Luke Ong (Ed.)

Computer Science
Logic

19th International Workshop, CSL 2005
14th Annual Conference of the EACSL
Oxford, UK, August 2005, Proceedings

q—
(9]
\O
o
Vg
J
=
el

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3634

Luke Ong (Ed.)

Computer Science
Logic

19th International Workshop, CSL 2005
14th Annual Conference of the EACSL

Oxford, UK, August 22-25, 2005
Proceedings

@ Springer

Volume Editor

Luke Ong

Oxford University Computing Laboratory
Wolfson Building, Parks Road

Oxford OX1 3QD, United Kingdom
E-mail: lo@comlab.ox.ac.uk

Library of Congress Control Number: 2005930337

CR Subject Classification (1998): F.4.1, F4,1.2.3-4,F3

ISSN 0302-9743
ISBN-10 3-540-28231-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28231-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11538363 06/3142 543210

Preface

The Annual Conference of the European Association for Computer Science Logic
(EACSL), CSL 2005, was held at the University of Oxford on 22-25 August
2005. The conference series started as a programme of International Workshops
on Computer Science Logic, and then in its 6th meeting became the Annual Con-
ference of the EACSL. This conference was the 19th meeting and 14th EACSL
conference; it was organized by the Computing Laboratory at the University of
Oxford.

The CSL 2005 Programme Committee considered 108 submissions from 25
countries during a two-week electronic discussion; each paper was refereed by at
least three reviewers. The Committee selected 33 papers for presentation at the
conference and publication in these proceedings.

The Programme Committee invited lectures from Matthias Baaz, Ulrich
Berger, Maarten Marx and Anatol Slissenko; the papers provided by the invited
speakers appear at the front of this volume.

Instituted in 2005, the Ackermann Award is the EACSL Outstanding Dis-
sertation Award for Logic in Computer Science. The award winners for the in-
augural year, Mikolaj Bojanczyk, Konstantin Korovin and Nathan Segerlind,
were invited to present their work at the conference. Citations for the awards,
abstracts of the theses, and biographical sketches of the award winners are at
the end of the proceedings.

I thank the Programme Committee and all the referees for their work in re-
viewing the papers; Jolie de Miranda for her sterling work as editorial assistant;
the other members of the local organizing team (William Blum, Matthew Hague,
Andrzej Murawski and Sam Sanjabi), as well as many other Computing Lab-
oratory colleagues who helped in various ways, for arranging the event itself;
the organizers of CSL 2004; Andrei Voronkov, whose EasyChair system greatly
facilitated the handling of submissions and reviews; and the British Logic Col-
loquium for financial support for a number of student bursaries.

Finally, I thank Merton College and the Computing Laboratory, which pro-
vided both financial support and much time from their staff.

June 2005 Luke Ong

Programme Committee

Albert Atserias UPC Barcelona
David Basin ETH Ziirich
Martin Escardo U. Birmingham

Zoltan Esik U. Szeged

Martin Grohe Humboldt U.

Ryu Hasegawa U. Tokyo

Martin Hofmann LMU Miinchen
Ulrich Kohlenbach T.U. Darmstadt
Orna Kupferman Hebrew U. Jerusalem
Paul-Andre Mellies U. Paris 7

Additional Referees

Klaus Aehlig

Yoji Akama

Arnold Beckmann
Lev Beklemishev
Michael Benedikt
Ulrich Berger
Stefan Blom
Mikolaj Bojanczyk
Udi Boker

Julian Bradfield
Olivier Brunet
Krishnendu Chatterjee
James Cheney
Jacek Chrzaszcz
Bob Coecke
Giovanni Conforti
Bruno Courcelle
Olivier Danvy
Nachum Dershowitz
Mariangiola Dezani
Roy Dickhoff

Kevin Donnelly
Thomas Eiter
Zoltan Fiilop
Nicola Galesi

Lilia Georgieva
Erich Gradel
Esfandiar Haghverdi
Masahito Hasegawa
Yoram Hirshfeld

Aart Middeldorp U. Innsbruck

Dale Miller E. Polytechnique

Damian Niwinski U. Warsaw

Peter O’'Hearn Queen Mary U.
Luke Ong U. Ozford (Chair)
Alexander Rabinovich U. Tel Aviv

Thomas Schwentick Philipps U.
Alex Simpson U. Edinburgh
Nicolai Vorobjov U. Bath
Andrei Voronkov U. Manchester

Hendrik Jan Hoogeboom Jerzy Marcinkowski

Dominic Hughes
Michael Huth
Andrew Ireland
Florent Jacquemard
Jan Johannsen

Neil Jones

Felix Klaedtke
Hans-Joachim Klein
Bartek Klin
Konstantin Korovin
Margarita Korovina
Viktor Kuncak

Ugo dal Lago
Francois Lamarche
Martin Lange
Stephane Lengrand
Giacomo Lenzi

L. Leustean

Paul Levy

Leonid Libkin
Ralph Loader
Markus Lohrey
Hans-Wolfgang Loidl
Michael Macher
Patrick Maier
Harry Mairson
Janos Makowsky
Sebastian Maneth
Claude Marché

Jean-Yves Marion
Maarten Marx

Ralph Matthes
Richard McKinley
Ichiro Mitsuhashi
Georg Moser

Misao Nagayama
Hans-Juergen Ohlbach
Vincent van Oostrom
Martin Otto

Leszek Pacholski
Dirk Pattinson
Reinhard Pichler
Axel Polleres

Shaz Qadeer

Femke van Raamsdonk
Michael Rathjen
Eike Ritter

Tatiana Rybina
Hiroyuki Sato

Alexis Saurin
Andrea Schalk

M. Schmidt-Schauss
Aleksy Schubert
Nicole Schweikardt
Helmut Seidl
Hiroyuki Seki
Masaru Shirahata,
Dieter Spreen

Organization
Christoph Sprenger Sandor Vagvolgyi Andreas Weiermann
Kristian Stovring Luca Vigano C.P. Wirth
Thomas Strahm Marina De Vos James Worrell
Thomas Streicher Johannes Waldmann Hongwei Xi
Hayo Thielecke Daria Byoung-Tak Zhang
Cesare Tinelli Walukiewicz-Chrzaszcz
Alwen Tiu Volker Weber

Local Organizing Committee

William Blum
Matthew Hague
Jolie de Miranda
Andrzej Murwaski
Luke Ong

Sam Sanjabi

VII

Table of Contents

Invited Lectures

XML Navigation and Tarski’s Relation Algebras
Maarten Marz

Verification in Predicate Logic with Time: Algorithmic Questions
Anatol Slissenko

Note on Formal Analogical Reasoning in the Juridical Context...........
Matthias Baaz

An Abstract Strong Normalization Theorem...........................
Ulrich Berger

Semantics and Logics

On Bunched Polymorphism
Matthew Collinson, David Pym, and Edmund Robinson

Distributed Control Flow with Classical Modal Logic
Tom Murphy VII, Karl Crary, and Robert Harper

A Logic of Coequationsuiuimi e
Jiri Adamek

A Semantic Formulation of T T-Lifting and Logical Predicates
for Computational Metalanguage i,
Shin-ya Katsumata

Type Theory and Lambda Calculus

Order Structures on Bohm-Like Models
Paula Severi and Fer-Jan de Vries

Higher-Order Matching and Games.,
Colin Stirling

Decidability of Type-Checking in the Calculus of Algebraic Constructions
with Size Annotations i
Frédéric Blanqui

On the Role of Type Decorations in the Calculus
of Inductive Constructions i
Bruno Barras and Benjamin Grégoire

X Table of Contents

Linear Logic and Ludics

L-Nets, Strategies and Proof-Nets
Pierre-Louis Curien and Claudia Faggian

Permutative Logic
Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet

Focusing the Inverse Method for Linear Logic
Kaustuv Chaudhuri and Frank Pfenning

Towards a Typed Geometry of Interaction
Esfandiar Haghverdi and Philip J. Scott

Constraints

From Pebble Games to Tractability: An Ambidextrous Consistency
Algorithm for Quantified Constraint Satisfaction
Hubie Chen and Victor Dalmau

An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints . .
Ashish Tiwari

Finite Models, Decidability and Complexity

Coprimality in Finite Models i
Marcin Mostowski and Konrad Zdanowski

Towards a Characterization of Order-Invariant Queries
over Tame Structures. i
Michael Benedikt and Luc Segoufin

Decidability of Term Algebras Extending Partial Algebras...............
Bakhadyr Khoussainov and Sasha Rubin

Results on the Guarded Fragment with Equivalence
or Transitive Relations i
Emanuel Kieronski

The Modular Decomposition of Countable Graphs:
Constructions in Monadic Second-Order Logic
Bruno Courcelle and Christian Delhommé

On the Complexity of Hybrid Logics with Binders......................
Balder ten Cate and Massimo Franceschet

The Complexity of Independence-Friendly Fixpoint Logic
Julian Bradfield and Stephan Kreutzer

Closure Properties of Weak Systems of Bounded Arithmetic.............
Antonina Kolokolova

Table of Contents

Verification and Model Checking

Transfinite Extension of the Mu-Calculus
Julian Bradfield, Jacques Duparc, and Sandra Quickert

Bounded Model Checking of Pointer Programs.........................
Witold Charatonik, Lilia Georgieva, and Patrick Maier

PDL with Intersection and Converse Is Decidable
Carsten Lutz

On Deciding Topological Classes of Deterministic Tree Languages
Filip Murlak

Constructive Reasoning
and Computational Mathematics

Complexity and Intensionality in a Type-1 Framework
for Computable Analysis.
Branimir Lambov

Computing with Sequences, Weak Topologies and the Axiom of Choice . ..
Vasco Brattka and Matthias Schréder

Light Functional Interpretation
Mircea-Dan Hernest

Feasible Proofs of Matrix Properties with Csanky’s Algorithm
Michael Soltys

Implicit Computational Complexity and Rewriting

A Propositional Proof System for Log Space...........................
Steven Perron

Identifying Polynomial-Time Recursive Functions
Carsten Schiirmann and Jatin Shah

Confluence of Shallow Right-Linear Rewrite Systems
Guillem Godoy and Ashish Tiwari

Appendices

The Ackermann Award 2005 it
Erich Grdadel, Janos Makowsky, and Alexander Razborov

Clemens Lautemann: 1951-2005 An Obituary

Author Index

XI

XML Navigation and Tarski’s Relation Algebras

Maarten Marx

Informatics Institute, Universiteit van Amsterdam
The Netherlands

Navigation is at the core of most XML processing tasks. The W3C endorsed nav-
igation language XPath is part of XPointer (for creating links between elements
in (different) XML documents), XSLT (for transforming XML documents) and
XQuery (for, indeed, querying XML documents). Navigation in an XML docu-
ment tree is the task of moving from a given node to another node by following a
path specified by a certain formula. Hence formulas in navigation languages de-
note paths, or stated otherwise binary relations between nodes. Binary relations
can be expressed in XPath or with first or second order formulas in two free
variables. The problem with all of these formalisms is that they are not compo-
sitional in the sense that each subexpression also specifies a binary relation. This
makes a mathematical study of these languages complicated because one has to
deal with objects of different sorts. Fortunately there exists an algebraic formal-
ism which is created solely to study binary relations. This formalism goes back
to logic pioneers as de Morgan, Peirce and Schréder and has been formalized by
Tarski as relation algebras [7]. (Cf., [5] for a monograph on this topic, and [3]
for a database oriented introduction). A relation algebra is a boolean algebra
with three additional operations. In its natural representation each element in
the domain of the algebra denotes a binary relation. The three extra operations
are a constant denoting the identity relation, a unary conversion operation, and
a binary operation denoting the composition of two relations. The elements in
the algebra denote first order definable relations. Later Tarski and Ng added the
Kleene star as an additional operator, denoting the transitive reflexive closure
of a relation [0].

We will show that the formalism of relation algebras is very well suited for
defining navigation paths in XML documents. One of its attractive features is
that it does not contain variables, a feature shared by XPath 1.0 and the regular
path expressions of [1]. The connection between relation algebras and XPath
was first made in [1].

The aim of this talk is to show that relation algebras (possibly expanded
with the Kleene star) can serve as a unifying framework in which many of the
proposed navigation languages can be embedded. Examples of these embeddings
are

1. Every Core XPath definable path is definable using composition, union and
the counterdomain operator ~ with semantics ~R = {(x, z) | not 3y : xRy}.

2. Every first order definable path is definable by a relation algebraic expression.

3. Every first order definable path is definable by a positive relation algebraic
expression which may use the Kleene star.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 1-2, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Maarten Marx

4. The paths definable by tree walk automata and certain tree walk automata
with pebbles can be characterized by natural fragments of relation algebras
with the Kleene star.

All these results hold restricted to the class of finite unranked sibling ordered
trees. The main open problem is the expressive power of relation algebras ex-
panded with the Kleene star, interpreted on this class of models. Is this formalism
equally expressive as binary first order logic with transitive closure of binary for-
mulas? Whether the latter is equivalent to binary monadic second order logic
is also open [2, 3]. So in particular we do not know whether each regular tree
language can be defined in relation algebras with the Kleene star.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the web. Morgan Kaufman, 2000.

2. J. Engelfriet and H. Hoogeboom. Tree-walking pebble automata. In Jewels are For-
ever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa,
pages 72-83. Springer-Verlag, 1999.

3. J. Engelfriet and H. Hoogeboom. Automata with nested pebbles capture first-order
logic with transitive closure. Technical Report 05-02, LIACS, 2005.

4. J. Hidders. Satisfiability of XPath expressions. In Proceedings DBPL, number 2921
in LNCS, pages 21-36, 2003.

5. R. Hirsch and I. Hodkinson. Relation algebras by games. Number 147 in Studies in
Logic and the Foundations of Mathematics. North-Holland,, 2002.

6. K. Ng. Relation Algebras with Transitive Closure. PhD thesis, University of Califor-
nia, Berkeley, 1984.

7. A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89, 1941.

8. J. Van den Bussche. Applications of Alfred Tarski’s ideas in database theory. Lecture
Notes in Computer Science, 2142:20-37, 2001.

Verification in Predicate Logic with Time:
Algorithmic Questions

Anatol Slissenko!»2*

! Laboratory for Algorithmics, Complexity and Logic, University Paris-1, France
2 Dept. of Informatics, University Paris-12
61 Av. du Gén. de Gaulle, 94010, Créteil, France

slissenkoQuniv-parisi2.fr

Abstract. We discuss the verification of timed systems within predicate
logics with explicit time and arithmetical operations. The main problem
is to find efficient algorithms to treat practical problems. One way is
to find practically decidable classes that englobe this or that class of
practical problems. This is our main goal, where we concentrate on one
approach that permits to arrive at a kind of small model property. We
will also touch the question of extension of these results to probabilistic
systems that will be presented in more detail elsewhere.

1 Introduction

Even not so long ago testing was the main, uncontestable practical method of
program validation [14, 16]. Though the foundations of testing pose interesting
theoretical problems, the field of theoretical footing of the testing process re-
mains, in some way, secondary with respect to the development of foundations
of verification, that is regrettable. We mention this question, that is out of the
scope of the present text, because it is clearly related to the concept of ‘small
model property’ whose particular realization will be discussed below.

Nowadays the verification, one of the activities aimed at software validation,
is gaining ground. Verification based on model checking becomes more and more
widespread. Logic based verification, though less represented in conference activ-
ities, is of growing importance. The both approaches have their success stories.
Their advantages and disadvantages are well known.

Verification presumes that, given a requirements specification @g., and a
program specification ®p,,, we have to prove that ®p,, verifies Ppeq. And “to
prove” involves some logic.

Suppose that a sufficiently expressible logic is at our disposal. Denote by
D Rruns a formula representing the runs (executions) of our program. We may
suppose that we have some notion of time (here we speak about ‘physical’ time)
represented by a linearly ordered set T, and every run is a mapping from T
to an interpretation of the vocabulary of our program. “Formula ®@g,,s repre-
sents runs” means that every model of this formula is a run of the program,

* Member of St Petersburg Institute for Informatics, Russian Academy of Sciences,
St-Petersburg, Russia

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 3-17, 2005.
© Springer-Verlag Berlin Heidelberg 2005

4 Anatol Slissenko

and inversely. Requirements usually consist of two parts (see, e.g., [10]), namely,
requirements on functioning (e.g., safety, liveness) and a description of the en-
vironment where our program works — this part of requirements can be also
viewed as a part of the description of the set of runs. We will denote a formula
representing the environment by @gy, and a formula describing the demands
on functioning by @pyn.. Formula @g,, may describe properties that restrict
the types of input signals or may relate the input and output signals to some
functions introduced for the user convenience.

The most essential part of the verification problem can be formulated as
proving the formula §=4 (Pruns N PEnv) — Prunc). But this is not all. An
important property to prove, without which proving ¢ may become trivial, is
that the program has a run for each input. If a program has no runs at all then
any property of its runs is true. For a control program, the existence of runs
means that for any input signal that satisfies @y, the program computes an
output. This is a second-order property, as it is formulated in terms of second
order quantifiers over input/output signals, and each signal in this context is a
function of time. The verification literature rarely mentions this problem.

The formula @r,ns is relatively easy to get, even automatically, from a pro-
gram specification written in a language with a rigorous semantics. As for @y,
and @ ryne, it is harder and usually demands some abstractions. The more pow-
erful is our formal language of verification, the easier is the task.

Having arrived at § we can start the verification using proof search proce-
dures or other ones, e.g., decidability or quantifier elimination algorithms. This is
a logic based approach. Model checking approach usually demands to construct
simplified abstractions of the set of runs and that of requirements. It may be la-
borious. The advantage is in many practical automatic tools that can be applied
thereafter. But the results are much more relative than in the case of logical
proof, even a found error may happen to be an error in the chosen abstraction.

The methodological disadvantage of the existing model-checking approaches
is in enormous number of logics to (partially!) model the requirements and in a
big amount of formalisms to model the programs.

Since a longtime one can see a trend of convergence of the both approaches,
and we discuss one way to go in this direction.

We are interested in the verification of timed systems whose specification
involves arithmetical operations and parameters. The parameters may represent
abstract time constants, the number of processes etc. These just mentioned two
types of parameters are often used in high level specifications.

We will mainly speak about continuous time, though many of our methods
work also for discrete time. Continuous time will be represented by non negative
reals, and discrete time — by natural numbers. For some systems, like real time
controllers, some protocols, continuous time is more intuitive. Notice that in our
reasoning about programs we always use time, and often continuous one. The
unpleasant feature of algorithms with continuous time is that it is not so easy
to find a mathematically precise definition of their semantics. For the present
there is no ‘universal’ semantics that works in all situations relevant to practical

Verification in Predicate Logic with Time: Algorithmic Questions 5

verification. A detailed discussion of algorithms with continuous time can be
found in the special issue of Fundamenta Informaticae, 2004, vol. 69.

Moreover, algorithmics of arithmetics over continuous time is simpler that
that of discrete time. The known worst-case complexity bound for the theory
of real addition is exponentially better than the one for the theory of integer
addition (Presburger arithmetic). For the theory of real addition and multipli-
cation (Tarski algebra) these bounds, that are the same as for the theory of real
addition, are even ‘infinitely’ better than those for the theory of integer addi-
tion and multiplication (formal arithmetics) that is undecidable, and even not
enumerable.

The approach that will be presented embeds all the specifications into a spe-
cial type of predicate logic that will be called FOTL (First Order Timed Logic).
Such a logic takes a theory that represents necessary mathematical functions and
that has ‘good algorithmic properties’, and extends it with abstract functions
needed to describe our systems. ‘Good algorithmic properties’ means decidabil-
ity, quantifier elimination or simply practically efficient algorithms to deal with
it. We will mainly speak about theories that have quantifier elimination algo-
rithms.

FOTL turns to profit the quantifier elimination for the theories we use. This
procedure provides a quantifier-free description of counter-models (of a given
complexity) when the verification formula is not true — a property highly ap-
preciated in the verification domain, as counter-models help to identify errors.
Moreover, if the verification formula contains parameters for reals, this proce-
dure returns a description of the scope of parameters for which the formula is
true, or the ‘forbidden parameters’ for which it is false.

On the basis of FOTL we describe classes of verification problems that are
not only decidable, but have the mentioned property of a quantifier-free de-
scription of counter-models. These classes are described in terms of what we call
finiteness properties: finite refutability and finite satisfiability. The properties re-
lated to the functioning of a program, like safety or liveness, are usually finitely
refutable: if there is a counter-model for such a property then the contradiction
is concentrated on a small piece of this counter-model. For example, consider a
distributed algorithm with N processes, and a property R(¢,p) that says that
at moment ¢ a particular event (R-event) occurs in p. We can express that “an
R-event cannot be absent in the same process for a duration greater than d” by
the formula

Vp-3t3t (' —t) >dAVTe[t,t')~R(r,p)). (1)

This formula (1) is an example of @pype. If the property (1) is false then there
is a process po and 2 time instants ty and ¢; such that

((tl—to)>d/\VT€[t0,t1)ﬁR(T,p0)). (2)

So whatever be the behavior of processes different from py or whatever be the
behavior of py at other time instants, the property will remain false. Hence,
the ‘core’ of the counter-model is concentrated on a piece of interpretation of
complexity O(1).

6 Anatol Slissenko

A more complicated finiteness property concerns the behavior of programs.
It is called finite satisfiability. Its simpler version [3] looks as follows. Take a
run and some finite partial sub-run in it. Finite satisfiability means that we can
extend this partial sub-run to a total finite run with a controlled augmentation
of complexity.

In general this property is false even for rather simple timed systems, for
example for timed automata [!] as shown in [7]. However, for practical systems
we often have this property or the more general one [(]. This more general finite
satisfiability property deals with runs that have a finite description involving
infinitely many time intervals. It says that if we take a run and some finite
partial sub-run in it, then we can extend this partial sub-run to a run consisting
of ultimately repetitive pieces with a controlled augmentation of complexity. We
will describe this property in section 4.

Combining both properties, namely finite refutability and finite satisfiabil-
ity, we define a decidable class of implications (@ 4), where @ is finitely
satisfiable and ¥ is finitely refutable with a fixed complexity. The verification
formulas from these decidable classes can be efficiently reduced to quantifier-free
formulas that describe all counter-models of a given complexity, and we know
that if a counter model exists then there is a counter-model of this complexity.
This is our finite model property, though it is better to speak about bounded
complexity model property, as the models we consider are not finite.

FOTL permits to describe rather directly (see [3, 4, 8]) the runs of basic timed
Gurevich Abstract State Machines (ASM) [12] (we used this type of ASMs in[%]).
Such a basic ASM consists of one external loop inside which one executes in
parallel If-Then-operators whose Then-part is a list of assignments executed
again in parallel. The parallelism is synchronous. The runs of timed parallel
while-programs can be also represented in FOTL without complications.

The decidability algorithm for the simpler class (without infinite models of
bounded complexity) was implemented and showed encouraging results [2], [3].

A shortcoming of the approach is that the finiteness properties are undecid-
able in general [7]. Finite refutability is a typical property of safety, and for safety
it is usually quite evident, but it is less evident for liveness. Finite satisfiability
may be hard to prove even for practical systems. For example, for usual abstract
specifications of practical cryptographic protocols it is a hard open question.

One can use our approach along the lines of bounded model-checking. Recall
that the basic idea of bounded model checking is to check the requirements
for runs whose length is bounded by some integer k. It is feasible if the set
of these runs of bounded length is of reasonable size, or if we can use some
symbolic representation of these runs. In some cases we know that if there is a
counter-model run, i.e., a run that does not satisfy the requirements, then there
exists such a run whose length is bounded by a constant known a priory. This
constant is called a completeness threshold [10, 17]. Otherwise, we can increase
k until we can process the runs of length k in a feasible way, and stop when a
counter-model is found or the checking becomes unfeasible. In the latter case we
have some partial verification. Our analogue of such procedure is to increase the

Verification in Predicate Logic with Time: Algorithmic Questions 7

complexity of models to consider and to check whether there exists a counter-
model of the chosen complexity.

Bounded model checking is being developed first of all as a practical tool
which accelerates symbolic model checking. Completeness threshold was esti-
mated in cases when the verification is a priory decidable, and the found bounds
are very high. In our setting we deal with logics for which the verification prob-
lem is undecidable in general, and that are much more expressive than the logics
used in model checking. Our notion of bounded model is also much more general.
So when we proceed, like in practical bounded model-checking, by increasing the
complexity of models to try, we seek counter-models in a much larger class. For
the concrete problems that we studied, the complexity bounds on models to con-
sider are very small, and thus, the search for such models is feasible. Moreover,
these concrete problems are out of the scope of model-checking.

The structure of text below, that mainly presents results of my colleagues
and myself cited above, is as follows. Section 2 briefly describes decidable the-
ories of arithmetical operations that underlay our FOTLs. We mention also a
particular theory that is conjectured to be decidable and that features a way
to look for theories adequate to the applications. Section 3 gives an example of
FOTLs that are well supported by decidability algorithms, even better to say, by
counter-model constructing algorithms. These algorithms are based on finiteness
properties described in section 4. In Conclusion we discuss some open problems
and draw attention to logics with probability.

2 Decidable Theories with Arithmetical Operations

We briefly summarize some known decidable theories that are apt to the pre-
sented approach and give an example of a theory whose conjectured decidability
would put the verification of parametric clock synchronization in a decidable
class.

One of the simplest theories that deal with arithmetics and have quantifier
elimination is the theory of real addition. It may be defined as a theory with
real addition, unary multiplications by rational constants, arithmetical order
relations and rational numbers as constants. With this set of constants only
rational numbers are representable. The known quantifier elimination procedures
have worst-case complexity (roughly) of the form L”O(Q), where L is the length
of formula, n is the number of variables, and « is the number of quantifier
alternations. In practice, with good simplification algorithms, some implemented
procedures work well.

The worst-case lower bound is exponential. I repeat my argument that all
known proofs of lower bounds (absolute or relative, like hardness) are irrelevant
to computational practice as they concern diagonal algorithms that never appear
in practice. Thus, these bounds say something useful about the theory under
consideration but not about instances that we are interested in.

We can add to the theory of real addition linearly independent constants, for
example, a finite number of infinitesimals, and we will have the same algorithmic

8 Anatol Slissenko

properties. Adding real constants whose linear dependence is unknown may pose
problems.

The theory of integer addition (Presburger arithmetic) has similar algorith-
mic properties, but its known complexity is one exponent tower higher.

The theory of mixed real/integer addition has both real addition and inte-
ger addition, and rational (or natural) constants. If to add integer part to the
vocabulary this theory has a quantifier elimination [19] whose complexity is the
same as for Presburger arithmetic.

This theory can be combined with finite automata representation of numbers
to resolve constraints [9]. We do not go into details of this kind of theories as we
have not yet studied how to use them in our framework.

The theory of real addition and multiplication (Tarski algebra) has the same
theoretical complexity of quantifier elimination as the theory of real addition. If
the constants are rational numbers then one can represent algebraic numbers.
One can add transcendental constants and represent the corresponding rational
functions. Practical complexity of quantifier elimination is better for Collin’s
cylindrical decomposition than for the algorithms that are the best from the-
oretical viewpoint (remark that the complexity of cylindrical decomposition is
exponent tower higher than that of the theoretically best algorithms).

Now we describe a quantifier-free theory that is sufficient to represent the ver-
ification of a clock synchronization algorithm. We mean the Mahaney—Schneider
protocol as it is described in [18]. This theory is conjectured to be decidable.
We do not need to go into details (see [15]), and just describe some important
points. The protocol deals with N processes P=,; {1,2,..., N}, each one having
its clock. At the beginning the clocks are d-synchronized for some §. There are
delays in communications that are much smaller than §.

The processes start to synchronize the clocks not simultaneously but with
some shifts in time implied by these non deterministic delays. They exchange
messages that arrive again with some non deterministic shifts of time. However,
for a process p only NV 4+ 1 time instants are important: the arrival of starting
signal and the instants of receiving clock values from other processes. Some
processes are Byzantine, their number is B < gf . To calculate its clock update a
correct process filters the received data evaluating the cardinality of some finite
sets (subsets of P) and calculating at the end the mean value of N individual
updates calculated before.

Notice that NN is a parameter, and that J, the delays, etc. are also parame-
ters. If N is concrete, then we can use our decidability algorithms (because of
arithmetics even this case is out of the reach of model checking). However it is
more interesting to resolve the parametric case. The decidability of the following
quantifier-free theory (modulo minor technical details) of parametric addition
would suffice for it.

Atomic formulas of the theory are constructed in the following way:

e Inequalities of the form n- N +&- B+ a1 - a1 + -+ + ap - apw0, where n
and & are real abstract constants or rational numbers; a; are rational constants;
«a; are expressions of the form f(p) or f(p,q) constructed from a symbol of real

Verification in Predicate Logic with Time: Algorithmic Questions 9

valued function f, and of abstract constants p, g for processes from P; w is any
usual order relation. Below we will refer to such inequalities as basic inequalities,
and each basic inequality is a formula. The left part of the inequality above is a
sitmple sum.

e An expression #{p: L(p)}, where L(p) is a basic inequality, and # means
the cardinality, is a cardinality term. A cardinality term can be used to construct
formulas of the form
#{p: L(p)}w(a- N +b- B+ c), where a, b and ¢ are rational constants, and w
is an order relation, as above.

e An expression Y (p, L(p), 8(p)), where p and L(p) are as above, and 6(p) is
a simple sum of the form a1 - a3 + -+ -+ ay - o (here we use the same notations
as above). This expression means a sum of 6(p) over p from the set {p : L(p)}.
Such a sum is a parametric sum and can be used to construct a formula with
the help of an order relation over reals: either we compare two parametric sums,
or a parametric sum and a simple sum.

Formulas are constructed from atomic formulas with the help of propositional
connectors. The set of all these formulas constitutes our theory.

In a less studied domain of verification of probabilistic systems we can also
find some particular restricted theories with exponential functions that may be
decidable.

3 First Order Timed Logic (FOTL)

The starting idea of FOTL is to choose a decidable theory to treat arithmetics
or other concrete mathematical functions, and then to extend it by abstract
functions of time that are needed to specify the problems under consideration. In
some way, the theory must be minimal to be sufficient for a good expressivity. For
concreteness we take, as such an underlying theory of arithmetical operations,
the theory of mixed real/integer addition with rational constants and unary
multiplications by rational numbers. This theory is known to have quantifier
elimination [19] if one extends it with the floor function | |.

Syntax and Semantics of FOTL

The vocabulary W of a FOTL consists of a set of sorts, a set of function symbols
and a set of predicate symbols. A set of variables is attributed to each sort, these
sets are disjoint. The sorts for numbers and Boolean values are sorts by default,
as well as the corresponding constants (see below).

If a finite sort has a fixed cardinality it can be considered as pre-interpreted
because it is defined modulo notations for its elements. Interesting finite sorts
are those whose cardinality is not concrete, say, given by an abstract natural
constant (or not given at all). For example, the set of processes in a distributed
algorithm. It is often convenient, without loss of generality, to interpret such a
sort as an initial segment of natural numbers.

10 Anatol Slissenko

FOTL Syntax
A FOTL syntax is defined by a vocabulary composed of:

Pre-interpreted sorts: R (reals), Z (integers), N (natural numbers), 7 (time,
i.e., non negative reals), Bool (Boolean values), Nil = {nil} (a sort to represent
the ‘undefined’; included in all other sorts), and of a finite number of finite sorts
of concrete cardinality

Abstract sorts: finite number of symbols maybe supplied with abstract natu-
ral constants that denote their respective cardinalities (strictly speaking, these
constants must be declared below among the functions of the vocabulary).

Pre-interpreted functions:
— Constants: true, false, nil, and integers Z (each of type — Z) and rational
numbers Q (each of type — R).
— Arithmetical operations and relations: +, —, =, <, < over reals and integers.
— Boolean operations: A, V, —.
Abstract functions and predicates: function symbols of type 7 xX — Sor X — S
or — S, where & is a direct product of finite sorts and S is an arbitrary sort
(recall that 7 is time).

Semantics of FOTL

A priori, we impose no constraints on the admissible interpretations. Thus, the
notions of interpretation, model, satisfiability and validity are treated as in first
order predicate logic modulo the pre-interpreted part of the vocabulary.

Remark that an interpretation of a function f of type 7 x X — S describes a
family of temporal processes with values in the interpretation of S parameterized
by the elements of the interpretation of X.

Clearly, even a FOTL based on the theory of real addition with two unary
predicates is undecidable (this follows from [13]).

4 Finiteness Properties and Decidability

Here we introduce specific classes of interpretations of a finite complexity. These
interpretations play a key role in our decidability algorithm.

From the point of view of an algorithm that we wish to verify all functions
are piecewise constant. However, their ‘physical’ interpretation may be of other
nature. For example, to represent a piece of linear function a-t+b on an interval
o, we give two values a and b for the coefficients and two values o~ and o™
for the end of 0. And these values remain constant up to the instant when the
algorithm calculates the next linear piece of this function. But the ‘physical’
interpretation of this function, that may be used in guards of the algorithm, is
not constant — however, it is described as a term of the vocabulary, for example,
it may appear in a guard as a term (a-CT +b), where CT is Current Time (the
value of ‘physical time’).

A U-FOTL is a FOTL extended in the following way. For every abstract
function f of type 7 x X — S there is associated a finite set Uy of terms with
values of type S constructed only from variables and pre-interpreted functions.

Verification in Predicate Logic with Time: Algorithmic Questions 11

The vocabulary of FOTL does not give many possibilities to construct a term
Uy € Uy. We will consider the following types of terms: first, those of the form z
with z being a variable for an abstract sort, if S is an abstract sort, and second,
the terms of the form ag7 + a1\ 4+ z, where ag,a; € Q and 7, A and z are real
variables whose role is defined as follows: 7 is a time variable, A is the left end
of the interval on which we consider our function, and z is a real parameter.

Below a U-FOTL is supposed to be fixed. For technical simplicity we assume
that the types 7 x X — S of functions contain only one abstract sort X, not
a direct product (direct products can be treated as in [3]) We will write Uy of
real type also as Us(7, A, z) to make the parameters explicit. We say that f, is
Uy-defined on an interval ¢ by zp € R, if for t € (, the value f,(t) is defined as
Fot) = Up(t, ¢~ 20)-

A partition of T is a sequence 7 = ((;);cy of non empty disjoint intervals
such that:

— N is a prefix of N,

- UieN =T,

~ ¢ =¢, for0<i < |N| -1,

- ¢, =0, Qj = oo if N is finite and k is its last element.

Repetitive Interpretations

We define the interpretations that will be used in the description of our decidable
class of formulas of FOTL. Below we use the following abbreviations:
PI for partial interpretation; FPI for finite partial interpretation.

For an abstract function f of type 7 x X — S and an interpretation X™* of
X, a (finite) partial interpretation fr. of fy- , where z* € X* | is given by

— a (finite) set of disjoint intervals
and for each interval by

—a term Uy € Uy and by a value of z to be put into Uy to define f,+~ on this
interval.

This set of intervals is called the support of the (F)PI fZ..

A FPI has complezity c if the number of intervals in its support is c. In the
context of several complexity parameters, that will be introduced later, we will
call this complexity interval complexity.

A (finite) partial interpretation of f : T x X — § is a subset Y* of an
interpretation X* of X and a collection of (F)PIs, one for each fy-, y* € V*.

A (finite) partial interpretation of vocabulary V' is a collection of (F)PIs, one
for each abstract function of V.

A PI M’ of a function f,- is an extension of a PI M of f,« if every interval
of M is contained in an interval of M’, and the restriction of M’ on intervals of
M gives M. In a similar way we define an extension of a PI of a vocabulary.

Now we go to more general finitely definable interpretations.

An interpretation M of f;« is ultimately repetitive of complexity c and period
h if it is a finite interpretation with complexity c or it is a concatenation of a

12 Anatol Slissenko

finite interpretation of complexity ¢ on some interval, say [0, hg), followed by an
interpretation of the following ‘almost periodic’ structure:

— any interval I; = [hg+4-h,hg+ (1 +1)-h), i > 0, is partitioned into ¢
consecutive intervals ¢; j, 0 < j < (¢—1) such that | ;| = |Gi+1,5| (that means
that the partition has a periodic structure starting from hg)

— moreover, on each (;; the function f;« is defined by a Uy ;(t,(; 5, 25) ,
where Uy ; € Uy and z; do not depend on 1.

The intervals (; ; are called period defining intervals and I, is called defining
interval of this ultimately repetitive interpretation.

Our main notion concerning interpretations of finite complexity is that of a
chain of repetitive interpretations.

A finite prefix of an ultimately repetitive interpretation of a f,« is exact if
its end coincides with the end of one of its defining intervals I;. Its complexity
is defined similar to the complexity of ultimately repetitive interpretations (in
fact, this complexity is the maximum of the interval complexity of the prefix and
of the interval complexity of the period.)

We say that an interpretation of a f« is a chain of ultimately repetitive
interpretations with complezity (L, c) if it is a concatenation of at most (L — 1)
finite exact prefixes of repetitive interpretations and of one infinite ultimately
repetitive interpretation, each of complexity ¢. We will sometimes refer to L as
to chain complexity.

Equivalence

To reduce the complexity of interpretations in spite of a possibly large amount of
elements in abstract sorts we introduce a notion of equivalence of interpretations,
and on this basis we will generalize the complexity measures for PI of individual
fz+. Given an interpretation of the vocabulary, such an equivalence is defined
over elements of the interpretation of abstract sorts for each f.

Without loss of generality, an abstract sort X is interpreted as an initial
segment X* on natural numbers.

In Definitions that follow, X* stands for an interpretation of a sort A

An equivalence E over YV* C X* is interval-wise if its classes of equivalence
are intervals. An equivalence E over)V* is f-compatible if for any two elements
u*,v* € Y* the equivalence u*Ev* implies that the functions f¥. and f}. are
equal.

Complexity of Partial Interpretations

A PI of f over Y* C X* is a FPI of complezity (m, c) if there is an interval-wise
equivalence F on Y* with at most m classes which is f-compatible, and such
that each f;., y* € Y*, has complexity ¢ (without loss of generality we assume
that the partition of time, the terms from Uy and parameters z that define fj.
are the same for all y* of the same equivalence class).

A FPIof V of complexity (m,c) is a collection of FPIs with complexity (m, c),
one for each abstract function. A FPI of complexity (m,¢) will be also called a
(m, ¢)-PL

Verification in Predicate Logic with Time: Algorithmic Questions 13

The parameter m is called equivalence complexity.

An interpretation of f over X* is ultimately repetitive with complexity (m, c¢)
if there is an interval-wise equivalence E on X'* with at most m classes which
is f-compatible, and such that for each class, all f). with 2* in this class are
ultimately repetitive with complexity c.

An interpretation of f over X* is a chain of ultimately repetitive interpreta-
tions with complexity (m, L, ¢) if there is an interval-wise equivalence F on X*
with at most m classes, which is f-compatible and such that for any class, all

~. with 2* in the class are chains of ultimately repetitive interpretations with
complexity (L, ¢).

An interpretation of V' of complexity (m, L, ¢) is a collection of interpretations
with complexity (m, L, c), one for each abstract function.

We introduce classes of interpretations used below, in particular, the class
used in our decidability result.

Notations

e Below K is a complexity of the form (m,c¢), and £ is a complexity of the
form (m, L, c).

e For a class C of interpretations we denote by C(k) the set of interpretations
in the class C with complexity x, where x has the form defined for this class of
interpretations.

e UTR is the class of ultimately repetitive interpretations.

e UR" is the class of chains of ultimately repetitive interpretations.

o UR™(L,A), where A C Qsg , is the set of interpretations from UR™
with complexity £ whose period lengths are from A. (Recall that for a given
ultimately repetitive interpretation f., the period length is fixed, so the set A
specifies possible period lengths for interpretation of different functions f;.)

e UR*(A) is the union of all UR* (L, A) over L.]

Finite Refutability and Finite Satisfiability

Recall that we fixed some FOTL so when we speak about a formula then, by
default, we mean a formula of this FOTL.

A formula F' is IC-refutable if for every its counter-model M there exists a
K-FPI M’ such that M is an extension of M’, and any extension of M’ to a
total interpretation is a counter-model of F'.

Finite satisfiability, defined just below, is a notion that is, in some way, dual to
finite refutability. It represents the following property. If in a model we take any
piece of a given complexity (imagine that this piece is defined on some number
of separated intervals) then we can fill the gaps between these defined parts to
get a total model whose complexity is bounded as a function of the complexity
of the given initial piece. This bounding function is the augmentation function
used below. The main point is with what kind of interpretations we will fill the
gaps.

By « we will denote a total computable function transforming a complexity
value of the form (m,c) into a complexity value of the form (m,c), when we
speak about class UR, or into a complexity value of the form (m, L, ¢), when we

14 Anatol Slissenko

speak about class UR™. Such a function will serve as an augmentation function
in the notion of finite satisfiability below.

A formula F is (C, K)-satisfiable with augmentation « if for every K-FPI
M extendable to a model of F there is an extension M’ of M from C(«a(K))
that is a model of F.

A formula F' is C-satisfiable with augmentation « if for every I, for every
IC-FPI M extendable to a model of F, there is an extension M’ of M from
C(a(K)) that is a model of F.

The finiteness properties introduced above permit to describe our class of
formulas, such that the validity of closed ones is decidable, and for any formula we
can effectively describe its counter-models of a given complexity as a quantifier-
free formula in a theory with ‘good’ algorithmic properties. The class is motivated
by the verification problem, that is why it consists of implications that tacitly
refer to the structure of verification formulas explained in Introduction.

Class VERIF(A,K,a) of FOTL-Formulas

o Ch=y UR*(h - A), where h is a real number, A is a finite set of rational
numbers and h - A is the set of reals of the form h - A with A € A.

o VERIF,(A,K,«a) is the class of FOTL-formulas of the form (& —),
where formula ¥ is KC-refutable and @ is (Cp, K)-satisfiable with augmentation
o.

o VERIF(A,K,a) = Upez., VERIF,(4,K,a).

Notice that our description of VERIF(A, K, «) admits not closed formulas
in the class.

Decidability and Quantifier-Free Description of Counter-Models

Theorem 1 Given a complexity K, a computable augmentation function «
and a finite set of positive rational numbers A C Qsg, the validity of (closed)
formulas from VERIF(A, K, «) is decidable. Moreover, for any formula of this
class, its counter-models of complexity «(KC) can be described by a quantifier-free
formula.

For the class VERIF that uses ultimately repetitive models the quantifier-
free formulas may contain | |. For the class V ERIF that uses only finite models
and is based on the theory of real addition, the quantifier-free formulas are
formulas of the theory of real addition that are much easier to deal with. The
worst case complexity of our algorithms is the same as that of the underlying
theory of arithmetical operations.

Theorem 2 below gives precisions on the role of h in this description (h is a
parameter of VERIFp, (A, K, @)

Theorem 2 Given a FOTL-formula F' and a complexity L, one can construct
a quantifier-free formula that describes all h and all repetitive models (we mean
chains of ultimately repetitive interpretations) of F of complexity L in Cp,.

Verification in Predicate Logic with Time: Algorithmic Questions 15

Corollary 1 The existence of h for which there is a model of complexity L in Cp,
for a formula F, or the existence of a model of F' of complexity L for a concrete

h, is decidable.

Conclusion

Several questions important for practical application of the presented methods
remain open.

How to describe formulas corresponding to practical problems of verification
and what is their complexity?

A related question is to find sufficient syntactical conditions on programs
that ensure finite satisfiability.

What about decidability of the second order properties that were mentioned
in Introduction and that are formulated in a theory that is clearly undecidable
in general?

What are other practically relevant finiteness properties?

As for theoretical questions, one question seems to be of a growing impor-
tance: verification of probabilistic systems. For many protocols and especially
for the security properties, the models are probabilistic. The argument that we
rarely know the probabilities is not a real objection, as we can try different plau-
sible distributions if we have good algorithms to deal with them. On the basis
of the results of verification for these various distributions and our experience,
we can make conclusions about practical value of the system that we analyze. It
is even better to treat probability distributions as parameters and to try to find
a description of these parameters for which the property we are interested in, is
true.

Logics with probabilities that are decidable (see [1] that gives an excellent
presentation of the subject) are not sufficiently powerful; the same is true for
predicate logics. But for logic of probability it is much harder to find decidable
classes of practical value. Even decidable model checking is not so easy to find
(e.g., see [7]).

Continuous time that is quite intuitive also in the probabilistic framework
poses a problem of semantics from the very beginning because quantification over
non countable domain may give non measurable sets, and because arithmetical
operations over stochastic processes are problematic. Thus, we have to define the
syntax of theories more carefully, maybe without composition and iteration all
the used constructors. To ensure measurability it is better to avoid, for example,
formulas like P{Vt¢(t)} > p, where P stands for probability. Imagine that
YVt p(t) is a safety property. On the other hand, can we be satisfied with proving
ViP{p(t)} > p that is a property different from the first one?

In order to be able to define finiteness properties we have to consider finitely
definable probability spaces. This is the case in applications of the probability
theory. Usually, a ‘practical’ probability space is either finite or countable or is
a sub-interval of reals or a mixture of the previous ones. But for stochastic pro-
cesses we have a product RT of simple spaces R over time T, and the probability
measure is over this RT.

16 Anatol Slissenko

However all these difficulties seem to be surmountable, at least, in some
cases of practical interest. So how to define finite refutability for a formula with
probability?

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

2. D. Beauquier, T. Crolard, and E. Prokofieva. Automatic verification of real time
systems: A case study. In Third Workshop on Automated Verification of Critical
Systems (AVoCS’2003), pages 98-108. University of Southampton, 2003.

3. D. Beauquier, T. Crolard, and E. Prokofieva. Automatic parametric verification of
a root contention protocol based on abstract state machines and first order timed
logic. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems: 10th International Conference, TACAS 2004,
Barcelona, Spain, March 29 — April 2, 200/. Lect. Notes in Comput. Sci., vol. 2988,
pages 372-387. Springer-Verlag Heidelberg, 2004.

4. D. Beauquier, T. Crolard, and A. Slissenko. A predicate logic framework for me-
chanical verification of real-time Gurevich Abstract State Machines: A case study
with PVS. Technical Report 00-25, University Paris 12, Department of Informatics,
2000. Available at http://www.univ-paris12.fr/lacl/.

5. D. Beauquier, A. Rabinovich, and A. Slissenko. A logic of probability with decid-
able model-checking. Journal of Logic and Computation. 24 pages. To appear.

6. D. Beauquier and A. Slissenko. Periodicity based decidable classes in a first order
timed logic. Annals of Pure and Applied Logic. 38 pages. To appear.

7. D. Beauquier and A. Slissenko. Decidable verification for reducible timed automata
specified in a first order logic with time. Theoretical Computer Science, 275(1—
2):347-388, March 2002.

8. D. Beauquier and A. Slissenko. A first order logic for specification of timed algo-
rithms: Basic properties and a decidable class. Annals of Pure and Applied Logic,
113(1-3):13-52, 2002.

9. B. Boigelot and P. Wolper. Representing arithmetic constraints with finite au-
tomata: An overview. Lecture Notes in Computer Science, 2401:1-19, 2002.

10. E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and com-
plexity of bounded model checking. In Levi G. Steffen, B., editor, Proceedings of
the 5th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’2004), Venice, Italy, January 11-13, 2004, volume 2937
of Lecture Notes in Computer Science, pages 85—96. Springer-Verlag Heidelberg,
2004.

11. R. Fagin and J. Halpern. Reasoning about knowledge and probability. J. of the
Assoc. Comput. Mach., 41(2):340-367, 1994.

12. Y. Gurevich and J. Huggins. The railroad crossing problem: an experiment with
instantaneous actions and immediate reactions. In H. K. Buening, editor, Computer
Science Logics, Selected papers from CSL’95, pages 266-290. Springer-Verlag, 1996.
Lect. Notes in Comput. Sci., vol. 1092.

13. J. Halpern. Presburger arithmetic with unary predicates is 7i-complete. J. of sym-
bolic Logic, 56:637-642, 1991.

14. J. Sanders and E. Curran. Software Quality. Addison-Wesley, 1994.

Verification in Predicate Logic with Time: Algorithmic Questions 17

15. A. Slissenko. A logic framework for verification of timed algorithms. Fundamenta
Informaticae, 69:1-39, 2004.

16. I. Sommerville. Software Engineering. Addison-Wesley, 4th edition, 1992.

17. M. Sorea. Bounded model checking for timed automata. Electronic Notes in The-
oretical Computer Science, 68(5), 2002.
http://www.elsevier.com/locate/entcs/volume68.html.

18. G. Tel, editor. Introduction to Distributed Algorithms. Cambridge University Press,
1994.

19. V. Weispfenning. Mixed real-integer linear quantifier elimination. In Proc. of the
1999 Int. Symp. on Symbolic and Algebraic Computations (ISSAC’99), pages 129—
136. ACM Press, 1999.

Note on Formal Analogical Reasoning
in the Juridical Context

Matthias Baaz

Technische Universitiat Wien, A-1040 Vienna, Austria
baaz@logic.at

Abstract. This note describes a formal rule for analogical reasoning
in the legal context. The rule derives first order sentences from partial
decision descriptions. The construction follows the principle, that the
acceptance of an incomplete argument induces the acceptance of the
logically weakest assumptions, which complete it.

“The common law is tolerant of much il-
logicality. especially on the surface, but no
system of law can be workable if it has not
got logic at the root of it.” (Lord Devlin in
Hedley Byrne and Co. Ltd. v. Heller and
Partners Ltd. (1964))

1 Introduction

4000 Years ago, mathematical arguments were given by examples. When Sume-
rian and Babylonian mathematicians wanted to present a general statement,
they provided examples such that scholars were able to grasp the principle by
calculating these particular cases (Gericke [0]).

4000 years ago, legal reasoning developed along the same lines, but for dif-
ferent reasons. In mathematics, the general principle relates to the one-for-all
validity of the single case, in legal systems, to the stability of the system, or in
more traditional terms: to justice.

Although this fact is nowadays generally overlooked, mathematics and law
have remained connected throughout the history of human civilizations, with
law being for the majority of the time, the methodologically more developed
part. When the notions of argument and proof were established in Greek logic,
they used expressions from law. The Greek notion of proof is the ancestor of
modern mathematics.

Nowadays, both of the renowned sciences of mathematics and jurisprudence
look at each other with suspicion. Some law schools disclaim even the admis-
sibility of general principles in judgments (Holme’s Maxim), relating this to a

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 18-26, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Note on Formal Analogical Reasoning in the Juridical Context 19

reductive argument of Kant', which would apply to the general principles in
mathematics as well if valid. Mathematicians on the other hand reject the pos-
sibility of formally correct reasoning in law, since they are unable to explain
the effectiveness, both at the theoretical and practical level, of the interplay of
deductions and actions in juridical procedures.

In this note we try to establish a bridge between mathematical logic and
jurisprudence by developing a proof theoretic concept of analogical reasoning,
which we consider as the most fundamental deduction principle of juridical logic.

2 Analogical Reasoning in Mathematics

Analogical reasoning occurs frequently in mathematics (cf. Kreisel [11]) but is
rarely documented. A notable exception is Eulers computation of the sum
DR g
nz 6

n=1

that made him famous [5], cf. Polya [13, page 17 {f.]. The problem of computing
this sum, which was readily seen to be convergent but for which nobody could
guess the value, was posed by Jacques Bernoulli.

Let us consider Eulers reasoning. Consider the polynomial of even degree

bo — biz? + box* — ...+ (=1)"bz*". (2)
If it has the 2n roots £/1,...+ (3, # 0 then (2) can be written as

EDEDD e

¢

By comparing coefficients in (2) and (3) one obtains that

1 1 1
(b b). 0

Next Euler considers the Taylor series

sinz > 2"
x ;(—1)" (2n 4 1)! 5)

! “General logic contains and can contain no rules for judgment . ..If it sought to give
general instructions how we are to subsume under these rules, that is, to distinguish
whether something does or does not come under them, that could only be by means
of another rule. This, in turn, for the very reason that it is a rule, again demands
guidance from judgment, And thus it appears that, though understanding is capable
of being instructed, and of being equipped with rules, judgment is a peculiar talent
which can be practiced only, and cannot be taught.” [7]

20 Matthias Baaz

which has as roots +m, +27,+£37,... Now by way of analogy Euler assumes
that the infinite degree polynomial (5) behaves in the same way as the finite
polynomial (2). Hence in analogy to (3) he obtains

sirxlx:< _;’i) (1_4";22) (1_;7:2)... (6)

and in analogy to (4) he obtains

1 1 1 1
=] 7
3! (71'2 +47T2 + 972 +) (7)

which immediately gives the expression (1). This solution of the problem caused
much amazement and astonishment at the time. The “leap of faith” used by
Euler to arrive at the solution was later rigorously justified, but it is important
to realize the role that reasoning by analogy played in finding the initial solu-
tion. Using analogy Euler found a proof scheme that would lead to the desired
conclusion”. This proof scheme suggested to him the preconditions he had to
prove to formally justify his solution.
The structure of Eulers argument is the following.

(a) (2)=(3) (mathematically derivable)
(b) (2)=(3) D (4) (mathematically derivable)
(c) (2)=(3) > (5)=(6) (analogical hypothesis)

(d) (56)=(6)>(4) (modus ponens)

(e) (2)=@13)>4)>((5)=(6)>(7) (analogical hypothesis)

) ((B)=(6)> () (modus ponens)

(g (M) (modus ponens)

(hy (M>@Q) (mathematically derivable)
i) (1) (modus ponens)

To transform Eulers argument in a rigid proof in the sense of mathematics it is
sufficient to verify (c) and (e). On the other hand, if one is determined to uphold
this argument one has at least to uphold the weakest preconditions that verify
(c) and (e). This provides a connection to juridical reasoning.

3 The Derivation of Weakest Preconditions from Proofs

The main logical problem of legal reasoning lies in the conflict of the following:

2 In mathematical terms the scheme can be formulated as follows. To calculate
Y ver v12 search a function f such that f(z) =Y i, ciz’, I' = {z|f(z) = 0,z > 0},
and f(x) =0z €' AN—x €. Then) 1 _a

vel v2 co”

Note on Formal Analogical Reasoning in the Juridical Context 21

(i) Arguments should be demonstrably sound.
(ii) Decisions have to be achieved within a priori limited time and space.

The solution is provided by minimalist systems such as English Common Law
and maximalist systems such as continental legal systems. In minimalist systems,
completeness is achieved by the admitted generation of legal norms from juridical
decisions (stare decis), which logically represent preconditions of the decisions
(ratio decidendi) in the sense of incomplete reasoning. In maximalist systems
extensive interpretations treat the inherent incompleteness of the system. The
system obtains stability by the application of teleological interpretations, which
restrict the derivable conclusions in conflicting situations.

Let us consider how the ratio decidendi is established according to the English
doctrine of precedent® (Wambaugh’s test):

“First frame carefully the supposed proposition of law. Let him then
insert in the proposition a word reversing its meaning. Let him then
inquire whether, if the court had conceived this new proposition to be
good, and had had it in mind, the decision would have been the same. If
the answer be affirmative, then, however excellent the original proposi-
tion may be, the case is not a precedent for that proposition, but if the
answer be negative the case is a precedent for the original proposition
and possibly for the other propositions also. In short, when a case turns
only on one point the proposition or doctrine of the case, the reason for
the decision, the ratio decidendi, must be a general rule without which
the case must have been decided otherwise.” [1, p52]

In a mathematical sense the ratio decidendi of a decision is the weakest rea-
sonable precondition completing the otherwise incomplete argument. We will
formally specify the notion of weakest precondition as follows. Let a proof sys-
tem be given by schematic axioms and rules.

A partial proof skeleton with respect to T, T a set of formulas, is a rooted
tree whose vertices are labelled by the inference rules. Further, the order of the
given vertices is marked on the tree. Some of the initial nodes are designated
by axiom schemes or formulas from T'. If all initial nodes are designated in this
way the partial skeleton is called total. The information which the skeleton does
not contain are the terms and variables used in quantifier rules. Every proof
determines uniquely its partial skeleton with respect to T', but we do not require
a skeleton to be determined by some proof.

Ajq ... A, are preconditions with respect to the partial proof skeleton S, T,
and end formula F, if the assignment of A; ... A, to the non-designated initial
nodes of S can be extended to a proof of the end formula F.

To calculate (weakest) preconditions is however not sufficient to represent
analogy in legal reasoning. Decisions by judges should be general in the sense that

3 In continental e.g. German legal practice analogical reasoning occurs less explicit.
However all specific rules of German legal reasoning such as argumentum a simile,
argumentum e contrario, argumentum a fortiori, argumentum ad absurdum [9], are
easily reducible to analogical reasoning.

22 Matthias Baaz

they are independent* of the concrete persons etc. involved. This is completely
(but in practice tacitly) specified before the decision is taken. We represent this
constraint by a (possible empty) set of constants I'.

Wy ... W, are weakest preconditions with respect to the partial proof skeleton
S, T, end formula F, and I', if they are preconditions in the above sense and
whenever {W; ... Wy,}o, I' b A then {A;...A,}o, '+ A, for any I', A in the
original language of the derivation, and any choice of preconditions A; ... A,.
This includes all substitutions o for the free variables in ' and the constants in
I' (considered as variables).

We need therefore a proof system that allows for the calculation of weakest
preconditions as a formal basis of analogical reasoning: The weakest precondition
will allow for the derivation of new information in subsequent decisions and
therefore enforce stare decis.

4 LK Is Not Suitable
for Calculating Weakest Preconditions

A first proof theoretic approach is to consider LK as theoretical basis. We define
partial proof skeletons with respect to T, T" a set of sequents, preconditions,
weakest preconditions, as above, only that for the exchange rule the label con-
tains also the number of the pair to which it should be applied.

In this section we show that LK in the full first order language with cuts
does not allow for the calculation of weakest preconditions.

Theorem 1. Let L be a language containing a unary function symbol s, a con-
stant 0, and a binary function symbol. There is a partial skeleton S and a given
end sequent such that it s undecidable whether a sequent may serve as precon-
dition and where no weakest precondition exists.

Proof. By Orevkov [12] and Krajicek and Pudlak [10] we have that for every
recursively enumerable set X C w there exists a sequent IT — I, P(a) and a
total skeleton S’ such that n € X iff I — I', P(s™(0)) has an LK proof with
skeleton S’. The argument however uses the concrete form of IT — I, P(a).
We therefore extend the proof skeleton S’ as in Figure 1. This guarantees that
P(s™(0)) is doubled and the form is preserved in the end sequent IT — I', Jx A(x).
Preconditions are consequently {P(s™(0)) — |n € X}. The property of being a
precondition is therefore undecidable if X is undecidable, and there are in general
no weakest preconditions.

5 A Model Calculus for Analogical Reasoning

We consequently restrict to propositional LK with schematic sets of sequents
T ° in the definition of partial proof skeleton, preconditions, and weakest pre-

4 Independence can be considered as a proof theoretic interpretation of justice.

5 Alternative approaches in full first order languages can be based on LK without
the cut rule [10], [3], or on LK with blockwise inferences of quantifiers with the cut
rule [2].

Note on Formal Analogical Reasoning in the Juridical Context 23

Ax Ax
right left
weakening weakening

~ 7

left contraction

N

J-right

exchange(2,3) *

~_

cut

Fig. 1. Proof skeleton S’

conditions. A derivation from T is therefore a derivation from instances of the
schemata in 7. We construct the weakest preconditions with respect to partial
proof skeleton S, T', end sequent E, and I as follows.

1. (Reconstruction step) Reconstruct the propositional matrix of the deriva-
tion using the end sequent and the partial proof skeleton. When passing
applications of the cut rule represent the cut formula by a new propositional
variable in the premises. This reconstruction is possible as otherwise there
would be no proof with this partial proof skeleton.

2. (Unification step) Unify both sides of the logical axiom sequents and unify
initial sequents with the appropriate schemata from T if the partial proof
skeleton assigns them in this way. (The schemata from T have to be chosen
variable disjoint.) Apply the most general unifier to the propositional matrix.

3. (Introduction of Skolem terms) Extract the initial sequents correspond-
ing to the initial nodes in the partial proof skeleton which are not as-
signed logical axioms or schemata in 7. Replace all constants in c¢y,..., ¢,
in I' by new variables a1, ...,a, Replace all first order variables y differ-
ent from {ai,...,a,} which do not occur in the end sequent by Skolem

24 Matthias Baaz

terms fy(a1,...,an,21,...,Zm), where x1,..., 2, are the free variables in
the end sequent. Replace propositional variables X by Skolem predicates
Fx(ai,...,an,21,...,2Zm), where x,...,2,, are the free variables in the
end sequent. Here f, is a new function symbol and Fx is a new predicate
symbol.

Proposition 1. The construction above is adequate.

Proof. The extracted initial sequents are obviously preconditions. To switch from
a derivation from the extracted initial sequents to a derivation from arbitrarily
chosen preconditions replace the Skolem terms and Skolem predicates under o
everywhere in the derivation by adequate terms and formulas.

We consequently define the analogical reasoning with respect to a proof P,
T, and independence conditions I

First, read the partial proof skeleton S and the end sequent F from P. Then
calculate weakest preconditions Wy, ..., W,, with respect to I'. Then

(S, T,E, ") - W,
for all ¢ by analogical reasoning.

Ezample 1. Brown vs. Ziirich Insurance (1977). The plaintiff claimed compen-
sation for a car damage which was denied given the established principle that
a car is not insured if it is not in roadworthy condition and the fact that the
plaintiff’s car had bald tires. The formalization of this decision might look as
follows.

pc plaintiff’s car
bt bald tires

W roadworthy
I(x) x is insured

COND(z,y) « is in condition y

COND(pc, bt) — =COND(pc, rw) —~COND(pc,rw) — —I(pc)

— COND(pc, bt) COND(pc, bt) — =I(pc)
— —I(pc)
S: * —-COND(z,rw) — —I(x)
— COND(pc, bt) cut

O/

cut

Note on Formal Analogical Reasoning in the Juridical Context 25

T= { — COND(pc, bt), “COND(z,rw) — ﬂI(x)}

E = ~I(pc)
I = {pc}.
XY Y — —I(pc)
- X X — —I(pc)
— —J(pc)

o = {X = COND(pc, bt),Y = =COND(pc,rw),z = pc}

(S,T,E,T") - COND(z,bt) — ~COND (z,rw)

6 Conclusion

The rule for analogical reasoning as described in this note suggests the devel-
opment of a calculus based on formulas and partial decision descriptions. The
question remains why not to represent the partial decision descriptions by the
generalized weakest preconditions and to omit the partial decision descriptions
altogether. The reason is, that with respect to the hierarchy of courts and to
the development of the legal apparatus in time® regulations and decision have
to be canceled to keep the apparatus consistent. This might affect other partial
decision descriptions, because accepted statements might become free precon-
ditions, and therefore generalized weakest preconditions have to be calculated
again. (This continuous adaption of the calculus can be considered as a math-
ematical interpretation of Kelsen’s Stufenbau der Rechtsordnung, cf. Kelsen [3]
und Baaz und Quirchmayr [1].)

