assume given an arbitrary countably infinite set P , the elements of which
are called places, and a distinguished element 0 /∈ P . Now, a variety (resp. a pre-
sentation) is simply a q-permutation on a finite subset of P∪{0} which does not
contain (resp. contains) 0. This is consistent with the usual view of presentations
as varieties with a distinguished place, which is generic to all variety-presentation
frameworks.

Definition 2 (support set, promotion, void presentation). For any q-
permutation μ = (X,σ, d), its support set is defined by |μ| = X ∩ P. Any place
1 In fact, we adopt a slight variant in the presentation w.r.t. [3] as to the status of

places and of the support set operator.
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x ∈ P can be associated with a presentation, called its promotion, which is the
q-permutation ({0, x}, χ0,x, 0), where χa,b denotes the transposition exchanging
a and b. By abuse of notation, it will be denoted by x so that |x| = {x}. Finally,
the void presentation © is the q-permutation ({0}, ∅, 0); obviously | © | = ∅.
The topological interpretation of the promotion of x (resp. of the void presen-
tation) is a disk the border of which is labelled by 0 and x (resp. 0 alone).

Definition 3 (composition). Let ω = (X,σ, d) and τ = (Y, θ, e) be presen-
tations such that |ω| ∩ |τ | = ∅ (i.e., X ∩ Y = {0}). Then ω ∗ τ is the variety
(Z, ξ, f) where

– Z = (X ∪ Y ) \ {0},
– if σ1, . . . , σp, (0, γ) are the disjoint cycles of σ and θ1, . . . , θq, (0, δ) are the

disjoint cycles of θ (here, γ and δ are ordered lists of places), then the disjoint
cycles of ξ are
• either σ1, . . . , σp, θ1, . . . , θq, (γ, δ) when γ or δ is non-empty
• or σ1, . . . , σp, θ1, . . . , θq when both γ and δ are empty, i.e. when σ(0) =

θ(0) = 0,
– f = d + e.

identify

O

O

The permutation ξ above
is obtained by gluing at
0 the orbits of 0 in σ
and θ. In terms of sur-
faces, the composition
operator is the amalga-
mated sum of the two
surfaces over a small
interval around 0 on
the boundary. Standard
topology of surfaces en-
sures that the result is
indeed an oriented sur-
face. This can be visu-
alised in the above figure. The number of holes in the output surface is the
sum of the numbers of holes in the input ones, decreased by one (the two holes
containing 0 have been merged into one) or two (if the two holes containing 0
contain no other distinguished point).

Definition 4 (decomposition). Let α = (X,σ, d) be a variety and x ∈ |α| =
X. The presentation (α)x is defined as the triple (X \ {x} ∪ {0}, σ′, d) where σ′

is obtained from σ by replacing x by 0.

The topological interpretation of this operation is quite straightforward: it does
not change the surface, simply relabels x as 0.

Definition 5 (relaxation). The relaxation relation is the smallest reflexive
transitive relation � on q-permutations such that:
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– divide: (X,σ, d) � (X, θ, d), where σ is obtained from θ by dividing one cycle
(γ, δ) into two: (γ) and (δ),

– merge: (X,σ, d + 1) � (X, θ, d), where σ is obtained from θ by merging two
cycles (γ) and (δ) into one (γ, δ),

– degenerate merge: (X,σ, d + 1) � (X,σ, d).

The degenerate merge rule is in fact obtained by taking (γ) or (δ) empty in the
merge rule, but we make it a separate case since the cycles of a permutation
are, by definition, non-empty. Since both divide and merge increment the rank
2d + p− 1 of a q-permutation (X,σ, d) where σ is a permutation with p cycles,
we have:

Proposition 1. Relaxation is a partial order on q-permutations.

The topological interpretation of relaxation is simply an amalgamated sum: given
an oriented compact surface with decomposed boundary (S,X, ι), take two in-
tervals u′ and u′′ on ∂S and not containing any distinguished point of S. Orient
u′ in the direction induced by S and u′′ in the opposite direction and identify
the oriented edges thus obtained. When u′ and u′′ are on the same connected
component (hole) of ∂S, this is a divide; otherwise, this is a merge, and results
in a new handle, as is illustrated below:

identify

u’ u’’

insert edge

Theorem 1 (variety-presentation framework). Q-permutations, together
with the above operators, satisfy the axioms of variety-presentation frameworks.

Proof. These axioms, recalled in Appendix A, are almost trivial, and result
from direct application of the definitions. The Composition axiom for example
essentially expresses that edge identifications in a surface can be performed in
any order. �
Following [3], q-permutations, as any variety-presentation framework, define a
coloured logic in which connectives are presentations together with a polarity,
and sequents are varieties. We explicit that logic, called Permutative Logic (PL),
in Section 3.

A Note on the Categorical Interpretation of q-Permutations. It is worth
observing that q-permutations on initial segments of N∗ are also the morphisms
of a traced symmetric tensor category [9] where objects are natural numbers,
tensor is the sum, and the trace is determined by the feedback trn,1(σ, d) : n → n
on a single wire (for a permutation σ : n+1 → n+1), which is defined as follows:
trn,1(σ, d) = (σ�1,...,n , d + 1) if σ(n + 1) = n + 1; otherwise trn,1(σ, d) = (σ′, d),
with σ′(i) = σ(i) when σ(i) ≤ n, and σ′(i) = σ(n + 1) when σ(i) = n + 1. This
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category is essentially obtained from the category of tangles with same number
of inputs and outputs by forgetting over- and under-crossings. Hence, the trace
determines a kind of “restriction operator” on q-permutations, but not the one
we are interested in here, which is motivated by the topological interpretation of
q-permutations and can be computed as in any variety-presentation framework
using the composition, decomposition operations and the void presentation by:

α�D = (((α)x1 ∗©)x2 ∗© . . .)xn ∗© where |α| \D = {x1, . . . , xn}

The restriction of a variety (X,σ, d) to a set Y ⊆ X is clearly the variety (Y, τ, d)
where the cycles of τ are those of σ from which the elements outside Y are
removed. The topological interpretation of restriction is simply the composition
of ι : X → ∂S with the inclusion map Y ⊆ X . For instance, the restriction of the
above-mentioned q-permutation (X, {(1, 3, 6), (2, 5, 7, 4)}, 3) to Y = {1, . . . , 5} is
(Y, {(1, 3), (2, 5, 4)}, 3). If idX denotes the identity on X , X = {1, 2, 3} and
Y = {1, 2}, then (idX , 0)�Y = (idY , 0) whereas tr3,1(idX , 0) = (idY , 1).

2.3 Computing Relaxation

A permutation σ ∈ Sk = S({1, . . . , k}) can be written as a product of transpo-
sitions, and the following result is standard:

Lemma 1. If σ ∈ Sk, then the smallest number n of transpositions τ1, . . . , τn
such that σ = τ1 · · · τn is given by n = k − σ•, where σ• denotes the number of
cycles of σ.

Observe that the effect of both divide and merge on the permutation σ of a
given variety (σ, d) is a composition by a transposition. Indeed, divide amounts
to taking a cycle (a, Γ, b,Δ) of σ and split it into the two cycles (a, Γ ) and
(b,Δ), leading to a permutation θ; conversely, merge amounts to taking two
cycles (a, Γ ) and (b,Δ) and merge them into a single cycle (a, Γ, b,Δ), leading to
a permutation θ: in both cases, θ = χa,b◦σ, where χa,b denotes the transposition
exchanging a and b.

Theorem 2. Given varieties (σ, d) and (θ, e) with σ, θ ∈ Sk, (θ, e) � (σ, d) if,
and only if, m(σ, θ) ≤ e− d, where:

m(σ, θ) =
k − (θσ−1)• − θ• + σ•

2
.

Proof. By Lemma 1, a sequence of divides and merges, say i divides and j
merges, from (σ, d) to (θ, e) gives rise to a decomposition of θσ−1 as a product
of at least k − (θσ−1)• transpositions. On the other hand, each occurrence of
divide increments the number of cycles and each occurrence of merge decrements
it, so i− j = θ• − σ•. From i + j ≥ k − (θσ−1)•, we deduce j ≥ m(σ, θ).

Now, e − d is the maximum number of merges in a sequence from (σ, d) to
(θ, e). Therefore, if (θ, e) � (σ, d) and m(σ, θ) > e− d, we have j > e− d, which
is impossible. Conversely, if m(σ, θ) ≤ e − d, consider a decomposition of θσ−1

as a product of exactly k − (θσ−1)• transpositions: the number of merges then
equals m(σ, θ) and (θ, e) � (σ, d). �
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Table 1. The sequent calculus of permutative logic

Identities

axiom
�0 (A,A⊥)

�d Σ, (Γ, A) �e Θ, (Δ, A⊥)
cut �d+e Σ, Θ, (Γ, Δ)

Structural rules

�d Σ, (Γ, Δ)
divide �d Σ, (Γ ), (Δ)

�d Σ, (Γ ), (Δ)
merge

�d+1 Σ, (Γ, Δ)

Logical rules

�d Σ, (Γ, A,B)
par

�d Σ, (Γ, A � B)

�d Σ, (Γ, A) �e Θ, (Δ, B)
tensor �d+e Σ, Θ, (Δ, Γ, A⊗B)

�d Σ, (Γ ), (A)
flat �d Σ, (Γ, �A)

�d Σ, (Γ, A)
sharp

�d Σ, (Γ ), (#A)

�d+1 Σ, (Γ )
hbar �d Σ, (Γ, �)

h �1 (h)

�d Σ, (Γ )
bottom �d Σ, (Γ,⊥)

one
�0 (1)

3 Formulas, Sequents, and Inference Rules

Definition 6 (formula). Formulas of PL are obtained from a fixed countable
set of negative atoms p, q, . . . and their positive duals p⊥, q⊥, . . ., by means of the
binary connectives �,⊗, the unary connectives %,#, and the constants �, h,⊥, 1.

The involutive duality is given by De Morgan rules:

(A � B)⊥ = B⊥ ⊗A⊥ (%A)⊥ = #A⊥ �⊥ = h ⊥⊥ = 1
(A⊗B)⊥ = B⊥ � A⊥ (#A)⊥ = %A⊥ h⊥ = � 1⊥ = ⊥

In general, in a variety-presentation framework, there are two n-ary connectives
τ+ and τ− of opposite polarities for each presentation τ with a normalised sup-
port set {1, . . . , n}, hence an infinite set of connectives. However, most of the
time, this set is redundant, and it is sufficient to restrict to the connectives
derived from a finite set of presentations from which all the others can be recon-
structed using the operations of the framework (composition, decomposition).
More precisely, given Ω a set of presentations, define the set Ω∗ of presentations
generated by Ω to be the smallest set of presentations X containing places, Ω
and satisfying: (ω ∗ τ )x ∈ X for any ω, τ ∈ X and x ∈ |ω| ∪ |τ |. Furthermore, Ω
is said to be spanning when Ω∗ is the set of all presentations and to be a basis
when it is spanning and none of its strict subsets is. It is not difficult to check
the following for q-permutations:
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Proposition 2. A basis for q-permutations is the set of 4 presentations below.

Presentation τ Neg. conn. τ− Pos. conn. τ+

{(0, 1, 2)}, 0 � ⊗
{(0), (1)}, 0 % #
{(0)}, 1 � h
{(0)}, 0 ⊥ 1

Definition 7 (sequent). A sequent is a variety together with a mapping from
its support set into the set of formulas, modulo renaming of the support set
consistent with the mapping to formulas.

It is convenient to represent a sequent as a list of lists of formulas, indexed by a
natural number, denoted �d (Γ1), . . . , (Γq) where d is the number and Γ1, . . . , Γq

are the lists of formulas. It corresponds to the presentation (σ, d) where σ is
the permutation whose cycles are precisely (Γ1), . . . , (Γq), each inner list being
taken modulo cyclic exchange and the outer list being taken modulo unrestricted
exchange (it is a multiset). Note that if a list Γi is empty, it is simply ignored
(it does not correspond to a cycle in σ). In other words, we have the implicit
equalities:

�d Σ,Σ1, Σ2, Σ
′ = �d Σ,Σ2, Σ1, Σ

′

�d Σ, (Γ,Δ) = �d Σ, (Δ,Γ )
�d Σ, () = �d Σ

Modulo these identities, there is a one-to-one correspondence between sequents
and their representations as indexed lists of lists. Using this representation, the
sequent calculus of PL is given in Table 1. The usual exchange rule of LL is
decomposed in PL as follows:

�d Σ, (Γ, A, B)
divide �d Σ, (Γ, A), (B)

. . . . . . . . . . . . . . . . . . .
�d Σ, (A, Γ ), (B)

merge
�d+1 Σ, (A,Γ, B)

. . . . . . . . . . . . . . . . . . .
�d+1 Σ, (Γ, B, A)

Dotted lines here indicate application of the identities on sequents. It is interest-
ing to note that exchange is not involutive, even at the level of sequents, since a
handle has been added.

The inference figure for an n-ary connective attached to a presentation τ
(normalised so that |τ | = {1, . . . , n}) is directly obtained from the generic pattern
of variety-presentation frameworks:

ω ∗ τ(A1, . . . , An)
τ−

ω ∗ τ−(A1, . . . , An)
ω1 ∗A1 · · · ωn ∗An

τ+

τ(ωn, . . . , ω1) ∗ τ+(A1, . . . , An)

Let us detail, for example, how the inference figure for connective ⊗ is obtained.
In that case, we have τ = ({(0, 1, 2)}, 0) and the connective is positive. The
conclusion of the corresponding inference is therefore τ(ωB, ωA) ∗ A ⊗ B and
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its premisses are ωA ∗ A and ωB ∗ B. Now τ(ωB , ωA) is defined as presentation
τ in which place 1 is substituted by ωB and place 2 by ωA. The substitution
operation on a presentation in any variety-presentation framework is defined in
general by

τ((ωz)z∈|τ |) = (((τ ∗ x)x1 ∗ ωx1 · · ·)xn ∗ ωxn)x (1)

where x is an arbitrary place outside |τ | and x1, . . . , xn is an arbitrary enumera-
tion of |τ | (the axioms of variety-presentations ensure that the result is indepen-
dent of any choice for x and the enumeration of |τ |). By distinguishing in ωA and
ωB the cycle containing 0, we have that ωA is of the form �d Σ, (Γ,0) and ωB

of the form �e Θ, (Δ,0). By applying (1), we get that τ(ωB , ωA) is the sequent
�d+e Σ,Θ, (Δ,Γ,0). Hence the inference figure for ⊗. Similarly, the inference
figure for # is the positive inference associated with τ = ({(0), (1)}, 0). Its con-
clusion is τ(ω) ∗ #A and its premiss ω ∗ A. Now representing ω as �d Σ, (Γ,0),
we get that τ(ω) is �d Σ, (Γ ), (0), and, composing ω with A and τ(ω) with #A
we obtain the result. The other inference figures are obtained in the same way.

3.1 Basic Properties

Let A1, . . . , An � B denote the sequent �0 (A⊥1 , . . . , A⊥n , B), and A !� B denote
the two sequents A � B and B � A.

Proposition 3. The following sequents are provable in permutative logic:

A � %A %A � A � �
(A � B) � C !� A � (B � C) %%A !� %A A � %B !� %B � A
A � ⊥ !� A %⊥ !� ⊥ %(A � %B) !� %A � %B
⊥ � A !� A %� !� � %(A � B) !� %(B � A).

Proof.

A � �A �A � A � � A � �B #� �B � A

�0 (A⊥, A)
divide

�0 (A⊥), (A)

�0 (A⊥, �A)

�0 (A⊥, A)

�0 (#A⊥), (A)
merge

�1 (#A⊥, A)

�0 (#A⊥, A, �)

�0 (#A⊥, A � �)

�0 (B⊥, B)

�0 (#B⊥), (B) �0 (A⊥, A)

�0 (#B⊥ ⊗A⊥, A), (B)

�0 (#B⊥ ⊗A⊥, �B, A)

�0 (#B⊥ ⊗A⊥, �B � A)

��A � �A �⊥ � ⊥ �� � � �(A � B) #� �(B � A)

�0 (A⊥, A)

�0 (#A⊥), (A)

�0 (##A⊥), (), (A)
. . . . . . . . . . . . . . . . . . . . .
�0 (##A⊥), (A)

�0 (##A⊥, �A)

�0 (1)

�0 (#1), ()
. . . . . . . . . . . .
�0 (#1)

�0 (#1,⊥)

�1 (h)

�1 (#h), ()
. . . . . . . . . . . .
�1 (#h)

�0 (#h, �)

�0 (B, B⊥) �0 (A,A⊥)

�0 (B⊥ ⊗ A⊥, A, B)

�0 (#(B⊥ ⊗A⊥)), (A,B)

�0 (#(B⊥ ⊗A⊥)), (B � A)

�0 (#(B⊥ ⊗ A⊥), �(B � A))



Permutative Logic 193

�(A � �B) � �A � �B �A � �B � �(A � �B)

�0 (B, B⊥)

�0 (B), (#B⊥) �0 (A,A⊥)

�0 (#B⊥ ⊗ A⊥, A), (B)

�0 (#(#B⊥ ⊗A⊥)), (A), (B)

�0 (#(#B⊥ ⊗A⊥), �A), (B)

�0 (#(#B⊥ ⊗ A⊥), �A, �B)

�0 (#(#B⊥ ⊗A⊥), �A � �B)

�0 (B, B⊥)

�0 (B), (#B⊥)

�0 (A, A⊥)

�0 (#A⊥), (A)

�0 (#B⊥ ⊗#A⊥), (A), (B)

�0 (#B⊥ ⊗#A⊥), (A, �B)

�0 (#B⊥ ⊗#A⊥), (A � �B)

�0 (#B⊥ ⊗#A⊥, �(A � �B))

�

Corollary 1. The following sequents are provable in permutative logic:

⊥ � � A � � !� � � A %(� � A) !� � � %A

Proof. Easy from the previous proposition. �
As a consequence, we have the following corollary.

Corollary 2. Any negative formula is equivalent to a formula of the form:

N = %(P 1
�) � · · · � %(P k

�) � Q1 � · · · � Q� � � � · · · � �

with d occurrences of � and k, �, d ≥ 0. For each i = 1, . . . , k the formula P i
�

is of the form P i
1 � · · · � P i

ni
for some ni ≥ 1, and the P i

j and Qi are positive
formulas. Explicit parentheses for associativity have been omitted.

As a special case, ⊥ corresponds to the case where k, �, d = 0. Note that each of
P i
j and Qi being positive, they can in turn be decomposed as above (by duality).

The following defined connectives �̇ and ⊗̇ are useful for the embedding of
LL into PL (Theorem 3): A �̇ B = A � %B. Its dual is: A ⊗̇ B = #A ⊗ B. The
following properties are straightforward.

A �̇ (B �̇ C) !� A �̇ (C �̇ B) A � B � A �̇ B
A � (B �̇ C) !� (A � B) �̇ C !� (A �̇ C) � B A �̇ ⊥ !� A

3.2 Subsystems

The surface associated by Métayer [14] to a proof net in multiplicative linear logic
can be explicitly computed by the sequent calculus introduced by Gaubert [6].
In this calculus, there are no structural rules, and the logical rules only deal
with the connectives ⊗ and �. The cycles correspond to the conclusions on the
same border and the number attached to the sequent is the number of handles
of the surface. Our ⊗ rule is the same, and the two � rules in [6] are recovered
as follows:
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�d Σ, (Γ, A, Δ, B)
. . . . . . . . . . . . . . . . . . .
�d Σ, (B, Γ, A, Δ)

divide �d Σ, (B, Γ, A), (Δ)
. . . . . . . . . . . . . . . . . . . . .
�d Σ, (Γ, A, B), (Δ)

par
�d Σ, (Γ, A � B), (Δ)

�d Σ, (Γ, A), (B, Δ)
merge

�d+1 Σ, (Γ, A, B, Δ)
par

�d+1 Σ, (Γ, A � B, Δ)

Observe that the two � rules in [6] are not reversible, hence calculus in [6] cannot
have the focussing property. Melliès’ planar logic [13] exactly corresponds to the
(⊗,�) fragment of PL restricted to proofs with 0 handle. The following theorem
shows that PL is a conservative extension of cyclic linear logic [19] and linear
logic [7].

Theorem 3. Any formula A of CyLL (resp. LL) is turned into a formula Acy

(resp. Ali) of PL by acy = ali = a for an atom a and by:

(A�B)cy = Acy � Bcy (A�B)li = Ali �̇ Bli

(A⊗B)cy = Acy ⊗Bcy (A⊗B)li = Ali ⊗̇Bli

A formula A of CyLL (resp. LL) is provable in CyLL (resp. LL) if, and only if,
Acy (resp. Ali) is provable in PL.

Proof. The case of CyLL is an obvious induction: essentially, CyLL is the (⊗,�)
fragment of permutative logic with 1 cycle and 0 handle (i.e., rank 0).

For LL, we extend the translation to sequents, and we first show that if
� A1, . . . , An is provable in LL then �0 (Ali

1), . . . , (Ali
n) is provable in PL, by

induction of a proof of � A1, . . . , An in LL. Since clearly A⊥li = Ali⊥, axiom and
the � and ⊗ rules of LL are translated as follows in PL:

�0 (Ali, A⊥li)
divide

�0 (Ali), (A⊥li)

�0 Σli, (Ali), (Bli)

�0 Σli, (Ali, �Bli)

�0 Σli, (Ali � �Bli)

�0 Σli, (Ali)

�0 Σli, (#Ali) �0 (Bli), Θli

�0 Σli, (#Ali ⊗Bli), Θli

To show the converse, we associate to any formula, sequent, proof of PL its linear
skeleton in the evident way, by forgetting the information specific to PL, i.e., by
forgetting %,# and by mapping �, h to ⊥, 1, by mapping the variety underlying
a sequent to its support set, and by forgetting the %,# rules and the structural
rules. It is straightforward to check that a proof in PL is thus mapped to a proof
in LL, and this is enough to conclude. �
It is not obvious however that pomset calculus [17], non-commutative logic [2]
or ordered calculus [16] are subsystems of PL.

By using the linear skeleton just defined, it is possible to show that PL
behaves as a topological decoration of (essentially the multiplicative fragment
of) LL. This observation should be a basis for a theory of proof nets for PL.

Theorem 4. If �d Σ is a sequent of PL and π is a proof of its skeleton in LL,
then for some e ≥ 0, there is a proof of �d+e Σ in PL whose skeleton is π. In
particular, if the linear skeleton of a sequent �d Σ of PL is provable in LL, then
for some e ≥ 0, �d+e Σ is provable in PL.
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Proof. We only need to show the first assertion. It is obtained by induction on
π, together with the observation that a connective of PL in Σ which is forgotten
by the skeleton operation can always be decomposed in PL, possibly at a certain
cost (in terms of structural rules, hence in terms of handles). We omit the details
here. �

4 Cut Elimination and Focussing

4.1 Cut Elimination

Theorem 5. Any proof in PL can be transformed into a proof without cut.

Proof. The proof follows the usual pattern [3], where cuts are eliminated by
repetitive application of reduction rules to the proofs. There are three kinds
of reductions: axiom case (when one of the premisses of the cut is an axiom),
commutative conversion (when the principal formula in one of the premisses of
the cut is not the cut-formula) and symmetric reductions (when the principal
formula in both premisses of the cut is the cut formula). Some cases are detailed
below, the other configurations being treated similarly. �
Symmetric reductions:

�d Σ, (Γ ), (A)

�d Σ, (Γ, �A)

�e Θ, (Δ,A⊥)

�e Θ, (Δ), (#A⊥)
cut

�d+e Σ,Θ, (Γ ), (Δ)

� �d Σ, (Γ ), (A) �e Θ, (Δ,A⊥)
cut

�d+e Σ,Θ, (Γ ), (Δ)

�d Σ, (Γ,A,B)

�d Σ, (Γ, A � B)

�f Ξ, (Λ,B⊥) �e Θ, (Δ,A⊥)

�e+f Θ,Ξ, (Λ,B⊥ ⊗ A⊥,Δ)
cut

�d+e+f Σ,Θ, Ξ, (Γ,Δ, Λ)

�

�d Σ, (Γ,A,B) �f Ξ, (Λ,B⊥)
cut

�d+f Σ,Ξ, (Γ,A,Λ) �e Θ, (Δ,A⊥)
cut

�d+e+f Σ,Θ,Ξ, (Γ,Δ, Λ)

Commutative conversions:

�d Σ, (Γ,C), (A)

�d Σ, (Γ,C, �A) �e Θ, (Δ,C⊥)
cut

�d+e Σ,Θ, (Γ,Δ, �A)

�
�d Σ, (Γ,C), (A) �e Θ, (Δ,C⊥)

cut
�d+e Σ,Θ, (Γ,Δ), (A)

�d+e Σ,Θ, (Γ,Δ, �A)

�d Σ, (Γ ), (Δ,C)
merge

�d+1 Σ, (Γ,Δ, C) �e Θ, (Λ,C⊥)
cut

�d+e+1 Σ,Θ, (Γ,Δ, Λ)

�
�d Σ, (Γ ), (Δ,C) �e Θ, (Λ,C⊥)

cut
�d+e Σ,Θ, (Γ ), (Δ,Λ)

merge
�d+e+1 Σ,Θ, (Γ,Δ, Λ)

4.2 Focussing

As with any coloured logic derived from a variety-presentation framework, the
sequent calculus has a remarkable property called focussing, which eliminates ir-
relevant non-determinism in proof construction. It reflects general permutability
properties of inferences: any positive (resp. negative) inference can be permuted
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Table 2. The focussed sequent calculus of permutative logic

Identity

Ax
�0 p  p⊥ if p is a negative atom

Structural rules

�d Σ, (Γ, A)
unfocus �d Σ  Γ, A

�d Σ 
focus1 �d Σ

�d Σ  Γ, A
focus2 �d Σ, (Γ, A) 

if A is negative if Σ is reduced if A is positive

�d Σ, (Γ, Δ) 
divide �d Σ, (Γ ), (Δ) 

�d Σ, (Γ ), (Δ) 
merge

�d+1 Σ, (Γ, Δ) 

Logical rules

�d Σ, (Γ, A, B)
par

�d Σ, (Γ, A � B)

�d Σ  Γ, A �e Θ  Δ, B
tensor �d+e Σ, Θ  Δ, Γ, A⊗B

�d Σ, (Γ ), (A)
flat �d Σ, (Γ, �A)

�d Σ  Γ, A
sharp

�d Σ, (Γ )  #A

�d+1 Σ, (Γ )
hbar �d Σ, (Γ, �)

h �1 h

�d Σ, (Γ )
bottom �d Σ, (Γ,⊥)

one
�0 1

upward (resp. downward) if the active formulas of the lower inference are not
principal in the upper inference. Thus, inferences of the same polarity can be
grouped together. This can be captured in a variant of the sequent calculus called
the focussing sequent calculus.

Definition 8. The sequents of the focussing sequent calculus are of two types:

– standard sequents of the form �d Σ;
– focussed sequents of the form �d Σ  Γ where the list of formulas Γ has

been singled out. Note that, here, Γ is not taken modulo cyclic exchange.

A structure on formulas (eg. sequent) is said to be reduced if it does not contain
any negative compound formula.

The focussing sequent calculus is given in Table 2. Its negative logical inferences
are identical to those of the standard sequent calculus. Its positive logical infer-
ences are also those of the standard calculus, except that the principal formula
is syntactically distinguished as focus, and, when read bottom-up, the focus is
passed to its active formulas as long as they remain positive. In the generic
variety-presentation framework, the positive rule for an n-ary connective is:
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ω1  A1 · · · ωn  An

τ(ωn, . . . , ω1)  τ+(A1, . . . , An)

The unfocus rule models the loss of focus due to a change of polarity of the focus
(from positive to negative). The rules divide, merge, focus1 and focus2 are in
fact a single rule in the generic variety-presentation framework:

ω  Afocus α
�e Θ  Γ,A

focus �d Σ

if α is reduced, A is positive in PL−→ if Σ is reduced, A is positive
and α � ω ∗A and �d Σ � �e Θ, (Γ,A)

It is easy to show that the calculus with the focus rule is equivalent to that with
the divide, merge, focus1 and focus2 rules. The latter has been adopted only to
make explicit the use of the divide and merge rules, which are implicit in the
side relaxation condition of the focus rule.

Theorem 6. A standard sequent is provable in PL if and only if it is provable
in the focussing sequent calculus of PL.

Proof. It is straightforward to map any inference of the focussing calculus into
an inference of the standard calculus (or a dummy inference): just drop the 
sign when it appears. Hence, this ensures the soundness of the focussing calculus.
Its completeness is much more involved. It relies exclusively on the axioms of
variety-presentation frameworks. It is shown in three steps. First, the negative
rules are shown to be invertible in the focussing calculus. Second, the “focus”
rule is shown to hold even when Σ is not reduced (using the previous result).
And third, the positive rules of the standard calculus are shown to hold in the
focussing calculus (using the previous results). In fact, all these properties result
from generic permutability properties between inferences, depending on their
polarities. The interested reader is referred to [3] for details. �

5 Future Work

Permutative logic opens new perspectives in the design of non-commutative log-
ical systems. It not only quantifies the use of the structural rule of exchange
but also allows to put constraints on that use. Many aspects of the logic have
not been studied in this paper. For example, proof-nets in PL deserve a study of
their own. It can be expected that a correctness criterion for PL should be found
which extends that for CyLL: a cut free proof structure is CyLL-correct if it is
LL-correct and planar. In PL, the planarity condition should be replaced by some
condition involving more complex surfaces. Another interesting aspect is proof
construction. It is very easy to show that, unlike the entropy of non-commutative
logic [2], relaxation in PL cannot be optimised so that, during proof construction,
the positive inferences perform only the “minimal” amount of relaxation that is
strictly needed. However, it is conjectured that if proof-construction is viewed as
a constraint propagation problem, this optimality can be recovered. Finally, we
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have not explored semantics issues. A trivial but uninformative phase semantics
can be derived, as in any coloured logic (i.e., based on a variety-presentation
framework). More work is needed to achieve interesting semantics interpretation
of formulas and proofs.
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A Axioms of Variety-Presentation Frameworks

The axioms of variety-presentation frameworks are the following (see [3]):

– Composition:
For any presentations ω1, ω2,

|ω1| ∩ |ω2| = ∅ ⇒
{
|ω1 ∗ ω2| = |ω1| ∪ |ω2|
ω1 ∗ ω2 = ω2 ∗ ω1

– Decomposition:
For any variety α, place x and presentation ω:

x ∈ |α| ⇒ x �∈ |(α)x| ∧ x ∗ (α)x = α
x �∈ |ω| ∧ ω ∗ x = α ⇒ ω = (α)x

This implies, by composition, that if x ∈ |α| then |(α)x| = |α| \ {x}. Hence,
for a given x, the mappings α  → (α)x (for any variety α having occurrence
x) and ω  → ω ∗ x (for any presentation ω not having occurrence x) are
inverse of each other.

– Commutation:
For any variety α, presentations ω1, ω2 and places x1, x2,

|α| ∩ ({x1} ∪ |ω1|) = {x1}
|α| ∩ ({x2} ∪ |ω2|) = {x2}
({x1} ∪ |ω1|) ∩ ({x2} ∪ |ω2|) = ∅

⎫⎬⎭⇒ ((α)x1 ∗ ω1)x2∗ω2 = ((α)x2 ∗ ω2)x1∗ω1

From the previous axioms, it is easy to show that, under the stated condition,
the two sides of the equality have the same occurrence set. This axiom asserts
that they are equal.

– Relaxation:
For any varieties α1, α2, presentation ω and place x,

α1 � α2 ⇒
{
|α1| = |α2| = D
(|ω| ∪ {x}) ∩D = {x} ⇒ (α1)x ∗ ω � (α2)x ∗ ω

Hence, relaxation applies only to varieties with the same occurrence set and
is compatible with decomposition/composition.
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Abstract. Focusing is traditionally seen as a means of reducing inessential non-
determinism in backward-reasoning strategies such as uniform proof-search or
tableaux systems. In this paper we construct a form of focused derivations for
propositional linear logic that is appropriate for forward reasoning in the inverse
method. We show that the focused inverse method conservatively generalizes the
classical hyperresolution strategy for Horn-theories, and demonstrate through a
practical implementation that the focused inverse method is considerably faster
than the non-focused version.

1 Introduction

Strategies for automated deduction can be broadly classified as backward reasoning or
forward reasoning. Among the backward reasoning strategies we find tableaux and ma-
trix methods; forward reasoning strategies include resolution and the inverse method.
The approaches seem fundamentally difficult to reconcile because the state of a back-
ward reasoner is global, while a forward reasoner maintains locally self-contained state.

Both backward and forward approaches are amenable to reasoning in non-classical
logics. This is because they can be derived from an inference system that defines a
logic. The derivation process is systematic to some extent, but in order to obtain an
effective calculus and an efficient implementation, we need to analyze and exploit deep
proof-theoretic or semantic properties of each logic under consideration.

Some themes stretch across both backwards and forwards systems and even dif-
ferent logics. Cut-elimination and its associated subformula property, for example, are
absolutely fundamental for both types of systems, regardless of the underlying logic. In
this paper we advance the thesis that focusing is similarly universal. Focusing was orig-
inally designed by Andreoli [1, 2] to remove inessential non-determinism from back-
ward proof search in classical linear logic. It has already been demonstrated [3] that
focusing applies to other logics; here we show that focusing is an important concept for
theorem proving in the forward direction.

As the subject of our study we pick propositional intuitionistic linear logic [4–6].
This choice is motivated by two considerations. First, it includes the propositional core
of the Concurrent Logical Framework (CLF), so our theorem prover, and its first-order
extension, can reason with specifications written in CLF; many such specifications, in-
cluding Petri nets, the π-calculus and Concurrent ML, are described in [7]. For many
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of these applications, the intuitionistic nature of the framework is essential. Second, it
is almost a worst-case scenario, combining the difficulties of modal logic, intuitionistic
logic, and linear logic, where even the propositional fragment is undecidable. A treat-
ment, for example, of classical linear logic without the lax modality can be given very
much along the same lines, but would be simpler in several respects.

Our contributions are as follows. First, we show how to construct a non-focusing
inverse method for intuitionistic linear logic. This follows a fairly standard recipe [8],
although the resource management problem germane to linear logic has to be consid-
ered carefully. Second, we define focused derivations for intuitionistic linear logic. The
focusing properties of the connectives turn out to be consistent with their classical in-
terpretation, but completeness does not come for free because of the additional restric-
tions placed by intuitionistic (and modal) reasoning. The completeness proof is also
somewhat different from ones we have found in the literature. Third, we show how
to adapt focusing so it can be used in the inverse method. The idea is quite general
and, we believe, can be adapted to other non-classical logics. Fourth, we demonstrate
via experimental results that the focused inverse method is substantially faster than the
non-focused one. Fifth, we show that refining the inverse method with focusing agrees
exactly with classical hyperresolution on Horn formulas, a property which fails for non-
focusing versions of the inverse method. This is practically significant, because even in
the linear setting many problems or sub-problems may be non-linear and Horn, and
need to be treated with reasonable efficiency.

In a related paper [9] we generalize our central results to first-order intuitionistic lin-
ear logic, provide more detail on the implementation choices, and give a more thorough
experimental evaluation. Lifting the inverse method here to include quantification is
far from straightforward, principally because of the rich interactions between linearity,
weakening, and contraction in the presence of free variables. However, these consider-
ations are orthogonal to the basic design of forward focusing which remains unchanged
from the present paper.

Perhaps most closely related to our work is Tammet’s inverse method prover for
classical linear logic [10] which is a refinement of Mints’ resolution system [11]. Some
of Tammet’s optimizations are similar in nature to focusing, but are motivated primarily
by operational rather than by logical considerations. As a result, they are not nearly
as far-reaching, as evidenced by the substantial speedups we obtain with respect to
Tammet’s implementation. Our examples were chosen so that the difference between
intuitionistic and classical linear reasoning was inessential.

2 Backward Linear Sequent Calculus

We use a backward cut-free sequent calculus for propositions constructed out of the
propositional linear connectives {⊗,1,�,&,�, !}; the extension to first-order connec-
tives using the recipe outlined in [9] is straightforward. To simplify the presentation we
leave out ⊕ and 0, though the implementation supports them and some of the exper-
iments in Sec. 5.2 use them. Propositions are written using uppercase letters A, B, C,
with p standing for atomic propositions. The sequent calculus is a standard fragment
of JILL [6], containing dyadic two-sided sequents of the form Γ ; Δ =⇒C: the zone Γ
contains the unrestricted hypotheses and Δ contains the linear hypotheses. Both con-
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texts are unordered. For the rules of this calculus we refer the reader to [6, page 14].
Also in [6] are the standard weakening and contraction properties for the unrestricted
hypotheses, which means we can treat Γ as a set, and admissibility of cut by means of
a simple lexicographic induction.

Definition 1 (subformulas). A decorated formula is a tuple 〈A,s,w〉 where A is a
proposition, s is a sign (+ or −) and w is a weight (h for heavy or l for light). The
subformula relation ≤ is the smallest reflexive and transitive relation between deco-
rated subformulas satisfying the following inequalities:

〈A,s,h〉 ≤ 〈!A,s,∗〉 〈A,s, l〉 ≤ 〈A� B,s,∗〉 〈B,s, l〉 ≤ 〈A� B,s,∗〉
〈Ai,s, l〉 ≤ 〈A1 ⊗A2,s,∗〉 〈Ai,s, l〉 ≤ 〈A1 & A2,s,∗〉 i ∈ {1,2}

where s is the opposite of s, and ∗ can stand for either h or l, as necessary. Decorations
and the subformula relation are lifted to (multi)sets in the obvious way.

Property 2 (subformula property). In any sequent Γ′ ; Δ′ =⇒C′ used in a proof of
Γ ; Δ =⇒C: 〈Γ′,−,h〉∪ 〈Δ′,−,∗〉∪{〈C′,+,∗〉} ≤ 〈Γ,−,h〉∪ 〈Δ,−, l〉∪{〈C,+, l〉}.

)*

For the remainder of the paper, all rules are restricted to decorated subformulas
of a given goal sequent. A right (resp. left) rule is applicable if the principal formula
in the conclusion is a positive (resp. negative) subformula of the goal sequent. Of the
judgmental rules (reviewed in the next section), init is restricted to atomic subformulas
that are both positive and negative decorated subformulas, and the copy rule is restricted
to negative heavy subformulas.

3 Forward Linear Sequent Calculus

In addition to the usual non-determinism in rule and sub-goal selection, the single-use
semantics of linear hypotheses gives rise to resource non-determinism during backward
search. Its simplest form is multiplicative, caused by binary multiplicative rules (⊗R and
�L), where the linear zone of the conclusion has to be distributed into the premisses.
In order to avoid an exponential explosion, backward search strategies postpone this
split either by an input/output interpretation, where proving a sub-goal consumes some
of the resources from the input and passes the remaining resources on as outputs [12],
or via Boolean constraints on the occurrences of linear hypotheses [13]. Interestingly,
multiplicative non-determinism is entirely absent in a forward reading of multiplicative
rules: the linear context in the conclusion is formed simply by adjoining those of the
premisses. On the multiplicative-exponential fragment, for example, forward search has
no resource management issues at all. Resource management problems remain absent
even in the presence of binary additives (& and ⊕).

The only form of resource non-determinism for the forward direction arises in the
presence of additive constants (� and 0). For example, the backward �R rule has an
arbitrary linear context which we cannot guess in the forward direction. We therefore
leave it empty (no linear assumptions are needed), but we have to remember that we can
add linear assumptions if necessary. We therefore differentiate sequents whose linear
context can be weakened and those whose can not.
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judgmental

· ; p −→0 p
init

Γ ; Δ,A −→w C

Γ∪{A} ; Δ −→w C
copy

multiplicative

Γ ; Δ −→w A Γ′ ; Δ′ −→w′
B

Γ∪Γ′ ; Δ,Δ′ −→w∨w′
A⊗B

⊗R

Γ ; Δ,A,B −→w C

Γ ; Δ,A⊗B −→w C
⊗L

Γ ; Δ,Ai −→1 C (A j /∈ Δ)

Γ ; Δ,A1 ⊗A2 −→1 C
⊗Li

(i, j) ∈ {(1,2),(2,1)}

· ; · −→0 1
1R

Γ ; Δ −→0 C

Γ ; Δ,1 −→0 C
1L

Γ ; Δ,A −→w B

Γ ; Δ −→w A� B
�R

Γ ; Δ −→1 B (A /∈ Δ)

Γ ; Δ −→1 A� B
�R′

Γ ; Δ,B −→w C
Γ′ ; Δ′ −→w′

A (w = 0∨B /∈ Δ′)

Γ∪Γ′ ; Δ,Δ′,A� B −→w∨w′
C

�L

additive

Γ ; Δ −→w A
Γ′ ; Δ′ −→w′

B (Δ/w≈Δ′/w′)

Γ∪Γ′ ; Δ*Δ′ −→w∧w′
A & B

&R

· ; · −→1 �
�R

Γ ; Δ,Ai −→w C

Γ ; Δ,A1 & A2 −→w C
&Li

i ∈ {1,2}

exponential

Γ ; · −→w A

Γ ; · −→0 !A
!R

Γ,A ; Δ −→w C

Γ ; Δ, !A −→w C
!L

Γ ; Δ −→0 C (A /∈ Γ)

Γ ; Δ, !A −→0 C
!L′

Fig. 1. Forward linear sequent calculus

To distinguish forward from backward sequents, we shall use a single arrow (−→),
possibly decorated, but keep the names of the rules the same.

Definition 3 (forward sequents).
1. A forward sequent is of the form Γ ; Δ −→w C. Γ and Δ hold the unrestricted and

linear resources respectively, and w is a Boolean (0 or 1) called the weak-flag. Se-
quents with w = 1 are called weakly linear or simply weak, and those with w = 0
are strongly linear or strong.

2. The correspondence relation ≺ between forward and backward sequents is defined

as follows:
(

Γ ; Δ −→w C
)
≺
(

Γ′ ; Δ′ =⇒C
)

iff Γ ⊆ Γ′, and Δ = Δ′ or Δ ⊆ Δ′ de-

pending on whether w = 0 or w = 1, respectively. The forward sequent s is sound
if for every backward sequent s′ such that s ≺ s′, s′ is derivable in the backward
calculus.

3. The subsumption relation ≤ between forward sequents is the smallest relation to
satisfy: (

Γ ; Δ −→0 C
)
≤
(

Γ′ ; Δ −→0 C
)

(
Γ ; Δ −→1 C

)
≤
(

Γ′ ; Δ′ −→w C
)

⎫⎪⎬⎪⎭ where Γ ⊆ Γ′ and Δ ⊆ Δ′.

Note that strong sequents never subsume weak sequents.

Obviously, if s1 ≤ s2 and s2 ≺ s, then s1 ≺ s. It is easy to see that weak sequents
model affine logic: this is familiar from embeddings into linear logic that translate affine
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implications A → B as A � (B⊗�). The collection of inference rules for the forward
calculus is in fig. 1. The rules must be read while keeping the subformula restriction in
mind; precisely, a rule applies only when the principal formula is a subformula of the
goal sequent.

The trickiest aspect of these rules are the side conditions (given in parentheses) and
the weakness annotations. In order to understand these, it may be useful to think in term
of the following property, which we maintain for all rules in order to avoid redundant
inferences.

Definition 4. A rule with conclusion s and premisses s1, . . . ,sn is said to satisfy the
irredundancy property if for no i ∈ {1, . . . ,n}, si ≤ s.

In other words, a rule is irredundant if none of its premisses subsumes the conclusion.
Note that this is a local property; we do not discuss here more global redundancy crite-
ria.

The first immediate observation is that binary rules simply take the union of the
unrestricted zone from the premisses. The action of the rules on the linear zone is also
prescribed by linearity when the sequents are strong (w = 0).

The binary additive rule (&R) is applicable in the forward direction when both pre-
misses are weak (w = 1), regardless of their linear zone. This is because in this case the
linear zones can always be weakened to make them equal. We therefore compute the
upper bound (*) of the two multi-sets: if A occurs n times in Δ and m times in Δ′, then
it occurs max(n,m) times in Δ*Δ′.

If only one premiss of the binary additive rule is weak, the linear zone of the weak
premiss must be included in the linear zone of the other strong premiss. If both pre-
misses are strong, their linear zones must be equal. We abstract the four possibilities in
the form of an additive compatibility test.

Definition 5 (additive compatibility). Given two forward sequents Γ ; Δ −→w C and
Γ′ ; Δ′ −→w′

C, their additive zones Δ and Δ′ are additively compatible given their re-
spective weak-flags, which we write as Δ/w≈Δ′/w′, if the following hold:

Δ/0 ≈ Δ′/0 if Δ = Δ′

Δ/1 ≈ Δ′/1 always

Δ/0 ≈ Δ′/1 if Δ′ ⊆ Δ
Δ/1 ≈ Δ′/0 if Δ ⊆ Δ′

For binary multiplicative rules like ⊗R, the conclusion is weak if either of the pre-
misses is weak; thus, the weak-flag of the conclusion is a Boolean-or of those of the
premisses. Dually, for binary additive rules, the conclusion is weak if both premisses
are weak, so we use a Boolean-and to conjoin the weak flags. Most unary rules are
oblivious to the weakening decoration, which simply survives from the premiss to the
conclusion. The exception is !R, for which it is unsound to have a weak conclusion;
there is no derivation of · ;� =⇒ !�, for example.

Left rules with weak premisses require some attention. It is tempting to write the
“weak” ⊗L rules as:

Γ ; Δ,A −→1 C

Γ ; Δ,A⊗B −→1 C
⊗L1

Γ ; Δ,B −→1 C

Γ ; Δ,A⊗B −→1 C
⊗L2.



Focusing the Inverse Method for Linear Logic 205

(Note that the irredundancy property requires that at least one of the operands of ⊗ be
present in the premiss.) This pair of rules, however, would allow redundant inferences
such as:

Γ ; Δ,A,B −→1 C

Γ ; Δ,A,A⊗B −→1 C
⊗L2.

We might as well have consumed both A and B to form the conclusion, and obtained a
stronger result. The sensible strategy is: when A and B are both present, they must both
be consumed. Otherwise, only apply the rule when one operand is present in a weak
sequent. A similar observation can be made about all such rules: there is one weakness-
agnostic form, and some possible refined forms to account for weak sequents.

Property 6 (irredundancy). All forward rules satisfy the irredundancy property. )*

The soundness and completeness theorems are both proven by structural induction;
we omit the easy proofs. Note that the completeness theorem shows that the forward
calculus infers a possibly stronger form of the goal sequent.

Theorem 7 (soundness). If Γ ; Δ −→w C is derivable, then it is sound.

Theorem 8 (completeness). If Γ ; Δ =⇒C is derivable, then there exists a derivable

forward sequent Γ′ ; Δ′ −→w C such that
(

Γ′ ; Δ′ −→w C
)
≺
(

Γ ; Δ =⇒C
)

.

4 Focused Derivations

Search using the backward calculus can always apply invertible rules eagerly in any
order as there always exists a proof that goes through the premisses of the invertible
rule. Andreoli pointed out [1] that a similar and dual feature exists for non-invertible
rules also: it is enough for completeness to apply a sequence of non-invertible rules
eagerly in one atomic operation, as long as the corresponding connectives are of the
same synchronous nature. Andreoli’s observation for classical linear logic was extended
to intuitionistic linear logic by Howe [3], but his inference rules have some overlap
and an imprecise treatment of the atomic propositions that gives rise to unnecessary
cycles in derivations. Our focusing calculus can be seen as a refinement of Howe’s
calculus, by preventing this imprecision and overlap in the inference rules. As a result,
our completeness proof is considerably simpler, being a direct consequence of cut-
elimination.

Before we sketch our formulation, a brief note about the classification of connec-
tives: in classical linear logic the synchronous or asynchronous nature of a given con-
nective is identical to its polarity; the negative connectives (&, �,

&

, ⊥, ∀) are asyn-
chronous, and the positive connectives (⊗, 1, ⊕, 0, ∃) are synchronous. The nature of
intuitionistic connectives, though, must be derived without an appeal to polarity, which
is not only difficult to motivate given the asymmetry of intuitionistic logic, but is also
alien to the judgmental philosophy underlying the intuitionistic reconstruction of lin-
ear logic [6]. We derive the nature of connectives by examining the rules and phases
of search: an asynchronous connective is one for which decomposition is complete in
the active phase; a synchronous connective is one for decomposition is complete in the
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focused phase. This derivation happens to coincide with polarities for classical linear
logic, but does differ for other logics. For intuitionistic (non-linear) logic, for instance,
the conjunction ∧, a connective of negative polarity, is seen as both synchronous and
asynchronous in our derivation. (See section 6.1.)

symbol meaning
P left-synchronous (&, �, �, p)
Q right-synchronous (⊗, 1, !, p)

L left-asynchronous (⊗, 1, !)
R right-asynchronous (&, �, �)

As our backward linear sequent calcu-
lus has two sides, we have left- and right-
synchronous and asynchronous connectives.
For non-atomic propositions a left-synchro-
nous connective is right-asynchronous, and a
left-asynchronous connective right-synchro-
nous; this appears to be universal in well-behaved logics. We define the notations in
the adjoining table. The backward focusing calculus consists of three kinds of sequents;
right-focal sequents of the form Γ ; Δ8A (A under focus), left-focal sequents of the
form Γ ; Δ ; A9Q, and active sequents of the form Γ ; Δ ; Ω =⇒C. Γ indicates the un-
restricted zone as usual, Δ contains only left-synchronous propositions, and Ω is an
ordered sequence of propositions (of arbitrary nature).

The active phase is entirely deterministic: it operates on the right side of the active
sequent until it becomes right-synchronous, i.e., of the form Γ ; Δ ; Ω =⇒ Q. Then the
propositions in Ω are decomposed in order from right to left. The order of Ω is used
solely to avoid spurious non-deterministic choices. Eventually the sequent is reduced to
the form Γ ; Δ ; · =⇒ Q, which we call neutral sequents.

A focusing phase is launched from a neutral sequent by selecting a proposition from
Γ, Δ or the right hand side. This focused formula is decomposed until the top-level
connective becomes asynchronous. Then we enter an active phase for the previously
focused proposition.

Atomic propositions and modal operators need a special mention. Andreoli ob-
served in [1] that it is sufficient to assign arbitrarily a synchronous or asynchronous
nature to the atoms as long as duality is preserved; here, the asymmetric nature of the in-
tuitionistic sequents suggests that they should be synchronous. If the left-focal formula
is an atom, then the sequent is initial iff the linear zone Δ is empty and the right hand
side matches the focused formula; this gives the focused version of the “init” rule. If
an atom has right-focus, however, it is not enough to simply check that the left matches
the right, as there might be some pending decompositions; consider eg. · ; p & q8q.
Focus is therefore blurred in this case, and we correspondingly disallow a right atom in
a neutral sequent from gaining focus.

The other subtlety is with the !R rule: although ! is right synchronous, the !R rule
cannot maintain focus on the operand. If this were forced, there could be no focused
proof of !(A⊗B)� !(B⊗A), for example. This is because there is a hidden transition
from the truth of !A to the validity of A which in turn reduces to the truth of A (see [6]).
The first is synchronous, the second asynchronous, so the exponential has aspects of
both. Girard has made a similar observation that exponentials are composed of one
micro-connective to change polarity, and another to model a given behavior [14, Page
114]; this observation extends to other modal operators, such as why-not (?) of JILL [6]
or the lax modality of CLF [7].

The full set of rules is in fig. 2. Soundness of this calculus is rather an obvious
property – forget the distinction between Δ and Ω, elide the focus and blur rules, and
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right-focal

Γ ; Δ18A Γ ; Δ28B

Γ ; Δ1,Δ28A⊗B
⊗R

Γ ; ·81
1R

Γ ; · ; · =⇒ A

Γ ; ·8 !A
!R

left-focal

Γ ; · ; p9 p
init

Γ ; Δ ; Ai9Q

Γ ; Δ ; A1 & A29Q
&Li

Γ ; Δ1 ; B9Q Γ ; Δ28A

Γ ; Δ1,Δ2 ; A� B9Q
�R

focus

Γ ; Δ ; P9Q

Γ ; Δ,P ; · =⇒ Q
lf

Γ,A ; Δ ; A9Q

Γ,A ; Δ ; · =⇒ Q
copy

Γ ; Δ8Q Q non-atomic

Γ ; Δ ; · =⇒ Q
rf

right-active

Γ ; Δ ; Ω =⇒ A Γ ; Δ ; Ω =⇒ B

Γ ; Δ ; Ω =⇒ A & B
&R

Γ ; Δ ; Ω =⇒� �R
Γ ; Δ ; Ω ·A =⇒ B

Γ ; Δ ; Ω =⇒ A� B
�R

left-active

Γ ; Δ ; Ω ·A ·B =⇒ Q

Γ ; Δ ; Ω ·A⊗B =⇒ Q
⊗L

Γ ; Δ ; Ω =⇒ Q

Γ ; Δ ; Ω ·1 =⇒ Q
1L

Γ,A ; Δ ; Ω =⇒ Q

Γ ; Δ ; Ω · !A =⇒ Q
!L

Γ ; Δ,P ; Ω =⇒ Q

Γ ; Δ ; Ω ·P =⇒ Q
act

blur

Γ ; Δ ; L =⇒ Q

Γ ; Δ ; L9Q
lb

Γ ; Δ ; · =⇒ R

Γ ; Δ8R
rb

Γ ; Δ ; · =⇒ p

Γ ; Δ8 p
rb∗

Fig. 2. Backward linear focusing calculus

the original backward calculus appears. For completeness of the focusing calculus, we
proceed by interpreting every backward sequent as an active sequent in the focusing
calculus, then showing that the backward rules are admissible in the focusing calcu-
lus. This proof relies on admissibility of cut in the focusing calculus. Because a non-
atomic left-synchronous proposition is right-asynchronous, a left-focal sequent needs
to match only an active sequent in a cut; similarly for right-synchronous propositions.
Active sequents should match other active sequents, however. Cuts destroy focus, as
they generally require commutations spanning phase boundaries; the products of a cut
are therefore active.

The proof needs two key lemmas: the first notes that permuting the ordered con-
text doesn’t affect provability, as the ordered context does not mirror any deep non-
commutativity in the logic. This lemma thus allows cutting formulas from anywhere
inside the ordered context, and also to re-order the context when needed.

Lemma 9. If Γ ; Δ ; Ω =⇒C, then Γ ; Δ ; Ω′ =⇒C for any permutation Ω′ of Ω. )*

The other lemma shows that left-active rules can be applied even if the right-hand side
is not synchronous. This lemma is vital for commutative cuts.

Lemma 10. The following variants of the left-active rules are admissible

Γ ; Δ,P ; Ω =⇒C

Γ ; Δ ; Ω ·P =⇒C

Γ ; Δ ; Ω ·A ·B =⇒C

Γ ; Δ ; Ω ·A⊗B =⇒C

Γ ; Δ ; Ω =⇒C

Γ ; Δ ; Ω ·1 =⇒C

Γ,A ; Δ ; Ω =⇒C

Γ ; Δ ; Ω · !A =⇒C
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Theorem 11 (cut). If

1. Γ ; Δ8A and:

(a) Γ ; Δ′ ; Ω ·A =⇒C then Γ ; Δ,Δ′ ; Ω =⇒C.
(b) Γ ; Δ′,A ; Ω =⇒C then Γ ; Δ,Δ′ ; Ω =⇒C.

2. Γ ; ·8A and Γ,A ; Δ ; Ω =⇒C then Γ ; Δ ; Ω =⇒C.
3. Γ ; Δ ; Ω =⇒ A and:

(a) Γ ; Δ′ ; A9Q then Γ ; Δ,Δ′ ; Ω =⇒ Q.
(b) Γ ; Δ′ ; Ω′ ·A =⇒C then Γ ; Δ,Δ′ ; Ω ·Ω′ =⇒C.
(c) Γ ; Δ′,A ; Ω′ =⇒C then Γ ; Δ,Δ′ ; Ω ·Ω′ =⇒C.

4. Γ ; · ; · =⇒ A and:

(a) Γ,A ; Δ ; Ω =⇒C then Γ ; Δ ; Ω =⇒C.
(b) Γ,A ; Δ8B then Γ ; Δ8B.

5. Γ ; Δ ; B9A and:

(a) Γ ; Δ′ ; A =⇒ Q then Γ ; Δ,Δ′ ; B9Q.
(b) Γ ; Δ′,A ; · =⇒ Q then Γ ; Δ,Δ′ ; B9Q.

6. Γ ; Δ ; · =⇒ A and Γ ; Δ′,A8B then Γ ; Δ,Δ′8B.

Proof (sketch). By lexicographic induction on the given derivations. The argument is
lengthy rather than complex, and is an adaptation of similar structural cut-admissibility
proofs in eg. [6]. )*

Theorem 12 (completeness).
If Γ ; Δ =⇒C and Ω is any serialization of Δ, then Γ ; · ; Ω =⇒C.

Proof (sketch). First show that all ordinary rules are admissible in the focusing system
using cut. Proceed by induction on the derivation of D :: Γ ; Δ =⇒C, splitting cases on
the last applied rule, using cut and lem. 9 as required. A representative case (for ⊗R):

D =
D1 :: Γ ; Δ =⇒ A D2 :: Γ ; Δ′ =⇒ B

Γ ; Δ,Δ′ =⇒ A⊗B
⊗R

Let Ω and Ω′ be serializations of Δ and Δ′ respectively; by the induction hypothesis
on D1 and D2, we have Γ ; · ; Ω =⇒ A and Γ ; · ; Ω′ =⇒ B. Now, it is easy to show that
Γ ; · ; A ·B =⇒ A⊗B. The result follows by the use of cut twice, for A and B in the active
context respectively, to get Γ ; · ; Ω ·Ω′ =⇒ A⊗B, and then noting that any serialization
of Δ,Δ′ is a permutation of Ω ·Ω′. )*

5 Forward Focusing

We now construct the forward version of the focusing calculus. Both the active and
focal phases in the backward direction are eager in the sense that intermediate sequents
are not important; instead, just the neutral sequents (i.e., of the form Γ ; Δ ; · =⇒ Q)
at the phase boundaries are important. One therefore thinks of the backward focusing
calculus as one of neutral sequents. Analogously, the forward focusing system discards
the intermediate focal and active sequents by means of calculating the corresponding
derived rules for forward neutral sequents.
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For any given synchronous subformula, the derived inferences for that subformula
correspond to a single pair of focal and active phases. This observation is not new;
Andreoli called them bipoles [2]. However, there are important differences between
backward reasoning bipoles and their forward analogue: as shown in thm. 8, the for-
ward calculus generates stronger forms of sequents than in the corresponding backward
proof. Therefore, not every branch of the backward bipole will be available in the for-
ward direction. The forward derived rules therefore need some additional mechanism
in the internal nodes to handle these cases.

We still adapt the essential idea of bipoles of viewing every proposition as a relation
between the conclusion of the bipole and its possible premisses at the leaves of the
bipole. This relational interpretation gives us the derived rules corresponding to the
proposition; the premisses and conclusions of these derived rules are neutral sequents,
which we indicate by means of a double-headed sequent arrow (−→−→).

Each relation R takes as input the premisses of the bipole, s1 · s2 · · · sn (written Σ),
and constructs the relevant portion of a conclusion sequent s; we write this as R[Σ] ↪→ s.
There are three classes of these relations:

1. Right focal relations for the focus formula A, written foc+
⇓ (A).

2. Left focal relations for the focus formula A, written foc−⇓ (A).
3. Active relations, written act⇓(Γ ; Δ ; Ω =⇒ γ), where γ is either · or C.

The focal relations are understood as defining derived rules corresponding to a given
proposition. The conclusion of these derived rules are themselves neutral sequents. For
a right focal relation foc+

⇓ (Q), the corresponding derived rule is:

Σ
(
foc+

⇓ (Q)[Σ] ↪→Γ ; Δ −→−→w ·
)

Γ ; Δ −→−→w Q
foc+

⇓

Similarly, for negative propositions, we have two rules, depending on whether the fo-
cused proposition is a heavy subformula of the goal sequent or not.

Σ
(
foc−⇓ (P)[Σ] ↪→Γ ; Δ −→−→w Q

)
Γ ; Δ,P −→−→w Q

foc−⇓

Σ
(
foc−⇓ (A)[Σ] ↪→Γ ; Δ −→−→w Q

)
Γ∪{A} ; Δ −→−→w Q

! foc−⇓

As before, these derived rules are understood to contain only signed subformulas of the
goal sequent. The active relations essentially replay the active rules of the backward
focusing calculus, except they also account for weak sequents as needed.

For lack of space we leave out the details of the definition of these relations; they can
be found in the accompanying technical report [15]. Instead, we shall give an example.
Consider the negative principal subformula P = p & q �r & (s⊗ t) and the three input
sequents Γ1 ; Δ1 −→−→1 p, Γ2 ; Δ2 −→−→0 q, and Γ3 ; Δ3,s −→−→1 Q, named s1, s2, and s3

respectively. By the definition of foc−⇓ :

foc−⇓ (P)[s3 · s1 · s2] ↪→Γ3 ∪Γ1 ∪Γ2 ; Δ3,Δ2 −→−→1 Q if t /∈ Δ3 and Δ1 ⊆ Δ2

In other words, the instance of the full derived rule for P matched against the given
sequents stands for the following derived rule of inference specialized to this scenario:

Γ1 ; Δ1 −→−→1 p Γ2 ; Δ2 −→−→0 q Γ3 ; Δ3,s −→−→1 Q (t /∈ Δ3) (Δ1 ⊆ Δ2)

Γ3 ∪Γ1 ∪Γ2 ; Δ3,Δ2,P −→−→1 Q
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The proofs of soundness and completeness of the forward focusing calculus with re-
spect to the backward focusing calculus are are in [15]. Soundness is shown by simple
structural induction on the foc+

⇓ , foc−⇓ and act⇓ derivations. Completeness is a rather
more complex result because the forward and backward focused proofs are not in bi-
jection. The essential idea of the proof is to define a complete calculus of backward
derived rules, and prove the calculus of forward derived rules complete with respect to
this intermediate calculus.

Theorem 13 (soundness). If Γ ; Δ −→−→w Q is derivable, then it is sound. )*

Theorem 14 (completeness). If Γ ; Δ ; · =⇒ Q is derivable, then there exists a deriv-

able focused sequent Γ′ ; Δ′ −→−→w Q such that
(

Γ′ ; Δ′ −→−→w Q
)
≺
(

Γ ; Δ =⇒ Q
)

. )*

5.1 The Focused Inverse Method

What remains is to implement the inverse method search strategy that uses the forward
focusing calculus. Before describing the focused inverse method, we briefly sketch the
usual single-step inverse method here, eliding the implementation issues that are out of
the scope of this paper1. The inverse method consists of three essential components: the
database of computed sequents, the library of rules that can be applied to sequents to
compute new sequents, and the main search loop or engine. Rules are constructed by
naming all subformulas of the goal sequent with fresh propositional labels, and special-
izing the inference rules of the full logic to principal uses of the subformula labels; the
general rules are then discarded. This procedure is key to giving the inverse method a
goal direction, as the search space is constrained to subformulas of the goal. Tradition-
ally the library of rules is considered static during a given search, but as we describe
in [9], it is beneficial, especially in the first-order extension, to allow the library of
rules to be extended during search with partial applications– a form of memoization.
The inputs for these rules are drawn from the database of computed sequents. At the
start of search, this database contains just the initial sequents, which are determined by
considering all atomic subformulas that are both positively and negatively occurring in
the goal sequent. The engine repeatedly selects sequents from the database, and applies
rules from the library to generate new sequents; if these new sequents are not subsumed
by any sequent derived earlier, they are inserted in to the database. Completeness of the
search strategy is guaranteed by using a fair selection (i.e., equivalent to breadth-first
search) of sequents from the database in order to generate new sequents.

The primary issue in the presence of focusing is what propositions to generate rules
for. As the calculus of derived rules has only neutral sequents as premisses and con-
clusions, we need only generate rules for propositions that occur in neutral sequents;
we call them frontier propositions. To find the frontier propositions in a goal sequent,
we simply abstractly replay the focusing and active phases to identify the phase tran-
sitions. Each transition from an active to a focal phase produces a frontier proposition.
Formally, we define two generating functions, f (focal) and a (active), from signed
propositions to multisets of frontier propositions. None of the logical constants are in

1 See a related paper for notes on implementation [9].
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f (p)− = /0 f (p)+ = a(p)± = {p} f (1)± = a(1)± = /0 f (�)± = a(�)± = /0

f (A⊗B)− = a(A⊗B)− f (A⊗B)+ = f (A)+, f (B)+

a(A⊗B)− = a(A)−,a(B)− a(A⊗B)+ = f (A⊗B)+,A⊗B

f (A & B)− = f (A)−, f (B)− f (A & B)+ = a(A & B)+

a(A & B)− = f (A & B)−,A & B a(A & B)+ = a(A)+,a(B)+

f (A� B)− = f (A)+, f (B)− f (A� B)+ = a(A� B)+

a(A� B)− = f (A� B)−,A� B a(A� B)+ = a(A)−,a(B)+

f (!A)− = a(!A)− f (!A)+ = a(A)+ a(!A)− = a(A)− a(!A)+ = f (A)+, !A

Fig. 3. Calculating frontier propositions

the frontier, for the conclusions of rules such as �R and 1R are easy to predict, and can
be generated as needed. Similarly we do not count a negative focused atomic propo-
sition in the frontier as we know that the conclusion of the init rule needs to have the
form Γ ; · ; p9 p; this restricts the collection of spurious initial sequents that are not
possible in a focused proof. The steps in the calculation are shown in figure 3; as a
simple example, f (p & q � r & (s⊗ t))− = p,q,s,t.

Definition 15 (frontier). Given a goal Γ ; Δ ; · =⇒ Q (which is neutral), its frontier
contains:

i. all (top-level) propositions in Γ,Δ,Q;
ii. for any A ∈ Γ,Δ, the collection f (A)−; and

iii. the collection f (Q)+.

Property 16 (neutral subformula property). In any backward focused proof, all neu-
tral sequents consist only of frontier propositions of the goal sequent. )*

In the preparatory phase for the inverse method, we calculate the frontier proposi-
tions of the goal sequent. There is no need to generate initial sequents separately, as
the executions of negative atoms in the frontier directly give us the necessary initial se-
quents. The general design of the main loop of the prover and the argument for its com-
pleteness are fairly standard [8, 10]; we use a lazy refinement of this basic design [9]
that is ideal for multi-premiss rules.

5.2 Some Experimental Results

We have implemented an expanded version of the forward focusing calculus as a certi-
fying2 inverse method prover for intuitionistic linear logic, including the missing con-
nectives ⊕, 0, and the lax modality3. Table 1 contains a running-time comparison of
the focusing prover (F) against a non-focusing version (NF) of the prover (directly im-
plementing the calculus of sec. 3), and Tammet’s Gandalf “nonclassical” distribution

2 By certifying, we mean that it produces independently verifiable proof objects.
3 Available from the first author’s web page at http://www.cs.cmu.edu/˜kaustuv/
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Table 1. Some experimental results

Test NF F Gt Gr
blocks-world 0.02 s ≤ 0.01 s 13.51 s 0.03 s
change 3.20 s ≤ 0.01 s — 0.63 s
affine1 0.01 s ≤ 0.01 s 0.03 s ≤ 0.01 s
affine2 ≈ 12 m 1.21 s — —
qbf1 0.03 s ≤ 0.01 s — 2.40 s
qbf2 0.04 s ≤ 0.01 s — 42.34 s
qbf3 ≈ 35 m 0.53 s — —

All measurements are wall-clock times on an unloaded computer with a 2.80GHz
Pentium 4 processor, 512KB L1 cache and 1GB of main memory; “—” denotes
unsuccessful proof within ≈ ten hours.

that includes a pair of (non-certifying) provers for classical linear logic, one (Gr) us-
ing a refinement of Mints’ resolution system for classical linear logic [10, 11], and the
other (Gt) using a backward Tableaux-based strategy. Neither of these provers incorpo-
rates focusing. The test problems ranged from simple stateful encodings such as blocks-
world or change-machines, to more complex problems such as encoding of affine logic
problems, and translations of various quantified Boolean formulas using the algorithm
in [16]. Focusing was faster in every case, with an average speedup of about three orders
of magnitude over the non-focusing version.

6 Embedding Non-linear Logics

6.1 Intuitionistic Logic

When we move from intuitionistic to intuitionistic linear logic, we gain a lot of expres-
sive power. Nonetheless, many problems, even if posed in linear logic, have significant
non-linear components or sub-problems. Standard translations into linear logic, how-
ever, have the problem that any focusing properties enjoyed by the source are lost in
the translation. In a focusing system for intuitionistic logic, as hinted to by Howe [3]
and briefly considered below, a quite deterministic proof with, say, one phase of fo-
cusing, will be decomposed into many small phases, leading to a large loss in ef-
ficiency. Fortunately, it is possible to translate intuitionistic logic in a way that pre-
serves focusing. To illustrate, consider a minimal intuitionistic propositional logic with
connectives {∧,t,⊃}. The focusing system for this logic has three kinds of sequents,
Γ8I A (right-focal), Γ ; A9I Q (left-focal), and Γ ; Ω =⇒I C (active), with ⊃ treated as
right-synchronous, and ∧ as both (right-) synchronous and asynchronous. The meta-
variables P, Q, L and R are used in the spirit of section 4; that is, P for left-synchronous
{∧,t,⊃, p}, Q for right-synchronous {∧,t, p}, L for left-asynchronous {∧,t}, and R
for right-asynchronous {∧,t,⊃}. Q∗ means that Q is not atomic, i.e., just containing
{∧,t}.
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F(p)− = p F(p)+ = p A(p)− = ! p A(p)+ = p

F(A∧B)− = F(A)− & F(B)− F(A∧B)+ = F(A)+⊗F(B)+

A(A∧B)− = A(A)−⊗A(B)− A(A∧B)+ = A(A)+ & A(B)+

F(t)− = � F(t)+ = 1 A(t)− = 1 A(t)+ = �

F(A ⊃ B)− = F(A)+ � F(B)− F(A ⊃ B)+ = A(A ⊃ B)+

A(A ⊃ B)− = !F(A ⊃ B)− A(A ⊃ B)+ = A(A)− � A(B)+

Fig. 4. Embedding intuitionistic logic

Γ ; p9I p

Γ ; Ai9I Q

Γ ; A1 ∧A29I Q

Γ ; B9I Q Γ8I A

Γ ; A ⊃ B9I Q

Γ8I A Γ8I B

Γ8I A∧B Γ8I t

Γ ; Ω ·A ·B =⇒I Q

Γ ; Ω ·A∧B =⇒I Q

Γ ; Ω =⇒I A Γ ; Ω =⇒I B

Γ ; Ω =⇒I A∧B Γ ; Ω =⇒I t

Γ ; Ω ·A =⇒I B

Γ ; Ω =⇒I A ⊃ B

Γ,P ; Ω =⇒I Q

Γ ; Ω ·P =⇒I Q
act

Γ8I Q∗

Γ ; · =⇒I Q∗
Γ ; P9I Q

Γ,P ; · =⇒I Q

Γ ; · =⇒I R

Γ8I R

Γ ; L =⇒I Q

Γ ; L9I Q

The translation is modal with two phases: A (active) and F (focal). A positive focal ∧
is translated as ⊗, and the duals as &. For every use of the act rule, the corresponding
translation phase affixes an exponential; the phase-transitions in the image of the trans-
lation exactly mirror those in the source. The details of the translation are in figure 4.

It is easily shown that these translations preserve the focusing structure of proofs.

Property 17 (preservation of the structure of proofs).
1. If Γ8I A, then F(Γ)− ; ·8F(A)+.
2. If Γ ; A9I Q, then F(Γ)− ; · ; F(A)−9F(Q)+.
3. If Γ ; Ω =⇒I Q, then F(Γ)− ; · ; A(Ω)− =⇒ F(Q)+.
4. If Γ ; Ω =⇒I R, then F(Γ)− ; · ; A(Ω)− =⇒ A(R)+. )*

The reverse translation, written −o, is trivial: simply erase all !s, rewrite & and ⊗ as ∧,
� and 1 as t, and � as ⇒.

Property 18 (soundness).
1. If Γ ; ·8A, then Γo 8I Ao.
2. If Γ ; · ; A9Q, then Γo ; Ao9I Qo.
3. If Γ ; · ; Ω =⇒C, then Γo ; Ωo =⇒I Co. )*

An important feature of this translation is that only (certain) negative atoms and
implications are !-affixed; this is related to a similar observation by Dyckhoff that the
ordinary propositional intuitionistic logic has a contraction-free sequent calculus that
duplicates only negative atoms and implications [17]. It is also important to note that
this translation extends easily to handle the disjunctions ∨ and ⊥ (in the source) and
⊕ and 0 in the target logic; this naturality is not as obvious for Howe’s synchronicity-
aware translation [3].



214 Kaustuv Chaudhuri and Frank Pfenning

6.2 Classical Horn Formulas

A related issue arises with respect to (non-linear) Horn logic. In complex specifica-
tions that employ linearity, there are often significant sub-specifications that lie in the
Horn fragment. Unfortunately, the straightforward inverse method is quite inefficient
on Horn formulas, something already noticed by Tammet [10]. So his prover switches
between hyperresolution for Horn and near-Horn formulas and the inverse method for
other propositions.

With focusing, this becomes entirely unnecessary. Our focused inverse method for
intuitionistic linear logic, when applied to a classical, non-linear Horn formula, will
exactly behave as classical hyperresolution. This remarkable property gives further ev-
idence to the power of focusing as a technique for forward theorem proving.

A propositional Horn clause has the form p1 ⊃ ·· · ⊃ pn ⊃ p where all pi and p are
atomic. A Horn theory Ψ is just a set of Horn clauses. This can easily be generalized to
include conjunction and truth. The results in this section extend also to the first-order
case, where Horn formulas allow outermost universal quantification.

p1 p2 · · · pn

p
hyper

The hyperresolution strategy on this framework is
essentially just forward reasoning with rule set “hy-
per” for any p1 ⊃ ·· · ⊃ pn ⊃ p ∈ Ψ. Note that these
will be unit clauses if n = 0. If we translate every clause p1 ⊃ ·· · ⊃ pn ⊃ p as
!(p1 � · · ·� pn � p), it is easy to see that the derived rules associated with the re-
sults of the translation are exactly the hyperresolution rules.

7 Conclusion

We have presented the design of an inverse method theorem prover for propositional
intuitionistic linear logic and have demonstrated through experimental results that fo-
cusing represents a highly significant improvement. Though elided here, the results
persist in the presence of a lax modality [7], and extend to the first-order case as shown
by the authors in a related paper [9], which also contains many more details on the
implementation and a more thorough empirical evaluation.

Our methods derived from focusing can be applied directly and more easily to
classical linear logic and (non-linear) intuitionistic logic, also yielding focused inverse
method provers. While we do not have an empirical evaluation of such provers, the re-
duction in the complexity of the search space is significant. We therefore believe that
focusing is a nearly universal improvement to the inverse method and should be applied
as a matter of course, possibly excepting only (non-linear) classical logic.

In future work we plan to add higher-order and linear terms in order to obtain a theo-
rem prover for all of CLF [7]. The main obstacles will be to develop feasible algorithms
for unification and to integrate higher-order equational constraints. We are also inter-
ested in exploring if model-checking techniques could help to characterize the shape of
the linear zone that could arise in a backward proof in order to further restrict forward
inferences.

Finally, we plan a more detailed analysis of connections with a bottom-up logic
programming interpreter for the LO fragment of classical linear logic [18]. This frag-
ment, which is in fact affine, has the property that the unrestricted context remains
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constant throughout a derivation, and incorporates focusing at least partially via a back-
chaining rule. It seems plausible that our prover might simulate their interpreter when
LO specifications are appropriately translated into intuitionistic linear logic, similar to
the translation of classical Horn clauses.
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Abstract. Girard’s Geometry of Interaction (GoI) develops a math-
ematical framework for modelling the dynamics of cut-elimination. We
introduce a typed version of GoI, called Multiobject GoI (MGoI) for mul-
tiplicative linear logic without units in categories which include previous
(untyped) GoI models, as well as models not possible in the original
untyped version. The development of MGoI depends on a new theory
of partial traces and trace classes, as well as an abstract notion of or-
thogonality (related to work of Hyland and Schalk) We develop Girard’s
original theory of types, data and algorithms in our setting, and show
his execution formula to be an invariant of Cut Elimination. We prove
Soundness and Completeness Theorems for the MGoI interpretation in
partially traced categories with an orthogonality.

1 Introduction

Geometry of Interaction (GoI) is a novel interpretation of linear logic, introduced
by Girard in a fundamental series of papers beginning in the late 80’s [11–13] and
continued recently in [14]. One striking feature of this work is that it provides
a mathematical framework for modelling cut-elimination (normalization) as a
dynamical process of information flow, independent of logical syntax. To these
ends, Girard introduces methods from functional analysis and operator algebras
to model proofs and their dynamical behaviour. At the same time, these methods
allow GoI to provide new foundational insights into the theory of algorithms.

Girard’s original framework, based on C∗-algebras, was studied in detail in
several works of Danos and Regnier (for example in [8]) and by Malacaria and
Regnier [26]. The GoI program itself has been applied to the analysis of optimal
reduction by Gonthier, Abadi, and Lévy [9], to complexity theory [6], to game
semantics and token machines [5, 24], etc.

Let us briefly recall some aspects of Girard’s original GoI. Traditional deno-
tational semantics models normalization of proofs (or lambda terms) by static
� P. J. Scott’s research is supported in part by an NSERC Discovery grant.
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equalities: if Π , Π ′ are proofs and if Π reduces to Π ′ by cut-elimination, then
in any appropriate model, Π = Π ′ . Instead, in his GoI program, Girard
considers proofs (or algorithms) as operators, pictured as I/O boxes: a proof of
a sequent � Γ is interpreted as a box with input and output wires labelled by
Γ . The formulas or types in Γ form the I/O-interface of the proof. Girard works
in an untyped setting, so in fact the labels of the wires range over a space U
satisfying various domain equations (see below). Now consider a proof Π of a
sequent � [Δ], Γ , where Δ is a list of all the cut-formulas used. Girard associates
to such a proof a pair of operators (u, σ), where u is a hermitian of norm at most
1, and σ is a partial symmetry representing the cuts Δ. The dynamics of cut-
elimination may now be captured in a solution of a system of feedback equations,
summarized in an operator EX(u, σ) (the Execution Formula). We remark that
our general categorical framework (based on partial traces) permits a structured
approach to solving such feedback equations and deriving properties of the Exe-
cution formula. Finally, it can be shown ([12, 17]) that for denotations of proofs
(u = Π ) of appropriate types in System F, EX( Π ,σ) is an invariant of
cut-elimination.

Categorical foundations of GoI were initiated in the 90’s in lectures by M.
Hyland and by S. Abramsky. An early categorical framework was given in [4].
Recent work has stressed the role of Joyal-Street-Verity’s traced monoidal cate-
gories [23] (with additional structure). For example, Abramsky’s GoI situations
[1, 3, 15] provide a basic algebraic foundation for GoI for multiplicative, exponen-
tial linear logic (MELL). Recently, we used a special kind of GoI situation (with
traced unique decomposition categories) to axiomatize the details of Girard’s
original GoI 1 paper [17].

In our previous papers, we emphasized several important aspects of Girard’s
seminal work (at least in GoI 1 and 2).

1. The original Girard framework is essentially untyped: there is a reflexive
object U in the underlying model (with various retractions and/or domain
isomorphisms, e.g. U ⊗ U � U).

2. Cut-elimination is interpreted by feedback, naturally represented in traced
monoidal categories. The execution formula, defined via trace, provides an
invariant for cut-elimination.

3. Girard introduced an orthogonality operation ⊥ on endomaps of U together
with the notion of types (as sets of endomaps equal to their biorthogonal).

4. There are notions of data and algorithm encoded into this dynamical setting,
with fundamental theorems connecting types, algorithms, and the conver-
gence of the execution formula.

Points (1) and (2) above were already emphasized in the Abramsky program, as
well as in the work of Danos and Regnier [1, 3, 8, 17]. Orthogonalities have been
studied abstractly by Hyland and Schalk [21]. The points (1)–(4) are critical to
our view of GoI in [17, 18] and to the technical developments in this paper.

Alas, Girard’s original GoI is not without its own share of syntactical bu-
reaucracy: there are domain isomorphisms (of the reflexive object U) and an
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associated ∗-algebra of codings and uncodings. On the one hand, this means
the original GoI interpretation of proofs is essentially untyped (i.e. categorically,
proofs are interpreted in the monoid Hom(U,U), using the above-mentioned al-
gebra) (see [3, 17, 18]). On the other hand, this led Danos and Regnier ([8]) to
study this algebra in detail in certain concrete models, leading to their extensive
analysis of reduction paths in untyped lambda calculus.

Our aim in this paper is to move away from “uni-object GoI” to a typed ver-
sion. This permits us to both generalize GoI and axiomatize its essential features.
For example, by removing reflexive objects U , we also unlock the possibilities of
generalizing Girard-style GoI to more general tensor categories including cases
where the tensor is “product-like” in addition to “sum-like”. We shall illustrate
both of these styles in the examples below.

The contributions of this paper can be summarized as follows:

– We introduce an axiomatization for partially traced symmetric monoidal
categories and provide examples based on Vecfd, finite dimensional vector
spaces, and CMet, complete metric spaces. Our axiomatization is different
from that in [2], although related in spirit.

– We introduce an abstract orthogonality [21], appropriate for GoI, on our
models.

– We introduce a multiobject version of Girard’s GoI semantics (MGoI) in
partially traced models with orthogonality. This includes Girard’s notions of
types, datum, algorithm and the execution formula. We give an MGoI inter-
pretation for the multiplicative fragment of linear logic without units (MLL)
and show that the execution formula is an invariant of cut-elimination (see
Section 5 below). Recall that Girard’s original GoI (as presented in [3]) re-
quires a reflexive object U �= {0}, with a retraction U ⊕ U � U , which is
impossible in Vecfd.

– We prove a soundness and completeness theorem for our MGoI interpretation
of MLL in arbitrary partially traced categories with an orthogonality rela-
tion. As an application, we can also prove a completeness result for untyped
GoI semantics of MLL (see our [17]) in a traced UDC based GoI Situation;
the latter result will appear in the journal version of this paper.

It is worth remarking that GoI does not work well with units. They are not part
of the original interpretation ([12]), and fail to satisfy the properties demanded
by the main theorems. In [18] we show that the “natural” category of types and
associated morphisms in certain GoI-situations fails to have tensor and par units
act correctly. We suspect the same is true for the MGoI case introduced here.

The rest of the paper is organized as follows. In Section 2 we introduce
partially traced symmetric monoidal categories and discuss some examples. In
Section 3 we introduce the abstract orthogonality relation in a partially traced
symmetric monoidal category and discuss how it relates to the work in [21]. In
Section 4 we introduce our new semantics, MGoI, and give an interpretation
for MLL. Section 5 discusses the execution formula and the soundness theorem,
while in Section 6 we prove a completeness theorem for the MGoI interpretation
of MLL in a partially traced category with an orthogonality relation. Finally,
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Section 7 contains some thoughts about possible future directions, projects and
links to related work in the literature.

Note: The full proofs of the results here will appear in the journal version of
this paper, available on our websites.

2 Trace Class

The notion of categorical trace was introduced by Joyal, Street and Verity in an
influential paper [23]. The motivation for their work arose in algebraic topology
and knot theory, although the authors were aware that such traces also have
many applications in Computer Science, where they include such notions as
feedback, fixedpoints, iteration theories, etc. For references and history, see [1,
3, 17].

In this paper we go one step further and look at partial traces. The idea
of generalizing the abstract trace of [23] to the partial setting is not new. For
example, partial traces were already studied in work of Abramsky, Blute, and
Panangaden [2], in unpublished lecture notes of Gordon Plotkin [27], work of A.
Jeffrey [22] (discussed below) and others. The guiding example in [2] is the rela-
tionship between trace class operators on a Hilbert space and Hilbert-Schmidt
operators. This allows the authors to establish a close correspondence between
trace and nuclear ideals in a tensor ∗-category. Plotkin’s work develops a theory
of Conway ideals on biproduct categories, and an associated categorical trace
theory. Unfortunately none of these extant theories is appropriate for Girard’s
GoI. So we present an axiomatization for partial traces suitable for our purposes.

Recall, following Joyal, Street, and Verity [23], a (parametric) trace in a
symmetric monoidal category (C,⊗, I, s) is a family of maps
TrUX,Y : C(X ⊗ U, Y ⊗ U) → C(X,Y ), satisfying various well-known naturality
equations. A partial (parametric) trace requires instead that each TrUX,Y be a
partial map (with domain denoted TU

X,Y ) and satisfy various closure conditions.

Definition 1 (Trace Class). Let (C,⊗, I, s) be a symmetric monoidal cate-
gory. A (parametric) trace class in C is a choice of a family of subsets, for each
object U of C, of the form

TU
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X , Y of C

together with a family of functions, called a (parametric) partial trace, of the
form

TrUX,Y : TU
X,Y → C(X,Y )

subject to the following axioms. Here the parameters are X and Y and a mor-
phism f ∈ TU

X,Y , by abuse of terminology, is said to be trace class.

– Naturality in X and Y : For any f ∈ TU
X,Y and g : X ′ → X and h : Y → Y ′,

(h⊗ 1U )f(g ⊗ 1U ) ∈ TU
X′,Y ′

and TrUX′,Y ′((h⊗ 1U )f(g ⊗ 1U )) = hTrUX,Y (f) g
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– Dinaturality in U : For any f : X ⊗ U → Y ⊗ U ′, g : U ′ → U ,

(1Y ⊗ g)f ∈ TU
X,Y iff f(1X ⊗ g) ∈ TU ′

X,Y ,

and TrUX,Y ((1Y ⊗ g)f) = TrU
′

X,Y (f(1X ⊗ g)).

– Vanishing I: TI
X,Y = C(X ⊗ I, Y ⊗ I) and for f ∈ TI

X,Y

TrIX,Y (f) = ρY fρ−1
X .

Here ρA : A×I → A is the right unit isomorphism of the monoidal category.
– Vanishing II: For any g : X ⊗U ⊗V → Y ⊗U ⊗V , if g ∈ TV

X⊗U,Y⊗U , then

g ∈ TU⊗V
X,Y iff TrVX⊗U,Y⊗U (g) ∈ TU

X,Y ,

and TrU⊗V
X,Y (g) = TrUX,Y (TrVX⊗U,Y⊗U (g)).

– Superposing: For any f ∈ TU
X,Y and g : W → Z,

g ⊗ f ∈ TU
W⊗X,Z⊗Y ,

and TrUW⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrUX,Y (f).

– Yanking: sUU ∈ TU
U,U , and TrUU,U (sU,U ) = 1U .

A symmetric monoidal category (C,⊗, I, s) with such a trace class is called
a partially traced category, or a category with a trace class. If we let X and Y be
I (the unit of the tensor), we get a family of operations TrUI,I : TU

I,I → C(I, I)
defining what we call a non-parametric trace.

Remark 1. An early definition of a partial parametric trace is due to Abramsky,
Blute and Panangaden in [2]. Our definition is different but related to theirs.
First, we have used the Yanking axiom in Joyal, Street and Verity [23], whereas
in [2] they use a conditional version of the so-called “generalized yanking”; that
is, for f : X → U and g : U → Y , TrUX,Y (sU,Y (f⊗g)) = gf whenever sU,Y (f⊗g)
is of trace class. It was shown in [15] that for traced monoidal categories the two
axioms of yanking and generalized yanking are equivalent in the presence of all
the other axioms. This equivalence remains valid for the partially traced cate-
gories introduced here. In our theory sUU is traceable for all U ; on the other
hand, many examples in [2] do not have this property. Our Vanishing II axiom
differs from and is weaker than the one proposed in [2]: it is a “conditional”
equivalence. More importantly, we do not require one of the ideal axioms in [2].
Namely, we do not ask that for f ∈ TU

X,Y and any h : U → U , (1Y ⊗ h)f and
f(1X ⊗ h) be in TU

X,Y . Indeed in the next section we prove that the categories
(Vecfd,⊕) of finite dimensional vector spaces, and (CMet,×) of complete met-
ric spaces are partially traced. It can be shown that in both categories the above
ideal axiom and Vanishing II of [2] fail and hence they are not traced in the sense
of ABP. In defense of not enforcing this ideal axiom, we observe that it is not
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required for any of the trace axioms. Any partially traced category in the sense
of ABP for which the yanking axiom holds will be partially traced according to
our definition. Finally, we observe that the nonparametric version of our partial
trace is also different from the one in [2].

Other notions of categorical partial trace have been examined by Alan Jeffrey
[22] and also by various category theorists. For example, Jeffrey cuts down the
domain of the trace operator to admissible (traceable) objects U which form a full
subcategory of the original category. This is not possible for us: our trace classes
do not form subcategories. For example, in keeping with functional analysis
on infinite dimensional spaces, the ABP theory of traced ideals [2], and with
Girard’s papers on GoI, we do not wish the identity map to be traced; nor are
our trace classes necessarily closed under all possible compositions.

One is obliged to say that there are many different approaches to partial
categorical traces and ideals; ours is geared to Girard’s GoI. We should also note
that our examples will not be partially traced categories according to Jeffrey’s
definition. It is not possible to capture our traceability conditions on morphisms
using his approach, as they cannot be characterized as object properties.

2.1 Examples of Partial Traces

(a) Finite Dimensional Vector Spaces

The category Vecfd of finite dimensional vector spaces and linear transforma-
tions is a symmetric monoidal, indeed an additive, category (see [25]), with
monoidal product taken to be ⊕, the direct sum (biproduct). Hence, given
f : ⊕IXi → ⊕JYj with |I| = n and |J | = m, we can write f as an m × n
matrix f = [fij ] of its components, where fij : Xj → Yi (notice the switch in
the indices i and j).

We give a trace class structure on the category (Vecfd,⊕,0) as follows. We
shall say an f : X ⊕ U → Y ⊕ U is trace class iff (I − f22) is invertible, where I
is the identity matrix, and I and f22 have size dim(U). In that case, we write

TrUX,Y (f) = f11 + f12(I − f22)−1f21 (1)

This definition is motivated by a generalization of the fact that for a matrix A,
(I −A)−1 =

∑
i A

i, whenever the infinite sum converges. Clearly this sum con-
verges when the matrix norm of A is strictly less than 1, or when A is nilpotent,
but in both cases the general idea is the desire to have (I −A) invertible. If the
infinite sum for (I − f22)−1 exists, the above formula for TrUX,Y (f) becomes the
usual “particle-style” trace in [1, 3, 17]. One advantage of formula (1) is that it
does not a priori assume the convergence of the sum, nor even that (I − f22)−1

be computable by iterative methods.

Proposition 1. (Vecfd,⊕,0) is partially traced, with trace class as above.

The proof of Proposition 1 uses the following standard facts from linear algebra:
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Lemma 1. Let M =
[
A B
C D

]
be a partitioned matrix with blocks A (m×m),

B (m× n), C (n×m) and D (n× n). If D is invertible, then M is invertible iff
A−BD−1C (the Schur Complement of D) is invertible.

Lemma 2. Given A (m×n) and B (n×m), (Im−AB) is invertible iff (In−BA)
is invertible. Moreover (Im −AB)−1A = A(In −BA)−1.

(b) Other Finite Dimensional Examples

Proposition 1 remains valid for the category (Hilbfd ,⊕) of finite dimensional
Hilbert spaces and bounded linear maps. As discussed in Remark 1, the category
(Vecfd,⊕) is not partially traced in the sense of ABP; nor is it traced in the
sense of A. Jeffrey, since (for example) the identity is not trace class.

(c) Metric Spaces

Consider the category CMet of complete metric spaces with non-expansive
maps. Define f : (M,dM ) → (N, dN ) to be non-expansive iff there is a fixed
0 ≤ α ≤ 1 such that dN (f(x), f(y)) ≤ αdM (x, y), for all x, y ∈ M . Note that the
tempting collection of complete metric spaces and contractions (α < 1) is not a
category: there are no identity morphisms! CMet has products, namely given
(M,dM ) and (N, dN ) we define (M ×N, dM×N ) with dM×N ((m,n), (m′, n′)) =
max{dM (m,m′), dN (n, n′)}.

We define the trace class structure on CMet (where ⊗ = × ) as follows. We
say that a morphism f : X × U → Y × U is in TU

X,Y iff for every x ∈ X the
induced map π2λu.f(x, u) : U → U has a unique fixed point; in other words, iff
for every x ∈ X , there is a unique u, and a y, such that f(x, u) = (y, u). Note
that in this case y is necessarily unique. Also, note that contractions have unique
fixed points, by the Banach fixed point theorem.

Suppose f ∈ TU
X,Y . We define TrUX,Y (f) : X → Y by TrUX,Y (f)(x) = y, where

f(x, u) = (y, u) for the unique u. Equivalently, TrUX,Y (f)(x) = π1f(x, u) where
u is the unique fixed point of π2λt.f(x, t).

Proposition 2. (CMet,×, {∗}) is a partially traced category with trace class
as above.

Lemma 3. Let A and B be complete metric spaces, f : A → B and g : B → A.
Then, gf has a unique fixed point if and only if fg does. Moreover, let a ∈ A
be the unique fixed point of gf : A → A and b ∈ B be the unique fixed point of
fg : B → B. Then f(a) = b and g(b) = a.

Proposition 2 remains valid for the category (Sets,×) of sets and mappings.
The latter then becomes a partially traced category with the same definition for
trace class morphisms as in CMet. However, this fails for the category (Rel,×),
of sets and relations: consider the sets A = {a}, B = {b, b′}, and let f =
{(a, b), (a, b′)} and g = {(b, a), (b′, a)}.
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(d) Total Traces

Of course, all (totally-defined) traces in the usual definition of a traced monoidal
category yield a trace class, namely the entire homset is the domain of Tr. In
particular, all the examples in our previous work on uni-object GoI [17, 18], for
example based on unique decomposition categories, still apply here.

Remark 2. [A Non-Example]
Consider the structure (CMet,×). Defining the trace class morphisms as f
such that π2λu.f(x, u) : U → U is a contraction for every x ∈ X , does not
yield a partially traced category: all axioms are true except for dinaturality and
Vanishing II.

3 Orthogonality Relations

Girard originally introduced orthogonality relations into linear logic to model
formulas (or types) as sets equal to their biorthogonal (e.g. in the phase semantics
of the original paper [10] and in GoI 1 [11]). Recently M. Hyland and A. Schalk
gave an abstract approach to orthogonality relations in symmetric monoidal
closed categories [21]. They also point out that an orthogonality on a traced
symmetric monoidal category C can be obtained by first considering their axioms
applied to Int(C), the compact closure of C, and then translating them down
to C. Below we give this translation (not explicitly calculated in [21]), using the
so-called “GoI construction” G(C) [1, 15] instead of Int(C). The categories G(C)
and Int(C) are both compact closures of C, and are shown to be isomorphic in
[15]. Alas, we do not have the space to give the details of these constructions;
however the reader can safely ignore the remarks above and use the definition
below independently of its motivation. To understand the detailed constructions
behind the definition, the interested reader is referred to the above references.

As we are dealing with partial traces we need to take extra care in stating
the axioms below; namely, an axiom involving a trace should be read with the
proviso: “whenever all traces exist”.

Definition 2. Let C be a traced symmetric monoidal category. An orthogonality
relation on C is a family of relations ⊥UV between maps u : V → U and x :
U → V

V
u−→ U ⊥UV U

x−→ V

subject to the following axioms:

(i) Isomorphism: Let f : U ⊗ V ′ → V ⊗ U ′ and f̂ : U ′ ⊗ V → V ′ ⊗ U be such
that TrV

′
(TrU

′
((1⊗ 1⊗ sU ′,V ′)α−1(f ⊗ f̂)α))) = sU,V and TrV (TrU ((1⊗

1⊗ sU,V )α−1(f̂ ⊗ f)α))) = sU ′,V ′ . Here α = (1⊗ 1⊗ s)(1⊗ s⊗ 1) with s at
appropriate types. Note that this simply means that f : (U, V ) → (U ′, V ′)
and f̂ : (U ′, V ′) → (U, V ) are inverses of each other in G(C).
Then for all u : V → U and x : U → V,

u ⊥UV x iff TrUV ′,U ′(sU,U ′(u⊗ 1U ′)fsV ′,U ) ⊥U ′V ′ TrVU ′,V ′((1V ′ ⊗ x)f̂)
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(ii) Tensor: For all u : V → U , v : V ′ → U ′ and h : U ⊗ U ′ → V ⊗ V ′,

u ⊥UV TrU
′

U,V ((1V ⊗ v)h) and v ⊥U ′V ′ TrUU ′,V ′(sU,V ′(u⊗ 1V ′)hsU ′,U )

implies (u ⊗ v) ⊥U⊗U ′,V⊗V ′ h

(iii) Implication: For all u : V → U , y : U ′ → V ′ and f : U ⊗ V ′ → V ⊗ U ′

u ⊥UV TrV
′

U,V ((1V ⊗ y)f) and TrVV ′,U ′(sV,U ′f(u⊗ 1V ′)sV ′,V ) ⊥U ′V ′ y

implies f ⊥V⊗U ′,U⊗V ′ (u⊗ y)

(iv) Identity: For all u : V → U and x : U → V

u ⊥UV x implies 1I ⊥II TrVI,I(xu)

(v) Symmetry: For all u : V → U and x : U → V

u ⊥UV x iff x ⊥V U u

Remark 3. (i) It should be noted that for a (partially) traced symmetric
monoidal category, the axioms for Tensor and Implication are equiva-
lent in the presence of the other axioms: by dinaturality of trace we have
TrVV ′,U ′(sV,U ′f(u⊗ 1V ′)sV ′,V ) = TrUV ′,U ′(sU,U ′ (u⊗ 1U ′)fsV ′,U )), then use
the Symmetry axiom. Thus we shall drop the Implication axiom.

(ii) Our work on GoI reveals that one needs another axiom which we observe
as the converse of the Tensor axiom and relaxation of one of the premises.
This is related to abstract computation and the notion of datum in GoI.
Hence, we shall replace the Tensor axiom by the following Strong Tensor
axiom. Our Strong Tensor axiom is similar to, but not the same as the
Precise Tensor axiom of [21]. The latter requires an additional property on
the biconditional.

Strong Tensor: For all u : V → U , v : V ′ → U ′ and h : U⊗U ′ → V ⊗V ′,

v ⊥U ′V ′ TrUU ′,V ′(sU,V ′(u ⊗ 1V ′)hsU ′,U ) iff (u ⊗ v) ⊥U⊗U ′,V⊗V ′ h,

whenever the trace exists. It can be shown that in the presence of the Strong
Tensor, Isomorphism, and Symmetry axioms, v ⊥U ′V ′ TrUU ′,V ′(sU,V ′(u ⊗
1V ′)hsU ′,U ) implies u ⊥UV TrU

′

U,V ((1V ⊗ v)h), whenever all traces exist.

Definition 3. Let C be a traced symmetric monoidal category. A strong orthog-
onality relation is defined as in Definition 2 but with the Tensor axiom replaced
by the Strong Tensor axiom above, and the Implication axiom dropped.

In the context of GoI, we will be working with strong orthogonality relations
on endomorphism sets of objects in the underlying categories. Biorthogonally
closed (i.e. X = X⊥⊥) subsets of certain endomorphism sets are important as
they define types (GoI interpretation of formulae.) We have observed that all
the orthogonality relations that we work with in this paper can be characterized
using trace classes. This suggests the following, which seems to cover many
known examples.
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Example 1 (Orthogonality as trace class) Let (C,⊗, I, T r) be a partially
traced category where ⊗ is the monoidal product with unit I, and Tr is the
partial trace operator as in Section 2. Let A and B be objects of C. For f : A → B
and g : B → A, we can define an orthogonality relation by declaring f ⊥BA g
iff gf ∈ TA

I,I . It turns out1 that this is a variation of the notion of Focussed
orthogonality of Hyland and Schalk [21].

Hence, from our previous discussion on traces, we obtain the following examples:

– Vecfd . For A ∈ Vecfd , f, g ∈ End(A), define f ⊥ g iff I − gf is invertible.

– CMet. Let M ∈ CMet. For f, g ∈ End(M), define f ⊥ g iff gf has a unique
fixed point.

4 Multi-object GoI Interpretation

In this section we introduce the multiobject Geometry of Interaction seman-
tics for MLL in a partially traced symmetric monoidal category (C,⊗, I, T r,⊥)
equipped with an orthogonality relation ⊥ as in the previous section. Here ⊗
is the monoidal product with unit I and Tr is the partial trace operator as in
Section 2. We do not require that the category C have a reflexive object, so
uni-object GoI semantics (as in [12, 17]) may not be possible to carry out in C.

Interpreting formulae:

Let A be an object of C and let f, g ∈ End(A). We say that f is orthogonal
to g, denoted f ⊥ g, if (f, g) ∈⊥. Also given X ⊆ End(A) we define

X⊥ = {f ∈ End(A) | ∀g ∈ X, f ⊥ g}.

We now define an operator on the objects of C as follows: Given an object A,
T (A) = {X ⊆ End(A) |X⊥⊥ = X}. We shall also need the notion of a denota-
tional interpretation of formulas. We define an interpretation map − on the
formulas of MLL as follows. Given the value of − on the atomic propositions
as objects of C, we extend it to all formulas by:

– A⊥ = A
– A

.................................................
............
.................................. B = A⊗B = A ⊗ B .

We then define the MGoI-interpretation for formulas as follows. We use the
notation θ(A) for this interpretation.

– θ(α) ∈ T ( α ), where α is an atomic formula.
– θ(α⊥) = θ(α)⊥

– θ(A ⊗B) = {a⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥
– θ(A ..................................................

............
................................. B) = {a⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

1 We thank the anonymous referee for pointing out this connection.



226 Esfandiar Haghverdi and Philip J. Scott

Two easy consequences of the definition are: (i) for any formula A, (θA)⊥ = θA⊥,
and (ii) θ(A) ⊆ End( A ).

Interpretation of Proofs:

We define the MGoI interpretation for proofs of MLL without units, similarly
to [17]. Every MLL sequent will be of the form � [Δ], Γ where Γ is a sequence
of formulas and Δ is a sequence of cut formulas that have already been made
in the proof of � Γ (see [12, 17]). This device is used to keep track of the cuts
in a proof of � Γ . A proof Π of � [Δ], Γ is represented by a morphism Π ∈
End(⊗ Γ ⊗ Δ ). With Γ = A1, · · · , An, ⊗ Γ stands for A1 ⊗· · ·⊗ An ,
similarly for Δ. We drop the double brackets wherever there is no danger of
confusion. We also define σ = s ⊗ · · · ⊗ s (m-copies) where s is the symmetry
map at different types (omitted for convenience), and |Δ| = 2m. The morphism
σ represents the cuts in the proof of � Γ , i.e. it models Δ. In the case where Δ
is empty (that is for a cut-free proof), we define σ : I → I to be 1I where I is
the unit of the monoidal product in C.

Let Π be a proof of � [Δ], Γ . We define the MGoI interpretation of Π ,
denoted by Π , by induction on the length of the proof as follows.

1. Π is an axiom � A,A⊥, Π := sV,V where A = A⊥ = V .
2. Π is obtained using the cut rule on Π ′ and Π ′′ that is

Π ′
....

� [Δ′], Γ ′, A

Π ′′
....

� [Δ′′], A⊥, Γ ′′

� [Δ′, Δ′′, A,A⊥], Γ ′, Γ ′′
cut

Define Π = τ−1( Π ′ ⊗ Π ′′ )τ , where τ is the permutation
Γ ′ ⊗ Γ ′′ ⊗Δ′ ⊗Δ′′ ⊗A⊗A⊥

τ−→ Γ ′ ⊗A⊗Δ′ ⊗A⊥ ⊗ Γ ′′ ⊗Δ′′,

3. Π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ ′.
That is Π is of the form

Π ′
....

� [Δ], Γ ′

� [Δ], Γ
exchange

where Γ ′ = Γ ′1, Ai, Ai+1, Γ
′
2 and Γ = Γ ′1, Ai+1, Ai, Γ

′
2. Then, Π =

τ−1 Π ′ τ , where τ = 1Γ ′
1
⊗ s⊗ 1Γ ′

2⊗Δ.
4. Π is obtained using an application of the par rule, that is Π is of the form:

Π ′

...
� [Δ], Γ ′, A,B

� [Δ], Γ ′, A .................................................
............
.................................. B

..................................................
............
.................................

. Then Π = Π ′



Towards a Typed Geometry of Interaction 227

5. Π is obtained using an application of the times rule, that is Π is of the form:

Π ′
....

� [Δ′], Γ ′, A

Π ′′
....

� [Δ′′], Γ ′′, B
� [Δ′, Δ′′], Γ ′, Γ ′′, A⊗B

⊗

Then Π = τ−1( Π ′ ⊗ Π ′′ )τ , where τ is the permutation
Γ ′⊗Γ ′′⊗A⊗B⊗Δ′⊗Δ′′ τ−→ Γ ′⊗A⊗Δ′⊗Γ ′′⊗B⊗Δ′′. This corresponds
exactly to the definition of tensor product in Abramsky’s G(C) (see [1, 15].)

Example 1. (a) Let Π be the following proof:

� A,A⊥ � A,A⊥

� [A⊥, A], A,A⊥
cut

Then the MGoI semantics of this proof is given by

Π = τ−1(s⊗ s)τ = sV⊗V,V⊗V

where τ = (1 ⊗ 1 ⊗ s)(1 ⊗ s⊗ 1) and A = A⊥ = V .
(b) Now consider the following proof

� B,B⊥ � C,C⊥

� B,C,B⊥ ⊗ C⊥

� B,B⊥ ⊗ C⊥, C

� B⊥ ⊗ C⊥, B, C

� B⊥ ⊗ C⊥, B
.................................................

............
.................................. C .

Its denotation is sV⊗W,V⊗W , where B = B⊥ = V and C = C⊥ = W .

Proposition 3. Let Π be an MLL proof of � [Δ], Γ where |Δ| = 2m and |Γ | =
n (counting occurrences of propositional variables). Then Π is a fixed-point
free involutive permutation on n + 2m objects of C. That is Π : V1 ⊗ · · · ⊗
Vn+2m → V1 ⊗ · · · ⊗ Vn+2m induces a permutation π on {1, 2 · · · , n + 2m} and

– π2 = 1
– For all i ∈ {1, 2, · · · , n + 2m}, π(i) �= i.
– For all i ∈ {1, 2, · · · , n + 2m}, Vi = Vπ(i).

4.1 Dynamics

Dynamics is at the heart of the GoI interpretation as compared to denotational
semantics and it is hidden in the cut-elimination process. The mathematical
model of cut-elimination is given by the so called execution formula defined as
follows:

EX( Π ,σ) = Tr⊗Δ
⊗Γ,⊗Γ ((1 ⊗ σ) Π ) (2)
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where Π is a proof of the sequent � [Δ], Γ , and σ = s⊗· · ·⊗s (m times) models
Δ. Note that EX( Π ,σ) is a morphism from ⊗Γ → ⊗Γ , when it exists. We
shall prove below (see Theorem 2) that the execution formula always exists for
any MLL proof Π .

Example 2. Consider the proof Π in Example 1 above. Recall also that σ = s
in this case (m = 1). Then EX( Π ,σ) = Tr((1 ⊗ sV,V )sV⊗V,V⊗V ) = sV,V .

Note that in this case we have obtained the MGoI interpretation of the cut-
free proof of � A,A⊥, obtained by applying Gentzen’s Hauptsatz to the proof Π .

5 Soundness of the Interpretation

In this section we state one of the main results of this paper: the soundness of the
MGoI interpretation. We show that if a proof Π is reduced (via cut-elimination)
to another proof Π ′, then EX( Π ,σ) = EX( Π ′ , τ); that is, EX( Π ,σ)
is an invariant of reduction. In particular, if Π ′ is cut-free (i.e. a normal form)
we have EX( Π ,σ) = Π ′ . Intuitively this says that if one thinks of cut-
elimination as computation then Π can be thought of as an algorithm. The
computation takes place as follows: if EX( Π ,σ) exists then it yields a datum
(cf. cut-free proof). This intuition will be made precise below (Theorems 2 & 3).

The next fundamental lemma follows directly from our trace axioms:

Lemma 4 (Associativity of cut). Let Π be a proof of � [Γ,Δ], Λ and σ and
τ be the morphisms representing the cut-formulas in Γ and Δ respectively. Then

EX( Π ,σ ⊗ τ) = EX(EX( Π , τ), σ) = EX(EX((1 ⊗ s) Π (1 ⊗ s), σ), τ),

whenever all traces exist. (This is essentially the Church-Rosser Property).

Definition 4. Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗iVi → ⊗iVi such that for any βi ∈
θ(A⊥i ), ⊗iβi ⊥ M and M .β1 := TrV1(s−1

⊗iVi,V1
(β1⊗1V2⊗· · ·⊗1Vn)Ms⊗iVi,V1)

exists. (In Girard’s notation [12], M .β1 corresponds to ex(CUT (β1,M)) .)
• An algorithm of type θΓ is a morphism M : ⊗iVi ⊗ Δ → ⊗iVi ⊗ Δ

for some Δ = B1, B2, · · · , B2m with m a nonnegative integer and Bi+1 =
B⊥

i for i = 1 · · · , 2m − 1, such that if σ : ⊗2m
j=1 Bj → ⊗2m

j=1 Bj is
⊗2m−1

j=1 s Bj , Bj+1
, EX(M,σ) exists and is a datum of type θΓ .

(Here σ is defined to be 1I for m = 0.)

Lemma 5. Let Γ = A2, · · · , An, Vi = Ai , and M : ⊗iVi → ⊗iVi, for i =
1, · · · , n. Then, M is a datum of type θ(A1, Γ ) iff for every a1 ∈ θ(A⊥1 ), M .a1

(defined as above) exists and is in θ(Γ ).

Theorem 2 (Proofs as algorithms). Let Π be an MLL proof of a sequent
� [Δ], Γ . Then Π is an algorithm of type θΓ .
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Corollary 1 (Existence of Dynamics). Let Π be an MLL proof of a sequent
� [Δ], Γ . Then Ex( Π ,σ) exists.

Theorem 3 (EX is an invariant). Let Π be an MLL proof of a sequent
� [Δ], Γ . Then,

– If Π reduces to Π ′ by any sequence of cut-eliminations, then EX( Π ,σ) =
EX( Π ′ , τ). So EX( Π ,σ) is an invariant of reduction.

– In particular, if Π ′ is any cut-free proof obtained from Π by cut-elimination,
then EX( Π ,σ) = Π ′ .

6 Completeness

In this section we give a completeness theorem for MLL in a partially traced
category equipped with an orthogonality relation, under MGoI semantics. Recall
from Proposition 3 that the denotation of a proof Π induces a fixed-point free
involutive permutation. We now seek a converse.

Theorem 4 (Completeness). Let M be a fixed-point free involutive permu-
tation from V1 ⊗ · · · ⊗ Vn → V1 ⊗ · · · ⊗ Vn (induced by a permutation μ on
{1, 2, · · · , n}) where n > 0 is an even integer, Vi = Ai , and Vi = Vμ(i) for all
i = 1, · · · , n. Then there is a provable MLL formula ϕ built from the Ai, with a
proof Π such that Π = M .

Motivated by this result, we can also prove a completeness theorem for MLL
in any traced Unique Decomposition Category with a reflexive object, under
(uni-object) GoI semantics [17]. This will appear in the full journal article.

7 Conclusion and Future Work

In this work we introduce a new semantics called multiobject Geometry of In-
teraction (MGoI). This semantics, while inspired by GoI, differs from it in sig-
nificant points. Namely, we deal with many objects in the underlying category,
we make use of a denotational semantics to define the interpretation of logical
formulas and we develop the execution formula based on a new theory of partial
traces and trace classes. Moreover, there is an orthogonality relation linked to
the notion of trace class, which allows us to develop Girard’s theory of types,
data and algorithms in our setting. This permits a structured approach to Gi-
rard’s concept of solving feedback equations [14], and an axiomatization of the
critical features needed for showing that the execution formula is an invariant
of cut-elimination. Computationally, GoI provides a kind of algorithm for nor-
malization based on the execution formula. In future work, we hope to explore
the algorithmic and convergence properties of the execution formula in various
models, independently of the syntax.

An advantage of the approach taken here is that we are able to carry out
our MGoI interpretation in categories of finite dimensional vector spaces and the
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other examples mentioned above. This is not possible for the earlier theory of uni-
object GoI (for example, Vecfd does not have non-trivial reflexive objects). Our
examples illustrate that both “sum-style” and “product-style” GoI (as discussed
in [3]) are compatible with our multiobject approach.

An obvious direction for future research is to extend our MGoI interpretation
to the exponentials and additives of linear logic: this is under active development.
As well, the thorny problem of how to handle the units (as mentioned in the
Introduction) is being explored. New directions in GoI semantics now arise with
the introduction of partial traces and abstract orthogonalities. For example, we
are pursuing the correspondence of trace class/nuclear morphisms as achieved in
[2] for their examples. We are also currently exploring MGoI interpretations in
Banach spaces and related categories, to find appropriate trace class structures.

It is natural to seek examples of traces that are induced by more general
notions of orthogonalities, especially those arising in functional analysis. We
hope this may lead to new classes of MGoI models, perhaps connected to current
work in operator algebras and general solutions to feedback equations, as in [14].
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Abstract. The constraint satisfaction problem (CSP) and quantified
constraint satisfaction problem (QCSP) are common frameworks for the
modelling of computational problems. Although they are intractable in
general, a rich line of research has identified restricted cases of these prob-
lems that are tractable in polynomial time. Remarkably, many tractable
cases of the CSP that have been identified are solvable by a single algo-
rithm, which we call here the consistency algorithm. In this paper, we give
a natural extension of the consistency algorithm to the QCSP setting,
by making use of connections between the consistency algorithm and
certain two-person pebble games. Surprisingly, we demonstrate a vari-
ety of tractability results using the algorithm, revealing unified structure
among apparently different cases of the QCSP.

1 Introduction

The constraint satisfaction problem (CSP) is widely acknowledged as a conve-
nient framework for modelling search problems. An instance of the CSP is a
closed primitive positive formula over a relational signature, that is, a formula
of the form

∃v1 . . .∃vn(R(vi1 , . . . , vik) ∧ . . .)

along with a relational structure over the same signature. The question is to
decide whether or not the relational structure models the formula. In the con-
straint satisfaction literature, the atomic formulas R(vi1 , . . . , vik) in a CSP in-
stance are called constraints, and the CSP is usually phrased as the problem of
deciding whether or not there is a variable assignment satisfying all constraints
in a given set. The CSP can also be defined as the problem of deciding, given
an ordered pair (A,B) of relational structures, whether or not there is a rela-
tional homomorphism from A to B. As the many equivalent formulations of the
CSP suggest, CSPs arise naturally in a wide variety of domains, including logic,
algebra, database theory, artificial intelligence, and graph coloring.

The initially given definition of the CSP leads naturally to the generalization
of the CSP called the quantified constraint satisfaction problem (QCSP), where

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 232–247, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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both universal and existential quantification are allowed. The greater generality
of the QCSP permits the modelling of a variety of computational problems that
cannot be expressed using the CSP, for instance, problems from the areas of
verification, non-monotonic reasoning, planning, and game playing. The higher
expressiveness of the QCSP, however, comes at the price of higher complexity:
the QCSP is in general complete for the complexity class PSPACE, in contrast
to the CSP, which is in general complete for the complexity class NP.

The general intractability of the CSP and the QCSP has motivated a large
and rich body of research aimed at identifying and understanding restricted cases
of these problems that are tractable, by which we mean decidable in polynomial
time. Remarkably, many tractable cases of the CSP that have been identified are
solvable by parameterizations of a single algorithm which we call the consistency
algorithm. Intuitively speaking, the consistency algorithm performs inference by
continually considering bounded-size subsets of the entire set of variables, of a
CSP instance.

In this paper, we give an algorithm for the QCSP that naturally extends the
consistency algorithm for the CSP. Surprisingly, we are able to obtain a variety of
QCSP tractability results using our algorithm, revealing unified structure among
apparently different cases of the QCSP. Because of its qualitative similarity to
CSP consistency as well as its ability to solve a number of QCSP generalizations
of CSP instances solvable by CSP consistency methods, we believe that our
algorithm can reasonably be viewed as a consistency algorithm for the QCSP,
and refer to it as such.

In the rest of this section, we briefly review related work on the CSP, give
a general description of our algorithm, and then describe the tractable cases of
the QCSP that we demonstrate to be solvable by our algorithm.

Restrictions on the CSP. To discuss the relevant restricted cases of the
CSP that have been previously studied, we view the CSP as the “relational
homomorphism” problem of deciding, given an ordered pair (A,B) of relational
structures, whether or not there is a homomorphism from A to B. By and large,
the restrictions that have been identified and studied can be placed into one
of two categories, which have become known as left-hand side restrictions and
right-hand side restrictions. Left-hand side restrictions, also known as structural
restrictions, arise by considering a prespecified class A of relational structures
from which the left-hand side structure A must come, whereas right-hand side
restrictions, arise by considering a prespecified class B of relational structures
from which the right-hand side structure B must come. When B = {B} is of
size one, B is often called the constraint language.