References

1. M. Baaz and G. Quirchmayr, Logic-based models of analogical reasoning, In Ezpert
Systems with Applications, volume 4, pages 369-378. Pergamon Press, 1992.

2. M. Baaz and G. Salzer, Semi-unification and generalizations of a particularly sim-
ple form, In L. Pacholski and J. Tiuryn, editors, Proc. 8th Workshop CSL’94,
LNCS 933, pages 106—120. Springer, 1995.

3. M. Baaz and R. Zach, Generalizing theorems in real closed fields, Ann. Pure Appl.
Logic 75 (1995) 3-23.

4. R. Cross and J. W. Harris. Precedent in English law, 4th edition, Claredon Law
Series, Oxford University Press 1991.

5. L. Euler, Opera Omnia, ser. 1, vol. 14, 73-86, 138-155, 177-186.

6. H. Gericke, Mathematik in Antike und Orient. Mathematik im Abendland, Wies-
baden: Fourier Verlag, 1992.

7. 1. Kant, Critique of Pure Reason, trans. N. Kemp Smith, St Martins Press, 1929,
A133/B172.

5 Cf. in German law: Lex posterior derogat legem priorem.

26

11.

12.

13.

Matthias Baaz

. H. Kelsen, Reine Rechtslehre, Verlag Osterreich, 2000 (reprinted from 2nd edition
from 1960)

U. Klug. Juristische Logik, 4th edition, Springer, 1982.

. J. Krajicek and P. Pudlak, The number of proof lines and the size of proofs in first
order logic, Arch. Math. Log. 27 (1988) 69-84.

G. Kreisel, On analogies in contemporary mathematics, 1978 UNESCO lecture, in:
Hahn and Sinaceur (eds.), Penser avec Aristote, Erés 1991, 399-408.

V. P. Orevkov, Reconstruction of the proof from its scheme, (Russian abstract),
8th Sov. Conf. Math. Log. Novosibirsk 1984, p133.

G. Polya, Induction and analogy in mathematics, Vol. I of Mathematics and plau-
sible reasoning, Princeton University Press, 1954.

An Abstract Strong Normalization Theorem

Ulrich Berger

University of Wales Swansea
u.berger@swan.ac.uk

Abstract. We prove a strong normalization theorem for abstract term
rewriting systems based on domain-theoretic models. The theorem ap-
plies to extensions of Godel’s system T by various forms of recursion
related to bar recursion for which strong normalization was hitherto un-
known.

1 Introduction

In his seminal paper [1] Plotkin introduced a domain-theoretic method for prov-
ing termination of higher-order rewrite systems. His Adequacy Theorem says
that if a closed PCF term of ground type does not denote L, then its call-
by-name reduction sequence terminates. Similar domain-theoretic methods were
developed in [2] and [3] to prove strong normalization for simply and polymor-
phically typed rewrite-systems.

In this paper we isolate what one could call the essence of these methods.
It turns out that the common idea of these methods, namely the simultaneous
approximation of the operational and the denotational semantics, is not tied
to a particular typing discipline or A-calculus. The argument works for very
abstract notions of term, reduction and denotational semantics which can be
characterized by simple functoriality and naturality conditions.

Given such an abstract term system T and a domain-theoretic model of it
we introduce the notion of a rewrite structure, which is a triple R = (C, —, «)
consisting of a set of constants C, an operational semantics of the constants given
by an abstract reduction relation — on T(C), and a denotational semantics given
by an interpretation « of the constants in the model. We formulate conditions
expressing that the two semantics nicely fit together. Monotonicity says that
reducing a term can only increase its denotational semantics, while strong nor-
malization says that if a term does not denote L, then it is strongly normalizing
with respect to —.

Furthermore we define what it means for a rewrite structure R, to approz-
imate a rewrite structure R. Typically, R,, will have for every constant ¢ of R
a sequence of constants ¢, corresponding to the finite stages of the (usually)
recursive definition of ¢. Theorem 1 says that through approximation strong
normalization is transferred from R, to R. Because the proof of strong nor-
malization of R, is usually easy (recursion is replaced by finite iteration), or,
more precisely, can be easily inferred from strong normalization of the underlying
typed A-calculus, we obtain a method for proving strong normalization for R.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 27-35, 2005.
© Springer-Verlag Berlin Heidelberg 2005

28 Ulrich Berger

As an application we show that our method can be used to prove strong

normalization for various extensions of Gédel’s system T" which were used in [/—
] to give computational interpretations of classical analysis in finite types.

The paper is organized as follows. Sections 2 and 3 introduce the general
method and prove the main abstract result (Theorem 1). The abstract definitions
are accompanied by examples in which the method is applied to a simply typed
A-calculus with an (unspecified) higher-order rewrite system based on pattern
matching. In Section 4 we choose a concrete example of a higher-order rewrite
system and prove its strong normalization using a (technically) simple totality
argument. Section 5 gives an informal summary of the method in form of a
‘recipe’ for further applications and compares it with other approaches.

2 Abstract Term Systems
and Their Domain-Theoretic Models

In this section we introduce an abstract notion of a ‘term over a set of constants’
and its domain-theoretic models. The approach is extremely loose, in particular
no initiality assumptions are made. We just collect the minimal set of conditions
sufficient for our purpose.

Definition 1. Let Const be a subcategory of the category CountSet of countable
sets. An object C of Const is called a system of constants, a Const-morphism
0:C — C' is called a constant substitution. A term system is a (covariant) functor

T: Const — CountSet.

For every system of constants C the set T(C) is called the set of terms with
constants in C. If §:C — C’ is a constant substitution and M € T(C), then we
write M6 for T(6)(M) and call M6 the result of applying 6 to M.

Note that the functoriality of T means that Mid = M, where id:C — C is the
identity, and M (6 0 0") = (M6")6.

Ezxample 1. Consider simple types generated from the base types boole and nat
by the formation of function types, p — o. Let an object C of Const be a count-
able set of typed constants ¢?, and a morphism 6:C — C’ a type respecting
constant substitution. Terms (and their types) over C are built from typed vari-
ables, z°, and constants, ¢ € C, by the formation of constructor terms, 0"t
S(Mnatynat - rgboole - pboole - Jefinition by cases, (if PP then M” else N*)?), ab-
straction, (Az?M7)P~9, and application, (M?~7N*)?. We let T(C) be the set
of closed terms over C. For a constant substitution §:C — C" we let T(8)(M)
be the result of replacing each constant ¢” in M by 6(c”). Clearly this defines a
term system, i.e. a functor T: Const — CountSet.

Definition 2. A model of a term system T consists of a Scott domain D [9-11]
together with a family of continuous functions

vale: D¢ — DT© (C € Const)

An Abstract Strong Normalization Theorem 29

which is ‘natural in C’. More precisely, val is a natural transformation between
the contravariant functors D, DT(): Const — DOM where DOM is the category
of Scott domains and contlnuous functions (which has countable products). If
a € D€ and M € T(C), then we write [M]ca, or just [M]a, for vale(a)(M) and
call this the value of M under the constant interpretation a.

Note that the naturality condition for val means that for all M € T(C), 0:C — C’,
and a € D€ we have

[M]c(a @) 9) = [Me]c/a
which is the usual substitution lemma (restricted to constant substitutions) in
denotational semantics. Note also that by continuity the function [M]: D¢ — D
is monotone, i.e. o C 3 implies [M]a C [M]3, and

M] |_| an = |_| [M]a,

neN neN
for every increasing sequence of constant interpretations o, € DC.

Ezample 2. We define a model (D,val) for the term system T of Example 1 as
follows. For every type p we define a Scott domain D, by Dpoeole = {-L, #t, #f},
Dpnat = {L1,0,1,2,...}, the flat domains of booleans and natural numbers, D,_,,
= D, — D,, the domain of continuous functions from D, to D,. For every
constant interpretation « assigning to each ¢” € C some «a(c) € D,, and every
variable environment 7 assigning to each variable 2 some 7(z) € D, we define
the strict semantics, [M]an € D,, as follows.

[z]an = n(x)
[clan = a(c)
([\x Mlan)(a) = [M]an
{ M)if a:=[N]an # L
0therw1se
blan =b (b € {0, #t, #f})
:{n+11fn [M]an # L
otherwise
MJan if [Plan = ##t
[if Pthen M else N]an [lan if [Plan = #f
1 otherwise

We let D be the coalesced sum of the domains D,, i.e. all bottoms of the D,
are identified. We define vale: D¢ — DT(©) by vale(a)(M) := [M]a/ L where
L(zf) := L? and &'(c”) := a(c”) if a(c?) € D,, and o/ (c?) := LP otherwise. It
is easy to see that valc is natural in C.

3 Strong Normalization by Approximation

Definition 3. Let T: Const — CountSet be a term system and (D, val) a model
of T. A rewrite structure for T and (D,val) is a triple R = (C, —, &) where C is

30 Ulrich Berger

a constant system, — a binary relation on T(C) and o € D°. R is monotone if
M — N implies [M]a C [N]a for all M, N € T(C). R is strongly normalizing if
every term M € T(C) with [M]a # L is strongly normalizing w.r.t. —, i.e. there
is no infinite reduction sequence beginning with M.

Note that M is strongly normalizing w.r.t. — iff the restriction of — to the set
{N | M —* N} is wellfounded. Therefore it makes sense to speak of ‘induction
on the strong normalizability of M.

Ezxample 3. Continuing examples 1 and 2, we fix a set of typed constants C €
Const. Consider a set £ of equations of the form ¢P = M where each P; is either
a variable, or one of #t, #f, 0, or of the form S(z), and such that all equations are
left linear, the left-hand sides of the equations are mutually non-unifiable, and
every free variable in a right-hand side also occurs in the corresponding left-hand
side (see [2, 3]). Then & defines a constant interpretation a: C — D in a canonical
way. Take, for example, the constant <:nat — nat — boole with the equations
< 0=#Ff0<S(y) =#t, S(z) < S(zr) =z < y. Then (<) € Dpat—nat—boole
is recursively defined by

uf if m =0
) F#t ifk=0andm>0
ka(<)m= (k—=1) a(<) (m—=1)if k>0and m >0
i otherwise (i.e. k=1 orm = 1)

On the other hand £ also defines a reduction relation — between terms through
the rules below, where M[N/z] denotes (variable capture avoiding) substitution
and Inst(€) is the set of all substitution instances of equations in £.

M:NelnSt(g) B (/\IM)N—>M[N/CC]

M — N
It P — P
if Pthen M else N — if P’ then M else N
Tf-#t Tf-H-F
7 if #tthen M else N — M # if #f then M else N — N
M — M’ N — N’ M — M’
App-L App-R
PPN Sy PP N Lo AP e

Altogether we have defined a rewrite structure R = (C,—,) (restricting —
to closed terms). It is easy to see that R is monotone: by induction on the
definition of — one easily proves that M — N implies [M]an C [N]an for all
variable environments. For the 3-rule one needs that [M[N/z]]an = [M]ant™*",
which can be proven by a straightforward induction on M. In Example 4 we will

prove that that R is also strongly normalizing.

Definition 4. Let R, = (C,, —w, @) and R = (C, —,) be rewrite structures.
We say that R, approximates R if there exists a constant substitution 6:C,, — C
and a sequence of constant substitutions 6,:C — C, such that the following
approximation conditions are satisfied.

An Abstract Strong Normalization Theorem 31

1. 00, = ide for all n.

2. For all n, a, 06, C o, 00,41 and |], cyaw 0bp = .

3. Forall Ae T(C,) and N € T(C), if A — N and [A]«,, # L, then A —,, B
for some B € T(C,) with B8 = N.

Theorem 1. Let R, = (Cu, —w,), R = (C,—,), be rewrite structures for
a term system T and a model (D,val) of T. If R, is monotone, strongly nor-
malizing and approximates R, then R s strongly normalizing.

Proof. Let R, approximate R via #:C, — C and 6,:C — C,, and assume
that R, is monotone and strongly normalizing. To show that R is strongly
normalizing, assume [M]a # L. We have

(Ma = [M] | | awobn =| | [M](awobn) = | | Mo

neN neN neN

by approximation condition 2, continuity and the substitution lemma. Hence
[M0,]a,, # L for some n € N. Since M#6,,0 = M, by approximation condition 1,
it suffices to show the following claim: for any A € T(C,), if [A]ay, # L, then A0
is strongly normalizing. Since R,, is strongly normalizing we may use induction
on the strong normalizability of A for proving the claim. Assume [A]a,, # L and
Af — N. We have to show that IV is strongly normalizing. By approximation
condition 3 we have A —, B for some B with Bf = N. Since R,, is monotone
we have [Bla, # L. Hence N is strongly normalizing, by induction hypothesis.

Remark 1. Under the additional assumption that for every d € C, there exists
n such that 6,,(8(d)) = d (which holds in the example below) one can prove that
monotonicity of R, implies monotonicity of R.

Ezample 4. We define an approximation R, = (Cy, —,) of the rewrite struc-
ture R = (C, —, @) of Example 3 as follows. R,, is constructed from a constant
set C,, and a set &, in the same way as R was constructed from C and €. There-
fore it suffices to define C, and &,. We set

Co:={cn|cel, neN}
(¢ is just ¢ with label n attached), and
Ev ={cp1P=Mb,|cP=ME¢ec&}

where 0, (c) := ¢,. Since there is no equation for ¢y we set ay(cp) := L (one
could also argue that this follows from the general way «,, is defined). Because
the equations in &, are free of recursive calls, it is easy to see that all terms in
T(C,) are strongly normalizing with respect to —,,: the usual strong normaliza-
tion proof for the simply typed A-calculus with S-reduction via computability
predicates 4 la Tait can be easily extended to —, (see [2] for details). In partic-
ular R, is strongly normalizing (and monotone, according to Example 3).

Now we show that R, approximates R via the constant substitutions 6,
defined above and 6:C, — C, 6(c,) := c¢. Approximation condition 1 clearly

32 Ulrich Berger

holds. For approximation condition 2 we need to show that ,(¢,) E aw(cnt1)
and a(c) = |],en @w(cn). The constant interpretation o is defined as the least
fixed point of a continuous functional I': D¢ — D€ ie. a = ||,y I (L). An
easy induction on n shows that «,(c,) = I'™(L)(c) (see [2] for details). Since
(L) C I'*(L) we are done. Finally we show that approximation condition 3
holds. Let A € T(C,) such that [A]a, # L and A0 — N. The constant cg
cannot occur in A since otherwise the strictness of the semantics (easily proven
by induction on terms) and the fact that ay,(cp) would imply [A]a, = L. But
then A —,, B for B € T(C,) such that B8 = N as one easily proves by induction
on the definition of A — N.

Since we have shown that R, is monotone, strongly normalizing and approx-
imates R, it follows, by Theorem 1, that R is strongly normalizing.

4 Application: Termination of Higher-Order
Rewrite Systems

The results of the previous section, in particular their application described
in Example 4, give us a convenient method for proving strong normalization of
higher-order rewrite systems in the format of Example 3: it suffices to prove that
every term has a defined (# L) value in a strict domain-theoretic semantics. Now
we apply this to prove strong normalization for a group of higher-order rewrite
systems emerging from problems in proof theory. Since the proofs are similar in
all cases we will carry this out in detail for one particular example only.
In [3] the axiom scheme of open induction

OL Vf (Vg <iex fU(9) = U(f)) = VfU(S)

was used to interpret classical analysis in finite types in a corresponding intu-
itionistic system. In this axiom scheme U ranges over open predicates on N — p
(where ‘open’ refers to the N-fold product of the discrete topology on p) and
g <iex [:=3In(Vk < ngk = fkAgn <, fn) with some wellfounded relation
<, on p. Open induction was introduced in a slightly different form in [12] and
analysed intuitionistically in [13, 14]. Classically, open induction can be proven
using Nash-Williams’ minimal-bad-sequence argument [15]. It was shown in [3]
that intuitionistic arithmetic plus OI, can be (modified) realizability interpreted
by open recursion

OR R°Ff =y Ff(An,y, h.ify<,fnthen ROF(fYh) else0)

where
fEifk<n
fPh=Xk.qcy ifk=n
hkifk>n

To see the connection with open induction observe that {g | ¢ <iex f} = {fYh |
N, yip, N —p, y <, fn}.

An Abstract Strong Normalization Theorem 33

We let C consists of constants for Goédel primitive recursive functionals (for
example <:nat — nat — boole) and the constants R°: 0 — p* — nat where p* :=
nat — p and o := p* — (nat — p — p* — nat) — nat.

& consists of the usual defining equations for the primitive recursive constants
(see example 3) and the defining equation OR for the constants R° (setting, e.g.
fYh = Ak.if k < nthen fEkelseif k < S(n) thenyelse hk).

Theorem 2. Gddel’s system T extended by open recursion is strongly normal-
121ng.

Proof. Since, according to Example 4, R is strongly normalizing, it suffices to
show that [M]a # L for every term M € T(C). This can be done using the
notion of totality. For every type p the total elements of D, are defined in the
obvious way by recursion on p. For example, a function f € D,_., is total if it
maps total arguments to total values. Obviously, L is not total. Furthermore,
by induction on terms it follows that [M]a is total provided all constants are,
i.e. ac”) is total in D, for all ¢” € C. Our problem therefore reduces to showing
that all constants are total. For the primitive recursive constants this follows
by straightforward induction on the natural numbers. For R° one applies open
induction, using the fact that for any continuous function F': D,_,nat — Dhnat the
set U :={f € Dypsnat | Ff # L} is open.

In a similar way one can show that various forms of bar recursion [/, 16] lead
to strongly normalizing extensions of Gédel’s T [2]. In [3] it is furthermore shown
that the domain-theoretic model can be modified so as to work for polymorphic
second-order types (system F' [17]) instead simple types.

The restriction of the rewrite relation defined in Example 3, which is due to
the presence of the if-then-else construct, can be avoided by replacing if-then-else
by pattern matching using an auxiliary function. For open recursion this would
result in the following.

ROFf = Ff(An,y, h.ROF fnyh(y<,fn))
ROF fnyh#t = ROF(fYh)
ROF fnyh#f =0

For this variant strong normalization, with respect to unrestricted reduction, can
be proven with the same method (see [2] for the analogous case of bar recursion).

5 Conclusion

We introduced a general domain-theoretic method for proving termination for a
wide class of term-rewriting systems. The main result, Theorem 1, is formulated
more abstractly than the corresponding results in [2] and [3] making it clear that
the essence of the method is independent of typing disciplines, the particular
structure of terms, or particular rewrite strategies.

In summary, the method reduces the strong normalization proof to the fol-
lowing two tasks.

34 Ulrich Berger

1. Construct a domain-theoretic model that interprets the constants according
to the given rewrite rules (this will ensure monotonicity of the rewrite struc-
ture) and such that there is a strict dependency of the value of a term on the
interpretation of a constant occurring at a position where the given strategy
allows for a reduction (this will ensure approximation condition 3 — the ap-
proximation conditions 1 and 2 are automatic if one follows the construction
given in Example 4).

2. Prove that all constants are total.

Note that the proof-theoretic strength necessary to prove termination for a par-
ticular rewrite system goes entirely into the proof of totality. Therefore one can
say that our method reduces termination proofs to (technically much simpler)
totality proofs. The gain in simplicity through this method becomes apparent if
one compares it with weak normalization proofs for related systems given e.g.
in [0, 16, 18]. In addition, the method not only simplifies existing proofs, but also
leads to new results, such as the strong normalization proof for open recursion
presented here.

Since our normalization results for higher-order rewrite systems depend on
a given proof of strong normalization for the underlying typed A-calculus our
method does not compete with generic approaches to strong normalization for
type theories [19, 20]. It is however conceivable that our method, because of its
generality, can be extended to also prove strong normalization for the underlying
typed A-calculus.

References

1. Plotkin, G.: LCF considered as a programming language. Theoretical Computer
Science 5 (1977) 223-255

2. Berger, U.: Continuous semantics for strong normalization. In Cooper, S., Lowe,
B., Torenvliet, L., eds.: CiE 2005: New Computational Paradigms. Volume 3526 of
Lecture Notes in Computer Science. Springer (2005) 23-34

3. Berger, U.: Strong normalization for applied lambda calculi. Submitted to: Logical
Methods in Computer Science, January 2005 (2005)

4. Spector, C.: Provably recursive functionals of analysis: a consistency proof of anal-
ysis by an extension of principles in current intuitionistic mathematics. In Dekker,
F.D.E., ed.: Recursive Function Theory: Proc. Symposia in Pure Mathematics.
Volume 5., American Mathematical Society, Providence, Rhode Island (1962) 1-27

5. Howard, W.A.: Functional interpretation of bar induction by bar recursion. Com-
posito Mathematicae 20 (1968) 107-124

6. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom
of choice. Journal of Symbolic Logic 63 (1998) 600622

7. Berger, U., Oliva, P.: Modified bar recursion and classical dependent choice. In:
Logic Colloquium 2001. Springer (2005)

8. Berger, U.: A computational interpretation of open induction. In Titsworth, F.,
ed.: Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society (2004) 326-334

9. Scott, D.S.: Outline of a mathematical theory of computation. In: 4th Annual
Princeton Conference on Information Sciences and Systems. (1970) 169-176

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

An Abstract Strong Normalization Theorem 35

Griffor, E., Lindstrom, 1., Stoltenberg-Hansen, V.: Mathematical theory of do-
mains. Cambridge University Press (1993)

Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E., eds.: Handbook of Logic in Computer Science. Volume 3. Clarendon Press
(1994) 1-168

Raoult, J.C.: Proving open properties by induction. Information processing letters
29 (1988) 19-23

Coquand, T.: A note on the open induction principle (1997)

Mahboubi, A.: An induction principle over real numbers. Submitted to Archive for
Mathematical Logic (2004)

Nash-Williams, C.: On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc.
59 (1963) 833-835

Tait, W.: Normal form theorem for barrecursive functions of finite type. In Fenstad,
J., ed.: Proceedings of the Second Scandinavian Logic Symposium, North—Holland,
Amsterdam (1971) 353-367

Girard, J.Y.: Interprétation functionelle et élimination des coupures de 'arithmé-
tique d’ordre supérieur. PhD thesis, Université Paris VII (1972)

Bezem, M.: Strong normalization of barrecursive terms without using infinite
terms. Archive for Mathematical Logic 25 (1985) 175-181

Ong, L., Ritter, E.: A generic normalisation argument: Application to the calculus
of constructions. In Borger, E., Gurevich, Y., Meinke, K., eds.: Computer Sci-
ence Logic (Proceedings of the Seventh CSL Conference). Number 832 in LNCS,
Springer Verlag, Berlin, Heidelberg, New York (1993) 261-279

Hyland, J., Ong, C.H.: Modified realizability semantics and strong normalization
proofs. In Bezem, M., Groote, J., eds.: Typed Lambda Calculi and Applications,
Springer Lecture Notes in Computer Science Vol. 664 (1993) 179-194

On Bunched Polymorphism
Extended Abstract

Matthew Collinson!, David Pym!, and Edmund Robinson?

L University of Bath, BA2 7TAY, UK
2 Queen Mary, University of London, E1 4NS, UK

Abstract. We describe a polymorphic extension of the substructural
lambda calculus a\ associated with the logic of bunched implications.
This extension is particularly novel in that both variables and type vari-
ables are treated substructurally, being maintained through a system
of zoned, bunched contexts. Polymorphic universal quantifiers are intro-
duced in both additive and multiplicative forms, and then metatheo-
retic properties, including subject-reduction and normalization, are es-
tablished. A sound interpretation in a class of indexed category models is
defined and the construction of a generic model is outlined, yielding com-
pleteness. A concrete realization of the categorical models is given using
pairs of partial equivalence relations on the natural numbers. Polymor-
phic existential quantifiers are presented, together with some metatheory.
Finally, potential applications to closures and memory-management are
discussed.

1 Introduction

In recent years, substructural logics and type systems have become firmly estab-
lished as fundamental tools in the analysis of programming languages. The most

prominent are linear logics and types [5], but there are more ad hoc systems,
designed for low-level languages and memory management, for example [18].
The logic of bunched implications, BI, as exposed in [10], [I1], [13] is a

substructural logic of growing importance. BI provides a logic of resource, which
treats the sharing of resource, rather than the number of uses treated by linear
logic. The resource-sensitive aspect of BI has led to it being adopted as the basis
of the assertion language of new program logics, notably separation logic [15],
which allow for safe-reasoning about imperative languages with pointers.

BI has several well-understood classes of models, both truth-functional and
categorical, and like linear logics, has an elegant proof-theory. In particular, there
is an associated lambda calculus, a\, giving a propositions-as-types correspon-
dence. The calculus is presented using derivations of typing judgements in which
contexts of typed variables are certain trees, called bunches. The way to under-
stand a\ is through a reading of the terms known as the sharing interpretation
which emphasizes the use of some computational resource. As an example of
this, aA has both additive and multiplicative function types. A function of the
additive kind may make use of the same computational resource as its argument,

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 36-50, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On Bunched Polymorphism 37

but this is not the case for the multiplicative. In [10], aA was used to unify the
Algol-like languages Syntactic Control of Interference (SCI) and Idealized Algol
(IA), which had hitherto appeared to have irreconcilable features.

Whilst it has been demonstrated that BI has applications to program logic
for imperative programming and to type systems for small, idealized languages,
the full power of the type-system remains unexploited. The possibility exists to
build a functional programming language along the lines of ML, but based on
bunched rather than simple types. The typing of a program should then make
guarantees about the use of resources (for example, memory, in the presence
of references) as well as the compatibility of sub-expressions. This paper takes
some of the first steps in that direction.

Polymorphism must be added to aX in order to give a language with the
expressivity of ML. We present a calculus which bears the same relationship to
a as the Girard-Reynolds polymorphic lambda calculus A2 [3], [14] does to the
simply-typed lambda calculus. Adding ordinary, impredicative polymorphism to
aX amounts to adding a further zone to typing contexts which manages the use
of type variables. In this paper we take a further step, by considering a calculus
in which the type variable zone consists of a bunch. This gives extra flexibility
in the type system, for it allows us to consider both additive and multiplicative
polymorphism. The additive polymorphism allows us to recover all standard uses
of polymorphism, whilst the multiplicative polymorphism enforces non-sharing
of resources associated with type variables. Multiplicative quantification closely
resembles the freshness quantifier of Pitts and Gabbay [0]. Further steps and
features are required before we have a genuinely ML-like type system, including
predicative polymorphism, recursive types, references and typechecking.

In §2, we add polymorphic universal quantifiers to aA. We follow this with
some of the more important metatheoretical results in §3. In §4, we describe an
extension of the usual notion of categorical model. The additives are modelled
in the usual way, and in a similar way, the multiplicatives are modelled by the
right-adjoints to certain substitutions. In §5, we give an instance of such a model
using the category PER of partial equivalence relations on the natural numbers.

In §6, we introduce polymorphic existential quantification. The desire to ex-
tend the sharing interpretation, together with metatheoretic concerns, governs
the design of the multiplicative quantifier. The multiplicative existential is less
semantically neat than the universal, but hints strongly at a number of appli-
cations, for it enables the hiding not just of a type, but also of the resources
that accompany it. Thus there is an appealing intuition for multiplicative exis-
tentials as a kind of closure. We discuss connections to work on type systems for
memory-management, specifically alias types [18] and regions [17], [19], where
the use of location and region variables leads to forms of polymorphism. For
alias types, this polymorphism appears to be multiplicative.

The work reported herein was carried out under the project ‘Bunched ML,
funded by the United Kingdom EPSRC. We acknowledge help and suggestions
given by our collaborators, Josh Berdine and Peter O’Hearn of Queen Mary
University London. We also thank the anonymous referees.

38 Matthew Collinson, David Pym, and Edmund Robinson

2 The Calculus

The calculus, which we shall call @2A2, has three levels of judgement. A first level
judgement X F 7 gives a type 7 over a bunch of type variables X. The second
level, which has judgements of the form X F I' generates the contexts I' of
ordinary variables over X. The third level comprises judgements X | I'+ M : 7
which show that a term M is well-typed with 7, given X and I

Assume a countable collection of type wvariables «,(3,... to be given. The
types used in the calculus are generated by

Ti=T|I|la|TAT|T*7|7T—>7|7—7|Var|V.a.T

where « is any type variable. The connectives T, A, — and V are the additive
unit, product, function space and polymorphic universal quantifier, respectively.
There are multiplicative unit I, product *, function space — and universal V,
connectives. We allow the letters o, 7 to range over types.

A hub is a bunch of type variables, generated as follows

X=0|a|X,X]|X;X ,

subject to the restriction that every type-variable may occur at most once in a
bunch. Let X,Y, Z range over hubs.

Assume a countable collection of variables x,y, z, ... to be given. A (typing)
context is a bunch of typed variables, generated by

r=0|0u|z:7| I, T;T,

where x is a variable, 7 is a type and any variable occurs at most once. The units
() and (), are distinct from the unit () for hubs. The typing contexts are nothing
more than the contexts of a\, but such that types may contain type variables.

Bunches are always subject to a pair of equivalence relations [13]. The first
equivalence = on bunches is used to build structural rules that allow us to per-
mute variables in hubs or contexts. It is given by commutative monoid rules for
“7” for “” and by a congruence to ensure that the monoid rules can be applied
at arbitrary depth in any bunch. The second relation = is used to control con-
traction rules. The equivalence = on hubs is simply renaming of type variables:
X 2Y if Y can be obtained from X by renaming bijectively with type variables.
The relation I" 2 A between contexts holds just when A can be obtained by
relabelling the variables of the leaves of I" in a type preserving way: any leaf
2 : 7 of I' must correspond to a node y : 7 of A.

There is an obvious notion of sub-bunch of a bunch. Let B(By | ... | By) be
the notation for a bunch B with distinct, distinguished sub-bunches By, ..., B,.
Write B[B! /By, ... Bl /B,] for the bunch formed by replacing each bunch B; in
B with B..

The rules for generating type formation judgements, which specify types
which are well-formed over hubs, are shown in Figure 1. A critical design deci-
sion is evident at this level. The formation rules for A, —, * and — are kept as
simple as possible, in that formation takes place over a single, fixed hub.

On Bunched Polymorphism 39

(TAz) T g or1 TD
XFo XF7T .
(To) Xtoor (® is any of x,—, %, —)
T X;akT X,akFT TV
(T) X +Va.r X FV.a.r (T'%)
TC XY; Y)Y kT vy W YT = ZkFT TE
(TC) X(Y)}—T[Y/Y’](=Y (TW) X(Y)FT (Z=)Z’}—T (TE)

Fig. 1. Type formation rules

The construction of contexts which are valid over hubs is generated from
the type-formation judgements. These are presented as judgements of the form
X F I' where X is a hub and I" is a context and are characterised by: X + I
holds if and only if X F 7 for each variable z : 7 in I'.

The terms of the language are given by the following grammar

M:=xz|T|I| letIbeMin M
| (M, M) | mi M | 7oM | M % M | let (x,y) be M in M
| Ax : 7.M | app(M, M) | Aoz : 7.M | app, (M, M)
| Aa.M | App(M, X, 7) | Axa. M | App, (M, X, 7) ,

where « is a type variable, 7 is a type, X is a hub and z is a variable.

Let FV(—) be the set of variables which are in a context (—) or free (not
bound by a lambda abstraction) in a term (—). We use the notation FTV (—)
for the set of type variables which occur free in a bunch (—), type (—), the types
of the variables in the context (—) or the type of the term (—), respectively.
In a term App(M, X,7) or App, (M, X, 7), the type variables of X are free, so
substitution must take account of this.

We introduce a syntactic measure p which assigns to each term the set of type
variables which are free and which occur in some application of the multiplicative
universal quantifier. Formally, this is given by a recursive definition, where

p(Ad) = p(AcaM) = p(M)~fa} u(App,(M, X, 7)) = p(M)UFTV (X)

are the informative clauses.

The typing of terms uses the term and context formation judgements. The
term formation judgements are derived according to a system of rules, a sam-
ple of which are shown in Figure 2. In addition to the rules shown, there are
introduction and elimination rules for rules for additive (T) and multiplicative
(I) units, additive (A) and multiplicative (*) conjunction, additive lambda ab-
straction (—), contraction (C') and equivalence (F) for contexts. All of the rules
other than the quantifier rules and the hub structurals use a fixed hub X. That

40 Matthew Collinson, David Pym, and Edmund Robinson

is to say, they are essentially the familiar rules for aA, but parameterised by
the hub. The elimination rules (AE), (xE), (— E), (—FE) are each subject to a
side-condition

p(N)NFTV(M) =0 (t)

which requires the separation of certain of the free type variables present.

Xtaz:T X|IAFM: 7 XEA
(Az) : 4 A)
Xl|lz:tha:7T X | I'(AA) M7
X|x:obM:7T X|I'bEN:o—17 X|AFM:0o
(—+1) , ,) , (—E)
X|I'tXz:oM:o—T X |INAF app, (N, M) : 7
I X;a|'HEM: 7 FTV(I X,a|'FM:T v
D X\ re A ivar (@F D) X e dcan voar D
X|I'EM: Va1 YFo X|I'EM:Viar YhEo
(VE) (V«E)
X;Y | I'+App(M,Y,0) : Tlo/a] X,Y |I'k App,(M,Y,0):7[o/q]
v Y|I'tM:71 =z X|I't-M:71 5
()X(Y)|FI—M:T (X=)Z|F}—M:T()

XY;YY|TTEM: 7

O xw) 1oy e mpyy v ey 5 Y’

Fig. 2. Sample of the term formation rules

The usual rules for Sn¢-conversions for e\ are retained, see [13]. In addition,
we have four conversions for quantifiers,

App(Aa.M, X, o) —g M AaApp(M, X, a) : 7 —y M
App, (A M, X, o) =5 M Aco App, (M, X,) o 7 —n M,

where these terms are all typed over the same hub X and context I" such that
« is not free in I'. Let — be the reduction relation generated by the single step
conversions. As usual, these relations give rise to a system of Sn(-equalities.

3 Metatheory

Many of the standard properties of a lambda calculus hold for a2A2. In partic-
ular, the fact that hubs are affine (weakening is allowed around ‘,” and additive
and multiplicative units are identified) yields admissible substitution rules.

On Bunched Polymorphism 41

Proposition 1. (Substitution Laws)

1.IfX|T'(x:0)F N:7and X | A+ M : o are derivable and the condition
w(NYNETV (M) =0 holds then X | I'|A/x] - N[M/xz] : T.

22.IfY|I'tM:7and Z+ o thenY[Z/a] | I'lo/a] - M[(Z,0)/a] : T[o/a].

The side-condition on the first part is essential, because the derivation of N

may have used (V. E). This makes the side-condition (}) on the elimination laws
necessary for subject-reduction.

Proposition 2. The four rules below are admissible.

X|I'bXx:oM:o—T X|I'bXzx:oM:0—T

X|Iiz:ob-M:T X|Nax:obM:7
X|TI't+ AaM : Va1 X | I+ AvaM Vot
X;a|'EM:1 X,a|TEM:T

The propositions above can be used to prove subject-reduction.
Theorem 1. If X | ' M : 7 and M — N then X | ' = N : 7 is derivable.

All reductions of the calculus terminate, as is shown by translation into the
polymorphic lambda calculus A2.

Theorem 2. The calculus is strongly normalizing.

The reduction relation can be extended to include (-reductions (commuting
conversions) for *, following [13], and the subject-reduction and normalization
theorems continue to hold. Similarly, the extension of a2A2 with the additive
disjunction V of a\ causes no difficulties.

4 Categorical Semantics

We now give a categorical semantics to a2A2. This is a hybrid of the indexed
category semantics of A2 with the doubly closed category semantics of a\.

Before giving the modified version of hyperdoctrine, we introduce some ter-
minology for a certain structure on a category. Consider a symmetric monoid
(®,1,a,l,r,s) on a category B. Let 1 : B — B be the identity functor. The
monoid ® is a pseudoproduct if for every object B in B there is a (first) pseudo-
projection, that is, a natural transformation ¢} : 1z ® B = 15 satisfying the
two coherence diagrams given below.

XeY)®Z »Xo (Y ©2) Xol ' »X
N
EBQ 1
P! NF (0 Ixer 1x
Yo, 1/}1 \ \ 1/)1 v

XY - X X®l - X

42 Matthew Collinson, David Pym, and Edmund Robinson

We write the component at an object A as 1/11143 : A® B — A. Using
the symmetry isomorphisms s, it is easy to construct a second pseudoprojection
¥4 : A® 1y => 1p with components 1/1124,3 where A, B are any objects of B. We
frequently omit both subscripts and superscripts on pseudoprojections.

All products are pseudoproducts, but not vice versa. The category Set of
pointed sets X and functions which preserve the distinguished element | has
a pseudoproduct given by the coproduct. A pseudoprojection from X + Y] to
X, may be taken tobe L,y+— 1, x—zforallz e X,yeY.

A cartesian doubly closed category (CDCC) is a category with a pair of sym-
metric monoidal closed structures, one of which is cartesian. A functor between
CDCC’s is strict if it preserves both the cartesian closed and the monoidal
closed structure on-the-nose. Let CDCC be the category of cartesian doubly
closed categories and strict functors.

A split indezed category consists of a contravariant functor from a base cat-
egory B to some category of categories, see [8] for a detailed account. A hy-
perdoctrine [10] is a categorical model of A2 consisting of a split indexed cat-
egory with certain properties, including a system of adjunctions for modelling
quantification. It also requires a distinguished base object (2, called the generic
object, which is characterized by the property that there is a natural bijection
1y ¢ (PJ)o — hom(J, £2), where hom(—, £2) is the contravariant hom functor
for B and (PJ)o is the set of objects of the fibre P.J.

An a2A2-hyperdoctrine is a split indexed category P : B°? — CDCC with:
generic object; finite products and binary pseudoproducts in the base; the unit
of ® is T, the terminal object; for any projection 7 in the base, the functor
P(7) has a right-adjoint IT which satisfies the Beck-Chevalley condition; for any
pseudoprojection ¢ in the base, the functor P(1)) has a right-adjoint ¥ which
satisfies an appropriate, weak form of the Beck-Chevalley condition.

Interpret hubs X as objects in the base B, with

=7 (=2 [X;Y]=[X]x¥] [XY]=[X]e[Y].

Interpret type formations as objects [X F 7] of the fibre P([X]). An instruc-
tive fragment of the interpretation is given by

WrT:T]=T [0FI:1]=1 [aFao]=15'(10)
[XEFrxr]=[XF1]@[XF 7] [XEr—T]=[XF7] —o[XFT]
[X FVar] =H[X;at 7] [X FViar] =V[X,at 7],

where T, I, ® and —o are from the doubly closed structure of fibres, IT is
adjoint to 7 : [X] x 2 — [X], and ¥ is adjoint to ¢ : [X] ® 2 — [X].
The interpretations of the omitted rules are quite standard. In particular, the
interpretation of the rule (TW) makes use of projections and pseudoprojections.
Interpret contexts as objects [X F I'] of P([X]) by extension of the inter-
pretation of types, using the product and monoidal structure of the fibre.

On Bunched Polymorphism 43

Morphisms [X | I'F M : 7] : [X - I'] — [X F 7] in P([X]) are used to
interpret term formations. A fragment of the interpretation is given below.

[X|z:7Fax:7] =1x1q7 [X|0FT:T]=17 [X|0.ET:1]=1;

[X| Lot M:y]=F:[XFTQ[XF ¢ — [XF]
[X|TEMNX:0M:¢p—p]=f:[XEFIT]— ([XF¢] — [XF])

[X;a | TEM:7]=g:[X;akF] — [X;a k7]
[X | Tk AaM :Var]=g2: [XFT] — [X FVar]

[X,a | TEFM:7]=h:[X,aFT] — [X,aF 1]
[X| T AwaM :Vear] =hd: [XET] — [X F Via.7]

[X|TEM:Nar]l=m:[XFT]— [XFVYar] [YFp]=BeP(Y]
[X,Y | I' App(M, Y, p)] = P(1pxy x «(B))(m")

[X|TEM:Viar]=m:[XFT] — [XFVY.ar] [YFp]=BeP(Y]
[X,Y | I' = App.(M, Y, p)] = P(1jx) ® «(B))(m”)

Here, f~ is the linear exponential mate of f, (—)* and (—)V give the trans-
poses of 7* 4 IT, (=) and (—)" give the transposes of ¥* 4 ¥, and the morphism
u(B) : [Y] — £ in the base arises from the fact that {2 is generic.

4.1 Soundness and Completeness
In any a2A2-hyperdoctrine, every judgement can be interpreted.

Proposition 3. (Weak Soundness) Every judgement X | I' = M : 7 has an
interpretation as a morphism [X FT'] — [X F 7] in P([X]).

Substitution of a term for a variable takes place in a fixed hub, so its inter-
pretation is modelled in the corresponding CDCC as in [13]. The interpretation
of substitution for type variables uses reindexing functors and the generic object.

Proposition 4. (Equational Soundness) If X | I' = M = M’ : 7 is derivable
then [X |T’FM:7]=[X|T'F M :7] holds.

The syntactic equalities are generated by the gn(-conversions. All of these
take place over a fixed hub, except for the reductions for the quantifiers. We know
that the equalities over any hub are all validated in the corresponding CDCC.
The (- and n-rules for the multiplicative quantifier are witnessed, respectively,
by the equations

(P(1ix) ® 12))((m")7) =m (P(lxy @ 1e))(n")" =n ,

44 Matthew Collinson, David Pym, and Edmund Robinson

given interpretations [X,a | 'F M : 7] = m : [X,a F '] — [X,a F 7]
and [X | 'F N :Viag] =n: [X FIT] — [X F Via.7]. These equalities
follow because the indexed category is split. The relevant equalities for additive
quantification follow by the obvious modifications.

Completeness with respect to a2\2-hyperdoctrines is established by the usual
method. That is, we build a generic model from the syntax such that if an
equation holds between interpreted terms then it must also hold in the theory.
The main novelty here is the construction of the base category, although this
follows essentially the same pattern as the construction for A2 hyperdoctrines:
objects are (bunches of) type variables and morphisms are substitutions derived
from type formation judgements.

We construct the base B from the syntax of hubs and type formations. The
objects of B are taken to be the equivalence classes of hubs under the congru-
ence relation =, which handles a-conversion of type variables. Throughout this
construction, we use hubs as representatives of equivalence classes. Let 2 be the
equivalence class of @ and T be the equivalence class of ().

The congruence 22 on hubs extends to type formation judgements using sub-
stitution: (X F7) 2 (Y F 7)< (X 2Y) & (7' = 7[Y/X]) for all hubs X
and Y. Again, we will tend to use representatives for equivalence classes in what
follows. Define a mapping (=) : (X F 7) — 7 from type formations to types.

The morphisms of B from X to Y are certain trees with the same shape
(internal node structure) as Y and with equivalence classes of type formations
at the leaves. These morphisms are generated by an inductive definition.

There are a number of parts to the base case. These are identity, terminal,
diagonal, projection, pseudoprojection, right unit, associativity, associativity in-
verse, symmetry. For brevity, we give only the diagonal and pseudoprojection
clauses below. From these, the forms of the other cases may be easily inferred.
Diagonal: for every X there is a morphism Ax : X — X; X’ where X' is
any hub which is disjoint from X and with X’ = X. The morphism is given
by fx;fx: where fx is formed by replacing every leaf a of X with X + «.
Pseudoprojection: for all X and Y there is an arrow ¢! : X,Y — X formed by
replacing each leaf o of X with X, Y F a.

The inductive definition has three step cases: product, pseudoproduct and
composite. Product: if there are arrows f : X — Y and g : X — Y then

there is a morphism X; X' ELA Y:Y'. It is formed as the tree f’; ¢’ where f’ is
formed from f by replacing each leaf X F 7 with X; X’ I 7, and similarly for
g'. Pseudoproduct: If there is a morphism f : X — Y and there is a morphism

g : X’ — Y’ then there is a morphism X, X’ ELA Y,Y’. It is formed as the tree
f', g’ where f’ is formed from f by replacing each leaf X + 7 with X, X’ F 7, and
similarly for ¢’. Composite: the composite in B of a pair of arrows f: X — Y,
g:Y — Zisanarrow go f : X — Z constructed by replacing each leaf Y + p
of g with the leaf X + p[f/Y], where the mapping (—) is extended to trees in
the obvious way.

Some comments and observations about the above definition are in order. In
a number of the clauses above we have formed a morphism from X to Y using

On Bunched Polymorphism 45

some words like “replace any variable a of Y with the judgement X F 7”7 and it
is to be understood that any leaves of Y which are units () should be replaced
by the judgement X F T. Composition is a well-defined operation, independent
of choices of representatives. The hom-sets of B are guaranteed to remain small.

It is a matter of lengthy calculation to verify that B is a category, has finite
limits and has a symmetric monoid which is a pseudoproduct. These structures
are suggested by the notation in the recursive definition.

Write P(X) for the fibre over the equivalence class of X. The construction
of each P(X) follows the construction of a CDCC from a), see [13]. Objects
are equivalence classes of type formations X F 7, represented by pairs (X, 7).
A morphism from (X,0) to (X, 7) is an equivalence class of term formations
X |x:0F M : 7, where the equivalence is generated by a-equality for variables,
the On¢-rules (without the quantifier cases) and the congruence extended from
the congruence = on hubs.

Every arrow u : X — Y of B yields a functor P(u) : P(Y) — P(X)
between fibres. The functor acts as P(u)(Y,7) = (X, 7[u/Y]) on any object (Y, 7)
in P(Y). The arrow assignment is given by P(u)(Y,z, M) = (X, z, M[u/Y]) for
any arrow (Y,z, M) in P(Y). Both the object and arrow assignments can be
verified to be well-defined and calculuations can be performed to show that
P(u) is indeed functorial.

Further calculations show that the functors P(u) preserve the CDCC struc-
ture on-the-nose. Moreover, the functors induced by projections 7 : X x 2 — X
and pseudoprojections 1 : X ® {2 — X can be shown to have right-adjoints
which satisfy the Beck-Chevalley conditions. The identity gives a natural bijec-
tion between the hom-sets B(X, 2) and fibres P(X).

Theorem 3. The functor P : B°? — CDCC 1is an a22-hyperdoctrine.

The completeness theorem follows as a corollary, since P is constructed from
the syntax and each term is interpreted, essentially, by itself.

Corollary 1. (Completeness) If [X | '+ M : 7] =[X | ' = M’ : 7] holds in
every a2\2-hyperdoctrine then X | 't M = M’ : 7 is deriwable in the calculus.

5 A PER Model

Partial equivalence relations on the natural numbers give rise to one of the
simplest and most elegant models of the polymorphic lambda calculus [1]. We
show how to produce a PER model for a2A2.

A partial equivalence relation, PER for short, consists of a symmetric, tran-
sitive, binary relation R C N x N on the natural numbers. Define the domain of
R to be dom(R) = {n € N | nRn}. A map between PERSs consists of an equiv-
alence class of codes for recursive functions that track from the source PER to
the target PER, that is, functions which preserve the relation. Let PER be the
category of partial equivalence relations and PER be its set of objects. The cat-
egory is cartesian closed. It also has binary coproducts: embed isomorphically

46 Matthew Collinson, David Pym, and Edmund Robinson

the two given PERs into PERs with disjoint domains, then take the union of the
relations.

Since PER is cartesian closed and has a symmetric monoid (given by the
coproduct) we might think that we can use these two structures to model a.
However, the monoid fails to be closed. This can be remedied by moving to a
model based on pairs of PERs, motivated by a similar construction for sets. The
category Set x Set of pairs of sets is a CDCC, see [1], [13]. Finite products and
exponentials are given pointwise. Moreover, there is an additional symmetric
monoidal closed structure with

(A%, AY) ® (BY, BY) = ((A" x BY) + (A! x B), (A" x B') 4+ (A! x BY))
(A%, AY) — (B, BY) = ((A” — B) x (A" — B'),(A° = B') x (A" = BY)) ,

for all A%, A", B?, B! € Set, where A + B is the coproduct of A and B in Set.
This can be viewed as an instance Set? of Day’s closure construction [1], [2],
where 2 = {0, 1} is the discrete category with monoid given by addition modulo
two. Now PER x PER can be viewed as PER? and so is doubly closed by [1]. Tts
operations are defined in the same way as those of Set x Set, remembering that
the + in the definition of ® is now the coproduct in PER. For any pair (A", A!)
of PERs let (A%, A1)% = A% and (A%, A1)! = A'. Extend the notion of domain
to pairs of PERS with dom (A4, B) = dom(A) x dom(B) for any PERs A and B.
For any function f: A — B and C' C A let f[. be the restriction of f to C.

Let X be a bunch of type variables. Let dom(p) = U,eprv x) p(a) for any
function p : FTV(X) — PERy x PERy. An environment for X is a function
p: FTV(X) — PERg x PERy such that if any (Y, Z) is a sub-bunch of X then
dom(ply)N dom(pl,) = 0 holds. Let Env(X) be the set of environments for X.

A semantic type (over X) is a function 7 : Env(X) — PERy X PER from
environments to pairs of PERs. These definitions give a natural generalization
of the ordinary PER model of polymorphism, in which an environment consists
of a tuple of PERs and a semantic type consists of a map from environments
to PERs. A map from 7 to 7" (over X) is an equivalence class [e] of codes for
pairs of codes, ([€°], [e!]), where the recursive function corresponding to each e
tracks from (7p)¢ to (7/p) for all environments p. This gives a category P(X)
of semantic types over X.

Let aq, ..., ay be the variables of X. A substitution (—)[11/oq, ..., Tn/an] for
X consists of semantic types 71, ..., 7, over some bunch Y such that: if X has a
sub-bunch (W, Z), where W has type variables with o, ,...,a;, and Z has type
variables with ay,,...,a;, then (=)[m, /as,, ..., 7, /ai,, Tj [y, ..., T, /ag,] is
a substitution for (W, Z) if (=)[r;, /au,, ..., T, /i,] is a substitution for W and
(i /ejys -7, /aj,] is asubstitution for Z and dom(7;, (p))Ndom(7;,, (p)) =
fforall pe Env(Y)and 1 <l <pand 1<m <q A map fromY to X is just
such a substitution. This gives a category Bun of bunches of type variables.

If p is an environment for X and A € PERy x PER, then define a function
pd FTV(X)U{a} — PERy x PERy by a + A and 3 — p(3) for 8 # a. Now
p? is an environment for X;a. If A satisfies A N dom(p) = () then p* is also an
environment for X, a.

On Bunched Polymorphism 47

Define semantic types 7,, over X,a by 74,(p) = p(ay), for each 1 < i <
n. Now (=)[Tay /a1,y Ta, /an] defines a map from X;a to X, called 7, and
also a map from X, to X, called ¢. Each of these induces a functor, with
P(r)(7)(p) = (] prvxy) for p € Env(Xs5a) and P(6)(1)(p) = (ol pry x)
for p € Env(X, a), respectively.

If 7/ is a semantic type over X; a or, respectively, X, @ then a semantic type
over X is given, respectively, by

(= () 7Y @M= () T,
AEPERoxPERy AEPERoxPERg
Andom(p)=0

for each environment p for X. These assignments, which illustrate the distinction
between additive and multiplicative quantification, extend to functors which are
right-adjoints to m and 1, respectively.

Let 7 be a semantic type over X and 7/ be a semantic type over X;«a or
X, a respectively. In the first case, a map from 7 to II(7') is precisely the same
thing as a map from P(7)(7) to 7’. In the second case, a map from 7 to ¥(7’) is
precisely the same thing as a map from P(¢)(7) to /. We therefore have natural
bijections between arrows

T — II(7) T — U(7")
P(m)(r) — 7/ P) (1) — 17

given by identity maps.

The above model is not quite a categorical model as described in the previous
section. We produce an a2A2-hyperdoctrine by taking a suitable quotient on
bunches to make the interpretation of all type variables identical.

6 Existential Quantifiers

Existential quantifiers may be defined in the polymorphic lambda calculus A2 and
are closely connected to the concept of abstract data type [9]. In this section, we
describe existential quantification in the bunched polymorphic setting, leading
to both additive and multiplicative existentials.

First-order additive and multiplicative existential quantifiers have been stud-
ied in [11], [13]. Proof-theoretic considerations drive the design of the polymor-
phic existentials, just as they do in the first-order case.

Additive existential quantification, 3, is quite straightforward to add to the
system a2A2. However, the multiplicative quantifier, 3., is very delicate. In par-
ticular, it requires a number of side-conditions which can interfere with the
side-condition (1) used for a2A2. Rather than describing such a system in its full
complexity, we first remove the universal quantifiers and instances of (}) before
adding the existentials. However, in general, both universals and existentials can
be considered together.

48 Matthew Collinson, David Pym, and Edmund Robinson

The grammars generating types and terms are extended with

T u=...| Ja.7| Jia.T
M = ...| (¢, M) | unpack M as (o, z) in M
| (Y, $, M), | unpack, M as (a,z) in M |

where v and z are bound in unpack and unpack, terms.

Just as with the multiplicative universal quantifier, we are forced to use an
additional syntactic measure with the multiplicative existential. The set WR(M)
of witnessing resources of a term M is the set of type-variables which occur in
in the left component Y of any sub-term (Y, ¢, N).. This can be made precise
with a recursive definition.

The rules for existentials, which follow the generalized forms for natural de-
duction introduced by Prawitz [12], are presented in Figure 3. Both of (IE)
and (3.F) are subject to the side-condition o ¢ FTV(A) U FTV (o), which is
standard for the elimination of existentials. In addition, both are subject to the
side-condition WR(M)N WR(N) = (), because of the presence of the multiplica-
tive. Furthermore, the condition a ¢ WR(N) is required for (3. F).

3 X;ab T X|I'tM:3ar X;a|A(xz:7)FN:o 25
(73) X+ Ja.T X | A(I') F unpack M as (a,z) in N : o (3E)
ar X|I't(M:71)é/q X+ 3Ja.T
(3D X | TI't{¢, M) : Ja.T
X,abT X|I'tM:3art Xa|lAlz:7)FN:o
(T3.) . (3«E)
X FJeat X | A(I') F unpack, M as (a,z) in N : o
Ly XY@ IEMinlg/e] Y(Z)Fé X.ZED X+dar
(3-1) X, Z|I'F{Y(Z),p,M). : Ja.T

Fig. 3. Existential rules

The additive quantifier behaves essentially as the standard polymorphic ex-
istential. The multiplicative is more unusual. This partially hides the resources
(type variables) used in its formation. The work on first-order BI suggests a
form in which Y is completely hidden. This rule is derivable from the one given.
The more general version is adopted in order to give a corresponding n-rule.

The Bn-conversions for existentials are

(X | unpack (¢, M) as (a,z) in N) —5 (X | N[M/z][¢/a])
(X | unpack M as (o, z) in (N[(a x)/z])) —n (X | N[M/z])
(X | unpack, M as (o, z) in (N[{o, a, z)+/2]) =5 (X | N[M/Z]
(X, Z | unpack, (Y (Z), ¢, M), as (,z) in N) —g (X, Y(Z) | N[M/a][¢/a))

On Bunched Polymorphism 49

and suitable (-conversions for existentials are also possible, provided no universal
quantifiers are present. Notice how the hub changes in the (-conversion for the
multiplicative. Let — be the reduction relation generated by —g and —,.

Most of the metatheory goes through as it did for the system with universals
rather than existentials. In particular, strong normalization can again be proved
by the translation method. However, there are a few important changes, notably
to substitution and subject-reduction.

Proposition 5. If X | I'(x : 7) - N :0 and X | A+ M : 7 are both derivable
and WR(M)N WR(N) =0 then X | '(A) - N[M/x] : o is derivable.

The condition on the substitution law forces us to place the side-condition
WR(M)NWR(N) = 0 on the binary elimination rules (AE), (— E), (xE), (=+F)
and is the reason why we need the same condition for the existentials.

Proposition 6. If X | I' v M : 7 is derivable and (X | M) — (Y | N) then
Y| I't N : 7 is derivable.

The existential does not have a simple a2A2-hyperdoctrine interpretation
and, in particular, we cannot just use a left-adjoint to the pseudoprojection
substitution. However, an interpretation can be given to each judgement by
requiring the existence of certain assignments and arrows.

The introduction rule (3.7) for the multiplicative existential hides not only
the representation type, but also the resources associated with the representation
type. Once hidden, these resources are not visible to terms formed over the same
hub (see the substitution rule) and are only revealed by a subsequent use of the
elimination rule (3, F), leading to a hub-changing [-conversion, as above. In
this respect the formation of multiplicative existentials is reminiscent of the
formation of function closures. Furthermore, the elimination of 3, is reminiscent
of the application of function closures, though perhaps with some side-effects.

We conjecture that bunched polymorphism is an appropriate setting to de-
velop type systems for memory-management. One approach to this is alias typing
[18] which allows the programmer to issue instructions that safely allocate and
deallocate chunks of memory, known as locations. Locations are used as param-
eters in types, for example z : ptr(l), which asserts that a program variable is
a pointer to the location [. A form of polymorphism is introduced through the
use of location variables, which range over locations. Instructions are typed in
contexts of aliasing constraints: these specifiy the types of entities contained in
certain locations and location variables. It is difficult to formalize direct trans-
lations of such systems into the bunched setting because of the complexity of
their type systems. However, it seems relatively clear that what the authors in-
tend to enforce are non-sharing (anti-aliasing) constraints on chunks of memory.
Consider, for example, the following statement, taken from [15]:

The existential J[p : Loc | {p — 71}].72 may be read “there exists some
location p, different from all others in the program, such that p contains
an object of type 71, and the value contained in this data structure has

type mo.

50

Matthew Collinson, David Pym, and Edmund Robinson

What is intended to be different is surely not the location variable p itself, but
rather the memory assigned to it by the environment. Under such a reading, it
would seem more appropriate to use bunching rather than linearity as a founda-
tion for the type system. Bunched alternatives to the linear approaches to type

systems for regions [17], [19], should be equally interesting.
References
1. B.J. Day. On closed categories of functors. In Lecture Notes in Mathematics 137,

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

pages 1-38. Springer-Verlag, Berlin-New York, 1970.

. B.J. Day. An embedding theorem for closed categories. In Lecture Notes in Math-

ematics 420, pages 55—65. Springer-Verlag, Berlin, 1973.

J.-Y. Girard. Une extension de l'interprétation de Godel a I'analyse et son appli-
cation a I’élimination des coupures dans I’analyse et la théorie des types. In Proc.
2nd Scandinavian Logic Symposium, pages 63—92. North-Holland, 1971.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arith-
métique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

J.-Y. Girard. Linear logic. Theoretical Computer Science 50, pages 1-102, 1987.
M.J. Gabbay and A.M.Pitts A new approach to abstract syntax and variable bind-
ing. Formal Aspects of Computing 13, pages 341-363, 2002.

J.M.E. Hyland. A small complete category. Annals of Pure and Applied Logic,
40:135-165, 1988.

B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

J.C. Mitchell and G.D. Plotkin. Abstract types have existential type. ACM Trans-
actions on Programming Languages and Systems, 10:470-502, 1988.

P. O’Hearn. On bunched typing. J. Functional Programming, 13:747-796, 2003.
P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215-244, 1999.

D. Prawitz. Proofs and the meaning and completeness of logical constants. In
FEssays on mathematical and philosophical logic, pages 25-40. D. Reidel, 1978.
D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002. Errata at:
http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf .

J.C. Reynolds. Towards a theory of type structure. In Lecture Notes in Computer
Science 19, pages 408-425. Springer, 1974.

J.C. Reynolds. Separation logic: a logic for shared mutable data structure. In Proc.
LICS 02, pages 55—74. IEEE Computer Science Press, 2002.

R.A.G. Seely. Categorical semantics for higher order polymorphic lambda calculus.
Journal of Symbolic Logic, 52:969-989, 1987.

M. Tofte and J.-P. Talpin Region-based memory management. Information and
Computation, 132(2):109-176, 1997.

D. Walker and J.G. Morrisett. Alias types for recursive data structures. In Lecture
Notes in Computer Science 2071, pages 177-206. Springer-Verlag, 2001.

D. Walker and K. Watkins On regions and linear types In Proc. International
Conference on Functional Programming, 181-192. 2001.

Distributed Control Flow
with Classical Modal Logic*

Tom Murphy VII, Karl Crary, and Robert Harper

Carnegie Mellon University
tom7,crary,rwh}Q@cs.cmu.edu
y

Abstract. In previous work we presented a foundational calculus for
spatially distributed computing based on intuitionistic modal logic. With
the modalities O and <& we were able to capture two key invariants:
the mobility of portable code and the locality of fixed resources. This
work investigates issues in distributed control flow through a similar
propositions-as-types interpretation of classical modal logic. The result-
ing programming language is enhanced with the notion of a network-wide
continuation, through which we can give computational interpretation of
classical theorems (such as OA = —<{—A). Such continuations are also
useful primitives for building higher-level constructs of distributed com-
puting. The resulting system is elegant, logically faithful, and computa-
tionally reasonable.

1 Introduction

This paper is an exploration of distributed control flow using a propositions-
as-types interpretation of classical modal logic. We build on our previous intu-
itionistic calculus, Lambda 5 [¢], which is a simple programming language (and
associated logic) for distributed computing. Lambda 5 focuses particularly on
the spatial distribution of programs, and allows the programmer to express the
place in which computation occurs using modal typing judgments. Through the
modal operators O and <& we are then able to express invariants about mo-
bility and locality of resources. Our new calculus, C5, extends Lambda 5 with
network-wide continuations, which arise naturally from the underlying classical
logic. These continuations create a new relationship between the modalities O
and <, which we see with several examples, and serve as building blocks for
other useful primitives. Before we introduce C5, we begin with a short reprise
of Lambda 5.

Lambda 5. The Lambda 5 programming model is a network with many dif-
ferent places, or nodes. In order to be faithful to this model, we use a style of
logic that has the ability to reason simultaneously from multiple perspectives,
namely, modal logic. Compared to propositional logic, which is concerned with

* The ConCert Project is supported by the National Science Foundation under grant
ITR/SY+SI 0121633: “Language Technology for Trustless Software Dissemination”.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 51-69, 2005.
© Springer-Verlag Berlin Heidelberg 2005

52 Tom Murphy VII, Karl Crary, and Robert Harper

truth, modal logic deals with truth from the perspective of different worlds. These
worlds are related by an accessibility relation, which affects the strength of the
modal connectives; different assumptions about accessibility give rise to different
modal logics. For modeling a network where the worlds are nodes, we choose In-
tuitionistic S5 [14], whose relation is reflexive, symmetric, and transitive — every
world is related to every other world. Therefore, except when comparing it to
other systems, we essentially dispense with the accessibility relation altogether.
This leads to a simpler explanation of the judgments and connectives.

Atrue @w is the basic judgment, meaning that the proposition A is true at
the world w (we abbreviate this to A@aw). There are two new proposition forms
for quantifying over worlds. OA is the statement that A is true at every world.
O A means that A is true at some world. Because we think of these worlds as
places in the network, operationally we interpret type OA as representing mobile
code or data of type A, and the type CA as an address of a value of type A.

Propositions must be situated at a world in order to be judged true, so it is
important to distinguish between the proposition OA and the judgment JAa@w,
the latter meaning that A is true in every world from the perspective of w. In
S5, every world has the same perspective with regard to statements about all
or some world(s). But operationally this will be significant, as there is no true
“global” code, only mobile code that currently exists at some world.

Though the logic distinguishes between DA@w and OAaw’, both have pre-
cisely the same immediate consequences. The typical rule for eliminating O, for
instance as given by Simpson [14] is

DAaw

Aaw' OE (simpson)

With this rule, it never really matters where OA exists, since we can eliminate
it instantly to any world. However, we do care operationally where mobile code
resides, and so we adjust the natural deduction rules to reflect this bias. The logic
features a novel decomposition into locally-acting introduction and elimination
rules as well as motion rules for moving between worlds, i.e.

We argue [3] that this results in a more appropriate operational interpretation.
Our classical system also features this decomposition, and like Lambda 5, we are
able to retain a crisp connection to the underlying logic.

Although distributed computing problems are often thought of as being con-
current, both Lambda 5 and our new calculus are sequential. We consider con-
currency an orthogonal issue, although we give remarks on how it can be accom-
plished in Section 5.

Classical Control Flow. The notion that control operators such as Scheme’s
call/cc or Felleisen’s C can be given logical meaning via classical logic is well
known. Essentially, if we interpret the type —A as a continuation expecting

Distributed Control Flow with Classical Modal Logic 53

a value of type A, then the types of these operators are classical tautologies.
Griffin first proposed this in 1990 [1] with later refinements by (for example)
Murthy [9]. Parigot’s Au-calculus [10] takes this idea and develops it into a full-
fledged natural deduction system for classical logic'. It soon became clear that
this was no accident — classical logic is the logic of control flow.

Therefore, a natural next step is to look at classical S5 to see what kind
of programming language it gives us, which is the topic of this paper. We find
that the notion of a network-wide continuation arises naturally, giving a com-
putational explanation to (intuitionistically ridiculous) classical theorems such
as OA = -O—-A. We also believe that such primitives are useful for building
distributed computing mechanisms such as asynchronous message passing.

The paper proceeds as follows. We first present classical S5 judgmentally,
giving a natural deduction system and intuition for its operational behavior.
Next we give proof terms for some classical theorems, to elucidate the new con-
nection between O and ¢ made possible by network-wide continuations. In order
to make these intuitions concrete, we then give an operational semantics based
on an abstract network. We follow with some ideas about concurrency and how
network-wide continuations can be used by distributed applications, and con-
clude with a discussion of related work. The appendix contains a proof that C5
really is classical S5 (along with establishing the existence of normal forms), by
relating it to a sequent calculus that admits cut.

All of the proofs in this paper have been formalized in the Twelf system [11]
and mechanically verified by its metatheorem checker [13]?. Extended discussion
of some of the proofs can be found in the accompanying technical report [7].

2 Classical S5

We wish to take a propositions-as-types interpretation of modal logic, so a judg-
mental proof theory for our logic is critical. In this section we give such a pre-
sentation of Classical S5.

Because modal logic is concerned with truth relativized to worlds, our judg-
ments must reflect that. We have two main judgments in our proof theory.

Atrue e w Afalse x w

The first simply states that the proposition A is true at the world w, as we had in
Lambda 5. The second, which is new, says that the proposition A is false at the
world w. Although these two judgments are dual, the natural deduction system
is deliberately biased towards deducing that propositions are true. We will only
make assumptions about falsehood for the purpose of deriving a contradiction.
As is standard, we reify the hypotheses about truth and falsehood into contexts
(eliding true and false), and the central judgment of our proof theory becomes

' AF Aew

Y Our calculus is quite similar to his (extended to the modal case!), although we prefer
to present it with an emphasis on truth and falsehood judgments.
2 They can be found at http://www.cs.cmu.edu/concert/.

54 Tom Murphy VII, Karl Crary, and Robert Harper

INw:A+-M:Aeaw’ o7 I'AFM:OAew
I';AbFbox w' .M :OA@w I'; A unbox M : Aaw
I'’A-M:0Aew I'W'

OF

INz:Aew, I'"; Ak z: Aaw hyp 'y Ak gety (WM : DAew
I'’A-M: Aaw I'AFM:CAew I
I's AF-here M : CAaw ol I Ab get WM : CAaw
IAFM:CAaw I'y AE N : Aaw
Iw',r:Aew; A+ N : Bow I'N A+ M:AD Baew
I''AFletdw' . = MinN : Baw oF I'yA+-MN : Bow > F
Ix:Aew; A+ M : Baw A wAxwkE M : Aew
AR XNz M: AD Baw = I'y AF letccuin M : Aew be
A u:Axw, A M : Aaw INAFM: lew T'Fdo
I'; Aju:Axw, A’ + throw M tou : Caw’ ' Ak golw'|M : Cow
I'AEM:Aew I'; AR N: Bow I'AFEM: Al NAzQw
I'sA+(M,N): AN Baw A IARmM: Ajew N

Fig. 1. Classical S5 natural deduction (“C5”)

where we deduce that A is true at world w under truth assumptions of the form
Baw' appearing in I' and falsehood assumptions of the form Cxw’ appearing
in A. We also have hypotheses about the existence of worlds. It is cumbersome
to write a separate context of world hypotheses, so these assumptions (written
merely as w) appear in I" as well. We also take the common shortcut of only
permitting mention of worlds that exist. Therefore, all judgments are hypothet-
ical in at least some world (the world at which the conclusion is formed), until
we introduce world constants in Section 4.

Operationally, we will think of a falsehood assumption Axw as a continuation,
living at world w, that expects something of type A.

Our natural deduction system appears in Fig. 1. These rules include proof
terms, which we will explain shortly. Aside from the falsehood context, the rules
for O, ¢ and D are the same as in Lambda 5. The new connectives L (discussed
below) and A are treated as they would be in the intuitionistic case. The major
additions are the structural rules be (by contradiction) and # (contradict), which
enable classical reasoning.

The be rule is read as follows: In order to prove Aew, we can assume that
A is false at w. This corresponds directly to the classical axiom (A D A) D A.
Operationally, this names the current continuation — we use a distinct class of
“falsehood” or “continuation” variables u for this. The # rule may be alarm-
ing at first glance, because it requires the assumption Axw to appear in the
conclusion. This is because the # rule is actually the hypothesis rule for false-
hood assumptions, and will have a corresponding substitution principle®. The

3 A theory of hypothetical hypotheticals would be able to express this in a less awkward
— but perhaps no less alarming — way. Abel [1] for instance gives such a third-order
encoding of the Ap-calculus.

Distributed Control Flow with Classical Modal Logic 55

rule simply states that if we have the assumption that A is false and are able
to prove that A is true (at the same world), then we can deduce a contradiction
and thus any proposition. The # rule is realized operationally as a throw of
an expression (not a value, even though this is a call-by-value language) to a
matching continuation. Note that continuations are global — we can throw from
any world to a remote continuation A*w, provided that we are able to construct
a proof of Aaw.

The rules for O and < are key to the system. O elimination is the easiest to
understand: If we know that OA is true at some world, then we know A is true
at the same world. To prove OA, we must prove A at a hypothetical world about
which nothing is known (rule OT). Operationally, we realize OA as a piece of
suspended code, with the hypothetical world w’ bound within it. Introduction
of < is simple; if we know A then we know that A is true somewhere (namely
here). Operationally this will record the value in a table and return an address
that witnesses its existence. Elimination of < is as follows: if we know <A, then
we know there is some world where A is true (but we don’t know anything else
about it). Call this world w’ and assume Aa@w’ in order to continue reasoning.
Finally, we provide motion rules (as per our decomposition) OM and M. Both
simply allow knowledge of OA or ¢ A at one world to be transported to another.
Operationally these move the values between worlds.

Bottom has no introduction form, but we allow the remote elimination of it
(rule LE). This is similar to the motion rules for O and <, but is called go to
indicate a transfer of control with no return®.

Despite the fact that our proof theory is specially constructed to give rise
to a good operational semantics, it really embodies classical S5. To see this, we
observe that it is equivalent to a symmetric multiple-conclusion sequent calculus
that is more straightforwardly classical S5. The sequent calculus has the sub-
formula property and admits (a dual form of) cut, which also establishes the
existence of normal forms for our proof terms. The argument is mostly similar
to the one used for our previous calculus, and is not the focus of this paper.
Interested readers can find this material in the Appendix; otherwise, we’ll begin
to motivate the operational semantics of our calculus with some examples.

3 Examples

In this section we give proof terms showing the new connection between O and
< made possible by network-wide continuations. A full operational semantics is
forthcoming in Section 4.1, but let us review our informal interpretation of the
modal connectives now.

A value of type OA is a suspended expression that makes sense anywhere.
We call such values boxes, and we can open them at any world using the unbox
primitive, which begins evaluating the expression. A value of type ¢A is an
address of a value that has been published in a table at some world. In order to

4 We could have equivalently had a get | and a local abort, but there appears to be
no practical use to this decomposition.

56 Tom Murphy VII, Karl Crary, and Robert Harper

make addresses, we use the here construct to publish a value in the local table
and generate a new address for it. We have the ability to travel and move certain
data between worlds by using the get and go constructs.

Finally, because our examples involve negation (—A), we first briefly explain
how we treat it.

Negation. Although we have not given the rules for the negation connective, it
is easily added to the system. Here we take the standard shortcut of treating = A
as an abbreviation for A O L. We computationally read “A@w as a continuation
expecting A, although this should be distinguished from a primitive continuation
assumption u:A*w: the former is introduced by lambda abstraction and elimi-
nated by application, while the latter is formed with letcc and eliminated by
a throw to it. The two are related in that we can reify a falsehood assumption
uw:Axw as a negated formula -“Aew by forming a function that throws to it:
Aa. throwa towu. Likewise, we can create a falsehood assumption from a term
M : -Aew, namely M(letccuin...).

Classical Axioms. As examples, we give proof terms for several classical ax-
ioms. To implement one of these axioms, the programmer engages in a little
theorem proving puzzle. Because we are dealing with classical logic, we have two
sorts of resources in solving the puzzle: values of type A, as in intuitionistic logic,
but also contexts expecting terms of type A. We can capture such contexts with
letcc, so sometimes we go out of our way to create them; thus the the need for
a value of some type can be as useful as the presence of one.

Our first example comes from the standard practice in classical modal logic
of defining O in terms of < through the equivalence 04 = =C—A. From left to
right the implication is intuitionistically valid, so we’ll look at the proof of the
implication right to left. In C5, the proof term tells an interesting story:

Ad.box W' (d: (©=A) D Law;need to return Aaw’)
letccuingo[w] (applying d will yield 1)
d(get,[w'](here(Aa. throwa tow)))

In each example, we’ll assume that the whole term lives at the world w. Opera-
tionally, the reading of ~0—A D OA is that given a continuation d (expecting the
address of an A continuation), we will return a boxed A that is well-formed any-
where. It is easiest to understand this term from the perspective of the consumer
of the resulting OA. When it is unboxed at some world «’, it grabs the current
continuation u, which expects an A. It then publishes this continuation (reified
as a function); the address is what we require as an argument for d. (What hap-
pens next depends on what d does with its argument!) The intervening go and
get,, accomplish the transfer of control between the two worlds.

Dually we can define < in terms of 0. Again, one direction is intuitionistically
valid. The other, -0-A D <A, is asked to conjure up an address of an arbitrary
A given a continuation (that expects a boxed A continuation). It is implemented
by the following proof term:

Distributed Control Flow with Classical Modal Logic 57

Ab.letccuin (b:(O0-A4) D Law;u: CA*w)
golw] b(box w'.Aa. (a:Aaw’)
throw(get[w'](herea))tou)

Here, we immediately grab the ¢A continuation with letcc. Since we will be
calling b (proving 1 and never returning), we “go” to the current world. We
then form a box to pass to the function b. It contains a function of type A D L,
which takes the address of its argument and throws it to the saved continuation
u. Thus the location of A that we ultimately return is any world that calls the
—A function that we’ve boxed up.

Excluded “Modal.” The following example uses disjunction, which we’ve left
out of our calculus so far. A description of some ways it can be added is given in
Section 6, but for now we will be somewhat less formal and simply assume that
we have constructors inl and inr for forming proofs of AV B.

Our example is a modal version of the excluded middle axiom: OA V $—A.
We will again return a box that does something when opened.

letccu, in (Uo : DAV OmAxw)
inl(box w’.letccuin (u: Axw')
throw(inr(get,[w’] here(Aa. throwatou)))
tou,)

First, we save the current continuation as u,, since we will need to “change
our minds” and return multiple different disjuncts. When asked for DAV G—A,
the program initially says OA.If the box is opened, the program uses context
expecting an A to produce a O—A, time travels back to when it was asked about
the disjunction, and returns this different answer.If that = A continuation is ever
invoked, the program goes back and uses the A to fulfill the outstanding request
for an A at the world where the box was opened.

In the style of sci-fi storytelling popular when describing such things, we
conclude our examples with the following fable (with apologies to Wadler [15]):

A magician who purports to be from the future is making bold claims. Asking
for a volunteer, he offers the following prize to anyone who comes on stage:

“I'm going to hand you a box that has you inside it! Either that, or I'll
give you the address of a place with a magical time travelling portal.”

Being questionably brave, you volunteer and walk onto the stage. The ma-
gician hands you your prize — a large cardboard box. Noting your skepticism,
he adds, “You can open it anywhere, and you’ll be inside.”

You decide to take the box home. It’s much too light to have anything in
it, let alone yourself! You open the box and look inside, wondering what sort
of gag he has planned. But suddenly you find that the box has vanished, and
you're standing on stage waiting for him to tell you what you’ve won, again.

“The address of the time-travelling portal is,” he begins, rattling off your
home address. You are startled that he could have known your address, but
when you later arrive home, you see an open cardboard box waiting. Is this

58 Tom Murphy VII, Karl Crary, and Robert Harper

world vars w world names w labels l

value vars x,y cont labs k cont vars u

types A B:=ADB|OA|CA|AANB| L

networks N =W;R world exps wi=w | W
configs W= {wi: (x1,b1), - }

cursors R :=w:k=<v]|w:[k> M]

tables b n=e|bl=0v cont tables x = | x,k=k
config types X = {wi:(X1,51), -}

table types [u=e|(,(: A ctable types X ::=e | X,k : A
cont exps Z =wkl|u

conts k :=returnZ | finish | abort | k< f

values v u= .M | box w.M | w.l | (v,0)

frames f ©w=oN|v o | hereo | unboxo

| letdw.x =o0in N | mp 0 | (o, N) | (v,0)

exps M,N:=v | MN |z|/l| getg[w]M | here M | get [w]M
| unbox M | letdw.x = M in N | throw M to Z
| go[w]M | letccuinM | (M,N) | 7n M

Fig. 2. Syntax of type system

supposed to be the portal? Knowing it to be harmless, but insisting on proving
the magician to be a fraud, you step into it.

A hot flash of embarrassment passes over you as you realize that you are
now standing in a cardboard box, in your house, as promised.

4 Type System and Operational Semantics

Our deductive proof theory corresponds to a natural programming language
whose syntax is the proof terms from Fig. 1. In order to give this language
an operational interpretation, we need to introduce a number of syntactic con-
structs, which are given in Fig. 2.

As in Lambda 5, the behavior of a program is specified in terms of an abstract
network that steps from state to state. The network is built out of a fixed number
of worlds, whose names we write as bold w. Because we can now mention specific
worlds in addition to hypothetical worlds w, we introduce world expressions,
which are written with a Roman w. A network state N has two parts. First is a
world configuration W which identifies two tables with each world w; present.
The first table y; stores network-wide continuations by mapping continuation
labels k to literal continuations k. The second table b; maps value labels ¢ to
values in order to store values whose address we have published. These tables
have types X and (3 respectively (which map labels k and ¢ to types), and so we
can likewise construct the type of an entire configuration, written X.

Aside from the current world configuration, a network state also contains a
cursor denoting the current focus of computation. The cursor either takes the
form w : [k < v] (returning the value v to the continuation k) or w : [k > M]
(evaluating the expression M in continuation k). In either case it selects a world
w where the computation is taking place.

Distributed Control Flow with Classical Modal Logic 59

X'y AR M : Aaw The expression M has type A at world w

YXhk:Axw The continuation k expects a value of type A at world w
Xy AF Z: Axw The continuation expression Z is well-formed with type A at w
Y baw The value table b is well-formed at the world named w
Y xxw The continuation table x is well-formed at the world named w
YFR The cursor is well-formed
Y FN The network is well-formed

Fig. 3. Index of judgments. In each judgment Y is a configuration typing, I" is a context
of truth hypotheses, and A is a context of falsehood hypotheses

Continuations themselves are stacks of frames (expressions with a “hole,”
written o) with a bottommost return, finish or abort. The finish contin-
uation represents the end of computation, so a network state whose cursor is
returning a value to finish is called terminal. The abort continuation will be
unreachable, and return will send the received value to a remote continuation.

Most of the expressions and values are straightforward. As in Lambda 5, the
canonical value for O abstracts over the hypothetical world and leaves its body
unevaluated (box w’.M). The canonical form for < is a pair of a world name
and a label w.¢, which addresses a table entry at that world. Such an address is
well-formed anywhere (assuming that w’s table has a label £ containing a value
of type A) and has type OAaw’. On the other hand we have another sort of
label, written just ¢, which is disembodied from its world. These labels arise from
the letd construct, which deconstructs an address w.¢ into its components w
and ¢ (see the OF rule from Fig. 1). Disembodied labels only make sense at a
single world — here ¢ would have type Aeow.

Although the external language only allows a throw to a continuation vari-
able, intermediate states of evaluation require that these be replaced with the
continuation value w.k, which pairs a continuation label with the world at which
it lives. These continuation values are filled in by letcc.

The type system is given in Fig. 4 (we omit for space the rules that are the
same as in Fig. 1 except for the configuration typing X). The index of judgments
in Fig. 3 may be a useful reference in understanding them.

The rules addr and lab are used to type run-time artifacts of address pub-
lishing. In either case, we look up the type in the appropriate table typing 5. As
mentioned, throw allows a continuation expression Z, which is either a variable
(typed with hyp* as in the logic) or an address into a continuation table.

Typing of literal continuations k is fairly unsurprising. Note that the judg-
ment X+ k: Axw means that the continuation k expects a value of type A at
w. The return continuation arises only from a get, or gety, and so it allows
only values of type ©GA or OA. We use the network continuation mechanism to
name the the outstanding get,, or gety request on the remote machine.

For an entire network to be well-formed (rule net), all of the tables must
have the type indicated by the configuration type X, which means that they
must have exactly the same labels, and the values or continuations must be
well-typed at the specified types (rules b and). Finally, the cursor must be

60 Tom Murphy VII, Karl Crary, and Robert Harper

X(w) = (X, B) ﬂ(e):Aaddr X(w) = (X, 8) ﬁ(f)ZAlb
S AFwl: CAaw X AR Aaw a
XA M: Aaw X, AFZ: Axw o i Au: Axw kM : Aaw
XTI A throwMto Z : Caw’ row X I'yAF letccuin M : Aaw letee
Sw) = (X.0) X(9)=A -
JiAFwk: Axw addr XA u: Axwhku: Axw -
Yt k:Bxw E;-;~FN:A@Wk)
YhFk<oN:ADBxw 4PP1 Y b finish: Axw finish
Y FEk:Bxw E;-;-}—U:ADB@Wk
YFEk<Qvo:Axw 3PPz X abort : Lxw kabort
YEk:Cxw
Yiw,x: AQu;-+ N : Caw Hetd S EE:OCAxw @
Y k<letdw.a =oin N : CAxw ¢ Yk k<hereo: Axw ¢
Yrk:ANBxw X;;-F N:Baw KA Y EEk:Asxw N
YEk<{o,N): Axw ! Y bk <unboxo: OAxw PO
YhFk:AANBxw X;-Fov:Aaw A=0A4"or OA" X; 7 : Axw
Y Fk<(v,0): Bxw § Y bt returnZ : Axw kret
w € dom(X)
B=(1:A1,...) X ko Aiew S XigobFviAaw Yk Axw .
i'--7W2<X7ﬂ>7"'iFé1=v17‘.;@W YEw:[k=<1] e
~ ~
= b w € dom(X)
X =(ki:A1,...) Zkki:Axw e i EM:Aaw Yk Axw .
roowe (X8, Yk =k xw Shw:lk> M] eva
~ ~
SEFR ZFyv@wi ... S+ biQw, ...

t
YEA{wi:(x1,b1), - ;Wi : (Xm,bm) }; R ne

Fig. 4. Type system

well-formed: it must select a world that exists in the network, and there must
exist a type A such that its continuation and value or expression both have type
A and are closed.

Having set up the syntax and type system, we can now give the operational
semantics and type safety theorem. After the following section we remark on how
the semantics can be made concurrent, and give some thoughts on applications
of distributed continuations.

4.1 Operational Semantics

The operational semantics of our language is given in Fig. 5, as a binary rela-
tion — between network states. The semantics evaluates programs sequentially,
though we give a concurrent semantics in Section 5.

Distributed Control Flow with Classical Modal Logic 61

De-p Wy;w: [k = MN] — Wi;w: [k <oN = M]
De-s Wy w: [k <t<oN <] — W;w:[k<vo > N]
Der Wyw: [k < (Ax.M)o <] — Wiw: [k > [v/z]M]
value W;w : [k > v] — Wiw: [k < v
Oi-p W;w : [k > here M| — W;w: [k <hereo > M]
Oir {w: (x,b), - };w: [k <hereo < v] —
{w: b, L=0)), - hw:[k=<w./] (¢ fresh)
br {w:{x,b), - hw:k={ —
fwi 0B Hw [k <] (b(e) = v)
Ce-p Wy w: [k = letdw.x = M in N] — W;w: [k <letdw.x =o0inN > M|
Oe-r Wiw: [k <dletdw.x =o0inN < w'./] — W;w: [k > [0/z][w'/w]N]
Oc-p W;w : [k > unbox M] — W;w : [k <unboxo > M|
Oc-r W;w : [k <unboxo < box w.M] — Wiw: [k > [w/w]M]
letce {w : (x, b) -~ h;w: [k > letccuin M] —
{w: (. k=k),b),--- };w: k> [wk/ulM] (k fresh)
throw {w’ : (x,) - };w: [k > throw M to w' kK] —
W (b w5 M] (x(k) =)
rpc W;w : [k - go[w]M] —
W;w': [abort = M] (w € dom(W))
O {wi () fiws [k gt] -
{w: ((x,k=k),b), - };w': [returnw.k = M] (k fresh)
Om Aw: (x,b),- - hw [k - gety [w']M] —
{w:{(x,k=k),) <+ hw' : [returnw.k = M] (k fresh)
ret {w: (x,b), -} w :[returnw.k < v] —
W hobh e hw [k <] (x() =)

Fig. 5. Selected rules from the operational semantics

Not surprisingly, the semantics is continuation-based. At any step, the cursor
is selecting a world and continuation, with a value to return to it or an expression
to evaluate. The rules generally fall into a few categories, as exemplified by the
(standard) rules for D: There are (p)ush rules, in which we begin evaluating
a subexpression of some M, pushing the context into the continuation, (s)wap
rules, where we have finished evaluating one sub-expression and move onto the
next, and (r)eduction rules, where we finally have a value and eliminate it. Every
well-typed machine state will be closed with respect to truth, falsehood, and
world hypotheses, so we don’t have rules for variables.

The first interesting rule is <;-r. It publishes the value v by generating a new
label ¢, mapping that label to v within its value table, and returning the pair
w.{, where w is the current world. Whenever we try to evaluate a label (rule ¢-r),
we look it up in the current world’s value table in order to find the value. A key
consequence of type safety (Theorems 1, 2) is that labels are only evaluated in the
correct world. To eliminate an address (rule ¢.-r) we substitute the constituent
world and label through the body of the letd. Note that this step is slightly
non-standard, because we substitute the expression ¢ for a variable rather than
some value. But because the variable is in general at a different world, we are
not in a position to get its value yet. We instead wait until the expression ¢ is

62 Tom Murphy VII, Karl Crary, and Robert Harper

sent to its home world (perhaps as part of some larger expression) to be looked
up. The rules for O are much simpler: box w.M is already a value (rule O;-v),
and to unbox we simply substitute the current world for the hypothetical one
(rule O,-r).

When encountering a letcc, we grab the current continuation k. Because
the continuation may be referred to from elsewhere in the network, we publish
it in a table and form a global address for it (of the form w.k), just as we did
for & addresses. This value is substituted for the falsehood variable w.

Throwing to a continuation (rule throw) is handled straightforwardly. The
continuation expression will be closed, and therefore of the form w’.k. We look
up the label k in w’ — or rather, cause w' to look it up — and pass the expression
M to it. Note that we do not evaluate the argument before throwing it to the
remote continuation. In general we can not evaluate it, because it is only well-
typed at the remote world, which may be different from the world we’re in.

Finally, we have the rules that move between worlds. The rule for go is easiest;
since the target world expression must be closed it will be a world constant in the
domain of W. We simply move the cursor to that world (destroying the current
continuation, which can never be reached), and begin evaluating the expression
M under the unreachable continuation abort. The rules for get, and getg
work similarly, but they need to save the current continuation since they will
be returned to! These steps push a return frame, which reduces like throw. In
contrast, however, the argument (of type OA or GA) will be eagerly evaluated,
because such values are portable. (After all, the whole point is to create the box
at one world and then move it to another.)

In order for our language to make sense it must be type safe; any well-typed
program must have a well-defined meaning as a sequence of steps in the abstract
network. Type safety is stated as usual in terms of progress and preservation:

Theorem 1 (Progress)
If Y E N then either N is terminal or 3IN' .Nw— N,

Theorem 2 (Preservation)
IfYFNand N— N then 3X'. X' DX and X' FN.

Progress says that any well-formed network state can take another step, or
is done. (Recall a terminal network is one where the cursor is returning a value
to a finish continuation.) Preservation says that any well-typed network state
that takes a step results in another well-typed state (perhaps in an extended”
configuration typing X”). By iterating alternate applications of these theorems
we see that any well-typed program is able to step repeatedly and remain well-
formed, or else eventually comes to rest in a terminal state.

5% D X iff ¥ and X each describe the same set of worlds, and for each world, if
X (k) = A then X'(k) = A, and likewise for 3 and /3.

Distributed Control Flow with Classical Modal Logic 63

5 Concurrency and Communication

Many distributed computing problems benefit from concurrency, with one or
more processes running on each node in the network. This section gives some
brief thoughts on concurrency in our classical calculus.

First-class continuations are often used in the implementation of coroutines.
With primitives for recursion and state we could also implement coroutines in
C5, however, such an implementation is silly because it would require the im-
plementation of a global scheduler, and would anyway defeat the purpose of
concurrency on multiple nodes — only one coroutine would be running at any
given time!

Fortunately, our operational semantics admits ad hoc concurrency easily. If
we simply replace the cursor R in our network state “W; R” with a multiset of
cursors R, then we can permit a step on any one of these cursors essentially
according to the old rules:

W;R — W, R
W:{R}WR —° W {R'}WUR

We can then add primitives as desired to spawn new cursors. A very simple one
evaluates M and N in parallel and returns each one to the same continuation.

IAEM:Aew [ARN: Aaw par
'y A M|N : Aew

W R W {wilk = M|N]} = W; R W {w:[k = M]} & {w:[k = N]}

A suitable extension of type safety holds for —*.

With concurrency in place we can implement asynchronous CML-style chan-
nels [12] with the help of continuations (and a few other features for developing
mutable recursive structures). The type of a channel that allows sending and
receiving of values of type A could be

A chan = <O(A queue A (—A) queue)

Here a channel is represented as the address of a pair of queues. In order to
send to this channel, the sender must be able to bring a value of type A to the
world where the channel lives. Therefore it must be a box or diamond type itself
(although the class of types that are mobile in this way can be easily extended;
see the technical report for details [7]). The first queue holds the values that have
been sent on the channel and not yet received; the second holds the continuations
of outstanding recieves. To implement recieve (assuming no values are waiting
in the first queue), we grab the current continuation, enqueue it, and abort.
This is a standard technique; our point is to emphasize the utility of contin-
uations as primitives for implementing useful distributed computing features.

64 Tom Murphy VII, Karl Crary, and Robert Harper
6 Disjunction

To add disjunction to C5, we need to use the following elimination form in order
to preserve the correspondence with classical S5:

INr:Aaw'; A Ny : Cow
I''v:Baw'; AF Ny : Caw

I'y At case M of inlax = N | inraz = Ny : Ceow

I'' A-M: AV Badw'
VE

This rule is completely unsurprising except that the case object M is at a dif-
ferent world, w'. In our logic we've tried hard to avoid this sort of action-at-
a-distance, instead preferring to have our introduction and elimination rules
compute locally. However, a motion rule for disjunction is out of the question,
because it is unsound: it is not the case that if I'; A+ AV Bew then necessarily
I'’ A+ AV Baw'. In our previous paper we speculated that the remote case
analysis could be implemented nonetheless by sending back merely a bit telling
the case-analyzing world which branch it should enter, but this requires some
suspicious operational machinery. The same is true in the classical case, which
is why we have avoided treating disjunction so far.

As it turns out, support for disjunction and remote disjunction elimination
is already present in C5, via one of de Morgan’s laws. We define A V B as
—(=AA-B), and AV B thus becomes a continuation that takes two continuations:
one if the disjunct is A, and one if the disjunct is B. This technique is well-known
for CPS conversion, and first-class continuations let us employ it without having
to CPS-convert the entire program. Encoding the injections is easy:

inlM = Ja.(maz)M int M = Az.(mex)M

By grabbing the continuation at the point of case analysis, we can allow ourselves
to move to a remote world (via go) to do the case analysis and rely on throw to
get us back:

case M of inlx = N7 . letccuingo[w'|M(Az.throw Ny tou,
| inrz = Ny Az. throw No to u)

This has exactly the same typing conditions as the remote rule above; x is bound
to the remote type Aaw’, even though the expression N; is evaluated at w.
Classical logic is ripe with possibilities for definition. It is interesting to con-
sider their implications. Recall that in Section 3 we proved ¢A equivalent to
—0-A. This means that, like classical logicians, we could then just consider ¢A
a derived form. This would amount to a roundabout way of using the continu-
ation table to publish values rather than the value table. Clearly, we could also
take the even stranger route of defining OA in terms of ¢, which gives us a
mobile code “server” that sends code to our continuation whenever we like.

Distributed Control Flow with Classical Modal Logic 65

7 Conclusions

Related Work. Parigot’s Ap-calculus has inspired many computational proof
systems for classical logic, including Wadler’s dual calculus [15]. The calculus is
sequent-oriented and contains cut as a computational primitive, emphasizing the
duality of computing with values and covalues (continuations). For programming
in C5, we choose a natural deduction system which is deliberately non-dual. We
bias the logic towards truth, which corresponds to computing mainly with values
(as is typical) rather than covalues. Nevertheless, we expect that a dual version
of classical S5 could be easily made to work, perhaps starting from the sequent
calculus presented in the Appendix.

Because our calculus extends Lambda 5 [3], it is also related to the same
mobile calculi, for example Moody’s distributed S4 calculus [0], and Jia and
Walker’s S5-like hybrid logic [5]. Both calculi employ the O and < connectives
with similar interpretations, though aspects of the underlying logics differ. Both
give operational interpretations via concurrent process calculi with passive syn-
chronization, and both systems use non-local introduction and elimination forms.
In contrast, we achieve explicit active synchronization (in the form of get.,, etc.)
along with what we feel are more primitive operations for constructing and de-
constructing objects of the modal types. With regard to the classical extensions,
we know of no prior modal system that features distributed continuations.

Future Work. Our language now has a full arsenal of connectives and control
operators, each connected to logic. Much work remains before C5 can be a prac-
tical programming language rather than exploratory calculus. Some are routine
— adding extra-logical primitives like recursion and references — and some are
difficult — compilation of mobile code fragments, distributed garbage collection,
failure recovery, and certification.

Although we believe that C5 accommodates concurrency easily, it would be
nice to have a logically-inspired account of it. Some other directions remain
open to try. Proof search in linear logic sequent calculus [3] is known to admit

an interpretation as concurrent computation [2]. Perhaps linear S5 in sequent
style would be able to elegantly express both spatial properties and concurrency
in logic?

We have presented a proof theory and corresponding programming language,
C5, based on the classical modal logic S5. By exploiting the modalities we are
able to give a logical account of mobility and locality, and thus an expressive
programming language for distributed computing. From the logic’s classical na-
ture we derive the mechanism of distributed continuations, which creates a new
connection between the O and < connectives, and forms a basis for the imple-
mentation of distributed computing primitives.

References

1. Andreas Abel. A third-order representation of the Au-Calculus. In S.J. Ambler,
R.L. Crole, and A. Momigliano, editors, Electronic Notes in Theoretical Computer
Science, volume 58. Elsevier, 2001.

66

10.

11.

12.

13.

14.

15.

Tom Murphy VII, Karl Crary, and Robert Harper

. Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics,

92:69-108.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, Jan-
uary 1987.

Timothy G. Griffin. The formulae-as-types notion of control. In Conf. Record 17th
Annual ACM Symp. on Principles of Programming Languages, POPL’90, San
Francisco, CA, USA, 17-19 Jan 1990, pages 47-57. ACM Press, New York, 1990.
Limin Jia and David Walker. Modal proofs as distributed programs. 13th European
Symposium on Programming, pages 219-223, March 2004.

Jonathan Moody. Modal logic as a basis for distributed computation. Technical
Report CMU-CS-03-194, Carnegie Mellon University, Oct 2003.

Tom Murphy, VII, Karl Crary, and Robert Harper. Distribed control flow with clas-
sical modal logic (technical report). Technical Report CMU-CS-04-177, Carnegie
Mellon University, Dec 2004.

Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric
modal lambda calculus for distributed computing. In Proceedings of the 19th IEEE
Symposium on Logic in Computer Science (LICS 2004). IEEE Press, July 2004.
Chetan Murthy. Classical proofs as programs: How, what and why. Technical Re-
port TR91-1215, Cornell University, 1991.

Michel Parigot. Au-Calculus: An algorithmic interpretation of classical natural de-
duction. In Andrei Voronkov, editor, Logic Programming and Automated Reason-
ing, International Conference LPAR’92, St. Petersburg, Russia, July 15-20, 1992,
Proceedings, volume 624 of Lecture Notes in Computer Science. Springer, 1992.
Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-
logical framework for deductive systems. In Harald Ganzinger, editor, Proceed-
ings of the 16th International Conference on Automated Deduction, pages 202-206,
Trento, Italy, July 1999. Springer-Verlag. LNAT 1632.

John H. Reppy. Concurrent Programming in ML. Cambridge University Press,
Cambridge, England, 1999.

Carsten Schiirmann and Frank Pfenning. A coverage checking algorithm for LF. In
D. Basin and B. Wolff, editors, Proceedings of the 16th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2003), pages 120-135, Rome,
Italy, September 2003. Springer-Verlag LNCS 2758.

Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis, University of Edinburgh, 1994.

Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the 8th
International Conference on Functional Programming (ICFP). ACM Press, August
2003.

Appendix

This appendix contains sketches of the proofs relating C5 to a classical S5 sequent
calculus. This serves two purposes. First, because the sequent calculus is purely
logical and does not feature our decomposition of the O and < rules, it is more
obviously S5. Second, because the sequent calculus has the subformula property
and admits cut, we get some standard results for our proof theory, such as the
existence of normal forms and soundness. To begin, we need a few substitution
theorems for our natural deduction system, one of which is interesting.

Distributed Control Flow with Classical Modal Logic 67

I Aew # Axw, A ©OMT2 Mlew # A 1
I'AD Baow,Baw # A
I'AD Baw # Axw, A I'N'Aew # B*w,AD Bxw,D
rA>Baw # A 7T I' # A5 Bxw,D o F
I'OAaw, Aaw’ # A Iow' # Axw',0Axw, A
rodew # A T I # OAxw, A =
I, CAew,Aaw’ # A I' # Axd' CAxw, A
I odaw # A T I # OAxw, A
I' # Axw,ANBxw,A
I'AANBaw,Aew,Baw # A I' # Bxw, AN Bxw, A
IAABow # A AT I # AABrw,A N

Fig. 6. Classical S5 sequent calculus

Falsehood Substitution. For each sort of hypothesis we have a substitution
theorem. Worlds can be substituted for hypothetical worlds, and substitution
[M/x]N for truth hypotheses is defined in the standard way. Substitution for
falsehood hypotheses warrants special attention, however:

Theorem 3 (Falsehood Substitution)
If VO, Iz:Aew; A+ M :Caw”
and I'; A,u:AxwkF N : Bew'

then I'y A& [x.M/u]N : Baw'.

This principle is dual to the # rule just as truth substitution is dual to the
hyp rule. The # rule contradicts an Axw with an Aew, so when substituting for
a falsehood assumption, we are able to assume A@w and must produce another
contradiction. We write falsehood substitution as [x.M/u]N where z is a binder
(with scope through M) that stands for the value thrown to w. Just like truth
substitution, it is defined pointwise on N except for the appropriate variable
case (rule #):

[x.M/u] throw N’ tou = [N'/x]M
Operationally, we see this as replacing the throw with some other handler for
A. Since the new handler must have parametric type, typically it is a throw
to some other continuation, perhaps after performing some computation on the
proof of A.

Sequent Calculus. Our sequent calculus is motivated by simplicity and duality
alone, because we will not give it a computational interpretation. One traditional
way of doing classical theorem proving is to negate the target formula and prove
a contradiction from it. Our sequent calculus (Fig. 6) is based on this view:
the sequent I' # A means that the truth assumptions in I" and the falsehood
assumptions in A are mutually contradictory®. We treat contexts as unordered

5 Our rules are also consistent with the more traditional multiple-conclusion reading,
“f all of I" are true, then one of A is true.”

68 Tom Murphy VII, Karl Crary, and Robert Harper

multisets, so the action can occur anywhere in either context. World hypotheses
are placed in I', although to get a notationally dual system, we would place them
in a third context “in the middle” of the sequent.

These rules should be read bottom-up, as if during proof search. The contra
rule allows us to form a contradiction whenever a proposition is both true and
false at the same world. The OT rule says that if we know DA @w, then we know
Aaw' for any w’ that exists. On the other hand, if we know that OA is false,
then we know A is false at some world w’. However, we must treat this world
as hypothetical and fresh since we don’t know which one it is. The rules for <
are perfect mirror images of the rules for 0. The treatment of implication is
standard, and follows from the classical truth tables.

We then wish to prove that the natural deduction and sequent calculus are
equivalent (Theorem 5). The translation from natural deduction to the sequent
calculus requires a lemma. In an intuitionistic calculus this would be cut; for
the symmetric classical calculus it turns out to be the familiar classical notion
of excluded middle.

Theorem 4 (Excl. Middle) If I Aew # A and I’ # Axw, A then I’ # A.

Proof of Theorem 4 is by lexicographic induction on the proposition A and
then simultaneously on the two derivations. o

Theorem 5 (Equivalence)
(a) IfIAFM:Aew then I' # Axw,A.
(b) T # A then 3M.VC,w. I''AF M : Caw.

It is easy to see why 5(b) is the right statement. Since we think of I" # A as
a proof of contradiction, this corresponds to a natural deduction derivation that
proves any proposition at any world. Theorem 5(a) is more subtle. We show that
if A is true under assumptions I and A, then A being false at the same world
is contradictory with those assumptions. Computationally, we can think of this
as the “final continuation” to which the result computed in natural deduction
is passed. Putting these two theorems together, we have that I'; A+ M : Aew
gives I' # Ax*w, A, which then gives VC,w'. I'; A,uw:Axw = M’ : Caw'. In
particular, we choose C' = A and w’ = w, and then by application of bc we have
the original judgment (with a normalized proof term letccuin M’). Thus F
and # are really equivalent.

The proof of Theorem 5(a) is by straightforward induction on the derivation,
using Theorem 4 where necessary. (The structural rules be and # just become
uses of contraction and weakening in the sequent calculus.) a]

Proof of 5(b) is interesting because of its manipulation of continuations
through the use of falsehood substitution (Theorem 3). Uses of T rules are easy;
they correspond directly to the elimination rules’ in natural deduction. But since
our natural deduction is biased towards manipulating truth rather than false-
hood, the F rules are more difficult and make nontrivial use of the falsehood
substitution theorem. For instance, in the AF' case we have by induction:

" Except for implication, which is phrased differently in the sequent calculus.

Distributed Control Flow with Classical Modal Logic 69

I Ajupt AN Bxw,ug:Axw b Ny : Caw’ (VC,W')
I'; A up: AN Bxw, up:Bxw = Ny : Caw' (VO,w')

By two applications of Theorem 3, we get that the following proof term has any
type at any world:

[{x[[y throw (x, y) to up/us]| No /ua]] N

We form an innermost throw of the pair (z,y) to our pair continuation w,. This
has free truth hypotheses x : A and y : B. Therefore, we can use it to substitute
away the u;, continuation in N (any throw of M to up becomes a throw of (x, M)
to up). Finally, we can use this new term to substitute away u, in Ny, giving us a
term that depends only on the pair continuation u,. This pattern of prepending
work onto continuations through substitution is characteristic of this proof.
The case for OF is interesting because it uses letcc ®. By induction we have:

Vo' Ty AjuAxw’ up:O0Axw = N : Cew” (VO,w")
Then the proof term witnessing the theorem here is:
throw(box w’.letccuin N)touy

It is not possible to use falsehood substitution on w in this case. To do so we
would need to turn a term of type Aaw’ into a DAaw to throw to up. Although
at a meta-level we know that we can choose any w’, it won’t be possible to
internalize this in order to create a OA. Instead we must introduce a new box,
and choose w’ to be the new hypothetical world that the OI rule introduces. At
that point we use letcc to create a real Axw’ assumption to discharge u. The
remaining cases are similar or straightforward, and can be found in full detail in
the Twelf code”. o

8 In fact, this is the only place in the proof where a letcc is necessary. This gives
a normal form for natural deduction terms where letcc appears only once at the
outermost scope and immediately inside each box.

® The most natural LF encoding of falsehood is 3'%-order [I]; we use a 2"%-order
encoding in our proofs (proving the falsehood substitution theorem by hand) because
third-order metatheorem checking is not yet available in the distribution.

A Logic of Coequations

Jiri Addmek*

Institute of Theoretical Computer Science
Technical University, Braunschweig, Germany
adamek@iti.cs.tu-bs.de

Abstract. By Rutten’s dualization of the Birkhoff Variety Theorem,
a collection of coalgebras is a covariety (i.e., is closed under coprod-
ucts, subcoalgebras, and quotients) iff it can be presented by a subset of
a cofree coalgebra. We introduce inference rules for these subsets, and
prove that they are sound and complete. For example, given a polynomial
endofunctor of a signature X, the cofree coalgebra consists of colored X-
trees, and we prove that a set T" of colored trees is a logical consequence
of a set S iff T' contains every tree such that all recolorings of all its
subtrees lie in S. Finally, we characterize covarieties whose presentation
needs only n colors.

1 Introduction

In the theory of systems as coalgebras (in the category of sets) presented for
example by Jan Rutten [14], cofree coalgebras C'(k) consist of “possible behavior
patterns” of states of systems colored by k (observable) colors. Given a system A
and a coloring, the corresponding homomorphism from A to C(k) assigns to
every state its behavior pattern. J. Rutten used subsets S of cofree coalgebras as a
means of presentation of systems: a system A satisfies S iff every homomorphism
f+ A >C(k) factorizes through S ¢ > C(k). And he proved the dual of the
famous Birkhoff Variety Theorem: a collection of systems has a presentation via
subsets of C(k) iff it is a covariety, i.e., it is closed under coproducts, subsystems,
and quotients. This holds for systems as coalgebras on an arbitrary k-accessible
functor.

Several authors studied logical properties of subsets S C C(k). Peter Gumm
[10] observed that one can restrict to the coatomic subsets C'(k) — {t}, for which
we use the notation X¢ (read: avoid t). A system A satisfies K¢ iff under an
arbitrary coloring all states avoid the behavior pattern t. Every subset S is
logically equivalent to the conjunction of all K¢ where ¢ ranges through the
complement C(k) — S. Whereas subsets of cofree coalgebras dualize the concept

collection of equations = quotient of a free algebra,

the coatomic subsets Xt dualize the concept

* Grant MSM 6840770014 of the Ministry of Education of Czech Republic is acknowl-
edged.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 70-86, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Logic of Coequations 71

equation = atomic quotient of a free algebra.

In fact, in the lattice of congruences of a free algebra every atom is a congruence
generated by a single equation. We call the expressions X ¢ coequations.

Peter Gumm and Tobias Schréder showed in [12] that for presentations of
systems we can restrict ourselves to subcoalgebras of C'(k), and Steve Awodey
and James Hughes [7] then proved that (dually to Birkhoff’s characterization
of equational theories in [J]) invariant subcoalgebras are precisely the coequa-
tional theories. They based their result on the theory of invariance of predicates
developed by Bart Jacobs [13].

In the present paper we formulate two simple inference rules for coequations,
and prove that they form a sound and complete system. We do this in three
steps:

(1) Logic for polynomial functors Hy (of a k-ary signature X, where k is
an infinite cardinal): Recall that a cofree Hx-coalgebra Cx (k) is the algebra of
all k-colored X-trees, see [5]. The two inference rules for coequations Xt are:
if a tree s is (a) a subtree of ¢, or (b) a recoloring of ¢, then X¢ is a logical
consequence of K's. We conclude that for every subset S of Cx(k), the logical
consequences of S are precisely those sets T of trees which contain every tree ¢
such that all recolorings of all subtrees of ¢ lie in S.

(2) Logic for k-accessible functors H: We express H as a quotient of Hy for
a k-ary signature and conclude that the cofree coalgebra C(k) is a canonical
quotient of Cx (k). Thus, elements of C(k) are congruence classes of X-trees.
We prove that Xt is a consequence of X s iff every tree congruent to ¢ is a
recoloring of a subtree of a tree congruent to s. Unlike the previous case, we see
no way how to formulate the inference rules for general subsets of C(k). This
is the reason why, in contrast to the authors cited above, we concentrate on
coequations, rather than general subsets, in our paper (in spite of the fact that
the negative way a coequation formulates properties of systems makes it less
intuitive for applications).

(3) Logic for arbitrary endofunctors of Set: Here we use generalized co-
equations, i.e., transfinite chains of “approximations of coequations”, introduced
in [3], where we proved that every covariety has a presentation by generalized
coequations. We now derive a logic of generalized coequations analogous to that
for accessible functors. In the proof we use the extension of Set to the cate-
gory Class of classes, and the fact that every endofunctor of Set has a unique
extension to Class, as established in [1].

In the final section we characterize, for every cardinal n, those covarieties
which can be presented by coequations using n colors. For n = 1 these are
precisely the covarieties closed under bisimulation, as proved by Peter Gumm
and Tobias Schroder [12]. Our characterization is analogous: we call two H-
coalgebras equipped with a coloring by n colors n-color-bisimilar if they are
bisimilar as coalgebras of H(—) x n. An we prove that covarieties presentable by
n-color-coequations are precisely those closed under n-color-bisimilarity.

72 Jiri Adamek

2 Logic for Polynomial Functors

2.1. Recall from the expository paper of J. Rutten [14] that for every endofunc-
tor H of Set a coalgebra A = (Q,«) is a system given by a set @ of states
and a structure map a: Q > HQ. A homomorphism from (@,) to a coal-
gebra (Q',d’) is a function f: Q > @' with o/-f = Hf-a. For example, a
deterministic system with a binary input and halting states is expressed as a
coalgebra of HQ = @ x Q + 1. Given a coalgebra a: Q >@QxQ+1anda
state ¢ in it, if g = (qo, q1), then g; is the next state of ¢ for the input i = 0, 1;
if ag € 1, then ¢ is a halting state.

A covariety is a collection of coalgebras closed under coproducts, subcoalge-
bras, and quotient coalgebras. For k-accessible functors J. Rutten proved that
covarieties are precisely the classes of coalgebras which have a presentation by a
subset of a cofree coalgebra as follows:

Given a set k (of colors, finite or infinite), a cofree coalgebra on k is a coal-
gebra C'(k) with a structure map

TkZC(k) >HC(]<I)
and a universal “coloring” map
vi: C(k) >k .

The universal property states that for every coalgebra A = (Q,«) and every
coloring f: @) >k there exists a unique homomorphism

f*:A >C(k) with f=f".

2.2 Definition. (i) Suppose that a subsetm: S¢ > C(k) of the cofree coalgebra
is given. We say that a coalgebra A satisfies S provided that for every coloring
f:Q > k the homomorphism f* factorizes through m. For example, given
t € C(k), then A satisfies Xt iff for every coloring f: A >k all states a fulfil
f#a) #1.

(i) A class of coalgebras is presented by m: S ¢ > C(k) if it contains pre-
cisely those coalgebras which satisfy S.

(i) By a logical consequence of S is meant any subset m': S' ¢ > C(k)
such that whenever a coalgebra satisfies S, then it also satisfies S’. Notation:

SES

2.3. Recall that a set functor H is called k-accessible if it preserves k-filtered
colimits (for an infinite cardinal k); or, equivalently, if every element of HX lies
in Hm [HM] for some subset m: M ¢ > X of cardinality smaller than k. If
H is k-accessible then every covariety requests only one subset of C(k) for its
presentation:

Theorem. For a k-accessible set functor H, a class of coalgebras is a covariety
iff it can be presented by a subset of C(k).

A Logic of Coequations 73

This theorem was stated by J. Rutten [11] for functors bounded at k and
weakly preserving pullbacks, but the latter assumption can be left out, see [12],
and “bounded at k” (which is equivalent to being kT-accessible, see [5]) can be
weakened to k-accessible.

2.4 Fxample. Let X be a k-ary signature, i.e., all arities are cardinals smaller
than k (k an infinite cardinal). Then the polynomial functor Hyx defined on
object X by

Hy X = HX" (n = arity of o)
oeX

is k-accessible.

Recall (e.g. from [5]) that a terminal coalgebra (= cofree coalgebra on one
color) can be described as the coalgebra of all X'-trees, i.e., trees, finite or infinite,
whose nodes are labeled by X' in such a way that every node with an n-ary label
has precisely n children. Trees are considered up to isomorphism throughout the
paper. Analogously, a cofree coalgebra Cx (k) is the coalgebra of all k-colored
Jd)-trees. That is, elements are Y-trees whose nodes are additionally labelled by
colors ¢ (where ¢ < k is an ordinal). The coalgebraic structure TkE assigns to every
tree t whose root carries an n-ary operation label o the n-tuple of its children t;
in the o-summand of HxCx(k), notation:

7ii (t) = o(ti)icn

And the universal coloring 7;* : Cx(k) > k assigns to every tree the color of
its root.

A Y-coalgebra A is a set @ of states together with a structure map o: @ >
Hs (@) assigning to every a € @ an n-tuple o(a;)i<p in the o-summand Q™ for
some n-ary operation o € Y. Given a coloring f: >k, the homomorphism
f#: A > Cx(k) takes every node a to the X-tree-unfolding of a using the
colors given by f.

2.5 Example. The functor HQ = @ x @ + 1 of 2.1 above is finitary, i.e., w-
accessible (k = w). The cofree coalgebra C'(w) can be described as the coalgebra
of all binary trees, finite or infinite, whose nodes are colored by natural numbers.
The structure map 7,: C(w) > C(w) x C(w) + 1 has as halting states all
singleton trees, and it assigns to every non-singleton tree the pair of its children,
while v,: C(w) >w is the color of the root.

The coequation Xty where tg is a singleton tree presents all systems without
halting states. The coequation X ¢; where ¢; is the one-colored complete binary
tree presents all systems which starting from every state can halt in finitely many
steps. The coequation

74 Jiri Adamek

presents all systems such that for no state both successors are halting states.
The coequation

X
presents all systems such that for every state whose both successors are halting
states, these successors must be equal.

2.6 Example. Deterministic acceptors with the input set S are precisely the coal-
gebras of the polynomial functor

HX = X° x bool .

In fact, given a set @ of states with the next state function 6: @ x S >Q
(expressed in the curried from 0: Q > Q7) and a predicate accept: Q >
bool, we obtain a coalgebra structure map

o= (b, accept): Q >Q° x bool .

The functor H is w-accessible if S is finite, and k-accessible for k = (card S)*
(the cardinal successor of card S) otherwise.

The terminal coalgebra is the coalgebra C(1) = Z(S*) of all languages
over S, see [0]: for every acceptor A the unique homomorphism into C(1) takes
a state ¢ to the language Lq(A) accepted by A with ¢ as the initial state. Thus,
every language L C S* presents a class X L of acceptors A: those with L,(A) # L
for all states q. Examples:

(i) XX S*: all acceptors having a non-accepting state;
(if) X{e}: all acceptors such that from any accepting state we can reach an
accepting state in n > 0 steps.

2.7 Definition. Two nodes of a k-colored tree t € Cx (k) are called equivalent
provided the two k-colored subtrees of t they represent are isomorphic.

2.8 Lemma. For two treest,s € Cx(k) the following conditions are equivalent:

(i) s = h(t) for some coalgebra homomorphism h: Cs(k) > Cx(k) and
(ii) s and t have the same underlying X-tree, and any two equivalent nodes of t
are also equivalent in s.

Proof. (i) > (ii). The coalgebra Tx ~ Cx(1) of all (uncolored) X-trees is
terminal, and the unique homomorphism w: Cx(k) > Ty assigns to every
colored X-tree the underlying X-tree. The equality of the underlying X-trees of
s and t follows from the fact that u = w-h: Cx(k) >Tx. Furthermore, if the
root of t is labelled by (c,i) where o is an n-ary operation, then since h is a
homomorphism, the root of s is labelled by (o, 7), and h takes the m-th child of ¢
to the m-th child of s. Consequently, for every node z of ¢, the corresponding
subtree t|z is taken to the subtree s|z of s:

h(tlx) = s|lx for all nodes z of t.

A Logic of Coequations 75

Therefore, if two nodes are equivalent in ¢, they are equivalent in s.
(i) > (i). Choose a function hg: C(k) >k by the following rule, where
t|z denotes the subtree of ¢ at a node x:

ho (T‘) =

color of z in s if r = t|z for some node x
arbitrary else.

By (ii) such a function exists. The unique homomorphism h: Cx (k) > Cx(k)
with hg = v - h fulfils
h(t)=s .

In fact, since u(t) = u(s), all we have to verify is that for every node z of ¢ the
colors of x in the trees h(t) and s are equal. This is clear for the root: the root
color of h(t) is ho(t), which is the root color of s by definition of hg. For nodes x
of depth 1 this follows from h being a homomorphism: suppose t = o(t;)i<n,
then s = 0(8;)i<n (because u(t) = u(s)) and h(t) = o(h(t;))i<n has the j-th
child h(t;), whose root color ho(t;) is the color of the j-th child of s by definition
of hg. A formal proof by induction on the depth of x is left to the reader. O

2.9 Definition. By a recoloring of a colored X -tree t is meant any tree s
satisfying the equivalent conditions of 2.8. Given colored X -trees t,t" we write

t'Ct
provided that t' is a recoloring of a subtree of t.

2.10 Remark. The relation C is a preorder: it is obviously reflexive, and transi-
tivity follows from the fact that “recoloring of” is transitive due to 2.8(i), and
“subtree of” is clearly transitive too. The relation C is, however, not antireflex-
ive:

2.11 Example. The following trees

are recolorings of each other. And each of them has a recoloring having the same
shape and all nodes of equal color.

2.12 Lemma. For every k-colored X-tree t let Ay be the Hx-coalgebra of all
equivalence classes [x] of nodes x of t (see 2.7) with a: Ay > Hx Ay defined
by

alz] = o([zi])icn

if x has label (o,u) and x; are the children of x. Then

76 Jiri Adamek

(i) Ay ¥ X, and
(i) f#[z] Tt for every coloring f: Ay >k and every state [x] € A;.

The above algebras A; are analogous to the tree coalgebras of [5].

Proof. The above « is well-defined because given equivalent nodes z and v,
the operations labelling z and y are equal, and the corresponding children are
again equivalent. For every coloring f: A; > k the homomorphism f#: A,

> Cx(k) is defined by the following rule: f#[z] is the subtree t|z of t at x
recolored by f. (In fact, this function f# is easily seen to be a homomorphism:
suppose afz] = o([x;])i<n, then

see 2.4. Moreover, v+ f# = f.) Therefore, (ii) is clear. For (i), use the original
coloring, more precisely, the function g: A; > k assigning to [z] the color of x
in t. By the above rule applied to f = g we see that g# assigns to the equivalence
class of the root of t the value t. Therefore, A ¥ X ¢. O

2.13 Theorem. For a polynomial endofunctor a coequation Xt is a logical con-
sequence of coequations Ws; (i € I) iff some s; is a recoloring of a subtree of t.
Shortly:

{Rsi;ieIEXRE iff s; Tt for some jel.

Proof. Denote by k* the set of all words formed by ordinals smaller than k. Then
a colored XY-tree t can be formalized as a partial function from £* to X' x k such
that the set Deft of all words where ¢ is defined has the following properties:

(i) Deft contains the empty word ¢,
(ii) Deft is prefix-closed, i.e., if ¢ is defined in zy, then it is defined in z, and
(iii) if ¢(x) = (o,u) for an m-ary operation symbol o, then zi € Deft for all
ordinals i < n and zi ¢ Deft for any i > n.

In particular, a subtree ¢|z of ¢ at the node x € Deft is characterized as follows:
Def(t|z) = {y € k*;xy € Deft}

and
tlx(y) = t(zy) for all y € Def(t|z).

(1) Sufficiency. We only need to prove that for two colored trees s and t we
have X s E Xt whenever s is either a recoloring of ¢ or a subtree of t.

(1a) Let s be a subtree of t. Without loss of generality, we can assume that s is
a child (i.e., a maximum proper subtree) of ¢t — by repeating the same argument
finitely many times we obtain the general case.

We have 77 (t) = o(tr)r<n and s = t,, for some o € X, and some ry < n.
Let A be a coalgebra satisfying X s. If for some coloring f: A > k we had
f#(a) = t then, since f# is a homomorphism, a(a) would have the form o(a,), <,
where f#(a,) = t, — this is impossible because then f#(a,,) = s.

A Logic of Coequations 7

(1b) Let s = h(t) be a recoloring of ¢, where h is an endomorphism of Cx (k).
For every coalgebra A and every coloring f: A >k we have

he f%=(u b f5)F A = Cx(k)

In fact, this follows from the universal property of yx: h is a homomorphism, thus,
so is h - f#, and both sides composed with ~; yield vz -h-f#. If A satisfies K s,
then h - f#(a) # s = h(t) which implies f#(a) # t for all a € A. Therefore
A satisfies X ¢t.

(2) Necessity. Assuming {Xs;;i € I} E K¢, the coalgebra A; of Lemma 2.12
does not satisfy all of ¥ s; for i € I. Thus, there exists j € I with f#[z] = s; for
some coloring f and some [z] € A;. Then Lemma 2.12 implies s; C t. O

2.14 Corollary. Given a polynomial functor Hx;, the following deduction rules
are sound and complete for the logical deduction of coequations:

(1) Child Rule
Xt;
J if t; is the j-th child of s
Xt /

and
(2) Recoloring Rule

X s

Xt

In fact, for each subtree s of ¢ by applying the Child Rule finitely many times,
we derive that X ¢ is a logical consequence of X s.

(if s is a recoloring of t).

2.15 Corollary. Given sets S and T of k-colored X -trees, then S E T iff T' con-
tains every tree t such that

every recoloring of every subtree of t lies in S. (1)

In fact, recall that S C Cx(k) is logically equivalent to the conjunction
of Xs;, i € I, where {s;;i € I} is the complement of S; analogously with T'.
Now it is easy to see that S F T holds iff for every tree ¢t we have

TERt implies Sk Rt . (2)

From Theorem 2.13 we know T F Xt iff there exists a tree s C ¢ with s €
Cx (k) — T; analogously for S F X¢. Thus, (2) tells us that

(3s)(sCtAs¢T) = (Is)(sCtAs¢s) .
Or, equivalently,
(Vs)(sZtvseS) = (Vs)(sZtvseT) .

The premise of the last implication is only true for trees ¢t with the above prop-
erty (1) — and for such trees ¢ the conslusion is that ¢ € T": in fact, since t C ¢
we conclude t € T' (and, moreover, s € T whenever s C ¢ — but this can be left
out due to the universal quantification of t).

78 Jiri Adamek

3 Coequational Logic for Accessible Functors

3.1 Assumption. Throughout this section H denotes an accessible endofunctor
of Set, i.e., one that preserves k-filtered colimits for some infinite regular cardi-
nal k. As shown in [5], this is equivalent to the statement that H is a quotient
of a k-ary polynomial endofunctor. That is, a k-ary signature X and a natural

transformation
e: H ¥ > H

with surjective components exist.

3.2 Ezample. (i) The finite-power-set functor &%, given on objects by X | >
{A C X; A finite} is finitary (k = w). Let X be the signature with a single n-ary
symbol ¢,, for every natural number n. Then we have a “canonical” presenta-
tion %% as a quotient of Hy;: ¢ takes every n-tuple o, (2o, . .., Zn—1) to the subset
{LL‘Q, N ,{,Cn_l}.

F-coalgebras are precisely the finitely branching graphs.

(ii) For the countable-power-set functor ., given on objects by X1 >{A C
X; A countable} we can use the signature with one nullary symbol and one w-ary
symbol. Here

ex: 1+ XN >P2X

takes the left-hand summand to () and every sequence f: N > X to the image
of f. P-coalgebras are precisely the countably branching graphs.

3.3 Remark. The presentation of H as a quotient of Hy yields a presentation
of the cofree coalgebra 7,: C'(k) > HC(k) of H as a quotient of the cofree
coalgebra of Hy. In fact, the unique homomorphism € of H-coalgebras with
Y€ =i is surjective:

e ECx (k)

Cs(k) " >HsCx(k) >~ HCx(k)

3 Hyé
v
k ¢ HxC(k) He
\ m
Tk
\ v
C(k) > HC(k)

Tk

(Proof: choose u: HC(k) > HsC(k) with egyu = id. The unique homo-
morphism u#: C(k) > Cx(k) of Hx-coalgebras with v, = y&u#, where we
use the structure map uy, splits é. In fact, éu* is an endomorphism of C(k)
commuting with 7y, thus, fu® = id.)

Consequently, the elements of C(k) are the congruence classes [t] of X-trees ¢
modulo the kernel congruence of €. In case H is finitary, this congruence has
a concise description: one applies e-equations fintely or infinitely many times,
where e-equations are equations between terms in Hx, X merged by ex. See [2].