In studies of the left-hand side, the restriction of bounded treewidth has played
a major role. Treewidth is, intuitively, a graph-theoretic measure of how “tree-
like” a graph is, and the treewidth of a relational structure A is simply the
treewidth of the Gaifman graph of A, or the graph having an edge between
any two elements occurring together in a tuple. The tractability of collections of
relational structures A having bounded treewidth was shown by Dechter and Pearl
[11] and Freuder [13]. An alternative proof was later given by Kolaitis and Vardi
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[19]. Dalmau et al. [9] building on ideas of Kolaitis and Vardi [19, 20] showed that
consistency is an algorithm for the CSP under bounded treewidth. They also gave
a wider condition that naturally expanded the condition of bounded treewidth,
and showed that the wider condition is tractable, again, via the consistency
algorithm. The optimality of this latter result of Dalmau et al. was demonstrated
by Grohe [16], who proved that in the case that A has bounded arity, if A
gives rise to a tractable case of the CSP, then it must fall into the natural
expansion identified by Dalmau et al. [9]. There has also been work on the case
of unbounded arity [15].

Study of right-hand side restrictions has its origins in the paper of Schaefer
[21], who classified all constraint languages B, with a two-element universe,
giving rise to a tractable case of the CSP. Much research has been directed
towards classifying all constraint languages with a finite universe giving rise to a
tractable CSP, and recent years have seen some major classification results [2, 3]
as well as other tractability results; in many of the tractability results, such as
[1, 4, 10, 17], consistency is used to demonstrate tractability.

Quantified Pebble Games and Our New Consistency Algorithm. It has
been demonstrated by Kolaitis and Vardi [20] that there are intimate connec-
tions between the consistency algorithm and certain combinatorial pebble games.
It is from the vantage point of these pebble games that we develop our quan-
tified analog of the consistency algorithm, and this paper overall takes strong
methodological and conceptual inspiration from the paper [20] as well as from
[9].

To explain some details, the consistency algorithm is a general method that
adds more constraints to a CSP instance, and in some cases can detect an in-
consistency (that is, that the CSP instance is not satisfiable). We have said that
the consistency algorithm solves certain restricted cases of the CSP; by this, we
mean that an instance is unsatisfiable if and only if an inconsistency is detected.
In [20], consistency was linked to existential pebble games which are played by
two players, the Spoiler and the Duplicator, on a pair of relational structures
(A,B); these games were introduced by Kolaitis and Vardi [18] for analyzing the
expressive power of the logic Datalog. The link established is that the Duplicator
wins the existential pebble game if and only if no inconsistency is detected by the
consistency algorithm: that is, deciding if an instance is consistent is equivalent
to deciding if the Duplicator has a winning strategy for the existential pebble
game.

We define a version of this pebble game which we call the quantified pebble
game that is suited for the QCSP setting. Recall that an instance of the CSP
can be viewed as a pair of relational structures (A,B); it turns out that an
instance of the QCSP can be viewed as a pair of relational structures (A,B)
along with a quantifier prefix p = Q1a1 . . . Qnan where the Qi are quantifiers
and {a1, . . . , an} are the elements of A. In the existential pebble game, the
Spoiler places pebbles on elements of A and the Duplicator must respond by
placing pebbles on elements of B. A primary difference between the existential
pebble game and our new pebble game is that whereas the Spoiler may, at any
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time, place a pebble on any element of A in the existential pebble game, the
Spoiler must respect the quantifier prefix in placing down new pebbles in the
quantified pebble game. In a sense that we will make precise, any new pebbles
placed by the Spoiler must come “after” all existing pebbles in the quantifier
prefix p.

After introducing our quantified pebble game and identifying some of its basic
properties, we show how a consistency algorithm for the QCSP can be derived
from our pebble game, analogously to the way in which the CSP consistency
algorithm can be derived from the existential pebble game.

Fascinatingly and surprisingly, our QCSP consistency algorithm is ambidex-
trous in that it can be employed to obtain both left-hand and right-hand side
tractability results, and hence reveals unified structure among apparently differ-
ent cases of the QCSP. We now turn to describe these tractability results.

The Left-Hand Side: Bounded Treewidth. As we have discussed, bounded
treewidth not only gives rise to a tractable CSP, but – under the assumption
of bounded arity – lies behind every left-hand side restricted CSP. However, it
has recently been revealed that bounded treewidth, at least applied straightfor-
wardly, behaves differently in the QCSP. Chen [7] recently showed that bounded
treewidth also guarantees tractability in the QCSP, but under the assumption
that both the universe size of B and the number of quantifier alternations are
constant. The question of whether or not any part of this assumption could
be lifted while preserving tractability was recently addressed by Gottlob et al.
[14], who proved that if there is no bound on the universe size of B, bounded
treewidth instances are generally intractable. This seems to suggest a disconnect
between bounded treewidth in the CSP and QCSP setting – since the tractabil-
ity of bounded treewidth in the CSP setting is independent of any properties of
the right-hand side structure B – and prompts the question of whether or not
there is any “pure” left-hand side restriction, generalizing bounded treewidth in
the CSP, that guarantees tractability in the QCSP.

In this paper, we answer this question in the affirmative by introducing a nat-
ural generalization of bounded treewidth (in the CSP) that guarantees QCSP
tractability. This generalization is easy to describe from a high-level perspective:
the treewidth of a relational structure A can be described as the minimization
of a certain quantity over all possible orderings of the elements of A. Our new
notion of treewidth can be described in the same way, but where the minimiza-
tion is over all orderings of the A-elements that respect the quantifier prefix (in
a natural way that we make precise in the paper).

We show that instances of the QCSP having bounded treewidth in our new
sense are tractable via consistency, and (in the last section of the paper) also
expand this tractability result in a way that is analogous to and generalizes the
expansion carried out in the CSP setting [9]. It is worth emphasizing that, as
in [9], we show that our new type of bounded treewidth (and its expansion) is
tractable by consistency, a method that does not require the computation of any
form of tree decomposition.
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In [14], another tractable left-hand side restricted QCSP was identified; see
also [12] for closely related work.

The Right-Hand Side. On the right-hand side, we give two tractability results
via consistency. The first is the tractability of constraint languages B having
a near-unanimity polymorphism; this class has been studied and shown to be
tractable in the CSP [17], and is also known to be tractable in the QCSP [6].
The second concerns constraint languages B having a set function polymorphism.
While such constraint languages are all tractable in the CSP setting [10], they
give rise to two modes of behavior in the QCSP [8]. We show that any such
constraint languages that are QCSP tractable are tractable by consistency. Both
of these classes are fundamental to consistency in the CSP setting, as they both
give exact characterizations of particular parameterizations of consistency that
have been of interest; we refer the reader to the cited papers for more information.

2 Quantified Constraint Satisfaction

In this section, we define the quantified constraint satisfaction problem and as-
sociated notions to be used throughout the paper.

A relational signature is a finite set of relation symbols, each of which has an
associated arity. A relational structure A (over signature σ) consists of a universe
A and a relation RA over A for each relation symbol R (of σ), such that the
arity of RA matches the arity associated to R. We refer to the elements of the
universe of a relational structure A as A-elements. Throughout this paper, we
assume that all relational structures under discussion are finite.

A quantified constraint formula over signature σ is a closed first-order for-
mula having conjunction as its only propositional connective in prenex normal
form. That is, a quantified constraint formula (over σ) is a formula of the form
Q1v1 . . . Qnvnψ(v1, . . . , vn) where each Qi is a quantifier (either ∃ or ∀) and ψ is
the conjunction of expressions of the form R(vi1 , . . . , vik), where R is a relation
symbol from σ and k is the arity of R.

An instance of the quantified constraint satisfaction problem (QCSP) consists
of a quantified constraint formula φ and a relational structure B over the same
signature; the question is to decide whether or not B |= φ.

It is known that any quantified constraint formula with only existential quan-
tifiers, known as conjunctive queries, can be naturally associated with a rela-
tional structure [5]. It will be conceptually and terminologically useful for us
to associate an object called a quantified relational structure to each quantified
constraint formula. A quantified relational structure is a pair (p,A) where A is a
relational structure and p is an expression of the form Q1v1 . . . Qnvn where each
Qi is a quantifier (either ∃ or ∀) and v1, . . . , vn are exactly the elements of the
universe of A. The quantified relational structure (p,A) associated to a quan-
tified constraint formula φ is obtained by letting p be the quantifier prefix of φ
and leeting RA contain all tuples (a1, . . . , ak) such that R(a1, . . . , ak) appears as
a constraint in φ. As an example, suppose that σ contains only a binary relation
symbol E, and let φ be the quantified constraint formula
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∀v1∃v2∀v3∃v4(E(v1, v2) ∧ E(v2, v3) ∧ E(v3, v4) ∧ E(v4, v1)).

The quantified relational structure associated to φ in this case is

(∀v1∃v2∀v3∃v4,A)

where A has universe
{v1, v2, v3, v4}

and
EA = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)}.

It is clearly also possible to inversely map a quantified relational structure to
a quantified constraint formula, and we will speak of the quantified relational
structure associated to a quantified constraint formula. Indeed, we will freely
interchange between corresponding quantified constraint formulas and quantified
relational structures.

We say that there is a homomorphism from a quantified relational structure
(p,A) to a relational structure B if B |= φ, where φ is the quantified constraint
formula associated to (p,A). This notion of homomorphism generalizes the usual
notion of relational homomorphism. Let A and B be relational structures over
the same signature; it is straightforward to verify that there is a relational ho-
momorphism from A to B if and only if there is a homomorphism from (p,A)
to B, where p existentially quantifies all elements of the universe of A (in any
order). Recall that a mapping h from the universe of A to the universe of B is
a relational homomorphism from A to B if for any relation symbol R and any
tuple (a1, . . . , ak) ∈ RA of A, it holds that (h(a1), . . . , h(ak)) ∈ RB.

A quantifier prefix p = Q1v1 . . .Qnvn can be viewed as the concatenation
of quantifier blocks where quantifiers in each block are the same, and consecu-
tive quantifier blocks have different quantifiers. For example, the quantifier pre-
fix ∀v1∀v2∃v3∀v4∀v5∃v6∃v7∃v8, consists of four quantifier blocks: ∀v1∀v2, ∃v3,
∀v4∀v5, and ∃v6∃v7∃v8. We say that a variable vj comes after a variable vi in p
if they are in the same quantifier block, or vj is in a quantifier block following
the quantifier block of vi. Equivalently, the variable vj comes after the variable
vi in p if one of the following conditions holds: (1) j ≥ i, or (2) j < i and all
of the quantifiers Qj, . . . , Qi are of the same type. Notice that in a quantified
constraint formula, variables in the same quantifier block can be interchanged
without disrupting the semantics of the formula.

3 Pebble Games and Consistency

In previous work [9, 20] certain combinatorial two-player games called existential
pebble games were shown to be strongly linked to and shed insight on consis-
tency algorithms for constraint satisfaction, and were also used to understand
and identify tractable cases of the CSP. Here, we introduce quantified pebble
games that naturally generalize existential pebble games, and show that they
can similarly be used to identify QCSP tractability results.
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Our quantified pebble game is defined as follows. The game is played between
two players, the Spoiler and the Duplicator, on a quantified relational structure
(p,A) and a relational structure B, where A and B are over the same signature.
Game play proceeds in rounds, and in each round one of the following occurs:

1. The Spoiler places a pebble on an existentially quantified A-element a com-
ing after all A-elements that already have a pebble. In this case, the Dupli-
cator must respond by placing a corresponding pebble, denoted by h(a), on
a B-element.

2. The Spoiler places a pebble on a universally quantified A-element a coming
after all A-elements that already have a pebble. The Spoiler then places a
corresponding pebble, denoted by h(a), on a B-element.

3. The Spoiler removes a pebble from an A-element a. In this case, the corre-
sponding pebble h(a) on B is removed.

When game play begins, there are no pebbles on any A-elements, nor on any
B-elements, and so the first round is of one of the first two types. We assume
that the Spoiler never places two pebbles on the same A-element, so that h is a
partial function (as opposed to a relation). The Duplicator wins the quantified
pebble game if he can always ensure that h is a projective homomorphism from
A to B; otherwise, the Spoiler wins. A projective homomorphism (from A to
B) is a partial function h from the universe of A to the universe of B such that
for any relation symbol R and any tuple (a1, . . . , ak) ∈ RA of A, there exists a
tuple (b1, . . . , bk) ∈ RB where h(ai) = bi for all ai on which h is defined.

We will be most interested in versions of the quantified pebble game where the
number of pebbles that can be placed on A-elements is bounded by a constant k,
which we call the quantified k-pebble game. To emphasize the distinction between
this bounded version and the general game, we will refer to the quantified pebble
game with no restriction on the number of pebbles as the general quantified pebble
game. Moreover, it will be useful to consider a version of the quantified pebble
game called the truth quantified pebble game. In the truth quantified pebble game
on (Q1a1 . . .Qnan,A) and B, there are exactly n rounds; in the rth round, the
Spoiler places down a pebble on the A-element ar, and then – depending on
whether or not ar is universally or existentially quantified – either the Spoiler
or the Duplicator places down a corresponding pebble on a B-element br.

Proposition 1. The following four statements are equivalent:

1. There is a homomorphism from (p,A) to B.
2. The Duplicator wins the truth quantified pebble game on (p,A) and B.
3. The Duplicator wins the general quantified pebble game on (p,A) and B.
4. For all k ≥ 2, the Duplicator wins the quantified k-pebble game on (p,A)

and B.

We now formalize what it means for the Duplicator to win the quantified
k-pebble game, where at most k pebbles may be placed by the Spoiler on A at a
time. When f is a partial function, we use dom(f) to denote the domain of f . A
k-projective homomorphism is a projective homomorphism h with |dom(h)| ≤ k.
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Define a winning strategy for the Duplicator for the quantified k-pebble game
on (p,A) and B to be a non-empty set H of k-projective homomorphisms (from
A to B) having the following properties, corresponding to the three types of
rounds given above:

1. For every h ∈ H with |dom(h)| < k and every existentially quantified A-
element a /∈ dom(h) coming after all elements of dom(h), there exists a
projective homomorphism h′ ∈ H extending h with dom(h′) = dom(h)∪{a}.

2. For every h ∈ H with |dom(h)| < k, every B-element b, and every universally
quantified A-element a /∈ dom(h) coming after all elements of dom(h), there
exists a projective homomorphism h′ ∈ H extending h with dom(h′) =
dom(h) ∪ {a} and h′(a) = b.

3. H is closed under subfunctions, that is, if h ∈ H and h extends h′, then
h′ ∈ H .

By taking the just-given definition of a winning strategy for the quantified
k-pebble-game and excluding the requirements “|dom(h)| < k” in items (1) and
(2), we obtain the definition of a winning strategy for the general quantified
pebble game.

The following fact is immediate from the just-given definition.

Proposition 2. Let H and H ′ be winning strategies for the quantified k-pebble
game on a quantified relational structure (p,A) and a relational structure B.
Then, H ∪H ′ is also a winning strategy for the quantified k-pebble game on the
pair of structures.

Proposition 2 implies that in a quantified k-pebble game, there is a maximal
winning strategy, equal to the union of all winning strategies.

We now show how to efficiently compute winning strategies for the quantified
k-pebble game.

Proposition 3. For every fixed k, it is possible to decide in polynomial time,
given a quantified relational structure (p,A) and relational structure B, whether
or not there is a winning strategy for the Duplicator in the quantified k-pebble
game.

Proof. A straightforward way to perform the decision is as follows. Compute the
set of all k-projective homomorphisms from A to B, and let H denote this set.
Continually eliminate from H any h ∈ H with |dom(h)| < k that cannot be
extended as described in parts (1) and (2) of the definition of winning strategy;
and also continually eliminate any h ∈ H whose subfunctions are not all in H .
Once this procedure stabilizes, the result is either an empty set or a winning
strategy. Observe that all projective homomorphisms h1, h2, . . . that are elimi-
nated by this procedure cannot be a member of any winning strategy; the proof
is a straightforward induction on i, where hi represents the ith projective ho-
momorphism that was eliminated. Therefore, if the result of the procedure is an
empty set, there is no winning strategy. Moreover, if the result of the procedure
is a winning strategy, the result is in fact the maximal winning strategy. )*
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We have given a polynomial-time algorithm for deciding if there is a winning
strategy for the quantified k-pebble game. However, we can show that our algo-
rithm can be used to derive even stronger consequences. The given algorithm can
also be used to compute the maximal winning strategy for the general quantified
pebble game. In fact, we can observe that any projective homomorphism that
can be eliminated in the computation of the maximal winning strategy Hk for
the quantified k-pebble game, can also be eliminated in the computation of the
maximal winning strategy for the general quantified pebble game! Thus, in the
general quantified pebble game, any k-projective homomorphism in a winning
strategy must fall into Hk, and indeed by the “subfunction” requirement, every
projective homomorphism h in a winning strategy with |dom(h)| > k must yield
a k-projective homomorphism in Hk when restricted to a subdomain of size ≤ k.
After having computed the maximal winning strategy Hk for a QCSP instance,
we can therefore add constraints of the form R(a1, . . . , ak) with

RB = {(h(a1), . . . , h(ak)) : h ∈ Hk, dom(h) = {a1, . . . , ak}}.

(Technically, the way we have formalized quantified constraint satisfaction, we
need to expand the signature to add these constraints.) After adding these con-
straints, we have not changed the truth of the QCSP instance (since we have
not changed whether or not there is a winning strategy for the general game, see
Proposition 1), but in general we obtain a more constrained instance. In fact,
in the CSP setting, adding these extra constraints corresponds exactly to the
process of establishing k-consistency [20].

The overall algorithm we have described, namely, of computing Hk and then
imposing new constraints, is thus a QCSP generalization of the CSP notion
of establishing k-consistency. This algorithm preserves the truth of the QCSP
instance and thus can be applied in general, to any arbitrary QCSP instance. In
the case that Hk is found to be empty, we can immediately conclude that the
instance is false. In the next section, we will show that in some interesting cases,
the converse holds, that is, some classes of QCSP instances have the following
property: if on an instance there is a winning strategy for the Duplicator in the
quantified k-pebble game, then the instance is true. When this property holds,
we will say that establishing k-consistency is a decision procedure for the class
of instances.

4 Tractability

4.1 The Left-Hand Side: Bounded Treewidth

We define a notion of treewidth for quantified relational structures. Let (p,A)
be a quantified relational structure. The Gaifman graph of A is the graph with
vertex set equal to the universe A of A and with an edge {a, a′} for every pair
of different elements a, a′ ∈ A that occur together in a A-tuple, by which we
mean an element of RA for some relation symbol R. A scheme for (p,A) is a
supergraph (A,E) of the Gaifman graph of A along with an ordering a1, . . . , an
of the elements of A such that
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– the ordering a1, . . . , an preserves the “after” relation, that is, if i < j, then
aj comes after ai in p, and

– for any ak, its lower numbered neighbors form a clique, that is, for all k, if
i < k, j < k, {ai, ak} ∈ E, and {aj , ak} ∈ E, then {ai, aj} ∈ E.

The width of a scheme is the maximum, over all vertices ak, of the size of
the set {i : i < k, {ai, ak} ∈ E}, that is, the set containing all lower numbered
neighbors of ak. The treewidth of a quantified relational structure (p,A) is the
minimum width over all schemes for (p,A).

Our definition of treewidth strictly generalizes the definition of treewidth in
the study of the CSP: the treewidth of a relational structure A, as defined (for
instance) in [9], is equivalent to the treewidth of (p,A) where p existentially
quantifies all elements of A (in any order). Note that having only existential
quantifiers in p amounts to dropping the first requirement in the definition of
scheme above, since in that case, every ordering preserves the “after” relation.

Let QCSP[treewidth < k] be the restriction of the QCSP problem to all
instances ((p,A),B) where (p,A) has treewidth strictly less than k.

Theorem 4. For all k ≥ 2, establishing k-consistency is a decision procedure
for QCSP[treewidth < k].

Proof. Let (p,A),B be an arbitrary instance of QCSP[treewidth < k], and sup-
pose that there is a winning strategy H for the quantified k-pebble game. We
show that there is a homomorphism from (p,A) to B. Let the graph (A,E)
and the ordering qs be a minimum width scheme for (p,A), and let q be the
quantifier prefix equal to qs with the corresponding quantifiers from p placed in
front of each variable. Now, (q,A) is semantically equivalent to (p,A), since q is
equal to p up to interchanging quantifier-variable pairs within quantifier blocks.
So it suffices to show that there is a homomorphism from (q,A) to B. We let
n denote the size of the universe A of A, and denote q by Q1a1 . . .Qnan. By
Proposition 1, it suffices to show that Duplicator can win the truth quantified
pebble game.

The strategy for the Duplicator is to play so that in the rth round the partial
function ai → bi determined by the pebbles, when restricted to the set containing
ar and its lower numbered neighbors (in the graph (A,E) and ordering qs), falls
into H .

We prove by induction that the Duplicator can play in this way. Assume that
the Spoiler has initiated the rth round by placing a pebble on ar. Let Nr denote
all lower numbered neighbors of ar. The partial function ai → bi determined by
the pebbles, when restricted to Nr, gives a projective homomorphism hr in H
by the induction hypothesis. Since the scheme ((A,E), qs) has width ≤ k, the
projective homomorphism hr has domain size |Nr| = |dom(hr)| < k.

– Suppose that ak is existentially quantified. By part (1) of the definition
of winning strategy, there is a homomorphism h′r extending hr to ak. The
Duplicator can thus set bk to be h′r(ak).
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– Suppose that ak is universally quantified. In this case, the Spoiler sets bk.
By part (2) of the definition of winning strategy, there is a homomorphism
h′r extending hr that maps ak to bk.

It remains to verify that after all n rounds have passed, the Duplicator has
won the truth quantified pebble game, that is, the function h mapping ai to bi
(the function determined by the pebbles) is a homomorphism from A to B. Let
(c1, . . . , ck) ∈ RA be a tuple of A. Let ar be the highest numbered element of
this tuple with respect to qs. In the rth round, it was ensured that the restriction
of h to {ar}∪Nr was equal to a projective homomorphism h′r falling in H . Since
{c1, . . . , ck} ⊆ {ar}∪Nr, we have (h(c1), . . . , h(ck)) = (h′r(c1), . . . , h

′
r(ck)) ∈ RB.

)*

4.2 The Right-Hand Side: Relational Restrictions

For each relational structure B, let QCSP(B) denote the problem of deciding,
given a quantified constraint formula φ, whether or not B |= φ. That is, QCSP(B)
is the restricted case of the QCSP where the relational structure is fixed as B.

Near-Unanimity Polymorphisms. Let B be a relational structure with uni-
verse B. An operation f : Bk → B is a polymorphism of a relational structure
B if it is a homomorphism from Bk to B 1. A near-unanimity operation is an
operation f : Bk → B of arity ≥ 3 satisfying the identities

d = f(e, d, d, . . . , d) = f(d, e, d, . . . , d) = · · · .

These identities state that if all but (at most) one of the arguments to f are
equal to d, then f outputs d.

Theorem 5. Let B be a relational structure having a near-unanimity polymor-
phism of arity k. Establishing k-consistency is a decision procedure for QCSP(B).

Proof. We assume that the Duplicator has a winning strategy H for the quanti-
fied k-pebble game on (p,A), B, and aim to show that there is a homomorphism
from (p,A) to B. We in fact prove the following claim.

Claim. Let h be a projective homomorphism from A to B such that all
restrictions of h onto a domain of size ≤ k is in H ; and, let a /∈ dom(h) be any
variable coming after all elements of dom(h).

– If a is existentially quantified, then there exists a projective homomorphism
h′ extending h with a ∈ dom(h′).

– If a is universally quantified, then for all B-elements b there exists a projec-
tive homomorphism h′ extending h with h′(a) = b.

1 Recall that when A and B are relational structures over the same vocabulary
with A and B, respectively, the relational structure A × B is defined to have
universe A × B and so that for each relation symbol R, it holds that RA×B =
{((a1, b1), . . . , (ak, bk)) : (a1, . . . , ak) ∈ RA, (b1, . . . , bk) ∈ RB}.
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Proving this claim suffices, since it follows immediately that the truth quan-
tified pebble game can be won by the Duplicator, which by Proposition 1 implies
that there is a homomorphism from (p,A) to B.

We prove the claim by induction on the size of dom(h). By the definition of
winning strategy, the claim holds when |dom(h)| < k. So, let us suppose that
|dom(h)| ≥ k, and that a /∈ dom(h) comes after all elements of dom(h). Pick any
k distinct elements a1, . . . , ak ∈ dom(h), and define hi to be the restriction of h
to dom(h) \ {ai}. We now consider two cases.

Case 1: Suppose that a is existentially quantified. By induction, each of
the mappings hi can be extended to a projective homomorphism h′i with a ∈
dom(h′i). Let μ : Dk → D denote the near-unanimity polymorphism of B. Define
b to be μ(h′1(a), . . . , h′k(a)). We claim that the extension h′ of h mapping a to
b is a projective homomorphism. Let (c1, . . . , cm) ∈ RA be any A-tuple. We
wish to show that there is a tuple (b1, . . . , bm) ∈ RB such that h′(cj) = bj for all
cj ∈ dom(h′). Each h′i is a projective homomorphism, and so for each i = 1, . . . , k
there is a tuple (bi1, . . . , b

i
m) ∈ RB such that h′i(cj) = bj for all cj ∈ dom(h′i).

We have ((b11, . . . , b
k
1), . . . , (b

1
m, . . . , bkm)) ∈ RBk

; we claim that the desired tuple
(b1, . . . , bm) can be obtained as μ((b11, . . . , b

k
1), . . . , (b

1
m, . . . , bkm)). Let us consider

any cj ∈ dom(h′).

– If cj = a, then by our definition of h′ we have bj = μ(b1j , . . . , b
k
j ).

– If cj ∈ {a1, . . . , ak} and cj = al, then all elements b1j , . . . , b
k
j are equal to

h′(cj) except possibly blj , so μ(b1j , . . . , b
k
j ) is equal to h′(cj).

– If cj ∈ dom(h) \ {a1, . . . , ak}, then all elements b1j , . . . , b
k
j are equal to h′(cj),

and so μ(b1j , . . . , b
k
j ) is equal to h′(cj).

Case 2: Suppose that a is universally quantified and that b is a B-element.
By induction, each of the mappings hi can be extended to a projective homo-
morphism h′i with h′i(a) = b. Let h′ be the extension of h mapping a to b. Notice
that, as in the previous case, b equals μ(h′1(a), . . . , h

′
k(a)). By reasoning as in the

previous case, it can be established that h′ is a projective homomorphism. )*

Set Function Polymorphisms. When B is a relational structure with universe
B, define ℘(B) to be the relational structure having universe ℘(B) \ {∅} (where
℘(B) denotes the power set of B) and such that for every relation symbol R, it
holds that

R℘(B) = {(pr1S, . . . , prkS) : S ⊆ RB, S �= ∅}

where k denotes the arity of R, and priS denotes the set {si : (s1, . . . , sk) ∈ S},
that is, the projection onto the ith coordinate. We say that f : ℘(B) \ {∅} →
B is a set function polymorphism of B if f is a homomorphism from ℘(B)
to B. Alternatively, one can define f : ℘(B) \ {∅} → B to be a set function
polymorphism of B if and only if all of the mappings fk : Bk → B defined
by fk(b1, . . . , bk) = f({b1, . . . , bk}) (with k ≥ 1) are polymorphisms of B. (It is
straightforward to verify that these two definitions are equivalent.) We show that
a variant of consistency called default k-consistency solves any QCSP-tractable
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set function polymorphisms, that is, a set function polymorphism giving rise to
a tractable case of the QCSP [8]. Note that default k-consistency is a stronger
concept than k-consistency, so establishing default k-consistency gives a unified
algorithm for all tractable cases discussed in this paper. (Details are left to the
full version of this paper.)

Theorem 6. Let B be a relational structure having a QCSP-tractable set func-
tion polymorphism. Establishing default k-consistency is a decision procedure for
QCSP(B).

5 Homomorphisms Between Quantified
Relational Structures

We now define a notion of homomorphism called Q-homomorphism that allows
us to compare quantified relational structures. Let (p,A) and (p′,A′) be quanti-
fied relational structures. Let X (X ′) denote the existentially quantified variables
of A (respectively, A′), and let Y (Y ′) denote the universally quantified variables
of A (respectively, A′).

A pair of functions (f : X → X ′, g : Y ′ → Y ) is a Q-homomorphism from
(p,A) to (p′,A′) when the following conditions hold:

– For all relation symbols R and all tuples (a1, . . . , ak) ∈ RA, there exists a
tuple (a′1, . . . , a

′
k) ∈ RA′

such that, for all i, either
• both ai and a′i are existentially quantified and f(ai) = a′i, or
• both ai and a′i are universally quantified and ai = g(a′i).

– The mappings f, g preserve the “after” relation in that if

(a1, a
′
1), (a2, a

′
2) ∈ {(a, f(a)) : a ∈ X} ∪ {(g(a′), a′) : a′ ∈ Y ′}

and a2 comes after a1, then a′2 comes after a′1.

Q-homomorphisms and homomorphisms (from quantified relational struc-
tures to relational structures) interact well in that a natural transitivity-like
property holds.

Theorem 7. Let (p,A) and (p′,A′) be quantified relational structures, and let
B be a relational structure. If there is a Q-homomorphism from (p,A) to (p′,A′)
and there is a homomorphism from (p′,A′) to B, then there is a homomorphism
from (p,A) to B.

Proof. (idea) Let (f, g) be a Q-homomorphism from (p,A) to (p′,A′), and as-
sume that the Duplicator wins the truth quantified pebble game on (p′,A′) and
B. By Proposition 1, it suffices to show that the Duplicator wins the truth quan-
tified pebble game on (p,A) and B; we give a winning strategy for this game
where the Duplicator simulates the truth quantified pebble game on (p′,A′)
and B.
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– When the Spoiler places a pebble on an existentially quantified A-element
a, the Duplicator places a pebble on the A′-element f(a) in the simulated
game, and then uses the response of the Duplicator in the simulated game
to determine where on B to place a pebble.

– When the Spoiler places a pebble on a universally quantified A-element a
and a corresponding pebble on a B-element b, there are two cases. If a does
not occur in any A-tuple, the Duplicator simply ignores the pebble on a, as
well as the corresponding pebble on b. If a does occur in an A-tuple, then
by definition of Q-homomorphism, there exists a B-element a′ such that
a = g(a′) and so the set g−1(a) is non-empty. The Duplicator then places
pebbles on all elements of g−1(a) in the simulated game, and places down
the |g−1(a)| corresponding pebbles all on b.

)*

We say that two quantified relational structures (p,A) and (p′,A′) are Q-
homomorphically equivalent if there exists a Q-homomorphism from (p,A) to
(p′,A′), and there exists a Q-homomorphism from (p′,A′) to (p,A). The follow-
ing corollary is immediate from Theorem 7.

Corollary 8. Let (p,A) and (p′,A′) be Q-homomorphically equivalent quanti-
fied relational structures, and let B be a relational structure. There is a homo-
morphism from (p,A) to B if and only if there is a homomorphism from (p′,A′)
to B.

Theorem 7, as we have noted, generalizes Corollary 8. However, Corollary 8
can be generalized in a different direction. In particular, we can show that two Q-
homomorphically equivalent quantified relational structures behave identically
as regards the quantified k-pebble game.

Theorem 9. Let (p,A) and (p′,A′) be two Q-homomorphically equivalent quan-
tified relational structures, and let B be a relational structure. For all k ≥ 2, the
Duplicator wins the quantified k-pebble game on (p,A) and B if and only if the
Duplicator wins the quantified k-pebble game on (p′,A′) and B.

Proof. (idea) Assume that the Duplicator wins the quantified k-pebble game on
(p′,A′) and B. We want to show that the Duplicator wins the quantified k-
pebble game on (p,A) and B. We may assume without loss of generality that all
universally quantified variables in (p′,A′) appear in a tuple of A′, and likewise
for (p,A). Let (f, g) be a Q-homomorphism from (p,A) to (p′,A′). As (p,A) and
(p′,A′) are Q-homomorphically equivalent, it can be verified that g is a bijection
between the universally quantified variables of (p′,A′) and those of (p,A). We
can show that the Duplicator wins the quantified k-pebble game on (p,A) and
B using the same simulation strategy as in the proof of Theorem 7. Note that
because g is a bijection, no more than k pebbles are ever placed on A′ in the
simulated game (which is played on (p′,A′) and B). )*

We remark that Corollary 8 can be derived from Theorem 9 (along with
Proposition 1).
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The results obtained in this section allow us to expand the tractability result
concerning instances with bounded treewidth (Theorem 4). This result gener-
alizes an analogous expansion that was carried out in the CSP setting [9]. Let
QCSP[H(treewidth < k)] be the restriction of the QCSP problem to all instances
((p,A),B) where (p,A) is Q-homomorphically equivalent to a quantified rela-
tional structure with treewidth strictly less than k.

Theorem 10. For all k ≥ 2, establishing k-consistency is a decision procedure
for QCSP[H(treewidth < k)].

Proof. Immediate from Theorem 4, Corollary 8, and Theorem 9. )*
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Abstract. We describe a simple algebraic semi-decision procedure for
detecting unsatisfiability of a (quantifier-free) conjunction of nonlinear
equalities and inequalities. The procedure consists of Gröbner basis com-
putation plus extension rules that introduce new definitions, and hence
it can be described as a critical-pair completion-based logical proce-
dure. This procedure is shown to be sound and refutationally com-
plete. When projected onto the linear case, our procedure reduces to
the Simplex method for solving linear constraints. If only finitely many
new definitions are introduced, then the procedure is also terminating.
Such terminating, but potentially incomplete, procedures are used in
“incompleteness-tolerant” applications.

1 Introduction

The ability to solve nonlinear constraints is central to the task of develop-
ing and automating analysis technology for several classes of systems. Non-
linear constraints arise in robotics, control theory, hybrid system models of
physical and embedded control systems and biological systems, and in solving
games [8, 15, 17]. Fortunately, the full first-order theory of the reals is known
to be decidable [22]. Unfortunately, it has a double exponential lower-bound
and most of the decision procedures for this theory are complex, nonlogical, and
involve considerable splitting (causing blowups) [5, 7, 18, 24]. Available imple-
mentations of the decision procedure [12, 13] can only solve very small-sized
examples.

We are particularly interested in the verification of hybrid systems. Our
methodology for verification is based on abstraction and model-checking [23].
Automation of this technique requires sound and fast implementations of a pro-
cedure for testing unsatisfiability of (a conjunction of) nonlinear constraints.
The same is also needed in the lazy approach of extending constraint solvers
to handle boolean combination of constraints. Tools such as ICS [9], CVC [21],
and MathSat [1], which are used in bounded model-checking of discrete systems,
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also implement some form of incomplete nonlinear constraint solving. Fast and
sound, but potentially incomplete, implementations that can solve large problem
instances are useful in several “incompleteness-tolerant” applications such as the
process of creating abstractions, where incompleteness only causes creation of a
coarser abstraction.

This paper considers the problem of developing fast reasoners for (quantifier-
free conjunction of) nonlinear constraints over the theory of reals. Our goal
was to develop a method that efficiently detected the “easy” unsatisfiable in-
stances. For instance, we do not want to compute a full cylindrical algebraic
decomposition of the n-dimensional space based on the polynomial p to decide
if p > 0 ∧ p < 0 is satisfiable. Our goal was to give a logical procedure that
can be described using simple inference rules. Moreover, the procedure should
be simple and easy to implement and incremental, that is, new constraints can
be added without redoing everything.

In this paper, we describe a critical-pair completion approach to nonlin-
ear constraint solving. The main ingredient is the Gröbner basis computation
method. Apart from it, we only need some extension rules that introduce new def-
initions. Surprisingly, this is all that is needed for obtaining a sound and refuta-
tionally complete procedure for testing unsatisfiability of nonlinear constraints–a
consequence of the Positivstellensatz theorem from real algebraic geometry.

Our approach is based on eliminating inequality constraints by introducing
slack variables and then constructing a Gröbner basis of the polynomials in the
equality constraints. For example, suppose we want to prove unsatisfiability of
{u1 +u2−1 ≈ 0,−u2 +2 ≈ 0, u1 ≥ 0}. If we construct a (fully reduced) Gröbner
basis of the polynomials that appear in the two equations, we get {u1 +1,−u2 +
2}. The first polynomial, u1 + 1, is a witness for unsatisfiability of the original
constraints, since u1 ≥ 0 implies that u1+1 should be strictly greater-than 0, but
the equational constraints require that u1 + 1 ≈ 0. Unfortunately, it is not the
case that whenever the original constraints are unsatisfiable, the corresponding
Gröbner basis will necessarily contain such a witness. For example, if we change
the constraints slightly to {u1+u2−1 ≈ 0, u2u3−u2+2 ≈ 0, u1 ≥ 0, u2 ≥ 0, u3 ≥
0}, then the Gröbner basis computation does not yield anything new and we fail
to detect the witness. The witness here is u2u3 + u1 + 1, which is obtained by
adding the two equations. The reason why the witness is not explicitly present in
the Gröbner basis is that it is not “small-enough” in the lexicographic ordering
chosen to construct the Gröbner basis.

The basic idea in our paper is that new definitions that introduce new
constants allow greater flexibility in choosing orderings. For example, we can
make the witness polynomial u2u3 + u1 + 1 smaller by introducing a defini-
tion u2u3 ≈ u4 and giving u4 the lowest precedence. As a result, we now com-
pute the Gröbner basis for {u1 + u2 − 1, u2u3 − u2 + 2, u2u3 − u4}, and we get
{u1 +u4 +1, u2−u4−2, u2u3−u4}. The first polynomial in this set, u1 +u4 +1,
is a witness for unsatisfiability of the original set of constraints.

In the linear case, our method would introduce definitions of the form u1 ≈
u2, making the new variable u2 smaller than all other variables. This has the
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effect of lowering the precedence of the old variable u1. This is similar to the
Simplex method, where the pivot steps transform a Gröbner basis with respect
to a given precedence $1 to a Gröbner basis with respect to a different prece-
dence $2, doing this until a witness to unsatisfiability is detected, or we have
(implicitly) exhausted all possibilities.

The inference rules are nonterminating because of the possibility of introduc-
ing infinitely many new definitions. Our procedure can be made terminating by
limiting the introduction of new definitions. We could still guarantee complete-
ness if there were known degree bounds for Positivstellensatz, whence we could
introduce enough new definitions to cover all polynomials upto the given degree
bound. Obtaining such degree bounds is an active area of research [19].

The presentation of the procedure in this paper is incremental. We first
present a simple and incomplete procedure in Section 3. Thereafter, we describe
the version of Positivstellensatz we use in this paper in Section 4. Using this
result, in Section 5 we develop a sound procedure that is refutationally complete
relative to an oracle (that provides the new definitions). Finally, we present the
complete set of inference rules in Section 6 and show how the job of the oracle
can be performed using static analysis of the polynomials.

2 Term Rewriting and Polynomials

Let {x1, . . . , xn} be a set of indeterminates, often denoted using vector notation
as x. The set of power-products over x is the free commutative monoid [x]
generated by x. Elements of [x], such as x1x

2
2x3, are denoted by μ with possible

subscripts. The polynomial ring over the field of rational numbers Q is the Q
vector space generated by [x], denoted by Q[x]. Elements from Q[x] are denoted
by p, q with possible subscripts. Atomic formulas are given as p ≈ 0, p ≥ 0, and
p > 0. Since we deal with quantifier-free conjunctions of atomic formulas, the
indeterminates x are logically constants, but we call them variables. Positive
variables are denoted by v and nonnegative by u,w. Elements from Q will be
denoted by c, and hence a polynomial p can be written as c0μ0+c1μ1+. . .+ckμk.

Orderings on Polynomials. Let 〈c1, c2, . . . , cm〉 be a sequence of m non-negative
vectors in Q+n such that m ≥ n and {c1, c2, . . . , cm} spans the n-dimensional
vector space Qn. We define an ordering on power-products as follows: xd1

1 . . . xdn
n

$ x
d′
1

1 . . . x
d′

n
n if there is a k such that 1 ≤ k ≤ m and (a) ck · d > ck · d′,

and (b) ci · d = ci · d′ for all i < k. If ei is a unit vector in i-th direction
(that is, only the i-th component is nonzero), then choosing 〈e1, e2, . . . ,en〉
results in the pure lexicographic ordering. Note that if e0 contains all 1’s, then
choosing 〈e0, e1, e2, . . . ,en〉 results in total-degree lexicographic ordering. For
other choices of ci’s, we can get certain “combinations” of these two orderings.

The ordering $ on power-products can be extended to monomials by just
ignoring the coefficient (if it is nonzero). The ordering on monomials can be
extended to polynomials by using the multiset extension of $ (and viewing a
polynomial as a multiset of monomials) [10].
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Term Rewriting Systems. Term rewriting systems are sets containing directed
equations, l → r, where the orientation is usually chosen so that l $ r for some
reduction ordering on the set of terms. If R is a rewrite system, the binary rela-
tion on terms →R is defined as the closure of R under contexts and substitution.
We use the usual notation for symmetric (↔) and transitive (→∗) closures.

A rewrite system R is said to be convergent if the relation →R is well-founded
and the relation →∗

R is confluent, that is, ↔∗
R⊆→∗

R ◦ ←∗
R. A rewrite system R

is fully reduced if for every rule l → r ∈ R, the term r is not reducible by R and
the term l is not reducible by R− {l → r}.

A (finite) fully reduced convergent R has several nice properties. It can be
used to decide the relation ↔∗

R. In fact, if s ↔∗
R t and s ; t, then we actually have

s →∗
R| 
�s

◦ ←∗
R| 
�s

t, where R|��s contains only those rules in R that contain terms
no bigger than s. Furthermore, if r is a $-minimal term in the R-equivalence
class [[r]]R and l is $-minimal in [[r]]R − {r}, then l →R r. In other words, the
fully reduced convergent R will either contain the rule l → r explicitly, or some
other rule that can be used to rewrite l to r in one step.

Polynomials as Rewrite Rules. A polynomial expression can be normalized into
a sum of monomials form c0μ0 + · · ·+ ckμk—intuitively using the distributivity
rules and formally using a convergent rewrite system for the theory of polynomial
rings [2, 3]. We work modulo this theory of polynomial rings in this paper.
As a result, we assume that all terms are automatically converted into sum
of monomial form. If we assume that μ0 $ μi for all 1 ≤ i ≤ k, then the
polynomial equation c0μ0 + · · · + ckμk ≈ 0 can be oriented into a rewrite rule
c0μ0 → −c1μ1 + · · · + −ckμk. This is a ground rewrite rule (that is, it contains
no variables), but we use its AC-extension, c0μ0ν → −c1μ1ν + · · ·+−ckμkν, for
purposes of rewriting polynomials. Here ν is an extension variable (that can be
instantiated by monomials). For example, −u2 + 2 ≈ 0 can be used as u2 → 2
to rewrite u1u2 + u1 to 2u1 + u1, which normalizes to 3u1. This is denoted by
u1u2 + u1 →u1→2 3u1. Thus, the rewrite relation →P induced by P is defined
modulo the theory of the coefficient domain Q and polynomial ring axioms.

Given a set P , the Gröbner basis for P can now be constructed using standard
critical-pair completion [3]. A Gröbner basis is a convergent rewrite system and
we can even make it fully reduced. We will denote by GB�(P ) the fully reduced
Gröbner basis for P computed using the ordering $.

Given a set P ⊂ Q[x], the ideal generated by P (in Q[x]) is defined by

Ideal(P ) = {q : q = Σi qipi, pi ∈ P, qi ∈ Q[x]} = {q : q ↔∗
P 0}

Thus, an ideal of P is the equivalence class of 0, when P is viewed as a set of
equations, in the theory of polynomial rings [3]. Elimination ideal consists of the
projection of the ideal onto polynomials over a subset of variables (that is, it
eliminates the other variables). If P is a set of polynomials in Q[x,u], then we
can eliminate the x variables and define Elim(P,x) = Ideal(P ) ∩ Q[u].

The above-mentioned property of fully reduced convergent rewrite systems
implies that Gröbner basis can be used to compute elimination ideals. In par-
ticular, if $ is an ordering such that μ $ ν for any μ ∈ [x,u] − [u] and ν ∈ [u],
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then Elim(P,x) = Ideal (GB�(P ) ∩ Q[u]). In fact, GB�(P ) ∩ Q[u] will be a
fully reduced Gröbner basis for the elimination ideal Elim(P,x). The pure lexi-
cographic ordering with precedence x $ u satisfies this property. On the other
hand, if $ is a total-degree lexicographic ordering with precedence x $ u, then
Ideal (GB�(P ) ∩ Q[u]) will contain all linear polynomials over u in Ideal (P ).

3 Introducing New and Eliminating Old Variables

Let E = {pi ≈ 0 : i ∈ I1}, F1 = {qi > 0 : i ∈ I2}, and F2 = {qi ≥ 0 : i ∈ I3},
where pi, qi ∈ Q[x]. Here I1, I2, I3 are mutually disjoint, finite sets of indices. As
in the Simplex method, we introduce new slack variables to convert the inequality
constraints into equational constraints. Specifically, we introduce the variables vi,
i ∈ I2 and wi, i ∈ I3 and replace the sets F1 and F2 by E1 = {qi−vi ≈ 0 : i ∈ I2}
and E2 = {qi − wi ≈ 0 : i ∈ I3}.

The set E ∪E1 ∪E2 of equations now contains polynomials from Q[x,v,w].
We also have the implicit constraints v > 0 and w ≥ 0. It is obvious that the
set E ∪ E1 ∪ E2 ∪ {v > 0, w ≥ 0} is satisfiable over the reals if and only if
the set E ∪ F1 ∪ F2 is satisfiable over the reals (all variables are assumed to be
existentially quantified).

Example 1. Let E = {x3
1 ≈ x1} and F = {x1x2 > 1,−x2

2 > −1/2}. The con-
straints E∪F are transformed into the constraints E′∪F ′, where E′ = {x3

1−x1 ≈
0, x1x2 − 1 − v1 ≈ 0, −x2

2 + 1/2 − v2 ≈ 0}, and F ′ = {v1 > 0, v2 > 0}.

3.1 Elimination Ideal

Let E denote a set of polynomial equations over Q[x,v,w]. We assume the
implicit constraints v > 0 and w ≥ 0. Our goal is to detect unsatisfiability of E.
Toward this end, we compute the Gröbner basis for the polynomials in E. Since
the witnesses are likely to be in terms of v,w, we use an ordering with precedence
x $ v,w (that is, we are eliminating x). If we are lucky, the computed Gröbner
basis may already contain a witness for unsatisfiability of E.

Example 2. Consider the set E = {x3
1 −x1 ≈ 0, x1x2 − 1− v1 ≈ 0, −x2

2 + 1/2−
v2 ≈ 0} and F ′ = {v1 > 0, v2 > 0} from Example 1.

Computing a Gröbner basis for the polynomials in E (using a lexicographic
ordering with precedence x1 $ x2 $ v1 $ v2) and then removing all polynomials
that contain variables x1 and x2, we are left with {v3

1 +3v2
1 + 1/2v1v2 +5/2v1 +

1/2v2 + 1/2}. This set is a basis for the ideal Elim(Poly(E), {x1, x2}).
The equation v3

1 + 3v2
1 + 1/2v1v2 + 5/2v1 + 1/2v2 + 1/2 ≈ 0 is a witness

for unsatisfiability: since the constraints v1 > 0, v2 > 0 imply that v3
1 + 3v2

1 +
1/2v1v2 + 5/2v1 + 1/2v2 + 1/2 > 0 necessarily, whereas Gröbner basis compu-
tation shows that it is necessarily zero. We can conclude that the original set of
equations and inequalities (from Example 1) is also unsatisfiable.

The method of introducing slack variables and computing Gröbner basis with
respect to an ordering that makes the slack variables smallest is not complete.
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Example 3. If E = {x2−2x+2 ≈ 0}, then the procedure described above would
not introduce any new “slack” variables. The elimination ideal contains only the
0 polynomial, which results in a set of consistent equations (0 ≈ 0). However, E
is unsatisfiable over the reals.

We wish to make the procedure complete using the positivstellensatz char-
acterization of unsatisfiability over the reals.

4 Positivstellensatz

The following result in real algebraic geometry characterizes the unsatisfiabil-
ity of a conjunction of nonlinear equations and inequalities. Given a set Q of
polynomials, the monoid [Q] generated by Q is the set consisting of all finite
products of polynomials in Q, and the cone generated by Q is the smallest set
containing [Q] and closed under addition and multiplication by “perfect-square
polynomials”, that is,

[Q] = {Πi∈I qi : qi ∈ Q for all i ∈ I}
Cone[Q] = {Σi∈I p2

i qi : qi ∈ [Q], pi ∈ Q[x] for all i ∈ I}

Note that 1 ∈ [Q] for any set Q and c2 ∈ Cone[∅] for all c ∈ Q.

Theorem 1. [Positivstellensatz [6, 14, 20]] Let P , Q, and R be sets of polyno-
mials over Q[x]. The constraint

{p ≈ 0 : p ∈ P} ∪ {q ≥ 0 : q ∈ Q} ∪ {r �≈ 0 : r ∈ R}

is unsatisfiable (over the reals) iff there exist polynomials p, q, and r such that
p ∈ Ideal (P ), q ∈ Cone[Q], and r ∈ [R] and p + q + r2 = 0.

The theorem is difficult to use in its above form. However, we can replace
the inequality constraints by equality constraints using slack variables and use
the following corollary.

Corollary 1. Let P be a set of polynomials from Q[x,v,w]. The constraint

{p ≈ 0 : p ∈ P} ∪ {v > 0 : v ∈ v} ∪ {w ≥ 0 : w ∈ w}

is unsatisfiable iff there is a polynomial p′ such that p′ ∈ Ideal (P ) ∩ Cone[v,w]
and there is at least one monomial cμ in p′ such that c > 0 and μ ∈ [v].

Proof. The ⇐ direction is obvious. For the ⇒ direction, we use the Positivstellen-
satz to conclude that there exist polynomials p, q, and r such that p ∈ Ideal (P ),
q ∈ Cone[v,w], and r ∈ [v] and p + q + r2 = 0. Note that r2 ∈ Cone[v,w] and
hence the polynomial q + r2 ∈ Cone[v,w] ∩ Ideal (P ).

To prove that the polynomial q + r2, equivalently −p, is the required p′, we
need to show that the polynomial q+ r2 contains a monomial cμ such that c > 0
and μ ∈ [v]. (Note that r2 is such a monomial, but it could get canceled when
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added to q.) Suppose p′ = q + r2 and p′ contains no such monomial cμ. But
then, if we set all x,w to 0 and all v to 1 (or any positive number), then q will
evaluate to something greater-than or equal to 0 (by definition of Cone), r2 will
evaluate to something strictly greater-than 0, and hence q + r2 will evaluate to
something strictly positive, whereas each monomial in p′ will evaluate to either
0 or something negative (since every monomial cμ in p′ has either c < 0 or a
factor from x,w). This contradiction concludes the proof.

We have now reduced the problem of testing unsatisfiability of nonlinear
constraints to deciding if, given a finite set P of polynomials over Q[x,v,w],
does there exist a polynomial p ∈ Ideal (P ) ∩ Cone[v,w] that also contains
a monomial cμ with c > 0 and μ ∈ [v]. The polynomial p is the witness to
unsatisfiability. We need to search for the existence of such a p.

5 Searching a Witness, Searching an Ordering

It would be nice if we could establish that if such a witness p (to unsatisfiability)
exists, then it would be present in the Gröbner basis of P . Note that this was
indeed the case in Example 2. But this may not be true always. Fortunately,
the property of fully reduced convergent rewrite systems discussed in Section 2
guarantees that this will be true if p were the minimal nonzero polynomial in
Ideal (P ) with respect to the ordering $ used to construct the Gröbner basis
for P . However, standard restrictions on term-orderings, such as monotonicity
(xy $ x), could mean that under no admissible ordering p were minimal.

Example 4. Consider P = {v +w1 − 1, w1w2 −w1 + 1}. Note that we implicitly
assume that v > 0 and w1, w2 ≥ 0. The set P is a Gröbner basis for the ideal
generated by P with respect to the lexicographic ordering with v $ w1 $ w2.

There is a witness polynomial, v + w1w2, in Ideal (P ), but P itself does not
contain any witness polynomial. In fact, none of the fully reduced canonical
Gröbner basis computed using any lexicographic ordering contains a witness
polynomial for this example.

The problem here is that the witness polynomial v +w1w2 ∈ Ideal (P ) is not
a minimal nonzero polynomial in Ideal (P ) under any ordering. However, if we
could have w1 $ w1w2 (contrary to the requirements of term orderings), then
Gröbner basis computation “could” eliminate w1 by adding the two polynomials
in P and obtain the witness.

We know from Corollary 1 that the witness polynomial p is in Ideal(P ) ∩
Cone[v,w] and hence it is of the form p2

1ν1 + p2
2ν2 + · · · + p2

kνk where, for all i,
νi ∈ [v,w] and pi is an arbitrary polynomial. There are two issues with making
this minimal:
(i) The power-products νi can not be smaller than the individual variables con-
tained in them. This was illustrated in Example 4.
(ii) The squares p2

i can not be smaller than any of the monomials or variables
contained in them.



An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints 255

We solve both these problems using the idea of introducing new definitions
and new variables. The new variables will be forced to be smaller than the other
variables.

Example 5. Consider P = {v + w1 − 1, w1w2 − w1 + 1} from Example 4. If we
introduce a new definition D = {w1w2 ≈ w3}, and we choose an ordering in
which v $ w1 $ w2 $ w3, then GB�(P ∪ {w1w3 − w3}) = {v + w3, w1 − w3 −
1, w2w3 + w2 − w3}. The witness v + w3 is present in the above fully reduced
Gröbner basis.

Next consider P = {w2
1 − 2w1w2 + w2

2 + 1}. There is no polynomial with all
coefficients positive in Ideal (P ) [11]. But there is a witness containing perfect
squares: (w1 − w2)2 + 1. If we introduce the definition D = {(w1 − w2)2 ≈ w3}
and compute the Gröbner basis for P ∪{(w1 −w2)2 −w3}, we get {w3 + 1, w2

1 −
2w1w2 + w2

2 − w3a}. The witness w3 + 1 is present in the above fully reduced
Gröbner basis.

5.1 Completeness Relative to an Oracle

If an oracle can identify the monomials p2
i νi that are present in the witness,

then the introduction of definitions and computing Gröbner basis is a sound and
complete method for detecting unsatisfiability of nonlinear constraints.

If all coefficients in a polynomial are positive (negative) when it is written
in its sum of monomials normal form representation, then we call it a positive
(negative) polynomial.

Theorem 2 (Relative Completeness). Let P be a set of nonlinear equations
over Q[x,v,w]. Let Σk

i=1p
2
i νi be a witness for unsatisfiability of {p ≈ 0 : p ∈

P} ∪ {v > 0 : v ∈ v} ∪ {w ≥ 0 : v ∈ w}. Let D be the set of definitions
{p2

i νi − w′i : i = 1, . . . , k}, where w′i are new constants.
Then, there exists a precedence $′ on w′ such that GB�(P ∪D) will contain

a positive or negative polynomial over [w′], where $ extends $′ such that the
only power-products smaller than any w′ are possibly other variables in w′.

Proof. By Corollary 1, the polynomial Σk
i=1p

2
i νi is in the ideal generated by P .

Therefore, the linear polynomial w′1 + · · ·+w′k is in the ideal generated by P ∪D.
Since the ordering $ guarantees that linear polynomials over w′ are smaller than
other polynomials, it follows that the polynomial w′1 + · · · + w′k is in the ideal
generated by GB′ = GB∩Q[w′] (property of fully reduced convergent systems).
If this polynomial is in GB′, we are done.

If not, let p′ = c1w
′
1 + · · · + ckw

′
k be the minimal size (that is, with least

cardinality of {i : ci �= 0}) linear positive polynomial in the ideal generated by
GB′. We claim that p′ will be in GB′ if we choose $ so that each constant
in {w′i : ci �= 0} has lower precedence than other variables. Suppose p′ is not
in GB′. Then p′ is reducible by some polynomial q′ in GB′. The polynomial
q′ = d1w

′
1 + · · · + dkw

′
k is necessarily linear. Wlog assume that c1 > 0 and

d1 > 0. (i) If there is a j s.t. dj �= 0, but cj = 0, then w′j is greater than all
constants in p′, and hence q′ can not reduce p′. (ii) Consider p′− cjq

′/dj , where
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j = min{cl/dl : dl > 0, l = 1, . . . , k}. Note that if q′ is positive/negative, then
we are done. Hence, we assume that q′ is not positive, and consequently j is
well-defined. Now, clearly p′ − cjq

′/dj is positive, and smaller than p′ in size, a
contradiction. This completes the proof.

As we have seen in Section 2, there are several orderings $ that can extend
$′ in the required way. One example is the total degree lexicographic ordering
with precedence x $ v $ w $ w′.

6 The Inference Rules

Following the presentation of Gröbner basis computation as a critical-pair com-
pletion procedure [2, 3], we present the inference rules that describe a procedure
for testing unsatisfiability of nonlinear constraints. It consists of rules that com-
pute Gröbner basis and rules that insert new definitions, which are required for
identifying witnesses.

The inference rules operate on states. A state (V, P ) consists of a set P of
polynomials and a set V of variables occurring in P . We also implicitly maintain
subsets V>0 and V≥0 of V . The initial state is ({x,v,w}, P ), where P is the
set of polynomials obtained by adding slack variables to the original nonlinear
constraints as described in Section 3 before and V>0 = {v} and V≥0 = {v,w}.

We use an ordering $ on polynomials. As we observed in Section 3, it is a
good heuristic to use a precedence x $ v,w; more generally, V − V≥0 $ V≥0.
We also assume that the ordering guarantees that only linear polynomials are
smaller than a linear polynomial, cf. Theorem 2. When we write a polynomial as
c0μ0 + p, then we implicitly mean that μ0 is the largest power-product, that is,
μ0 $ p and c0 �= 0. As we add new definitions, such as p−w′, where w′ ∈ V new

is a new variables, we need to extend the ordering. We can choose any extension
that guarantees that p $ w′. Note that the new variable w′ can be added to either
V −V≥0 or V≥0. In most cases, we can extend the ordering without violating the
invariant that V − V≥0 $ V≥0.

The inference rules are presented in Table 1. The inference rules Simplify,
Deduce, and Delete are used for constructing a Gröbner basis of the polynomials
in the set P . Note that the rules for normalizing an arbitrary polynomial ex-
pression into a sum of monomial form (with the largest monomial moved to the
left and its coefficient normalized to 1) are left implicit in the presentation here;
they have been formalized in previous presentations of Gröbner basis algorithm
as completion [2, 3]. The collapse rule is subsumed by the Simplify rule.

The novelty in the inference rules in Table 1 comes from the rules that add
new definitions. We use the largest monomials in P to determine the terms to
be named by new variables. The notation |μ| denotes the total degree of the
power-product μ. The notation [V ]0,1 denotes power-products in which every
variable in V occurs with degree at most one.

The Extend1 rule introduces a new nonnegative variable w′ as a name for
leading power-product μ0 that is known to be nonnegative, that is, μ0 ∈ [V≥0].
The Extend2 rule introduces a new name for ν0 + αν1, in the hope that some
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Table 1. Inference rules for detecting unsatisfiability of nonlinear constraints

Simplify:
(V, P ∪ {c0μ0 + p, q})
(V, P ∪ {c0μ0 + p, q′})

if q →c0μ0→−p q′

Deduce:
(V, P ′ = P ∪ {c0μ0 + p, d0ν0 + q})

(V, P ′ ∪ {c0μ
′q − d0ν

′p})
if μ0μ

′ = ν0ν
′ = lcm(μ0, ν0) �=

μ0ν0

Delete:
(V, P ∪ {0})

(V, P )

Extend1:
(V, P ′ = P ∪ {μ0 + p})

(V ∪ {w′}, P ′ ∪ {μ0 − w′})
if μ0 ∈ [V≥0], w′ ∈ V new

≥0

Extend2:
(V, P )

(V ∪ {x′}, P ∪ {ν0 + αν1 − x′})
if 〈ν0, ν1〉 occurs in P , x′ ∈ V new

Extend3:
(V, P ′ = P ∪ {μ0 + p})

(V ∪ {x′}, P ′ ∪ {ν0 − x′})
if ν2

0ν′
0 = μ0μ

′
0, ν′

0 ∈ [V≥0]
0,1,

x′ ∈ V new , |ν0| > 1

Detect:
(V, P ′ = P ∪ {c0μ0 + p})

(V, P ∪ {c0μ0, p})
if c0μ0 + p is a positive/negative
polynomial over [V≥0]

Witness:
(V, P ∪ {cμ})

⊥
if μ ∈ [V>0], c �= 0

polynomial of the form (ν0 + αν1 + p)2 appears in the unsatisfiability witness.
We say that a power-product ν occurs directly in P if there is polynomial in
P which contains a monomial with power-product ν. We generalize this notion
and say that a power-product ν occurs in P with factor ν′0 ∈ [V≥0]0,1 if there
exists μ0 ∈ [V ] such that μ0|νν′0 and μ0 occurs directly in P . (As a heuristic rule,
we prefer cases when μ0 = νν′0.) Finally, we say that a pair of power-products
〈ν0, ν1〉 occurs in P if (i) ν0ν1 occurs in P with factor ν′0, and (ii) either ν2

0ν
′
0

occurs in P with factor 1 or ν3
0ν
′
0/w occurs in P with factor 1 for some w ∈ V≥0,

and (iii) either ν2
1ν
′
0 occurs in P with factor 1 or ν3

1ν
′
0/w occurs in P with factor

1 for some w ∈ V≥0.
In the Extend2 rule, the symbol α denotes a (real) rigid variable that needs

to be instantiated by a constant in Q. We use symbolic α here and continue
application of the inference rules by working over the field Q(α) (instead of just
Q). As soon as we obtain a nontrivial expression in Q(α), we instantiate α by the
zero of that expression. The Extend3 rule says that we need not bother about
finding ν1 (and α) if total degree of ν0 is greater-than one.

We have not shown that the new variables introduced in Extend rules are
pushed appropriately into the sets V≥0 or V>0.

Example 6. Consider the set P = {v +w1 − 1, w1w2 −w1 + 1} from Example 4.
Assuming v > 0, w1 ≥ 0, w2 ≥ 0, one possible derivation to ⊥ is shown below.
To illustrate the other extension rules, we also show the derivation with a new
set P = {x2

1 − 2x2 + 3, x1x2 − x2
2} below.



258 Ashish Tiwari

i Polynomials Pi Transition Rule

0 {v + w1 − 1, w1w2 − w1 + 1}
1 {v + w1 − 1, w1w2 − w1 + 1, w1w2 − w′} Extend1

2 {v + w1 − 1,−w1 + w′ + 1, w1w2 − w′} Simplify

3 {v + w′,−w1 + w′ + 1, w1w2 −w′} Simplify

4 {v, w′,−w1 + w′ + 1, w1w2 − w′} Detect

5 ⊥ Witness

i Polynomials Pi Rule

0 P = P0 = {x2
1 − 2x2 + 3, x1x2 − x2

2}
1 P0 ∪ {x1 + αx2 − y1} Extend2

2 {x2
2 − 2αx2y1 + y2

1 − 2x2 + 3,−(α + 1)x2
2 + y1x2, x1 + αx2 − y1} Simplify

3 {x2
2 + 2x2y1 + y2

1 − 2x2 + 3, y1x2, x1 − x2 − y1} α �→ −1

4 {x2
2 + y2

1 − 2x2 + 3, y1x2, x1 − x2 − y1} Simplify

5 P4 ∪ {x2 + β − y2} Extend2

6 {y2
1 + y2

2 − (2β + 2)y2 + (β2 + 2β + 3), y1y2 − βy1, . . .} Simplify

7 {y2
1 + y2

2 + 2, y1y2 + y1, . . .} β �→ −1

8 {y2
1 , y2

2 , 2, y1y2 + y1, . . .} Detect

9 ⊥ Witness

Lemma 1. Suppose (V, P ) � (V ′, P ′) is a one-step application of the inference
rules. Then, P is satisfiable over the reals iff P ′ is satisfiable over the reals.

Theorem 3 (Refutational completeness). Suppose P0 is unsatisfiable and
(V0, P0) �∗ (V, P ) is a derivation such that P �= ⊥. Then, there exists a deriva-
tion from (V, P ) to ⊥.

Proof. By Lemma 1 we conclude that P is unsatisfiable. Therefore, by Corol-
lary 1 we know that there exist several witness polynomials wp = Σip

2
i νi ∈

Ideal (P ) ∩ Cone[V≥0] for unsatisfiability of P . Assume that p0 ; p1 ; p2 ; · · ·;
and whenever pi �$ pi+1 then νi ; νi+1. Let μ be the leading power-product
(LPP) of the largest polynomial in P that divides the leading power-product of
p2
0ν0. If no such μ exists, then μ is set to 1. Now, we say that the witness poly-

nomials wp (and the corresponding μ) is bigger than wp′ (and the corresponding
μ′) if either the multiset {|p0|, |p1|, . . .} of the sizes of the pi’s is greater-than
the multiset of the sizes {|p′0|, |p′1|, . . .}; or these are equal and the size of μ′ is
greater-than the size of μ. (Note here that the size of a polynomial is just the
multiset of the sizes of its monomials and the size of a monomial is the total-
degree of its power-product.) This ordering on witnesses is clearly well-founded
and hence a minimal is well-defined. Let wp = Σip

2
i ν
′
i be such a minimal witness.

Note that none of the inference steps can increase the size of the minimal
witness. We will show below that either we can always reduce the size of the
minimal witness by applying an appropriate inference rule, or reach ⊥.

Since we have the inference rules for constructing a Gröbner basis, we can
assume that the polynomials in P form a Gröbner basis. Hence, there exists
a polynomial μ0 − p ∈ P such that μ0|LPP (p2

0ν
′
0). If ν0 = LPP (p0), then we

should have μ0|ν2
0ν
′
0, or equivalently, μ0μ

′
0 = ν2

0ν
′
0 for some μ′0.
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Case 1. |ν0| > 1. In this case, the Extend3 rule is applicable. Using this
rule, we can introduce a variable equivalent to ν0. In the minimal witness, if we
replace ν0 by this variable, then we get a smaller witness.

Case 2. |ν0| = 0. In this case, μ0|ν′0 and hence μ0 ∈ [V≥0]. Hence the Extend1
rule is applicable. If |μ0| > 1, we can again get a smaller witness as in Case 1.
If |μ0| = 1, then the rule μ0 − p is necessarily linear (because the ordering guar-
antees that only linear polynomials are smaller than linear polynomials). Also,
each pi is a constant. Let ci = p2

i . Consider two cases now.
Case 2.1. There is a rewrite step using a nonlinear polynomial in the derivation
Σiciν

′
i →∗

P 0. Wlog assume ν′0 is rewritten to c′′ν′′0 + . . . by linear rules, and ν′′0
is reducible by a nonlinear rule. Using Extend1 rules, we make ν′′ bigger than
ν′0. As a result, in the new system, the nonlinear rule directly reduces the wit-
ness. Hence, the size of the witness remains unchanged, but the the size of the
corresponding μ0 increases (see the example following the proof).
Case 2.2. There is a no rewrite step using a nonlinear polynomial in the deriva-
tion Σiciν

′
i →∗

P 0. In this case, the linear polynomials in P are unsatisfiable.
Therefore, there exists a smallest linear witness Σiciwi s.t. ci > 0 and wi ∈ V≥0

(and there is some j s.t. wj ∈ V>0). Again, using the Extend1 rule, we can make
the variables wi appearing in this witness smaller. As a result, the polynomial
Σiciwi will appear in the set P and we would detect inconsistency (as in the
proof of Theorem 2).

Case 3. |ν0| = 1. Our assumption on the ordering guarantees that all pi’s in
the witness wp = Σi≥0p

2
i ν
′
i, where ν′i ∈ [V≥0]0,1 are linear polynomials. Suppose

pi = ci0wi0 + · · · + cilwil. In the monomial expansion of p2
i ν
′
i, we distinguish

between the cross-product terms, which are of the form 2cijdikwijwikν
′
i (for j �=

k), and the square terms, which are of the form c2ijw
2
ijν

′
i. We wish to identify

wij and wik and apply the Extend2 rule. The problem is that the cross-product
terms can cancel out in the summation Σi≥0p

2
i ν
′
i and hence the witness wp may

not contain any monomial whose power-product is, for instance, wijwikν
′
i (and

hence the polynomials in P also may not contain this power-product).
Case 3.1. There is no monomial in wp whose power-product comes from a

cross-product term. In this case the polynomial wp is itself of the form Σiq
2
i ν
′
i,

where qi’s are all monomials now. We conclude that the original pi’s are nec-
essarily monomials: if not, then the new witness would be a smaller witness. If
|q2

0ν
′
0| > 1, we can use Extend1 on the leading monomial q2

0ν
′
0 and reduce the size

of the witness. If |q2
0ν
′
0| = 1, the witness polynomial wp is linear. We make the

variables that occur in wp minimal using Extend1. This will cause the witness
polynomial to appear explicitly in P , whence we can use detect and witness to
reach the ⊥ state.

Case 3.2. There is a monomial in wp whose power-product comes from a
cross-product term. Let the power-product be wijwikν

′
i. If both w2

ijν
′
i and w2

ikν
′
i

are also present in wp, then they also necessarily occur in P , and hence, the
Extend2 rule would be applicable and it would introduce the polynomial (wij +
αwik) − w′ for some new variable w′. If α is appropriately instantiated, this
reduces the witness size.
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Suppose w2
ijν

′
i is not present in wp. This implies that it was canceled in the

summation. It can only be canceled by a cross-product term. That cross-product
term can only come from something of the form (· · ·+wij+w+· · ·)2wij(ν′i/w) (ig-
noring coefficients). But this implies that there will be a square term of the form
w3
ij(ν

′
i/w). This term can not be canceled by any other cross-product term. Hence

we can detect wij by searching for the occurrence of either w2
ijν

′
i or w3

ij(ν
′
i/w).

In the latter case, note that w,wij ∈ V≥0. This completes the proof.
To illustrate the second case of the above proof, consider P = {v − v1 +

v2, v1w − v2w + 1}. The witness for unsatisfiability is vw + 1. We notice that
vw + 1 → v1w − v2w + 1 → 0 by P . Here the nonlinear polynomial in P is used
after reducing the witness using the linear rules. Hence, we apply Extend1 to
make v smaller than v1 by adding v − v′. After closing under the Gröbner basis
rules, the result is P = {v1 − v2 − v′, v′w + 1} and the new witness is v′w + 1.
Now, μ0 = v′w, which divides the leading power-product v′w of the witness. The
size of μ0 that reduces LPP (wp) has increased from 1 to 2.

6.1 Other Remarks and Future Work

The Extend rules can potentially introduce infinitely many new definitions in
a derivation, thus leading to nontermination. Specifically, there are infinitely
many choices in the application of the Extend3 rule. If effective degree bounds on
the witness polynomial (obtained using the Positivstellensatz) are known, then
the application of the Extend rules (Extend3 in particular) can be restricted to
enforce termination, resulting in a decision procedure. The problem of obtaining
effective degree bounds for the Positivstellensatz is still open [19]. We conjecture
that the Extend3 inference rule can be restricted to use only the minimal instance
of ν0 (that is, only the most-general unifier of ν2

0ν
′
0 = μ0μ

′
0) and that this could

be used to obtain a terminating set of inference rules that are also complete.
This could provide an alternate approach to obtaining degree bounds for the
Positivstellensatz.

The process of searching for the witnesses can be understood in the context
of the Gröbner basis P as follows. The monomials in a polynomial can be colored
by pos and unknown based on whether we know if they are necessarily nonneg-
ative or not. For example, in x2 − 2x+2, the monomials x2 and 1 are pos , while
−2x is unknown. The goal is to construct a polynomial in the ideal of P in which
the unknown monomials have been eliminated. There are two ways to eliminate
the unknown monomials. First, they can be captured as a cross-product term in
a perfect-square polynomial. For example, (x− 1)2 captures −2x. The inference
rule Extend2 aims to achieve this. Second, the monomials can be canceled when
constructing a polynomial in the ideal of P . For example, consider the polyno-
mials v2 −w1w2 + 1 and w1w2 +w3 − 1. The monomial −w1w2 can be canceled
by adding the two polynomials. This is reflected in the “critical-pair” overlap
between −w1w2 and w1w2. However, since −w1w2 is not the largest monomial in
the first polynomial, Gröbner basis computation will not perform this operation.
The Extend1 rule aims to make the leading monomials smaller, so that the in-
ner monomials such as −w1w2 are exposed for critical-pair computation. This is
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clearly a generalization of the pivoting step in Simplex. The colored monomials
can also be used to restrict the choices in the application of the Extend rules.

The value of the proposed approach for unsatisfiability testing of nonlinear
constraints arises from the fact that it successfully solves the “easy” instances
cheaply. A lot of the easy unsatisfiable instances are detected just by adding slack
variables and then projecting the polynomial ideal onto the slack variables. This
was illustrated in Example 2. In most of the other instances, we noticed that we
need to apply the Extend rules at most one or two times to detect inconsistency.
We also remark here that several other decision procedures for nonlinear con-
straints tend to do expensive computations on relatively simple instances. For
example, if we have two constraints, p > 0 and p < 0 over Q[x1, . . . , xn], then
a naive procedure based on cylindrical algebraic decomposition, for instance,
would attempt to create a decomposition of Rn based on the polynomial p. For
sufficiently large p, this process could fail (run out of memory or time). It is easy
to see that our procedure will generate the unsatisfiability witness v1 +v2, where
v1 and v2 are the two slack variables, in just one inference step.

We believe that fast implementations for unsatisfiability testing of nonlinear
constraints can be obtained by implementing (an extension or variant of) the in-
ference rules presented here. One missing aspect is detecting satisfiable instances
quickly. However, simple ideas to detect satisfiable instances can be integrated.
In particular, we can use the fact that every odd degree polynomial has a zero to
eliminate an old variable when we introduce a new variable. This can be done if
the new variable names an odd-degree polynomial over the old variable.

Example 7. Consider P = {x2 +2x−1}. We introduce a new variable y for x+1
to get P1 = {y2 − 2, x + 1 − y}. Now, we can eliminate x from this set and just
have P2 = {y2−2}. The reason is that if P2 is satisfiable, then we are guaranteed
that there will exist an assignment for x (since x+1−y has an odd-degree in x).
Since P2 can be detected to be satisfiable, we can conclude that P is satisfiable.

7 Conclusion

We have presented an algebraic semi-decision procedure, based on Gröbner basis
computation and extension rules, for detecting unsatisfiability of nonlinear con-
straints. The procedure is given as a set of inference rules that are sound and refu-
tationally complete. Our approach has the potential of resulting in fast solvers
for testing unsatisfiability of nonlinear constraints. This is especially significant
in the context of satisfiability testing tools [1, 9, 21] that are being increasingly
used for program analysis. There is also much recent progress in computational
aspects of real algebraic geometry and computational tools for building a sums-
of-squares representation using semi-definite programming [4, 15, 16], which in-
dicates that our work will be actively refined and developed further in the future.
We are presently exploring the effectiveness of the new procedure for improving
the implementation of the abstraction algorithm for hybrid systems [23].
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Abstract. We investigate properties of the coprimality relation within the family
of finite models being initial segments of the standard model for coprimality,
denoted by FM((ω,⊥)).
Within FM((ω,⊥)) we construct an interpretation of addition and multiplication
on indices of prime numbers. Consequently, the first order theory of FM((ω,⊥))
is Π0

1–complete (in contrast to the decidability of the theory of multiplication
in the standard model). This result strengthens an analogous theorem of Marcin
Mostowski and Anna Wasilewska, 2004, for the divisibility relation.
As a byproduct we obtain definitions of addition and multiplication on indices
of primes in the model (ω,⊥,≤P2), where P2 is the set of primes and products
of two different primes and ≤X is the ordering relation restricted to the set X.
This can be compared to the decidability of the first order theory of (ω,⊥,≤P ),
for P being the set of primes (Maurin, 1997) and to the interpretation of addition
and multiplication in (ω,⊥,≤P2), for P 2 being the set of primes and squares of
primes, given by Bès and Richard, 1998.

Keywords: finite models, arithmetic, finite arithmetic, coprimality, interpreta-
tions, complete sets, FM–representability.

1 Introduction

This paper is devoted to the study of finite arithmetics, the research area concentrated
on semantical and computational properties of arithmetical notions restricted to finite
interpretations. Almost all computational applications of logic or arithmetic consider
arithmetical notions in essentially finite framework. Therefore it is surprising that so
little attention is directed to this area. This is particularly surprising when we observe
that a few of classical papers in computer science (see e.g. Hoare [3], Gurevich [2])
postulate this research direction as particularly important.

Discussing the problem of analyzing algorithms in an implementation-independent
way, Hoare essentially postulates proving their properties in appropriate axiomatic ver-
sions of finite arithmetic. We know that particular implementations of integers or un-
signed integers (natural numbers) are essentially finite arithmetics with a distinguished
upper bound.

By Trachtenbrot’s theorem [17] we know that first order theories of nontrivial fi-
nite arithmetics cannot be axiomatizable. We know that the first order logic allowing
arbitrary interpretations is axiomatizable. However, restricted to finite models it is ax-
iomatizable only for poor vocabularies – for which it is recursive. Probably this was

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 263–275, 2005.
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one of the reasons why Hoare’s postulate did not motivate logicians to study the case
of arithmetics with a finite bound. Nevertheless, let us observe that working in the stan-
dard infinite model of natural numbers is not easier in any way. The first order theory
of this model is not arithmetical. On the other hand, the first order theory of any finite
arithmetic is at most co-recursively enumerable, that is Π0

1 . Therefore we can expect
much better axiomatic approximations in the finite case.

For this reason, we should firstly consider properties of finite arithmetics from the
logical point of view. Only recently a few papers devoted mainly to this area have ap-
peared, see [10], [14], [8], [12], [7]1. Probably one of the reasons for the lack of interest
in finite arithmetics in the past was the expectation that nothing surprising can be found
under the restriction to a finite framework. Presently, we know that finite arithmetics
have a lot of unexpected semantical and computational properties. Exponentiation is
easier than multiplication [7], divisibility itself is as complicated as addition and multi-
plication [12].

In this paper we give a solution of a problem presented at the Finite Model Theory
Workshop Bȩdlewo 2003. The problem is to determine the strength of coprimality in
finite models. We show that, although semantically essentially weaker than the full
arithmetic, it is recursively equally complicated.

The other source of our inspiration was the method of truth definitions in finite mod-
els proposed in [10] and further investigated in [11], [5] and [6]. The crucial problem
there was finding a way of representing some nontrivial infinite relations in finite mod-
els. This motivated the notion of FM–representability2. It is known that a large class of
arithmetical relations can be FM–represented. One of the motivating problems of our
investigation is the question how much built-in arithmetic we need to apply the method
of truth definitions. We characterize FM–representability for the finite arithmetic of co-
primality. Our characterization – surprisingly – means that coprimality is sufficiently
strong for the application of the truth definitions method in finite models.

Finally, as a byproduct of our research, we obtain an improvement of some theo-
rems by Bès and Richard [1] characterizing the expressive power of coprimality in the
standard infinite model equipped with some weak fragments of the standard ordering.

2 Basic Notions

We start with the crucial definition of FM–domain.

Definition 1 Let R = (R1, . . . , Rk) be a finite sequence of arithmetical relations on
ω and let A = (ω,R). We consider finite initial fragments of this model. Namely, for
n ≥ 1, by An we denote the following structure

An = ({0, . . . , n− 1}, Rn
1 , . . . , R

n
s ),

where, for i = 1, . . . , k, the relation Rn
i is the restriction of Ri to the set {0, . . . , n− 1}.

The FM–domain of A, denoted by FM(A), is the family {An : n > 0}.
1 We do not claim that finite arithmetics were not considered in older papers at all, but not as the

main topic.
2 This notion was first considered in [10]. (“FM” stands for “Finite Models”.) The paper [13]

discusses some variants of the notion of FM–representability.
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We assume that all considered models are in relational vocabularies. Thus, we think
of addition or multiplication as ternary relations which describe graphs of correspond-
ing functions. Nevertheless, we will write, e.g. ϕ(x + y) with the intended meaning
∃z (+(x, y, z) ∧ ϕ(z)). Thus, the formula ϕ(f(x)) means that there exists z which is
the value for f(x) and ϕ is true about this z.

Definition 2 We say that ϕ is true of a1, . . . , ar ∈ ω in all sufficiently large finite
models from FM(A) (shortly FM(A) |=sl ϕ[a1, . . . , ar]) if and only if

∃k∀n ≥ k An |= ϕ[a1, . . . , ar].

Sometimes we also say that ϕ is true of a1, . . . , ar in almost all finite models from
FM(A).

Of course, k as above should be chosen in such a way that k > max{a1, . . . , ar}.

Definition 3 We say that R ⊆ ωr is FM–represented in FM(A) by a formula
ϕ(x1, . . . , xr) if and only if for each a1, . . . , ar ∈ ω the following conditions hold:

(i) FM(A) |=sl ϕ[a1, . . . , ar] if and only if R(a1, . . . , ar),
(ii) FM(A) |=sl ¬ϕ[a1, . . . , ar] if and only if ¬R(a1, . . . , ar).

The main characterization of the notion of FM–representability in FM(N), for
N = (ω,+,×), is given by the following theorem (see [10]).

Theorem 4 (FM–representability theorem) Let R ⊆ ωn. R is FM–representable in
FM(N) if and only if R is decidable with a recursively enumerable oracle.

The first question related to FM–representability is the following: How weak arith-
metical notions are sufficient for the FM–representability theorem? In [10] the theorem
has been proven for addition, multiplication and concatenation. It is a straightforward
observation that concatenation is superfluous. A few less trivial results in this direction
were obtained in [7] and [12]. In particular, in the last paper it was proven that:

Theorem 5 For each R ⊆ ωr, R is FM–representable in FM(N) if and only if R is
FM–representable in FM–domain of divisibility, FM((ω, |)), where a|b ≡ ∃x ax = b.

It is surprising that such a weak relation as divisibility is sufficient here. So, the fol-
lowing natural problem appears. Can this theorem be improved by replacing divisibility
by some weaker notions? For example, coprimality, where the coprimality relation, ⊥,
is defined by the following equivalence:

a⊥b ≡ ∀x((x|a ∧ x|b) ⇒ ∀y x|y).

The answer is obviously negative. Let us consider the function f defined as

f(x) =

⎧⎨⎩
4 if x = 2,
2 if x = 4,
x otherwise.
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f is an automorphism of (ω,⊥). Moreover, f also preserves coprimality when it is
restricted to initial segments {0, . . . , n}, for n ≥ 4,. Therefore, the set {2} is not FM–
representable in FM((ω,⊥)). However, surprisingly, in a weaker sense coprimality is
as difficult as addition and multiplication, see Theorems 10, 18, and 19.

Let us observe that in the standard model coprimality, and even multiplication, are
relatively weak relations. Indeed, the first order theory of (ω,×,≤P ) is decidable, see
[9], where P is the set of prime numbers and ≤P is the ordering relation restricted to
this set.

We use the notion, ≤X , for various sets X ⊆ ω, with the analogous meaning. The
complement of the predicate ⊥ is denoted by �⊥.

In our work, we use the notion of a first order interpretation. For details, see the
paper by Szczerba [16], where the method was codified for the first time in the model-
theoretic framework. We recall shortly the main ideas.

Let τ and σ be vocabularies and, for simplicity, let σ contain only one n-ary predi-
cate R. A sequence ϕ̄ = (ϕU , ϕ≈, ϕR) of formulae in the vocabulary τ is a first order
interpretation of models of the vocabulary σ if the free variables of ϕU are x1, . . . , xr,
the free variables of ϕ≈ are x1, . . . , x2r and the free variables of ϕR are x1, . . . , xrn.
The sequence ϕ̄ defines in a model A of the vocabulary τ a model of the vocabulary σ
in the following sense. A universe U , defined by ϕU , is the set of n–tuples from A:

U = {(a1, . . . , ar) : A |= ϕU [a1, . . . , ar]}.

The equality relation is given by ϕ≈ which should define an equivalence relation on U .
The interpretation of R is defined by

R(a1, . . . ,an) if and only if

∃ā1 ∈ a1 . . .∃ān ∈ an A |= ϕR[ā1, . . . , ān],

where a1,. . .an are equivalence classes of the relation defined by ϕ≈ in U . The number
r is called the width of the interpretation.

We write Iϕ̄(A) for the model defined by ϕ̄ in A.

Definition 6 We say that ϕ̄ is an interpretation of FM(A) in FM(B) if there is a mono-
tone, unbounded function f : ω −→ ω such that for each n ≥ 1,

Iϕ̄(Bn) ∼= Af(n).

If ϕ̄ is of width 1, ϕU defines an initial segment in each model from FM(B) and
the isomorphism between Af(n) and Bn is just identity then we say that ϕ̄ is an IS–
interpretation.

An IS–interpretation was used in [12] for proving Theorem 5. In our interpretation
of FM(N) in FM((ω,⊥)) we define arithmetic on indices of prime numbers.

3 The Main Theorem

In what follows models of the form (ω,⊥) or FM((ω,⊥)) are called coprimality mod-
els.
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Let {pi : i ∈ ω} be the enumeration of primes, that is p0 = 2, p1 = 3, . . . For a nat-
ural number a we use the notion of the support of a, defined as Supp(a) = {pi : pi|a}.
We define the equivalence relation ≈ as follows:

a ≈ b ⇐⇒ Supp(a) = Supp(b).

For each a, the equivalence class of a is denoted by [a]. Let us observe, that in each
model from FM((ω,⊥)) as well as in (ω,⊥) we cannot distinguish between elements
being in the same equivalence class of ≈.

Definition 7 A relation R ⊆ ωr is coprimality invariant if ≈ is a congruence relation
for R. This means that for all tuples a1, . . . , ar and b1, . . . , br such that ai ≈ bi, for
i = 1, . . . , r,

(a1, . . . , ar) ∈ R ⇐⇒ (b1, . . . , br) ∈ R.

We define relations R+ and R× by the following conditions:

R+([pi], [pk], [pm]) if and only if i + k = m,

R×([pi], [pk], [pm]) if and only if ik = m.

We identify these relations with their coprimality invariant versions on elements of
ω, instead of ω/≈. R+ and R× give an interpretation of addition and multiplication on
indices of prime numbers. Our main result is that they are interpretable in FM((ω,⊥))

For the proof of our main theorem we need some facts about the distribution of
prime numbers.

Let π(x) be a function defined as

π(x) =
∑

p ≤ x
p – prime

1.

The prime number theorem states that the limit π(x)/(x/ ln(x)) converges to 1 for
x going to infinity. We need the following consequences of the prime number theorem.

Proposition 8 For each b ∈ ω there is K such that for each n ≥ K and for each i < b
there is a prime q such that

in ≤ q < (i + 1)n.

Sierpiński has observed in [15] that K = eb suffices.

Proposition 9 Let 0 < ε < 1. There is N such that for all x ≥ N the interval (x, x(1+
ε)) contains a prime.

Essentially, Proposition 9 is one of the corollaries of the prime number theorem
mentioned in [4].

The main theorem of this section is the following.
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Theorem 10 There is an interpretation ϕ̄ of width 1 of FM(N) in FM((ω,⊥)) such
that for each k there is n such that ϕ̄ defines in the model ({0, . . . , n− 1},⊥) the
relations R+ and R× on an initial segment of {0, . . . , n− 1} of size at least k.

Moreover, the equality predicate is not used in the formulae from ϕ̄.

Proof. We will prove the theorem through a sequence of lemmas.
Firstly, we define some auxiliary notions. Let ϕ≈(x, y) be the formula

∀z(z⊥x ≡ z⊥y).

Obviously, this formula defines the relation ≈ in (ω,⊥). Ambiguously, we denote rela-
tions defined by ϕ≈(x, y) in models (ω,⊥) and FM((ω,⊥)) by ≈. In all these models
≈ is a congruence relation. (It means that ≈ is an equivalence and for all a, b, a′, b′ ∈ ω
such that a ≈ a′ and b ≈ b′ we have a⊥b if and only if a′⊥b′.) Therefore, in all consid-
ered models we cannot differentiate elements which are in the relation ≈. So, we can
consider models M/≈ instead of M . The equivalence class of a ∈ |M | with respect to
≈ is denoted by [a]. The elements of M/≈ which are of the form [a] for a ∈ |M |, can
be identified with finite sets of primes, Supp(a).

We define some useful predicates.

– P (x) := ∀z, y(z �⊥x ∧ y �⊥x ⇒ z �⊥y) – x is a power of prime,
– x ∈ y := P (x) ∧ x�⊥y – x is a power of prime dividing y.
– {p, q} – a function denoting, for a pair of primes p, q, an element of an equivalence

class of pq. We have no multiplication but elements a such that a ≈ pq are de-
fined by the formula ∀z(z⊥a ≡ (z⊥p ∧ z⊥q)). Of course we cannot define the
unique a with this property. Nevertheless, this element is unique up to ≈. So, when
considering models of the form M/≈, it is simply unique.

We have some operations definable on the equivalence classes of ≈.

Lemma 11 There are formulae in the coprimality language ϕ∪(x, y, z), ϕ∩(x, y, z),
ϕ−(x, y, z) such that in each coprimality model M , the following conditions hold for
each a, b, c ∈ |M |:

– M |= ϕ∪[a, b, c] if and only if Supp(a) ∪ Supp(b) = Supp(c),
– M |= ϕ−[a, b, c] if and only if Supp(a) \ Supp(b) = Supp(c),
– M |= ϕ∩[a, b, c] if and only if Supp(a) ∩ Supp(b) = Supp(c).

Proof. As ϕ∪(x, y, z) we can take

∀w(w⊥z ≡ (w⊥x ∧ w⊥y)).

ϕ−(x, y, z) can be written as

∀w(P (w) ⇒ (w �⊥z ≡ (w �⊥x ∧w⊥y))).

ϕ∩ is expressible in terms of ϕ∪ and ϕ−. )*

It follows that in all coprimality models we can reconstruct a partial lattice of finite
sets of primes. However, the operation ∪ is total only in the infinite model (ω,⊥).



Coprimality in Finite Models 269

The crucial fact is that in finite models from FM((ω,⊥)) we can compare small
elements of a given model by the following formula ϕ≺(x, y) :=

∃z(P (z) ∧ z⊥x ∧ z⊥y ∧ ∃w ϕ∪(x, z, w) ∧ ¬∃w ϕ∪(y, z, w)).

By ϕ�(x, y) we mean the formula ϕ≺(x, y) ∨ ϕ≈(x, y).
For a finite set X ⊆ ω, we write ΠX for the product of all numbers in X .

Lemma 12 For each c there is N such that for all n ≥ N and for all a, b with 1 ≤
a, b ≤ n and max{ΠSupp(a), ΠSupp(b)} ≤ c the following holds

({0, . . . , n− 1},⊥) |= ϕ≺[a, b] if and only if ΠSupp(a) < ΠSupp(b)

Proof. Let A = ({0, . . . , n − 1},⊥). The direction from left to right is simple. If
A |= ϕ≺[a, b] then there is a prime d ∈ |A| such that dΠSupp(a) ≤ n − 1 and
dΠSupp(b) > n− 1. So, Supp(a) < Supp(b).

To prove the other direction let us set a1 = ΠSupp(a) and b1 = ΠSupp(b) and let
a1 < b1. Then, ϕ≺ is satisfied by a and b if and only if (n−1

b1
, n−1

a1
] contains a prime. In

the worst case b1 = a1 +1 and in this case (n−1
b1

, n−1
b1

(1+ 1
a1

)] should contain a prime.
Thus it suffices to take N from Proposition 9 for ε = 1/a1. )*

Now, our aim is to define in models from FM(ω,⊥)) the relations R+, R×. We
define these relations on an initial segment of the model ({0, . . . , n− 1},⊥).

Firstly, we introduce a tool for coding pairs of primes.

Code(p, x, y, q) ⇐⇒Def

P (p) ∧ P (q) ∧ P (x) ∧ P (y) ∧ “ q is the ≺–greatest prime less then {p, x, y}”.

The statement in quotation marks can be written down as

∀z∀w[(ϕ∪(x, y, z) ∧ ϕ∪(p, z, w)) ⇒ ϕ≺(q, w)]∧

∀r[(P (r) ∧ ϕ≺(q, r)) ⇒ ∃z∃w(ϕ∪(x, y, z) ∧ ϕ∪(p, z, w) ∧ ϕ≺(w, r))].

In the above formula, the variable w plays the role of the set {p, x, y}. Then, with the
help of ϕ≺ we easily express the maximality of q.

The intended meaning of the formula Code(p, x, y, q) is that q is a code of an un-
ordered pair consisting of x and y. The prime q is determined uniquely up to the equiv-
alence ≈. The prime p is called a base of a coding. Now, we define a formula which
states that coding with the base p is injective below x.

GoodBase(p, x) :=

P (p) ∧ ∀q1 . . . ∀q4{[
∧
i≤4

(P (qi) ∧ ϕ�(qi, x)) ∧ ¬ϕ≈({q1, q2}, {q3, q4})] ⇒

∃c1∃c2(Code(p, q1, q2, c1) ∧ Code(p, q3, q4, c2) ∧ ¬ϕ≈(c1, c2)}.

The above formula states that p is a good base for our coding for primes which are
less than x. Namely, for each pair of primes below x we obtain a different code q taking
p as a base. The existence of a good base for each given x is guaranteed by Proposition
8. We subsume the above consideration in the following lemma.



270 Marcin Mostowski and Konrad Zdanowski

Lemma 13 For each k there is N and p ≤ N such that For all n ≥ N ,
Code(p, x1, x2, z) defines an injective coding of pairs of primes less than k in each
model ({0, . . . , n− 1},⊥).

Proof. Let k be given and let K be chosen from Proposition 8 for b = k2. Next, let p be
a prime greater than K . By Proposition 8 p is a good base for our coding in all models
({0, . . . , n− 1},⊥), for n ≥ N = k2p. )*

When the exact base for our coding of pairs of primes is inessential we write simply
〈x, y〉 for a prime coding a pair x, y. Of course, in such a case a proper base for our
coding should be assured to exist. Nevertheless, since we always will be interested in
coding pairs of primes from a given initial segment, the existence of a proper base
follows in this case by Lemma 13.

The last lemma allows to turn recursive definitions of addition and multiplication on
indices of primes into explicit ones. The first needed relation is the successor relation
on indices of primes. It is defined as

S≺(x) = y ⇐⇒Def ϕ≺(x, y) ∧ P (x) ∧ P (y)∧
∀z (P (z) ⇒ ¬(ϕ≺(x, z) ∧ ϕ≺(z, y))).

Let us observe that if S≺(pz) is defined in a given finite model then it is the case that
S≺(pz) = pz+1. We have the following.

Lemma 14 Partial functions on indices of primes FM–representable in coprimality
models equipped with the relation≺ are closed under the scheme of primitive recursion.

Proof. Let g : ωn −→ ω and h : ωn+2 −→ ω be functions on indices of primes FM–
representable in coprimality models. We need to show that the function f : ωn+1 −→ ω
defined as

f(0, x̄) = g(x̄),
f(i + 1, x̄) = h(i + 1, x̄, f(i, x̄)).

is FM–representable in coprimality models with ≺. For simplicity we assume that n =
1. Since we have ≺ and ⊥, we can define, by Lemma 13, a function 〈x, y〉 coding pairs
of primes as primes. The formula defining f(pi, px) = pt states that there is a set which
describes a recursive computation of f(pi, px) with the output pt. It can be written as

∃X{〈p0, g(px)〉 ∈ X∧
∀pz∀pw[ϕ≺(pz , pi) ⇒ (〈pz+1, pw〉 ∈ X ⇐⇒

∃pv(〈pz, pv〉 ∈ X ∧ pw ≈ h(pz+1, px, pv)))]∧
〈pi, pt〉 ∈ X}.

Let us observe that quantification over a set of primes X can be interpreted as first order
quantification over numbers. Instead of X we can take a such that X = Supp(a). Thus,
if we have formulas defining g and h, all the other notions can be defined in models for
coprimality and ≺. )*
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Now, let ϕ+ and ϕ× be formulae, provided by means of Lemma 14, which define
addition and multiplication on indices of primes. They define R+ and R× only on some
initial segment of primes from a given finite model, but this segment grows with the size
of a model.

We define the universe of our interpretation by the formula ϕU (x1) which states
that ϕ+ and ϕ× define addition and multiplication on the set

{y : P (y) ∧ (y ≈ x1 ∨ y ≺ x1)}.

Such a formula exists because there is a finite axiomatization of
FM((ω,+,×)) within the class of all finite models given explicitly in [11]. Thus, we
have shown that FM((ω,+,×)) is interpretable in finite models of coprimality even
without equality. This ends the proof of Theorem 10. )*

4 Some Applications in Finite Models

As a corollary of Theorem 10, we obtain a partial characterization of relations which
are FM–representable in FM((ω,⊥)).

Definition 15 Let R ⊆ ωr. We define R∗ as

R∗ = {(x1, . . . , xr) : ∃a1 . . .∃ar(
∧
i≤r

(xi ≈ pai) ∧ (a1, . . . , ar) ∈ R}.

Corollary 16 Let R ⊆ ωr. R is FM–representable in FM(N) if and only if R∗ is
FM–representable in FM((ω,⊥)).

Now we are going to characterize the complexity of the first order theory of
FM((ω,⊥)) and of relations which are FM–represented in FM((ω,⊥)). Firstly, we
need a partial result in this direction.

Let us define the relation S ⊆ ω2 such that

(x, y) ∈ S if and only if ∃z(z ≈ x ∧ y ≈ pz).

Lemma 17 The relation S is FM–representable in FM((ω,⊥)).

Proof. To simplify the exposition we consider all the equivalences between formulae
in the sense of being true in all sufficiently large models from FM((ω,⊥)). They will
be justified for fixed parameters a, b for which we want to decide whether (a, b) ∈ S.
Thus, we may safely assume that b ≈ p, for some prime p.

Let a0, a1, . . . be the enumeration of all consecutive products of different primes
ordered according to <. This enumeration lists ≈–representatives of all ≈–equivalence
classes. For x ∈ ω we define ind(x) as the unique i such that x ≈ xi. We define an
auxiliary relation W such that

(x, y) ∈ W ⇐⇒ y ≈ pind(x).

Now, we show how to write a formula ϕW (x, y) which, for any pair of fixed pa-
rameters as x and y, holds in almost all finite models from FM((ω,⊥)) exactly when
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(x, y) ∈ W . We take n = ind(x) and let a0, . . . , an be an initial segment of the above
enumeration. By Proposition 8, there is a prime t such that each interval (tai, tai+1),
for i < n, contains a prime. Let q0, . . . , qn be a sequence of primes such that

qi = min{s : P (s) ∧ tai ≺ qi}

and let B = Πi≤nqi. Then, let p0, . . . , pk be a sequence of consecutive primes such
that pk ≈ y and let C = Πi≤kpi. Let us observe that B and C are definable from x, t
and y in terms of ≺ and ⊥. Moreover, any t which allows this definition is good for our
purpose. Thus, we can use B and C in our formulae.

The formula ϕW (x, y) expresses the fact that sets coded by B and C, constructed
as above, are equicardinal. This can be witnessed by a set X which is a set of pairs of
primes from B and C determining a bijection between B and C. In the formula ϕW

below we use ∃=1z for the quantifier “there exists exactly one z”.

∃X{∀q ∈ B ∃=1p ∈ C 〈q, p〉 ∈ X ∧ ∀p ∈ C ∃=1q ∈ B 〈q, p〉 ∈ X}.

Of course, the existence of such an X proves that B and C are equicardinal. By the
same argument as in the proof of Lemma 14 we can replace quantifying over X by first
order quantification.

Now, we show how to define S from W . Let T be the following relation. For all
x, y ∈ ω,

(x, y) ∈ T ⇐⇒ ind(x) = y.

This relation is recursive, thus also FM–representable in FM((ω,+,×)) and, by Corol-
lary 16, the starred version of T is FM–representable in FM((ω,⊥)). T ∗ satisfies the
following condition: for all x, y,

(x, y) ∈ T ∗ ⇐⇒ ∃z(pz ≈ x ∧ pind(z) ≈ y).

So, let ϕT∗(x, y) FM–represent T ∗.
Let us also recall the definitions of S and W :

(x, y) ∈ S ⇐⇒ ∃(z ≈ x ∧ pz ≈ y),

(x, y) ∈ W ⇐⇒ y ≈ pind(x).

Let us observe that in all sufficiently large finite models an element w such that
ϕW (x,w) is just pind(x).

Now, the formula ϕS(x, y) which FM–represents S can be written as

∃w(ϕW (x,w) ∧ ϕT∗(y, w)).

Then, for all fixed parameters a and b, and for almost all finite models M from
FM((ω,⊥)), the following equivalence holds:

M |= ϕS(a, b) ⇐⇒ (a, b) ∈ S.

For the direction from left to right let us assume that for some t we have ϕW (a, t)
and ϕT∗(b, t). This means that

t ≈ pind(a)

and that for some s we have
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ps ≈ b and pind(s) ≈ t.

This gives pind(a) ≈ pind(s) and ind(a) = ind(s). Therefore, s ≈ a and ps ≈ b, which
gives (a, b) ∈ S.

Now let us assume that (a, b) ∈ S. Then for some z we have

z ≈ a and pz ≈ b.

This gives that ind(z) = ind(a), pz ≈ b and pind(z) ≈ t, for t = pind(z). Then
ϕT∗(b, t). Additionally, t ≈ pind(a) and ϕW (a, t). Therefore, ϕS(x, b). )*

Theorem 18 Let R ⊆ ωr. R is FM–representable in FM((ω,⊥)) if and only if R is
FM–representable in FM(N) and R is coprimality invariant.

Proof. All relations which are FM–representable in FM((ω,⊥)) are coprimality invari-
ant. Therefore, the implication from left to right is obvious. So, we prove the converse.

For the sake of readability we consider only unary relations. Let us fix a coprimality
invariant relation R ⊆ ω which is FM–representable in FM(N). By Corollary 16, let
us take a formula ξ(x) FM–representing R∗ in the FM–domain of coprimality.

By Lemma 17, there is a formula ψ(x, y), with coprimality as the only predicate,
such that ψ(x, y) FM–representsS in the FM–domain of coprimality. Then the formula
ϕ(x) defined as

∃y(ψ(x, y) ∧ ∀z(ϕ≺(z, y) ⇒ ¬ψ(x, z)) ∧ ξ(y))

FM–represents R. )*

Finally, let us consider the recursive complexity of the elementary theory of
FM((ω,⊥)). The classical Trachtenbrot theorem says that we can reduce the halt-
ing problem to the problem of satisfiability in finite models. By our interpretation, it
suffices to consider only finite models for coprimality.

Theorem 19 (Trachtenbrot’s theorem for coprimality FM–domain) The first order
theory of FM((ω,⊥)) is Π0

1 –complete. Moreover, the theorem remains valid even if we
do not have equality in the language.

5 An Application in the Standard Model

Maurin has shown in [9] that the first order theory of (ω,×,≤P ), where ≤P is the
standard ordering restricted to primes, is decidable. On the other hand, Bès and Richard
have shown in [1] that adding the ordering on primes and squares of primes to coprimal-
ity allows an interpretation of addition and multiplication. In what follows, we prove a
similar result for the structure (ω,⊥,≤P2), where P2 is the set of primes and products
of two different primes. Namely, we show that the relations R+ and R× are definable in
(ω,⊥,≤P2). It follows that the first order theory of this model is as hard as the theory
of (ω,+,×). (Let us mention that it is not known whether R+ and R× are definable in
the structure considered by Bès and Richard.)
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Below, we show how to develop a coding for pairs of prime numbers below a given
prime k. Then, the rest of the argument is the same as in the case of finite models.
However, we cannot use coding of pairs of primes from the preceding sections since it
uses a comparison of primes with products of three different primes. We defined such
a coding there since it gives a simpler construction. Moreover, if one wants to estimate
a fragment of a finite model on which we have definitions of R+ and R× then such a
coding gives a better bound than the coding which we are going to present now. On the
other hand, in the infinite model, we want to add to coprimality a relation as weak as
possible to obtain our definability result.

Theorem 20 R+ and R× are definable in (ω,⊥,≤P2), where ≤P2 is the ordering re-
lation restricted to primes and products of two different primes.

Proof. We only show how to define coding of pairs of primes by one prime, while the
rest of the proof remains the same as in the finite case.

Let a prime k be given. We show how to code pairs of primes less or equal to k. Let
ε be such that

(1 + ε)3 < k2/(k2 − 1), (*)

and let p be a prime such that for all n ≥ p, the interval

(n, n(1 + ε))

contains a prime number. Then, our new formula Code(p, x, y, r) is the following:

P (p) ∧ P (x) ∧ P (y) ∧ P (r)∧
∃r1∃r2(“r1 is the smallest prime greater than px”∧

“r2 is the smallest prime greater than py” ∧ “r is the greatest prime less than r1r2”).
All the notions needed in the above formula are definable in (ω,⊥,≤P2). Now, we only
argue that the coding with p chosen as above is injective below k.

Let q, q′ be two primes less or equal to k. By the choice of ε and p, there is a code
r for this pair with the property

p2(qq′ − 1)(1 + ε)2 < r < p2qq′(1 + ε)2.

The first inequality follows from the fact that pq < r1 and pq′ < r2. Thus, r is
greater than any z such that z(1 + ε) < p2qq′. The maximal z with this property is
greater than p2(qq′ − 1)(1 + ε)2. Indeed,

p2(qq′ − 1)(1 + ε)2(1 + ε) ≤ p2qq′(1 − 1/qq′)(1 + ε)3

≤ p2qq′(1 − 1/k2)(1 + ε)3

< p2qq′,

where the last strict inequality follows by (*).
The second inequality follows from the fact that r1 < pq(1 + ε), r2 < pq′(1 + ε),

and r < r1r2.
Therefore, for any pair of primes q, q′ ≤ k, the code r for this pair is in the interval

(p2(qq′−1)(1+ε)2, p2qq′(1+ε)2). However, since for any other pair of primes t, t′ ≤
k, qq′ differs from tt′ by at least one, these intervals are disjoint for different pairs of
primes. This proves that our coding method with p as a base is injective below k. )*
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Abstract. This work deals with the expressive power of logics on finite
structures with access to an additional “arbitrary” linear order. The
queries that can be expressed this way are the order-invariant queries
for the logic. For the standard logics used in computer science, such
as first-order logic, it is known that access to an arbitrary linear order
increases the expressiveness of the logic. However, when we look at the
separating examples, we find that they have satisfying models whose
Gaifman Graph is complex – unbounded in valence and in treewidth.
We thus explore the expressiveness of order-invariant queries over graph-
theoretically well-behaved structures. We prove that first-order order-
invariant queries over strings and trees have no additional expressiveness
over first-order logic in the original signature. We also prove new upper
bounds on order-invariant queries over bounded treewidth and bounded
valence graphs. Our results make use of a new technique of independent
interest: the application of algebraic characterizations of definability to
show collapse results.

1 Introduction

In classical finite model theory, a logic L(σ) for models over the relational signa-
ture σ, associates words of a grammar (the syntax) to relations of the model (the
semantics). One generally requires that the logic is closed under isomorphisms:
that is if A and B are finite models over σ and h is an isomorphism between A
and B then for all q ∈ L(σ), q ◦ h and h ◦ q give the same answer. This is the
case for all standard logics: first-order logic, monadic second-order logic, fixed
point logic etc.

In practice, for instance in the database context where logics correspond
to query languages, one can refer in the syntax to a predicate which is not
necessarily in the signature σ of the input: a linear order which corresponds to
the order in which the elements of the universe are stored on disk. Sentences
in the logic can then make use of this predicate to perform operations over all
elements of the universe separately. If we denote by σ< the extension of σ with
an additional binary relation symbol < which is assumed to be interpreted by
a linear order over the domain, then one actually has L(σ<) available instead
of L(σ).

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 276–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Of course it is preferable to restrict the use that a query language can make
of the extra predicate <. One would not wish to allow queries that use < in order
to return the smallest, according to <, element of the universe; the answer would
depend on how the universe is stored on disk, which in turn may vary with time
(depending, for instance, on the presence of indexes). To be meaningful a formula
in L(σ<) should be closed under isomorphism. A sentence φ ∈ L(σ<) is closed
under isomorphisms iff it is order-invariant : For every finite σ-structure A, for
every two expansions A1 and A2 of A to an σ<-structure, A1 |= φ ↔ A2 |= φ.
We denote by Inv-L(σ<) (Inv-L(<) if σ is understood) the fragment of L(σ<)
(L(<) if σ is understood) containing all order-invariant sentences.

There are two questions that immediately arise. The first one is whether
there exists an effective syntax for Inv-L(<). That is whether there exists a logic
L′ with an effective syntax and the same expressive power as Inv-L(<). The
second one is finding the expressive power of Inv-L(<), in particular whether it
is strictly more that L or not (the converse inclusion being obvious).

These questions were first considered in the case of fixed-point logics. In-
deed a rephrasing of the Immerman-Vardi Theorem (see e.g. [Lib04]) says that
Inv-IFP(<) is ptime and that Inv-FP(<) is pspace. Here IFP stands for the in-
flationary fixed-point semantics while FP is the non-inflationary semantics. Note
that this immediately implies that Inv-IFP(<) (resp. Inv-FP(<)) is strictly more
expressive than IFP (FP) as IFP (FP) fails to express all of ptime (pspace).
The question of the existence of a logic with effective syntax for Inv-IFP(<) is
open: From the result above this is identical to the question whether there is a
logic for ptime, a longstanding open question in finite model theory [FmtOpen].

Another example is Monadic Second Order Logic (MSO). It is easy to see
that Inv-MSO(<) allows one to express every query in the extension of MSO
with counting quantifiers (CMSO), which is strictly more expressive than MSO.

The example above shows that access to an arbitrary ordering increases ex-
pressiveness when one deals with powerful logics that can express recursive op-
erators. What about weaker logics, such as first-order logic (FO)? A famous
example due to Gurevich [AHV95] shows that Inv-FO(<) is more expressive
than FO for any σ including at least one binary predicate. Extensions of this
result due to Otto [Otto00] give examples of Inv-FO(<) sentences that are quite
complex: in particular, [Otto00] shows that there are Inv-FO(<) sentences not
expressible in infinitary logic formed over first-order logic with a bounded num-
ber of variables and quantifiers of the form ∃!ix φ(x,y). However, the example
queries of Gurevich and Otto each have satisfying models that include a bi-
nary predicate which becomes graph-theoretically very complex as the models
vary. Thus it is natural to conjecture that if one restricts the structures to be
well-behaved, Inv-FO(<) cannot express complex queries.

In this paper we investigate the expressiveness of Inv-FO(<) sentences over
graph-theoretically well-behaved structures, specifically structures of bounded
treewidth and structures of bounded valence. We will show that Inv-FO(<)
collapses to FO on trees. We then show that Inv-FO(<) collapses to MSO on
structures of bounded valence and on structures of bounded treewidth.
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One of our main contributions is a new proof technique for analyzing order-
invariant queries. Suppose one wants to show bound of the form Inv-L(<) ⊆
L′ for some logic L′. The most common method (e.g. [GS00]) is to show that
two sufficiently L′-equivalent structures can be ordered so that they agree on L
sentences of a given quantifier rank. But ordering two such arbitrary equivalent
structures is difficult. In addition, since ordering structures is a priori stronger
than what is required, this technique may not be sufficient to show tight bounds.
We show that algebraic characterizations of first-order definability, such as those
in [BP89, BS05], can be utilized to give new results on collapse of order-invariant
queries over logics on restricted structures. These characterization theorems show
that if a query is not definable in the logic without the order, then there are wit-
ness structures that are similar and of a very restricted form which cannot be
distinguished by the query. Only these special witness structures need to be or-
dered, and the restricted form of these structures makes the ordering arguments
much more tractable.

Related Work. Following the initial example of Gurevich, order-invariant
queries over first-order logic were investigated in [Otto00, GS00, Ross03]. It
is clear that Inv-FO(<) queries are expressible in both existential second order
(ESO) and universal second order (USO) logic, and also that they are com-
putable in NLOGSPACE. To our knowledge, there is no result giving contain-
ment of Inv-FO(<) queries in a sublogic of ESO ∩ USO. While [Otto00] shows
that there are Inv-FO(<) queries that are not in infinitary logic with counting
quantifiers, [GS00] shows that all Inv-FO(<) open formulas are local (cannot
distinguish points with similar local neighborhoods). [Ross03] shows there are
Inv-FO(<) queries that are not first-order which only make use of the successor
relation in the order. All of the published examples of Inv-FO(<) sentences are
expressible in CMSO.

[Cou96] studies order-invariant MSO queries, showing that over trees, Inv-
MSO(<) has exactly the same expressiveness as CMSO. The results of [Lap98]
combined with those of [Cou90, Cou91] show that the same equality holds for
graphs of bounded treewidth. It is an open question whether the inclusion of
Inv-MSO(<) queries in CMSO holds over arbitrary structures (the conjecture is
that it does not, see [FmtOpen]).

The algebraic proof technique we give here derives from [BS05], and we be-
lieve it gives a uniform method of treating invariant query questions. However,
the bounds we give on Inv-FO(<) queries on trees have been announced inde-
pendently in the forthcoming [Nie05]. The result of [Nie05] relies on the locality
of Inv-FO(<) proved in [GS00], while the technique given here may be applicable
to logics that are not local.

Note that the classical Craig interpolation theorem [CK90] implies that a
first-order query that is invariant over all structures must be in FO. The in-
terpolation theorem is known not to hold over finite structures (even for trees)
[EF95]. Our results can be seen as showing that one can reclaim some conse-
quences of interpolation by restricting to well-behaved classes of structures.
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Organization: Section 2 gives the basic definitions of the paper and reviews
results about regular languages that will be used here. Section 3 gives charac-
terizations of invariant FO queries on strings. Section 4 extends these charac-
terizations to trees. Section 5 gives bounds for graphs of bounded valence and
bounded treewidth. Section 6 gives conclusions.

2 Background

By a query, we refer to any boolean function on finite relational structures in
some vocabulary σ. We will generally have σ consist of at least a binary relation
S, and Σ a finite set of unary predicates. We will refer to structures for such a
σ as colored graphs. Given some class C of colored graphs (strings, trees, etc.) a
query φ over the signature σ< = σ ∪ {<} is order-invariant over C if for every
finite σ-structure G ∈ C, for every two expansions G1 and G2 of G to a σ<
structure, G1 |= φ ↔ G2 |= φ. Such queries can clearly also be considered as
queries over σ. The queries we consider here will always be defined by logics (FO,
Inv-FO(<), etc.). Two logics are said to have the same expressiveness (over class
C) if the set of queries they define (resp. set of restrictions of queries to domain
C) are the same.

Our definition of first-order logic (FO) and Monadic Second Order Logic
(MSO) over a vocabulary σ is standard. We will sometimes abuse notation and
refer to an “Inv-FO(<) query over C”, to mean an FO(σ<) query that is order-
invariant over C, and similarly for other logics. If P is a set of integers, the logic
FOmod(P ) extends FO by allowing formula to be built up by the rule ψ(y) =
∃q,rx φ(x,y), where q < r are integers and r ∈ P . This holds in a structure (G,y)
iff the number of x such that (G,y, x) holds is equal to q modulo r. The logic
FOmod is FOmod(P ) with P = N. Similarly, the logic CMSO is formed by allowing
the above formation rule for first-order variables on top of the formation rules
of MSO. For an integer k an FO(σ) k-type is a maximal consistent collection
of first-order sentence of quantifier rank at most k. An MSO type is defined
similarly. For L any one of MSO, FO, FOmod we write G ≡Lr G′ if G and G′

agree on L sentences of quantifier rank at most r. We assume familiarity with
Ehrenfeucht-Fräısse games (see e.g. [Lib04]), which characterize ≡FO

r .
The most restricted set of structures we consider are strings. Let σS consist

of exactly Σ ∪ {S}. We will use the terms string and word interchangeably to
mean any σS-structure in which the domain with S is isomorphic to an initial
segment of the integers with the successor relation. We will also assume (as
part of the definition of string and word) that every element in the structure
satisfies exactly one of the predicates in Σ: this assumption is only to simplify
the presentation. The set of strings over a fixed Σ as above will be denoted Σ∗.

By a tree we mean a connected directed graph S that is acyclic and where
every element has at most one predecessor. We will also sometimes use “tree”
to mean an expansion of a tree in the above sense by a set of unary predicates
in Σ. Let σS,S′

be the signature extending σS with a new binary predicate S′.
A sibling ordering on a tree is any binary relation that compares only elements
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with a comment parent, and which is a linear order on the set of children of any
node. By a “siblinged tree” we mean a σS,S′

-structure, where S is a tree and S′

is the successor relation corresponding to some sibling ordering. We distinguish
between the set of unordered ranked trees RTn for n ∈ N , (where n is the bound
on the number of children of any node), sibling ranked trees SRTn (which we
consider as siblinged trees where there is a bound on the number of children) ,
unranked trees UT, and sibling unranked trees SUT. For any of these domains
D, a collection C ⊆ D is regular if it is MSO definable over the appropriate
vocabulary. Queries over strings and trees will also be referred to as languages,
and will often be identified with the set of elements that map to true under the
query.