A Logic of Coequations 79

3.4 Ezample. For the functor & the terminal coalgebra T' = C(1) has been
described by M. Barr [¢] by presenting the corresponding congruence on X-trees.
J. Worell presents a direct description in [15]: T is the coalgebra of all finitely
branching, strongly extensional trees. Here a (rooted, nonordered) tree is called
strongly extensional provided that for every pair of distinct children of any node
the two subtrees are not bisimilar. The coalgebra structure T > T takes
every tree to the set of its children. Analogously, for a set k of colors we have
a coalgebra C(k) of all finitely branching k-colored nonordered trees which are
strongly extensional. The latter means that for every pair of distinct children of
any node the two k-colored subtrees are not bisimilar (as colored trees).

Examples of coequations:

(i) The class of all finitely branching graphs without leaves (i.e., nodes having
no neighbour) is presented by X¢ where ¢ is the single-node tree.

(ii) The coequation K¢ where ¢ is a one-colored infinite path presents all
graphs such that from every node a path leads into a leaf.

(iii) The coequation X ¢ where ¢ is an infinite path colored one-toone with N
presents all graphs such that every node b from which no leaf is reachable has
two paths of unequal lengths from b to a common target.

3.5 Theorem. A coequation Xt is a logical consequence of coequations K 's;
(i € I) iff for every X-tree t' with t = [t'] there exists a X-tree r T t' with
sj = [r] for some j € I.

Proof. (1) We prove a preliminary result first. Let A “> HA be an H-coalge-
bra. Choose u: HA > Hx A with

cau =id
and consider the corresponding Hs-coalgebra ua: A > Hx A. For every col-

oring f: A >k we have the unique homomorphisms f#: A > C(k) and
fﬁ: A >=Cx(k), and they are related by

r# =¢fE.

In fact, this follows from the universal property of 7, since the right-hand side
fulfils

wErE) =it =f

and is a homomorphism of H-coalgebras: using Remark 3.3 we see that the
diagram

80 Jiri Adamek

Fja
A > Cx(k) = C(k)
\ Hzfg \
HsA >H202(k) (3.3) Tk
€A Hxé
\ \ \
HA Ht > HxC(k) e HC(k)

commutes.

(2) Sufficiency: suppose that for every tree ¢’ with ¢ = [t'] the above condition
holds. Let A be an H-coalgebra satisfying every X s; (i € I). If A does not satisfy
X ¢, we derive a contradiction as follows. Let

t = f#(a) for some f: A >k anda€ A

The tree t' = fg(a) fulfils t = [t'], since f# = éfg, therefore there exists r C ¢/
with s; = [r] for some j € I. Since A as a Y-coalgebra does not satisfy K¢/,
it follows from Theorem 2.13 that it does not satisfy X r. Thus, there exists a
coloring g and a state b € A with gg(b) = r. Then g% (b) = égg(b) =[r]l=s;,a
contradiction.

(3) Necessity. Suppose {Xs;;i € I} = K t. For every tree ¢’ with ¢ = [¢'] form
the Hs-coalgebra

A=Ay

of Lemma 2.12. The corresponding H-coalgebra

A “>=HsA ““>HA

fulfils f# = ¢ f}# for every coloring f: A > k. In fact, this follows easily
from the universal property of vx: by Remark 3.3 € fg is a homomorphism of

H-algebras with f = j - éfg. Since A does not satisfy X', see Lemma 2.12,
we conclude that the H-coalgebra A does not satisfy X ¢. Therefore, there exists
j el and acoloring g: A >k with

g7 (a) = s; for some a € A.
The tree r = gg(a) tulfils s; = [r], and by Lemma 2.12 we have r C t. O

3.6 Remark. We do not know how to formulate a corollary analogous to 2.15
here: the trouble is that in Theorem 3.5 different representatives t’ can lead to
different choices of j € I.

A Logic of Coequations 81

4 Arbitrary Set Functors

4.1 Cofree-Coalgebra Chain. For an arbitrary endofunctor H of Set we cannot
work with C'(k) because cofree coalgebras need not exist. Instead, we work with
a transfinite chain W(k): Ord®® > Set “approximating” C(k), dual to the
free-algebra chain introduced in [1]. It is the essentially unique chain such that
for its objects W, (p an ordinal) and connecting morphisms wye: W, > W,
(p > q) the following transfinite induction holds:

Wy =1,
Wps1 = HW, xk and wpt1,g41 = Hwp g X idg;

and for every limit ordinal ¢
W, = liin W, with the limit cone wg,: Wy =W, (p < q).
p<q

We call W (k) the cofree-coalgebra chain of H. Given a collection ¢, € W, (p €
Ord) of elements, we call it compatible if w,q(t,) = t4 for all ordinals p > gq.

4.2 Notation. Given a coalgebra HA “> A and a coloring f: A > k define
the cone (f7)pcora of the chain W (k) (“approximating” the homomorphism f#)
to be the unique cone ff: A >W,, p € Ord, for which

flo=HfFa f): A =W,xk (forall p € Ord).

A

f
e HA i

\
HWp - outl HWP < k outr ~k

4.3 Definition. A generalized coequation in k colors is an expression Xt
where

t= with t; € W;

(ti)ieom
is a compatible collection of elements of the cofree-coalgbra chain.

A coalgebra A is said to satisfy the generalized coequation Xt if for every
coloring f: A >k and every state a the compatible collections fi#(a) 8 non-
equal to t. That is: for every state a there exists p € Ord with ff(a) #tp.

4.4 Theorem (see [3]). For every endofunctor H of Set a collection of coalge-
bras can be presented by generalized coequations iff it is a covariety.

4.5 Example. Let us consider the power-set functor &2. Its coalgebras are graphs.
We have a compatible collection ¢t with ¢,,.1 = (0 (€ 2W),,) for all ordinals p. The

82 Jiri Adamek

generalized coequation X ¢ describes all graphs without leaves. Another compat-
ible collection is s with s,41 = W), for all p. Here, obviously, every graph A
satisfies X's: the cardinalities of W), strictly grow with growing p, thus, there

exists p with card W), > card A. It follows that fjil(a) # spt1 for all a € A.

4.6 Remark. We follow [1] and assume that we work in ZFC (Zermelo-Fraenkel
set theory with Axiom of Choice); we denote by Class the category of classes
and functions. We proved in [1] that

(i) every endofunctor H of Set has an extension H: Class > Class unique
up to natural isomorphism,

and
(ii) every endofunctor of Class has cofree coalgebras.

Thus, given a set functor H and a (small) set k of colors we have the cofree

coalgebra C'(k) of H in Class. The universal coloring vx: C(k) >k yields a
1

cone

#
gp = (*yk)p :C(k) =W, (p € Ord)
of the cofree-coalgebra chain W (k) of H.

4.7 Example. Let X be a large signature, i.e., a class X = (X),)nccara of oper-
ation symbols each having a prescribed arity n, which is a small cardinal. We
obtain the polynomial endofunctor Hs X =[], .5, X™ of Class. For every small
cardinal k the cofree coalgebra C's (k) is, precisely as in Example 2.4, the coalge-
bra of all k-colored X-trees. Observe that each such tree is an object within Set.
But the collection Cx (k) of all of them is a proper class.

4.8 Observation. For every endofunctor H of Set the functor Hisa quotient of
a polynomial functor, ¢: Hy > H. A cofree H-coalgebra C(k) is a quotient
of the X-tree coalgebra Cx (k) modulo ker ¢ for € defined in Remark 3.3.

In fact, define X by X, = H(n) for all small cardinals n, then the Yoneda
Lemma yields a natural transformation ¢: Hy ~ H with surjective compo-
nents. And then apply Remark 3.3.

4.9 Notation. Given a presentation ¢: Hy > H as above, for every k-colored
Y-tree s € Cx(k) we denote by [s] € W (k) the compatible collection whose p-th

component is the image of s under Cx (k) <> C(k) " Wy(k), see 4.6:

[s], = gp(£(s)) (p € Ord)

4.10 Theorem. A generalized coequation Xt is a logical consequence of gener-
alized coequations Rs; (i € I) iff for every X-tree t' with t = [t'] there exists a
Y-tree r Tt with s; = [r] for some j € I.

! Card and Ord denote the classes of all small cardinals and small ordinals, respec-
tively.

A Logic of Coequations 83

The proof of this theorem is completely analogous to that of Theorem 3.5
except that we do not claim that ¢ has the form [t'] for some Y-tree t'. However,
if ¢ does not have that form, then X ¢ is trivial, i.e., satisfied by every coalgebra
— and there is nothing to prove then. In fact, whenever Xt is not trivial, we
choose a coalgebra A and a coloring f: A >k with f#(a) = t for some a € A.
Then arguing as in 3.5 we get f# = é-fﬁ: A > C(k) in Class. Moreover,
ff = gp'f* (easy induction on p) which implies that

tp = gp~f#(a) = [t'] (p € Ord)

for the X-tree t' = fg (a). Consequently, t = [t].

5 How Colorful Are Covarieties?

Throughout this section H denotes a k-accessible endofunctor of Set. All exam-
ples of covarieties above used one or two colors for the coequational presentation.
However, there are simple covarieties requiring infinitely many colors:

5.1 Example. A finitary covariety which does not fulfil any coequation X ¢ such
that ¢ lies in C'(n) for n finite. We consider again the functor HQ = Q x Q + 1
from 2.1. A state ¢ in a coalgebra is called I-based provided that the repeated
input 1 leads from ¢ (= ¢p) to non-deadlock states ¢1, g2, g3, . . ., but the input 0
leads from any g to a deadlock g for Kk =0,1,2,.... Let &/ be the covariety of
all coalgebras in which for every 1-based state ¢ there exist k # ¢ with g = qu.
It is easy to see that 7 is presented by the single coequation

(In fact, if A satisfies the above coequation Ks and ¢ is a 1-based state in A,
then the deadlock states gi are not pairwise distinct — otherwise by coloring g
with &+ 1 and all other states by 0 we obtain f: A > w with f#(q) = s, a
contradiction. Thus, A € &/. The converse is obvious.)

In this covariety o/ for every finite-colored tree t there exists a coalgebra
By € & not satisfying X ¢. In fact, suppose first that ¢ has a 1-based node, qo.
Since t is finitely colored, some of the colors ¢ has the property that infinitely
many of the deadlock states g have color 7; let ~ be the equivalence on the
nodes of ¢t whose one class is formed by all the i-colored leaves of ¢, and all other
classes are singleton sets. Then we obtain a coalgebra B; whose states are the
equivalence classes of ~ with the obvious coalgebra structure and an obvious

84 Jiri Adamek

coloring f: By > w obtained from the coloring of . It is easy to see that
f#(qo) =t and B; € o7 every 1-based state of B; has the form ¢, and we have
two different deadlock states of ¢ of depth bigger than k. Conversely, if no node
of t is 1-based, then the coalgebra B; obtained from the nodes of ¢ (ignoring the
coloring) lies in .7, and the coloring of t yields f: By >w with f#(¢) =t.

Consequently, the covariety ./ cannot be presented by finite-colored coequa-
tions.

5.2 Remark. One-colored covarieties have a beautiful characterization: they are
precisely the covarieties closed under bisimilarity, as proved by Peter Gumm
and Tobias Schroder in [12]. Recall that two coalgebras A and A’ are called
bisimilar if there exists a bisimulation between them such that every state of A
is bisimilar to a state of A’, and vice versa. In particular, given an epimorphic
homomorphism e: A > A’, then A and A’ are bisimilar.

For n-colored covarieties, where n < k is any cardinal, the appropriate con-
cept is the following:

5.3 Definition. (1) An H-coalgebra A “ > HA equipped with a coloring f: A

> n is considered as a coalgebra of H(—) x n via (o, fY: A > HA X n.
Given another H-coalgebra A’ with a coloring in n, we call A and A’ n-color
bisimilar provided that they are bisimilar as H(—) X n-coalgebras.

(2) A covariety of is said to be closed under n-color bisimilarity provided that
it contains every H-coalgebra A with the following property: for every coloring
f+ A >n there exists a coalgebra A’ € o/ and a coloring g: A’ >n such
that A and A’ are n-color bisimilar.

5.4 Proposition. A covariety can be presented by n-color coequations, i. e., by
Xt fort € C(n), iff it is closed under n-color bisimilarity.

Proof. Without loss of generality we can assume that H preserves monomor-
phisms: if we change the value of H at @) to be @), the new functor preserves
monomorphisms and has the category of coalgebras isomorphic to Coalg H.

(1) Let o be a covariety closed under n-color bisimilarity. Denote by M C
C(n) the union of all images of homomorphisms f#: A > C(n), where A is
a coalgebra in 7 and f is a coloring of A. We prove that <7 is presented by the
subobject m: M > C(n). Since every coalgebra in o clearly satisfies M, we
only have to verify the converse. We first observe that M is a coalgebra in <.
More precisely, let us choose, for every element z of M, a homomorphism f#: A,

> C(n) with A, € o and z lying in f#[A,], then the induced homomorphism
h: e Ae > C(n) has image M, i.e., h = m-k for some epimorphism k.
Here B =[] A, carries the coalgebra structure 5: B > H B of a coproduct of
coalgebras. Since H preserves monomorphisms, the image of a homomorphism
is a subcoalgebra of the codomain: there is a unique u: M > HM making
k and m coalgebra homomorphisms. And M € & because it is a quotient of
ex Ar € .

Let A be a coalgebra satisfying M, then for every coloring f: A > n we
are to find a coalgebra A’ € o/ and a coloring g: A’ > n such that A and A’

A Logic of Coequations 85

are n-color bisimilar (thus proving that A lies in o). We factorize the homomor-
phism f# into an epimorphism e: A > A’ followed by a monomorphism i: A’

> (C(n), then A’ carries the unique structure o/: A’ > HA of a coalgebra
such that e and 7 are homomorphisms:

A « ~HA
e He
\ . v
A o .HgA
V\ VV
i M “sHM Hi
v % HA\ v
C(n) > HC(n)

Tn

Since A satisfies M, the subobject i is contained in m, say, i = m-j, and j is a
homomorphism because ¢ is one and Hm is a monomorphism. Therefore A’ is
a subcoalgebra of M, which proves A’ € &/. The coloring g = v, -i: A’ >n
defines an n-color coalgebra which is n-color bisimilar to (A4, f). In fact, the
epimorphic homomorphism e: A > A’ fulfils f = g-e, since i-e = f#. There-
fore, e is a homomorphism of the corresponding H(—) x n-coalgebras. Being
epimorphic, it defines the the required bisimulation. This proves A € o7

(2) Let & be a covariety presented by n-color coequations X¢;, i € I. Given a
coalgebra A with the property of the above definition, we prove A € &7. In fact,
given a coloring f: A >n, there is A’ € & and a coloring g: A’ >n such
that (4, f) and (A’, g) are bisimilar H(—) x n-coalgebras. Let R C A x A’ be a
bisimulation such that every a € A is related to some a’ € A’. The corresponding
homomorphism h: R~ > C(n) has the property that f# = h-r and g% = h-n’
for the projections 7, 7’. Therefore, given a € A, we have f#(a) = g% (a’). And
g7 (a) # t;, since A’ satisfies Xt,. This proves that A satisfies X ¢;. Consequently,
Ae d. O

Acknowledgement

The author wishes to express his gratitude to the referees: their comments im-
proved the presentation of the paper considerably.

References

1. Adémek, J.: Free algebras and automata realizations in the language of categories.
Commentationes Mathematicae Universitatis Carolinae 15 (1974) 589-602

86

10.
11.

12.

13.

14.

15.

Jiri Adamek

. Addmek, J.: On a description of terminal coalgebras and iterative theories. Elec-

tronic Notes in Theoretical Computer Science 82.1 (2003), full version in Informa-
tion and Computation (to appear)

Adéamek, J.: Birkhoff’s covariety theorem without limitation. Commentationes
Mathematicae Universitatis Carolinae 46 (2005) 197-215

Adédmek, J., Milius, S., Velebil, J.: On coalgebra based on classes. Theoretical
Computer Science 316 (2004) 3-23

Adamek, J., Porst, H.-E.: On tree coalgebras and coalgebra presentations. Theo-
retical Computer Science 311 (2004) 257-283

Arbib, M. A., Manes, E. G.: Parametrized data types do not need highly con-
strained parameters. Information and Control 52 (1982) 130-158

Awodey, S., Hughes, J.: Modal operators and the formal dual of Birkoff’s complete-
ness theorem. Mathematical Structures in Computer Science 13 (2003) 233-258

. Barr, M.: Terminal coalgebras in well-founded set theory. Theoretical Computer

Science 124 (1984) 182-192

Birkhoff, G.: On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society 31 (1935) 433-454

Gumm, H. P.: Elements of the general theory of coalgebras, preprint 1999
Gumm, H. P.: Birkoft’s variety theorem for coalgebras. Contributions to General
Algebra 13 (2000) 159-173

Gumm, H. P., Schréder, T.: Covarieties and complete covarieties. Electronic Notes
in Theoretical Computer Science 11 (1998)

Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Mathematical
Structures in Computer Science 12 (2002) 875-903

Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249 (2000) 3-80

Worrell J.: On the final sequence of a finitary set functor, Theoretical Computer
Science 338 (2005) 184-199

A Semantic Formulation of T T -Lifting
and Logical Predicates for Computational Metalanguage

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University
sinya@kurims.kyoto-u.ac.jp

Abstract. A semantic formulation of Lindley and Stark’s T T-lifting is given.
We first illustrate our semantic formulation of the T T-lifting in Set with sev-
eral examples, and apply it to the logical predicates for Moggi’s computational
metalanguage. We then abstract the semantic T T-lifting as the lifting of strong
monads across bifibrations with lifted symmetric monoidal closed structures.

1 Introduction

Logical predicates are a method for extracting submodels of the pure simply typed
lambda calculus (A= for short) by induction on type. Logical predicates are widely
applied to the reasoning of the properties of A= [9, 16, 23, 24].

We are interested in extending logical predicates to Moggi’s computational meta-
language (A, for short) [18], which has additional types T'7 called monadic type. To
do so, we need to consider a scheme to calculate a predicate at type 77 from a predicate
at type 7. Recently, Lindley and Stark develop the leapfrog method and show the strong
normalisation of \,,; in the style of Tait-Girard reducibility [! |, 12]. The novelty of
the leapfrog method is the operation called T T-/ifting, which calculates a reducibility
predicate at type 1'7 from a reducibility predicate at type .

However, Lindley and Stark’s T T-lifting is defined with respect to the syntactic
structure of \,,;, and is designed for the proof of the strong normalisation. This paper
attempts to provide a semantic aspect of their T T -lifting. The main contribution of this
paper is twofolds:

1. We provide a semantic formulation of Lindley and Stark’s T T-lifting in set theory
(section 3). This formulation is carried out by finding a semantic counterpart for
each of the building block in T T-lifting. We instanciate T T-liftings with well-
known strong monads over Set, and show that the logical predicates using the
semantic T T-lifting implies the basic lemma of logical predicates.

2. We re-formulate the above semantic T T-lifting as a construction of liftings of
strong monads, and give a categorical account of this construction within the frame-
work of fibred category theory (section 4). We then show that the above semantic
T T-lifting and Abadi’s T T-closure operation are instances of T T-lifting.

2 Preliminaries

Moggi’s Computational Metalanguage
We begin with the syntax of A,,,;. We define the set of types Typ,,; by the following
BNF (we consider a single base type b for simplicity):

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 87-102, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

88 Shin-ya Katsumata

Typ,; d7u=blT=71]|TT.

Monadic types T't are for the programs yielding values of type 7 with some com-
putational effect. A fyping context (ranged over by I") is simply a finite sequence of
variable-type pairs without any duplication of variables.

The calculus A,,; has two new term constructions related to monadic types: [—] and
“let ™ be M in N”. Their typing rules are the following:

I'EM:r r-M:Tr Ixz:7EN:T7
I'-[M]:Tr I'tletz™"be Min N :T7

The term [M] expresses the value of M involving the trivial computational effect. The

term “let ™ be M in N” expresses a sequential computation of M and N; the term M

is first computed, its value is then bound to 27 and next the term /N is computed.
Equational theory of \,,; extends 87 axioms of A~ with the following axioms:

let 27 be [M]in N = N[M/z] (T.5)
letz” be Min[z"] =M (T.n)
let 2™ be (lety™ be Lin M)in N =lety” be Linletz” be M in N (T.assoc)

Categorical Semantics of \,,,;

A categorical semantics of \,,,; is given in a Cartesian closed category C equipped with
a strong monad 7 = (T,n, i, 6). We omit the formal definition of strong monads;
see e.g. [18]. For a morphism f : A — TB in C, we write f# for the morphism
upoTf:TA—TB.

Let B be an object in C. We first assign to each type 7 an object [7] in C by
induction on type:

[bl=B, [r=7]=I[7]=1["1, I[T7]=T]["].
We extend this assignment to typing contexts by
[x1 7,z s] = [m] X -+ x [1]-

The semantics of \,,,; in C is an extension of the standard categorical semantics of A=
with the following rules:

- For a well-formed term I" - [M] : T'r, we define
[[M]] = nrp o [M].
— For a well-formed term I" - let 27 be M in N : T't', we define

[let 2™ be M in N] = [N]# o 0y 11 © (idgry, [M])

A Semantic Formulation of T T-Lifting and Logical Predicates 89

3 A Semantic Formulation of T T -Lifting

In [12], Lindley and Stark prove the strong normalisation of \,,; by extending the
reducibility predicate technique. The novelty of their method is the operation called
T T-lifting, which calculates a reducibility predicate at a monadic type from that at an
ordinary type.

Definition 3.1 ([12], section 3.1).

1. We define the set of raw continuations by the following BNF':
K:=Id| Ko (z".N)

where the notation (z™.N) indicates that N is a term with a distinguished free
variable x".

A judgement for a raw continuation is a triple Tt ¢ K : T7'. Raw continuations
are typed by the following rules:

z:7TEN:TT T7'bFe K:TT"
Trreld:TT Trte Ko (x™.N): T7"

We write TT ¢ K to mean that there exists a (unique) type T'T' such that Tt ¢
K : T'7' is derived from the above rules.
2. We define an application KQM of a term M to a continuation K by

IdQM = M, (Ko (z".N))@M = K@Q(letz" be M in N).

3. Given a set P of terms of type T, we define a set PT T of terms of type T by

P' ={Tr+c K|YM € P. KQ[M] € SN}
P'T={M:Tr|VYK e P".KQM € SN}

where SN is the set of strongly normalising terms.

From this point, we let 7 = (T, n, i1, 0) be a strong monad over Set, and fix a
categorical semantics of \,,; with respect to the strong monad 7 and the evident CCC
structure in Set. We give a semantic formulation of the syntactic T T-lifting by finding
semantic counterparts of continuations, applications and the set SN. This formulation
is carried out with respect to the strong monad 7. We introduce the following notation:
forsubsets X C TandY C J,by X = Y wemeanthe subset {f |Vz € X . f(z) € Y}
of I = J.

To simplify the situation, we assume that all continuations in definition 3.1 have the
same type T'p (this restriction will be relaxed in section 5). We let R = [p].

Continuation We formulate a continuation as a function

felr]=TR.

90 Shin-ya Katsumata

We explain the idea of this formulation below. We notice that a continuation 7'7 ¢
Id o (z7.M) : Tpis equivalent to a context let ™ be — in M, and an application
of a term to the continuation is equivalent to plugging the term in the hole of the
context. The essential information of the context is the body M, and it has the
following typing:
z:T7hHM:Tp.
Our formulation represents this information as a function f € [r] = T'R.
Application We define an application of an element = € [T'7] to a continuation f €
[r] = TRtobe f#ux.
The Set SN The set SN is hard-coded in the definition of PT and P T since the
syntactic T T-lifting is designed for the proof of the strong normalisation of \,;.
We replace SN with some subset S C T'R, and call S a result predicate.
We also relax the condition that the set R is given by [p] with some type p; we
simply allow R to be any set and call R a result type.

Once continuations, applications and the set SN are semantically formulated, it is
straightforward to define P and P " . We summarise the above discussion as follows:

Definition 3.2. Let R be a set (called result type) and S C TR be a subset (called
result predicate).

1. A continuation is a function f € [7] = TR.
2. We define an application of x € [T'7] to a continuation f € [7] = TR to be f#u.
3. Let P C [7] be a subset. We define a subset PTT C [T7] by

P ={fe[r]=TR|Vz€P.f(x)eS}=P=>S
Pl ={ze[T7]|VfeP". f#(x)es},
which is equivalent to
P'T ={zxe[T7]|VfeP=S.f*()eS}
We call the operation (—)" " the T T-lifting of T with R and S C TR.

We can also consider the semantic T T-lifting for binary relations (binary T T-lifting
for short) over the semantics of \,,;. Let R be a set and S C (TR)2 be a subset. A
continuation is a pair (f, g) of functions from [7] to T R. An application of (z,y) €
[T7]? to a continuation (f, g) is defined to be (f#x, g% 7). For a binary relation P C
[7]2, we define PT T as follows:

PT ={(f,9) € (Ir] = TR)* | V(z,y) € P. (fz,gy) € S}
PTT ={(z,y) € [T7]* |Y(f.9) € PT . (f*z,9%y) € S}.

Examples of Semantic T T -Liftings

An interesting point is that we can obtain T T-liftings for various strong monads and
result type/predicate pairs. We see some concrete examples of the semantic T T-lifting
below.

A Semantic Formulation of T T-Lifting and Logical Predicates 91

Example 3.3. We consider the /ifting monad T, , which simply adjoins an extra element
1 to a given set. We calculate a T T-lifting of 7, with the following data:

— The result type R is {*} (thus T, R = {x, 1 }).
— The result predicate S is {x*}.

For a subset P C [7], we have PT T = P.

Example 3.4. We consider the state monad T, whose functor part is given by 751 =
M =T x M for some set M. We let My C M be a subset and calculate a T T-lifting
of 7 with the following data:

— The result type R is some set.
— The result predicate S' is My = R x My, the set of functions f € TR such that
V$EMQ.f($)€MQXR.

For a subset P C [7], we expand the definition of P " and obtain
Pl ={feT.r]|VgePxMy=>RxMy.gofe My=Rx My}
In fact, PT T can be characterised as follows:

PTT_ MQ?PXMQ(@QRXM();RXM)
T[T (otherwise)

Below we prove the first case of this characterisation; the second case is trivial. We first
prove

PxMy={ic[r] x M|Vge€ P xMy=>Rx M,.g(i) € Rx My}

(©) Easy. (2) Let & € P x Mj. From the assumption on R x M, we can take two
elements s € R x My and s’ € (R x M)\(R x M;). We then define the following
functiong € [7] x M = R x M:

_ [s (xePx M)
g(x)_{s’(ngng)

which is clearly included in P x My = R x My. However g(x) ¢ R x My, so we
conclude that ¢ (r.h.s.). Therefore

feMOZ}PXMO
e Vo e My.VgePxMy=>Rx M,.g(f(z)) € Rx M

— feP'T.

Example 3.5. We calculate a binary T T-lifting of the lifting monad 7", with the fol-
lowing data:

— The result type R is a one-point set {*}. We have T, R = { L, }.
— The result predicate S C (7| R)?is {(z,y) € (TLR)? | (x =% = y=x)}.

92 Shin-ya Katsumata

For a subset P C [7], we obtain PTT = P U {(L, 1)}.

Example 3.6. We consider the finite powerset monad T,,, whose functor part is given
by T,(X) = {z € X | xis a finite set}. We calculate a binary T T-lifting wf 7,, with
the following data:

— The result type R is a one-point set {}. We have T, R = {0, R}.
— The result predicate S C (T,R)?is {(z,y) € (T,R)* | = R = y = R}.

We identify a function f € [7] = T,R and a subset (written with the capital letter of
the function) F' = {x € [7] | f(z) = R} C [r]. Under this identification, for each
x € Tp[7], we have

ffr =R «<— Ufe:R < decx.ecF.

ecx
For a subset P C [7], we expand the definition of P " and obtain

P'T ={(p,q) € (Tp[7])? |VF,G C[r] . ¥(z,y) EP.2 € F = ycG) =
Veep.ee F = e’ €q.¢ € G}

This is not intuitive, but interestingly we have the following characterisation of P T
PTT={(p,q)|Yaep.3beq.(a,b) € P} (1)

This appears in the pattern of defining pre-bisimulation relation in concurrency.

The rest of this example is the proof of equation 1. (C) Let (p,¢) € PT " and a € p.
We show 3b € ¢ . (a,b) € P. We supply {a} and {b| (a,b) € P} to F and G in the
definition of (p,q) € PT . We obtain

V(z,y) € P.x =a = (a,y) € P})
= (Ve€p.e=a = 3’ €q.(a,¢)eP})

whose premise part is trivially true. By letting e be a in the conclusion part of the
above formula, we obtain 3¢’ € ¢ . (a,¢e’) € P. (D) We take p,q € T,[r] such that
Vaep.3Ieq. (a,b) € P.Let F,G C [7], e € p and assume V(z,y) € P .z €
F = y € G (we call this assumption (*)) and e € . We show 3¢’ € ¢ . ¢/ € G.
Since e € p, there exists €/ € ¢ such that (e, e’) € P. From (*), we havee € I —
e’ € G.Thus ¢’ gives a witness of Je’ € ¢ . ¢’ € G.

Logical Predicates for \,,,; Using T T -Lifting

The semantic T T-lifting constructs a subset of [7'7] from a subset of [7]. This con-
struction is suitable for extending the concept of logical predicates to \,,,;. We show that
a logical predicate using the semantic T T-lifting extract a submodel of \,,;. We fix a
result type R and a result predicate S C T'R, and consider the T T-lifting determined
by Rand S.

A Semantic Formulation of T T-Lifting and Logical Predicates 93

Definition 3.7. A T T-logical predicate is a type-indexed family { P C [7]}reTyp, ,
of subsets satisfying

PTT — (PT)TT, PT:>T, — PT :> PTI.
For a typing context I' = x1 : 71, -+ , Ty : Ty, DY P we mean the product P x - -+ X
P7, which is a subset of [I].

Theorem 3.8 (Basic Lemma). Let P be a T T-logical predicate. For any well-formed
term I' = M : 7, we have [M] € Pr = pr.

Proof. We show the following properties on the T T-lifting. Let X C I and Y C J be
subsets.

l.n; € X = X"".Letz € X. Thenforany f € X = S, we have f7(n;(z)) =
f(z) € S. Therefore n;(x) € X T 7.

2.pur € (XTHTT = XTT Letex € (XTT)TT and f € X = S. We show
f#(ur(x)) € S.Itis easy to show that f € X = S implies f#* € X'T = S,
hence (f#)# € (XTT)TT = S. Notice that f# (ju;(z)) = (f#)# (). Therefore
1#(ur(x)) € 5.

3.0, € X xYTT 2 (X xY) T Letae X,beY Tand f € X x Y = 5. We
show f# o 6; ;j(a,b) € S. We note that the strength 6; ; is given by 67 ;(a,b) =
T(\b € B . (a,b))(b) as Set is a well-pointed category (see e.g. [15]). Thus f# o
0r.7(a,b) = (\b € B . f(a,b))#(b). Since \b € B . f(a,b) € Y = S, for each
beYTT wehave (A\b € B . f(a,b))*#(b) € S. Therefore f# o 0; j(a,b) € S

4. fe X=>YimpliesTfe X'T =Y T Lletzec X"Tandg € Y = 5. We
show g7 (T'f(z)) = (g o f)#(x) € S. This holds from go f € X = S and the
definitionof z € X T 7.

5. From2and4, f € X =Y T implies f# ¢ X' T =Y T,

We prove the theorem by induction on derivation of a well-formed term I" = M : .
We omit the cases for the syntax constructions inherited from A\~; see e.g. [2]. The
cases new to \,,; is the following.

- Case I' & [M] : Tt. From IH, we have [M] : P! = P7. From 1, we have
[[M]] = ngrpo [M] : P = PT.

— Case '+ let 2™ be M in N : T't" with well-formed terms I' = M : Tt and I, x :
7+ N :T7 . FromIH, [M] : PT = P77 and [N] : P xP7 = PT™'. From 3 and
5, we have [N]# o0y [, : PT x PT™ = P77 Therefore [let 2™ be M in N] =
[NT# o 0pry 1y © (idry, [M]) : PF = P77

O

4 A Categorical Generalisation of T T -Lifting

In the proof of theorem 3.8, we notice that the operation (—) " T resembles an endofunc-
tor (claim 4) equipped with morphisms constituting a strong monad (claim 1,2,3). It is

94 Shin-ya Katsumata

indeed a strong monad over the category Sub(Set) of subsets and functions respect-
ing subsets (example 4.3). Furthermore, the strong monad (—) " T makes the following
diagram commute:

(7)TT

Sub(Set) > Sub(Set)

s v
\% \%
Set > Set

T
where 7 : Sub(Set) — Set is the evident forgetful functor. This suggests that we can
understand the semantic T T-lifting as a construction of such a strong monad from 7.

We give a categorical generalisation of this construction using fibrations and sym-
metric monoidal closed structures. We replace 7 with a bifibration p : E — B equipped
with a lifted symmetric monoidal closed structure (definition 4.2). We then capture the
semantic T T-lifting as a construction of a strong monad over E from that over B.

We borrow some notations from 2-category theory. We use e and * for the vertical
and horizontal compositions of natural transformations, respectively. We overload o
with the notation for the composition of functors, as well as for the composition of a
functor and a natural transformation.

4.1 Preliminaries

Symmetric Monoidal Close Category. We assume that the reader is familiar with
symmetric monoidal closed categories. We reserve symbols I, ®, —o for unit objects,
tensor products and exponentials. A symmetric monoidal functor is a functor F' : C —
D between symmetric monoidal categories C, D together with morphisms my : Ip —
FIcand mxy : FX @p FY — F(X ®c Y) satisfying certain coherence laws (see
e.g. [14]).

Example 4.1. 1. The category Set has a symmetric monoidal closed structure given
by a chosen CCC structure.

2. The category wCPPO of pointed w-CPOs and strict w-continuous functions has
a symmetric monoidal closed structure given by Sierpinski space O = {L C T},
smash products and strict w-continuous function spaces.

3. The functor x : (WCPPO)? — Set sending a pair (X,Y) of pointed w-CPOs to
the binary product X x Y of carrier sets is a symmetric monoidal functor.

Strong Monad. A strong monad T over a symmetric monoidal category B is a tuple
(T, n, p, @) such that (T, n,) is an ordinary monad over B and fxy : X @ TY —
T(X ®Y) is a natural transformation called tensorial strength satisfying certain co-
herence laws (see e.g. [10]). A strong monad morphism from 7 = (T,n,u,0) to
T'=(T',n, i, 0") is a natural transformation o : T'— T" satisfying

poe(oxo)=cepn n=cen Oyyo(X®@oy)=oxgyolxy.

A Semantic Formulation of T T-Lifting and Logical Predicates 95

Fibration. We assume that the reader is familiar with preliminaries on fibration. A
good reference is [7].

Definition 4.2. A functor p : E — B is a bifibration with a lifted symmetric monoidal
closed structure if p is a preordered bifibration, E and B are symmetric monoidal closed
categories and p strictly preserves the symmetric monoidal closed structure in E. We
use dot notation i, ® , —o to denote the symmetric monoidal closed structure in
which are sent to the symmetric monoidal closed structure I, ®, —o in B by p.

Example 4.3. We define a category Sub(Set) by the following data: an object is a pair
(X, I) where X is a subset of I, and a morphisms from (X, I) to (Y, J) is a function
in X = Y. The category Sub(Set) has the following CCC structure:

1= ({+},{+})
(X, 1) x (Y, J) = ({(i,j) |ie XAjeY},Ix.J)
(X,)= (Y,))=(X=>Y,1=J).

(here the reader should not worry about the confusion caused by a clash of the no-
tation =). This structure is strictly preserved by the evident forgetful functor 7 :
Sub(Set) — Set, which is actually a partial-order bifibration. Therefore 7 is a bifi-
bration with a lifted symmetric monoidal closed structure.

One good property of the class of bifibrations with lifted symmetric monoidal closed
structures is the closure under change-of-base along symmetric monoidal functors.

Proposition 4.4 (e.g. [5]). Let p : E — B be a bifibration with a lifted symmetric
monoidal closed structure and F : C — B be a symmetric monoidal functor. Then the
change-of-base of p along I’ is again a bifibration with a lifted symmetric monoidal
closed structure.

Example 4.5. We consider the following change-of-base of 7 along x:
Rel(wCPPO) > Sub(Set)
_

T2 T
v v
(wCPPO)? > Set

From proposition 4.4, 79 is again a bifibration with a lifted symmetric monoidal closed
structure. An object in Rel(wCPPO) is a triple (X, I, J) where I, J are pointed w-
CPOs and X is an arbitrary subset of I x .J, that is, a binary relation between I and .J.
A morphism in Rel(wCPPO) from (X, I, J)to (X', I',J')isapair (f: I —I',g:
J — J') of strict w-continuous functions such that f x g € X = X’. We can similarly
derive the category of n-ary relations between w-CPOs by change-of-base.

4.2 T T-Lifting as a Construction of Liftings of Strong Monads

We fix a bifibration p : E — B with a lifted symmetric monoidal closed structure.
We define a fibration of lifted strong monads which is suitable for characterising the
T T-lifting.

96 Shin-ya Katsumata

Definition 4.6. 1. We say that a strong monad T = (T,), j1,0) over E is a lifting of
a strong monad T = (T, n, u, 0) over B if the following holds:

poT =Top, pon=mnop, pop=pop, plxy)="0xpy.

2. We write Mon(B) for the category of strong monads over B and strong monad
morphisms between them.
3. We define a category Mon, (EE) using the following data:
— An object in Mony(E) is a pair of a strong monad T over E and a strong
monad T over B such that T is a lifting of T. We sometimes represent an ob-
Jject in Mon,(E) simply by a strong monad over E when its underlying strong
monad over B is clear from the context.
— A morphism in Mo, (E) is a pair of strong monad morphisms & : T -1
and o : T — T’ suchthatpo & = a o p.
4. We write Mon(p) : Mon;(E) — Mon(B) for the following forgetful functor:

Mon(p)(7,7) =7, Mon(p)(d,a)=a.
Theorem 4.7. Mon(p) is a fibration.
Proof. See appendix A.1 a

We are ready to give a categorical account of the semantic T T-lifting. We capture
the T T-lifting as a construction of a lifting of a strong monad over E from that over B.
For this construction, continuation monads play a crucial role. We observe the following
facts.

— For each object I in B, an endofunctor (— — I) —o I over B is a strong monad
(called continuation monad). Particularly, for a strong monad 7 over B and an
object R in B, we have a continuation monad (— — T'R) — T'R and a strong
monad morphism

o: T >(——oTR)—TR
whose component at an object in B is given by the following transposition (object
annotations are omitted):

Q#

‘>T(I—-TR)®I) “ >=TR

E]

or=XQ@%o0fos): TI >(I - TR) - TR

where s and @ are a symmetry and an evaluation morphisms in B, respectively.

— Let S be an object in E above T'R and consider a continuation monad (— —o §)—oS
over E. It is a lifting of (— — T'R) —o T'R since p strictly preserves the symmetric
monoidal closed structure in E.

The following diagram summarises these facts in Mon(p):
(——8)—>S8 Mo, (E)

Mon(p)
\
T >(——oTR)—TR Mon(B)

g

A Semantic Formulation of T T-Lifting and Logical Predicates 97

We now consider a Cartesian lifting of o.

o (= 8) =8 7 =(—-%8) =S Mon, (E)
Mon(p)
\
T " >(——oTR)—-TR Mon(B)

We claim that the vertex o*((— —o S) —o S), which is by definition a lifting of 7,
gives the T T-lifting of 7. There are two sets of evidence supporting our claim.

— The set-theoretic T T-lifting in section 3 is an instance of this generalised T T-
lifting. We work in the fibration 7 : Sub(Set) — Set from example 4.3. Subse-
quently, for any strong monad 7 and subsets X C [and S C T'R, we have:

(X2 8)=>8) ={zeTl|o*(x) e (X=9)=9))
={zeTI|Vfe X=S.0%x)(f) €S}
={zeTI|VfeX=>S. ffaecS}
_xTT

— Let D, E be pointed w-CPOs and R be an arbitrary subset of D x E.In [1], Abadi
considered the following closure operation (—) " as a semantic abstraction of
Pitts’ syntactic T T-closure operation [21]:

RT
RTT

{(f,9) € [D -1 O] x [E—, O] |¥Y(z,y) € R. fr =gy}
{(z,y) e Dx E|¥(f.9) € R" . fz = gy}

where [— — —] denotes strict w-continuous function spaces.
The above closure operation is an instance of our semantic T T-lifting. We work
in the fibration 73 : Rel(wCPPO) — (wCPPO)? from example 4.5. The T T-
lifting of the identity monad over (WCPPQO)? with the following data coincides
with Abadi’s T T-closure operation.

e The result type R is (O, O).

e The result predicate S'is ({(L, L), (T, T)}, (0, 0)).

We write 7' T for o*((— o) 0 S).

5 Multiple Result Types

We relax the restriction we imposed on the result type in section 3. Letp : E — B be a
bifibration with a lifted symmetric monoidal closed structure and 7 be a strong monad
over B.

Theorem 5.1. If p has fibred (finite/small) products, then so does Mon(p).

Proof. See appendix A.2. a

98 Shin-ya Katsumata

Let {(Sk, Ri) }rex be a set of pairs of objects in E and B such that pSy, = T Ry, for all
k € K.Foreach k € K, the pair (Sy, R},) determines a T T-lifting 7 ' T#. They are all
liftings of 7, so we consider the following fibred product in Mon, (E)7:

/\ TTTk

keK
which is again a lifting of 7.

Example 5.2. We flip the relation S in example 3.6 and obtain the following T T-lifting:
P ={(p,q)|¥beq.3acp. (ab) € P}

The intersection

PTTAPTT ={(p,q)| (Vbeq.Ta€p.(a,b) € P)A(Va€p.Tb € q.(a,b) € P)}

coincides with the pattern of bisimulation.

6 Related Work

This work has been inspired by Lindley and Stark’s paper [|2] and Lindley’s thesis
[11]. Lindley and Stark introduce the syntactic T T-lifting for \,,,; and prove the strong
normalisation of \,,;. In the latter part of [12], they also discuss an extension of the
syntactic T T-lifting to other types such as sum types. However, this extension has not
been covered here.

Operations which are similar to Lindley and Stark’s T T-lifting have previously
appeared in several other studies. Some examples of these studies are: the reducibility
technique for linear logic by Girard [4], Parigot’s work on the second order classical
natural deduction [20], Pitts’ T T-closure operation [2 1] and Mellies and Vouillon’s
biorthogonality [15]. In addition, Abadi gives a semantic formulation of Pitts’ T T-
closure operation and discusses the relationship between T T-closed relations (those
which satisfy R = R) and admissibility [1]. The T T-closed relations are applied
to the verification of the correctness of program transformations [, 19], and to the
characterisation of the observational equivalence for a language with local states [22].

Categorical study of logical predicates established in [3, | 7] is generalised by Her-
mida using fibrational category theory [0]. The key observation of his generalisation is
that logical predicates with respect to a fibration p : E — B employ a CCC structure
in [E which is strictly preserved by p. This observation leads us to consider liftings of
strong monads and bifibrations with lifted symmetric monoidal closed structures.

In general, there are many liftings of a strong monad. In [3], Larrecq, Lasota and
Nowak propose a construction method of liftings of strong monads using factorisation
systems. Their method appears to be fundamentally different from our semantic T T-
lifting. However, some of their examples of liftings of strong monads over Set can also
be calculated with our method. It will be interesting to establish a formal relationship
between their lifting of strong monads and the semantic T T-lifting developed by us.

A Semantic Formulation of T T-Lifting and Logical Predicates 99
7 Conclusion

We semantically formulated Lindley and Stark’s T T-lifting and showed that it provides
a satisfactory construction method of logical predicates for \,,;. We also examined
several examples of the semantic T T-lifting of strong monads over Set.

We then categorically re-formulated the T T-lifting as a lifting of a monad along
a bifibration with a symmetric monoidal closed structure using continuation monads.
This generalisation subsumes the set-theoretic T T-lifting in section 3 and Abadi’s T T-
lifting.

Acknowledgement

I am grateful to Don Sannella, Samuel Lindley, Masahito Hasegawa, Miki Tanaka and
anonymous referees for their valuable advice. Most of this work was carried out in
Edinburgh university under an LFCS studentship.

References

s

. M. Abadi. T T-closed relations and admissibility. MSCS, 10(3):313-320, 2000.
. R. Amadio and P.-L. Curien. Domains and Lambda-Calculi, volume 46 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

3. J. G.-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. In Proc. CSL,
volume 2471 of LNCS, pages 553-568. Springer, 2002.

4. J.Y. Girard. Linear logic. Theor. Comp. Sci., 50:1-102, 1987.

5. M. Hasegawa. Categorical glueing and logical predicates for models of linear logic. Tech-
nical Report RIMS-1223, Research Institute for Mathematical Sciences, Kyoto University,
1999.

6. C. Hermida. Fibrations, Logical Predicates and Indeterminants. PhD thesis, University of
Edinburgh, 1993.

7. B.Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

P. Johann. Short cut fusion is correct. J. Funct. Program., 13(4):797-814, 2003.

9. A.Jung andJ. Tiuryn. A new characterization of lambda definability. In Proc. TLCA, volume
664 of LNCS, pages 245-257. Springer, 1993.
10. A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23:113-120, 1970.
11. S. Lindley. Normalisation by Evaluation in the Compilation of Typed Functional Program-
ming Languages. PhD thesis, University of Edinburgh, 2004.
12. S. Lindley and I. Stark. Reducibility and T T-lifting for computation types. In TLCA, pages
262-2717, 2005.

13. Q. Ma and J. Reynolds. Types, abstractions, and parametric polymorphism, part 2. In Proc.
MFPS 1991, volume 598 of LNCS, pages 1-40. Springer, 1992.

14. S.MacLane. Categories for the Working Mathematician (Second Edition), volume 5 of Grad-

uate Texts in Mathematics. Springer, 1998.

15. P.-A. Mellieés and J. Vouillon. Recursive polymorphic types and parametricity in an opera-

tional framework. In Proc. LICS 2005. To appear.

16. J. Mitchell. Representation independence and data abstraction. In Proc. POPL, pages 263—

276, 1986.

[\%}

o

100 Shin-ya Katsumata

17. J. Mitchell and A. Scedrov. Notes on sconing and relators. In Proc. CSL 1992, volume 702
of LNCS, pages 352-378. Springer, 1993.

18. E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92,
1991.

19. S. Nishimura. Correctness of a higher-order removal transformation through a relational rea-
soning. In APLAS, volume 2895 of LNCS, pages 358-375. Springer, 2003.

20. M. Parigot. Proofs of strong normalisation for second order classical natural deduction. Jour-
nal of Symbolic Logic, 62(4):1461-1479, 1997.

21. A. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures in
Computer Science, 10(3):321-359, 2000.

22. A. Pitts and I. Stark. Operational reasoning for functions with local state. In A. D. Gordon
and A. M. Pitts, editors, Higher Order Operational Techniques in Semantics, Publications of
the Newton Institute, pages 227-273. Cambridge University Press, 1998.

23. G. Plotkin. Lambda-definability in the full type hierarchy. In "7o H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism”, pages 367-373. Academic Press,
San Diego, 1980.

24. W. Tait. Intensional interpretation of functionals of finite type 1. Journal of Symbolic Logic,
32, 1967.

A Proof

A.1 Proof of Theorem 4.7

When p : E — B is a fibration, po — : [E,E] — [E,B] is also a fibration. Then an
endofunctor F' over E is a lifting of an endofunctor G over B if and only if F is above
G o pin the fibration p o —

Let 7,7 be strong monads over B, « : 7 — 7' be a strong monad morphism
and 7" be a strong monad over E which is a lifting of 7’. We construct a monad 7 =
(T, 7, j1,0) together with a strong monad morphism ¢ : 7 — 77 which is Cartesian
above a.

— We define the endofunctor 7" : E — [to be the vertex (a o p)*T” of the following
Cartesian lifting of « o p in the fibration p o —:

. aop) (T’
@opyi P

Top

We define ¢ = (o p)(T7).

— We define the unit 7) and the multiplication £ by the morphisms obtained from the
universal property of the Cartesian morphism ¢ in the fibration p o —:

A Semantic Formulation of T T-Lifting and Logical Predicates 101

Idg Y ToT i e (Gxd)
TN N N R
T e T T 8 T
p n'op ToTo p (1 o (axar))op
nop A nop N
Top Oéop>T’op Top aop>T'op

— For objects X, Y in [E above objects I, .J in B respectively, we define the strength
Ox y as follows:

X®TY 0% yo(X&ay)
Oxy N
T(X®Y) >T'(X®Y)
Axoy
ITJ G'I)JO(I(X)ou)
01,7 N
T(I®J) arey ~T'(I®J)

We can easily verify that 7, /i, 0 satisfy the law of strong monad using the fact that p is
faithful (since p is a preordered fibration). For example, to show fix o T'(1x) = idx
for each object X in [E, we calculate:

p(fix o T(WX)) = ppx o T(npx) = idpx = p(idx).

Since p is faithful, we conclude that jix o T'(rx) = idx. .
The morphism ¢ is clearly a monad morphism from the construction of 7, fi, 6.

To see that & is a Cartesian morphism, we consider a situation in Mon(p) described
in the left diagram:

7" 8 " 8
. N Toa N
! !/
T, T 7 LT
7" 8 T"op Bop
N) .
T o =T’ Top =T op

aop

102 Shin-ya Katsumata

This situation induces the right diagram in p o —. From the universal property of &,
we obtain a unique morphism * : T" — T above v o p satisfying & e 4 = 5 To
verify that is a strong monad morphism, we use the universal property of ¢«. We show
4 e 7’ = 1 as an example. First, ¥ e 7" and 7 are above 7 o p in the fibration p o —.
Next, we have
ey e 7'7”:6 e =7 =den

From the universal property of ¢, we have v o 7" = 7). We can similarly verify the
other equations of the law of strong monad morphism. O

A.2 Proof of Theorem 5.1
(Sketch) Let 7 = (T, 7, s 0) be a strong monad over B, K" be a (finite) set and suppose
that we have a lifting ’]} = (Tk, nk, Hk, Gk) of T foreach k € K.

The fibred product T = (T, 7, f1, 0) of Ty, is given as follows.

— The functor part is defined by TX = Nrex T, X . We write 7T§{ :TX — Ty X for
the k-th projection.

— We observe that for objects X,Y in E and a morphism f : pX — pY in B, we
have the following natural isomorphism:

E (X, TY) 2 E,x (X, f(TY)) 2 E,x <X A F* Tk> ~ [Er(X, TaY).

keK keK

We write ¢ for the right-to-left part of the above isomorphism. The unit, multipli-
cation and strength is then defined by:

Nx = (M) x vk
AELX = ¢((fu) x o Tr(mx) o Ty ke
Oxy = &{(0k)xy o (X & 75) ek

The reader can verify that T is indeed a strong monad, and is a fibred product of
{Ttrex-

Order Structures on Bohm-Like Models

Paula Severi and Fer-Jan de Vries

Department of Computer Science, University of Leicester, UK

Abstract. We are interested in the question whether the models in-
duced by the infinitary lambda calculus are orderable, that is whether
they have a partial order with a least element making the context opera-
tors monotone. The first natural candidate is the prefix relation: a prefix
of a term is obtained by replacing some subterms by L. We prove that six
models induced by the infinitary lambda calculus (which includes B6hm
and Lévy-Longo trees) are orderable by the prefix relation. The following
two orders we consider are the compositions of the prefix relation with
either transfinite n-reduction or transfinite n-expansion. We prove that
these orders make the context operators of the 7-Bohm trees and the con-
Bohm trees monotone. The model of Berarducci trees is not monotone
with respect to the prefix relation. However, somewhat unexpectedly, we
found that the Berarducci trees are orderable by a new order related to
the prefix relation in which subterms are not replaced by L but by a
lambda term O called the ogre which devours all its inputs. The proof of
this uses simulation and coinduction. Finally, we show that there are 2°¢
unorderable models induced by the infinitary lambda calculus where c is
the cardinality of the continuum.

1 Introduction

In this paper we give order structure to some models induced by the infinitary
lambda calculi. Our starting point are lambda calculi that extend finite lambda
calculus with infinite terms and transfinite reduction. The § and 7 reduction
rules apply to infinite terms in much the same way as they apply to finite terms.
However, characteristic for these calculi is that they contain a 1 -rule that maps a
certain set U of meaningless terms to L. Without such an addition the extension
of finite lambda calculus with infinite terms and reductions immediately would
result in loss of confluence [3]. All infinite calculi that we consider have the same
set of finite and infinite terms AS°. The variation comes from the choice of the
set U and the strength of extensionality.
Figure 1 summarises the infinitary lambda calculi studied so far [3, 79,
, 15]. An interesting aspect of infinitary lambda calculus is the possibility of
capturing the notion of tree (such as Bohm and Lévy-Longo trees) as a normal
form. These trees were originally defined for finite lambda terms only, but in the
infinitary lambda calculus we can also consider normal forms of infinite terms.
The three infinitary lambda calculi mentioned in the first three rows of Figure 1
capture the well-known cases of Bohm, Lévy-Longo and Berarducci trees [3, &, 9].
In the fourth row, there is an uncountable class of infinitary lambda calculi with

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 103-118, 2005.
© Springer-Verlag Berlin Heidelberg 2005

104 Paula Severi and Fer-Jan de Vries

REDUCTION RULES NORMAL FORMS NF
Beta and L for terms without tnf Berarducci trees BerT =P,
Beta and L for terms without whnf Lévy-Longo trees LLT = Pyu
Beta and L for terms without hnf Bohm trees BT =Py
Beta, L parametric on U Parametric trees Pu
Beta, L for terms w.o. hnf and Eta n-Bohm trees nBT
Beta, | for terms w.o. hnf and EtaBang oon-Bohm trees oonBT

Fig. 1. Infinitary Lambda Calculi

a L-rule parametrised by a set U of meaningless terms [7, 10]. By changing the
parameter set U of the L-rule, we obtain different infinitary lambda calculi. If
U is the set of terms without head normal form, we capture the notion of Bohm
tree. If U is the set of terms without weak head normal form we obtain the Lévy-
Longo trees. And if U is the set of terms without top head normal form to L, we
recover the Berarducci trees. The infinitary lambda calculus sketched in the one
but last row incorporates the n-rule [13]. This calculus captures the notion of
n-Bohm tree. The last row in Figure 1 mentions the infinitary lambda calculus
incorporating the nl-rule, a strengthened form of the n-rule [15]. The normal
forms in this calculus capture the notion of con-Bohm trees. In this paper we
give some new examples of parametric trees.

When the infinite extensions are confluent and normalising (normal forms
can now be infinite too!) they induce a function NF : A? — A mapping a
term to its unique normal form. The normal form functions NF induce A-models
(models of the finite lambda calculus): just interpret a term M by its normal
form NF(AM) and application M - N of two terms M and N by NF(MN).

Figure 2 summarizes the results proved in this paper. The first order we
consider is the prefix relation <. This is a natural order on terms. If terms
are represented as trees, prefixes of a tree are obtained by pruning some of its
subtrees and replacing them by L. Whereas application in the model of B6hm
trees is well-known to be continuous with respect to the Scott topology induced
by the prefix relation, it is perhaps less well-known that in case of the model of
Berarducci trees, the normal form function BerT : A® — AT and the application
operator are not even monotone [6] and it is not clear how to define a domain-
theoretic model whose local structure is represented by Berarducci trees, though
some attempts have been made via types and filter models [4]. We prove that
Py : AN — AT preserves < provided U is quasi-regular and LP is equal to
L. This generalizes the proof of monotonicity of BT and LLT given in [11]. We,
then, conclude that the prefix relation makes the context operators of six models
monotone including the models of Bohm and Lévy-Longo trees.

We also define two orders for the extensional models and prove that they
make the context operators monotone. The partial order =, on the set of -
Bo6hm trees is the composition of the prefix relation with transfinite n-reduction
and it corresponds to the order on D}, [5]. The partial order <, on the set
of con-Bohm trees is the composition of the prefix relation with transfinite n!-
reduction and it corresponds to the order on Scott’s model D.

Order Structures on Bohm-Like Models 105

The next step is to find an order for Berarducci trees. We prove that the
least element of an arbitrary orderable model induced by NF should be either L
or a term O called the ogre which eats all its inputs. In case the least element
is 1 then LP should reduce to L for all P € AY°. Hence, L cannot be the least
element of an order on Berarducci trees and the only possible candidate is O.
The term O is the solution to the recursive equation O = Az.0 and it can be
obtained by applying any fixed point operator to the combinator K = Azy.z. In
the lambda model induced by Bohm trees, the ogre is interpreted as bottom.
But there are many other lambda models such as the ones induced by Lévy-
Longo and Berarducci trees that give a different interpretation to ogre. In these
models, O is identified with the infinite sequence of abstractions A\zy.A\xo. Axs
We consider an order called < on terms related to the prefix relation in which
subterms are not replaced by L but by the term O. We prove that the parametric
trees Py 1 AT — AS° preserve < provided U is quasi-regular and O € Py (AT°)
using simulations and coinduction. We, then, conclude that << makes the context
operators monotone of five models including the model of Berarducci trees. We
can see in Figure 2 that the relations < and < make the context operators of
some models simultaneously monotone.

Finally, we show that there are 2¢ unorderable models induced by the infini-
tary lambda calculus where c is the cardinality of the continuum. In [12] Salibra
proves that there is a continuum of unorderable A-models by considering the
equation MM = (2. This idea does not work for infinitary lambda calculus
because this equation interpreted as a reduction rule is not left linear and adding
it to the infinitary lambda calculus of Berarducci trees would destroy confluence,
as can be seen with help of a variant of Klop’s counterexample in [I1]. In our
case, the trick consists in equating | P sometimes to 1 and sometimes not. We
consider the set BY of closed Béhm trees without | which has cardinality ¢ and
construct infinitary lambda calculi whose normal form functions Ux are indexed
on X C B° by stating that L P reduces to L if P € X.

2 Infinite Lambda Calculi

We will now briefly recall some notions and facts of infinite lambda calculus
from our earlier work [7-9, 13, 15]. We assume familiarity with basic notions
and notations from [I]. Let A be the set of A\-terms and A} be the set of finite
A-terms with | given by the inductive grammar:

M= 1|z | (\xM) | (MM)

where z is a variable from some fixed set of variables V. We follow the usual
conventions on syntax. Terms and variables will respectively be written with
(super- and subscripted) letters M, N and z,y,z. Terms of the form (M;M>)
and (AzM) will respectively be called applications and abstractions. A context
C[]1is a term with a hole in it, and C[M] denotes the result of filling the hole
by the term M, possibly by capturing some free variables of M. If o : V — A*®
then M7 is the simultaneous substitution of the variables in M by o.

106 Paula Severi and Fer-Jan de Vries

Normal forms Prefix Ogre order Prefix up ton Prefix up to n! Orderable
NF d =1 = models
oconBT — - +

nBT

BT =Py
Prn—o
PHAUO

Pra

LLT = Pyyr
Psa

Ux

BerT =P,

IA

B e
|
Jr
I

|
|
s

e S R
|
|

Fig. 2. Orderability of the models induced by NF

The set AT of finite and infinite A-terms is defined by coinduction using the
same grammar as for A . This set contains the three sets of Bohm, Lévy-Longo
and Berarducci trees. In [7, 9, 10], an alternative definition of the set A is
given using a metric. The coinductive and metric definitions are equivalent [2].
In this paper we consider only one set of A-terms, namely A, in contrast to
the formulations in [9, 10] where several sets (which are all subsets of AT°)
are considered. The paper [7] shows that the infinitary lambda calculi can be
formulated using a common set AS°, confluence and normalisation still hold since
the extra terms added by the superset AT are meaningless and equated to L.

We define several rules used to define different infinite lambda calculi. The £,
n and n~l-rules are extensions of the rules for finite lambda calculus to infinite
terms. The n!-rule does not appear in the finite lambda calculus. The L-rule is
parametric on a set U C A°° of meaningless terms [7, 10] where A is the set of
terms in A% that do not contain L (see Section 4).

Definition 1. We define the following rewrite rules on A:
M[L:=2leld M#*L N
M— L

(Ax.M)N — M|z := N] (8)

x ¢ FV (M) x ¢ FV (M) 2y N & @ FV(M)
nt) (")

e Mz — M 7 M — \x.Mx . MN — M

In this paper we need various rewrite relations constructed from these rules
on the set A7°. These are defined in the standard way, eg. — 31, is the smallest
binary relation containing the §, L and n!-rules which is closed under contexts.
Reduction sequences can be of any transfinite ordinal length a: My — M; —
My — ..M, - My,41 — ... Myt = Mytwi1 — ... My. This makes sense if
the limit terms M,,, M+, . . . in such sequence are all equal to the corresponding
Cauchy limits, limg_,x Mg, in the underlying metric space for any limit ordinal
A < a. If this is the case, the reduction is called Cauchy converging. We need
the stronger concept of a strongly converging reduction that in addition satisfies

Order Structures on Bohm-Like Models 107

that the depth of the contracted redexes goes to infinity at each limit term:
limg_.» dg = oo for each limit ordinal A < o, where dg is the depth in Mg of
the contracted redex in Mg — Mpgyi. Any finite reduction is, then, strongly
converging. We use the following notation:

1. M — N denotes a one step reduction from M to N;
2. M — N denotes a finite reduction from M to N;
3. M —» N denotes a strongly converging reduction from M to N.

Variations on the reduction rules give rise to different calculi (see Figure 1).
The resulting infinite lambda calculus (A°, —,) we will denote by Ay° for any
p € {BL,BLn,Ln}. Since the L-rule is parametric, each set U of meaningless
terms gives a different infinitary lambda calculus A3’ .

Definition 2. 1. We say that a term M in AJ° is in p-normal form if there is
no N in AJ® such that M —, N.

2. We say that \5° is confluent (Church-Rosser) if (A3, —»,) satisfies the dia-
mond property, i.e. ,«— 0 —», C —»,0 ,«—.

3. We say that A’° is normalising if for all M € AT there exists an N in
p-normal form such that M —», N.

Theorem 3. [/, U, 10] Let U be a set of meaningless terms. The calculi A7
with a parametric L-rule on the set U are confluent, normalising and satisfy
postponement of L over 3.

In [7] confluence of the parametric calculi is proved for Cauchy converging
reduction as well as for strongly converging reduction.

Theorem 4. [/, 15] The infinite lambda calculi of con-Bohm and n-Béhm
trees are confluent and normalising.

Assumption. In the rest of the paper whenever we refer to NF : AT — AT, we
are assuming that the infinitary lambda calculus in question is confluent and
normalising and that NF is the function that maps a term to its unique normal
form. We denote by M =ng N if NF(M) = NF(N).

3 Basic Forms

In this section we introduce new forms of terms analogous to the notions of head,
weak head and top normal forms and define certain specific subsets of A* (terms
of A without L) containing the respective forms.

Definition 5. Let M € AY°. We define that

1. M is a head normal form (hof) if M = Azq...zp.yP1 ... Py.

2. M is a weak head normal form (whnf) if M is a hnf or M = Az.N.

3. A term M is a top normal form (tnf) if it is either a whnf or an application
(NP) if there is no @ such that N —3 Az.Q.

108 Paula Severi and Fer-Jan de Vries

4. M is a rootactive form (with respect to () if for all M —»g N there exists a
redex (Az.P)Q such that N —»g (Az.P)Q.
5. M is a head bottom form (hbf) it M = Axy ... 2, LP; ... Py.
6. M is a head active form (haf) if M = Azq1...2,.RP; ... P, and R is rootac-
tive.
7. M is a strong active form (saf) if M = RP; ... P, and R is rootactive.
8. M is a strong active form relative to X (X-saf) if M = RP; ... P, and R is
rootactive and Py,..., P, € X.
9. M is an infinite left spine form (ilsf) if M = Axy ... 2,.((... P2)Py.
10. M is a strong infinite left spine form (silsf) if M = ((... Py)P;.
11. M is a basic form if it is either a head normal form, a head bottom form, a
head active form, an infinite left spine or the ogre.

We now define some subsets of A>® for the previous defined forms.
Definition 6. We define the following subsets of A>°:

HN ={M € A*° | M —3 N and N in head normal form}
WN ={M € A° | M —3 N and N in weak head normal form}
TN ={M € N*° | M —5 N and N in top normal form}

By HN, WN and TN we denote their respective complements.
Definition 7. 1. The basic sets are the following subsets of A>°:

HA={M € N*° | M —3 N and N is head active}
IL ={M € A>*° | M —»3 N and N is an infinite left spine form}
O ={MeN*|M —350}

2. The strongly basic sets are the following subsets of A>°:

R ={M € A>* | M is rootactive} = TN
SA ={M e AN>®| M —5 N and N is strong active }
SIL ={M € AN*° | M —»3 N and N is a strong infinite left spine form }

3. Finally we define a family of subsets of A>® depending on some X C A>:
SAx ={M € A*° | M —»3 N and N is a strong active form relative to X}
Note that R[L := 2] € R iff R is L or R is rootactive with respect to (3.

Definition 8. The skeleton of a term M € AT is defined by coinduction:

skel(M) =y it M —gy

skel(M) = L if M —p L

skel(M) = Az.skel(N) it M —g Ax.N

skel(M) = skel(N) skel(P) if M —3 NP and N /3 Az.Q for any @
skel(M) =M if M does not have a top normal form

The skeleton of a term is essentially the Berarducci tree of a term but instead
of replacing rootactive terms by L, we leave rootactive terms untouched.

Lemma 9. Let M € N?. Then M —»g skel(M) and skel(M) is a basic form.

Order Structures on Bohm-Like Models 109

4 Axioms of Meaningless Terms

In this section we recall the axioms of meaningless terms [7, 10] and give new
examples of parametric infinite lambda calculi. Let &4 C A°° be an arbitrary set.
The axioms of meaningless terms on the set U are:

Closure under (-reduction. If M € Y and M —»3 N then N € U.

Overlap. If Az.M € U then (A\z.M)N € U.

Closure under substitution. If M € U then M7 € U.

Rootactiveness. R C U.

Indiscernibility. Let M & N denote that if NV is obtained from M by replacing
some (possibly infinitely many) subterms in U by other terms in &. Then,
MelUiff N el.

O o

Definition 10. A set 4 C A of meaningless terms is a set that satisfies the
five axioms of meaningless terms.

Hence, the parametric infinitary lambda calculi are the calculi A3 with a
parametric L-rule on a set U satisfying the axioms of meaningless terms given
above. The normal form of these calculi is denoted by Py. If 4 = A*° then
M =p,, L for all M € AS° and P;; induces the trivial theory. Since indiscernibility
is not easy to prove, we will reduce it to some property which is easier to prove.
For this, we need the following properties on a set U C A°°:

1. Closure under $-expansion. If N € U and M —»5 N then M € U.
2. Indiscernibility on skeletons. Let P be a skeleton such that P <;; M and
P =<y N. Then, M e U iff N e UU.

Definition 11. A set U of strongly meaningless terms is a set that satisfies:
closure under (-reduction, overlap, closure under substitution, rootactiveness,
closure under (-expansion and indiscernibility on skeletons.

Theorem 12. [7, 10] HN, WN and TN =R are sets of meaningless terms.

Definition 13. Let &/ C A, M, N € AT. Then, M =<y N if M is obtained
from N by replacing some subterms of N which belong to U by L.

Lemma 14. Let U be closed under substitution. If M <y N and M —»g M’
then N —»3 N’ and M’ <y N’ for some N'.

Proof. This is proved by induction on the length of the reduction sequence. 0O

The following lemma may not hold for terms that are not rootactive. For
instance, take (Az.2) € U, M = LP and N = (Az.22)P. Then M <y N and
N —3 N’ = 2 but there is no M’ such that M —3 M’ <y N'.

Lemma 15. Let U be closed under substitution and M rootactive. If M <y N
and N —g N’ then there exists M' such that M —g M’ and M’ <y N'.

110 Paula Severi and Fer-Jan de Vries

Proof. We do only one step of S-reduction. Since M is rootactive, we then have
that M = ()\IMo)Ml . Mk But then NV = ()\INo)Nl . Nk and Ml j[,{ Nl
We contract the S-redex in the head position in NV and in M. Since U is closed
under substitution, Mo[z := My]Ms ... My <y No[z := N1]Na ... Nj. O

Lemma 16. Let U be closed under substitution. If M <y N and M rootactive
then N 1is rootactive.

Proof. Suppose now that NV is not rootactive, then there exists a top normal form
N’ such that N —g N’ by contracting only head redexes. Then, by Lemma 15
there exists M’ such that M —g M’ and M’ <y N'. If N’ is a top normal form
then so is M’. O

Theorem 17. IfU C N> is a set of strongly meaningless terms then it is also
a set of meaningless terms.

Proof. Both definitions have the first four axioms in common. We prove indis-

cernibility. Let M & N. Then there exists P such that P <y M and P <y N.
By Lemma 9 and Lemma 14, we have that skel(P) <y M’ and skel(P) <y N’ for
some M', N such that M —»3 M’ and N —»3 N’. By indiscernibility on skele-
tons M’ € U iff N’ € U. Since U is closed under (-reduction and (-expansion,
we have that M e U iff N e U. O

Theorem 18. The following sets are sets of strongly meaningless terms:

1. HA, SA, HAUIL and HAUO
2. SAx if X is a subset of closed terms in BerT(AT°) without L.

Proof. The first five axioms are not difficult to prove. We prove indiscernibility
on skeletons for SAx. Suppose P is a skeleton and P <s4, M, N.

1. If P is either a head normal form, the ogre or an infinite left spine so are M
and N. Hence, M, N ¢ SAx.

2. If P= MAz1...2,.RP; ... Py is a head active form. By Lemma 16, M and
N are also head active forms. Then M = Azy...z,.R'M;... My, N =
Aty ...2n . R'Ny...Ng. and P; <sa, M;,N; for 1 <i < k. If M € SAx
then n = 0 and M; = BerT(M;) € X C A*°. Since M; = BerT(M;), we have
that M, does not contain subterms in SAx and hence P; = M;. Then, P;
does not contain | and also P; = N;. Clearly, N; € X and N € SAx.

3. Suppose P = Axy...x,.LP;... P is a head bottom form. The bottom in
the head of P has to be replaced by some term in SAx to get M and N.
Then, we proceed as in the previous part to prove that P, = M; = N; € X.

O

5 Regular and Quasi-regular Sets

In this section we define and give examples of regular and quasi-regular sets of
meaningless terms. Figure 3 summarizes and shows all these sets. ordered by
inclusion. We use the notation Y — U if U D U'.

Order Structures on Bohm-Like Models 111

HAUZILUO =HN
/ \
HAUIL =HN —O HAUO

— \
/

SAUSIL =WN
SAx

~

R=TN

Fig. 3. Sets of meaningless terms ordered by inclusion

Definition 19. Let & C A*™ be a set of meaningless terms.

1. U is regular if for all basic sets X, if X NU #) then X C U.
2. U is quasi-regular if for all strongly basic sets X, if X NI/ # () then X C U.

If a set is regular then it is quasi-regular. The sets SAx are neither regular
nor quasi-regular provided X # () and X # A,

Theorem 20. Let U be a set of meaningless terms.

If \x. M € U then M € U.

If \e. M € U then HA CU. In particular, if O € U then HA C U.
If STL CU then SACU.

IfIL CU then HACU.

If a head normal form is in U then U = N>°.

Grds o o =

Proof. We only prove the first three parts. The rest are similar.

1. By the overlap and closure under g-reduction axioms, (Az.M)x —g M € U.

2. By the overlap axiom, (Ax.M)Q € U for all @ € A*°. By indiscernibil-
ity we have that RQ € U for R € R and also RQ;...Qr € U for all
®; € N*>*°. By the previous part and indiscernibility, Az.R € U and hence
ATy ... 20 . RQ1...Qr €U.

3. Let (“Q) = ((-..)Q)Q). We have that (“Q) = (“Q)Q € U By indiscernibility,
RQ € U for any R € R and also RQ;...Q € U for all Q; € N>, O

Corollary 21. The regular sets are: HAUZLU O = HN, HAUZL = HN —
O, HAU O and HA. The quasi-reqular sets are the regqular ones and the sets
SAUSIL=WN,SA and R=TN.

112 Paula Severi and Fer-Jan de Vries

6 Explicit Definition of the Normal Forms

Figure 4 shows the difference between the normal forms of the different para-
metric infinitary lambda calculi considered in this paper.

In the figure we make the abbreviations: A&.M = Azy...x,.M and M P =
MP; ... P;. For simplicity we assume that P; € Py(AY) for all 7. The case of
head bottom forms is not shown in the table but it is as the case of head active
forms where L plays the role of the rootactive term R. The cases U = HN, WN
and TN correspond to the cases of Bohm, Lévy-Longo and Berarducci trees
respectively.

SET U HEAD NORMAL FORM OGRE HEAD ACTIVE FORM INF LEFT SPINE FORM

Pu(A\z.yP) P.(0) Pu(Az.RP) Pu(Az.((... P2)Py))
HN Ax.yP 1 L L
HN — O Ax.yP (0] L L
HAUO Ae.yP 1 1 Az.((... P)P))
HA Ax.yP 0] 1 Ax.((...P2)Pr)
WN Ax.yP (0] Az L Az. L
SA Ax.yP (0] Az. L Ax.((... P2)Pr)
SAx Az.yP 0 {A;"ffp IPEX (.. ppy)

N Ax.yP 0] Mx.LP Ax.((...P2)Pr)

Fig. 4. Definition of Py (M) when M is a skeleton

7 Models Induced by NF

There are many ways of making models of lambda calculus, i.e. A-models. In
this paper we will emphasise yet another method where the lambda calculus
itself does the job. The idea is simple: any confluent and normalising extension
of lambda calculus gives rise to a model: namely the set of normal forms. Taking
the normal form of the application of two normal forms then is the application
for this semantics.

Definition 22. The model induced by NF, denoted by M (NF), is the applica-
tive structure (NF(AS®), . ,[]) defined as follows:

1. M.N = NF(MN) for all M, N € NF(A%),
2. [M], = NF(M®) for all M € A.

Order Structures on Bohm-Like Models 113

It is easy to prove that M(NF) is a A-model using confluence and normaliza-
tion (see Definition 5.2.7, Definition 5.3.1 and Theorem 5.3.6 in [1]).

Definition 23. A partial order C on a set A is a relation on A that reflexive,
transitive and antisymmetric. If the partial order C on A has a least element we
say that C is a pointed poset on A.

We consider partial orders on the set AT or NF(AY). If M is the least element
of a pointed poset C on NF(AS°) then, obviously, M is in normal form. Domain
Theory usually follows the convention of denoting the least element by L. In
our case, | is a special constant in the syntax which equates the undefined or
meaningless terms but we will see that it is not necessarily the least element. In
some cases, the least element could be the ogre O (if O € NF(AY)).

Definition 24. Let C[] be a context in AT°. The context operator C[] restricted
to NF is the function AMeNF(AT).NF(C[M]) : NF(AP) — NF(AT).

For the models induced by NF, it makes sense to define a notion of mono-
tonicity that considers all context operators and not only the application.

Definition 25. The partial order C makes the context operators of M(NF)
monotone if the following hold:

1. (NF(AS°),C) is a pointed poset and
2. the context operators C] | restricted to NF are monotone in (NF(AF), C) for
all context C[] € AT.

Definition 26. We say that M (NF) is orderable (by C) if there exists a partial
order C on NF(AS°) that makes the context operators monotone. We say that
M(NF) is unorderable if it is not orderable.

8 The Prefix Relation

Definition 27. Let M, N € AT. We say that M is a prefix of N (we write
M < N) if M is obtained from N by replacing some subterms of N by L.

The prefix relation < is a pointed poset on NF(AS®) with L as least element.

Lemma 28. If M < N then there exists N' such that Py(M) <= N' and N —»g
N'.

Proof. Using Lemma 9 and by taking &/ = A*° in Lemma 14, we have that
skel(M) < N’ for some N’ such that N —»g N'. Hence Py (M) =< skel(M) < N’.
O

The following theorem is a generalization of the proof of monotonicity of BT
and LLT given in [14]. It is possible to give an alternative proof of this theorem
using a simulation similar to Theorem 42.

114 Paula Severi and Fer-Jan de Vries

Theorem 29. Let U be quasi-reqular and SA C U. Then, Py : N — AT is
monotone in (A, <).

Proof. Let M, N € AT such that M < N. We prove that P = Py (M) < Py/(N).
By Lemma 28 we have that P < @) and N —»g () for some Q. It is enough to
prove that P™ < Py(Q) (where P™ denotes the truncation of P at depth n).
Then, P =, ¢, P" = Pu(Q). We prove P" =< Py(Q) fo all n by induction.

1. P=Xr1...2p.yP1... Pp. Then Q = Az1...2,.yQ1 ... Qn and for all 7,
P; 2 Q;. Hence, Py(Q) = \xy ... 2,.yPy(Q1) ... Py(Qm). By induction hy-
pothesis, (P;)" < Py/(Q;) for all h < n. Tt is easy to see that P" < Py(Q).
P=0.Then P=Q =0.

3. P =MXry...xp.LPy ... Py. Then, Q = Axy...2,.Qq. Since SA C U, we
have that m = 0. If n > 0 then by Theorem 20 no abstraction belongs to U
and hence Py (Q) = Axy ... 2,.Pu(Qo).

4. P = Axy...zp.((..)P2)Pr. Then, Q@ = Azy...2,.((-..)Q2)Q1. Suppose
towards a contradiction that @ € U. Then ((...)Q2)@Q1 € U by Theo-
rem 20. Since U is quasi-regular, all infinite left spine should belong to U
and contradicts the fact that P is an infinite left spine in S1-normal form.
Hence, Py (Q) = Ax1...2n.((..)Py (Q2))Pu(Q1). By induction hypothesis,
(Pu(P;))" X Py(Q;) for all h < n. It is easy to see that (P)" X Py(Q). O

o

The next corollary is deduced from Corollary 21 and the previous theorem.

Corollary 30. The functions NF € {BT,P,, \s_ o, Pravo, Pra, LLT,Psa} are
monotone in (A, <).

Theorem 31. IfNF : AT — AT is monotone in (AS°, <) then the prefiz relation
= makes the context operators of M(NF) monotone.

Proof. If M < N then C[M] < C[N]. Since Py is monotone, we have that
Pu(C[M]) < Py (C[N)). O

Corollary 32. The preficx relation = makes the context operators of M(NF)
monotone for NF € {BT,P,,\ o, Pravo, Pra, LLT,Psa}.

Corollary 33. The models induced by BT, P\, o, Pravo, Pra, LLT and Psa
are all orderable.

We show some examples in which the prefix relation does not make all the
context operators monotone:

1. The prefix relation =< does not make the application monotone of M (BerT),
though it makes the abstraction monotone. Take M = 1, N = Az.l and
P=y.Then M < Nbut M-PAN-P.

2. The prefix relation < does not make either the abstraction or the application
of M(nBT) and M (conBT) monotone.

(a) Take M =yl and N = yz. Then M < N but Az.M A \x.N.
(b) Take M = Axy.z(xly)y, N = Azy.z(zyy)y and P = (Axy.z). Then
M<NbutM-PAN:-P.

Order Structures on Bohm-Like Models 115

9 Orders for Extensionality

We define two partial orders for which the context operators of the extensional
models will be monotone.

Definition 34. 1. Let M,N € nBT(AS®). Then, M =<, N if M ,«— P =<
@ —»y, N for some P,Q € BT(AT).

2. Let M, N € conBT(AT). Then, M <,y N if M ,j«— P < @Q —»,; N for some
P,Q € BT(AY).

Lemma 35. [15, 15] Let M, N € A?. If M —», N, then BT(M) —», BT(N).
And if M —»p N, then BT(M) —», BT(N).

Theorem 36. 1. =<, makes the context operators of M(nBT) monotone.
2. =<, makes the context operators of M(conBT) monotone.

Proof. We only prove (1). The proof of (2) is similar. Suppose that M <, N.
Then BT(M) —», P = @ ,«— BT(N). By Lemma 35 and monotonicity of BT
(Corollary 30), BT(C[M]) —», BT(C[P]) < BT(C|Q]) ,«— BT(C[N]). O

Corollary 37. The models induced by nBT and conBT are orderable.

10 Ogre as Least Element

In order to make the application of Berarducci trees monotone, the ogre should
be the least element and not L. This is a consequence of the following theorem:

Theorem 38. If C makes the application of M(NF) monotone then we have
that:

1. either L is the least element of C and LP — 1 for all P € A or
2. O is the least element of C.

Proof. Suppose that M € NF(A°) is the least element. Then M T Az.M and we
choose z ¢ fv(M). If application is monotone then M - P C (Az.M) - P =ygp M
and hence M P =y M for all P for all P € NF(AY). Now either M = L in
which case LP — 1 for all P € A?®. Or M # 1 and then Mz = M for all .
Hence M is the solution of the recursive equation M = Az.M andso M = 0. 0O

We define a partial order making the model of Berarducci trees monotone:

Definition 39. Let O € NF(AY®). We define < on NF(AT®) as follows: M < N
if M is obtained from N by replacing some subterms of N by O.

It is easy to see that < is partial order and that O is the least element.

Definition 40. An ogre simulation is a relation & on AT such that MSN im-
plies:

116 Paula Severi and Fer-Jan de Vries

1. M =MXxy...xp.y then N = Az ... 2,.y.
2. M =MXxqy...2.L then N = A\zy ... 2. L.
3. If M =Xxy...2,.PQ then N = A\zy...2,.P'Q’, PSP’ and QSQ’.

The relation < is the maximal ogre simulation.
Lemma 41. Let M < N.

1. If M —»g M’ then there exists N' such that M' < N’ and N —»g N'.
2. If N —»3 N' then there exists M’ such that M’ I N' and M —»5 M’.
3. If M 1is rootactive then N is rootactive.

Proof. The first two parts are proved by induction on the length of the reduction
sequence. The last part uses the second one. O

Theorem 42. Let O € Py (AY). If U is quasi-regular then Py @ AT — AT is
monotone in (A?,).

Proof. Let M, N € AT such that M < N. We prove that Py (M) < Py/(N). Let
U = skel(M). By Lemma 41 we have that U < V and N —»g V for some V.
We define S as the set of pairs (Py/(P), Py (Q)) such that P and @ are subterms
of respectively U and V at the same position p and they are not subterms of
rootactive terms. Note that if U <V then P < Q). We prove that S is an ogre
simulation. Suppose (P, Q) € S. Then,

1. P=Xxy...2pyP1... Py, Then Q = A\zy...2,.yQ1 ...Qy and for all ¢,
P, < Q. Hence, Py(P) = Axy...20.yPu(P1)...Py(Pp) and Py(Q) =
X .. {EnyPu(Ql) Ce Pu(Qm) By definition of S, (Pu(Pl), PZ/I(Qz)) eS.

2. P = 0. Then Py(P) = O.

3. P = AIl . Ianl . Pm Then, Q =)\CCl . .In.Qle . .Qm, also
R <4 Qo and P, < @Q; for 1 < ¢ < m. By Lemma 41, if R is
rootactive so is Qo. Hence, Py (P) = Azy...xn.LPy(Py1)...Py(Py) and
Pu(Q) = A1 ...2n. LPy(Q1) ... Py(Qm). By definition of S, we have that
(Pu(Fi), Pu(Qi)) € S.

4. P=Xzxy...zn.L P ... Ppy. Similar to the previous case.

5. P=Xx1...2n.((...)P2)P1. Then Q = Ax1...25.((...)Q2)Q1. We have two
cases:

(a) If Pyy(P) = A\xy...2,.L then Py (Q) = Axy...2,.L by Theorem 20 and
the fact that U is quasi-regular.

(b) Py(P) = Azq1...2n.((-..)Py(P2))Py(P1). By Theorem 20 and since U
is quasi-regular, we have that Py(Q) = Az ... 0. ((-. .)Pu(Q2))Pu(Q1).
By definition of S, (Py(F;), Pu(Q:)) € S. 0

The next corollary is deduced from Corollary 21 and the previous theorem.
Corollary 43. BerT, Psa, LLT, Pya and P, \,_, are monotone in (A5, <).

Theorem 44. If NF : AT — AT is monotone in (A,) then < makes the
context operators of M(NF) monotone.

Order Structures on Bohm-Like Models 117

Proof. It M < N then C[M] < C[N]. Since Py is monotone, we have that
Pu(C[M]) 9 Py (C[N]). =

Corollary 45. < makes the context operators monotone of the models induced

by BerT, Psa, LLT, Pra and Py r_o-
Corollary 46. The model induced by BerT is orderable.

The order < does not make the context operators of the models induced
by Psa, monotone if X # () and X # A*. For instance, if X = {I} then
104 1L =Psay 117T.

11 Unorderable Models

In this section we construct 2¢ unorderable models induced by the infinitary
lambda calculus where c¢ is the cardinality of the continuum. We consider the
set B of closed terms in BT(AS®) without L which has the cardinality ¢ of the
continuum. For each subset X of BY, we construct an infinitary lambda calculus
as follows. By Theorem 18, SA(xu0) is a set of meaningless terms and Psaxio
is a parametric tree which we abbreviate as Ux.

Theorem 47. Let X C B° be non-empty. The models induced by the parametric
trees Ux are unorderable.

Proof. Suppose there exists a partial order C that makes the context operators
of M(Ux) monotone. By Theorem 38, we have that O is the least element of
C. Since X is non-empty, there exists M € X and M = Az ...xp.x; My ... M.
Take N = Azq1...2,.2;0...0. On one hand, both head bottom forms 1O and
LM reduce to L. On the other hand, the head bottom form LN does not reduce
to L. We have that N & X UQO because the terms in X C B° are Bshm trees that
have a head normal form at any depth. Hence, LO =y, L C INLC | =y, L M.

O

Corollary 48. There are 2° unorderable models induced by the infinitary lambda
calculus where c is the cardinality of the continuum.

Acknowledgements

We thank Mariangiola Dezani-Ciancaglini and Alexander Kurz for helpful com-
ments and discussions.

References

1. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
Amsterdam, Revised edition, 1984.

118

2.

10.

11.

12.

13.

14.

15.

Paula Severi and Fer-Jan de Vries

M. Barr. Terminal coalgebras for endofunctors on sets. Theoretical Computer Sci-
ence, 114(2):299-315, 1999.

A. Berarducci. Infinite A-calculus and non-sensible models. In Logic and algebra
(Pontignano, 1994), pages 339-377. Dekker, New York, 1996.

A. Berarducci and M. Dezani-Ciancaglini. Infinite A-calculus and types. Theoretical
Computer Science, 212(1-2):29-75, 1999. Gentzen (Rome, 1996).

M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type theories, normal forms,
and D-lambda-models. Information and Computation, 72(2):85-116, 1987.

M. Dezani-Ciancaglini, P. Severi, and F. J. de Vries. Infinitary lambda calculus and
discrimination of Berarducci trees. Theoretical Computer Science, 298(2)(275-302),
2003.

J. Kennaway and F. J. de Vries. Infinitary rewriting. In Terese, editor, Term Rewrit-
ing Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science,
pages 668—711. Cambridge University Press, 2003.

J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinite lambda
calculus and Bohm models. In Rewriting Techniques and Applications, volume 914
of LNCS, pages 257-270. Springer-Verlag, 1995.

J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93-125, 1997.

J. R. Kennaway, V. van Oostrom, and F. J. de Vries. Meaningless terms in rewrit-
ing. J. Funct. Logic Programming, Article 1:35 pp, 1999.

J. W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical centre
tracts. Mathematisch Centrum, 1980.

A. Salibra. Topological incompleteness and order incompleteness of the lambda
calculus. ACM Transactions on Computational Logic, 4(3):379-401, 2003. (Special
Issue LICS 2001).

P. Severi and F. J. de Vries. An extensional Bohm model. In Rewriting Techniques
and Applications, volume 2378 of LNCS, pages 159-173. Springer-Verlag, 2002.

P. Severi and F. J. de Vries. Continuity and discontinuity in lambda calculus. In
Typed Lambda Calculus and Applications, volume 3461 of LNCS. Springer-Verlag,
2005.

P. Severi and F. J. d. Vries. A Lambda Calculus for D. Technical report, Uni-
versity of Leicester, 2002.

Higher-Order Matching and Games

Colin Stirling

School of Informatics, University of Edinburgh
cps@inf.ed.ac.uk

Abstract. We provide a game-theoretic characterisation of higher-order
matching. The idea is suggested by model checking games. We then
show that some known decidable instances of matching can be uniformly
proved decidable via the game-theoretic characterisation.

Keywords: games, higher-order matching, typed lambda calculus.

1 The Matching Problem

Assume simply typed lambda calculus with base type 0 and the definitions of
a-equivalence, § and n-reduction. A type is 0 or A — B where A and B are
types. A type A always has the form (A4; — (... A, — 0)...) which is usually
written A7 — ... — A,, — 0. We also assume a standard definition of order:
the order of 0 is 1 and the order of Ay — ... — A,, — 01is k + 1 where k is the
maximum of the orders of the A;s.

Terms are built from a countable set of variables x,y,... and constants,
a, f,...: each variable and constant is assumed to have a unique type. The set
of simply typed terms is the smallest set T such that if x (f) has type A then
z:AeT (f:AeT),ift:BeTandz: AeT,then \x.t : A— B €T, and if
t:A—BeTandu:AecT then tu: B €T. The order of a typed term is the
order of its type. A typed term is closed if it does not contain free variables.

A matching problem has the form v = u where v,u : A for some type A, and
u is closed. The order of the problem is the maximum of the orders of the free
variables z1, ..., z, in v. A solution of a matching problem is a sequence of terms
t1,...,ty such that v{ti/z1,...,tn/xn} =p, u. The decision question is: given
a matching problem, does it have a solution? The problem is conjectured to be
decidable in [3]. However, if it is decidable then its complexity is non-elementary
[9, 11]. Decidability has been proven for the general problem up to order 4 and
for various special cases [, 0, 8]. Loader proved that the matching problem is
undecidable for the variant definition of solution that uses just S-equality [4].
An excellent source of information about the problem is [2].

Throughout, we slightly change the syntax of terms and types. The type
Ay — ... — A, — 0 is rewritten (A4;,...,4,) — 0 and we assume that all
terms in normal form are in n-long form. That is, if ¢ : O then it either has the
form w : 0 where u is a constant or a variable, or has the form w(ty,...,%x)
where u : (B1,...,Bg) — 0 is either a constant or a variable and each t; : B;
is in n-long form. And if ¢ : (Ay,...,A,) — 0 then ¢ has the form Ay; ... y,.to

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 119-134, 2005.
© Springer-Verlag Berlin Heidelberg 2005

120 Colin Stirling

where o : 0 is a term in n-long form. A term is well-named if each occurrence
of a variable y within a A abstraction is unique.

An interpolation equation has the form x(vy,...,v,) = u where each v; is a
closed term in normal form and u : 0 is also in normal form. The type of the
equation is the type of the free variable z, which has the form (44,...,4,) — 0
where v; : A;. An interpolation problem P is a finite family of interpolation
equations z(vi,...,v5) = u;, i : 1 < i < m, all with the same free variable z.
The type of P is the type A of the variable z and the order of P is the order of
A. A solution of P of type A is a closed term ¢ : A such that t(vi,...,v%) =5 u;
for each i. We write ¢ = P if the closed term ¢ solves the problem P.

An interpolation problem reduces to matching: there is the equivalent prob-
lem f(z(vi,...,oL),..., 2z, ..., o™) = f(u1,...,um), when f : 0™ — O.
Schubert shows the converse, that a matching problem of order n is reducible to
an interpolation problem of order at most n + 2 [7]. A dual interpolation prob-
lem includes inequations z(vi,...,v%) # wu;. Padovani proved that a matching
problem of order n is reducible to dual interpolation of the same order [0]. In the
following we concentrate on the interpolation problem for orders greater than 1.
If P has order 1 then it has the form = = u;, 1 < i < m. Consequently, P only
has a solution if u; = u; for each ¢ and j.

In the following we develop a game-theoretic characterisation of ¢ = P. The
idea is inspired by model-checking games (such as in [10]) where a structure, a
transition graph, is navigated relative to a property and players make choices
at appropriate positions. In section 2 we define some preliminary notions and in
section 3 we present the term checking game and prove its correctness. Unlike
transition graphs, terms t involve binding which results in moves that jump
around ¢. The main virtue of using games is that they allow one to understand
little “pieces” of a solution term t in terms of subplays and how they thereby
contribute to solving P. In section 4 we identify regions of a term ¢ that we call
“tiles” and define their subplays. In section 5 we introduce four transformations
on tiles that preserve a solution term: these transformations are justified by
analysing subplays. In section 6 we then show that the transformations provide
simple proofs of decidability for known instances of the interpolation problem
via the small model property: if ¢ = P then ¢’ |= P for some small term ¢'.

2 Preliminaries

A right term u of an interpolation equation may contain bound variables: an
example is f(a, Azy ... zq.21(21(22))). Let X = {x1,..., 25} be the set of bound
variables in u. Assume a fresh set of constants C' = {¢y,..., ¢} such that each
¢; has the same type as z;.

Definition 1 The ground closure of a closed term w, whose bound variables
belong to X, with respect to C, written Cl(w, X, C), is defined inductively:

1. if w=a: 0, then Cl(w, X,C) = {a}
2. if w= f(ws,...,wy), then Cl(w, X, C) = {w} U Cl(w;, X, C)
3. if w=Azj, ...xj,.u, then Cl(w, X, C) = Cl(u{c;, /zj,,....¢j, /x5, }, X, C)

Higher-Order Matching and Games 121

The ground closure of u = f(a, Azy ... x4.21(21(22))) with respect to {c1,...,cqa}
is the set of ground terms {u, a, c1(c1(c2)), c1(c2), c2}.

Next, we wish to identify subterms of the left-hand terms v; of an interpola-
tion equation relative to a finite set of constants C'.

Definition 2 The subterms of w relative to C, written Sub(w,C), is defined
inductively using an auxiliary set Sub’(w, C):

. if w is a variable or a constant, then Sub(w,C') = Sub/(w,C) = {w}

. if wis x(wy, ..., wy,) then Sub(w,C') = Sub/(w,C) = {w} UJSub(w;, C)

Cif wis f(wi,...,wy,), then Sub(w, C) = Sub/(w,C) = {w} U Sub’(w;, O)

. if wis Ay ... yn.v, then Sub(w,C) = {w} U Sub(v, C)

. ifwis Ayy ... yn.v, then Sub’(w, C) = |JSub(v{ci, /y1,- .-, ¢i, /yn}, C) where
each ¢;; € C has the same type as y;

T W N =

For the remainder of the paper we assume a fixed interpolation problem P
of type A whose order is greater than 1. P has the form z(vi,...,v}) = u;,
1 < i < m, where each v;» and u; are in long normal form. We also assume that
terms v; and u; are well-named and that no pair share bound variables. For
each i, let X; be the (possibly empty) set of bound variables in u; and let C;
be a corresponding set of new constants (that do not occur in P), the forbidden
constants. We are interested in when ¢ = P and ¢ does not contain forbidden

constants.

Definition 3 Assume P : A is the fixed interpolation problem:

1. T is the set of subtypes of A and the subtypes of subterms of w;
2. for each i, the right subterms are R; = Cl(u;, X;, C;)
3. for each i, the left subterms are L; = JSub(v}, C;) U C;

3 Tree-Checking Games

Using ideas suggested by model-checking we present a characterisation of inter-
polation. This is not the first time that such techniques have been applied to
higher-order matching. Comon and Jurski define (bottom-up) tree automata for
the 4th-order case that characterise all solutions to a problem [!]. The states
of the automata essentially depend on Padovani’s representation of the observa-
tional equivalence classes of terms up to 4th-order [(]. The existence of such an
automaton not only guarantees decidability, but also shows that the set of all
solutions is regular.

We now introduce a game-theoretic characterisation of interpolation for all
orders. The idea is inspired by model-checking games where a model (a transition
graph) is traversed relative to a property and players make choices at appropriate
positions. Similarly, in the following game the model is a putative solution term
t that is traversed relative to the interpolation problem. However, because of
binding play may jump here and there in ¢. Consequently, our games lack the
simple control structure of Comon and Jurski’s automata where flow starts at

122 Colin Stirling

the leaves of ¢t and proceeds to its root. Moreover, the existence of the game does
not assure decidability. Its purpose is to provide a mechanism for understanding
how small pieces of a solution term contribute to solving the problem.

Aty =Ady1...y; and t, |1t and gm = q[(l1,...,1;),7]. SO, tm1 =t and Opp1 =
Om{linm /Y1y 1inm/y;} and ¢m41 and nm1 are by cases on 1.

1. a:0. S0, Nm+t1 = Nm. If r = a then gm4+1 = ¢[3] else gm+1 = ¢[V].

2. f:(B1,...,Br) — 0. 50, tmt1 = Nm. I = f(s1,...,5) then ¢gm41 = gm
else gm+1 = q[V].

3. y: B. If Opy1(y) = Ini, then gm+1 = q[l, 7] and Nmy1 = n;.

B. tm =f: (B1,...,Bk) — 0 and gm = q[(l1,...,1;), f(51,-..,5%)]- SO, Omt1 = Om
and Nm4+1 = Nm and gm41 and t,m41 are decided as follows.

1. V chooses a direction i/ : 1 < ¢ < k and t,, |y t'. So, tmy1 = t.
If sy : 0, then gmy1 = q[(),si]. If s is Awyy ... @s,.8 then gmi1 =
Q[(Cil PR Cin)7 S{Cil/xiw ceey Cin/xin}]'

C. tm =y and ¢n = qll,r]. If l = Az1...z;.w and tm, [; t;, 1 < i < j, then nmy1 =
D {t10m /21, - . . ,t;@m/zj} else m+1 = Nm. The remaining components ty,+1, ¢m+1
and 7m+1 are by cases on [.

1. a: 0 or Az.a. S0, tmt1 = tm and Omp1 = O, If ¥ = a then gmy1 = ¢[3] else
gm+1 = q[V].

2. ¢:(B1,...,Br) — 0. 80, Omi1 = 0. If r # (51, ..., 5k) then tpmi1 = tm and
gm+1 = q[V]. If r = c(s1, ..., sx) then V chooses a direction i’ : 1 <4’ < k and
tm Lo t'. S0, tmp1 =t If sy : 0, then gmi1 = q[(), si]. If sy is Awyy ... 4,8
then dm+1 = Q[(Ciw ceey Cin)7 S{Cil /:Ciw ceey Cip /xln }]

3. f(wi,...,wg) or Az.f(wi,...,wk). SO, tmt1 = tm and Opmy1 = Om. If r #
f(s1,...,8K), then gm4+1 = q[V]. If r = f(s1,...,sk) then V chooses a direction
i1 <4 <k If sy : 0 then gmi1 = qlwyr, s¢]. fwy = Az1 ... 2w and sy =
ATiy . T4y, .S, then gmyr = qlw{ci, /21, Cin/2n}y 8{Ci, [Tiy, - Cin [Tin }]-

4. 2"(li, .. k) or Az.2" (L, oo 1) T g1 (2) = £/0; then 0,01 = 0; and t1 =
t" and gm41 = q[(l1, ..., 1), 7]

Fig. 1. Game moves

We assume that a potential solution term ¢ for P has the right type, is in
long normal form, is well-named (with variables that are disjoint from variables
in P) and does not contain forbidden constants. The term ¢t is represented as a
tree, tree(t). If t is y : 0 or a : O then tree(t) is the single node labelled with ¢.
In the case of u(vy,...,v;) when u is a variable or a constant, we assume that
a dummy A with the empty sequence of variables is placed before any subterm
v; : 0 in the tree representation. With this understanding, if ¢ is u(vy,...,v,),
then tree(t) consists of the root node labelled u and n-successor nodes labelled
with tree(v;). We use the notation w |; ¢ to represent that tree t' is the ith
successor of the node u. If ¢ is A\y.v, where y is a possibly empty sequence of
variables y1 . ..yn, then tree(t) consists of the root node labelled Ay and a single
successor node tree(v): in this case we assume Ay |1 tree(v). We also assume that

Higher-Order Matching and Games 123

each node labelled with an occurrence of a variable y; has a backward arrow 17
to the Ay that binds it: the index j tells us which element is y; in y.

The tree representation of Ay1yz2.f(f(y2,y2),y1(y2)) is tantamount to the
syntax tree of Ay1ya.f(A.f(A.y2, A.y2), A.y1(X.y2)). In the following we use t to
be the A-term ¢, or its A-tree or the label (a constant, variable or Ay) at its root
node.

The tree-checking game G(¢, P) is played by one participant, player V, the
refuter who attempts to show that ¢ is not a solution of P. The game appeals to a
finite set of states involving elements of L; and R;. There are three kinds of states:
argument, value and final states. Argument states have the form ¢[(l1, ..., 1), 7]
where each I; € L; (and k can be 0) and r € R;. Value states have the form g, 7]
where [€ L; and r € R;. A final state is either ¢[V], the winning state for V, or
q[3], the losing state for V.

The game appeals to a sequence of supplementary look-up tables 8; and n;,
j > 1: 0; is a partial map from variables in ¢ to elements wn; where w € L; and
k < j, and n; is a partial map from variables in L, to elements t'0), where ¢’ is a
node of the tree ¢t and k < j. The initial elements 6; and 7; are both the empty
table.

A play of G(t, P) is a sequence of positions t1¢10171, . . . , tngnb,n, where each
t; is a node of ¢t and t; = Ay is the root of ¢, and each ¢; is a state, and ¢, is
a final state. A node t’ of the tree ¢ may repeatedly occur in a play. The initial
state is decided as follows: V chooses an equation z(v},...,v!) = u; from P and

rvn
@ = q[(vt, ..., vl), u;]. If the current position is t,,qm0mnm and g, is not a final
state, then the next position t,,4+1¢m+10m+17m+1 is determined by a move of
Figure 1.

Moves are divided into three groups that depend on t,,. Group A covers the
case when t,, = Ay, group B when t,, = f and group C when ¢, = y. We
assume standard updating notation for 6,1 and n,1: B{a1/y1, ..., @m/ym}
is the function similar to 8 except that 5(y;) = a;. Moreover, in the case of rules
B1, C2 and C3 we assume that the constants ¢;; belong to the forbidden sets C;.
The look-up tables are used in rules A3 and C4. If ¢,,, = Ay and t,,, |1 i1 = v,
then 7,41 and ¢n41 are determined by the entry for y in 0,,1: if the entry is
In;, then [is the left element of ¢,,+1 and 1,41 = 7;. In the case of C4, if t,,, =y
and g, = q[l,r] and | = 2'(l1,...,1) or Az.2’(l1,...,l), then 0,1 and t,,11
are determined by the entry for 2’ in the table 7,,,1: if the entry is t'6; then
tma1 =t and 0,01 = 0;. It is this rule that allows the next move to be a jump
around the term tree (to a node labelled with a A). The moves A1-A3, B1 and
C2 traverse down the term tree while C1 and C3 remain at the current node.

Example 1 Let P be the problem x(v) = u where v = Az.z and v = f(Az.x).
Let X = {z} and C = {c} and let ¢ be the term Ay.y(y(f(Ay1.y1))) and so,
tree(t) is

(t1)Ay L1 (t2)y L1 (E3)A L1 (ta)y L1 (Es)X L1 (t6) f L (t7)Ayr L1 (Es)wn

There is just one play of G(¢, P), as follows.

124 Colin Stirling

t1 q[(A\z.2), f(Az.2)] 01 m

[
tog[Az.z, f(Ax.x)] Oame O = 1{(A\z.2)m/y} n2 =m A3
t3q[(), f(Ax.z)] O3m3 03 = 02 N3 = ne{tsth/z} C4
taqhz.z, f(Ax.x)] Oy 64 = 03 Ny =M A3
tsq(), f(Az.2)]05m5 05 =04 ns = naftsts/z} C4
teq[(), f(Az.2)|06m6 06 =05 N6 = 15 A2
t7q[(c),] 07 m7 07 = s n7 =1 B1
ts qlc, c] Og s O3 = O7{cn7/y1} ns =17 A3
ts q[3] 09 m9 o = 0O N9 =1s c1
The game rule applied to produce a move is also given. O

A partial play of G(¢, P) finishes when a final state, ¢[V] or ¢[3], occurs.
Player V loses a play if the final state is ¢[3] and V loses the game G(t, P) if she
loses every play. The following result provides a characterisation of ¢ = P.

Theorem 1V loses G(t, P) if, and only if, t = P.

Proof. For any position t;¢;0;m; of a play of G(t, P) we say that it m-holds (m-
fails) if ¢ = ¢[3] (¢ = ¢[V]) and when ¢; is not final, by cases on t; and ¢; (and
look-up tables become delayed substitutions)

—ift;, = Ay and ¢; = q[(l1, ..., k), 7] and " is (¢;0;)(Lims, ..., lgn;) then t/ =r
(t' # r) and ' normalises with m [-reductions

—ift; = fand ¢; = q[(l1,...,0),r] and ¢’ is ¢;0; then ¢’ = r (¥’ # r) and ¢/
normalises with m S-reductions

—ifti =z and ¢; = ¢(l,r] and t; |; t; and t' is In;(110;,...,t;.0;) then t' = r
(t' # r) and ¥’ normalises with m [-reductions.

The following are easy to show by case analysis.

1. if ¢;q:0;m; m-holds then g; = ¢[3] or for any next position t;11¢;+10i+17i+1
it m’-holds, m’ < m, or it m/-holds, m’ < m + 1, and the right-term in g; 11
is smaller than in ¢;

2. if t;q;0;m; m-fails then ¢; = ¢[V] or there is a next position t;41¢i+10i+17i+1
and it m/-fails, m’ < m, or it m/-fails, m’ < m + 1, and the right-term in
@i+1 is smaller than in ¢;

For instance, assume t;q;6;m; m-holds and t; = A\yy ... yr and ¢; |1 t;41 = y and
tiy1 Lt and q; = q[(l1,...,lk),7]. So, Oiy1 = Oi{lymi/y;} and giy1 = q[l, 7] if
0;+1(y) = In, and n;41 = 1y So, t; = Ay1 ... yg.y (8], ..., t,,) and by assumption
(t:0:) (L1, . .., lgn;) = r. With a G-reduction we get 0;41(y)(t)0iv1,...,t0,0i11)
which is (In;41)(#10i41, - .-, t,,0:+1) and so position t;1¢i+10i+1mir1 (M — 1)-
holds. Next, assume ¢;¢;6,m; m-holds, t; = f, ¢; = ¢[(l1,...,1;), f(s1,...,s,)] and
ti |j t’. By assumption, f(t}....,1;)0; = f(s1,...,5k). So, t;0; = s;. Consider
any choice of next position. If s; : 0 then g;+1 = ¢[(), s;], ti+1 = t; and 0,11 = 0;.
Therefore, #70; 1 = s; and so this next position either m/-holds, m’ < m or m-
holds and s; is smaller than f(si,...,ss). Alternatively, s; = Az.s. Therefore,
t;- =Xzt and t'0,;{c;/z;} = s{ci/x;} where the ¢;s are new, m’-holds for m’ < m.
And so t;@i(cl, cooyen) = s{ci/x;} (m’ 4 1)-holds, as required. Assume ¢;q;0;7;

Higher-Order Matching and Games 125

m-holds and t; = y, ¢ = q[l,7], | = Az1... zp.w, w = 2(l1,..., L), t; |; t; and
tit10i41 = ni+1(2). By assumption, (Azq ... zp.w)n; (t10;, ..., t,0;) = r. With one
B-reduction 711 (2)(17it1s - - s lmMiv1) = 7, thatis ¢ 0i1 ((Mit1s - - -5 bnMiv1)
= r and so the next position (m — 1)-holds. All other cases of 1 are similar to
one of these three, and the proof of 2 is also very similar.

The result follows from 1 and 2: if ¢ = P then for each initial position there
is an m such that it m-holds and if ¢ [~ P then there is an initial position that
m-fails. O

The tree checking game can be easily extended to characterise dual inter-
polation by including a second player 3 who is responsible for choices involving
inequations.

Assume that g = P, so V loses the game G(tg, P). The number of plays is
the number of branches in the right terms of P. We can index each play with
i when « is a branch of the right-term of the ith equation of P containing
forbidden constants: 7° is the play where all ¥ choices are dictated by «. This
means that two plays 7', 7% have a common prefix and differ after a position
involving a V choice, when the branches o and § diverge.

We also allow 7 to range over subplays which are consecutive subsequences of
positions of any play of G(¢g, P). The length of , ||, is the number of positions
in m. We let 7(i) be the ith position of m, 7(4,j) be the interval m(i),...,7(j)
and m; be its ith suffix, the interval = (i, |n|). For ease of notation, we write
temn(i),qemn(i),d€n(i)and n e w(i) if (i) = tgdn and ¢t ¢ w(i) means that
w(i) =t'gn and t £ ¢'. If ¢ = q[(l,...,lk),r] or ¢[l,r] then its right-term is r.

Definition 1 A subplay 7 is ri, right-term invariant, if ¢ € w(1) and ¢’ € = (|x])
share the same right-term 7.

Definition 2 Table 0" extends 6 if for all y € dom(6), 6'(y) = 0(y). Similarly, »’
extends 7 if for all z € dom(n), () = n(z).

We widen the usage of “extends” to positions: m(j) -extends 7 (i) if 0" € 7(j)
extends 6 € w(i), m(j) n-extends w(i) if ' € w(j) extends n € n(i) and 7(j)
extends 7 (i) if w(j) f-extends and n-extends 7 (7).

If 7(i)’s look-up table is called when move A3 or C4 produces 7(j) then m(j)
is a child of 7 (3).

Definition 3 Assume w € G(to, P). If w(i) = tq[(l1,....l),7]0n, w(j) =
t'qlm, 10, €' (t') = Ly and ¢/ 1™ ¢, then «(j) is a child of w(i). If w(i) =
yqrz .. Azpaw,r]0n, w(j — 1) =y ql,7']0' 0, | = Ax.zi (1) or Az.zm, or 2 (1)
or zpy and 1/ (zm,) = t'n and y |y, t/, then w(j) is a child of 7 (7).

Fact 1 If n(j) is a child of (i) then w(j) extends m(i).

4 Tiles and Subplays

Assume that ¢y = P. We would like to identify regions of the tree ¢y. For this
purpose, we define tiles that are partial trees.

126 Colin Stirling

Definition 1 Assume B = (By,...,B;) - 0€T.

1. X is an atomic leaf of type O

2. if x; : Bj then Az ...z is an atomic leaf of type B

3. a:0is a constant tile

4. if f : B and t; : B; are atomic leaves then f(t1,...,t) is a constant tile
5. y : 0 is a simple tile

6. if y : B and ¢; : B; are atomic leaves then y(t1,...) is a simple tile

A region of tp can be identified with a constant or simple tile. A leaf u : O
of tg is the tile w. If B # 0 then an occurrence of u : B in tg, u = f or y,
with its immediate children Azq,...,Axx, where x; may be empty, is the tile
u(Azy,..., Azy) in to.

Tiles in tg induce subplays of G(to, P). A play ont = f(Az1,..., Azy) is a pair
of positions m(i,i + 1) with ¢ € 7w(3): ¢[(l1,...,ln),r] € (@), r = f(S1,...,5k),
Ax; € w(i+1) is a leaf of t and ¢[(), s;] or g[(c1, ..., ¢cn), sj{ci /2 }] is the state
in 7(i + 1), depending on the type of s,.

Definition 2 A subplay 7 is a play on y(Az1,...,Azg) in to if y € (1) and
7(||) is a child of w(1). It is a j-play if A\z; € w(|7|).

A play m on y(Az1,...,Azy) in ¢y can have arbitrary length. It starts at y and
finishes at a leaf Ax;. In between, flow of control can be almost anywhere in
to (including y). Crucially, w(|7|) extends m(1): the free variables in the sub-
tree of ty rooted at y preserve their values, and the free variables in w when
q[Az1...zw,r] € w(1) also preserve their values. If 7 € G(tg, P) and y € m (i)
then there can be numerous plays (i, j) on y(Ax1,...,Axg) in tg, including no
plays at all. We now examine some pertinent properties of plays

Proposition 1 Assume 7 € G(to, P), w(i,m) and w(i,n), n > m, are plays on
y(Az1, ..., A\xg) and Ax; € w(m).

1. There is a position w(m'), m’ < n, that is a child of w(m).

2. If m(m/) is the first position that is a child of m(m), t' € w(m'), y1 occurs on
the branch between Axz; and t', t' is an i'-descendent of y1 and y1 |v Az,
then there is an i'-play w(mi,n1) on y1(Az1,..., A\zk) such that m < my
and ny <m'.

3. If m(m+m') is the first position that is a child of w(m), w(m,m +m’) is ri
and 7(i,n) is a j-play then w(n 4+ m') is the first position that is a child of
w(n), m(n,n+m’) is ri and for alln’ <m/, t € 7(m+n') iff t € 7(n +n’).

4. If 7(m + m') is the first position that is a child of w(m), m(m,m +m') is
not ri and w(i,n) is a j-play then there is a 7" € G(to, P) with ' (n) = 7(n),
7' (n 4+ m') is the first position that is a child of w'(n), ©'(n,n +m’) is not
ri and for alln’ <m’,ten(m+n') ifft € 7’'(n+n').

Proof. 1. Assume 7(i) = yq[Az1...zp.w,r]0n; and 7(i,m), 7(i,n) are plays
on y(Az1,...,Azg) with Az; € m(m). The table n = n{ \216/21, ..., A\z0/ 2}
belongs to 7(i + 1) and positions w(m — 1), m(n — 1) both n-extend 7 (i + 1).

Higher-Order Matching and Games 127

because w(m), w(n) are children of 7(i). No look-up table n; € 7(l), | < i+ 1,
has these entries n(z;) = Azy0. Consider the first position w(my) after m(m)
that is at a variable y; € mw(mq). Clearly, y; is a descendent of Az; in to. If
y1 is bound by Az; then w(mq) is a child of w(m) and the result is proved.
Otherwise, there are two cases m(m1) is a child of w(l), I < 7, and, so, by move
A3 its look-up table i’ cannot extend 7. Play may jump anywhere in tg by move
C4. If there is not a play m(m1,n1) on the simple tile headed with y; then for
all later positions m(mz), ma > mq, m(ms) cannot n-extend w(i + 1) which is
a contradiction. Therefore, play must continue with a position 7(n;) that is a
child of 7(my). Secondly, y; is bound by a Ay that is below Ax;. But then y; is
bound to a leaf of a constant tile that occurs between Az; and y; and so move
C3 must apply and play proceeds to a child of y;. This argument is now repeated
for the next position after 7(n1) that is at a variable y2 € m(ms2): y2 must be a
descendent of Az;. The argument proceeds as above, except there is the new case
that m(ms) is a child of 7(ny). However, by move A3, w(mz) cannot n-extend
m(i + 1). Therefore, eventually play must reach a child of 7(m).

2. This follows from the proof of 1.

3. Assume 7(m+m') is the first position that is a child of w(m), 7(m, m-+m')
is ri and (7, n) is a j-play. Consequently, w(m) = Az; gf0nand m(n) = Azx; ¢ 670
and both n-extend m(i + 1) because they are both children of 7 (7). Consider
positions w(m + 1), w(n + 1). If m’ = 1 the result follows. Otherwise, by move
A3, m1(m 4+ 1) = y1¢[l,r]61m and w(n + 1) = y1 q[l,r'] 07 m. These positions
have the same look-up table 7, the same left-terms in their state, and 6, 6}
only differ in their values for the variables that are bound by Az;. Therefore,
play must continue from both positions in the same way until a child of 7(m)
and 7(n) is reached.

4. Assume 7 = 7'®. The argument is similar to 3 except that the same V
choices in the non ri play 7(m,m +m’) need to be made. Therefore, there must
be a 7 = 78 such that 7’/(n) = m(n) and the same V choices are made in
' (nyn+m'). O

Tiles can be composed to form composite tiles. A (possibly composite) tile
is a partial tree which can be extended at any atomic leaf. If ¢(Ax) is a tile with
leaf Az and ¢’ is a constant or simple tile, then ¢(Az.t') is the composite tile that
is the result of placing ¢’ directly beneath Az in ¢. Throughout, we assume that
tiles are well-named. We now define a salient kind of simple or composite tile.

Definition 3 A tile is basic if it contains one occurrence of a free variable and
does not contain any constants. A tile is an (extended) constant tile if it contains
one occurrence of a constant and no occurrences of a free variable.

The single occurrence of a free variable in a basic tile must be its head variable
and the single occurrence of a constant in a constant tile must be its head
occurrence.

A contiguous region of ¢y, can be identified with a basic or constant tile: a
node y with its children and some, or all, of their children and so on (as long
as children of a variable y’ : B # 0 are included) is a larger region that is a

128 Colin Stirling

basic tile if y is its only free variable and it contains no constants. We write
t(Ax1,..., xg) if ¢ is a basic tile with atomic leaves Ax1,..., Azg. A basic or
constant tile in ¢y induces subplays of G(tg, P) that are compositions of plays of
its component tiles.

Definition 4 A subplay 7 is a play on t(A\x1, ..., \xg) in to if ¢t € 7(1), for some
i, Az; € 7(|m|), there is the branch t = y1 |, Az}, |1 y2...yn Ly, Az}, = Az
and 7 can be split into plays 7(im,jm) on ym Az, ... Az}’) where iy = 1,
im+1 = Jm + 1 and j, = |7|. It is a j-play if Az; € w(|7]).

The definition for constant tiles is similar. Properties of plays of simple tiles lift
to plays of basic tiles.

Corollary 1 Assume 7 € G(to, P), w(i,m’) and 7(i,n’), n’ > m’, are plays on
t(Az1,..., xg) and Axj; € m(m/), t = y1 |y)\x}l I y2 o oyn Ly, Ax), = Az
and 7(i,m") is split into plays 7(im,jm) on ym(A2y",... Az}’) where iy = i,
im-i-l =Jm+1 and Jn = m'.

1. w(m') extends (7).

2. There is a position w(m1), m' < my <n’, that is a child of ©(j;) for some i.

3. If m(myq) is the first position that is a child of w(j;) for some i, t' € w(my),
y' occurs on the branch between A\x; and t', t' is an i'-descendent of y' and
Yy Lo Azi, then there is an i'-play w(ma,n2) on y'(Az1,..., A\zk) such that
m’ < ms and no < my.

4. If 7(m’ + mq) is the first position that is a child of w(j;), for some i,
w(m’,m'+mq) is ri and w(i,n') is a j-play then w(n'4+my) is the first position
that is a child of any position w(n") such that A’ € w(n"), w(n’,n’ +mq)
is ri and for allng < mq, t € 7(m’ +mnq1) iff t € m(n’ + nq).

5. If w(m' + mq) s the first position that is a child of ©(j;), for some 1,
w(m',m’ 4+ mq) is not ri and w(i,n’) is a j-play then then there is a 7' €
G(to, P) with '(n') = w(n') and «'(n’ + mq) is the first position that is a
child of any position 7' (n") such that Az’ € @' (n"), @' (n',n' +my) is not
ri and for all ng < mq, t € 7(m' +nq) iff t € 7' (0’ + nq).

Definition 5 Assume 7 is a j-play (play) on t. It is a shortest j-play (play) if
no proper prefix of 7 is a j-play (play) and it is an ri j-play (play) if 7 is also
ri. It is a canonical j-play (play) if each ¢’ € 7 (i) is a node of t. Two plays m and
7' on t are independent if one is not contained in the other: that is, m # my7/ms
and 7’ # m Ty,

Definition 6 Two basic tiles ¢t and t’ in t(are equivalent, written ¢t = ¢’ if they
are the same basic tiles with the same free variable y (bound to the same \y).

A tile t' is a j-descendent of t(Axy, ..., \xy) in to if there is a branch in to from
)\.Ij to t/.
Definition 7 The tile t(Ax1, ..., \xy) is j-end in to, if every free variable below

Az; in to is bound above t. It is an end tile if it is j-end for all j. The tile
t(Ax1,..., x) is a top tile in to if its free variable y is bound by the initial
lambda Ay of to.

Higher-Order Matching and Games 129

A shortest play on a top tile is canonical. The following is a simple consequence
of Corollary 1.

Fact 1 If m € G(to, P) and t is a j-end tile and t € 7(i), then there is at most
one j-play w(i,m) on t.

We also want to classify tiles according to their plays.

Definition 8 The tile t(Ax1, ..., Axy) is sri if every shortest play on ¢ is ri. It is
j-ri if every shortest j-play on it is ri.

Definition 9 Assume t(Az1, ..., Azk) is a basic tile in ¢y and 7 is a subplay. We
inductively define when ¢ is j-directed in 7

1. if t & m(i) for all 4, then ¢ is j-directed in 7
2. if () is the first position with ¢ € (i) and there is a shortest j-play m (i, m)
on t and 7(i,m) is ri and ¢ is j-directed in 7,41, then ¢ is j-directed in 7.

Definition 10 Tile ¢ is j-directed in t¢ if it is j-directed in every 7 € G(tg, P).

If t is j-directed in to then ™ € G(to, P) is partitioned uniquely into a sequence
of ri inner regions 7(ix, my) which are shortest j-plays on t.

(1) ...7w(i1) ... w(m1) ... 7(ipn) ... m(my) ... w(|7|)
t)\J,'j t)\J,'j

By definition, ¢ cannot occur outside these regions. If 71 = 7@ then any play
78 will have the same intervals 7%° (i, my) until the point that 7*, 7?7 diverge
(which is outside a region). A tile can be j-directed in ¢y for multiple j.

We now pick out an interesting feature about embedded end tiles.

Proposition 2 Ift; =ty are end tiles in tg and ty is a j-descendent of t1, then
either to is j-directed in to or there are w,7' € G(to, P) and j-plays m(my,n1)
on t1, ©'(ma,ng) on ty that are not ri and ma > n;.

Proof. Assume t; = ty are end tiles and to is a j-descendent of ¢;. Both ¢;
and to have the same head variable bound to the same Ay above ¢; in ¢g. Let
m € G(to, P). Consider the first position t2 € 7(m). There must be an earlier
position t1 € (i) such that 7(m) extends 7 (i) and a j-play 7(i,i + k) on ¢1. If
this play is ri then because t; = to are end tiles there is the same j-play on to,
m(m, m + k). This argument is repeated for subsequent plays or until the j-play
on t; is not ri. If the play on ¢; is not ri then for some play #’ with 7’(m) = 7(m)
there is the same j-play 7’(m,m + k) on to. O

5 Transformations

In this section we define four transformations. A transformation T changes a
tree s into a tree t, written sT¢. Each transformation preserves the crucial
property: if sTt and s = P then ¢t = P which is proved using the game-
theoretic characterisation. The first transformation is easy. Let ¢’ be a subtree

130 Colin Stirling

of ty whose root node is a variable y or a constant f : B # 0. G(to, P) avoids t'
if t' ¢ m(i) for all positions and plays © € G(to, P). Let to[a/t'] be the result of
replacing t’ in ty with the constant a : 0.

T1 If G(tg, P) avoids ¢’ then transform tg to to[a/t']

Assume that tg = P. The other transformations involve basic tiles. If a j-end
tile is j-directed then it is redundant and can be removed from ¢y.

T2 Assume t(Axq,...,\xg) is a j-directed, j-end tile in ¢t and ¢’ is the subtree
of ¢y rooted at t. If ¢; is the subtree directly beneath Az; then transform ¢y to

tolt; /t'].
The next transformation separates plays.

Definition 1 Assume ¢ = t(Az1,..., Azy) is a basic sri tile in ¢y that is not an
end tile. Tile ¢ is a separator if there are two independent shortest plays that
end at different leaves of ¢.

T3 If t(\x1, ..., \xg) is a separator in ¢y and ¢’ is the subtree of o rooted at ¢
then transform tg to to[t(Ax1.t/, ..., Azg.t'/t].

Here, we have added an extra copy of ¢ directly below each Az;: we assume
that the head variable of this copy of ¢ is bound by the Ay that binds the head
variable of the original ¢ and we assume that all variables below Az; that are
bound in ¢ in ¢y are now bound in the copy of ¢: this means that the original ¢
becomes an end tile.

The next transformation, in effect, allows tiles to be “lowered” in tg.

Definition 2 Assume t(Az1,...,Azk) is j-ri and not j-end in ¢y and directly
below Az; is the constant or basic tile u(Az1,..., Az,) whose head variable, if
there is one, is not bound in ¢. Tile t is j-permutable with u in ty if whenever
m(i,m) is a shortest j-play on t then either (1) there are no other j-plays 7 (i, m’)
ont or (2) m(m + 1,n) is a shortest play on w and it is ri and u is an end tile.

T4 Assume t(Azq,...,Azy) is j-permutable with u(Az1,...,Az;) in o and ¢
is the subtree rooted at u in to. If ¢, and ¢, are the subtrees of ¢¢ directly
below Az; and Az; then transform tg to to[u(Az1.wi, ..., Az Wy,) /t'] where w; =
t()\xl.tl, ey)\.ijl.tjfl,)\.Ij.té, /\Ij+1.tj+1, ceey)\xk.tk).

The tile ¢ is copied below u: however, in the copy of ¢ below Az; of u ¢, (and not
t;) occurs below Az; of t. We assume that the free variables of ¢; and ¢} retain
their binders in the transformed term and that the copies of ¢ below u bind the
free x;.

Consider the case when the j-ri tile ¢ is not j-permutable with the constant
tile f(Az1,...,A2zm). There is a shortest j-play 7(é, m) on t and another j-play
m(i,n) on t.

w(i)...7t(m) 7(m+1)...7(n) 7(n+1)
t /\,Tj f /\,Tj f

Consequently, permuting ¢ with f is not permitted: the transformed term would
exclude the extra play on f.

Higher-Order Matching and Games 131

In an application of T4, if ¢ is a top j-ri tile and every shortest j-play is
canonical then after its application ¢ will be j-end and j-directed, and therefore
can be removed by T2. In this case, the tile ¢t does percolate down the term tree
to.