Our main technique is based on the use of algebraic machinery for analyz-
ing logics on strings and trees. We thus review some of the known connections
between definability and algebraic properties of string languages. All the results
below can be found in [Str94]. The MSO(σS) sentences define exactly regular
languages. With any language L, one can associate the equivalence relation ≡L

on Σ∗: x ≡L y ↔ (∀u ∈ Σ∗ ∀v ∈ Σ∗ uxv ∈ L ↔ uyv ∈ L). Regularity of
L is equivalent to the fact that the set of equivalence classes is finite. The set
of classes of ≡L equipped with the concatenation operation forms a monoid,
called the syntactic monoid of L, denoted ηL. An element e of the syntactic
monoid is an idempotent if e2 = e. We can consider a word to be idempo-
tent if its class is; translating the above, we have that a word e is idempotent
iff uev ∈ L ↔ ue2v ∈ L. The theorems of MacNaughton and Papert and of
Schützenberger characterize when a regular language is definable in first-order
logic over σS augmented with an additional binary predicate ≺, where ≺ is in-
terpreted as the transitive closure of S: this occurs exactly when the syntactic
monoid of L is aperiodic ( e.g. see [Str94] Theorem VI.1.1): there is l such that
the monoid satisfies ∀m ∈ ηL ml = ml+1. Translated back to words, this means
that ∀u, v, w ∈ Σ∗ uvlw ∈ L ↔ uvl+1w ∈ L.

3 Order-Invariant Queries on Strings

We first deal with the decidability of membership in Inv-FO(<). If one could
decide membership in Inv-FO(<), one would immediately have an effective syn-
tax for Inv-FO(<) queries. However, it is well-known [AHV95] that one cannot
decide whether or not an FO(<) query is order-invariant: this follows easily
from the undecidability of the satisfiability problem for first-order logic. Over
strings, satisfiability is decidable, hence it is a priori feasible that membership
in Inv-FO(<) over strings is decidable. We show that this is not the case:

Proposition 1. The problem of deciding, given a sentence φ ∈ FO(<), whether
or not it is order-invariant over Σ∗, is undecidable.

Proof. Consider the function that takes a φ ∈ FO(<) and returns the conjunc-
tion of φ with a fixed sentence φ0 that is not order-invariant. This function
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reduces non-order invariance to satisfiability of satisfiability of an FO(<) sen-
tence over expansions of structures in Σ∗ by a linear order, and hence it suffices
to show that this satisfiability problem is undecidable. To do this, from an input-
free Turing machine M we construct a FO(<) formula ϕM such that M halts
iff ϕM has a model in Σ∗. Assume wlog that all Turing machines work over the
binary alphabet {0, 1}. Let Σ consist of the unary predicates P0, P1, P�, P�. We
consider strings from this alphabet.

A configuration c of a Turing machine using memory of size k can be described
using a string of length k, where unused cells are colored with �. Therefore a
string of the form +c1+c2 · · · +cn can code a set of configurations of a Turing
Machine. We want to use S and < in order to show that such words can code a
run of a Turing Machine.

To do this we restrict the linear orders considered as follows. Let succ< be
the successor relation corresponding to < (note that succ< is definable in FO
from <).

– All nodes labeled by + are ordered first by <.
– The remaining nodes are ordered in order to verify the following property:

∀x, y, u, v ¬P�(x) ∧ S(y, x) ∧ succ<(y, u) ∧ S(u, v) −→ succ<(x, v).

In words this says that once the order on the symbols + is fixed, then < is
completely defined by induction on strings of the form +c1+c2 · · · +cn: the order
on + symbols induces an order ≺ on the (ci)1≤i≤n and, based on this, < order the
remaining symbols lexicographically based first on their position in one of the ci
and using ≺ for breaking ties. Note that the property given above is definable in
FO(<) by a formula that we denote by ψ<. One can verify that all strings that
are models of ψ< are of the form +c1+c2 · · · +cn where the size of each ci is the
same. Given a model of ψ<, let α< be the bijection of [n] such that α<(i) = j
where cj is the string following the ith symbol + according to <. Each model of
ψ< can thus be seen as a sequence of configurations cα(1) · · · cα(n).

We now fix M and construct a formula ψM which, assuming ψ< checks that
the sequence cα(1) · · · cα(n) is an accepting run of M . For this notice that succ<
associates cells located at the same place on the tape of M and at two successive
steps of M . Using this relation it is a classical technique (see e.g. Chap. 9 in
[Lib04]) to code in first-order logic the fact that two successive configurations
are valid according to M .

From the discussion above it is now easy to see that the formula ϕM =
ψM ∧ ψ< has the desired property. )*

The proof technique can easily be modified to show undecidability for the other
classes considered in this paper. We now turn to the expressiveness of Inv-FO(<)
over strings. We show that this is as low as it can possibly be (recall that every
FO query is in Inv-FO(<)). We prove this directly, in order to exhibit the main
technique of the paper. It will also follow from our results on trees in Section 4.

Theorem 1. Inv-FO(<) = FO over strings.
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Proof. The proof is based on an algebraic characterization of FO within the set
of regular languages. The following theorem of Beauquier and Pin characterizes
when a regular language L is FO definable (see also [Str94], Thm VI.3.1):

Theorem 2 ([BP89]). A regular language L is FO definable iff its syntactic
monoid is aperiodic, and additionally for any e, f, u, v, w ∈ ηL with e, f idempo-
tent, eufvewf = ewfveuf .

Let φ ∈ Inv-FO(<). Let M be a string model of φ. Then M is of the form
(ωM , <M ) where ωM is a string and <M a linear order on the universe of ωM .
Let L(φ) = {ωM | M |= φ}. A model M is obvious if <M is exactly the tran-
sitive closure of the successor relation in ωM . Let L′(φ) = {ωM | M |= φ and
M is obvious}. Because L′(φ) is definable in FO(<), it is regular and its syn-
tactic monoid is aperiodic (see Section 2). By order-invariance L(φ) = L′(φ)
thus L(φ) is aperiodic. To show that L(φ) is definable in FO, by Theorem
2, it suffices to show that for any e, f, u, v, w ∈ ηL(φ) with e, f idempotent,
eufvewf = ewfveuf .

Recall that elements of ηL(φ) are equivalence classes of words. Replacing each
of e, f, u, v, w with a word which is a representative of the corresponding equiv-
alence class, and recalling what it means for the word eufvewf to be equivalent
to ewfveuf , we have the following equivalent condition: For all words e, f which
represent idempotents in ηL(φ), for all words u, v, w and all words a, b:

aeufvewfb ∈ L(φ) ↔ aewfveufb ∈ L(φ)

Note that if e and f are idempotent, then en = e and fn = f for any integer
n. Therefore for any word c, d and any n we have ced ∈ L(φ) iff cend ∈ L(φ).
Hence L(φ) is FO-definable iff for some n,m, we have the following holding for
all words a, e, u, f, w, v, b:

aenufnvenwfnb ∈ L(φ) iff aemwfmvemufmb ∈ L(φ)

Let n be 32k, where k is the quantifier rank of φ, and m = 3k + n. To prove
the theorem it is therefore sufficient to prove the following Lemma:

Lemma 1. aenufnvenwfnb ∈ L(φ) iff aemwfmvemufmb ∈ L(φ)

Proof (of Lemma). Let a, e, u, v, w, f, b be arbitrary words, let I be the σS-
structure aenufnvenwfnb and J be the σS-structure aemwfmvemufmb. We
construct two orders <I and <J such that the expansions I ′ and J ′ of I and
J with these orders are equivalent up to quantifier rank k (recall that k is the
quantifier rank of φ). This implies that I ′ and J ′ agree on φ and, by order-
invariance of φ, that any linear-ordered expansion of I over σS

< agrees on φ with
any linear-ordered expansion of J over σS

< and therefore aenufnvenwfnb ∈ L(φ)
iff aemwfmvemufmb ∈ L(φ).

The orders <I and <J we construct assume a fixed order on the strings
a, e, u, v, w, f, b and always order a, v, b before the rest of the strings. There-
fore, wlog, we can ignore a, v, b and assume that each of the symbols e, f, u, w
represents a single letter. So assume I = enufnenwfn and J = emwfmemufm.
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We will now create our ordering using the technique of [GS00] (in particular,
see the discussion in the beginning of Lemma 2 of [GS00]). In both orderings we
start with u and then w. We order the remaining nodes based on their distance
from the set {u,w} (which is at most n), with the nearer ones coming first in the
ordering. It remains to describe how to order the four nodes at fixed distance i
from {u,w}. We call this set in model M , Wi(M). For M being either I or J ,
Wi(M) consists of four elements called u-lefti(M), u-righti(M), w-lefti(M) and
w-righti(M) with the obvious meanings. The ordering will alternate between
“u-first ordering” and “w-first ordering” of Wi(M). In the “u-first ordering”
elements of Wi(M) are ordered in the sequence u-lefti, u-righti, w-lefti, w-righti.
In the “w-first ordering” elements of Wi(M) are ordered in the sequence w-lefti,
w-righti, u-lefti, u-righti. In model I, Wi(I) is ordered with the u-first ordering
for 1 ≤ i ≤ f(k) where f(k) is 3k). We then switch to a w-first ordering for
Wi(I) such that f(k) < i ≤ 2f(k), and continue switching this way, ending with
the u-first ordering. In model J we do the same, and by the choice of m which
contains one extra block of size f(k), we end with a w-first ordering.

This completes the description of the ordering <I and <J . Note that by
construction <I and <J are completely identical close to u and w and, by the
presence of this extra switch, close to the beginning and ending of I and J . We
now give a sketch of the proof that duplicator can win the k-round Ehrenfeucht-
Fräısse game on the expansions I ′ and J ′. Intuitively, the reason is that any of
the switches in the ordering can be detected but there are so many of them that
the parity of switches cannot be detected. An element x of one of the models
is classified as u-first or w-first based on whether the ordering for the set Wi

containing x is u-first or w-first. We refer to this as the orientation of x. Inside
each Wi, the rank of x is a number between 1 and 4 which corresponds to the
order of x relative to Wi. Each Wi(M) is called a segment of M . Each model M
is divided into sections, where a section is a set of the form

⋃
i∈s Wi(M), where

s is an interval of N maximal with respect to the orientation of Wi(M) being
constant. The distance moving outward from {u,w} gives us two orderings: the
quotient ordering <s,M on sections, and within any section a partial order <d,M .

Given a play (x1...xj , y1...yj) our inductive invariant is that the relations in
the signature are preserved, and the following distances are preserved (from x
to y) up to the threshold 3k−j : the distances <d,M between the xi’s, if they
lie within the same section, the distances between the section of xi and the
section of xj , the distance between an xi and the edges of its section, and
the distance of the section of xi to the final and initial section. The invari-
ant also includes that rank(xi)=rank(yi) and d(xi, {u,w}) < d(xj , {u,w}) ↔
d(yi, {u,w}) < d(yj , {u,w}).

Handling a play by the spoiler is done as follows. Assume WLOG that the
xi already include representatives from the final and initial section. Now say
the spoiler plays x = xj+1 in I. We denote by s(x) the section of x. Consider
the position of s(x) among the sections already marked by x. By the inductive
hypothesis it is easy to find a section s′ in J which respects all the inductive
distance requirements up to 3k−j−1. Consider now the set Wi(I) which contains
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x and its position relative to the other segments marked by x in s(x). Again,
using the inductive hypothesis, on can find a set Wj(J) which respects the in-
ductive requirements up to threshold 3k−j−1. Inside Wj(J), pick y such that
rank(x)=rank(y). )*

)*

4 Order-Invariant Queries over Trees

We now deal with extending the above results to trees. We have done this for
ranked trees, with or without a sibling ordering, and for unranked trees with
no sibling ordering. For sibling unranked trees, we have only an MSO upper-
bound on the expressiveness. To generalize the results for strings to trees, we
use analogous algebraic machinery to characterize definability over ranked trees.
As with strings, MSO definable sets of (siblinged or unordered) trees are exactly
the regular sets of trees. Every such set is thus the acceptance set of a bottom-up
tree automaton, which can be taken to be deterministic.

A pointed tree is a tree with a designated leaf which acts as a port. The
concatenation of two pointed trees Δ and Δ′ is denoted by Δ · Δ′ and is the
pointed tree constructed from Δ by plugging Δ′ to its port. The set of pointed
trees is denoted by T 1. A k-pointed tree is a tree with k designated leaves. For
any k-pointed tree Δ and any (pointed or not) trees t1 · · · tk, Δ[t1 · · · tk] denotes
the tree constructed from Δ by plugging t1 in its first port and t2 in its second
port, etc. The set of k-pointed trees is denoted by T k. Given a deterministic
automaton A and a k-pointed tree Δ, we get a function ΔA from Qk to Q
which, given q1 . . . qk, gives the state obtained when running A starting at states
qi at the ith port and q0 at all other leaves. When A is fixed, a pointed tree Δ is
said to be idempotent if the function it defines is idempotent (ΔA ◦ΔA = ΔA).

Let L be a regular tree language. We say that L satisfies (†) if the following
holds:

1. For any Δ ∈ T 2, e ∈ T 1 idempotent and any t, t′ ∈ T 0

Δ[e · t, e · t′] ∈ L iff Δ[e · t′, e · t] ∈ L
2. For any s, s′, u, v ∈ T 1, e, f ∈ T 1 idempotents, and t ∈ T 0

s · e · u · f · s′ · e · v · f · t ∈ L iff s · e · v · f · s′ · e · u · f · t ∈ L
3. there exists a l such that for any s, u ∈ T 1 and any t ∈ T 0

s · ul · t ∈ L iff s · ul+1 · t ∈ L

In [BS05], the following algebraic characterization is proved:

Theorem 3 ([BS05]). Let L be a regular tree language over SRT, RT, or UT.
Then L is definable in FO iff L satisfies (†).
Using this, we prove the following:

Theorem 4. Inv-FO(<) = FO over RT, SRT, and UT.

The first step of the proof is to show that:

Theorem 5. Inv-FO(<) ⊆ MSO over RT, SRT, SUT, and UT.
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Proof. This is rather immediate for SRT, SUT and RT, as a linear order can be
defined in MSO (with parameters in the case of RT). In the case of UT, it is
no longer possible to define a linear order in MSO, we use Ehrenfeucht-Fräısse
techniques. Let φ be an Inv-FO(<) sentence, and <s be a sibling ordering. Then
there is a canonical linear order on t which is constructed by a lexicographical
process from <s. Linear orders obtained this way are called natural in the rest
of the paper. Let L′(φ) = {t | there exists a natural linear order < such that
〈t, <〉 |= φ}. Because φ is order-invariant we have L′(φ) = L(φ). Therefore the
next lemma, which shows that sibling-ordering-invariant FO collapses to MSO,
concludes the proof of the theorem.

Lemma 2. L′(φ) is definable in MSO.

Proof. Recall that σS is our signature for unordered trees and σS,S′
is the exten-

sion of σS with an extra binary predicate S′ which is interpreted as a successor
among siblings. From the SUT case we know that L′(φ) is definable in MSO
(σS,S′

). We want to show that it is definable in MSO (σS).
Because L′(φ) is definable in MSO (σS,S′

), there is a deterministic unranked
bottom-up tree automaton A = 〈Σ,Q, δ, q0, F 〉 that computes L′(φ) [BMW01].
Using classical minimization and completion techniques we can further assume
that A satisfies the following properties:

– For every q ∈ Q there is tree tq such that when A runs on tq it reaches state
q at the root.

– For every q �= q′ ∈ Q there exists a pointed tree Δq,q′ such that the set
{Δq,q′

A (q), Δq,q′

A (q′)} contains one accepting and one non-accepting state.

Recall from [BMW01] that for each q ∈ Q and each a ∈ Σ δ(q, a) is a regular
expression over Q with the meaning that a node label a gets state q if the
sequence of its children according to S′ forms a word in δ(q, a). We first show
that the regular expression, which could be expressed by a formula in MSO, is
actually expressible in FO.

Claim. For each q ∈ Q and each a ∈ Σ, δ(q, a) is definable by a formula of FO
(Q), that is a formula using only unary predicates from Q.

Proof (of the claim). Take an arbitrary q ∈ Q and a ∈ Σ, and let L = δ(q, a).
Let k = |Q| and fix r such that for all n,m ≥ r the linearly ordered sequence
1n ≡FO(<)

k 1m. Fix also an arbitrary order <Q on Q. Take two words w and w′

in Q∗ such that w ≡FO(Q)
r w′. We show that w ∈ L iff w′ ∈ L. This immediately

implies that L is in FO(Q).
Assume by way of contradiction that w ∈ L but w′ �∈ L. Reorder w and w′

according to <Q, with an arbitrary order for ties. This yields two new strings
w̄ = q1 · · · qu and w̄′ = q′1 · · · q′v. We first claim that w ∈ L iff w̄ ∈ L. Assume,
for a contradiction, that w ∈ L but w̄ �∈ L. By assumption on A we have two
trees t1 = a[tp1 · · · tpu ] and t2 = a[tq1 · · · tqu ] such that w (resp. w̄) is p1 · · · pn
(q1 · · · qn). Now, as w ∈ L, q is the state reached by A on t1. Let q′ be the state
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reached by A on t2. By determinism of A and because w̄ �∈ L we have q′ �= q.
Let t = Δq,q′ · t1 and t′ = Δq,q′ · t2. By construction t is accepted by A but t′ is
not. This contradicts sibling invariance of φ.

By symmetry the above argument shows that w̄ ∈ L but w̄′ �∈ L. Consider
now the trees t1 = a[tq1 · · · tqu ] and t2 = a[tq

′
1 · · · tq′v ]. Again q is the state reached

by A on t1 while q′ �= q is the state reached by A on t2. Let t = Δq,q′ · t1 and
t′ = Δq,q′ · t2. By construction t is accepted by A but t′ is not. We now claim
that t ≡k t′, which implies that t and t′ agree on φ, the desired contradiction.

We show this by giving a winning strategy for the corresponding Ehrenfeucht-
Fräısse game. On Δq,q′ and the roots of t1 and t2, Duplicator plays using the
identity map. On a move where Spoiler plays a node x in tree tqi , Duplicator
always responds by an identical y in a tree tpj such that qi = pj . There might be
several possible choices of pj . Let n be the number of occurrences of state qi in
w and m be the number of occurrences of the same state in w′. By assumption
on w and w′ we have n = m or n,m ≥ r. In both cases Duplicator picks one
appropriate pj using its strategy in the ≡FO(<)

k game between 1n and 1m. It is
easy to verify that this strategy works.

Now by the claim, each transition is given by a FO(Q) query. Hence, we know
that A is given by an automaton that uses unordered first-order transitions. It
is now immediate to see that such an automaton can be simulated in MSO. This
completes the proof of Lemma 2. )*

)*

From Theorem 3 and Theorem 5 it suffices now to show that L(φ) satisfies (†).
Part 2) and 3) of (†) work exactly as in the proof of Theorem 1 as we can view
wlog each pointed tree as a single character. We now check 1) of (†) and give
the proof for SRT and RT together as it makes no difference.

Fix Δ ∈ T 2, e ∈ T 1 idempotent and any t, t′ ∈ T 0. Our goal is to prove that
Δ[e · t, e · t′] ∈ L iff Δ[e · t′, e · t] ∈ L. We proceed as in the proof of Theorem
1 and show this it is enough to find n, m and linear orders <I and <J such that
〈Δ[en · t, en · t′], <I〉 ≡k 〈Δ[em · t′, em · t], <J〉, where k is the quantifier rank of
φ.

We choose n = 32k and m = n + 3k and we compute <I and <J section
by section as in the proof of Theorem 1 with t and t′ playing the role of u and
v. It starts from {t, t′} and move towards Δ, each section having 3k segments,
each segment (Wi(M)) having now only two elements instead of four, and being
oriented t-first or t′-first depending on the section. We conclude elementary
equivalence up to depth k as in the proof of Theorem 1 )*

5 Order Invariance on Tree-Like
and Bounded Valence Structures

We now consider how to extend the bounds given in the previous sections to
graphs that may have cycles, but which are still well-behaved. We concentrate
on two well-behaved classes: the bounded treewidth structures [RS84], and the
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bounded valence structures. We show that over such structures Inv-FO(<) ⊆
MSO. Note that this inclusion is not true in general as Gurevich’s example is
not definable in MSO.

A tree decomposition of a graph G consists of a tree T and a function d
mapping nodes of T to sets of vertices of G, satisfying:

– For every edge (v1, v2) ∈ G, there is t ∈ T with v1, v2 ∈ d(t).
– For every vertex v of G, {n ∈ T : v ∈ d(n)} is a connected subset of T .

The width of a decomposition (T, d) is maxt∈T |d(t)|−1. The treewidth of a graph
G is the minimal width of a tree decomposition of G. Let TW(b) be the set of
colored graphs with treewidth at most b.

Theorem 6. For every b, Inv-FO(<) ⊆ MSO over TW(b).

Proof (sketch). Assume that φ has quantifier rank j, and let L(φ) = {G | there
exists a linear order < such that 〈G,<〉 |= φ} be the set of graphs defined by φ.

We introduce some terminology based on the work of Courcelle and Lapoire
(e.g. see [Lap98], page 34). We describe how a tree decomposition D = (T, d)
of G can be considered as a colored tree TD. The underlying tree of TD is T
and predicates for the colors are defined as follows: Fix for each node x of T a
graph Gx with vertices in {1 . . . b+ 1} that is isomorphic to the restriction of G
to d(x), and an isomorphism μx taking Gx onto this restriction. Let νx be the
partial function from {1 . . . b + 1} to {1 . . . b + 1} that maps i to j exactly when
μx(i) = μy(j), where y is the parent node of x. For each graph τ with vertices in
{1, b + 1}, we have a predicate Pτ that holds at a node x of TD iff Gx = τ , and
for each h from {1 . . . b+ 1} to {1 . . . b+ 1}, we have a a predicate Ph that holds
at x iff νx = h. That is, the predicates specify which graphs are associated with
a node, and how the graph at a node is linked to the graph of its parent. Let Tb
be the set of trees for this signature, and let f be the evaluation map taking a
colored tree in Tb to the corresponding graph.

Let T (φ) = f−1(L(φ)). It follows from results of Courcelle [Cou90, Cou91]
that T (φ) is CMSO definable. By a result of Lapoire [Lap98], there exists a MSO
transduction g, which, given a graph G of treewidth b, computes a structure
D ∈ Tb such that f(D) = G. The exact definition of MSO transduction will not
be needed here; the key fact about such transductions is that the pre-image of
an MSO definable set under a transduction is again MSO definable [Cou91].

Let T ′(φ) = {(t,≺s) | t ∈ T (φ),≺s a sibling ordering on T }. Since T (φ) is
CMSO definable, T ′(φ) is definable in MSO(σS,S′

). We claim that T ′(φ) (hence
T (φ)) is MSO(σS) definable. The theorem would follow from this, using L(φ) =
g−1(T ) and the closure of MSO definability under inverse MSO transduction
mentioned above.

As discussed above we view T ′(φ) as a set of unranked trees labeled with
a finite alphabet Σ. Because T ′(φ) is definable in MSO(σS,S′

), let A be an
unranked tree automaton for T ′(φ) with state set Q and transition function δ.
Recall that δ maps every pair (q, a) ∈ Q×Σ to a regular expression over Q. We
also assume that A is minimal (see the assumptions on the automaton A listed
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in the proof of Lemma 2). For strings s, s′ in Q∗, say s (k s′ if they have the
same number of occurrences of each q up to threshold k.

Claim. There exists a k such that, for every s, s′ ∈ Q∗, if s (k s′ then for every
(q, a) ∈ Q×Σ, s ∈ δ(q, a) iff s′ ∈ δ(q, a).

From this claim, it is clear that T ′ (hence T ) is MSO(σS) definable.

Proof (of the claim). Take k = 3j (recall that j is the quantifier rank of φ)
and suppose s and s′ are such that s (k s′. Assume by contradiction that s
and s′ disagree on δ(q0, a): that is s ∈ δ(q0, a) while s′ ∈ δ(q1, a) with q0 �= q1.
Fix an order on Q and let ω and ω′ be the strings computed from s and s′ by
making the letters appear in the order of Q and let W and W ′ be the string
structures computed from ω and ω′ by adding the obvious linear order on ω and
ω′. By the choice of k it follows from s (k s′ that W ≡FO

j W ′. For each state q
choose a tree tq such that A reaches state q when running on tq. Let Δ be the
pointed tree Δq0,q1

A that witnesses that q0 �= q1 (for the precise definition, see
the definition of Δq,q′

A in the proof of Lemma 2). Let T 0 = Δ · a[tω1 · · · twn ] and
T 1 = Δ · a[tω′

1
. . . tω′

m
] where ω1 · · ·ωn (ω′1 · · ·ω′m) is the sequence of letters of ω

(ω′). By construction A accepts T 0 while it rejects T 1, therefore f(T 0) |= φ but
f(T 1) |= ¬φ.

We now create orderings <0 on G0 = f(T 0) and <1 on G1 = f(T 1) such that
the resulting ordered graphs are equivalent on FO(<) sentences of quantifier rank
j, a contradiction. For any subtree t of T 0, we let ν(t) be the union of all nodes
of f(t). We first choose fixed orderings on ν(Δ), on ν(tq) for all q ∈ Q. In G0 we
begin with the fixed ordering on ν(Δ), then proceed with the fixed ordering for
the nodes ν(tω1) − ν(Δ), · · · , ν(tωn) − ν(Δ). Note that the fact that tωi are all
subtrees below Δ in the tree decomposition T 0 implies that the sets ν(tωi)−ν(t0)
are pairwise disjoint. In G1 we proceed similarly, using ν(tω′

1
) − ν(Δ). Let <0

and <1 be these orderings. We show how to play the Ehrenfeucht-Fräısse game
between 〈G0, <0〉 and 〈G1, <1〉. Given a play of the game, let H be the function
taking each pebble x in G0 − ν(Δ) to the unique ωl such that x ∈ ν(tωl

)− ν(Δ),
and let H ′ be the similar function on G1. By induction, one can show that
Duplicator can play maintaining the following properties on the pebbles x1 · · ·xi
and y1 · · · yi at any step i: (i) the play is the identity for moves in ν(Δ), (ii)
H(x) ≡FO(<)

k−i H ′(y), (iii) 〈tωH(xi)
, xi〉 is isomorphic to 〈tωH′(yi)

yi〉.

From the claim, Theorem 6 follows. )*

We now turn to proving the analogous result for the set BV(b) of colored
graphs of valence less than b.

Theorem 7. For every b Inv-FO(<) ⊆ MSO over BV(b).

Proof. (sketch) Let φ ∈ Inv-FO(<), and let l be the quantifier rank of φ.
For connected graphs of bounded valence there exists integer k, and MSO

formulas ψ(z, x, y, S1 . . . Sk) and γ(S1 . . . Sk) such that, given a connected undi-
rected graph G of valence b, and a distinguished point p, we have: (i) G has at
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least one expansion to S1 . . . Sk such that γ(S1 . . . Sk) holds, (ii) for any S1 . . . Sk

satisfying γ, ρ(x, y) = ψ(p, x, y, S1 . . . Sk) defines a linear-ordering on G. The for-
mula γ says that Si suffices to give a local ordering of G, and ψ says that x comes
before y in a depth-first traversal of G starting from p using the local ordering
definable from the Si (see [Cou96] for the detailed argument on the construction
of γ and ψ). Let r be the maximum quantifier rank of ψ and γ above. Then any
two connected graphs G and G′ of valence b that agree on MSO sentences of
rank r + l + k + 3 will have the property that: For any p, S1 . . . Sk in G there
are p′, S′1 . . . S

′
k in G′ such that the corresponding expansions have the same FO

l+2-types. This implies that we can choose for each MSO (r+ l+k+3)-type τ ,
a distinguished FO l-type ν(τ) of expanded structures such that τ implies the
existence of (Si)1≤i≤k and p that give an expansion ordering satisfying ν(τ).

Let <τ be some fixed ordering of MSO (r+k+l+3)-types of graphs. Suppose
there are two graphs G and G′ that agree on MSO sentences of quantifier rank at
most l′, where l′ is big enough that the cardinality of the number of components
in G with a given (r + k + l + 3)-type in G agrees with the cardinality of the
number of components in G′ with that type, up to threshold 3l (since being a
component is MSO definable, one can guarantee this with a suitably large l′).
Order G by the ordering <G as follows: use <τ to order the components of
G according to their (r + k + l + 3)-type, breaking ties arbitrarily; within any
component of type τ choose a point p and an S1 . . . Sk such that the expansion
by the ordering corresponding to p, (Si)1≤i≤k realizes ν(τ). Form the analogous
ordering on G′.

We can now verify that (G,<G) and (G′, <G′) agree on first-order formulas of
quantifier rank l, hence on φ. Inside a component of type τ , we play according to
the strategy given by ν(τ). For dealing with the arbitrary number of connected
components, note that with l moves, in the presence of a linear order, one cannot
count more than up to 2l. This implies that any two BV(b) graphs with the same
MSO l′-type must agree on φ. It follows that φ is MSO definable over BV(b). )*

The technique in the theorem above can be used to show that over arbitrary
graphs in which a local order (i.e. on the successors of any given node) is de-
finable, Inv-FO(<) sentences are in MSO2, Monadic Second Order Logic where
quantification is over edges rather than nodes. One uses the fact that within a
component, an ordering can always be defined in MSO2 with parameters (see
[Cou96]).

Proposition 2. Over locally-ordered structures we have Inv-FO(<) ⊆ MSO2.

We do not know yet whether Inv-FO(<) is contained in CMSO over arbitrary
structures.

6 Conclusions

Our aim is to show that over well-behaved classes of structures, order-invariant
queries over first-order logic in any given signature σ collapse to first-order over
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the signature without the order. Thus far we have shown this for strings and
trees. One method of extending this to first-order logic over bounded treewidth
structures is to prove that if two graphs of treewidth b agree on first-order sen-
tences of sufficiently large quantifier-rank, one can find tree decompositions of
each graph that agree on fixed quantifier-rank; this would allow the character-
izations of definability to be pushed from trees to graphs. We do not yet know
of interesting classes for which a transfer of first-order equivalence from graphs
to trees can be performed.

The technique presented here is applicable to logics other than first-order
logic. For example, we have obtained an algebraic characterization of the logic
FOmod on trees, by replacing the aperiodicity condition in (†) by: there exists a
l such that for any s, u ∈ T 1 and any t ∈ T 0s · ul · t ∈ L iff s · ul+q · t ∈ L.
This extends the characterization of FOmod on strings of Straubing (VII.3.1
of [Str94]). We believe that this can be used to prove analogous bounds on
Inv-FOmod(<) definability on trees.
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Decidability of Term Algebras
Extending Partial Algebras

Bakhadyr Khoussainov and Sasha Rubin

Department of Computer Science, University of Auckland, New Zealand

Abstract. Let A be a partial algebra on a finite signature. We say that
A has decidable query evaluation problem if there exists an algorithm
that given a first order formula φ(x̄) and a tuple ā from the domain of A
decides whether or not φ(ā) holds in A. Denote by E(A) the total algebra
freely generated by A. We prove that if A has a decidable query evalua-
tion problem then so does E(A). In particular, the first order theory of
E(A) is decidable. In addition, if A has elimination of quantifiers then
so does E(A) extended by finitely many definable selector functions and
tester predicates. Our proof is a refinement of the quantifier elimination
procedure for free term algebras. As an application we show that any
finitely presented term algebra has a decidable query evaluation prob-
lem. This extends the known result that the word problem for finitely
presented term algebras is decidable.

1 Introduction

The (free) algebra of terms plays an important role in many areas of computer
science and algebra. It is the unique universal object that can be mapped ho-
momorphically onto any given algebra (over a fixed signature). This provides a
bijection between congruences of the term algebra and the class of all algebras
(over that signature). Since finite trees can be represented as terms, the algebra
of terms appears in computer science. For instance, in automata theory regular
languages of trees can be identified with congruences of finite index of the alge-
bra of terms. In logic programming, terms are used as basic objects in unification
algorithms. In modern object oriented programming many data structures are
stored and manipulated as terms. Other applications are in constraint databases,
pattern matching, type theory and the theory of algebraic specification.

In logic and computability, the term algebra attracts much attention due to
the fact that its first order theory is decidable. This was first proved by Mal′cev
in [15]. His proof uses the method of elimination of quantifiers. This result has
been reproved and extended by others in different settings. Rybina and Voronkov
in [17] applied the method of elimination of quantifiers to show that the term
algebra with queues has a decidable first order theory. Korovin and Voronkov
in [8] prove that the existential fragment of the term algebra with the Knuth-
Bendix ordering is decidable. Manna, Zhang and Sipma in [16] prove that the
term algebra with the length function for terms has a decidable theory using the
elimination of quantifiers. They also prove that the theory of the term algebra

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 292–308, 2005.
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that involves k-alternations of quantifiers, regardless of the total number of the
quantifiers, is at most k-fold exponential. Vorobyov in [18] and Compton and
Henson in [4] prove that that the decision problem for the first order theory of
the term algebra has a non-elementary lower bound.

In this paper, we extend the decidability result for term algebras to a much
more general setting. A partial algebra (or simply an algebra) A is a structure
whose basic operations are partial functions on A. In case all the functions
are total on A, we may stress this and call A a total algebra. Partial algebras
naturally occur when one restricts the basic operations of a total algebra A to
some B ⊂ A that is not closed under the basic operations. In this case the value
of a term in B may be undefined, in which case B is a partial algebra and not a
total algebra.

The algebra freely generated by A, called the free total extension of A and
written as E(A), is the total algebra generated by A with a sort of universal
mapping property: every homomorphism from A into any total algebra B can
be extended to a homomorphism from E(A) into B. We remark that E(A) is a
natural object in universal algebra (see [9, Section 28]) as well as in computer
science. For instance in the theory of algebraic specification partial algebras are
a natural way of treating errors such as division by zero (see [1]); here E(A)
are used as models of specifications. The algebra E(A) is also used in providing
non-standard models of Clarke’s Axioms (see [14]). Also [11] uses E(A) to ex-
tend the Myhill-Nerode theorem with ‘finitely generated congruence’ instead of
‘congruence of finite index’.

We say that an algebra A has a decidable query evaluation problem if there
exists an algorithm that given a first order formula φ(x̄) and a tuple ā from the
domain of A decides whether or not φ(ā) holds in A. In particular if A has a
decidable query evaluation problem then its first order theory is decidable. Our
main result states:

If A has a decidable query evaluation problem then so does E(A).

In particular, the first order theory of E(A) is decidable. In addition, if A has
elimination of quantifiers then so does E(A) extended by finitely many definable
selector functions and tester predicates. These results are proved by rewriting a
formula Φ of E(A) into a formula Φ′ that can be evaluated in A so that E(A) |= Φ
if and only if A |= Φ′. The technique is a refinement of the quantifier elimination
procedure in [16].

A finitely presented term algebra is the quotient of a free term algebra by
finitely many ground term equations. The word problem for finitely presented
term algebras is decidable [10]. As a corollary to our main result we have, we
feel, a clean proof that the first order theory of a finitely presented algebra is
decidable [3].

We place our result, that decidability is preserved by the free total exten-
sion of A, in the realm of other constructions that preserve decidability. Direct
product, disjoint union and under suitable conditions the ω-product preserve
decidability of the query evaluation problem. Another example is the construc-
tion of the tree-like unfolding from [19] that preserves the monadic second order
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theory. Finally we mention a construction from [12] that resembles the one in
this paper. There a purely relational structure A is lifted by first extending the
signature by adding new function symbols from a functional signature Σ. One
then considers the Σ-term algebra generated by constants from A. Finally, the
relations of the algebra A are lifted in a natural way to the domain of the terms.
The resulting structure is called the Σ-term power of A. It is proved that if A
has decidable first order theory then so does the Σ-term power of A.

Here is a brief outline of this paper. The next section gives basic definitions,
examples, and facts about structures with decidable query evaluation problem.
Section 3 presents a formal definition of the free total extensions for partial
algebras and some of the properties of these extensions. Section 4 is devoted to
proving the main result of this paper. The final section applies the main result
to show that each finitely presented term algebra has decidable query evaluation
problem.

2 Structures with Decidable Query Evaluation Problem

A structure consists of a domain A of elements, and basic operations fA, gA . . .
on A and relations PA, QA, . . . on A. The signature of A is (f, g, . . . , P,Q, . . .).
We view constants as operations of arity 0. In general, the operations fA may
be partial functions.

Convention: For the purpose of this paper, the domain A is a decidable set
from a decidable domain such as the strings over a finite alphabet, or ground
terms over a finite ranked alphabet, or natural numbers. In particular all the
structures we consider are countable.

Definition 1. The query evaluation problem for the structure A is the set
QEP (A) of all pairs (φ(x̄), ā) such that A |= φ(ā) where φ(x) is a first order
formula of A and ā is a tuple of elements from A. If there is an algorithm deciding
QEP (A) then we say that A has decidable query evaluation problem.

We will abbreviate the phrase ‘query evaluation problem’ as QEP.
In other words, A has decidable QEP means that its elementary diagram

with constants naming every element in A is decidable. We remark that this
definition can be extended to other logics besides first order. Here are several
examples of structures with decidable QEP.

Example 1. Every finite structure has decidable QEP.

Recall that a theory T is a set of sentences closed under deduction. A theory
T admits effective quantifier elimination if there is an effective procedure that
transforms a formula into an equivalent (in T ) quantifier free formula. Say that a
structure A admits effective quantifier elimination if its first order theory does.
Specific examples include algebraically closed fields, vector spaces over finite
fields, term algebras extended with selector functions, etc (see [5] for examples).
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Example 2. If A admits effective elimination of quantifiers and the domain and
basic operations of A are decidable, then A has decidable QEP.

Automatic structures are relational structures whose predicates are recog-
nised by synchronous finite automata. For precise definitions see [7].

Example 3. Automatic structures have decidable QEP.

For issues on complexity of query evaluation problems for automatic struc-
tures see [2], [13], and for examples of automatic structures see [6], [7]. For these
structures definable relations are, in fact, recognised by finite automata.

Example 4. Every decidable consistent theory T has a model with decidable
QEP.

Indeed, the classical Henkin construction can be made effective; and the
constructed model has decidable QEP.

Example 5. If A has decidable QEP then every structure that is first order
definable in A also has decidable QEP.

Example 6. Let A and B be structures of a signature Σ with decidable QEP.
Then the following structures have decidable QEP: the product A×B (Feferman,
Vaught, 59); the disjoint union A⊕ B, where the domain of A⊕ B is the union
of A and B and for each P ∈ Σ the predicate PA⊕B is the union PA∪PB and
there is a unary predicate for A.

3 Free Total Extensions of Partial Algebras

Partial Algebras: A partial algebra, or simply an algebra, is a structure A =
(A, fA, gA, . . . , hA) consisting of a domain of elements A and finitely many par-
tial functions on A. Constants are viewed as functions of arity 0. Incase all the
functions are total we call the structure a total algebra. The signature of A is
(f, g, . . . , h) and is called a functional signature since it does not contains sym-
bols for relations. Note that a term, such as f(g(a, b)), may not have a value
in A, in which case we say that (the value of) the term is undefined in A. All
structures implicitly have the symbol = for equality. In a partial algebra A two
terms s and t are defined to be equal, written s = t, if they are both defined in A
and have the same value in A (so called existential equality). Tuples of elements
ai of A and tuples of variables xi are denoted by a and x respectively.
Term Algebras: Let Σ be a functional signature and C a non-empty domain.
Then the set of ground terms over C, written GTΣ(C) or simply GT (C), is
defined inductively as follows:

– Every element of C is a ground term.
– If f is an n-ary symbol from Σ, and t is an n-tuple of ground terms, then

f(t) is a ground term.
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The free term algebra generated by C is (GT (C), (f)f∈Σ) where the value of
f on t is defined as the ground term f(t). It is a total algebra.

The depth of ground terms is defined as follows: terms in C have depth 0;
if f(t1, · · · , tk) is not in C, then its depth is 1 more than the maximum of the
depths of the ti.
Free Total Extensions: Let A be a partial algebra on signature Σ. We define
what it means to extend A to a total algebra E(A) in the free-est possible
way. First we give an explicit construction and then the usual one in terms of
homomorphisms.

For any ground term t ∈ GT (A) define its canonical form with respect to the
structure A, written t

(c)

A or simply t(c), by induction as follows.

– If t = a and a ∈ A then define t(c) as a.
– Assume t = f(t1, . . . , tn), and t

(c)
1 , t

(c)
2 , . . . , t

(c)
n have been defined. If each t

(c)
i

is in A and the value f(t(c)1 , t
(c)
2 , . . . t

(c)
n ) is defined in A and equals b ∈ A

then define t(c) as b. Otherwise t(c) is defined as f(t(c)1 , t
(c)
2 , . . . t

(c)
n ).

The algebra of canonical terms with respect to A is the total algebra over
signature Σ, whose domain is the set of canonical terms t(c) for t ∈ GT (A), and
for which the value of f on t, with ti canonical, is simply f(t)(c).

As we will see in a moment, this algebra is isomorphic to the free total
extension of A. First we need some definitions (see [9][section 13]).

Let C and B be partial algebras over the same signature. A homomorphism
from C into B is a total mapping h : C → B so that whenever ā ∈ C, f ∈ Σ, and
fC(ā) is defined then fB(h(ā)) is defined and is equal to hfC(ā). For B ⊂ C,
say that C extends B if for every b, fB(b) is defined and equal to b ∈ B if and
only if fC(b) is defined and equal to b ∈ B. Note that this allows the possibility
that fC(b) is defined (and not in B) while fB(b) is undefined. Finally recall that
a total algebra C is generated by a set X ⊂ C if C is the smallest (under ⊂)
total algebra containing every total subalgebra B with X ⊂ B. In this case every
element of C is equal to t(b) for some term t and some tuple of elements b from
X .

Define a free total extension of A (compare [11]), written E(A), as satisfying
the following properties:

1. E(A) is a total algebra extending A.
2. E(A) is generated by the elements of A.
3. Every homomorphism h from A into a total algebra B can be extended to a

homomorphism of E(A) into B.

Note that E(A) is unique. Here are some examples.

Example 7. Let C be the partial algebra (C, (f)f∈Σ) where the f ’s are undefined
everywhere. Then E(C) is the free term algebra generated by C.

Example 8. Let A be a finite partial algebra. Then E(A) is isomorphic to the
quotient of GT (A) by finitely many ground term equations [11].
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Proposition 1. The algebra of canonical terms with respect to A is isomorphic
to E(A).

Convention. In what follows we will work on this algebra of canonical terms
directly, instead of using the abstract definition of E(A). Moreover, in order to
distinguish the original domain A of E(A) we introduce a unary predicate A to
the language.

4 Main Theorem

The main result is the following theorem.

Theorem 1. If a partial algebra A has decidable QEP then so does its free total
extension E(A).

The proof is a mixture of the quantifier elimination procedure for free term
algebras and the decision procedure of A. The basic idea is to inductively remove
existential quantifiers over variables specified to be outside of A.

We extend the signature Σ ∪ {A} of E(A) to include new operations and
relations. To avoid confusion, the operations of Σ are called constructors. The
new operations consist of:

– unary selector functions fi for every constructor f and i ≤ arity(f), and
– unary tester predicates ISf for every constructor f .

From now on we work in this extended signature unless specified otherwise.
Sequences of selector functions will be denoted by L,M, . . . and Li,Mi, . . . for
i ∈ N.

Semantics: These new operations have the following semantics. Let t be a
canonical term. If t �∈ A then there is a unique constructor f and canonical terms
s so that t = f(s). In this case, define fi(t) as si (for i ≤ arity(f)) and define
ISf (t) as �. Also define gi(t) = t and ISg(t) as ⊥ for every constructor g �= f
(for i ≤ arity(g)). On the other hand, if t ∈ A, then define gi(t) as t and ISg(t)
as ⊥ for every constructor g (for i ≤ arity(g). Finally A(t) holds if and only if
t ∈ A. Note the selector functions fi and the tester predicates ISf are definable
in the language of E(A).

Terms: A term t over the extended signature of E(A) with free variables
amongst x will be written t(x). The expression

t[x1/s1(v), · · · , xk/sk(v)]

denotes the term t where each of the mentioned xi from x has been replaced with
the corresponding term si(v). For instance, if t = f(h2(x1), x2), then t[x1/g(v1)]
is the term f(h2(g(v1)), x2).

Literals: To be sure, every literal in the language of E(A) is either an equation
of terms t = s, a disequation of terms t �= s, or a tester predicate applied to a
term ISf (t).
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We list some basic properties of E(A) that will be used implicitly in showing
the correctness of the the algorithm provided in the next section. Here and unless
specified otherwise, equivalence is in E(A).

Lemma 1. The algebra E(A) satisfies the following properties:

1. t1 = t2 implies that t1 ∈ A if and only if t2 ∈ A.
2. f(t) �∈ A ∧ f(s) �∈ A implies that f(t) = f(s) is equivalent to

∧
ti = si.

3. f(t) �∈ A ∧ f(s) �∈ A implies that f(t) �= f(s) is equivalent to
∨

ti �= si.
4. for f �= g, [f(t) �∈ A ∧ g(s) �∈ A] implies that f(t) = g(s) is equivalent to ⊥.
5. for f �= g, [f(t) �∈ A ∧ g(s) �∈ A] implies that f(t) �= g(s) is equivalent to �.
6. s �∈ A ∧ f(t) �∈ A implies that the equation s = f(t) is equivalent to

∧
fis =

ti ∧ ISf (s). Similarly it implies that the disequation s �= f(t) is equivalent to∨
fis �= ti ∨ ¬ISf (s).

4.1 Quantifier Elimination

(Un)limited Quantification: An unlimited quantification is one of the form
Qz �∈ A and a limited quantification is one of the form Qz ∈ A, where Q ∈ {∃, ∀}.
As a shorthand we write Quz for unlimited quantification and Qlz for limited
quantification. Also we write ∃ux for ∃ux1 · · · ∃uxm where x = (x1, · · · , xm).
Note that a quantification may be neither limited nor unlimited.

From now on, let x denote existentially quantified unlimited variables and
let y denote unlimited parameters. Similarly let x′ denote quantified limited
variables and let y′ denote limited parameters.

The following technical lemma shows how to remove unlimited quantification.
Its proof will be the focus of this subsection.

Lemma 2. Every formula of the form ∃uxχ(x, y, y′) where all quantifications
in χ are limited, is equivalent in E(A) to a formula of the form χ′(y, y′), where
all quantifications in χ′ are also limited.

Proof. We may assume A is not a total algebra for otherwise E(A) is isomorphic
to A in which case the lemma is trivial.

Consider a formula of the form

∃uxχ(x, y, y′),

where all the quantifications in χ are limited. We will describe a procedure that
transforms this formula into an equivalent formula where all the quantifications
are limited.

The procedure will use the following techniques implicitly. We can always
assume that all quantified variables are distinct by renaming if neccessary.

disjunctive splitting: The process of replacing a formula of the form ∃x(B∨C)
by its logical equivalent (∃xB) ∨ (∃xC).

disjunctive normal form: Every quantifier free formula can be written as∨
(
∧

Bi,j) where the Bi,j are literals.
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formula normal form: Every formula can be expressed as

Qkvk · · ·Q1v1ψ,

where the Qi are blocks of quantifiers of the same type (namely ∃ or ∀) and ψ
is quantifier free in disjunctive normal form.

We now explain the concepts of type and type completion that will be used
throughout the algorithm.
Types and Type Completions: A type of a term s is one of the following
formulae:

– s ∈ A, or
– s �∈ A ∧ ISg(s) ∧

∧
f �=g ¬ISf (s), where g is some constructor.

Note that a term has finitely many types. This definition is used in the following
important concept [16].

Say that a conjunction of literals B is type-completed if for every subterm s in
B, exactly one type of s is expressed in B. Note that a conjunction of literals can
be extended to finitely many non-equivalent in E(A) type-completed formulae.
For example, a type completion of the formula f(x) = y is the conjunction of
f(x) = y and

[x ∈ A]∧ [f(x) �∈ A∧ ISf (f(x))∧
∧
g �=f

¬ISg(f(x))]∧ [y �∈ A∧ ISh(y)∧
∧
g �=h

¬ISg(y)].

We remark that a type completion may not be satisfiable (for instance if
f �= h in the example above) Indeed in the algorithm such type completions are
identified and replaced with ⊥.

The type completion of a quantifier free formula φ =
∨

ψi, where each ψi is
a conjunction of literals, is the equivalent quantifier free formula∨

i,k

ψ′i,k,

where {ψ′i,k | k} consist of all the non-equivalent type completions of ψi. Here∨
i,k ψ

′
i,k is the type completion of φ and is called type-completed. Note that each

ψ′i,k is a conjunction of literals.
The type completion of a formula Φ is defined by the following procedure.

First put Φ into formula-normal-form. So Φ is of the form

Qpvp · · ·Q1v1 ψ,

where each Qi is either ∀ or ∃. Now ensure that every quantifier is either limited
or unlimited as follows. We proceed by induction on p. Suppose by induction
that we have transformed the formula Φ into an equivalent formula Ψ with
the property that Ψ is in formula-normal-form and all its quantifiers are either
limited or unlimited. Now ∃vp+1Ψ is replaced by[

∃lvp+1Ψ ∨ ∃uvp+1Ψ
]
.

Similarly, ∀vp+1Ψ is replaced by
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∀lvp+1Ψ ∧ ∀uvp+1Ψ

]
.

Now put the result into formula-normal-form. This completes the inductive step.
Finally type-complete the quantifier free part. So the formula is now of the form

Qαk

k vk · · ·Qα1
1 v1ψ,

where ψ is
∨

i ψi, and each ψi is a type-completed conjunction of literals, and
αi ∈ {l, u}. Note that it is equivalent to the original formula Φ.

Limited and unlimited literals: Suppose that ψi is a (not necessarily type-
completed) conjunction of literals with the property that there is a unique (up
to equivalence in E(A)) type-completed conjunction of literals ψ′i equivalent in
E(A) to ψi. For example if ψi is x ∈ A ∧ f(x) �∈ A then ψ′i is x ∈ A ∧ f(x) �∈
A ∧ ISf (f(x)) ∧g �=f ¬ISg(f(x)). In most cases, ψi = ψ′i will be type-completed
itself.

Call a term t limited (with respect to ψi) if ψ′i contains the literal t ∈ A,
and unlimited (with respect to ψi) if ψ′i contains the literal t �∈ A. An equation
or disequation is (un)limited in ψi if both sides of it are (un)limited in ψi. A
tester predicate ISg(t) is (un)limited (with respect to ψi) if t is (un)limited (with
respect to ψi). For the rest of the proof, when a term or (dis)equation is called
limited, implicitly it is with respect to the type-completed ψ′i in which it occurs.
Recall a quantification Qv is called limited if it is of the form (Qv ∈ A), also
written Qlv. If it is of the form Qv �∈ A, also written Quv, it is unlimited.

The Algorithm: We are now ready to describe the algorithm. It takes as input
a formula Φ of E(A) of the form ∃uxχ(x, y, y′), where every quantification in
χ is limited. So we may write Φ as ∃uxQl

kx
′
k · · ·Ql

1x
′
1 ψ(x, x′, y, y′). Also, recall

our notation for variables: x denotes existentially quantified unlimited variables
and y unlimited parameters; similarly, x′ denote quantified limited variables and
let y′ denote limited parameters.

The algorithm proceeds in steps that transform the input formula to an
equivalent output formula with additional syntactic properties. After describing
each step we prove, unless obvious, termination and correctness of that step.
Step 1. Type Completion.

Input: An E(A)-formula.
Output: An equivalent type completed formula.
So the formula is now of the form

∃uxQl
kx
′
k · · ·Ql

1x
′
1

∨
i

ψi(x, x′, y, y′), (�)

where each ψi is a type-completed conjunction of literals.
Step 2. Put Every Term into Term-Normal-Form.

Input: A type-completed formula in form (�).
Output: An equivalent type-completed formula in form (�) for which every

term is in term-normal-form.
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A term is in term-normal-form if it is of the form

t(v1, · · · , vj+k)[v1/L1w1, · · · , vj/Ljwj ]

where t(v) is a term built from constructors only. Here Li is a sequence of
selectors applied to the variable wi.

This step proceeds by pushing selectors past constructors as follows.
For each ψi do the following until no more apply. Pick some t occurring as a

subterm in ψi. There are two cases.
Case 1: t Is Limited. Then for every constructor f , replace fj(t) in ψi by t,
and
Case 2: t Is Unlimited. Let g be the unique constructor for which ISg(t) is a
conjunct of ψi.

– For every f �= g, replace fj(t) in ψi by t, and
– Say t is of the form g(s) for some s. Then replace gj(t) in ψi by sj .

Termination: After applying each case the number of selectors in the formula
decreases. Hence this step can be iterated only a finite number of times.

Correctness: By Lemma 1, the transformation preserves the equivalence of
the formulas. Since only terms have changed, the resulting formula is still in
formula-normal-form. Also, since every term in the resulting formula is already
a term in the original formula, the result is also type-completed.
Step 3. Remove Selectors from All Unlimited Quantified Variables.

Input: A type-completed formula Φ in form (�) for which every term is in
term-normal-form.

Output: An equivalent type-completed formula for which every term is in
term-normal-form and there are no selectors infront of unlimited quantified vari-
ables. That is one of the form

∃uxQl
kx
′
m · · ·Ql

1x
′
1

∨
i

ψi(x, x′, y, y′), (†)

where each ψi is type-completed and no unlimited quantified variable x in ψi

has a selector in front of it.
Recall x is the collection of unlimited quantified variables. For each x ∈ x do

the following until no more apply:

– Pick an x ∈ x for which Lx occurs in Φ where L is some non-empty block of
selectors.

– Replace Φ by

∃v
∨
f

[
f(v) �∈ A ∧ (∃uxQl

kx
′
k · · ·Ql

1x
′
1

∨
i

ψi)[x/f(v)]

]
,

where f varies over all constructors. Now remove the existential quantifier
∃ux.

– Apply step 1 and then step 2.
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Termination: The result of substituting f(v) for x and then putting the terms
in normal form results in every selector of the form Lx being transformed into
one of the form L′vi where the length of L′ is smaller than the length of L. And
since steps 1 and 2 do not introduce selectors, the size of the largest block of
selectors in front of unlimited quantified variables strictly decreases with each
iteration.

Correctness: Once the procedure terminates no unlimited quantified variable
x has a selector infront of it. That the output formula is equivalent follows from
the fact that the following are equivalent in E(A) for every formula Θ:

– ∃uxΘ.
– ∃ux

∨
f (ISf (x) ∧ x �∈ A ∧Θ).

– ∃v ∃ux
∨

f (x = f(v) ∧ ISf (x) ∧ x �∈ A ∧Θ).

Step 4a. Put Every (Dis)equation into Literal-Normal-Form.
Input: A formula of the form (†).
Output: An equivalent formula of the form (†) in which every equation and

disequation is in literal-normal-form.
An unlimited (dis)equation is in literal-normal-form if it is of the form

L1v1ΔL2v2

for some (possibly empty) Li, and Δ ∈ {=, �=}. Here the vi and Livi are unlim-
ited.

A limited (dis)equation is in literal-normal-form if each term is in term-
normal-form

t(v1, · · · , vj+k)[v1/L1y1, · · · , vj/Ljyj ],

with the additional property that the vj+1, · · · , vj+k, L1y1, · · · , Ljyj are limited
(that is, stated in ψi to be in A).

Throughout this step ensure that every literal tΔs satisfies t ∈ A if and only
if s ∈ A by applying the following steps whenever possible.

– An equation between terms t and s with t ∈ A and s �∈ A is replaced with ⊥.
– A disequation between terms t and s with t ∈ A and s �∈ A is replaced

with �.

Hence every (dis)equation is either limited or unlimited.
For the unlimited (dis)equations repeat the following steps in each ψi until

none can be applied; and then finally put the result into formula-normal-form,
and type complete it.

– An unlimited equation of the form f(t) = g(s) is replaced with ⊥ if f �= g
and with

∧
i ti = si if f = g.

– An unlimited disequation of the form f(t) �= g(s) is replaced with � if f �= g
and with

∨
i ti �= si if f = g.

– An unlimited equation of the form Ly = f(t), with y unquantified, is replaced
with

∧
i fiLy = ti.
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– An unlimited disequation of the form Ly �= f(t), with y unquantified, is
replaced with

∨
i fiLy �= ti.

Termination: In general each item removes a literal tΔs and replaces it with
(a boolean combination of) a set of literals {tiΔ′si}. The relevant property here
is that the largest number of constructors appearing in a term from tΔs is strictly
greater than the largest number of constructors appearing in a term from any
of the tiΔ

′si.
Correctness: The procedure produces a formula that is equivalent to the

original one as seen from Lemma 1. The formula is of the form (†) since the only
introduced selectors are in front of unquantified unlimited variables from y. Now
if tΔs is a resulting unlimited literal then it does not contain constructors. Also
both t and s are in term-normal-form since each operation preserves being in
term-normal-form. Hence tΔs is in literal-normal-form.

Now we deal with the easier case of limited literals. Suppose t is limited (with
respect to some ψi of the input formula). Note that t is already in term-normal-
form. Now if some vj or Ljyj occurring in t were unlimited (with respect to
ψi) then t would also be unlimited, and so ψi is replaced with ⊥. Hence every
limited (dis)equation in the formula obtained is in literal-normal-form.
Step 4b. Put Tester Predicates into Literal-Normal-Form.

Input: A formula of the form (†) in which every equation and disequation is
in literal-normal-form.

Output: An equivalent formula in formula-normal-form, for which every literal
is in literal-normal-form, and there are no selectors infront of unlimited quantified
variables. Also it has the property that no literal mentions both a quantified
unlimited variable from x and a limited variable.

A tester predicate is in literal-normal-form if it is of the form ISg(Lv) for
some g, where L is a possibly empty block of selectors, v is a variable and Lv is
unlimited (that is, stated in ψi not to be in A).

We put every tester predicate into literal normal form by applying the fol-
lowing steps to every term t in ψi. Say t is of the form f(s) for some s and f .

– If t is limited then replace ISg(t) by ⊥ for every g.
– If t is unlimited then replace ISg(t) by � if f = g and by ⊥ otherwise.

Termination is clear in this case.
Correctness: By Lemma 1 the resulting formula is equivalent to the input

formula. Every tester predicate is in normal form since each term in the input
was in term-normal-form. Since in this step only tester predicates are removed
the (dis)equations are still in literal-normal-form, and there are no selectors
infront of unlimited quantified variables x from x. We remark that although
Φ is no longer necessarily type-completed, each disjunct ψi has a unique type-
completion ψ′i up to equivalence in E(A). Recall that we call a term (un)limited
in ψi if it is (un)limited in ψ′i. So if x occurs in a term, that term is unlimited.
Moreover if x occurs in an equation or disequation, then it is of the form xΔLy,
or xΔx1, where x1 is also from x and y is unlimited and unquantified. Similarly
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if x occurs in a tester predicate, it is of the form ISg(x) for some g. Hence no
literal mentions both x and a limited variable.
Step 5. Separate the Unlimited Quantifiers from the Limited Quanti-
fiers.

Input: A formula Φ of the form

∃uxQl
kx
′
k · · ·Ql

1x
′
1 ψ(x′k, · · · , x′1, x, y, y′),

and with the properties resulting from the previous step.
Output: An equivalent formula in disjunctive normal form where each con-

junction consists of formulae of the form

Ql
kx
′
k · · ·Ql

1x
′
1 μ(x′k, · · · , x′1, y, y′), ∃ux δ(x, y) and ε(y, y′).

Here

– μ is a possibly empty quantifier free formula with the property that every
literal in μ is limited and mentions some variable from x̄′.

– δ is a possibly empty conjunct of literals, and every literal in it is unlimited
and mentions some variable from x.

– ε is a possibly empty conjunct of literals.

In other words literals not in the scope of some quantifier are separated out.
This can be done since by the previous step no literal mentions both some x and
some limited variable x′j or y′.
Step 6a. Remove Equations from δ That Mention x.

Input: The formula resulting from the previous step.
Output: An equivalent formula of the same form with the additional property

that there are no equations in any of the δ.
Repeat the following in every δ until no more apply.

– Replace x = x by � and x �= x by ⊥.
– If an equation x = Ly is a conjunct in δ, then replace δ by δ[x/Ly].

Some literals may be transformed into literals of the form L1y1ΔL2y2. So put
these new literals into the corresponding ε.

Termination: Since each stage removes the variable x from δ, this process
eventually stops.

Correctness: After termination it is still the case that every literal in δ is
unlimited and mentions some variable from x. And the corresponding ε may
have gained more literals. So the output formula has the same form but there
are no equations left in δ since every equation mentioned some variable from x.
Step 6b. Replace Each ∃ux δ with �.

Input: The formula resulting from the previous substep.
Output: An equivalent formula without any unlimited quantification.
From the previous step there are no equations in any of the δ; the disequations

in δ are of the form x �= Ly or x �= xi for some other unlimited quantified variable
xi from x.
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Let b be an arbitrary instantiation of canonical terms for the parameters y.
We need to show that

E(A) |= ∃ux δ(x, b)

First evaluate all selectors Lb by applying the definition of the selectors to the
canonical terms from b. Let s ∈ N be the maximum of the depth of the subterms
(of the sentence) that do not mention variables from x. For each f let nf ∈ N
be the number of distinct x ∈ x so that ISf (x) is a conjunct of δ. Choose k ∈ N
larger than s and with the property that for every constructor f ∈ Σ there are
at least nf distinct canonical terms of depth k that start with an f . This can be
done since A is not a total algebra.

Now let a be distinct canonical terms of depth k that satisfy the type data
in δ. Then E(A) |= δ(a, b). Indeed an unlimited literal ai �= aj holds in E(A)
by assumption that the elements of a are distinct. An unlimited literal a �= b
holds in E(A) since the depth k of the term a is at least s which is greater than
the depth of the term b. This completes the description and correctness of the
algorithm.

Tracing through the proof, we see that we have transformed a formula of
E(A),

∃uxQl
kx
′
k · · ·Ql

1x
′
1

∨
ψi(x, x′, y, y′),

into one of the form∨
j

[εj(y, y′) ∧Ql
kx
′
k · · ·Ql

1x
′
1 μj(x′, y′, y)],

with only limited quantification, and where every literal in μj is limited and
mentions some variable of x′. This completes the proof of Lemma 2.

4.2 Corollaries and the Main Result

We can also give a characterisation of the definable relations of E(A).

Theorem 2. There is a procedure that given a formula Φ(y, y′) of E(A) re-
turns an equivalent formula Φ′(y, y′) with the property that every quantification
is limited. In particular Φ′ has the form∨

j

[εj(y, y′) ∧Ql
mx′m · · ·Ql

1x
′
1 μj(x′, y′, y)]

where εj is a type-completed conjunct of literals, μj is a type-completed quantifier
free formula, and every literal in μj is limited and mentions some variable from
x′ = ∪ix

′
i.

Proof. Given a formula Φ of E(A), first replace the formula with its type-
completion. So it is now of the form

Qmvm · · ·Q1v1ψ,
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where every quantifier is either limited or unlimited. Now pick an innermost
formula of the form

QuxQl
kx
′
k · · ·Ql

1x
′
1 ψ(x, x′, y, y′),

where the quantifiers Ql
i are limited, ψ is in disjunctive normal form

∨
i ψi,

where each ψi, a conjunction of literals, is type-completed. Note that k may be
0. Also, we may assume that Qux is ∃ux, for if it were ∀ux then replace it with
¬∃ux¬, and push the second ¬ inward as usual. Applying the lemma results in
a formula with no unlimited quantification. Now repeat this process until there
are no more unlimited quantifiers in Φ. Finally although the lemma may result
in a formula containing a conjunct of literals B that is not type-completed, it is
the case that B is equivalent in E(A) to a type-completed conjunction of literals
B′. So replace B by B′. This completes the proof.

A formula Φ(y, y′) of E(A) is called an A-formula if it is type-completed, and
of the form

Ql
kx
′
k · · ·Ql

1x
′
1 μ(x′, y′, y),

where every literal in μ is limited. Recall this means that each term is limited
and of the form

t(v1, · · · , vj+k)[v1/L1y1, · · · , vj/Ljyj ],

where each of vj+1, · · · , vj+k, L1y1, · · · , Ljyj is limited, and t(v) consists of con-
structors only.

Observe that if χ1 and χ2 are A-formulae, then they are equivalent in A if
and only if they are equivalent in E(A). Also the subformulae from Theorem 2
of the form

Ql
kx
′
k · · ·Ql

1x
′
1 μ(x′, y′, y),

are A-formulae. Hence we have the next corollary.

Corollary 1. If A admits elimination of quantifiers, then so does E(A).

We now restate, and are ready to prove the main theorem.

Theorem 3. If a partial algebra A has decidable QEP then so does its free total
extension E(A).

Proof. Given a formula Φ(v) and a tuple of elements w from E(A). Apply The-
orem 2 and transform Φ into Φ′. Now form the sentence Φ′(w). This sentence
consists of quantifier free sentences ε(a, a′), and sentences of the form

Ql
kv
′
k · · ·Ql

1v
′
1

∨
i

ψi(v′, a′, a),

where each ψi consists of limited literals and type data. Here a′ and a are amongst
w, and moreover a′ ⊂ A and a ∩A = ∅. Also v′ = ∪jv

′
j .

Now evaluate ε(a, a′). This is done by first applying the definition of the
selector functions and tester predicate and then applying the fact that t1 = t2,
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where the ti are canonical terms not in A, if and only if t1 and t2 are syntactically
equal.

This leaves an A-sentence that is evaluated using the algorithm for the theory
of A.

5 Application

Recall that GTΣ(C) denotes the (total) algebra of ground terms generated by
the non-empty set C of constants from Σ. We start with the following definition.

Definition 2. Let E be a set of ground equations; that is equations of the form
t = s where t and s are ground terms. Consider the quotient of GTΣ by the
smallest congruence generated by E. This is a (total) algebra (over Σ) that we
will denote by AE . Call a total algebra finitely presented if it is of the form
AE for some finite set E of ground equations.

Easy examples include GTΣ itself and every finite algebra. Decision problems
for finitely presented algebras in a given variety of algebras have received much
attention. For instance, the word problem in finitely presented semigroups or
groups (in the variety of semigroups or groups) is, in general, undecidable. How-
ever in the variety of all algebras, the situation is different. For instance Kozen in
[10] considers the uniform word problem, the finiteness problem, the subalgebra
membership problem and the triviality problem: all are decidable in polynomial
time. Comon in [3] proves that the first order theory of any finitely presented
term algebra is decidable. The proof uses algebraic techniques combined with
quantifier elimination methods. Our main theorem can now be applied to give
another and, we think, simpler proof to decide the first order theory for finitely
presented term algebras.

The relationship between finitely presented algebras and free total extensions
is described in the next theorem (implicit in [11]).

Theorem 4. A total algebra is a finitely presented term algebra if and only if
it is the free total extension of a finite partial algebra.

So we immediately have the following application of Theorem 1.

Theorem 5. Let AE be a finitely presented algebra. Then it has decidable QEP.
In particular its first order theory is decidable.
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Results on the Guarded Fragment
with Equivalence or Transitive Relations

Emanuel Kieroński

Institute of Computer Science, University of Wrocław

Abstract. We study the problem of the satisfiability of guarded formulas in mod-
els in which some distinguished binary symbols are interpreted as equivalence
relations or as transitive relations. We sharpen the undecidability result for the
two-variable guarded fragment with transitive relations by reducing the num-
ber of transitive relations to two. We prove that the satisfiability problem for
the two-variable guarded fragment with two equivalence relations is 2EXPTIME-
complete. We consider the guarded fragment with equivalence relations in guards
and show that this variant is easily reducible to the variant with transitive relations
in guards. However, in the case of two variables, the version with equivalence re-
lations is easier: NEXPTIME-complete. Finally we show that the decidability
results for the guarded fragment with either equivalence relations or transitive
relations in guards cannot be generalized to the loosely guarded fragment.

1 Introduction

The guarded fragment GF is a fragment of first-order logic1 FO in which the usage of
quantifiers is restricted. GF is defined inductively: all atomic formulas belong to GF; GF
is closed under Boolean connectives; if ϕ(x,y) ∈ GF then ∀x(α(x,y) → ϕ(x,y)) and
∃x(α(x,y)∧ϕ(x,y)) belong to GF, where α(x,y) is an atomic formula containing all
the free variables of ϕ. In particular, α may be of the form x = x. Atoms α are called
guards.

The guarded fragment was introduced by Andréka, van Benthem and Németi [1]
as a generalization of propositional modal logic. Since then various variants and exten-
sions of GF have been investigated. It appeared that GF retains a lot of good properties
of modal logics. In particular its satisfiability problem is decidable [1, 4], it has the fi-
nite model property and (a kind of) tree model property [4], remains decidable when
augmented with fixed-point operators [8].

Since the transitivity of a binary relation is not expressible in GF, to obtain coun-
terparts of some modal logics with axioms of transitivity or equivalence, like K4 or
S5, it is natural to study the satisfiability of the guarded fragment in restricted classes
of models, in which some binary relations are interpreted as transitive or, respectively,
equivalence relations. In this paper we follow the convention, that when considering the
guarded fragment, this requirement is expressed syntactically: we “extend” the guarded
fragment by the possibility of stating that some binary relations have to be transitive

1 In this paper we consider first-order logic without constants and function symbols.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 309–324, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(equivalence) relations. Now, a formula consists of its purely guarded part and a list
trans[T1, . . . , Tl] (equiv[T1, . . . , Tl]) of transitive (equivalence) relations2.

Unfortunately, it appeared that the guarded fragment with transitive relations GF+
trans is undecidable. The first proof of this fact was given in [4], where undecidabil-
ity of GF3+trans[T1, T2], the guarded fragment with three variables and two transitive
relations, was established. Since modal logic can be embedded into the two-variable
guarded fragment GF2, it was very interesting what happens on the level of two vari-
ables. This question was partially answered by Ganzinger, Meyer and Veanes [3] who
showed undecidability of GF2+trans[T1, . . . , T4] and GF2+trans[T1, . . . , T5] with-
out equality. In this paper we sharpen this result and show undecidability of GF2+
trans[T1, T2] without equality and with T1, T2 being the only non-unary symbols.
Moreover, we believe, that in spite of restricting the language, our proof is simpler than
the proof in [3]. The result is optimal with respect to the number of transitive relations,
since, as we argue, GF2+trans[T ] is decidable, and in fact 2EXPTIME-complete.

The undecidability of GF2+trans[T1, T2] becomes even more interesting if com-
pared to the results on the two-variable guarded fragment with equivalence relations.
In [11] we proved undecidability of GF2+equiv[E1, E2, E3] without equality, but it
appeared that even the whole FO2+equiv[E1, E2] is decidable. Because of the high
level of technical complication we were not able to give precise complexity bounds
for the last variant. On the level of the guarded fragment the situation is easier and in
this paper we show that GF2+equiv[E1, E2] is 2EXPTIME-complete. This reveals, that
reasoning about two equivalence relations is more difficult than about one, since even
FO2+equiv[E] is in NEXPTIME [11].

The undecidability of the guarded fragment with several transitive or equivalence
relations seems to be quite surprising in the context of connections to modal logics:
modal logics K4 and S5 are decidable even in their multi-modal variants involving
more than one transitive or equivalence relation. To explain this, we should note that in
the natural translation of modal logic into the guarded fragment all these special rela-
tions appear only in guards. And indeed, the guarded fragment with transitive guards
GF+TG, the version of GF+trans in which only the relations appearing only in guards
can be required to be transitive, is decidable in 2EXPTIME [15]. See [3, 9, 10, 15, 16]
for more discussions and results on this variant.

Here we consider the guarded fragment with equivalence relations in guards GF+EG
and show that it is easily reducible to GF+TG. For two variables, however, GF2+EG is
easier than GF2+TG. We show that it is NEXPTIME-complete, while the latter was
shown to be 2EXPTIME-hard [10].

In the Table 1 we summarize the results on the satisfiability of the two-variable
guarded fragment with transitive or equivalence relations.

In the final part of this paper we look at a more liberal extension of the guarded
fragment, the so-called loosely guarded fragment, LGF. In LGF [2], the notion of guard
is relaxed. A guard α(x,y) may be a conjunction of atoms provided that each pair of
variables from x∪y appears together in an atom. In [3] it was observed that LGF3 with
one transitive relation is undecidable. The proof went by a reduction from the inter-

2 Note that the set of formulas obtained in this way is not really what we usually call “logic”;
for example it is not closed under negation.
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Table 1. Satisfiability of GF2 with transitive or equivalence relations

type of only in # of equivalence/transitive relations
special relations guards 1 2 3 or more

equivalence NEXPTIME NEXPTIME 2EXPTIME undecidable
transitive 2EXPTIME 2EXPTIME undecidable undecidable

section emptiness problem for context-free languages. Here we give a straightforward,
very easy proof of the slightly stronger result: undecidability of LGF3 without equality
with one transitive relation which is used only in guards. Similar result can be also ob-
tained for LGF3 with one equivalence relation in guards. Moreover, in the case of one
transitive relation, we can make an effort to use the transitive symbol as the only non-
unary symbol in our proof. These results show that the distinction between relation in
guards only and relations everywhere, which is important for transitive and equivalence
relations in GF, disappears in LGF.

Besides obvious connections to modal logics, the study of the satisfiability of the
guarded fragment in restricted classes of models can be also motivated by similar study
for FO2. See [6, 7, 11, 13].

2 Plan of the Paper

In Section 3 we adapt the normal form theorems for the guarded fragment to our pur-
poses. Section 4 contains results on GF2+trans. In Section 5 we study GF+EG, in
particular GF2+EG, and prove that the GF2+equiv[E1, E2] is 2EXPTIME-complete.
In Section 6 we show undecidability of LGF3+TG[T ] and LGF3+EG[T ].
A note for the reader. We assume that the reader knows basic concepts from model
theory and theoretical computer science, in particular notions of (atomic) 1-types and
2-types and results on alternating Turing machines.

The paper is closely related to [15] and [11]. In a few places we refer not only to
results from these papers but also to techniques used in proofs. In such parts we do not
present whole constructions in detail, but rather sketch main ideas.

3 Normal Forms

We want to adapt the normal form theorems for the guarded fragment to make them
more convenient to our purposes. Such theorems were proved by Grädel in [4] and
Szwast and Tendera in [15]. Let us review the results from [15].

Definition 1. We say that a GF2 sentence is in normal form if it is a conjunction of
sentences of the following form:

– ∃x (α(x) ∧ χ(x)),
– ∀x (α(x) → ∃y ((β(x, y) ∧ χ(x, y))),
– ∀x∀y (β(x, y) → χ(x, y)),

where α(x), β(x, y) are atomic formulas and χ is quantifier-free.
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It can be shown:

Theorem 1 (Szwast, Tendera). With every GF2 sentence ϕ of the length n one can
effectively associate a set Δ of GF2 sentences in normal form (over the extended vo-
cabulary), Δ = {δ1, . . . , δd} such that
(1) ϕ is satisfiable if and only if

∨
i≤d δi is satisfiable,

(2) d ≤ O(2n) and for every i ≤ d, |δi| = O(n log n),
(3) Δ can be computed deterministically in exponential time and every sentence δi can

be computed in time polynomial with respect to n,
(4)

∨
i≤d δi |= ϕ and every model of ϕ can be expanded to a model of

∨
i≤d δi.

The additional property of normal form of Szwast and Tendera is that if a binary
symbol T appears in ϕ only in guards then it is also the case in Δ. It is important when
working with either the guarded fragment with transitive guards GF+TG or the guarded
fragment with equivalence relations in guards GF+EG. We use this property in Section
5.1.

Let us introduce the new definition:

Definition 2. A GF2+equiv[E1, E2] sentence ϕ is in [E1, E2]-guarded normal form if
it is a conjunction of sentences of the following form:

– ∃x (α(x) ∧ χ(x)),
– ∀x (α(x) → ∃y (E1xy ∧ E2xy ∧ χ(x, y))) (∀∃++ form),
– ∀x (α(x) → ∃y (E1xy ∧ ¬E2xy ∧ χ(x, y))) (∀∃+− form),
– ∀x (α(x) → ∃y (E2xy ∧ ¬E1xy ∧ χ(x, y))) (∀∃−+ form),
– ∀x (α(x) → ∃y (β(x, y) ∧ ¬E1xy ∧ ¬E2xy ∧ χ(x, y))) (∀∃−− form),
– ∀x∀y (β(x, y) → χ(x, y)) (∀∀ form),

where α(x), β(x, y) are atomic formulas, and χ is quantifier-free.

The polynomial transformation from normal form from Definition 1 to normal form
from Definition 2 is standard and we skip it here. The existence of such a transformation
allows us to substitute the words normal form in Theorem 1 with [E1, E2]-guarded
normal form.

4 Guarded Fragment with Transitive Relations

4.1 A Note on the Case of One Transitive Relation

Essentially, the decidability of GF2+trans[T ] can be shown by applying the construc-
tion of Szwast and Tendera for GF2+TG [15]. The only problem is that sometimes
a conjunct of the form ∀x (α(x) → ∃y (β(x, y) ∧ χ(x, y))) without T in the guard β
may say in χ that x and y have to be connected by T . To avoid this problem we first
transform a formula into [T ]-guarded normal form, which is similar to [E1, E2]-guarded
normal form, with symbol T treated in a special way. The construction from [15] gives
now the 2EXPTIME upper bound. The lower bound follows from [10]. We have:

Theorem 2. The satisfiability problem for GF2+trans[T ] is 2EXPTIME-complete.
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4.2 Two Transitive Relations

In this subsection and in Section 6 we use the technique from [6, 13]. It was originally
designed for extensions of FO2 but adaptations for extensions of GF2 without equality
are straightforward. Due to the space limit we give only the statement of the lemma we
require, without a proof.

We say that an infinite structure G = (G,H, V ) is grid-like if the standard grid GN

is homomorphically embeddable into G; a finite G is grid-like if some Gm is homo-
morphically embeddable into G, where Gm is the standard grid on m×m torus.

Lemma 1. Let L be an extension of GF2 without equality. Let N be a distinguished
unary symbol of the vocabulary. If there exists an L-formula ϕ such that:
(1) GN can be expanded to a model of ϕ,
(2) for every k ∈ N there exists m > k such that Gm can be expanded to a model of ϕ,
(3) if A |= ϕ is infinite then A�N is grid-like,
(4) if A |= ϕ is finite then A�N is grid-like,
then L forms a conservative reduction class. If at least conditions (1) and (3) hold then
the satisfiability problem for L is undecidable.

We improve the undecidability result from [3] by showing that the two-variable
guarded fragment with two transitive relations is undecidable. Actually we prove the
stronger result, implying also the undecidability of the finite satisfiability problem:

Theorem 3. GF2+trans[T1, T2] without equality is a conservative reduction class.

H 0 H 1 H 2 H 3 H 0

V 1

V 0

V 1

V 0

T1

T2

Fig. 1. Grid structure for GF2+trans[T1, T2]

Proof. Let us expand the standard grid to the structure ḠN illustrated in the Fig. 1.
Additionally, for the unary symbol N , Na is true for every element a of the structure.
We capture some properties of ḠN by the sentence ϕ, then observe that every G4m can
also be expanded to a model of ϕ and prove that the restriction to N of every model of
ϕ is grid-like.

The sentence ϕ is the conjunction of the following formulas:
(A) The initial formulas:

∃x (H0x ∧ V0x ∧Nx), (1)

∀x (Nx → ∃y (Hxy ∧Ny)), (2)

∀x (Nx → ∃y (V xy ∧Ny)). (3)
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(B) A formula axiomatising H , which has the following shape:

∀xy (Hxy → (ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕ8)), (4)

where each ϕi describes one of the eight possible cases of values of unary predicates
on H-connected vertices and transitive connections between them. For example:

ϕ1 ≡ T1xy ∧ T2xy ∧H0x ∧ V0x ∧H1y ∧ V0y ∧Nx ∧Ny, (5)

ϕ2 ≡ T1yx ∧ T2yx ∧H1x ∧ V0x ∧H2y ∧ V0y ∧Nx ∧Ny. (6)

(C) A formula axiomatising V , which is built similarly to the one for H .

(D) A group of formulas stating that some horizontally adjacent elements that are con-
nected by T are also linked by H . Example formulas from this group are:

∀xy (T1xy → ((H0x ∧ V1x ∧H1y ∧ V1y) → Hxy)), (7)

∀xy (T2xy → ((H2x ∧ V0x ∧H1y ∧ V0y) → Hyx)). (8)

It is not hard to see that every G4m can be expanded to a model of ϕ. It is enough
to take a natural quotient.

We sketch the argument for grid-likeness of A′ = A�N , for A |= ϕ. It is enough to
show that H is complete over V in A′, i.e. A′ |= ∀xyx′y′((Hxy ∧ V xx′ ∧ V yy′) →
Hx′y′) (cf. [13]). Assume that for a, a′, b, b′:

A′ |= Hab ∧ V aa′ ∧ V bb′.

We show that then A′ |= Ha′b′. One should consider several cases distinguished by
values of the Hi and Vi on a. Let us go through one of them, for instance A′ |= H1a ∧
V1a. By (B) we have:

A′ |= H2b ∧ V1b ∧ T2ba.

Similarly (C) implies:

A′ |= H1a
′ ∧ V0a

′ ∧ T2aa
′

and

A′ |= H2b
′ ∧ V0b

′ ∧ T2b
′b.

From transitivity of T2 it follows that A′ |= T2b
′a′. Now an appropriate formula of the

form (D) guarantees A′ |= Ha′b′ which finishes the proof for this case. The remaining
seven cases can be treated in the similar way. �
Remark. The binary relation symbols H and V do not play the crucial role in the above
proof. They can be simulated by T1, T2 and values of unary predicates Hi and Vi. Thus
we obtain undecidability of GF2+trans[T1, T2] without equality, even if T1 and T2 are
the only non-unary symbols allowed.
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5 Guarded Fragment with Equivalence Relations

5.1 Equivalence Relations in Guards

In [15] Szwast and Tendera study the guarded fragment with transitive guards GF+TG,
in which merely relations appearing only in guards may be required to be transitive. It
is also natural to consider the guarded fragment with equivalence relations in guards
GF+EG. We observe that there is a simple reduction from GF+EG to GF+TG 3.

Lemma 2. There is a polynomial time reduction which transforms a GF+EG sentence
ϕ into a GF+TG sentence ϕ′ such that ϕ is satisfiable if and only if ϕ′ is satisfiable.

Proof. Let ϕ = ϕ′+equiv[E1, . . . , Ek] be a GF+EG sentence. We construct a GF+TG
sentence ψ, in an extended vocabulary, which is satisfiable if and only if ϕ is satisfiable.
For every 1 ≤ i ≤ k we introduce a new unary predicate Pi and put the formulas:

∀xy (Eixy → ((Pix ∧ Piy) → x = y)), (9)

∀x (x = x → ∃y (Eixy ∧ Piy)) ∧ ∀x (x = x → ∃y (Eiyx ∧ Piy)). (10)

We define ψ as the conjunction of ϕ′, formulas (9)-(10) for 1 ≤ i ≤ k, and the transi-
tivity requirement: trans[E1, . . . , Ek].

Now, every model of ϕ can be expanded to a model of ψ by choosing for every i
exactly one element in each Ei-class, and marking it with Pi. On the other hand in every
model of ψ each Ei has to be symmetric and reflexive and thus, because of transitivity
of Ei, it has to be an equivalence relation. �

Since the satisfiability of GF+TG was shown in [15] to be in 2EXPTIME, and the
satisfiability of the pure guarded fragment GF is 2EXPTIME-hard we have:

Corollary 1. The satisfiability problem for GF+EG is 2EXPTIME-complete.

Let us turn our attention to the case of the two-variable fragment and observe that
GF2+EG is easier than GF2+TG which is complete for 2EXPTIME [10, 15].

Theorem 4. The satisfiability problem for GF2+EG is NEXPTIME-complete.

Proof. The Upper Bound. The proof of the upper bound is similar to the proof of
the upper bound for GF2+TG given by Szwast and Tendera [15]. In their proof it is
shown how to construct a ramified model for a satisfiable formula. The most important
properties of a ramified model are:

– it is tree-controlled,
– each pair of elements is connected by at most one transitive relation (possibly in

both directions),

3 Notice that the straightforward idea of expressing symmetry of a transitive relation E:
∀xy (Exy → Eyx) leads to the formula in which E appears outside guards.
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– the size of every Ti-clique4, for a transitive Ti, is at most exponential in the size of
the input formula.

The similar properties may be obtained in our case. We sketch the construction. Let
ϕ be a GF2+EG sentence in normal form from Definition 1, with equivalence relations
E1, . . . Ek. Let A |= ϕ. We build a new model B |= ϕ which consists of (possibly)
infinite number of layers. The Layer 0 consists of elements satisfying conjuncts of the
form ∃x(α(x) ∧ χ(x)). The Layer 1 contains Ei-classes for 1 ≤ i ≤ k and free wit-
nesses (witnesses for formulas without equivalence symbols in guards) for elements
from the Layer 0. The Ei-classes of an element b may be constructed in such a way
that for i �= j, Ei-class of b and Ej-class of b have exactly one common element: b,
and each Ei-class has size at most exponential in |ϕ|. The construction of these classes
is the same as the construction of Ti-cliques of an element in the proof of Szwast and
Tendera for GF2+TG. We say that an Ei-class of b is its petal. All the free witnesses of
b we put outside the petals of b. They are called leaves. Petals and leaves of b form the
flower of b.

We proceed recursively. For an element b from the Layer i we build its flower and
put its petals (with the exception of at most one which was built in the previous step) and
leaves into the Layer (i+1). We define all non-specified 2-types in B as negative types
consistent with 1-types, where by a negative 2-type we mean a type without positive
occurrences of binary predicates.

This way we obtain a ramified model B |= ϕ. For every 1-type ti which is realized
in B we choose an element bi of type ti. We argue that a list L of such elements and
its flowers is sufficient for construction of another ramified model B′ |= ϕ. Observe
that the information we require is of size exponential in |ϕ|. To construct B′ we put
for every ti in L a new copy of the flower of bi into the Layer 0. Now, we proceed
recursively again. Let b be an element in the Layer i whose flower is not defined. There
may be at most one petal built for b, say Er-petal. In our list we find b′ of the same type
as b and we put a new copy of every petal of b′, except its Er-petal, to the Layer (i+1).
Similarly, we add all the required leaves for b.

The procedure deciding the satisfiability problem for GF2+EG may be the follow-
ing:

input: a GF2+EG sentence ϕ
begin procedure
• compute the set Δ from Theorem 1,
• guess a sentence δi in normal form from Definition 1 from Δ,
• guess a list of 1-types realized in a ramified model of δi, and shapes of its

flowers,
• check if a ramified model may be constructed basis of this list.

end procedure

Clearly, it works in nondeterministic exponential time.

The Lower Bound. The lower bound can be easily obtained without equality, even in
the presence of only one equivalence relation E. Using two sets of unary predicates

4 A Ti-clique is a maximal set X of elements such that for every a, b ∈ X both Ti(a, b) and
Ti(b, a) are true.
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H1, . . . Hn and V1, . . . , Vn we can write a formula such that its model has to contain an
E-class which can be viewed as a square of size 2n × 2n such that for every element,
Hi and Vi code in binary its horizontal and vertical position. Having such a class it is
easy to simulate a nondeterministic Turing machine working in time exponential in the
size of its input. �

5.2 GF2 with Two Equivalence Relations

In [11] we considered the whole FO2 with equivalence relations. We proved that FO2+
equiv[E] has exponential model property. From this result and from the proof of the
lower bound in Theorem 4 it follows that GF2+equiv[E] is NEXPTIME-complete. In
[11] we proved also that the satisfiability problem for whole two-variable first order
logic with two equivalence relations is decidable in 3NEXPTIME. Because of the high
level of technical complication of our construction we were not able to give exact com-
plexity bounds. In the case of the two-variable guarded fragment the situation is easier.
However, we still have to take into account infinite models. The following example of
an infinity axiom comes from [11]. If E1 and E2 are interpreted as equivalence relations
then the conjunction ϕ of the formulas (11)-(16) is satisfiable only in infinite models.

∃x (Px ∧ Sx) (11)

∀x (Px → ∃y (E1xy ∧ x �= y ∧Qy)) (12)

∀x (Qx → ∃y (E2xy ∧ x �= y ∧ Py)) (13)

∀xy (E1xy → ((Px ∧ Py) → x = y)) (14)

∀xy (E2xy → ((Qx ∧Qy) → x = y)) (15)

∀x (Sx → ¬∃y (E2xy ∧ x �= y)) (16)

An example model is illustrated in the Fig. 2.

S,P Q P Q P Q

E E
1 2

Fig. 2. A model of ϕ

Here we show:

Theorem 5. The satisfiability problem for GF2+equiv[E1, E2] is 2EXPTIME-comple-
te.

Proof. The Lower Bound. The proof of the lower bound is similar in spirit to the proof
of 2EXPTIME-lower bound for GF2+TG from [10].

It suffices to show that every problem in AEXPSPACE can be reduced in polyno-
mial time to the satisfiability problem for GF2+equiv[E1, E2]. Let M be an alternating
Turing machine working in space bounded by 2n

k

. Let w be an input for M . We con-
struct a GF2+equiv[E1, E2] sentence ϕ which is satisfiable if and only if M accepts w.
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Without any loss of generality we can assume that in every configuration M has exactly

two possible transitions and that it enters an accepting or rejecting state in exactly 22nk

-
th step. Moreover, to simplify the proof, we assume that after this step M does not stop,
but works infinitely. More precisely, the accepting and rejecting states are universal. In
each of such states M has two identical transitions: it does not write any symbol on the
tape and it does not change its state. In other words, after accepting or rejecting M stays
infinitely in the same configuration. Such assumption about M allows us not to bother
about the numbering of configurations.

Every configuration is represented by a set of 2n
k

elements, each of them corre-
sponding to a single cell of the tape. To encode a position of an element in a configu-
ration, i.e. a consecutive number of a tape cell it represents, we use the unary relation
symbols P1, . . . , Pnk . Formally, Pia is true if the i-th bit of the position of a is set to 1.
We use the abbreviation P (a) to describe this position (0 ≤ P (a) < 2n

k

).
The following properties (for fixed l, 0 ≤ l < 2n

k

) can be easily expressed by
quantifier-free formulas of the length polynomial in n:

P (x) = l, P (x) ≥ l, P (x) = P (y), P (x) = P (y) + 1.

For example, the last property can be expressed as follows:∨
0≤i<nk

(Pix ∧ ¬Piy ∧
∧
j>i

(¬Pjx ∧ Pjy) ∧
∧
j<i

(Pjx ↔ Pjy)).

We connect each pair of elements a, b belonging to the representation of a same
configuration with both E1 and E2, i.e. we want E1ab ∧ E2ab to be satisfied in our
model.

We use the standard description of a configuration: for each symbol ai in the alpha-
bet of M (including blank) we use the unary relation symbol Ai, for each state qi - the
unary symbol Qi. We also have the unary symbol H describing the head position. An
element x represents a tape cell scanned by the head if Hx and Qix, for some i, are
true.

We begin our construction by enforcing that every model of ϕ contains a substruc-
ture that can be viewed as an infinite binary tree. The set of 2n

k

elements describing
a single configuration of M is treated as a ”node” of this tree.

We organize the structure in such a way that elements belonging to an even configu-
ration, i.e. a configuration whose depth in the tree is even, are connected to the elements
from the successor configurations by E1, and elements belonging to an odd configura-
tion are connected to the elements from the successor configurations by E2. We do not
impose any relations between elements that do not belong to a same configuration or
to two consecutive configurations. Additionally, we introduce two unary symbols: D0

true for elements belonging to even configurations, and D1 true for elements belonging
to odd configurations. One more unary symbol L indicates that the element belongs to
the left son of some node.

Let us start the construction with stating the existence of the node representing the
initial configuration of M on w. For elements of this node the special unary symbol I
is true. We assume that for this configuration L is true:

∃x (Ix ∧D0x ∧ Lx ∧ P (x) = 0, (17)
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∀x(Ix → (P (x) �= 2n
k−1 → ∃y (E1xy∧E2xy∧Iy∧D0y∧Ly∧P (y) = P (x)+1))).

(18)
The next formula expresses that for every element, except the last one, belonging to
a description of a configuration there exists a successor in this configuration:∧
i=0,1

∀x (Dix → (P (x) �= 2n
k

− 1

→ (∃y (E1xy ∧ E2xy ∧Dix ∧ (Lx ↔ Ly) ∧ P (y) = P (x) + 1)))). (19)

The existence of successor nodes is implied by the following formulas, in which
n⊕m ≡ n + m (mod 2):∧

i=0,1

∀x (Dix → ∃y (Ei+1xy ∧Di⊕1y ∧ Ly ∧ P (y) = 0)), (20)

∧
i=0,1

∀x (Dix → ∃y (Ei+1xy ∧Di⊕1y ∧ ¬Ly ∧ P (y) = 0)). (21)

Now we say that a model of our formula satisfies several basic properties of a compu-
tation tree. We can say that there is exactly one alphabet symbol in every tape cell:∧

k=0,1

∀x (Dkx →
∨
i

Aix) ∧
∧
j

∀x (Ajx →
∧
i�=j

¬Aix). (22)

In each configuration at most one element is scanned by the head:

∀xy (E1xy → (E2xy → ((Hx ∧Hy) → x = y))). (23)

Exactly the elements which represent tape cells observed by the head store information
about state. ∧

i

∀x (Qix → Hx) ∧ ∀x (H(x) →
∨
i

Qix). (24)

The next formulas ensure that the root of the tree describes the initial configuration in
the state Q0 of M on the input w = a0a1 . . . an−1.

∀x (Ix → (P (x) = 0 → (Hx ∧Q0x))), (25)∧
i<n

(∀x (Ix → (P (x) = i∧ → Wix))) ∧ ∀x (Ix → (P (x) ≥ n → Bx)), (26)

where B is the symbol representing blank.
The following formula says that if a tape cell of a configuration is not scanned by

the head then in the same cell of both successor configurations the alphabet symbol
does not change.∧
i=0,1

∀xy (Ei+1xy → ((Dix∧Di⊕1y∧¬Hx∧P (x) = P (y)) →
∧
i

(Aix ↔ Aiy))).

(27)
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Consider now a node t of the tree and the configuration c that is described by this
node. There are two cases: the state of the machine in this configuration is existential or
it is universal.

In the first case we enforce that the configuration represented by the left son of
t is created by applying one of the two possible transitions on c. Assume that for an
existential state q and a letter a there are two possible transitions: (q, a) → (q′, a′,→)
and (q, a) → (q′′, a′′,←). We put:∧

i=0,1

∀xy
(
Ei+1xy →

(
((Dix ∧Di⊕1y ∧Qx ∧Ax ∧ Ly ∧ P (x) = P (y))

→
(
(A′y ∧ ∀x (E1xy → (Next(y, x) → Hx ∧Q′x)))

∨ (A′′y ∧ ∀x (E1xy → (Next(x, y) → Hx ∧Q′′x)))
)))

, (28)

where the formula Next(x, y) is the abbreviation stating that x and y are two consec-
utive elements in the representation of a configuration: Next(x, y) ≡ E1xy ∧ E2xy ∧
(D0x ∧D0y ∨D1x ∧D1y) ∧ P (y) = P (x) + 1. Other possible situations, when both
transitions move the head forward or both transitions move the head backward, can be
handled similarly.

Consider now the case of a universal configuration. We enforce that the left son of
t is created by applying the first transition and the right son by applying the second
one. For a universal state q, a letter a and transitions (q, a) → (q′, a′,→) and (q, a) →
(q′′, a′′,←) we put:∧

i=1,2

∀xy
(

Ei+1xy →
(
((Dix ∧Di⊕1y) ∧ Qx ∧Ax ∧ P (x) = P (y))

→
(
¬Ly →

(
A′′x ∧ ∀x (E1xy → (Next(x, y) → (Q′′x ∧Hx)))

)
∧ Ly →

(
A′x ∧ ∀x (E1xy → (Next(y, x) → (Q′x ∧Hx)))

)))
. (29)

To finish our construction we give a formula stating that the machine never enters
the only rejecting state qr.

∀x (Qrx → false). (30)

Now, let ϕ be a conjunction of (17)–(30) (plus formulas symmetric to (28) and (29)).
Observe that the number of conjuncts and the size of each of them are polynomial in
the size of M and w.

We claim that ϕ is satisfiable if and only if M accepts w. Indeed, if M accepts
w then an accepting computation tree can be transformed into a model M of ϕ in the
following way. The root of the computation tree is transformed into the root of M.
Then we proceed recursively. Let c be a configuration in the computation tree and let
c′ be its code in M. If c is universal then we transform its left subtree into the left
subtree of c′ and its right subtree into the right subtree of c′. If c is existential then
we transform its accepting subtree into the left subtree of c′. Since we want to have
a complete binary tree, we have to define somehow also the right subtree of c′. We
can for example construct all nodes of this subtree in such a way that they agree with
c′ in predicates denoting alphabet symbols and for each element a from these nodes
M |= ¬Ha ∧

∧
i ¬Qia. It is easy to see that M is indeed a model of our formula.
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For the proof of the opposite direction we want to check that the existence of an
accepting computation tree is implied by the existence of a model M of ϕ. The set
of elements of M whose existence is enforced by (17), (18) is translated into the root
of computation tree. It describes the initial configuration of M on w because of (25),
(26). The construction of the further parts of the computation tree is recursive. Let us
assume that we have constructed a configuration c, which is encoded in M by the node
consisting of c1, . . . , c2nk . Let us go for example through the case when c is an even
configuration, i.e. for all i we have M |= D0ci. Let a0 and b0 be the elements whose
existence is ensured by (20), (21). We have M |= D1a0 ∧D1b0 ∧La0 ∧¬Lb0. By (19)
there exist two nodes consisting of a0, . . . a2nk and b0, . . . b2nk connected to the node
with ci by E1 such that:

– for all i: M |= P̄ (ai) = P̄ (bi) = i,
– for all i: M |= Lai ∧ ¬Lbi,
– for i < 2n

k − 1: M |= aiE1ai+1 ∧ aiE2ai+1 ∧ biE1bi+1 ∧ biE2bi+1.

If c is universal then we translate the node a0, . . . , a2nk into the left successor of c
and b0, . . . , b2nk into the right successor of c. Consider now the case of existential c.
Because of the appropriate formula of the form (28) we can translate a0, . . . , a2nk into
one of the successors of c. At this moment we leave the second successor undefined.

At the end, for formal conformity, we substitute undefined subtrees of existential
nodes with subtrees which agree with transition function of M . This is not essential
since in existential nodes we demand only one accepting successor. The construction of
ϕ, in particular its conjuncts of type (28) and (29), implies that the tree obtained in the
described way is indeed an accepting computation tree of M on w.

Remark. Note that the usage of equivalence relation symbols outside guards in our
proof is very limited. Actually, we only need guards which are conjunctions of two
atoms: E1xy ∧ E2xy, instead of just single atomic formulas.

The Upper Bound. In this proof we use the notion of intersection. An intersection (in
a relational structure with E1, E2 equivalence relations) is an equivalence class of the
relation E1 ∩E2. To denote intersections we use letters I, J . By ΘA(I) we denote the
isomorphism type of I in A. Equivalence classes of E1 and E2 are called E1-classes
and E2-classes, respectively. Let ϕ be a satisfiable formula in [E1, E2]-guarded normal
form. From an arbitrary model of ϕ we may obtain a model with all intersections of
size bounded exponentially in |ϕ|. It was shown for FO2+equiv[E1, E2] in [11]. Let
A |= ϕ be a model of ϕ with so exponentially bounded intersections. We construct
a new, forest-like model B |= ϕ. B is built from isomorphic copies of intersections
from A, thus we do not have to bother about witnesses for conjuncts of the form ∀∃++.

Several times in the construction we have the following task: for a given Ei-class
C of A, with a distinguished intersection I, build an Ei-class D of B, of size expo-
nential in |ϕ|, such that D contains an isomorphic copy of I as an intersection. The
desired D may be obtained in the same way as an exponential model M of a satisfiable
FO2+equiv[E] sentence ψ in [11]. The class C in our case corresponds to M in the
construction in [11], intersections of C correspond to E-classes of M. We skip details
here.

The construction of B is divided into (possibly) infinite number of stages:
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Layer 0. For every conjunct of ϕ of the form ∃x(α(x) ∧ χ(x)) we find an element
a ∈ A such that A |= α(x) ∧ χ(x). Let a ∈ I ⊆ C, where C is the E1-class of a.
We put a new intersection J , such that ΘA(I) = ΘB(J ), into the Layer 0 of B. We
construct a regular, exponential-size version D of C, containing J as an intersection.
After building D we may assume that all its elements have all the required witnesses
for conjuncts of the form ∀∃+−.
The Next Layers. We proceed recursively. Having constructed the Layer i we construct
the Layer i + 1. Let J be an intersection belonging to the i-th Layer. If i is even then
the whole E1-class of J is constructed. Similarly if i is odd then the whole E2-class
of J is constructed. Assume that i is even. The case of i odd is symmetric. We want
to construct E2-class of J , thus providing all the witnesses for formulas of the type
∀∃−+. Let I ⊆ A be such that ΘA(I) = ΘB(J ). Let C be the E2-class containing I.
We construct a regular, exponential-size versionD of C, containingJ as an intersection.
We put all the intersections of D, with the exception of J into the Layer i + 1 of B.
Note that it may happen that D consists only of J and then there is nothing to put into
the next layer.

Now, let us explain how to provide witnesses for conjuncts of the type ∀∃−− for
elements from J . Let b ∈ J . Consider a conjunct of ϕ of the form ∀x (α(x) →
∃y (β(x, y) ∧ ¬E1xy ∧ ¬E2xy ∧ χ(x, y))). Let a ∈ A be such that typeA(a) =
typeB(b) 5. If A |= α(a) then find an element a′ ∈ I′ ⊆ A such that A |= β(a, a′) ∧
¬E1aa

′ ∧ ¬E2aa
′ ∧ χ(a, a). Put a new intersection J ′ into the Layer i + 1. Set

ΘB(J ′) = ΘA(I ′). Let b′ be an element of type typeA(a′) in J ′. Set typeB(b, b′) =
typeA(a, a′). Set all the other 2-types between elements from J ′ and the elements from
the Layer i in such a way that they are negative, i.e. contain no positive occurrences of
binary predicates. Extend J ′ to its E2-class.

For all the pairs of elements for which we have not set their 2-type yet, we set them
in such a way that they are negative. We can do so safely, without violating the conjuncts
of ϕ of the form ∀∀, because all of such conjuncts say something only about elements
connected by binary relations.

This finishes the construction of a regular model. Observe that to check the exis-
tence of a regular model constructed in the described way it suffices to build doubly
exponential number of levels of a model. It is enough because the number of isomor-
phism types of intersections which may appear is at most doubly exponential. So later
we may just repeat the structure of trees. An alternating procedure working in exponen-
tial space, checking whether a GF2+EQ[E1, E2] sentence in [E1, E2]-normal form has
a regular model, can be naturally derived from the construction. �

6 Loosely Guarded Fragment
with One Equivalence/Transitive Relation

The guarded fragment with equivalence relations GF+equiv and the guarded fragment
with transitive relations GF+trans are undecidable. We know, however, that if we re-
strict the usage of equivalence/transitive relations to guards only then the obtained ver-
sions: GF+EG and GF+TG become decidable. In this section we show that this result
cannot be generalized to the loosely guarded fragment LGF. We prove that allowing

5 typeA(a) denotes the 1-type realized by a in A.
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just one equivalence or transitive relation makes LGF undecidable, even if this special
relation is used only in guards.

First we give an easy proof of:

Theorem 6. LGF3+TG[T ] forms a conservative reduction class.

Proof. Let ϕ be the conjunction of (31)-(34) below and the transitivity axiom trans[T ].

∃x Nx, (31)

∀x (Nx → ∃y (Txy ∧Hxy ∧Ny)), (32)

∀x (Nx → ∃y (Tyx ∧ V xy ∧Ny)), (33)

∀xyz((V yx ∧Hyz ∧ Txz) → ∃y(Txz ∧ Txy ∧ Tyz ∧Hxy ∧ V zy ∧Ny)). (34)

It is very easy to expand GN to a model of ϕ. We make N true for all elements
and set T to be the transitive closure of {((x1, y1), (x2, y2)) : x2 = x1 + 1 ∧ y1 =
y2 ∨ y1 = y2 + 1 ∧ x1 = x2}. Similarly, an expansion of Gm to a model of ϕ is
obtained by setting T to be the transitive closure of {((x1, y1), (x2, y2)) : 0 ≤ xi, yi <
m,x2 = x1 + 1 (mod m) ∧ y1 = y2 ∨ y1 = y2 + 1 (mod m) ∧ x1 = x2}.

Let us consider an infinite model A |= ϕ. We argue that A′ = A�N is grid-like, i.e.
we construct a homomorphism h : GN → A′. We start with embedding {(x, 0) : x ∈
N} into A′. Choose an element a0 in A′ satisfying (31) and set h(0, 0) = a0. Now if
h(x, 0) = ax then let h(x + 1, 0) be the witness for ax and (32). Assume now that we
have defined h(x, y) for all x ∈ N and y < k. We say how to extend h to the k − th
row of GN. Choose h(0, k) as a witness for h(0, k − 1) and (33). Now, let h(1, k) be
a witness for h(0, k), h(0, k−1) and h(1, k−1) and (34). We define h(x, k) in sequence
as witnesses for h(x− 1, k), h(x− 1, k − 1), h(x, k − 1) and (34).

We skip here the argumentation for grid-likeness of finite models. It goes the same
way as the proof of Lemma 2.4 in [13]. �

Observe that if we exchange the transitivity axiom trans[T ] in the above proof by
equiv[T ] then the proof still works correctly. Thus we have:

Theorem 7. LGF3+EG[T ] forms a conservative reduction class.

Remark. If we want to obtain only undecidability of LGF3+TG[T ] rather then the fact
that it forms a conservative reduction class, we can make it even in the case when T is
the only non-unary symbol allowed. In this case we use the formula stating that between
two elements connected by T there is no other element:

NB(x, y) ≡ ¬∃z (Txy ∧ Txz ∧ Tzy).

Now we can simulate Hxy and V xy by NB(x, y) and values of some additional unary
predicates (in particular the predicate D which is true exactly for elements in even
rows). For example the formula (34) should be substituted by

∀xyz ((Txy ∧ Tyz ∧ Txz) → (((NB(x, y) ∧NB(y, z)
∧(Dx ∧ ¬Dy ∧ ¬Dz ∨ ¬Dx ∧Dy ∧Dz))
→ ∃y(Txy ∧ Tyz ∧ Txz ∧NB(x, y) ∧NB(y, z) ∧ (Dx ↔ Dy)))) (35)

Note that due to the lack of the orientation of E this trick does not work for LGF3+
EG[E].
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Abstract. We show that the modular decomposition of a countable
graph can be defined from this graph, given with an enumeration of its set
of vertices, by formulas of Monadic Second-Order logic. A second main
result is the definition of a representation of modular decompositions by
a low degree relational structures, also constructible by Monadic Second-
Order formulas.

1 Introduction

The present article investigates the modular decomposition of countable graphs
and more precisely, its construction by Monadic Second-Order (MS in short) for-
mulas. The notion of modular decomposition of a finite graph has been studied
extensively in many articles, and under various names. Möhring and Raderma-
cher give in [17] a survey of this frequently rediscovered notion. It is important,
not only for algorithmic purposes, but also for establishing structural proper-
ties, in particular of partial orders and their comparability graphs (see Kelly [15]
who discusses finite and infinite comparability graphs and their modules); for
instance, one can determine the transitive orientations of a comparability graph
from its modular decomposition.

The modular decomposition of a finite graph is the finite tree of its strong
modules, with inclusion as ancestor relation, together with some structure at-
tached to the nodes of the tree. Each node is a graph operation, either the disjoint
union, the complete product, the sequential product or the substitution to the
vertices of a prime graph, i.e., a graph that is not expressible in terms of these
operations. The strong modules of an infinite graph can be defined in the very
same way as for finite graphs. They are either pairwise disjoint or comparable
for inclusion, but they do not form a tree, defined as a connected and directed
graph without circuits. They form a generalized tree defined as a partial order
such that the set of elements larger than any element is linearly ordered (and
called below simply a tree). Such trees may have no root. The linearly ordered
set Q of rational numbers is a tree in this sense. For defining the modular de-
composition of a countable graph, we do not take all strong modules, but only
some of them called robust. Doing so we obtain a countable tree associated with
a countable graph. The basic definitions are reviewed in Section 2.
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Our goals here are to represent modular decompositions of countable graphs
by relational structures, and to use MS logic to construct from a graph its modu-
lar decomposition. Another concern is to describe dense graphs (i.e., graphs hav-
ing “lots of edges”) by relational structures (actually vertex- and edge-labelled
graphs) which are as sparse as possible. The linearly ordered set Q has an empty
Hasse diagram. One may think that one must represent it by a complete infi-
nite graph. However, it can be defined as a certain ordering of the nodes of the
complete infinite binary tree (here in the usual sense). A similar binary tree can
be constructed from any linearly ordered set A by first-order formulas using an
auxiliary enumeration of A (i.e., an ordering of A isomorphic to the ordinal ω).
By using these facts, we can represent the modular decomposition of a count-
able graph G by a countable graph of maximum degree m + 3 where m is the
least upper bound of the degrees of the prime induced subgraphs of G. It may
happen that m is finite, even if G has vertices of infinite degree. This is the case
for countable cographs, defined as the graphs without induced P4 (i.e., without
induced path of length 3).

Because of space limitations, proofs are sketched or omitted. Complete proofs
can be found in [11].

2 Robust Modules and Modular Decomposition

Unless otherwise specified, trees, forests, graphs and relational structures are
countably infinite. A linear order isomorphic to ω is called an ω-order. An ω-
ordering of a set is equivalent to an enumeration x0, x1, ..., xn, ... of this set.

Definitions 1. (Trees, ∨-trees and leafy trees.) A forest is a partial order (T,≤)
such that for every element x, called a node, the set T x = {y ∈ T | x ≤ y} is
linearly ordered. A tree is a forest that is directed, i.e., such that every two nodes
have an upper bound. A forest is the disjoint union of the trees which are the
connected components of its comparability graph.

A tree is a ∨-tree (read a “sup-tree”) if any two nodes x and y have a least
upper bound denoted by x ∨ y. A sub-∨-tree must preserve the function ∨.

A leaf is a minimal node, a root is a maximal one. An internal node is one
that is not a leaf. A forest may have one or several roots, or no root at all. It
may have no leaf. A tree has at most one root. We say that a tree is leafy if it is
a ∨-tree and every internal node is the least upper bound of two leaves. A finite
tree is a finite rooted tree in the usual sense, and its root is the unique maximal
element.

If x ≤ y, we say that the node y is an ancestor of x. We say that y is the
father of x if it the (unique) minimal node among those > x. We say in this case
that x is a son of y.

For a partial order (P,≤) we use the notations P x = {y ∈ P | x ≤ y},
P>x = {y ∈ P | y > x}, Px = {y ∈ P | y ≤ x} and P<x = {y ∈ P | y < x}. We
let HD(P ) denote its Hasse diagram, i.e. the directed graph with set of vertices
P and edges x → y whenever x < y and there is no z with x < z < y. We say
that P is diagram-connected if P is the transitive closure of HD(P ) and HD(P )
is connected.
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Thus a tree is diagram-connected iff every node which is not the root has a
father, and the graph of the father relation is connected. Any two nodes are thus
at finite distance in the graph HD(P ). A diagram-connected tree may have no
root.

Definitions 2. (Directions in ∨-trees.) Let T be a ∨-tree. For every x, T<x

ordered by the induced ordering is a forest, hence a union of trees. Each of these
trees D is called a direction relative to x. If y ∈ D, we say that D is the direction
of y relative to x. We denote it by dirx(y). We denote by Dir(x, T ) the set of
directions relative to x. The degree of a node x is the cardinality of Dir(x, T ).
A tree is binary if every node has degree at most 2. If a node is y ∨ z where y
and z are incomparable, it has degree at least 2. If T is finite, this definition of
the degree of a node yields the number of its sons.

A ∨-tree (T,≤) is ordered if it is equipped with a linear order �x on each set
Dir(x, T ).

Definitions 3. (Graph substitutions.) Graphs are simple, directed, loop-free.
Undirected graphs are those where each edge has an opposite edge. We denote
by x → y the existence of an edge from x to y. Although a forest is a graph
or can be considered as a graph, we will use the special term “nodes” for the
vertices of a tree or a forest. We denote by VGthe set of vertices of a graph G.

If G is a graph and X ⊆ VG, we denote by G[X ] the induced subgraph of G
consisting of X and all the edges, the two ends of which are in X . If E is a set
of edges of G, we denote by G[E] the subgraph of G consisting the edges of E
and all their end vertices.

If G and H are graphs with disjoint sets of vertices, and u is a vertex of G,
we denote by G[H/u] the graph resulting of the substitution of H for u in G. Its
set of vertices is VG∪VH −{u}, its edges are those of H , those of G that are not
incident with u, the edges x → y whenever x ∈ VG − {u}, x → u in G, y ∈ VH ,
and the edges y → x whenever x ∈ VG − {u}, u → x in G, y ∈ VH .

If G and H are not disjoint, we replace H by an isomorphic copy disjoint
with G. If u1, ..., un are vertices of G and H1, ..., Hn are graphs, we define
G[H1/u1, ..., Hn/un] as G[H1/u1]...[Hn/un]. The order in which substitutions
are done is irrelevant, hence we can consider they are done simultaneously.

If Hv is a graph associated with each v ∈ VG, we denote by G[Hv/v, v ∈ VG]
the graph resulting from the simultaneous substitution in G of Hv for v ∈ VG.
It can be defined as the graph with vertices (v, w) for v ∈ VG and w ∈ VHv and
edges (v, w) → (v′, w′) iff either v = v′ and w → w′ (in Hv), or v → v′ (in G).

We will also use the graph operations ⊕,⊗ and −→⊗ : G ⊕ H is the disjoint
union of G and H , G−→⊗H is G⊕H augmented with edges from each vertex of G
to each vertex of H , and G⊗H is G

−→⊗H augmented with edges from each vertex
of H to each vertex of G. The graphs G⊕H, G

−→⊗H and G⊗H can be defined
as K[G/u,H/v] for graphs K with two vertices u and v, and, respectively, no
edge, an edge from u to v, edges between u and v in both directions. They are
associative. We will consider them as operations of variable arity in the usual
way. The operations ⊕,⊗ are also commutative.
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More generally, every graph can be turned into a graph operation. With a
finite graph G, with vertices v1, ..., vn we associate an n-ary graph operation,
denoted by σG (where σ stands for substitution) defined by σG(H1, ..., Hn) =
G[H1/v1, ..., Hn/vn]. If G is infinite, then σG is defined similarly as an operation
of countably infinite arity.

Definition 4. (Modules.) Let G be a graph. A module of G is a subset M of
its set of vertices VG such that for every vertices x, y in M and every vertex
z not in M : x → z implies y → z and: z → x implies z → y . In words this
means that every vertex not in M “sees” all vertices of M in the same way. (This
notion is studied in several works in particular [15], [17] and [13], in different
formal frameworks and using different terminologies). If M is a module then
G = H [G[M ]/v] for some H and v. Hence the notion of a module identifies a
way of expressing a graph as the result of a substitution.

A module is strong if it is non empty and does not overlap any module. (Two
sets meet if they have a nonempty intersection. They overlap if they meet and are
incomparable for inclusion.) The singletons and the set VG are strong modules.
We will identify frequently a module M and the subgraph G[M ] it induces. A
graph G is prime if it has no trivial module, where the trivial modules are ∅,
the singletons and VG.

The smallest prime undirected graph is the path P4 with 3 edges and 4
vertices. The smallest prime directed graphs have 3 vertices. The graph H is a
module of G[H/u] and the graphs G and H are modules of G ⊕H , G−→⊗H and
G⊗H .

Fact. A countable graph may have uncountably many strong modules.

Given two vertices x, y in a graph G, we let M(x, y) be the intersection of
all strong modules containing x and y. It is a strong module. We call M(x, y) a
robust module. It may be the set of all vertices or {x} = M(x, x). A countable
graph has countably many robust modules. The maximal proper strong (mps in
short) modules of a graph G are the maximal proper strong submodules of its
robust modules.

Proposition 1. For every graph G, the robust modules form a leafy tree, de-
noted by rdec(G) which is a sub-∨-tree of the tree of strong modules. Every strong
module (in particular G) is the union of the directed set of robust modules in-
cluded in it. A strong module that is not a singleton is robust iff it is the father
of some strong module.

Proposition 2. [12] Let G be a graph.

1. For every non singleton robust module M, we have one and only one of the
following possibilities:
(I) either G[M ] is the disjoint union (denoted ⊕ ) of a family of connected
graphs Ci, i ∈ I,
(II) or G[M ] is the complete product (denoted ⊗ ) of a family of graphs
Ci, i ∈ I,where no Ci is of type II,
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(III) or G[M ] is the linear product (denoted −→⊗ ) of a linearly ordered family
of graphs Ci, i ∈ I,where no Ci is of type III,
(IV) or G[M ] = P [Ci/ui, i ∈ I] where P is a prime graph ; this prime graph
is unique up to isomorphism.

2. The graphs Ci are the mps submodules of M . They are not necessarly robust.
Their common father in the tree of strong modules of G is M .

3. The graphs P of Case IV are induced subgraphs of G.

The graphs P of case IV are called the prime factors of G. If G is given as
Q[P [Hv/v, v ∈ VP ]/u], with P prime, then P is one of its a prime factors. In
order to decompose G it suffices to decompose separately Q and the graphs Hv.

Definition 5. (Modular decomposition.) By decomposing all robust modules
(using Proposition 2), we obtain a hierarchical structure yielding the modular
decomposition. The modular decomposition of a (countable) graph G is defined
formally as the countable tree mdec(G) of its robust and mps modules. For
finite graphs, the notions of a strong and of a robust module coincide. Hence
this notion of modular decomposition is equivalent for finite graphs to the usual
one which is the finite rooted tree of the strong modules.

We now analyze the structure of the trees mdec(G). A limit node in a tree
is a node which is the least upper bound of a directed set of strictly smaller
elements. A father node is a node that has at least one son. In a ∨-tree, a father
node may be also a limit node.

A ∨-tree is said to be modular if it satisfies the following conditions:

1. No father node is a limit node.
2. Every father node is the least upper bound of two leaves.
3. A limit node has degree one. Every limit node is the least upper bound of a

directed set of non-limit nodes.

Proposition 3. 1. The tree of the modular decomposition of a graph is a mod-
ular tree.

2. Every modular tree is the tree of the modular decomposition of some graph.

Definition 6. (Embeddings of trees.)
Let (T,≤,�) and (U,≤′,�′) be ordered trees. (We denote by � the family

of linear orders �x associated with nodes). A ∨-embedding of T into U is an
injective mapping h : T → U , such that for all x, y in T : h(x) ≤′ h(y) iff x ≤ y,
h(x ∨ y) = h(x) ∨′ h(y), and if D, E ∈ Dir(x, T ) and D �x E, then h(D) �′

h(x)

h(E), where h(D) is the unique direction in Dir(h(x), U) that contains {h(u) |
u ∈ D} (it is not the set extension of h on the set D).

If furthermore, T ⊆ U and h is the inclusion mapping, we say that T is a
sub-∨–tree of U. For trees which are not ordered, the definitions are the same
without the conditions on the ordering of directions.

Proposition 4. 1. Every leafy tree T ∨−embeds into a unique (up to isomor-
phism) minimal (for ∨−embedding) modular tree denoted by T̂ .

2. T is the sub-∨–tree of T̂ induced by the non-limit nodes.
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Proof (Sketch). This construction is a completion, where we add only the ele-
ments needed as greatest elements of certain directions. (Similar but different
completions are used in semantics of recursive program schemes, see [5]). We let
T̂ consist of the following sets: the set of all directions (i.e., the union of the sets
Dir(x, T )) and the sets of the form Tu (= {w ∈ T | w ≤ u}) for all nodes u, (a
direction can be of the form Tu) ordered by inclusion. The “new” elements in T̂
are the directions which have no greatest element in T .

Proposition 5. For every graph G, we have mdec(G)= ̂rdec(G), where rdec(G)
is the leafy tree of robust modules of G.

We wish to have a representation of the modular decomposition of a graph
G by a relational structure from which G can be defined in a unique way. Hence,
it is not enough to know the “abstract” tree mdec(G), we need also represent in
a way or another the information attached to each node, that describes which
of cases I-IV of Proposition 2 does apply.

The tree mdec(G) can be seen as the syntactic tree of an algebraic expression
denoting G, built with substitution operations, possibly of infinite arity. We do
not develop here this algebraic aspect (see [11]), but we define a relational struc-
ture, somehow equivalent to these algebraic expressions and suitable for express-
ing properties of modular decomposition in MS logic. Hence we construct from
mdec(G) and the five types of nodes (of modules) a binary relational structure
Gdec(G), equivalently a vertex- and edge-labelled directed graph, from which G
can be defined. We call it the graph representation of the modular decomposition
of G.

Definition 7. (Graph representations of modular decompositions.)
The structure Gdec(G) consists of the tree mdec(G) = (T,≤), augmented

with edges between the sons of the nodes M of T (which are modules of G),
in order to represent the edges of G between the submodules corresponding to
these sons. It is a straightforward generalization of the similar notion defined
in [8]. Formally, we define Gdec(G) from mdec(G) as follows:

For each node M of mdec(G) which is neither a limit node nor a leaf, whence
has at least two sons, we do the following according to its type (cf. Proposition 2):

– if M corresponds to a robust module of type I, we label it by ⊕,
– if M corresponds to a robust module of type II, we label it by ⊗,
– if M corresponds to a robust module of type III, we label it by −→⊗ , and we

define a linear order on the sons of M (which corresponds to the linear order
of the strong modules Ci, cf. Proposition 2),

– if M corresponds to a robust module of type IV, we create edges between
the sons of M corresponding to the edges of P in an obvious way.

We obtain thus the structure Gdec(G) defined as:

(T,≤, lab⊕, lab⊗, lab−→⊗ , edg, order)

where (T,≤) is the tree mdec(G), lab⊕, lab⊗, lab−→⊗ are unary predicates defin-
ing the labels ⊕,⊗, −→⊗ of the nodes of types I,II,III, edg is a binary relation



The Modular Decomposition of Countable Graphs 331

representing the edges created between sons of nodes of type IV, and order is
the binary relation such that order(x, y) iff x �x∨y y and x, y are sons of x ∨ y,
which implies that x∨y is labelled by −→⊗ . If G is undirected then order and lab−→⊗
are empty and can be omitted. We can consider Gdec(G) as a graph with three
types of edges, corresponding to the binary relations ≤, edg, order, and labelled
by ≤, edg, order. The symbols ⊕,⊗, −→⊗ are thus vertex labels.

The objectives are to prove that Gdec(G) and G can be defined from each
other by transformations of relational structures specified by monadic second-
order formulas, and thus to obtain that the monadic second-order properties of
the modular decomposition of a graph G are monadic second-order expressible
in G and vice-versa.

Monadic second-order logic and monadic second-order transformations of
structures (called MS transductions) are presented in many works by the first
author ([6], [8], [7]). Lacking of space, we only recall that an MS transduction
(also called sometimes an MS interpretation, but this term conflicts with its use
in semantics, cf. [5]) is a transformation of relational structures that is specified
by MS formulas forming its definition scheme. It transforms a structure S into a
structure T (possibly over a different set of relations) such that the domain DT

of T is a subset of DS × {1, ..., k}. (The numbers 1, ..., k are just a convenience
for the formal definition ; we are actually interested by relational structures up
to isomorphism). In many cases, this transformation involves a bijection of DS

onto a subset of DT , and the definition scheme can be constructed in such a way
that this bijection is the mapping: x  → (x, 1). Hence, in this case DT contains
DS × {1}, an isomorphic copy of DS, and we will say that the MS transduction
is domain extending, because it defines the domain of T as an extension of that
of S. (This does not imply that the relations of T extend those of S). An FO
transduction is a transduction defined by a first-order definition scheme.

Proposition 6. A graph G can be defined by an FO transduction from Gdec(G)
as a graph, the vertices of which are the leaves of mdec(G).

Theorem 1. There is a domain extending MS transduction, let γ, constructing
Gdec(G) from (G,�) where � is an ω-order. There is an FO transduction δ
such that δ(Gdec(G)) = G for every graph G.

Proof (Sketch). We describe the main steps of the construction of γ.
Step 1 : The notions of a module, of a strong module and of a robust module

are MS expressible. The types I, ..., IV of robust modules can also be identified by
MS formulas. Moreover, there exist MS formulas ϕ1(X,Y ) (resp. ϕ2(X,Y )) such
that for all sets of vertices M,M ′ of a graph G, ϕ1(M,M ′) (resp. ϕ2(M,M ′))
holds in G iff M is a robust module of type I, (resp. of type II), and M ′ is one of
the corresponding modules Ci.There exists an MS formula ϕ3(X,Y, Z) such that
for all sets of vertices M,M ′,M”, ϕ3(M,M ′,M”) holds iff M is a robust module
of type III, M ′ is a module Ci, M” is a module Cj and i < j. Finally, there
exists an MS formula ϕ4(X,Y, Z) such that for all sets of vertices M,M ′,M”,
ϕ4(M,M ′,M”) holds iff M is a robust module of type IV, M ′ is a module Ci,
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M” is a module Cj and ui → uj in the graph P . All these formulas can be
constructed by straightforward translations from the definitions.

Step 2 : Given a graph G, we construct the leafy tree rdec(G) of its robust
modules. The leaves of rdec(G) are the vertices of the graph. We must define the
internal nodes of rdec(G) which correspond to the robust modules. The ω-order
� on vertices is here useful. Each robust module M has at least 2 sons (they are
also modules). We let fl(X) be the �-smallest vertex in X ⊆ VG. We let N be
the son of M containing fl(M), and we take fl(M − N) as the representative
of M . Two robust modules are represented by different vertices. (This would
not be the case if we decided to represent M by fl(M)). We can thus construct
rdec(G), by an MS transduction, as a tree with set of nodes VG×{1}∪RG×{2},
where RG is the set of vertices which represent some module.

Step 3 : We know from Proposition 5 that mdec(G) is the completion of
rdec(G). This completion is a domain extending MS-transduction, using again
an auxiliary ω-ordering. The technique is similar to the one used in the previous
step. We represent by some leaf, in a well-defined way, each direction to be com-
pleted: using � we define a linear order on directions ; we represent a direction
D by fl(D′) where D′ is the next one in this order (among directions relative to
the same node x) ; a maximal direction (in the case where x has finite degree)
is represented by x. Hence if N is the set of nodes of rdec(G), the completed
tree mdec(G) has set of nodes Nmdec(G) = N × {1} ∪R× {2} ∪ S × {3}, where
R (S) is the set of nodes representing non-maximal (maximal) directions to be
completed.

Step 4 : An MS transduction transforms (VG∪Nmdec(G), edgG,≤mdec(G)) into
Gdec(G). Its definition is a straightforward translation from the definition using
Step 1.

Since the composition of several domain extending MS transductions is a
domain extending MS transduction, we get a domain extending MS transduction
γ that maps (VG, edgG,�) into Gdec(G).

The inverse of γ: We define δ. The vertices of G are the leaves of the tree
underlying Gdec(G), hence can be identified by FO formulas. Given two vertices
x and y of G, whether there is in G an edge x → y can be determined from the
label of x ∨ y in Gdec(G) and, when x ∨ y satisfies case III, by the ordering the
directions of x and y relative to x ∨ y (by using the condition “there exist sons
u, v of x ∨ y such that order(u, v), x ≤ u, and y ≤ v”), and when x ∨ y satisfies
case IV, the existence of an edge in P between the submodules containing x and
y (by the condition “there exist sons u, v of x∨ y such that edg(u, v), x ≤ u and
y ≤ v”).

3 Universal ∨−Trees

It is well-known that the linearly ordered set Q is universal for finite and count-
able linear orders: it embeds each of them and is itself countable. We will con-
struct a universal ordered tree, where universality is relative to ∨-embeddings.

Definition 8. (Ordered trees constructed from linear orders.) We let S and D
be two nonempty linearly ordered sets. We let Aseq(S,D) denote the set of
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alternating sequences of the form: s1d1s2d2...dnsn+1, for n ≥ 0; they have at
least one occurrence of an element in S. We order them by ≤S,D defined by:
w ≤S,D u iff u = u′s, w = u′s′w′ for some u′ in (SD)∗, some w′ in (DS)∗,
some s, s′ in S with s′ ≤S s. In particular, w ≤S,D u if u ≤pref w (where ≤pref

denotes the prefix order on sequences).

Lemma 1.

1. The ordered set (Aseq(S,D),≤S,D) is a ∨-tree, denoted by T (S,D).
2. The directions in T (S,D) relative to a node us (for u ∈ (SD)∗, s ∈ S) are

the nonempty sets of the following forms:

D(0, us) = {us′w | s′ ∈ S, s′ <S s, w ∈ (DS)∗} and:
D(d, us) = {usdw | w ∈ S(DS)∗} for d ∈ D.

D(0, us) is called the main direction relative to us. We let Q− be the set of
negative rational numbers and Q+ be the set of positive ones. Of course they
are both order-isomorphic to Q, but it is more convenient to distinguish them.
We let D = Q− + Q+ (i.e., we concatenate as ordered sets Q− and Q+), we
let S = Q and we make the ∨-tree T (S,D) into an ordered tree by ordering
directions as follows:

D(d, us) �us D(0, us) �us D(d′, us) for d ∈ Q−, d′ ∈ Q+, and
D(d, us) �us D(d′, us) for d, d′ ∈ D, d < d′.

We denote this tree by UT (Q,Q−,Q+) (read Universal Tree).

Proposition 7. Every ordered tree ∨-embeds into UT (Q,Q−,Q+).

Proof (Sketch). We consider an ordered tree (T,≤,�), ω-ordered by � with
corresponding enumeration denoted by t0, ..., tn, ... We define a structuring of T
that depends on this enumeration and associates a finite depth with each node.
This structuring will be the basis of a representation of ordered trees by “usual”
binary trees that will be considered in Section 4.

Step 1: We associate with every x ∈ T a unique subset U(x) characterized
as follows:

1. U(x) is a maximal chain containing x,
2. it is lexicographically minimal with this property, which means that for ev-

ery maximal chain W containing x and different from U(x), the �-smallest
element of (U(x) −W ) ∪ (W − U(x)) is in U(x).

We note for later use that this set is MS definable. Some facts: if y < x and
y ∈ U(x), then U(y) = U(x). If U(x) �= U(y), then U(x) ∩ U(y) = T z for some
z, and if x and y are incomparable, then z = x ∨ y.

Step 2 : We define a sequence of chains W0, ...,Wn, ... by:
W0 = U(t0), w1 is the � -smallest node not in W0,
W1 = U(w1) −W0, ...
wn is the � -smallest node not in W0 ∪W1 ∪ ... ∪Wn−1,
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Wn = U(wn) − (W0 ∪W1 ∪ ... ∪Wn−1), ...
Every node has a finite depth, d(x) = 0 if x ∈ W0, d(x) = 1 + d(p(x)) if

x ∈ Wn+1 and p(x) is the ≤ −smallest node strictly above all nodes in Wn+1.
(Note that Wn+1 = U(wn+1) − T p(x)).

Hence x of depth n has a sequence of ancestors p(x), p2(x), ..., pn(x) of depths
n− 1, n− 2, ..., 0.

Step 3 : For each m we fix an (order preserving) embedding hm : Wm → Q,
and we let h(x) = hm(x) if x ∈ Wm.

Step 4 : We associate with x as in Step 2 the sequence of rational numbers
h(pn(x))...h(p(x))h(x). We have in this way the elements s1, s2, ..., sn+1 of a
sequence s1d1s2d2...dnsn+1 in ASeq(Q,Q− ∪ Q+), but the di’s which encode
directions are still missing.

Step 5 : The main direction relative to x (cf. the lemma) is the one that meets
the maximal chain U(x). The set of directions �-smaller than the main direction
is linearly ordered by �. We embed it into Q− and we do the same into Q+ for
the directions which are �-larger than the main direction. Hence x is finally
represented by: h(pn(x))fn−1...h(p2(x))f1h(p(x))f0h(x), where fi represents the
direction of pi(x) relative to pi+1(x).

We have defined in this way a ∨-embedding of (T,≤,�) into the tree UT (Q,
Q−,Q+).

Remarks. 1. Using an obvious extension of the notation, UT (1,∅,N) is a
tree where each infinite tree in the sense of [4] ∨-embeds.

2. Fräıssé defines in [14] (Theorem 6.2 of Chapter 10) a (countable) tree W,
which is actually the unordered tree underlying UT (Q,∅,1). All finite or
countable trees embed in W. His theorem concerns trees and embeddings,
and not ordered trees and ∨-embeddings as does our Proposition 7. The tree
W is a binary ∨-tree and ∨-embeds all binary ∨-trees, but only binary ∨-
trees since it is binary and least upper bounds of pairs of nodes are preserved.

4 Representing Modular Decompositions
by Low Degree Relational Structures

Our objective is to represent ordered trees and modular decompositions by rela-
tional structures of lowest possible degree (the notion of degree is as for graphs)
by generalizing the observation that the dense structure (Q,≤) is isomorphic
to the set of nodes of the complete infinite binary tree, a graph of degree 3,
ordered appropriately. Let us give some motivations for this investigation. For
finite objects like graphs and partial orders, space efficient representations are of
interest. For an example, every finite partial order P can be represented by its
Hasse diagram, which may contain O(m1/2) edges whereas the directed graph of
P has m edges. The same ratio holds for certain dense cographs represented by
their modular decompositions. In both cases the original partial order (or graph)
can be determined from its Hasse diagram (or its modular decomposition) by
computations of transitive closures, hence by MS transductions.
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This motivation does not apply to infinite graphs, but bounds on degrees
of infinite structures are nevertheless interesting because they yield structural
or logical properties. For examples, every equational graph of bounded degree is
prefix recognizable, see Caucal [3], or Barthelmann [1] for a similar result. MS
logic with edge set quantifications is as powerful as MS logic without them for
expressing properties of sparse graphs, see [9].

We achieve this goal and we define mutual transformations of relational struc-
tures that are MS transductions.

Definition 9. (Standard binary trees.) By a standard binary tree, we mean a
simple directed edge-labelled graph T = (NT , lsonT , rsonT ) where NT is the
finite or countable set of nodes, lsonT and rsonT are two binary functional
relations defining for each node its left son and its right son. A node may have
no son, two sons, or just a right son or a left son. The root is the unique node of
indegree 0 and every node is reachable from it by a unique directed path. For a
standard binary tree T , and x, y ∈ NT , we write x →l y if y is the left son of x,
x →r y if y is the right son of x, and x → y if y is the left or the right son of x.

A linear order, the in-order, on NT is defined by: x ≤in,T y iff x = y or
x →r z →∗ y or y →l z →∗ x for some z, or t →l z →∗ x and t →r z′ →∗ y for
some t, z, z′.

We let Ω(T ) denote the linearly ordered set (NT ,≤in,T ). The mapping Ω is
an MS-transduction because the transitive closure of a given binary relation is
expressible by an MS formula. Our objective is to construct T from Ω(T ) by an
MS transduction.

Proposition 8. 1. There exist first-order formulas λ(x, y) and ρ(x, y) that de-
fine in every structure (N,�,�) such that � is a linear order and � is an
ω-order, binary relations lson and rson such that (N, lson, rson) is a stan-
dard binary tree T such that Ω(T ) = (N,�). This tree T is defined from
(N,�,�) by an FO transduction.

2. There exists a domain extending FO transduction that transforms a standard
binary tree T into a standard binary tree U such that (Leaves(U),≤in,U ) is
isomorphic to (NT ,≤in,T ).

By combining the two constructions, one can represent, using an FO-transdu-
ction, the ordered set N as the in-ordered set of leaves of a standard binary tree
whereas the first one represents it as the in-ordered set of nodes.

Proof (Sketch).

1. See [10].
2. This is a classical transformation: for an example, using the notation of trees

by terms, a(b, c) is replaced by ∗(b, ∗(a, c)).

Thus we can represent the universal tree UT (Q,Q−,Q+) and whence to all
trees via Proposition 7, by standard binary trees with appropriate node labels.
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Proposition 9. There exists a domain extending MS transduction α that asso-
ciates with every ordered tree T that is also ω-ordered, a node-labelled standard
binary ω-ordered tree W = (NW , nodeT , lsonW , rsonW ) and an MS-transduction
β that defines T from W .

Intuitively, α encodes T into a binary tree and β is its inverse, the decoding
transduction.

Proof (Sketch). We first describe the idea for a tree that is embedded into
UT (Q,Q−,Q+), by Proposition 7. A node x is described by a sequence of ra-
tional numbers s1d1s2d2...dnsn+1 such that s1 is a node on the chain of nodes
of depth 0, d1 is a direction relative to s1, saying “in which direction to go next
below s1”. This direction indicates a chain of nodes of depth 1, in which s2 is
selected. Then d2 indicates where to go next, etc... until one reaches sn+1.

By Proposition 8, every rational number can be represented by a path in a
standard binary tree, i.e. a word in {left, right}∗. We concatenate the words
representing s1, d1, s2, d2, ..., dn, sn+1 in this order, and we obtain a path in a
standard binary tree. The edges of this path are colored, say in blue for those
encoding the positions s1, s2, ..., sn+1 and in red for those encoding the direc-
tions d1, d2, ..., dn. So we can distinguish in a path the portions encoding posi-
tions and those encoding directions. It follows that all trees, and in particular
UT (Q,Q−,Q+) can be represented as subtrees of the complete standard binary
tree with colored edges. Actually, coloring an edge is equivalent to coloring its
target. So node labels are sufficient and we can use a single unary relation nodeT .

Proposition 8 says also that for a linear order given with an auxiliary ω-order,
the encoding of its elements by paths of the binary tree is definable by an MS
transduction. By combining the transductions associated at each depth with the
chains Wi and with the sets of directions (cf. the proof of Proposition 7), one
obtains the desired one.

We now apply this result to the representation of modular decompositions.

Definition 10. (Sparse representations of modular decompositions.) Assuming
that, by Proposition 9, (T,≤) is represented by a node-labelled standard binary
tree (W,nodeT , lsonW , rsonW ), then we define a sparse representation of the
modular decomposition of G as a structure:

Sdec(G) = (W,nodeT , lsonW , rsonW , lab⊕, lab⊗, lab−→⊗ , edg).

The relation order is no longer necessary because the linear order on directions
in T is handled by the inorder on W derived from the left and right types of
sons.

Theorem 2. There exists a domain extending MS transduction that associates
with an ω-ordered graph G a sparse representation Sdec(G) of its modular de-
composition. The structure Sdec(G) is a vertex- and edge-labelled graph of degre
m+3 where m is the maximum degree of a vertex in a prime factor of G (cf
case IV of Proposition 2). There exists an MS-transduction that defines G from
Sdec(G).
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Proof. It suffices to combine the MS transductions of Proposition 1 and Propo-
sition 9. The tree (T,≤) underlying Gdec(G) is not ordered: only the sons of the
nodes of type III are linearly ordered, whereas Proposition 9 uses ordered trees.
But since an ω-order is available in G whence in T , we can use it to make T into
an ordered tree, just by defining a linear order on the directions relative to the
nodes of types I,II and IV. The bound on the degree of Sdec(G) follows from
the definitions.

5 Concluding Remarks and Questions

We have proved that the graph Sdec(G) representing the modular decomposition
of a countable graph G can be defined from G and any ω-order of its vertices by
an MS transduction, and that, conversely, G is definable from Sdec(G) also by
an MS transduction.

Finite presentations of countable graphs of several types are studied by Blu-
mensath and Graedel in [2]. One can thus ask whether a finite presentation of
G yields one of same type of Sdec(G). A graph G is VR-equational (i.e. is the
canonical solution of a finite system of equations over so-called VR operations)
iff it is the image of the standard binary tree B = ({0, 1}∗, lsonB, rsonB) under
an MS transduction (Proposition 2.2 of [2]). If G is VR-equational, and if an ω-
order of VG is MS definable, then by Proposition 2, Sdec(G) is also the image of
B under an MS transduction, hence is VR-equational. (Since no ω-order on B is
MS definable, the second assumption cannot be deleted). Conversely, if Sdec(G)
is VR-equational, so is G.

Question 1. Is the former assertion true without the hypothesis that an ω-order
of VG is MS definable?

It is possible that something weaker than an ω-order (e.g., a partial order of
some kind) is sufficient for Theorems 1 and 2 to hold.

The article [2] studies in detail automatic structures (also considered in [16] ;
they contain the VR-equational graphs, characterized also as prefix-recognizable
graphs). These structures have domains defined as regular languages and re-
lations defined by multihead synchronized automata. The tree B ordered by
inorder is an automatic structure. So is the universal tree UT (Q,Q−, Q+) with
domain defined as (LQ.LQ∗)∗LQ where LQ = (0 ∪ 11)∗10 represents B and
LQ∗ = (0 ∪ 1)(0 ∪ 11)∗10 represents the linear order Q− + Q+.

If in the structure Sdec(G) we replace lsonW and rsonW by ldesW and rdesW
such that ldesW (x, y) holds iff x ≤T u where lsonW (u, y) holds, and similarly
for rdesW , then we obtain a binary structure Fdec(G) (that is no longer sparse)
from which G can be constructed by an FO transduction. It follows that G is
automatic if Fdec(G) is, because the image of an automatic structure under an
FO transduction is automatic ([2] Proposition 4.3).

Question 2. For which graphs G is it true that the binary structure Fdec(G) is
automatic?
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Abstract. Hybrid logic refers to a group of logics lying between modal
and first-order logic in which one can refer to individual states of the
Kripke structure. In particular, the hybrid logic HL(@, ↓) is an appealing
extension of modal logic that allows one to refer to a state by means of
the given names and to dynamically create new names for a state.
Unfortunately, as for the richer first-order logic, satisfiability for the hy-
brid logic HL(@, ↓) is undecidable and model checking for HL(@, ↓) is
PSpace-complete. We carefully analyze these results and we isolate large
fragments of HL(@, ↓) for which satisfiability is decidable and model
checking is below PSpace.

1 Introduction

There is a general interest in well-behaved logical languages in-between the basic
modal language and full first-order logic. Ideally, one would like such languages to
combine the good properties of both: to be reasonably expressive, to be decidable,
and to have other good properties, such as the interpolation property. Famous
examples of fragments that have been studied are the guarded fragment [1, 2]
and the two variable fragment [3, 4]. Both are decidable, reasonably expressive
languages, but they lack interpolation.

The hybrid logic HL(@, ↓) is another example of a language in between the
basic modal language and full first-order logic. It extends the basic modal lan-
guage with three constructs: nominals, which act as names of states of the model,
the satisfaction operator @, which allows one to express that a formula holds
at the state named by a nominal, and the binder ↓, which allows one to give a
name to the current state. Together, these three elements greatly increase the
expressivity of the language. Moreover, like the basic modal language and full
first-order logic, HL(@, ↓) has the interpolation property. Unfortunately, it is
undecidable.

The language HL(@, ↓) is a natural fragment of first-order logic: it is the
generated submodel invariant fragment [5], it is the least expressive extension of
the basic hybrid language HL(@) with interpolation [6], and, finally, it has been
characterized as the intersection of first-order logic with second-order proposi-
tional modal logic [7]. HL(@, ↓) has been used in the context of semistructured
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data. In particular, [8] gives an application of model checking in hybrid logic to
the problems of query and constraint evaluation for semistructured data.

In this paper, we give an in-depth analysis of the undecidability of HL(@, ↓).
We show how decidability can be regained by making a syntactic restriction on
the formulas, or by restricting the class of models in a natural way. Moreover,
we show how these and similar syntactic and semantic restrictions affect the
complexity of the model checking problem for hybrid languages.

In Section 2 we introduce hybrid logic, and in Section 3 we revisit the unde-
cidability result for HL(@, ↓). In Section 4 and 5, we show how decidability can
be regained by restricting the language and the class of models, respectively. In
Section 6 we investigate how these and similar restrictions affect the complexity
of the model checking problem for hybrid logic. We conclude in Section 7.

2 Hybrid Logic

In its basic version, hybrid logic extends modal logic with devices for naming
(individual) states and for accessing states by their names. The key idea is the
use of nominals. Syntactically, nominals behave like ordinary propositions, but
they have an important semantic property. A nominal is true at exactly one state
of the model. In such a way, it gives a name to that point. Besides nominals,
the hybrid language HL(@, ↓) also contains @-operators, that allow one to state
that a formula is true at a state named by a nominal, and the ↓-binder, that
allows one to introduce variables to name points. Formally, HL(@, ↓) is defined
as follows.

Let PROP = {p, q, . . .} be a (countably) infinite set of proposition sym-
bols, NOM = {i, j, . . .} be a (countably) infinite set of nominals, and SVAR =
{x, y, . . .} be a (countably) infinite set of state variables. We assume that these
sets are disjoint. The formulas of the hybrid language HL(@, ↓) are given by the
following recursive definition.

α := � | p | t | ¬α | α ∧ β | �α | @tα | ↓x.α

where p ∈ PROP, t ∈ NOM ∪ SVAR and x ∈ SVAR. We will use the familiar
shorthand notations, such as �α for ¬�¬α. The notions of free and bound vari-
ables are defined similarly as in first-order logic. A hybrid sentence is a hybrid
formula with no free variables. The width of a formula α is the maximum number
of free variables of any subformula of α.

The binder ↓ binds a variable to the current state of evaluation. For instance,
the formula ↓x.�x says that the current state is reflexive. The @ operator com-
bines naturally with the ↓ binder: while ↓ stores the current state of evaluation,
@ enables us to retrieve the information stored by shifting the point of evalu-
ation. As an example, the formula ↓x.�↓y.@x�y states that the current point
has exactly one successor.

Hybrid formulas are interpreted over hybrid Kripke structures (or hybrid
models) of the form M = (W,R, V ) where W is a set of states, R is a binary
relation over W called the accessability relation, and V : PROP∪NOM → ℘(W )
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is a valuation function that assigns to each proposition letter or nominal a set of
states, such that V (i) is a singleton set for each nominals i. The pair F = (W,R)
is called the frame of M and M is said to be a model based on the frame F .

An assignment for M is a function g : SVAR → W . Given such an assignment
g, a variable x ∈ SVAR and a state w ∈ W , we will use gxw to refer to the
assignment that is identical to g except that maps x to w. Formally, gxw(y) = x
for y = x and gxw(y) = g(y) for y �= x.

Let M = (W,R, V ) be a hybrid model, g an assignment for M , and let
w ∈ W . For any nominal i, let [i]M,g = V (i), and for any state variable x, let
[x]M,g = {g(x)}. The semantics of HL(@, ↓) is as follows:

M, g,w � �
M, g,w � p iff w ∈ V (p)
M, g,w � t iff w ∈ [t]M,g for t ∈ NOM ∪ SVAR
M, g,w � ¬α iff M, g,w �� α
M, g, w � α ∧ β iff M, g,w � α and M,w � β
M, g, w � �α iff there is a w′ ∈ W such that wRw′ and M, g,w′ � α
M, g, w � @tα iff M, g,w′ � α where {w′} = [t]M,g

M, g,w � ↓x.α iff M, gxw, w � α

Define the first-order correspondence language to be the first-order language
with equality that has one binary relation symbol R, a unary relation symbol p
for each p ∈ PROP and a constant i for each nominal i ∈ NOM. Every hybrid
Kripke structure (W,R, V ) can be viewed as a relational structure for the first-
order correspondence language: the binary relation symbol R is interpreted by
the accessibility relation R, the unary relation symbols p are interpreted by V (p),
and each constant i denotes the unique state w such that V (i) = {w}. Then,
the following Standard Translation, defined by mutual recursion1 between two
functions STx and STy, embeds HL(@, ↓) into the first-order correspondence
language (where p ∈ PROP and t ∈ NOM ∪ SVAR)2:

STx(�) = � STy(�) = �
STx(p) = p(x) STy(p) = p(y)
STx(t) = x = t STy(t) = y = t
STx(¬α) = ¬STx(α) STy(¬α) = ¬STy(α)
STx(α ∧ β) = STx(α) ∧ STx(β) STy(α ∧ β) = STy(α) ∧ STy(β)
STx(�α) = ∃y.(xRy ∧ STy(α)) STy(�α) = ∃x.(yRx ∧ STx(α))
STx(@tα) = ∃y.(y = t ∧ STy(α)) STy(@tα) = ∃x.(x = t ∧ STx(α))
STx(↓z.α) = ∃z.(z = x ∧ STx(α)) STy(↓z.α) = ∃z.(z = y ∧ STy(α))

1 Mutual recursion is used in order to limit the number of variables occurring in the
translation.

2 As was pointed out by Guillaume Malod (personal communication), the clause for
the ↓-binder in the Standard Translation for HL(@, ↓) given in [5], i.e., STx(↓z.α) =
STx(α)[z/x] and STy(↓z.α) = STy(α)[z/y], is incorrect. Indeed, consider the formula
↓z.��z. The Standard Translation of this formula according to the definitions in [5]
is ∃y.(xRy ∧ ∃x.(yRx ∧ x = z))[z/x] = ∃y.(xRy ∧ ∃x.(yRx ∧ x = x)), which clearly
fails to capture the semantics of the hybrid formula.
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Here, it is assumed that the variables x, y do not occur in α. For each
HL(@, ↓)-formula α with free variables y1, . . . , yn, STx(α) is a first-order for-
mula with free variables in {x, y1, . . . , yn}. Moreover, it is easy to show that for
any Kripke structure M , assignment g and world w, M, g,w � α if, and only
if, M, gxw |= STx(α). It follows that HL(@, ↓) is a fragment of the first-order
correspondence language. In fact, this fragment admits several natural charac-
terizations, as mentioned in the introduction.

In Section 4, we will consider a further extension of HL(@, ↓), containing the
global modality E and the converse operator �− (whose duals will be denoted
by A and �−, respectively). These have the following semantics:

M, g,w � Eα iff there is a w′ ∈ W such that M, g,w′ � α
M, g, w � �−α iff there is a w′ ∈ W such that w′Rw and M, g,w′ � α

or, in terms of the Standard Translation:

STx(Eα) = ∃y.(y = y ∧ STy(α)) STy(Eα) = ∃x.(x = x ∧ STx(α))
STx(�−α) = ∃y.(yRx ∧ STy(α)) STy(�−α) = ∃x.(xRy ∧ STx(α))

For θ1, . . . , θn ∈ {↓,@, E,�−}, we will use HL(θ1, . . . , θn) to refer to the exten-
sion of the modal language with nominals and the operators θ1, . . . , θn (if ↓ is
among θ1, . . . , θn, then the language is understood to contain state variables as
well). The language HL(@, ↓, E,�−), which we will also refer to as the full hybrid
language (FHL), provides a natural upper bound on expressive power of hybrid
languages: it is known to be expressively complete for first-order logic. In other
words, every formula of the first-order correspondence language is equivalent to
the standard translation of a FHL-formula.

So far, we have only introduced uni-modal HL(@, ↓). This was only for con-
venience of exposition. It is straightforward to extend the above definitions to
the multi-modal case. In fact, in the remainder of this paper, we will frequently
make use of multi-modal formulas.

3 The Undecidability of HL(@, ↓) Revisited

In this section, we revisit the negative result that is central to this paper: the
undecidability of HL(@, ↓) [9]. We present a new undecidability proof based on
an encoding of the N × N tiling problem. It will help us identify the real source
of the undecidability.

Let us first recall the N × N tiling problem. A tile type is a square, fixed in
orientation, each side of which has a color. Formally, it can be identified with a
4-tuple of elements of some finite set of colors. To tile a space, we have to ensure
that adjacent tiles have the same color on the matching sides. The N × N tiling
problem is then: given a finite set of tile types T , can the infinite grid N × N
be tiled using only tiles of the types in T? This problem is well known to be
undecidable (see, e.g., [10]).

We will reduce this problem to the satisfiability problem for HL(@, ↓) with
three modalities: �1 (to move one step up in the grid), �2 (to move one step
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to the right in the grid), and � (to reach all the points of the grid), interpreted
by the accessibility relations R1, R2 and R, respectively. Let T be a finite set of
tiles, and for each tile t ∈ T let left(t), right(t), top(t), and bottom(t) denote the
four colors of t. We will now give a hybrid formula πT that describes a tiling of
N×N using the tile types in T . Note that the formula πT given below is not the
simplest possible encoding of the tiling problem. The reason is that the specific
syntactic shape of πT will be further exploited later on in the paper.

Spypoint α = s∧�s∧��s∧��1↓x.(�(s∧�x))∧��2↓x.(�(s∧�x)), where
s is a nominal. This formula says that the current world is named s, that the
set of its R-successors is closed under R1 and R2, and that each R-successor
of s has s as an R-successor.

Functionality β =
∧

i=1,2

(
��i�∧�↓x.�(s → �(�ix∨�i¬x))

)
. This formula,

which is equivalent to
∧

i=1,2

(
��i� ∧ �↓x.�(s → �(�ix → �ix))

)
, says

that, within the submodel consisting of all R-successors of s, the relations
R1 and R2 are in fact total functions.

Grid γ = �↓x.�(s → �(�1�2¬x ∨ �2�1x)). This formula, which, in the pres-
ence of functionality is equivalent to �↓x.�(s → �(�1�2x → �2�1x)),
expresses that R1 and R2 commute.

Tiling δ = �(δ1 ∧ δ2 ∧ δ3), where

δ1 =
∨

t∈T (pt ∧
∧

t′∈T ;t�=t′ ¬pt′)
δ2 =

∧
t∈T (pt → �2

∨
t′∈T ;left(t′)=right(t) pt′)

δ3 =
∧

t∈T (pt → �1

∨
t′∈T ;bottom(t′)=top(t) pt′)

Formula δ1 states that exactly one tile is placed at each node of the grid, δ2
says that horizontally adjacent tiles must match, and δ3 says that vertically
adjacent tiles must match. Hence, δ states that the grid is well-tiled.

It is easy to prove that T tiles N×N iff the hybrid formula πT = α∧β∧γ∧δ
is satisfiable.

Notice that the formula πT does not contain any @-operators, it does not
nest the ↓ binder, and it uses only one state variable. Hence, the source of
undecidability for hybrid logic is neither the @-operator, nor the nesting degree
of ↓, nor the number of state variables used the formulas. Instead, as we will show
in the next section, the source of undecidability is the �↓�-pattern of β and γ
(i.e., a �-operator scoping over a ↓ that in turn has scope over a �-operator).
For formulas not containing this pattern, the satisfiability problem is decidable.

We conclude this section by briefly surveying undecidability proofs for hybrid
logic with ↓ binder. The first undecidability proofs appear in [9, 11]. Both the
proofs reduce an undecidable tiling problem into the satisfiability for hybrid logic
with ↓ binder. The reduction of Goranko [11] uses a global modality, whereas
Blackburn and Seligman [9] eliminate the use of a global modality by means of a
spy point construction (cf. the formula α above). The encoding of [9] uses nested
occurrences of the ↓ binder. Areces, Blackburn, and Marx [12] give another un-
decidability proof by a reduction of the undecidable global satisfaction problem
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for K23 (the class of frames in which every state has at most 2 successors and
at most 3 two-step successors). This proof has the advantage that it uses no
nominals and no proposition letters. However, it does use nested occurrences of
↓. Finally, Marx [13] gives another proof of undecidability by a reduction from
a tiling problem. The formulas used in this proof do not nest ↓ and contain only
one state variable. Moreover, only one modality is used. However, the encoding
is more involved than ours. Each of these proofs use formulas containing the
�↓�-pattern. The proof given above is reasonably simple, and it will help show
the precise role of the �↓�-pattern.

4 Syntactic Restrictions

In this section, we will show that the undecidability of HL(@, ↓) is caused by
formulas containing the �↓�-pattern. We show that without such formulas, the
satisfiability problem is still decidable, even when the global modality and con-
verse modalities are added to the language.

Consider the full hybrid language FHL. In what follows, it will be convenient
to consider the universal operators � and �−, and the disjunction ∨, to be
primitive operators (rather than shorthand notations). Moreover, we will restrict
attention to sentences, i.e., formulas with no free state variables. This is not an
essential limitation, since one can always replace free variables by nominals.

We say that a formula of FHL is in negation normal form (NNF) if the nega-
tion symbol appears only in front of atomic subformulas. Each hybrid formula is
equivalent to a hybrid formula in NNF. For instance, ¬↓x.�(x∧¬p) is equivalent
to ↓x.�(¬x ∨ p).

We call universal operators the modalities �, �− and A, and existential
operators the modalities �, �− and E. We define a �↓-formula (respectively,
�↓-formula) as a hybrid formula in NNF in which some occurrence of ↓ is in the
scope of a universal (respectively, existential) operator. Moreover, we define a
↓�-formula (respectively, ↓�-formula) as a hybrid formula in NNF in which an
occurrence of a universal (respectively, existential) operator is in the scope of a
↓. Similar definitions hold for different patterns. For example, �↓�-formula is a
formula in NNF containing a universal operator that contains in its scope a ↓
that contains in its scope a universal operator. A ↓-formula is simply a formula
in NNF containing a ↓ binder. Given a pattern π, we define FHL \ π to be the
fragment of FHL consisting of all formulas in NNF that are not of the form π.
Notice that such fragments are not necessarily closed under negation.

Theorem 1. There exists a polynomial satisfiability-preserving translation from
FHL \ �↓ to HL(@,�−, E). Moreover, the translation preserves satisfiability
relative to any class of frames.

Proof. It is convenient to introduce a new hybrid binder ∃. We add to the lan-
guage formulas of the form ∃x.α, where x is a state variable, interpreted as
follows:

M, g,w � ∃x.α iff M, gxv , w � α for some state v
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Notice that ↓ can be defined in terms of ∃ as follows: ↓x.α ≡ ∃x.(x ∧ α).
Let us proceed with the proof. Let α0 be a hybrid formula in FHL \ �↓. We

show how to polynomially translate α0 into a formula α3 in HL(@,�−, E) such
that α0 is satisfiable if, and only if, α3 is satisfiable. The translation consists of
three steps:

1. Let α1 be obtained from α0 be replacing each subformula of the form ↓x.ϕ
by ∃x(x ∧ ϕ). Since no occurrence of the ↓ binder in α0 is in the scope of a
universal operator, the same holds for the occurrences of the ∃ binder in α1;

2. rewrite α1 into quantifier prefix form (i.e., where all occurrences of ∃ are
in front of the formula), using the following equivalences: �∃x.ϕ ≡ ∃x.�ϕ,
�−∃x.ϕ ≡ ∃x.�−ϕ, E ∃x.ϕ ≡ ∃x.Eϕ, @t∃x.ϕ ≡ ∃x.@tϕ, ψ∧∃x.ϕ ≡ ∃x.(ψ∧
ϕ), ψ∨∃x.ϕ ≡ ∃x.(ψ∨ϕ). Note that renaming of variables might be necessary.
Let α2 be the resulting formula;

3. Let α3 be obtained from α2 by replacing each state variable by a fresh
nominal and removing the corresponding existential quantifiers.

The resulting formula α3 is in HL(@,�−, E), the length of α3 is linear in the
length of α0, and α0 and α3 are easily seen to be equi-satisfiable. )*

To illustrate the above proof, consider the formula ↓x.�↓y.@x(�(y ∧ q) ∧
�(�¬y ∨ p)), which does not contain the �↓-pattern. It can be rewritten as
follows:

↓x.�↓y.@x(�(y ∧ q) ∧ �(�¬y ∨ p)) ≡
∃x. (x ∧ �∃y. (y ∧ @x(�(y ∧ q) ∧ �(�¬y ∨ p)))) ≡
∃x.∃y. (x ∧ �(y ∧ @x(�(y ∧ q) ∧ �(�¬y ∨ p)))) ∼=
i ∧ �(j ∧ @i(�(j ∧ q) ∧ �(�¬j ∨ p)))

Corollary 1. The satisfiability problem for FHL \ �↓ is ExpTime-complete.

Proof. The lower bound follows from the fact that FHL \ �↓ embeds the basic
modal language with global modality, which is known to have an ExpTime-
complete satisfiability problem [14]. The upper bound follows from Theorem 1
since satisfiability of HL(@,�−, E)-formulas can be decided in ExpTime [15].

We now prove the mirror image of Theorem 1: satisfiability for FHL \ ↓� is
decidable. The technique we use is similar to the one used by Marx [13]: we em-
bed FHL\↓� into the ∀-guarded fragment. The ∀-guarded fragment of first-order
logic consists of all formulas constructed from atomic formulas and their nega-
tions using conjunction, disjunction, existential quantification, and guarded uni-
versal quantification. Hence only the universal quantification is constrained. The
satisfiability problem for ∀-guarded first-order formulas is 2ExpTime-complete.
It is ExpTime-complete when there is a uniform bound on the width of the
formula. For more details, cf. [16].

Theorem 2. The satisfiability problem for FHL\↓� is in 2ExpTime. The sat-
isfiability problem for FHL\↓�-formulas of bounded width is ExpTime-complete.
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Proof. Let α be any FHL \ ↓�-sentence. We will show by induction on α that
STx(α) is ∀-guarded. Since STx(α) can be obtained from α in polynomial time,
this proved that the satisfiability problem for FHL \ ↓� is in 2ExpTime.

To smoothen the induction, we will prove the result for any subformula α
of a FHL \ ↓�-sentence. If α is a (negated) atomic formula, then STx(α) is
quantifier-free, hence ∀-guarded. If α is of the form α1 ∧ α2 or α1 ∨ α2, then by
the induction hypothesis, STx(α) is the conjunction (respectively, disjunction)
of two ∀-guarded formulas, and hence is ∀-guarded.

Next, suppose α is of the form Xα1, where X is an existential operator or
an @-operator. By the induction hypothesis, STy(α1) is ∀-guarded. Inspection
of the relevant clauses of the Standard Translation shows that STx(α) is also
∀-guarded.

Next, suppose α is of the form Xα1, where X is a universal operator. Again,
by induction hypothesis, STy(α1) is ∀-guarded. Moreover, by assumption α is a
subformula of a FHL \ ↓�-sentence. It follows α1 cannot contain any free state
variables (for, these would have to be bound higher up). It follows that STy(α1)
contains no free variables besides (possibly) y. Inspection of the relevant clauses
of the Standard Translation shows that this variable y is appropriately guarded
in STx(α), and hence STx(α) is ∀-guarded.

Finally, suppose α is of the form ↓z.α1. Then, STx(α) = ∃z.(z = x∧STx(α1)).
By induction hypothesis, STx(α1) is ∀-guarded. It follows that STx(α) is also
∀-guarded.

It is easy to see that, if a hybrid formula α has width w, then the width of
STx(α) is at most w + 2. Hence, a bound on the width of the FHL \ ↓�-formula
implies a bound on the width of its ∀-guarded standard translation. Since the
satisfiability problem for ∀-guarded formulas of bounded width is ExpTime-
complete, this gives us an ExpTime upper bound. The lower bound follows
from the ExpTime-hardness of the basic modal logic extended with the global
modality [14]. )*

Satisfiability for FHL \ ↓� is ExpTime-hard, since satisfiability for modal
logic with the global modality is already ExpTime-hard [14]. We don’t know the
exact complexity of FHL \ ↓�, but we conjecture that it is ExpTime-complete.

By combining the techniques used to prove Theorems 1 and 2, we have the
main result of this section:

Theorem 3. The satisfiability problem for FHL \ �↓� is in 2ExpTime. The
satisfiability problem for FHL \ �↓�-formulas of bounded width is ExpTime-
complete.

Proof. Let α ∈ FHL \ �↓�. If α ∈ FHL \ ↓�, then the satisfiability of α can
be decided in 2ExpTime by Theorem 2. Suppose therefore that α �∈ FHL \ ↓�.
Let β be a minimal ↓�-subformula of α. Since α ∈ FHL \ �↓�, β cannot be in
the scope of a universal operator in α. It follows that this occurrence of ↓ can
be removed as in the proof of Theorem 1. Repeating this step for each minimal
↓�-subformula of α, we obtain a formula β ∈ FHL \ ↓� that is satisfiable iff α is
satisfiable. By Theorem 2, satisfiability of β can be checked in 2ExpTime. The
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ExpTime-completeness in the case of bounded width follows from the bounded
width case of Theorem 2. )*

To illustrate the above proof, consider the formula α = �↓x.�↓y.@y�x. It
contains both the ↓�- and the �↓-pattern, hence neither Theorem 1 nor Theorem
2 can be applied. However, α does not contain the �↓�-pattern, hence Theorem
3 can be invoked. There exists only one minimal ↓�-subformula of α, that is
β = ↓x.�↓y.@y�x. The outermost occurrence of ↓ in β is not in the scope of
any universal operator in α, hence it can be removed as done in Theorem 1.
The resulting equi-satisfiable formula is α′ = �(i ∧ �↓y.@y�i), which does not
contain the ↓�-pattern anymore. Hence Theorem 2 can be applied to it.

Since the negation of an FHL \�↓�-formula is equivalent to an FHL \�↓�-
formula, we have as a corollary the following dual result.

Corollary 2. The validity problem for FHL\�↓� is in 2ExpTime. The validity
problem for FHL \ �↓�-formulas of bounded width is ExpTime-complete.

In particular, if a hybrid formula φ contains neither the �↓� pattern nor the
�↓� pattern, then both satisfiability and validity of φ are decidable.

5 Semantic Restrictions

In this section, we restrict attention to uni-modal models of bounded width, i.e.,
models with only one binary relation R, in which each node is R-related only
to a restricted number of points. More precisely, for any cardinal κ, let Kκ be
the class of uni-modal models in which for every node d there are strictly less
than κ nodes e such that (d, e) ∈ R. In particular, K2 is the class of models in
which every points has at most one R-successor, and Kω is the class of models in
which every node has only finitely many R-successors. We will refer to elements
of Kκ as κ-models for short. In what follows we will consider the satisfiability
problem of HL(@, ↓) and of the first-order correspondence language on κ-models,
for particular κ. Our results are summarized in Table 1. All results generalize to
the case with multiple modalities, except for the decidability of the first-order
correspondence language on K2.

The terminology and results used in this section can be found in [17] and [10],
or in other texts on computational complexity. In particular, we follow the usual
terminology from recursion theory: the language of second-order arithmetic is
the second-order language with constants 0, 1, function symbols + and ×, and
equality. Formulas of second-order arithmetic are interpreted over the natural
numbers. A Σ1

1 formula of second order arithmetic is a formula of the form
∃R1 . . . Rn.φ where φ contains no second-order quantifiers. A set A of natural
numbers is said to be in Σ1

1 if it is defined by a Σ1
1 formula that has one free first-

order variable and no free second-order variables. A set A of natural numbers is
Σ1

1 -hard if for every B in Σ1
1 there is a computable function f : N → N such that

for all n ∈ N, n ∈ B iff f(n) ∈ A. A set of natural numbers is Σ1
1 -complete if it is

both in Σ1
1 and Σ1

1 -hard. It is well known that Σ1
1-hard sets are not recursively
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Table 1. Complexity of the satisfiability problem on κ-models.

HL(@, ↓) first-order correspondence language

κ = 1 NP-complete NExpTime-complete
κ = 2 NP-complete Decidable, not elementary recursive
3 ≤ κ < ω NExpTime-complete Π0

1 -complete (co-r.e., not decidable)
κ = ω Σ0

1 -complete (r.e., not decidable) Σ1
1-complete (highly undecidable)

κ > ω Π0
1 -complete (co-r.e., not decidable) Π0

1 -complete (co-r.e., not decidable)

enumerable. When one speaks of an arbitrary decision problem as being in Σ1
1 or

Σ1
1 -hard, it is implicitly understood that the instances of the decision problem

are coded into natural numbers (under some computable encoding).
Following [17], we call a decidable problem elementary recursive if the time

complexity can be bounded by a constant number of iterations of the exponential
function.

Theorem 4. The satisfiability problem of HL(@, ↓) on Kκ is:

1. NP-complete, for κ = 1, 2.
2. NExpTime-complete, for 3 ≤ κ < ω.
3. Recursively enumerable but not decidable, for κ = ω.
4. Co-recursively enumerable but not decidable, for κ > ω.

Proof. Point 1. The lower bound follows from the NP-hardness of propositional
satisfiability. The upper bound is proved by establishing the polynomial size
model property.

For κ = 1, 2, every κ-satisfiable HL(@, ↓)-formula is satisfiable in a κ-model
with at most O(|φ|2) nodes. For, suppose M, g,w � φ for some κ-model M =
(W,R, V ) and assignment g. Let W ′ ⊆ W consist of all worlds that are reachable
from w or from a world named by one of the nominals occurring in φ in at most
md(φ) steps, where md(φ) is the modal depth of φ. Let M ′ be the submodel of
M with domain W ′. Clearly, M ′ is a κ-model and M ′ satisfies the cardinality
requirements and a straightforward induction argument shows that M ′, g, w � φ.

This leads to a non-deterministic polynomial time algorithm for testing sat-
isfiability of an HL(@, ↓)-formula φ on κ-models, for κ = 1, 2. The algorithm first
non-deterministically chooses a candidate model (M, g,w) of size O(|φ|2), and
then it tests whether M, g,w � φ and M ∈ Kκ. The latter tests can be performed
in polynomial time using a top down model checking algorithm (cf. Theorem 6).

Point 2 (Upper bound). For 3 ≤ κ < ω, every formula satisfiable on a κ-
model is satisfiable on a κ-model with at most O(|φ|·κmd(φ)) nodes. For, suppose
M, g,w � φ for some κ-model M = (W,R, V ) and assignment g. Let W ′ ⊆ W
consist of all worlds that are reachable from w or from a world named by one of
the nominals occurring in φ in at most md(φ) steps. Let M ′ be the submodel of
M with domain W ′. Note that the cardinality of M ′ is O(|φ| · κ|φ|), and M ′ is
still a κ-model. Furthermore, a straightforward induction argument shows that
M ′, g, w � φ.
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This leads to a non-deterministic ExpTime algorithm for testing satisfiability
of an HL(@, ↓)-formula φ on κ-models. The algorithm first non-deterministically
chooses a candidate model (M, g,w) of size O(|φ| · κ|φ|), and then tests whether
M, g,w � φ. The latter test can be performed in time O(|M ||φ|) [8], which is
O((|φ| · κ|φ|)|φ|) = O(|φ||φ| · κ(|φ|2)).

Point 2 (Lower bound). Consider monadic first-order formulas without equal-
ity, i.e., first-order formulas containing unary predicates only, without equality.
Any such satisfiable formula φ of length n has a model with at most 2n nodes, and
the satisfiability problem for such formulas is NExpTime-complete [17, Section
6.2.1]. We will reduce this problem to the satisfiability problem for HL(@, ↓)-
formulas on κ-models (for 3 ≤ κ < ω), thus showing that the latter problem is
NExpTime-hard.

Fix a nominal i, and for any monadic first-order formula φ without equality,
define φ+ inductively, such that (x = y)+ = @xy, (Px)+ = @xp, (·)+ commutes
with the Boolean connectives and (∃x.ψ)+ = @i�

|φ|↓x.ψ. In words, φ+ states
that φ holds in the submodel consisting of all points reachable from the point
named i in exactly |φ| many steps. In general, there can be up to (κ−1)|φ| many
points reachable from the point named i in exactly |φ| many steps (in particular,
this will be the case if the submodel generated by i is a (κ− 1)-ary tree). Thus,
φ is satisfiable iff φ is satisfiable in a model with at most 2|φ| nodes iff φ+ is
satisfiable in a κ-model, for κ ≥ 3.

Point 3. We will provide polynomial reductions between this problem and
the finite satisfiability problem for first-order logic. The satisfiability problem
for first-order logic on finite models is Σ0

1 -complete, even in the case with only
a single, binary relation [17, Section 3.2].

Trivially, if an HL(@, ↓)-formula is satisfiable in a finite model, it is satisfiable
in an ω-model. Conversely, if an HL(@, ↓)-formula is satisfiable in an ω-model
then is satisfiable in a finite model, since the modal depth of the formula provides
a bound on the depth of the model. Hence, the satisfiability problem of HL(@, ↓)
on ω-models reduces (by the Standard Translation) to the satisfiability problem
for first-order logic on finite models.

Conversely, the finite satisfiability problem for first-order logic can be reduced
to satisfiability of HL(@, ↓) on ω-models. Fix a nominal i, and for any first-order
formula φ, define φ+ inductively, such that (x = y)+ = @xy, (Rxy)+ = @x�y,
(·)+ commutes with the Boolean connectives and (∃x.ψ)+ = @i�↓x.ψ+. In
words, φ+ states that φ holds in the submodel consisting of the successors of the
point named i. It follows that φ is satisfiable in a finite model iff the HL(@, ↓)-
formula φ+ is satisfiable on an finitely branching ω-model.

Point 4. By the Löwenheim-Skolem theorem, a first-order formula is sat-
isfiable if and only if it is satisfiable on a finite or countably infinite model.
Since HL(@, ↓) is a fragment of first-order logic, the Löwenheim-Skolem theo-
rem also applies to HL(@, ↓)-formulas. It follows that the satisfiability problem
for HL(@, ↓) on countably branching models coincides with the general satisfi-
ability problem of HL(@, ↓), which is in Π0

1 by the Standard Translation and
Π0

1 -hard by the tiling argument from Section 3. )*
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As the following theorem shows, the first-order correspondence language per-
forms much worse.

Theorem 5. The satisfiability problem of first-order sentences of the correspon-
dence language on Kκ is:

1. NExpTime complete, for κ = 1.
2. decidable but not elementary recursive, for κ = 2.
3. Co-recursively enumerable but not decidable, for 3 ≤ κ < ω.
4. Σ1

1 -hard, and hence neither recursively enumerable nor co-recursively enu-
merable, for κ = ω.

5. Co-recursively enumerable but not decidable, for κ > ω.

Proof. We prove here only the decidable cases (points 1 and 2). The reader is
referred to the full version of this paper [18] for a full proof of the theorem.

Point 1. This case coincides with the satisfiability problem for monadic first-
order logic (on 1-models, every formula of the form Rst is equivalent to ⊥),
which is known to be NExpTime complete [17].

Point 2. Consider the satisfiability problem for first-order logic with one
unary function symbol, an arbitrary number of unary relation symbols and equal-
ity (“the Rabin class”). This problem is decidable, but not elementary recursive
[17]. We will provide reductions between this problem and the satisfiability prob-
lem for first-order logic on 2-models.

Let φ be any first-order formula containing one unary function symbol f and
any number of unary relation symbols and equality. Let R be a binary relation
symbol, and let φR be obtained from φ by repeatedly applying the rewrite rules

– replace atomic formulas of the form Pf(t) by ∃x.(Rtx ∧ Px)
– replace atomic formulas of the form f(s) = t or t = f(s) by ∃x.(Rsx∧x = t)

until the function symbol f does not occur in the formula anymore (in case of
nested function symbols, the above rules might need to be applied several times).
It is not hard to see that φ is satisfiable iff φR ∧ ∀x∃y.Rxy is satisfiable on a
2-model.

Let φ be any first-order formula with one binary relation symbol R and any
number of unary relation symbols. Let f be a unary function symbol and let P
be a new unary relation, and let φf be the result of replacing all subformulas of
φ of the form Rst by Ps∧ (t = fs). Intuitively, the unary predicate P represents
the existence of a successor, and the unary function f encodes the successor of
a node, if it exists. One can easily see that φ is satisfiable on a 2-model iff φf is
satisfiable (simply let R denote the graph of f , or viceversa).

It follows that the satisfiability problem of first-order logic on 2-models is
decidable but not elementary recursive. )*

6 Model Checking

So far, we only studied the satisfiability and the validity problems. It is natural
to ask how our syntactic and semantic restrictions affect the complexity of the
model checking problem.
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Given a hybrid model M , an assignment g, a state w, and a hybrid formula
α, the model checking problem is to check whether M, g,w � α. We will restrict
ourselves to hybrid sentences. This is not a limitation, since one can always
replace the free variables by fresh nominals, expanding the model accordingly.

In [8], the authors give a polynomial time model checker for HL(@,�−, E).
Moreover, they prove that the model checking problem for HL(@, ↓) is PSpace-
complete (as it is for full first-order logic), even for formulas without nominals,
@-operators and proposition letters.

Theorem 6. The model checking problem for HL(@, ↓) on κ-models can be
solved in polynomial time for κ ≤ 2, and is PSpace-complete for κ ≥ 3.

Proof. The first part of the theorem can be proved using a straightforward top-
down model checking algorithm. Since each state in the model has at most one
successor, the algorithm takes time linear in the length of the input formula.
As for the second part, the proof of PSpace-hardness of model checking for
HL(@, ↓) given in [8] uses a model with out-degree 2. It follows that the model
checking problem for HL(@, ↓) on κ-models, with κ ≥ 3, is PSpace-complete.

)*

For HL(@, E, ↓) and first-order logic, on the other hand, the model checking
problem is PSpace-complete even on 1-models [8].

In the following, we investigate how restrictions on the syntax of hybrid for-
mulas affect the complexity of model checking. Our first result is that, if formulas
containing the ↓�↓ pattern are excluded, then the model checking problem drops
from PSpace to NP.

Theorem 7. The model checking problem for FHL \ ↓�↓ is NP-complete.

Proof. To prove NP-hardness, we embed the satisfiability problem for propo-
sitional formulas (SAT) into the model checking problem for FHL \ ↓�↓. Let
φ(p1, . . . , pn) be any propositional formula, and let M = (W,R, V ), where W =
{0, 1} and R = W ×W (the valuation V is irrelevant). For each pk occurring in
φ, pick a corresponding state variable xk. Furthermore, let y be a state variable
distinct from all x1, . . . , xn. Let φ′ be obtained from φ by replacing each occur-
rence of a proposition letter pk by �(xk ∧ y). Intuitively, the two states of M
represent truth and falsity, and among these two states the variable y denotes
the truth state. It is easily seen that the propositional formula φ is satisfiable
iff �↓y�↓x1�↓x2 . . .�↓xn.φ′ is true in M (at any of the nodes 0, 1). The latter
formula contains no universal operators, and hence belongs to FHL \ ↓�↓.

To show that the problem is in NP, we give a nondeterministic algorithm that
solves the model checking problem in polynomial time. Let α be an FHL \ ↓�↓
sentence, M = (W,R, V ) be a model, v ∈ W and g be an assignment. Replace
each subformula of α of the form ↓x.ϕ by ∃x.(x∧ϕ), and apply the equivalences
given in the proof of Theorem 1 in order to move the existential quantifiers out
of the scope of as many connectives as possible. The resulting sentence α′ is
equivalent to α and has the following properties:
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1. α′ is built up from literals (i.e., formulas of the form (¬)p, (¬)i or (¬)x)
using conjunction, disjunction, existential operators (�,�−, E), universal
operators (�,�−, A), and existential quantifiers.

2. All existential quantifiers in α′ either immediately follow a universal operator
(e.g., as in �∃x1 . . . xnγ) or occur at the start of the formula.

3. For all subformulas of α′ of the form X∃x1 . . . xnγ, with X a universal op-
erator, γ contains no free variables besides x1, . . . , xn.

List all subformulas of α′ of the form Xβ, with X a universal operator and
β = ∃x1 . . .∃xm.γ(x1 . . . xm), in order of increasing length. For each such β do
the following: create a new proposition symbol pβ and replace β by pβ in α′. For
each state w ∈ W , check whether M, g,w � β, and, if the answer is positive,
then insert the state w in V (pβ).

The nondeterminism is hidden in the test M, g,w � β. Indeed, to check
whether M, g,w � ∃x1 . . .∃xm.γ(x1 . . . xm), the algorithm guesses an assign-
ment w1, . . . , wm for the variables x1, . . . , xm, respectively, and then it checks
whether M, gx1,...,xm

w1,...,wm
, w � γ(x1 . . . xm). Since γ does not contain any existen-

tial quantifiers (the subformulas were processed in order of increasing length),
it belongs to HL(@,�−, E) and hence the model checking can be performed in
polynomial time.

The resulting formula is in HL(@,�−, E) and thus it can be model checked
in polynomial time. )*

Notice that the NP-hardness holds even for formulas without proposition letters,
nominals and @-operators. A typical example of a formula to which Theorem 7
does not apply is ↓x.��↓y.@x�y, which expresses a local form of transitivity.

In Section 4, we saw that FHL \ �↓� has a decidable satisfiability problem.
We leave it as an open question whether the model checking complexity of that
fragment is also below PSpace (since the SAT problem can be embedded into
the model checking problem for FHL \ �↓� as done in the proof of Theorem 7,
the problem is at least NP-hard). Conversely, the fragment FHL\↓�↓, for which
we have just proved that the model checking problem is NP-complete, has an
undecidable satisfiability problem: it suffices to note that the encoding of the
tiling problem given in Section 3 does not make use of ↓�↓-formulas.

We conclude this section with a hierarchy of fragments of the full hybrid
language with ↓ binder that admits polynomial time model checking. If a hybrid
formula α has width w, then STx(α) has width at most w+2. Hence, a bound on
the width of the hybrid formulas implies a bound on the width of the standard
translations. Moreover, model checking for first-order formulas using a bounded
number of variables can be performed in polynomial time [19]. It is known that
first-order formulas of a bounded width can be rewritten using a bounded number
of variables (cf. [20] for an explicit proof). Thus, we obtain the following.

Theorem 8. The model checking problem for formulas of the full hybrid lan-
guage of bounded width can be solved in polynomial time.
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7 Conclusion

In this paper, we described two ways to tame the power of hybrid logic with
binders. These are: (i) restricting the syntax by excluding formulas containing
the pattern �↓�, and (ii) restricting the class of models by assuming a bound
on the branching degree of the models. Furthermore, we showed that similar
restrictions can be used to lower the complexity of the model checking task.

Our decidability result for FHL \�↓� may be seen from a more general per-
spective: one could consider any sequence π ⊆ {�,�, ↓,@}∗, where � stands for
“a sequence of universal modalities”, and � stands for “a sequence of existential
modalities”, and ask whether the satisfiability problem for FHL \π is decidable.
In particular, one could ask if there is such a sequence π that contains �↓� as
a subsequence and such that the satisfiability problem for FHL \ π is still decid-
able. Our undecidability proof in Section 3 (and more in particular the shape of
the formulas β and γ used there) shows that the answer is negative, and hence
Theorem 3 is tight.

Some results in this paper show that, under certain natural conditions, the
language HL(@, ↓) behaves better than the first-order correspondence language,
computationally speaking. Incidentally, the full hybrid language FHL has the
same expressive power as the first-order correspondence language, as was shown
in [21] by means of a translation HT mapping formulas of the first-order corre-
spondence to FHL-formulas. The most interesting clause of this translation says
HT(∃x.φ) = E↓x.HT(φ). It shows that, in some sense, the first-order quantifier
∃x consist of two parts, namely the picking a state of the model part, which is
captured by the global modality, and the variable binding part, which is cap-
tured by the ↓. The syntax of HL(@, E, ↓,�−) allows us to distinguish these two
parts. One could say that our results identify computationally tractable frag-
ments of first-order logic that can only be distinguished once these two parts of
the quantifiers are split. In this sense, our paper can be seen as a fine study of
the structure of first-order quantifiers.

Finally, the outcomes of our investigation show once more that, from a com-
putational point of view, the satisfiability problem and the model checking prob-
lem for a logic are sensitive to different sources of complexity. Restricting the
model width makes satisfiability easier, but it does not lower the complexity of
model checking. On the other hand, restricting the formula width makes model
checking more tractable, but it does not affect the undecidability of satisfiability.
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1. Andréka, H., van Benthem, J., Németi, I.: Modal logics and bounded fragments of
predicate logic. Journal of Philosophical Logic 27 (1998) 217–274
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Abstract. We study the complexity of model-checking for the fixpoint
extension of Hintikka and Sandu’s independence-friendly logic. We show
that this logic captures ExpTime; and by embedding PFP, we show
that its combined complexity is ExpSpace-hard, and moreover the logic
includes second order logic (on finite structures).

1 Introduction

In everyday life we often have to make choices in ignorance of the choices made
by others that might have affected our choice. With the popularity of the agent
paradigm, there is much theoretical and practical work on logics of knowledge
and belief in which such factors can be explicitly expressed in designing multi-
agent systems. However, ignorance is not the only reason for making independent
choices: in mathematical writing, it is not uncommon to assert the existence of
a value for some parameter uniformly in some earlier mentioned parameter.

Hintikka and Sandu [HiS96] introduced a logic, called Independence-friendly
(IF) logic, in which such independent choices can be formalized by independent
quantification. Some of the ideas go back some decades, for IF logic can also be
viewed as an alternative account of branching quantifiers (Henkin quantifiers) in
terms of games of imperfect information. Independent quantification is a subtle
concept, with many pitfalls for the unwary. It is also quite powerful: it has long
been known that it has existential second-order power. In previous work [BrF02],
the first author and Fröschle applied the idea of independent quantification to
modal logics, where it has natural links with the theory of true concurrency;
this prompted some consideration of fixpoint versions of IF modal logics, since
adding fixpoint operators is the easiest way to get a powerful temporal logic
from a simple modal logic. This led the first author to an initial investigation
[Bra03] of the fixpoint extension of first-order IF logic, which we call IF-LFP. It
turned out that fixpoint IF logic is not trivial to define, and appears to be very
expressive, with the interaction between fixpoints and independent quantification
giving a dramatic increase in expressive power. In [Bra03], only some fairly simple
complexity results were obtained; in this paper, we obtain much stronger results
about the model-checking complexity of IF-LFP. For the data complexity, we
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show that not only is IF-LFP ExpTime-complete, but it captures ExpTime;
and for the combined complexity, we obtain an ExpSpacehardness result. This
latter result is obtained by an embedding of partial fixpoint logic into IF-LFP,
which shows that on finite structures IF-LFP even includes second-order logic,
a much stronger result than the first author previously conjectured.

2 Independence-Friendly Fixpoint Logic

2.1 Syntax

First of all, we state one important notational convention: to minimize the
number of parentheses, we take the scope of all quantifiers and fixpoint operators
to extend as far to the right as possible.

Now we define the syntax of first-order IF logic. Here we use the version
of Hodges [Hod97], and we confine the ‘independence-friendly’ operators to the
quantifiers; in the full logic, one can also specify conjunctions and disjunctions
that are independent, but these are not necessary for our purposes – their addi-
tion changes none of our results.

Definition 2.1. As for FOL, IF-FOL has proposition (P,Q etc.), relation (R,S
etc.), function (f, g etc.) and constant (a, b etc.) symbols, with given arities. It
also has individual variables v, x etc. We write x,v etc. for tuples of variables,
and similarly for tuples of other objects; we use concatenation of symbols to
denote concatenation of tuples with tuples or objects.

For formulae ϕ and terms t, the (meta-level) notations ϕ[x] and t[x] mean
that the free variables of ϕ or t are included in the variables x, without repetition.

The notions of ‘term’ and ‘free variable’ are as for FOL.
We assume equality = is in the language, and atomic formulae are defined as

usual by applying proposition or relation symbols to individual terms or tuples
of terms. The free variables of the formula R(t) are then those of t.

The compound formulae are given as follows:
Conjunction and disjunction. If ϕ[x] and ψ[y] are formulae, then (ϕ ∨

ψ)[z] and (ϕ ∧ ψ)[z] are formulae, where z is the union of x and y.
Quantifiers. If ϕ[y, x] is a formula, x a variable, and W a finite set of

variables, then (∀x/W.ϕ)[y] and (∃x/W.ϕ)[y] are formulae. If W is empty, we
write just ∀x. ϕ and ∃x. ϕ.

Game negation. If ϕ[x] is a formula, so is (∼ϕ)[x].
Flattening. If ϕ[x] is a formula, so is (↓ ϕ)[x].
Negation. ¬ϕ is an abbreviation for ∼ ↓ ϕ.

Definition 2.2. IF-FOL+ is the logic in which ∼, ↓ and ¬ are applied only to
atomic formulae.

In the rest of this paper, we shall be working with IF-FOL+, in which ∼
and ¬ merge, and ↓ has no effect. We shall therefore omit ∼ and ↓ from future
definitions, and take ¬ as primitive, which also allows a simpler semantics than
that for the full IF-FOL. Since we are proving lower bounds, the results apply
also to the logic with negations.
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2.2 Traditional Semantics

In the independent quantifiers the intention is that W is the set of independent
variables, whose values the player is not allowed to know at this choice point:
thus the classical Henkin quantifier ∀x ∃y

∀u∃v, where x and y are independent of
u and v, can be written as ∀x/∅. ∃y/∅. ∀u/{x, y}. ∃v/{x, y}. This notion of
independence is the reason for saying that IF logic is natural in mathematical
English: statements such as “For every x, and for all ε > 0, there exists δ,
depending only on ε . . .” can be transparently written as ∀x, ε > 0. ∃δ/x. . . . in
IF logic.

If one then plays the Hintikka evaluation game (otherwise known as the
model-checking game) with this additional condition, which can be formalized
by requiring strategies to be uniform in the ‘unknown’ variables, one gets a game
semantics of imperfect information, and defines a formula to be true iff Eloise
has a winning strategy.

These games are not determined, so it is not the case that Abelard has
a winning strategy iff the formula is not true. For example, ∀x

∃y .x = y (or
∀x.∃y/{x}. x = y) is untrue in any structure with more than one element, but
Abelard has no winning strategy.

An alternative interpretation of the logic, dating from the early work on
branching quantifiers, and one that is easier to handle mathematically in straight-
forward cases, is via Skolem functions with limited arguments. In FOL, the first
order sentence ∀x.∃y. x = y, over some universe A, is converted via Skolem-
ization to the existential second-order sentence ∃f : A → A. ∀x. x = f(x).
In this procedure, the Skolem function always takes as arguments all the uni-
versal variables currently in scope. By allowing Skolem functions to take only
some of the arguments, we get a similar translation of IF-FOL+: for example,
∀x.∃y/{x}. x = y becomes ∃f : 1 → A. ∀x. x = f(). It can be shown that these
two semantics are equivalent, in that an IF-FOL+ sentence is true in the game
semantics iff its Skolemization is true.

It is also well known that IF-FOL+ is equivalent to existential second-order
logic (in the cases where this matters, ‘second-order’ here means function quan-
tification rather than set quantification). This is because the Skolemization pro-
cess can be inverted: given a Σ1

1 sentence, it can be turned into an IF-FOL+

sentence (or equivalently, a sentence with Henkin quantifiers). We shall make
use of this procedure in later results. Details can be found in [Wal70, End70]
or in the full version of the paper, but here let us illustrate it by a standard
example that demonstrates the power of IF logic. Consider the sentence ‘there
is an injective endofunction that is not surjective’. This is true only in infinite
domains, and therefore not first-order expressible. It can be expressed directly
in Σ1

1 as

∃f. (∀x1, x2. f(x1) = f(x2) ⇒ x1 = x2) ∧ (∃c. ∀x. f(x) �= c)

which for the sake of reducing complexity below we will simplify to

∃f. ∃c. ∀x1, x2. (f(x1) = f(x2) ⇒ x1 = x2) ∧ f(x1) �= c.
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The basic trick for talking about functions in IF-FOL is to replace ∃f. ∀x by
∀x.∃y, so that y plays the role of f(x). In FOL, this works only if there is just one
application of f ; but in IF-FOL, we can do it for two (or more) applications of f :
we write ∀x1. ∃y1, and then we write an independent ∀x2/{x1, y1}. ∃y2/{x1, y1}.
Now in order to make sure that these two (xi, yi) pairings represent the same
f , the body of the translated formula is given a clause (x1 = x2) ⇒ (y1 = y2).
Applying this procedure to the Σ1

1 sentence above and optimizing a bit, we get

∀x1, x2. ∃y1/x2. ∃y2/x1. ∃c/{x1, x2}. (y1 = y2 ⇔ x1 = x2) ∧ y1 �= c.

2.3 Trump Semantics

The game semantics is how Hintikka and Sandu originally interpreted IF logic.
Later on, the trump semantics of Hodges [Hod97], with variants by others, gave
a Tarski-style semantics, equivalent to the original. This semantics is as follows:

Definition 2.3. Let a structure A be given, with constants, propositions and
relations interpreted in the usual way. A deal a for ϕ[x] or t[x] is an assignment
of an element of A to each variable in x. Given a deal a for a tuple of terms t[x],
let t(a) denote the tuple of elements obtained by evaluating the terms under the
deal a.

If ϕ[x] is a formula and W is a subset of the variables in x, two deals a and
b for ϕ are (W -equivalent (a (W b) iff they agree on the variables not in W . A
(W -set is a non-empty set of pairwise (W -equivalent deals.

The denotation [[ϕ]] of a formula is a set T of trumps. If ϕ has n free variables,
then T ∈ ℘(℘(An)) – that is, a trump is a set of deals.

– If (R(t))[x] is atomic, then a non-empty set D of deals is a trump iff t(a) ∈ R
for every a ∈ D.

– D is a trump for (ϕ ∧ ψ)[x] iff D is a trump for ϕ[x] and D is a trump for
ψ[x].

– D is a trump for (ϕ ∨ ψ)[x] iff it is non-empty and there are trumps E of ϕ
and F of ψ such that every deal in D belongs either to E or F .

– D is a trump for (∀y/W.ψ)[x] iff the set {ab | a ∈ D, b ∈ A } is a trump for
ψ[x, y].

– D is a trump for (∃y/W.ψ)[x] iff there is a trump E for ψ[x, y] such that
for every (W -set F ⊆ D there is a b such that {ab | a ∈ F } ⊆ E.

– D is a trump for (¬R(t))[x] iff t(a) /∈ R for every a ∈ D.

A trump for ϕ is essentially a set of winning positions for the model-checking
game for ϕ, for a given uniform strategy, that is, a strategy where choices are
uniform in the ‘hidden’ variables. The most intricate part of the above definition
is the clause for ∃y/W.ψ: it says that a trump for ∃y/W.ψ is got by adding a
witness for y, uniform in the W -variables, to trumps for ψ.

It is easy to see that any subset of a trump is a trump. In the case of an
ordinary first-order ϕ(x), the set of trumps of ϕ is just the power set of the
set of tuples satisfying ϕ. To see how a more complex set of trumps emerges,
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consider the following formula, which has x free: ∃y/{x}. x = y. Any singleton
set of deals is a trump, but no other set of deals is a trump. Thus we obtain that
∀x.∃y/{x}. x = y has no trumps (unless the domain has only one element).

The strangeness of the trump definitions is partly to do with some more
subtle features of IF logics, that we do not here have space to discuss, but which
are considered in detail in Ahti-Veikko Pietarinen’s thesis [Pie00]. However, to
take one good example, raised by a referee, consider ϕ = ∃x.∃y/{x}. x = y.
What are its trumps? As above, the trumps of ∃y/{x}. x = y are singleton sets
of deals. The only potential trump for ϕ is the set containing the empty deal
D = {〈〉}. Applying the definition, D is a trump for ϕ iff there is a singleton
deal set {a} for x such that there is a b such that {b} ⊆ {a}. The right hand
side is true – take b = a – so D is a trump. How come, if there is more than
one element in A? Surely we must choose y independently of x, and therefore
ϕ can’t be true? Not so: because the choices are both made by the same player
(Eloise), she can, as it were, make a uniform choice of y that, by ‘good luck’
agrees with her previous choice of x. Since she is not in the business of making
herself lose, she will always do so. In game-theoretic terms, this is the difference
between requiring a strategy to make uniform moves, and requiring a player to
choose a strategy uniformly. In fact Hintikka and Sandu avoided this problem
by only allowing the syntax to express quantifications independent in the other
player’s variables, which is in practice all one wishes to use in any case. Hodges
removed this restriction to make his semantics cleaner, exposing the curiosity
we have just described.

A sentence is said to be true if {〈〉} ∈ T (the empty deal is a trump set), and
false if {〈〉} ∈ C; this corresponds to Eloise or Abelard having a uniform winning
strategy. Otherwise, it is undetermined. Note that ‘false’ is reserved for a strong
sense of falsehood – undetermined sentences are also not true, and in the simple
cases where negation and flattening are not employed, an undetermined sentence
is as good as false.

2.4 IF-LFP

We now describe the addition of fixpoint operators to IF-FOL. This is slightly
intricate, although the normal intuitions for understanding fixpoint logics still
apply.

Definition 2.4. IF-LFP extends the syntax of IF-FOL as follows:

– There is a set Var = {X,Y, . . .} of fixpoint variables. Each variable X has
an arity ar(X).

– If X is a fixpoint variable, and t an ar(X)-vector of terms then X(t) is a
formula.

– Let ϕ be a formula with free fixpoint variable X . ϕ has free individual
variables x = 〈x1, . . . , xar(X)〉 for the elements of X , together with other
free individual variables z; let fvϕ(X) be the length of z. Now if t is a
sequence of ar(X) terms with free variables y, then (μX(x).ϕ)(t)[z,y] is a
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formula; provided that ϕ is IF-FOL+. In this context, we write just fv(X)
for fvϕ(X).

– similarly for νX(x).ϕ.

To give the semantics of IF-LFP, we first define valuations for free fixpoint
variables, in the context of some IF-LFP formula.

Definition 2.5. A fixpoint valuation V maps each fixpoint variable X to a set
V (X) ∈ ℘(℘(Aar(X)+fv(X))).

Let D be a non-empty set of deals for X(t)[x, z,y], where y are the free
variables of t not already among x, z. A deal d = acb ∈ D, where a, c, b are
the deals for x, z,y respectively, determines a deal d′ = t(d)c for X [x, z]. Let
D′ = { d′ | d ∈ D }. D is a trump for X(t) iff D′ ∈ V (X).

The intuition here is that a fixpoint variable needs to carry the trumps both
for the elements of the fixpoint and for any free variables, as we shall see below.
Then we define a suitable complete partial order on the range of valuations, which
will also be the range of denotations for formulae; it is simply the inclusion order
on trump sets.

Definition 2.6. If T1 and T2 are elements of ℘(℘(An)), define T1 , T2 iff T1 ⊆
T2.

This order gives the standard basic lemma for fixpoint logics:

Lemma 2.7. If ϕ(X)[x, z] is an IF-FOL+ formula and V is a fixpoint valua-
tion, the map on ℘(℘(Aar(X)+fv(X)) given by

T  → [[ϕ]]V [X:=T ]

is monotone with respect to ,; hence it has least and greatest fixpoints, con-
structible by iteration from the bottom and top elements of the set of denotations.

Thus we have the familiar definition of the μ operator:

Definition 2.8. [[μX(x).ϕ(X)[x, z]]] is the least fixpoint of the map on
℘(℘(Aar(X)+fv(X)) given by

T  → [[ϕ]]V [X:=T ];

and [[νX(x).ϕ(x)[x, z]]] is the greatest fixpoint. μζX(x).ϕ means the ζth approx-
imant of μX(x).ϕ, defined recursively by μζX(x).ϕ = ϕ(

⋃
ξ<ζ μ

ξX(x).ϕ).

A distinctive feature of the definition, compared to the normal LFP defini-
tion, is the way that free variables are explicitly mentioned. Normally, one can
fix values for the free variables, and then compute the fixpoint, but because of
independent quantification this is not possible in the IF setting. For example,
consider the formula fragment

∀z. . . . μX(x). . . . ∨ ∃y/{z}. X(y)

The independent choice of y means that the trumps for the fixpoint depend on
the possible deals for z, not just a single deal.
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2.5 Examples of IF-LFP

In order to give some human-readable examples of IF-LFP, we here reproduce
a section from [Bra03].

For convenience, we introduce the abbreviation ϕ ⇒ ψ for ψ ∨ ¬ϕ provided
that ϕ is atomic.

Let G = (V,E) be a directed graph. The usual LFP formula R(y, z) def=
(μX(x).z = x ∨ ∃w.E(x,w) ∧ X(w))(y) asserts that the vertex z is reachable
from y. Hence the formula ∀y. ∀z.R(y, z) asserts that G is strongly connected.
Now consider the IF-LFP formula

∀y. ∀z. (μX(x).z = x ∨ ∃w/{y, z}. E(x,w) ∧X(w))(y).

At first sight, one might think this asserts not only that every z is reachable from
every y, but that the path taken is independent of the choice of y and z. This
is true exactly if G has a directed Hamiltonian cycle, a much harder property
than being strongly connected.

Of course, the formula does not mean this, because the variable w is fresh
each time the fixpoint is unfolded. In the trump semantics, the denotation of the
fixpoint will include all the possible choice functions at each step, and hence all
possible combinations of choice functions. Thus the formula reduces to strong
connectivity.

It may be useful to look at the approximants of this formula in a little more
detail, to get some intuitions about the trump semantics. Considering just

H
def= (μX(x).z = x ∨ ∃w/{y, z}. E(x,w) ∧X(w))[x, y, z],

we see that in computing each approximant, the calculation of [[∃w/{y, z}. . . .]]
involves generating a trump for every possible value of a choice function f :x  →
w. This is a feature of the original trump semantics, and can be understood
by viewing it as a second-order semantics: just as the compositional Tarskian
semantics of ∃x. ϕ(x) involves computing all the witnesses for ϕ(x), so computing
the trumps of ∃x/{y}. ϕ involves computing all the Skolem functions; and unlike
the first-order case, it is necessary to work with functions (as IF can express
existential second-order logic). Consequently, the nth approximant includes all
states such that x → f1(x) → f2f1(x) → . . . → fn . . . f1(x) = z for any sequence
of successor-choosing functions fi. Thus we see that the cumulative effect is the
same as for a normal ∃w, and the independent choice has indeed not bought us
anything.

It is, however, possibleto produce a slightly more involved formula expressing
the Hamiltonian cycle property in this inductively defined way, by using the
standard trick for expressing functions in Henkin quantifier logics. We replace
the formula H by

∀s. ∃t/{y, z}. E(s, t)∧ (μX(x).x = z ∨
∀u. ∃v/{x, y, z, s, t}. (s = u ⇒ t = v) ∧ (x = u ⇒ X(v)))(y).

This works because the actual function f selecting a successor for every node is
made outside the fixpoint by ∀s. ∃t/{y, z}. E(s, t)∧ . . .; then inside the fixpoint,
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a new choice function g is made so that X(g(x)), and g is constrained to be the
same as f by the clause (s = u ⇒ t = v). (The reader who is not familiar with
the IF/Henkin to existential second-order translation might wish to ponder why
∀s. ∃t/{y, z}. E(s, t)∧ μX(x).x = z ∨ (x = s ⇒ X(t)) does not work.)

3 Second-Order Inductions
and Independence-Friendly Logics

It has been known from the early studies of Henkin quantifiers [Wal70, End70]
that existential second-order sentences can be transformed into sentences with
the Henkin quantifier, and thus into IF-FOL. A technique frequently used in our
results is the translation of existential second order inductions into IF-LFP.
For this we show that the translation of existential second-order logic into
independence-friendly logic can be extended to a translation of positive existen-
tial second-order inductions into independence-friendly fixpoint logic. Through-
out this paper we only consider finite structures. Therefore we only give the
translation for finite structures here.

We first give a formal definition of positive Σ1
1-inductive formulae.

Definition 3.1. An (n, k)-ary third-order variable R is a variable interpreted
by a set whose members are n-tuples of k-ary functions. Let, for some k, n < ω,
R be a (n, k)-ary third-order variable. A formula ϕ(R, f1, . . . , fn) is Σ1

1-inductive
if it is built up by the usual formula building rules for Σ1

1 augmented by a rule
that allows the use of atoms Rf1 . . . fn, where the fi are k-ary function symbols,
provided that the variable R is only used positively in ϕ.

Σ1
1-inductive formulae ϕ can be used to define least fixpoint inductions in

the same way as first-order formulae with a free relation variable in which they
are positive are used to define fixpoint inductions. So we can define the stages
Rα, α < ω, of the fixpoint induction in ϕ which ultimately lead to the least
fixpoint of the operator defined by the formula ϕ. We call a relation that is
obtained as the least fixpoint of a Σ1

1-inductive formula Σ1
1-inductive. Note, that

the Σ1
1-inductive relations are third-order objects, i.e. sets of functions.

We show next that any Σ1
1-inductive third-order relation R can be defined by

an IF-LFP-formula in the sense that there is a formula ϕ(R,x, y), positive in the
second-order variable R, such that the maximal trumps in the least fixpoint of
the operator defined by ϕ are precisely the graphs of the functions in R. For the
sake of simplicity, we only consider the case of (1, k)-ary inductions, i.e. where
the fixpoint is a set of functions.

An important concept used in the following proofs is the notion of functional
trumps; and a technically useful concept is that of maximal trumps.

Definition 3.2. Let ϕ(x, y) be a formula. A trump T for ϕ is functional in x
and y, if for all pairs (a, b), (a′, b′) of deals in T we have b = b′ whenever a = a′.
T is maximal if there is no T ′ � T that is a trump for ϕ.
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Note that because any subset of a trump is a trump, the trumps of a formula
are determined by its maximal trumps. Of course, any subset of a functional
trump is functional.
Notation. In the following proofs we will frequently use a construction like

∀x/{x1, y1, . . . ,xn, yn}∃y/{x1, y1, . . . ,xn, yn}
(
(x = x1 → y = y1) ∧ ϕ

)
for some formula ϕ. We will abbreviate this by

∀x∃y clone(x1, y1; x2, y2 . . . ,xn, yn)ϕ.

and we will usually omit the list (x2, y2 . . . ,xn, yn) of other variables which ap-
pear in the independence sets of the quantifiers, assuming that all other variables
than the clones and originals are in that list. Essentially, this formula says that
the Skolem functions fy and fy1 chosen for y and y1, respectively, are the same.
The next lemma makes this precise and establishes some useful properties of the
clone construction.

Lemma 3.3. Let A be a structure and let x be a k-tuple of variables.

(i) Let ψ be a formula defined as ψ(x, y) := ∀x′∃y′clone(x, y)ψ′. Then the
trumps for ψ are precisely the sets of deals functional in x and y with some
Skolem function f , such that the deals (. . . ,x, f(x),x′, f(x′)) form a trump
for ψ′. In particular, if ψ′ is true, then the trumps of ψ are just the deals
functional in x and y.

(ii) Let ϕ(x′, y′) be a formula with only functional trumps and let ψ be defined
as ψ(x, y) := ∀x′∃y′clone(x, y) ϕ. Then the trumps for ψ and the trumps for
ϕ are the same, in the sense that for every trump T ′ ⊆ Ak+1 of ϕ there is a
trump T ⊆ Ak+1 of ψ such that an assignment of elements a to the variables
x′ and b to y′ is a deal in T ′ if, and only if, the corresponding assignment
of a to x and b to y is a deal in T and, conversely, for every trump T of ψ
there is a corresponding trump T ′ for ϕ.

Proof. We first prove Part (i) of the lemma. Following our notation, the formula
ψ is an abbreviation for

∀x′/{x, y}∃y′/{x, y}(x = x′ → y = y′) ∧ ψ′.

Towards a contradiction, suppose there was a non-functional trump T for ψ,
i.e. T contains deals (a, b) and (a, b′) for some a and b �= b′. By the semantics of
universal quantifiers, this implies that there must be a trump for ∃y1/{x, y}(x =
x′ → y = y′) ∧ ψ′ containing (a, b,a) and (a, b′,a). But then, the set {(a, b,a),
(a, b′,a)} is a {x, y}-set (recall Definition 2.3). Hence, there must be trump
T ′ for (x = x′ → y = y′) ∧ ψ′ and an element c so that T ′ contains the deals
(a, b,a, c) and (a, b′,a, c). But this is impossible as not both b = c and b′ = c can
be true but obviously every deal (d, e,d′, e′) in a trump for (x = x′ → y = y′)
satisfies the condition that if d = d′ then also e = e′. Finally, if T is a functional
trump, then the corresponding T ′ must be a trump for ψ′, and so the deals
(a, b,a, b) must be a trump for ψ′.

Part (ii) of the lemma follows analogously. )*
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The next lemma shows that every formula in Σ1
1 is equivalent to a formula

in IF-LFP. The proof of the lemma follows easily from the work on Henkin-
quantifiers. However, some care has to be taken with free occurrences of function
variables.

Lemma 3.4. Let ϕ(f1, . . . , fn) be a Σ1
1-formula with free function variables

f1, . . . , fk. Then there is a formula ϕ̂(xf1 , yf1 , . . . ,xfk
, yfk

) ∈ IF-FOL such that
for every structure A a set T is a maximal trump for ϕ̂ if, and only if, there are
functions F1, . . . , Fk such that A |= ϕ(F1, . . . , Fk) and

T = {(a1, b1, . . . ,ak, bk) : Fi(ai) = bi for all 1 ≤ i ≤ k}.

We are now ready to prove the main theorem of this section.

Theorem 3.5. Let R be a (1, k)-ary third-order variable and let ϕ(R, f) be
a Σ1

1-inductive formula where f is a k-ary function symbol. Then there is a
formula ϕ̂(R,x, y) ∈ IF-LFP, where R is a k + 1-ary second-order variable that
only occurs positively in ϕ and x is a k-tuple of variables, such that the least
fixpoint R∞ of ϕ satisfies the following properties.

1. Every trump T in R∞ is functional.
2. Every maximal trump encodes the graph of a function in R∞ and, conversely,
3. for every function f ∈ R∞ there is a trump T in R∞ encoding the graph of

f .

Proof. Let ϕ(R, f) be as in the statement of the theorem. W.l.o.g. we assume
that ϕ has the form ϕ(R, f0) := ϕ0(f0) ∨ ∃f1 . . .∃fn

(
(
∧n

i=1 Rfi) ∧ ϕ1

)
so that

R does not occur in ϕ0 or ϕ1. (See [EF99] for a proof of this normal form
for existential first-order inductions. The proof for this case is analogous.) The
formula ϕ is translated into a formula ϕ̂(R,x, y) ∈ IF-LFP defined as follows:

ϕ̂(R,x, y) := ∀x1.∃y1.clone(x, y)
(
ψ0(x, y) ∨ ψ1(R,x1, y1)

)
where

ψ0(x, y) := ∀xf0∃yf0 clone(x, y) ϕ̂0(xf0 , yf0)

and
ψ1(R,x1, y1) := ∀xf0∃yf0 clone(x1, y1) ψ′1(xf0 , yf0)

and

ψ′1(R,xf0 , yf0) := ∀xf1∃yf1 . . .∀xfn∃yfn

∧n
i=1(∀x′∃y′clone(xfi , yfi) Rx′y′) ∧

ϕ̂1(xf0 , yf0 ,xf1 , yf1 , . . . ,xfn , yfn).

Here ϕ̂0 and ϕ̂1 are the formulae obtained from ϕ0 and ϕ1 by applying Lemma
3.4. We claim that the formula ϕ̂ satisfies the properties stated in the theorem.
Let A be a structure with universe A. By Lemma 3.3(i), the trumps T for are
functional in x and y, with Skolem function g such that g satisfies ψ0 or ψ1.

The theorem now follows by showing via an induction on the ordinals α that
every maximal trump in Rα is the graph of a function in Rα and, conversely,
the graph of every function in Rα is a trump in Rα. )*
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4 Independence-Friendly vs. Partial Fixpoint Logic

By definition, independence-friendly fixpoint logic is a least fixpoint logic. How-
ever, contrary to the fixpoint logics usually considered in finite model theory,
here the fixpoints are not sets of elements but sets of trumps and therefore es-
sentially third-order objects. In particular, it is no longer guaranteed that any
fixpoint induction closes in polynomially many steps in the size of the structure
– to the contrary, it may take an exponential number of steps to close. We will
see below, that this greatly increases the expressive power of IF-LFP compared
to normal least fixpoint logics.

As a first step in this direction we relate independence-friendly fixpoint logic
to partial fixpoint logic. Partial fixpoint logic is an important logic in finite
model theory. Syntactically, PFP is defined as the extension of first-order logic
by formulae ψ := [pfpR,x ϕ](t), where R is a second-order variable of arity k, x a
k-tuple of variables, t a k-tuple of terms, and ϕ itself an arbitrary PFP-formula.
In particular, R may occur positive and negative in ϕ. On any finite structure
A with universe A the formula ϕ defines a sequence Rα, α < ω, of sets defined
as R0 := ∅ and Rα+1 := {a : (A, Rα) |= ϕ(a)}. As there are no restrictions on
ϕ, this sequence need not reach a fixpoint. In this case, ψ is equivalent on A to
false. Otherwise, if the sequence becomes stationary and reaches a fixpoint R∞,
then for any tuple a ∈ Ak, A |= [pfpR,x ϕ](a) if, and only if, a ∈ R∞.

Among the various fixpoint logics commonly considered in finite model the-
ory, PFP is the most expressive subsuming logics such as LFP and IFP and, on
ordered structures, even second-order logic SO.

A central issue in finite model theory is to relate the expressive power of
logics to the computational complexity of classes of structures definable in the
logic. Of particular interest are so-called capturing results: A logic L captures
a complexity class C if every class of finite structures definable in L can be
decided in C and conversely, for every class C of finite structures which can be
decided in C there is a sentence ϕ ∈ L such that for all structures A, A |= ϕ if,
and only if, A ∈ C .

Capturing results are important as they provide logical characterisations of
complexity classes, i.e. characterisations independent of machine models and
time or space bounds. In particular, non-expressibility results on the logic trans-
fer directly into non-definability results on the complexity class. As such results
are notoriously hard to come by, capturing results provide an interesting alter-
native for proving non-definability of problems in a complexity class.

Much effort has been spent on capturing results and for all major complexity
classes such results have been found (see [EF99] for a summary). However, in
many cases it could only be shown that a logic captures a complexity class on
the class of ordered structures. As for PFP, it has been shown by Abiteboul
and Vianu [AV89], that PFP captures PSpace on the class of finite ordered
structures.

As every class of structures definable in second-order logic is decidable in
the polynomial time hierarchy, it follows immediately that PFP contains SO on
ordered structures. One feature that makes PFP so expressive is its ability to
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define fixpoint inductions of exponential length in the size of the structure. We
show next that every formula of PFP is equivalent to one in IF-LFP. For this
we show that every partial fixed-point induction can be translated into a Σ1

1-
inductive definition which, by Theorem 3.5, is equivalent to a formula in IF-LFP.
Due to space restrictions we refrain from giving the full proof here and refer to
the full version of the paper.

Theorem 4.1. For every formula ϕ ∈ PFP there is an equivalent formula ψ ∈
IF-LFP.

We have already mentioned that pure independence-friendly logic is equiv-
alent to Σ1

1 where we can use an existential second-order quantifier to state
the existence of a linear order on the universe of a structure even on classes of
otherwise unordered structures. Thus the theorem above implies that IF-LFP
contains SO on all rather than just ordered structures.

Corollary 4.2. On finite structures, every formula of SO is equivalent to a
formula in IF-LFP.

In the next section we will derive some further corollaries of this theorem
concerning the model-checking complexity of IF-LFP.

5 Complexity of Independence-Friendly Fixpoint Logic

In this section we analyse the complexity of IF-LFP on finite structures, both
with respect to data and model-checking complexity. By data-complexity we
understand the complexity of deciding for a fixed formula ϕ ∈ IF-LFP and a
given structure A whether A |= ϕ. In particular, the input only consists of the
structure A. By model-checking we mean the problem of deciding for a given
finite structure A and formula ϕ ∈ IF-LFP whether A |= ϕ. Here, both ϕ and A
are part of input.

We begin our analysis with data-complexity. In [Bra03], the first author al-
ready noticed that any given formula of IF-LFP can be evaluated in time expo-
nential in the size of the structure. For, every fixpoint μR(x).ϕ can be evaluated
in time linear in the number of trumps for ϕ and therefore exponential in the
size of the structure.

Proposition 5.1. IF-LFP has exponential time data-complexity.

We aim at a much stronger result. Not only will we show that IF-LFP is
ExpTime-complete with respect to data-complexity but we will prove that it
actually captures ExpTime, i.e. every class of structures decidable by an ex-
ponential time Turing-machine can be defined in IF-LFP and vice versa every
class of structures definable in IF-LFP can be decided in deterministic exponen-
tial time. Again we refrain from giving the full proof here and refer to the full
paper.

Theorem 5.2. IF-LFP captures ExpTime.
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Clearly, if a logic L captures a complexity class C, then the evaluation problem
of L must be C-complete with respect to data complexity. Thus we get the
following simple corollary.

Corollary 5.3. There exist formulae in IF-LFP with ExpTime-complete data-
complexity.

We continue our complexity analysis of IF-LFP with the study of its model-
checking complexity. For an upper bound, it is easily seen that for any given
structure A and formula ϕ the formula can be evaluated in A using space doubly
exponential in |ϕ| and exponential in |A|. For, every evaluation of a fixpoint only
needs enough space to store all possible trumps, and the number of trumps is
bounded by O(2A|ϕ|

).

Theorem 5.4. Every formula ϕ ∈ IF-LFP can be evaluated in a structure A in
space doubly exponential in |ϕ| and exponential in |A|.

The theorem gives an upper bound on the model checking complexity of
IF-LFP. We have seen in Section 4 above that every formula of PFP is equivalent
to one of IF-LFP. Further, the translation is polynomial in the size of the PFP-
formula. Consequently, model-checking for IF-LFP is at least as complex as it is
for PFP. As model-checking for PFP is known to be hard for exponential space
– in fact even complete for exponential space – we get the following theorem.

Theorem 5.5. The model-checking problem for IF-LFP is hard for exponential
space.

6 Conclusion

In this paper we studied the computational complexity of various problems re-
lated to IF-LFP. As we have seen, adding independence to least fixpoint logic
increases the expressive power and complexity significantly. Another indicator
for this is the translation of formulae of PFP to formulae of IF-LFP. This showed
that IF-LFP is even more expressive than second-order logic – unless, of course,
PSpace = ExpTime.

Looking at the various proofs given for the results, it becomes clear that
the common technique used in all proofs was to use independent quantification
to define functions and then show that these functions can be passed through
the fixpoint induction. This suggests that there might be a more general relation
between independence-friendly logic and second-order logic, namely that the two
logics are actually equivalent. Showing this, however, requires a careful analysis
of the role of negation in independence friendly logics and is far from obvious.
This is part of ongoing work.
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Abstract. In this paper we study the properties of systems of bounded
arithmetic capturing small complexity classes and state conditions suf-
ficient for such systems to capture the corresponding complexity class
tightly. Our class of systems of bounded arithmetic is the class of second-
order systems with comprehension axiom for a syntactically restricted
class of formulas Φ ⊂ ΣB

1 based on a logic in the descriptive complexity
setting. This work generalizes the results of [8] and [9]1.
We show that if the system 1) extends V0 (second-order version of IΔ0),
2) Δ1-defines all functions with bitgraphs from Φ, and 3) proves witness-
ing for all theorems from Φ, then the class of ΣB

1 -definable functions of
the resulting system is exactly the class expressed by Φ in the descriptive
complexity setting, provably in this system.

1 Introduction

There has been a lot of research in descriptive complexity and bounded arith-
metic, as well as their connections with complexity theory. However the question
of direct relationship between these two fields did not receive much attention.
The language of bounded arithmetic is richer than that of many logics, but of-
ten logics capture complexity classes over languages that include some arithmetic
predicates (order, plus and times, or, equivalently, BIT predicate).

Bounded arithmetic studies the complexity of proving properties of these
classes of formulas, whereas descriptive complexity is concerned with their ex-
pressive power. The most important distinction between different systems of
bounded arithmetic is the strength of their induction (or comprehension) axiom
schemes. This leads to the following question: how does the expressive power of
the class of formulas in the induction axioms of a system relate to the power
of the resulting system? In which cases the formulas in the comprehension are
more complex than the provably total functions of a system and under which
conditions their complexity coincides?

In this paper, we discuss properties under which the complexity of formulas in
comprehension axioms and of provably total functions of a system of arithmetic
is the same. Our approach is geared towards feasible complexity classes, those
1 More detailed presentation of most of this work can be found in my PhD thesis, [17],

available on ECCC.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 369–383, 2005.
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between P and DLOGTIME (uniform AC0). Restricting our attention to small classes
allows us to use definability by NP predicates (bounded Σ1) for the definition of
capture in the bounded arithmetic setting: we consider exactly the functions with
bitgraphs represented by NP predicates that are provably total in our systems. By
Fagin’s theorem [12], NP predicates are representable by second-order existential
formulas, so the formula classes we consider here are subsets of second-order
existential formulas.

Traditionally, functions are introduced by their recursion-theoretic charac-
terization (see [4] for the original such result or [26]), but since we are trying
to relate the expressive power of the formulas in comprehension and complex-
ity of functions, we introduce function symbols by setting their bitgraphs to be
formulas from the comprehension scheme.

Let C be a complexity class. Suppose that ΦC is a class of (existential second-
order) formulas that captures C in the descriptive complexity setting. We define
a theory of bounded arithmetic V -ΦC to be Robinson’s Q together with compre-
hension over bounded ΦC . The following is an informal statement of our main
result:

Claim: Let AC0 ⊆ C ⊆ P. Suppose that ΦC is closed under first-order operations
provably in V -ΦC (1). Also, suppose that for every φ(x̄, Ȳ ) ∈ ΦC , if V -ΦC � φ
then there is a function F on free variables of φ which is computable in C
and witnesses existential quantifiers of φ (2). Then the class of provably total
functions of V -ΦC is the class of functions computable in C.

It may seems that the second condition, that is witnessing for the ΦC the-
orems, is almost a restatement of the result itself. However, the class ΦC can
be very small, with definition of one complete problem for the class (for exam-
ple transitive closure). Then the second condition states that if this small set
of theorems can be witnessed, then all functions from that complexity class are
provably total in the system.

For conventional systems of bounded arithmetic, such as ones considered by
Clote and Takeuti in [3], it was shown that the class of provably total functions
of a system coincides with the function class in the complexity-theoretic sense.
Under our conditions this is provable within the system itself, so more work is
needed to prove the conditions, but the result is stronger. We hope that our
framework can be useful for proving independence results for weak theories of
arithmetic.

Examples of systems that provably capture complexity classes are V1-Horn
capturing P from [7, 8], V -Krom capturing NL from [9] and V 0 capturing AC0

from [6]. As an example of a similar system that captures a complexity class,
but not (known to be) provably, we present a system of arithmetic V -SymKrom
corresponding to symmetric logspace (SL), based on symmetric second-order 2-
CNF formulas (with ⊕ instead of ∨ between literals). This system can prove
that its class of provably total functions is the AC0 closure of SL functions. By
the recent Reingold’s result [22], SL = L and so symmetric 2-SAT is solvable
in logspace; therefore, AC0(SL) = SL = L. However, this proof, and even the
proof that SL is closed under complementation by Nisan and Ta-Shma [20],
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rely on algebraic properties on expander graphs. In their current form, these
proofs are not formalizable using SL-reasoning: to talk about algebra, we need
at least polynomial time. It is a very interesting open question whether there is
a combinatorial version of Reingold’s proof that is formalizable in a system for
L, and whether our theory for SL is fully conservative over a system for L.

2 Descriptive Complexity Framework

The name “descriptive complexity” refers to the study of expressive power of
logics: fixing a formula, we look at the complexity of evaluating this formula on
different finite structures. It is more common to call this area “finite model the-
ory”; however, here we stay with the term “descriptive complexity” to emphasize
the complexity theory connection and the richness of the assumed vocabulary.
Please see [11], [16], and [18] for the background.

Following [16], we consider logics over the vocabulary τ = {min,max,+,×,≤
} (we do not include BIT operator since it can be defined from +,× in the
weakest of our systems; see [6] for details). For many results it is sufficient
to assume only the presence of order and successor relations in the vocabulary
(these are the assumptions of [13, 14]); however it is more convenient to work with
a vocabulary containing all basic arithmetic operations. We refer to structures
where the arithmetic symbols of the vocabulary get the standard interpretation
as “arithmetic structures”. The way we connect logics with complexity classes
is stated in this definition (following [18]):

Definition 1 (Capture by a logic). Let C be a complexity class, L a logic
and K a class of finite structures. Then L captures C on K if

1. For every L-sentence φ and every A ∈ K, testing if A |= φ with φ fixed and
an encoding of A as an input can be done in C.

2. For every collection K ′ of structures closed under isomorphism, if this col-
lection is decidable in C then there is a sentence φK′ of L such that A |= φK′

iff A ∈ K ′, for every A ∈ K.

For our purposes, we fix K to be the arithmetic structures. In particular, the
universe of a structure is always considered to be {0, . . . , n− 1}.

Many capture results are obtained by extending first-order logic with addi-
tional operators, such as fixed-point operators. We find it more convenient to
work with restrictions of second-order logics rather than extensions of first-order.
However, in many cases we can switch to the extended first-order logic frame-
work by adding a defining axiom for a new operator, where the defining axiom
is a second-order formula. We use this for theories of non-deterministic logspace
and symmetric logspace (NL and SL), in order to introduce respective transitive
closure operators.

Definition 2. We will use the term restricted SO∃ to refer to formulas of the
form

∃P1 . . . Pk∀x1 . . . xlψ(P̄ , x̄, ā, Ȳ ), (1)
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where k, l are constants, and ψ is a (sub)class of CNF closed under conjunction.
Here, when defining a subclass of CNF we treat only the quantified second-order
variables P̄ as literals.

Note that there are no occurrences of existential first-order quantifiers in
restricted SO∃ formulas. This is because even when the class of ψ is restricted
to 2CNF with at most one occurrence of a positive literal, with presence of
an existential quantifier it is possible to capture all of SO∃ [13, 14]. Universal
first-order and quantifier-free formulas are restricted SO∃.

Schaefer’s theorem ([23]) presents several restrictions on CNF that corre-
spond to different complexity classes. Grädel in [13, 14] described how to use
some of them to capture complexity classes by restricted second-order formulas.
Here we use systems based on the following restrictions of ψ:

Definition 3. A formula ψ(x̄, P̄ , ā, Ȳ ) is Horn with respect to the second-order
variables P1, ..., Pk if ψ is quantifier-free in conjunctive normal form and in every
clause there is at most one positive literal of the form Pi(x̄). It is Krom with
respect to P̄ if ψ is a CNF with at most two occurrences of a P -literal per clause.
It is SymKrom if it is Krom with ⊕ instead of ∨ in every clause (so every clause
is of the form (φi → Li ⊕ L′i), where the only P -literals are Li and L′i).

Following Grädel, we can define classes SO∃ Horn and SO∃ Krom and
SO∃ SymKrom as restricted SO∃, in which ψ is, respectively, Horn, Krom and
SymKrom with respect to P̄ .

The following descriptive complexity characterizations provide classes of for-
mulas on which our systems can be based. However, not all of them result in
systems tightly capturing the corresponding complexity class.

Over arithmetic structures,

– First-order logic captures uniform AC0 ([1, 15]).
– Second-order existential logic captures NP ([12]), and in general levels of SO

hierarchy correspond to levels of PH ([24]).
– Second-order Horn, Krom and SymKrom capture P, NL and SL, respectively

([13, 14]).

In case of restricted second-order formulas, the formula evaluation direction of
the capture proof consists of the following steps. First, the formula is brought into
propositional form by making a copy of its quantifier-free part for every possible
tuple of values of quantified first-order variables. Then first-order terms and free
second-order terms are evaluated. Second-order terms of the form Pi(t(x̄)), where
Pi is quantified and t(x̄) is a term, are assigned propositional variables so that
Pi(t(x̄)) and Pi(t′(x̄)) are assigned to the same variable whenever t(x̄) evaluates
to the same value as t′(x̄), on possibly different tuples x̄. Now the problem is
reduced to testing satisfiability of the resulting propositional formula.

3 Bounded Arithmetic Framework

In descriptive complexity, a language in the traditional complexity theory setting
is thought of as interpretations of a unary predicate X (viewed as a binary string)



Closure Properties of Weak Systems of Bounded Arithmetic 373

in a set of structures. A class of recursively enumerable languages then naturally
corresponds to a class of formulas: each language in the class corresponds to a
formula which has, as its set of models, the structures with X interpreted as
strings from the language. In the bounded arithmetic setting, the relationship
with complexity classes is slightly different. Here, we consider representations of
languages in the standard model of arithmetic N2 (two-sorted N). So instead of a
set of structures with one predicate getting different interpretation we are talking
about one fixed structure and different (second-order) elements of it satisfying
the formula.

Definition 4 (Representation). A formula A(X) represents a language L if
L = {w(S)|N2 |= A(S)}, where w is some encoding of strings. More generally,
A(x̄, Ȳ ) represents a relation R(x̄, Ȳ ) which holds on x̄, Ȳ iff N2 |= A(x̄, Ȳ ). A
class of formulas Φ represents a complexity class C iff every relation R from C
is representable by a formula from Φ, and every formula from Φ can be evaluated
within C.

This notion is parallel to the notion of “capture” from descriptive complexity
(see definition 1); essentially, they have the same meaning of describing the
expressive power of formulas. But the notion of “capture” we will be using for
systems of bounded arithmetic will be quite different.

The language of our systems of arithmetic is L2
A = {0, 1,+, ·, | |;<,=,∈},

a natural second-order extension of the language of Peano Arithmetic LA =
{0, 1,+, ·;<,=}. Let N2 be a standard structure with natural numbers and finite
sets of natural numbers in the universe; our first-order objects (denoted by lower-
case letters) are natural numbers; second-order objects (denoted by upper-case
letters) are binary strings or, equivalently, (finite) sets of numbers. Treating a
second-order variable X as a set, its upper bound (“length”) |X | is defined to
be the largest element y ∈ X plus one, or 0 if X is an empty set.

Arithmetic terms are constructed using + and × from first-order variables,
constants 0 and 1, and terms of the form |X | where X is a second-order variable.
The atomic formulas of L2

A have one of the forms s = t, s ≤ t, t ∈ X , where s and
t are terms and X is a second-order variable. We usually write X(t) instead of
t ∈ X . Formulas are built from atomic formulas using the propositional connec-
tives ∧,∨,¬, the first-order quantifiers ∀x,∃x and the second-order quantifiers
∀X, ∃X .

Bounded first-order quantifiers get their usual meaning: ∀x ≤ tφ stands for
∀x(x ≤ t → φ) and ∃x ≤ tφ stands for ∃x(x ≤ t ∧ φ). Second-order quantified
variables are strings of bounded length; the notation ∃Z ≤ b corresponds to
∃Z |Z| ≤ b.

Definition 5. ΣB
0 and ΠB

0 both denote the class of bounded formulas with no
second-order quantifiers. We define inductively ΣB

i+1 as the least class of for-
mulas containing ΠB

i and closed under disjunction, conjunction, and bounded
existential second-order quantification. The class ΠB

i+1 is defined dually. We use
notation ΣB

0 (Φ) to refer to the closure of Φ under first-order operations: that is,
under ∨,∧,¬ and bounded first-order ∀ and ∃.
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3.1 Translation

Let Φ be a descriptive logic over a vocabulary τ . For every φ ∈ Φ, we can define
a translation φ∗ into L2

A with the following properties:

1. Every interpreted symbol from τ that occurs in L2
A gets the standard inter-

pretation, e.g., successor becomes +1, min becomes 0, etc.
2. Translate max as n for a free variable n. For every quantified first-order

variable, set n+1 (more generally, a polynomial of n) as a bound. Note that
then |X | = n + 1 for a unary second-order predicate.

3. Translate uninterpreted relational symbols of τ occurring in φ as free second-
order variables of φ∗. If a variable is k-ary, use a pairing function to encode
the relational symbol as a unary second-order variable. Then any occurrence
of R(x1, . . . , xk) becomes R∗(〈x1, . . . , xk〉), where 〈x1, . . . , xk〉 is a value ob-
tained by applying the pairing function to x1, . . . , xk.

Under this translation, a restricted second-order formula becomes a restricted
ΣB

1 formula with the same restriction on the quantifier-free part. The resulting
Φ∗ represents in the standard model the same complexity class as is captured
by Φ in the descriptive complexity setting.

Table 1. The 2-BASIC axioms

B1: x + 1 �= 0 B2: x + 1 = y + 1→ x = y B4: x + (y + 1) = (x + y) + 1
B3: x + 0 = x B5: x · 0 = 0 B6: x · (y + 1) = (x · y) + x

B7: 0 ≤ x B9: x ≤ y ∧ y ≤ z → x ≤ z B10: (x ≤ y ∧ y ≤ x)→ x = y
B8: x ≤ x + y B11: x ≤ y ∨ y ≤ x B12: x ≤ y ↔ x < y + 1

L1: X(y)→ y < |X| L2: y + 1 = |X| → X(y) B13: x �= 0→ ∃y(y + 1 = x)

3.2 Systems of Bounded Arithmetic

Now, for a set of formulas Φ, a system V -Φ is axiomatized by 2-BASIC axioms
listed in table above together with a comprehension scheme of the form

∃Z ≤ b∀i < b(Z(i) ↔ φ(i, ā, X̄)), (Φ-comp)

where φ ∈ Φ.
To agree with the common notation, we abbreviate V -ΣB

i as V i, i ≥ 0.
These theories are axiomatized by the 2-BASIC together with a comprehension
scheme for ΣB

i formulas. For i ≥ 1, V i is equivalent to the first-order theory Si
2

by RSUV isomorphism [21, 25]. The system V 0 corresponds to the complexity
class uniform AC0.

4 Definability in V -Φ

4.1 Basic Properties of V 0 and V -Φ

The system V 0 is robust enough to prove many natural properties. In particular,
induction on the length of string (and thus on ΣB

0 combinations of Φ) is a



Closure Properties of Weak Systems of Bounded Arithmetic 375

theorem of V -Φ extending V 0. Also, V 0 proves properties of the pairing function
and simultaneous comprehension over several variables, resulting in an array (so
several existential second-order quantifiers can be treated as one). We use P [b]

to denote the “b-th row” when P is being used as a 2-dimensional array. If φ(P )
is a formula with no occurrence of |P |, then φ(P [b]) is obtained from φ(P ) by
replacing every atomic formula P (t) by P (b, t).

The following property, Replacement, plays a major role in our definability
proofs. It is a theorem for V 1 and stronger theories, however weaker theories do
not prove full ΣB

1 replacement under cryptographic assumptions by [10]. For our
purpose it is sufficient to prove it for restricted ΣB

1 formulas.

Lemma 1 (Replacement). Let Φ be a class of restricted ΣB
1 formulas. Then

for every formula ∃P̄ φ(y, P̄ ) ∈ Φ, where φ can have additional free variables,
V -Φ proves

∀y < t∃P̄ φ(y, P̄ ) ↔ ∃P̄∀y < tφ(y, P̄ [y]) (Replacement)

where P̄ [y] is P
[y]
1 , ..., P

[y]
k .

Proof. The proof is a generalization of a proof of Replacement in [8]. Here we are
using the lack of existential first-order quantifiers and closure under conjunctions
of the quantifier-free parts of Φ-formulas.

4.2 Function Classes

Complexity classes are defined as classes of relations. This is also the interpre-
tation for the descriptive complexity setting. But in bounded arithmetic the
measure of the power of a theory is the complexity of the corresponding func-
tions. So we use relations as graphs to define number functions and as bit graphs
to define string functions. The following definition is very general, but sometimes
does not produce a robust function class: for example, there is nothing in this
definition that would force the functions to be closed under composition. In order
to make the function classes defined this way meaningful, we will need additional
restrictions.

Definition 6. Let C be a complexity class. We define the corresponding class
FC of functions of C as follows: A string function F : Nk × ({0, 1}∗)l → {0, 1}∗
is in FC iff there is a relation R in C and a polynomial p such that F (x̄, Ȳ )(i) ↔
i < p(x̄, |Ȳ |)∧R(i, x̄, Ȳ ) for all i ∈ N. A number function f(x̄, Ȳ ) is in the class
FC if there is a string function in F (x̄, Ȳ ) ∈ FC such that f(x̄, Ȳ ) = |F (x̄, Ȳ )|.
If formula class Φ represents C, then R can be replaced by a formula φ ∈ Φ
representing R.