We now show that the four transformations preserve interpolation.

Proposition 1 For 1 <i<4, if sTit and s |= P then t = P.

Proof. This is clear when i = 1. Consider i = 2. Assume t(A\z1,...,\xg) is
a j-directed, j-end tile in g, ¢’ is the subtree of ¢y rooted at ¢t and t; is the
subtree directly beneath A\x;, t{, = to[t;/t'] and to = P. We shall convert m =
7@ € G(to, P) into the play o = o'® € G(t),, P) that V loses. The play 7 is split
uniquely into regions.

w(1) ...7w(i1) ... w(my) ... w(i2) ... m(ma) ... ©(in) ... w(my) ... w(|7|)
t)\J,'j t)\J,'j t)\,Tj

The play o is just the outer subplays (modulo minor changes to the look-up
tables) because each mw(my,) extends m(iy).

(1) ...7w(ir — Dw(my + 1) ... 7w(in — D)w(mp + 1) ... w(|7|)

We show, using a similar argument as is used in Proposition 1.1 of Section 4,
that if s is a node in ¢ or is a descendent of a leaf Ax,,, m # j, of ¢t then s
cannot occur in any outer subplay of 7. If s were to appear in an outer subplay
then move C4 must have applied: there is then a variable y and a position in an
outer subplay y € 7w(n) and 6 € w(n) and 6(y) = In and there is a free variable
z in I such that n(z) = s#'. However, this is impossible. Consider 61 € 7 (i1):
clearly, there is no free variable in the subtree rooted at ¢ with this property.
When play reaches m(m1) because t is a j-end tile and because m(mq) extends
7(i1) there cannot be a free variable in the subtree ¢; with this property either.
This argument is now repeated for subsequent positions 7 (i) and 7(my).

Let i = 3. Assume t(A\x1,...,\x) is a separator in tg, t' is the subtree of
to rooted at t and t, = to[t(Ax1.t', ..., Azg.t’')/t']. We shall convert T = 7@ €
G(to, P) into o = o' € G(t{,, P) that V loses. Consider any shortest play on ¢ in
7% m(m, k) and assume it is a j-play. By definition this play is ri. Therefore,
this interval is transformed into the following interval for ;.

m(m) ... w(k) w(m) ... (k)
t)\.Ij t /\Ij

where the second ¢ is the copy of ¢ directly beneath \x; in .

Finally, i = 4. Assume t(A\z1, ..., A\xg) is j-permutable with w(Az1, ..., Azp)
in g, ' is the subtree rooted at u in tg, ¢; and ¢} are the subtrees of ¢y directly
below Az; and A\z; and t{) = tolu(Az1.w1, .. .,)\zm.wm)/t’] where w; is as in T4.
We shall convert m = 7' € G(to, P) into 0 = o* € G(t(, P) that V loses. The
play 7 can be divided into non-overlapping regions 7 (ix, my).

m(l)...7w(i1) ... w(my) w(imy + 1) ... 7w(in) ... 7(my) 7(my + 1) ... 7w(|7])
t AT U t Az U

132 Colin Stirling

where (i, my) are shortest j-plays: such a region may also contain other short-
est j-plays on ¢:

coom(ig) o.ow(@) ooow(m) oo (myg) -
t t)\,Tj)\J,'j

If u = f(Az1,...,Azp) is a constant tile then (1) of Definition 2 applies: so
each 7(ig, my) only contains a single occurrence of Az; because the play is ri.
Moreover, there are no further j-plays m(ir,m’) on t. Therefore, o includes the
following change to m for each interval 7(ix, my) where we ignore the minor
changes to look-up tables

W(ik) ...W(mk) W(mk—l—l) w(mk+2) W(Zk) W(mk) 7r(m;€+3)
t AT f A2k, t AT th,

where ¢}, € 7 (i) is the copy of ¢ directly beneath Az, in tj.

Next, let u be a basic tile. To obtain ¢ we iteratively do additions and dele-
tions to 7 starting with 7 (i1, m1) and then recursively transforming inner j-plays
on ¢ within this region. Let 7 be the result of the changes to the initial 7 for the
intervals m(ij,m;), j < k. Consider the interval 7(iy, my). Consider case (1) of
Definition 2. Let m(my, + 1,n%) be all plays on u € 7(my + 1). If there are no
plays then 7 is initially unchanged. Otherwise, m has the following structure:

coom(ig) ooom(mg) m(my + 1) oo m(nd) T(nd +1) ...
t AT u Az, th,

To obtain the new 7, we do the following addition for each ¢

m(ig) ... m(my) w(my +1) ... w(ng) ... w(n) w(ig) ... w(my) 7(nt +1) ...
t AT u A2k, Az, AT th,

where ¢ immediately after m(nt) is its copy in t{, directly beneath Az, .

Finally, we consider the case that u is an end tile. Let m(my + 1,my + n) be
the unique play on u with A\z; € m(my, + n). Consider all j-plays 7(ix, m}) on
t € m(ix) where mj = my:

m(ig) ... w(mp) ... w(my) 7(mi +1) ... 7(ml, +n) 7(ml, +n+1) ...
t AL, AL, u Az t

There must be the same play on u at each w(m}, + 1) because the value of the
head variable of u is always the same and wu is an end tile. So initially we do the
following addition

m(ig) ... w(m}) w(mi + 1) ... w(mp +n) 7(ix) ... 7(mp) m(m) +n+1)
t Az, u Az t AL t

where the second ¢ € 7 (i) is the copy of ¢ directly below Az; in t{, and for subse-
quent ¢ > 1 we delete the ri region 7T(m}C +1, m}C +n). To complete the argument,
we recursively apply this technique to shortest j-plays on ¢ within 7 (ix, m4): note
that j-plays on ¢ below A\z; within 7(ij, m;.) will include additional ri plays on
on t and on u. O

Higher-Order Matching and Games 133

6 Decidable Instances

We now briefly sketch how the the game-theoretic characterisation of matching
provides uniform decidability proofs for two instances of interpolation that are
known to be decidable, the 4th-order problem and the atoms case where in each
equation z(vy,...,v,) = u the term u is a constant a : 0 [5, 6]. In both cases
the proof establishes the small model property (if to = P then there is a small
t = P) via the transformations of the previous section. In neither case do we
need to appeal to observational equivalence.

Figure 2 presents the algorithm for both cases. The procedure is initiated
by marking all leaves of ¢g and recursively proceeds towards its root. At each
stage, a lowest marked node u is examined for transformations: the algorithm
has, therefore, already ascended all branches below wu.

Assume to = P

mark all leaves u : 0 of tg

choose a marked node u such that no descendent of u is marked

if toT1t at uw then to = t' and unmark all nodes and return to 1

identify basic or constant tile t = t(Az1, ..., Azy) rooted at u

if toTit’ at ¢ for 7 € {2,3} then to = ¢’ and unmark all nodes and return to 1
identify successor basic or constant tiles ¢; below Az;

if toT4t’ at t and a successor then to = t' and unmark all nodes and return to 1.
if u' |5, Ay |1 v then unmark u and mark »’ and return to 2

finish

©oONS A W=

Fig. 2. The algorithm

Clearly, the procedure must terminate with ¢y = P and where no transfor-
mation applies anywhere in ¢g. Assume tg is such a term.

Proposition 1 If ' is a subterm of to such that t' only contains sri tiles, leaves
y:0 and a: 0 then t' consists of sri end tiles and leaves a : 0.

Proof. By a simple induction. A leaf u may be a constant or a variable. Consider
u’ such that u' |;;, Ay |1 u. By repeating the argument for other directions i,
from v, the tile rooted at v’ will be an end tile. Consider the first time that a
tile isnt an end tile. Either T3 or T4 must apply, which is a contradiction.

Hence for the atoms case, as all tiles are sri, every end tile is also a top tile.
There can be at most m separators where m is the number of equations. Finally,
Proposition 2 of Section 4 provides a simple upper bound both on the size
of an end tile in ¢y and the number of embedded end tiles. The details are
straightforward.

Next we consider the 4th-order case. The term t consists of top tiles, leaves
and constant tiles. Shortest plays on a top tile are canonical. The number of
top tiles that are not sri is bounded (by the sum of the sizes of the sets R; of

134 Colin Stirling

section 2). Again there can be at most m separators. Now, the crucial property is
that given a sequence of sri top tiles t;(Ax%, ...,)\x}%) such that for each i, t; 11 is
directly below /\x;l then most of the tiles ¢; are n;-end and n;-directed for some
n; which follows easily from Proposition 1 of Section 4. (If a shortest ri j-play
on t;, w(k,m), is such that there is a child 7(m') of w(m), so y : 0 € w(m’), then
every j-play m(k,n) of ¢; is such that there is a child 7(n’) of w(n) and y € w(n’)
or w(k,m’) is not ri and for some n’, w(k,n’) is also not ri.)

References

1. Comon, H. and Jurski, Y. Higher-order matching and tree automata. Lecture Notes
in Computer Science, 1414, 157-176, (1997).

2. Dowek, G. Higher-order unification and matching. In A. Robinson and A. Voronkov
ed. Handbook of Automated Reasoning, Vol 2, 1009-1062, North-Holland, 2001.

3. Huet, G. Résolution d’équations dans les langages d’ordre 1, 2, ... w. These de
doctorat d’etat, Universite Paris VII, (1976).

4. Loader, R. Higher-order [B-matching is undecidable, Logic Journal of the IGPL,
11(1), 51-68, (2003).

5. Padovani, V. Decidability of all minimal models. Lecture Notes in Computer Sci-
ence, 1158, 201-215, (1996).

6. Padovani, V. Decidability of fourth-order matching. Mathematical Structures in
Computer Science, 10(3), 361-372, (2001).

7. Schubert, A. Linear interpolation for the higher-order matching problem. Lecture
Notes in Computer Science, 1214, 441-452.

8. Schmidt-Schau3, M. Decidability of arity-bounded higher-order matching. Lecture
Notes in Artificial Intelligence, 2741, 488-502, (2003).

9. Statman, R. The typed A-calculus is not elementary recursive. Theoretical Com-
puter Science, 9, 73-81, (1979).

10. Stirling, C. Modal and Temporal Properties of Processes, Texts in Computer Sci-
ence, Springer, 2001.

11. Wierzbicki, T. Complexity of higher-order matching. Lecture Notes in Computer
Science, 1632, 82-96, (1999).

Decidability of Type-Checking in the Calculus
of Algebraic Constructions with Size Annotations

Frédéric Blanqui

Laboratoire Lorrain de Recherche en Informatique et Automatique (LORIA)
Institut National de Recherche en Informatique et Automatique (INRIA)
615 rue du Jardin Botanique, BP 101, 54602 Villers-lés-Nancy, France
blanqui@loria.fr

Abstract. Since Val Tannen’s pioneering work on the combination of
simply-typed A-calculus and first-order rewriting [! ||, many authors have
contributed to this subject by extending it to richer typed A-calculi and
rewriting paradigms, culminating in the Calculus of Algebraic Construc-
tions. These works provide theoretical foundations for type-theoretic
proof assistants where functions and predicates are defined by oriented
higher-order equations. This kind of definitions subsumes usual inductive
definitions, is easier to write and provides more automation.

On the other hand, checking that such user-defined rewrite rules, when
combined with g-reduction, are strongly normalizing and confluent, and
preserve the decidability of type-checking, is more difficult. Most ter-
mination criteria rely on the term structure. In a previous work, we
extended to dependent types and higher-order rewriting, the notion of
“sized types” studied by several authors in the simpler framework of ML-
like languages, and proved that it preserves strong normalization.

The main contribution of the present paper is twofold. First, we prove
that, in the Calculus of Algebraic Constructions with size annotations,
the problems of type inference and type-checking are decidable, provided
that the sets of constraints generated by size annotations are satisfiable
and admit most general solutions. Second, we prove the latter proper-
ties for a size algebra rich enough for capturing usual induction-based
definitions and much more.

1 Introduction

The notion of “sized type” was first introduced in [20] and further studied by
several authors [1, 3, 19, 29] as a tool for proving the termination of ML-like
function definitions. It is based on the semantics of inductive types as fixpoints
of monotone operators, reachable by transfinite iteration. For instance, natural
numbers are the limit of (S;);<w, where S; is the set of natural numbers smaller
than ¢ (inductive types with constructors having functional arguments require
ordinals bigger than w). The idea is then to reflect this in the syntax by adding
size annotations on types indicating in which subset 5; a term is. For instance,
subtraction on natural numbers can be assigned the type — : nat® = nat® =
nat®, where o and (are implicitly universally quantified, meaning that the size

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 135-150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

136 Frédéric Blanqui

of its output is not bigger than the size of its first argument. Then, one can
ensure termination by restricting recursive calls to arguments whose size — by
typing — is smaller. For instance, the following ML-like definition of ’—yil~|:
letrec div x y = match x with

| 0->0

| S x> ->8 (div (x* - y) y)

is terminating since, if x is of size at most o and y is of size at most 3, then z’
is of size at most o« — 1 and (z' — y) is of size at most o — 1 < .

The Calculus of Constructions (CC) [16] is a powerful type system with
polymorphic and dependent types, allowing to encode higher-order logic. The
Calculus of Algebraic Constructions (CAC) [3] is an extension of CC where func-
tions are defined by higher-order rewrite rules. As shown in [10], it subsumes the
Calculus of Inductive Constructions (CIC) [17] implemented in the Coq proof
assistant [14], where functions are defined by induction. Using rule-based def-
initions has numerous advantages over induction-based definitions: definitions
are easier (e.g. Ackermann’s function), more propositions can be proved equiv-
alent automatically, one can add simplification rules like associativity or using
rewriting modulo AC [5], etc. For proving that user-defined rules terminate when
combined with (-reduction, [3] essentially checks that recursive calls are made
on structurally smaller arguments.

In [0], we extended the notion of sized type to CAC, giving the Calculus of
Algebraic Constructions with Size Annotations (CACSA). We proved that, when
combined with §-reduction, user-defined rules terminate essentially if recursive
calls are made on arguments whose size — by typing — is strictly smaller, by
possibly using lexicographic and multiset comparisons. Hence, the following rule-
based definition of [¥,]:

0/y — 0
(sz)/y — sz —vy)/vy)

is terminating since, in the last rule, if = is of size at most « and y is of size
at most (3, then (s z) is of size at most a + 1 and (x — y) is of size at most
a < a + 1. Note that this rewrite system cannot be proved terminating by
criteria only based on the term structure, like RPO or its extensions to higher-
order terms [21, 27]. Note also that, if a term ¢ is structurally smaller than a term
u, then the size of t is smaller than the size of u. Therefore, CACSA proves the
termination of any induction-based definition like CIC/Coq, but also definitions
like the previous one. To our knowledge, this is the most powerful termination
criterion for functions with polymorphic and dependent types like in Coq. The
reader can find other convincing examples in [6].

However, [0] left an important question open. For the termination criterion to
work, we need to make sure that size annotations assigned to function symbols
are valid. For instance, if subtraction is assigned the type — : nat® = nat® =
nat®, then we must make sure that the definition of — indeed outputs a term
whose size is not greater than the size of its first argument. This amounts to

Decidability of Type-Checking in the Calculus of Algebraic Constructions 137

check that, for every rule in the definition of —, the size of the right hand-side
is not greater than the size of the left hand-side. This can be easily verified by
hand if, for instance, the definition of — is as follows:
00—z
z — 0
(sz) — (sy)

L
&8O

-y

The purpose of the present work is to prove that this can be done automat-
ically, by inferring the size of both the left and right hand-sides, and checking
that the former is smaller than the latter.

nil : (A:*)list*A 0
cons : (A:%)A = (n:nat)list*A n = list**A (sn)
if in_then else :bool = (A: x)A= A= A
insert : (A:x)(<: A= A= bool)A = (n:nat)list®A n = list®**A (sn)
sort : (A:%)(<: A= A= bool)(n : nat)list* A n = list*An

if true in A then u else v

if false in A then u else v
insert A < x (nil)
insert A < = _(cons _ymnl)

u

v

cons Az 0 (nil A)

if <y inlist A (s (sn))

then cons A z (sn) (cons Aynl)

else cons Ay (sn) (insert A < znl)
nil A

insert A < zn (sort A < nl)

Ll

sort A < (nil)
sort A < (cons _xznl)

L

Fig. 1. Insertion sort on polymorphic and dependent lists

We now give an example with dependent and polymorphic types. Let * be
the sort of types and list : x = nat = x be the type of polymorphic lists of fixed
length whose constructors are nil and cons. Without ambiguity, s is used for the
successor function both on terms and on size expressions. The functions insert
and sort defined in Figure 1 have size annotations satisfying our termination
criterion. The point is that sort preserves the size of its list argument and thus
can be safely used in recursive calls. Checking this automatically is the goal of
this work.

An important point is that the ordering naturally associated with size anno-
tations implies some subtyping relation on types. The combination of subtyping
and dependent types (without rewriting) is a difficult subject which has been
studied by Chen [12]. We reused many ideas and techniques of his work for
designing CACSA and proving important properties like (-subject reduction
(preservation of typing under (-reduction) [7].

Another important point is related to the meaning of type inference. In ML,
type inference means computing a type of a term in which the types of free and
bound variables, and function symbols (letrec’s in ML), are unknown. In other

138 Frédéric Blanqui

words, it consists in finding a simple type for a pure A-term. Here, type inference
means computing a CACSA type, hence dependent and polymorphic (CACSA
contains Girard’s system F), of a term in which the types and size annotations of
free and bound variables, and function symbols, are known. In dependent type
theories, this kind of type inference is necessary for type-checking [15]. In other
words, we do not try to infer relations between the sizes of the arguments of a
function and the size of its output like in [4, 13]. We try to check that, with the
annotated types declared by the user for its function symbols, rules satisfy the
termination criterion described in [6].

Moreover, in ML, type inference amounts to solve equality constraints in
the type algebra. Here, type inference amounts to solve equality and ordering
constraints in the size algebra. The point is that the ordering on size expressions
is not anti-symmetric: it is a quasi-ordering. Thus, we have a combination of
unification and symbolic quasi-ordering constraint solving.

Finally, because of the combination of subtyping and dependent typing, the
decidability of type-checking requires the existence of minimal types [12]. Thus,
we must also prove that a satisfiable set of equality and ordering constraints has
a smallest solution, which is not the case in general. This is in contrast with
non-dependently typed frameworks.

Outline. In Section 2, we define terms and types, and study some properties of
the size ordering. In Section 3, we give a general type inference algorithm and
prove its correctness and completeness under general assumptions on constraint
solving. Finally, in Section 4, we prove that these assumptions are fulfilled for the
size algebra introduced in [3] which, although simple, is rich enough for capturing
usual inductive definitions and much more, as shown by the first example above.
Missing proofs are given in [9].

2 Terms and Types

Size Algebra. Inductive types are annotated by size expressions from the fol-
lowing algebra A:

an=alsa| oo

where a € Z is a size variable. The set A is equipped with the quasi-ordering
<4 defined in Figure 2. Let ~ 4= <4 N >4 be its associated equivalence.

Let ¢, 1, p, ... denote size substitutions, i.e. functions from Z to .A. One can
easily check that <4 is stable by substitution: if a <4 b then ap <4 bp. We
extend <4 to substitutions: ¢ <4 ¥ iff, for all « € Z, ap <4 a).

We also extend the notion of “more general substitution” from unification
theory as follows: ¢ is more general than 1, written ¢ C 1), iff there is ¢’ such
that e’ < 1.

Terms. We assume the reader familiar with typed A-calculi [2] and rewriting [15].
Details on CAC(SA) can be found in [0, 5]. We assume given a set S = {x, 0} of
sorts (* is the sort of types and propositions; O is the sort of predicate types),

Decidability of Type-Checking in the Calculus of Algebraic Constructions 139

a<ab b<auc

refl) a <4 a trans
(ref) a<aa (trans) “ 707

<ab <abd
@ =aA (succ) 4= (infty) a <4 oo

(mon) @ < sb

sa <4 sb

Fig. 2. Ordering on size expressions

a set F of function or predicate symbols, a set CFZ C F of constant predicate
symbols, and an infinite set X of term variables. The set 7 of terms is:

tuo=s|a|C| fllz:tlt]| (z:0)t |t

where s € S,z € X, C € CF?,a € Aand f € F\CF". A term [z : t]u is
an abstraction. A term (z : T)U is a dependent product, simply written T = U
when x does not occur in U. Let t denote a sequence of terms t¢1, ..., t, of length
[t| = n.

Every term variable z is equipped with a sort s, and, as usual, terms
equivalent modulo sort-preserving renaming of bound variables are identified.
Let V(t) be the set of size variables in ¢, and FV(¢) be the set of term vari-
ables free in t. Let 0,0,... denote term substitutions, i.e. functions from X
to 7. For our previous examples, we have CF” = {nat,list,bool} and F =
CF U{0,s,/, nil,cons,insert, sort}.

Rewriting. Terms only built from variables and symbol applications ft are said
to be algebraic. We assume given a set R of rewrite rules [— r such that [is
algebraic, [= fl with f ¢ CF" and FV(r) C FV(l). Note that, while left hand-
sides are algebraic and thus require syntactic matching only, right hand-sides
may have abstractions and products. g-reduction and rewriting are defined as
usual: Cl[x : Tlu v] —g Clu{z — v}] and C[lo] —g Clro] if | — r € R. Let
— = —g U —g and —" be its reflexive and transitive closure. Let ¢ | u iff there
exists v such that t —* v *«— u.

Typing. We assume that every symbol f is equipped with a sort s; and a type
77 = (¢ : T)U such that, for all rules fl — r € R, [I| < |T| (f is not applied
to more arguments than the number of arguments given by 7). Let F*° (resp.
X®) be the set of symbols (resp. variables) of sort s. As usual, we distinguish
the following classes of terms where ¢ is any term:

—objects: o=z e X* | feF*|[z:tlo] ot
— predicates: pi=2 € X7 | C* € CF° | fe FP\CF" | [z:tlp| (z:t)p | pt
— kinds: K =% | (z: t)K

Examples of objects are the constructors of inductive types 0, s, nil, cons, . ..
and the function symbols —, /, insert, sort, Their types are predicates: induc-
tive types bool, nat, list, . . ., logical connectors A, V, ..., universal quantifications
(z : T)U,... The types of predicates are kinds: * for types like bool or nat,
* = nat = * for list, ...

140 Frédéric Blanqui

An environment I' is a sequence of variable-term pairs. An environment is
valid if a term is typable in it. The typing rules of CACSA are given in Figure 4
and its subtyping rules in Figure 3. In (symb), ¢ is an arbitrary size substitution.
This reflects the fact that, in type declarations, size variables are implicitly
universally quantified, like in ML. In contrast with [12], subtyping uses no sorting
judgment. This simplification is justified in [7].

In comparison with [7], we added the side condition V(t) = @ in (size). It
does not affect the properties proved in [7] and ensures that the size ordering
is compatible with subtyping (Lemma 2). By the way, one could think of tak-
ing the more general rule C%t < C’u with t ~4 w. This would eliminate the
need for equality constraints and thus simplify a little bit the constraint solving
procedure. More generally, one could think in taking into account the monotony
of type constructors by having, for instance, list nat® < list nat’ whenever
a <4 b. This requires extensions to Chen’s work [12] and proofs of many non
trivial properties of [7] again, like Theorem 1 below or subject reduction for 3.

(refl) T<T (size) Ct<C" (Ce€CF’, a<ab, V(t)=0)

d U<Uu vV’ T <U TUT U\ U
wrod) oy <@ oy O ey TITLULD)
. T<U ULV
(trans) T<v
Fig. 3. Subtyping rules
. 4 I'-U:s INz:UFV:§
(ax) (prod) 'k(z:0)V:¢
. Frc:0 o FT1pisy o
(size) ECo e (CeCF,ac A (symb) e (f¢CF)
I'ET:s, d r K I't:T I'FU:s; d r
(var) F,x:T}—x:T(x¢ om(I)) (weak) Lax:UkFt: T (@ ¢ dom(I"))
Ne:Ukv:V I'b(x:U)V:s 'tt:(z:U)V I'ku:U
(abs) (app)

I'tz:Up:(z:U)V I'tu:V{z— u}

I'tt:T I'FT :s

(sub) It T

(T <1

Fig. 4. Typing rules

oo-Terms. An oco-term is a term whose only size annotations are co. In par-
ticular, it has no size variable. An oco-environment is an environment made of
oo-terms. This class of terms is isomorphic to the class of (unannotated) CAC

Decidability of Type-Checking in the Calculus of Algebraic Constructions 141

terms. Our goal is to be able to infer annotated types for these terms, by using
the size annotations given in the type declarations of constructors and function
symbols 0, s, /, nil, cons, insert, sort, . ..

Since size variables are intended to occur in object type declarations only,
and since we do not want matching to depend on size annotations, we assume
that rules and type declarations of predicate symbols nat, bool, list, ... are made
of co-terms. As a consequence, we have:

Lemma 1. - Ift —g t' then, for all o, to —xr t'p.
—IfI'=t:T then, for all o, 'pFtp : Te.

We make three important assumptions:

(1) R preserves typing: for all | — r € R, I', T and o, if I' F lo : T then
I'tro :T. It is generally not too difficult to check this by hand. However,
as already mentioned in [0], finding sufficient conditions for this to hold in
general does not seem trivial.

(2) BUR is confluent. This is for instance the case if R is confluent and left-
linear [23], or if U TR is terminating and R is locally confluent.

(3) SUR is terminating. In [0], it is proved that SUR is terminating essentially
if, in every rule fl — r € R, recursive calls in r are made on terms whose
size — by typing — are smaller than I, by using lexicographic and multiset
comparisons. Note that, with type-level rewriting, confluence is necessary
for proving termination [8].

Important Remark. One may think that there is some vicious circle here: we
assume the termination for proving the decidability of type-checking, while type-
checking is used for proving termination! The point is that termination checks
are done incrementally. At the beginning, we can check that some set of rewrite
rules R is terminating in the system with 3 only. Indeed, we do not need to use
R1 in the type conversion rule (conv) for typing the terms of Ry. Then, we can
check in U R4 that some new set of rules R is terminating, and so on. ..

Various properties of CACSA have already been studied in [7]. We refer the
reader to this paper if necessary. For the moment, we just mention two important
and non trivial properties based on Chen’s work on subtyping with dependent
types [12]: subject reduction for § and transitivity elimination:

Theorem 1 ([7]). T < U iff T| <s U], where <y is the restriction of < to
(refl), (size) and (prod).

We now give some properties of the size and substitution orderings. Let — 4
be the confluent and terminating relation on A4 generated by the rule sco — oc.

Lemma 2. Let a] be the normal form of a w.r.t. — 4.
—a~abiffal=1"].

~Ifoo <4 a or s¥tla <4 a then al= co.
—Ifa<aband o <4 then ap <4 bip.
—Ifp<av¥ and U <V then Up < V1.

Note that oco-terms are in A-normal form. The last property (compatibility
of size ordering wrt subtyping) follows from the restriction V(t) = () in (size).

142 Frédéric Blanqui

3 Decidability of Typing

In this section, we prove the decidability of type inference and type-checking for
oo-terms under general assumptions that will be proved in Section 4. We begin
with some informal explanations.

How to do type inference? The critical cases are (symb) and (app). In (symb),
a symbol f can be typed by any instance of 77, and two different instances may be
necessary for typing a single term (e.g. s(sx)). For type inference, it is therefore
necessary to type f by its most general type, namely a renaming of 7; with fresh
variables, and to instantiate it later when necessary.

Assume now that we want to infer the type of an application tu. We naturally
try to infer a type for ¢ and a type for u using distinct fresh variables. Assume that
we get T and U’ respectively. Then, tu is typable if there is a size substitution
¢ and a product type (x : P)Q such that Ty < (z: P)Q and U'p < P.

After Theorem 1, checking whether A < B amounts to check whether A] <,
B, and checking whether A <; B amounts to apply the (prod) rule as much
as possible and then to check that (refl) or (size) holds. Hence, Ty < (z: P)Q
only if T'| is a product. Thus, the application tu is typable if T'| = (x : U)V and
there exists ¢ such that U’| p <, Uep. Finding ¢ such that Ap <, By amounts
to apply the (prod) rule on A <; B as much as possible and then to find ¢ such
that (refl) or (size) holds. So, a subtyping problem can be transformed into a
constraint problem on size variables.

We make this precise by first defining the constraints that can be generated.

Definition 1 (Constraints). Constraint problems are defined as follows:
Co=1L|T|CAC|la=b|la<h

where a,b € A, = is commutative, A\ is associative and commutative, C AN C =
CAT=CandCAL=_1.A finite conjunction C1 A\...A\Cy, is identified with T
if n = 0. A constraint problem is in canonical form if it is neither of the form
C AT, nor of the form C A L, nor of the form C ANC A D. In the following, we
always assume that constraint problems are in canonical form. An equality (resp.
inequality) problem is a problem having only equalities (resp. inequalities). An
inequality oo < « is called an oo-inequality. An inequality sPa < 893 is called a
linear inequality. Solutions to constraint problems are defined as follows:

- S(L)=0,

— S(T) is the set of all size substitutions,

-S(CAD)=S(C)nS(D),

- Sla=0b) ={¢ | ap =be},

- Sa<b)={p|ap<abp}.

Let S*(C) = {¢ | Vo, agp| # oo} be the set of linear solutions.

We now prove that a subtyping problem can be transformed into constraints.

Lemma 3. Let S(U,V) be the set of substitutions ¢ such that Up <, V. We
have S(U,V) = S(C(U,V)) where C(U,V) is defined as follows:

Decidability of Type-Checking in the Calculus of Algebraic Constructions 143

S C((z U, (z: UV = C(U',U) AC(V, V"),
~ C(Cu, C*v) = a < bAE(ur,v1) Ao AE (up,vy) if [u| = |v| =n,
- C(U,V)=EYU,V) in the other cases,
and EY(U, V) is defined as follows:
= E(x: U)WV, (x:U")V') = E([x: UV, [2:U'V") = EUV,U'V")
=& (U U)YNE(V, V),
- EYC*,CY) =a =1,
- &%C,CY) =a=bAx <a,
~Ec,e)=T ifce SUXUF\CF",
- EYU,V) = L in the other cases.

Proof. First, we clearly have ¢ € S(EY(U,V)) iff Up = Vi, and p € S(E°(U,V))
iff Up =V and V(Uyp) = 0. Thus, S(U,V) = S(C(U,V)). 0

v F%U:sx Em:UF::V:s'
(ax) I'k, x:0 (prod) v
'y (z:U)V:s

(size) FI—: C®:7c (CeCrF?) (symb) Fl—:f:Tfpy (f ¢ CF7)

F}*:U:sx Rm:UF:v:V

B%
(var) I'p z:zl' (zedom(l)) (abs) PR U (@ U)WV (V #0)
op) T Et:T THE " w0 (1) = (@), ¢ =cU'L,U),

I'E tu: Vep, {z— u} S(C) # 0, ¢ =mgs(C))

Fig. 5. Type inference rules

For renaming symbol types with variables outside some finite set of already
used variables, we assume given a function p which, to every finite set) C Z,
associates an injection p, from Y to Z\ Y. In Figure 5, we define a type inference

algorithm Fz parametrized by a finite set) of (already used) variables under the
following assumptions:

(1) Tt is decidable whether S(C) is empty or not.
(2) If S(C)#0 then C has a most general solution mgs(C).
(3) If S(C) # 0 then mgs(C) is computable.

It would be interesting to try to give a modular presentation of type inference
by clearly separating constraint generation from constraint solving, as it is done
for ML in [24] for instance. However, for dealing with dependent types, one
at least needs higher-order pattern unification. Indeed, assume that we have a
constraint generation algorithm which, for a term ¢ and a type (meta-)variable
X, computes a set C of constraints on X whose solutions provide valid instances
of X, i.e. valid types for t. Then, in (app), if the constraint generation gives
Cy for t : Y and Cy for w : Z, then it should give something like C; A Co A
FUAV. Y =3, (z : U)VaANZ <UANX=p,Vu) for tu: X.

144 Frédéric Blanqui

We now prove the correctness, completeness and minimality of F:, assuming
that symbol types are well sorted (- 77 : sy for all f).

Theorem 2 (Correctness). If I" is a valid oco-environment and I’ F: t: T,
then It :T, t is an co-term and V(T)NY = (.

Proof. By induction on F: We only detail the (app) case.

(app) By induction hypothesis, ' ¢: T, I' F w : U’ and t and u are co-terms.
Thus, tu is an co-term. By Lemma 1, I' - ¢ : T and I' b u : U'¢p. Since
Tol=(x: Up)Ve, we have Tp # O and I' - Ty : s. By subject reduction,
I't (z: Up)Vep : s. Hence, by (sub), I' -t : (x : Up)Vp. By Lemma 3,
S(C)=SWU'|,U)and U'| p <; Ugp. Since I' - Up : s/, by (sub), I'Fu: Uep.
Therefore, by (app), I' - tu : Vo{z — u} and I' - tu : Vop, {x — u} since
V(u) = 0. O

Theorem 3 (Completeness and minimality). If I' is an co-environment, t

is an co-term and I' bt : T, then there are T' and ¥ such that I'F. t : T' and
T < T.
Proof. By induction on . We only detail some cases.
(symb) Take T’ = 74p, and ¢ = py_lcp.
(app) By induction hypothesis, there exist T', ¥, U’ and 1 such that I’ F;}
t T, Ty < (x: U)W, T E" w: U and Uty < U. By Lemma 2,
V(U')NV(T) = 0. Thus, dom(1) N dom(tp2) = (. So, let ¥ = 91 Whs. By
Lemma 1, T| ¢ <g (x : U])V]. Thus, T| = (x : U1)V1, U] < Uyt and Viyp <
V]. Since U'typ < U and U] < Uyyp, we have U’] 1p < Uy9 and, by Lemma 1,
U'| 4 <, Uptp. Thus, ¢ € S(U'],Uy). By Lemma 3, S(U'|,Us) = S(C) with
C = C(U'|,Uy). Thus, S(C) # 0 and there exists ¢ = mgs(C). Hence, I F?;
tu : Vigp,0 where 0 = {x — u}. We are left to prove that there exists ¢’ such
that Vipp, 0" < V6. Since ¢ = mgs(C), there exists 9" such that ¢y’ <4 9.
So, let ¢’ = py_lw’. Since V(u) = 0, § commutes with size substitutions. Since
Vi < V| <V, by Lemma 2, Vigp, 00" = Vipy'0 < Viyd < V6. 0

Theorem 4 (Decidability of type-checking). Let I' be an oco-environment,
t be an oo-term and T be a type such that I' = T : s. Then, the problem of
knowing whether there is ¥ such that I' =t : T is decidable.

Proof. The decision procedure consists in (1) trying to compute the type T”
such that I F?; t : T" by taking ¥ = V(T), and (2) trying to compute ¢ =
mgs(C(T",T)). Every step is decidable.

We prove its correctness. Assume that I' F?; t:T,Y =V(T) and ¢ =
mgs(C(T",T)). Then, T'1) < T4 and, by Theorem 2, I' -t : T'. By Lemma 1,
't :T"). Thus, by (sub), I'+¢: T.

We now prove its completeness. Assume that there is ¢ such that I' = ¢ : T.
Let Y = V(T). Since I" is valid and V(I") = 0, by Theorem 3, there are 7" and
© such that I F: t:T" and T'¢ < T. This means that the decision procedure
cannot fail (¢ Wy € S(T7,T)). O

Decidability of Type-Checking in the Calculus of Algebraic Constructions 145

4 Solving Constraints

In this section, we prove that the satisfiability of constraint problems is decidable,
and that a satisfiable problem has a smallest solution. The proof is organized
as follows. First, we introduce simplification rules for equalities similar to usual
unification procedures (Lemma 4). Second, we introduce simplification rules for
inequalities (Lemma 5). From that, we can deduce some general result on the
form of solutions (Lemma 7). We then prove that a conjunction of inequalities has
always a linear solution (Lemma 8). Then, by using linear algebra techniques,
we prove that a satisfiable inequality problem has always a smallest solution
(Lemma 11). Finally, all these results are combined in Theorem 5 for proving
the assumptions of Section 3.

Let a state S be L or a triplet £]€'|C where & and £’ are conjunctions of
equalities and C a conjunction of inequalities. Let S(L) = @ and S(E|E’|C) =
S(E NE AC) be the solutions of a state. A conjunction of equalities £ is in
solved form if it is of the form oy = a1 A ... A, = a, (n > 0) with the
variables «; distinct from one another and V(a) N {a} = 0. Tt is identified with
the substitution {a — a}.

(1) ENnsa=sb|E|C ~ ENa=b|E"|C

(2) 5/\akiQ|€’|CWS|€’|C

(3) Ena=s"Ta & |C ~ L

(4) Enco=s"a|E|C ~ L

(5) Enha=a|&|C ~» Ea—a} | E'{ar—atANa=a|C{ara}if agV(a)

Fig. 6. Simplification rules for equalities

The simplification rules on equalities given in Figure 6 correspond to the usual
simplification rules for first-order unification [18], except that substitutions are
propagated into the inequalities.

Lemma 4. The relation of Figure 6 terminates and preserves solutions: if Sy ~
So then S(S1) = S(Sg2). Moreover, any normal form of E|T|C is either L or of
the form T|E'|C" with £ in solved form and V(C") Ndom(E’) = 0.

We now introduce a notion of graphs due to Pratt [25] that allows us to detect
the variables that are equivalent to co. In the following, we use other standard
techniques from graph combinatorics and linear algebra. Note however that we
apply them on symbolic constraints, while they are generally used on numerical
constraints. What we are looking for is substitutions, not numerical solutions.
In particular, we do not have the constant 0 in size expressions (although it
could be added without having to change many things). Yet, for proving that
satisfiable problems have most general solutions, we will use some isomorphism
between symbolic solutions and numerical ones (see Lemma 10).

Definition 2 (Dependency graph). To a conjunction of linear inequalities
C, we associate a graph Ge on V(C) as follows. To every constraint sPa < s103,

146 Frédéric Blanqui

we associate the labeled edge o P74 8. The cost of a path oy 25 ... 25 Q41 18

Xk pi. A cyclic path (i.e. when apy1 = ay) is increasing if its cost is > 0.

(1) Cha<sfoo ~ C
(2) CAD ~ CA{oo<a|aeV(D)} if Gp is increasing
(3) CAsFoo <sla ~ Clar oo} Aoo < a if a € V(C)

Fig. 7. Simplification rules for inequalities

A conjunction of inequalities C is in reduced form if it is of the form Co A Cy
with Co, a conjunction of oo-inequalities, C; a conjunction of linear inequalities
with no increasing cycle, and V(Co) N V(Ce) = 0.

Lemma 5. The relation of Figure 7 on inequality problems terminates and pre-
serves solutions. Moreover, any normal form is in reduced form.

Lemma 6. If C is a conjunction of inequalities then S(C) # 0. Moreover, if C
is a congunction of co-inequalities then S(C) = {¢ | Va € V(C), ap|= oo}.

Lemma 7. Assume that E|T|C has normal form T|E'|C by the rules of Figure
6, and C' has normal form D by the rules of Figure 7. Then, S(E ANC) # 0,
& =mgs(€E) and every ¢ € S(E NC) is of the form &' (v W) with v € S(Dwo)
and ¢ € S(Dy).

Proof. The fact that, in this case, S(£) # 0 and & = mgs(€) is a well known
result on unification [18]. Since S(E AC) = S(E' AD), V(E')NV(D) = B and
S(D) # 0, we have S(E AC) # 0. Furthermore, every ¢ € S(E AC) is of the form
&'y since S(E' AD) C S(E'). Now, since V(Do) N V(Dy) =0, ¢' = v W) with
v € S(Ds) and ¢ € S(Dy). O

Hence, the solutions of a constraint problem can be obtained from the solu-
tions of the equalities, which is a simple first-order unification problem, and from
the solutions of the linear inequalities resulting of the previous simplifications.

In the following, let C be a conjunction of K linear inequalities with no
increasing cycle, and L be the biggest label in absolute value in G¢. We first
prove that C has always a linear solution by using Bellman-Ford’s algorithm.

Lemma 8. S*(C) # 0.

Proof. Let succ(a) = {8 | a %+ B € Ge} and succ® be the reflexive and
transitive closure of succ. Choose v € Z\ V(C), a set R of vertices in G¢ such
that succ*(R) covers G¢, and a minimal cost g3 > KL for every 8 € R. Let
the cost of a vertex ajy1 along a path a; 2, Qo 2, ..oy With a3 € R
be qo, + X*_p;. Now, let ws be the maximal cost for 3 along all the possible
paths from a vertex in R. We have wg > 0 since there is no increasing cycle.

Hence, for all edge « L, B3 € Ge, we have wq +p < wg. Thus, the substitution
o ={a— sy | aecV(C)} e SC). O

Decidability of Type-Checking in the Calculus of Algebraic Constructions 147

We now prove that any solution has a more general linear solution. This
implies that inequality problems are always satisfiable and that the satisfiability
of a constraint problem only depends on its equalities.

Lemma 9. If ¢ € S(C) then there exists 1 € S*(C) such that ¥ <4 .

We now prove that S*(C) has a smallest element. To this end, assume that
inequalities are ordered and that V(C) = {aq, ..., a,,}. We associate to C an
adjacency-like matrix M = (m; ;) with K lines and n columns, and a vector
v = (v;) of length K as follows. Assume that the i-th inequality of C is of the
form sPa; < s%ay. Then, m;; = 1, myp = —1, my; = 0if | ¢ {j,k}, and
vi=q—p.Let P={2€Q" | Mz<w,z>0}and P'=PNZ".

To a substitution ¢ € S*(C), we associate the vector z# such that z{ is the
natural number p such that a;p = sPg.

To a vector z € P/, we associate a substitution ¢, as follows. Let {G1,...,Gs}
be the connected components of G¢. For all ¢, let ¢; be the component number
to which «; belongs. Let (1, ..., s be variables distinct from one another and
not in V(C). We define a;p, = s% 3,.

We then study the relations between symbolic and numerical solutions.

Lemma 10.

~ If o € SY(C) then z¥ € P'. Furthermore, if ¢ <4 ¢ then 2% < 2¥.
~ If z € P’ then @, € SY(C). Furthermore, if z < 2’ then @, <4 @.r.
- 2% =z and v, C .

Finally, we are left to prove that P’ has a smallest element. The proof uses
techniques from linear algebra.

Lemma 11. There is a unique z* € P’ such that, for all z € P', 2* < z.

An efficient algorithm for computing the smallest solution of a set of linear
inequalities with at most two variables per inequality can be found in [22]. A
more efficient algorithm can perhaps be obtained by taking into account the
specificities of our problems.

Gathering all the previous results, we get the decidability.

Theorem 5 (Decidability). Let C be a constraint problem. Whether S(C) is
empty or not can be decided in polynomial time w.r.t. the size of equalities in C.
Furthermore, if S(C) # 0 then S(C) has a smallest solution that is computable
in polynomial time w.r.t. the size of inequalities.

5 Conclusion and Related Works

In Section 3, we give a general algorithm for type inference with size annotations
based on constraint solving, that does not depend on the size algebra. For having
completeness, we require satisfiable sets of constraints to have a computable most
general solution. In Section 4, we prove that this is the case if the size algebra is

148 Frédéric Blanqui

built from the symbols s and oo which, although simple, captures usual inductive
definitions (since then the size corresponds to the number of constructors) and
much more (see the introduction and [0]).

A natural extension would be to add the symbol + in the size algebra, for
typing list concatenation in a more precise way for instance. We think that the
techniques used in the present work can cope with this extension. However, with-
out restrictions on symbol types, one may get constraints like 1 < a+ (3 and loose
the unicity of the smallest solution. We think that simple and general restric-
tions can be found to avoid such constraints to appear. Now, if symbols like x
are added to the size algebra, then we lose linearity and need more sophisticated
mathematical tools.

The point is that, because we consider dependent types and subtyping, we are
not only interested in satisfiability but also in minimality and unicity, in order
to have completeness of type inference [12]. There exist many works on type
inference and constraint solving. We only mention some that we found more or
less close to ours: Zenger’s indexed types [30], Xi’s Dependent' ML [2%], Odersky
et al ’s ML with constrained types [24], Abel’s sized types [!], and Barthe et al ’s
staged types [1]. We note the following differences:

Terms. Except [4], the previously cited works consider A-terms & la Curry,
i.e. without types in A-abstractions. Instead, we consider A-terms a la Church,
i.e. with types in A-abstractions. Note that type inference with A-terms a la
Curry and polymorphic or dependent types is not decidable. Furthermore, they
all consider functions defined by fixpoint and matching on constructors. Instead,
we consider functions defined by rewrite rules with matching both on constructor
and defined symbols (e.g. associativity and distributivity rules).

Types. If we disregard constraints attached to types, they consider simple or
polymorphic types, and we consider fully polymorphic and dependent types.
Now, our data type constructors carry no constraints: constraints only come up
from type inference. On the other hand, the constructors of Zenger’s indexed
data types must satisfy polynomial equations, and Xi’s index variables can be
assigned boolean propositions that must be satisfiable in some given model (e.g.
Presburger arithmetic). Explicit constraints allow a more precise typing and
more function definitions to be accepted. For instance (see [0]), in order for
quicksort to have type list® = list®, we need the auxiliary pivot function to have
type nat™ = list® = list” xlist” with the constraint o = S+~. And, if quicksort
has type list>™ = list™ then a rule like f (cons x 1) — g = (f (quicksort 1)) is
rejected since (quicksort 1) cannot be proved to be smaller than (cons z 1). The
same holds in [1, 4].

Constraints. In contrast with Xi and Odersky et al who consider the constraint
system as a parameter, giving DML(C) and HM(X) respectively, we consider a
fixed constraint system, namely the one introduced in [3]. It is close to the
one considered by Abel whose size algebra does not have oo but whose types
have explicit bounded quantifications. Inductive types are indeed interpreted

! By “dependent”, Xi means constrained types, not full dependent types.

Decidability of Type-Checking in the Calculus of Algebraic Constructions 149

in the same way. We already mentioned also that Zenger considers polynomial
equations. However, his equivalence on types is defined in such a way that, for
instance, list® is equivalent to list2®, which is not very natural. So, the next
step in our work would be to consider explicit constraints from an abstract
constraint system. By doing so, Odersky et al get general results on the com-
pleteness of inference. Sulzmann [20] gets more general results by switching to
a fully constrained-based approach. In this approach, completeness is achieved
if every constraint can be represented by a type. With term-based inference and
dependent types, which is our case, completeness requires minimality which is
not always possible [12].

Constraint Solving. In [4], Barthe et al consider system F with ML-like defi-
nitions and the same size annotations. Since they have no dependent type, they
only have inequality constraints. They also use dependancy graphs for eliminat-
ing oo, and give a specific algorithm for finding the most general solution. But
they do not study the relations between linear constraints and linear program-
ming. So, their algorithm is less efficient than [22], and cannot be extended to
size annotations like a + b, for typing addition or concatenation.

Inference of Size Annotations. As already mentioned in the introduction,
we do not infer size annotations for function symbols like [4, 13]. We just check
that function definitions are valid wrt size annotations, and that they preserve
termination. However, finding annotations that satisfy these conditions can easily
be expressed as a constraint problem. Thus, the techniques used in this paper
can certainly be extended for inferring size annotations too. For instance, if we
take — : nat® = nat® = nat™, the rules of — given in the introduction are valid
whenever 0 < X, @ < X and X < X, and the most general solution of this
constraint problem is X = a.

Acknowledgments

I would like to thank very much Miki Hermann, Hongwei Xi, Christophe Ringeis-
sen and Andreas Abel for their comments on a previous version of this paper.

References

1. A. Abel. Termination checking with types. Theoretical Informatics and Applica-
tions, 38(4):277-319, 2004.

2. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of logic in computer science, volume 2. Oxford
University Press, 1992.

3. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based ter-
mination of recursive definitions. Mathematical Structures in Computer Science,
14(1):97-141, 2004.

4. G. Barthe, B. Grégoire, and F. Pastawski. Practical inference for type-based ter-
mination in a polymorphic setting. In Proc. of TLCA’05, LNCS 3461.

150

5.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Frédéric Blanqui

F. Blanqui. Rewriting modulo in Deduction modulo. In Proc. of RTA’03, LNCS
2706.

F. Blanqui. A type-based termination criterion for dependently-typed higher-order
rewrite systems. In Proc. of RTA’04, LNCS 3091.

F. Blanqui. Full version of [(]. See http://www.loria.fr/ blanqui/.

F. Blanqui. Definitions by rewriting in the Calculus of Constructions. Mathematical
Structures in Computer Science, 15(1):37-92, 2005.

F. Blanqui. Full version. See http://www.loria.fr/ blanqui/.

. F. Blanqui. Inductive types in the Calculus of Algebraic Constructions. Funda-

menta Informaticae, 65(1-2):61-86, 2005.

V. Breazu-Tannen. Combining algebra and higher-order types. In Proc. of LICS’88.
G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis,
Université Paris VII, France, 1998.

W. N. Chin and S. C. Khoo. Calculating sized types. Journal of Higher-Order and
Symbolic Computation, 14(2-3):261-300, 2001.

Cog-Development-Team. The Coq Proof Assistant Reference Manual - Version 8.0.
INRIA Rocquencourt, France, 2004. http://coq.inria.fr/.

T. Coquand. An algorithm for testing conversion in type theory. In G. Huet and
G. Plotkin, ed., Logical Frameworks, p 255—279. Cambridge University Press, 1991.
T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76(2-3):95-120, 1988.

T. Coquand and C. Paulin-Mohring. Inductively defined types. In Proc. of
COLOG’88, LNCS 417.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol B, ch 6. North-Holland, 1990.

E. Giménez. Structural recursive definitions in type theory. In Proc. of ICALP’98,
LNCS 1443.

J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. In Proc. of POPL’96.

J.-P. Jouannaud and A. Rubio. The Higher-Order Recursive Path Ordering. In
Proc. of LICS’99.

G. Lueker, N. Megiddo, and V. Ramachandran. Linear programming with two
variables per inequality in poly-log time. STAM Journal on Computing, 19(6):1000—
1010, 1990.

F. Miiller. Confluence of the lambda calculus with left-linear algebraic rewriting.
Information Processing Letters, 41(6):293-299, 1992.

M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1):35-55, 1999.

V. Pratt. Two easy theories whose combination is hard. Technical report, MIT,
United States, 1977.

M. Sulzmann. A general type inference framework for Hindley/Milner style sys-
tems. In Proc. of FLOPS’01, LNCS 2024.

D. Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Construc-
tions. Journal of Functional Programming, 13(2):339-414, 2003.

H. Xi. Dependent types in practical programming. PhD thesis, Carnegie-Mellon,
Pittsburgh, United States, 1998.

H. Xi. Dependent types for program termination verification. Journal of Higher-
Order and Symbolic Computation, 15(1):91-131, 2002.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147-165, 1997.

On the Role of Type Decorations in the Calculus
of Inductive Constructions

Bruno Barras® and Benjamin Grégoire?
L INRIA Futurs, France
Bruno.Barras@Qinria.fr

2 INRIA Sophia-Antipolis, France

Benjamin.Gregoire@sophia.inria.fr

Abstract. In proof systems like Coq [16], proof-checking involves com-
paring types modulo 3-conversion, which is potentially a time-consuming
task. Significant speed-ups are achieved by compiling proof terms, see [9].
Since compilation erases some type information, we have to show that
convertibility is preserved by type erasure. This article shows the equiv-
alence of the Calculus of Inductive Constructions (formalism of Coq)
and its domain-free version where parameters of inductive types are also
erased. It generalizes and strengthens significantly a similar result by
Barthe and Sgrensen [5] on the class of functional Domain-free Pure
Type Systems.

1 Introduction

In proof systems based on the Curry-Howard isomorphism, proof-checking boils
down to type-checking in a system with dependent types. Such systems usually
include a conversion rule of the form:

'tt:7 177

rieor o

where ~g stands for (-convertibility. This rule can be used to make complex
computation. Examples of that usage include reflection tactics [0] in Coq and
the proof of the four-colors theorem. This conversion rule is generally imple-
mented in a purely interpretative way', because it is a hard task to perform
strong [-reduction (reduction occurs also under binders) in a compiled setting.
In [9] Grégoire and Leroy show how to strongly normalize and how to decide
[-equivalence on terms, by compiling proof-terms towards an abstract machine
(a slightly modified version of OCaml’s ZAM) and analyzing computed values
with a readback procedure.

This scheme raises a problem: compilation has the effect of erasing type anno-
tations (used to ensure the decidability of type checking and so the impossibility

! By interpretative, we mean algorithms that perform the conversion test by explicitly
manipulating proof terms represented as trees.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 151-166, 2005.
© Springer-Verlag Berlin Heidelberg 2005

152 Bruno Barras and Benjamin Grégoire

of runtime error). So, while conversion is defined over Church-style terms (ab-
stractions carry a type annotation Az :7.t), the abstract machine based version
of conversion works on Curry-style terms (Az.t, also called domain-free terms).
The correctness of such compilation scheme with respect to the original formal-
ism relies on a general issue of proving the equivalence of a given type system
with its domain-free counterpart. This problem has already been studied in the
case of Pure Type Systems [2] (PTS, Church-style) and their domain-free ver-
sion, the Domain-Free Pure Type System [5] (DFPTS) by Barthe and Sgrensen.
The authors prove an equivalence theorem under the assumption that the sys-
tem is normalizing (so we can reason on normal terms) and functional. The
latter condition is used to ensure type uniqueness. Earlier, Streicher [15] proved
this result for Calculus of Constructions, still based on normalization and type
uniqueness.

Our paper enhances previous work in two ways. Firstly, we extend the results
of [7] to a richer class of systems that feature cumulativity” and inductive types.
A notable point of our notion of type erasure is that we erase parameters of
constructors®, since they do not participate in the computation. Our results
apply to the Calculus of Inductive Constructions (CIC), and yield an efficient
sound and complete convertibility test for Coq.

Secondly, our results do not rely on type uniqueness, which does not hold
any more due to subtyping (even without subtyping, type uniqueness does not
hold for any PTS). Instead, we introduce an equivalence on types to recover a
loose notion of type uniqueness.

This equivalence theorem also has consequences on implementation. Many
proof systems prefer to use Church-style A-terms, in particular because type
inference is decidable under simple conditions and it is often easier to build a set
theoretic model of those formalisms. On the other hand, Curry-style terms reflect
the computational behavior of A-terms better. This is related to the fact that
pure A-calculus is the execution model of the core of many functional languages.
But type inference is generally not decidable, and type checking fails on non-
normal terms. The equivalence theorem shows that we can have a system with
good properties such as type decidability, and compare terms as Curry-style
terms, allowing compilation techniques. Regarding inductive types, parameters
can be erased in constructors, which leads to the same representation as in a
compiled language like OCaml [10].

We prove the equivalence between a type annotated system where conversion
compares type decorations (we call it §) and a second type system (we call it
€) where annotations are in the syntax but conversion ignores them. Then it is
trivial to define a third system (the domain free version) where type decorations
are not in the syntax and then prove the equivalence with the system e. This
way, we separate the problems of changing the term representation and that of
actually changing the conversion.

2 Cumulativity is a simple notion of subtyping that reduce need to duplicate definition
across the various universes of the PTS.

3 For instance, the first argument of the ternary constructor of lists cons : Vo, o —
list @ — list « can be erased.

On the Role of Type Decorations in the Calculus of Inductive Constructions 153

For explanatory purposes, we will distinguish the strengthening of Barthe’s
and Sgrensen’s result (removing the functionality hypothesis) and the extension
to a broader class of systems. Section 2 introduces Cumulative Type Systems
(CTS), which are PTS with cumulativity and an abstract notion of conversion.
Then, we briefly give metatheoretical properties of CTS. Section 3 shows how
both w and e systems can be represented by instantiating this abstract conver-
sion in two ways. It ends by proving Preservation of Equational Theory (PET),
Preservation of Subtyping (PS) and Preservation of Typing (PT) between both
systems. These properties simply state that conversion, subtyping and typing
are equivalent notions. Then, we will extend these results to inductive types
(Sect. 4) and conclude.

2 A Generic Version of Cumulative Type Systems (CTS)

Pure Type Systems (PTS, [2]) are a generalization of several type systems such
as simply typed A-calculus, system F', Calculus of Constructions, etc. Since some
systems have dependent types (type parameterized by expressions or programs),
they use the same syntax for terms and types and types are also subject to a
type discipline.

2.1 Syntax of Terms
As for PTS, Cumulative Type Systems [3] are generated from specifications. To
the three parameters of the PTS, we add two extra parameters. The first one
< allows subtyping over sorts: if s; < sq, then any type of s1 is also a type of
s2, without any explicit coercion. This is called cumulativity. The second extra
parameter ~, called conversion, is a relation between types indicating which
types are identified. In the rest of this paper we will instantiate this parameter
with different relations. This follows the same idea as in [12, 11].

Let us make this more precise by simultaneously defining the syntax of terms
() and specifications of CTS (S). Let ¥ be an infinite set of variables.

Definition 1 (term and specification).
A specification is a tuple S = (&, o, %, <, =) where
— . 1s a set of sorts.
— o C %7 is a set of axioms.
- % C S xS xS is a set of rules
— < C ¥ %x .7 is an inclusion relation between sorts.
— ~C I x T is an equivalence relation between terms. It should be a congru-
ence: Yo, M,N,N'. N~N'" = M{x—N}~M{xz—N'}

The set T of expressions (over S) is given by the abstract syntax :
T =V L0V T.T\\NVT.T|T T

We use t, A, B, M, N, T,U,V, etc. to denote elements of 7; z,y, z, etc. to denote
elements of ¥ s, s', etc. to denote elements of .. The substitution of variable
for a term N in M will be written M{z+ N}. As usual, we consider S-reduction
on terms, written —. We write — its reflexive and transitive closure, and ~3
the smallest equivalence relation including — (S-conversion). PTS are a special
case of CTS where < is () and ~ is S-conversion.

154 Bruno Barras and Benjamin Grégoire

2.2 Cumulativity

As already stated, cumulativity introduces some kind of subtyping. Let us now
define the subtyping relation induced by our CTS parameters:

Definition 2 (cumulativity). The one step subtyping relation =< over an
equivalence relation ~ and an inclusion relation between sorts < 1is given by
the rules below.

T~U §1 <* S9 T~T' UjU/

T=U 51 = 8o Hx:T.U < x:T'.U’

This relation is also named cumulativity. We write <g to refer to the equivalence
relation and the inclusion relation between sorts of S. When < is fixed, we use
the notation =<~ or just X if ~ is clear from the context.

Note that following Luo’s Extended Calculus of Constructions [11], the sub-
typing relation is not contravariant w.r.t. the domain of functions (the domains
of a function type and its subtype are convertible). Contravariance is rejected
because it would invalidate our proof as we shall in section 3.3.

At that point, we define several properties of relations related to abstract
rewriting systems.

Definition 3 (commutation, reducibility). Let Ry, Re be two binary rela-
tions.
e Ry, Ry commute, written (R1, R2) € C, iff

Ve, x1,00. © Ry x1 AN Roxo = Jy. 2o Riy N 21 Ra y
o Ry is reducible to Ry modulo B-reduction, written Ry € Rp,, iff
Vi,u. t Ry u= 3t u'. t St Au>u At Ry o

Lemma 1. For any equivalence relation R, cumulativity preserves commutation
with B-reduction

*

(R,5) eC= (2r—)A (=R —>) eC

Lemma 2. Cumulativity preserves reducibility to any equivalence relation com-
muting with B-reduction:

(R2, =) €C A Ri€RR, = =p€Rxy
Proof: See appendix A.
2.3 Typing
Definition 4 (Typing judgment). Let S be the specification (&, o\ %, ~<,~)

— A context is a list: ' == [|| I';(x:T)
(x:T) denotes a local declaration of a variable x of type T'.

On the Role of Type Decorations in the Calculus of Inductive Constructions 155

I'-T:s seS
WEF(I;(x:T))
WF(I") (s1, s2) €. WEF(I) (z:T) el
' s1: 89 I'x:T
I'-T:sl Iy(z:T)F U :s2 (s1, s2, s3) e #
I'EHz:T.U : 53
't x:T.U :s F;(x:T)FM:U[LAM] I'-M:Hz:T.U I'tN:T
I'-Xe:T.M : IIe:T.U I'- M N:U{z—N}
I'=M:T I'-U:s T=<*U I'=M:T T<*s
I'=M:U [CONVI I'EM:s

[WE] [WS — LOCAL)

WE([)

o
[SORT] [VAR]

[PROD)]
[APP]
[CONV.]

Fig. 1. Typing rules for CTS

— The typing relation & is given by the rules in Fig. 1. There is also a judgment
WF () to mean that a context is well formed. Both two judgments are simul-
taneously defined by mutual induction. We occasionally write g to explicit
the dependency with the specification S.

The rules are the same as for PTS except that in our CTS, CONV should
rather be seen as a subsumption rule, and CONV is necessary when cumulativity
is used towards a non-typable sort.

Figure 2 lists the fundamental meta-theoretical properties of CTS. They
are easy generalizations of PTS’s properties. First equation expresses that type
derivations of CTS are preserved by substitution. The second one shows that
typing is preserved by well-typed context narrowing. Equation (3), that a type
is a sort or typable by a sort. Then we have the well-known subject reduction
property. The last one is the inversion lemma. We will not give their proofs since
they have been formally checked using Coq in [3]*.

Later on, we will study the relation between different CTS which differ on
the inclusion between sorts and conversion. We say that S; is included in S if
they are included component-wise. In that case <g, C=<g, and tg, Ckg,. Put it
in another way, subtyping and typing are monotonic w.r.t. the specification.

3 (@-Conversion and Conversion Modulo
Type Annotations

Now we have this general framework of CTS, we can instantiate it with the
parameters corresponding to the considered logical formalisms. For the rest of
this paper we suppose that ., o/, % and < are fixed. In the case of typeful
systems, terms are identified modulo 3:

4 The complete source of that formalization is available online at http://logical.
inria.fr/~barras/pts proofs/PTS/main.html. All subsequent URLs will be rela-
tive to http://logical.inria.fr/~barras/pts proofs/PTS/.

156 Bruno Barras and Benjamin Grégoire

Substitution ' N:TAT;(x:T)E M:U=TITtF M{z—N}:U{z—N} (1)
Metatheory.html#substitution

Context conversion I'EM:T NAXXT == AFM:T (2)
Metatheory.html#subtype in env

Correctness of types I''-A:B=Be¥Y VvV Isc. I'F B:s(3)
Metatheory.html#type correctness

Subject reduction I'bt:T AtSt =>THE:T (4)

LambdaSound.html#beta sound
Inversion lemmas

I'tsi:T = 3s2.(s1, s2) €A Nsa 3" T
Iro:T = 3. (x:T) € TAT =" T
I'-Xe:AM:T = 3B,s. I';j(x:A)F M: BAI'F z: A B:sANz:A.B=<"T
I''-MN:T = 3A,B.I'+ M:xz:AABANI'F N: ANB{z+—N}="T
I'tlz:A.B:T = J(s1, s2, $3) €. T'FA:s1AN[;(x:A)F B:saANsg <" T

Metatheory.html#inversion lemma

Fig. 2. Meta-theoretical properties of CTS

Definition 5 (specification). Since (3-conversion is a congruence, we can
build a CTS upon it. Let 8 be the specification (&, o , K, <,~3).