For string functions, we are only concerned with the bits with indices smaller
than p(x̄, Ȳ ). Therefore, a string corresponding to the value of a function will
be of length less than p(x̄, Ȳ ). In particular, by the length axioms, all bits with
indices larger than p(x̄, Ȳ ) are 0.
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This definition of FC does not directly impose any “robustness” conditions
such as closure under function composition. To allow for that, we define an AC0

closure of FC as follows.

Definition 7. A (string) function F (x̄, Ȳ ) is AC0 reducible to a set of function
symbols L (denoted F ∈ AC0(L)) iff there is a sequence F1 . . . Fn of string func-
tions such that Fn = F and Fi is in ΣB

0 (L ∪ {F1 . . . Fi−1}) for i = 1, . . . , n. If
for any F ∈ AC0(L), F ∈ L we say that L is closed under AC0 reductions.

In case FC is definable by formulas from Φ, the definition naturally general-
izes to AC0(Φ).

Definition 8. A relation R(x̄, Ȳ ) is ΔB
1 -definable in V -Φ iff there exist formulas

φ, φ̃ ∈ ΣB
1 such that R(x̄, Ȳ ) is represented by φ(x̄, Ȳ ) and V -Φ � φ(x̄, Ȳ ) ↔

¬φ̃(x̄, Ȳ ). A string function F is ΣB
1 -definable in V -Φ if it has a defining axiom

Z = F (x̄, Ȳ ) ↔ φ(Z, x̄, Ȳ )), with φ ∈ ΣB
1 such that V -Φ � ∀x̄∀Ȳ ∃!Zφ(Z, x̄, Ȳ )).

By the second-order version of Parikh’s theorem (see [6]), we can use ΣB
1 -

definability and Σ1-definability interchangeably. Also, ΔB
1 -definable relations

and ΣB
1 -definable boolean functions are the same (consider characteristic func-

tions of predicates).
Using definition 8, we can state the definition of “capture” in the bounded

arithmetic setting. This gives us a way of measuring the power of a system of
arithmetic.

Definition 9 (Capture in bounded arithmetic). A system of arithmetic
T captures a complexity class C if the class of ΣB

1 -definable functions of T is
exactly FC. That is, FC is the class of functions representable by ΣB

1 formulas
that are provably total in T .

Note that this is quite different from the descriptive complexity notion of
“capture” from definition 1: descriptive complexity “captures” is bounded arith-
metic “representable”. The reason we are using the same word is that in both
cases we are relating a logic (system of arithmetic) and a complexity class; “cap-
ture” here is a generic name for such a connection.

4.3 Properties

The first property that we consider is (provable) closure under AC0 reductions.
We emphasize the provability part here: in the previous work, e.g., by Clote and
Takeuti [2], the fact that the classes in question were closed under complemen-
tation was used but not proven within the system.

Property 1 (Closure). Let Φ represent a complexity class C and let FC be as in
definition 6. Then the closure property holds if Φ is closed under AC0 reductions.
In particular, FC is closed under composition and substitution of a term for a
variable. In addition, Φ is strongly closed if for every φ∗ ∈ ΣB

0 (Φ) there exists
φ ∈ Φ such that V -Φ � φ∗ ↔ φ.
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If this property holds, the corresponding C must be closed under comple-
mentation and Φ extends ΣB

0 (that is, defines all of first-order). For some Φ,
notably restricted ΣB

1 , it is not syntactically true that ΣB
0 ⊆ Φ, but it can be

proved that for any ΣB
0 formula there is an equivalent formula of Φ.

In order for a logic to translate into a “nice” system of arithmetic, the logic
has to be in some sense “natural”. That is, its properties such as closure under
composition and complementation have to be provable using only simple con-
cepts. Moreover, it should be easy to verify whether a given formula holds on a
structure. More formally, we need the following property:

Property 2 (Constructiveness). Let Φ be a class of restricted ΣB
1 formulas,

and let Φ represent C. This Φ has the constructiveness property if the following
two conditions hold. Firstly, every φ ∈ Φ defines a relation R that is ΔB

1 -definable
in V -Φ, with φ being its ΣB

1 definition. Secondly, there are witnessing functions
F̄ with bit graphs in ΣB

0 (Φ) such that F̄ (ā, Ȳ ) witness the existential quantifiers
of the prenex form of φ ∨ φ̃.

If, additionally, Φ is strongly closed, that is, has property 1, then the conclu-
sion of the constructiveness property can be stated simpler as follows.

Property 2’ (Strong constructiveness) For every φ ≡ ∃P̄ψ(P̄ , ā, Ȳ ) ∈ Φ such
that V -Φ � φ there are functions F̄ witnessing P̄ such that bitgraphs of F̄ are
in Φ.

It is enough to consider φ-theorems of V -Φ because if Φ is closed, then φ̃ ∈ Φ
and so is φ∨ φ̃. Also, the assumption that bitgraphs of F̄ are in ΣB

0 (Φ) becomes
bitgraphs ∈ Φ.

Sometimes we use the term “weak constructiveness” to refer to the original
constructiveness property, and “strong constructiveness” for the second version.

4.4 Main Results

Now we are ready to state the main theorem of this paper.

Theorem 1 (Definability theorem). Suppose that Φ is restricted ΣB
1 or ΣB

0 ,
constructive, and represents a complexity class C. Then all functions from FC
are ΣB

1 -definable in V -Φ and all ΣB
1 -definable functions of V -Φ are in AC0(FC).

Suppose, additionally, that Φ is strongly closed. In this case, the class of
ΣB

1 -definable functions of V -Φ coincides with FC provably in V -Φ.

We will refer to the first statement as “weak definability” and the second state-
ment as “strong definability”.

The proof of this theorem consists of two parts. The part that FC is ΣB
1 -

definable in V -Φ follows by the fact that we have comprehension for ΣB
0 (Φ)-

formulas, which gives us replacement for both φ and its ΣB
1 negation.

The second part, which we call the generalized witnessing theorem, is used to
show that the class of witnessing functions for φ-formulas is AC0(FC).
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Theorem 2 (Generalized witnessing theorem). Let Φ be a class of re-
stricted ΣB

1 formulas representing C. Suppose that Φ is constructive. Then ΣB
1 -

theorems of V -Φ can be witnessed by functions from AC0(FC) provably in V -Φ.
That is, if V -Φ � ∃Zφ(x̄, Ȳ , Z), where φ ∈ ΣB

1 , then there is a string function
F (x̄, Ȳ ) in AC0(FC) such that

V -Φ,AX(F ) � φ(x̄, Ȳ , F (x̄, Ȳ )),

where AX(F ) is a defining axiom for F . If Φ is strongly closed and constructive,
then V -Φ proves that the defining axiom for F is equivalent to a formula from
Φ.

The witnessing theorem looks similar to the constructiveness property, but
they talk about different classes of formulas. Whereas constructiveness is con-
cerned with witnessing an existential quantifier in a φ ∈ Φ (or finding a coun-
terexample to φ), the witnessing theorem describes the power of a system in
terms of the strength of ΣB

1 -theorems that the system in question can prove.
The theorem 2 is a generalization of the witnessing theorem for V 0 as pre-

sented in [6] (hence the name “Generalized witnessing”). The proof uses proof-
theoretic techniques. Taking a ΣB

1 theorem of V -Φ, we analyze its anchored
proof in a second-order version of quantified Gentzen calculus LK2 and prove,
by induction on the structure of the proof, that in every line existential quanti-
fiers can be witnessed by the functions of given complexity. To ensure that every
line in the proof has only ΣB

1 formulas, we replace the comprehension axiom
of V -Φ by a statement of the form ∃Z < t∀i ≤ t(φ(i) ∧ Z(i)) ∨ (φ̃(i) ∧ ¬Z(i)),
φ ∈ Φ, where φ̃ is a ΣB

1 formula equivalent to the negation of φ, provided by
the constructiveness property. This gives us the base case (witnessing for the
axioms). The witnesses in the rest of the cases are AC0 combinations of witnesses
in the previous steps.

Note that if the conditions do not hold, then the class of witnessing functions
can be smaller than representable by formulas in the comprehension axiom. An
example of that is the theory V 1, with comprehension over NP predicates. By
the second-order version of Buss’ witnessing theorem [6, 26], the class of ΣB

1 -
definable functions of V 1 is P. But not every ΣB

1 formula is ΔB
1 -definable in V 1.

Moreover, even if NP = coNP and for every ΣB
1 formula there is an equivalent ΠB

1

formula, it might not be the case that these equivalences are provable in V 1.

5 Applications of the Definability Theorem

In this section we restate several previously known capture results in our frame-
work. Three such examples when the strong case of Theorem 1 applies are V 0

itself, V1-Horn and V -Krom. Below, we show that these theories are built on
classes of formulas satisfying our two properties.
Example 1([5, 6, 26]) Functions bit-definable by ΣB

0 formulas in V 0 are AC0

functions, and ΣB
0 formulas correspond to the first-order logic which captures

AC0 in the descriptive sense ([1]). The constructiveness property is satisfied triv-
ially, since ΣB

0 is closed under complementation syntactically and there are no
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quantifiers to witness. It was shown in [5, 26] that AC0 functions are closed under
composition and thus under AC0 reductions. Therefore, theorem 1 applies, so the
class of ΣB

1 -definable functions of V 0 is FAC0.
Example 2 ([7, 8]) The class of ΣB

1 -Horn formulas comes from SO∃-Horn
formulas capturing P in the descriptive setting. The resulting system V1-Horn
defines polynomial-time functions by ΣB

1 -Horn formulas, and is equivalent in
power to Zambella’s P-def (and thus PV ). In this case, the properties hold with
Φ = ΣB

1 -Horn and FC = FP . So by the definability theorem ΣB
1 -definable

functions of V1-Horn are precisely polynomial-time functions. The bulk of work
is a formalization of the satisfiability algorithm for propositional Horn formulas,
which is needed already to prove closure of ΣB

1 -Horn formulas under complemen-
tation. This algorithm is constructive: a satisfying assignment (or, equivalently,
values for quantified second-order variables) is obtained as part of the algorithm
(the value T [a] in the description of Run). This gives the constructiveness prop-
erty.
Example 3([9]) Now take the class of ΣB

1 -Krom formulas, a translated ver-
sion of Grädel’s SO∃-Krom (second-order 2CNF). It is possible to formalize
Immerman-Szelepcsényi’s proof of closure of NL under complementation in the
resulting theory V -Krom ([9]). Also, proving that transitive closure function is
ΣB

1 -definable in V -Krom results in a proof of constructiveness for V -Krom: val-
ues for quantified second-order variables are expressed as ΣB

0 combination of
transitive closure function calls.

The next example, a system of arithmetic for SL, presents a case when we were
not able to prove the strong version of the properties; this led to the formulation
of the weaker properties.

6 Weak Case of the Definability Theorem

A class of ΣB
1 -SymKrom formulas is very similar to ΣB

1 -Krom, except it is based
on symmetric 2CNF (that is, 2CNF with XOR instead of disjunctions). From
the same Grädel’s paper as before, [14], we know that SO∃-SymKrom captures
SL. We define V -SymKrom to be V -Φ with Φ ≡ ΣB

1 -SymKrom.
It seems that showing that a system V -SymKrom would capture FSL should

be straightforward. However, the methods used to prove closure of SL under
complementation (Nisan and Ta-Shma, [20]), and, recently, that SL = L (Rein-
gold, [22]) use properties of expander graphs and rely on algebraic methods for
the proofs. But those are not known to be formalizable in less complexity than
P. By Reingold’s result, the class of ΣB

1 -definable functions of V -SymKrom is
thus all logspace functions, but this is not known to be provable in V -SymKrom
itself, as opposed to the cases of AC0, NL and P. It might still be possible that
such a theory for SL is not fully conservative over a theory for L.

6.1 Symmetric Transitive Closure

To simplify proofs, we introduce symmetric transitive closure operator by the
following axiom:
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STCx,yφ(x, y, ā, Ȳ )[a, b, n] ↔ ∀R(CondS(φ,R, n) → R(a, b)), (AxSTC)

where

CondS(φ,R, n) ≡ ∀x, y, z < n(R(x, x) ∧ (φ(x, y) → (R(y, z) ↔ R(x, z))))

Note that if φ is quantifier-free except for bounded existential first-order
quantifiers, then the negation of the STCx,yφ(x, y)[a, b, n] defining axiom is
equivalent to a ΣB

1 -SymKrom formula. Therefore, V -SymKrom proves induc-
tion on ΣB

0 combinations of STC functions.
By the same reasoning as for V -Krom in [9], STC defined in this manner

is reflexive, transitive and robust against adding an edge on the left versus on
the right (that is, conditions with φ(x, y) → (R(x, z) ↔ R(y, z)) and φ(y, z) →
(R(x, z) ↔ R(x, y)) are equivalent). It is also provable in V -SymKrom that STC
is symmetric: STC(a, b, n) ↔ STC(b, a, n).

To see that V 0 ⊂ V -SymKrom, we encode a first-order formula as a graph and
apply the STC operator to it. A first-order existential quantifier in ∃z < nψ(z)
is simulated by STC applied to the graph with an edge relation defined by
E(x, y) ↔ ¬ψ(x) ∧ y = x + 1. That is, a graph is a path from vertex 0 to
vertex n with every edge (z, z+ 1) labeled ¬ψ(z); if ψ(z) holds for some z0 then
the edge (z0, z0 + 1) is absent so the start of the path and the end of it are
disconnected. Similarly, a first-order universal quantifier is encoded by a graph
with E(x, y) such that E(s, u) ↔ E(u, t) ↔ ¬ψ(u). This construction is applied
for every block ∃z < n∀u < nψ(z, u): such block is encoded as a path with every
edge replaced by a “nested diamonds” gadget encoding a universal quantifier. A
vertex 〈n, n〉 is reachable from the vertex 〈0, 0〉 iff ∃z < n∀u < nψ(z, u) holds.

Now we need to show the weak constructiveness property. First, we show
how to witness formulas from ΣB

1 -SymKrom using ΣB
0 (STC). Second, we give

a ΣB
1 predicate equivalent to the negation of STC and show how to witness it:

since the value of every formula can be expressed using STC, this is sufficient
for ΔB

1 -definability of ΣB
1 -SymKrom.

6.2 Constructing a Witness for a ΣB
1 -SymKrom Formula

Given a ΣB
1 -SymKrom formula φ∗ ≡ ∃P∀x̄ < n̄ψ(P, x̄), we create a formula

φ′(u, s, v, s′) encoding the structure of ψ; this encoding is similar to the en-
coding used in [9] for ΣB

1 -Krom formulas. For every clause, φ′(u, s, v, s′) says
that P -literals contain terms evaluating to u and v, with s and s′ being 0 if
the literal is negated and 1 otherwise. A propositional version of the formula is
satisfiable if the corresponding graph is bipartite, that is, ∃R∀u, v < b∀s, s′ <
2(φ′(u, s, v, s′) → ¬R(u, s) ↔ R(v, s′)). Now, to use STC to test bipartiteness
we use the standard technique of “doubling” the graph, with every vertex hav-
ing “even” and “odd” version and every edge connecting the literals on opposite
sides. There is an odd cycle in the original graph (and thus the formula evalu-
ates to false) iff there is a path from a vertex on one side to the same numbered
vertex on the other; this can be expressed using STC. From the witness to the
negation of STC we construct a value for P (all literals on the same side as the
constant � are set to true).



Closure Properties of Weak Systems of Bounded Arithmetic 381

6.3 ΔB
1 -Definability of STC

Saying that a pair (a, b) is in the symmetric transitive closure of a graph is
equivalent to the statement that b is reachable from a in an undirected graph.
The following ΣB

0 predicate ReachCond(R,E, n + 1, a) states that R(x, i) is
true iff x is at most distance i from a:

∀x ≤ n∀i ≤ n(R(x, 0) ↔ x = a)∧
(R(x, i + 1) ↔ (∃y ≤ nR(y, i) ∧ (E(y, x) ∨ y = x)))

Let φ be a formula defining an edge relation of a graph. Let

UDistφ(x, y, d) ≡ STC(u,c),(v,c′)α[(x, 0), (y, d), (n, n)],

where α(u, c, v, c′) ≡ (c′ = c + 1 ∧ (φ(u, v) ∨ u = v)). For simplicity, we assume
that φ is represented by the corresponding graph E, and write UDist(x, y, d) in
that case. Then, R(x, i) ≡ UDist(a, x, i) satisfies ∃RReachCond(R,E, n+1, a),
and V -SymKrom � STC(a, b, n) ↔ ∃RReachCond(R,E, n + 1, a) ∧R(b, n).

Now, we showed that the weak constructiveness property holds. Therefore,
every SL function is ΣB

1 -definable in V -SymKrom and every ΣB
1 -definable func-

tion of V -SymKrom is in AC0(FSL) provably in V -SymKrom. We know that
AC0(FSL) = FL, that is every AC0(SL) function is already computable in logspace,
but this is not known to be provable in V -SymKrom. Also, just like V -Krom,
V -SymKrom is finitely axiomatizable by finite set of axioms of V 0 together with
comprehension over ¬AxSTC.

7 Conclusion

In this work we present a general framework for constructing systems of arith-
metic with predefined power based on descriptive complexity results. The setback
is that whereas for capture results in the descriptive complexity setting it is suf-
ficient to have “some” proof of capture, in our bounded arithmetic framework we
need an “easy” proof of capture, getting in return a “provable” capture result.
It is interesting to see in which cases the complexity classes behave nicely, like
P or NL, and in which cases, like SL, the proofs use concepts not (known to be)
formalizable within the class itself.

A general witnessing theorem applying to slightly different types of theories
was presented recently by Cook and Nguyen [19]. Their framework applies to
theories equivalent to universal theories. They have a large number of applica-
tions, including different theories for NL, SL and P. However, they do not talk
about provable capture.

Yet another property, uniqueness, that can be used instead of constructive-
ness was suggested to me by Sam Buss. This property states that for every
formula from Φ there is an equivalent ΣB

1 formula with at most one witness to
the quantifiers. The uniqueness property immediately implies constructiveness.

In general, it is interesting to explore the “robustness” of complexity classes
such as provability of their properties. We hope that our framework provides a
natural setting for such study.
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4. A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel,
editor, Logic, Methodology and Philosophy of Science, pages 24–30, Amsterdam,
1965. North-Holland.

5. S. Cook. Theories for complexity classes and their propositional translations. sub-
mitted, pages 1–36, 2004.

6. S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course notes,
URL: ”http://www.cs.toronto.edu/∼sacook/csc2429h”, Spring 1998-2002.

7. S.A. Cook and A. Kolokolova. A second-order system for polynomial-time rea-
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Abstract. In [1] Bradfield found a link between finite differences formed
by Σ0

2 sets and the mu-arithmetic introduced by Lubarski [7]. We ex-
tend this approach into the transfinite: in allowing countable disjunc-
tions we show that this kind of extended mu-calculus matches neatly to
the transfinite difference hierarchy of Σ0

2 sets. The difference hierarchy
is intimately related to parity games. When passing to infinitely many
priorities, it might not longer be true that there is a positional winning
strategy. However, if such games are derived from the difference hierar-
chy, this property still holds true.

1 Introduction

Modal mu-calculus, the logic obtained by adding least and greatest fixpoint
operators to modal logic, has long been of great practical and theoretical inter-
est in systems verification. The problem of understanding alternating least and
greatest fixpoints gave rise to a powerful and elegant theory relating them to
alternating parity automata and to parity games, developed by many people in-
cluding particularly Emerson, Lei, Jutla and Streett. Meanwhile, mu-arithmetic,
the logic obtained by adding fixpoints to first-order arithmetic, made a brief ap-
pearance in the early 90s when Lubarsky studied its ordinal-defining capabilities
– curiously, the logic had not previously been studied per se even by logicians.
Then Bradfield used mu-arithmetic as a meta-language for modal mu-calculus,
in which to prove a theorem on alternating fixpoints. Subsequently, Bradfield
looked further into the analogies between mu-arithmetic and modal mu-calculus,
and showed a natural equation between arithmetic fixpoints and the finite differ-
ence hierarchy over Σ0

2, corresponding to the equation between modal fixpoints
and parity games. Once in the world of arithmetic, it becomes natural to think
about transfinite hierarchies. In this paper, we study the transfinite extension of
the connection between mu-arithmetic and the difference hierarchy, and connect
it to the Wadge hierarchy.

2 The Transfinite Mu-Calculus

2.1 Syntax and Semantics of the Transfinite Mu-Calculus

The logic we are considering is an extension of the usual mu-arithmetic, as
introduced by Lubarski [7]. First, let us establish basic notation and conventions.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 384–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Transfinite Extension of the Mu-Calculus 385

ω is the set of non-negative integers; variables i, j, . . . , n range over ω. The set
of finite sequences of integers is denoted ω∗; finite sequences are identified with
integers via standard codings; the length of a sequence s is denoted lh(s). The
set of infinite sequences of integers is ωω. For α ∈ ωω, α(i) is the i’th element of
α, and α(<i) is the finite sequence 〈α(0), . . . , α(i− 1)〉. Concatenation of finite
and infinite sequences is written with concatenation of symbols or with �, and
extended to sets pointwise. The usual Kleene lightface hierarchy is defined on
ω, ωω and their products: Σ0

1 = Σ1
0 is the semi-recursive sets, Σ0

n1
= ∃x ∈ ω.Π0

n,
Πi

n = ¬Σi
n and Σ1

n+1 = ∃α ∈ ωω.Π1
n. The corresponding boldface hierarchy is

similar, but starts with Σ0
1 = Σ1

0 being the open sets.
Mu-arithmetic has as basic symbols the following: function symbols f, g, h;

predicate symbols P,Q,R; first-order variables x, y, z; set variables X,Y, Z; and
the symbols ∨,∧, ∃, ∀, μ, ν,¬,∈. The language has expressions of three kinds, in-
dividual terms, set terms, and formulae. The individual terms comprise the usual
terms of first-order logic. The set terms comprise set variables and expressions
μ(x,X). φ and ν(x,X). φ, where X occurs positively in φ. Here μ binds both an
individual variable and a set variable; henceforth we shall often write just μX. φ,
and assume that the individual variable is the lower-case of the set variable. We
also use μν to mean ‘μ or ν as appropriate’. The formulae are built by the usual
first-order construction, together with the rule that if τ is an individual term
and Ξ is a set term, then τ ∈ Ξ is a formula.

The semantics of the first-order connectives is as usual; τ ∈ Ξ is interpreted
naturally; and the set term μX. φ(x,X) is interpreted as the least fixpoint of the
functional X  → {m ∈ ω | φ(m,X) } (where X ⊆ ω).

To produce a transfinite extension, we add the following symbols and for-
mulae. If we have countably many recursively given Φi, i ∈ ω, whose free set
variables are contained in the same finite set of set variables, then we allow infi-
nite countable disjunction

∨
i<ω Φi and conjunction

∧
i<ω Φi. The restriction on

free variables means that we can transform any formula to a closed formula by
adding finitely many fixpoint operators. The semantics is obvious.

Any formula in the mu-calculus can be rewritten in a prenex normal form:

τn ∈ μXn.τn−1 ∈ νXn−1.τn−2 ∈ μXn−2 . . . τ1 ∈ μνX1.Φ

For the transfinite mu-arithmetic we need an extension of this formulation.

Definition 1. By induction on the construction of the formula we say that a
formula in the transfinite mu-calculus is written in extended prenex normal form

– if it is a formula in the finite mu-calculus and written in prenex normal form,
or

– if the formula is an infinite disjunction or conjunction of extended prenex
normal form formulae, or

– if it is some μνX.Φ where Φ is in extended prenex normal form.

Given formulae Φi for i < ω in the mu-arithmetic, we observe that the formula∨
i<ω Φi can be written in extended prenex normal form, simply by writing each

Φi in prenex normal form. Given an arbitrary formula of the extended arithmetic
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mu-calculus, an easy proof on induction by the formula’s construction shows that
it can be written in extended prenex normal form. Furthermore, we can unfold
its complexity and represent it by a wellfounded tree on ω∗.

2.2 A Hierarchy of the Transfinite Mu-Calculus

The fixpoint alternation hierarchy of of mu-arithmetic is thus: the first order
formulae and all set variables form the class Σμ

0 which is the same as Πμ
0 . For

any natural number n let Σμ
n+1 be generated from Σμ

n∪Πμ
n by closing it under ∨,∧

and the operation μX.Φ for Φ ∈ Σμ
n+1. Πμ

n+1 contains all negations of formulae
and set terms in Σμ

n+1. In order to extend the hierarchy we need to describe the
limit step. We allow recursively countable disjunctions and conjunctions, but we
want to stay in the lightface hierarchy. Therefore we extend the hierarchy to
ωck

1 , the first non-recursive ordinal. Let λ be a recursive limit ordinal. In Σμ
λ we

collect all formulae of earlier stages and close it under
∨

i<ω,∨ and ∧. Observe
that a formula in Σμ

λ is equivalent to a formula
∨

i<ω Φi where each Φi ∈ Σμ
αi

with αi < λ. Finally, we let Πμ
λ = ¬Σμ

λ. The transfinite successor stages are built
in the same way as the finite successor stages.

Later, this hierarchy will be linked to the effective version of the Hausdorff–
Kuratowski difference hierarchy of Σ0

2-sets: a set is in Σ∂
α iff it is of the form⋃

ξ∈Opp(α)

Aξ \
⋃

ζ<ξAζ

where (Aξ)ξ<α is an effective enumeration of a ⊆-increasing sequence of Σ0
2-sets,

α < ωck
1 , and Opp(α) is the set of ordinals < α and of opposite parity to α,

where the parity of a limit ordinal is even.

3 Model-Checking for the Transfinite Mu-Calculus

Fixpoints are often calculated by iteration, computing successive approximants
until convergence. (Recall that the αth approximant of a least fixpoint μX.φ
is defined as μXα.φ = φ((

⋃
β<α μXβ.φ)/X), and dually for greatest fixpoints.)

In the finite case, this is the straightforward ‘global’ algorithm used for model-
checking modal fixpoint logics.

The main focus of this paper is the relation between infinite parity games and
fixpoint calculation. The games are infinite, and have somewhat complex payoff
sets. This also has an analogue in the world of finite modal fixpoint logics, where
it corresponds to the use of parity automata. Of course, in the finite world, it
is well known that one does not have to play infinite games – repeats can be
detected. It is perhaps of some interest to see that even in this infinite world
of infinite formulae, it is possible to extend techniques well known from modal
mu-calculus, and characterize truth of transfinite mu-arithmetic by a game in
which all plays are finite (and therefore the payoff sets are clopen). Of course,
there is a small catch – the moves involve playing ordinals, which amounts (for
countable structures) to having to make second-order moves. The techniques
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being extended have somewhat intricate full definitions and proofs, and this is
not the main focus of our paper, so given space restrictions we will just outline
the game for those who have some familiarity with the modal mu-calculus work
(as described for example in [2]).

A concept used in many basic theorems about modal mu-calculus, and in
soundness proofs for techniques such as local model-checking with tableaus, is
that of (μ-)signature. Consider a least fixpoint variable X1 somewhere inside
a formula, and suppose that n ∈ X1 when X1 has its actual value. We can
consider at which approximant of X1 the value n enters X1; suppose this is α1.
However, X1 itself may be defined in terms of some outer least fixpoint variable
X2; so we also need to know what approximant α2 is currently being used as
the value of X2. Then a μ-signature of n at some subformula is an assignment of
ordinals αi to all the enclosing least fixpoint operators Xi that makes the given
subformula true of n. When one is doing local model-checking, which effectively
means exploring the proof tree that justifies n ∈ Φ, signatures can be thought
of as sets of ‘clocks’ for the verifier: every time verifier passes through a least
fixpoint variable X , she has to decrement the clock for that variable, and if the
clock ever hits zero, she loses. This ensures that she only passes through least
fixpoints finitely often.

Dually, if (as done for example in completeness proofs) we are arguing about
the falsity of a formula, we can consider the ν-signatures: now we look at the
approximants of the greatest fixpoints at which a formula becomes false – and
again, the signatures give a clock to bound the time by which refuter must
establish the falsity.

It is possible to combine the clock intuitions for both μ-signatures and ν-
signatures into a single game, which works as well for the transfinite logic as for
the normal logic. Consider the usual rules for the model-checking game, with
the obvious rule for the infinite disjunctions and conjunctions. Now extend it
thus: whenever play enters a least fixpoint formula μX.φ, verifier gets to choose
an ordinal αX . This amounts to a promise that she will ‘bottom out’ of the
inductive definition in finite time, measured by α. Then any time play passes
through a formula τ ∈ X , verifier must decrease αX , and if she can’t she loses.
Similarly, refuter chooses clocks for the greatest fixpoint formulae, and decreases
them when passing through the variables.

This amendment to the model-checking game rules forces all plays to be
finite, since it can be shown by standard arguments that signatures are well-
ordered with respect to the game moves. Thus the payoff sets are simply sets
of finite plays (i.e. clopen subsets of ωω) rather than parity conditions. Then
one can show by minor extensions of the standard mu-calculus arguments that
indeed verifier/refuter has a winning strategy iff the initial formula is true/false.

4 Parity Games

The use of parity games in model checking has been described by many authors.
A very detailed survey is given by Niwiński [9]. Let us mention that we follow the
convention that if the maximal priority seen infinitely often is odd, then player I
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wins. When looking at a formula in the transfinite mu-calculus, we need to play
a parity game with infinitely many priorities: for each set variable we need a
distinct priority. If we take the binary tree and attach to each node a priority in
an arbitrary fashion, then, when playing a parity game on this tree, we might
end up having a “wild” payoff set for player I, and we might also lose the nice
property of having a memoryless winning strategy [4]. Furthermore, it might be
that there is no maximum among the priorities seen infinitely often, and infinite
runs might even meet each priority only finitely many times. However, as we will
see, a labelling derived from a model checking game of a transfinite mu-calculus
formula avoids all these undesired effects. Moreover, such a labelling describes
some set of the transfinite difference hierarchy

⋃
α<ωck

1
Σ∂
α and vice versa.

5 Connecting the Transfinite Difference Hierarchy
and the Transfinite Mu-Calculus

Our aim is to extend Bradfield’s following theorem [1]:

Theorem 2. For every natural number n the equality 	Σ∂
n = Σμ

n+1 holds true.

The extension into the transfinite is our main result.

Theorem 3. For every recursive ordinal α the equality 	Σ∂
α = Σμ

α+1 holds true.
Thus,

⋃
α<ωck

1
Σμ
α = 	Δ0

3.

Proof. Let α be a recursive limit ordinal, and let μXα+1.
∨

i<ω Φi ∈ Σμ
α+1, so

in particular each Φi is in some Σμ
β for some β < α. We need to find a game

with payoff set in Σ∂
α whose winning positions for player I are calculated by this

formula.
Assume that the formula μXα+1.

∨
i<ω Φi describes a nonempty subset of ω,

and choose some witness n for this nonemptyness. Now consider the game tree
which results from the parity game played as a model checking game. We might
think of it as a subtree in ω∗, each node labelled with the position in the model
checking game. In extending the tree in an appropriate way we may assume that
it does not contain finite maximal branches, and in further simplifying the tree
we may assume that each node marks a loop-back, i.e. we see some Xβ at each
node. This can be done because any infinite branch must hit such nodes infinitely
many times. In omitting which element n′ ∈ ω is inspected in the model checking
game, we get a tree which is simply labelled by the indices of the set variables,
i.e. by countable ordinals up to α + 1 without limit ordinals. Observe that the
labelling has the structure of a set in Σ∂

α+1. Let us describe the payoff set for
player I.

Since the outmost variable is under the scope of a minimal fixpoint operator,
player I wins the model checking game iff at some point, the game gets captured
inside some subformula Φi and player I wins the subgame for Φi, where Xα+1 is
replaced by ⊥. By the induction hypothesis, the payoff set of such a subgame has
the complexity of some set in Σ∂

β with β < α. Since the payoff set of the whole
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game is the effective union of all these subsets, we obtain some set of complexity
Σ∂
α, which shows Σμ

α+1 ⊆ 	Σ∂
α for α limit. The successor case is an induction

over the construction of formulae as in [1].
It remains to show 	Σ∂

α ⊆ Σμ
α+1. As before, we only need to consider the

limit step, the successor case is done as in [1].
Let α be a countable limit ordinal, and let A ∈ Σ∂

α. We may assume that
A =

⋃
i<ω Ai with Ai ∈ Σ∂

αi
, αi < α. We let A be the payoff set for player I and

calculate her winning positions. By induction hypothesis, for each Ai we have a
formula Φi ∈ Σμ

β , β < α, describing the winning positions for player I with the
payoff set Ai. Let

H0 = {s ∈ ω∗ | ∃i s ∈ Φi}
be the set of all nodes s.t. player I wins if some Ai is the payoff set. By recursion
we define Hβ for β < ω1: If β is a limit ordinal, then let Hβ =

⋃
γ<β Hγ , and if

β = γ + 1, then let

Hβ = {s ∈ ω∗ | ∃i player I wins with payoff set Ai or she can reach Hγ}

To reach a certain set of nodes is an open condition, thus, Hβ can be viewed as
the set of winning conditions of a set of complexity less than Σ∂

α. It is immediate
from the definition that the Hβ ’s describe an increasing sequence of subsets of
a countable set. Therefore, at some countable stage ξ the process stabilizes, we
have reached the minimal fixpoint Hξ of this process. Thus, we can express the
calculation of the winning positions within the transfinite mu-calculus, within
complexity Σμ

α+1:

μXα+1. (∃n∃m lh(xα+1) = 2n ∧ xα+1
�m ∈ Xα+1)

∨ (∃n∀m lh(xα+1) = 2n + 1 ∧ xα+1
�m ∈ Xα+1)

∨ (
∨

i<ω Φi)

By the same arguments used in [1], as a result that Borel games are determined
[8] Hξ describes exactly the winning positions for player I.

6 Nicely Behaving Labellings

When extending the mu-arithmetic into the transfinite we need to check whether
we keep key properties, namely the existence of positional winning strategies.
This leads to

Definition 4. Let P be a parity game with priorities in some α < ω1. P is called
max-closed iff for every infinite run the set of all labels seen infinitely often is
non-empty and contains a maximum.

Clearly, the rules of the model checking game ensure that the parity game derived
from a model checking game of a transfinite mu-calculus formula is max-closed.

Theorem 5. Each max-closed parity game admits a positional winning strategy
for one of the players.
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Proof. We proceed by induction on the set of labels α. Of course, any set of count-
ably many labels can be relabelled by natural numbers, but max-closedness is
not preserved in general. In the sequel l will always denote the labelling function,
l : α → V where V is the set of vertices in the considered game graph.

Let us first consider the easier case, i.e. α is a limit ordinal. Assume player I
has a winning strategy f , we need to find a positional winning strategy.

Let T be the tree of all possible plays. We define

A0 =
{
s ∈ T

∣∣ ∃β < α.∀t ∈ T [s]. l(t) ≤ β
}

i.e. the cone of T above s is labelled with values up to β. Observe that by max-
closedness, A0 is dense in T . Otherwise, we could select a cone T [t] having an
empty intersection with A0, meaning that every subcone of this cone is labelled
with values cofinal in α. Since α is countable, there is a sequence (αi)i<ω with
each αi < α and

⋃
i<ω αi = α. In the cone T [t] it is easy to construct an infinite

path x s.t. for each i there is some ni with l(x(ni)) > αi, contradicting the
max-closedness.

Although A0 is dense, it might be that the complement still contains infinite
paths. Thus, we define by recursion:

Aβ =
{
s ∈ T \

⋃
α<β Aα

∣∣ ∃γ < α.∀t ∈ T [s] \
⋃

α<β Aα. l(t) ≤ γ
}

The process stops at some countable γ. From these sets we can easily determine
the set of winning positions for player I. We let H0 be the set of all elements
in A0 such that player I can win the game starting at that position. Since the
labels in the cone of the game tree are bounded by some β < α, by induction
hypothesis player I has a positional winning strategy within H0. In particular,
the game stays within H0. In general we let Hβ be the subset of Aβ such that
player I has a winning strategy as long as the game stays within Aβ , and as
soon as the game leaves Aβ , some Hβ′ is entered with β′ < β. Again, within Hβ

player I has a positional winning strategy. Analogously to Section 5 the process
stabilizes at some countable γ, and Hγ =

⋃
β<γ Hβ is the set of all winning

positions of player I, and it can be described by a formula of the transfinite
mu-arithmetic provided the set of labels does not exceed ωck

1 . It is fairly easy
to describe a positional winning strategy for player I: as long as the game takes
place in some Hβ , she follows the positional winning strategy within Hβ. It
might be that player I cannot force the game to stay inside Hβ , but if this set is
left, then some Hβ′ is entered with β′ < β, and from that moment on player I
follows the positional winning strategy for Hβ′ . Since all the Hβ are pairwise
disjoint, the concatenation of all positional winning strategies for the Hβ gives
a positional winning strategy for all her winning positions.

Analogously, if player II has a winning strategy, then he has a positional
winning strategy as well.

Now let us consider the successor case. Assume α = β+1 is odd, thus player I
needs to make sure that β is seen only finitely many times. Assume player I has
a winning strategy, we need to find a positional winning strategy.
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Let H0 consist of those vertices s such that, starting from s, player I has a
winning strategy which never leads to any vertex labelled with β. Such vertices
must exist, otherwise player II has a winning strategy. In particular, being at
such a node player I can force the game to stay in H0. We claim that within
H0 player I has a positional winning strategy. Consider the game tree starting
from s ∈ H0 and remove all nodes outside H0 together with the cones above
those nodes. The remaining tree is labelled with values smaller than β, and by
induction hypothesis on this subtree (and the corresponding subgraph) player I
has a positional winning strategy. This positional winning strategy is clearly a
winning strategy for the whole game. Constructing Hγ analogously to the limit
case yields a positional winning strategy for the whole game.

Now assume player II has a winning strategy. This means that he either can
manage to see β infinitely often, or, if player I keeps the occurrence of β finite,
he wins the induced subgame. A positional strategy is described as follows: if a
vertex belongs to player II’s winning region, and if he has a winning strategy
which guarantees him to reach some vertex labelled with β, then he plays in a
way that he never leaves his winning region and after finitely many steps he will
reach β. Clearly, to reach some node within the winning region labelled with β is
an open condition, thus there exists a positional strategy for achieving that goal.
If, after reaching β, player II can still reach another β within his winning region,
he goes for it. At some point it might be that he still has a winning strategy, but
he cannot make sure that β is seen again. At this stage consider the subgraph
S wich consists of all nodes in player II’s winning region with labels smaller
than β, the edge relation restricted to S stays the same. Observe that by being
a winning region player I can only leave the subgraph S in moving to a vertex
which is still in player II’s winning region, but from where player II can reach
β memoryless again while remaining in his winning region. As long as the run
stays in S, by induction hypothesis player II has a positional winning strategy.
Thus, in concatenating the positional winning strategies for the different regions
we obtain a positional winning strategy for the whole game.

The remaining case, α = β + 1 even, is handled similarly. We can construct
a positional winning strategy for player I as in the odd case for player II and
vice versa. )*

Corollary 6. For any formula in the transfinite mu-arithmetic, model checking
with parity games admits positional winning strategies.

7 A Descriptive Set Theoretical Approach

In this section we step into Descriptive Set Theory, and see that the effective
version of the very refined Wadge Hierarchy of sets of infinite words unveils a
clue to understanding what goes on in the result 	Σ∂

n = Σμ
n+1. The reader may

find most of the basic material in [5]. The effective Wadge hierarchy is studied
in [6].
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7.1 The Difference Hierarchy of Σ0
2 Sets

This result admits a first step: Σμ
1 = 	Σ0

1. Recall that Σ0
1 is the class of all

semi-recursive sets, Σ∂
n being the class of n differences of effectively countable

unions of complements of semi-recursive sets. To be more precise, the space of
infinite sequences over an alphabet Σ is equipped with the usual topology, that
is the product topology of the discrete topology over the alphabet. So, Σ0

1 is the
class of all sets of the form WΣω where W ⊆ Σ∗ is a recursively enumerable
set of finite words (possibly empty in which case WΣω = ∅). And Σ∂

n stands
for the the class of sets of the form A = An � An−1 ∪ An−2 � An−3 ∪ . . .,
where A1 ⊆ A2 ⊆ . . . ⊆ An is a sequence of sets in Σ0

2 - the class of effectively
countable unions of complements of semi-recursive sets.

So, as we see Σμ
1 = 	Σ0

1, Σμ
2 = 	Σ0

2, but then, Σμ
n = 	Σ0

n fails for n > 2, and
must be replaced with Σμ

n = 	Σ∂
n−1. At first glance it seems there is no logic

behind this. However, the effective Wadge hierarchy, a refinement of the effective
difference hierarchy, gives the solution.

The Wadge Ordering. A natural improvement of the Hausdorff–Kuratowski
hierarchy was induced by Wadge’s work based on a reduction relation defined in
terms of continuous functions. This means, a natural way to compare the topo-
logical complexity of sets A and B was to say A ≤W B – intuitively meaning
A is topologically less complicated than B – if the problem of knowing whether
x belongs to A reduces to knowing whether f(x) belongs to B for some simple
function, where simple meant continuous. The effective version deals with recur-
sive functions instead, and in the sequel we will concentrate only on the effective
version:

A ≤W B iff ∃ recursive f : Σω
A → Σω

B. f−1B = A

The Wadge ordering (≤W ) induces the strict ordering (<W ) and the Wadge
equivalence (≡W ):

A <W B iff A ≤W B ∧B �≤W A

A ≡W B iff A ≤W B ≤W A

When restricted to Kleene pointclasses, this ordering becomes a quasi-well-
orderingd, i.e. it is well-founded, and has antichains of length at most two. More-
over, if A and B are incomparable, then A ≡W B�. The reason for this is that all
these properties derive from Borel Determinacy [8]. Indeed, Wadge defined the
relation A ≤W B in terms of the existence of a winning strategy in a suitable
game: the Wadge game.

Definition 7 (The Wadge game). Let A ⊆ Σω
A, B ⊆ Σω

B, W(A,B) is an
infinite two-player game where players (I, and II) take turn playing letters in
ΣA for I, and in ΣB for II. As opposed to I, player II is allowed to skip provided
he plays infinitely many letters.
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I

II

:

:

x0 x1

y1

xn

ym

xn+1

ym+1y0

x3

y2

x4x2

So that at the end of a run (in ω moves), I has produced an ω-word x ∈ Σω
A

and II has produced y ∈ Σω
B. The winning conditions are:

II wins W(A,B) iff (x ∈ A ⇔ y ∈ B)

Wadge designed the rules of the game W(A,B) so that a strategy for II
induces a continuous mapping x  → y, and conversely; and the winning condition
so that

II has a w.s. in W(A,B) iff A ≤W B.

Let us define the equivalence relation ∼ by

A ∼ B iff A ≡W B or A ≡W B� or A ≡W 0B ∪ 1B�

Quotiented by ∼, and using determinacy, the Wadge ordering ≤W turns into
a well-ordering (denoted by ≤/∼) whose minimal elements are all clopen sets.
This induces the notion of the Wadge degree defined inductively:

d◦A = 0 iff A is clopen

d◦A = sup{d◦B + 1 : B </∼ A}
where </∼ stands for the strict Wadge ordering <W quotiented by ∼.

7.2 Multiplication by ωck
1

Now, given a topological class, that is a class closed under pre-image by recursive
functions (such as Σ0

1, Σ∂
n), a set A is complete for the class if it reduces all sets in

it. As usual, a complete set is a set of maximal complexity, therefore of maximal
Wadge degree. In other words, the Wadge degree of a complete set of a given
class is a measure of the topological complexity of this class.

If we look at the sequence of Wadge degrees of complete sets for respec-
tively Σ0

1, Σ0
2 = Σ∂

1 , Σ∂
2 , Σ∂

3 ,. . . We find 1, ωck
1 , ωck

1
2
, ωck

1
3
, . . .. Surprisingly, the

progression is precisely multiplication by ωck
1 . More surprisingly indeed, is that

multiplication of a Wadge degree by ωck
1 (α  −→ α ·ωck

1 ) corresponds to a simple
set theoretical operation (A  −→ A • ωck

1 ). Namely,

A • ωck
1 = (Σ ∪ {a+, a−})∗a+A ∪ (Σ ∪ {a+, a−})∗a−A�

for a1, a− two different letters not in Σ. For a better understanding, a player
(either I or II) in charge of A • ωck

1 in a Wadge game is exactly like the same
player being in charge of A with the extra possiblity to erase all his moves and
decide to start all over again being in charge of A� instead of A, and erase
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everything again and switch from A to A�, and so on. Playing a+ or a− takes
care of both the initialization of the play, and the choice between A and A�. A
word containing infinitely many a+ or a− being not in A • ωck

1 .
This operation preserves the Wadge ordering

A ≤W B ⇒ A • ωck
1 ≤W B • ωck

1

and satisfies the required property:

d◦(A • ωck
1 ) = d◦(A) · ωck

1

7.3 Division by ωck
1

For inductive proofs on the degree of sets, an inverse operation ωck
1 is needed. It

must be a set theoretical counterpart of division by ωck
1 : given any set A the set

A
ωck

1
must verify:

1. A ≤W B ⇒ A
ωck

1
≤W

A
ωck

1

2. d◦A = α · ωck
1 ⇒ d◦ A

ωck
1

= α

Unfortunately, we do not know how to obtain condition 2 directly. So we
weaken our expectations and ask for the following instead:

d◦A = α · ωck
1 ⇒ d◦

A

ωck
1

= α + 1

How to get precisely condition 2 can be deduced from the whole artillery Duparc
developed in [3]. The idea to define A

ωck
1

is that a player in a Wadge game in

charge of A
ωck

1
is like this player being in charge of A ⊆ Σω but having his

opponent asking him questions whether or not the infinite word x he is actually
constructing step by step, will remain in a tree Ti ⊆ Σ∗. The opponent is allowed
to ask questions about as many trees as he wants as long as the player answers
no. Once the player answers yes, there is no more questioning allowed. The
precise definition is as follows. Given x ∈ Σω, we write xeven for the word
x(0)x(2)x(4) . . ..

Definition 8. Given an alphabet Σ, a T ree T on Σ is some non empty pruned
tree that satisfies for any u ∈ T and any integer n < lh(u):

if n is even: then u(n) ∈ Σ (these are the nodes that correspond to the main
run), and

if n is odd: then u(n) is an auxiliary move with three different options:
Option 〈no〉: in this case u(n) = 〈no, v〉 for some v ∈ Σ∗ and ueven ⊆

v. So v is some position in Σ∗ that extends the position ueven . But
then, we demand that any position w in T that extends u must verify
weven ⊆ v or v ⊆ weven . Moreover, we also require that T verifies the
following condition: if (u � n) 〈no, v′〉 belongs to T with v′ �= v, then
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both v′ ⊆ v and v ⊆ v′ must fail. Or, to say it differently, T must satisfy
the condition:(

u ∈ T ∧ u 〈no, v〉 ∈ T ∧ u 〈no, v′〉 ∈ T
)
⇒ v = v′ ∨ v⊥v′.

Option 〈yes〉: in this case u(n) = 〈yes〉. This must be regarded as the
option to avoid all other positions of the form (u � n) 〈no, v〉. Formally,
this means that any w in T that extends (u � n) 〈yes〉 must satisfy

v ⊆ weven fails for any v such that (u � n) 〈no, v〉 ∈ T .

Option 〈−〉: this case should be regarded as no question asked at all. We
require T to satisfy:

if (u � n) 〈−〉 ∈ T
then (u � n) 〈yes〉 �∈ T and for any v ∈ Σ∗ (u � n) 〈no, v〉 �∈ T .

Finally, T must verify:

∀k ∀n > k x(2k + 1) = 〈yes〉 ⇒ x(2n + 1) = 〈−〉

We remark that given any infinite word x ∈ Σω, there exists a unique infinite
branch y ∈ [T ] such that yeven = x.

Definition 9. Let A ⊆ Σω, and T be a T ree on Σ,

AT = {x ∈ [T ] : xeven ∈ A}
A

ωck
1

= a ≤/∼-minimal element in {AT : T a T ree on Σ}

Remark 10.

1. If A ≤W B then for any T ree TB, one can easily design a T ree TA such
that ATA ≤W BTB . By minimality, A

ωck
1

≤/∼
B
ωck

1
.

2. If d◦A = α · ωck
1 , then take any B with d◦B = α, consider B • ωck

1 ⊆
(Σ ∪ {b+, b−})ω. Let T be the T ree that asks questions about the trees
(Σ∗{b+, b−})nΣ∗ for each n as long as the opponent does not agree on
restricting his moves to such a tree. Clearly

A

ωck
1

≤/∼ (B • ωck
1 )

T ≤W

⋃
n∈N

02nB ∪ 02n+1B� ≤/∼ B

This shows
d◦A = α · ωck

1 ⇒ d◦
A

ωck
1

≤ α + 1.

The other inequality is by induction on d◦B and requires the complete knowl-
edge of the Wadge hierarchy [3].
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8 Outlook

The transfinite mu-arithmetic gives us a class of parity games with infinite la-
bellings, but still they are well behaving, there are positional winning strategies.
On the other hand, there are examples of automata which induce parity games
without positional winning strategies, even requiring an infinite memory for a
winning strategy [4]. It is interesting to draw the line between parity games
with or without positional strategies sharper. Clearly, if there is only one path
in the game tree which is a counter-example of max-closedness, then there is
still a positional winning strategy, since this one path can always be left. Thus,
the question arises how many ill behaving paths a game tree can allow and still
having a positional winning strategy. Which is the right notion of smallness of
the set of all ill-behaving paths, maybe meagreness?
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Abstract. We propose a bounded model checking procedure for programs ma-
nipulating dynamically allocated pointer structures. Our procedure checks wheth-
er a program execution of length n ends in an error (e. g., a NULL dereference)
by testing if the weakest precondition of the error condition together with the ini-
tial condition of the program (e. g., program variable x points to a circular list)
is satisfiable. We express error conditions as formulas in the 2-variable fragment
of the Bernays-Schönfinkel class with equality. We show that this fragment is
closed under computing weakest preconditions. We express the initial conditions
by unary relations which are defined by monadic Datalog programs.
Our main contribution is a small model theorem for the 2-variable fragment of the
Bernays-Schönfinkel class extended with least fixed points expressible by certain
monadic Datalog programs. The decidability of this extension of first-order logic
gives us a bounded model checking procedure for programs manipulating dy-
namically allocated pointer structures. In contrast to SAT-based bounded model
checking, we do not bound the size of the heap a priori, but allow for pointer
structures of arbitrary size. Thus, we are doing bounded model checking of infi-
nite state transition systems.

1 Introduction

Automatic verification of programs that can manipulate pointers into dynamically allo-
cated memory is a challenging task, even for simple safety properties such as “there
is no NULL dereference”. In general, the problem is undecidable as the reachable
state space of programs with dynamic memory allocation is infinite. Decidability can
be traded off for precision by over- or under-approximating the reachable state space.
Over-approximation is used by techniques based on abstraction, e. g., the shape analy-
sis framework [24]. In bounded model checking (BMC), the set of reachable states is
under-approximated by limiting the runtime or the memory of a program to an a priori
chosen bound [7, 14]. Thus, BMC cuts off all states that require more than the cho-
sen amount of time or space to be reached. As a consequence of under-approximation,
BMC can not prove safety properties (unless the diameter of the state space is less than
the time bound), it can only detect their violation. Progressively increasing the bound
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actually yields a semi-algorithm for detecting errors, provided the BMC problem is
decidable.

The decidability of the BMC problem may seem trivial at first view. Note, however,
that although we assume an explicit bound on the length of the program execution, we
do not have any bound on the size of the initial data structure. This implies that the
explored model is an infinite and infinitely branching transition system: given an initial
condition like “the variable x points to a structure of type T ” we have to consider all
transitions from the initial state to a state where x points to a structure of type T and
size n, for infinitely many numbers n. Although it is obvious that in a finite execution
a program may explore only a finite fragment of the initial data structure and it is rela-
tively easy to compute a bound on the size of this explored part, this observation alone
still does not give any bound on the size of the initial data structure as a whole. In other
words, even if we are in a bounded-model-checking setup, we still have to deal with an
infinite set of reachable states due to the infinite branching in the underlying transition
system. To overcome this problem we prove a kind of pumping lemma that implies that
it is enough to consider initial structures up to a certain size.

The worst-case complexity of our method (2-NEXPTIME) may also look discour-
aging. Again one has to note that the doubly-exponential blowup comes from the spec-
ification of the initial data structure. As we show in section 3.3, in common cases the
complexity is doubly exponential in the specification, but not in the length of the execu-
tion. In particular, for non-branching pointer structures like lists, and for fixed programs,
the complexity boils down to NPTIME. Note also that it is not appropriate to directly
compare the general complexity of our method with other approaches where the initial
structure is given explicitly or its size is a priori bounded – one should not expect that
any method could explore a data structure of doubly exponential size in less than doubly
exponential time.

Our method to decide the BMC problem relies on the following observations.

– Error conditions like “x is a dangling pointer” are expressible in the 2-variable
fragment of the Bernays-Schönfinkel class with equality.

– The fragment is closed under weakest preconditions w. r. t. finite paths.
– Data structures like trees, singly or doubly linked lists and even circular lists are

expressible in a fragment of monadic Datalog.
– The combination of the Datalog fragment and the above fragment of the Bernays-

Schönfinkel class is decidable.

In section 2, we reduce the BMC problem to satisfiability in the Bernays-Schönfinkel
class with Datalog. Section 3 presents our main technical contribution: decidability of
satisfiability of the 2-variable fragment of the Bernays-Schönfinkel class with equality
extended by a certain class of monadic Datalog programs. This result follows from a
small model property of the logic, which we prove by a kind of pumping technique.
Proofs which have been omitted here due to lack of space can be found in [6].

2 Pointer Programs

We investigate imperative programs that manipulate dynamic data structures on the
heap. Given a program and a specification of its input, i. e., the heap contents upon
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start-up, we want to check safety properties, e. g., whether the program can crash by
dereferencing a dangling pointer.

2.1 Syntax

A program P consists of two parts, a struct declaration specifying templates of heap
cells and a control flow graph specifying the possible program executions.

A struct declaration is finite directed graph with uniquely labeled edges, i. e., there
are no two edges with the same label. We call the vertices of this graph templates, the
edge labels we call fields. An edge label r is a field of a template T , denoted by r ∈ T ,
if r labels one of T ’s outgoing edges; note that due to unique labeling, each r is a field
of exactly one template T .

A control flow graph (CFG) is a finite directed graph whose edges are labeled by
actions. We call the vertices of a control flow graph (control) locations, and we assume
that there is a distinguished location init , which does not have incoming edges. The set
of actions Act is defined by the following grammar, where T is a template, s is a field,
x and y are program variables, e is a program variable or a constant (including NULL),
and γ is a formula built from program variables and constants (including NULL), the
equality symbol ≈ and the Boolean connectives.

Act ::= assume(γ) Assume condition γ.
| y := e Assign the value e to the variable y.
| y := s(x) Read the s-field of the cell pointed to by x into y.
| s(x) := e Write e to the s-field of the cell pointed to by x.
| freeT (x) Deallocate the T -cell pointed to by x.
| y := newT () Allocate a new T -cell and assign its address to y.

A path π (of length n) in the CFG is a sequence 〈�0, α1, �1, . . . , αn, �n〉 alternating
between locations �i and actions αj . Note that there is no action for procedure calls, yet
in bounded model checking, calls can be handled by inlining procedure bodies.

Figure 1 shows a sample program. Upon start it expects that the variable e points
to a doubly linked circular list (realized by next- and prev-pointers). The program
deallocates the cell pointed to by e, allocates a new cell and inserts it in place of the old
one (using the temporary variables ne and pe).

2.2 Semantics

Given a program, we will provide a transition system semantics, i. e., a directed graph
whose vertices are states and whose edges are transitions. Informally, a state is the con-
tents of the program variables, i. e., an assignment of the program variables to values,
and the contents of the heap, i. e., an assignment of heap addresses to values; hereby,
a value may again be a heap address. We represent both assignments by means of a
relational first-order structure with constants. The interpretations of constants make up
the contents of the program variables, whereas the interpretations of the relations make
up the contents of the heap. More precisely, each field r of a template T is interpreted
by a functional binary relation, so r(u, v) means that an instance of T lives at address u
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init

•
•
•

error •
•
•
•
•

assume(∀v¬ next(e, v))

ne := next(e)assume(∀v¬ prev(e, v))

pe := prev(e)assume(∀v¬ next(e, v))

freecl(e)assume(∀v¬ prev(e, v))

e := newcl()assume(∀v¬ next(e, v))

next(e) := neassume(∀v¬ prev(e, v))

prev(e) := peassume(∀v¬ next(pe, v))

next(pe) := eassume(∀v¬ prev(ne, v))

prev(ne) := e

control flow graph with error conditions

cl

next

prev

struct declaration

cl(u) ← u≈ e, next(u, v), cl′(v).
cl′(u) ← u≈ e.
cl′(u) ← next(u, v), cl′(v).

Datalog program P

∀u, v
(
prev(u, v) ⇔ next(v, u)

)
∧

∀v¬ next(NULL, v) ∧
∀v¬ prev(NULL, v)

axiom φ

Fig. 1. Replacing an element in a doubly linked circular list by a new one; the initial condition
that e points to a doubly linked circular list is expressed by φ ∧ P ∧ cl(e).

in the heap, and v is the uniquely defined value of the r-field of that instance. Note that
the universe of the first-order structures can be assumed finite since the number of heap
addresses is finite (yet unbounded).

Formally, we associate a vocabulary σ to a program P , where σ = 〈r̄, c̄〉 declares a
set of binary relation symbols r̄ and a set of constants c̄. Hereby, c̄ is the set of program
variables occurring in the control flow graph of P , and r̄ is the set of fields occurring
in the struct declaration of P . A σ-structure A is a tuple 〈A, r̄A, c̄A〉, where A is a
non-empty universe, r̄A = {rA | r ∈ r̄} is a set of binary relations on A interpreting
the symbols in r̄, and c̄A = {cA | c ∈ c̄} is a set of elements of A interpreting the
constants in c̄. A state of the program P is a pair 〈�,A〉 consisting of a location � and
a σ-structure A. We require that the universe A is finite and that all relations rA are
functional, i. e., for all a, b, b′ ∈ A, if rA(a, b) and rA(a, b′) then b = b′. Additionally,
we require that the interpretation of NULL is a dangling pointer, i. e., rA(NULLA, b)
is false for all b ∈ A and all relations rA.

Transitions are certain pairs of states. For specifying which pairs, we have to extend
the vocabulary σ. We define σ′ = 〈r̄′, c̄′〉 to be a copy of σ, where r̄′ = {r′ | r ∈ r̄}
and c̄′ = {c′ | c ∈ c̄}. By σ + σ′, we denote the union of the vocabularies σ and σ′.
Given a σ-structure A, we denote the corresponding σ′-structure (with universe A) by
A′. Thus, given σ-structures A and B with A = B, A+B′ can be viewed as a (σ+σ′)-
structure. Likewise, a (σ + σ′)-formula can be viewed as defining a binary relation on
σ-structures. Figure 2 specifies the semantics of actions α as (σ + σ′)-formulas �α�.

A transition of the program P is pair
〈
〈�,A〉, 〈�′,B〉

〉
of states such that A = B

and A + B′ |= �α�, where the action α is the label of some edge from � to �′ in the
CFG of P . We call 〈�,A〉 the pre-state and 〈�′,B〉 the post-state of the transition. Note
that �y := s(x)� is false if x is dangling, i. e., the semantics models read dereferences
of dangling pointers by deadlock. On the other hand, �y := newT ()� defines a total
relation, so allocation never fails due to lack of memory1.

1 A slightly modified version of �y := newT ()� models failed allocation by returning NULL.
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�assume(γ)� ≡ γ ∧
∧

c∈c̄ c′ ≈ c ∧
∧

r∈r̄ r′ = r

�y := e� ≡ y′ ≈ e ∧
∧

c∈c̄\{y} c′ ≈ c ∧
∧

r∈r̄ r′ = r

�y := s(x)� ≡ s(x, y′) ∧
∧

c∈c̄\{y} c′ ≈ c ∧
∧

r∈r̄ r′ = r

�s(x) := e� ≡ ∀u, v
(
s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u �≈ x ∧ s(u, v)

)
∧∧

c∈c̄ c′ ≈ c ∧
∧

r∈r̄\{s} r′ = r

�freeT (x)� ≡
∧

s∈T ∀u, v
(
s′(u, v)⇔ u �≈ x ∧ s(u, v)

)
∧∧

c∈c̄ c′ ≈ c ∧
∧

r∈r̄\T r′ = r

�y := newT ()� ≡ y′ �≈ NULL ∧
∧

s∈T ∀u, v(s(u, v)⇒ u �≈ y′) ∧∧
s∈T ∀u, v

(
s′(u, v)⇔ u≈ y′ ∧ v ≈ NULL ∨ s(u, v)

)
∧∧

c∈c̄\{y} c′ ≈ c ∧
∧

r∈r̄\T r′ = r

Fig. 2. Semantics of actions. Note that the second-order equalities r′ = r are to be understood as
abbreviations for first-order formulas ∀u, v

(
r′(u, v)⇔ r(u, v)

)
.

Given a path π = 〈�0, α1, �1, . . . , αn, �n〉 in the CFG, we call a sequence of states〈
〈�0,A0〉, 〈�1,A1〉, . . . , 〈�n,An〉

〉
a π-execution (of length n) if for 1 ≤ i ≤ n,〈

〈�i−1,Ai−1〉, 〈�i,Ai〉
〉

is a transition. We call �n π-reachable from 〈�0,A0〉 if there
is a π-execution

〈
〈�0,A0〉, . . . , 〈�n,An〉

〉
. In general, we call a location �′ reachable

from a state 〈�,A〉 if there is a path π such that �′ is π-reachable from 〈�,A〉.

2.3 Error Conditions

Run time errors in pointer programs occur when dereferencing dangling pointers or
NULL pointers, or when freeing memory that is not allocated. We can check for such
errors by introducing error conditions into the control flow graph just before the dan-
gerous actions read, write and deallocate. As expressing the error conditions requires
quantifiers, we have to allow more complex conditions in assume-actions.

Let P be a program and let σ be its associated vocabulary. We say that a σ-formula ϕ
(of first-order logic with equality) is in the Bernays-Schönfinkel class [3, 21] with n vari-
ables2, denoted by ϕ ∈ BSn, if ϕ is equivalent to a sentence ∃u1, . . . , um∀v1, . . . , vn ψ,
where ψ is quantifier-free. For expressing error conditions, we admit actions assume(γ)
where γ ∈ BSn for n ≥ 0.

We extend the CFG of the program P to a CFG with error conditions (ECFG) in
the following way. We introduce a new distinguished location error . For every edge
from � to �′ that is labeled by y := s(x) or s(x) := e, we add an edge from � to error
labeled by assume(∀v ¬ s(x, v)). And for every edge from � to �′ labeled by freeT (x)
and every r ∈ T , we add an edge from � to error labeled by assume(∀v ¬ r(x, v)).
Note that the error condition ∀v ¬ s(x, v) for the read- and write-actions is true if and
only if the pointer x is dangling, i. e., there is no value for the s-field at address x. This
condition also captures NULL dereferences since we assume the special address NULL

2 We count only universally quantified variables; the other variables can be viewed as constants.
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to be a dangling pointer. For deallocation, the error conditions ∀v ¬ r(x, v) are true if
and only if there is no instance of T at address x, e. g., because it has been deallocated
earlier. Note that all error conditions are in BS 1.

2.4 Weakest Preconditions

Let P be a program and let σ be the associated vocabulary. Given an action α and a
σ-formula ϕ, informally the weakest precondition of ϕ w. r. t. α captures those states
which upon execution of α may lead to a state satisfying ϕ. Formally, the weakest
precondition pre(α;ϕ) is defined as pre(α;ϕ) ≡ ∃r̄′∃c̄′

(
�α� ∧ ϕ[r̄′/r̄][c̄′/c̄]

)
. Here,

ϕ[r̄′/r̄][c̄′/c̄] is a short hand for ϕ[r′1/r1, . . . , r
′
m/rm][c′1/c1, . . . , c

′
n/cn] where r̄ =

{r1, . . . , rm} and c̄ = {c1, . . . , cn}, i. e., ϕ[r̄′/r̄][c̄′/c̄] is the formula obtained from ϕ
by replacing every relation symbol r by r′ and every constant c by c′. Further, ∃r̄′∃c̄′ de-
notes the existential quantification of all relation symbols r′ and all constants3 c′. Note
that pre(α;ϕ) is a second-order formula due to quantification over relations. Given
a path π in the CFG of P and a σ-formula ϕ, we define the weakest precondition
pre(π;ϕ) of ϕ w. r. t. π in the usual way by induction on the length of π.

Depending on the actions α, we can rewrite the second-order formula pre(α;ϕ)
to an equivalent first-order formula. We need to extended our notion of substitution
to allow for the substitution of atomic formulas. Given two formulas ϕ and ψ and
an atomic formula r(u1, u2) with free variables ui, we write ϕ[ψ/r(u1, u2)] for the
formula obtained from ϕ by replacing every atomic formula r(t1, t2) by the formula
ψ[t1/u1, t2/u2], where the ti are arbitrary terms. Note that the variables ui just func-
tion as parameters for the terms ti.

Lemma 1. Given a σ-formula ϕ and an action α, we have the following characteri-
zation of pre(α;ϕ), where T is a template, s̄ = {s1, . . . , sn} are the fields of T , s is
an arbitrary field, x and y are program variables, e is a program variable or constant
(including NULL), and γ is a σ-formula.

pre(assume(γ);ϕ) ≡γ ∧ ϕ

pre(y := e;ϕ) ≡ϕ[e/y]
pre(y := s(x);ϕ) ≡∃y′

(
s(x, y′) ∧ ϕ[y′/y]

)
pre(s(x) := e;ϕ) ≡ϕ[u ≈ x ∧ v ≈ e ∨ u �≈ x ∧ s(u, v)/s(u, v)]
pre(freeT (x);ϕ) ≡ϕ[u �≈ x ∧ s̄(u, v)/s̄(u, v)]4

pre(y := newT ();ϕ) ≡ ∃y′
(
y′ �≈ NULL ∧

∧
s∈s̄ ∀u, v(s(u, v) ⇒ u �≈ y′) ∧

ϕ[y′/y][u≈ y′ ∧ v ≈ NULL ∨ s̄(u, v)/s̄(u, v)]
)

Lemma 2. Let P be a program, π a path in the ECFG and ϕ a σ-formula. If ϕ ∈ BSn,
n ≥ 2, then pre(π;ϕ) ∈ BSn. Moreover, the size of pre(π;ϕ) is in O(|π|2 · |ϕ|), and
the length of the quantifier prefix of pre(π;ϕ) is in O(|π| + |ϕ|).

3 We quantify over constants as if they were free variables.
4 We consider a formula like ϕ[u �≈ x ∧ s̄(u, v)/s̄(u, v)] to be an abbreviation for the formula
ϕ[u �≈ x ∧ s1(u, v)/s1(u, v)] . . . [u �≈ x ∧ sn(u, v)/sn(u, v)].
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2.5 Initial Conditions

Using weakest preconditions, we can propagate an error condition backwards along
a given error path π = 〈init , . . . , error〉 and obtain a condition pre(π;�) express-
ing precisely when the error location is π-reachable from init . Due to Lemma 2 and
the decidability of the Bernays-Schönfinkel class, we can thus decide whether there is
some state 〈init ,A〉 from which error is π-reachable. However, there may be many
such states which are irrelevant since they do not satisfy certain initial conditions that
we want to impose, e. g., that program variable e points to a doubly linked circular
list. Such properties are not expressible in first-order logic, however, list or tree struc-
tures, even certain circular ones, can be specified by logic programs. We will express
initial conditions as conjunctions φ ∧ P ∧ Q , where φ is a σ-formula in the Bernays-
Schönfinkel class with 2 variables, P is a (restricted) monadic Datalog program and
Q is a (ground) query. The use of Datalog allows us, without losing decidability, to
express initial data structures of arbitrary size (expressing reachability of all memory
cells in such structures usually requires the use of some kind of transitive closure, which
often leads to undecidability.) The Datalog program P will be interpreted over models
of φ and will extend them with unary relations, hence the extensional database (EDB)
vocabulary is σ = 〈r̄, c̄〉, and the intensional database (IDB) vocabulary σI = 〈p̄〉
declares a set of unary predicates p̄.

A monadic Datalog program P is a finite set of clauses A0 ← A1, . . . , Ak, k ≥ 0,
where the head A0 is a unary IDB atom and the body A1, . . . , Ak is a conjunction of
IDB atoms and EDB literals (i. e., possibly negated EDB atoms). A query Q is a con-
junction A1, . . . , Ak, k ≥ 0, of ground IDB atoms (i. e., IDB atoms of the form p(c)).
Note that we consider the order of the atoms in queries and clause bodies irrelevant. In
section 3, we will impose further restrictions on monadic Datalog programs in order to
prove a decidability result.

Let P be a monadic Datalog program. Given an EDB (i. e., a σ-structure) A, the
least model of P over A is the least extension of A to a (σ + σI )-structure B such that
B is a model of the clause set P . Given a σ-formula φ and a query Q , we say that A
satisfies φ ∧ P ∧ Q , denoted by A |= φ ∧ P ∧ Q , if A is a model of φ and the
least model of P over A is a model of Q . In section 3, we will show that satisfiability
of φ ∧ P ∧ Q is decidable, provided that φ is in BS 2 and P is a restricted monadic
Datalog program.

Figure 1 shows the initial condition φ ∧ P ∧ cl(e) for a program operating on
a circular doubly linked list. The monadic Datalog program P together with the query
cl(e) ensure that e points to a circular list linked via the next-fields. The axiom φ
ensures that the binary relation prev is the converse of next, so the circular list is
doubly linked. Furthermore, φ ensures that the address NULL is a dangling pointer.
Note that φ can not ensure functionality of next and prev, because functionality is not
expressible in BS 2. Therefore, we need a semantic restriction on σ-structures, i. e., we
will only consider σ-structures where all binary relations are functional.

2.6 The Bounded Model Checking Problem

Let P be a program. Informally, we call P pointer-safe if there is no initial state from
which execution of P can result in a runtime error by dereferencing NULL or a dangling
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pointer. To define pointer-safety formally, we assume that the initial conditions of P are
given as a conjunction φ ∧ P ∧ Q , where φ is a BS 2-formula, P a monadic Datalog
program and Q a query. We call P pointer-safe if for all states 〈init ,A〉 such that
A |= φ ∧ P ∧ Q , the location error is unreachable from 〈init ,A〉 in the ECFG. In
bounded model checking, we do not solve the full reachability problem but restrict to
paths of an a priori bounded length. Since there are only finitely many such bounded
paths in the ECFG, for showing decidability of the bounded model checking problem
it suffices to restrict to one path. We call an ECFG-path π = 〈init , . . . , error〉 pointer-
safe if for all A with A |= φ ∧ P ∧ Q , error is not π-reachable from 〈init ,A〉.

Theorem 3. Let P be a program with initial condition φ ∧ P ∧ Q , where φ is a
BS 2-formula, P a Datalog program and Q a query. Let π = 〈init , . . . , error〉 be an
ECFG-path of P . It is decidable whether π is pointer-safe.

Proof. The path π is pointer-safe if and only if pre(π;�) ∧ φ ∧ P ∧ Q is unsatisfiable.
As pre(π;�) ∧ φ ∈ BS 2 by assumption and Lemma 2, the decidability follows from
Theorem 8 in section 3. )*

For the complexity of bounded model checking, we refer to section 3.3.
It turns out that the program from figure 1 is not pointer-safe. Consider the path π =

〈init , ne := next(e), �1, . . . , �6, assume(∀v ¬ next(pe, v)), error〉, then the formula
pre(π;�) ∧ φ ∧ P ∧ Q is satisfiable, which means that the program can crash
when executing the last but one action next(pe) := e. An analysis of the models of
pre(π;�) ∧ φ ∧ P ∧ Q reveals the reason: If e points to a circular list of length 1 then
pe≈ e after the second action, so pe is dangling after freecl(e).

3 Deciding the Bernays-Schönfinkel Class with Datalog

In this section, we develop our main result, the decidability of the 2-variable fragment
of the Bernays-Schönfinkel class extended by a class of monadic Datalog programs.

3.1 Syntax and Semantics of Bernays-Schönfinkel with Datalog

We are interested in satisfiability of formulas of the form φ ∧ P ∧ Q , where

– φ is a universal σ-formula in BS 2 (see section 2.3), i. e., φ is of the form ∀u, v ψ
with ψ quantifier-free5,

– P is a monadic Datalog program with EDB vocabulary σ and IDB vocabulary σI

(see section 2.5), and
– Q a query (see section 2.5).

We are not interested in general satisfiability of φ ∧ P ∧ Q but we impose two addi-
tional restrictions on models A. One restriction is motivated by the fact that we model
pointer structures (see section 2.2), the other is used in our decidability proof.

5 We handle non-universal formulas φ = ∃z1, . . . , zn ∀x, y ψ ∈ BS2 by extending the vocabu-
lary σ = 〈r̄, c̄〉, adding the variables zi as constants.
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Functionality. We require that all binary relations are functional, i. e., for all EDB
predicates r, A must be a model of ∀u, v1, v2

(
r(u, v1) ∧ r(u, v2) ⇒ v1 ≈ v2

)
. This

ensures that A represents a pointer structure, which is functional graph since every
pointer at any given moment points to at most one heap cell.

Non-Sharing. We require that the binary relations occurring in P represent pointers
in data structures that do not share memory with other data structures defined by P . That
is, A must be a model of all sentences of the form ∀u1, u2, v

(
s1(u1, v) ∧ s1(u2, v) ∧

u1 �≈ u2 ⇒ const(v)
)

and ∀u1, u2, v
(
s1(u1, v) ∧ s2(u2, v) ⇒ const(v)

)
, where s1

and s2 are two distinct EDB predicates occurring in P and const(v) is a shorthand for
the disjunction

∨
c∈c̄ v ≈ c. Note that the non-sharing restriction is not imposed on all

binary predicates but just on the ones occurring in the Datalog program P .
Obviously, the functionality and non-sharing restrictions are expressible in the Ber-

nays-Schönfinkel class with equality. However, they require more than two variables,
so we cannot add them to the formula φ but must deal with them on the semantic level.

Besides restrictions on the class of models, we need to impose two restrictions on
monadic Datalog programs P . We call P tree-automaton-like (TA-like for short) if all
clauses are of the form

p(u) ← B1, . . . , Bl, r1(u, v1), q1(v1), . . . , rk(u, vk), qk(vk) (1)

for some k, l ≥ 0, where u, v1, . . . , vk are k + 1 distinct variables, r1, . . . , rk are k
distinct relation symbols, and the Bi are EDB literals containing at most the variable
u. We define the degree of a clause of the form (1) to be the natural number k, i. e., the
number of IDB atoms in the body. The degree of a TA-like monadic Datalog program
is the maximal degree of its clauses. We call P intersection-free if for all EDBs A,
the least model of P over A satisfies all sentences of the form ∀v

(
p(v) ∧ q(v) ⇒

const(v)
)
, where p and q are two distinct IDB predicate symbols. Note that the EDBs

are σ-structures satisfying the above functionality and non-sharing restrictions. Viewing
the IDB predicates as shape types for heap cells, an intersection-free Datalog program
associates to most heap cells only one shape type; i. e., there is no intersection of shape
types (except for cells pointed to by program variables).

Besides the model-theoretic semantics from section 2.5 there is a proof theoretic
semantics for Datalog programs. For simplicity, we will define the proof-theoretic se-
mantics only for TA-like monadic Datalog programs P . Let A be an EDB, i. e., a σ-
structure. A fact p(a) consists of an IDB predicate symbol p and an element a ∈ A. We
say that a list of facts q1(a1), . . . , qk(ak), k ≥ 0, produces a fact p(a) (w. r. t. P and
A) if P contains a clause p(u) ← B1, . . . , Bl, r1(u, v1), q1(v1), . . . , rk(u, vk), qk(vk)
such that A satisfies all ri(u, vi) and all Bj when interpreting the variables u, v1, . . . , vk
by a, a1, . . . , ak, respectively. A proof tree T for P w. r. t. A is an ordered tree where
each node is labeled by a fact. Depending on the situation, we call a node n which
is labeled by p(a) an a-node, a p-node or a p(a)-node. For each p(a)-node n in T
with k sons n1, . . . , nk, k ≥ 0, labeled by qi(ai), we require that the list of facts
q1(a1), . . . , qk(ak) produces the fact p(a) w. r. t. P and A. The proof tree T proves a
ground IDB atom p(c) if its root is labeled by the fact p(cA). The proof- resp. model-
theoretic semantics are linked in that the least model of P over A satisfies a ground
IDB atom p(c) if and only if p(c) is proven by some proof tree T . Note that for all facts



406 Witold Charatonik, Lilia Georgieva, and Patrick Maier

list(u) ← u≈ NULL.
list(u) ← next(u, v), list(v).

dll(u) ← u≈ lst, next(u,NULL).
dll(u) ← next(u, v), dll(v).

ring(u) ← u≈ p, next(u, v), ring′(v).
ring′(u) ← u≈ p.
ring′(u) ← next(u, v), ring′(v).

tree(u) ← u≈ NULL.
tree(u) ← left(u, v), right(u, w),

tree(v), tree(w).

gtree(u) ← u≈ NULL.
gtree(u) ← sons(u, v), gtrees(v).
gtrees(u) ← u≈ NULL.
gtrees(u) ← tree(u, v), gtree(v),

next(u, w), gtrees(w).

prev(fst,NULL) ∧ ∀u, v
(
u≈ NULL ∨ v ≈ NULL ∨ (prev(u, v)⇔ next(v, u))

)
∀u, v

(
u≈ NULL ∨ v ≈ NULL ∨ (up(u, v)⇔ left(v, u) ∨ right(v, u))

)
Fig. 3. Datalog programs P and axioms φ representing initial conditions.

p(a), we can w. l. o. g. assume that all p(a)-subtrees of a proof tree (i. e., all subtrees
rooted at p(a)-nodes) are isomorphic.

Figure 3 shows examples of monadic Datalog programs P and BS 2 axioms φ that
represent several initial conditions. The initial condition “the program variable p points
to a list” can be expressed by the formula P ∧ list(p) where P is the first of the
programs on figure 3. The condition “the program variables fst and lst point to the
first and the last elements of a doubly linked list” can be expressed by the formula
φ ∧ P ∧ dll(fst) where P is the second program and φ is the first of the axioms.
Here, an atom dll(u) expresses that u points to a doubly linked list whose last element
is pointed by lst; note that lst (unlike u) is a logical constant. The condition “p points
to a binary tree” can be expressed by P ∧ tree(p). In the same way as for doubly
linked lists, one may add an axiom (the second one on figure 3) defining a predicate
up to obtain a doubly linked binary tree. The condition “p points to a singly linked
circular list” can be expressed by P ∧ ring(p) where the Datalog program P defines
two IDB predicates ring and ring′. The corresponding doubly linked circular list can
also be defined, as was shown in figure 1. In the last example, general (i. e., arbitrarily
branching) singly linked trees can be handled by representing them as trees of lists,
i. e., every tree node points (via sons) to a list of sons (singly linked via next), each
node of which points to a tree node (via tree). The condition “p points to a arbitrarily
branching tree” can be expressed by P ∧ gtree(p).

Note that all these monadic Datalog programs are TA-like and intersection-free,
even if they are appear together in one initial condition (provided that the predicate
next is suitably renamed to list next, dll next, ring next and gtrees next).

3.2 Decidability of Bernays-Schönfinkel with Datalog

In this section we prove that satisfiability of formulas of the form φ ∧ P ∧ Q is
decidable, where φ is a universal σ-formula in BS 2, P is a TA-like intersection-free
monadic Datalog program and Q is a query. This is done by showing the small model
property for these formulas: Every satisfiable formula has a model of size bounded by a
function depending only on the formula. Before we prove this we recall some definitions
and lemmas.
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Finite Model Property. The proof of the well-known lemma below can be found in [8].

Lemma 4. Let φ be a universal σ-formula in the Bernays-Schönfinkel class with equal-
ity. If A |= φ and B is obtained from A by removing from its universe any number of
elements not interpreting constants then B |= φ.

The above lemma immediately gives us a finite model property for formulas of the form
φ ∧ P ∧ Q with Q = q1(c1), . . . , qk(ck). It is enough to take any model A of φ and
any k proof trees Ti proving qi(ci) and restrict A to the interpretations of constants and
to the elements that occur in the proof trees Ti.

Corollary 5. Every satisfiable formula of the form φ ∧ P ∧ Q has a finite model.

Types. Recall the EDB vocabulary σ = 〈r̄, c̄〉. Let u and v be variables. A 1-atom α(u)
is an atomic σ-formula containing at most the variable u, i. e., α(u) is a ground atom or
it is of the form u≈u, u≈ c, r(u, u), r(u, c) or r(c, u) for c ∈ c̄ and r ∈ r̄; likewise we
define 1-atoms α(v). A 2-atom α(u, v) is an atomic σ-formula containing at most the
variables u and v, i. e., α(u, v) is a 1-atom or it is of the form u≈v, r(u, v) or r(v, u) for
r ∈ r̄. A 1-literal (resp. 2-literal) is a possibly negated 1-atom (resp. 2-atom). A 1-type
τ(u) (resp. τ(v)) is a maximal propositionally consistent conjunction of 1-literals, i. e.,
all possible 1-atoms α(u) (resp. α(v)) occur exactly once in the conjunction τ(u) (resp.
τ(v)). Similarly, a 2-type τ(u, v) is a maximal propositionally consistent conjunction of
2-literals. Note that there are only finitely many different types: the number of 1-types
is 2(|c̄|+1)2(|r̄|+1) and the number of 2-types is 2(|c̄|+2)2(|r̄|+1).

In a given σ-structure A, for every element a ∈ A there is exactly one 1-type
τ(u) that is true when one assigns a to the variable u; we denote this type τ(u) by
τA(a). Likewise, for every two elements a, b ∈ A there is exactly one 2-type τ(u, v),
denoted by τA(a, b), that is true when one assigns a to u and b to v. Note that for
a, a′, b, b′ ∈ A, the 2-type equality τA(a, b) = τA(a′, b′) implies the 1-type equalities
τA(a) = τA(a′) and τA(b) = τA(b′). A type τ(u) resp. τ(u, v) is inhabited in A if we
have τ(u) = τA(a) resp. τ(u, v) = τA(a, b) for some a, b ∈ A. In general, not all types
are inhabited in a fixed σ-structure A, e. g., if A interprets the constants c1 and c2 by
different elements, no type containing the conjuncts u≈ c1 and u≈ c2 can be inhabited.
Therefore, (|c̄| + 1) · 2(|c̄|+1)2|r̄| resp. (|c̄|2 + 2|c̄| + 2) · 2(|c̄|+2)2|r̄| is an upper bound
on the number of inhabited 1- resp. 2-types.

In bounded branching structures, we can get a tighter bound on the number of in-
habited types. We say that a σ-structure A is k-branching, k ≥ 0, if for all r ∈ r̄, every
a ∈ A which is not interpreting a constant has at most k predecessors and k succes-
sors w. r. t. the relation rA. If A is k-branching then the number of inhabited 1-types is
bounded by |c̄|+ ((|c̄|+ 1)2k + 1)|r̄|, because there are |c̄| types inhabited by elements
interpreting constants, and for the types inhabited by the other elements each binary
predicate r contributes at most (|c̄| + 1)k possibilities due to predecessors, (|c̄| + 1)k

due to successors and one due to the self loop. Similarly, the number of inhabited 2-
types is bounded by |c̄|2 + 2|c̄|((|c̄| + 1)2k + 3)|r̄| + ((|c̄| + 1)4k + 4)|r̄|.

Lemma 6. The number of 2-types inhabited in a σ-structure A is bounded by a func-
tion singly exponential in the size of the vocabulary σ. If A is k-branching, k ≥ 0, then
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the bound on the number of inhabited 2-types is exponential in k and in the number of
binary relations but polynomial in the number of constants.

Pumping Lemma. The core of our decidability result is the following technical lemma
which “pumps down” big proof trees by compressing long paths, thus bounding the
depth of proof trees. With the bound, the small model theorem follows easily. Recall
the EDB vocabulary σ = 〈r̄, c̄〉 and the IDB vocabulary σI = 〈p̄〉.

Lemma 7. If a formula of the form φ ∧ P ∧ Q is satisfiable then it is satisfiable by
a σ-structure A such that all IDB atoms q(c) in the query Q have proof trees of depth
bounded by

|p̄||c̄| + |p̄||c̄| · (θ · |p̄| · δ + 1), (2)

where δ is the degree of P , and θ is the maximal number of inhabited 2-types in models
of φ ∧ P ∧ Q .

Proof sketch. Let A be a model of φ ∧ P ∧ Q and let T be a proof tree for P w. r. t.
A. Suppose T contains a path of length greater than (2). Then there exist two pairs of
nodes 〈m,n〉 and 〈m′, n′〉 on the path, labeled by d, e, d′, e′ ∈ A respectively, such
that (among other properties) the 2-types of the pairs 〈d, e〉 and 〈d′, e′〉 coincide and the
nodes n and n′ are labeled by the same IDB-predicate q. Because n and n′ are q-nodes,
we can construct a smaller tree T ′ by replacing the subtree rooted at n with the subtree
rooted at n′. Furthermore, we update the EDB such that in the updated EDB B a binary
relation r is true between the elements d and e′ if and only if r is true between d and
e in A. By construction of B and the type equality τA(d, e) = τA(d′, e′), formulas in
BS 2 cannot distinguish A and B. Using this fact, we can show that B is a model of
φ ∧ P ∧ Q , i. e., T ′ is a proof tree for P w. r. t. B, B satisfies the functionality and
non-sharing restrictions, and B is a model of φ. For a detailed proof see [6]. )*

Theorem 8. Let φ be a universal σ-formula with 2 variables, let P be an intersection-
free TA-like monadic Datalog program and let Q be a query. If the formula φ ∧ P ∧ Q
is satisfiable then it has a model of cardinality at most doubly exponential in the size of
the formula. Deciding satisfiability of such formulas is in 2-NEXPTIME.

Proof. By the lemmas 7 and 6, a satisfiable formula has a model A where the proof
trees for the query atoms are bounded by a function singly exponential in the size of
the formula, so their size is at most doubly exponential. By the observation following
Lemma 4, the model A can be reduced to a model B consisting only of interpretations
of the constants and elements occurring in the proof trees. )*

3.3 Complexity of Bounded Model Checking

It follows from Theorem 8, that the bounded model checking problem from Theorem 3
(see section 2.6) is in 2-NEXPTIME, because the size of the formula pre(π;�) ∧ φ ∧
P ∧ Q is polynomial in |π| by Lemma 2. The double exponential complexity originates
from two sources, the exponential bound on the number of inhabited 2-types and the
(linear) degree of the Datalog program, leading to proof trees of exponential depth and
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double exponential size. In common situations, however, the complexity of bounded
model checking can be improved significantly.

In the following, we consider bounded model checking problems for a fixed pro-
gram P with a fixed initial condition φ ∧ P ∧ Q . We say that the formula φ ∧ P ∧ Q
is a bounded branching formula if there is k ≥ 0 such that all models of φ ∧ P ∧ Q
are k-branching.

Theorem 9. Let π = 〈init , . . . , error〉 be an ECFG-path of a program P . If the initial
condition φ ∧ P ∧ Q is a bounded branching formula then (for fixed program and fixed
initial condition) deciding whether π is pointer-safe is in NEXPTIME. If additionally
the degree of P is 1 then the problem is in NPTIME.

Proof. Assume that all models of φ ∧ P ∧ Q are k-branching for some fixed k ≥ 0.
By Lemma 2, the size of the precondition formula pre(π;�) is polynomial in |π|, in
particular the length of the existential quantifier prefix is linear in |π|. For checking
satisfiability of pre(π;�) ∧ φ ∧ P ∧ Q , we convert pre(π;�) into a universal for-
mula, which requires extending the EDB vocabulary σ by adding a number (linear in
|π|) of new constants. By Lemma 6, the number of inhabited 2-types in models of
pre(π;�) ∧ φ ∧ P ∧ Q is polynomial in the number of constants6, hence polynomial
in |π|. Thus, Lemma 7 yields a polynomial depth bound for proof trees, which implies
a singly exponential bound on the size of the models. If the degree of P is 1, the poly-
nomial depth bound implies a polynomial size bound. )*

Functionality and non-sharing restrictions ensure that all initial conditions in our
examples are bounded branching formulas. The models of the initial conditions for lists
(singly or doubly linked, circular or not) and singly linked trees (binary or general) are
all 1-branching, whereas the models of the initial conditions for doubly linked binary
trees are 2-branching. Thus for all these data structures, bounded model checking can
be done in NEXPTIME, even if the program manipulates all these data structures si-
multaneously. Moreover, if a program works on list data structures only then bounded
model checking can be done in NPTIME, which is the optimal worst-case complexity
for BMC of list manipulating programs.

4 Related Work

Automatic verification of pointer programs has received quite some attention recently.
Dynamically allocated heap memory and properties such as sharing, cyclicity, and
reachability in the heap have been formalized in various logical languages.

Abstraction from possibly unbounded state space to a finite model has been stud-
ied in [16, 24, 26]. These approaches use the framework of abstract interpretation to
over-approximate the set of reachable states. This is achieved by interpreting program
statements and properties in a 3-valued first-order logic with transitive closure (TC).
Recently there have been attempts to increase the precision of the approximation by in-
corporating automated theorem for classical 2-valued first-order logic into the 3-valued
setting [26].

6 That the number of 2-types is exponential in k and the number of binary relations is irrelevant
because those parameters are fixed.
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Other approaches for shape analysis use decidable extensions of first-order frag-
ments to reason about shape graphs. [15] proves decidable the ∃∀-fragment with re-
stricted occurrences of TC and deterministic TC. Unfortunately, without severe restric-
tions on transitive closure, most decidable fragments of first-order logic become un-
decidable [15]. In [25], the decidable guarded fixed-point logic μGF [11] is used for
shape analysis. In μGF, one can express reachability from specified points along spec-
ified paths, but full transitive closure (i. e., reachability between a pair of variables) is
inexpressible. Moreover, μGF lacks the finite model property [11] and becomes unde-
cidable when functionality restrictions are added [9].

Special syntactically defined logics for expressing reachability have been designed.
The reachability logic RL defined in [1] is a fragment of 2-variable first-order logic
with transitive closure and additional Boolean variables. Expressive logics like PDL
and CTL∗ can be embedded into it. Model checking for RL is efficient, but decidability
of satisfiability has not been investigated.

In order to employ decision procedures for monadic second order logic over trees,
Schwartzbach et al. model linked data structures using graph types [18, 20]. Graph
types are logical representations of sets of graphs, where each graph has a tree back-
bone which uniquely defines the other (tree-violating) edges. The approach is similar to
ours because the Datalog proof trees can be seen as tree backbones. However, the two
approaches differ in how to specify the tree-violating edges. We can (but do not have to)
specify global restrictions on the tree-violating edges in a fragment of first-order logic
whereas graph types specify their tree-violating edges in a dynamic logic.

Graphs as models for software systems that contain pointers have been studied
in [19, 22] where graph logics based on C2, the 2-variable first-order logic with counting
quantifiers have been defined. These logics can also be seen as variants of description
logics [2] without fixed-points or transitive closure, hence they can model graphs but
cannot express reachability. Via translations to C2, the logics in [19] and [22] inherit
decidability [10].

The functional modal fragment of first-order logic as defined by Herzig [13] is a
target logic for mapping basic modal and description logics into the framework of first-
order logic. The good computational properties of these logic, i. e., PSPACE-decidability
and the finite model property, carry over to the functional modal fragment of first-order
logic. In this fragment universal and existential quantification can be permuted [12]
(i. e., ∀∃ can be exchanged by ∃∀), hence deciding satisfiability can be reduced to de-
ciding the Bernays-Schönfinkel class.

Reynolds and O’Hearn introduced separation logic [23] and a Hoare-style proof sys-
tem for local reasoning about pointer programs. In this approach, verification requires
manual construction of proofs for Hoare-triplets because the logic is undecidable. To-
wards more automation, in [5] a decidable fragment of separation logic is studied. To
obtain decidability expressiveness has to be sacrificed: the fragment can only specify
singly linked lists. On the other hand, besides satisfiability also entailment is decidable,
which is crucial for verification.

In hardware verification, bounded model checking using propositional SAT solvers
was adopted as a standard technique almost immediately after its introduction by Biere
et al. [4] in 1999. Jackson and Vaziri [17] extended SAT-based BMC from hardware



Bounded Model Checking of Pointer Programs 411

circuits to Java-like imperative programs with heap references. Essentially, they trans-
late the program specification and bounded executions of the program to a formula in
first-order logic with transitive closure, which they check for satisfiability in small mod-
els using a SAT-solver. The use of first-order logic with TC as a specification language
is very convenient, however, SAT-checking is only feasible on very small models, i. e.,
the size of the heap must be bounded a priori to only few cells. Similar approaches to
SAT-based BMC of pointer programs are pursued in [7] and [14].

5 Conclusion and Future Work

We proposed a bounded model checking procedure for programs manipulating dynam-
ically allocated pointer structures of arbitrary size. The worst-case complexity of our
method is 2-NEXPTIME, but in common cases it goes down to NEXPTIME or even
to NPTIME. Our approach is based on a combination of two logics, both of which
are efficiently decidable in practice. Therefore, we hope that our algorithm can be im-
plemented (e. g., by integrating a Datalog inference engine into a Bernays-Schönfinkel
decision procedure) quite efficiently.

There are several possible directions for the future work. One of them is imple-
mentation via combination of decision procedures for Bernays-Schönfinkel class and
Datalog. Another one is investigation of further applications of our method, e. g., in
the analysis whether counterexamples generated by an abstraction-refinement model
checker for pointer programs are spurious. Still another direction is to extend the ap-
plicability of the method, e. g., by releasing the non-sharing restriction (currently we
are not able to express structures like DAG representation of trees). Further possibility
is to extend our bounded model checking (which is a debugging method) to a verifi-
cation method – this requires the ability to express the negation of initial conditions
which leads to Datalog programs with greatest fixed point semantics (as opposed to the
least fixed point semantics considered here). Finally, we consider the use of other de-
cidable fragments of the first-order logic whose combination with Datalog could lead
to a decidable logic expressive enough for reasoning about pointer structures. A good
candidate is C2, the 2-variable fragment of first-order logic with counting quantifiers,
in which restrictions like functionality or non-sharing are easily expressible. As C2 is
closed under negation, a Datalog extension with greatest fixed points should also be
well suited for verification of invariants.
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Abstract. In its many guises and variations, propositional dynamic
logic (PDL) plays an important role in various areas of computer sci-
ence such as databases, artificial intelligence, and computer linguistics.
One relevant and powerful variation is ICPDL, the extension of PDL
with intersection and converse. Although ICPDL has several interesting
applications, its computational properties have never been investigated.
In this paper, we prove that ICPDL is decidable by developing a trans-
lation to the monadic second order logic of infinite trees. Our result has
applications in information logic, description logic, and epistemic logic.
In particular, we solve a long-standing open problem in information logic.
Another virtue of our approach is that it provides a decidability proof
that is more transparent than existing ones for PDL with intersection
(but without converse).

1 Introduction

Propositional Dynamic Logic (PDL) has originally been proposed as a modal
logic for reasoning about the behaviour of programs [12, 13, 22]. Since then,
the adaptation of PDL to a growing number of applications has led to many
modifications and extensions. Nowadays, these additional applications have be-
come the main driving force behind the continuing interest in the PDL family
of logics, see e.g. [1, 2, 5, 8, 14]. An important family of variations of PDL is
obtained by adding an intersection operator on programs, and possibly addi-
tional program operators. Alas, the extension of PDL with intersection (IPDL)
is notorious for being “theoretically difficult”. This is mostly due to an intri-
cate model theory: in contrast to most other extensions of PDL, the addition
of intersection destroys the tree model property in a rather dramatic way. In
particular, original PDL and many of its extensions can be decided by using au-
tomata on infinite trees [24] or embedding into the alternation-free fragment of
Kozen’s μ-calculus [16]. By adding intersection to PDL and destroying the tree
model property, we leave this framework and thus lose the toolkit of results and
techniques that have been established over the last twenty years. Consequently,
the results obtained for IPDL are quickly summarized: the first result about the
computational properties of PDL with intersection is due to Harel, who proved
that satisfiability in IPDL with deterministic programs is undecidable [15]. In
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1984, Danecki showed that dropping determinism regains decidability [7]. He also
establishes a 2-ExpTime upper bound. It was long unknown whether this upper
bound is tight: only in 2004, the ExpTime lower bound for IPDL stemming
from original PDL was improved to an ExpSpace one and then even to a tight
2-ExpTime one [17, 18]. An axiomatization for IPDL is long sought, but until
now only the axiomatization of relatively weak fragments has been successfully
accomplished [4].

It appears that virtually nothing is known about extensions of IPDL. Most
strikingly, the natural extension of IPDL with converse programs (ICPDL) has
never been investigated. The aim of this paper is to perform a first investiga-
tion of the computational properties of ICPDL: we show that satisfiability in
ICPDL is decidable by developing a (satisfiability preserving) translation into
the monadic second order logic of infinite trees (from now on simply called MSO).
This result has several interesting consequences:

First, decidability of ICPDL implies decidability of the information logic DAL
(Data Analysis Logic), a problem that has been open since DAL was proposed
in 1985 [11]. The purpose of DAL is to aggregate data into sets that can be
characterized using given properties, and, dually, to determine properties that
best characterize a given set of data. Technically, DAL may be viewed as the
variant of IPDL obtained by requiring all relations to be equivalence relations
and admitting only the program operators ∩ and ∪∗, where the latter is a com-
bination of PDL’s operators ∪ and ·∗. In ICPDL, equivalence relations can be
simulated using (a∪a−)∗ for some atomic program a. Thus, DAL can be viewed
as a fragment of ICPDL.

Second, there is a close correspondence between variants of PDL and descrip-
tion logics (DLs). In particular, the description logic ALCreg [3, 14] is a syntactic
variant of PDL without the test operator [23], and the intersection operator of
IPDL corresponds to the intersection role constructor in description logics. The
latter is a traditional constructor that is present in many DL formalisms, see
e.g. [6, 9, 20, 21]. Decidability and complexity results play a central role in the
area of description logic, but have never been obtained for the natural extension
ALC∩reg of ALCreg with role intersection. Clearly, ALC∩reg is a syntactic variant
of test-free ICPDL, and thus our decidability result carries over.

Third, ICPDL can be applied to obtain results in epistemic logic [10]. The
basic observation is as in the case of DAL: ICPDL can simulate equivalence re-
lations by writing (a∪ a−)∗. Since union and transitive closure of programs can
be combined to express the common knowledge operator of epistemic logic, and
intersection of programs corresponds to the distributed knowledge operator, de-
cidability of ICPDL can be used to obtain decidability for epistemic logic with
both common knowledge and distributed knowledge. We should admit, how-
ever, that this approach is rather brute force: since the common knowledge and
distributed knowledge operators of epistemic logic cannot be nested to build up
more complex operations on relations, epistemic logic lacks much of the complex-
ity of ICPDL. Therefore and as noted in [10], decidability can also be obtained
using more standard techniques.
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Apart from the applications just mentioned, we believe that there is an addi-
tional virtue of the MSO translation exhibited in this paper: without intending
to derogate the admirable work of Danecki that provided the basic ideas for
the tree encoding of ICPDL models developed in this paper [7], it seems fair to
claim that Danecki’s decidability proof for IPDL is rather intricate and difficult
to understand. Moreover, the correctness is hard to verify since the only available
presentation (a conference paper) lacks many non-trivial details. Although the
MSO translation presented in the current paper also involves some non-trivial
encodings, in our opinion it is the easiest proof of the decidability of IPDL that
has been obtained so far. Together with the technical report accompanying this
paper [19], the proofs are fully rigorous and readily checked in detail.

This paper is organized as follows. In Section 2, we introduce ICPDL. Sec-
tion 3 prepares for the MSO translation by discussing, on an intuitive level, how
ICPDL models can be abstracted into trees. The translation itself is exhibited
in Section 4 which also contains a correctness proof. We discuss future work and
conclude in Section 5.

2 The Language

Let Var and Prog be countably infinite sets of propositional variables and atomic
programs, respectively. The sets of ICPDL programs and ICPDL formulas are
defined by simultaneous induction as follows:

– each atomic program is a program;
– each propositional variable is a formula;
– if α and β are programs and ϕ is a formula, then the following are also

programs:
α−, α ∩ β, α ∪ β, α;β, α∗, ϕ?

– if ϕ and ψ are formulas and α is a program, then the following are also
formulas:

¬ϕ, 〈α〉ϕ

We use ϕ1 ∧ ϕ2 as an abbreviation for 〈ϕ1?〉ϕ2, ϕ1 ∨ ϕ2 for ¬(¬ϕ1 ∧ ¬ϕ2), and
[α]ϕ for ¬〈α〉¬ϕ. Moreover, we use � to abbreviate an arbitrary (but fixed)
propositional tautology, and ⊥ for ¬�.

The semantics of ICPDL is defined in the usual way through Kripke struc-
tures. A Kripke structure is a triple K = (W,R,L), where

– W is a set of points,
– R assigns to each atomic program a ∈ Prog a binary relation R(a) on W ,
– L assigns to each atomic proposition p ∈ Var the set of points L(p) in which

it holds.

The extension of R to complex programs and the definition of the consequence
relation |= for ICPDL are, again, by simultaneous induction:
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R(α−) is the converse of R(α)
R(α1 ∩ α2) = R(α1) ∩R(α2),
R(α1 ∪ α2) = R(α1) ∪R(α2),
R(α1;α2) = R(α1) ◦R(α2).
R(α∗) is the reflexive-transitive closure of R(α)
R(ϕ?) = {(w,w) ∈ W 2 | K,w |= ϕ}

K,w |= p iff w ∈ L(p) for p ∈ Var
K,w |= ¬ϕ iff K,w �|= ϕ
K,w |= 〈α〉ϕ iff there is w′ : (w,w′) ∈ R(α) and K,w′ |= ϕ

Let ϕ be a formula and K = (W,R,L) a Kripke structure. Then K is a model
of ϕ if there is a w ∈ W with K,w |= ϕ. The formula ϕ is called satisfiable if it
has a model.

3 ICPDL Models

Our aim is to devise a satisfiability preserving translation from ICPDL to MSO
over infinite trees. The main difficulty is posed by the fact that ICPDL does not
have the tree model property. This is witnessed e.g. by the formulas

¬p ∧ 〈a ∩ a−〉p and ¬p ∧ [b]⊥ ∧ 〈(a; p?; a) ∩ b∗〉�

which both enforce a cycle of length 2 1. To carry out the translation to MSO,
it is important to develop a tree-shaped abstraction of ICPDL models. Such an
abstraction is described in the current section. Although it provides the guiding
intuitions for developing the translation to MSO, there is no need to formally
establish the correctness of the abstraction beforehand. Therefore, our discussion
will remain on an intuitive level.

Intersection

ICPDL’s lack of the tree model property is clearly due to the intersection oper-
ator on relations. Even the simple formula 〈a∩ b〉� does not have a tree model:
it enforces a Kripke structure K as shown on the left-hand side of Figure 1. For
the MSO translation, we represent K using the tree displayed on the right-hand
side of the same figure. In this tree, the left son represents the substructure of
K that is obtained by dropping the b edge, and the right son describes the sub-
structure obtained by dropping the a edge. The symbol “∩” labelling the root
node indicates that a parallelization operation is required to construct K from
these two substructures: simply identify their roots and sinks. Intuitively, the
root node represents the whole structure K.

The tree representation does not only encode the relational structure of K,
but also records satisfaction of relevant formulas by states of K. The following
1 It is easy to modify these formulas such that they enforce a cycle whose length is

exponential in the length of the formula.
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Fig. 1. Tree for intersection.

definition fixes the set of formulas relevant for deciding satisfiability of an ICPDL
formula ϕ: the (Fischer-Ladner) closure of ϕ.

Definition 1 (Closure). The set of subprograms subp(α) of ICPDL programs
α and the set of subformulas subf(ϕ) of ICPDL formulas ϕ is defined simulta-
neously as follows:

– subp(a) = {a} if a is atomic;
– subp(α) = {α} ∪ subp(β) ∪ subp(γ) if α = β ∩ γ or α = β; γ;
– subp(α) = {α} ∪ subp(β) if α = β∗ or α = β−;
– subp(ϕ?) = {ϕ?} ∪

⋃
〈β〉ψ∈subf(ϕ) subp(β);

– subf(p) = {p} if p ∈ Var;
– subf(¬ϕ) = {¬ϕ} ∪ subf(ϕ);
– subf(〈α〉ϕ) = {〈α〉ϕ} ∪ subf(ϕ) ∪

⋃
ψ?∈subp(α) subf(ψ).

Finally, we define the closure of an ICPDL formula ϕ as

cl(ϕ) := {ψ,¬ψ | ψ ∈ cl(ϕ)}.

For x a state in a Kripke structure, the type of x is the set of formulas {ϕ ∈
cl(ϕ0) | K,x |= ϕ}, where ϕ0 is the formula whose satisfiability is to be decided.
In the tree representation of a model, each node stores the type of the root state
and of the sink state of the substructure that this node represents. In the case
of Figure 1, all three tree nodes store the type tx of x and ty of y since they all
describe a substructure of K with root x and sink y. We say that tx is stored in
the first place of each node, and ty is stored in the second place. Observe that
distinct places in tree nodes may represent identical states in the model. This
induces an equivalence relation on places, whose skeleton is given as dotted lines
in Figure 1. This relation will play a central role in the translation to MSO.

Composition

Now consider a formula 〈a; b〉�. It enforces the model on the left-hand side of
Figure 2. Again, the right-hand side displays the corresponding tree abstraction
with the dotted edges providing a skeleton for the equivalence relation on places.
The symbol “;” of the root nodes indicates that the structure represented by the
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Fig. 2. Tree for composition.

root node is obtained from the structures represented by the leaves through a
composition operation: identify the sink of the left son with the root of the right
son.

Kleene Star

Formulas 〈a∗〉� enforce an a-path of arbitrary length. To represent a path of
length zero (i.e., a single state), we use a tree consisting of a single node labelled
“=”. The two places of this node are equivalent, i.e., represent the same state.
To represent longer paths, we may repeatedly apply the composition operation
to nodes labelled “a” and “=”. A tree representation of a path of length two can
be found in Figure 3.

x

a

y

a

z

aty tz

a

tz

tx ty tz

tx
;

ty
;

tztz =

Fig. 3. Tree for Kleene star.

Observe the dotted edge connecting the two places of the “=” node. It should be
clear that, by combining the representation schemata given in Figures 1 and 2
and by using “=” nodes, we can construct a tree representation of models en-
forced by any formula 〈α〉�, with α composed from the operators {∪,∩, ϕ?, ; , ·∗}
in an arbitrary way: the operator “∪” requires no explicit represention in the
tree structure and the operator “ϕ?” can be treated via a node labelled “=”.
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Converse

To deal with the converse operator, we take an approach that may not be what
one would expect on first sight. As discussed later, the seemingly complicated
treatment of converse allows to simplify other parts of the MSO translation.
Consider a formula 〈a−〉� and the enforced model given on the right-hand side
of Figure 4.

x

y

txty

tytx

a

a

Fig. 4. Tree for converse programs.

Until now, all considered models have been abstracted into binary trees. For
dealing with converse, we switch to ternary trees. The Kripke structure from
Figure 4 is represented by the tree given on the right-hand side of the same
figure. The third son represents the structure in which there is an a-edge from
root y to sink x, i.e., the horizontal mirror image of the Kripke structure on
the left. In contrast, the root represents the original structure, where there is an
a-edge from sink y to root x. Observe that the equivalence relation induced by
the pointed edges swaps the places of the root and the third son as expected.
Also observe that the root node does not have a particular type such as “∩”
or “;”. We need not introduce a dedicated type for converse since, for technical
reasons discussed below, every node in the tree has a third son whose places are
obtained by swapping the places of the original node. Finally, note that the first
and second son of the root are simply dummies. Although they will be required
to exist for technical reasons, intuitively they carry no meaningful information.

Multiple Diamonds

So far, we have mostly concentrated on tree abstractions of models for simple
formulas of the form 〈α〉ϕ. Tree abstractions of models for arbitrarily shaped
formulas can be obtained by joining, in a suitable way, the tree abstractions
of models for such simple formulas. Consider the formula 〈a; b〉� ∧ 〈c〉�, which
enforces the structure shown on the left-hand side of Figure 5. As usual, the
tree abstraction is shown on the right-hand side. The root together with the
first two sons are the tree abstraction of the substructure witnessing 〈a; b〉�,
where the dotted edges are as in Figure 2 but omitted for simplicity. The third
son exists because every node is required to have a third son. The dotted edges
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Fig. 5. Tree for multiple diamonds.

connecting the root and the third son are as in Figure 4, but again omitted.
Finally, the fourth son by itself (i.e., without the root) is the tree abstraction of
the substructure witnessing 〈c〉�.

The ratio of this representation is as follows: suppose that a state x in a
Kripke structure satifies multiple diamonds 〈α1〉ϕ1, . . . , 〈αk〉ϕk. For 1 ≤ i ≤ k,
we take the representation of the model enforced by 〈αi〉ϕi as a ternary tree as
described above. Let these trees be T1, . . . , Tk. To join them into a single tree,
we attach the roots of T2, . . . , Tk as sons number 4 to k + 3 to the root of T1.
Observe that, in the resulting tree, the first place of the root node is equivalent
to the first place of sons number 4 to k + 3. This is indicated by the dotted edge
in Figure 5.

Using this method, we can deal with the problem that a state represented
by the left -hand place of a tree node may have to satisfy more than a single
diamond. What will we do if a state x represented by a right-hand place of a
tree node has to satisfy diamonds 〈α1〉ϕ1, . . . , 〈αk〉ϕk? We simply exploit the
fact that every node has a third son swapping the places: we attach the trees
T1, . . . , Tk representing the models enforced by the diamonds 〈α1〉ϕ1, . . . , 〈αk〉ϕk

as sons number 4 to k + 4 to the third son of the node whose right-hand place
represents x. By composing the dotted edges displayed in Figures 4 and 5, it is
easily verified that, then, the second place of the root of T1 is equivalent to the
first place of the root of T2 as required.

4 Translation to MSO

We now put the ideas developed in the previous section to work. The goal is to
prove the main result of this paper:

Theorem 1. Satisfiability in PDL with intersection and converse is decidable.

Let ϕ0 be an ICPDL formula whose satisfiability is to be decided. Moreover, let
k be the number of diamond formulas 〈α〉ϕ in cl(ϕ0). We translate ϕ0 into an
eqi-satisfiable formula ϕ∗0 of monadic second-order logic of the infinite k + 3-ary
tree. More precisely, we assume MSO models to have domain {1, . . . , k + 3}∗,
which from now on we abbreviate with [k+ 3]∗. There are k+ 3 unary functions
si mapping each node to it’s i-th son.
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Intuitively, the formula ϕ∗0 is constructed such that the models of ϕ∗0 are
precisely the tree abstractions of models of ϕ0. In particular, the intuition behind
the k + 3 successors is as explained in the previous section. The assembly of ϕ∗0
involves several steps. First, we fix the MSO signature used:

– unary predicates F 1
ϕ and F 2

ϕ for every ϕ ∈ cl(ϕ0);
– unary predicates T=, T∩, T;, and T⊥;
– a unary predicate Ta for each atomic program a.

The predicates F i
ϕ are used to store types in the first and second place of tree

nodes (c.f. previous section): if M is an MSO model and x ∈ [k + 3]∗, then
{ϕ | M |= F 1

ϕ(x)} is the type stored in the first place of x and {ϕ | M |= F 2
ϕ(x)}

is the type stored in the second place of x.
The predicates Ta, T=, T∩, T;, and T⊥ are markers for the different kinds

of nodes in trees. The only kind of node that was not discussed in the previous
section is T⊥. This kind of node is used when the i-th son is not needed, for
some i with 3 < i ≤ k + 3. For example, assume that M �|= F 1

ϕ(x) for some
node x ∈ [k + 3]∗ and all formulas ϕ ∈ cl(ϕ0) of the form 〈α〉ϕ. Then the
sons x4, . . . , x(k + 3) of x are not needed. Since our MSO models should be full
k + 3-ary trees, we simply mark such sons with T⊥.

To ensure that the sets {ϕ | M |= F 1
ϕ(x)} describe valid types, we have

to describe the semantics of negation and of diamonds—recall that all other
operators are merely abbreviations. Dealing with negation is easy:

ψ∗1 :=
∧

¬ϕ∈cl(ϕ0)

∀x . F 1
¬ϕ(x) ↔ ¬F 1

ϕ(x) ∧

F 2
¬ϕ(x) ↔ ¬F 2

ϕ(x)

To treat diamonds, we need some preliminaries. First, we define a formula with
two free variables that characterizes the identitiy of places as discussed in the
previous section. More precisely, it is convenient to define four such formulas
χi,j , i, j ∈ {1, 2}, as shown in Figure 6. Intuitively, we have M |= χi,j [x, y] iff
the i’th place of x is equivalent to the j’th place of y. According to the idea of
place equivalence, all equivalent places should have the same type:

ψ∗2 :=
∧

i,j∈{1,2}
∀x, y . χi,j(x, y) → (

∧
ϕ∈cl(ϕ0)

F i
ϕ(x) ↔ F j

ϕ(y))

We now define, for each program α ∈ subp(ϕ0), a formula σα that relates the
first place of a node x to the second place of a node y iff the states represented
by these two places are related via the program α: for each α ∈ subp(ϕ0), set:

– σa(x, y) := ∃z.χ1,1(x, z) ∧ Ta(z) ∧ χ2,2(y, z);

– σϕ?(x, y) := χ1,2(x, y) ∧ F 1
ϕ(x);

– σα∪β(x, y) := σα(x, y) ∨ σβ(x, y);
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ϑ(P1, P2) := ∀z.(T=(z)→ (P1(z)↔ P2(z))) ∧ (1)

∀z.(T∩(z)→ (P1(s)↔ P1(s1(z)))) ∧ (2)

∀z.(T∩(z)→ (P1(s)↔ P1(s2(z)))) ∧ (3)

∀z.(T∩(z)→ (P2(s)↔ P2(s1(z)))) ∧ (4)

∀z.(T∩(z)→ (P2(s)↔ P2(s2(z)))) ∧ (5)

∀z.(T;(z)→ (P1(z)↔ P1(s1(z)))) ∧ (6)

∀z.(T;(z)→ (P2(z)↔ P2(s2(z)))) ∧ (7)

∀z.(T;(z)→ (P2(s1(z))↔ P1(s2(z)))) ∧ (8)

∀z.(P1(z)↔ P2(s3(z))) ∧ (9)

∀z.(P2(z)↔ P1(s3(z))) ∧ (10)∧
3<�≤k+3

∀z.(¬T⊥(s�(z))→ (P1(z)↔ P1(s�(z)))) (11)

χi,j(x, y) := ∀P1, P2.(Pi(x) ∧ ϑ(P1, P2))→ Pj(y)

Fig. 6. The formulas χi,j(x, y).

– σα∩β(x, y) := σα(x, y) ∧ σβ(x, y);

– σα;β(x, y) := ∃z, z′.σα(x, z) ∧ χ2,1(z, z′) ∧ σβ(z′, y);

– σα−(x, y) := σα(s3(y), s3(x));

– σα∗(x, y) := χ1,2[x, x] ∨ ∀P.
(

(P (s3(x)) ∧ ϑ′α(P )) → P (y)
)

with

ϑ′α(P ) := ∀x, y, z.
(

(P (x) ∧ χ2,1(x, y) ∧ σα(y, z)) → P (z)
)

Some remarks are in order. To see why σa does not simply read x = y ∧ Ta(x),
consider Figure 1: the left place of the root node is clearly related to the right
place of the root node via the program a although the root is not labelled “a”. In
σα;β , the middle conjunct is necessary since we only relate first places to second
places. The formula σα− is easily understood by considering the equivalence of
places indicated in Figure 4. Finally, consider σα∗ . The first disjunct reflects
the fact that, in Kripke structures, α∗ relates every state to itself. The formula
ϑ′α(P ) states that the set of nodes P is closed under making α-steps from second
places of nodes in P : if x ∈ P , the second place of x is equivalent to the first
place of some y, and y is related to some z via σα, then the second place of z
can be reached from the second place of x by making an α transition and we
add z to P . Note that, in the definition of σα∗ , we put s3(x) into P as the initial
element rather than x. This is necessary since σα∗ relates first places to second
places, but ϑ′α(P ) closes off under making α-steps from second places of nodes
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in P . Moreover, the second place of s3(x) is clearly equivalent to the first place
of x.

Using the formulas σα, we can now describe the semantics of diamonds:

ψ∗3 :=
∧

〈α〉ϕ∈cl(ϕ0)

∀x . F 1
〈α〉ϕ(x) ↔ ∃y.σα(x, y) ∧ F 2

ϕ(y))

It pays off here that we require every node to have a third son with swapped
places: due to this son, there is no need to explicitly describe the semantics of
diamonds satisfied by second places, i.e., recorded via formulas F i

〈α〉ϕ(x) with
i = 2. We thus save the definition of counterparts of the formulas σα that
relate second places to first places. Also, there is no need to define counterparts
of the formulas σα that relate first places to first places, or second places to
second places: via the third son, such relationships can always be understood as
a relationship from a first place to a second place.

Finally, we assemble ϕ∗0:

ϕ∗0 := ψ∗1 ∧ ψ∗2 ∧ ψ∗3 ∧ ∃x.F 1
ϕ0

(x)

In [19], we prove correctness of the translation:

Lemma 1. ϕ0 is satisfiable in ICPDL iff ϕ∗0 is satisfiable in MSO.

For the “if” direction, assume that ϕ∗0 is satisfiable in MSO, i.e. there is an MSO
structure M based on a tree of out-degree k + 3 such that ϕ∗0 is satisfied in M.
Let P := [k + 3]∗ × {1, 2} be the set of places. We define the relation ∼ on P
by setting (x, i) ∼ (y, j) iff M |= χi,j [x, y]. It is not hard to show that ∼ is an
equivalence relation. Let [x, i] denote the equivalence class of (x, i) ∈ P w.r.t. ∼.
We define a Kripke structure K = (W,R,L) as follows:

– W = {[x, i] | (x, i) ∈ P};
– R(a) = {([x, 1], [y, 2]) | M |= σa[x, y]} for all atomic programs a;

– L(p) = {[x, 1] | x ∈ (F 1
p )M} ∪ {[x, 2] | x ∈ (F 2

p )M} for all p ∈ Var.

Note that K is well-defined: due to ϕ∗2, (x, 1) ∼ (y, 1) implies that x ∈ (F 1
p )M iff

y ∈ (F 1
p )M for all p ∈ Var, and likewise for F 2

p . Additionally, by definition of σa,
(x, 1) ∼ (x′, 1) and (y, 2) ∼ (y′, 2) implies that M |= σa[x, y] iff M |= σa[x′, y′],
for all atomic programs a.

In [19], we then prove the following, central claim.

Claim. For all x, y ∈ [k + 3]∗, ϕ ∈ cl(ϕ0), and α ∈ subp(ϕ0), we have

1. ([x, 1], [y, 2]) ∈ R(α) iff M |= σα[x, y];

2. M |= F i
ϕ[x] iff K, [x, i] |= ϕ

Since ϕ∗0 is satisfied in M, there is an x ∈ [k + 3]∗ such that M |= F 1
ϕ0

[x]. By
Point 2 of the claim, this implies that K is a model of ϕ0.
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For the “only if” direction, let K = (W,R,L) be a model of ϕ0, and let
w0 ∈ W such that K,w0 |= ϕ0. To construct an MSO model with domain
[k + 3]∗ satisfying ϕ∗0 at the root, we inductively define three mappings

τ1 : [k + 3]∗ → W

p : [k + 3]∗ → subp(ϕ0) ∪ {ε,⊥}
τ2 : [k + 3]∗ → W

such that the following condition is satisfied:

for all x ∈ [k + 3]∗, p(x) �= ⊥ implies (τ1(x), τ2(x)) ∈ R(p(x)), (†)

where R(ε) is defined as the identitiy relation on W . Intuitively, τ1(x) identifies
the state described by the first place of x, τ2(x) identifies the state described by
the second place of x, and p(x) is the program that we want to hold between
these two places. The case p(x) = ⊥ means that the mapping p(·) carries no
relevant information for the node x. Before we can start the definition, we need
some preliminaries. First, we assume that the diamond formulas in cl(ϕ0) are
linearly ordered, and that Ei yields the i-th such formula (the numbering starts
with 0). Second, we call a program α determined if the top-level operator is not
“∪”. We inductively fix a choice function ch that maps every triple (w,α,w′) ⊆
W × subp(ϕ0)×W with (w,w′) ∈ R(α) to a determined program ch(w,α,w′) ∈
subp(α) such that R(ch(w,α,w′)) ⊆ R(α) and (w,w′) ∈ R(ch(w,α,w′)): let
(w,w′) ∈ R(α).

– if α is determined, set ch(w,α,w′) := α.
– if α is not determined, then α = β ∪ γ. By the semantics, (w,w′) ∈ R(α)

implies (w,w′) ∈ R(β) or (w,w′) ∈ R(γ). In the first case, set ch(w,α,w′) :=
β if β is determined, and ch(w,α,w′) := ch(w, β,w′) otherwise. In the second
case, set ch(w,α,w′) := γ if γ is determined, and ch(w,α,w′) := ch(w, γ, w′)
otherwise.

Now, the three mappings are defined simultaneously by making a case distinction
as follows. To understand this definition, it may help to recall the intuitions laid
out in Section 3.

1. To start, set τ1(ε) := w0, p(ε) := ε, and τ2(ε) := w0. (The choice of p(ε) and
τ2(ε) is not crucial).

2. Let τ1(x) be defined, τ1(s1(x)) undefined, and p = α1 ∩α2. Then set, for i ∈
{1, 2}: τ1(si(x)) := τ1(x), p(si(x)) := ch(τ1(x), αi, τ2(x)), and τ2(si(x)) :=
τ2(x).

3. Let τ1(x) be defined, τ1(s1(x)) undefined, and p = α;β. By (†) and the
semantics, there is a w ∈ W with (τ1(x), w) ∈ R(α) and (w, τ2(x)) ∈ R(β).
Set

τ1(s1(x)) := τ1(x) p(s1(x)) := ch(τ1(x), α, w) τ2(s1(x)) := w

τ1(s2(x)) := w p(s2(x)) := ch(w, β, τ2(x)) τ2(s2(x)) := τ2(x)
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4. Let τ1(x) be defined, τ1(s1(x)) undefined, p = α∗, and τ1(x) = τ2(x). Set,
for i ∈ {1, 2}, τ1(si(x)) := w0, p(si(x)) := ε, and τ2(si(x)) := w0. Intuitively,
the first and second successor of x are not needed. To nevertheless obtain a
full k + 3-ary tree, we “restart” at w0.

5. Let τ1(x) be defined, τ1(s1(x)) undefined, p = α∗, and τ1(x) �= τ2(x). By (†)
and the semantics, there is a sequence w0, . . . , wn ∈ W such that τ1(x) = w0,
τ2(x) = wn, (wi, wi+1) ∈ R(α) for i < n, and wi �= wj for i < j ≤ n. Let
w0, . . . , wn ∈ W be the shortest such sequence. Set

τ1(s1(x)) := τ1(x) p(s1(x)) := ch(τ1(x), α, w1) τ2(s1(x)) := w1

τ1(s2(x)) := w1 p(s2(x)) := α∗ τ2(s2(x)) := τ2(x)

6. Let τ1(x) be defined, τ1(s1(x)) undefined, and p ∈ Prog or p of the form
α−. Set, for i ∈ {1, 2}, τ1(si(x)) := w0, p(si(x)) := ε, and τ2(si(x)) := w0.
Similar to Case 4, the first and second successor of x are not needed.

7. Let τ1(x) be defined and τ1(s3(x)) be undefined. Set τ1(s3(x)) := τ2(x),
τ2(s3(x)) := τ1(x), and

p(s3(x)) :=

{
ch(τ2(x), α, τ1(x)) if p(x) = α−

⊥ if p(x) is not of the form α−

8. Let τ1(x) be defined and τ1(sn(x)) undefined for some n with 3 < n ≤ k+3,
and K, τ1(x) |= En−3 = 〈α〉ϕ. Then by the semantics there is a w ∈ W
with (τ1(x), w) ∈ R(α) and K,w |= ϕ. Set τ1(sn(x)) := τ1(x), p(sn(x)) :=
ch(τ1(x), α, w), and τ2(sn(x)) := w.

9. Let τ1(x) be defined and τ1(sn(x)) undefined for some n with 3 < n ≤ k+3,
and K, τ1(x) �|= En−3 = 〈α〉ϕ. Then set τ1(sn(x)) := w0, p(sn(x)) := ε,
and τ2(sn(x)) := w0. As in Cases 4 and 6, we restart at w0 since the n-th
successor of x is not needed.

Now we construct an MSO model M as follows:

– for all ϕ ∈ cl(ϕ0) and i ∈ {1, 2}, set (F i
ϕ)M := {x ∈ [k + 3]∗ | K, τi(x) |= ϕ}

– TM
= :={x ∈ [k+3]∗ | p(x)=ε}

∪ {x ∈ [k+3]∗ | p(x)=ϕ? for some formula ϕ}
∪ {x ∈ [k+3]∗ | p(x)=α∗ for some α ∈ subp(ϕ0) and τ1(x)=τ2(x)}

TM
∩ :={x ∈ [k+3]∗ | p(x)=α ∩ β for some α, β ∈ subp(ϕ0)}

TM
; :={x ∈ [k+3]∗ | p(x)=α;β for some α, β ∈ subp(ϕ0)}

∪ {x ∈ [k+3]∗ | p(x)=α∗ for some α ∈ subp(ϕ0) and τ1(x) �= τ2(x)}
TM
⊥ :={sn(x) | K, τ1(x) �|= En−3}

– for a ∈ prog, set TM
a := {x ∈ [k + 3]∗ | p(x) = a}.

In [19], we show that M |= ϕ∗0[ε].
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5 Conclusion

In this paper, we have proved decidability of ICPDL, i.e. PDL extended with
intersection and converse. As laid out in the introduction, this result that has sev-
eral interesting applications. One additional virtue of the presented decidability
proof is that, compared to existing proofs for PDL with intersection (but without
converse), it is relatively simple and fully rigorous. There is, however, a price to
be paid for this simplicity: our translation to MSO only yields a non-elementary
upper bound. Indeed, when translating the following sequence (ϕi)i∈ of ICPDL
formulas, we obtain a sequence of MSO formulas with a strictly increasing quan-
tifier alternation depth:

ϕi := [(· · · ((a∗0; a1)∗; a2)∗; · · · ; ai)∗]p.

We believe that this upper bound is not tight. Indeed, it seems likely that sat-
isfiability in ICPDL is 2-ExpTime-complete, just as satisfiability in IPDL. For
proving this, however, it seems inevoidable to use the complex techniques of
Danecki [7], in particular his “�” relation. Therefore, we believe that it is useful
and illustrative to first prove only decidability in a more transparent way. Pin-
pointing the exact computational complexity of ICPDL is left for future work.
Another interesting question is whether or not there are useful fragments of
ICPDL that involve both intersection and Kleene star and for which reason-
ing is in ExpTime—thus not harder than in PDL. We suspect that the set of
program operators {∪,∩, ·∗, ·−, ϕ?} induces such a fragment. Note that the men-
tioned fragment of ICPDL is still strong enough to capture the information logic
DAL.
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Abstract. It has been proved by Niwiński and Walukiewicz that a de-
terministic tree language is either Π1

1 -complete or it is on the level Π0
3

of the Borel hierarchy, and that it can be decided effectively which of
the two takes place. In this paper we show how to decide if the language
recognized by a given deterministic tree automaton is on the Π0

2 , the
Σ0

2 , or the Σ0
3 level. Together with the previous results it gives a pro-

cedure calculating the exact position of a deterministic tree language in
the topological hierarchy.

Keywords: deterministic tree automata, index hierarchy, Borel hierar-
chy

1 Introduction

Tree automata, introduced by Rabin [14] in order to prove decidability of second
order monadic logic of two successors, are today – together with μ-calculus – the
basic tool in modeling and verification of concurrent systems. A tree represents
all possible behaviours of an analysed system and an automaton is a coded
correctness condition. An interesting measure of complexity of such a condition
is the nesting depth of positive and negative constraints on the events occurring
infinitely often. The formalization of that criterion gives the notion of the index
of an automaton. The languages recognized by automata of different indices
constitute an ascending hierarchy. This hierarchy was proved to be strict for the
classes of deterministic [19], nondeterministic [9], alternating [1, 7] and weak
alternating automata [8].

Another approach to estimating the complexity of a language is to calculate
its level in the topological hierarchy. Skurczyński [16] proved that the finite part
of the Borel hierarchy is strict for languages recognized by weak alternating
automata. Deterministic tree languages surprisingly turned out to be either Π1

1 -
complete (hence non-Borel) or on the Π0

3 level of the Borel hierarchy. The paper
by Niwiński and Walukiewicz [11] containing the proof of the above suggests
also that two basic complexity criteria, combinatorial and topological, are closely
related – at least for deterministic automata.
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While the efficiency of verification methods depends on the brevity of the
correctness conditions, they often result redundant when modeling real systems.
Therefore, developing algorithmic methods for calculating actual automata’s
complexity would be interesting. So far, there have been presented procedures
calculating the index of tree languages consisting of trees which have all the paths
in a given regular ω-language [6, 10], deciding if a deterministic automaton is
equivalent to a Büchi automaton [18], and calculating the (nondeterministic)
index of deterministic automata [12]. The μ-calculus approach resulted in a pro-
cedure deciding if a given formula of modal μ-calculus is equivalent to a formula
of modal logic [13].

In this paper we concentrate on algorithmic calculation of a language’s posi-
tion in the topological hierarchy and its connections with the deterministic index
hierarchy. In Sect. 2 and Sect. 3 we remind the basic notions of automata theory
and present simple criteria determining a language’s position in the deterministic
index hierarchy and weak deterministic index hierarchy. Section 4 recalls some
necessary topological notions. In Sect. 5 we show how to decide if a deterministic
language is in the classes Σ0

2 , Π0
2 and Σ0

3 . When combined with the previous
characteristics by Niwiński and Walukiewicz, it provides a complete procedure
calculating the position of a deterministic language in the topological hierarchy.

2 Basic Notions

We shall use the symbol ω to denote the set of natural numbers {0, 1, 2, . . .}.
For an alphabet X , X∗ is the set of finite words over X and Xω is the set of
infinite words over X . The concatenation of words u ∈ X∗ and v ∈ X∗ ∪ Xω

will be denoted by uv, and the empty word by ε. The concatenation is naturally
generalized for infinite sequences of words v1v2v3 . . .. The concatenation of sets
A,B ⊆ X∗ is AB = {uv : u ∈ A, v ∈ B}.

A binary tree is any subset of {0, 1}∗ closed under the prefix relation. An
element of a tree is usually called a node. A leaf is any node of a tree which is
not a (strict) prefix of some other node. We shall be dealing mainly with labeled
trees over Σ which are functions t : dom t → Σ such that dom t is a tree. The
symbol TΣ will denote the set of full infinite binary trees over Σ, i. e. functions
{0, 1}∗ → Σ.

For any trees t, s and v, a node of t, the result of the substitution of v with
s is a tree t′ whose domain is the set dom t ∪ vdom s and

t′(u) =
{
s(u′) if u = vu′ for some u′

t(u) otherwise .

Note that u′ may be empty, so if t(u) �= s(ε), for the label of u in t′ we choose
s(ε). We find it more convenient since the state of an automaton in a node
depends on every predecessor of the node, but not on the node itself.

The concatenation of tree languages A,B is a tree language AB consisting
of all trees obtained from any t ∈ A by substituting every leaf u of t with any
tree su ∈ B. The concatenation of infinite sequence of tree languages is a natural
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generalization of the above. A more precise definition requires an auxiliary notion
of a limit. Let t0, t1, . . . be a sequence of trees such that

– dom t0 ⊆ dom t1 ⊆ . . .,
– ∀v ∈

⋃
m∈ω dom tm ∃nv ∀n ≥ nv tn(v) = tnv (v).

The limit t = lim tn is defined as follows:

– dom t =
⋃

m∈ω dom tm,
– t(v) = tnv (v).

An infinite concatenation of tree languages L0L1 . . . consists of the limits of all
sequences t0, t1, . . . such that t0 ∈ L0 and tn+1 ∈ {tn}Ln+1 for all n.

The concatenation of trees s, t is the only element of the concatenation
{s}{t}. Similarly, the concatenation of infinite sequence of trees t = t1t2t3 . . . is
the only element of {t1}{t2}{t3} . . ..

For v ∈ dom t we define t.v as a subtree of t rooted in v, i. e. dom(t.v) = {u :
vu ∈ dom t}, t.v(u) = t(vu). A segment of a tree t between u and uv is the restric-
tion of the function t.u to the set {w ∈ dom (t.u) : v is not a strict prefix of w}.

A (nondeterministic) automaton on words is a tuple A = 〈Σ,Q, δ, q0, rank〉,
where Σ is a (finite) input alphabet, Q is the set of states, δ ⊆ Q×Σ×Q is the
relation of transition and q0 ∈ Q is the initial state. The meaning of the function
rank : Q → ω will be explained later. Instead of (q, σ, q1) ∈ δ one usually writes
q

σ−→ q1. A run of an automaton A on a word w ∈ Σω is a word ρw ∈ Qω

such that ρw(0) = q0 and if ρw(n) = q, ρw(n + 1) = q1, and w(n) = σ, then
q

σ−→ q1. A run ρw is accepting if the highest rank repeating infinitely often in
ρw is even; otherwise ρw is rejecting. A word is accepted by A if there exist an
accepting run on it. The language of words accepted by A is denoted by L(A).
One says that L is recognized by A if L = L(A). An automaton is deterministic
if its relation of transition is a function Q × Σ → Q. Note, that we do not let
the transition relation be a partial function, and so there is a run – accepting
or not – on every word. We call a language deterministic if it is recognized by a
deterministic automaton.

An (nondeterministic) automaton on trees is a tuple A = 〈Σ,Q, δ, q0, rank〉,
the only difference being that δ ⊆ Q × Σ × Q × Q. Like before, q

σ−→ q1, q2
means (q, σ, q1, q2) ∈ δ. A run of A on a tree t ∈ TΣ is a tree ρt ∈ TQ such
that ρt(ε) = q0 and if ρt(v) = q, ρt(v0) = q1, ρt(v1) = q2 and t(v) = σ, then
q

σ−→ q1, q2. A path π of the run ρt is accepting if the highest rank repeating
infinitely often in π is even; otherwise π is rejecting. A run is called accepting if
all its paths are accepting. If at least one of them is rejecting, so is the whole
run. An automaton is called deterministic if its transition relation is a function
Q×Σ → Q×Q.

An automaton is called weak if the rank of visited states does not increase
during the run, i. e. whenever there is a transition p

σ−→ q1, q2, then rank p ≥
rank q1 and rank p ≥ rank q2.

The symbol GA denotes a directed edge-labeled graph representing the transi-
tion relation of A. The set of vertices is Q and whenever in A there is a transition
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p
σ−→ q1, q2, in GA there is an edge between p and q1 labeled with (σ, 0) and

an edge between p and q2 labeled with (σ, 1). For sake of brevity we shall write
p

σ,0−→ q1 and p
σ,1−→ q2. A state is called productive if it is used in some accepting

run. The productive graph G+
A is analogous to GA, only now the set of vertices

is restricted to productive states and when defining the edges we demand that
all of the states p, q1, q2 are productive. We shall call a path in GA productive
if it is also a path in G+

A.
A partial run of A is a segment of any run of A. A partial run ρ realizes a

finite path π in the graph G+
A if it is a segment of an accepting run ρ′ between

two nodes x and y such that ρ′ agrees with π between x and y. More precisely, if
π = p0

σ1,d1−→ . . .
σm,dm−→ pm, then y = xd1d1 . . . dm, ρ′(x) = p0 and ρ′(xd1 . . . di) =

pi for all i. Note that, since ρ is a segment of an accepting run, all its infinite
paths are accepting. A tree segment f realizes a path π if the corresponding
partial run ρf realizes π.

When analysing the way an automaton works, one finds it useful to let the
automaton begin its run in states other than initial. An automaton starting in
the state q will be denoted by Aq.

The index of an automaton A is a pair (min rankQ,maxrankQ). Scaling
down the rank function if necessary one may assume that min rankQ ∈ {0, 1}.
For an index (i, j) we shall denote by (i, j) the dual index, i. e. (0, j) = (1, j+1),
(1, j) = (0, j − 1). The index hierarchy for a certain class of automata consists
of (roughly speaking) ascending sets (levels) of languages recognized by (i, j)-
automata, where (i, j) ∈ {0, 1}×ω. It is known that index hierarchies are strict
for deterministic [19], nondeterministic [9], alternating [1, 7] and weak alternat-
ing automata [8].

3 Deterministic Index Hierarchies

Given a deterministic language, one may ask about its deterministic index,
i. e. the exact position in the index hierarchy of deterministic automata. This
question can be answered effectively. Here we follow the method introduced by
Niwiński and Walukiewicz [10].

A sequence of loops λi, λi+1, . . . , λj in a graph of an automaton is called an
alternating chain if the highest rank appearing on λk has the same parity as k and
it is higher then the highest rank on λk−1. A (i, j)-flower is an alternating chain
λi, λi+1, . . . , λj such that all loops start in the same state q. Let Paths(L) ⊆ Σω

be the set of paths of trees from L and Paths′(L) ⊆ (Σ × {0, 1})ω denote the
language of generalized paths of L,

Paths′(L) = {〈(σ1, d1), (σ2, d2), . . .〉 : ∃t ∈ L t(d1d2 . . . di−1) = σi} .

Niwiński and Walukiewicz show that a language L is recognized by a (i, j)-
automaton iff no deterministic automaton recognizing Paths(L) contains a (i, j)-
flower. As an intermediate pass they prove the following fact.
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Theorem 1 (Niwiński, Walukiewicz [10]). A deterministic automaton on
words is equivalent to a deterministic (i, j)-automaton iff it does not contain a
(i, j)-flower.

For a deterministic tree automaton A, the graph G+
A can be treated as a deter-

ministic automaton recognizing Paths’(L(A)). Conversely, given a deterministic
word automaton recognizing Paths’(L(A)), one may interpret it as a graph of
a tree automaton, obtaining thus a deterministic automaton recognizing L(A).
Hence, applying Theorem 1 one gets the following result.

Proposition 1. For a deterministic tree automaton A the language L(A) is
recognized by a deterministic (i, j)-automaton iff G+

A does not contain a (i, j)-
flower.

Similarly, one can calculate the exact position of a deterministic language in
the hierarchy of weak deterministic automata. A weak (i, j)-flower is a sequence
of loops λi, λi+1 . . . , λj such that λk is reachable in G+

A from λk+1, and λk is
accepting iff k is even. Intuitively, the notion is to provide long enough alternation
of rank parity. Therefore we have to extend it to cover the case when i is odd
and instead of λi there is an unproductive state r reachable in GA from λi+1.

Proposition 2. For any deterministic tree automaton A the language L(A) can
be recognized by a weak deterministic (i, j)-automaton iff G+

A does not contain a
weak (i, j)-flower.

Proof. (⇒) Let us suppose that G+
A contains a weak (i′, j′)-flower, (i′, j′) = (i, j).

Let gj′ be a tree segment realizing some path from the initial state q0 to a
state rj′ on λj′ . By induction, let gk realize a path from the state rk+1 ∈ λk+1

to a state rk ∈ λk for k = j′ − 1, . . . , i′. Finally, let fk realize the loop λk

(from rk to rk) for all k. Let B be a weak deterministic automaton recog-
nizing L(A). Clearly, we can choose numbers ni′ , . . . , nj′ so that the run on
gj′ (fj′)nj′ gj′−1 (fj′−1)nj′−1 . . . gi′ (fi′)ni′ would need j′− i′ changes of rank par-
ity and thus j′ − i′ + 1 different ranks. Consequently, the index of B cannot be
(i, j).

(⇐) A weak deterministic (i, j)-automaton is obtained by setting rank (q)
equal to the highest number m such that there exists a weak (ι,m)-flower with a
path from q to λm (recall that an unproductive state is a weak (1, 1)-flower). )*

Finally, for a deterministic language one may want to calculate its nondeter-
ministic index, i.e. the position in the hierarchy of nondeterministic automata.
This may be lower than the deterministic index, due to greater expressive power
of nondeterministic automata. Consider for example the language L0ω

M consisting
of trees whose leftmost paths are in a regular ω-language M . It can be recognised
by a (nondeterministic) Büchi automaton, but its deterministic index is equal
to the deterministic index of M , which can be arbitrarily high.

The problem transpired to be rather difficult and has only just been solved
in [12]. The analogous problem for nondeterministic languages remains open.
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4 Topological Hierarchy

We start with a short recollection of elementary notions of descriptive set theory.
For further information see [5].

Let 2ω be the set of infinite binary sequences with a metric given by the
formula

d(u, v) =
{

2−min{i∈ω : ui �=vi} iff u �= v
0 iff u = v

and TΣ be the set of infinite binary trees over Σ with a metric

d(s, t) =
{

2−min{|x| : x∈{0,1}∗, s(x) �=t(x)} iff s �= t
0 iff s = t

.

Both 2ω and TΣ , with the topologies induced by the above metrics, are Polish
spaces (complete metric spaces with countable dense subsets). In fact, both of
them are homeomorphic to the Cantor discontinuum.

The class of Borel sets of a topological space X is the closure of the class
of open sets of X by countable sums and complementation. Within this class
one builds so called Borel hierarchy. The initial (finite) levels of it are defined as
follows:

Σ0
1 – open relations, i. e. open subsets of Xn for some n < ω,

Π0
k – complements of relations from Σ0

k,
Σ0

k+1 – countable sums of relations form Π0
k .

For example, Π0
1 are closed relations, Σ0

2 are Fσ relations, and Π0
2 are Gδ rela-

tions.
Even more general classes of sets form the projective hierarchy. We will need

only its lowest level:

Σ1
1 – analytical sets, i. e. projections of Borel relations,

Π1
1 – complements of relations from Σ1

1 .

Let ϕ : X → Y be a continuous map of topological spaces. One says that ϕ
reduces A ⊆ X to B ⊆ Y , if ∀x ∈ X x ∈ A ↔ ϕ(x) ∈ B. Note that if B is in a
certain class of the above hierarchies, so is A. For any class C a set B is C-hard,
if for any set A ∈ C there exists a reduction of A to B. The topological hierarchy
is strict for Polish spaces, so if a set is C-hard, it cannot be in any lower class. If
a C-hard set B is also an element of C, then it is C-complete.

For a deterministic automaton A one may define a function ϕA : TΣ →
Tim (rank) so that ϕA(t)(v) = rank (ρt(v)), where ρt is the run of A on t. Note
that ϕA is a continuous map that reduces L(A) to the set P of all trees satisfying
A’s parity condition.

We shall continue with a handful of examples which will turn out useful later.

Example 1. Consider the set P(1,2) ⊆ T{1,2} consisting of trees having infinitely
many 2s on every path. For each n < ω let Gn be the set of all trees that have at
least one 2 below the level n on every path. From König lemma it follows that
each Gn is open. Clearly, P(1,2) =

⋂
n∈ω Gn and so it is a Π0

2 set.
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Example 2. Let P fin
(0,1) ⊆ T{0,1} be the set of trees in which there are only finitely

many 1s. For any n < ω a set Fn ⊆ T{0,1} consisting of trees having no 1s below
the level n is closed. P fin

(0,1) =
⋃

n∈ω Fn, hence P fin
(0,1) ∈ Σ0

2 .

Example 3. Let L0∗1ω

a ⊆ T{a,b} be the set of trees which have an a on every
path from the set 0∗1ω. Suppose that it is a Σ0

2 set. Let L0∗1ω

a =
⋃

n∈ω Fn, Fn is
closed for all n. We claim that for every n there exists mn such that in every tree
from Fn the letter a occurs on the path 0n1ω above the level mn. If there was
no such number, then we could find a sequence tk of trees having no letters a on
the path 0n1ω above the level lk, where l1 < l2 < l3 < . . .. As T{a,b} is compact,
there exists a subsequence tki convergent in Fn. However the limit of tki cannot
be in Fn for it has no letter a on the path 0n1ω. Now, consider a tree t with a in
nodes 0n1mn+1 and b in other nodes. Clearly, t ∈ L0∗1ω

a , but t /∈
⋃

n∈ω Fn. This
way we have shown that L0∗1ω

a /∈ Σ0
2 .

Example 4. In quite a similar way one proves that the set Q = (0∗1)∗0ω is not
in Π0

2 (in fact, it is Σ0
2 -complete).

Example 5. Let L0∗1ω

Q denote the language of trees such that the rightmost path
from every node of the form 0∗ belongs to the language Q defined above. We
shall see that it is Π0

3 -complete, and therefore it is not in Σ0
3 . Let us take any

M =
⋃

i<ω Xi with Xi in Σ0
2 . Since Q is Σ0

2 -complete, for each i there exists
fi reducing Xi to Q. One easily defines a continuous reduction of M to L0∗1ω

Q

assigning to each t a tree having the word fi(t) on the path 0i1ω for all i, and
0s in all the other nodes.

5 Deciding Levels of Topological Hierarchy

The basic tool for investigating automata’s properties is the technique of gadgets
or difficult patterns in the graph of an automaton. In the topological context,
the general recipe goes like this. For every class identify a gadget satisfying the
following condition: if the gadget appears in an automaton A, then it provides
a reduction of some difficult language to L(A); otherwise L(A) is in the class
considered.

Wagner used this technique successfully in his solution of the general problem
of continuous reductions between ω-languages [19]. For infinite words, the Borel
hierarchy collapses at the level Δ0

3 and below it is strict. The levels Π0
1 and Σ0

1

correspond to weak deterministic (1, 2) and (0, 1) automata; the class Δ0
2 consists

of all weak deterministic automata; Π0
2 and Σ0

2 are exactly deterministic Büchi
and co-Büchi languages. We shall see that the situation for trees is slightly
different.

We start with the gap property for deterministic tree languages. An automa-
ton A admits a split if in G+

A there are two loops q0
ρ,0→ q1 → . . . → q0 and

q0
σ,1→ q2 → . . . → q0 such that the highest ranks occurring on them are of

different parity and the higher is odd.
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Theorem 2 (Niwiński, Walukiewicz [11]). For a deterministic automaton
A, L(A) is on the level Π0

3 of the Borel hierarchy iff A does not admit split;
otherwise L(A) is Π1

1 -complete (hence non-Borel).

Owing to this result, it is enough to decide if a language is on the levels Σ0
1 , Π0

1 ,
Σ0

2 , Π0
2 , Σ0

3 and use the split criterion to get complete information on its position
in the topological hierarchy. Before dealing with this task we shall see that it
does not get any easier, and so, not only there exist non-Borel tree languages
but even the Borel hierarchy for trees is higher than for words.

Proposition 3. The Borel hierarchy for deterministic tree languages is strict
below Π0

3 .

Proof. The language L0∗

a consisting of trees having an a on the leftmost path
is open, but obviously is not closed, L0∗

a ∈ Σ0
1 \ Π0

1 . An example of a language
from Π0

1 \ Σ0
1 can be {t0}, where t0(v) = 0 for every node v. The set Q can be

reduced to P fin
(0,1) by a map {0, 1}ω + w  → tw ∈ T0,1 where tw is a tree whose

leftmost path is w and having 0 in all the other nodes. Hence P fin
(0,1) ∈ Σ0

2 \Π0
2 .

It can also be easily seen that L0∗1ω

a is a Π0
2 set and we have already proved that

it is not a Σ0
2 . Finally, the language L0∗1ω

Q has been shown not to be in the Σ0
3

class, but clearly is in Π0
3 . )*

Having seen the strictness of our confined hierarchy, we shall continue with
the characterization of its levels. The description of the open and the closed
languages is probably well known, so we state it here, together with a short
proof, just for the sake of completeness.

Proposition 4. For any deterministic tree automaton A

1. L(A) is closed iff A is equivalent to a weak deterministic (1, 2)-automaton1,
2. L(A) is open iff A is equivalent to a weak deterministic (0, 1)-automaton.

Proof. We will prove only (1). First, suppose that A is not equivalent to a weak
deterministic (1, 2)-automaton. It follows from Proposition 2 that in G+

A there
must be an accepting loop λ2 reachable from a rejecting loop λ1. Let g1 realize
a path from q0 to some q1 ∈ λ1, g2 realize a path form q1 to some q2 ∈ λ2, and
f1, f2 realize loops λ1 (from q1 to q1), λ2 (from q2 to q2) respectively. Consider
tn = g1(f1)ng2(f2)ω and t = g1(f1)ω. Clearly, tn ∈ L(A) and tn → t when
n → ∞, but t /∈ L(A). Hence L(A) is not closed.

Now, if L(A) is recognized by a weak deterministic automaton B, then it is
the inverse image of a point under the continuous map ϕB and so it is closed. )*

The combinatorial characterization of Π0
2 -languages transpires to be equally

elegant.

1 Recall that we do not let an automaton stop. If we did, there should be (0, 0) instead
of (1, 2).
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Theorem 3. For a deterministic tree automaton A, the language L(A) is on
the level Π0

2 of the Borel hierarchy iff A is equivalent to a deterministic Büchi
automaton.

Proof. (⇒) Suppose that L(A) is not recognized by a deterministic Büchi au-
tomaton. From Proposition 1 it follows that in G+

A there exist an accepting loop
λ0 and a rejecting loop λ1 forming a (0, 1)-flower. The loops λ0 and λ1 cannot
be equal, so there is a node q lying on both loops, such that the next edges going
out of q in λ0 and λ1 have different labels. Let us assume first that the edges are
labeled with different letters a �= b:

λ0 : q
a,d0−→ r −→ . . . −→ q ,

λ1 : q
b,d1−→ s −→ . . . −→ q .

Let f0, f1 be tree segments realizing the loops λ0 and λ1 respectively (both from
q to q). Note that f0 and f1’s roots are labeled with different letters a and b.
Consider a map ϕ : 2ω → TΣ defined by the formula

ϕ(x0x1x2 . . .) = ffx0fx1fx2 . . . ,

where f is a tree segment realizing a path from q0 to q. The map ϕ is continuous,
since d(ϕ(x), ϕ(x′)) ≤ d(x, x′)|λ0|. Thus we have reduced (0∗1)∗0ω to L(A),
which, by Example 4, implies that L(A) is not a Π0

2 language.
The second case is slightly more sophisticated. We have

λ0 : q
a,0−→ r −→ . . . −→ q

λ1 : q
a,1−→ s −→ . . . −→ q

(or dual). Consider a path in the graph G+
A along the edges of the loop λ1 starting

from q. We claim that it must reach a node q′ such that there is an edge e from
q′ to q′′′ labeled with the same direction (0 or 1) as the edge in the loop but
with a different letter, e.g.

λ1 : q
a,1−→ s −→ . . . −→ q′

b,0−→ q′′ −→ . . . −→ q

↘c,0

q′′′
.

Were there no such an edge, all the runs starting in q would loop on λ1 and q

would be unproductive. Let π0 be the path q
a,1−→ s −→ . . . −→ q′

e−→ q′′′. The
state q′′′ is productive, so we can extend π0 to an infinite accepting path π in
G+

A. For f0 we choose a tree segment realizing both λ0 and π. This is possible
owing to the fact, that λ0 and π start with edges labeled with the same letter
and different directions. As before, f1 can be any tree segment realizing λ1. Now
we can continue like in the previous case.

(⇐) L(A) can be reduced to P(1,2), which is a Π0
2 -set. )*
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We shall now continue with describing the Σ0
2 languages. Recall the language

L0∗1ω

a ⊆ T{a,b} consisting of trees which have an a on every path from the set
0∗1ω. Even though one may easily construct a deterministic (0, 1)-automaton
recognizing this language, it is not a Σ0

2 set. Since a simple analog of the Π0
2

case condition has shown insufficient, a more careful analysis of the automaton’s
graph is needed. We will say that a node v ∈ G+

A is accessible with a split if

in G+
A there exist an accepting loop u1

σ,d0−→ u2 −→ . . . −→ u1 and a path

u1
σ,d1−→ u′2 −→ . . . −→ v, where d0 �= d1. We will say that a loop or a flower is

accessible with a split, meaning that it contains a node accessible with a split.

Theorem 4. For a deterministic tree automaton A, the language L(A) is on
the level Σ0

2 of the Borel hierarchy iff A is equivalent to a deterministic (0, 1)-
automaton and G+

A does not contain a rejecting loop accessible with a split.

Proof. (⇒) Let us suppose that L(A) is a Σ0
2 language. To prove the equivalence

to a deterministic (0, 1)-automaton follow the dual version of the method used in
the previous theorem. There exist a rejecting loop λ1 and an accepting loop λ0

forming a (1, 2)-flower. Find tree segments f0, f1 realizing λ0, λ1. Make sure they
are different by finding an accepting path π leaving λ1. The map ϕ defined in
the previous proof reduces (1∗0)ω to imϕ∩L(A). Were L(A) a Σ0

2 set, so would
(1∗0)ω, which, by Example 4, is not true. Let us now concentrate on the second
part of the condition. Suppose that G+

A does contain a rejecting loop λ1 accessible
with a split from an accepting loop λ0 along a path π. For n ∈ ω let πn be an
infinite accepting path having a prefix π(λ1)n but no prefixes π(λ1)m for m > n
(find an edge leaving the rejecting loop λ1 just as it was done in the second case
of the previous proof) and πω = π(λ1)ω. For each α ∈ ω+1 = ω∪{ω} consider a
tree segment fα realizing both λ0 and πα, this being possible since the first edges
of both paths are labeled with the same letter σ and different directions d0, d1.
For any x = (x1, x2, . . .) ∈ (ω+1)ω let tx = ffx1fx2 . . ., where f is a tree segment
realizing a path from the initial state q0 to u1. We shall define a continuous map
ϕ : T{a,b} → TΣ . For s ∈ T{a,b} let yi = min({|w| : w ∈ 0i1∗, s(w) = a}∪ω). Let
zi = max(yi−i, 0) if yi < ω and zi = ω if yi = ω. Let us now set ϕ(s) = tz, where
z = (z0, z1, . . .). The map ϕ reduces L0∗1ω

a to L(A). However, we have already
shown that L0∗1ω

a is not a Σ0
2 language. Hence G+

A cannot contain a rejecting
loop accessible with a split.

(⇐) Investigating the proof of Theorem 1 one easily observes that the re-
duction is careful enough not to introduce any rejecting loops accessible with a
split, provided there are no such loops in the original automaton. Therefore, we
may assume that A is a (0, 1)-automaton such that G+

A does not contain a re-
jecting loop accessible with a split. A state is called relevant if it has the highest
rank on some productive loop. We may change the ranks of productive irrelevant
states to 0, and assume from now on that the odd states are either relevant or
unproductive. We claim that the odd states occur only finitely many times on
accepting runs of A. Suppose that an odd state p occurs infinitely many times
in an accepting run ρ. Then it appears in an infinite number of incomparable
nodes v0, v1, . . . of ρ. Let πi be a path of ρ going through the node vi. Since
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2ω is compact, we may assume, passing to a subsequence, that the sequence πi
converges to a path π. As vi are incomparable, at most one of them, say vi0 ,
may lie on π. Let us remove πi0 from the sequence πi. Consider the node wi in
which p occurs for the first time on πi after leaving π and let π0

i be the path
from the last common node of π and πi to wi. Cutting the loops off if needed,
we may assume that |π0

i | ≤ |Q| for all i ∈ ω. Subsequently, there exist a path
π0 repeating infinitely often in the sequence π0

0 , π
0
1 , . . .. Moreover, the path π is

accepting, so the starting node of π0 must lay on an accepting productive loop.
As p is productive, the assumption implies that it is relevant and, being odd,
lies on some productive rejecting loop. Hence, G+

A contains a rejecting loop ac-
cessible with a split – a contradiction. This way we have shown that ϕA reduces
L(A) to P fin

0,1 , and so L(A) is a Σ0
2 language. )*

Let us now consider the class Σ0
3 . Every deterministic Σ0

3 language is, due
to Theorem 2, in the Δ0

3 = Π0
3 ∩ Σ0

3 class. Below we present a combinatorial
description of this class of languages.

Theorem 5. For a deterministic tree automaton A, L(A) is a Σ0
3 set iff G+

A

does not contain a (0, 1)-flower accessible with a split.

Proof. First let us suppose that G+
A contains a (0, 1)-flower accessible with a

split. Following the method used in Theorem 3 one easily finds a map reducing
the language L0∗1ω

Q to L(A). Subsequently, L(A) is not a Σ0
3 language.

Now, suppose that G+
A does not contain a (0, 1)-flower accessible with a split.

We shall find a Σ0
3 representation of the set R ⊆ TQ of accepting runs of A. The

theorem will follow since the map TΣ + t  → ρt ∈ TQ is continuous. Let us
consider, then, the set X of strongly connected components of G+

A. Recall that
they form a directed acyclic graph, i. e. no path returns to a component it has
left. The language R can be expressed by the following formula

R =
⋂

X∈X
RX ,

where RX is the set of runs whose every path staying forever in X is accepting.
Owing to this simple observation, it is enough to prove that the sets RX are Σ0

3 .
Let ΠX denote the set of all paths from the initial state q0 to some state in

X containing only one state from X . Note that ΠX is countable for every X . Let
us first suppose that X is accessible with a split. For π ∈ ΠX let RX,π denote
the set of runs whose every path going along π either leaves X or is accepting.
By the hypothesis, X contains no (0, 1)-flowers, and so it can be replaced by
an equivalent component X ′ using only ranks 1 and 2. Therefore, given q ∈ X ′,
the set of runs of Aq, whose all paths are accepting or leave X ′, is a Π0

2 set.
Obviously, so is RX,π. As it also holds that

RX =
⋂

π∈ΠX

RX,π ,

RX is a Π0
2 set.
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The case of X not accessible with a split is slightly fastidious. Let ρ be an
accepting run of A. Consider ρX , a subtree of ρ formed by the nodes which have
a successor whose labeling state is in X . No state from X is accessible with
a split, therefore it cannot appear in infinitely many incomparable nodes of ρ.
Hence, ρX has only finitely many branches. Let ρ0

X denote the tree ρX restricted
to the highest level below which there are no branching points. Let R0

X denote
the set of all such trees; note that, although RX may be uncountable, R0

X is
countable. Obviously,

RX =
⋃

s∈R0
X

RX,s ,

where RX,s is the set of runs from RX coinciding with a tree s ∈ R0
X in its

domain. Observe that RX,s is equal to the set of runs ρ′ satisfying the following
conditions:

(1) ρ′ coincides with s in its domain,
(2) the states from X appear only in successors of leaves of s,
(3) in every subtree of ρ′ rooted in a leaf of s the states from X appear infinitely

often on at most one path,
(4) in every subtree of ρ′ rooted in a leaf of s the highest rank of the states from

X appearing infinitely often is even.

The condition (1) obviously defines an open set. The condition (2) defines a
closed set and so does the condition (3), because it is equivalent to saying that
no node of the subtree has both children in X . The condition (4) is of the B(Σ0

2)
type. By B(Σ0

2) we mean the closure of Σ0
2 by the finite Boolean operations; it

is clearly a subclass of Σ0
3 . Hence RX,s is a Σ0

3 set and so is RX . )*

As a conclusion we obtain the main result of this paper.

Corollary 1. The problem of calculating the exact position in the topological
hierarchy of a language recognized by a deterministic tree automaton is decidable
within the time of finding the productive states of a deterministic automaton.

Proof. From Proposition 4 it follows that the language recognised by a determin-
istic automaton A is closed iff A is equivalent to a weak (1, 2)-automaton. This,
by Proposition 2, can be reformulated as follows: L(A) is closed iff G+

A does not
contain a weak (0, 1)-flower. Now, to decide whether a deterministic automaton
recognises a closed set, first determine its productive states, then build its pro-
ductive graph and check for weak (0, 1)-flowers. Note that two last steps can be
easily done in polynomial time. The case of open languages is entirely dual.

For Π0
2 and Σ0

2 levels follow analogous argument only now using Theorem 3
and Theorem 4 respectively, and Proposition 1. For Π0

3 and Σ0
3 levels use the

gap property and Theorem 5.
This way for a given deterministic language one obtains its exact level in the

topological hierarchy. )*

In general, deciding the topological complexity of a deterministic tree lan-
guage is as difficult as calculating the unproductive states of an automaton, the
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latter being equivalent to deciding a language’s emptiness. In 1969 Rabin [14]
showed that the emptiness problem is decidable, and in 1988 Emerson and Jutla
[3] presented an algorithm with time complexity O((nd)3d), where n is the num-
ber of states and d is the number of ranks used. The emptiness problem can be
easily reduced to solving parity games. The late nineties brought improved algo-
rithms for this problem by Browne et al. [2] with complexity O(d2mn

d
2 ) and by

Seidl [15] with complexity O(dm(n+d
d )

d
2 ), where n, m, and d are the numbers of

vertices, edges, and ranks in the game graph. The investigation of parity games
resulted in polynomial algorithms in plenty of special cases, but so far it is not
known if the original problem is polynomial. One of the last achievements in
this field is the procedure by Jurdziński and Vöge [4] which is apparently quite
efficient, however its complexity has not, at present, got any nontrivial upper
bounds.
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Abstract. This paper describes a type-1 framework for computable analysis de-
signed to facilitate efficient implementations and discusses properties that have
not been well studied before for type-1 approaches: the introduction of complex-
ity measures for type-1 representations of real functions, and ways to define in-
tensional functions, i.e. functions that may return different real numbers for the
same real argument given in different representations.
This approach has been used in a recently developed package for exact real num-
ber computations, which achieves performance comparable to the performance
of machine precision floating point.

1 Introduction

This paper presents an approach to computable analysis which corresponds to inter-
val arithmetic supplied with a mechanism for increasing precision. The approach is
designed to allow very efficient implementations of exact real arithmetic.

The main problem this paper addresses is the question of measuring complexity in
this approach. As in other type-1 models for analysis, complexity cannot be simply in-
troduced as a restriction on the class of functions used in the system, because the system
contains an implicit unbounded search which makes all complexity classes that can de-
fine the minimization normal form, down to polynomials over the integers, equivalent
in terms of expressive power. Suitable additional objects are introduced that can be used
to characterize the complexity of numbers and functions.

In addition to this, the paper discusses the possibility to implement intensional rep-
resentations of multi-valued real functions. This is not possible directly in the frame-
work. However, using a modified definition of the representation of a real function that
corresponds to access to a memory cell dedicated to the operation, intensional func-
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Previous implementations of exact real arithmetic [3, 7, 30], with the exception
of Müller’s iRRAM [26], implement real arithmetic by creating functional representa-
tions of real numbers via terms that describe the computation through which they were
computed. This approach is very inefficient, leading to ratios in the computation time
between real numbers and machine floating point greater than 100 to one even in cases
where high precisions are not actually needed. The reason for this is the complexity of
dealing with the history of the computation.

In contrast to this, in a type-1 approach such as the one described here, one can
define real functions working on the level of approximations, effectively expressing the
computation history in the code of a function, avoiding the overheads of creating a term
representation for it and making it possible to make use of memory caches and even
optimizations performed by a compiler.

The framework described here is used in an actual implementation (RealLib, [22]) of
an exact real numbers package, whose most significant distinctive feature is the possi-
bility to perform real number computations at a speed comparable to machine precision
floating point when the computation does not require the precision to be raised (for
details and performance comparison with floating point and other exact real number
packages, see [21]).

To make use of this, the user has to express the computation as a partial approxima-
tion representation of a real function as described in this paper. Most details are handled
automatically and such a representation rarely looks different from just expressing the
computation as a series of operations applied to real numbers. In fact, a function work-
ing with machine precision numbers can usually be changed to a type-1 representation
operating on real numbers just by changing the types and the function’s signature.

With the help of this library, the user need not wonder whether to trust a quick ma-
chine precision implementation or invest time to redo it at higher precision and even-
tually in slow exact real number arithmetic. If the problem is easy and the machine
precision can indeed be trusted, RealLib, unlike other exact real number systems, will
return the result very quickly, typically after twice and in the worst case after no more
than ten times the time is takes to perform the computation in machine precision. If it is
hard, RealLib will be slow to compute the result, but a machine precision result in such
a case can be completely wrong and lead to disastrous consequences.

2 Prerequisites

In this paper we will be referring to different levels of the finite type hierarchy. Type 0
is the natural numbers and every other finite type is a function that takes arguments of
a lower type. Type 1 is the type of the functions over the natural numbers and Type 2 is
the set of the functionals that take at least one type-1 function as argument.

Let V be an enumerable dense subset of the reals that contains the dyadic numbers
and is closed under addition, substraction and division by 2. We will be using the fol-
lowing definitions as the established notion of computable real numbers and functions
to which we will compare our model:

Definition 1. A Cauchy function representation (CF-representation) of a real number
α is a function a : N → V, such that ∀n ∈ N

(
|a(n) − α| < 2−lth(n)

)
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(we use lth(n) = 	log2(n+ 1)
 instead of simply n in the exponent as the latter would
not allow us to define the class of feasible real numbers as the ones having a poly-time
CF-representation)

With variations in the rate of convergence and the specific representation of the
numbers in V, this definition appears in works by Grzegorczyk [11], Pour-El and Rich-
ards [24], Ko [17] and Weihrauch [29]. In the latter, Lemma 4.2.1 shows the equivalence
of these variations.

Definition 2 ([29], P. 108). A Cauchy function representation of a partial function φ :
R → R is a partial functional Φ : (N → V) × N → V, such that

∀α ∈ dom φ, ∀a− CF − representations of α
∀n ∈ N

(
(a, n) ∈ dom Φ ∧ |Φ(a, n) − φ(α)| < 2−lth(n)

)
In the case of total functions, this definition is equivalent to the Grzegorczyk’s ap-

proach [11], used also by Pour-El and Richards in [24], which defines real functions as
maps of rational approximations to infinite sequences of rational approximations sup-
plied with a computable ω(k, n), a modulus of uniform continuity of the function on
[−k; k]. For a most clear definition of the latter and proof of the equivalence the reader
can refer to Cor. 2.16 of [17]. In contrast to that, the type-2 definition we are using
works well with partial and multi-valued functions together with complexity measures.

Definition 3. A real number or a real function is computable in a class C of computable
functions, resp. functionals, iff there exists a representation in C for it in the sense of
Definitions 1 or 2 respectively.

To assess the complexity of real numbers we can use restrictions on the class of
functions used in Definition 1. The complexity notions for real functions are some-
what more complicated, thus we have decided to compare our approach to two different
complexity measures: Ko’s notion of feasibility for Computable Analysis and type-2
complexity by restriction of the class of functionals used in Definition 2.

A well studied notion for feasibility of type-2 functionals is the class of the Basic
Feasible Functionals (BFF, defined in [14]). They can also be defined as the type-2
restriction of the Basic Feasible Functionals of finite type (BFFω, [6]), and the latter
can be defined as the higher-type functions that can be written as terms containing only

– constants 0 for every finite type
– variables for every finite type
– constants for every poly-time function
– the Σ and Π combinators for every combination of finite types (i.e. typed lambda

calculus)
– bounded recursion on notation Rbn:

Rbn(x, y, g, h) =
{
y, if x = 0
min (g(x,Rbn(	x/2
, y, g, h), h(x)) , otherwise

Two essential properties that we will be using in the complexity part of our pa-
per are the facts that BFFωrestricted to Type 1 coincides with the poly-time func-
tions, and BFFωrestricted to Type 2 (i.e. BFF) coincides with the functionals that
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are computable by an oracle Turing machine in time which is a second order polyno-
mial to the lengths of the inputs ([14]), where the length of a function is taken to be
lth(B) = λn.maxlth(k)≤n lth(B(k)). We will also use the fact that BFF can define
the first normal form for type-2 functionals ([14]). Here, as well as in the following
definition, an oracle Turing machine can use the oracle to retrieve arbitrarily good ap-
proximations of the real argument in one computational step.

We will use this definition for feasibility of real functions in the usual sense for
Computable Analysis:

Definition 4 (Ko, [17], Def. 2.18). A function φ is poly-time computable on [a, b] ⊆
dom φ in Ko’s sense iff there is an oracle Turing machine computing it in the dyadic

representation, which runs in time polynomial to the precision given in unary notation.

This definition of complexity is equivalent to the signed digit one defined in [29],
Def. 7.2.6, among others, and, using the next theorem, can be easily translated to the
setting of BFF.

Theorem 1. A partial real function is poly-time computable on [a, b] in the sense of Ko
iff it is BFF-computable on the same interval.

Proof. A functional is in BFF if and only if there exists an oracle Turing machine
computing it, running in time which is a second-order polynomial in the length of the
inputs. In a compact interval, there exist CF-representations B of any real number that
satisfy ∀k(lth(B(k)) ≤ p(lth(k))) for a polynomial p (using dyadic representations
cut after the lth(k)’th digit), and therefore a second order polynomial in lth(k), lth(B)
does not give more power than simply a polynomial in lth(k). )*

Our investigation of the connections between complexity in our model and type-2
and Computable Analysis complexity also require a very useful tool from Proof Theory,
the concept of majorizability:

Definition 5 (W.A. Howard, [13]). We define x∗ majρ x for a finite type ρ by induction
on the type:

x∗ maj0 x := x∗ ≥ x,

x∗ majτ→ρ x := ∀y∗, y
(
y∗ majτ y → x∗(y∗) majρ x(y)

)
.

We will say that a class of function(al)s C is majorizable, if for every function(al) f
in C there exists f∗ ∈ C with f∗ maj f , where the majorization relation is of the
appropriate type.

The majorizability relation defines monotonicity in higher types, and for us the
most interesting instantiation of the definition is in the case ρ ≡ 0 used in the form
x∗ majτ→0 x ∧ y∗ majτ y → x∗(y∗) ≥ x(y), giving us the possibility to bound the
result of the application of one higher-type functional to another as a number.

It is not hard to see that the poly-time functions and BFFωare majorizable classes
(detailed proof can be found in [20]). Other majorizable classes are the class of the
primitive recursive functionals of finite type (in the sense of Kleene S1-S8 ([16]) as
well as in the sense of Gödel ([10]) and any specific level in Gödel’s primitive recursive
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hierarchy), any level of the Grzegorczyk hierarchy and many others, but not the class of
all type-2 functionals (e.g. if the function

F (f) =
{

0, if ∀x(f(x) = 0)
μx[f(x) = 0], otherwise

were majorized by F ∗, then F ∗(λx.1) would bound F applied to all zero/one functions
which is not possible) or the class of the partial computable functionals if the notion is
extended in a suitable way to accommodate partiality.

The definitions of representations of real functions used so far only admit exten-
sional functions, i.e. ones that respect equality on real numbers and do not depend on
the actual representation of the argument. Because dependence on the representation
can be used to circumvent the impossibility to define discontinuous real functions, it is
sometimes useful to consider intensional (i.e. non-extensional, functions that depend on
the representation of the argument) functions. One cannot call such objects “functions
on real numbers”, because on the real numbers level they do not represent functions. In-
stead, the term multi-valued functions has been used in the literature ([29]) to denote the
fact that they can return different results for arguments that are equal as real numbers.

We will be using the following definition of an intensional real function:

Definition 6. A Cauchy function representation of a multi-valued function φ : R →
P (R) is a partial functional Φ : (N → V) × N → V, such that

∀α ∈ dom φ, ∀a− CF − representations of α
∃β ∈ φ(α)∀n ∈ N

(
(a, n) ∈ dom Φ ∧ |Φ(a, n) − β| < 2−lth(n)

)
Definition 7. We will call a CF-representation Φ of a multi-valued function φ exten-
sional iff

∀α ∈ dom φ∀x, y − CF − representations of α ∀n(|Φ(x, n) − Φ(y, n)| < 2−n+1).

Definition 8. A CF-representation Φ of a multi-valued function φ is intensional if it is
not extensional, i.e. iff

∃α ∈ dom φ∃x, y − CF − representations of α∃n(|Φ(x, n) − Φ(y, n)| ≥ 2−n+1).

Theorem 2. There exists a multi-valued function φ with a computable intensional CF-
representation such that no computable extensional CF-representation of φ exists.

Proof. Take the function

φ(x) =

⎧⎨⎩
{0}, if x < 0
{0; 1}, if 0 ≤ x ≤ 1
{1}, otherwise

Then

Φ(a, n) =
{

0, if a(1) ≤ 0.5
1, otherwise

is computable and a valid intensional CF-representation of Φ, but on the other hand
any extensional representation would have a point of discontinuity and would thus be
non-computable. )*
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An extensional representation is a representation of one of the (single-valued) real
functions that is possible in the multi-valued specification, and intensional functions do
not have a corresponding real function. Nevertheless, the latter can be used in practice,
especially in cases where a mathematical function is defined by forcing the result to one
of a selection of equally valid choices. For example, the square root of a complex num-
ber as a function is discontinuous and thus its computable extensional implementations
must be undefined at the line of discontinuity. However, if we define the square root as
a multi-valued function, computable intensional implementations without holes in the
domain can be given.

In this text extensionality and single-valued functions are assumed everywhere un-
less the alternative is explicitly specified.

3 The Partial Approximation Representations Approach

The basic objects we are going to use contain approximation information and an es-
timation of the amount of error in this approximation. To be able to define a class of
real functions equivalent to the computable ones in the sense of Definition 2, a totally
indeterminate value has to be allowed (otherwise e.g. division cannot be defined, see
[28]). We do this by allowing an infinitely large value for the error.

Let E be a subset of the positive rational numbers which contains 1 and is closed
under multiplication and division by 2, to which the special value ∞ is added, and
which has a poly-time encoding and a poly-time comparison operator that respects ∞.
It is possible to define encodings 〈·〉

V
, 〈·〉

E
and 〈·, ·〉 of, respectively, V, E and pairs

V × E with the following properties:

– lth(〈a, b〉) is polynomial in max(lth(〈a〉
V
), lth(〈b〉

E
))

– 〈a, b〉 ≥ 〈a〉
V

and 〈a, b〉 ≥ 〈b〉
E

– 〈2−n〉
E
≥ 2n

– there exist poly-time functions that convert between the encodings of V and E,
rounding up if a number in V cannot be represented in E

– multiplication and division by 2 are poly-time (and thus also multiplication by
2±lth(k)) in both V and E

– addition and the floor function 	·
 in V are poly-time
– there exists a function dya(n, d) that selects a code for the dyadic number n2−d,

such that whenever a, b, c, d are positive integers, a ≤ c ∧ b ≤ d → dya(a, b) ≤
dya(c, d)

– the absolute value operator on the codes is such that 〈v〉
V
≤ 〈|v|〉

V
for any v ∈ V

These properties can be satisfied e.g. for V = Q and E = Q+
∞ by the Cantor pairing

Π , the encoding of rational numbers q as Π(n, d), such that

q = (−1)n
	(n + 1)/2


d
,

and the encoding of ∞ as Π(0, 0).
Having the distinction between the sets V and E is prompted by the need to in-

clude ∞, but also closely follows the choice one would often make when an actual
implementation is developed as one might prefer a simpler (and thus more efficient)
representation of the error information.
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3.1 Definitions

Definition 9. A partial approximation to a real number α is a pair (v, e) of type V×E,
such that |v− α| < e. We will denote the class of partial approximations to α with Aα,
and the class of partial approximations to any real with AR = ∪α∈RAα. If a ∈ AR we
will use av, ae to denote respectively the value and error in a.

Definition 10. A partial approximation representation, p.a.r., of a real number α is a
function A : N → Aα, for which ∀k∃n((A(n))e ≤ 2−k).

If a real number is computable, then it certainly has a computable p.a.r.: if B is a
representation of α, then λn.(B(n), 2−lth(n)) is one of its p.a.r.’s. Conversely, if a is a
p.a.r. of α, then

λk.(A(μn[(A(n))e ≤ 2−lth(k)]))v (1)

is a valid CF-representation for it.
This equivalence does not hold for restrictions of the notion of computability. Be-

cause of the unbounded search in (1), it is possible to define all computable reals us-
ing p.a.r.’s in subrecursive classes such as primitive recursive, elementary or poly-time
functions. For a proof of this, see [28].

For real functions, we want to have objects that operate on partial approximations
instead of the full representations. They will have to convert approximations to an input
to approximations to the result of the application of the function, and also we need
to require that the precision of the output approximations gets arbitrarily good as the
precision of the input increases. In other words,

Definition 11. A partial approximation representation of a partial function φ : R → R
is a partial function F : AR → AR, such that for any choice of α ∈ dom φ and a
partial approximation representation A of α, λn.F (A(n)) is a partial approximation
representation of φ(α).

Remark 1. This definition implies a ∈ Aα → F (a) ∈ Aφ(α) for α ∈ dom φ.

3.2 Computability

We have severely restricted the information to which the function object has access;
nevertheless, this does not restrict the class of real functions that are computable. The
following theorem is a proof of this fact that uses a construction which we will later
modify to use in our complexity and intensionality results:

Theorem 3. A partial function φ : R → R is computable if and only if it has a com-
putable p.a.r.

Proof. (←) If we have a p.a.r. F of a function φ, and α ∈ dom φ, then the functional

Φ(B, n) := (F (
〈
B(m), 2−lth(m)

〉
))v, where (2)

m = μp
[
(F (
〈
B(p), 2−lth(p)

〉
)e ≤ 2−lth(n)

]
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is total in n for any CF-representation B of α since from Definitions 11 and 10 the min-
imization will always stop, and Definition 9 together with Remark 1 ensures |Φ(a, n)−
φ(α)| < 2−lth(n). )*

Proof. (→) Fix a CF-representation Φ for φ.
For any a ∈ AR with ae < 1, we can effectively find the largest natural number m

with the property 2mae < 1. If ae ≥ 1, we take m = 0. Define the function

b := λn.2−lth(n)	2lth(n)av + 1/2
. (3)

For 0 ≤ lth(n) < m we have that if α ∈ Aα

|b(n) − α| ≤ |av − α| + 2−(lth(n)+1) ≤ 2−m + 2−(lth(n)+1) ≤ 2−lth(n)

In the following we will use the language of exceptions1. Given the code of a com-
putable functionalΦ, we can construct an equivalent one Φ† that honors a new exception
x. We can create a function

b1m := λn.

{
b(n), if n < m
raise x, otherwise

and then define

Φ‡(B, n) :=

⎧⎨⎩
〈0,∞〉 , if n = 0
try

〈
Φ†(B, 	n2 
), 2−lth(#n

2 $)
〉

catch(x) Φ‡(B, 	n2 
)
, otherwise (4)

(Φ‡(b1m,n) finds the largest l ≤ n−1 for which Φ(b, l) only refers to the first m values
in b, or returns a completely undefined value if such an n cannot be found).

We will now prove that the function

F (a) := Φ‡(b1m, 2m+1) (5)

is the required p.a.r. of φ. To do this, we need to prove that G = λn.F (A(n)) is a p.a.r.
of φ(α) for any p.a.r. A of α.

The first condition, F (a) ∈ Aφ(α) for any a ∈ Aα, follows from the requirement
for Φ and the fact that there is a CF-representation for α that starts with b(0), b(1), . . . ,
b(m− 1).

For the second condition, we need to prove the existence of 2−k-approximations to
φ(α) among G(n) for any k. The sequence defined by

c := λn.2−lth(n)	2lth(n)α + 1/2


is a proper CF-name for α. If α is not a dyadic number, then for an arbitrary n,
|α − c(n)| < 2−lth(n)−1. There exists q depending on n, such that |α − c(n)| ≤

1 The reader can refer to a current book on semantics (e.g. [23]) for a proper definition of the
concept and its implementation. Essentially the same approach (but explicitly specified and not
identified as a case of using exceptions) is used e.g. in [18] and [1] and even in the definition of
Kleene’s associates (see Sec. 4). Through the use of exceptions we avoid the tedious explicit
construction of the functional Φ‡ from the code of Φ.
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2−lth(n)(1/2 − 2−(q−lth(n))), and for all partial approximations a with ae < 2−q we
have 2lth(i)|av − c(i)| < 1/2 for all 0 ≤ i ≤ n. But this implies that the sequence
obtained by (3) coincides with c on the first n + 1 elements.

Now, since Φ would look at finitely many elements of c to produce a value with
any precision 2−k, using that count in the procedure described above, we can come up
with a q supplying a long enough sequence. Combining this with a requirement that m
in (5) is sufficient for the target precision, we have (F (a))e ≤ 2−k for all a’s with
ae ≤ 2−max(q,k), and since A has arbitrarily close approximations, this can be satisfied
for a = A(n) for some n.

If α is a dyadic number, i.e. ∃n(c(n) = α), then there are only finitely many vari-
ations of b that can exists, because they have to coincide after the first n + 1 positions.
Then there exists a maximum m for the number of lookups Φ can make to any of these
b’s in order to get a 2−k-precise result. Hence ae ≤ 2−max(m,k) suffices to get the re-
quired precision for F (a). )*

As in the case of real numbers, this equivalence does not hold for subclasses of
the type-2 computable functions. To define all computable functions, it suffices to use
severely restricted type-1 computability subclasses:

Theorem 4. A partial real function is computable if and only if it has a p.a.r. in any
subrecursive class C that contains the poly-time functions.

Proof. (→) It suffices to change the definition of Φ‡ to a version bounded in execution
time

Φ‡(B, n,m) := Φ‡(B, n,m) :=

⎧⎨⎩
〈0,∞〉 , if n = 0
try

〈
Φm(B, 	n2 
), 2−lth(#n

2 $)
〉

catch(x) Φ‡(B, 	n2 
,m)
, otherwise ,

where by Φm we denote Φ† executed for m steps throwing the exception x if Φ did
not halt, which can be done in a basic feasible functional (because BFF can define the
first normal form for type-2 functionals), and modify F correspondingly to pass this
additional argument: F (a) := Φ‡(b1m, 2m+1,m).

Since m is of the order of the length of the encoding of a it is possible to do all
required steps in time polynomial to lth(a). The proof of the existence of good approx-
imations can be carried out here as well, the only difference being the need to satisfy a
condition in the form ae ≤ 2−max(q,k,s) for s being the number of steps it takes for Φ
to complete its evaluation on b of length q.

The p.a.r. is type-1 basic feasible, therefore it is poly-time. )*

Proof. (←) Follows from the previous theorem. )*

3.3 Complexity

Real Numbers. In order to be able to speak about different complexity classes of
real numbers, we must make a definition which requests more from our functions in
order to avoid the minimization in (1). This gives rise to the following definitions and
equivalence property:
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Definition 12. A modulus for a p.a.r. A of a real number α is a function m : N → N,
such that for all k, (A(m(k)))e ≤ 2−lth(k).

Definition 13. We will say that a real number is p.a.r.-computable in a given class C
of computable functions, if there exist both a p.a.r. and a modulus for it in C.

Theorem 5. A real number is computable in a subrecursive class C that contains the
poly-time functions and is closed under composition if and only if it is p.a.r.-computable
in C.

Proof. If B is a CF-representation of the number, take the p.a.r. A := λn.〈
B(n), 2−lth(n)

〉
and the modulus m := λn.n.

For the other direction B := λk.(A(m(k)))v is a CF-representation of the number
if A and m are, respectively, its p.a.r. and modulus. )*

On the level of feasible functions, poly-time p.a.r. computability coincides with Ko’s
notion of poly-time computable real numbers [17] (Ko speaks about numbers given in
unary notation, which is equivalent to the parameter lth(n) used in our definitions).

Type-2 Complexity for Functions. Again taking the p.a.r. of a real function we lose
all complexity information about that function. To talk about complexity classes, we
define a function that can replace the minimization in (2):

Definition 14. A modulus for a p.a.r. F of a partial real function φ is a partial func-
tional M : (N → AR) × (N → N) × N −→ N, such that for all α ∈ dom φ, p.a.r. A
of α, moduli m for A,

∀k((F (A(M(A,m, k))))e ≤ 2−lth(k)). (6)

Note that even though the actual function object is a type-1 object, we now introduce
a type-2 operation to characterize it. However, some extra flexibility comes from the
separation of these two objects: to implement e.g. a feasible real function one does
not have to implement a feasible type-2 object, but only needs to prove that it exists.
Moreover, if a CF-representation of a function needs extra information to be in a certain
class (e.g. division needs evidence that the denominator is non-zero to be primitive
recursive), it will in general only be needed for the modulus.

Definition 15. We will say that a real function is p.a.r.-computable in a given class C
of computable type-2 functionals, if both a computable p.a.r.2 and its modulus can be
found in C.

Theorem 6. If a function is p.a.r.-computable in a given class C that contains BFF
and is closed under functional composition ([12], Def. 1.1) and substitution ([12], Def.
3.8), then it is computable in the same class.

2 Via the implicit embedding of Type 1 in Type 2.
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Proof. For φ : R → R, α ∈ dom φ, F - p.a.r. of φ, M -modulus for F , and B -
CF-representation of α, take

Φ(B, n) := (F (A(M(A, λp.p, n))))v

where
A := λp.

〈
B(p), 2−lth(p)

〉
.

A is a p.a.r. for α with a modulus λp.p, and hence from M being a modulus to F ,
we have |Φ(B, n)− φ(α)| < 2−lth(n). Φ is a basic feasible functional relative to F and
M , therefore it is in C. )*

The other direction is more complicated. First we will verify that p.a.r.-computabili-
ty coincides with CF-computability, i.e. that, in addition to the p.a.r., a modulus can be
found for every computable function:

Theorem 7. If a partial function φ : R → R is computable, then it is p.a.r.-computable
in the class of all partial computable functionals.

Proof. We’ve already proved in Theorem 3 that there exists a computable p.a.r. to every
computable real function. If it is F , then

M(A,m, n) := μp[(F (A(p)))e ≤ 2−lth(n)]

is a modulus for F . )*

This modulus does not even use the modulus for the real number. This is true, be-
cause in the presence of minimization brute force search makes the moduli redundant.

This is not the case for restricted complexity classes. To prove the equivalence be-
tween p.a.r. and CF-computability on some of them, we need the higher-type monoto-
nicity we have in the majorizable classes and the following lemma:

Lemma 1. Let b be defined as

b(n) := dya(	2lth(n)av + 1/2
, lth(n)). (7)

Then for all α ≤ a0, a ∈ Aα, b, created by (7) for a with ae ≤ 1,

J(a0) maj1 b

where
J(a0) = λn.dya(1 + 	2lth(n)a0 + 1/2
, lth(n)). (8)

Proof. Since ae ≤ 1, we have |av| < a0 + 1 and therefore by the properties of the
encoding J(a0)(n) ≥ b(n), and also, since when n is increased both the numerator and
denominator in (8) do not decrease, we have ∀k ≤ n(J(a0)(n) ≥ J(a0)(k) ≥ b(k)),
which means J(a0) maj1 b. )*

Theorem 8. If a partial real function is computable in a majorizable class of type-2
functionals that contains BFF and is closed under functional composition and substi-
tution, then it is p.a.r.-computable in that class.
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Proof. We will use the proof of Theorem 3, substituting the definition (3) of b with (7).
All operations used in the generation of F can be done without leaving the class of Φ
(this is true because m is of the order of lth(a)). Hence F is in the class. We now need
to find a modulus for it.

In the class of Φ there exists a functional Ψ that does exactly the same job as Φ, but
instead of returning the approximation it gives the largest k to which B was applied.
Since the class contains this functional and is majorizable, it also contains a majorizer
Ψ∗ for it. The modulus for A gives us means to bound the absolute value of the real
number described by it, therefore, with the previous lemma, there is a poly-time func-
tion b∗ := J(|A(m(0))| + 1) which majorizes all functions b generated by partial
approximations with error less than 1.

Hence l = Ψ∗(b∗, n) ≥ Ψ(b, n) for all good b’s, in particular for the one (call it b0)
generated by a0 = A(m(l)), which means Φ†(b01l, n) will not raise an exception, and
F (a0) will give a result with the required precision.

Hence M(A,m, n) = max(m(Ψ∗(J(|A(m(0))| + 1), n)), n) is a modulus for F .
)*

Real Number Complexity for Functions. In the previous subsection we found cor-
respondence between complexities in this model and type-2 complexity. As Ko’s ap-
proach, the complexity measure normally used for real functions, is different, we also
define notions which are more closely related to the latter by defining type-1 moduli on
closed subsets of the domain:

Definition 16. A uniform modulus on [a, b] ⊆ dom φ of a p.a.r. F of a real function φ
is a function U : N → N, such that

∀α ∈ [a, b]∀a ∈ Aα∀k∀n(ae ≤ 2−lth(U(k)) → (F (a))e ≤ 2−lth(k))

Theorem 9. A partial real function φ is computable in a majorizable class of type-2
functionals closed under functional composition and substitution on [a, b] ⊆ dom φ if
and only if it has a p.a.r. and a uniform modulus in the same class.

Proof. (→) Use a and b to find an upper bound for the absolute value of α, then apply
the same reasoning as in the previous proof. )*

Proof. (←) M(A,m, k) = m(U(k)) is a modulus for all A’s representing reals in the
interval, thus φ is p.a.r.-computable in the class. )*

With this definition we’re back at the type-1 level, and we also have a few important
equivalences:

Corollary 1. A partial real function φ is primitive recursive in the sense of Kleene
([16]) on [a, b] ⊆ dom φ if and only if it has a primitive recursive p.a.r. and a primitive
recursive uniform modulus on [a, b].

Corollary 2. A partial real function φ is BFF-computable on [a, b] ⊆ dom φ if and
only if it has a poly-time p.a.r. and a poly-time uniform modulus on [a, b].
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Combined with Theorem 1, the latter allows us to state the following equivalence
property:

Corollary 3. A partial real function φ is feasible in the sense of Ko on [a, b] ⊆ dom φ
if and only if it has a poly-time p.a.r. and a poly-time uniform modulus on [a, b].

3.4 Intensional Functions

Intensionality does not work well with the type-1 frameworks, because intensional func-
tions rely on information that is not available in an approximation. If Φ is not exten-
sional, Theorem 3 does not hold. More specifically, a partial function given by a p.a.r.
is always extensional:

Theorem 10. Let F : AR → AR and let α ∈ R such that for all p.a.r. A of α,
λn.F (A(n)) is a p.a.r. of some β ∈ R. Then β depends only on α and not on its
representation A.

Proof. Let X and Y be two p.a.r.’s of α. Then

Z(n) =
{
X(n2 ), if n is even
Y (n−1

2 ), otherwise

is also a representation of α. Then λn.F (Z(n)) is a p.a.r. of a real number β and
therefore λn.F (X(n)) and λn.F (Y (n)) are also p.a.r.’s to β as subsequences of λn.
F (Z(n)). )*

Still, intensional functions are interesting for us and we want to find a way to ac-
commodate them. To do this, we have to pass additional information to the functions.

The most straightforward solution is to supply information about the history of the
approximation as an argument to the p.a.r., i.e. essentially use Kleene’s associate def-
inition. We will not be treating this approach, because the amount of information that
has to be passed to the associate in a direct application of Kleene’s approach is too big
and complexity reasoning would be very difficult if not impossible.

A different approach, carrying less information, is to give the function access to the
previous value it has produced, i.e.

Definition 17. A recursion-p.a.r. of a multi-valued function φ is a function F : AR ×
AR → AR, such that for any choice of α ∈ dom φ and p.a.r. A of α, λn.F (A(n),
F (A(n− 1), F (A(n− 2), · · ·F (A(0), 0) · · ·))) is a p.a.r. of a β ∈ φ(α).

Alternatively, one can extract the “history information” in a separate function:

Definition 18. A storage-p.a.r. of a multi-valued function φ is a pair of functions F :
N → AR and H : AR × N → N, such that for any choice of α ∈ dom φ and p.a.r. A
of α, λn.F (H(A(n), H(A(n − 1), H(A(n − 2), · · ·H(A(0), 0) · · ·))) is a p.a.r. of a
β ∈ φ(α).
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The idea behind this is that the function has access to a memory cell where it can
store information about past calls and update at each call. This can be very efficient,
especially in practical cases where one bit of external storage3 can be sufficient.

We will be treating the storage-p.a.r. approach and in the end we will show that the
two are equivalent.

Theorem 11. A multi-valued function has a CF-representation if and only if it has a
storage-p.a.r.

Proof. (←) Given a storage-p.a.r. pair F,H , the function

Φ(a, n) = F (h(k))v , where

h(m) =
{

0, if m = 0
H(
〈
a(m− 1), 2−lth(m−1)

〉
, h(m− 1)), otherwise

k = μm.
[
F (h(m))e ≤ 2−lth(n)

]
is a CF-representation of the function φ: h builds a sequence of applications of H
which is only lengthened when we move ahead in the approximation, and since the
sequence

〈
a(i), 2−lth(i)

〉
i∈N

is a p.a.r. to the argument, the storage-p.a.r. of φ has to
return approximations to one of the possible results, and the minimization for k always
terminates. )*

Proof. (→) We will define H that builds a signed digit representation of the real num-
ber and adds more information to it with consecutive calls. We will be storing the signed
digit representation as a pair Π(hi, hs), where hi is an integer approximating the num-
ber with error 1, and hs is a string of {−1; 0; 1} encoded in base 4. The following
function implements this using bounded recursion on the notation of ae (the bound is
not explicitly specified, but hs only grows by two bits for every bit of precision in ae
and hi is bounded by 	av + 1
 or the previous value of hi):

H(〈av, ae〉 , Π(hi, hs)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Π(hi, hs), if ae > 2−(exp(Π(hi,hs))+1)

Π((av + 1
2
), 0), if 1

4
< ae ≤ 1

2
∧Π(hi, hs) = 0

Π(gi, 4gs + 1), if ae ≤ 2−(exp(Π(hi,hs))+1)

∧num(Π(hi, hs))− av2
exp(Π(hi,hs)) > 1

2

Π(gi, 4gs + 3), if ae ≤ 2−(exp(Π(hi,hs))+1)

∧av2exp(Π(hi,hs)) − num(Π(hi, hs)) > 1
2

Π(gi, 4gs + 2), otherwise ,

where
Π(gi, gs) = H(〈av, 2ae〉 , Π(hi, hs))

num(Π(hi, hs)) =

⎧⎪⎪⎨⎪⎪⎩
hi, if hs = 0

2num(Π(hi, (hs
4
)))− 1, if hs ≡ 1(mod4)

2num(Π(hi, (hs
4
))), if hs ≡ 2(mod4)

2num(Π(hi, (hs
4
))) + 1, if hs ≡ 3(mod4)

exp(Π(hi, hs)) =
⌈

lth(hs)
2

⌉
.

3 In practice, F will usually take the current approximation as an additional argument. This
argument is not needed for the proofs that follow and does not interfere with them because H
can encode it in its result.
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We use the same construction as in Theorem 3 (changing only the definitions of m
and b), to prove that the following is a storage-p.a.r. of φ if Φ is its CF-representation
and Φ† is a version of it that honors a new exception x:

F (Π(hi, hs)) = Φ‡(b1m,m + 1)

for

Φ‡(B, n) =

⎧⎨⎩
〈0,∞〉 , if n = 0
try

〈
Φ†(B, 	n2 
), 2−lth(#n

2 $)
〉

catch(x) Φ‡(B, 	n2 
)
, otherwise

m = exp(Π(hi, hs)) + 1

b1m = λn.

{
b(n), if n < m
raise x, otherwise

b(n) = dya(num(g(n)), exp(g(n)))
g(n) = Π(hi, 	hs4n+1−m
).

In this b decodes the information stored in h to a unary function which gives correct
approximations to the argument up to its m − 1’st value and Φ‡ computes Φ(b, n) for
the largest n ≤ m for which this information is sufficient.

Let A be a p.a.r. of an α ∈ dom φ and h be a shorthand for h(n) = H(A(n),
H(A(n− 1), · · ·H(A(0), 0) · · ·)).

Since A contains approximations to α for any precision, the string built by h is has
no limit for its length and encodes a CF-representation of α. Since Φ is a computable
CF-representation of φ, by passing to it finite parts of this representation of α, we are
getting finite parts of the representation of a number β ∈ φ(α), and the construction of
Φ‡ ensures F (h(n)) ∈ Aβ . To get arbitrarily precise approximations to β it suffices to
be able to provide arbitrarily long finite parts of the CF-representation of α, which we
can do. )*

Unlike in Theorem 3, where b can be different at consecutive calls to F with dif-
ferent approximations to the number, here the initial part of b does not change and this
makes the proof simpler.

Complexity measures can be introduced similarly to the extensional case, but here
we also want to make sure the history information does not grow too quickly:

Definition 19. A modulus for a storage-p.a.r. pair F,H of a function φ is a pair of
functions M,N : (N → AR) × (N → N) × N −→ N, such that for any p.a.r. A to
α ∈ dom φ with modulus m,

∀k
(
F (H(A(m(2lth(n))), H(A(m(2lth(n)−1)), · · ·H(A(m(0)), 0) · · ·)))e ≤ 2−k

)
,

where n = M(A,m, k) and

∀n
(
H(A(m(2lth(n))), H(A(m(2lth(n)−1)), · · ·H(A(m(0)), 0) · · ·) ≤ N(A,m, n)

)
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Theorem 12. A multi-valued function has a CF-representation in BFF if and only if it
has a poly-time storage-p.a.r. with a modulus in BFF.

Proof. (←) This variation of what we did in the previous theorem is in BFF if F,H,M
and N are in BFF:

Φ(a, n) = F (h(k))v , where

h(m) =
{

0, if m = 0
H(
〈
a(2lth(m)−1), 2−(lth(m)−1)

〉
, h(2lth(m)−1)), otherwise

k = M(λp.(a(p), 2−lth(p)), λp.p, n),

because the recursion on notation h is bounded by N(λp.(a(p), 2−lth(p)), λp.p, n). )*

Proof. (→) All the constructions used in the previous theorem can be done in BFF.
The M part of the modulus can be constructed exactly as in Theorem 8, and the bound
N is

N(A,m, n) = Π

(
	A(m(0)) + 2

1
2

, 22lth(maxi≤lth(n) A(m(2lth(n)−i)))

)
.

(the maximum can be computed in BFF as shown in [5]) Because of the properties of
the encoding, if A(lth(n) − i)e ≤ 2−k, lth(A(lth(n) − i)) ≥ 2k, and since in H we’re
adding two bits for every bit of precision in the approximation, N gives us a bound for
the size of the history information. )*

Finally, it remains to show that the recursion-p.a.r. approach shares the same prop-
erties:

Theorem 13. A multi-valued function φ has a recursion-p.a.r. if and only if it has a
storage-p.a.r. Moreover, the conversion is poly-time.

Proof. Let R be a recursion-p.a.r. of φ. Then

H(a, h) = R(a, h)
F (h) = h

is a storage-p.a.r. of φ. Conversely,

R(a, h) = hide(F (H(a, extr(h))), H(a, extr(h)))

hide(a, h) =

{
〈h,∞〉 , if ae ≥ 1

2

hh(a, h), otherwise

hh(a, h) =
〈
2−ll(ae)

(
(2ll(ae)av)+ 2−lth(h)

(
(2lth(h) − 1) + 2−(lth(h)+1)h

))
, 2ae

〉
extr(a) =

{
av, if ae ≥ 1

ee(2ll(ae)+1av − (2ll(ae)+1av)), otherwise

ee(z) = 2count(z)+1(2count(z)z − (2count(z) − 1))

ll(e) =

{
0, if e ≥ 1
1 + ll(2e), otherwise

count(z) =

{
0, if z < 1

2

1 + count(2z − 1), otherwise
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does the translation in the other direction: R hides the values of h inside the results it
returns by truncating av to the precision of ae and adding to it a string of ones as long as
the binary representation of h, followed by a zero and h itself. Because ae is doubled,
a is still a partial approximation to the result of the application of the function, and the
value of h can be extracted by first removing the truncated av, counting the number of
consecutive ones in the remainder and then recovering h as the string of this length that
follows the separating zero. )*

Because the conversion between a storage-p.a.r. and a recursion-p.a.r. is poly-time,
the complexity results also apply to recursion-p.a.r.’s.

4 Related Work

4.1 Domain Theory

The existing approach most closely related to this work is the domain theoretic ap-
proach. It relies on the monotonicity of the functions representing real numbers and has
a built-in mechanism to treat intervals as equivalent to real numbers through the idea of
“partial real numbers”.

Our approach uses a significantly more relaxed requirement in place of the monoto-
nicity as we feel the latter can be hard to ensure especially in the presence of innacurate
operations on the approximations (e.g. via fixed or multiple precision floating point).
In our approach, we do not provide proper treatment of intervals either but only re-
quest (crude) overestimations of the resulting intervals without a mechanism that allows
for an improvement of these overestimations. We believe that interval arithmetic using
exact reals is preferable to an internal mechanism to treat intervals and real numbers
equivalently.

Escardo, Hofmann and Streicher [9] have shown that correct treatment of partial re-
als in a language for exact real number computations is a cause of serious inefficiencies,
showing that even simple operations like addition are inherently parallel. In a later work
by Marcial-Romero and Escardo [25] it is shown that this problem can be avoided using
a multi-valued test to implement addition which is single-valued on real numbers, but
multi-valued on real intervals. Unfortunately, with this the usefulness of the intrinsic
mechanism to process intervals becomes somewhat questionable.

To the knowledge of the author, suitable complexity measures for numbers and func-
tions in the domain theoretic approach are yet to be derived. The similarities of the
present approach suggest that the notions of moduli for numbers and functions could be
used for the domain theoretic framework as well.

4.2 Kleene’s Associates

Kleene [15] and Kreisel [19] independantly describe a standard method to translate a
type-2 functional into a type-1 object called associate. The associates can be seen as
a very early use of exceptions, as the associate object either fails (formally returns a
0, which can be viewed as raising an exception) or returns the proper result (formally
adding one to it, which can be viewed as honoring the exception) of the application of
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the type-2 functional to the type-1 argument that is being approximated in a number
encoding a finite initial segment of it. The type-2 functional can be recovered from its
associate α via the following application operation for an arbitrary type-1 argument β:

α(β) = α(μn.α(βn �= 0)) − 1,

(in the language of exceptions this is a block that catches the exceptions raised by α and
reiterates with higher n until α returns a value) where βn is an encoding of the initial n
values of β.

In the context of total type-2 functionals, Buss and Kapron [4] show that preserving
feasibility between type-2 functionals and their associates requires a feasible modulus
of continuity, similar to our Def. 14 of a modulus of a p.a.r.

The partial approximation representations can be seen as a reformulation of the ap-
plication of Kleene’s approach to the signed-digit representation of real numbers modi-
fied to relax the requirements for the representations of real numbers without increasing
the complexity of the objects that approximate them. As in [4], the definition of feasible
function in our model requires a separate modulus.

4.3 Constructive Analysis with Witnesses

Schwichtenberg also describes a type-1 approach [27] to the computability of real func-
tions using representations of real numbers as rational sequences with separate Cauchy
moduli and real functions as rational maps with explicit moduli of uniform continuity
(the approach also taken by Pour-El and Richards [24] but kept at Type 1 through the
use of the separate Cauchy modulus). In this approach the Cauchy moduli are an inte-
gral part of the computation, since the rational approximations alone are not sufficient
to extract properties of the real.

The modulus is a worst-case analysis which is useful for complexity reasoning and
theoretical extraction of bounds, while error propagation analysis and unbounded search
for a sufficient precision is easier and more efficient in practice, because the results
usually come out earlier than the worst-case analysis predicts. Our approach makes use
of the former for complexity reasoning but the implementations rely on the latter to
achieve significantly better performance on average.

5 Conclusion

We have defined a new type-1 approach to computability of real numbers which uses
very simple approximation objects. We have shown that the resulting p.a.r. objects do
not admit complexity reasoning by themselves, but their complexity can be character-
ized for both partial functions via type-2 moduli and functions total on closed inter-
vals via uniform type-1 moduli, and these characterizations coincide with the existing
approaches for measuring real number complexity. The complexity reasoning is sepa-
rate from the function or number representation which allows for theoretical reasoning
about the complexity of existing implementations that rely on unbounded search to find
a sufficient computational precision. As an example, a single implementation of the re-
ciprocal function can be shown to be poly-time if the argument can be witnessed to be
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different from zero, and to require unbounded minimization if such a witness can not be
found, by presenting different moduli which, however, do not need to be implemented
at all.

We have also shown that the concept of intensional (or multi-valued) functions can
be admitted in this approach with a simple modification of the object representing a
function. Unlike a direct application of Kleene’s translation of Type 2 to Type 1, our
representations of intensional functions do not require vast complexity. Complexity
reasoning for these functions is also possible and coincides with existing complexity
measures for type-2 representations.

This paper only investigates the approach in the single argument case. In the case
of binary functions, certain problems may arise if the two arguments do not produce
arbitrarily good approximations at the same time. To enforce this, a modification of the
definition of a real number can be used.

While in the unary case the condition ∀k∃n((A(n))e < 2−k) suffices, binary and
multiple-argument functions would require the condition ∀k∃n∀m ≥ n((A(m))e <
2−k). The theorems and proofs presented in this paper remain valid with this modifi-
cation and corresponding changes of the definitions of moduli, with the exception of
Theorem 7 which can be shown to be true using the fact that computable functions have
computable moduli of continuity.

We are grateful to the suggestions made by the anonymous referees as well as Ulrich
Kohlenbach which led to an improved presentation of the paper.
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Abstract. We study computability on sequence spaces, as they are used
in functional analysis. It is known that non-separable normed spaces
cannot be admissibly represented on Turing machines. We prove that
under the Axiom of Choice non-separable normed spaces cannot even
be admissibly represented with respect to any compatible topology (a
compatible topology is one which makes all bounded linear functionals
continuous). Surprisingly, it turns out that when one replaces the Axiom
of Choice by the Axiom of Dependent Choice and the Baire Property,
then some non-separable normed spaces can be represented admissibly
on Turing machines with respect to the weak topology (which is just
the weakest compatible topology). Thus the ability to adequately handle
sequence spaces on Turing machines sensitively relies on the underlying
axiomatic setting.

1 Introduction

In this paper we study computability on certain normed spaces X and their
dual spaces X ′. The framework for this investigation is computable analysis
[2, 3, 8], the Turing machine based theory of computability and complexity
on real numbers and other topological spaces. We will, in particular, use the
representation based approach to computable analysis [8].

Some of our results depend on the underlying axiomatic setting and we will
use the following notations to indicate the axioms:

– ZF for Zermelo-Fraenkel set theory.
– AC for the Axiom of Choice.
– DC for the Axiom of Dependent Choice.
– BP for the Baire Property Axiom (which states that any subset of the reals

can be represented as a symmetric difference of an open and a meager set).

We will not make any direct use of these axioms but we will use certain results
which can either be proved in ZF+AC or in ZF+DC+BP. It is known that in
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ZF the Hahn-Banach Theorem can be considered as a weak version of the Axiom
of Choice AC and the Axiom of Dependent Choice DC is equivalent to the Baire
Category Theorem (see [5] for a general discussion of the role of these axioms in
functional analysis). Some counterexamples in functional analysis do only exist
in the setting ZF+AC whereas ZF+DC+BP allows to exclude the existence
of the corresponding objects. Such pathological objects are called “intangibles”
by Schechter [5] since their existence cannot be proved constructively. Here,
it is important to notice that the consistency of ZF implies the consistency of
ZF+AC (proved by Gödel) as well as the consistency of ZF+DC+BP (proved
by Shelah, see 14.73 and 14.74 in [5]). If not mentioned otherwise, we will work
throughout this paper in the setting ZF+DC. Only if the full Axiom of Choice
is needed, we will explicitly mention that we are working in ZF+AC or in case
that we need the Baire Property, we will explicitly mention that we are working
in ZF+DC+BP.

In the following section we will discuss compatible representations of normed
spaces and their dual spaces. Such representations are well-behaved in the sense
that they make all bounded linear functionals continuous. Our results show that
in ZF+AC non-separable normed spaces X and their duals X ′ do not admit
compatible representations.

In Section 3 we will consider the sequence spaces �p, as they are well-known in
functional analysis. The space �∞ is a typical example of a non-separable normed
space and we will prove that this spaces admits a compatible representation in
ZF+DC+BP, but not in ZF+AC.

In Section 4 we discuss a canonical representation which is admissible with
respect to the so-called weak∗ topology. Such representations exist at least for
dual spaces of spaces with compatible representations. For separable reflexive
spaces we obtain a representation which is admissible with respect to the weak
topology.

2 Compatible Representations

In this section we will prove that neither non-separable normed spaces nor their
dual spaces admit compatible representations. We start with recalling some no-
tions from computable analysis [8]. The basic idea of the representation based
approach to computable analysis is to represent infinite objects like real num-
bers, functions or sets, by infinite strings over some alphabet Σ (which should at
least contain the symbols 0 and 1). Thus, a representation of a set X is a surjec-
tive mapping δ :⊆ Σω → X and in this situation we will call (X, δ) a represented
space. Here Σω denotes the set of infinite sequences over Σ and the inclusion
symbol is used to indicate that the mapping might be partial. If we have two
represented spaces, then we can define the notion of a computable function.

Definition 1 (Computable function). Let (X, δ) and (Y, δ′) be represented
spaces. A function f :⊆ X → Y is called (δ, δ′)–computable, if there exists
some computable function F :⊆ Σω → Σω such that δ′F (p) = fδ(p) for all
p ∈ dom(fδ).
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Of course, we have to define computability of functions F :⊆ Σω → Σω

to make this definition complete, but this can be done via Turing machines: F
is computable if there exists some Turing machine, which computes infinitely
long and transforms each sequence p, written on the input tape, into the corre-
sponding sequence F (p), written on the one-way output tape. If the represented
spaces are fixed or clear from the context, then we will simply call a function f
computable.

For the comparison of representations it will be useful to have the notion of
reducibility of representations. If δ, δ′ are both representations of a set X , then δ
is called reducible to δ′, δ ≤ δ′ in symbols, if there exists a computable function
F :⊆ Σω → Σω such that δ(p) = δ′F (p) for all p ∈ dom(δ). Obviously, δ ≤ δ′

holds if and only if the identity id : X → X is (δ, δ′)–computable. Moreover, δ
and δ′ are called equivalent, δ ≡ δ′ in symbols, if δ ≤ δ′ and δ′ ≤ δ.

Analogously to the notion of computability we can define the notion of (δ, δ′)–
continuity by substituting a continuous function F :⊆ Σω → Σω for the com-
putable function F in the definition above. On Σω we use the Cantor topology,
which is simply the product topology of the discrete topology on Σ. The corre-
sponding reducibility will be called continuous reducibility and we will use the
symbols ≤t and ≡t in this case. Again we will simply say that the corresponding
function is continuous, if the representations are fixed or clear from the context.
The category Rep of represented spaces and of continuous (w.r.t. the ambient
representations) functions is cartesian-closed. There is a canonical function space
representation [δ → δ′] of the set C(δ, δ′) of (δ, δ′)–continuous functions. It has
the property that the represented space (C(δ, δ′), [δ → δ′]) is the exponential of
(X, δ) and (Y, δ′) in the category Rep. Moreover, evaluation and currying are
even computable (see [7, 8] for details).

If not mentioned otherwise, we will always assume that a represented space is
endowed with the final topology induced by its representation. This will lead to
no confusion with the ordinary topological notion of continuity, as long as we are
dealing with admissible representations. A representation δ of a topological space
X is called admissible, if δ is maximal among all continuous representations δ′ of
X , i.e. if δ′ ≤t δ holds for all continuous representations δ′ of X . If δX , δY are ad-
missible representations of topological spaces X , Y , then a function f : X → Y
is (δX , δY )–continuous if and only if it is sequentially continuous, cf. [6]. More-
over, [δX → δY ] is an admissible representation of the space of the sequentially
continuous functions between X and Y . Hence the category of sequential topo-
logical spaces having an admissible representation and of sequentially continuous
functions is cartesian closed as well.

Now we introduce compatible representations of normed spaces. Here we
assume that by F the underlying field is denoted, which might either be the field
R of real numbers or the field C of complex numbers, in each case endowed with
the ordinary Euclidean norm and topology.

Definition 2. Let X be a normed space. Then a topology τ on X is called
compatible, if any bounded linear functional f : X → F is continuous with
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respect to τ . The smallest topology τw = σ(X,X ′) with this property is called
the weak topology on X .

As usual we will say that a topological space (X, τ) is separable if there exists
a countable subset D ⊆ X which is dense in X with respect to τ , i.e. such that
the closure of D coincides with X .

Lemma 1. Let (X, || ||) be a normed space and let τ be a compatible topology.
In ZF+AC the space (X, || ||) is separable, if (X, τ) is separable.

Proof. Let (X, || ||) be a normed vector space over F with a compatible topology
τ and let D = {d0, d1, ...} be a countable dense subset with respect to τ . By QF

we denote either Q or Q[i] depending on whether F = R or F = C. Let us assume
that (X, || ||) is not separable. Then the countable set

U :=

{ ∞∑
i=0

qi · di : (qi)i∈N ∈ QN

F and qj = 0 for almost all j

}

is not dense in X with respect to the norm || ||. Hence there is some y ∈ X
which is not in the closure U of U with respect to the norm || ||. Thus s :=
dist(U, y) := infu∈U ||y − u|| > 0. One easily verifies that U and

V := {c · y + u : c ∈ F, u ∈ U}

form linear subspaces of X . Since y �∈ U , we can unambiguously define a linear
functional f : V → F by f(c · y + u) := c for all c ∈ F and u ∈ U . Since

|f(c · y + u)|
||c · y + u|| =

1
||y − −u

c || ≤
1
s

for c �= 0 it follows that f is bounded. By the Hahn-Banach Theorem f can be
extended to a bounded linear functional F : X → F. Since τ is compatible, if
follows that F is continuous with respect to τ and since F (y) = 1, it follows that
F−1(B(1, 1/2)) ∈ τ is an open set containing y. By density of D there is some
i ∈ N with di ∈ F−1(B(1, 1/2)) which contradicts F (di) = 0. �

This lemma can also be obtained as a consequence of the result in functional
analysis that a convex subset of a locally convex space X is dense if and only
if it is dense with respect to the weak topology on X . However, we present a
direct proof in order to pinpoint how AC is used, namely in the shape of the
Hahn-Banach Theorem. In the setting ZF+DC+BP, the space �∞ turns out
to be a counterexample to this lemma (cf. Section 3).

Now we extend the notion of compatibility to representations. Therefore, we
assume that δF denotes some standard representation of the field F which is ad-
missible with respect to the Euclidean topology (e.g. its Cauchy representation,
see [8]).

Definition 3. A representation δ of a normed space X is called compatible, if
every bounded linear functional f : X → F is (δ, δF)–continuous.
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If δ is a compatible representation of X , then the function space representa-
tion [δ → δF] can be considered as a representation of the dual space X ′ (which
is the set of bounded linear functionals f : X → F endowed with the operator
norm ||f || := supx∈B(0,1) |f(x)|). Here and in the following we will use for every
x ∈ X the canonical linear bounded evaluation functional

ιx : X ′ → F, f  → f(x),

defined on the dual space X ′ of X . The maps ιx induce a linear bounded map

ι : X → X ′′, x  → ιx

and with the help of the Hahn-Banach Theorem one can prove that ι is injective
and even an isometry (see Corollaries III.1.6 and III.1.7 in [9]). Those spaces for
which ι is even bijective and thus an isometric isomorphism, are called reflexive.
For the moment we will use the embedding ι in order to transfer compatible
representations of X ′ to compatible representations of X .

Proposition 1. In ZF+AC a normed space X admits a compatible represen-
tation, if its dual space X ′ admits a compatible representation.

Proof. Let δ′ be a compatible representation of the dual space X ′. In ZF+AC
one can prove that ι is injective and since δ′ is compatible, we can define a
representation δ of X by

δ(p) = x : ⇐⇒ [δ′ → δF](p) = ιx.

Since the evaluation

ev : X ′ ×X → F, (f, x) → f(x) = ιx(f)

is ([δ′, δ], δF)–continuous, it follows that each bounded linear functional

f : X → F, x  → f(x) = ev(f, x)

is (δ, δF)–continuous. This means that δ is compatible. �

Now we are prepared to prove the main result of this section from which
we can conclude that the possibilities to introduce a computability theory on
non-separable normed spaces which is well-behaved with respect to dual spaces
are very limited (given the Axiom of Choice).

Theorem 1. Let X be a non-separable normed space. In ZF+AC neither X
nor its dual space X ′ admit a compatible representation.

Proof. Assume δ is a compatible representation of X and let τ be the final
topology of δ, viewed as a total function from the domain of δ endowed with
the countably based subspace topology inherited from the Cantor space. Then
every linear bounded functional f : X → F is (δ, δF)–continuous and hence
continuous with respect to τ . Therefore, τ is a compatible topology. But since
(X, τ) is a quotient of a countably based space, it admits a countable dense
subset. This contradicts Lemma 1. The statement on the dual space follows
from Proposition 1. �
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3 Sequence Spaces

In this section we will study the sequence spaces

�p := {x ∈ FN : ||x||p < ∞}

with the norms

||x||p := p

√√√√ ∞∑
i=0

|xi|p

in case of 1 ≤ p < ∞ and
||x||∞ := sup

i∈N

|xi|

in case of p = ∞ for all x = (xi)i∈N, as they are known in functional analysis.
One important duality property of these spaces is expressed by the following
theorem (see, for instance, Theorem II.2.3 in [9]):

Theorem 2 (Landau). Let p, q > 1 be real numbers such that 1
p + 1

q = 1 or
p = 1 and q = ∞. Then the map λ : �q → �′p, a  → λa with λa : �p → F,
(xk)k∈N  →

∑∞
k=0 akxk is an isometric isomorphism. The map λ is also isometric

in case of p = ∞ and q = 1.

The proof is mainly based on Hölder’s Inequality. It is known that the fact
that λ is an isomorphism cannot be generalized to the case p = ∞ and q = 1
straightforwardly, since the result depends on the underlying axiomatic setting
in this case. On the one hand, using the Hahn-Banach Theorem one can extend
the limit functional lim : c → F on the space of convergent sequences c to a
functional L : �∞ → F with the same norm and it is easy to see that this
functional cannot be represented as λa with some a ∈ �1. Thus we obtain the
following classical property of the map λ defined in Landau’s Theorem (see, for
instance, Theorem II.1.11 in [9]):

Theorem 3. In ZF+AC the map λ : �1 → �′∞ is not surjective.

Thus, one could say that �′∞ is a proper superset of �1. On the other hand,
Pincus proved a result, first stated by Solovay, which shows that the situation
changes if we replace the Axiom of Choice by Dependent Choice and the Baire
Property (see 29.37 in [5]):

Theorem 4 (Solovay, Pincus). In ZF+DC+BP the map λ : �1 → �′∞ is an
isometric isomorphism.

The Theorem of Landau and its counterpart for the case p = ∞ and q = 1
have certain consequences concerning the existence of compatible representations
of the sequence spaces. As a preparation we prove a characterization of weak con-
vergence for these spaces. We recall that in functional analysis weak convergence
means convergence with respect to the weak topology, i.e. a sequence (xn)n∈N

in a normed space X is said to converge weakly to x, if (f(xn))n∈N converges to
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f(x) for any linear bounded functional f : X → F. The first part of the following
lemma is a known fact. We include the proof in order to indicate how the second
part follows from the previous theorem.

Lemma 2. Let 1 < p < ∞. A sequence ((xij)j∈N)i∈N in �p converges weakly to
(xj)j∈N, if and only if the sequence converges with respect to the product topology
on FN to (xj)j∈N and if it is bounded in || ||p. For p = ∞, the equivalence holds
in ZF+DC+BP, whereas in ZF+AC merely the only-if-part is true.

Proof. Let ((xij)j∈N)i∈N be a sequence in �p which converges weakly to (xj)j∈N ∈
�p, i.e. (f((xij)j∈N)i∈N converges for any linear bounded functional f : �p → F
to f((xj)j∈N). Since the canonical projections

prj : �p → F, (yj)j∈N → yj

are linear bounded functionals, it follows that (prj((xij)j∈N))i∈N = (xij)i∈N con-
verges for any fixed j ∈ N to prj((xj)j∈N) = xj and hence ((xij)j∈N)i∈N converges
with respect to the product topology on FN to (xj)j∈N. Moreover, it is known
that any weakly convergent sequence in �p is bounded. (This is a consequence of
the Uniform Boundedness Theorem, see for instance Korollar IV.2.3 in [9], and
can be proven in ZF+DC.)

Now let us assume that ((xij)j∈N)i∈N is a sequence in �p which converges to
(xj)j∈N ∈ �p with respect to the product topology on FN and which is bounded
in || ||p. We have to prove that the sequence (f((xij)j∈N))i∈N converges for any
functional f : �p → F to f((xj)j∈N). Let q be such that 1/p+1/q = 1 or q = 1 in
case of p = ∞. If the map λ : �q → �′p from Landau’s Theorem 2 is an isometric
isomorphism, then it suffices to prove that (λa((xij)j∈N))i∈N = (

∑∞
j=0 ajxij)i∈N

converges for any a = (aj)j∈N ∈ �q to λa((xj)j∈N) =
∑∞

j=0 ajxj . Therefore,
let a = (aj)j∈N ∈ �q, i.e. ||a||q = (

∑∞
j=0 |aj |q)1/q < ∞. Since ((xij)j∈N)i∈N is

bounded in �p, it follows that S := supi∈N ||(xij)j∈N − (xj)j∈N||p + 1 exists. Let
ε > 0. There is some J ∈ N such that (

∑∞
j=J+1 |aj |q)1/q < ε/(2S). Let M :=

max{|a0|, |a1|, ..., |aJ |}. Since ((xij)j∈N)i∈N converges to (xj)j∈N with respect
to the product topology on FN there is some I ∈ N such that |xij − xj | <
ε/(2M(J+1)) for all i ≥ I and j = 0, ..., J . Now we obtain by Hölder’s Inequality
for all i ≥ I∣∣∣∣∣∣

∞∑
j=0

ajxij −
∞∑
j=0

ajxj

∣∣∣∣∣∣
≤

J∑
j=0

|aj · (xij − xj)| +
∞∑

j=J+1

|aj · (xij − xj)|

≤
J∑

j=0

|aj | · |xij − xj | + ||(0, ..., 0, aJ+1, aJ+2, ...)||q · ||(xij − xj)j∈N||p

≤ (J + 1)M · ε

2M(J + 1)
+

ε

2S
· S = ε.
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This proves the desired convergence.
It remains to recall that by Landau’s Theorem 2 λ : �q → �′p is an isometric

isomorphism for 1 < p < ∞ and by the Theorem of Solovay and Pincus 4 this
also holds in ZF+DC+BP for the case p = ∞. �

The reader should notice that the previous result does not capture the case
p = 1. This is not an accidental omission, but the result cannot be extended to
this case. This is due to the following well-known result (see 28.20 in [5]):

Lemma 3 (Schur). A sequence in �1 converges weakly to a certain limit if and
only if it converges to the same limit with respect to the norm || ||1.

We recall that a topology τ is called sequential, if any sequentially open set
is open. A set U is called sequentially open, if any sequence with limit in U is
eventually in U . The sequentialization seq(τ) is the set of all sequentially open
sets or, in other words, the smallest sequential topology which contains τ . Two
sequential topologies coincide, if their convergence relations on sequences are
identical. Any topology induced by a norm is sequential.

By the Lemma of Schur, the sequentialization of the weak topology of �1 is
just the norm topology induced by the norm || ||1. Since it is known that for
infinite dimensional normed spaces (X, || ||) the norm || || : X → R itself is not
continuous with respect to the weak topology (see 28.18 in [5]) and, in particular,
the norm topology is different from the weak topology, it follows that the weak
topology on �1 is not a sequential topology.

Now we will discuss compatible representations of sequence spaces. In par-
ticular, we will exploit the characterization of weak convergence to show that
under certain assumptions such representations exist. In particular, we are inter-
ested in the following representations (which have been introduced in the more
general context of general computable normed spaces [1]; here δN denotes some
canonical representation of the natural numbers N):

Definition 4. Let 1 ≤ p ≤ ∞. We define three representations δp, δ
=
p , δ�

p of �p
as follows:

– δp(r) = x : ⇐⇒ [δN → δF](r) = x,
– δ=

p 〈r, s〉 = x : ⇐⇒ δp(r) = x and δR(s) = ||x||p,
– δ�

p 〈r, s〉 = x : ⇐⇒ δp(r) = x and δR(s) ≥ ||x||p,

for all r, s ∈ Σω.

The representation δp is nothing but the standard representation of FN re-
stricted to �p and it is admissible with respect to the subtopology τp on �p of
the product topology on FN. In [1] it has been shown that δ=

p is admissible with
respect to the weakest topology τ=

p on �p which contains the topology τp and
which makes the norm || ||p continuous. Finally, δ�

p is admissible with respect
to the inductive limit topology τ�

p = lim
−→

σk of the subtopologies σk of τp on

Xk := {x ∈ �p : ||x||p ≤ k}. These results mainly rely on closure properties
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provided in [6]. Moreover, the product topology on FN is a sequential topology
with a countable basis and thus it follows that τp is a sequential topology with
a countable basis. The topology τ=

p is obtained by an initial construction from
sequential topologies with countable bases and τ�

p is obtained by a final con-
struction from sequential topologies. Using these properties, one can conclude
that all three topologies τp, τ=

p and τ�
p are sequential topologies as well (see

[6, 7, 10]).
Now the question occurs how these topologies are related to topologies con-

sidered in functional analysis. Firstly, we will characterize the topology τ=
p for

1 ≤ p < ∞ which turns out to be just the norm topology τ|| ||p induced by
the norm || ||p. This does not hold true in case of p = ∞, where the sequence
(e1 + e2+i)i∈N built from the unit vectors ei (which are zero except for the i–
th position where they are one) is an obvious counterexample. The following
lemma expresses a fact which is folklore in functional analysis. For completeness
we include the proof.

Lemma 4. Let 1 ≤ p < ∞. A sequence ((xij)j∈N)i∈N in �p converges to (xj)j∈N

with respect to the norm || ||p, if and only if the sequence converges with respect
to the product topology on FN to (xj)j∈N and if (||(xij)j∈N||p)i∈N converges to
||(xj)j∈N||p.

Proof. If ((xij)j∈N)i∈N converges to (xj)j∈N with respect to the norm || ||p, then
it converges weakly to the same limit. Literally the same proof as for the first
part of Lemma 2 shows that it also converges to the same limit with respect
to the product topology. Moreover, the norm || ||p : �p → R is continuous with
respect to the norm topology, hence it is sequentially continuous which proves
that the norm of the sequence converges to the norm of the limit.

For the other direction let us assume that ((xij)j∈N)i∈N converges to (xj)j∈N

with respect to the product topology and that (||(xij)j∈N||p)i∈N converges to
||(xj)j∈N||p. Let ε > 0. There is some J ∈ N such that

∑∞
j=J+1 |xj |p < ε/8 and

there is some I ∈ N such that

max{|xij − xj |p, |xj |p − |xij |p} <
ε

4(J + 1)

for all j = 0, ..., J and i > I and such that

||(xij)j∈N||pp − ||(xj)j∈N||pp <
ε

4

for all i > I. We obtain

||(xij)j∈N − (xj)j∈N||pp

=
J∑

j=0

|xij − xj |p +
∞∑

j=J+1

|xij − xj |p

≤ (J + 1)
ε

4(J + 1)
+

∞∑
j=J+1

(|xij |p + |xj |p)
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=
ε

4
+

∞∑
j=0

|xij |p −
J∑

j=0

|xij |p + 2
∞∑

j=J+1

|xj |p −
∞∑
j=0

|xj |p +
J∑

j=0

|xj |p

<
ε

4
+ ||(xij)j∈N||pp − ||(xj)j∈N||pp + 2

ε

8
+

J∑
j=0

(|xj |p − |xij |p)

≤ ε

4
+

ε

4
+

ε

4
+ (J + 1)

ε

4(J + 1)
= ε.

This proves the desired convergence. �

Using the same estimations one can prove the following slightly more gen-
eral result, where δ�p denotes the so-called Cauchy representation of the space
(�p, || ||p) (which is a standard representation that is admissible with respect to
the norm topology, see [8]).

Proposition 2. Let 1 ≤ p < ∞. Then δ�p ≡ δ=
p .

In [1] it has also been proved that in general we obtain τ|| ||p ⊇ τ=
p ⊇ τ�

p ⊇ τp
for the corresponding topologies, where τ|| ||p denotes the norm topology again.
This raises the question whether the weak topology τw

p = σ(�p, �′p) can be in-
cluded in this inclusion chain. Using Lemma 2 and Lemma 4 we can directly
conclude the following corollary.

Corollary 1. For the spaces �p with 1 < p < ∞ we obtain τ|| ||p = τ=
p 
 τ�

p =
seq(τw

p ).

For the space �1 the situation is different and we can conclude from the
Lemma of Schur 3 and Lemma 4 the following result.

Corollary 2. For the space �1 we obtain τ|| ||1 = τ=
1 = seq(τw

1 ) 
 τ�
1 .

For the non-separable space �∞ the situation is yet different again and it
depends on the underlying axiomatic setting.

Theorem 5. For the space �∞ we obtain τ|| ||∞ 
 τ=
∞ 
 τ�

∞. Additionally,

– in ZF+AC, τ|| ||∞ 
 seq(τw
∞) 
 τ�

∞ and seq(τw
∞) is incomparable with τ=

∞,
whereas

– in ZF+DC+BP, seq(τw
∞) = τ�

∞.

Proof. The first two strict inclusions have been proved in [1] (and they hold
for non-separable general computable normed spaces in general). The fact that
seq(τw

∞) ⊇ τ�
∞ holds follows from the only-if-part of Lemma 2 (which does not

require the Axiom of Choice). The inclusion has to be strict and τ=
∞ �⊇ seq(τw

∞),
both in ZF+AC, since the contrary would contradict Theorem 1 (this is because
δ=
∞ is admissible with respect to τ=

∞ whereas by Theorem 1 no representation is
admissible with respect to seq(τw

∞)).
Next we prove seq(τw

∞) �⊇ τ=
∞. We consider the sequence (ei)i∈N of unit vectors

(which are zero except for the i–th position where they are one; for simplicity
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we assume e0 = 0). Let f : �∞ → F be some arbitrary linear bounded functional
with s := ||f ||. Let us assume that (f(ei))i∈N does not converge to 0. Then there
is some k ∈ N and some strictly increasing ϕ : N → N with |f(eϕ(i))| > 1/k for
all i ≥ 1 (in particular, ϕ(i) ≥ 1 for all i ≥ 1). Now we consider

z :=
ks∑
i=1

eϕ(i)

|f(eϕ(i))|
f(eϕ(i))

and we obtain ||z||∞ = 1 and |f(z)| > s which is a contradiction! Thus, (f(ei))i∈N

does converge to f(0) = 0 and hence (ei)i∈N converges to 0 with respect to τw
∞

and hence also with respect to seq(τw
∞). On the other hand, it is obvious that

(ei)i∈N does not converge to 0 with respect to τ=
∞.

Since the weak topology is always contained in the norm topology and the
norm topology is sequential, we obtain τ|| ||∞ ⊇ seq(τw

∞). The inclusion is strict,
since otherwise seq(τw

∞) = τ|| ||∞ ⊇ τ=
∞ would follow.

Finally, in ZF+DC+BP seq(τw
∞) = τ�

∞ by Lemma 2. �

We could also prove the previous theorem without reference to Theorem 1
by a direct usage of the following example.

Example 1. In ZF+AC one can apply the Hahn-Banach Theorem in order
to prove that the limit functional lim : c → F has a linear bounded exten-
sion L : �∞ → F. Any such extension L is not continuous with respect to
τ=
∞ and hence not with respect to τ�

∞: the sequence (xn)n∈N with elements
xn = (1, 0, ..., 0, 1, 1, ...) ∈ �∞ (with n zeros) converges to x = (1, 0, 0, ...) ∈ �∞
with respect to τ=

∞, but L(xn) = 1 �= 0 = L(x) for all n. In particular,
τ=
∞ �⊇ seq(τw

∞).

We can also combine our results on compatible representations of �∞ as
follows.

Corollary 3. In ZF+AC neither �∞ nor its dual space admit compatible rep-
resentations, whereas in ZF+DC+BP the space �∞ as well as its dual space
�1 admit compatible representations.

In fact, in ZF+DC+BP the representation δ�
∞ is a compatible represen-

tation of �∞ which is admissible with respect to the weak topology on �∞. In
ZF+AC, δ�

∞ has at least the property that a linear function f : �∞ → F is
(δ�
∞, δF)–continuous if and only if there is some a ∈ �1 such that f = λa. More-

over, δ�
∞ is admissible with respect to the weakest topology on �∞ for which

every function λa, a ∈ �1, is continuous.

4 The Weak-Star Topology

In this section we investigate the so-called weak∗ topology in our context. This
will also allow us to generalize some of the positive results of the previous section
to a more general setting.
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Definition 5. Let X be a normed space. The weak∗ topology on the dual space
X ′ is the smallest topology τw∗

= σ(X ′, X) which makes for all x ∈ X the
functionals ιx : X ′ → F, f  → f(x) continuous.

It is obvious that the weak∗ topology σ(X ′, X) on X ′ is weaker or equal to
the weak topology σ(X ′, X ′′) on X ′, i.e. σ(X ′, X ′′) ⊇ σ(X ′, X). By a Theorem
of Banach, Smulian, James and others (see 28.41 in [5]) the topologies coincide
exactly for reflexive spaces, i.e. such spaces for which the canonical embedding
ι : X → X ′′, x  → ιx is bijective (however, this result requires the Axiom of
Choice).

The next lemma shows that a sequence of functionals converges with respect
to the weak∗ topology if and only if it converges with respect to the compact-
open topology. Readers familar with topological vector spaces might derive this
fact from Theorem 4.6 in Paragraph 5 of Chapter 3 in [4]. For completeness we
include a direct proof.

Lemma 5. Let X be a Banach space and let (fn)n∈N be a sequence of linear
bounded functionals fn : X → F and let f : X → F be another such functional.
Then (fn)n∈N converges to f with respect to the weak∗ topology on X ′ if and
only if it converges to f with respect to the compact-open topology on C(X,F).

Proof. First of all, by definition of the weak∗ topology the sequence (fn)n∈N

converges with respect to the weak∗ topology to f if and only if it converges
pointwise to f .