Lemma 3. jg is reducible to <—.

Proof: Since =<_ is transitive, we only have to show jg € R=x, which
is a consequence of Lemma 2 and the well known Church-Rosser property of
[-conversion.

3.1 e-Conversion

To define the notion of convertibility that do not take type annotations into
account we first define equality modulo type annotation. It captures the essence
of domain-free conversion but within a type-carrying syntax.

Definition 6 (e-equality, e-convertibility). Two terms are e-equal if they are
equal modulo type annotations. We write =, this equality. e-convertibility is the
smallest equivalence relation including e-equality and (-reduction. We write ~,
this relation.

T=.T U=U T=.1T
T =T $=¢8 TU=.T"U' Mo AT = o AT
T=.T U=U T=U T~U U—-V T~U V—-U
Hx:T. U= Hz:T'U T~ U T~V T~V

Definition 7. It is trivial to see that e-equality and ~. are equivalence relations
and congruences. Let € be the specification (', o, B, <,).

This conversion enjoys reducibility results similar to [:

On the Role of Type Decorations in the Calculus of Inductive Constructions 157

Lemma 4. ~ is reducible to =, and =<} is reducible to <—_.

Proof: First prove (=, i>) € C and using the confluence of (-reduction, we
extend the result to ~. For the second statement, we prove <Y€ R<- using
Lemma 2, and remark that <—_ is reflexive and transitive. ‘

3.2 Uniqueness of Types

It is well known that any functional PTS (a PTS where & and % are functional
relations) enjoys the type uniqueness property:

'tM:TANTEM:T = T~gT

This has been already formally proved in Lego by Pollack [I4]. Unfortunately,
non trivial subtyping (including cumulativity) breaks this property. Let alone
CTS, the property does not hold for non functional PTS, which include the
well-known (and useful) Calculus of Constructions with universes.

However, we can remark that we only need type uniqueness regarding the
domain types of functions. This relaxed uniqueness notion holds for CTS because
subtyping can occur only on sorts in the codomain (as Luo already noticed for
the Extended Calculus of Constructions [I1]). This uniqueness of domain types
is formalized by a relation ~g which ensures convertibility of domain types, but
allows any change of sort in the codomain. It reuses Definition 2.

Definition 8. We write ~g the reflexive and transitive closure of the cumula-
tiwity relation derived from ~g and & x 7, and ~— the cumulativity relation
derived from & x &/ and =. We say that t, is close to ty if t1 =g ta.

The important facts are ~g is an equivalence relation, ~— is transitive and
~ g3 is reducible to ~_ (Lemma 2).

Lemma 5 (type uniqueness modulo ~g3). Specification [has type unique-
ness modulo ~g:

I'bgt:T AThgt:T = TrpT

Proof: by induction on I' kg t : T, then inversion on I' g ¢t : T’. In all cases,
we use the fact that <3C~ 5 (by monotonicity) and that ~ is a symmetric and
transitive relation. Application case uses the fact that ITz:T.U ~g IIz:T". U’ =
T ~p3 T N U 3 U.

3.3 Equivalence of € and 3

Proving I'Fg t : T' = I'. t : T is trivial by monotonicity of typing. The
converse is more difficult to derive. The first idea is to proceed by induction on
the typing judgment. The only difficulty is with the conversion rules. It is of
course false that <* is included in jg, even for well typed terms: take \z:A. x :
A — Aand \x:B.xz : B — B. So we have to do some induction loading.
We can remark that if we compare only objects of same type, then we would

158 Bruno Barras and Benjamin Grégoire

necessarily have A ~3 B (note that it would not be the case if cumulativity
was contravariant w.r.t. the domain of functions). In order to have the weakest
invariant we only assume that their types are close. But this invariant has to
propagate to subterms. Consider ¢ : C' and

(AM:A— Ac) (\x:A.x) (Af:B — B.c) (\x:B.x).

Both terms have type C, but not their subterms: arguments respectively have
type A — A and B — B. This example shows that §-redexes break the proposed
invariant. If we assume our terms are in normal form, A-abstractions are found
only as argument of a variable. Since two e-equal variables are equal, domain
type uniqueness can establish the invariant that e-convertible abstraction are
compared only when we know their types are convertible, hence close. So, we
can prove:

Lemma 6.
I'kgt:T Fl—@t’:T’
t=t Lt eENF p =t=1t

where \ is the set of lambda abstraction terms.
Proof: by induction on ¢, inversion of hypotheses t =, t/, I'Fg t : T and
I'tg t': T'. We do only the interesting cases.
— Cases for sorts, variables and products are trivial.
— Caset =M z:A. M we have t’/ = z: A" M'; A M, A", M' e NF; M =. M.
Inversion of type judgments yields:
I'gIz:A.B:s; I'j(z:A)Fg M : B;
I'tgx:A'.B':s'; I'j(x:A)Fg M :B;
Hz:A.B=35T IIx:A'. B =3 T’
Thanks to last premise, we get IIz:A. B ~g IIx:A’.B’, so A ~3 A’ and
~g B'. Since A, A’ are in normal form, they are equal (Lemma 3). Equality
of bodies holds using the induction hypothesis.
— Caset =M N and ¢’ = M’ N'; inversion of type judgments yields: I' g M :
HOr:A.B;I'Fg N: A, I'kg M': Ix:A'.B'; I'g N' : A
Since t € NF, M is not an abstraction, so by induction hypothesis M = M.
By uniqueness of type (Lemma 5) ITz:A.B ~g IIz:A'. B’ so A ~g A’
Equality of arguments holds using the induction hypothesis.

The invariant is weaker than in Barthe and Sgrensen [5], and leads to a
simpler proof.

Theorem 1 (PET e w.r.t. (). If specification [is normalizing, I' Fg M : T
and I'tg M': T,

M g M & M~ M
Proof: M ~g M’ = M ~. M’ holds by monotonicity. Now assume M ~, M.
Since specification (is normalizing, M (resp. M) has a normal form N (resp.

N') which has type T by subject reduction. We have N ~, N" and also N =, N’
by reducibility. (Lemma 4). Lemma 6 proves N = N’, so M ~g M’.

On the Role of Type Decorations in the Calculus of Inductive Constructions 159

In fact, we can replace the two premises of this theorem by I'g M : T and
I'tg M':T"and T ~g T'. We only need T' =3 T" to apply Lemma 6.
We extend Lemma 6 to the cumulative subtyping relation:

Lemma 7.
I'tgt:T Fl—gtI:Tl
t=__t Lt eNF » =t =_+t
tg)\ V T%BT/

Proof: By induction over ¢ <__t'. Obviously we use Lemma 6.

e

Corollary 1 (PS e w.r.t. 8). If specification 3 is normalizing, I' Fg T : s and
I'g U : ¢, then
TUT=3U

Note that the normalization hypothesis is required for the same reason as for
Theorem 1.

Lemma 8. If specification (8 is normalizing then
I'Hct:T = I'tgt: T and WF(I') = WFp(I)

Proof: by mutual induction over I' -, ¢ : T, all cases are trivial but (CONV)
and (CONVy).

— Case of (CONVy): by induction hypothesis I" g ¢ : T'. Reducibility property
(Lemma 4) yields T = T' <__ s, so by inversion T = T’ = s < s, we
conclude T <% s

— Case of (CONV): by induction hypothesis we get I'Fgt: T and I'Fg U : s.
By correctness of type, either T' is a sort s; and by an argument similar
to (CONV,) we prove s; < s’ <= U and conclude, or there exists a sort s’
such that I' Fg T : §’. Preservation of subtyping entails T =3 U and we can
conclude.

Theorem 2 (PT e w.r.t. 3). If specification (3 is normalizing then
I'Fet: T It T

4 Extension to Calculus of Inductive Constructions

The goal of this section is to extend preservation of typing results about CTS to
the Calculus of Inductive Constructions (CIC). The extra features are inductive
types, which are a generalisation of ML’s datatypes. To be precise, CIC is not
parameterized by a sort hierarchy, but since the latter has very few impact on the
syntactic metatheory, we do not define it, but rather use it abstractly. See [10]
for a precise definition.

The proof follows exactly the same steps, so we will only mention places
where there are additional cases. Since we still consider conversion as a param-
eter we will be able to share many properties between the usual CIC and its €
counterpart. Let us first define the syntax, reduction rules and typing rules of
this common core.

160 Bruno Barras and Benjamin Grégoire

4.1 Syntax of CIC

Inductive types allow to build (well founded) data structures with variants using
constructors. It is also possible to analyze variants and access constructors argu-
ments by shallow pattern-matching. Finally, there is a facility to build recursive
functions (fizpoints). Some care is needed not to break the logical consistency of
the formalism.

Definition 9 (Terms and specifications of CIC). Let .# be a set of names.
We extend expressions with inductive constructions:

Terms : T = ... | I | Cy(T,T) | (T)case T of ¥ = T | fixy(V: T := T)

We use I to denote elements of .#. Notation X denotes a vector of X (#(v)
is the length of v).
Specifications have a sixth field ELiIM C & x . that controls the range of
pattern-matching for each inductive type.

Set .# is the set of names of inductive types (e.g. list, prod, etc.). Construc-
tors are not identified by name, but by a couple formed of the inductive type it
belongs to, and a number identifying which variant it builds: C?(p, a) is the i-th
constructor of inductive type I. Since they represent datastructures, we enforce
that they are always fully applied to arguments (a). Vector p is the value of
the parameters, they can be thought of as the explicit instantiation of polymor-
phic parameters of ML datatypes. They are syntactically separated from “real
arguments” for convenience. A built-in case construct allows shallow pattern-
matching on terms of inductive types, in the construction (P)case M of « = b,
M is the term to destruct, x; are bounded variables for each branch b;, and
denote the arguments of the i-th constructor. P is called a predicate and is here
only to ensure decidability of type-checking in the case of dependent elimination.
This will be explained later on.

The reduction rule for case construct allows to select the branch correspond-
ing to the constructor of an object. If the latter is a constructor then a reduction
can occur:

(P)case Ci(p,a) of x =t — t;{x;—a} if #(x;) = #(a)

where t{x «a} is the parallel substitution of terms a for variables x in t.
Note that P, I and p do not participate in the reduction, so they would be

erased at compile-time. We will show that I and p can be erased, but not P.
Finally, the calculus supports recursive functions via guarded fixpoints

fix, (f: T := M)

T represents the type of the fixpoint, M its body; f is the name of the vari-
able used in M to make recursive calls, and n is the position of the recur-
sive argument. The usual reduction rule for fixpoints is F' — M{f « F'} for
F = fix,,(f:T := M), but such definition instantly breaks strong normalization.

On the Role of Type Decorations in the Calculus of Inductive Constructions 161

To avoid infinite unrolling of the fixpoint, reduction is allowed only when the n-
th argument is in constructor form. This guard associated to a typing condition
that ensures that M makes a structural recursion over its n-th argument will
preserve normalization. The guarded reduction is

Ft — (M{f—F})t if#@t) =nAt,=C(p,a)AF="fix,(f:T:=M)

Here we can also remark that T does not participate in the reduction, but as for
the case predicate, type of fixpoints will not be erasable.

4.2 Typing

Before defining the typing rules of the inductive constructions, we introduce a
new judgment '+ T @Q u > A to type-check n-ary applications . It should read:
in context I', an expression of type T can be applied to arguments u, and this
application has return type A.

In traditional presentation of CIC, typing rules are configured by a signature
27 which contains declarations of inductive types, that is a family name I with
his type and a type for each constructor of I.

Definition 10 (signature).

Yu=| Ziind(I[Ay] : IA,. s :=IIA;. I Dom(A) t;)

Context A, declares the parameters of the inductive definition. They are
global to the definition and constructor can refer to them. Context A, is the
type of “real” arguments of I. s is the sort where the inductive objects lie. Then
for each constructor, A; gives the type of arguments of the i-th constructor. The
inductive name I may appear in 4A;. Finally, ¢; defines which instance of the
“real” arguments of I the constructor builds.

The same way contexts are subject to a typing judgment WF(), there is a
judgment to check that inductive declarations are well-formed. It includes type-
checking of the various components of the declaration and a syntactic criterion
called positivity to ensure strong normalization and consistency, but its exact
definition does not matter here. See [13] for details.

Definition 11 (typing of CIC). Typing rules for CTS are extended with the
new rule defined in Fig. 3.

Rule (IND) is like that of variables. Rule (CONSTR) is a combination of
a variable rule (i-th constructor has type IIA,.T;) and n-ary application (we
do as if it was applied to pa). The side condition ensures that parameters and
arguments are splitted correctly. Rule (FIX) is as usual except there is a side
condition (GUARDED) that ensures that the fixpoint proceeds by structural in-
duction over its n-th argument. It is a syntactic criterion we will not detail here.

Rule (CASE) is the most complicated. Because of dependent types, branches
may have different types. The type of the i-th branch is equal to P instanti-
ated with the particular instance of the i-th constructor. And the type of the

162 Bruno Barras and Benjamin Grégoire

WF(I') VNIL 'ct:T I'rU{z—t}Qun»> A VOONS
FFA@[]DA[] I'-lz:T.U Qtu > A []
Ind(I[A,]: A:i=T) e X
WEIL) #(4,) = #(p)
Ind(I[Ap]: A:=T)e X I'-IA, T;Qpa > Ipu
[IND] . [CONSTR]
I'c1:11A, A I'-Ci(p,a):Ipu

Ind(I[Ap] : [TAq. s := HA;. I Dom(A,) t;) € X I'EM:Ipa
ELm(7, s”) Vi. ; = Dom(4;)
'k P: A {Dom(A,)«p}. Oz:I p Dom(A,).s
Vi. TA;{Dom(A,)«p} F b; : P t;{Dom(A4,)—p} Ci(p,x;)
I'+ (P)case M ofz =b:PaM
Ii(f:T)k M:T GUARDED(fix,, (f: T := M))
'k fixo(f:T:=M): T

[CASE]
[FIX]

Fig. 3. New Typing rules for CIC

expression is P instantiated with the instance of the matched term (M). Side
condition ELIM(7, s’) is used to restrict the class of objects that can be built
by pattern-matching. It may be necessary to be restricitve to avoid paradoxes.
However, its definition is not relevent to our purposes.

The metatheory of CIC has been studied by various authors. It was first
introduced by Paulin [13]. Substitution lemma, type correctness, subject reduc-
tion and type uniqueness also hold. Inversion lemma has to be extended to the
case of the inductive constructions. We do not define it here but it always follow
the same scheme. In his Ph.D., Barras [3] formalized the syntactic metatheory
(strong normalization excluded) of an alternative presentation of CIC in Coq’.
In particular, CIC enjoys the type uniqueness property modulo ~3 (the proof is
the same as 5).

Hypothesis 1 (strong normalization) CIC is normalizing.

The above hypothesis can be seen either as a claim that CIC is normalizing
(Werner [17] showed the strong normalization of CIC but with a subset of the
sort hierarchy®) or as an assumption on the sort hierarchy for the subsequent
lemmas to hold, if we see CIC as a general framework parameterized like CT'Ss.

4.3 e-Equality

For CIC, apart from erasing domain types of functions, e-equality also ignores
parameters and inductive names of constructors; the only relevant information

5 Of course, Godel’s second incompleteness theorem shows that if CIC is consistent,
it is not possible to show this consistency within CIC.

5 Yet the trickiest part: it includes non degenerated impredicativity and strong elimi-
nation...

On the Role of Type Decorations in the Calculus of Inductive Constructions 163

for constructors are their constructor number and real arguments. As before we
can ensure the equality of the erased part of constructors from the equality of
their types. For instance, 0 and false are convertible and can have the same
representation (their constructor number 0). Moreover, lists (cons nat 0 (nil
nat)) and (cons bool false (nil bool)) are also convertible because their
parameters (here the polymorphic arguments nat and bool) are ignored. This
is what we call Calculus of Inductive Constructions with Implicit Parameters.

In this calculus, the conversion algorithm can safely implement constructors
by a pair formed with a constructor number and a list of real arguments. It
worths mentioning that it corresponds pretty well to how datatypes are compiled
in languages of the ML family.

Definition 12 (e-equality). We extend e-equality and e-convertibility (Def. 6)
with the following rules:

P=.P M=.M Vi, x; =) b =c t]
I'=c1 (P)case M of z = 1=, (P"ycase M’ of ' = 1!
i=1 a=.a T=.T M=, M
Ci(p,a) =. Ch(p',a’) fix, (f:T = M) = fix,(f:T' := M)

Remark that we do not erase type information of fixpoints and cases. This
is because it breaks Preservation of Equational Theory. For example terms

fixo(f:(B—B)—A—A:=Ag:B—B. \x:A.x) \x:B.x
fixo(f:(C—C)—=A—-A:=Xg:C—C. A\x:A.z) \x:C.x

have the same type, are in normal form (they have no second argument), and are
not convertible, but would become equal if we ignore information of fixpoints.
The key point is that guarded fixpoints can behave as a non-reducible (-redex
(when partially applied or when recursive argument is not a constructor). We can
find some similar counter-examples where a non-reducible case blocks a (-redex,
so we cannot ignore case’s predicate.

4.4 Equivalence of CICe w.r.t. CIC

In Sect. 3 the proof relies on the ability to first infer the type of a head term
in normal form and second to verify the convertibility of abstractions with close
types. As a preliminary, we can extend the result of uniqueness of typing. And
as for product, we have a kind of inversion for close inductive types :

Tar~gl'd'=1=I'Na~ad
The premise regarding the type constraint is changed since we must know that

the types must be ~3 also in the case of constructors. Firstly regarding e-equal
normal forms:

164 Bruno Barras and Benjamin Grégoire

Lemma 9.
FkﬁtlT Fkﬁt/:T/
t=ct t,t' e NF =t=t
tg{\C} VvV TrapgT

where C' is the set of constructor terms.

Proof: The interesting cases are those for constructors and pattern-matching.
Convertibility of constructors do not imply convertibility of their parameters,
but last premise entails that their types are close (as for abstractions), so they
belong to the same inductive type with the same parameters.

For pattern-matching, we first prove the equality of arguments by induction
hypothesis, which can be neither a constructor (¢ is in normal form) nor an
abstraction (¢ is well-typed). By uniqueness of types, their types are close, which
implies that both ¢ and ¢’ are pattern-matching over the same inductive with
same parameters. So, both predicates have close types. By induction hypothesis,
they are equal. So branches have close types pairwise. Finally we can prove the
equality of branches.

Again, the rest of the proof goes exactly as in Section 3.3, and we can conclude
to the equivalence of both systems:

Theorem 3 (PET,PS,PT for CIC). If specification [is normalizing then

PET) I'ts M:TATVg M :T = M~ M & M~ M
B B B

(PS) I'tsT:sAThsU:s = T=:U&T=5U

(PT) Thet:TeTbgt:T

It is easy to show that CIC. is equivalent to is “the Calculus of Inductive Con-
structions with Implicit Parameters” (defined has CIC where type decorations
and inductive parameters are remove from the syntax).

5 Conclusion and Future Work

We have introduced an (almost) type-free version of the Calculus of Inductive
Constructions. In this new formalism, conversion test is more efficient, and more-
over is compatible with compilation of proof terms as in [9]. We have shown that
it is equivalent to CIC (provided that the latter is normalizing), by generalizing
Barthe’s and Sgrensen’s proof [5]. We can not get rid the normalization hypoth-
esis since, as shown by Barthe and Coquand [/], system U~ (a non normalizing
PTS) is not equivalent to its domain-free version.

Our equivalence proof can be turned into an algorithm that reannotates a
type-free term in normal form given its (unannotated) type. This is useful for
toplevels to display the result of a normalization step. This algorithm has been
integrated to the current development version of Coq.

A first direction to investigate is what happens if we remove the predicate
of pattern-matching expressions and the type of fixpoints. We have shown that
preservation of typing does not hold in the way we stated it. Nonetheless, it
would be interesting to see how the formalism is affected regarding for instance
expressivity and consistency.

On the Role of Type Decorations in the Calculus of Inductive Constructions 165

Another direction is to study the case of contravariant subtyping. The prob-
lem here is that contravariance breaks our type uniqueness property and so
our main lemma 6. So, again, equational theory is not exactly preserved, but
we conjecture the equiconsistency of both systems. However, contravariant sub-
typing may radically change the way the proof works, so let us mention that
adding subtyping to depend types has already been studied by Aspinall and
Compagnoni [1] and by Castagna and Chen [7], and by Chen [8] for the Calculus
of Constructions. We might need some of the proof techniques developed there.

References

1. D. Aspinall and A. Compagnoni. Subtyping dependent types. Theor. Comput. Sci.,
266(1-2):273-309, 2001.

2. H. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, volume 2. Abramsky & Gabbay & Maibaum (Eds.), Clarendon, 1992.

3. B. Barras. Auto-validation d’un systeme de preuves avec familles inductives. PhD
thesis, Université Paris 7, 1999.

4. G. Barthe and T. Coquand. On the equational theory of non-normalizing pure
type systems. Journal of Functional Programming, 14(2):191-209, Mar. 2004.

5. G. Barthe and M. Sgrensen. Domain-free pure type systems. In Journal of Func-
tional Programming, 10(5):412-452, September 2000.

6. S. Boutin. Using reflection to build efficient and certified decision procedures. In
TACS, pages 515-529, 1997.

7. G. Castagna and G. Chen. Dependent types with subtyping and late-bound
overloading. INFCTRL: Information and Computation (formerly Information and
Control), 168, 2001.

8. G. Chen. Subtyping calculus of construction. In 22nd International Symposium on
Mathematical Foundations of Computer Science (MFCS), 1997.

9. B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
International Conference on Functional Programming 2002, pages 235-246. ACM
Press, 2002.

10. X. Leroy and J. V. D. Doligez. The Objective Caml System. Institut National de
Recherche en Informatique et en Automatique, August 2004. Software and docu-
mentation available on the Web, http://caml.inria.fr/.

11. Z. Luo. An Eztended Calculus of Constructions. PhD thesis, University of Edin-
burgh, 1990.

12. J. McKinna and R. Pollack. Some lambda calculus and type theory formalized.
Journal of Automated Reasoning, 23(3-4), Nov. 1999.

13. C. Paulin-Mohring. Eztraction de programmes dans le Calcul des Constructions.
Ph.d. thesis, Paris 7, January 1989.

14. R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of
Constructions. PhD thesis, Univ. of Edinburgh, 1994.

15. T. Streicher. Semantics of Type Theory: Correctness, Completeness, and Indepen-
dence Results. Birkhauser, 1991.

16. The Coq development team. The coq proof assistant reference manual v7.2. Tech-
nical Report 255, INRIA, France, march 2002. http://coq.inria.fr/doc8/main.html.

17. B. Werner. Une Théorie de Constructions Inductives. Ph.d. thesis, Université
Paris 7, May 1994.

166 Bruno Barras and Benjamin Grégoire

A Proof of Lemma 2

First we prove by induction on <pg,
Ry € RR2 ==R, € R5R2 (*)

Then by induction on the number of steps in 7" <% U. The base cases are
trivial. The inductive case is explained in the following diagram:

T <Rl V <*1?1

OO
"

<=
T' =Ry V! V! =2k,

\ ®) @ /

T" Zre W =k, U”

/\

) existence of V/, U’ by induction hypothesis

) existence of T, V" by (*)

) existence of W by confluence of S-reduction

4) existence of U” by (Rg,) € C and Lemma 1

5) existence of 7" by (Rz,) € C, Lemma 1 and symmetry of Ry

(
(
(
(
(

L-Nets, Strategies and Proof-Nets

Pierre-Louis Curien! and Claudia Faggian®*

1 CNRS - Université Paris 7
2 Universita di Padova

Abstract. We consider the setting of L-nets, recently introduced by Faggian and
Maurel as a game model of concurrent interaction and based on Girard’s Ludics.
We show how L-nets satisfying an additional condition, which we call logical
L-nets, can be sequentialized into traditional tree-like strategies, and vice-versa.

1 Introduction

In the context of Game Semantics several proposals are emerging — with different mo-
tivations — towards strategies where sequentiality is relaxed to capture a more parallel
form of interaction, or where the order between moves in a play is not totally specified.
Such strategies appear as graphs, rather then more traditional tree-like strategies. We are
aware of work by Hyland, Schalk, Melli¢s, McCusker and Wall. Here we will consider
the setting of L-nets, recently introduced by Faggian and Maurel [8] as a game model
of concurrent interaction, based on Girard’s Ludics.

The idea underlying L-nets (as well as other approaches) is to not completely spec-
ify the order in which the actions should be performed, while still being able to express
constraints. Certain tasks may have to be performed before other tasks. Other actions
can be performed in parallel, or scheduled in any order.

More traditional strategies, and in particular Hyland-Ong innocent strategies [13],
are trees. In this paper we are interested in relating some representatives of these two
kinds of strategies. We show how strategies represented by graphs, with little ordering
information, can be sequentialized into tree-like strategies; conversely, sequential (tree)
strategies can be relaxed into more asynchronous ones.

Two Flavours of Views. It is known that tree strategies (innocent strategies) can be pre-
sented as sets of views with certain properties. A view is a linearly ordered sequence of
moves (again with certain properties), and the set of views forms a tree. Any interaction
(play) results into a totally ordered set of moves.

A graph strategy (an L-net) is a set of partially ordered views (p.o. views), where a
p.-o. view is a partially ordered set of moves, which expresses an enabling relation, or
a scheduling among moves. The set of such p.o. views forms a directed acyclic graph.
Any interaction (play) results into a partially ordered set of moves.

In our setting a tree strategy is, in particular, a graph strategy. Hence we have an ho-
mogeneous space, inside which we can move, applying our procedures Seq and Deseq,
which respectively add or relax dependency (sequentiality).

* Research partially supported by Cooperation project CNR-CNRS Italy-France 2004-2005
(Interaction et complexité, project No 16251).

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 167-183, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

168 Pierre-Louis Curien and Claudia Faggian

From Graph Strategies to Tree Strategies and Vice-Versa. The graph strategies we will
consider are (a class of) L-nets. The tree-like strategies we will consider are Girard’s
designs [11] (syntactically, designs are particular sorts of Curien’s abstract Bohm trees
[4, 5]). As a computational object a design is a Hyland-Ong innocent strategy on a
universal arena, as discussed in [7]. An L-net is a graph strategy on the same arena.

We will show how to associate a design to certain L-net, in such a way that all
constraints expressed by the L-net are preserved. This is not possible for an arbitrary
L-net; it is easy to build a counter-example taking inspiration from Gustave function (a
well-known example of a non-sequential function, see e.g. [1]). For this reason, we first
introduce the notion of logical L-nets, which are L-nets satisfying a condition called
cycles condition!. We then make the following constructions: in section 4, we show
how to obtain a set of designs seq(®) from a logical L-net ©, while in section 5, we
show how to obtain a logical L-net deseq(®) from a design ®, in such a way that for
all designs © we have D € seq(deseq(D)).

The Proof-Net Experience. Tree strategies can be seen as abstract (and untyped) se-
quent calculus derivations. By contrast, L-nets are graphs which can be seen as abstract
multiplicative-additive proof-nets. Indeed, there are two standard ways to handle proofs
in Linear Logic: either as sequent calculus derivations, or as proof-nets. Sequent calcu-
lus derivations can be mapped onto proof-nets, by forgetting some of the order between
the rules, and conversely proof-nets can be sequentialized into proofs. In this paper
we use similar techniques in the framework of game semantics. It is a contribution of
the paper to transfer the use of proof-net technologies to the semantic setting of Game
strategies. This appears to be a natural consequence of a general direction bringing
together syntax and semantics.

2 Tree Strategies (Designs) and Sequent Calculus Derivations

Designs, introduced in [11], have a twofold nature: they are at the same time semantic
structures (an innocent strategy, presented as a set of views) and syntactic structures,
which can be understood as abstract sequent calculus derivations (in a focusing calculus,
which we will introduce next).

While we do not recall the standard definitions of view and innocent strategy, in the
following we review in which sense a tree strategy is a sequent calculus derivation, and
viceversa.

2.1 Focalization and Synthetic Connectives

Multiplicative and additive connectives of Linear Logic separate into two families: pos-
itives (®,®, 1,0) and negatives (¥, &, L, T). A formula is positive (negative) if its
outermost connective is positive (negative).

A cluster of connectives with the same polarity can be seen as a single connec-
tive (called a synthetic connective), and a “cascade” of decompositions with the same

! This condition is a simplified version Hughes and Van Glabbeek’s toggling condition [12].

L-Nets, Strategies and Proof-Nets 169

polarity as a single step (rule). This corresponds to a property known as focalization,
discovered by Andreoli (see [2]), and which provides a strategy in proof-search: (i) neg-
ative connectives, if any, are decomposed immediately, (ii) we choose a positive focus,
and persistently decompose it up to its negative sub-formulas.

Shift. To these standard connectives, it is convenient to add two new (dual) connectives,
called Shift’>: | (positive) and T (negative). The role of the Shift operators is to change
the polarity of a formula: if IV is negative, | N is positive. When decomposing a positive
connective into its negative subformulas (or viceversa), the shift marks the polarity
change. The shift is the connective which captures “time” (or sequentiality): it marks a
step in computation.

Focusing Calculus. Focalization is captured by the following sequent calculus, orig-
inally introduced by Girard in [10], and closely related to the focusing calculus by
Andreoli (see [2]). We refer to those papers for more details.

Axioms: F . x

We assume, by convention, that all atoms x are positive (hence xt

is negative).

Any positive (resp. negative) cluster of connectives can be written as a @ of ® (resp. a
& of %), modulo distributivity and associativity. The rules for synthetic connectives are
as follows. Notice that each rule has labels; rather than more usual labels such as ® L,
®R, etc., we label the rules with the active formulas, in the way we describe below.

Positive Connectives: Let P(Ni,...,Nn) = @;cn(Q;c; (I Ni)), where I and N
are index sets. Each), ; (| IV;) is called an additive component. In the calculus, there
is an introduction rule for each additive component. Let us write Ny for @), (1 N;).

FNi,Ai FNi/,Ai/...

FP,A (PvNI)

A positive rule is labelled with a pair: (i) the focus and (ii) the ® of subformulas which
appear in the premises (that is, the additive component we are using).

Negative Connectives: Let N(Py,..., P,) = &ren(Bicr(T P;)). We have a premise
for each additive component. Let us write Py for %, (T P;).

FPLA FPjA...

I—N7A "'a(NaPI)v(N7R])""

A negative rule is labelled by a set of pairs: a pair of the form (focus, 7§ of subformulas)
for each premise.

2 The Shift operators have been introduced by Girard as part of the decomposition of the expo-
nentials.

170 Pierre-Louis Curien and Claudia Faggian

{0} {0}
3! 40\} £2 {0}

F ao,c Cl F bo,d dbl | | {1,2}
Fat,c Fot,d at bt
b b 1 1
b o {1,2}
Fc7d7aL®bl ?;d © (z}@b/i \
- e®d,at @bt € - 7|?d p,
Fig. 1

We call each of the pairs we used in the labels an action. (If a proof does not use
&, to each rule corresponds an action. Otherwise, there is an action for each additive
component.)

It is important to notice the duality between positive and negative rules: to each
negative premise corresponds a positive rule. For each action in a negative rule, there is
a corresponding positive action, which characterizes a positive rule.

2.2 Designs as (Untyped) Focusing Proofs

Given a focusing proof, we can associate to it a design (forgetting the types). Con-
versely, given a tree of actions which is a design, we have the “skeleton” of a sequent
calculus derivation. This skeleton becomes a concrete (typed) derivation as soon as we
are able to decorate it with types. Let us sketch this using an example.

First Example. Consider the (purely multiplicative) derivation on the l.h.s. of Figure
1. Each rule is labelled by the active formula. a-, b denote negative formulas which
respectively decompose into ag, by. Notice that we deal with Shift implicitly, writing
at ®b* for | at® | b, and so on.

Now we forget everything in the sequent derivation, but the labels. We obtain the
tree of labels (actions) depicted in Figure 1.

This formalism is more concise than the original sequent proof, but still carries all
relevant information. To retrieve the sequent calculus counterpart is immediate. Rules
and active formulas are explicitly given. Moreover we can retrieve the context dynami-
cally. For example, when we apply the Tensor rule, we know that the context of a~ ® b+
is ¢, d, because they are used afterwards (above). After the decomposition of at ®bt,
we know that ¢ (resp. d) is in the context of a because it is used after a (resp. b).

Addresses (Loci). One of the essential features of Ludics is that proofs do not manipu-
late formulas, but addresses. An address is a sequence of natural numbers, which could
be thought of as a name, a channel, or as the address in the memory where an occurrence
of a formula is stored. If we give address & to an occurrence of a formula, its (imme-
diate) subformulas will receive addresses i, &7, etc. Let a = ((p1®p2) @ ¢) @ rt.
If we locate a at the address &, we can locate py ¥'po, g, r respectively in 1, €2, £3 (the
choice of addresses is arbitrary, as long as each occurrence receives a distinct address).

L-Nets, Strategies and Proof-Nets 171

Let us consider an action (P, N1), where Nr = @,.;(l N;)is (§, K). Its trans-
lation is (&, K), where ¢ is the address of P, and K is the set of natural numbers
corresponding to the relative addresses of the subformulas N;.

First Example, Continuation. Coming back to our example (Figure 1), let us abstract
from the type annotation (the formulas), and work with addresses. We locate a* ® b+
at the address &; for its subformulas a and b we choose the subaddresses £1 and £2. In
the same way, we locate ¢7¥d at the address ¢ and so on for its subformulas.

To indicate the polarity, in the pictures we circle positive actions (to remind that
they are clusters of ® and @®). Our example leads to the tree of actions on the r.h.s. of
Figure 1, which is an actual design.

2.3 Understanding the Additives (Slices)

The treatment of the additive structure is based on the notion of slice.

A &-rule must be thought of as the superposition of two unary rules, &1, & r. We
write the two components of the rule which introduces a&eb as (a&eb, a) and (aded,b).
Given a sequent calculus derivation in Multiplicative Additive Linear Logic (MALL), if
for each &-rule we select one of the premises, we obtain a derivation where all &-rules
are unary. This is called a slice [9]. For example, the derivation on the Lh.s. below, can
be decomposed into the slices on the r.h.s..

Fa,c Fbc Fa,c Fb,c
F a&b, c F a&b,c (akb,a) F a&b,c (aked, b)
F(a&b) ®d,c ~ F (a&b) ®d,c and F (a&b) @ d, ¢

An &-rule is a set (the superposition) of unary rules on the same formula. For this
reason, we will write a&b also as {(a&b, a), (a&d,b)}.

A More Structured Example. Leta = (m ®n) @ ¢,

m = (p1Bpat)&(qi Bt)&rt, n = by BbytBb3t, with p;, ¢;, b; positive for-
mulas. Consider the following derivation, where the set of labels R; is
{(mvplLYXp2J_)7 (mv QILYX(DL)? (m7 TL)} and Ry is {(n7 le_??bQL??IRL)}'

1 @ o
F p1,p2 Faqi,q2 For F b1,b2,b3
R R>
Fm Fn
a,me@n
F(m®n)®ec

It is immediate to obtain the corresponding typed design:

1 | | |
(m,Plesz)w (m,r+) (n,bli-yﬁ)bgi-ygbf-)
S

Let us now give addresses to the subformulas of A. The counterpart of the previous tree
is the following one, which is actually a design.

172 Pierre-Louis Curien and Claudia Faggian
P
(EHMDW}\) /(%(EZ{LZSD

Bipoles (Reading a Design). 1t is very natural to read a design (or an L-net) as built out
of bipoles, which are the groups formed by a positive action (say, on address &) and all
the negative actions which follow it (all being at immediate subaddresses &: of &). Each
address corresponds to a formula occurrence. The positive action corresponds to a pos-
itive connective. The negative actions are partitioned according to the addresses: each
address corresponds to a formula occurrence, each action on that address corresponds
to an additive component.

Towards Proof-Nets. Let us consider a multiplicative design (a slice). We are given
two partial orders, which correspond to two kinds of information on each action k =
(o,1): (i) a time relation (sequential order); (ii) a space relation (prefix order), corre-
sponding to the relation of being subaddress (the arena dependency in Game Seman-
tics).

Let us look again at our first example of design. We make explicit the relation of
being a subaddress with a dashed arrow, as follows:

{0} \{0} —
QG0 @ 51 /gvz

7 |
{1,2}

~> - {1,24}"/ /@
| o

If we emphasize the prefix order rather than the sequential order, we recognize
something similar to a proof-net (see [6]), with some additional information on sequen-
tialization. Taking forward this idea of proof-nets leads us to L-nets.

3 Logical L-Nets

In this section, we recall the notion of L-net of Faggian and Maurel [8], but we replace
the acyclicity condition by the stronger cycles condition.

Actions (Arena and Moves). An action is either the special symbol { (called daimon)
or (cf. above) a pair k = (&, I) given by an address £ and a finite set I of indices.
When not ambigous, we write just £ for the action (£, I). In the following, the letters
k,a,b, c,d vary on actions.

We say that o is a subaddress of & if £ is a prefix of o (written £ C o). We say that
an action (£, I) generates the addresses i, for all ¢ € I, and write a C; b if the action
a generates the address of the action b (a is the parent of b). We will write a C b for

L-Nets, Strategies and Proof-Nets 173

the transitive closure of this relation. Actions together with the relation C; define what
could be called a universal arena.

A polarized action is given by an action k together with a polarity, positive (k™) or
negative (k7). The action T is defined to be positive. When clear from the context, or
not relevant, we omit the explicit indication of the polarity.

L-Nets (Graph Strategies). L-nets have an internal structure, described by a directed
acyclic graph (d.a.g.) on polarized actions, and an interface, providing the names on
which the L-net can communicate with the rest of the world.

An interface is a pair of disjoint sets =, A of addresses (names), which we write
as a sequent = F A. We call A the positive (or outer) names, and = the negative (or
inner) names. = is either empty or a singleton. We think of the inner names as passive,
or receiving, and of the outer names as active or sending.

Directed graphs and notations. We consider any directed acyclic graph G up to its
transitive closure, and in fact we only draw the skeleton (the minimal graph whose
transitive closure is the same as that of G). We write a < b if there is an edge from b to
a. In all our pictures, the edges are oriented downwards. We use < for ««— ... «.

A node n of G is called minimal (resp. maximal) if there is no node a such that
a < n (resp. n < a). Given a node n, we denote by "n ' (the view of n) the sub-graph
induced by restriction of G on {n} U {n/,n’ < n} (we omit to indicate G whenever
possible).

It is standard to represent a strict partial order as a d.a.g., where we have an edge
from b to @ whenever a < b. Conversely, (the transitive closure of) a d.a.g. is a strict
partial order.

Definition 1 (pre L-nets). A pre L-net is given by:

— Aninterface = + A.

— A set A of nodes which are labelled by polarized actions>.

— A structure on A of directed acyclic bipartite graph (if k < k', the two actions have
opposite polarity) such that:

i. Parents. For any action a = (o, J), either o belongs to the interface (and then
its polarity is as indicated by the base), or it has been generated by a preceding
action ¢ < a of opposite polarity. Moreover, if a is negative, then ¢ — a.

ii. Views. For each action k, in "k each address only appears once, i.e. all a’s
such that a <~ k are on distinct addresses.
iii. Sibling. Negative actions with the same predecessor are all distinct.

iv. Positivity. If a is maximal w.r.t. <, then it is positive.

To complete the definition of logical L-nets, we still need (i) a notion allowing us to
deal with multiple copies of the same action induced by the additive structure and (ii) a
correctness criterion on graphs. We first give a few definitions.

3 Hence nodes are occurrences of actions, but we freely speak of actions for brevity.

174 Pierre-Louis Curien and Claudia Faggian

Bipoles and Rules. The positive actions induce a partition of the d.a.g. ® just described.
A bipole (cf. previous section) is the tree we obtain when restricting ® either (i) to
a positive action and the actions which immediately follow it, or (ii) to the negative
actions which are initial (degenerated case).

Let us partition each bipole according to the addresses. A rule is a maximal set
{(§, Kj)} of actions which have the same address, and belong to the same bipole. A
rule is positive or negative according to the polarity of its actions. When a rule is not
a singleton, we call it an additive rule (think of each action as an additive component).
An additive pair is a pair (¢, J)~, (£, J')” belonging to an additive rule. Observe that
if a rule is not a singleton, it must be negative. If we look at the bipole in the following
picture, we have two rules: Ry = {(01,J)} and Ry = {(02,J'), (02, J")}.

(o1,) (62,07) (62,J")

Paths. An edge is an entering edge of the action a if it has a as target. If R is a negative
rule and e an entering edge of an action a € R, we call e a switching edge of R. A
path is a sequence of nodes ky, ...k, belonging to distinct rules, and such that for each
i either k; — k;y1 (the path is going down) or k; < k;41 (the path is going up). A
switching path on a pre L-net is a path which uses at most one switching edge for each
negative rule. A swirching cycle is a cycle (on a sequence of nodes ky, ...k, belonging
to distinct rules) which contains at most one switching edge for any negative rule.

Definition 2 (logical L-net). A logical L-net is a pre L-net such that

- Additives. Given two positive actions k1 = (&, K1),k2 = (&, K2) on the same
addpress, there is an additive pair w1y, ws such that ky Dl w1, and ko Nl wa.

— Cycles. Given a non-empty union C' of switching cycles, there is an additive rule
W not intersecting C, and a pair w1, ws € W such that for some nodes c1,co € C,
w1 Dl c1, and wo Nl Co.

L-Nets as Sets of Views / Chronicles. We call chronicle (view) a set ¢ of actions
equipped with a partial order, such that: ¢ has a unique maximal element (the apex), and
satisfies the (analog of the) parent condition.

Any node £ in a pre L-net © defines a chronicle, which is "k, where the overlining
operation is defined on directed acyclic graphs G whose nodes are injectively labelled,
as follows: replace all nodes of G by their labels, yielding a graph G’ isomorphic to G,
Then G is the transitive closure of G’, i.e., G’ viewed as a strict partial order (cf. above).
We can associate to each L-net © a set of chronicles ¢(D), as follows:

¢(®)={"n"|nisanodeof D}

The set ¢(D) is closed downwards, in the following sense: if ¢ € ¢(D), if k is the
maximal action of ¢, and if £’ € ¢ is such that k covers k', i.e., ¥’ < k and there exists
no k" € csuch that k' < k" < k, then "k’ (taken with respect to ¢) belongs to (D).
Conversely, given a set A of chronicles which is closed downwards, we define a di-
rected graph ¢)(A) as follows: the nodes are the elements of A and the edges are all the

L-Nets, Strategies and Proof-Nets 175

pairs of the form (¢’ ¢) such that, if k, k" are the maximal actions of ¢, ¢/, respectively,
then &' € ¢’ and k covers &’ (in ¢). It is easy to see that for any downwards closed set
of chronicles A we have ¢(1)(A)) = A. Conversely, given an L-net D, we have that
P(#(D)) is isomorphic as a graph to D.

The functions ¢ and 1 are inverse bijections (up to graph-isomorphisms of L-nets)
between the collection of L-nets and the set of downward closed sets of chronicles A
such that ¢)(A) is an L-net.

In this paper, we will largely rely on the presentation of L-nets as sets of chronicles
(views). This in particular allows us to treat easily the superposition of two L-nets as
the union of the two sets of chronicles (see section 5.2). We shall write write ¢ € S and
S C D for ¢, S, respectively a chronicle, a set of chronicles and an L-net.

Slices. A slice is an L-net in which there is no additive pair (or, equivalently, no repeti-
tion of addresses). A slice & of an L-net ® is a maximal subgraph of ® which is closed
under view ("k's="k) and it is a slice.

L-Nets and Logical L-Nets. Our definition of logical L-net differs from the definini-
tion of L-nets in [8] in the cycles condition, which replaces the acyclicity condition of
L-nets, which asserts that there are no switching cycles in a slice. It is immediate that
our cycles condition implies the acyclicity condition. Hence, a logical L-net is, in par-
ticular, an L-net. Notice that while acyclicity is a property of a slice, the new condition
speaks of cycles which traverse slices.

Designs. The designs of [11], can be regarded as a special case of L-nets: they are those
L-nets such that each positive node is the source of at most one negative node, and each
negative node has a single entering edge. Equivalently, the L-nets corresponding to
designs are those which are trees that branch only on positive nodes.

4 Sequentializing a Graph Strategy

A node in an L-net should be thought of as a cluster of operations which can be per-
formed at the same time. An edge states a dependency, an enabling relation, or a prece-
dence among actions. Let us consider a very simple example: a chronicle ¢, i.e. a par-
tially ordered view (p.o. view). A sequentialization of ¢ is a linear extension of the
partial order. That is, we add sequentiality (edges) to obtain a total order. A total order
which extends ¢ will define a complete scheduling of the tasks, in such a way that each
action is performed only after all of its constraints are satisfied.

Dependency between the actions of a slice, and of sets of slices (L-nets) is more
subtle, as there are also global constraints.

The aim of this section is to provide a procedure, which takes an L-net and adds
sequentiality in such a way that the constraints specified by the L-net are respected. In
particular, all actions in a p.o. view of © will be contained in a (totally ordered) view
of the tree Seq(®). The process of sequentialization is non-deterministic, as one can
expect, i.e. there are different ways to produce a design from a logical L-net.

As we have both multiplicative and additive structure, when sequentializing we will
perform two tasks: 1. add sequentiality (sequential links) until the order in each chron-

176 Pierre-Louis Curien and Claudia Faggian

icle is completely determined, 2. separate slices which are shared through additive su-
perposition.

The key point in sequentialization is to select a rule which does not depend on
others. This is the role of the Splitting lemma.

Lemma 1 (Splitting lemma). Given an L-net © which satisfies the cycles condition,
if © has a negative rule, then it has a splitting negative rule. A negative rule W =
{...,w;,...} is splitting if either it is conclusion of the L-net (each w; is a root), or if
deleting all the edges w; — w there is no more connection (i.e., no path) between any
of the w; and w.

The proof is an adaptation to our setting of the proof of the similar lemma in [12].
Moreover, the proof implies that

Proposition 1. The splitting negative rule W can always be chosen of minimal height:
either it is conclusion of the L-net, or it is above a positive action, which is conclusion.

Remark 1. A consequence of the previous proposition is that, when applying the split-
ting lemma, we are always able to work “bottom up”.

4.1 Sequentialization

An L-net does not need to be connected. This is a natural and desirable feature if we
want both parallelism and partial proofs, that is proofs which can be completed into
a proper proof. Actually, non-connectedness is an ingredient of Andreoli’s concurrent
proof construction. On the logical side, non-connectedness corresponds to the mix rule.

There is no special problem for sequentializing non-connected L-nets, except that
we need to admit the mix-rule. But as the (controversial) mix rule is refused by designs,
we distinguish logical L-nets which are connected.

Given an L-net® and a slice S C D, a switching graph of G is a subgraph obtained
from & by choosing a single edge for each negative node, and deleting all the other ones.
A slice is S-connected if all its possible switching graphs are connected. Finally, we call
an L-net S-connected if all its maximal slices are.

Proposition 2. A logical L-net ® which is S-connected can be sequentialized into a
design, or (equivalently) into its sequent calculus presentation.

Remark 2. If we admit mix, it is easy to adapt the procedure below to sequentialize any
logical L-net.

Proof. The proof is by induction on the number /N of negative nodes of the L-net ®.

Case 1: N = 0. ® consists of a single positive action k, which does not need further
sequentialization.

Case 2: N > 0 and There Are Negative Initial Nodes. By definition of L-net, all
negative nodes which are initial belong to the same rule W = {... w;,... }.

L-Nets, Strategies and Proof-Nets 177

Let ©; be the union of all slices & C ® such that w; € &. That is, D, is the
maximal L-net obtained as set of all chronicles ¢ such that w; ¢ c, for any w; # w;. It
is immediate that, operationally, ®; is the graph obtained from ® following these two
steps: (i) delete all nodes c such that w; «* ¢, for j # 4; (ii) delete any negative node
which has become a leaf.

D, is S-connected. Let ©/ be the tree obtained from ©; by removing w; and by

o;
sequentializing the resulting L-net. €; = u! is a design. The forest given by the union
of all ¢; is a design: '
Fé&, A FHEA
EEA
Case 3: N > 0 and There Are No Negative Initial Nodes. We select a splitting negative
rule X = {z1 = (&, J1),..., 2, = (&, J,)}. This rule is part of a bipole, with root
k = (&, I) and possibly other negative rules Y;. We delete the edges from = € X to k,
disconnecting ®.

Let us call Gx the part of the graph containing X, and Gy, the other part. Let us
check that the cycles condition is preserved for both Gx and G}, (preservation of all
other properties is immediate). In the case of Gy, it is obvious, in the case of Gx it
comes from the fact that k& determines a “bottle-neck” in the graph, as any path going
down from G x to G, must traverse k. Let us assume that there are switching cycles in
Gx, hence a fortiori in ©. The cycles condition for ® implies that there is an additive
pair wy , wy such that each w; is below a node ¢; in one of the cycles. If w;, w2 were in
G, any path going down from ¢; to w; should traverse k. This would mean that there
is a path down from k to w; for each w;, and hence that both w; belong to " k™, which
is against the definition of L-net.

We conclude by applying induction. G, will sequentialize into a design containing
the node k. Gx will sequentialize into a set of trees of roots respectively x1, ..., Zy.
We obtain a design by having each of these trees pointing to k.

GEA Y L gaA YJI
e (&1)

4.2 Examples of Sequentialization
Let us consider the following L-net YR, where we have two negative rules, both splitting:

€0,I ¢0,J a0, {0}

\
X = {(€0,1), (€0, J)} and A = {(a0, {O})}. Ca, oD

If we choose X, we obtain the two trees on the left-hand side of Figure 2, and then
the design X. Instead, choosing A we obtain the design 2 (on the r.h.s.).

178 Pierre-Louis Curien and Claudia Faggian
X A

' | ' '
ari,o a(i,o £0,1

Ll e o

O J, T

I ol
Fig. 2.

S Desequentializing a Tree Strategy

Beyond the fact that an action can be seen as a cluster of operations that can be per-
formed together thanks to focalization, in a design (actually, in any tree strategy) re-
mains a lot of artificial sequentiality, just as in sequent calculus proofs for Linear Logic.
In the case of proofs, the solution has been to develop proof-nets, a theory which has
revealed itself extremely fruitful.

We want to apply similar techniques to designs. Our aim in this section is to remove
some artificial sequentialization, while preserving essential sequentialization, namely
that allowing to recover axioms and to deal with additives.

All dependency (sequentialization) which is taken away by desequentialization can
be (non-deterministically) restored through sequentialization (Theorem 1).

5.1 Desequentialization

It is rather immediate to move from designs to an explicit sequent calculus style rep-
resentation. We already sketched this with an example, and refer to [11] for the details
(notice that, because of weakening, there are several sequent calculus representations
of a design). To each node £ in a design we can associate a sequent of addresses, cor-
responding to the sequent on which the action is performed. We choose an algorithm
which performs weakening as high as possible in the derivation, pushing it to the leaves.

Leaves. For each leaf k in a design, we can recover the sequent of addresses corre-
sponding to the sequent on which that action is performed.

Given a leaf k in the design, its translation £* is the same node k, to which we
explicitly associate a set of addresses, which we call link(k), in the following way:

(&1

if k is either the action of address £ on the sequent - &, I -
. k=)
action f on - I Jr, we have link(k) = I

or the special

Positive Conclusion. Let us condider a design whose root is a positive action (¢, T), and
call I1; the forest of subtrees whose conclusions have address £i. The design translates
into the L-net

L-Nets, Strategies and Proof-Nets 179

i, Ky \ \ ..

&i, Ko /g, J1 &4, Jo

in the following way. Associate the L-net II;" to each II;. Take the union of all II;. Add
(&,1)T to the nodes, and extend the set of edges with a relation (£, 1) < k for each
action k of address &:.

Negative Conclusion. Let us consider a design having as conclusion the negative rule
X ={x; = (&) ,22 = (&, J)7,...}. Let us call II; the subtree above (£,I). A
design of negative conclusion translates into an L-net in the following way.

1. For each subtree (premiss) I/ do the following.

— Associate the L-net 117 to I1;.

— Add (&, I)~ to the nodes of II;.

— Extend the set of edges with a relation (£, I)~ « k for each action k& such that:
- k has address &7 (i € I), or
- k is a leaf such that &i € link(k).

Let us call ©; the resulting graph (which is an L-net).

2. Consider ©;,D,....Obtain ®7, D'}, ... by extending the set of edges of each D
with a relation (£, 1)~ « k for each positive node k such that "k € D, Tk &
Dz, for some J # I.

3. Superpose ©%,D’;, Superposition is obtained by taking the union of the chron-
icles (see [8] and the examples below).

Superposition is the only step which can introduce cycles. However, if a new cycle
C is introduced we find a node ¢ > x; and anode ¢’ > z;, for z;, z; € X.

We have the following result, relating desequentialization and sequentialization.

Theorem 1. Given (a sequent calculus representation of) a design ®, let us desequen-
tialize it into the L-net SR. There exists a strategy of sequentialization (section 4.1) which
allows us to sequentialize R into ©.

The proof comes from the fact that for each step in the desequentialization there is a
step of sequentialization which reverses it.

5.2 Examples of Superposition

The superposition of two L-nets is their union as sets of chronicles. Let us see an ex-
ample. Consider the two L-nets ©1, %32 in Figure 3. The superposition of ®; and D,
produces the L-net ® = D4 (J Ds».

In fact, the set of chronicles of D1 is the set of chronicles "« defined by each of its
actions k, that is:

180 Pierre-Louis Curien and Claudia Faggian

o @mm o 0. @Y

€0, 1 &0, {0} £0,J a0, {0} > €0,T ¢0,J a0, {0}
Fig. 3.
«0,0
{, , (€0,1),™(a00,{1})" = D1 }. The set of chronicles of D5 is:
0,0
{, , (€0,J)," (00, {2})" = D2}. The resulting union is:

0,0
1

{, , (€0, 1), (€0, J), D1, D2}, which corresponds to D.

5.3 Examples of Desequentialization

Example 1. Desequentializing either of the designs 2 or X in our previous example of
sequentialization yields the original L-net fR (cf. section 4.2).

Example 2. Let us consider the design in Figure 4, where we just omit an obvious
negative action at the place of

Following the procedure for desequentializing given

@ © above, a few easy steps produce the two L-nets

| | ©,,%9, represented in Figure 5. Observe that we

l l have a chronicle for each node; D [D2 is equal to

{" (e, {0})7,7 (a0, {0})"}. We obtain © by adding the

relation (£0,I) «— (00, {1}), and D/ in a similar way.

! Remember that we consider each chronicle in the graph

@ modulo its underlying partial order, that is why it is not

| | necessary to explicitly write the edge (£0, b). The union

N & D1 U D) produces the L-net on the right-hand side of
Figure 5.

Fig. 4.

54 A Typed Example: Additives

The following (typical) example with additives illustrates what it means to have more
parallelism. Assume we have derivations I1y, I1o, IT3, I14 of (respectively) - A, C, F
A,D,+ B,C,+ B,D. In the sequent calculus (and in proof-nets with boxes) there
are two distinct ways to derive - A& B, C& D, and the two derivations differ only by
commutations of the rules.

L-Nets, Strategies and Proof-Nets 181

Do @

w

o

a0, {0

a0, {0} €0, J a0, {0} €0, 1 €0, J - (0¥

Fig. 5.
Iy Iy I3 14 11y I I3 Iy
A, C = A, D + B,C + B, D A, C = A, D + B,C + B, D
C&D Cc&D A&B A&B
A, C&D F B,C&D F A&B, C + A&B, D
A&B C&D
- A&B,C&D - A&B,C&D

The same phenomenon can be reproduced in the setting of designs, or in the setting
of polarized linear logic. Very similar to the above derivations are the two following
(typed) designs, where we introduced some | to have distinct binary connectives. We
write formulas instead of addresses, to make the example easier to grasp.

I, My 3 Iy I, 3 Iy My
C&|D,C' C'&|D,D C'&|D,C C&|D,D A&|B,A A&|B,B A&|B,A A&|B,B
Y Y N N
A&L,A A&L,B C&L,C C&IL,D
The desequentialization of either of the trees above is the following L-net fR:
A AD BC BD

A&B, A C&D,C A&B, B C&D, D
L"A&B "c&D

Conversely, when sequentializing R, we get back either one or the other, depending on
whether we choose to start from A& B or from C'& D. Notice that both A& B and C& D
are splitting.

6 Discussion and Further Work

We can isolate two classes of L-nets, those of maximal sequentiality (the tree strategies),
which are idempotent with respect to Seq and those of minimal sequentiality. Notice
that while Seq applies to arbitrary L-nets, here we have defined Deseq only on trees.
This is still enough to characterize also the class of L-nets of minimal sequentiality, as
those for which we have Deseq(Seq(®)) = D, for any choice in Seq(D).

182 Pierre-Louis Curien and Claudia Faggian

We expect to be able to define the desequentialization of arbitrary L-nets, by using
the splitting Lemma. Moreover, we believe that sequentialization and desequentializa-
tion can be extended to infinite L-nets, by working bottom-up lazily, or stream-like.

In the setting we presented, if we have just enough sequentiality to recover axioms
and dependencies from the additives, we obtain (an abstract counter-part of) MALL
proof-nets. At the other extreme, all sequentiality can be made explicit, and we have
designs “a la locus solum” [11] (or abstract polarized MALL | T proof nets as in [14]).
L-nets allow us to vary between these extremes, and hence provide us with a framework
in which we can graduate sequentiality.

Here we are strongly inspired by a proposal by Girard, to move from proof-nets to
their sequentialization (sequent calculus derivation) in a continuum, by using jumps.
It must be noticed that edges inducing sequentiality in L-nets actually correspond to
Girard’s jumps.

We need to understand better this gradient of sequentiality. (i) In this paper we
saturate L-nets to maximal sequentiality. We intend to study ways to perform sequen-
tialization gradually, adding sequential edges progressively. (ii)) We would like to have a
more precise understanding of what it means to have maximal or minimal sequentiality,
and to investigate the extent of our desequentialization.

In future work, we wish to investigate a typed setting. The immediate typed counter-
part of logical L-nets should be focusing proof-nets [3]. While previous work on fo-
cusing proof-nets was limited to multiplicative linear logic, our framework extends to
additive connectives.

Acknowledgments

We would like to thank Olivier Laurent for crucial discussions on MALL proof nets, and
also Dominic Hughes and Rob van Glabbeek for fruitful exchanges on the technique of
domination.

References

1. R. Amadio and P.-L. Curien. Domains and Lambda-calculi. Cambridge University Press,
1998.

2. J.-M. Andreoli. Focussing and proof construction. Annals of Pure and Applied Logic, 2001.

3. J.-M. Andreoli. Focussing proof-net construction as a middleware paradigm. In Proceedings
of Conference on Automated Deduction (CADE), 2002.

4. P.-L. Curien. Abstract bohm trees. MSCS, 8(6), 1998.

5. P.-L. Curien. Introduction to linear logic and ludics, part ii. to appear in Advances of Mathe-
matics, China, available at www.pps.jussieu.fr/curien, 2004.

6. C. Faggian. Travelling on designs: ludics dynamics. In CSL’02, volume 2471 of LNCS.
Springer Verlag, 2002.

7. C. Faggian and M. Hyland. Designs, disputes and strategies. In CSL’02, volume 2471 of
LNCS. Springer Verlag, 2002.

8. C. Faggian and F. Maurel. Ludics nets, a game model of concurrent interaction. In Proc. of
LICS (Logic in Computer Science). IEEE Computer Society Press, 2005.

9. J.-Y. Girard. Linear logic. Theoretical Computer Science, (50):1-102, 1987.

10.

11.
12.

13.

14

L-Nets, Strategies and Proof-Nets 183

J.-Y. Girard. On the meaning of logical rules i: syntax vs. semantics. In Berger and Schwicht-
enberg, editors, Computational logic, NATO series F 165, pages 215-272. Springer, 1999.
J.-Y. Girard. Locus solum. MSCS, 11:301-506, 2001.

D. Hughes and R. van Glabbeek. Proof nets for unit-free multiplicative-additive linear logic.
ACM Transactions on Computational Logic, 2005.

M. Hyland and L. Ong. On full abstraction for PCF. Information and Computation, 2000.

. O. Laurent. Etude de la polarisation en logique. PhD thesis, 2002.

Permutative Logic*

Jean-Marc Andreoli'3, Gabriele Pulcini?, and Paul Ruet?

! Xerox Research Centre Europe, 38240 Meylan, France
Jean-Marc.Andreoli@xrce.xerox.com
2 Facolta di Lettere e Filosofia, Universitd Roma Tre, 00146 Roma, Italy
pulcini@iml.univ-mrs.fr
3 CNRS - Institut de Mathématiques de Luminy
13288 Marseille Cedex 9, France
ruet@iml.univ-mrs.fr

Abstract. Recent work establishes a direct link between the complexity
of a linear logic proof in terms of the exchange rule and the topologi-
cal complexity of its corresponding proof net, expressed as the minimal
rank of the surfaces on which the proof net can be drawn without cross-
ing edges. That surface is essentially computed by sequentialising the
proof net into a sequent calculus which is derived from that of linear
logic by attaching an appropriate structure to the sequents. We show
here that this topological calculus can be given a better-behaved logical
status, when viewed in the variety-presentation framework introduced
by the first author. This change of viewpoint gives rise to permutative
logic, which enjoys cut elimination and focussing properties and comes
equipped with new modalities for the management of the exchange rule.
Moreover, both cyclic and linear logic are shown to be embedded into
permutative logic. It provides the natural logical framework in which to
study and constrain the topological complexity of proofs, and hence the
use of the exchange rule.

1 Introduction

In order to study proofs as topological objects, notably proofs of linear logic [7],
one is naturally led to view proof nets as surfaces on which the usual proofs are
drawn without crossing edges [5, 13, 141]. Recent work by Métayer [11] estab-
lishes a direct link between the complexity of a linear logic proof in terms of
the exchange rule and the topological complexity of its corresponding proof net,
expressed as the minimal rank of the compact oriented surfaces with boundary
on which the proof net can be drawn without crossing edges and with the con-
clusions of the proof on the boundary. For instance, cyclic linear logic proofs [19]
are drawn on disks since they are purely non-commutative, and the standard
proof of F (A® B) — (B® A) is drawn on a torus with a single hole. In general,
exchange rules introduce handles or disconnect the boundary.