Now if the sequence (fn)n∈N converges pointwise to f , then supn∈N |fn(x)| ex-
ists for each x ∈ X and by the Uniform Boundedness Theorem M := supn∈N||fn||
also exists. Let us assume that (fn)n∈N does not converge to f with respect
to the compact-open topology. Then there exists a non-empty compact sub-
set K ⊆ X and some ε > 0 such that for any n ∈ N there is some kn > n
with supx∈K |fkn(x) − f(x)| > ε. We can assume that (kn)n∈N is a strictly
increasing sequence. Then for any n ∈ N there is some xn ∈ K such that
|fkn(xn)−f(xn)| > ε and since K is compact the sequence (xn)n∈N has a conver-
gent subsequence (xni )i∈N which converges to some x ∈ K. Since (fkni

(x))i∈N

converges to f(x), there is some i ∈ N such that |fkni
(x) − f(x)| < ε/2 and

||xni − x|| < ε/((M + ||f || + 1)2). Now we obtain

ε < |fkni
(xni) − f(xni)|

≤ |fkni
(xni) − fkni

(x)| + |fkni
(x) − f(x)| + |f(x) − f(xni)|

≤ (||fkni
|| + ||f ||) · ||xni − x|| + |fkni

(x) − f(x)|

< (M + ||f ||) · ε

(M + ||f || + 1)2
+

ε

2
< ε

which is a contradiction. Thus, the assumption was wrong and (fn)n∈N converges
to f with respect to the compact-open topology.

Finally, if (fn)n∈N converges to f with respect to the compact-open topology,
then it also converges to f pointwise. �
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For the compact-open topology on X ′ ⊆ C(X,F), we can conclude that
seq(τco) = seq(τw∗

). We do not know whether the two topologies agree them-
selves or whether they are sequential.

Now let δ be a compatible representation of X and let τδ be the final topol-
ogy of δ. Analogously to the previous proof, one can show that a sequence of
linear bounded functionals (fn)n converges to a linear bounded functional f
with respect to the weak∗ topology if and only if it converges with respect to
sequentially-compact-open topology1 on C((X, τδ),F). From [7], we know that
the dual representation δ′ of X ′, defined by

δ′(p) = f : ⇐⇒ [δ → δF](p) = f,

is admissible with respect to the sequentially-compact-open topology on X ′.
Thus we obtain the following corollary.

Corollary 4. Let X be a Banach space with some compatible representation δ.
Then the dual representation δ′ of X ′ is admissible with respect to the weak∗

topology τw∗
= σ(X ′, X) on X ′.

Let us denote by τw∗

p = σ(�p, �q) the weak∗ topology on �p induced by the
corresponding conjugate space �q with 1/p + 1/q = 1. Then we can formulate
our results on the �p spaces as follows.

Theorem 6. For the spaces �p with 1 < p ≤ ∞ we obtain τ�
p = seq(τw∗

p ).

Proof. In case of 1 < p ≤ ∞ it follows from the effective Theorem of Landau
(see Theorem 7.2 in [1]) that δ�

p ≡t δ
′
q = [δ�q → δF] for the conjugate q, but the

latter representation is admissible with respect to the weak∗ topology τw∗

p by
the previous corollary. �

Note that in case of 1 < p < ∞ we could also conclude the claim from
Corollary 1 and the fact that for these p the spaces �p are reflexive. For reflexive
spaces the weak and the weak∗ topologies coincide.

In general the previous corollary opens a possibility to define a canonical
representation of a separable reflexive normed space which is admissible with
respect to the weak topology.

Corollary 5. Let X be a reflexive normed space with some compatible repre-
sentation δ. Define a representation δw of X by

δw(p) = x : ⇐⇒ δ′′(p) = ιx

Then δw is admissible with respect to the weak topology on X.

Similarly as in Proposition 1 one can prove that for a compatible represen-
tation δ of X , the representation δ′ is a compatible representation of X ′ (now
using reflexivity instead of ZF+AC). Since X ′ always is complete, we can now
apply Corollary 4 to δ′ in order to derive the previous corollary.
1 A subbase is given by the sets {f ∈ C((X, τδ), F) | f [K] ⊆ O}, where K ⊆ X is

sequentially compact and O ⊆ F is open.
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p ZF+AC ZF+DC+BP

p =∞ τ|| ||∞ 

seq(τw

∞)

τ=
∞


 seq(τw∗
∞ ) = τ�

∞ τ|| ||∞ 
 τ=
∞ 
 seq(τw

∞) = seq(τw∗
∞ ) = τ�

∞

1<p<∞ τ|| ||p = τ=
p 
 seq(τw

p ) = seq(τw∗
p ) = τ�

p

p = 1 τ|| ||1 = τ=
1 = seq(τw

1 ) 
 τ�
1

Fig. 1. Weak topologies on the p spaces

5 Conclusions

In this paper we have proved that the possibilities to handle non-separable spaces
on Turing machines sensitively rely on the underlying axiomatic setting. In
ZF+AC non-separable normed spaces do not admit compatible representations
whereas in ZF+DC+BP such representations do exist for certain spaces.

In particular we have studied the sequence spaces �p which can be handled
in a uniform way and which include �∞ as a typical example of a non-separable
normed space. The results for these spaces turned out to be surprisingly diverse
and the table in Figure 1 summarizes the inclusions which we have obtained
comparing different weak topologies for these spaces. The last two rows contain
the results for 1 ≤ p < ∞ that do not depend on the axiomatic setting.

Our results suggest that the setting ZF+DC+BP is more natural from
the point of view of computable analysis. However, functional analysis is classi-
cally developed in ZF+AC and a ZF+DC+BP version would be substantially
different, even classically. Nevertheless, even in ZF+DC+BP the separable ver-
sion of the Hahn-Banach Theorem is available (see [5]). Hence for a computable
version of functional analysis the setting ZF+DC+BP might be sufficient.
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4. Schäfer, H.H.: Topological Vector Spaces. Macmillan, New York (1966)

5. Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press, San
Diego (1997)



476 Vasco Brattka and Matthias Schröder
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Abstract. We give a Natural Deduction formulation of an adaptation of
Gödel’s functional (Dialectica) interpretation to the extraction of (more)
efficient programs from (classical) proofs. We adapt Jørgensen’s formu-
lation of pure Dialectica translation by eliminating his “Contraction
Lemma” and allowing free variables in the extracted terms (which is more
suitable in a Natural Deduction setting). We also adapt Berger’s uniform
existential and universal quantifiers to the Dialectica-extraction context.
The use of such quantifiers without computational meaning permits the
identification and isolation of contraction formulas which would other-
wise be redundantly included in the pure-Dialectica extracted terms. In
the end we sketch the possible combination of our refinement of Gödel’s
Dialectica interpretation with its adaptation to the extraction of bounds
due to Kohlenbach into a light monotone functional interpretation.

Keywords: Program extraction from (classical) proofs, Complexity of
extracted programs, Berger’s uniform quantifiers, Gödel’s Functional in-
terpretation, Proof-Carrying Code, Proof Mining.

1 Introduction

Important practical results have been obtained in recent years in the field of
extractive Proof Theory (also dubbed proof mining [22]). The implemented al-
gorithms coming from metamathematical research have yielded interesting and
in many cases quite unexpected programs [7, 15, 31, 32]. Various approaches
to program extraction from classical1 proofs have been developed over years of
research [1, 3, 6, 8, 9, 21, 24, 25, 27–30, 32]. The use of proof interpretations
instead of the direct application of cut-elimination has opened the path to the
obtention of better practical results by means of such modular techniques (see
� Project LogiCal – Pôle Commun de Recherche en Informatique du Plateau de

Saclay, CNRS, École Polytechnique, INRIA et Université Paris-Sud – FRANCE and
Graduiertenkolleg Logik in der Informatik (GKLI) – München, GERMANY. Partly fi-
nanced by Deutsche Forschungsgemeinschaft.

1 Constructive proofs have a more or less explicit computational content, see, e.g., [4].
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[15] for a discussion on this). Gödel’s functional (Dialectica) interpretation [2, 13]
directly applies to (far) more complex proofs than (its weaker form) Kreisel’s
Modified Realizability [23]. Refinements [1, 6, 9] of the latter’s combination with
Friedman’s A-translation [12] only partly repair this disparity (see [15] or [20]
for discussions on this issue). However, the (rough) exact realizers yielded by the
Dialectica interpretation are generally (far) more complex than those produced
by, e.g., the technique of Berger, Buchholz and Schwichtenberg [6]. The main
reason for such a situation seems to be the inclusion of contraction formulas in
the rough Dialectica realizing terms. Even though in some cases the primary
realizers extracted via the two techniques normalize to basically the same pro-
grams (see [15] for such an example), the normalization of programs extracted
by proof interpretations is generally far more expensive than their synthesis (see
[16] for a detailed complexity exposition). The simpler the rough extracted term
is, the lower the overall cost of producing the final normalized realizer becomes.
In order to handle this contraction problem of the Dialectica interpretation,
Kohlenbach [21] devised the monotone functional interpretation, an adaptation
of Gödel’s technique to the extraction of uniform bounds for the exact realizers
(see also [11] for the more recent bounded functional interpretation of Ferreira
and Oliva). While so prolific (see [20] or [22]) in the context of mathematical
Analysis, the monotone functional interpretation, used alone, is generally not as
practically useful for the synthesis of exact realizers in discrete mathematics.

We propose in this paper a different kind of optimization of Gödel’s functional
interpretation by the elimination already from the primary extracted terms of a
number of contraction formulas which are identified as computationally redun-
dant by means of an adaptation of Berger’s uniform quantifiers from [5] to the
Dialectica-extraction context. These are called “quantifiers without computa-
tional content” in [34] and we will here call them quantifiers without computa-
tional meaning (abbreviated ncm, with n from non). We will here denote by ∀
the ncm universal quantifier and by ∃ the ncm existential quantifier. While our
∃ is identical2 to Berger’s {∃}, our ∀ requires a further strengthening of the re-
striction set by Berger on his {∀}+ rule – we must take into account the inclusion
of the computationally relevant contractions into the Dialectica realizing terms.

We build on top of Jørgensen’s [19] Natural Deduction formulation of pure
Dialectica interpretation which we transform by eliminating his “Contraction
Lemma”3 and by allowing free variables in the extracted terms4. We call light5

functional interpretation this refinement of Gödel’s Dialectica technique for the
extraction of more efficient programs from (classical) proofs. We generally abbre-
viate (both regular and ncm) quantifier free by qfr. We will use expressions like
“qfr formula”, “ncm variable” or “ncm quantifiers” with the obvious meanings.

2 Modulo the formulation as axioms like in [34] of Berger’s rules for {∃} from [5].
3 Which we find too complicated for a computer-implemented Dialectica extraction.
4 Which is more suitable in a Natural Deduction context (see [16] for a discussion).
5 Where “light” is to be understood as the opposite of “heavy” and not otherwise.



Light Functional Interpretation 479

2 An Arithmetic for Gödel Functionals

We devise a weakly extensional variant WE−Z of the intuitionistic arithmetical sys-
tem Z of Berger, Buchholz and Schwichtenberg [6] which restricts extensionality
and adds the elements peculiar to Gödel’s Dialectica interpretation [2, 13]. It
moreover integrates the non-computational-meaning (abbreviated ncm) quanti-
fiers mentioned in Section 1 above . System (WE−)Z is an extension of Gödel’s T
with the logical and arithmetical apparatus which renders it suitable to the
applied program extraction from (classical) proofs (by means of Dialectica in-
terpretation and its variants), see [6, 34, 36].

Finite types are inductively generated from base types by the rule that if σ
and τ are types then (στ) is a type. For simplicity we take as base types only
the type ι for natural numbers and o for booleans. We make the convention that
concatenation is right associative and consequently omit unnecessary parenthe-
sis, writing δ σ τ instead of (δ(στ)). We denote tuples of types by σ :≡σ1, . . . , σn.
We abbreviate by στ the type σ1 . . . σnτ. It is immediate that every type τ can
be written as either τ ≡ σι or τ ≡ σo .

The term system is a variant of Gödel’s T formulated over the finite types
with λ-abstraction as primitive. This is most appropriate in a Natural De-
duction context. Terms are hence built from variables and term constants by
λ-abstraction and application. We represent the latter as concatenation and we
agree that it is left-associative in order to avoid excessive parenthesizing. All
variables and constants have an a priori fixed type and terms have a type fixed
by their formation. Written term expressions are always assumed to be well-
formed in the sense that types match in all applications between sub-terms. As
particular (term) constants we distinguish the following:

– tto and ffo which denote boolean truth and falsity;
– for each type τ the selector Ifτ of type o τ τ τ which denotes choice according

to a boolean condition with the usual if-then-else semantics;
– 0ι (zero), Sι (successor) and Gödel’s recursor Rτ of type τ (ι τ τ) ι τ ;
– equality = ι ι o – a functional constant and not predicate in our system.

Variables are denoted by a, b, c, p, q, u, v, x, y, z, U, V,X, Y, Z such that, if not
otherwise specified, a, b, c are free and u, v, x, y, z are bound variables of type ι.
Also p, q denote variables of type o (be them free or bound) and U, V,X, Y, Z are
functional variables (i.e., not of base type). We denote terms by r, s, t, S, T . We
use sub- or super- scripts to enlarge the classes of symbols. We use underlined let-
ters to denote tuples of corresponding objects. Tuples are just comma-separated
lists of objects. If t ≡ t1, . . . , tn we denote by s(t) or even st the term st1 . . . tn,
i.e., ((st1) . . .)tn by the left-associativity convention. Also s(t) and s t denote the
tuple s1(t), . . . , sm(t). As particular terms we distinguish the following:

– Boolean conjunction and implication (with their usual semantics):

Andooo :≡ λp, q. Ifo p q ff
Impooo :≡ λp, q. Ifo p q tt
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– For each higher-order type τ ≡ σι or τ ≡ σo we define the zero term Oτ of
type τ . We also let Oι :≡ 0 and Oo :≡ ff and thus every type is inhabited by
a zero term (since we consider only ι and o as base types).

– For each positive integer n and type τ we define the n-selector Ifnτ of

type
n︷ ︸︸ ︷

o . . . o

n︷ ︸︸ ︷
τ . . . τ τ τ by If1τ :≡ Ifτ and for n ≥ 2 the definition of Ifnτ

is λp1, . . . , pn, xn+1, xn, . . . , x1. Ifτ p1 (Ifn−1
τ p2 . . . pn xn+1 xn . . . x2)x1 s.t.

Ifnτ (r1, . . . , rn, tn+1, tn, . . . , t1) selects the first ti with i ∈ 1, n for which ri is
false, if it exists, otherwise tn+1 – if all {ri}ni=1 are true.

The base logical system is a Natural Deduction formulation (see [6] and [34])
of Intuitionistic Logic6. We use ∧ (logical conjunction), → (logical implication),
∀ (forall) and ∃ (strong, intuitionistic exists) as base logical constants. The only
predicate symbol is the unary at which takes a single boolean argument. If to is
a boolean term then at(t) is the atomic formula which (informally) denotes the
fact that t is true. We define the logical falsum in terms of boolean falsity by
⊥ :≡ at(ff). The weak (classical) existential quantifier ∃cl is defined in terms of ∀
by ∃clxA(x) :≡ (∀x.A(x) → ⊥) → ⊥. Negation ¬ and equivalence ↔ are defined
as usual, i.e., ¬A :≡A → ⊥ and A ↔ B :≡ ((A → B) ∧ (B → A)). Disjunction
is defined by A ∨B :≡ ∃po ((at(p) → A) ∧ ((¬at(p)) → B)).

Predicate equality at base types is defined for boolean terms s and t by
s =o t :≡ at(s) ↔ at(t) and for natural terms s and t by s =ι t :≡ at(= s t).
Equality between terms s and t of type τ ≡ σ1 . . . σnσ, with σ ∈ {o, ι}, is exten-
sionally defined as s =τ t :≡ ∀xσ1

1 , . . . , xσn
n (s x1 . . . xn =σ t x1 . . . xn). For any

type τ we denote by s �=τ t :≡¬(s =τ t) non-equality between the terms sτ and
tτ . If non-ambiguous, we often omit to specify the type τ of (non-)equality.

We also introduce in our system an adaptation of Berger’s [5] uniform quan-
tifiers, here denoted ∀ (forall ncm) and ∃ (exists ncm) to the extraction of (more)
efficient programs by Gödel’s Dialectica interpretation. From a logic viewpoint ∀
and ∃ behave exactly like ∀ and ∃ – a theorem stating that “the (purely syntac-
tic) replacement of ∀ and ∃ with their computationally meaningful7 (or regular)
correspondents in a proof P yields a(nother) proof in the corresponding system
without ncm quantifiers” can easily be established. However, the converse to this
(meta)theorem does not hold (in general) because of the (necessary) restriction
which is set on the introduction rules for the ncm-universal quantifier and impli-
cation (see Sections 2.1 and 2.2 below). The special rôle of ∀ and ∃ is played in
the program-extraction process only. There they act like some kind of labels for
parts of the proof at input which are to be ignored since they are a priory (i.e.,
at the proof-building stage) distinguished as having no computational content.
They also bring an important optimization with respect to the maximal type
degree of programs extracted from those proofs for which the use of the com-

6 The prominent place Johansson’s Minimal Logic [18] has in the presentation of sys-
tem Z in [6] or [34] is no longer needed for our (light) Dialectica-extraction exposition.

7 Notice that ∀ is as computationally meaningful as ∃ in the context of program
extraction by (light) Dialectica interpretation, see Definition 31 and Theorem 34.
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putationally meaningful correspondents would have just brought an unjustified
increase of this maximal type degree8.

In order to avoid excessive parenthesizing we make the usual conventions that
∀,∀,∃cl,∃,∃,¬,∧,∨,→,↔ is the decreasing order of precedence and → is right
associative. For (more efficient) program-extraction purposes we impose that all
axioms are closed formulas and for optimization purposes – at the example of
Schwichtenberg’s Minlog system [34, 36] – their closure is ensured with ∀ rather
than ∀. The only exception9 to this rule is the Induction Axiom IA, see Section
2.2 for the various definitions of induction within system WE−Z. Therefore it will
be understood that even though a formula presented below as axiom is literally
open, in fact the axiom it denotes is the ∀ closure of the respective formula.

2.1 The Logical Axioms and Rules of System WE−Z

We begin by adapting the set of rules for Minimal Logic from [34] to the setting
of program-extraction by the light Dialectica interpretation (defined in Section
3). First of all we define the following two variable conditions which will be used
to constrain the rules concerning the (ncm-)universal quantifier:

– VC1(z) : the variable z does not occur free in any of the undischarged as-
sumptions of the proof of the premise of the rule;

– VC2(z, t) : the term t is “free for” z in the conclusion, i.e., no free variable of
t gets quantified after substituting {z←t} in the conclusion.

We also define an ncm - formula condition which is required to constrain the rule
of implication introduction with contraction (see below) in order to attain the
soundness theorem for the light Dialectica interpretation. For a formula A, the
condition ncm-FC(A) says that if A contains (at least) a positive universal or
a negative existential (regular) quantifier10, then A must not contain any ncm
quantifier11. The logical rules of our system WE−Z are then as follows:

– Deduction from an (arbitrary, undischarged) assumption: A � A .

– Conjunction elimination left:
A ∧B

A
∧−l , conjunction elimination

right:
A ∧B

B
∧−r and conjunction introduction:

A , B

A ∧B
∧+ .

– Implication elimination:
A , A → B

B
→− (Modus Ponens).

8 Upon which the run-time complexity of the normalization algorithm directly de-
pends, regardless of the reduction strategy, see Berger’s paper [5] for more on this.

9 This notable exception is necessary only in the context of Dialectica extraction be-
cause the Dialectica realizers of IA integrate the induction formula via an →+ with
contraction, see Section 2 of [14], Section 2.2 and the proof of Theorem 34 below.

10 Which means that A is computationally relevant, see “Implication introduction”.
11 So that the light D-interpretation of A has a qfr base formula AD, see Definition 31.
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– Implication introduction:
[A] . . . /B
A → B

→+ , where some particular (possibly

empty) class of instances of the formula A among the undischarged assump-
tions of the proof of B gets discharged. If at least two instances of A get
discharged (i.e., the →+ is with contraction) then the ncm-FC(A) restriction
applies. If moreover the premise of ncm-FC(A) holds, then A is named com-
putationally relevant, otherwise A is a computationally irrelevant (redundant
for Dialectica) contraction formula.

– [ncm-]ForAll elimination: [
∀z A(z)
A(t)

∀ −z,t ]
∀z A(z)
A(t)

∀−z,t , s.t. VC2(z, t).

– ForAll introduction:
A(z)

∀zA(z)
∀+
z , such that VC1(z).

– ncm-ForAll introduction:
P: A(z)
∀zA(z)

∀ +

z , such that VC1(z) and VC3(z,P). The

latter (third) variable condition applies to the ∀-quantified variables only.
Although basically the same as the pre-condition set by Berger on his {∀}+
rule in [5], a strengthening peculiar to light-Dialectica extraction is necessary:

– VC3(z,P) : the variable z does not occur free in any of the instantiating
terms t involved by a ∀−•,t in the proof P (so far Berger’s restriction) and
z is also not free in the computationally relevant contraction formulas
of P (defined above at the Implication Introduction item).

Intuitionistic Logic is then obtained by adding the axioms defining ∃ and ∃:

Ax∃− : ∃z1 A(z1) ∧ ∀z2 [A(z2) → B ] → B (∃ elimination)

Ax∃+ : ∀z1 [A(z1) → ∃z2 A(z2) ] (∃ introduction)

Ax∃− : ∃z1 A(z1) ∧ ∀z2 [A(z2) → B ] → B (∃ elimination)

Ax∃+
: ∀z1 [A(z1) → ∃z2 A(z2) ] (∃ introduction)

with the usual restriction that z2 is not free in B and, most important,

AxEFQ : ⊥ → A (Ex-Falso-Quodlibet)

Notice that Intuitionistic Logic could have equally been formulated with rules
for ∃ and ∨12 (instead of axioms), see [5, 38]. We here follow [34] in choosing a
formulation which is more suitable for computer-applied program-extraction.

2.2 Weakly Extensional Intuitionistic Arithmetic WE−Z

We now add the basic arithmetical apparatus to Intuitionistic Logic. We first
introduce the axioms which give the (usual) behavior of (higher-order exten-

12 The Boolean Induction axiom AxBIA from Section 2.2 is strictly required for attaining
the usual logical behavior of ∨ in our formulation.
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sional) equality, stressing from the beginning that extensionality must13 be re-
stricted in the context of Dialectica interpretation. The extensionality axiom
Eσ,τ : ∀zστ , xσ, yσ. x =σ y → zx =τ zy must not be derivable in our system. We
here deviate from system Z of [6, 34, 36] which derives Eσ,τ and therefore is fully
extensional. We first present the more basic axioms of Reflexivity, Symmetry
and Transitivity which we retain (modulo our definition of higher-order equal-
ity, hence they are no longer quantifier-free here) from system Z of [6, 34, 36] :

AxREFτ : x =τ x (Reflexivity)
AxSYMτ : x =τ y → y =τ x (Symmetry)
AxTRZτ : x =τ y ∧ y =τ z → x =τ z (Transitivity)

Notice that although AxSYMτ and AxTRZτ have no computational content un-
der Modified Realizability, they must be provided with realizing terms under
(light) Dialectica interpretation for higher-order τ14. We thus stay as close as
possible to the axiomatic of system Z of [6, 34, 36], rendering easier the task
of implementing program-extraction by (light) Dialectica interpretation in Min-
log [34, 36]. We do, however, have to deviate from system Z when it comes to
the Compatibility Axiom (which implies Eσ,τ ): x =σ y → B(x) → B(y), which
we replace by the following (strictly) weaker Compatibility Rule:

A0 with the restriction that
... all undischarged assumptions used

COMPATσ : x =σ y in the proof of x =σ y (here denoted A0)

B(x) → B(y) are quantifier-free

Had the above restriction15 not been present, the Compatibility Axiom would
be directly deducible by →+, hence full extensionality would be derivable and
(light) Dialectica interpretation would fail to interpret all proofs of our system16.

13 See, e.g., the chapter on Dialectica interpretation in [20] for detailed explanations.
Howard’s original counterexample to the Dialectica realizability of the extensionality
axiom Eιι,ι by Gödel primitive recursive functionals is exposed in [17]. See also
[35] for a counterexample to the Dialectica realizability of Eιι,ι by Van de Pol –
Schwichtenberg monotone majorizable functionals (a class of functionals intersecting
but independent of Gödel’s T) .

14 We could have used only AxREFι, AxSYMι and AxTRZι as axioms since higher-type
Reflexivity, Symmetry and Transitivity can be deduced in (pure) Minimal Logic
from the Reflexivity, Symmetry and respectively Transitivity of natural numbers.
The latter are quantifier-free and hence realizer-free under both Realizability and
Dialectica interpretations. We however chose the above presentation for practical
reasons – proofs are shorter and the realizers for the (light) Dialectica interpretation
of higher-order Symmetry and Transitivity are immediate (see Section 3 of [14]).

15 This restriction is not only sufficient but also necessary. Already by allowing purely
universal undischarged assumptions in the proof of x =σ y we can deduce Eιι,ι in
our system and we therefore become subject to Howard’s counterexample [17].

16 Details of the fact that Dialectica is valid for COMPAT are given in Section 3 of [14].
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We now present the boolean axioms. While the desired behavior of ff is al-
ready given by AxEFQ, for tt we must introduce the Truth Axiom

AxTRH : at(tt) .

In order to attain the usual logical behavior of ∨ we must complement its defi-
nition with the following17

AxBIA : A(tt) ∧A(ff) → ∀poA(p) (Boolean Induction Axiom)

and for the selectors Ifτ we introduce the following expected axioms:

AxIfτ :
{
Ifτ tt xτ yτ =τ x

Ifτ ff xτ yτ =τ y
.

Defining axioms for the constants specific to natural numbers are as usual

AxS :

{
Sz �=ι 0

Sx =ι Sy → x =ι y
AxRτ :

{
Rτ x y 0 =τ x

Rτ x y (Sz) =τ y(z, Rτ x y z)

We finally arrive at integrating Induction for natural numbers in WE−Z. There
are very simple realizing terms under Kreisel’s Modified Realizability for the
usual Induction Axiom IA : A(0) → ∀z (A(z) → A(Sz)) → ∀z A(z) – see [6, 34].
In contrast, the Dialectica realizing terms for IA are far more complicated be-
cause they include the Dialectica-translation of ∀z(A(z) → A(Sz)) – see Section
2 of [14], Footnote 9 and the proof of Theorem 34 below. We will therefore use
the following variant of the simpler induction rule employed by Jørgensen in [19]:
IR0 : ∅ · · · /A(0) , ∅ · · · /∀z(A(z) → A(Sz)) � ∀zA(z)
If one ignores the ncm quantifiers (and hence also the ncm-FC restriction), this sys-
tem of intuitionistic arithmetic is in fact the weakly extensional version of system
Z of [6, 34, 36], extended with ⊥ ↔ at(ff). We denote the system with the ncm
quantifiers by WE−Z and the system without the ncm quantifiers (hence without
the ncm-FC restriction) by WE−Z−. In WE−Z− there is a full equivalence between
IA, IR0 and the usual Induction Rule18 IR : A(0) , ∀z(A(z) → A(Sz)) � ∀zA(z).

We denote deduction in systems WE−Z and WE−Z− by � and respectively �− .

Remark 21 The following lemmas hold in WE−Z− :

LmAND : �− ∀po, qo ( at(And p q) ↔ at(p) ∧ at(q) )

LmIMP : �− ∀po, qo ( at(Imp p q) ↔ at(p) → at(q) )

They establish the equivalence for terms of boolean and logical conjunction
and implication, fact which permits the treatment of qfr formulas as prime
(atomic) formulas, see Remark 22 and Section 1 of [14]. The WE−Z− lemmas
LmOι : �− Oσιzσ =ι 0 and LmOo : �− Oσozσ =o ff describe the behavior of the
17 Only the “disjunction introduction” theorems � A→ A ∨B and � B → A ∨B are

ensured by the definition of ∨. The “elimination of disjunction” requires AxBIA, see
Remark 22 below.

18 See Section 2 of [14] for details. The simulation of IR in terms of IR0 fails in WE−Z.
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zero terms. The expected behavior of the selector Ifnτ is given by the following
n + 1 lemmas of WE−Z− grouped under the name LmIfnτ :{
{ �− ∧i−1

j=1at(pj) ∧ ¬at(pi) → Ifnτ (p1, . . . , pn, xn+1, xn, . . . , x1) =τ xi }ni=1

�− ∧n
i=1at(pi) → Ifnτ (p1, . . . , pn, xn+1, xn, . . . , x1) =τ xn+1

Remark 22 There exists a unique bijective association of boolean terms to
qfr formulas A0  → tA0 such that �−A0 ↔ at(tA0) for all A0 . In particular
�−(p =o tt) ↔ at(p) and �−(p =o ff) ↔ ¬at(p) . It then follows that all qfr
formulas A0 of system WE−Z− are decidable in the sense that �− A0 ∨ ¬A0. Using
AxBIA it further follows that we can produce WE−Z− proofs by case distinction
over qfr formulas, i.e., �− (A0 → A) ∧ (¬A0 → A) → A . More general, the
following schema of disjunction elimination19 is deducible in system WE−Z− :

�− ∧n
i=1(Ai → B) → (∨n

i=1Ai → B) (1)

Stability for qfr formulas of WE−Z, i.e., �− ¬¬A0 → A0 follows as an immediate
application of case distinction over qfr formulas with A :≡¬¬A0 → A0

20.

2.3 The Semi-classical (Plus Choice) System WE−Z+

We present below the extension of WE−Z with three axioms which have simple
realizers directly under the (light) Dialectica interpretation (defined in Section 3).
The first two principles are (logically) deducible in the (fully) classical version
of WE−Z (obtained by adding full stability ¬¬A → A) but not in WE−Z. These
semi-classical (logical) axioms are Markov’s Principle21

AxMK : ∃clz A0(z) → ∃z A0(z)

and Independence of premises for universal premises

AxIP∀ : [ ∀xA0(x) → ∃y B(y) ] → ∃y [ ∀xA0(x) → B(y) ] .

System WE−Z+ is obtained by further adding to WE−Z (besides AxMK and AxIP∀)
the non-logical (i.e., not logically deducible in WE−Z) Axiom of Choice:

AxAC : ∀x∃y B(x, y) → ∃Y ∀xB(x, Y (x)) .

We will denote deduction in WE−Z+ by �+.

3 The Light Functional (Light Dialectica) Interpretation

By LD-interpretation we call below our adaptation of Gödel’s functional (Di-
alectica) interpretation [2, 13] to the extraction of (more) efficient programs
19 Very useful to prove soundness for the (light) D-interpretation of →+, in Section 3.
20 Section 1 of [14] contains complete proofs of all the results stated above.
21 The usual formulation of Markov’s principle as AxMK1 : ¬¬∃z A0(z)→ ∃z A0(z) is

equivalent over WE−Z to AxMK. Also the form AxMK2 : ¬¬∃z A0(z)→ ∃z¬¬A0(z) ,
which was preferred by the authors of [16] because of complexity considerations.
Our choice of AxMK is motivated by the particularity of ∃cl in [6, 34].
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from (classical) proofs. It is a recursive syntactic translation from proofs in
WE−Z+ (or in WE−Zc+, after a double-negation translation, see Section 3.2) to
proofs in WE−Z− such that positive occurrences of ∃ and negative occurrences
of ∀ in the proof’s conclusion get actually realized by terms in Gödel’s T. These
realizing terms are also called the programs extracted by the LD-interpretation
and (if only the extracted programs are wanted) the translation process is also
referred to as program-extraction. The translated proof is also called the verifying
proof since it verifies the fact that the extracted programs actually realize the
LD-interpretation of the conclusion of the proof at input. Gödel’s Dialectica in-
terpretation (abbreviated D-interpretation) is relatively (far) more complicated
when it has to face contraction, which in Natural Deduction amounts to dis-
charging more than one copy of an assumption in an Implication Introduction
→+. Kohlenbach presents in [21] an elegant way of simplifying the treatment of
contraction when the goal is to extract Howard majorizing functionals for the
Dialectica realizers. He named “monotone functional interpretation” this vari-
ant of the D-interpretation which we here abbreviate by MD-interpretation. The
MD-interpretation has been used with great success over the last years for pro-
ducing mathematical proofs to important new theorems in numerical functional
analysis22.

However, when the extraction of exact realizers is concerned, the monotone
D-interpretation does not necessarily bring an efficient answer. A different kind
of optimization of Gödel’s D-interpretation appears to be necessary. We here
propose the LD-interpretation as a refinement of Gödel’s technique which allows
for the extraction of more efficient exact realizers. Moreover, the same refinement
equally applies to the extraction of more efficient bounds via what might be called
the light monotone23 functional interpretation (abbreviated LMD-interpretation).

The D-interpretation was first introduced in [13] for a Hilbert-style formu-
lation of Arithmetic – see also [2, 10, 20, 26, 38] for other (more modern) for-
mulations within Hilbert-style systems. Natural Deduction formulations of the
Diller-Nahm [10] variant of D-interpretation were provided by Diller’s students
Rath [33] and Stein [37]. Only in the year 2001 Jørgensen [19] provided a first
Natural Deduction formulation of the original Gödel’s functional interpretation.
In the Diller-Nahm setting all choices between the potential realizers of a con-
traction are postponed to the very end by collecting all candidates and making
a single final global choice. In contrast, Jørgensen’s formulation respects Gödel’s
original treatment of contraction by immediate (local) choices. Jørgensen devises
a so-called “Contraction Lemma” in order to handle (in the given Natural De-
duction context) the discharging of more than one copy of an assumption in an
Implication Introduction →+. If n + 1 undischarged occurrences of an assump-
tion are to be canceled in an →+, then Jørgensen uses his Contraction Lemma n
times, shifting partial results n times back and forth over the “proof gate” � . We
consider this to be less efficient from the applied program-extraction perspec-

22 Papers [22] and [20] contain comprehensive surveys of such to-day applications of
MD-interpretation to concrete mathematical proofs from the literature.

23 Or light bounded functional (Dialectica) interpretation, following [11] instead of [21].
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tive. We also think that the soundness proof for the (L)D-interpretation is thus
somewhat more complicated w.r.t. contraction. We will here use the n-selector
Ifnτ for equalizing in one single (composed) step all the (L)D-interpretations of
the n + 1 undischarged occurrences (see the proof of Theorem 34 below). While
technically impossible to have a direct n-selector available for all n ∈ IN, in ac-
tual optimizing implementations Ifnτ could be given a (more) direct definition
for n ≤ N for a certain convenient24 upper margin N instead of being simu-
lated in terms of n times If1τ . The practical gain w.r.t. Jørgensen’s solution is
that the handling of contraction is directly moved from the proof level to the
term level: back-and-forth shifting over � is no longer required when building
the verifying proof. We also modify Jørgensen’s variant of D-interpretation by
allowing free variables in the extracted terms. This corresponds to the formu-
lation of Gödel’s T with λ-abstraction as primitive and is more natural in a
Natural Deduction setting. In addition we include the treatment of our adap-
tation of Berger’s uniform existential and universal quantifiers from [5] to the
Dialectica-extraction context.

The light functional (Dialectica) interpretation/translation assigns a formula
AD(a) ≡ ∃x ∀y AD(x; y; a) with AD not necessarily quantifier-free and x, y tuples
of fresh variables of finite type (such that {x, y, a} are all free variables of AD)
to each instance of the formula A(a) (with a all free variables of A). The types
of x, y depend only on the types of the regularly bound variables of A and on
the logical structure of A. We will also denote by BD(b) :≡ ∃u∀v BD(u; v; b) the
LD-interpretation of B(b). If non-ambiguous, we sometimes omit to display some
of the free variables of the LD-translated formulas.

Definition 31 (The light Dialectica interpretation of formulas)

AD :≡ (AD :≡A) for prime formulas A

(A ∧B)D :≡ ∃x, u∀y, v [ (A ∧B)D :≡AD(x; y; a) ∧BD(u; v; b) ]

(∃zA(z, a))D :≡ ∃z†, x∀y [ (∃zA(z, a))D(z
†, x; y; a) :≡AD(x; y; z†, a) ]

(∀zA(z, a))D :≡ ∃X ∀z†, y [ (∀zA(z, a))D(X ; z†, y; a) :≡AD(X(z†); y; z†, a) ]

(∃zA(z, a))D :≡ ∃x∀y [ (∃zA(z, a))D(x; y; a) :≡∃z AD(x; y; z, a) ]

(∀zA(z, a))D :≡ ∃x∀y [ (∀zA(z, a))D(x; y; a) :≡∀z AD(x; y; z, a) ]

(A → B)D :≡ ∃Y , U ∀x, v [ (A → B)D :≡AD(x;Y (x, v)) → BD(U (x); v) ]

Here ·  → ·† is a mapping which assigns to every given variable z a completely new
variable z† which has the same type of z. Different variables z† are returned for
different applications on the same argument variable z when processing a given
formula A. This ensures that two nested quantifications of the same variable
in A are correctly distinguished in AD. The variables X,Y , U produced in the
treatment of → and ∀ are also completely new but in contrast to the variables

24 Only a certain limited number of n-selectors is needed for most practical applications.
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produced by ·†, their type is strictly more complex than the type of the original
variable. The free variables of AD are exactly the free variables of A. If A is
quantifier-free then AD = AD = A.

Remark 32 By abuse of notation from now on we use non-underlined letters
also for tuples of objects (variables, terms, . . . ) and identify an individual object
with the tuple containing only that object.

Definition 33 (Dialectica terms) For every ncm-quantifier free formula A(a)
we denote by tDA[x; y; a] the boolean term associated to (the quantifier-free for-
mula) AD(x; y; a) by the mapping from Remark 22. We call it “the Dialectica
term associated to” A(a). The following holds:

�− AD(x; y; a) ↔ at(tDA[x; y; a]) (2)

Theorem 34 (Exact realizer synthesis by the LD-interpretation) There
exists an algorithm which given at input a proof P : {Ci}ni=1 �+ A produces at
output the tuples of terms {Ti}ni=1 and T , the tuples of variables {xi}ni=1 and y
all together with the verifying proof PD : {Ci

D(xi;Ti(x, y))}ni=1 �−AD(T (x); y) –
where x :≡ x1, . . . , xn . Moreover,

1. the variables x and y do not occur in P (they are all completely new)
2. the free variables of T and {Ti}ni=1 are among the free variables of A and

{Ci}ni=1 (we call this “the free variable condition (FVC) for programs ex-
tracted by the D-interpretation”)

hence x and y also do not occur free in the extracted terms {Ti}ni=1 and T .

Proof: The algorithm proceeds by recursion on the structure of the input proof
P . Realizing terms must be presented for all the axioms and then realizing terms
for the conclusion of a rule must be deduced from terms which realize the premise
of that rule. Since x, y are produced by the LD-interpretation of formulas (see
Definition 31) it is immediate that they do not occur in P . We present below
only the (sub)case of Implication Introduction →+ in which at least two copies
of the implicative assumption get canceled. Since it involves contraction, this
case is far more difficult than all the other axioms and rules25.

[A] . . . /B
A → B

→+ We are given, with n ≥ 1, z ≡
n+1︷ ︸︸ ︷

z, . . . , z and
x ≡ xn+2, . . . , xm , that :

{AD(z;Ti(z, x, y))}n+1
i=1 , {Ci

D(xi;Ti(z, x, y))}mi=n+2 �− BD(T (z, x); y) (3)

It has been assumed that n + 1 ≤ m, where n + 1 is the number of copies of the
assumption A which get discharged in this →+. Each of these n + 1 instances of
A produces the same tuple z of existential variables under the LD-interpretation,
see Definition 31. The ncm-FC(A) constraint ensures that the tuples {Ti}n+1

i=1 are

25 See the comments in the beginning of this section. A full proof is in Section 3 of [14].
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all of length 0 (denoted *), i.e., A is computationally irrelevant, orelse AD is qfr
(pre-condition for the association to A of Dialectica terms, see Definition 33).
Only in the former case can we directly discharge in a single →+ all n + 1 ≥ 2
copies of AD(z;*) in the LD-interpretation of the premise of this rule, see (3).
In contrast, for the latter case we must first equalize the assumptions involving
the n + 1 terms {Ti}n+1

i=1 . This is because the terms {Ti}n+1
i=1 can be mutually

different since they are extracted from different sub-proofs which involve the
different copies of A. We hereafter treat this case. We achieve the equalizing of
{Ti}n+1

i=1 in one single step26, using the n-selector Ifnτ . For all i ∈ 1, n let T i

abbreviate Ti(z, x, y) and let

S̃ :≡ λx, z, y. Ifnτ (tDA[z;T 1], . . . , tDA[z;T n], Tn+1(z, x, y), T n, . . . , T 1) (4)

By n applications of ∀ − to LmIfnτ with {pi←tDA[z;T i]}ni=1 and (2) we get
�− ∧i−1

j=1 AD(z;T j) ∧ ¬AD(z;T i) → S̃(x, z, y) = Ti(z, x, y) for all i ∈ 1, n and
�− ∧n

i=1 AD(z;T i) → S̃(x, z, y) = Tn+1(z, x, y) from which we further obtain

�− [∧i−1
j=1 AD(z;T j) ∧ ¬AD(z;T i) ] → [AD(z; S̃(x, z, y)) → ∧n+1

k=1 AD(z;T k)]

�− [∧n
j=1 AD(z;T j) ] → [AD(z; S̃(x, z, y)) → ∧n+1

k=1 AD(z;T k)]

for all i ∈ 1, n . We used one COMPAT27 in each of the n + 1 above deductions and
an AxEFQ in each of the the first n of these. Due to the decidability of qfr formu-
las we have �− ∨n

i=1 [∧i−1
j=1 AD(z;T j) ∧ ¬AD(z;T i) ] ∨ [∧n

j=1 AD(z;T j) ] . It then
follows by (1) that �−AD(z; S̃(x, z, y)) → ∧n+1

i=1 AD(z;T i) , hence for all
i ∈ 1, n + 1 we obtain AD(z; S̃(x, z, y))�−AD(z;Ti(z, x, y)) . We then discharge
all assumptions AD of (3) in n + 1 applications of →+ and combine with the
previously obtained proofs of AD(z;Ti(z, x, y)) in n + 1 applications of →− to
conclude, with S :≡λx, z. T (z, x) and {Si :≡λx, z. Ti(z, x)}mi=n+2, that

{AD(z; S̃(x, z, y))}n+1
i=1 , {Ci

D(xi;Si(x, z, y))}mi=n+2 �−BD(S(x, z); y) .

We can now cancel all {AD(z; S̃(x, z, y))}n+1
i=1 in a single →+ and thus get

{Ci
D(xi;Si(x, z, y))}mi=n+2 �−AD(z; S̃(x, z, y)) → BD(S(x, z); y) .

Notice that tDA introduces in S̃ new occurrences of the free variables of A. We
finally obtain, with the FVC obviously satisfied, that

{Ci
D(xi;Si(x, z, y))}mi=n+2 �− (A → B)D( S̃(x), S(x) ; z, y) .

�

Corollary 35 There exists an algorithm which from a given proof �+ A(a)
produces exact realizing terms T [a] with a verifying proof �− ∀yAD(T ; y; a).
26 Jørgensen’s solution uses here n steps which correspond to the simulation of Ifn

τ in
terms of n instances of If1

τ , see also the comments in the preamble of Section 3.
27 Since AD is quantifier-free, the restriction on undischarged assumptions is respected.
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3.1 The Light Monotone (or Light Bounded)
Functional Interpretation

We sketch below the combination of our refinement of Goedel’s Dialectica in-
terpretation [2, 13, 19] with its optimization for the extraction of bounds28 due
to Kohlenbach [21]. We add to systems WE−Z−, WE−Z and WE−Z+ a functional
inequality constant for naturals (of type ιιo), denoted ≥. We define predicate
inequality between terms sι and tι as an abbreviation for at(≥ s t), denoted
≥ι . Similar to equality, predicate inequality at higher types τ ≡ σ1 . . . σnι is ex-
tensionally defined as s ≥τ t :≡∀xσ1

1 , . . . , xσn
n (s x1 . . . xn ≥ι t x1 . . . xn). We also

define Howard’s majorization relation ;τ by ;ι :≡ ≥ι and

x ;στ y :≡ ∀zσ1 , zσ2 (z1 ≥σ z2 → xz1 ≥τ yz2) .

The monotonic systems WE−Z−m , WE−Zm and WE−Z+m are then obtained by further
adding the axioms defining the usual behavior of predicate inequality on natu-
rals: z ≥ι 0 , 0 ≥ι Sz → ⊥ and Sx ≥ι Sy → x ≥ι y. We denote by �m−, �m and �m+
deductions in WE−Z−m , WE−Zm and respectively WE−Z+m .

Conjecture 36 (Uniform bound synthesis by a LMD-interpretation)
There exists an algorithm which from a given proof �m+ A(a) produces closed
uniform bounds T with a verifying proof �m− ∃x(T ; x ∧ ∀a, yAD(x(a); y; a)).

Notice that the optimization brought by the light MD-interpretation does not
concern contraction (which is sufficiently handled by the pure MD-interpretation)
as much as the diminishing of the maximal type degree of the extracted bounds.

3.2 Extensions of L(M)D-Interpretation to Extractions
from Fully Classical Proofs. Systems WE−Zc, WE−Zc+ and WE−Zc+m

The system WE−Zc of weakly extensional Classical Arithmetic is obtained by
adding to WE−Z the Stability principle:

AxSTAB : ¬¬A → A (Stability)

In fact it would be sufficient that AxSTAB replaces AxEFQ since the latter is
deducible from AxSTAB in Minimal Logic. However we keep AxEFQ as axiom of
WE−Zc since it has simple Dialectica realizers29. The problem of AxSTAB is that it
has no (direct) realizer under Dialectica interpretation – a preprocessing double
negation translation, denoted ·  → ·N will be necessary to interpret fully classical
systems (see, e.g., [16, 20, 22]).

We will denote by WE−Zc+ the system WE−Zc extended with AxAC0 (the quan-
tifier-free version of AxAC, obtained by restricting B to qfr formulas). We will
denote deductions in WE−Zc and WE−Zc+ by �c and �c+ respectively.

Conjecture 37 There exists an algorithm which from a given proof �c+ A(a)
produces exact realizing terms T [a] with a verifying proof �− ∀y(AN)D(T ; y; a).
28 See also [11] for a more recent adaptation of Dialectica to the extraction of bounds.
29 Input proofs to the Dialectica-extraction algorithm may thus become shorter.
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We denote by WE−Zc+m , �mc+ the monotonic correspondents of WE−Zc+ and �c+.

Conjecture 38 There exists an algorithm which, given at input a proof
�mc+ A(a) , produces at output closed uniform bounds T and the verifying proof

�m− ∃x(T ; x ∧ ∀a, y(AN)D(x(a); y; a)).
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Abstract. We show that Csanky’s fast parallel algorithm for computing
the characteristic polynomial of a matrix can be formalized in the logical
theory LAP, and can be proved correct in LAP from the principle
of linear independence. LAP is a natural theory for reasoning about
linear algebra introduced in [8]. Further, we show that several principles
of matrix algebra, such as linear independence or the Cayley-Hamilton
Theorem, can be shown equivalent in the logical theory QLA. Applying
the separation between complexity classes AC0[2] � DET(GF(2)), we
show that these principles are in fact not provable in QLA. In a nutshell,
we show that linear independence is “all there is” to elementary linear
algebra (from a proof complexity point of view), and furthermore, linear
independence cannot be proved trivially (again, from a proof complexity
point of view).

Keywords: Proof complexity, Csanky’s algorithm, matrix algebra.

1 Introduction

This paper makes the following claim: our intuition that the principle of linear
independence is all that there is to elementary linear algebra is justified from
a proof complexity point of view. This means that from the principle of linear
independence we can prove other strong principles of linear algebra (for example,
the Cayley-Hamilton Theorem) using concepts of very low computational com-
plexity. Furthermore, we claim that linear independence itself cannot be proved
using concepts of low computational complexity.

To argue this claim, we present a new feasible proof of the Cayley-Hamilton
Theorem (CHT) from the principle of linear independence in a weak theory of
linear algebra (QLAP). The proof is based on Csanky’s algorithm for computing
the characteristic polynomial of a matrix. Csanky’s algorithm is a fast parallel
algorithm that computes the characteristic polynomial of a matrix over fields of
characteristic zero.

QLAP is a first order theory for reasoning about matrices. Our new proof
of the CHT with Csanky’s algorithm leads to QLAP proofs of equivalence of
important principles of linear algebra (for example, linear independence and the
CHT). We also show that these principles are independent of QLAP. To show
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this independence we use the previously known result that AC0[2] is properly
contained in DET(GF(2)).

The class AC0[2] consists of problems solvable with polynomial size circuits
(in the size of the input), bounded depth, where besides the usual gates {∧,∨,¬}
we are also allowed to use the parity gate ⊕. The class DET(GF(2)) consists
of problems AC0 reducible to computing the determinant over the field of two
elements. Another class which will make a frequent appearance in this paper is
NC2, which consists of those problems which are solvable with polynomial size
circuits of depth O(log2) (in the size of the input).

It is known that AC0[2] � DET(GF(2)) ⊆ NC2 ⊆ PolyTime, and the sep-
aration between the first two complexity classes is the famous result of Razborov
and Smolensky ([5, 6])). This separation will be instrumental in showing our in-
dependence result in the last section.

In this line of research we are motivated by a dual purpose: we want to
understand the proof complexity of linear algebra, and we are also searching for
good candidates for separating the Frege and extended Frege propositional proof
systems. This separation is a central problem in theoretical computer science,
and the theorems of universal linear algebra are considered to be good candidates
to show such a separation – see [1] for more background on this quest.

In [8] we introduced the logical theory LA ⊂ LAP ⊂ ∃LA we gave the
first feasible (i.e., using polynomial time concepts) proof of the CHT, a central
theorem of matrix algebra from which many other universal theorems follow (in
LAP). Our proof was based on Berkowitz’s algorithm, which is an efficient paral-
lel algorithm for computing the characteristic polynomial of a matrix (and hence
the inverse, adjoint, and determinant of a matrix). Berkowitz’s algorithm is field
independent (that is, it works over any field), and it can be formalized with
NC2 circuits. Both Berkowitz’s algorithm and Csanky’s algorithm are NC2 al-
gorithms, and have the following interesting relationship: if they could be shown
to compute the same thing in LAP, they could both be shown correct in LAP.
As things stand now, are best proofs of correctness for both are polytime.

In section 2 we describe the relevant theories, LA, LAP, QLA, and ∃LA.
In section 3 we describe Csanky’s and Berkowitz’s algorithms, and show that
they can be formalized in LAP. In section 4 we show that the CHT follows in
LAP from the principle of linear independence. This result is obtained using
Csanky’s algorithm, and so it requires fields of characteristic zero. In section 5
we show that five main principles of linear algebra can all be shown equivalent
in QLA, and furthermore, QLA does not prove any of them.

2 The Theories LA, LAP, ∃LA, and QLA

We define a quantifier-free theory of Linear Algebra (matrix algebra), and call it
LA. Our theory is strong enough to prove the ring properties of matrices such as
A(BC) = (AB)C and A+B = B +A but weak enough so that all the theorems
of LA (over finite fields or the field of rationals) translate into propositional
tautologies with short Frege proofs.



Feasible Proofs of Matrix Properties with Csanky’s Algorithm 495

Our theory has three sorts of object: indices (i.e., natural numbers), field
elements, and matrices, where the corresponding variables are denoted i, j, k, . . .;
a, b, c, . . .; and A,B,C, . . ., respectively. The semantics assumes that objects of
type field are from a fixed but arbitrary field, and objects of type matrix have
entries from that field.

Terms and formulas are built from the function and predicate symbols:

0index, 1index,+index, ∗index,−index, div, rem, 0field, 1field,

+field, ∗field,−field,
−1r, c, e, Σ,≤index,=index,=field,

=matrix, condindex, condfield

(1)

The intended meanings should be clear, except for the following operations on
a matrix A: r(A), c(A) are the numbers of rows and columns in A, e(A, i, j) is
the field element Aij , Σ(A) is the sum of the elements in A. Also cond(α, t1, t2)
is interpreted if α then t1 else t2, where α is a formula all of whose atomic sub-
formulas have the form m ≤ n or m = n, where m,n are terms of type index,
and t1, t2 are terms either both of type index or both of type field. The subscripts
index and field are usually omitted, since they are clear from the context.

In addition to the usual rules for constructing terms we also allow the terms
λij〈m,n, t〉 of type matrix. Here i and j are variables of type index bound by
the λ operator, intended to range over the rows and columns of the matrix. Here
also m,n are terms of type index not containing i, j (representing the numbers
of rows and columns of the matrix) and t is a term of type field (representing
the matrix element in position (i, j)).

The λ terms allow us to construct the sum, product, transpose, etc., of ma-
trices. For example, suppose first that A and B are m×n matrices. Then, A+B
can be defined as λij〈m,n, e(A, i, j) + e(B, i, j)〉. Now suppose that A and B
are m× p and p× n matrices, respectively. Then:

A ∗B := λij〈m,n,Σλkl〈p, 1, e(A, i, k) ∗ e(B, k, j)〉〉

However, even if matrices are of incompatible size, their addition and product
is well defined, since the “smaller” matrix is implicitly padded with zeros (as
e(A, i, j) = 0 for i or j outside the range). Thus, all terms are well defined.

Atomic formulas and formulas are built in the usual manner, but in LA and
LAP we only allow bounded index quantifiers (note that LA, respectively LAP,
with bounded index quantifiers is conservative over LA, respectively LAP, with-
out them).

We use Gentzen’s sequent calculus LK (with quantifier rules omitted) for the
underlying logic. We include 34 non-logical axioms in four groups: Axioms for
equality, indices, field elements, and matrices (all quantifier-free). These specify
the basic properties of the function and predicate symbols (1). By convention
each instance of an axiom resulting from substituting terms for variables is also
an axiom, so the axioms are really axiom schemes. All the axioms are given
in [8].

We need an extra axiom to ensure that the underlying field is of charac-
teristic zero. This can be stated with ΣIn �= 0, where In is the n × n identity
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matrix, which is given with a constructed term λij〈n, n, cond(i = j, 1, 0)〉. This
requirement is necessary for Csanky’s algorithm which works only over fields of
characteristic zero, as it performs divisions by integers.

We need just two non-logical rules: an equality rule for terms of type matrix,
and the induction rule:

Γ, α(i) → α(i + 1), Δ
Γ, α(0) → α(n), Δ

(2)

To formalize Newton’s and Berkowitz’s algorithms we extend the theory LA
to the theory LAP by adding a new function symbol P , where P (n,A) means
An. We also add two new axioms, which give a recursive definition of P ; namely,
P (0, A) = I and P (n + 1, A) = P (n,A) ∗ A. This is enough to formalize the
coefficients of the characteristic polynomial of a matrix, as computed by either
algorithm, as terms in the language of LAP. However, it seems that LAP is
too weak to prove strong properties of the characteristic polynomial (such as the
CHT or the multiplicativity of the determinant).

The theory ∃LA is an extension of LA where we allow induction over formu-
las of the form (∃X ≤ t)α, where α has no quantifiers, and ∃X ≤ t is a bounded
existential matrix quantifier (X ≤ t is just shorthand for r(X) ≤ t ∧ c(X) ≤ t).
Note that the theory ∃LAP, defined analogously, is conservative over ∃LA be-
cause matrix powering (P ) can be defined in ∃LA; so we don’t really need to
include P (see [10]).

Finally, QLA is LA with quantification over matrices, but induction re-
stricted to formulas of LA.

This concludes a brief tour through the theories LA,LAP, ∃LA, and QLA.
They are natural theories, in that they include what one would expect to formal-
ize matrix algebra. LA is the weakest, and it can be thought off as the theory
that proves the ring properties of matrices. LAP is LA together with the ma-
trix powering function (and defining axioms), and it can formalize Csanky’s and
Berkowitz’s algorithm, but it seems too weak to prove strong properties about
them. ∃LA is LA together with an induction over formulas with bounded matrix
quantifiers (which also allows it to simulate LAP).

3 Csanky’s and Berkowitz’s Algorithms

Both Csanky’s and Berkowitz’s algorithms compute the characteristic polyno-
mial of a matrix, which is usually defined as pA(x) = det(xI − A), for a given
matrix A. Let pcsanky

A and pberk
A denote the coefficients of the characteristic poly-

nomial of A given as column vectors, respectively. Let pcsanky
A (x) and pberk

A (x)
denote the actual characteristic polynomials, with coefficients computed by the
respective algorithms.

Newton’s symmetric polynomials are defined as follows: s0 = 1, and for
1 ≤ k ≤ n, by:

sk =
1
k

k∑
i=1

(−1)i−1sk−itr(Ai) (3)
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Then, pcsanky
A (x) = s0x

n−s1x
n−1 +s2x

n−2−· · ·±snx
0. It is shown in the proof

of lemma 1 how Csanky’s algorithm computes the si’s more efficiently (in NC2)
than in the straightforward way suggested by the recurrence (3).

Lemma 1. pcsanky
A can be given as a term of LAP.

Proof. We follow the ideas in [11, Section 13.4]. We restate (3) in matrix form:
s = Ts− b where s, T, b are given, respectively, as follows:

⎛⎜⎜⎜⎝
s1

s2

...
sn

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . .

1
2 tr(A) 0 0 . . .

1
3 tr(A2) 1

3 tr(A) 0 . . .

1
4 tr(A3) 1

4 tr(A2) 1
4 tr(A) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
tr(A)

1
2 tr(A2)
...

1
n tr(An)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Then s = −b(I − T )−1. Note that (I − T ) is an invertible matrix as it is lower
triangular, with 1s on the main diagonal. The inverse of (I−T ) can be computed
recursively using the following idea: if C is lower-triangular, with no zeros on
the main diagonal, then

C =
(
C1 0
E C2

)
⇒ C−1 =

(
C−1

1 0
−C−1

2 EC−1
1 C−1

2

)
There are O(log(n)) many steps and the whole procedure can be simulated with
circuits of depth O(log2(n)) and size polynomial in n.

This, however, does not give us an LAP-term, and it would be difficult to
formalize the proof of correctness of this recursive inversion procedure in LAP.
Thus, instead of this recursive computation, we use the fact that the CHT can
be proved correct in LAP for triangular matrices (see [7, Section 5.2]). From
the characteristic polynomial of (I − T ) we obtain its inverse, and the inverse
can be proved correct (i.e., (I − T )(I − T )−1 = (I − T )−1(I − T ) = I) using the
the CHT for triangular matrices, and this can be formalized in LAP.

Berkowitz’s algorithm, just as Csanky’s algorithm, allows us to reduce the
computation of the characteristic polynomial to matrix powering. Its advantage
is that it works over any field; however, certain properties (such as the fact that
similar matrices have the same characteristic polynomial) have easy proofs in
weak theories (LAP) for Csanky’s algorithm, but (seem to) require polytime
theories (∃LA) for Berkowitz’s algorithm.

Berkowitz’s algorithm computes the characteristic polynomial of a matrix in
terms of the characteristic polynomial of its principal minor:

A =
(
a11 R
S M

)
(4)
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where R is an 1× (n− 1) row matrix and S is a (n− 1)× 1 column matrix and
M is (n− 1)× (n− 1). Let p(x) and q(x) be the characteristic polynomials of A
and M respectively. Suppose that the coefficients of p form the column vector

p =
(
pn pn−1 . . . p0

)t (5)

where pi is the coefficient of xi in det(xI −A), and similarly for q. Then:

p = C1q (6)

where C1 is an (n + 1) × n Toeplitz lower triangular matrix (Toeplitz means
that the values on each diagonal are constant) and where the entries in the
first column are defined as follows: ci1 = 1 if i = 1, ci1 = −a11 if i = 2, and
ci1 = −(RM i−3S) if i ≥ 3. Berkowitz’s algorithm consists in repeating this for
q, and continuing so that p is expressed as a product of matrices. Thus:

pberk
A = C1C2 · · ·Cn (7)

where Ci is an (n + 2− i)× (n + 1− i) Toeplitz matrix defined as above except
A is replaced by its i-th principal sub-matrix. Note that Cn = (1 − ann)t.

Since each element of Ci can be explicitly defined in terms of A using matrix
powering, and since the iterated matrix product can be reduced to matrix pow-
ering by a standard method, the entire product (7) can be expressed in terms of
A using matrix powering. Thus the right-hand side of (7) can be expressed as a
term in LAP.

Since we can define the characteristic polynomial in LAP (as pcsanky or
pberk), it follows immediately that we can also define the determinant and the
adjoint as terms of LAP.

4 Correctness of Csanky’s Algorithm

The main result of this section, given as theorem 1, is the following:

QLAP � Linear Independence ⊃ CHT (8)

where CHT (the Cayley-Hamilton Theorem) stands for pA(A) = pcsanky
A (A) = 0.

Since ∃LA proves the principle of linear independence (see [10]), we have a
new proof that ∃LA can prove the CHT. We assume that the characteristic
polynomial of A, pA, is computed with Csanky’s algorithm, i.e., in this section
pA = pcsanky

A .

Lemma 2. LAP proves that similar matrices have the same characteristic poly-
nomial; that is, if P is any invertible matrix, then pA = pPAP−1 .

Proof. Observe that tr(AB) =
∑

i

∑
j aijbji =

∑
j

∑
i bjiaij = tr(BA), so using

the associativity of matrix multiplication, tr(PAiP−1) = tr(AiPP−1) = tr(Ai).
Inspecting (3), we see that a proof by induction on the si proves this lemma.
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Lemma 3. LAP proves that if A is a matrix of the form:(
B 0
C D

)
(9)

where B and D are square matrices (not necessarily of the same size), and the
upper-right corner is zero, then pA(x) = pB(x) · pD(x).

Proof. Let sAi , s
B
i , sDi be the coefficients of the characteristic polynomials (as

given by (3)) of A,B,D, respectively. We want to show by induction on i that

sAi =
∑

j+k=i

sBj sDk ,

from which the claim of the lemma follows. The Basis Case: sA0 = sB0 = sD0 = 1.
For the Induction Step, by definition and by the induction hypothesis, we have
that sAi+1 equals

=
i∑

j=0

(−1)jsAi−jtr(A
j+1) =

i∑
j=0

(−1)j

⎡⎣ ∑
p+q=i−j

sBp sDq

⎤⎦ tr(Aj+1)

and by the form of A (i.e., (9)):

=
i∑

j=0

(−1)j

⎡⎣ ∑
p+q=i−j

sBp sDq

⎤⎦ (tr(Bj+1) + tr(Dj+1))

to see how this formula simplifies, we divide it into two parts:

=
i∑

j=0

(−1)j

⎡⎣ ∑
p+q=i−j

sBp sDq

⎤⎦ tr(Bj+1) +
i∑

j=0

(−1)j

⎡⎣ ∑
p+q=i−j

sBp sDq

⎤⎦ tr(Dj+1).

Consider first the left-hand side. When q = 0, p ranges over {i, i− 1, . . . , 0}, and
j + 1 ranges over {1, 2, . . . , i + 1}, and therefore, by definition, we obtain sBi+1.
Similarly, when q = 1, we obtain sBi , and so on, until we obtain sB1 . Hence we
have:

=
i+1∑
j=0

sBi−js
D
j +

i∑
j=0

(−1)j

⎡⎣ ∑
p+q=i−j

sBp sDq

⎤⎦ tr(Dj+1).

The same reasoning, but fixing p instead of q on the right-hand side, gives us:

=
i+1∑
j=0

sBi−js
D
j +

i+1∑
j=0

sBj sDi−j =
∑

j+k=i+1

sBj sDk

which gives us the induction step and the proof of the lemma.
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To show that pA(A) = 0 it is sufficient to show that pA(A)ei = 0 for all
vectors ei in the standard basis {e1, e2, . . . , en}. Let k be the largest integer such
that

{ei, Aei, . . . , A
k−1ei} (10)

is linearly independent; we know that k − 1 < n, by the principle of linear
independence (this is the first place where we use linear independence). Then,
(10) is a basis for a subspace W of Fn, and W is invariant under A, i.e., given
any w ∈ W , Aw ∈ W .

Using Gaussian Elimination we write Akei as a linear combination of the
vectors in (10). Using the coefficients of this linear combination we write a monic
polynomial

g(x) = xk + c1x
k−1 + · · · + ckx

0 (11)

such that g(A)ei = 0.
Let AW be A restricted to the basis (10), that is, AW is a matrix represent-

ing the linear transformation TA : Fn −→ Fn induced by A, restricted to the
subspace W . The matrix At

W has the following simple form:⎛⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 −ck
1 0 0 . . . 0 −ck−1

0 1 0 . . . 0 −ck−2

...
. . .

...
0 0 0 . . . 1 −c1

⎞⎟⎟⎟⎟⎟⎠ (12)

i.e., it is the companion matrix of the polynomial g(x). Since pA = pAt , we
consider the transpose of AW , since At

W has the property that its principal
submatrix is also a companion matrix, and that will be used in a proof by
induction in the next lemma.

The proof of the next lemma is the crucial technical result of this section.
The proof is given in the appendix.

Lemma 4. LAP proves that the polynomial g(x) is the characteristic polyno-
mial of AW , in other words, g(x) = pAW (x).

It is interesting to note that lemma 4 can also be proved (feasibly) for
Berkowitz’s algorithm instead, and the proof is in fact much simpler: consider
again the matrix given by (12). We assume inductively that pberk

M (the character-
istic polynomial of the principal submatrix of (12)) is given by (1 c1 c2 . . . ck−1 )t.
Since R = (0 . . . 0 −ck ) and S = e1, pberk

A = B · pberk
M , where B (the matrix

given by Berkowitz’s algorithm) is an (n + 1) × n matrix with 1s on the main
diagonal, 0s everywhere else, except for +ck in position (n + 1, 1). From this, it
is easy to see that pberk

A is given by (1 c1 c2 . . . ck )t.
As was pointed out in the introduction, if we managed to prove in LAP that

Csanky’s and Berkowitz’s algorithms compute the same thing (i.e., pcsanky =
pberk) we would have an LAP proof of the CHT for both. The reason is that
the CHT follows for Berkowitz’s algorithm from det(A) = det(PAP−1), which
is trivial to prove for Csanky’s algorithm (see proof of Lemma 2).
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Lemma 5. ∃LA proves that the polynomial g(x) divides pA(x).

Proof. Extend (10) to a full basis of Fn:

B = {ei, Aei, . . . , A
k−1ei, ej1 , ej2 , . . . , ejn−k

}.

This extension can be carried out easily with Gaussian Elimination, by checking
which vectors from the standard basis ({e1, e2, . . . , en}) are in the span consisting
of (10) and those vectors that have already been added, and adding only those
that are not. This is the only other place (besides the paragraph following the
proof of lemma 3) where we need to use the principle of linear independence.

Let P be the change of basis for A from the standard basis to B. Then,

PAP−1 =
(
AW 0
∗ E

)
where AW is a k × k block, and E is a (n − k) × (k − n) block (corresponding
to the extension), and we have a block of zeros above E since W is invariant
under A. By lemma 3 it follows that pA(x) = pPAP−1(x) = pAW (x) · pE(x). By
lemma 4, pAW = g(x), and so g(x) divides pA(x).

Theorem 1. QLAP proves the Cayley-Hamilton Theorem (CHT) from the
principle of linear independence, when the characteristic polynomial is computed
by Csanky’s algorithm.

Proof. By lemma 5,

pA(A)ei = (pAW (A) · pE(A))ei = (g(A) · pE(A))ei = pE(A) · (g(A)ei) = 0.

Since this is true for any ei in the standard basis, it follows that pA(A) = 0.

The proof of the multiplicativity of the determinant is a ∃LA corollary of
this theorem, as can be seen in [8]. Together, the CHT and the multiplicativity
of the determinant, are two powerful universal principles of linear algebra from
which many others follow directly. An important open question remains: are
they provable in LAP?

5 Equivalence of Matrix Principles

Consider the following five central principles of linear algebra:

1. The Cayley-Hamilton Theorem
2. (∃B �= 0)[AB = I ∨AB = 0]
3. Linear Independence (n + 1 vectors in Fn must be linearly dependent)
4. Weak Linear Independence (nk vectors (n, k > 1) in Fn must be linearly

dependent)
5. Every matrix has an annihilating polynomial
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In this section we are going to show that QLA proves their equivalence. Fur-
thermore, we show that these principles are independent of QLA. Thus, even
though QLA is strong enough to show them equivalent, it is too weak to prove
any of them.

Notice however that QLA does not have the matrix powering function, yet
two of these principles, namely 1 and 5, require matrix powering to be stated.
Let POW(A, n) be the formula:

∃〈X0X1 . . . Xn〉(∀i ≤ n)[X0 = I ∧ (i < n ⊃ Xi+1 = Xi ∗A)] (13)

The size of 〈X0X1 . . . Xn〉 can be bounded as it is a r(A)×(r(A)·(n+1)) matrix.
(The abuse of notation in (13) is for better readability, but this formula can be
stated formally as a bounded Σ1 formula of QLA.)

Theorem 2. The five principles of linear algebra can be proved equivalent in
QLAP with POW(A, n).

Proof. 3 implies 1 because of the results of the previous section. Note that here
we need fields of characteristic zero (because of Csanky’s algorithm). It is an
open question whether we can prove this over arbitrary fields – for example in
the context of Berkowitz’s algorithm.

1 implies 2 because B is just the adjoint, for which we have the desired
properties from the Cayley-Hamilton Theorem.

2 implies 3, because suppose that we have (n + 1) vectors in Fn, and that
they are linearly independent. Let A be the n × (n + 1) matrix whose columns
are these n + 1 vectors. Let A′ be the matrix resulting by appending a row of
zeros to A. Since the vectors are linearly independent, there is no B such that
A′B = 0, so by 2 there must be a B such that A′B = I; but that is not possible,
given that the last row of A′ is zero.

3 obviously implies 4.
4 implies 5 because we can look at {I, A,A2, . . . , Ank}, where A is n×n, and

k as large as we want, and as vectors these matrices are linearly dependent by 4.
5 implies 2, because if p(A) = 0, we can choose the largest s such that

p(A) = q(A)As. If q(A) �= 0, we choose the largest k ≤ s so that q(A)Ak �= 0,
and this is our zero divisor for A. If q(A) = 0, then it has a non-zero constant
coefficient, and hence we can obtain from q(A) the inverse for A.

Recall that the Steinitz Exchange Theorem (SET) says the following:
if T is a (finite) total set for a vector space V , i.e., span(T ) = V , and E is
a linearly independent set, then there exists an F ⊆ T , such that |F | = |E|,
and (T − F ) ∪ E is total. (Note that in general, SET is stated for any T , not
necessarily finite, but here we assume that T is finite.)

We can state SET in the language of QLA as follows: associate the finite
set T of m vectors in Fn with a n × m matrix T , and we can state that T is
total with (∃A)[TA = I]. Let E be a n× k matrix representing the k vectors in
E. We want to find k column in T , and replace them by E. We can state that
there exists a permutation matrix so that TP has those k columns as the last k
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columns. Using the λ-constructor, we can “chop of” those last k columns, and
replace them by E, and then state that the result is also total. Thus, SET can
be stated in QLA.

Lemma 6. QLA proves that the Steinitz Exchange Theorem implies the five
principles listed at the beginning of this section.

Proof. We show that SET implies (in QLA) the existence of an annihilating
polynomial. Consider the set E = {I, A,A2, A3, . . . , An2−1}, where A is an n×n
matrix. If E is linearly dependent, we are done: we have an annihilating poly-
nomial. Otherwise, suppose that E is linearly independent.

Let V = Mn×n(F), that is V is the vector space of n×n matrices, over some
field F (note that our argument is field independent). Let T = {eij}1≤i,j≤n,
that is, T is the set of all elementary matrices eij , which are matrices with 1 in
position (i, j), but zeros everywhere else. Note that |T | = |E| = n2, and T is
clearly total.

Therefore, by the Steinitz Exchange Theorem, (T − F ) ∪E is total for some
|F | = |E|, and so E is total since T = F if |T | = |E| = n2. If E is total, then
An2 ∈ span(E), and hence E ∪ {An2} is linearly dependent, and so we have an
annihilating polynomial once again.

Can we show that the five principles, listed at the beginning of this section,
prove (in QLA) the SET? Here is an obvious proof of SET: pick E1 in E, and
since T is total, we can write it as a linear combination of elements in T , say
E1 = a1T1 + a2T2 + · · · anTn, all ai �= 0. So, T1 can be written as a sum of
elements in T −{T1}∪{E1}. So, put T1 in F . Note that T −{T1}∪{E1} remains
total. Now pick E2, and write it as a linear combination of a finite subset of
elements in T − {T1} ∪ {E1}. By the assumed linear independence of E, E2

cannot be written in terms of E1 alone, so like before, we can pick some T2 and
put it in F . We proceed inductively, at each step putting some Ti in F .

The problem with the proof outlined above is that it requires induction over
formulas with matrix quantifiers, which we do not have in QLA (on the other
hand, this proof could be easily formalized in ∃LA). Thus we propose the fol-
lowing open problem: can SET be proved in QLA from the five principles? More
generally: can Gaussian Elimination, properly stated, be shown correct in QLA
from the five principles?

We conjecture that the answer is “yes” to those two questions, and that they
are not too hard to prove.

Lemma 7. QLA � (∃B �= 0)[AB = I ∨AB = 0] ⊃ POW(A, n).

Proof. We use reduction of matrix powering to matrix inverse described in [3].
Let N be the n2 ×n2 matrix consisting of n×n blocks which are all zero except
for (n − 1) copies of A above the diagonal zero blocks. Then Nn = 0, and
(I −N)−1 = I + N + N2 + . . . + Nn−1 =
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I A A2 . . . An−1

0 I A . . . An−2

...
. . .

...
0 0 0 . . . I

⎞⎟⎟⎟⎠ .

Set C = I−N . Show that if CB = 0, then B = 0, using induction on the rows of
B, starting with the bottom row. Using (∃B �= 0)[CB = I ∨ CB = 0], conclude
that there is a B such that CB = I. Next, show that B = I+N+N2+· · ·+Nn−1,
again, by induction on the rows of B, starting with the bottom row. Thus, B
contains I, A,A2, . . . , An−1 in its top rows, and POW(A, n) follows.

Thus, not every implication in theorem 2 requires POW(A, n). In particular,
2 ⇔ 3 and 3 ⇒ 4 can be shown in QLA (for 2 ⇔ 3 see proof of corollary below).
It is an open question whether 4 implies 3 in QLA.

Lemma 8. QLA � POW(A, n).

Proof. We can turn QLA into a three-sorted universal theory in the style of
QPV ([2]), by introducing function symbols for all the λ-terms, so we have
number-valued functions, field-valued functions, and matrix valued-functions.
Further, if the underlying field is GF(2), then all these functions are in the
complexity class AC0[2] (by translations given in [8]). Hence, by the Herbrand
Theorem, every existential theorem of QLA can be witnessed by an AC0[2]
function.

Let DET(GF(2)) be the complexity class of functions NC1 reducible to the
determinant over GF(2). This class is equal to the class POW(GF(2)), by results
in [3]. On the other hand, AC0[2] is properly contained in DET(GF(2)), since
L ⊆ DET(GF(2)) (see [4]), while MAJORITY ∈ L but it is not in AC0[2]
(see [5, 6]).

Corollary 1. QLA does not prove the principles 2 and 3 (while it can show
them equivalent without POW(A, n)).

Proof. By lemmas 7 and 8 we see that QLA does not prove 2. Now, 3 implies
2 by the following argument: take A and add ei (the elementary column vector
with 1 in the i-th entry, and zeros everywhere else) as the last column. By linear
independence, we know that there exist b1i, b2i, . . . , b(n+1)i, not all zero, such
that b1iA1 + b2iA2 + · · · bniAn + b(n+1)iei = 0, where Ai is the i-th column of A.
If for all i, b(n+1)i is not zero, we found B such that AB = I. If, on the other
hand, some b(n+1)i = 0, then B consisting of columns given by [b1ib2i . . . bni]t is
a zero divisor of A, i.e., AB = 0.

6 Conclusions and Open Problems

We gave a new feasible proof of the Cayley-Hamilton Theorem via Csanky’s
algorithm. The new proof requires fields of characteristic zero, but it shows that
the CHT follows in LAP from the principle of linear independence. It is an
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open question whether the CHT follows in LAP from the principle of linear
independence over general fields.

We showed that five important principles of linear algebra can be shown
equivalent in QLA, and using a previously known separation of complexity
classes (namely AC0[2] � DET(GF(2))) we showed that none of these prin-
ciples is provable in QLA.

It is an interesting open problem whether the principles listed in theorem 2
can be proved in QLA + POW(A, n). Likewise, it is an open problem whether
Berkowitz’s and Csanky’s algorithm are provable correct in LAP (they can be
stated in LAP, and weak properties of correctness are provable in LAP).

Acknowledgments

The author would like to thank Stephen Cook for pointing out the proof of the
Cayley-Hamilton Theorem in [9], which is the basis for the proof in section 4. The
material in section 5 came from discussions with Mark Braverman and Stephen
Cook. Finally, the author is grateful to the anonymous referees, especially to
the referee who succinctly and elegantly expressed the contribution of this paper
(see the first sentence of the introduction).

References

1. M. Bonet, S. Buss, and T. Pitassi. Are there hard examples for Frege systems?
Feasible Mathematics, II:30–56, 1994.

2. Stephen Cook and Alasdair Urquhart. Functional interpretations of feasible con-
structive arithmetic. Annals of Pure and Applied Logic, 63:103–200, 1993.

3. Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Informa-
tion and Computation, 64(13):2–22, 1985.
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Appendix

Proof (lemma 4). We will drop the W from AW as there is no danger of confusion
(the original matrix A does not appear in the proof); thus, A is a k × k matrix,
with 1s below the main diagonal, and zeros everywhere else except (possibly) in
the last column where it has the negations of the coefficients of g(x).

As was noted above, A is divided into four quadrants, with the upper-left
containing just 0. Let R = (0 . . . 0 −ck ) be the row vector in the upper-right
quadrant. Let S = e1 be the column vector in the lower-left quadrant, i.e., the
first column of A without the top entry. Finally, let M be the principal submatrix
of A, M = A[1|1]; the lower-right quadrant.

Let s0, s1, . . . , sk be the Newton’s symmetric polynomials of A.
To prove that g(x) = pATW

(x) we prove something stronger: we show that
(i) for all 0 ≤ i ≤ k (−1)isi = ci, and (ii) pA(A) = 0.

We show this by induction on the size of the matrix A. Since the principal
submatrix of A (i.e., M) is also a companion matrix, we assume that for i < k,
the coefficients of the symmetric polynomial of M are equal to the ci’s, and that
pM (M) = 0. (Note that the Basis Case of the induction is a 1 × 1 matrix, and
it is trivial to prove.)

Since for i < k, tr(Ai) = tr(M i), it follows from (3) and the induction
hypothesis that for i < k, (−1)isi = ci (note that s0 = c0 = 1).

Next we show that (−1)ksk = ck. By definition (i.e., by (3)) we have that sk
is equal to:

1
k

(sk−1tr(A) − sk−2tr(A2) + · · · + (−1)k−2s1tr(Ak−1) + (−1)k−1s0tr(Ak))

and by the induction hypothesis and the fact that for i < k tr(Ai) = tr(M i) we
have:

=
1
k

(−1)k−1(ck−1tr(M) + ck−2tr(M2) + · · · + c1tr(Mk−1) + c0tr(Ak)).

Note that tr(Ak) = −kck + tr(Mk), so:

=
1
k

(−1)k−1
[
ck−1tr(M) + ck−2tr(M2) + · · · + c1tr(Mk−1) + c0tr(Mk)

]
+ (−1)kck

Observe that

tr(ck−1M + ck−2M
2 + · · · + c1M

k−1 + c0M
k) = tr(pM (M)M) = tr(0) = 0

since pM (M) = 0 by the induction hypothesis. Therefore, sk = (−1)kck.
It remains to prove that pA(A) =

∑k
i=0 ciA

k−i = 0. First, show that for
1 ≤ i ≤ (k − 1):
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Ai+1 =

⎛⎜⎜⎝
0 RM i

M iS
∑i−1

j=0 M
jSRM (i−1)−j + M i+1

⎞⎟⎟⎠ (14)

(For A of the form given by (12), and R,S,M defined as in the first paragraph
of the proof.) Define wi, Xi, Yi, Zi as follows:

Ai+1 =
(
wi+1 Xi+1

Yi+1 Zi+1

)
=
(
wi Xi

Yi Zi

)(
0 R
S M

)
=
(
XiS wiR + XiM
ZiS YiR + ZiM

) (15)

We want to show that the right-most matrix of (15) is equal to the right-hand
side of (14). First note that:

Xi+1 =
i∑

j=0

wi−jRM j wi+1 =
i−1∑
j=0

(RM jS)wi−1−j (16)

With the convention that w0 = 1. See [8, lemma 5.1] for an LAP-proof of (16).
Since w1 = 0, a straight-forward induction shows that wi+1 = 0. Therefore, at
this point the right-most matrix of (15) can be simplified to:(

0 RM i

ZiS YiR + ZiM

)
Again by [8, lemma 5.1] we have:

Yi+1 = M iS +
i−2∑
j=0

(RM jS)Yi−1−j Zi+1 = M i+1 +
i−1∑
j=0

Yi−1−jRM j

By the same reasoning as above,
∑i−2

j=0(RM jS)Yi−1−j = 0, so putting it all
together we obtain the right-hand side of (14).

Using the induction hypothesis (pM (M) = 0) it is easy to show that the first
row and column of pA(A) are zero. Also, by the induction hypothesis, the term
M i+1 in the principal submatrix of pA(A) disappears but leaves ckI. Therefore,
it will follow that pA(A) = 0 if we show that

k∑
i=2

ck−i

i−2∑
j=0

M jSRM (i−2)−j (17)

is equal to −ckI.
Some observations about (17): for 0 ≤ j ≤ i− 2 ≤ k − 2, the first column of

M j is just ej+1. And SR is a matrix of zeros, with −ck in the upper-right corner.
Thus M jSR is a matrix of zeros except for the last column which is −ckej+1.
Thus, M jSRM (i−2)−j is a matrix with zeros everywhere, except in row (j + 1)
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where it has the bottom row of M (i−2)−j multiplied by −ck. Let m(i−2)−j denote
the 1× (k− 1) row vector consisting of the bottom row of M (i−2)−j . Therefore,
(17) is equal to:

− ck ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑k
i=2 ck−im(i−2)

∑k
i=3 ck−im(i−3)

...∑k
i=k ck−im(i−k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

We want to show that (18) is equal to −ckI to finish the proof of pA(A) = 0. To
accomplish this, let l denote the l-th row of the matrix in (18) starting with the
bottom row. We want to show, by induction on l, that the l-th row is equal to
ek−l.

The Basis Case is l = 0:

k∑
i=k

ck−im(i−k) = c0m0 = ek,

and we are done.
For the induction step, note that ml+1 is equal to ml shifted to the left by

one position, and with

ml · (−ck−1 −ck−2 . . . −c1 )t (19)

in the last position. We introduce some more notation: let rl denote the k− l row
of (18). Thus rl is 1×(k−1) row vector. Let

←
r l denote rl shifted by one position

to the left, and with a zero in the last position. This can be stated succinctly in
LAP as follows:

←
r l

def= λij〈1, (k − 1), e(rl, 1, i + 1))〉.
Based on (18) and (19) we can see that:

rl+1 =
←
r l +[rl · (−ck−1 −ck−2 . . . −c1 )t]ek + clm0.

(Here the “·” in the square brackets denotes the dot product of the two vectors.)
Using the induction hypothesis:

←
r l= ek−(l+1), and

rl · (−ck−1 −ck−2 . . . −c1 )t = ek−l · (−ck−1 −ck−2 . . . −c1 )t = −cl

so rl+1 = ek−l − clek + clek = ek−(l+1) as desired. This finishes the proof of the
fact that the matrix in (18) is the identity matrix, which in turn proves that (17)
is equal to −ckI, and this ends the proof of pA(A) = 0, which finally finishes the
main induction argument, and proves the lemma.
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Abstract. The proof system G∗
0 of the quantified propositional calcu-

lus corresponds to NC1, and G∗
1 corresponds to P , but no formula-based

proof system that corresponds log space reasoning has ever been devel-
oped. This paper does this by developing GL∗.
We begin by defining a class ΣCNF (2) of quantified formulas that can be
evaluated in log space. Then GL∗ is defined as G∗

1 with cuts restricted
to ΣCNF (2) formulas and no cut formula that is not quantifier free
contains a non-parameter free variable.
To show that GL∗ is strong enough to capture log space reasoning, we
translate theorems of ΣB

0 -rec into a family of tautologies that have poly-
nomial size GL∗ proofs. ΣB

0 -rec is a theory of bounded arithmetic that
is known to correspond to log space. To do the translation, we find an
appropriate axiomatization of ΣB

0 -rec, and put ΣB
0 -rec proofs into a new

normal form.
To show that GL∗ is not too strong, we prove the soundness of GL∗ in
such a way that it can be formalized in ΣB

0 -rec. This is done by giving
a log space algorithm that witnesses GL∗ proofs.

1 Introduction

Recently there has been lots of research looking into the connection between
computational complexity, bounded arithmetic, and propositional proof com-
plexity. A recent survey on this topic can be found at [1]. In this paper, we give
a method of restricting the proof system G∗ to get a proof system GL∗, which
corresponds to log space. The proof system G∗ is a tree-like proof system for
the quantified propositional calculus based on Gentzen’s LK [2]. This affirms the
belief of Cook that there exists a formula-based proof system that corresponds
to log space [1]. Before this the only proof system for log space was based on liar
games [3], and it has never been well developed.

The definition of GL∗ is similar to the definition of G∗i : it is obtain from G∗ by
restricting cuts. We restrict cuts to the class of formulas ΣCNF (2). This class of
formulas is closely related to CNF (2) formulas. These are CNF formulas where
no variable appears more than twice.

Another attempt to capture reasoning between NC1 and P resorted to
putting a bound on the depth of the proof and the number of cuts along a
branch [4], but it is not obvious how to capture other complexity classes using
this type of restriction. In contrast to that, it seems plausible that a proof system
for NL could be defined in the same spirit as GL∗.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 509–524, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The rest of the paper is organized as follows. In the next section, we define
the ΣCNF (2) formulas and the proof system GL∗, and we give the reason for
the restrictions on the cut formulas. Section 3 is devoted to translating theorems
of ΣB

0 -rec into tautologies with polynomial size GL∗ proofs. ΣB
0 -rec is a theory

of bounded arithmetic introduced by Zambella [12] that is known to correspond
to log space [1]. This proves GL∗ is strong enough to capture log space reasoning.
In section 4, we prove in ΣB

0 -rec that GL∗ is sound. This is sometimes called
the reflection principle. This tells us that GL∗ does not capture reasoning for a
higher complexity class.

This paper is based on my Masters thesis [9], where more details can be
found.

2 The Proof System

The proof system PK is the Gentzen-style sequent calculus for propositional
logic [5, 6]. The initial sequents are ⊥ →, → �, and A → A, for any propositional
formula A. The rules of inference include structural rules, which are weakening,
contraction, and exchange; propositional rules, which are used to add propo-
sitional connective to formulas in the sequents; and the cut rule, which infers
Γ → Δ from A,Γ → Δ and Γ → Δ,A. We can then extend PK to the proof
system G by adding rules for quantifiers over propositional variables [7]. Anytime
you deal with quantifiers, you will have problems with the substituting terms
or, in this case, formulas for variables. To help avoid these problems, we use the
following convention.

Notation 1 In propositional formulas, all bound variables will be z, z1, z2, . . .
and will be called z-variables. The free variables will be x, x1, x2 . . . and will be
called x-variables.

This way we know, x-variables are never quantified. The quantifier rules are

A(x), Γ → Δ
∃-left ∃zA(z), Γ → Δ

Γ → Δ,A(B)
∃-right

Γ → Δ, ∃zA(z)

Γ → Δ,A(x)
∀-left

Γ → Δ, ∀zA(z)
A(B), Γ → Δ

∀-right ∀zA(z), Γ → Δ

where x does not appear in the bottom sequent of the ∃-left and ∀-right rules,
and B is a Σq

0 formula that does not mention any z-variable. The Σq
0 formulas

are propositional formulas that do not contain any quantifiers. In general, the
Σq

i formulas are quantified propositional formulas in prenex form with at most
i − 1 quantifier alternations, beginning with ∃ on the outside. In these rules, x
is called the eigenvariable and B is called the target formula. The proof system
G∗ is G restricted to tree-like proofs. The fragment Gi is G with cuts restricted
to Σq

i formulas, and G∗i is Gi restricted to tree-like proofs [7].
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These proof systems have been extensively studied. In [2], Krajicek and Pud-
lak showed a connection between Gi and Buss’s theories T i

2 for i > 0. This result
was shown for a different definition of Gi, but the result still holds [7]. Later
a connection between G∗i and Si

2 [8] was found. With the connection between
these theories and the polynomial-time hierarchy, we get an indirect connection
between the polynomial-time hierarchy and the proof systems. In particular, G∗1
is connected to P . Later the proof system G∗0 was shown to be directly connected
to NC1, and connections to the theory V NC1 were also considered. Since our
proof system is going to correspond to log space, it must be between G∗0 and
G∗1; the cut formulas must be some subset of Σq

1 formulas. This subset is the
ΣCNF (2) formulas.

Definition 1 The set of formulas ΣCNF (2) is the smallest set

1. containing Σq
0 ,

2. containing every formula ∃z, φ(z,x) where (1) φ is a quantifier-free CNF
formula

∧m
i=1 Ci and (2) existence of a z-literal l in Ci and Cj, i �= j,

implies existence of an x-variable x such that x ∈ Ci and ¬x ∈ Cj or vice
versa, and

3. closed under substitution of Σq
0 formulas that contain only x-variables for

x-variables.

Then, GL∗ is defined as follows.

Definition 2 Given a proof of a sequent Γ → Δ, a variable is a parameter
variable if it appears free in Γ → Δ.

Definition 3 GL∗ is the propositional proof system G∗ with cuts restricted to
ΣCNF (2) formulas in which no cut formula that is not Σq

0 contains a non-
parameter free variable.

We chose this class of formulas because we are able to evaluate ΣCNF (2) for-
mulas, given an assignment to the free variables. Moreover, this problem is log
space complete.

Lemma 1 ([9], Lemma 4.2.2). Evaluating ΣCNF (2) formulas is log space
complete.

This is an easy corollary to a theorem in [10], where Johannsen proved that the
satisfiability problem for CNF (2) formulas, SAT (2), is log space complete. A
CNF (2) formula is a CNF formula where no variable appears more than twice.
In Section 4, we will show how to find the assignment to the quantified variables
in log space that satisfies the formula whenever possible.

The restriction on the free variables in cut formulas might seem unnatu-
ral, but it is necessary. Let H∗ be the proof system G∗ with cuts restricted to
ΣCNF (2) formulas and no restriction on the free variables. At first, we tried
to show that H∗ captured log space reasoning, but we found that it p-simulates
G∗1 proofs of Σq

1 formulas.
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At a high level, H∗ proves there exists an output to a circuit by proving that
there exists an output to gate i, given the values for the inputs and the output
of the first i − 1 gates. This can be expressed as a ΣCNF (2) formula. Then,
with repeated cutting, we can prove there exists an output to the ciruit given
the values of the inputs. Since H∗ allows non-parameter variables in the cut
formulas, the cute can be done. This is a problem since determining the output
of a circuit is P -complete. Using this idea, we are able to prove the following
theorem.

Theorem 1. H∗ p-simulates G∗1 for Σq
1 formulas.

A complete proof can be found in [9].

3 Propositional Translations

This section is motivated by results in [11]. In that paper, Cook showed that the-
orems of the equational theory PV can be translated into a family of tautologies
that have polynomial size extended Frege proofs. We will show that theorems of
ΣB

0 -rec can be translated into a family of tautologies that have polynomial size
GL∗ proofs. This tells us that GL∗ captures log space reasoning in the same way
extended Frege captures polynomial time reasoning.

In this paper, the theories will be two sorted. Numbers are the first sort.
We use a, b, x, y, z as number variables, and they are intended to range over the
natural numbers. Binary strings (or finite sets of numbers) are the second sort.
We use X,Y, Z as string variables, and they are intended to be strings of 0’s and
1’s, with leading 0’s removed.

The standard language is L2
A = [0, 1,+, ·, ||; =1,=2, ()]. The constants, 0 and

1, and the binary functions, + and ·, have their usual meaning. The final function
|X | returns to size of the string X (or the least upper bound of the finite set X).
The predicates =1 and =2 are equality between numbers and string, respectively.
The predicate ≤ is the usual inequality between two numbers. The final predicate
is used to access the bits of X . So, X(b) is true if the bth bit of X is 1, and false
otherwise.

In two sorted bounded arithmetic, strings are the important sort. This is why
we define classes of formula based on string quantifiers. The class ΣB

0 of formulas
is the set of L2

A formulas with no string quantifiers and all number quantifiers are
bounded. That is, the number quantifiers are of the form ∃x ≤ b. The class ΣB

1

of formulas is the class of formulas with an initial block of bounded existential
string quantifiers followed by a ΣB

0 formula. A bounded string quantifier is of
the form ∃Z ≤ bφ, which means ∃Z, |Z| ≤ b∧φ. The class Σ1

1 is the same as ΣB
1

except the string quantifiers do not have to be bounded.
Given a ΣB

1 formula φ(x,X) over the language L2
A, we want to translate

it into a family of propositional formulas ||φ(x,X)||[n], where the sizes of the
formulas are bounded by a polynomial in n and the values assigned to x. We
use the translation described in [1, 7]. It is a modification of the Paris-Wilkie
translation (see [1]).
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The first step is to substitute constant values for all the number variables x.
For now we assume φ has no free number variables. The formula ||φ(X)||[n] is
meant to be a formula that says φ(X) is true whenever |Xi| = ni for every string
in X and the number variables are equal to the constants that replaced them.
Then if φ(X) is true for all X, then ||φ(X)||[n] is a tautology for all values for
n. Note that any term t that appears in φ can be evaluated immediately. This
is because there are no number variables and the size of each string variable is
known. So we will let val(t(n)) be the value of the term. The variables n will
often be omitted since they are understood. The free variables in the proposi-
tional formula will be pXi

j for j < ni − 1. The variable pXi

j is meant to represent
the value of the jth bit of Xi; we know that the nith bit is 1, and for j > ni, we
know the jth bit is 0. The definition proceeds by structural induction on φ.

Suppose φ is an atomic formula. Then it has one of the following forms: s = t,
s < t, Xi(t), or one of the trivial formulas ⊥ and �, for terms s and t. In the first
case, we define ||φ(X)||[n] as the formula �, if val(s) = val(t), and ⊥, otherwise.
A similar construction is done for s < t. If φ is one of the trivial formulas, then
||φ(X)||[n] is the same trivial formula. So now suppose φ(X) =syn Xi(t). Let
j = val(t). Then the translation is defined as follows:

||φ(X)||[n] =syn

⎧⎨⎩pXi

j if j < ni − 1
� if j = ni − 1
⊥ if j > ni − 1

Now for the inductive part of the definition. Suppose φ =syn α ∧ β. Then

||φ(X)||[n] =syn ||α(X)||[n] ∧ ||β(X)||[n].

When the connective is ∨ or ¬, the definition is similar. Let j = val(t). If the
outer most connective is a quantifier, then the translation is defined as

||∃y ≤ t, α(y,X)||[n] =syn

j∨
i=0

||α(i,X)||[n]

||∀y ≤ t, α(y,X)||[n] =syn

j∧
i=0

||α(i,X)||[n]

||∃Y ≤ t, α(Y,X)||[n] =syn ∃pY0 , . . . ,∃pYj−2,

j∨
i=0

||α(Y,X)||[i,n]

This completes the definition. Note that ∃Y ≤ b means there exists a string with
size at most b.

3.1 The Theory V L′

There have been a number of theories that capture log space reasoning. We
will use ΣB

0 -rec [12]. The theory ΣB
0 -rec is axiomatized by the axioms of V 0
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(explained below) plus the X-rec axiom below. This formula says that, if every
vertex in the graph with nodes {0, . . . , a} and edge relation X(i, j) has out-degree
at least 1, then there exists a path of length b.

[∀x ≤ a∃y ≤ aX(x, y)] ⊃ ∃Z, ∀w ≤ b∃!x ≤ aZ(w, x)
∧ ∀w < b∀x ≤ a∀y ≤ a[Z(w, x) ∧ Z(w + 1, y) ⊃ X(x, y)].

(X-rec)

In this formula, ∃!xφ means “there exists a unique x such that φ is true.” The
theory V 0 has axioms that define addition, multiplication, the inequalities, and
the size of a string. In addition, V 0 has the ΣB

0 -COMP axiom:

∃Z ≤ a∀i < a, Z(i) ⇐⇒ φ(i),

where φ is a ΣB
0 formula that does not mention Z. V 0 is known to correspond

to AC0. See [1, 6] for details on V 0.
We know ΣB

0 -rec corresponds to log space because of the Σ1
1-definability

theorem below.

Theorem 2. A function is Σ1
1 -definable in ΣB

0 -rec if and only if it is a log space
function.

See [9, 12] for a proof.
We want to reformulate the axioms of ΣB

0 -rec so they translate into
ΣCNF (2) formulas. With the exception of ΣB

0 -COMP, the axioms of V 0 are
ΣB

0 , so they translate into Σq
0 formulas, which are ΣCNF (2). This means we

only need to consider ΣB
0 -COMP and X-rec. We are not going to worry about

ΣB
0 -COMP; we will handle this axiom the same way Cook and Morioka did in

[7]. That is, if the proof system is asked to cut the translation of an instance of
the ΣB

0 -COMP axiom, then the propositional proof is changed so that the cut
becomes

∧t
i=0[||φ(i)|| ⇐⇒ ||φ(i)||], which is ΣCNF (2). To take care of X-rec,

we will define a new theory that is equivalent to ΣB
0 -rec by replacing the X-rec

axiom.
Let ΣB

0 -edge-rec be the axiom scheme

∃Z ≤ 1 + 〈b, a, a〉[ρ1 ∧ ρ2 ∧ ρ3 ∧ ρ4 ∧ ρ5 ∧ ρ6 ∧ ρ7 ∧ ρ8],

where

ρ1 =syn∀j < a,¬Z(0, 0, j) ∨ φ(0, j) ∨ ∃l < jφ(0, l))
ρ2 =syn∀j ≤ a∀k < j,¬Z(0, 0, j) ∨ ¬φ(0, k) ∨ ∃l < kφ(0, l))
ρ3 =syn∀i ≤ a∀j ≤ a, i = 0 ∨ ¬Z(0, i, j)
ρ4 =syn∀w < b∀i ≤ a∀j ≤ a,¬Z(w + 1, i, j)

∨ ∃h ≤ aZ(w, h, i) ∨ ¬φ(i, j) ∨ ∃l < jφ(i, l)
ρ5 =syn∀w < b∀i ≤ a∀j < a,¬Z(w + 1, i, j) ∨ φ(i, j) ∨ ∃l < jφ(i, l)
ρ6 =syn∀w < b∀i ≤ a∀j ≤ a∀k < j,¬Z(w + 1, i, j) ∨ ¬φ(i, k) ∨ ∃l < kφ(i, l)
ρ7 =syn∃i ≤ a∃j ≤ a, Z(b, i, j)
ρ8 =syn∀〈w, i, j〉 ≤ 〈b, a, a〉, [w > b ∨ i > a ∨ j > a] ⊃ ¬Z(w, i, j)
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where φ(i, j) is a ΣB
0 formula that does not mention Z, but may have other free

variables. Informally this axiom says there exists a string Z that gives a pseudo-
path of length b in the graph with a nodes and edge relation φ(i, j). This path
starts at node 0. If (i, j) is an edge in this path, then j is the smallest number
with an edge from i to j, or j = a when there are no outgoing edges. Note that
the edge may not exists in the original graph when j = a. This is why we call is
a pseudo-path. If (i, j) is the wth edge in the path, then Z(w, i, j) is true, and
Z(w, i′, j′) is false for every other pair. It is not immediately obvious the axiom
says this, so we will look at it closer.

Let Z be a string that witnesses the axiom. We want to make sure Z is
the path described above. Looking at ρ3, we see the path starts at 0. Suppose
Z(0, 0, j) is true. We must show that j is the first node adjacent to 0. This follows
from ρ1, which guarantees φ(i, j) is true when j < a, and ρ2, which guarantees
φ(i, k) is false when k < j. A similar argument can be made with ρ5 and ρ6 to
show that every node is the smallest node adjacent to its predecessor. To make
sure the path is long enough, we have ρ7, which says there is a bth edge, and ρ4,
which says if there is a (w + 1)th edge there is a wth. As you may have noticed,
there are parts of this formula that semantically are not needed. For example,
the ∃l < jφ(0, l) in ρ1 is not needed. It is used to make sure the axiom translates
into a ΣCNF (2) formula. We add ρ8 to make sure there is a unique Z that
witnesses this axiom.

Notation 2 For simplicity, ψφ is the ΣB
0 part of the ΣB

0 -edge-rec axiom instan-
tiated with φ. Note this includes the bound on the size of Z. So the axiom can
be written as ∃Zψφ.

So now we define the theory V L′.

Definition 4 V L′ is the theory axiomatized by the axioms of V 0, the ΣB
0 -edge-

rec axioms, and Axiom (1). The language of V L′ is the language of V 0 plus a
string constant C with defining axiom

|C| = 0 (1)

We add the string constant to the language so we can put V L′ proofs in free
variable normal form (below). We do not use the constant for any other reason.
Also, in the translation, we can treat C a string variable with n = 0.

In [9], the author proved that V L′ and ΣB
0 -rec are equivalent. Since the X-

rec and ΣB
0 -edge-rec axioms are semantically similar this is not too difficult, but

to prove the ΣB
0 -edge-rec axiom from X-rec does require a trick used in [12] to

get the path to start at 0. This gives us the following lemma.

Lemma 2. The theory ΣB
0 -rec is equivalent to V L′.

So now we know that V L′ captures log space reasoning, and it does not capture
reasoning for a larger complexity class.

The next step is to be sure the translation of this axiom is a ΣCNF (2)
formula. This is done by a careful inspection of the formula and is left to the
reader.
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Lemma 3. The formula ||∃Zψφ(a, b, Z)|| is a ΣCNF (2) formula.

3.2 Cut Variable Normal Form

In this section, we want to find a normal form for V L′ proofs that makes sure
the translation of V L′ proofs satisfy the variable restriction for GL∗. The normal
form we want is cut variable normal form (CVNF) and is defined as follows.

Definition 5 A formula φ(Y ) is bit-dependent on Y if there is an atomic sub-
formula of φ of the form Y (t), for some term t.

Definition 6 A proof is in free variable normal form if every non-parameter
free variable y or Y that appears in the proof is used as an eigenvariable of an
inference exactly once, and every formula that contains y or Y appears before
that inference.

Definition 7 A cut in a proof is anchored if the cut formula is an instance of
an axiom.

Definition 8 A V L′ proof π is in cut variable normal form if π is (1) in free
variable normal form, (2) every cut with a non-ΣB

0 cut formula is anchored, and
(3) no cut formula that is an instance of the ΣB

0 -edge-rec axiom is bit-dependent
on a non-parameter free string variable.

It is known how to find a proof with the first two properties [5, 6], but, to
our knowledge, no property similar to the third has ever been considered.

The main theorem of this section is

Theorem 3. Suppose V L′ � ∃Z ≤ tφ(Z) for some ΣB
0 formula φ. Then there

exists a V L′-proof π of ∃Z ≤ tφ(Z) such that π is in CVNF.

The proof of this theorem is the most technical in this paper. At a high
level, it amounts to showing ΣB

0 -edge-rec is closed under substitution of strings
defined by ΣB

0 -edge-rec and ΣB
0 -COMP. We begin with an anchored proof that

is in free variable normal. We want to change every cut that violates condition
(3) in the definition of CVNF. Consider the proof given in Figure 1. This is a
simple example of what can go wrong. The general case is handled in the same
way, so we will only consider this case.

Since all ΣB
1 cut formulas are anchored and the ∃Y γ(Y ) must eventually be

cut, it is be an instance of ΣB
0 -COMP or ΣB

0 -edge-rec. The hard part is to prove
the following lemma.

P

. . .
... . .

.

∃Zψφ(Y )(Z), γ(Y ), Γ → Δ

.. .
... . .

.

γ(Y ), Γ → Δ,∃Zψφ(Y )(Z)

γ(Y ), Γ → Δ

∃Y γ(Y ), Γ → Δ

Fig. 1. Example of a proof that is not in CVNF
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Lemma 4. For any ΣB
0 formula φ(Y ), there exist ΣB

0 formulas φ1 and φ2 such
that φ1 is not bit-dependent on Y and V 0 proves the sequent

γ(Y ), ψφ1(Z), ∀i < t[Z ′(i) ⇐⇒ φ2(Z)] → ψφ(Y )(Z ′).

Proof sketch. This proof is divided into two cases. In the first case, we assume

γ(Y ) =syn Y ≤ t∀i < t[Y (i) ⇐⇒ φ′(i)].

That is, it is an instance of ΣB
0 -COMP. We know Y must appear in that position

because it gets quantified. In this case, φ1 is φ with every atomic formula of the
form Y (s) replaced by s < t ∧ φ′(s), and φ2 is not needed.

For the second case, we assume γ(Y ) =syn ψφ′(Y ). In this case we use branch-
ing programs. We give a ΣB

0 description of a branching program BP1 that com-
putes Z ′ and a branching program BP2 that computes Y . BP1 at some point
branches on Y . So we construct BP3 by composing BP1 and BP2. Anytime BP1

needs to branch on Y it runs BP2 to see what it should do. The formula φ1 is
the ΣB

0 description of BP3. The formula φ2 represents the AC0 function that
extracts Z ′ from the run Z of BP3. We use branching programs because log
space can be defined in terms of branching programs.

Using this lemma, we are able to change the proof in Figure 1 into the proof
in Figure 2. In that proof, P ′ is the proof P with the rules that introduced ∃Z
ignored, and Q is an anchored V 0 proof, which we know exists by the lemma
above. This gives us a new proof of the same formula that still satisfies properties
(1) and (2) in Definition 8 and it contains one less cut that is bit-dependent on
Y , but it might be bit-dependent on different non-parameter variables. However,
if we do things in the correct order, we can repeat the transformation and,
eventually, we will get a proof that is in CV NF .

Using this manipulation, we prove Theorem 3.

Proof (Proof of Theorem 3). It would be nice to be able to simply say we can
repeatedly apply the manipulations above and eventually the proof will be in
CVNF, but this is not obvious. In the manipulation, if γ(Y ) is bit-dependent
on a string variable other than Y , then the new ΣB

0 -edge-rec cut formula is bit-
dependent on that variable. This includes non-parameter string variables. So we
need to state our induction hypothesis more carefully.

Let Y1, . . . , Yn be all the non-parameter free string variables that appear
in π ordered such that the variable Yi is used as a eigenvariable before Yj for
i < j. This implies Yi does not appear in γ(Yj) in the manipulations above.
So now suppose no ΣB

0 -edge-rec cut formula is bit-dependent on the variables
Y1, . . . , Yk, for some k < n. Then we can manipulate π such that the same
holds for the variables Y1, . . . , Yk+1. To accomplish this, we simply manipulate
every ΣB

0 -edge-rec cut formula that is bit-dependent on Yk+1 as described above.
Since Y1, . . . , Yk cannot appear in γ(Yk+1), those variables will not violate the
condition. So by induction, we can get a proof that is in CVNF.
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P ′

. . .
... . .

.

ψφ(Y )(Z), γ(Y ), Γ → Δ

Q

.. .
... . .

.

γ(Y ), ψφ1(Z), τ (Z′)→ Δ, ψφ(Y )(Z)

ψφ1(Z), τ (Z′), γ(Y ), Γ → Δ

ψφ1(Z),∃Z′τ (Z′), γ(Y ), Γ → Δ

ψφ1(Z), ∃Z′τ (Z′), γ(Y ), Γ → Δ → ∃Z′τ (Z′)

ψφ1(Z), γ(Y ), Γ → Δ

∃Zψφ1(Z), γ(Y ), Γ → Δ

∃Zψφ1(Z), γ(Y ), Γ → Δ → ∃Zψφ1(Z)

γ(Y ), Γ → Δ

∃Y γ(Y ), Γ → Δ

Fig. 2. Modification of the proof in Figure 1. The formula τ (Z′) is used to replace
∀i < t[Z′(i) ⇐⇒ φ2(Z)]

3.3 Translating Theorems of V L′

We are now prepared to prove the translation theorem. The proof is done by
induction on the length of the proof. For the base case, we need to prove the
translation of the axioms of V L′. Since every axiom except ΣB

0 -edge-rec is an
axiom of V NC1, we know those axioms have polynomial size G∗0 proofs [7] and,
therefore, polynomial size GL∗ proofs as well. Axiom (1) is easy to prove since
it translates to → �. We still need to show how to prove the ΣB

0 -edge-rec axiom
in GL∗. Recall that we write the axiom as ∃Zψφ(a, b, Z). Note that the axiom
does have a bound on Z, but it has been omitted since the specific bound is not
important.

Lemma 5. The formula ||∃Zψφ(a, b, Z)|| has a GL∗ proof of size p(a, b) for
some polynomial p.

Proof sketch. The proof is done by a brute force induction. We prove, in GL∗,
that, if there exists a pseudo-path of length b, then there exists a pseudo-path
of length b + 1. It is easy to prove there exists a pseudo-path of length 0. With
repeated cutting we get our final result. The entire path is quantified, so we do
not cut non-parameter free variables.

We now prove the main theorem of this section.

Theorem 4. Suppose V L′ proves ∃Z < tφ(x,X, Z). Then there are polynomial
size GL∗ proofs of ||∃Z < tφ(x,X, Z)||[n].

Proof. By Theorem 3, there exists a V L′ proof π of ∃Z < tφ(x,X, Z) that is in
CVNF.
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We proceed by induction on the depth of π. The base case follows from
Lemma 5 and the comments that precede it. The inductive step is divided into
cases: one for each rule. With the exception of cut, every rule can be handled
the same way it is handled in the V 1−G∗1 Translation Theorem [6], and will not
be repeated here.

When looking at the cut rule, there are three cases. If the cut formula is
ΣB

0 , then we simply cut the corresponding Σq
0 formula in the GL∗ proof. If the

cut formula is not ΣB
0 , then it must be anchored since the proof is in CVNF.

This means the cut formula is an instance of ΣB
0 -edge-rec or an instance of

ΣB
0 -COMP. First suppose it is an instance of ΣB

0 -edge-rec. Then we are able
to cut the corresponding formula in the GL∗ proof. This is because the axiom
translates into a ΣCNF (2) formula, and the free variables in the translation are
parameter variables since the formula is not bit-dependent on non-parameter
string variables,

When the cut formula is an instance of ΣB
0 -COMP, we apply the same trans-

formation as in the proof of the V NC1−G∗0 translation theorem [7]. That is, we
remove the quantifiers by replacing the variables with Σq

0 formulas that witness
the quantifiers. This change does not effect other cuts since their free variables
are parameter variables or they are Σq

0 formulas and remain Σq
0 after the sub-

stitution. The current cut formula becomes a Σq
0 formula, which can be cut.

4 Proving GL∗ Is Sound in ΣB
0 -rec

In this section, we show that GL∗ does not capture reasoning for a higher com-
plexity class. This is done by proving, in ΣB

0 -rec, that GL∗ is sound. This idea
comes from [11] where Cook showed that PV proves extended Frege is sound
and [2] where Krajicek and Pudlak showed T i

2 proves Gi is sound for i > 0.
We will actually show that V L proves GL∗ is sound. This theory is a univer-

sal conservative extension of ΣB
0 -rec. In [9], the author proved that V L proves

induction on ΣB
0 formulas that contain log space functions. Formally, this is

ΣB
0 (LFL)-IND. In general, we will give informal proofs, but we will be sure in-

duction hypotheses do not use functions that are not log space. Once the proof
in V L is done, we will know that it can be done in ΣB

0 -rec as well since V L is a
conservative extension of ΣB

0 -rec [9].
We start the proof by giving a log space algorithm that witnesses ΣCNF (2)

formulas when the formula is true. This algorithm is the algorithm given in [10]
with a few additions to find the satisfying assignment. This algorithm can be
formalized in V L since it is a log space algorithm, and V L proves that it is
correct. This means we can use this function in induction hypotheses. We then
use this function to define a log space function that witnesses GL∗ proofs. We
finish by proving in V L that the algorithm is correct.

4.1 Witnessing ΣCNF (2) Formulas

We want to define a function W that takes as input a ΣCNF (2) formula and
an assignment to the free variables, and returns an assignment to the quantified
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variables that satisfies the quantifier free portion of the formula whenever pos-
sible. Let ∃zF (z,x) be a ΣCNF (2) formula, where F is quantifier free, and let
v be the values assigned to x. We begin by using v to simplify F . By the form
of ΣCNF (2) formulas, the simplified formula is CNF (2). We now need to find
a satisfying assignment to the simplified formula, if one exists. The simplified
formula will also be called F .

To find the satisfying assignment, we construct an undirected tagged graph
(G, T ) based on F . This is done as in [10]. The graph G has a vertex vi for every
clause Ci in F . There is an edge between two vertices vi and vj if there is a
literal l such that l is in Ci and l is in Cj . A vertex is tagged if the corresponding
clause contains a pure literal.

Based on this construction, Johannsen proved the following lemma [10].

Lemma 6. F is satisfiable if and only if it is possible to direct the edges of G
such that there are no untagged sinks.

The proof of this lemma can be done in V L since the direction for the edges can
be easily construction from the satisfying assignment and vice versa. Johannsen
noted that the edges can be properly directed if and only if G does not contain an
untagged tree. The only if direction is easy to prove using a counting argument.
A tree has fewer edges than nodes, so directing the edges cannot make every
node a non-sink. This can be formalized in V L since V L extends V TC0, and,
therefore, proves the pigeon hole principle for ΣB

0 (LFL) formulas [9]. To prove
the other direction in V L, we give a log space algorithm that directs the edges
appropriately, and prove the correctness of the algorithm in V L. This also gives
us the function W we are looking for.

We use a trick first used in [13] to find a cycle in a graph. For each edge
e = (u, v) in G, we call its two end points eu and ev, with the obvious meaning.
Given an end point p, we the edge can be obtain by e(p) and the vertex by
v(p). Then we can define the permutations σG, which is the product of the
transposition (euev) for every edge in G, and ρG, which is the product of the
cycles (ev1 . . . e

v
n) for each vertex v, where e1, . . . , en are the edge incident to v.

Then the permutation πG = ρG ◦ σG. We will often talk about the graph of πG,
which will also be called πG. This permutation is useful because of the following
nice property first proved in [13].

Definition 9 An end point eu of a vertex e = (u, v) is trivially traversed if the
there are no end points eu1 on the path from eu to ev in πG. If the path from eu

to ev does not exists, then eu is not trivially traversed1.

Lemma 7. The connected component of G that contains edge e = (u, v) is a
tree if and only if every end point in the cycle of πG that contains eu is trivially
traversed. Moreover, this is provable in V L.

This gives us a method of finding cycles.
The algorithm to find appropriate directions for the edges is done in stages.

In stage i, we consider the ith vertex vi. If the vertex is tagged, we continue.
1 This definition comes from a personal communication from Mark Braverman.
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Otherwise, we search G, using πG, for a cycle or tagged vertex that can be reached
from vi. If no cycle or tagged vertex is found, then we found an untagged tree
and we can stop. The edges on the path from vi to the cycle or tagged vertex
are directed away from vi. The edges in the cycle are directed to form a directed
cycle, which direction does not matter. If one of these edges was given a direction
in an earlier stage, that direction is overwritten with the new value.

If we let FindTagOrCycle(G, p) be a function that returns the closest end
point q to p in πG such that v(q) is tagged or q is not trivially traversed. (This
can be done using the algorithm described in [10].) Then the algorithm described
above can be implemented as in Algorithm 1.

for i = 1 . . . n do
if vi is not tagged then

w = FindTagOrCycle(G, evi) for some edge e adjacent to vi.
If w = null, stop.
Else, w′ = evi

while w′ �= w do
Direct e(w′) away from v(w′)
w′ = πG(w′)

end while
end if

end for

Algorithm 1: Algorithm to direct edges on a tagged graph

The correctness of the algorithm follows from the following invariant: After
stage i, the vertices v1, . . . , vi are tagged or are not sinks. It is easy to check that
this holds.

We claim this algorithm can be done in log space. Note that an edge may
be directed multiple times, but the values are never used. So, to determine the
direction of an edge e, we can run the algorithm, but only keep track of e’s
direction. The cycles and tagged vertex are found by searching πG, which has
out-degree 1. Therefore the search can be done in log space. Note that we are
using that log space is closed under composition.

The final thing to do is prove the correctness of the algorithm in V L. This
can be done by induction on the invariant above. Since the algorithm is log
space, the invariant can be stated as a ΣB

0 (LFL) formula, so the induction can
be done in V L.

The function W can be defined by applying the reduction to the input and
output of this algorithm. We add that pure literals are assigned � and variables
that are still not assigned a value are assigned ⊥.

4.2 Witnessing GL∗ Proofs

Let π be a GL∗ proof of a Σq
1 formula ∃zP (x, z), and let A be an assignment

to the parameter variables (Definition 2). We will assume π is in free variable
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normal form (Definition 6). If it is not, we can rename variables to put it in
free variable normal form. The renaming can be done in log space since all
that is really required is to traverse the proof, which is a tree, to determine an
appropriate name.

Let Γi → Δi be the ith sequent in π. To prove the soundness of GL∗, we
define a function Wit(i, π, A) that will find a formula in Γi that is false or a
formula in Δi that is true. We will prove by induction that for any assignment
to all of the free variables if Γi and Δi, Wit(i, π) will find at least one formula
that satisfies the sequent.

There are two things to note. Every formula in Γi is ΣCNF (2), which means
it can be evaluated. Also, we need an assignment that gives appropriate values to
the non-parameter free variables that could appear. To take care of this second
point, we extend A to an assignment A′ as follows:
1: Given a non-parameter free variable y, find the ∃-left inference in π that

uses y as an eigenvariable. Let z be the new bound variable and let F be the
principal formula.

2: Find the descendant of F that is used as a cut formula. Let F ′ be the cut
formula. Note that F is a subformula of F ′, and, because of the variable
restriction on cut formulas, every free variable in F ′ is a parameter variable.

3: Assign y the value that W (F ′, A) assigns z.
The reason for this particular assignment will become evident in the proof of
Lemma 8.

We can now define Wit(i, π, A′), which witnesses Γi → Δi. Wit will go
through each formula in the sequent to find a formula that satisfies the sequent.
ΣCNF (2) formula are evaluated using the algorithm described in the previous
section. We will not focus our attention on other Σq

1 formulas, which must appear
in Δi. Each Σq

1 formula F =syn ∃zF ∗(z) in Δ is evaluated by finding a witness
to the quantifiers as follows:
1: Find a formula F ′ in π that is a ancestor of F , is satisfied by A′, and is a

Σq
0 formula of the form F ∗(z1/B1, . . . , zn/Bn), where each Bi is Σq

0

2: zi is assigned � if A′ satisfies Bi, otherwise it is assigned ⊥
3: if no such F ′ exists, then every bound variable is assigned ⊥.

Lemma 8. For every sequent Γi → Δi in π, Wit(i, π, A′) finds a false formula
in Γi or a true formula in Δi.

Proof. We prove the theorem by induction on the depth of the sequent. For the
base case, the sequent is an axiom, and the theorem obviously holds. For the
inductive step, we need to look at each rule. We can ignore ∀-left and ∀-right
since universal quantifiers do not appear in π.

We will not assume all formulas in Γi are true and all ΣCNF (2) formulas in
Δi as false. So we need to find a Σq

1 formula in Δi that is true.
Consider cut. Suppose the inference is

F, Γ → Δ Γ → Δ,F

Γ → Δ
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First suppose F is true. By induction, with the upper left sequent, Wit witnesses
one of the formulas in Δ. Then the corresponding formula in the bottom sequent
is witnessed by Wit. This is because the ancestor of the formula in the upper
sequent that gives the witness is also an ancestor of the corresponding formula
in the lower sequent. If F is false, it cannot be the formula that was witnessed
in the upper right sequent, and a similar argument can be made.

Consider ∃-right. Suppose the inference is

Γ → Δ,F (B)
Γ → Δ, ∃zF (z)

First suppose F (B) is Σq
0 . If it is false, we can apply the inductive hypothesis,

and, by an argument similar to the previous case, prove one of the formulas in
Δ must be witnessed. If F (B) is true, then Wit will witness ∃zF (z) since F (B)
is the ancestor that gives the witness. If F (B) is not Σq

0 , then we can apply
the inductive hypothesis, and, by the same argument, find a formula that is
witnessed.

The last rule we will look at is ∃-left. Suppose the inference is

F (y), Γ → Δ

∃zF (z), Γ → Δ

To be able to apply the inductive hypothesis, we need to be sure that F (y) is
satisfied. If ∃zF (z) it true, then we know F (y) is satisfied by the construction of
A′: the value assigned to y is chosen to satisfy F (y) if it is possible. Otherwise,
∃zF (z) is false, and we do not need induction.

For the other rules the inductive hypothesis can be applied directly and the
witness found as in the previous cases.

Theorem 5. V L proves GL∗ is sound for proofs of Σq
1 formulas.

Proof. The functions W and Wit are log space functions and can be formalized
in V L. A function that finds A′, given A, can also be formalized since it is log
space. The final thing to note is that the proof of Lemma 8 can be formalized
in V L since the induction hypothesis can be express as a ΣB

0 (LFL) formula and
the induction carried out.

The reason this proof does not work for a larger proof system, say G∗1, is
because W cannot be formalized for the larger class of cut formulas. Also, if the
variable restriction was not present, we would not be able to find A′ in log space,
and the proof would, once again, break down.

5 Concluding Remarks

To summarize, we have a proof system that corresponds to log space reasoning.
This is a formula-based proof system, and it corresponds to ΣB

0 -rec in the usual
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way. This treatment of the proof system suggests a proof system for NL, which
would be based on 2 − SAT instead of SAT (2).

One drawback with GL∗ is the variable restriction. It forced us to prove a
normal form for V L′ proofs. This normal form is specific to V L′, and this proof
would have to be completely redone for other theories. On the other hand, the
proof that GL∗ is sound can be easily changed to work for other theories. All that
really needs to be changed for the case of NL is the definition of the function W .

I would like to thank my supervisor Stephen Cook for providing many useful
comments.
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Identifying Polynomial-Time Recursive Functions
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Abstract. We present a sound and sufficient criterion for identifying polynomial-
time recursive functions over higher-order data structures generalizing the semi-
nal results by Bellantoni and Cook [1] and Leivant [2] to complex structural data-
types. The criterion, presented as a deductive system, always terminates with a
response that is either yes or don’t know. The criterion is complete in the sense
that every polynomial-time recursive function over binary strings has at least one
implementation that is identified by our criterion; whether this is also true for
arbitrary higher-order data structures remains an open problem. Logic program-
ming serves as the underlying model of computation and our results apply to the
Horn fragment as well to the fragment of hereditary Harrop formulas.

1 Introduction

The task of deciding if a function over binary numbers is computable in polynomial
time is well-understood and based on a series of results that date back to Cobham [3].
However, deciding if a general recursive function over arbitrary, possibly higher-order
data-types is computable in polynomial time remains difficult, and requires in general
a reformulation into a previously established formalism, e.g. as a function in bounded
recursion on notation [3], a function in Bellantoni and Cook’s algebra [1] or Leivant’s
algebra [2, 4], or a function typeable in Bellantoni et al. [5] or Hofmann’s type sys-
tems [6, 7]. In this paper we reconcile the simplicity of characterizing polynomial-time
functions over binary numbers with the expressiveness of general recursive functions
over arbitrary domains.

Our underlying model is backward-chaining logic programming, where functions
are declared as relations. This idea is fundamentally different from Ganzinger and
McAllester [8] and Givan and McAllester [9] who have given various criteria for iden-
tifying polynomial time predicates for forward-chaining logic programming. Our mea-
sure of complexity is captured as the size of the execution derivation, a logical deduction
(should it exist), in terms of the size of the input arguments. We consider only the class
of logic programs that implement functions, and we show that our notion of complexity
is compatible with the usual one. Furthermore, we give a sufficient criterion that decides
if a logic program runs in polynomial time.

The criterion is based on the observation that the sum of the size of arguments
passed to the recursive calls must not exceed the size of the input arguments of the
function. In addition, all calls to auxiliary (non-recursive) functions that take recursively
computed arguments as inputs must be shown to be non-size increasing. Aehlig, et
al. [10] and Hofmann [11] have also used the latter condition to extend Hofmann’s
polynomial-time type system to include a larger class of functions. If the criterion is

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 525–540, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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satisfied, we show that the logic programming engine will terminate in a number of
steps that is bounded by a polynomial in the size of the input.

The methodology of using logic programming as the model of computation applies
to several logical formalisms including the Horn and hereditary Harrop fragment of
first-order logic for a higher-order, simply-typed term algebra, which are discussed here.
We suspect, that it can also be used to classify logic programs written in other extensions
and for other term algebras, but leave further investigations to future work.

The paper is organized as follows. First, we discuss logic programming as a model
of computation in Section 2. Next, we develop the criterion that classifies polynomial
time computable recursive functions in Section 3. In Section 4, we then extend our
results to higher-order hereditary Harrop formulas and illustrate the expressiveness of
our results with some examples before we conclude and assess results in Section 5.

2 Functions as Logic Programs

We are interested in studying general recursive functions and classifying their running
time into complexity classes using syntactic criteria. We think of a recursive function
(y1, . . . , yn) = f (x1, . . . , xm) as a predicate P f (x1, . . . , xm; y1, . . . , yn) that relates input
arguments xi with output arguments yi. These relations fall into a subclass of well-
moded logic programs that compute ground output terms from ground input terms. A
ground term is a term not containing any free logic variables. In logic programming
the underlying model of computation is proof search; and thus a complete computa-
tion trace corresponds to a closed proof derivation, which determines ground terms in
all output positions. Such logic programs are considered to have a well-defined mode
behavior. The reader may refer Rohwedder and Pfenning [12] for more information on
algorithms for identifying mode correct logic programs.

2.1 Term Algebra

We choose the simply-typed λ-calculus as logical framework.

Types A, B ::= a | A→ B
Canonical Terms M,N ::= λx : A.N | R
Atomic Terms R ::= c | x | R N

where a and c are type and object level constants declared a priori. For studying run-
time complexity, it is convenient to consider only canonical terms, i.e. terms without
β-redexes. However, in Section 4, we extend the results to non-canonical terms.

2.2 Logic Programming as Model of Computation

Logic programming can serve as a model of computation where traces are captured by
proof derivations. For simplicity we consider only the Horn fragment in this section, but
extend the results to the fragment of hereditary Harrop formulas in Section 4. Predicates
are given by

P(M1, . . . ,Mm; N1, . . . ,Nn)
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F → �
g True

D ∈ F F → D� P
F → P

g Atom

F → P� P
c Atom

F → [M/x]D � P
F → ∀x : A.D� P

c ForAll
F → D� P F → G
F → G ⊃ D � P

c Imp

Fig. 1. Proof search semantics for the Horn fragment

where inputs Mi are separated from outputs Ni by a semicolon. The formulation of
Horn-logic in terms of goals G and definite clauses D is standard.

Goals G ::= � | P
Clauses D ::= G ⊃ D | ∀x : A.D | P
Programs F ::= • | F ,D

A logic program F is simply a collection of clauses. Often we find it convenient to
reverse the direction of G ⊃ D and use D ⊂ G instead.⊃ is right-associative. In addition,
we always omit the leading • from programs.

Definition 1 (Predicate symbol, head of a clause). For a clause D or a goal G, we
define predicate symbol of D or G and head of a clause D as given below:

symbol(P(·; ·)) = P head(P) = P
symbol(∀x : A.D) = symbol(D) head(∀x : A.D) = head(D)

symbol(G ⊃ D) = symbol(D) head(G ⊃ D) = head(D)

2.3 Function Computation Through Proof Search

The proof search semantics of Horn logic is given in Figure 1. Given a programF and a
goal G with ground terms in its input positions, the interpreter constructs a derivation of
the judgment F → G. In the rule g Atom an appropriate clause D corresponding to the
goal G is selected. It is possible to construct a derivation for the judgment F → D � P
only if head of D can be made equal to P. For the sake of our analysis, we assume
that an oracle predicts the correct instantiations of the universally quantified formulas
(c Forall, c Atom). In an actual implementation, however, one would postpone non-
deterministic choice by employing logic variables that are eventually instantiated by
unification, as all logic programs considered here are mode-correct.

This logic program implements the Fibonacci function on natural numbers: F =
+(z, Y; Y),+(X, Y; Z) ⊃ +(s X, Y; s Z), fib(z; s z), fib(s z; s z),+(X, Y; Z) ⊃ fib(N; X) ⊃
fib(s N; Y) ⊃ fib(s (s N); Z), where the constants z, s, and fib are appropriately defined,
and all uppercase variables are of type nat and implicitly universally quantified at the
beginning of the respective clause.

For a logic program F , we denote a proof search derivation for a goal G by D ::
F → G and measure the size of this derivation as the number of inference rules in the
derivation. In the Section 2.5, we show that every rule can be implemented on a random
access machine (RAM) in a constant number of steps.

Definition 2 (Size of proof search derivation). Given a logic programF and a deriva-
tionD :: F → G, we define the size ofD, sz(D) as the number of rules inD.



528 Carsten Schürmann and Jatin Shah

#(x) = #(c) = 1
#(R N) = #(R) + #(N)

#(λx.N) = #(N)

szu(�) = 0 szi(P(M1, . . . ,Mm; ·)) =
∑m

i=1 #(Mi)
szu(G ⊃ D) = szu(D) szo(P(·; N1, . . . ,Nn)) =

∑n
i=1 #(Ni)

szu(∀x : A.D) = szu(D)

Fig. 2. Size function for goals G and clauses D (u = i or u = o)

2.4 Size of Terms, Goals and Clauses

The relevant size functions are defined in Figure 2. # counts the number of variables
and constants in a term. The size of a goal G or a clause D is defined using szi(·) and
szo(·) depending on whether we wish to compute the size of input or output arguments.
szi(G) computes the sum of #-sizes of all the input arguments in the goal G and szi(D)
computes the sum of #-sizes of all the input arguments in predicate P in the clause D.

2.5 Translation to a Random Access Machine (RAM)

The following two conditions are sufficient to show that the proof search algorithm from
Figure 1 can be implemented on a RAM in time proportional to the number of proof
search rules in a proof search derivation. The mode-correct logic program must be

1. deterministic and non-backtracking,
2. and the time required to solve the individual unification problem is independent of

input or output arguments.

The first condition is satisfied if the cases have non-overlapping patterns and all
output positions of recursive calls contain only variables. The second is satisfied if all
variables that occur in input arguments in the head of a clause are linear (i.e. variables
occur exactly once) and form higher-order patterns in the sense of Miller [13]. Linearity
guarantees that logical variables are only instantiated once and hence limit the complex-
ity of unification by the size of the pattern. This may sound as a prohibitive restriction as
clauses such as P(x, x; x) ⊂ � are disallowed. However, those clauses may be linearized
by providing explicitly an equality predicate, such as P(x, y; x) ⊂ equal(x, y; ) ⊂ �.
Higher-order patterns are simply-typed β-normal λ-terms whose universally bound
variables X are applied exclusively to a sequence of distinct bound variables. Qian [14]
has also given a linear time and space unification algorithm for higher-order patterns.
Under those two conditions the logic programming engine can be implemented on a
RAM without increase in its asymptotic complexity.

Theorem 1. Given a logic program F and a goal G satisfying the conditions given
above. If there exists a derivationD :: F → G, then

1. The goal G can be represented on a RAM in size proportional to szi(G).
2. The corresponding proof search can be implemented in time proportional to sz(D).

3 Conditions for Polynomial-Time Functions

In this section, we describe criteria for classifying recursive functions into the poly-
nomial complexity class, FP. These criteria are decidable and can be checked in time
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depending only on the size of the logic program corresponding to the function. Our cri-
teria are sound. We prove completeness for functions over binary strings; whether these
criteria are also complete for arbitrary higher-order data structures is an open problem.
Thus, a checker implementing these criteria can only have two responses yes and don’t
know.

First, we present a general theorem on integer valued recursive functions given by

T (x) =
∑m

i=1 T (xi) + f (x) if x > K
T (x) = b if 1 ≤ x ≤ K

(1)

where x, xi ∈ Z+ and there exists functions gi(·) (not defined using T (·)) such that
xi = gi(x) for all i = 1, . . . ,m such that xi < x, each f (x) is an integer valued function
defined on Z+ (not defined using T (·)), b and K are positive integers; and m is an positive
integer constant.

Theorem 2 ([15]). Given a recursive function T (x) defined in equation 1. If f (x) is a
monotonically increasing function such that f (x) > 0 for all 1 ≤ x ≤ K, and x ≥

∑m
i=1 xi,

then there exists a constant c ≥ 1 such that T (x) ≤ cx2 f (x) for all x ≥ 1.

For example, if T (x) = T (�x/3) + T (�x/4) + x, then T (x) = O(x3) as x ≥ �x/3 +
�x/4. On the other hand, we know that T (x) = T (x − 1)+ T (x − 2)+ 1 when x ≥ 2 and
T (0) = T (1) = 1 is not a polynomial. In this case, x �≥ (x − 1) + (x − 2).

Theorem 2 can be generalized to a set of functions T = {T1(·), T2(·), . . . , Tk(·)}
where each Ti(·) is defined as

Ti(x) =
∑mi

j=1 Tlj (xi j) + fi(x) if x > Ki

Ti(x) = bi if 1 ≤ x ≤ Ki
(2)

where mi,Ki and bi are positive integer constants, each l j ∈ {1, . . . , k}, every fi(x) is an
integer-valued function defined on Z+ (not defined using T (·)), x, xi j ∈ Z+ and there
exists functions gi j(·) (not defined using T (·)) such that xi j = gi j(x).

Theorem 3. Given a set of recursive functions T = {T1(·), T2(·), . . . , Tk(·)} such that
each function is given by equation 2. If for all i = 1, . . . , k:

1. fi(·) are monotonically increasing functions such that fi(x) > 0 for all 1 ≤ x ≤ Ki.
2. x ≥

∑mi
j=1 xi j

then there exists a constant c ≥ 1 such that Ti(x) ≤ cx2F(x) for all x ≥ 1 where
F(x) = max( f1(x), f2(x), . . . , fk(x)).

We present our result in two stages. In Section 3.1 we present the basic criterion
which captures the essence of our solution. The functions identified by this criterion
satisfy the following condition: the sum of the sizes of the recursive input arguments to
the recursive calls is less than the original recursive input arguments. Thus, we are gen-
eralizing the results of Theorem 2 and 3 to higher-order data structures by defining an
appropriate size function. In Section 3.3, we first show that Cobham’s function class [3]
is a special case of this criteria. Later in Section 3.4, we will also extend our criteria to
identify functions where size of the output is bounded by a polynomial.
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3.1 Basic Criteria

We generalize Theorems 2 and 3 to mutually recursive functions on arbitrary simply-
typed λ-terms.

Definition 3 (goals). Given a clause D, we define the set goals(D) as given below.

goals(P) = {}
goals(G ⊃ D) = {G} ∪ goals(D)

goals(∀x : A.D) = goals(D)

Definition 4 (Mutually recursive predicate symbols). Given a logic programF , a set
S of predicate symbols is said to be mutually recursive if and only if for any predicate
symbols P f , Pg ∈ S there exists clauses D1,D2 ∈ F such that symbol(D1) = P f ,
symbol(D2) = Pg and there exist goals G1 ∈ goals(D1) and G2 ∈ goals(D2) such that
symbol(G1) = Pg and symbol(G2) = P f .

Figure 3 shows a deductive system for identifying logic programs corresponding to
polynomial time functions. We say that a logic program F and a corresponding set S
of mutually recursive predicate symbols computes a polynomial-time function, if we
can construct a proof of the judgment �S F polyb using the rules given in Figure 3.
The deductive system checks that every clause D ∈ F satisfies our polynomial time
criteria and the corresponding judgment is given by �S Δ/D poly, where Δ is the list of
subgoals. Initially, Δ is empty; the subgoals of D are added to Δ and they are eventually
used in the base rule (rule b Atom).

For the sake of clarity, given a program clause D and a set S of mutually recursive
predicate symbols corresponding to a function, we will refer to subgoals G such that
symbol(G) ∈ S as recursive function calls and subgoals G such that symbol(G) � S as
auxiliary function calls.

Informally speaking, these conditions require that every program clause D satisfies
the following properties:

1. The sum of the sizes of the inputs to all recursive function calls is no greater than
the size of the input to the function. (Rule b Atom)

2. The size of the input to a recursive function call is strictly less than the size of the
input to the function. (Rule b Imp1)

3. All auxiliary function calls are polynomial-time computable functions and the sizes
of the inputs to those function calls are bounded by a polynomial in the size of the
input to the function. (Rule b Imp2)

In our deductive system, we have omitted proofs of these conditions, but they could
be implemented in standard theorem provers using, say an implementation of Peano’s
arithmetic. The main result of this paper is shown in the theorem below.

Theorem 4 (Basic Criteria). Given a program F and a set S of mutually recursive
predicate symbols from F such that �S F polyb, then there exists a monotonically in-
creasing polynomial p(·) such that for all goals G: if symbol(G) ∈ S andD :: F → G,
then sz(D) ≤ p(szi(G)).
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Programs:

�S • polyb
b empty

symbol(D) � S �S F polyb

�S F ,D polyb
b clause1

symbol(D) ∈ S �S •/D polyb �S F polyb

�S F ,D polyb
b clause2

Clauses:

�S Δ/P polyb
b Atom

〈∑
G∈Δ

symbol(G)∈S
szi(G) ≤ szi(P)

〉

�S Δ,G/D polyb symbol(G) ∈ S
�S Δ/G ⊃ D polyb

b Imp1〈szi(G) < szi(D)〉

�S Δ,G/D polyb symbol(G) � S �T F polyb

�S Δ/G ⊃ D polyb
b Imp2〈szi(G) < fG(szi(D))〉

(where T is a set of mutually recursive predicate symbols such that
symbol(G) ∈ T and fG(·) is a polynomial)

�S Δ/D polyb

�S Δ/∀x : A.D polyb
b Forall

Fig. 3. Basic criteria for identifying for polynomial time functions

According to Theorem 1, if the logic program F computes a function that satisfies the
conditions given in Section 2.5, the proof derivationD can be implemented on a RAM
in time proportional to sz(D). Since, sz(D) is bounded by a polynomial in the size of
the input szi(G), we can conclude that F is polynomial-time computable.

Example 1 (Combinators). The combinators c ::= S | K | MP c1 c2 that are prevalent in
programming language theory are represented as constructors of type comb. We study
the complexity of the bracket abstraction algorithm ba, which converts a parametric
combinator M (a representation-level function of type comb → comb) into a combi-
nator with one less parameter (of type comb) to which we refer as M′. The bracket
abstraction algorithm is expressed by a predicate relating M and M′. Let F be defined
as the following program.

ba (λx : comb. x; MP (MP S K) K).
ba (λx : comb.K; MP K K).
ba (λx : comb.S; MP K S).
ba (λx : comb.MP (C1 x) (C2 x); MP (MP S D1) D2)
⊂ ba (λx : comb.C1 x; D1)
⊂ ba (λx : comb.C2 x; D2).

It is easy to see that
∑2

i=1 #(λx : comb.Ci x) < #(λx : comb.MP (C1 x) (C2 x)), and
hence �ba F polyb.�

3.2 Functions with Inputs from Outputs of Auxiliary Functions

When recursive function calls receive inputs from outputs of certain auxiliary func-
tions, we may be unable to verify the first condition in our basic criteria directly. In
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such cases, we will need additional properties that relate outputs of those auxiliary
functions to their inputs. Non-size increasing property described in detail later in Sec-
tion 3.4 could suffice. But, in general, the user or the theorem prover could use any other
property that may be known to be true regarding that auxiliary function.

3.3 Completeness on Functions over Natural Numbers

Cobham [3] gave a characterization of polynomial-time computable functions as the
least class of functions containing constant, projection, successor, and the smash func-
tion 2|x|.|y| (where |x| is the length of x); and closed under ordinary composition and
bounded recursion on notation as defined below:

Definition 5 (Bounded recursion on notation). Let g, h0, h1 and k be functions in the
class. The function f is defined by bounded recursion on notation if

f (0, x1, . . . , xn) = g(x1, . . . , xn)
f (2y, x1, . . . , xn) = h0(y, x1, . . . , xn, f (y, x1, . . . , xn))

f (2y + 1, x1, . . . , xn) = h1(y, x1, . . . , xn, f (y, x1, . . . , xn))

and f (y, x1, . . . , xn) ≤ k(y, x1, . . . , xn).

Of the elementary functions, constant, projection and successor can be implemented
without any recursion. Consider a direct implementation of bounded recursion. In this
case, we have a bound on the size of the recursive call which we can inductively assume
to be a polynomial. Since polynomials are closed under composition, we can show that
the total size of the inputs to h0 and h1 are polynomials (side condition to the rule
pc Imp2). Hence, the implementation is within our basic criteria. The smash function
can be implemented using bounded recursion and so, it satisfies our basic criteria. The
case for composition is similar – we know a polynomial bound on the size of the output
of the functions being composed.

Therefore, the Cobham’s functions can be implemented in our logic programming
language and they always satisfy our basic criteria. It is possible to show a similar result
for Cobham’s functions when defined over binary strings.

3.4 Polynomial Time Functions with Bounded Recursion

It is clear from the discussion in Section 3.3 that our basic criteria are unable to iden-
tify functions that have function calls which use as inputs, outputs of other recursive
functions unless we know an apriori bound on the size of those outputs. Based on the
ideas first introduced by Caseiro [16], Aehlig, et al. [10] and Hofmann [11] have devel-
oped type systems for identifying functions which recurse on their safe inputs and yet
remain within polynomial-time. Such functions have the property that any function that
recurses on a recursively computed value is non-size increasing. Essentially, this prop-
erty ensures that the size of the output of the function is bounded. In this section, we
shall extend our basic criteria using their idea to identify functions which have bounded
output.
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Non-size Increasing Functions. We say that a function f is non-size increasing if and
only if, the sum of the sizes of the output arguments is never greater than the sizes of
its input arguments within an additive constant, i.e. szo(G) = szi(G) + C, where C is
an integer independent of the input variables of G. The concept of multiplicity defined
below will be used in building a formal deductive system to identify non-size increasing
functions.

Definition 6 (Multiplicity). Given a clause D, a goal G ∈ goals(D) the α and βG

multiplicities of D are defined as follows.

1. α(D) is defined as the maximum number of times any input variable in head(D)
appears in the output positions of head(D).

2. βG(D) is defined as the maximum number of times any output variable in G appears
in the output positions of head(D).

For example α(∀N1N2 M. + (N1,M; N2) ⊃ +(sN1,M; sN2)) and β+(N1 ,M;N2)(∀N1N2M. +
(N1,M; N2) ⊃ +(sN1,M; sN2)) corresponding to the second declaration of addition
+ operation are given by 0 and 1 respectively. Similarly, for a clause of the form
P(N; cNN), α(P(N; cNN)) is given by 2.

The following lemma relates the size of output of a logic program in terms of its
input. We would like to note that goals G ∈ goals(D) may have free variables, while
goals G ∈ GOALS(G) have no free variables.

Definition 7 (GOALS). Given a clause D and a predicate P such that symbol(D) =
symbol(G) and a derivation D :: F → D � P, we define the set GOALS(D) as given
below.

GOALS
(
F → P � P

)
= {}

GOALS

⎛⎜⎜⎜⎜⎜⎝
D1

F → D � P
D2

F → G
F → G ⊃ D � P

⎞⎟⎟⎟⎟⎟⎠ = {D2} ∪ GOALS(D1)

GOALS

⎛⎜⎜⎜⎜⎜⎜⎝
D′

F → [M/x]D� P
F → ∀x : A.D� P

⎞⎟⎟⎟⎟⎟⎟⎠ = GOALS(D′)

Lemma 1. Given a program F and a set S of mutually recursive predicate symbols
from F . Given a predicate P and a clause D ∈ F such that symbol(P) = symbol(D) ∈
S . IfD :: F → D � P, then

szo(P) = α(D)szi(P) +
∑

DH ::F→H∈GOALS(D)

βG(D)szo(H) + γ(D)

where γ(D) is a constant depending only on the structure of D and not its ground input
terms.

The judgment corresponding to the non-size increasing property is written as �S F nsi
and the corresponding deductive system for functions which make recursive function
calls is given in Figure 4. The case when a function has no recursive function calls is
easier to analyze and we will omit it from our discussion here. The deductive system
ensures that the following conditions hold for all program clauses D:



534 Carsten Schürmann and Jatin Shah

Programs:

�S • nsi
nsi empty

symbol(D) � S �S F nsi

�S F ,D nsi
nsi clause1

symbol(D) ∈ S �S •/D nsi �S F nsi

�S F ,D nsi
nsi clause2

Clauses:

�S Δ/P nsi nsi Atom

〈 γ(P)=0∧
∑

G∈Δ
symbol(G)∈S

βG (P)=1∑
G∈Δ

symbol(G)∈S
βG(P)szi(G) +

∑
G∈Δ

symbol(G)�S
βG(P)szo(G) ≤ (1 − α(P))szi(P)

〉

�S Δ,G/D nsi symbol(G) ∈ S
�S Δ/G ⊃ D nsi

nsi Imp1〈szi(G) < szi(D)〉

�S Δ,G/D nsi symbol(G) � S �T F nsi
�S Δ/G ⊃ D nsi

nsi Imp2

(where T is a set of mutually recursive predicate symbols such that symbol(G) ∈ T )

�S Δ/D nsi
�S Δ/∀x : A.D nsi

nsi Forall

Fig. 4. Sufficient conditions for non-size increasing functions

1. The sum of the contribution to the output of the function due to the original in-
puts given by α(D)szi(D) and due to outputs from the subgoal calls given by∑

G∈Δ
symbol(G)∈S

βG(P)szi(G) +
∑

G∈Δ
symbol(G)�S

βG(P)szo(G) is equal to the input to the

function szi(D). γ(D) = 0 and
∑

G∈Δ
symbol(G)∈S

βG(P) = 1. In addition, (Rule nsi Atom)

2. The sum of all input sizes of recursive calls is less than the input to the function.
(Rule nsi Imp1)

3. All auxiliary function calls are non-size increasing. (Rule nsi Imp2)

This condition is sufficient to ensure that the predicate corresponding to the clause D is
non-size increasing.

Theorem 5 (Non-size increasing functions). Given a logic program F and a set S of
mutually recursive predicate symbols from F such that �S F nsi. For all goals G, if
D :: F → G, then szo(G) = szi(G)+C where C is a constant integer depending on the
logic program F .

Dependence Paths. The definitions of dependence paths given below assist us in keep-
ing track of outputs of function calls when they are used as inputs to other function calls.

Definition 8. Given a clause D, and goals G and H in the clause, H �m G iff variables
of G in output positions appear in input positions of H and no variable of G appears
more than m times in H.

Definition 9 (Dependence Path). Given a clause D and goals H = G0,G1, . . . ,Gn =

G ∈ goals(D), a dependence path from G to H of length n denoted by H � G is a
sequence of goal and positive integer pairs (G1,m1), . . . , (Gn = G,mn) such that for
each pair of goals Gi,Gi+1 for i = 0, . . . , n − 1, Gi �mi+1 Gi+1. The width of this
dependence path is defined as Πn

i=1mi.
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�S H � D
�S H � ∀x : A.D

dp Forall
�S H � D
�S H �G ⊃ D

dp Imp1〈H �� G〉

symbol(G) ∈ S
�S H �G ⊃ D

dp Imp2〈H � G〉
symbol(G) � S �S G � D

�S H �G ⊃ D
dp Imp3/1〈H � G〉

symbol(G) � S �S H � D
�S H �G ⊃ D

dp Imp3/2〈H � G〉

�S H � D
�S H � ∀x : A.D

ndp Forall
�S H � D
�S H � G ⊃ D

ndp Imp1〈H �� G〉

symbol(G) � S �S G � D �S H � D
�S H � G ⊃ D

ndp Imp2〈H � G〉

Fig. 5. Proving existence and non-existence of dependence paths

For example, consider the example of Fibonacci numbers from Section 2.3. In this case,
there are two dependence paths each of length 1 from fib(N;X) to +(X,Y;Z) and from
fib(s N; Y) to +(X,Y;Z).

It is worth noting that dependence paths are a structural property of a logic pro-
gram and hence identifying dependence paths is independent of any of the inputs to the
program.

Definition 10 (Set of Dependence Paths). Given a clause D and two goals G,H ∈
goals(D), H �∗ G is the set of all dependence paths from G to H

For a clause D and a goal H, we define a judgment �S H � D which is provable if
and only if there exists a goal G ∈ goals(D) such that symbol(G) ∈ S and there is a
dependence path from G to H. Similarly, we define the judgment �S H � D. Figure 5
gives the deductive systems corresponding to these judgments.

Criteria for Functions with Bounded Recursion. Now we can define an extended
version of the conditions given in Figure 3; the corresponding judgment is given by
�S F polybr. In this case, �S F poly{b,br} means that either �S F polyb or �S F polybr

is true.
These conditions are given in Figure 6 below and they generalize the conditions

given earlier. In this case, we distinguish between functions that have function calls
that use output of a recursive function call and functions that do not. We require that
in the former case, the function calls which use output of a recursive call are non-size
increasing in addition to being polynomial-time computable (compare rules br Imp2/1
and br Imp2/2). The conditions ensure that the size of the output of the logic programs
which satisfy these criteria is polynomially bounded in their input. In the rule pc Atom
we require that the sum of all the inputs to the recursive calls is not larger than the orig-
inal input. We require that we count the inputs to those recursive calls whose outputs
have been used either as input to other function calls or in the final output (with corre-
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Programs:

�S • polybr
br empty

symbol(D) ∈ S �S •/D polybr �S F polybr

�S F , c : D polybr
br clause1

symbol(D) � S �S F polybr

�S F , c : D polybr
br clause2

Clauses:

�S Δ/P polybr

br Atom

〈 ∑
G∈Δ

symbol(G)∈S

βG(P)szi(G) +
∑
H∈Δ

symbol(H)�S

∑
G∈Δ

symbol(G)∈S
p∈H�∗G

βH(P)szi(G)width(p) ≤ szi(P)

〉

�S Δ/D polybr

�S Δ/∀x : A.D polybr
br Forall

�S Δ,G/D polybr symbol(G) ∈ S

�S Δ/G ⊃ D polybr
br Imp1〈szi(G) < szi(D)〉

�S Δ,G/D polybr symbol(G) � S �S G � D �T F nsi �T F poly{br,u}

�S Δ/G ⊃ D polybr
br Imp2/1

(where T is a set of mutually recursive predicate symbols such that symbol(G) ∈ T )

�S Δ,G/D polybr symbol(G) � S �S G � D �T F poly{br,u}

�S Δ/G ⊃ D polybr
br Imp2/2

(where T is a set of mutually recursive predicate symbols such that symbol(G) ∈ T )

Fig. 6. Criteria for identifying polynomial-time functions with bounded recursion

mergesort(nil; nil)
mergesort(cons x xs; w)
⊂ split(cons x xs; y, z)
⊂ mergesort(y; y1)
⊂ mergesort(z; z1)
⊂ merge(y1, z1; w)

split(nil; nil, nil)
split(cons x nil; cons x nil, nil)
split(cons x (cons y xs); cons x x1, cons y y1)
⊂ split(xs; x1, y1)

merge(nil,w; w)
merge(w, nil; w)
merge(cons x xs, cons y ys; cons u z)
⊂ compare(x, y; t)
⊂ merge′(t, cons x xs, cons y ys; u, v,w)
⊂ merge(v,w; z)

merge′(true, cons x xs, cons y ys; x, xs,
cons y ys)

merge′(false, cons x xs, cons y ys; y,
cons x xs, ys)

Fig. 7. Merge Sort

sponding multiplicities). Thus, the sum
∑

G∈Δ
symbol(G)∈S

βG(P)szi(G) accounts for the first

case and
∑
H∈Δ

symbol(H)�S

∑
G∈Δ

symbol(G)∈S
p∈H�∗G

βH(P)szi(G)width(p) for the second.

This ensures that the input arguments to goal H are polynomial in the original input
arguments of the clause D. Hence, the third condition of our basic criteria (rule br Imp2
in Figure 3) is satisfied.

Theorem 6 (Bounded Recursion). Given a program F and a set S of mutually recur-
sive predicate symbols from F such that �S F polybr, then there exists monotonically
increasing polynomials p(·) and p′(·) such that for all goals G: if symbol(G) ∈ S and
D :: F → G, then szo(G) ≤ p(szi(G)) and sz(D) ≤ p′(szi(G)).

Example 2 (Merge Sort). Consider a representation of a list using the constants nil and
cons. The logic program F corresponding to merge sort is given in Figure 7.
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In this example compare(x, y; t), t is true if x < y and t is false otherwise (clauses
omitted for brevity). It is not hard to see that �compare F polyb

It is also clear that �split F polyb as #(xs) ≤ #(cons (cons y xs)) for the third decla-
ration of split. The predicate merge′ is also in polynomial time as it is not recursive. We
can also check that �merge′ F nsi. In this case, the side condition of nsi Atom is satisfied
because α(·) = 1 and βG(·) = 0 for both declarations of merge′. In fact, we can show
that szo(merge′(G)) = szi(merge′(G)) − 2 when given some input through a goal G

We can also show that �merge F polyb. For this we need to show that #(v) + #(w) ≤
#(cons x xs) + #(cons y ys). It is true because merge′ is non-size increasing and we
know that 1 + #(cons x xs) + #(cons y ys) − 2 = #(u) + #(v) + #(w). We can also show
that merge is non-size increasing. Here α(merge′(·)) = α(merge(·)) = 1 and we need
to show that #(cons) + #(u) + #(v) + #(w) ≤ #(cons x xs) + #(cons y ys). This follows
from the fact that merge′ is non-size increasing.

Finally, it needs to be shown that �mergesort F polybr as the outputs y1 and z1 of
mergesort are given as inputs to the predicate merge. In this case, βmergesort(·) = 0 for
both the mergesort subgoals and βmerge(·) = 1 for the second declaration of mergesort.
There are also two dependence paths of length = 1 from mergesort to merge. Thus,
this conditions in Figure 6 require that merge is non-size increasing and #(y) + #(z) ≤
#(cons x xs). This follows from split being non-size increasing.�

3.5 Decidability

The formal deductive systems presented in Figures 3, 4 and 6 are terminating if the side
conditions can be proved or disproved. These side conditions are simply linear multi-
variable inequalities which depend only on the input variables of the function and output
variables of the function calls. We have commented in Section 3.2 on some techniques
to eliminate output variables in the conditions. After we have removed all the output
variables, we simply need to check that the resulting inequality holds over all positive
integer values of its input variables1. Therefore, these deductive systems are decidable.

4 Extending to Hereditary Harrop Formulas

The results presented so far are quite general and even apply to logic programming
languages with dependent types, higher-order terms, and embedded implication. Let us
consider hereditary Harrop formulas [17, 18] which allow embedded implications by
extending Horn goals G as shown below.

Goals G ::= � | P | ∀x : A.G | D ⊃ G
Clauses D ::= G ⊃ D | ∀x : A.D | P

The proof search semantics are extended as shown in Figure 8. The embedded impli-
cation is operationally interpreted as extending the logic program dynamically during
proof-search. Thus, a logic program with hereditary Harrop formulas is polynomial time
if we can ensure that all embedded implications satisfy the polynomial time conditions
that we have presented so far.

1 The inequality
∑n

i=0 ai xi + b > 0 is true for all xi > 0 if ai > 0 and b > 0.
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F → �
g True

D ∈ F F → D � P
F → P

g Atom
F ,D→ G
F → D ⊃ G

g Imp

c new F → [c/x]G
F → ∀x : A.G

g Forall

F → P� P
c Atom

F → [M/x]D � P
F → ∀x : A.D� P

c ForAll
F → D� P F → G
F → G ⊃ D � P

c Imp

Fig. 8. Proof search semantics for the hereditary Harrop formulas

Example 3 (β-redexes). Since the arguments to predicates P have to be in canonical
form, it is not possible to represent functions such as eval which simplify a term in
lambda-calculus to its β-normal form.

eval (lam E) (lam E) ⊂ �,
eval (app E1 E2) V ⊂ eval E1 (lam E′1) ⊂ eval E2 V2 ⊂ eval (E′1 V2) V

However, such predicates can be represented by defining a predicate substA,B :
(A → B) → A → B which performs the substitution explicitly and computes the
canonical form. For example, if A = B = exp then substexp,exp (written as subst1 for
clarity) is given by

subst1(λx.x,V; V) ⊂ �,
subst1(λx.app (E1x) (E2x),V; (app (E′1) (E′2)))
⊂ subst1(λx.(E1x); E′1) ⊂ subst1(λx.(E2x); E′2),

subst1(λx.lam (λy.(E x y))),V; lam (λy.(E′y)))
⊂ (∀y : exp.subst1(λx.y,V; y) ⊃ subst1(λx.(E x y),V; (E′ y)))

In this case, we observe that for logic program F corresponding to substexp,exp,
�substexp,exp F polyb because the first declaration is non-recursive,

∑2
i=1 #(λx.(Eix)) <

#(λx.app (E1x) (E2x)) in the second declaration, and the embedded implication in the
third declaration in non-recursive.

On the other hand, when A = exp→ exp and B = exp then substexp→exp,exp (written
as subst2 for clarity) is given by

subst2(λ f . f ,V; V) ⊂ �,
subst2(λ f .(app (E1 f ) (E2 f )),V; app E′1 E′2)
⊂ subst2(λ f .(E1 f ),V; E′1) ⊂ subst2(λ f .(E2 f ),V; E′2),

subst2(λ f .lam λy.(E f y),V; lam λy.(E′ y))
⊂ (∀y : exp.subst2(λ f .y,V; y) ⊃ subst2(λ f .(E f y),V; (E′ y)),

subst2(λ f . f (E f ),V; E′′)
⊂ subst2(λ f .E f ,V; E′) ⊂ subst2(λx.Vx, E′; E′′)

In this case, the first three declarations satisfy the polynomial time conditions we
have described so far. In the fourth declaration, output term E′ from the recursive call
substexp→exp,exp is provided as input to substexp,exp. It is easy to see that Stage 1 con-
ditions do not hold for this case because, it is not possible to determine the run time of
substexp,exp as we do not know the size of its input E′. Stage 2 conditions do not hold
either because, substexp,exp is a size-increasing function. Now the eval (app E1 E2) V
is changed to
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eval (app E1 E2) V
⊂ eval E1 (lam E′1) ⊂ eval E2 V2 ⊂ substA,exp(E′1,V2; E′′1 ) ⊂ eval (E′′1 V)

where an appropriate substA,exp is chosen.
Therefore, when A = exp we know that β-reduction is a polynomial time opera-

tion, but when A is a higher-order type, our conditions can no longer guarantee that
β-reduction is in polynomial time.�

Example 4 (Combinators cont’d). Recall the bracket abstraction algorithm from Ex-
ample 1 that is used in the conversion from λ-expressions into combinators. We follow
standard practice and define a new type exp together with the two constructors app of
type exp→ exp→ exp and lam of type (exp→ exp)→ exp. Using our syntax, extend
the program F from Example 1 to a program F ′ by the following new declarations.

convert(app E1 E2; MP C1 C2) ⊂ convert(E1; C1) ⊂ convert(E2; C2),
convert(lam E); D)
⊂ (∀x : exp.∀y : comb. ba(λz : comb. y; MP K y)
⊃ convert(y; z) ⊃ convert (E x; C y))

⊂ ba (λy : comb.C y; D)

We observe that �convert F ′ polybr because the first declaration satisfies
∑2

i=1 #(Ei) <
#(app E1 E2), and each embedded implication in the second is non-recursive. Further-
more #(E x) < #(lam E) because E is applied to a parameter x (and not an arbitrary
term). In addition, �ba F ′ nsi by rule nsi Atom where we choose α(·) = 0 and βba(·) = 1
for the two recursive calls, and hence the dynamic extension of the bracket abstraction
algorithm ba is non-size increasing.�

5 Conclusions

In this paper, we have given criteria for identifying general recursive functions over a
simply-typed higher-order term algebra that can be executed in polynomial time. The
criteria are informally intuitive and have been rigorously proven sound. Moreover, they
are complete for functions over binary numbers as Cobham’s functions fall within the
criteria. [3].

In future, we wish to use the results presented here to determine if reductions be-
tween two NP complete problems represented as logic programs (such as [19]) are
poly-time computable. The mathematical foundations of this work presented in Sec-
tion 3 allow us to identify super-polynomial complexity classes as well; investigating
how this observation can be translated into an appropriate decision procedures for super-
polynomial checkers is also left to future work.
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Linköping, Sweden, Springer-Verlag (1996) 296–310

13. Miller, D.: A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation 1 (1991) 497–536

14. Qian, Z.: Unification of higher-order patterns in linear time and space. J. Log. Comput. 6
(1996) 315–341

15. Verma, R.M.: General techniques for analyzing recursive algorithms with applications.
SIAM Journal of Computing 26 (1997) 568–581

16. Caseiro, V.H.: Equations for defining poly-time functions. PhD thesis, University of Oslo
(1997)

17. Harrop, R.: Concerning formulas of the types A→ B∨C,A→ (Ex)(Bx). Journal of Symbolic
Logic 25 (1960) 27–32

18. Miller, D.: Hereditary harrop formulas and logic programming. In: Proceedings of the VIII
International Congress of Logic, Methodology, and Philosophy of Science, Moscow (1987)
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Abstract. We show that confluence of shallow and right-linear term
rewriting systems is decidable. This class of rewriting system is expres-
sive enough to include nontrivial nonground rules such as commutativ-
ity, identity, and idempotence. Our proof uses the fact that this class of
rewrite systems is known to be regularity-preserving, which implies that
its reachability and joinability problems are decidable. The new decid-
ability result is obtained by building upon our prior work for the class
of ground term rewriting systems and shallow linear term rewriting sys-
tems. The proof relies on the concept of extracting more general rewrite
derivations from a given rewrite derivation.

1 Introduction

Term rewriting systems provide a Turing-complete formalism for modeling com-
putation. Terms over a signature encode the state of a system and the rewriting
rules specify the dynamics. Rewriting systems have been used this way to model
and verify discrete state transition systems, see for instance [2, 6, 11]. Under
a slightly different interpretation, rewriting rules can be viewed as defining an
equational theory over terms. The direction of the rule, in this case, generally
indicates which equivalent form is simpler. This viewpoint has been successfully
used for equational reasoning in theorem proving, see for instance [1].

Confluence is a central property of rewrite systems. It guarantees that the
order of application of rewrite rules is not significant. When viewed as a model
of computation, confluence provides a more general definition of determinism.
For purposes of verification, confluence generalizes the condition required for
partial-order reduction. In the context of equational reasoning, confluence and
termination of a computable rewrite relation imply decidability of the word
problem for the induced equational theory.

The expressive power of a rewrite system can be limited by imposing addi-
tional constraints on the form of terms. For instance, if variables are not allowed,
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we get ground term rewrite system, which have been extensively studied, mainly
via mapping them to tree automata [3]. Richer classes of rewrite systems are
obtained by allowing restricted variable occurrences in the term rewrite system
(or the tree automata transitions). In going from special to more general classes
of rewrite systems, the complexity of deciding various fundamental problems,
like termination and confluence, increases until all these problems become unde-
cidable. It is, therefore, fruitful to study these properties for some intermediate
classes, especially if they are expressive enough to capture interesting rules.

In this context, we consider shallow right-linear term rewrite systems, where
every rule l → r is such that every variable occurs at most once in r, and all
variables in l, r occur at depth 0 or 1. Some examples of shallow right-linear
rules are 0 ∧ x → 0, x ∧ x → x, 1 ∧ x → x, x ∨ x → x and x ∨ y → y ∨ x.

The class of shallow right-linear rewrite systems is very close to the frontier
of classes for which confluence is undecidable. A (generally) simpler problem
like reachability is known to be undecidable for linear TRS’s, and also for shal-
low TRS’s [10]. On the positive side, Takai, Kaji, and Seki [13] showed that
right-linear finite-path-overlapping systems effectively preserve recognizability.
Since shallow right-linear systems are right-linear and finite-path-overlapping,
it follows that the reachability and joinability problems for these systems are
decidable. The exact location of the barrier for decidability of termination and
confluence inside the class of right-linear finite-path-overlapping systems is still
open.

We prove the decidability of confluence for shallow right-linear TRS’s. This
result uses the decidability of reachability and joinability for this class as a black
box. We extend and simplify the ideas presented in [8] where decidability of
confluence of shallow linear TRS’s was proved. Here, we eliminate the neces-
sity of constructing a rewrite closure for the original TRS (which is difficult for
shallow right-linear TRS’s, if possible), and the notion of rewriting with marked
(sub-)terms. Non-linearity forces us to use extended counterexample witnesses
to confluence: pairs {s, t} were used in [8], but now larger sets {s1, . . . , sn} are
needed. Moreover, as in [8], the computation of top-stabilizable constants (con-
stants equivalent to some term that cannot be reduced to a constant) is crucial,
but much more difficult here. In fact, we can compute all such constants only
when the system is confluent, and the final proof shows that when not all of
them are computed, a non-confluence witness is detected.

The procedure to decide confluence of R has two steps. First we add new rules
to R and obtain R ⊇ R in Section 3.1. Then, in Section 3.3, we present a simple
decidable characterization of confluence of R in terms of R- and R-joinability of
certain flat terms.

2 Preliminaries

We use standard notation from the term rewriting literature. A signature Σ
is a (finite) set of function symbols, which is partitioned as ∪iΣi such that
f ∈ Σn if arity of f is n. Symbols in Σ0, called constants, are denoted by
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a, b, c, d, with possible subscripts. The elements of a set V of variable symbols
are denoted by x, y, z with possible subscripts. The set T (Σ,V) of terms over
Σ and V , position p in a term, subterm t|p of term t at position p, and the
term t[s]p obtained by replacing t|p by s are defined in the standard way. For
example, if t is f(a, g(b, h(c)), d), then t|2.2.1 = c, and t[d]2.2 = f(a, g(b, d), d).
The empty sequence, denoted by λ, corresponds to the root position. We denote
t[s1]p1 [s2]p2 . . . [sn]pn by either t[s1, s2, . . . , sn]p1,p2,...,pn , or t[s1, . . . , sn]P , where
P = {p1, . . . , pn}. By t|P we denote the set {t|pi : pi ∈ P}. By Pos(t) we denote
the set of all positions p such that t|p is defined. We write p1 $ p2 (equivalently,
p2 ≺ p1) and say p1 is below p2 (equivalently, p2 is above p1) if p2 is a proper
prefix of p1, that is, p1 = p2.p

′
2 for some nonempty p′2. Positions p and q are

disjoint if p �; q and q �; p.
We will often denote a term f(t1, . . . , tn) by the simplified form ft1 . . . tn,

and t[s]p by t[s] when p is clear by the context or not important. By Vars(t) we
denote the set of all variables occurring in t. The height of a term s is 0 if s is a
variable or a constant, and 1+max iheight (si) if s = f(s1, . . . , sm). The depth of
a position p is the length of p. The size of a term fs1 . . . sm is 1 + Σm

i=1size(si).
A substitution σ is sometimes presented explicitly as {x1  → t1, . . . , xn  → tn}.

We assume standard definition for a rewrite rule l → r, a rewrite system R, the
one step rewrite relation at position p induced by R →R,p, and the one step
rewrite relation induced by R (at any position) →R. The notations ↔, →+, and
→∗, are standard [5].

A rewrite system R is confluent if the relation ←∗
R ◦ →∗

R is contained in
→∗ ◦ ←∗, which is equivalent to the relation ↔∗

R being contained in →∗ ◦ ←∗

(called the Church-Rosser property). A term t is reachable from s by R (or,
R-reachable) if s →∗

R t. A set S of terms is said to be equivalent by R (or,
R-equivalent) if s ↔∗

R t for all s, t ∈ S. A set S of terms is R-joinable if there
is a term that is R-reachable from all of them. A (rewrite) derivation or proof
(from s) is a sequence of rewrite steps (starting from s), that is, a sequence
s →R s1 →R s2 →R . . ..

A term t is called ground if t contains no variables. It is called shallow if all
variable positions in t are at depth 0 or 1. It is called linear if every variable
occurs at most once in t. It is flat if its height is at most 1. A rule l → r ∈ R
is called shallow right-linear if the term r is linear, and both l, r are shallow; it
is flat if both l, r are flat terms. A flat rule l → r is called a permutation rule
if height(l) = height(r) = 1; it is called a decreasing rule if height(l) = 1 and
height(r) = 0, and an increasing rule if height(l) = 0 and height(r) = 1.

3 Confluence

Let R be such that every rule l → r ∈ R is shallow and right-linear. Using
standard transformation rules, the rewrite system R can be transformed into a
rewrite system R′ such that every rule l → r ∈ R′ is flat and right-linear. This
transformation is achieved by introducing new constants and adding new rewrite
rules [7, 9]. Additionally, we can also assume that Σ = Σ0 ∪ {f}, where f is of



544 Guillem Godoy and Ashish Tiwari

arity m. All these transformations preserve confluence. We assume henceforth
that R is a flat and right-linear TRS defined over a signature Σ = Σ0∪{f}. We
want to decide if R is confluent.

We use the fact that R-equivalence is decidable [4, 12] repeatedly below. Since
shallow and right-linear systems are finite-path overlapping and right-linear, the
R-reachability and R-joinability relations are also decidable [13]. We assume that
the theory of the rewrite system R is not trivial, that is, it is not the case that
x ↔∗

R y. Confluence of such systems can be decided by simply checking if x and
y are R-joinable. We also assume that R contains no rule of the form x → t
where x �∈ Vars(t). Any R that contains such a rule is trivially confluent.

3.1 Top-Stabilizable Constants

A term t ∈ T (Σ,V) is called top-stable if it cannot be rewritten to a constant
in Σ0 by R, that is, there is no constant c ∈ Σ0 s.t t →∗

R c. A constant c is top-
stabilizable if it is R-equivalent to a top-stable term. Our intention is, for every
set {c1, . . . , ck} of equivalent constants that are top-stabilizable, to choose a new
marked representative constant, say c1, and add the k rules c1 → c1, c2 →
c1, . . . , ck → c1 to R. The intuitive idea for adding these rules is that they
allow the rewrite system to replace a top-stabilizable constant by an equivalent
constant which can not be used by the rewrite system (note that these new
constants do not appear in R).

Let Σ0 be a new set of constants obtained by picking a representative con-
stant from each set of R-equivalent constants and marking it.

Σ0 = {c : c ∈ Σ0, c is a chosen representative for its R-equivalence class}

We next define R (over the new signature Σ ∪ Σ0) by adding certain rewrite
rules of the form c → d, where c and d are R-equivalent. The construction of R
is achieved through a fixpoint computation.

R0 = R

Ri+1 = Ri ∪ {c → d : c, d ∈ Σ0, ∃ flat term t ∈ T (Σ ∪Σ0,V) : t ↔∗
Ri

c ↔∗
R d,

d ∈ Σ0, t does not rewrite to a constant in Σ0 by Ri}

When we add c → d, we also add all rewrite rules c′ → d, where c′ ↔∗
R c, in

the same iteration, and hence, the fixpoint iterations terminate in at most |Σ0|
steps. Let R be the final result.

Example 1. If R0 = {fa → b, a → a′, fb → c}, then R1 = R0 ∪ {b → b} (due to
the witness fa′) and subsequently R2 = R1 ∪ {c → c} (due to the witness fb).

The next lemma states that the addition of the new constants does not change
the congruence relation (over the original signature).

Lemma 1. If s, t ∈ T (Σ,V), then for all i, s ↔∗
Ri

t iff s ↔∗
R t.
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We would want a rule c → d to be added if and only if the constant c is
top-stabilizable. This is not always the case, but the left-to-right implication is
stated in Lemma 5. Its proof uses the following definitions and lemmas. These
lemmas are not conceptually difficult but they are of technical nature, and they
are used again later, in the last part of Lemma 12.

Definition 1. Let s →l→r,q t be a one-step rewrite derivation with a flat right-
linear rule and let p ∈ Pos(s). We say that p goes to a certain position p′ in this
derivation, denoted by Post(s → t)(p) = p′, whenever:

– p′ = p, and either (i) q is disjoint from p, or (ii) p ≺ q, or (iii) p = q and l
is not a variable, or

– p = q.q1.p
′′ and p′ = q.q2.p

′′, for some q1, q2 such that l|q1 and r|q2 are the
same variable.

If there is no such p′, then we say that p does not go anywhere, denoted by
Post(s → t)(p) = ⊥.

We extend this definition to derivations of arbitrary length. If s = s1 → s2 →
· · · → sn, we say that p1 goes to pn, or Post(s →∗ t)(p1) = pn, if there exists
p2, . . . , pn−1 such that for all i, Post(si → si+1)(pi) = pi+1. If no such sequence
of positions exists, we say that p does not go anywhere.

For example, in the derivation f(faab)bc →fxxy→fxbc,1 f(fabc)bc, position
1 goes to position 1, 1.1 and 1.2 go to 1.1, and 1.3 does not go anywhere.

Lemma 2. Let R′ be any flat right-linear rewrite system and Post(s →∗
R′

t)(λ) = p. Then s →∗
R′ t|p′ for any p′ , p.

The above lemma depends on the right-shallowness of insertion rules in R.

Lemma 3. Let Ri be one of the rewrite systems appearing in the construction
of R. Let s →∗

Ri
t be any derivation. Let p1, . . . , pk be disjoint positions, that are

also disjoint with Post(s →∗ t)(λ) whenever it is not ⊥, and such that every t|pj

is Ri-equivalent to some bar constant cj.
Then s →∗

Ri
t[c1]p1 . . . [ck]pk

, where λ goes to the same position as before.
Alternatively, if none of the terms t|pj is Ri-equivalent to any constant, then

there is a derivation s →∗
Ri

t[z1]p1 . . . [zk]pk
, where λ goes to the same position

as before and z1, . . . , zk are new variables.

Proof. We use induction on the length of the derivation s →∗
Ri

t. For length 0
the result is trivial since there are no positions disjoint with λ. Hence, let the
derivation be of the form s →∗

Ri
t′ →l→r,q t.

If q ; pj for some j, then it is the case that t′[c1]p1 . . . [ck]pk
≡ t[c1]p1 . . . [ck]pk

.
Moreover, the pj ’s are disjoint with Post(s →∗

Ri
t′)(λ). By induction hypothesis,

s →∗
Ri

t′[c1]p1 . . . [ck]pk
with λ going to the same position as before.

Now suppose that q �; pj for any j. For every pj , define a set of maximal
disjoint positions Pj = Pre(t′ → t)(pj) ⊆ Pos(t′) as follows:

Pre(t′ → t)(pj) = Maximal({p ∈ Pos(t′) : Post(t′ → t)(p) = pj}),
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where Maximal(P ) denotes the set of maximal positions in P (wrt $). Now, note
that every Pj is a set of disjoint positions, but moreover, all of them are disjoint
with Post(s →∗

Ri
t′)(λ), and ∪j∈{1...k}Pj is a set of disjoint positions. Hence,

by induction hypothesis, s →∗
Ri

t′[c1, . . . , c1]P1 . . . [ck, . . . , ck]Pk
with λ going to

the same place, and t′[c1, . . . , c1]P1 . . . [ck, . . . , ck]Pk
→ t′′, where t′′ may differ

from t[c1]p1 . . . [ck]pk
in the positions pj of the form q.l for some l ∈ {1, . . . ,m}

such that r|l is a constant. For such a position pj, t′′|pj ≡ t|pj ≡ r|l, and hence,
this constant is Ri-equivalent to the corresponding cj . Therefore, by applying
rules of the form c → cj on t′′, the term t[c1]p1 . . . [ck]pk

is reached, and hence,
this term is also Ri-reachable from the initial s, and with λ going to the same
position. The proof for the alternate claim follows the same pattern.

Example 2. Let S = {x → gxc, c → fc}, R = R0 ∪S and R = R2 ∪S, where R0

and R2 are as in Example 1. In the R-derivation b → gbc → g(gbc)c → g(gbc)fc,
the position λ goes to position 1.1. We can replace c and fc in the disjoint
positions 1.2 and 2 by c and get a new derivation b → gbc → g(gbc)c → g(gbc)c.

We can replace top-stable subterms by equivalent bar-constants in certain Ri-
derivations (Lemma 4). Recall that a rewrite step using l → r is called decreasing
if height(l) = 1 and height(r) = 0.

Lemma 4. Let Ri be one of the rewrite systems appearing in the construction
of R and let fs1 . . . sm be a flat term over Σ ∪ Σ0. Let fs′1 . . . s

′
m be a term

obtained from fs1 . . . sm by replacing every bar constant by an Ri-equivalent and
R-top-stable term in T (Σ,V). Let fs′1 . . . s

′
m →∗

R t[ft′1 . . . t
′
m]p be a derivation

in which λ goes to p, and that does not have any decreasing steps applied at the
positions where λ goes to.

Then, there exists a derivation fs1 . . . sm →∗
Ri

t[ft1 . . . tm]p, where λ goes to
p, and ft1 . . . tm is obtained from ft′1 . . . t

′
m by replacing every R-top-stable t′j

Ri-equivalent to a bar constant tj by this corresponding tj, and leaving the other
t′j unchanged, that is, tj = t′j.

Proof. We induct on the length of the derivation fs′1 . . . s
′
m →∗

R t[ft′1 . . . t
′
m]p.

For length 0 the result is trivial since in this case t is the empty context and
every t′j coincides with the corresponding s′j . Hence, let this derivation be of the
form fs′1 . . . s

′
m →∗

R t′ →l→r∈R,q t[ft′1 . . . t′m]p. Now, we distinguish several cases
depending on the relationship between q and p.

q and p are disjoint. In this case Post(fs′1 . . . s
′
m →∗

Ri
t′)(λ) = p and t′ is ac-

tually t′[ft′1 . . . t′m]p. By induction hypothesis, fs1 . . . sm →∗
Ri

t′[ft1 . . . tm]p
in which λ goes to p. Moreover, t′[ft1 . . . tm]p →l→r,q t[ft1 . . . tm]p, and hence
t[ft1 . . . tm]p is Ri-reachable from fs1 . . . sm, with λ going to p.

q ≺ p, or q = p and Post(fs′1 . . . s′m →∗
Ri

t′)(λ) �= q. (In the latter case, the
step t′ →l→r∈Ri,q t[ft′1 . . . t

′
m]p is necessarily a decreasing step.) Let

P = Pre(t′ → t[. . .]p)(p). Note that there is a position p′ ∈ P
such that Post(fs′1 . . . s′m →∗ t′)(λ) = p′. By induction hypothesis,
fs1 . . . sm →∗

Ri
t′[ft1 . . . tm]p′ . Using Lemma 3 on this derivation at po-

sitions below the other positions in P , we get fs1 . . . sm →∗
Ri

t′′, where
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t′′ is t′[ft1 . . . tm, . . . , f t1 . . . tm]P . We have set up t′′ so that t′′ →l→r,q

t[ft1 . . . tm]p, and hence t[ft1 . . . tm]p is Ri-reachable from fs1 . . . sm, with λ
going to p.

q = p and Post(fs′1 . . . s′m →∗
Ri

t′)(λ) = q. In this case, l → r has to be a per-
mutation rule: by assumption, no decreasing rules occur at the positions
where λ goes to, and an increasing step would imply Post(fs′1 . . . s′m →∗

Ri

t[ft′1 . . . t
′
m]p)(λ) �= p. Therefore, t′ is of the form t[fr′1 . . . r

′
m]p and fr′1 . . . r

′
m

rewrites to ft′1 . . . t
′
m by l → r. By induction hypothesis, fs1 . . . sm →∗

Ri

t[fr1 . . . rm]p, where λ goes to p. Note that the same permutation rule l → r
is applicable at λ in fr1 . . . rm, since r′j ≡ r′k implies rj ≡ rk for all j, k.
Hence, fs1 . . . sm →∗

Ri
t[ft1 . . . tm]p, where λ goes to p in this derivation.

p ≺ q. In this case, t′ is of the form t[ft′1 . . . t
′
j−1r

′
jt
′
j+1 . . . t

′
m]p, where r′j →l→r t′j .

Note that either tj ≡ t′j or tj is a bar-constant Ri-equivalent to t′j . In either
case, tj is Ri-equivalent to r′j .
If tj ≡ t′j , then r′j is not an R-top-stable term that is Ri-equivalent to a
bar constant occurring in Ri. By induction hypothesis there is a derivation
fs1 . . . sm →∗

Ri
t[ft1 . . . tj−1r

′
jtj+1 . . . tm]p, where λ goes to p. Since r′j → t′j ,

it follows that fs1 . . . sm →∗
Ri

t[ft1 . . . tm]p with λ going to p.
If tj is a bar-constant Ri-equivalent to t′j , then t′j is R-top-stable. If r′j is
also R-top-stable, then induction hypothesis gives exactly what we wanted to
prove. Otherwise, if r′j is not R-top-stable, then, induction hypothesis gives
a derivation fs1 . . . sm →∗

Ri
t[ft1 . . . tj−1r

′
jtj+1 . . . tm]p, where λ goes to p.

Moreover, since r′j is not R-top-stable, we have r′j →∗
R c for some constant

c ∈ Σ, which is Ri-equivalent to the bar-constant tj , and hence, the rule
c → tj occurs in Ri. Therefore, t[ft1 . . . tm]p is Ri-reachable from fs1 . . . sm,
with λ going to p.

Example 3. Using R from Example 2, in the derivation g(fa′)c → g(fa′)fc →
g(gfa′c)fc, λ goes to λ, and by Lemma 4 we would have a derivation gbc →∗ gbc.

Lemma 5. If there is a rule c → d in R, then d is R-top-stabilizable.

Proof. We prove by induction on i that if c → d is introduced in Ri, then d is
R-top-stabilizable. Suppose this is not true for certain i and c → d; i.e., d is
not top-stabilizable but this rule has been introduced in the i’th step. By the
construction of Ri, there exists a flat term s = fs1 . . . sm in T (Σ ∪Σ0,V) Ri−1-
equivalent to d and such that s does not rewrite to any constant in Σ0 by Ri−1.
We can assume that any sj that is a bar constant already occurs in Ri−1: a bar
constant sj not occurring in Ri−1 can be replaced by a new variable, preserving
all properties and the proof. We construct a term s′ = fs′1 . . . s

′
m as follows: if

sj is some bar constant e then s′j is chosen as an R-top-stable term in T (Σ,V)
R-equivalent to e that exists by induction hypothesis, and if sj is not a bar
constant then we make s′j equal to sj. By Lemma 1, s′ and d are R-equivalent.
Since d is not R-top-stabilizable, s′ →∗

R c′ for some c′ equivalent to d. Wlog,
assume that all terms that occur in the derivation s′ →∗

R c′ are in T (Σ,V).
First, suppose that there is a decreasing step at some position where λ

goes to in the derivation s′ →∗
R c′. Hence, this derivation can be written as
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fs′1 . . . s
′
m →∗

R t[ft′1 . . . t′m]p →R,p t′ →∗
R c′, where the step t[ft′1 . . . t′m]p →R,p t′

is the first decreasing step at the positions where λ goes to. By Lemma 4,
there exists a derivation fs1 . . . sm →∗

Ri−1
t[ft1 . . . tm]p where λ goes to p, and

ft1 . . . tm is obtained from ft′1 . . . t
′
m by replacing every R-top-stable t′j that is

Ri−1-equivalent to a bar constant tj by this tj . By Lemma 2, there exists a
derivation fs1 . . . sm →∗

Ri−1
ft1 . . . tm. Since R is flat, the decreasing step ap-

plied on the subterm ft′1 . . . t
′
m can be also applied on ft1 . . . tm and the result

is either a constant or one of the tj ’s. The first case is not possible since then
fs1 . . . sm would Ri−1-reach a constant, which is a contradiction. In the second
case, we have fs1 . . . sm →∗

Ri−1
tj . Note that tj can not be one of the intro-

duced bar constants, since they are not equivalent to d. Hence, tj ∈ T (Σ,V)
and tj is R-equivalent to d. Since d is not R-top-stabilizable, there is a deriva-
tion tj →∗

R c′′ for some constant equivalent to d. But this derivation is also an
Ri−1-derivation since R ⊆ Ri−1, and hence, fs1 . . . sm Ri−1-reaches a constant,
which is a contradiction.

We can now assume that there are no decreasing steps at the positions where
λ goes to in s′ →∗

R c′. This implies, in particular, that λ does not go any-
where in this derivation. Hence, the derivation is of the form fs′1 . . . s

′
m →∗

R

t[ft′1 . . . t
′
m]p →l→r∈R,p′ t′ →∗

R c′, where λ goes to p, and there exists p′′ ∈
Pos(l) such that l|p′′ is a variable not occurring in r, and p′.p′′ , p. As
before, by Lemma 4, there exists a derivation fs1 . . . sm →∗

Ri−1
t[ft1 . . . tm]p

where λ goes to p. From t = t[ft1 . . . tm]p we construct a new term t′′ =
t[t|p′.p′′ ]p′.p1 . . . [t|p′.p′′ ]p′.pk

, where p1 . . . pk are all the positions in l where the
variable l|p′′ occurs. By Lemma 3, fs1 . . . sm →∗

Ri−1
t′′. By construction of t′′,

t′′ →l→r∈R,p′ t′ →∗
R c′, and since R ⊆ Ri−1, it follows that fs1 . . . sm Ri−1-

reaches a constant, which contradicts the assumption on fs1 . . . sm.

3.2 Detection of Top-Stabilizable Constants

Not all the top-stabilizable constants are necessarily detected by the fix-point
computation. But under certain confluence assumptions, we can guarantee that
some of them will be detected.

Lemma 6. Let R be confluent upto height h, i.e., any set of equivalent terms
with height smaller than or equal to h is joinable.

Then, if t is a top-stable term with height smaller than or equal to h+ 1 and
equivalent to some constant c, then c → d ∈ R for some d ∈ Σ0.

For proving the previous lemma, we first need some properties about the
congruence relation induced by R. Since R is a shallow TRS, R-equivalence
can be decided using a paramodulation-based completion procedure [4, 12]. The
resulting saturated TRS can be used as the set Congr (R), or alternatively, we
can just use the following:

Congr(R) = {l → r : l, r are flat, l ↔∗
R r, height(l) ≥ height(r)}.

This set could have nonlinear terms on the right-hand sides. In this section, we
study some properties of rewriting with a flat TRS R.
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Definition 2. Let t be a term. A set of disjoint positions P �= {λ} of t is called
maximally equivalent if all t|p∈P are equivalent, and for any t|q equivalent to
them and different from t there exists some p ∈ P with p , q. If a term s (or a
set of terms S) is equivalent to t|P , we say that P is the maximally equivalent
set in t equivalent to s (S).

The following lemma shows that, in some cases, the relation →∗
R is preserved

after replacing some subterms by variables.

Lemma 7. Let R be a flat TRS. Let s →∗
Congr(R) t, and let P be maximally

equivalent in s such that the terms s|p∈P are not equivalent to a constant.
Then, either s[z, . . . , z]P →∗

Congr(R) z and s is equivalent s|P , or
s[z, . . . , z]P →∗

Congr(R) t[z, . . . , z]P ′ , where P ′ is the maximally equivalent set
in t equivalent to the terms s|p∈P .

Proof. We prove it for one step derivations, since the proof inductively extends
to any length. Hence, assume that s →Congr(R),q t and P is as above.

If p , q for some p ∈ P , then s|p′ and t|p′ are equivalent for any p′ , p and
for any p′ disjoint with p, and the result trivially follows. Hence, assume that
p �, q for any p ∈ P . Note that s|p′ and t|p′ are equivalent for any p′ , q and for
any p′ disjoint with q.

If the applied rule is of the form f(. . . , x, . . .) → x with the x of the left-hand
side occurring in a position i such that q.i ∈ P , then t|q is equivalent to terms
s|P . In such a case, s|q is also equivalent to s|P , and since q was not in P , it can
only be that q = λ and s[z, . . . , z]P →Congr(R) z trivially.

In any other case, the maximally equivalent set in t equivalent to s|P is the
set {p′|p′ ∈ P disjoint with q} ∪ {q.p′|p′ is in the maximally equivalent set of t|q
equivalent to s|P }. Let l → r and σ be the applied rule and substitution. Let
σ′ be as σ except for the variables x ∈ Vars(r) − Vars(l), for which we define
xσ′ = xσ[z, . . . , z]Px , where Px = {λ} if xσ is equivalent to s|P , and Px is the
maximally equivalent set in xσ equivalent to s|P , otherwise. Then, s[z, . . . , z]P
rewrites into t[z, . . . , z]P ′ applying l → r with σ′ at position q (note that positions
with constants in r are not equivalent to s|P since, by the assumptions of the
lemma, s|P is not equivalent to a constant).

Corollary 1. Let s1, . . . , sn be terms that reach a term t by →∗
Congr(R). Let

P1, . . . , Pn be maximally equivalent positions in s1, . . . , sn, respectively, such that
all terms in s1|P1 , . . . , sn|Pn are equivalent, but not equivalent to a constant.

Then, either some si[z, . . . , z]Pi reaches z by →∗
Congr(R) and the sj’s are

all equivalent to si|Pi , or all si[z, . . . , z]Pi ’s reach the same term t[z . . . z]P ′ by
Congr (R), where P ′ is the maximal set in t equivalent to si|Pi ; and hence, they
are all equivalent.

Let R and R be as in the previous subsection. The following lemma shows
that, in some cases, an R-derivation can be transformed into an R-one.

Lemma 8. For every bar constant c, let tc be a term R-reachable from all con-
stants equivalent to c. Let s and t be two terms satisfying s →∗

R
t.

Then, s{. . . c  → tc . . .} →∗
R t{. . . c  → tc . . .}.
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Proof. It is enough to prove it for one step derivations, since then it inductively
extends to any length. Hence, assume s →R t. If this step uses a rule in R, then
the result is trivial. Otherwise, it uses a rule of the form d → c, and the result
trivially follows from the fact that tc is reachable from d.

Now, we are ready to prove Lemma 6

Proof. (of Lemma 6) The proof is by contradiction. We consider a term t as a
counterexample witness to the goal, if its height is smaller than or equal to h+1,
t is top-stable, and it is equivalent to a constant that has not been detected as
top-stabilizable. We compare witnesses by the size ordering.

Assume that the minimal counterexample witness is a certain term t equiv-
alent to some constant c.

First, we show that all terms occurring in t at depth 1 and with non-zero
height are equivalent to constants. Suppose not. Let s be a height non-zero sub-
term of t at depth 1 that is not equivalent to a constant. Let P be the max-
imally equivalent set of positions of t equivalent to s. Since t →∗

Congr(R) c,
by Lemma 7, either t[z, . . . , z]P →∗

Congr(R) z and t is equivalent to s, or
t[z, . . . , z]P →∗

Congr(R) c[z, . . . , z]P ′ , where P ′ is the maximally equivalent set
in c equivalent to s. The first case is not possible, since s is not equivalent
to a constant and t is equivalent to c. In the second case, c[z, . . . , z]P ′ = c,
and hence t[z, . . . , z]P is a term equivalent to c and smaller than t. Therefore,
by the minimality assumptions on t, the term t[z, . . . , z]P is not stable, i.e.
t[z, . . . , z]P →∗

R d for some constant d equivalent to c. On the other hand, the
set t|P is equivalent and all its terms have height smaller than h+1, and hence it
is joinable to some term r. Consequently t reaches t[r, . . . , r]P , and the derivation
(t[z, . . . , z]P →∗

R d){z  → r} shows that t[r, . . . , r]P reaches d, which contradicts
the fact that t is top-stable.

Furthermore, by minimality of t it follows that every such height non-zero
subterm s at depth 1 in t is top-stable, and moreover, its corresponding equiv-
alent constant has been detected as top-stabilizable, since otherwise, we would
have a smaller counterexample witness {s}.

Now, let t′ be like t but where every height non-zero depth 1 subterm is
replaced by its corresponding R-equivalent bar-constant. Clearly, t′ is flat and
t′ ↔∗

R
c. Since c was not detected as top-stabilizable, t′ R-rewrites to some

constant d equivalent to c. For every bar-constant e, let Se be the set of all
constants R-equivalent to e, plus all the terms equivalent to e occurring at depth
1 in t. Each such Se is joinable, since the height of its terms is smaller than h+1,
and hence, we can choose a term te reachable from Se. By Lemma 8, t′{. . . e  →
te . . .} →∗

R d{. . . e  → te . . .}. But d{. . . e  → te . . .} is d and t′{. . . e  → te . . .} is
reachable from t, and this contradicts the fact that t is top-stable.

3.3 Deciding Confluence for Shallow Right-Linear Systems

Before proving the decidability of confluence, we need some additional lemmas
that show that rewrite derivations using shallow and right-linear rules can be
generalized to yield “more-general” rewrite derivations.
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Lemma 9. Let s be a flat term such that every constant in s also occurs in R.
Let s →∗

R
t[r]p be a derivation where λ goes to p, and without decreasing steps

applied at the positions where λ goes to. Let r′ be r[z]i where i ∈ {1, . . . ,m} and
either r|i is equivalent to the variable z, or r|i is not equivalent to any height 0
term and z is a new variable.

Then, there exists a derivation s →∗
R

t[r′]p, where λ goes to p.

The proof of the previous lemma, generalized to several positions i1, . . . , ik,
is completely analogous to the one of Lemma 4.

Lemma 10. Suppose s →∗
R

t and Post(s →∗ t)(λ) = p �= ⊥. Let α be a bar-
constant R-equivalent to s if such a bar-constant exists, and let α be a variable
if s is not R-equivalent to any constant.

Then, for all p′ , p, there is a derivation α →∗
R

t[α]p′ in which λ goes to the
position p′.

Proof. We prove by induction on the length of the derivation s →∗
R
t. The base

case is trivial. Assume the above derivation is of the form s →∗
R
t[lσ]q → t[rσ]q ,

and take p′ , p. We analyze the following cases:
(a) If p and q are disjoint, then λ goes to p in s →∗ t[lσ]q. Applying induction
hypothesis on this derivation we have s →∗ t[lσ]q[α]p′ with λ going to p′, and
the same rule l → r applied at position q finishes the proof.
(b) If p′ , q then λ goes to a position below or at p′ in s →∗

R
t[lσ], and induction

hypothesis on this derivation establishes the claim.
(c) Suppose p = q.i.q′ and p′ = q.i.q′′. We again distinguish two cases. If l is
a variable, then λ goes to q.q′ in s →∗ t[lσ]. By induction hypothesis, we get
α →∗ t[α]q.q′′ . Now, apply the rule l → r at position q to rewrite t[α]q.q′′ into
t[α]q.i.q′′ . This concludes the first case. In the second case, we assume that l is
not a variable. Apply induction hypothesis on the subderivation s →∗ t[lσ]q at
the appropriate position in P = Pre(t[lσ] → t[rσ])(p′). We replace the terms at
other positions in P by α using Lemma 3 to finally get the derivation α →∗

R
(t[lσ]q)[α, . . . , α]P . Note that this is required because l may be nonlinear. Now,
we can use the rule l → r to rewrite (t[lσ]q)[α, . . . , α]P into (t[rσ]q)[α]p′ .

Example 4. Applying Lemma 10 to the derivation b →∗ g(gbc)fc of Example 2,
we infer that there will be derivations b →∗ g(gbc)fc, b →∗ gbfc, and b →∗ b.

The following lemma is an addendum to Lemma 4.

Lemma 11. Let s be a flat term with constants occurring in R, and let s′ be
obtained by replacing in s every bar-constant by an R-equivalent R-top-stable
term in T (Σ,V). Let s′ →∗

R t be a derivation where λ does not go anywhere, and
without decreasing steps applied at the positions where λ goes to.

Then, there exists a derivation s →∗
R

t, where λ does not go anywhere. More-
over, if s is not R-equivalent to a constant, then there exists a derivation z →∗

R
t

for any variable z, and where λ does not go anywhere.

We are ready to give a characterization for confluence of R.
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Lemma 12. R is confluent iff the following two conditions hold:

(i) Every R-equivalent set of constants of Σ is R-joinable.
(ii) Let {α1, . . . , αk, t1, . . . , tn} be an R-equivalent set of terms, where n ≥ 1,

k+n ≥ 2, αi’s are constants in Σ0 or variables (in this case there is at most
one variable, i.e. k ∈ {0, 1}), and ti’s are flat terms over Σ ∪ Σ0 such that
no ti can reach a constant in Σ or a variable by →∗

R
.

Then, there exist t′1, . . . , t
′
n such that every t′i is either ti or c or x, some t′i

coincides with ti, and the set {α1, . . . , αk, t
′
1, . . . , t

′
n} is R-joinable. Here c

is the (possible) bar-constant in the equivalence class of the set and x is the
(possible) variable in the equivalence class of the set.

Proof. ⇐ : For the right-to-left direction, we will prove a more general statement:
R is confluent, and all top-stabilizable constants have been detected (during the
fixpoint computation that constructs R), i.e., d occurs in R if d ∈ Σ0 and d
is top-stabilizable. The proof is by contradiction, and we consider two kinds of
counterexamples to the goal: a multiset {t1, . . . , tn} with n ≥ 2 is a counterex-
ample witness to confluence if it is equivalent but not joinable. A single set {t}
is a witness to the top-stabilizability detection if t is top-stable but it is equiv-
alent to a constant that has not been detected as top-stabilizable. We compare
witnesses {t1, . . . , tn} using the multiset extension of the size ordering.
Witness to Top-Stabilizability Detection: Assume that the minimal coun-
terexample witness is {t}, where t is top-stable and equivalent to some constant
c that has not been detected as top-stabilizable.

By minimality of {t}, all equivalent sets of terms with height smaller than
the height of t are joinable. Therefore, by Lemma 6, we conclude that c has been
detected as top-stabilizable, which is a contradiction.
Witness to Confluence: Assume that the minimal counterexample witness
is a witness to confluence. The witness can not contain only constants, due to
condition (i). Let {α1, . . . , αk, t1, . . . , tn} be the minimal counterexample witness
to confluence, where the ti’s are not constants, n ≥ 1 and n + k ≥ 2.

We first prove that all terms occurring in the ti’s at depth 1 and with height
non-zero are equivalent to constants. Suppose not. Let s be a height nonzero
subterm at depth 1 of some term ti such that s is not equivalent to a constant.
We pick a term t reachable from all {t1, . . . , tn} by →Congr(R). If there are
constants in the witness (k ≥ 1), we choose t to be a constant. Let P1, . . . , Pn be
the maximal positions equivalent to s in t1, . . . , tn, respectively. By Corollary 1,
either for some ti, say t1, it happens that t1[z . . . z]P1 →Congr(R) z and t1 is
equivalent to t1|P1 and to s (in this case no constant appears in the witness, i.e.,
k = 0), or all the ti[z, . . . , z]Pi ’s reach the same term t[z . . . z]P ′ by Congr (R),
where P ′ is maximal in t, and hence they are all equivalent (in this case, if
there are constants in the witness, P ′ is empty and t[z . . . z]P ′ is exactly the
constant t).

In the first case, {t1[z, . . . , z]P1 , z} and t1|P1 ∪ {t2, . . . , tn} are both equiva-
lent sets smaller than the original witness. Therefore, each of these two sets is
separately joinable, say to terms u and v respectively. Instantiating z by v in
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z →∗ u, we get v →∗ u{z  → v}. As a result we infer that u{z  → v} is reachable
from every term in {t1, . . . , tn}, contradicting that this set is a counterexample
to confluence.

In the second case, {α1, . . . , αk, t1[z . . . z]P1 , . . . , tn[z . . . z]Pn} and t1|P1 ∪. . .∪
tn|Pn are both R-equivalent sets that are smaller than the original witness. There-
fore, both these sets are separately R-joinable, say to terms u and v respectively.
It is again easy to see that any term in {α1, . . . , αk, t1, . . . , tn} reaches u{z  → v},
contradicting the fact this set is a counterexample for confluence.

We now know that in the minimal counterexample {α1, . . . , αk, t1, . . . , tn},
any height non-zero term s occurring at depth 1 is equivalent to a constant c. By
the minimality of the counterexample, s is top-stable, and hence the constant c
is top-stabilizable. Moreover, this has been detected, since {s} is smaller than
the above witness, and therefore, a bar-constant for the class of c exists. Let
t′1, . . . , t

′
n be as t1, . . . , tn, but where every nonzero term occurring at depth 1

has been replaced by its R-equivalent bar-constant.
First, we show that no t′i can reach a constant of Σ. Suppose that some t′i,

say t′1, reaches a constant c ∈ Σ. For every bar-constant d, let Sd be the set
of all constants R-equivalent to d, plus all the terms equivalent to d occurring
at depth 1 in t1. Each such Sd is joinable, since it is a smaller set compared
to the original witness. Hence, we can choose a term td reachable from Sd. By
Lemma 8, t′1{. . . d  → td . . .} →∗

R c, and since t1 reaches t′1{. . . d  → td . . .} by →∗
R,

it follows that t1 reaches a constant, contradicting that t1 is top-stable (which
follows from minimality of the counterexample).

Now, by Condition (ii), there exist terms t′′1 , . . . , t
′′
n such that every t′′i is either

t′i or the corresponding bar-constant of its class (if it is equivalent to a constant),
some t′′i coincides with t′i, and the set {α1, . . . , αk, t

′′
1 , . . . , t

′′
n} is R-joinable to a

certain term r. For every bar-constant c, let Sc be now the set of all constants R-
equivalent to c, plus all the terms equivalent to c occurring at depth 1 in the ti’s
such that t′′i is not a bar-constant, plus all the terms ti equivalent to c such that t′′i
is a bar-constant. Each such Sc is joinable, since it is a smaller set than the initial
witness, and hence, we can choose a term tc reachable from Sc. By Lemma 8,
every term in {α1, . . . , αk, t

′′
1 , . . . , t

′′
n}{. . . c  → tc . . .} reaches r{. . . c  → tc . . .}.

Since every ti reaches t′′i {. . . c  → tc . . .}, this proves that {α1, . . . , αk, t1, . . . , tn}
is joinable, which contradicts that it is a witness to confluence.

⇒ : Assume that R is confluent. This immediately implies Condition (i).
Moreover, by Lemma 6, all the top-stabilizable constants have been detected.
To show that Condition (ii) is also true, let {α1, . . . , αk, t1, . . . , tn} be a set as
in Condition (ii).

We choose terms t′1, . . . , t
′
n such that every t′i can be obtained by replacing

in ti every bar-constant at depth 1 by an R-equivalent R-top-stable term of the
original signature. The set {α1, . . . , αk, t

′
1, . . . , t

′
n} is R-equivalent and contains

terms of the original signature, and by Lemma 1 it is also R-equivalent. By
confluence, it is R-joinable to a certain term t, i.e. there exist derivations of
the form αi →∗

R t and t′i →∗
R t. We choose such a t to be a minimal one in

size satisfying such condition. Note that, due to this minimality, every height
nonzero subterm of t is top-stable.
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Let ti, say t1, be such that a decreasing step occurs in the derivation t′1 →∗
R t

at some position where λ goes to. Let t′1 →∗
R s[r′1]p → s[r′2]p be the initial

subderivation where a decreasing step appears for the first time. Note that λ
goes to p in this derivation, no decreasing step occurs at the positions where λ
goes to in t′1 →∗

R s[r′1]p, and r′1 rewrites to r′2 with a decreasing step at root
position. By Lemmas 4 and 9, t1 →∗

R
s[r1]p where λ goes to p, and r1 is as

r′1 but where, fixing a new variable z, every height nonzero subterm at depth
1 has been replaced by, either z if it is not equivalent to any height 0 term,
or by an equivalent bar-constant if it is equivalent to some constant, or by an
equivalent variable if it is equivalent to a variable. The same decreasing rule used
in r′1 →R r′2 can be applied to r1 obtaining a certain term r2 that is either a
bar-constant, or a variable. Therefore, t1 →∗

R
s[r2]p where λ goes to p, and by

Lemma 2 t1 →∗
R

r2. Therefore, {α1, . . . , αk, t1, r2, . . . , r2} is R-joinable and we
are done.

At this point, we can assume that no derivation t′i →∗
R t contains a decreasing

step at some position where λ goes to, and we distinguish two cases.
The t′i’s Are Not Equivalent to Any Height 0 Term. In this case k = 0.

First we show that in every derivation t′i →∗
R t, λ goes to somewhere. Suppose

not, i.e. wlog. assume that λ does not go anywhere in t′1 →∗
R t. By Lemma 11

there exists a derivation z →∗
R

t for any variable z. We choose z to be a new
variable not occurring in t. This shows that the theory induced by R is trivial,
which contradicts the initial assumptions of this section.

Next we show that the positions where λ goes to in the derivations t′i →∗
R t

are not disjoint. Suppose not, i.e. wlog. assume that λ goes to disjoint p1 and p2

in t′1 →∗
R t and t′2 →∗

R t, respectively. Using Lemma 10 on these two derivations,
we get derivations x →∗

R
t[x]p1 and y →∗

R
t[y]p2 . Now, using Lemma 3 on these,

we get derivations x →∗
R

t[x]p1 [y]p2 and y →∗
R

t[y]p2 [x]p1 . This shows that x and
y are R-equivalent, and by Lemma 1 R-equivalent, which contradicts again the
initial assumption of the non-triviality of the theory induced by R.

Finally we show that the positions where λ goes to in the derivations t′i →∗
R t

coincide. Suppose not, i.e. wlog. assume that λ goes to p1 and p1.i.p2 in t′1 →∗
R t

and t′2 →∗
R t, respectively. By Lemma 4 applied to t′1 →∗

R t, we get t1 →∗
R
t[r]p1 .

Note that, by Lemma 2 applied to t′2 →∗
R t, t′2 is R-equivalent to t|p1.i, and hence

t|p1.i is not R-equivalent to a height 0 term, and t|p1.i and r|i coincide. Therefore,
using Lemma 9 we get t1 →∗

R
t[r[y]i]p1 . On the other hand, by Lemma 3, applied

to t′2 →∗
R t we get t2 →R t[r]p1 . Using Lemma 10 on this derivation, we get

y →∗
R

t[r[y]i]p1 . This shows that an arbitrary variable y is R-equivalent to t1,
contradicting the non-triviality of the theory induced by R.

Once we know that there exists a position p where λ goes to in all of the
derivations t′i →∗

R t, it is easy to conclude: by Lemma 4 any ti R-reaches t[r]p,
where r is obtained from t|p by replacing every height nonzero subterm at depth
1 R-equivalent to a constant by a bar-constant, and hence {t1, . . . , tn} is R-
joinable.

The Set {α1, . . . , αk, t1, . . . , tn} Is R-Equivalent to a Height 0 Term.
If λ does not go anywhere in a certain derivation t′i →∗

R t, by Lemma 11,
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ti →∗
R

t. Therefore, if λ does not go anywhere in any derivation t′i →∗
R t, then

{α1, . . . , αk, t1, . . . , tn} is R-joinable to t and we are done. Hence, from now on
we assume that λ goes to somewhere in some of the derivations t′i →∗

R t, say in
t′1 →∗

R t,. . . ,t′l →∗
R t, for some l ≥ 1 and l ≤ n, and let p1, . . . , pl the positions

where λ goes to in each of these derivations, respectively. From the list of po-
sitions p1, . . . , pl we are interested in the ones that are minimal. Wlog. assume
that, for some o, p1, . . . , po are the minimal ones, i.e., for every i in {o+1, . . . , l}
there exists a j in {1, . . . , o} such that pj ≺ pi. Now, we define the term t′

by fixing a new variable z, and replacing in t every height nonzero subterm at
position pi.j, for i in {1, . . . , o} and j in {1, . . . ,m}, by either an equivalent bar-
constant if it is R-equivalent to a constant, or by an equivalent variable if it is
R-equivalent to a variable, or by z if it is not R-equivalent to a height 0 term.

Let α be the height 0 term R-equivalent to {α1, . . . , αk, t1, . . . , tn}. The term
α can be a bar-constant or variable. We finish the proof by showing that t′ is
R-reachable from all terms in {α1, . . . , αk, t1, . . . to, α, . . . , α, tl+1, . . . , tn} (the
ti’s for i in {o + 1, . . . , l} are replaced by α).

– For a term ti with i in {1, . . . , o}, this follows from Lemmas 4, 9 and 3.
– For a term ti with i in {l + 1, . . . , n}, this follows from Lemmas 11 and 3.
– For a term ti with i in {o+1, . . . , l}, λ goes to a certain pj .j

′.p′i in the deriva-
tion ti →∗

R t for some j in {1, . . . , o} and j′ in {1, . . . ,m}. By Lemma 10,
there is a derivation α →∗

R
t[α]pj .j′ , where λ goes to pj .j

′, and now, the fact
that α →∗

R
t′ follows from Lemma 3.

– For a term αi such that λ does not go anywhere in αi →∗
R t or it goes to a

position p disjoint with p1, . . . , po, this follows from Lemma 3.
– For a term αi such that λ goes to a position pj.j

′.p for some i in {1, . . . , o}
and j′ in {1, . . . ,m}, from Lemma 10 it follows that α →∗

R
t[α]pj .j′ , where

λ goes to pj .j
′. If α is a variable then it coincides with αi, and if α is a

bar constant then αi → α is a rule in R. In either case there is a derivation
αi →∗

R
t[α]pj .j′ where λ goes to pj .j

′. Now, the fact that αi →∗
R

t′ follows
from Lemma 3.

Theorem 1. Confluence of shallow right-linear rewrite systems is decidable.

Proof. Since a shallow and right-linear system R is finite-path overlapping and
right-linear, R-reachability and R-joinability are decidable [13]. R-equivalence
is decidable for shallow rewrite systems [4, 12]. As a result, the set R can be
constructed and the conditions of Lemma 12 can be tested.

4 Conclusion

In this paper, we showed that confluence is decidable for shallow right-linear
rewrite systems, thus generalizing the result for shallow linear rewrite systems [8].
The new proof uses the decidability results for reachability and joinability [13]
and the word problem [4, 12]. We also prove many properties about rewriting
using shallow TRSs and also shallow right-linear TRSs, which are used to prove
the main results of this paper. The decidability of termination and confluence for
other classes of finite-path overlapping systems is left for future investigation.



556 Guillem Godoy and Ashish Tiwari

References

1. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. J. of Logic and Computation, 4:217–247, 1994.

2. A. Bouajjani. Languages, rewriting systems, and verification of infinite-state sys-
tems. In ICALP, volume 2076 of LNCS, pages 24–39. Springer, 2001.

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

4. H. Comon, M. Haberstrau, and J.-P. Jouannaud. Syntacticness, cycle-
syntacticness, and shallow theories. Information and Computation, 111(1):154–191,
1994.

5. N. Dershowitz and J. P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science (Vol. B: Formal Models and Seman-
tics), pages 243–320, Amsterdam, 1990. North-Holland.

6. J. Giesl and H. Zantema. Liveness in rewriting. In RTA, volume 2706 of LNCS,
pages 321–336. Springer, 2003.

7. G. Godoy and A. Tiwari. Deciding fundamental properties of right-(ground or
variable) rewrite systems by rewrite closure. In Intl. Joint Conf. on Automated
Deduction, IJCAR, volume 3097 of LNAI, pages 91–106, 2004.

8. G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow term
rewrite systems. In 20th Intl. Symp. on Theor. Aspects of Comp. Sci. STACS
2003, volume 2607 of LNCS, pages 85–96. Springer, 2003.

9. G. Godoy, A. Tiwari, and R. Verma. Deciding confluence of certain term rewriting
systems in polynomial time. Annals of Pure and Applied Logic, 130(1-3):33–59,
Dec 2004.

10. F. Jacquemard. Reachability and confluence are undecidable for flat term rewriting
systems. Inf. Process. Lett., 87(5):265–270, 2003.

11. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci., 285(2):121–154, 2002.

12. R. Nieuwenhuis. Basic paramodulation and decidable theories. In Proc. 11th IEEE
Symp. on Logic In Comp. Sc. LICS, pages 473–483. IEEE Computer Society, 1996.

13. T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In Rewriting Techniques and Applica-
tions, RTA, volume 1833 of LNCS, pages 246–260, 2000.



The Ackermann Award 2005
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The Ackermann Award

At the annual conference of the EACSL, CSL’04, it was suggested to the newly
elected president of EACSL that steps be taken to make the Annual Conference
of EACSL even more attractive for young researchers in Logic and Computer
Science. In response to this suggestion, the EACSL Board decided in November
2004 to launch the

Ackermann Award,
the EACSL Outstanding Dissertation Award

for Logic in Computer Science.

The Ackermann Award is presented to the recipients at the annual conference
of the EACSL. The jury is entitled to give more than one award per year. The
award consists of a diploma, an invitation to present the thesis at the CSL
conference, the publication of the abstract of the thesis and the citation in the
CSL proceedings, and travel support to attend the conference.

The first Ackermann Award is presented at this CSL’05. Eligible for the
2005 Ackermann Award were PhD dissertations in topics specified by the
EACSL and LICS conferences, which were formally accepted as PhD theses at
a university or equivalent institution between 1 January 2003 and 31 December
2004.

The jury for the Ackermann Award consists of seven members, three of
them ex officio, namely the president and the vice-president of EACSL, and one
member of the LICS organizing committee.

The current jury consists of

– S. Abramsky (Oxford, LICS Organizing Committee)
– B. Courcelle (Bordeaux)
– E. Grädel (Aachen)
– M. Hyland (Cambridge)
– J.A. Makowsky (Haifa, President of EACSL)
– D. Niwinski (Warsaw, Vice President of EACSL)
– A. Razborov (Moscow and Princeton)

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 557–565, 2005.
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Wilhelm Ackermann 1896-1962

Wilhelm Ackermann1 was born on March 29, 1896, in Schoönebeck (Kreis Al-
tena) in Westphalia, Germany, at the time belonging to Prussia. His first studies
at the University of Göttingen, which were interrupted during the First World
War, were devoted to mathematics, physics and philosophy. He obtained his PhD
in 1924 under the guidance of David Hilbert. From 1927 until 1961 he taught
in secondary schools (Gymnasium). In 1953 he became a corresponding mem-
ber of the Göttingen Academy of Sciences, and in the same year the university
of Münster made him a honorary professor at the Faculty of Mathematics and
Exact Sciences. He lectured until three days before his death on December 24,
1962.

His logic textbook, Grundzuege der Theoretischen Logik written together with
David Hilbert and first published in 1928, was the most influential textbook in
the formative years of mathematical logic. Its fourth edition was published in
1959. The book was translated into several languages.

Although W. Ackermann did not pursue an academic career, he neverthe-
less continued his research work and helped to shape mathematical logic as a
tool of scientific investigations. He also played an important role in establishing
mathematical logic as a discipline in post-war Germany. His work includes major
contributions on

– consistency of arithmetic, set theory and other comprehensive mathematical
systems;

– various strengthenings of strict implication;
– complexity and the rate of growth of recursive functions; and
– decision problems in predicate logic.

Every Computer Science student knows the Ackermann function, a recursive
function (given by a simple recursive definition) which is provably not primi-
tive recursive. But computer scientists are less aware of his other contributions.
Gödel’s completeness theorem proves the completeness of the system presented
and proved sound by Hilbert and Ackermann. Ackermann was also the main
contributor to the logical system known as the epsilon calculus, originally due to
Hilbert. Finally, Ackermann solved the decision problem for ∃∗∀∃∗-formulas pos-
itively. As one of the pioneers of logic, he left his mark in shaping logic and the
theory of computation. Several of his publications discussed topics which were
later further developed in papers presented at the LICS and EACSL conferences.

1 The following sources are used and sometimes quoted verbatim: An obituary, written
in English by H. Hermes, appeared in the Notre Dame Journal of Formal Logic,
Vol. uVIII, No 1-2, April 1967.
Links on the WEB: Biographical note written by W. Felscher
http://www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Ackermann.html
and Biography base
http://www.biographybase.com/biography/Ackermann Wilhelm.html



The Ackermann Award 2005 559

Report of the Jury

The jury received 15 nominations for the Ackermann Award 2005. The can-
didates came from 9 different nationalities and received their PhDs in 7 diferent
countries in Europe and North America.

The topics covered the full range of Logic and Computer Science as rep-
resented by the LICS and CSL Conferences. All the submissions were of very
high standard and contained outstanding results in their particular domain. The
jury decided finally, to give for the year 2005 three awards, one for work on tree-
automata and their applications to model checking and verification, one for work
on logical and algorithmic properties of Knuth-Bendix orderings and their ap-
plication to automated reasoning, and one for work on lower bounds for the
complexity of propositional proof systems and their applications to complexity
theory.

The jury considers the awarding of three awards truly exceptional, due to
the outstanding quality of all three winners, and plans in the future to give at
most two awards per year.

The 2005 Ackermann Award winners are, in alphabetical order,

– Miko�laj Bojańczyk from Poland, for his thesis
Decidable Properties of Tree Languages,
awarded by Warsaw University, Poland in 2004
(Supervisor: I. Walukiewicz, Bordeaux)

– Konstantin Korovin from Russia, for his thesis
Knuth-Bendix orders in automated deduction and term rewriting,
awarded by the University of Manchester, England in 2003
(Supervisor: A. Voronkov)

– Nathan Segerlind from the USA, for his thesis
New Separations in Propositional Proof Complexity,
awarded by the University of California at San Diego, USA in 2003
(Supervisors: S. Buss and R. Impagliazzo)

The 2005 Ackermann Award Winners

Miko�laj Bojańczyk

Citation. Miko�laj Bojańczyk receives the 2005 Ackermann Award of the Eu-
ropean Association of Computer Science Logic (EACSL) for his thesis

Decidable Properties of Tree Languages

in which he substantially advanced our understanding of the definability and
decidability properties of theories of finite and infinite trees.
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Background of the Thesis. The automata theoretic and logical study of tree
properties has two branches, depending on whether one considers finite or infinite
trees. Despite their common origin in the analysis of monadic second-order logic
(MSO) over trees in the fundamental papers by Doner, Thatcher/Wright, Rabin,
and others, the two research directions have developed in different ways and with
different domains of application.

A motivating challenge for the the first part of Bojańcyk’s thesis is to find an
analogue of Schützenberger’s Theorem for trees. More generally, the goal is to
decide whether a given regular tree language belongs to some fixed definability
class of trees. This is a very ambitious goal. Indeed, while this kind of defin-
ability problems are well-understood for words, and despite the fact that the
theory of tree languages and tree automata is a bustling field, with close ties to
verification and model checking, the question of deciding, or even characteris-
ing first-order definability of tree languages has not seen any progress for many
years – not for lack of interest, but because previous efforts by doctoral students
and experienced researchers alike in the 1990s had been inconclusive. A possi-
ble explanation for this is that in the case of words, these questions are tackled
through an algebraic approach. In the case of trees, the algebraic approach is
much more difficult and much less developed.

The motivating challenges for the second part of Bojańcyk’s thesis are ex-
tensions of Rabin’s Theorem on the decidability of the monadic theory of the
infinite binary tree and their applications to program logics and games.

Bojańczyk’s Thesis. The thesis Decidable Properties of Tree Languages by
M. Bojańczyk represents an important advance in the classification theory of
regular sets of finite trees, and secondly it introduces an intriguing extension
of MSO-logic over infinite trees with interesting applications in programming
logics.

The first part deepens our understanding of various logics over finite trees,
in particular first-order logic (including the partial tree ordering < in the sig-
nature) and chain logic (where second-order variables only range over sets that
are linearly ordered by <). Other systems are temporal logics like CTL∗ or frag-
ments thereof. After about twenty years of little progress, the results of the thesis
provide an important step forward in the aim of fixing syntactic invariants that
allow to decide for a given MSO-property whether it is expressible in such a
fragment. Bojańczyk develops a new machinery to study these questions:

– A new class of “path-oriented” tree automata is introduced, called word sum
automata, and shown to capture the Boolean closure of deterministic tree
languages (accepted by deterministic top-down tree automata).

– A cascade product construction is developed for word sum automata and
shown to capture chain logic over trees (while the aperiodic version captures
first-order logic).

– The cascade length is shown to capture the quantifier nesting of CTL∗-
formulae, giving an elegant new proof of the strictness of the corresponding
hierarchy.
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– A very interesting effective property of tree languages (and tree automata),
called confusion, is worked out which has the potential to characterize those
regular tree properties that cannot be defined in chain logic.

These concepts and results are beautiful and represent real innovations. The
results are then applied to characterize effectively the tree languages definable by
three different fragments of CTL∗, in which the temporal operators are restricted
to EX, EF, respectively the use of both (but excluding the “until” construct).
The given characterizations are very attractive for the effective criteria they
provide, and they are technical master-pieces for the corresponding completeness
proofs.

The second part of the thesis addresses the search for proper extensions of
Rabin’s Theorem that the monadic theory of the infinite binary tree (S2S) is
decidable. There are two approaches: to change the model (e.g., by considering
certain infinite graphs instead of the binary tree), or to modify the means of
quantification. The thesis follows the second path, rather neglected up to now
in the literature.

Miko�laj Bojańczyk introduces an interesting new quantifier B which allows
to sharpen the existence of finite sets by the requirement that their size has to be
bounded. Two decidability results on the satisfiability question are shown: first
for the closure of MSO-logic by B, the existential quantifier plus the connectives
“or”, “and”, secondly for the MSO-formulas preceded by the dual U-quantifier.
The proof offers the interesting idea of “quasi-regular” tree languages which are
shown to be the appropriate basis for B-quantification. The central contribution
of the chapter is the set-up of a subtle balance between expressiveness and decid-
ability. This is very convincingly documented in three different applications: the
finite satisfiability problem for the two-way μ-calculus, the bounded tree-width
problem for graphs defined inside the full binary tree, and solving pushdown
games with stack unboundedness conditions.

The thesis is written in a very concise and fresh style and conveys a spirit of
original thought and intuitive clarity.

Biographical Sketch. Miko�laj Bojańczyk was born on 8 June 1977. He studied
computer science in Warsaw where he graduated in 2000 with a MSc thesis on
two-way alternating automata. For this thesis he obtained the second prize in
a national competition of the Polish Informatics Society for best MSc awards
in Computer Science. Between 2000 and 2004 he was a PhD student, also at
Warsaw, under the supervision of Igor Walukiewicz. He is currently a post-doc
researcher at University Paris 7.

His brilliant dissertation is not the only point of excellence in Bojańczyk’s
work. His results on tree-walking automata, jointly with Colcombet and com-
pletely independent of the dissertation, solved a long-standing open problem and
got a best paper award at ICALP 2004.
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Konstantin Korovin

Citation. Konstantion Korovin recieves the 2005 Ackermann Award of the
European Association of Computer Science Logic (EACSL) for his thesis

Knuth-Bendix orders in automated deduction and term rewriting.

In this thesis he has advanced single-handedly the theoretical and algorithmic
foundations of Knuth-Bendix orderings, separating effectively the feasible appli-
cabilty of Knuth-Bendix orderings from its less feasible aspects.

Background of the Thesis. Automated deduction is an important branch
of Computer science, which has applications in various areas including speci-
fication and verfication of software and hardware, synthesis of safe programs,
database systems, computer algebra and others. One of the most popular meth-
ods used in automated deduction are resolution based-theorem proving, which
can be implemented efficiently, yet is powerful enough for many applications. In-
corporated in the resolution method are various unification algorithms and term
rewrite techniques. Because of the practical importance of resolution, unification
and term rewriting, intensive research has been devoted both to theoretical im-
provements as well as implementation issues. Among the main tools developed
for termination proofs and improved implementation strategies are orderings on
term algebras, and the use of ordering restrictions, which allow to cut down the
search space.

There are two classes of orderings that are widely used in automated deduc-
tion: In the seminal 1970 paper by D. Knuth and P. Bendix Simple word problems
in universal algebra, Knuth-Bendix Orderings (KBOs), were introduced. Knuth-
Bendix orders have a hybrid nature. They are defined on weighted terms of term
algebras, relying both on syntactic precedence and a numeric weight function,
hence introducing a (non-trivial) combination of integers and terms. In 1979, N.
Dershowitz introduced recursive path orderings (RPOs) for the same purpose.
Recursive path orders are defined on term algebras, relying on syntactic precen-
dence only, without weights. The literature is rich in variations of the concept of
RPOs. A popular variant are the lexicographical path orderings (LPOs) intro-
duced by Levy and Kamin in 1980. Both types of term orderings are are widely
used in almost all currently implemented and widely used automated theorem
provers. Knuth-Bendix orderings (KBOs) is the main family of orderings used
in the theorem provers VAMPIR, E, Waldmeister, and SPASS.

The first order theory of RPOs was proven undecidable in 1992, by R.
Treinen, and for LPOs in 1997. by H. Comon and R. Treinen. In 2000 P. Naren-
dran and M. Rusinowitch showed that the first order theory of unary RPOs is
decidable. They also showed that solving RPOs constraints is in NP in 1998.
It was known to be NP-hard since 1984. There exists an extensive literature on
RPOs and LPOs. For a survey and historic details we refer to the handbook arti-
cle on Rewriting by N. Dershowitz and D.A. Plaisted in Handbook of Automated
Reasoning, edited by A. Robinson and A. Voronkov, MIT Press and Elsevier,
2001.
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Although there have been many results on the properties of all variants of
recursive path orderings, virtually nothing was known about the KBOs, before
the work of K. Korovin, which was published jointly with his supervisor A.
Voronkov. It seems the main problem with proving results about KBOs is the
(non-trivial) combination of integers and term algebras, as compared to pure
combinatorics on term algebras in the case of RPOs and KBOs.

Korovin’s Thesis. Konstantin Korovins thesis deals with the algorithmic prop-
erties of Knuth-Bendix orders. In his thesis, he has constructed polynomial time
algorithms for the fundamental problems of solving ordering constraints of sin-
gle inequalities, of the orientabilty of systems of equalities and rewrite rules by
KBOs, and for term comparison. He has given lower bounds for the complexity
of these problems showing that orientability is P-time complete, and the problem
of solving ordering constraints is NP-complete. The general first order decision
problem for KBOs is widely believed to be solvable, but no proof of this fact
has been found so far. Korovin has shown the decidability of first ordering con-
straints for unary signatures. The proofs of the main results display a high level
of interdisciplinarity, with a blend of optimization theory, complexity theory,
and a mastery of a multitude of techniques for establishing effective decision
procedures.

Biographical Sketch. Konstantin Korovin was born on 4 April 1976 in Sara-
pul, Russia (Soviet Union). He received his secondary education at the Special-
ized Scientific Study Center for Physics, Mathematics, Chemistry and Biology
in Novosibirsk in the period from 1992-93. At the age of 17 he entered Novosi-
birsk University and received both his undergraduate and graduate education
there. In 1998 he completed his M.Sc. studies under the supervision of Prof.
Andrei Morozov. The title of his M.Sc. thesis is Compositions of permutations
and algorithmic reducibilities.

From 1999-2002 he was a PhD student under the supervision of Prof. Andrei
Voronkov, and received his PhD in 2003 for his thesis Knuth-Bendix orders in
automated deduction and term rewriting. For this thesis he already received the
best PhD Thesis Award of the University of Manchester.

He spent the years 2003 and 2004 as a researcher at the Max Planck In-
stitute in Saarbrücken, Germany, working with Professor Harald Ganzinger, in
the difficult period when Ganzinger was already very ill and until his untimely
death. He wrote several important papers with Harald Ganzinger, but it was his
sole responsibility to elaborate, develope and complete Ganzinger’s ideas. After
Ganzinger’s death he returned to Manchester University where he works as a
research associate.

Nathan Segerlind

Citation. Nathan Segerlind recieves the 2005 Ackermann Award of the
European Association of Computer Science Logic (EACSL) for his thesis

New Separations in Propositional Proof Complexity.
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His thesis extends switching lemmas, one of the most primary tools in the area,
in a very unexpected way. This has allowed Segerlind to solve a host of difficult
open problems in propositional proof complexity and, in particular, to take in a
single step the proof system Res(k) from an almost complete mystery to being
almost completely understood.

Background of the Thesis. The central question of propositional proof com-
plexity can be formulated in a deceivingly simple way. Given a (sound and com-
plete) proof system P for propositional logic and a tautology φ, what is the
“simplest” (in most cases meaning the shortest) P -proof of φ? Partly due to the
universal nature of the notion of a propositional tautology, this is an interdisci-
plinary area on the border between (and with motivations from) mathematical
logic, theory of computing, automated theorem proving, cryptography, algebra
and combinatorics among other.

Largely influenced by the automated theorem proving (Davis, Putnam (1960),
Davis, Longemann, Loveland (1962), Robinson (1965)), the most widely studied
proof system in the area is (propositional) Resolution. After considerable efforts
by many researchers beginning with the seminal paper by Tseitin (1968), the
resolution proof system is by now fairly well understood. We have rather gen-
eral, industrial methods to analyze the complexity of resolution proofs (like the
width-size relation by Ben-Sasson, Wigderson (1999)), as well as concrete results
concerning virtually all combinatorial principles normally used as “benchmarks”
in the whole area (Haken (1985), Urquhart (1987), Chvátal, Szemerédi (1988),
Raz (2001), Razborov (2001)).

Until the work represented by Segerlind’s thesis, however, everything looked
very different (meaning much more obscure) beyond Resolution. As a typical
example, take one of the most influential results in the whole area, exponential
lower bounds on the complexity of the pigeon-hole principle in the constant-
depth Frege proof system (Beame, Impagliazzo, Kraj́ıček, Pitassi, Pudlák, Woods
(1992)) based on one of the most powerful tools in the area, switching lemmas
for random restrictions. We do not know how to apply this method to many
tautologies where it should have been applicable, and even when successful (like
e.g. Beame, Riis (1998)), the switching lemmas and other techniques, already
extremely complicated, have to be re-done almost from the scratch. The situa-
tion is very similar for the intermediate proof system Res(k) that operates like
Resolution but allows in clauses conjunctions of size ≤ k rather than just liter-
als. This system is of great potential interest for automated proving (perhaps, of
better interest than constant-depth Frege) since it is structured almost as well
as Resolution but surprisingly can do more interesting things than the latter
(Maciel, Pitassi, Woods (2000)).

Just to give an idea of the state of the art in the area, random 3-CNF is
one of the most popular benchmark models both in theoretical and practical
communities. They had been shown to be hard for Resolution by Chvátal and
Szemerédi in 1988, but the same question was widely open for any reasonable
extension of Resolution, including Res(2).

Another important subject addressed in the thesis is algebraic proof systems
(like Nullstellensatz and Polynomial Calculus) and hybrid systems combining
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logical and algebraic reasoning (constant-depth Frege with counting axioms or
modular gates). By the time of Segerlind’s work, purely algebraic proof systems
and relations between them were in general understood much better than purely
logical systems, but several important questions remained open.

Segerlind’s Thesis. In his thesis Segerlind proved important and nice results
about the relative power of algebraic and mixed proof systems, both positive
and negative, that had been open for a while. Among other things he showed
that counting gates are more powerful than counting axioms (Chapter VI), but
the counting axioms can efficiently simulate any Nullstellensatz proof (Chapter
V). The most striking part of the thesis, however, concerns the systems Res(k)
for small values of k (Chapters III and IV).

The upshot of these latter results is very simple: we now understand the sys-
tems Res(k) almost as well as Resolution itself. In his thesis Segerlind analyzed
the complexity of the weak pigeon-hole principle and random w-CNFs (both are
standard “tests for maturity”) in these proof systems, and he also gave separation
results between the systems Res(k) and Res(w) for some w > k. His techniques
were already used in different situations by Razborov and Alekhnovich. So, it
really looks like what he has found is a general, powerful and flexible method
rather than ad hoc argument. All in all, Segerlind’s work changed the situa-
tion with these prominent systems from a few scattered and weak results to a
few important problems left open. And two features of this development look
particularly striking.

The first is its speed. For Resolution it took decades to have reached the
level of understanding that was reached here in a single step. Of course, this
comparison is not quite fair since the general methodology gathered during these
decades also played very essential role in Segerlind’s work. But even with this
disclaimer the speed with which it all happened was quite remarkable and totally
unexpected.

The second surprise came in the form of proof methods. The novelty essen-
tially consists in a new version of switching lemmas called in the thesis switching
with small restrictions. And, in order to appreciate this, one should be fully
aware to which extent this tool is basic in both computational complexity and
proof complexity. Many researchers have been looking at these lemmas since the
seminal work by H̊astad (1986). They have been scrutinized and analyzed from
every possible perspective and in all fine and technical details. The fact that
Segerlind was able to say a substantially new word in an area so often re-visited
by strongest researchers is also quite remarkable.

Biographical Sketch. Nathan Segerlind was born on 31 December 1973 in
Marlette, Michigan. In 1992-1998 he studied Computer Science and Mathematics
at Carnegie Mellon University, Pittsburg. Between 1998 and 2003 he was a PhD
student at the University of California at San Diego, under joint supervision by
Samuel Bass and Russell Impagliazzo. He spent the next year 2003-2004 as a
postdoctoral member at the Institute for Advanced Study, Princeton. Currently
he is continuing his post-doc research at the University of Washington, Seattle.



Clemens Lautemann: 1951-2005
An Obituary

The treasurer and board member of the European Association for Computer
Science Logic (EACSL), Prof. Dr. Clemens Lautemann passed away on 29 April
2005 at the age of only 53 years after a short, serious illness. He is survived by
his wife Rose and his two children Anne (21) and Christopher (16).

Clemens Lautemann joined the board of the EACSL as treasurer in 1997. We,
the EACSL community, and all who knew him, will miss him and remember him
warmly.

After studying Mathematics, Political Sciences, Philosophy and Computer
Sciences at the Universities of Marburg, Bielefeld and Berlin, Clemens Laute-
mann earned a doctorate in Natural Sciences in June 1983. He dedicated himself
to scientific research in Berlin, Osnabrück, Bremen, Edinburgh and Mainz. The-
oretical Computer Science was his field of interest, especially Logic and Com-
putational Complexity, and he obtained important results in the fields of Graph
Theory, Structural Complexity and Finite Model Theory. His scientific work
gained worldwide recognition.

Clemens Lautemann joined the Institute for Computer Science at the Jo-
hannes Gutenberg University as Professor for Theoretical Computer Science in
1989. He was an inspiring teacher who motivated his students in his special field
of expertise and he was actively engaged in encouraging young people. He sup-
ported the Bundeswettbewerb Informatik by accompanying pupils interested in
the Natural Sciences. Several of his students and PhD candidates were awarded
scientific prizes.

Clemens Lautemann was deeply concerned with the further development of
the Institute for Computer Science. He cared very much for the Institute’s future
and played a major part in establishing the new Bachelor of Computer Science
program. He was also interested in interdisciplinary cooperation and was one of
the founders of the research group Bioinformatik at his university.

Clemens Lautemann distinguished himself in many ways, as a warm and
forthcoming person, as an original scientist, and as a committed teacher and
supervisor with a vision beyond the shortlived fashions of the day. We all liked
him very much and will miss his friendly, open-hearted personality. We are very
sad that he will not be with us any longer. Clemens Lautemann’s family, friends,
students, and colleagues will keep pleasant memories of him with them for a long
time.

J.A. Makowsky
President of EACSL

L. Ong (Ed.): CSL 2005, LNCS 3634, p. 566, 2005.
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