Gaubert [0] shows that that surface can be computed by sequentialising the
proof net into a sequent calculus, proposed by the third author, which is de-
rived from that of linear logic by incorporating an appropriate structure to the

* Research partly supported by Italy-France CNR-CNRS cooperation project 16251.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 184-199, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Permutative Logic 185

sequents. Indeed, the above surfaces turn out to be oriented, and it is standard
that any oriented compact surface is homeomorphic to a connected sum of tori
(see, e.g., [12]). On the other hand, the conclusions of the proofs are drawn on
disjoint oriented circles, hence the appropriate structure in [0] is that of a per-
mutation (product of disjoint cycles) together with a natural number (number
of tori), actually a complete topological invariant of the surface.

Interestingly, these structures and the operations which are performed on
them constitute an instance of the variety-presentation framework introduced
in [3]: the varieties we consider in the present paper are the structures used
in [0], our presentations are simply varieties with a distinguished point, and
both are related by simple axioms, which sort of generalise the properties of
partial orders and order varieties in non-commutative logic [2].

We show that the calculus in [6] can be given a better-behaved logical status,
when viewed in this framework. This change of viewpoint gives rise to permu-
tative logic, PL for short, where connectives are presentations together with a
polarity (positive or negative): the usual pair ®,’® of linear logic is naturally ex-
tended with new modalities #, b for (dis)connecting cycles and new constants h, i
for the management of handles. The sequents of PL are varieties and the sequent
calculus comes with structural rules, also considered in Mellieés’ planar logic [13].
The sequent calculus of PL enjoys cut elimination and the focussing [/, 17]
property; these properties do not hold in [6] because the two par rules are not
reversible. Moreover, both cyclic and linear logic are shown to be embedded into
PL.

Unlike [6, 14] which enable to quantify the exchange and topological com-
plexities of a proof, PL provides control mechanisms and is the natural logical
framework in which to study and constrain these complexities. We believe in
particular that PL should be of interest to concurrent programming and com-
putational linguistics, two fields in which these issues matter [1, 8, 10, 11, 18].

2 Surfaces and Permutations

2.1 Q-Permutations

Surfaces (with or without boundary) are connected 2-dimensional topological
manifolds, and it is standard that any compact surface is homeomorphic to a
connected sum of tori and projective planes. In the case of orientable compact
surfaces, the above homeomorphism is simply with a connected sum of tori. For
instance, the sphere corresponds to a sum of 0 torus, etc. For a classical textbook
on algebraic topology, we refer the reader to, e.g., [12].

We consider here oriented compact surfaces with decomposed boundary, i.e.,
triples (S, X,¢) where S is a compact surface with boundary and a given ori-
entation, X is a finite set and ¢+ : X — 0S5 is an injective map from X into
to the boundary 95 of S, such that any hole (i.e., connected component of the
boundary) contains at least one distinguished point (i.e., a point in the image
of). Since holes are circles topologically, the last condition says exactly that X
induces a cell decomposition of dS (into one or several edges).

186 Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet

These surfaces with decomposed boundary are the objects of a category,
which is simply a subcategory of the category of pairs of CW-complexes con-
sidered for instance in relative homology: a morphism (resp. isomorphism) from
(S, X, 1) to (87, X,) is an orientation-preserving continuous map (resp. home-
omorphism) f:S — S’ such that f(«(x)) = ¢/(x) for each z € X.

Now, an oriented compact surface with decomposed boundary (S, X,¢) in-
duces a cyclic order on each subset of X which is the inverse image by ¢ of a hole
of S. By taking the product of these disjoint cycles, we obtain a permutation
o € 6(X). On the other hand, S comes with a natural number d called the
genre of S, the number of tori (handles) in the connected sum forming S. This
leads to the following definition of a g-permutation (where q is meant to remind
that a quantity, here a natural number, is attached to the permutation).

Definition 1 (g-permutation). A g-permutation is a triple (X, o,d) where X
is a finite set, o is a permutation on X and d is a natural number.

Hence, to each oriented compact surface
with decomposed boundary (S, X,¢) having
d handles is associated the g-permutation
(X,0,d) with o defined as above. For in-
stance, the surface with decomposed bound-
ary illustrated in the above figure induces the
g-permutation (X, {(1,3,6),(2,5,7,4)},3) on X = {1,...,7}. It is clear that
(X, 0,d) is invariant under isomorphism: the number of handles is a topological
invariant, and so is the cyclic order on each hole because orientation is preserved.
We actually have a complete invariant: (S, X, ¢) is isomorphic to (S’, X, /) if, and
only if, the associated g-permutations are equal. In the sequel, all the operations
we define can be interpreted either in terms of g-permutations or in terms of
oriented compact surfaces with decomposed boundary up to isomorphism.

2.2 The Variety-Presentation Framework of g-Permutations

Q-permutations form a variety-presentation framework as defined in [3]. We give
here the ingredients of the variety-presentation framework of g-permutations,
i.e., the support set operator, the promotion, composition and decomposition
operators and the relaxation relation’.

We assume given an arbitrary countably infinite set P, the elements of which
are called places, and a distinguished element 0 ¢ P. Now, a variety (resp. a pre-
sentation) is simply a g-permutation on a finite subset of PU{0} which does not
contain (resp. contains) 0. This is consistent with the usual view of presentations
as varieties with a distinguished place, which is generic to all variety-presentation
frameworks.

Definition 2 (support set, promotion, void presentation). For any g-
permutation p = (X, 0,d), its support set is defined by |u| = X NP. Any place

! In fact, we adopt a slight variant in the presentation w.r.t. [3] as to the status of
places and of the support set operator.

Permutative Logic 187

x € P can be associated with a presentation, called its promotion, which is the
g-permutation ({0,z}, X0.4,0), where xq,p denotes the transposition exchanging
a and b. By abuse of notation, it will be denoted by x so that |x| = {x}. Finally,
the void presentation () is the g-permutation ({0},0,0); obviously | O | = 0.

The topological interpretation of the promotion of = (resp. of the void presen-
tation) is a disk the border of which is labelled by 0 and z (resp. O alone).

Definition 3 (composition). Let w = (X,0,d) and 7 = (Y,0,e) be presen-
tations such that |w| N |7| =0 (i.e., X NY = {0}). Then w * 7 is the variety
(Z,&, f) where

- Z=(XUuY)\{o},

— if o1,...,0p,(0,7) are the disjoint cycles of o and 01,...,04,(0,9) are the
disjoint cycles of @ (here, v and & are ordered lists of places), then the disjoint
cycles of € are

o cither o1,...,0p,01,...,04,(,0) when y or § is non-empty
® Or 01,...,0p,01,...,04 when both v and 6 are empty, i.e. when o(0) =
6(0) =0,
- f=d+e.
The permutation £ above

is obtained by gluing at o
0 the orbits of 0 in o

and 6. In terms of sur- 0 b -
faces, the composition O
operator is the amalga-

mated sum of the two

surfaces over a small o
interval around O on O

the boundary. Standard §
topology of surfaces en-

sures that the result is)
indeed an oriented sur- /y

face. This can be visu-

alised in the above figure. The number of holes in the output surface is the
sum of the numbers of holes in the input ones, decreased by one (the two holes
containing 0 have been merged into one) or two (if the two holes containing 0
contain no other distinguished point).

Definition 4 (decomposition). Let a = (X, 0,d) be a variety and x € |a| =
X. The presentation («) is defined as the triple (X \ {z} U {0}, 0’,d) where o’
is obtained from o by replacing x by 0.

The topological interpretation of this operation is quite straightforward: it does
not change the surface, simply relabels = as 0.

Definition 5 (relaxation). The relaxation relation is the smallest reflexive
transitive relation < on g-permutations such that:

188 Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet

— divide: (X, 0,d) < (X, 0,d), where o is obtained from 6 by dividing one cycle
(7, 9) into two: (y) and (9),

— merge: (X,0,d+ 1) < (X,0,d), where o is obtained from 6 by merging two
cycles () and (8) into one (v,0),

— degenerate merge: (X,0,d+ 1) < (X, 0,d).

The degenerate merge rule is in fact obtained by taking (y) or () empty in the
merge rule, but we make it a separate case since the cycles of a permutation
are, by definition, non-empty. Since both divide and merge increment the rank
2d + p — 1 of a g-permutation (X, o,d) where o is a permutation with p cycles,
we have:

Proposition 1. Relaxation is a partial order on q-permutations.

The topological interpretation of relaxation is simply an amalgamated sum: given
an oriented compact surface with decomposed boundary (S, X,¢), take two in-
tervals u’ and «” on 95 and not containing any distinguished point of S. Orient
u/ in the direction induced by S and u” in the opposite direction and identify
the oriented edges thus obtained. When v’ and u” are on the same connected
component (hole) of 95, this is a divide; otherwise, this is a merge, and results
in a new handle, as is illustrated below:

insert edge

idéntify

Theorem 1 (variety-presentation framework). @Q-permutations, together
with the above operators, satisfy the axioms of variety-presentation frameworks.

Proof. These axioms, recalled in Appendix A, are almost trivial, and result
from direct application of the definitions. The Composition axiom for example
essentially expresses that edge identifications in a surface can be performed in
any order. O

Following [3], g-permutations, as any variety-presentation framework, define a
coloured logic in which connectives are presentations together with a polarity,
and sequents are varieties. We explicit that logic, called Permutative Logic (PL),
in Section 3.

A Note on the Categorical Interpretation of g-Permutations. It is worth
observing that g-permutations on initial segments of N* are also the morphisms
of a traced symmetric tensor category [9] where objects are natural numbers,
tensor is the sum, and the trace is determined by the feedback tr, 1(0,d) : n — n
on a single wire (for a permutation o : n+1 — n+1), which is defined as follows:
trp1(0,d) = (ol ,,d+1)if o(n+1) = n+ 1; otherwise tr,, 1(0,d) = (o', d),
with o/(i) = o(i) when (i) < n, and ¢’(i) = o(n + 1) when o(i) = n + 1. This

Permutative Logic 189

category is essentially obtained from the category of tangles with same number
of inputs and outputs by forgetting over- and under-crossings. Hence, the trace
determines a kind of “restriction operator” on g-permutations, but not the one
we are interested in here, which is motivated by the topological interpretation of
g-permutations and can be computed as in any variety-presentation framework
using the composition, decomposition operations and the void presentation by:

alp= (V) *D)ay * O ..)u, *O where |a|\ D ={z1,...,2,}

The restriction of a variety (X, o,d) to aset Y C X is clearly the variety (Y, 7, d)
where the cycles of 7 are those of ¢ from which the elements outside Y are
removed. The topological interpretation of restriction is simply the composition
of 1 : X — 05 with the inclusion map Y C X. For instance, the restriction of the
above-mentioned g-permutation (X, {(1,3,6),(2,5,7,4)},3)to Y = {1,...,5} is
(v,{(1,3),(2,5,4)},3). If idx denotes the identity on X, X = {1,2,3} and
Y = {1,2}, then (idx,0)[y = (idy,0) whereas trs 1(idy,0) = (idy, 1).

2.3 Computing Relaxation

A permutation o € &, = &({1,...,k}) can be written as a product of transpo-
sitions, and the following result is standard:

Lemma 1. If 0 € Sy, then the smallest number n of transpositions 1, ...,
such that o = 11+ Ty, is given by n = k — o°®, where o® denotes the number of
cycles of o.

Observe that the effect of both divide and merge on the permutation o of a
given variety (o, d) is a composition by a transposition. Indeed, divide amounts
to taking a cycle (a,I,b, A) of ¢ and split it into the two cycles (a, ") and
(b, Q), leading to a permutation 6; conversely, merge amounts to taking two
cycles (a, I') and (b, A) and merge them into a single cycle (a, I, b, A), leading to
a permutation 6: in both cases, § = x4, 00, where x,,, denotes the transposition
exchanging a and b.

Theorem 2. Given varieties (o,d) and (0,e) with 0,0 € Sy, (0,¢) < (0,d) if,
and only if, m(o,0) < e —d, where:

kE—(foH* —0° +0°
5 .
Proof. By Lemma 1, a sequence of divides and merges, say i divides and j
merges, from (o, d) to (6,e) gives rise to a decomposition of o ~! as a product
of at least k — (§o~")® transpositions. On the other hand, each occurrence of
divide increments the number of cycles and each occurrence of merge decrements
it,s0i—j=0°—0° Fromi+j>k—(o~")°, we deduce j > m(a,).
Now, e — d is the maximum number of merges in a sequence from (o,d) to
(0, e). Therefore, if (0, ¢) < (0,d) and m(o,0) > e — d, we have j > e — d, which
is impossible. Conversely, if m(c,0) < e — d, consider a decomposition of fo~*

as a product of exactly k — (o~1)* transpositions: the number of merges then
equals m(o,0) and (0, ¢) < (o,d). O

m(o,0) =

190 Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet
Table 1. The sequent calculus of permutative logic
Identities

axiom n cut }_d 27 (F7 A) Fe 97 (A7 AL)
i (A7A) Fd+6 27@7 (F7 A)

Structural rules

Fa 2, (I 4) Fa X, (1), (4)
divide merge
Fa 3, (1), (A) Farr 2, (I, A)

Logical rules

Fq X, (I, A, B) Fq 2, (1 A) Fe ©,(A, B)
par tensor

Fq X, (I, A® B) Fave 2,0, (A, IV A® B)

Fa Ev(F)7(A) Fa 27(F7A)
flat sharp

Fa X, (1,0 A) Fa X, (1), (#A)

Fat1 2, (1) h
hbar o 5, (1,1 F1 ()

Fa X, (I

bottom < %) one Fo (1)

3 Formulas, Sequents, and Inference Rules

Definition 6 (formula). Formulas of PL are obtained from a fized countable
set of negative atoms p, q, . .. and their positive duals p-,q*, ..., by means of the
binary connectives '8, ®, the unary connectives b, #, and the constants h,h, 1, 1.

The involutive duality is given by De Morgan rules:

(A B)t =Bt At (ALt =#4t Bt=h 1t=1
(A B)t = Bto At (#A)*t =bAt hrt=n 1t=1

In general, in a variety-presentation framework, there are two n-ary connectives
7% and 7~ of opposite polarities for each presentation 7 with a normalised sup-
port set {1,...,n}, hence an infinite set of connectives. However, most of the
time, this set is redundant, and it is sufficient to restrict to the connectives
derived from a finite set of presentations from which all the others can be recon-
structed using the operations of the framework (composition, decomposition).
More precisely, given (2 a set of presentations, define the set 2* of presentations
generated by {2 to be the smallest set of presentations X containing places, {2
and satisfying: (w*7), € X for any w,7 € X and x € |w| U |7|. Furthermore, {2
is said to be spanning when (2* is the set of all presentations and to be a basis
when it is spanning and none of its strict subsets is. It is not difficult to check
the following for g-permutations:

Permutative Logic 191

Proposition 2. A basis for ¢-permutations is the set of 4 presentations below.

Presentation 7 Neg. conn. 7~ Pos. conn. 71
{(0,1,2)},0 9

s F%©

b
h
L

Definition 7 (sequent). A sequent is a variety together with a mapping from
its support set into the set of formulas, modulo renaming of the support set
consistent with the mapping to formulas.

It is convenient to represent a sequent as a list of lists of formulas, indexed by a
natural number, denoted 4 (I1), ..., (I'y) where d is the number and I7, ..., I
are the lists of formulas. It corresponds to the presentation (o,d) where o is
the permutation whose cycles are precisely (I7),...,([}), each inner list being
taken modulo cyclic exchange and the outer list being taken modulo unrestricted
exchange (it is a multiset). Note that if a list I; is empty, it is simply ignored
(it does not correspond to a cycle in o). In other words, we have the implicit
equalities:

Fa 27 2172272/ =ty 272272172/

Fa X, (0A) =4 X,(A,T)

Fa X, () =4 X
Modulo these identities, there is a one-to-one correspondence between sequents
and their representations as indexed lists of lists. Using this representation, the

sequent calculus of PL is given in Table 1. The usual exchange rule of LL is
decomposed in PL as follows:

=
@
=
03
®
= =

Fas1 (1B, A)
Dotted lines here indicate application of the identities on sequents. It is interest-
ing to note that exchange is not involutive, even at the level of sequents, since a
handle has been added.
The inference figure for an n-ary connective attached to a presentation 7
(normalised so that |7] = {1,...,n}) is directly obtained from the generic pattern
of variety-presentation frameworks:

wxT(A1,...,Ap) N wy * Aq wn * An
wx T (A1, Ay) | T(@ny e wn) T (AL Ay)
Let us detail, for example, how the inference figure for connective ® is obtained.

In that case, we have 7 = ({(0,1,2)},0) and the connective is positive. The
conclusion of the corresponding inference is therefore 7(wp,wa) * A ® B and

192 Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet

its premisses are wy * A and wp * B. Now 7(wp,wa) is defined as presentation
7 in which place 1 is substituted by wp and place 2 by wa. The substitution
operation on a presentation in any variety-presentation framework is defined in

eneral b
Y (@)er = (1)

where z is an arbitrary place outside |7| and 21, ..., z, is an arbitrary enumera-
tion of |7| (the axioms of variety-presentations ensure that the result is indepen-
dent of any choice for 2 and the enumeration of |7]). By distinguishing in w4 and
wp the cycle containing 0, we have that w4 is of the form 4 X, (I,0) and wp
of the form . O, (4, 0). By applying (1), we get that 7(wp,w4) is the sequent
Fate X,0,(A,I,0). Hence the inference figure for ®. Similarly, the inference
figure for # is the positive inference associated with 7 = ({(0), (1)},0). Its con-
clusion is 7(w) * #A and its premiss w * A. Now representing w as 4 X, (I, 0),
we get that 7(w) is Fq X, (I"), (0), and, composing w with A and 7(w) with #A
we obtain the result. The other inference figures are obtained in the same way.

(((T*2)gy *Way)y * Wy)

3.1 Basic Properties

Let Ay, ..., A, - B denote the sequent ¢ (A7, ..
the two sequents A+ B and B+ A.

Proposition 3. The following sequents are provable in permutative logic:

., A+ B), and A 4 B denote

Fo (##Al)7 0, (A) L

}_0 (##Al7 bA)

AFbHA bAF A h
(A B)»CH A (B C) A - bA A®bBA-bB® A
A1l 4 A bl - L p(AgbB) 4 bA®HB
1w A4 A bh - K b(Ag B) - b(B e A).
Proof.
AFbHA bAF Ak A9bB-bBw A
Fo (AL, A) Fo (BY, B)
. Fo (A*, A) Fo (#A™1), (A) ko (#B1), (B) Fo (A*, A)
divide N merge N N N
Fo (A7), (A) Fi (#A-,A) Fo (#B~® A—,A),(B)
Fo (A% bA) Fo (#AL, A, h) Fo (#B* ® A+ ,bB, A)
Fo (#A*, A h) Fo (BT ® AT, bB % A)
bhA FbA bl L bii - 1 b(A® B) “b(B9 A)
FO (AL7A) - (1) - (h) }_0 (BvBl) l_O (A7Al)
Fo (#A1), (A 0 ! Fo (B-® A, A, B
cFEADLA 0 k@), 0 °)

Fo (#(B* ® A1), (A, B)
Fo (#(B+ @ A1), (B9 A)
Fo (#(B* ® AY),b(B 9 A))

Permutative Logic 193

(A bB) FbA®HB bAbB F b(A®bB)

Fo (B, Bh)
o (B), (#B*) Fo (A, A%)
Fo (#B* ® A+, A),(B)
Fo (#(#B+ ® AM)), (4),(B)
Fo (#(#B* © AT),bA), (B)
Fo (#(#B*+ ® A*),bA,bB)
Fo (#(#B* ® A),bA®bHB)

Fo (B, BY) Fo (A, AY)
Fo (B), (#B™) Fo (#A4%), (A)
Fo (#B* @ #A%), (A),(B)

Fo (#B* ® #A1),(A,bB)

Fo (#B* @ #A%), (A9 bB)

Fo (#B* @ #A* b(A9bB))

O
Corollary 1. The following sequents are provable in permutative logic:
Ny A9h-d-hw A b(he A) H-hobA
Proof. Easy from the previous proposition. O

As a consequence, we have the following corollary.

Corollary 2. Any negative formula is equivalent to a formula of the form:
N=bP})w - ®h(PE)2Q1% 2Queh®e - oh

with d occurrences of b and k,¢,d > 0. For each i = 1,...,k the formula P%,
is of the form P{’g ---'® P, for some n; > 1, and the P; and Q; are positive
formulas. Explicit parentheses for associativity have been omitted.

As a special case, L corresponds to the case where k, ¢, d = 0. Note that each of
P]? and Q; being positive, they can in turn be decomposed as above (by duality).

The following defined connectives *® and & are useful for the embedding of
LL into PL (Theorem 3): A2 B = A’ bB. Its dual is: A® B = #A ® B. The
following properties are straightforward.

A% (B C) A% (C% B) A9 BFA®B
A% (B C)+ (A% B)sCH- (A% C)® B A% LA A

3.2 Subsystems

The surface associated by Métayer [1] to a proof net in multiplicative linear logic
can be explicitly computed by the sequent calculus introduced by Gaubert [6].
In this calculus, there are no structural rules, and the logical rules only deal
with the connectives ® and ’®. The cycles correspond to the conclusions on the
same border and the number attached to the sequent is the number of handles
of the surface. Our ® rule is the same, and the two *® rules in [0] are recovered
as follows:

194 Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet

Fa X, (I A, A, B

~

Fa 27(B7F7A7A) Fa 27(F7A)7(B7A)
divide merge

}_d 27(37F7A)7(A) ar }_d+1 27(F7A7B7A)

}_d 27(F7A7B)7(A) I7d+1 27(F7A’§B7A)

par
Fa X,(I, A% B),(4)

Observe that the two 7@ rules in [(] are not reversible, hence calculus in [6] cannot

have the focussing property. Mellies’ planar logic [13] exactly corresponds to the

(®,79) fragment of PL restricted to proofs with 0 handle. The following theorem

shows that PL is a conservative extension of cyclic linear logic [19] and linear

logic [7].

Theorem 3. Any formula A of CyLL (resp. LL) is turned into a formula A%Y
(resp. A) of PL by a® = a" = a for an atom a and by:

(A®B)%Y = A% » BY (AeB)" = A" % B
(A@B)Y =AY @ BY (A®@B)i=Al¢ B!

A formula A of CyLL (resp. LL) is provable in CyLL (resp. LL) if, and only if,
A% (resp. A%) is provable in PL.

Proof. The case of CyLL is an obvious induction: essentially, CyLL is the (®,9)
fragment of permutative logic with 1 cycle and 0 handle (i.e., rank 0).

For LL, we extend the translation to sequents, and we first show that if
F Aj,..., A, is provable in LL then o (A}),..., (All) is provable in PL, by
induction of a proof of - A1, ..., A, in LL. Since clearly A+ = Al axiom and
the '@ and ® rules of LL are translated as follows in PL:

L oI (AN, (BN o X (4Y)
. Fo (AY, AT i [qli ppli li li iy oli
divide " It o X7, (A%, bBY) Fo X7, (#AY) Fo (BY), 0
Fo (AY), (A7) o 51, (A % b BY) Fo X (241 @ BY), OF

To show the converse, we associate to any formula, sequent, proof of PL its linear
skeleton in the evident way, by forgetting the information specific to PL, i.e., by
forgetting b, # and by mapping s, h to L, 1, by mapping the variety underlying
a sequent to its support set, and by forgetting the b, # rules and the structural
rules. It is straightforward to check that a proof in PL is thus mapped to a proof
in LL, and this is enough to conclude. O

It is not obvious however that pomset calculus [17], non-commutative logic [2]
or ordered calculus [10] are subsystems of PL.

By using the linear skeleton just defined, it is possible to show that PL
behaves as a topological decoration of (essentially the multiplicative fragment
of) LL. This observation should be a basis for a theory of proof nets for PL.

Theorem 4. If 4 X is a sequent of PL and 7 is a proof of its skeleton in LL,
then for some e > 0, there is a proof of Fqye X in PL whose skeleton is w. In
particular, if the linear skeleton of a sequent -3 X' of PL is provable in LL, then
for some e > 0, Fgie X is provable in PL.

Permutative Logic 195

Proof. We only need to show the first assertion. It is obtained by induction on
m, together with the observation that a connective of PL in X which is forgotten
by the skeleton operation can always be decomposed in PL, possibly at a certain
cost (in terms of structural rules, hence in terms of handles). We omit the details
here. O

4 Cut Elimination and Focussing

4.1 Cut Elimination
Theorem 5. Any proof in PL can be transformed into a proof without cut.

Proof. The proof follows the usual pattern [3], where cuts are eliminated by
repetitive application of reduction rules to the proofs. There are three kinds
of reductions: axiom case (when one of the premisses of the cut is an axiom),
commutative conversion (when the principal formula in one of the premisses of
the cut is not the cut-formula) and symmetric reductions (when the principal
formula in both premisses of the cut is the cut formula). Some cases are detailed
below, the other configurations being treated similarly. O

Symmetric reductions:

Fo 3,(1), (A Fe ©,(A, A"
a X, (), (A) ()L Fo 3, (1), (A) Fe ©,(A,A%)
Fa X, (I,0A) Fe ©,(4),(#A7) ~ cut
cut Fate ¥,0,(1),(4)
Fate X, 0, (1), (4A)
Fa 2,(I A, B) by (4, BY) ke 6,(4,4%)
Fa Z,(I, A% B) Fers ©,5,(4, BT @ A, A) -
t
o Fatets 2,0, 2,(I, A, A)
Fa 3, (I A, B) Ff 5,(A,BY)
t
e Farr 3,2, (1A, A) Fe ©,(4,A%)
cut

Faterr 2,0, 52,(I, A, A)

Commutative conversions:

Fq X, (I,C), (A) Fa X, (1,0), (A) FoO©,(4,Ch)
t
| e D(0.Cb4) Fe ©,(A,00) ~ Fate 2,0, (T, A), (A)
cu
Fare 2,0, (I, AbA) Fare X,0, (T, AbA)
Fa X, (), (A4,C) Fa 2, (1), (4,0) Fe ©,(A,CH)
merge n cut
¢ Fd#»l E;(F7A7C) Fe @7(A>C) ~r '_d+6 E,@,(F).,(A,A)
cu merge
Fater1 X,0,(I, A, A) Fater1 2,0, (I, A, A)

4.2 Focussing

As with any coloured logic derived from a variety-presentation framework, the
sequent calculus has a remarkable property called focussing, which eliminates ir-
relevant non-determinism in proof construction. It reflects general permutability
properties of inferences: any positive (resp. negative) inference can be permuted

196 Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet

Table 2. The focussed sequent calculus of permutative logic
Identity

Ax P .
Fopm» pl if p is a negative atom

Structural rules

; Fq 2, (I A) " 1 Fa X » ‘ 9 Fa X I,A
unfocus |y rA ocus by X ocus o (0 A) >
if A is negative if X is reduced if A is positive

Fa X2,(1,4) » Fqa X2, (1),(4) »
divide merge
Fa X,(17),(4) » Fay1 X, (1,4) »
Logical rules
Fa X, (I, A, B) Fa X 1A FeO» A B
par tensor
Fa X, (I A9 B) Fire 2,00 AJTVA® B
Fa X, (1), (A) o X T, A
at sharp
Fa X, (1,0 A) Fa 2, (1) » #A
Fay1 X, () h
hba'r Fd 27 (I-v7 h) '*1» h
Fa X, (1) one
bottom o (1, 1) Fop 1

upward (resp. downward) if the active formulas of the lower inference are not
principal in the upper inference. Thus, inferences of the same polarity can be
grouped together. This can be captured in a variant of the sequent calculus called
the focussing sequent calculus.

Definition 8. The sequents of the focussing sequent calculus are of two types:

— standard sequents of the form b4 X;
— focussed sequents of the form 4 X » I' where the list of formulas I' has
been singled out. Note that, here, I' is not taken modulo cyclic exchange.

A structure on formulas (eg. sequent) is said to be reduced if it does not contain
any negative compound formula.

The focussing sequent calculus is given in Table 2. Its negative logical inferences
are identical to those of the standard sequent calculus. Its positive logical infer-
ences are also those of the standard calculus, except that the principal formula
is syntactically distinguished as focus, and, when read bottom-up, the focus is
passed to its active formulas as long as they remain positive. In the generic
variety-presentation framework, the positive rule for an n-ary connective is:

Permutative Logic 197

wy > Ay e wn > A,
T(wn,...,wl) | 4 T+(A1,...,An)
The unfocus rule models the loss of focus due to a change of polarity of the focus

(from positive to negative). The rules divide, merge, focusl and focus2 are in
fact a single rule in the generic variety-presentation framework:

focus © focus >
if a is reduced, A is positive nPL i Y s reduced, A is positive
and a g w* A and Fq4 ¥ <. 60,([,A)

It is easy to show that the calculus with the focus rule is equivalent to that with
the divide, merge, focusl and focus2 rules. The latter has been adopted only to
make explicit the use of the divide and merge rules, which are implicit in the
side relaxation condition of the focus rule.

Theorem 6. A standard sequent is provable in PL if and only if it is provable
in the focussing sequent calculus of PL.

Proof. 1t is straightforward to map any inference of the focussing calculus into
an inference of the standard calculus (or a dummy inference): just drop the »
sign when it appears. Hence, this ensures the soundness of the focussing calculus.
Its completeness is much more involved. It relies exclusively on the axioms of
variety-presentation frameworks. It is shown in three steps. First, the negative
rules are shown to be invertible in the focussing calculus. Second, the “focus”
rule is shown to hold even when X is not reduced (using the previous result).
And third, the positive rules of the standard calculus are shown to hold in the
focussing calculus (using the previous results). In fact, all these properties result
from generic permutability properties between inferences, depending on their
polarities. The interested reader is referred to [3] for details. O

5 Future Work

Permutative logic opens new perspectives in the design of non-commutative log-
ical systems. It not only quantifies the use of the structural rule of exchange
but also allows to put constraints on that use. Many aspects of the logic have
not been studied in this paper. For example, proof-nets in PL deserve a study of
their own. It can be expected that a correctness criterion for PL should be found
which extends that for CyLL: a cut free proof structure is CyLL-correct if it is
LL-correct and planar. In PL, the planarity condition should be replaced by some
condition involving more complex surfaces. Another interesting aspect is proof
construction. It is very easy to show that, unlike the entropy of non-commutative
logic [2], relaxation in PL cannot be optimised so that, during proof construction,
the positive inferences perform only the “minimal” amount of relaxation that is
strictly needed. However, it is conjectured that if proof-construction is viewed as
a constraint propagation problem, this optimality can be recovered. Finally, we

198

Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet

have not explored semantics issues. A trivial but uninformative phase semantics
can be derived, as in any coloured logic (i.e., based on a variety-presentation
framework). More work is needed to achieve interesting semantics interpretation
of formulas and proofs.

Acknowledgements

We

are grateful to Anne Pichon for helpful remarks on topological questions.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

V. M. Abrusci. Non-commutative logic and categorial grammar: ideas and ques-
tions. In V. M. Abrusci and C. Casadio, editors, Dynamic Perspectives in Logic
and Linguistics. Cooperativa Libraria Universitaria Editrice Bologna, 1999.

V. M. Abrusci and P. Ruet. Non-commutative logic I: the multiplicative fragment.
Annals of Pure and Applied Logic, 101(1):29-64, 2000.

J.-M. Andreoli. An axiomatic approach to structural rules for locative linear logic.
In Linear logic in computer science, volume 316 of London Mathematical Society
Lecture Notes Series. Cambridge University Press, 2004.

J.-M. Andreoli and R. Pareschi. Linear objects: logical processes with built-in
inheritance. New Generation Computing, 9, 1991.

G. Bellin and A. Fleury. Planar and braided proof-nets for multiplicative linear
logic with mix. Archive for Mathematical Logic, 37(5-6):309-325, 1998.

C. Gaubert. Two-dimensional proof-structures and the exchange rule. Mathemat-
ical Structures in Computer Science, 14(1):73-96, 2004.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, 1987.

L. Habert, J.-M. Notin, and D. Galmiche. Link: a proof environment based on
proof nets. In Springer, editor, Analytic Tableaux and Related Methods, volume
2381 of Lecture Notes in Computer Science, pages 330-334. Springer, 2002.

A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 119:447-468, 1996.

J. Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65(3):154-170, 1958.

A. Lecomte and Ch. Retoré. Pomset logic as an alternative categorial grammar. In
Morrill Oehrle, editor, Formal Grammar, Barcelona, 1995.

W. S. Massey. A basic course in algebraic topology. Springer, 1991.

P-A. Mellies. A topological correctness criterion for multiplicative non-
commutative logic. In Linear logic in computer science, volume 316 of London
Mathematical Society Lecture Notes Series. Cambridge University Press, 2004.

F. Métayer. Implicit exchange in multiplicative proofnets. Mathematical Structures
in Computer Science, 11(2):261-272, 2001.

D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals Pure Appl. Logic, 51:125-157, 1991.

J. Polakow and F. Pfenning. Natural deduction for intuitionistic non-commutative
linear logic. In Typed Lambda-Calculi and Applications, volume 1581 of Lecture
Notes in Computer Science. Springer, 1999.

C. Retoré. Pomset logic - A non-commutative extension of commutative linear
logic. In International Conference on Typed Lambda-Calculi and Applications, vol-
ume 1210 of Lecture Notes in Computer Science. Springer, 1997.

Permutative Logic 199

18. P. Ruet and F. Fages. Concurrent constraint programming and non-commutative
logic. In Computer Science Logic 1997, volume 1414 of Lecture Notes in Computer
Science, pages 406—423. Springer, 1998.

19. D.N. Yetter. Quantales and (non-commutative) linear logic. Journal of Symbolic
Logic, 55(1), 1990.

A Axioms of Variety-Presentation Frameworks

The axioms of variety-presentation frameworks are the following (see [3]):

— Composition:
For any presentations wy, wa,

i A s =@ = § |1 %2l = Jr] U]
! 2 W1 * Wy = W2 * W1
— Decomposition:

For any variety «, place x and presentation w:

z€|al = xd|(a)] N xx(a), =«
rd|w ANwkzr=a = w=(a),

This implies, by composition, that if z € || then |(a);] = || \ {«}. Hence,
for a given x, the mappings « — («), (for any variety « having occurrence
x) and w — w * z (for any presentation w not having occurrence z) are
inverse of each other.

— Commutation:
For any variety «a, presentations wi,ws and places 1, xs,

la| N ({z1} Ulwr]) = {21}
|a| n ({‘TQ} U |LU2|) = {‘TQ} = ((a)xl *w1)12*w2 = ((Ot)x2 *WQ)Il*Wl

({z1} Ulwr]) N ({z2} Ulws|) =0

From the previous axioms, it is easy to show that, under the stated condition,
the two sides of the equality have the same occurrence set. This axiom asserts
that they are equal.

— Relaxation:
For any varieties ay, ag, presentation w and place x,

o R = |a1|:|a2|:D

Lo (lwfu{z}) ND =A{z} = (1)s *w < (a2)2 *w
Hence, relaxation applies only to varieties with the same occurrence set and
is compatible with decomposition/composition.

Focusing the Inverse Method for Linear Logic

Kaustuv Chaudhuri and Frank Pfenning*

Department of Computer Science
Carnegie Mellon University
{kaustuv, fp}ecs.cmu.edu

Abstract. Focusing is traditionally seen as a means of reducing inessential non-
determinism in backward-reasoning strategies such as uniform proof-search or
tableaux systems. In this paper we construct a form of focused derivations for
propositional linear logic that is appropriate for forward reasoning in the inverse
method. We show that the focused inverse method conservatively generalizes the
classical hyperresolution strategy for Horn-theories, and demonstrate through a
practical implementation that the focused inverse method is considerably faster
than the non-focused version.

1 Introduction

Strategies for automated deduction can be broadly classified as backward reasoning or
forward reasoning. Among the backward reasoning strategies we find tableaux and ma-
trix methods; forward reasoning strategies include resolution and the inverse method.
The approaches seem fundamentally difficult to reconcile because the state of a back-
ward reasoner is global, while a forward reasoner maintains locally self-contained state.

Both backward and forward approaches are amenable to reasoning in non-classical
logics. This is because they can be derived from an inference system that defines a
logic. The derivation process is systematic to some extent, but in order to obtain an
effective calculus and an efficient implementation, we need to analyze and exploit deep
proof-theoretic or semantic properties of each logic under consideration.

Some themes stretch across both backwards and forwards systems and even dif-
ferent logics. Cut-elimination and its associated subformula property, for example, are
absolutely fundamental for both types of systems, regardless of the underlying logic. In
this paper we advance the thesis that focusing is similarly universal. Focusing was orig-
inally designed by Andreoli [!, 2] to remove inessential non-determinism from back-
ward proof search in classical linear logic. It has already been demonstrated [3] that
focusing applies to other logics; here we show that focusing is an important concept for
theorem proving in the forward direction.

As the subject of our study we pick propositional intuitionistic linear logic [4—0].
This choice is motivated by two considerations. First, it includes the propositional core
of the Concurrent Logical Framework (CLF), so our theorem prover, and its first-order
extension, can reason with specifications written in CLF; many such specifications, in-
cluding Petri nets, the m-calculus and Concurrent ML, are described in [7]. For many

* This work has been supported by the Office of Naval Research (ONR) under grant MURI
NO00014-04-1-0724 and by the National Science Foundation (NSF) under grant CCR-0306313.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 200-215, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Focusing the Inverse Method for Linear Logic 201

of these applications, the intuitionistic nature of the framework is essential. Second, it
is almost a worst-case scenario, combining the difficulties of modal logic, intuitionistic
logic, and linear logic, where even the propositional fragment is undecidable. A treat-
ment, for example, of classical linear logic without the lax modality can be given very
much along the same lines, but would be simpler in several respects.

Our contributions are as follows. First, we show how to construct a non-focusing
inverse method for intuitionistic linear logic. This follows a fairly standard recipe [¢],
although the resource management problem germane to linear logic has to be consid-
ered carefully. Second, we define focused derivations for intuitionistic linear logic. The
focusing properties of the connectives turn out to be consistent with their classical in-
terpretation, but completeness does not come for free because of the additional restric-
tions placed by intuitionistic (and modal) reasoning. The completeness proof is also
somewhat different from ones we have found in the literature. Third, we show how
to adapt focusing so it can be used in the inverse method. The idea is quite general
and, we believe, can be adapted to other non-classical logics. Fourth, we demonstrate
via experimental results that the focused inverse method is substantially faster than the
non-focused one. Fifth, we show that refining the inverse method with focusing agrees
exactly with classical hyperresolution on Horn formulas, a property which fails for non-
focusing versions of the inverse method. This is practically significant, because even in
the linear setting many problems or sub-problems may be non-linear and Horn, and
need to be treated with reasonable efficiency.

In a related paper [©] we generalize our central results to first-order intuitionistic lin-
ear logic, provide more detail on the implementation choices, and give a more thorough
experimental evaluation. Lifting the inverse method here to include quantification is
far from straightforward, principally because of the rich interactions between linearity,
weakening, and contraction in the presence of free variables. However, these consider-
ations are orthogonal to the basic design of forward focusing which remains unchanged
from the present paper.

Perhaps most closely related to our work is Tammet’s inverse method prover for
classical linear logic [| 0] which is a refinement of Mints’ resolution system [|]. Some
of Tammet’s optimizations are similar in nature to focusing, but are motivated primarily
by operational rather than by logical considerations. As a result, they are not nearly
as far-reaching, as evidenced by the substantial speedups we obtain with respect to
Tammet’s implementation. Our examples were chosen so that the difference between
intuitionistic and classical linear reasoning was inessential.

2 Backward Linear Sequent Calculus

We use a backward cut-free sequent calculus for propositions constructed out of the
propositional linear connectives {®,1,—o, &, T, !}; the extension to first-order connec-
tives using the recipe outlined in [9] is straightforward. To simplify the presentation we
leave out @ and 0, though the implementation supports them and some of the exper-
iments in Sec. 5.2 use them. Propositions are written using uppercase letters A, B, C,
with p standing for atomic propositions. The sequent calculus is a standard fragment
of JILL [6], containing dyadic two-sided sequents of the form I'; A = C: the zone I"
contains the unrestricted hypotheses and A contains the linear hypotheses. Both con-

202 Kaustuv Chaudhuri and Frank Pfenning

texts are unordered. For the rules of this calculus we refer the reader to [0, page 14].
Also in [6] are the standard weakening and contraction properties for the unrestricted
hypotheses, which means we can treat I as a set, and admissibility of cut by means of
a simple lexicographic induction.

Definition 1 (subformulas). A decorated formula is a muple (A,s,w) where A is a
proposition, s is a sign (+ or —) and w is a weight (h for heavy or [for light). The
subformula relation < is the smallest reflexive and transitive relation between deco-
rated subformulas satisfying the following inequalities:

(Ays,h) < (1A,5,%) (A,s,]) < (A—oB,s,*) (B,s,]) <(A—oB,s,*)
<A,’7S7l> < <A1 ®A27S7*> <A,’7S7l> < <A1 &A27S7*> i€ {172}
where s is the opposite of s, and * can stand for either h or I, as necessary. Decorations
and the subformula relation are lifted to (multi)sets in the obvious way.

Property 2 (subformula property). In any sequent T’ ;A' = C' used in a proof of
F;A - C <F/7 _ah> U <A/a _7*> U {<C/a+7*>} S <Fa _7h> U <A7 _al> U {<C7+al>}
O

For the remainder of the paper, all rules are restricted to decorated subformulas
of a given goal sequent. A right (resp. left) rule is applicable if the principal formula
in the conclusion is a positive (resp. negative) subformula of the goal sequent. Of the
judgmental rules (reviewed in the next section), init is restricted to atomic subformulas
that are both positive and negative decorated subformulas, and the copy rule is restricted
to negative heavy subformulas.

3 Forward Linear Sequent Calculus

In addition to the usual non-determinism in rule and sub-goal selection, the single-use
semantics of linear hypotheses gives rise to resource non-determinism during backward
search. Its simplest form is multiplicative, caused by binary multiplicative rules (QR and
—oL), where the linear zone of the conclusion has to be distributed into the premisses.
In order to avoid an exponential explosion, backward search strategies postpone this
split either by an input/output interpretation, where proving a sub-goal consumes some
of the resources from the input and passes the remaining resources on as outputs [2],
or via Boolean constraints on the occurrences of linear hypotheses [|3]. Interestingly,
multiplicative non-determinism is entirely absent in a forward reading of multiplicative
rules: the linear context in the conclusion is formed simply by adjoining those of the
premisses. On the multiplicative-exponential fragment, for example, forward search has
no resource management issues at all. Resource management problems remain absent
even in the presence of binary additives (& and ®).

The only form of resource non-determinism for the forward direction arises in the
presence of additive constants (T and 0). For example, the backward TR rule has an
arbitrary linear context which we cannot guess in the forward direction. We therefore
leave it empty (no linear assumptions are needed), but we have to remember that we can
add linear assumptions if necessary. We therefore differentiate sequents whose linear
context can be weakened and those whose can not.

Focusing the Inverse Method for Linear Logic 203

Jjudgmental I';AB —>’,“ C
/oAl W . ,
. [:AA—YC ' A —"A (W—O\/B%A) L
';p—>0p nit FU{A}:A —v C copy FUF’;A,A’,A%B—WVW C
multiplicative additive
CiA—"YA T A —Y
TUr ;A A —>W\/W/A®B ©R I''A—"A
FSAAB - C A B (AR W)
INAARB—"C ®L TUT ;ALUA —w™W A& B
T:AA —1C (Aj¢A) T
Fad o4 —lc et T TiAA &Ay —"C
(i,j) €{(1,2),(2,1)} i€{1,2}
. 0
1R a—7C 1L exponential
5 —01 r;A1-—0C
A, A—"B r;-—"A R TLA;A—"C "
NA—"A—B —R r;—014 " TAlA—YC
. 0
I;A—!'B (A¢A) R r;A—%C (A¢T) »

r:A—lA—-B ;A1A—9C

Fig. 1. Forward linear sequent calculus

To distinguish forward from backward sequents, we shall use a single arrow (—),
possibly decorated, but keep the names of the rules the same.

Definition 3 (forward sequents).

1. A forward sequent is of the form I';A —" C. T and A hold the unrestricted and
linear resources respectively, and w is a Boolean (0 or 1) called the weak-flag. Se-
quents with w =1 are called weakly linear or simply weak, and those with w =0
are strongly linear or strong.

2. The correspondence relation < between forward and backward sequents is defined

as follows: (F;A Y C) < (r’ A — c) T CT, and A=A or AC A de-
pending on whether w =0 or w = 1, respectively. The forward sequent s is sound
if for every backward sequent s' such that s <s', s’ is derivable in the backward
calculus.

3. The subsumption relation < between forward sequents is the smallest relation to

satisfy:
(rsa—c) < (Ma—"c)
where T C T and AC A,
(F;A . c) < (r’;A’ v c)
Note that strong sequents never subsume weak sequents.

Obviously, if 51 < s and 52 <'s, then s; < 5. It is easy to see that weak sequents
model affine logic: this is familiar from embeddings into linear logic that translate affine

204 Kaustuv Chaudhuri and Frank Pfenning

implications A — B as A —o (B® T). The collection of inference rules for the forward
calculus is in fig. 1. The rules must be read while keeping the subformula restriction in
mind; precisely, a rule applies only when the principal formula is a subformula of the
goal sequent.

The trickiest aspect of these rules are the side conditions (given in parentheses) and
the weakness annotations. In order to understand these, it may be useful to think in term
of the following property, which we maintain for all rules in order to avoid redundant
inferences.

Definition 4. A rule with conclusion s and premisses s1,...,s, is said to satisfy the
irredundancy property if forno i € {1,...,n}, s;i <s.

In other words, a rule is irredundant if none of its premisses subsumes the conclusion.
Note that this is a local property; we do not discuss here more global redundancy crite-
ria.

The first immediate observation is that binary rules simply take the union of the
unrestricted zone from the premisses. The action of the rules on the linear zone is also
prescribed by linearity when the sequents are strong (w = 0).

The binary additive rule (&R) is applicable in the forward direction when both pre-
misses are weak (w = 1), regardless of their linear zone. This is because in this case the
linear zones can always be weakened to make them equal. We therefore compute the
upper bound (L) of the two multi-sets: if A occurs 7 times in A and m times in A’, then
it occurs max(n,m) times in ALJA.

If only one premiss of the binary additive rule is weak, the linear zone of the weak
premiss must be included in the linear zone of the other strong premiss. If both pre-
misses are strong, their linear zones must be equal. We abstract the four possibilities in
the form of an additive compatibility test.

Definition 5 (additive compatibility). Given two forward sequents T ;A —" C and
I"; AN —" C, their additive zones A and A’ are additively compatible given their re-
spective weak-flags, which we write as AJw= A /W, if the following hold:

AJO~A/0 ifA=A AO~AN/1 ifA CA
A/1=~A/1 always A/1=ANJ0 ifACA

For binary multiplicative rules like ®R, the conclusion is weak if either of the pre-
misses is weak; thus, the weak-flag of the conclusion is a Boolean-or of those of the
premisses. Dually, for binary additive rules, the conclusion is weak if both premisses
are weak, so we use a Boolean-and to conjoin the weak flags. Most unary rules are
oblivious to the weakening decoration, which simply survives from the premiss to the
conclusion. The exception is ! R, for which it is unsound to have a weak conclusion;
there is no derivation of -; T = ! T, for example.

Left rules with weak premisses require some attention. It is tempting to write the
“weak” ®L rules as:

;AA—1C I';AB—1cC

| ®L; | ®L,.
I'AAARB—' C I'AJAB—"C

Focusing the Inverse Method for Linear Logic 205

(Note that the irredundancy property requires that at least one of the operands of ® be
present in the premiss.) This pair of rules, however, would allow redundant inferences
such as:
I';AAB—C
IAAARB—!C

We might as well have consumed both A and B to form the conclusion, and obtained a
stronger result. The sensible strategy is: when A and B are both present, they must both
be consumed. Otherwise, only apply the rule when one operand is present in a weak
sequent. A similar observation can be made about all such rules: there is one weakness-
agnostic form, and some possible refined forms to account for weak sequents.

®Ly.

Property 6 (irredundancy). All forward rules satisfy the irredundancy property. 0O

The soundness and completeness theorems are both proven by structural induction;
we omit the easy proofs. Note that the completeness theorem shows that the forward
calculus infers a possibly stronger form of the goal sequent.

Theorem 7 (soundness). [fT"; A —" C is derivable, then it is sound.

Theorem 8 (completeness). If I'; A => C is derivable, then there exists a derivable
forward sequent T ; N' —" C such that (F’ A —Y C) =< (F;A = C).

4 Focused Derivations

Search using the backward calculus can always apply invertible rules eagerly in any
order as there always exists a proof that goes through the premisses of the invertible
rule. Andreoli pointed out [|] that a similar and dual feature exists for non-invertible
rules also: it is enough for completeness to apply a sequence of non-invertible rules
eagerly in one atomic operation, as long as the corresponding connectives are of the
same synchronous nature. Andreoli’s observation for classical linear logic was extended
to intuitionistic linear logic by Howe [3], but his inference rules have some overlap
and an imprecise treatment of the atomic propositions that gives rise to unnecessary
cycles in derivations. Our focusing calculus can be seen as a refinement of Howe’s
calculus, by preventing this imprecision and overlap in the inference rules. As a result,
our completeness proof is considerably simpler, being a direct consequence of cut-
elimination.

Before we sketch our formulation, a brief note about the classification of connec-
tives: in classical linear logic the synchronous or asynchronous nature of a given con-
nective is identical to its polarity; the negative connectives (&, T, %, L, V) are asyn-
chronous, and the positive connectives (®, 1, &, 0, 3) are synchronous. The nature of
intuitionistic connectives, though, must be derived without an appeal to polarity, which
is not only difficult to motivate given the asymmetry of intuitionistic logic, but is also
alien to the judgmental philosophy underlying the intuitionistic reconstruction of lin-
ear logic [6]. We derive the nature of connectives by examining the rules and phases
of search: an asynchronous connective is one for which decomposition is complete in
the active phase; a synchronous connective is one for decomposition is complete in the

206 Kaustuv Chaudhuri and Frank Pfenning

focused phase. This derivation happens to coincide with polarities for classical linear
logic, but does differ for other logics. For intuitionistic (non-linear) logic, for instance,
the conjunction A, a connective of negative polarity, is seen as both synchronous and
asynchronous in our derivation. (See section 6.1.)

As our backward linear sequent calcu-

. . symbol meaning
lus has two sides, we have left- and right-

h d h i P left-synchronous (&, T, —o, p)
synchronous and asynchronous connectives. 0 right-synchronous (®, 1, !, p)
For non-atomic propositions a left-synchro- . n
nous connective is right-asynchronous, and a L l,e t-asynchronous (®, 1, 1)

R right-asynchronous (&, T, —o)

left-asynchronous connective right-synchro-
nous; this appears to be universal in well-behaved logics. We define the notations in
the adjoining table. The backward focusing calculus consists of three kinds of sequents;
right-focal sequents of the form I";A>>A (A under focus), left-focal sequents of the
form I';A; A< Q, and active sequents of the form I';A;Q = C. T indicates the un-
restricted zone as usual, A contains only left-synchronous propositions, and Q is an
ordered sequence of propositions (of arbitrary nature).

The active phase is entirely deterministic: it operates on the right side of the active
sequent until it becomes right-synchronous, i.e., of the form I';A;Q = Q. Then the
propositions in Q are decomposed in order from right to left. The order of Q is used
solely to avoid spurious non-deterministic choices. Eventually the sequent is reduced to
the form I'; A;- = Q, which we call neutral sequents.

A focusing phase is launched from a neutral sequent by selecting a proposition from
I', A or the right hand side. This focused formula is decomposed until the top-level
connective becomes asynchronous. Then we enter an active phase for the previously
focused proposition.

Atomic propositions and modal operators need a special mention. Andreoli ob-
served in [1] that it is sufficient to assign arbitrarily a synchronous or asynchronous
nature to the atoms as long as duality is preserved; here, the asymmetric nature of the in-
tuitionistic sequents suggests that they should be synchronous. If the left-focal formula
is an atom, then the sequent is initial iff the linear zone A is empty and the right hand
side matches the focused formula; this gives the focused version of the “init” rule. If
an atom has right-focus, however, it is not enough to simply check that the left matches
the right, as there might be some pending decompositions; consider eg. - ;p & g>>gq.
Focus is therefore blurred in this case, and we correspondingly disallow a right atom in
a neutral sequent from gaining focus.

The other subtlety is with the !R rule: although ! is right synchronous, the !R rule
cannot maintain focus on the operand. If this were forced, there could be no focused
proof of {(A®B) — !(B®A), for example. This is because there is a hidden transition
from the truth of ! A to the validity of A which in turn reduces to the truth of A (see [0]).
The first is synchronous, the second asynchronous, so the exponential has aspects of
both. Girard has made a similar observation that exponentials are composed of one
micro-connective to change polarity, and another to model a given behavior [|4, Page
114]; this observation extends to other modal operators, such as why-not (?) of JILL [6]
or the lax modality of CLF [7].

The full set of rules is in fig. 2. Soundness of this calculus is rather an obvious
property — forget the distinction between A and €, elide the focus and blur rules, and

Focusing the Inverse Method for Linear Logic 207

right-focal right-active
' Ay >A T,A>B ® I''A;Q—A T';A;Q—B &R
;AL A >ARB A Q=—A&B
r;>1 ros1A TAQ=—T MAQ=—A—-B
left-focal left-active
A A I'A;Q-A-B—
init <O A =
Lip<p IAA &A<Q I';A;Q-A®9B=Q
A B<KO THiA>A IAQ=0Q A A Q= Q "
[:ALAYA—B<Q [AQ1—0 MAQ 1A= Q
I'AP; Q= Q
focus act
I'AQ-P—Q
A PO
AP, = Q blur
INA;AAKQ AL=Q
copy Ib
IA;A; —Q ;A LKQ
';A>Q0 Qnon-atomicrf I';A;- =R b CAs-=p
A =0 rASR A p

Fig. 2. Backward linear focusing calculus

the original backward calculus appears. For completeness of the focusing calculus, we
proceed by interpreting every backward sequent as an active sequent in the focusing
calculus, then showing that the backward rules are admissible in the focusing calcu-
lus. This proof relies on admissibility of cut in the focusing calculus. Because a non-
atomic left-synchronous proposition is right-asynchronous, a left-focal sequent needs
to match only an active sequent in a cut; similarly for right-synchronous propositions.
Active sequents should match other active sequents, however. Cuts destroy focus, as
they generally require commutations spanning phase boundaries; the products of a cut
are therefore active.

The proof needs two key lemmas: the first notes that permuting the ordered con-
text doesn’t affect provability, as the ordered context does not mirror any deep non-
commutativity in the logic. This lemma thus allows cutting formulas from anywhere
inside the ordered context, and also to re-order the context when needed.

Lemma9. IfT;A;Q = C, thenT;A;Q = C for any permutation Q' of Q. O

The other lemma shows that left-active rules can be applied even if the right-hand side
is not synchronous. This lemma is vital for commutative cuts.

Lemma 10. The following variants of the left-active rules are admissible
AP Q—C I'A;Q-A-B=—C I''A;Q=—C INA;A,Q=—C
;A QP—=C T;A;QARB—C T;A;Q1—C T;A;Q-'A=C

208 Kaustuv Chaudhuri and Frank Pfenning

Theorem 11 (cut). If
1. T;A> A and:
(a) T;A ;Q-A=>CthenT ;AN ;Q—>C.
(b) T;AN A;Q=>CthenT ;AN ;Q—>C.
I';>>AandT,A;A; Q= CthenT;A;Q = C.
3. TA;Q — A and:
(a) T;AN ;A< QthenT ;AN ;Q— Q.
(b) T;A;Q A= CthenT ;AN ;Q-Q —C.
(c) T;N A;Q = CthenT ;A N;Q-Q —C.
4. T';-;-— Aand:
(a) T,A;A; Q= CthenT;A;Q —C.
(b) T,A;A>BthenT';A>B.
5. T;AB<KA and:
(a) T;A ;A= QthenT ;AN ;BLKQ.
(b) T;N ,A;- = QthenT ;AN ;B<KOQ.
6. T;A;-=—AandT ;N ,A>BthenT;A,A > B.

N

Proof (sketch). By lexicographic induction on the given derivations. The argument is
lengthy rather than complex, and is an adaptation of similar structural cut-admissibility
proofs in eg. [0]. a

Theorem 12 (completeness).
IfT';A = C and Q is any serialization of A, thenT";-;Q = C.

Proof (sketch). First show that all ordinary rules are admissible in the focusing system
using cut. Proceed by induction on the derivation of D :: T"; A = C, splitting cases on
the last applied rule, using cut and lem. 9 as required. A representative case (for ®R):
D DT A=A D:T;AN=B 2R
AN = A®B

Let Q and Q' be serializations of A and A’ respectively; by the induction hypothesis
on Dy and D, we have I';-; Q = A and T"; - ; Q' = B. Now, it is easy to show that
I';-;A- B = A®B. The result follows by the use of cut twice, for A and B in the active
context respectively, to getT'; - ; Q- Q' = A ® B, and then noting that any serialization
of A, A’ is a permutation of Q- Q. O

5 Forward Focusing

We now construct the forward version of the focusing calculus. Both the active and
focal phases in the backward direction are eager in the sense that intermediate sequents
are not important; instead, just the neutral sequents (i.e., of the form I';A;- = Q)
at the phase boundaries are important. One therefore thinks of the backward focusing
calculus as one of neutral sequents. Analogously, the forward focusing system discards
the intermediate focal and active sequents by means of calculating the corresponding
derived rules for forward neutral sequents.

Focusing the Inverse Method for Linear Logic 209

For any given synchronous subformula, the derived inferences for that subformula
correspond to a single pair of focal and active phases. This observation is not new;
Andreoli called them bipoles [2]. However, there are important differences between
backward reasoning bipoles and their forward analogue: as shown in thm. 8, the for-
ward calculus generates stronger forms of sequents than in the corresponding backward
proof. Therefore, not every branch of the backward bipole will be available in the for-
ward direction. The forward derived rules therefore need some additional mechanism
in the internal nodes to handle these cases.

We still adapt the essential idea of bipoles of viewing every proposition as a relation
between the conclusion of the bipole and its possible premisses at the leaves of the
bipole. This relational interpretation gives us the derived rules corresponding to the
proposition; the premisses and conclusions of these derived rules are neutral sequents,
which we indicate by means of a double-headed sequent arrow (—>).

Each relation R takes as input the premisses of the bipole, s1 - 53 - - -5, (written X),
and constructs the relevant portion of a conclusion sequent s; we write this as R[X] < s.
There are three classes of these relations:

1. Right focal relations for the focus formula A, written focj}r (A).
2. Left focal relations for the focus formula A, written focﬂ (A).
3. Active relations, written acty (T';A;Q =), where yis either - or C.

The focal relations are understood as defining derived rules corresponding to a given
proposition. The conclusion of these derived rules are themselves neutral sequents. For
a right focal relation focﬁ (Q), the corresponding derived rule is:

> <focI(Q)[2] CTIA W) X
i foc M
;A —" Q
Similarly, for negative propositions, we have two rules, depending on whether the fo-
cused proposition is a heavy subformula of the goal sequent or not.
> (foclj (P)[E]—T;A—>" Q))y (focﬂ (A)[Z]—=T;A —»" Q)

foclI ! foclI

AP —"Q TU{A};:A—>"Q

As before, these derived rules are understood to contain only signed subformulas of the
goal sequent. The active relations essentially replay the active rules of the backward
focusing calculus, except they also account for weak sequents as needed.

For lack of space we leave out the details of the definition of these relations; they can
be found in the accompanying technical report [| 5]. Instead, we shall give an example.
Consider the negative principal subformula P = p & g —r & (s ®1) and the three input
sequents I'1 ;A —=! p, Th;Ay —=% ¢, and T'3;A3,5s —! Q, named s1, 57, and s3
respectively. By the definition of foclj:

foc, (P)[s3-s1-52] = T3UT 1 UT2343,80 —=' @ ifr ¢ Asand A C Ay

In other words, the instance of the full derived rule for P matched against the given
sequents stands for the following derived rule of inference specialized to this scenario:
TiAp—»lp Toid —»0q T3iA3s—>10 (1¢43) (A CAy)
Ul UL, A3,A2, P 1)

210 Kaustuv Chaudhuri and Frank Pfenning

The proofs of soundness and completeness of the forward focusing calculus with re-
spect to the backward focusing calculus are are in [15]. Soundness is shown by simple
structural induction on the focﬁ, fOCiI and acty derivations. Completeness is a rather
more complex result because the forward and backward focused proofs are not in bi-
jection. The essential idea of the proof is to define a complete calculus of backward
derived rules, and prove the calculus of forward derived rules complete with respect to
this intermediate calculus.

Theorem 13 (soundness). If I";A —=" Q is derivable, then it is sound. O

Theorem 14 (completeness). If I';A;- = Q is derivable, then there exists a deriv-
able focused sequent T ; A' —" Q such that (F’ i g— Q) =< (F;A = Q). O

5.1 The Focused Inverse Method

What remains is to implement the inverse method search strategy that uses the forward
focusing calculus. Before describing the focused inverse method, we briefly sketch the
usual single-step inverse method here, eliding the implementation issues that are out of
the scope of this paper'. The inverse method consists of three essential components: the
database of computed sequents, the library of rules that can be applied to sequents to
compute new sequents, and the main search loop or engine. Rules are constructed by
naming all subformulas of the goal sequent with fresh propositional labels, and special-
izing the inference rules of the full logic to principal uses of the subformula labels; the
general rules are then discarded. This procedure is key to giving the inverse method a
goal direction, as the search space is constrained to subformulas of the goal. Tradition-
ally the library of rules is considered static during a given search, but as we describe
in [9], it is beneficial, especially in the first-order extension, to allow the library of
rules to be extended during search with partial applications— a form of memoization.
The inputs for these rules are drawn from the database of computed sequents. At the
start of search, this database contains just the initial sequents, which are determined by
considering all atomic subformulas that are both positively and negatively occurring in
the goal sequent. The engine repeatedly selects sequents from the database, and applies
rules from the library to generate new sequents; if these new sequents are not subsumed
by any sequent derived earlier, they are inserted in to the database. Completeness of the
search strategy is guaranteed by using a fair selection (i.e., equivalent to breadth-first
search) of sequents from the database in order to generate new sequents.

The primary issue in the presence of focusing is what propositions to generate rules
for. As the calculus of derived rules has only neutral sequents as premisses and con-
clusions, we need only generate rules for propositions that occur in neutral sequents;
we call them frontier propositions. To find the frontier propositions in a goal sequent,
we simply abstractly replay the focusing and active phases to identify the phase tran-
sitions. Each transition from an active to a focal phase produces a frontier proposition.
Formally, we define two generating functions, f (focal) and a (active), from signed
propositions to multisets of frontier propositions. None of the logical constants are in

1 See a related paper for notes on implementation [9].

Focusing the Inverse Method for Linear Logic 211

fp)"=0 f(p)"=alp)" ={p})" =a()* =0 f(T)" =a(T)"=0
fA®B)” =a(A®B)” f(A@B)T =f(A)", f(B)"
a(A®B)” =a(A)",a(B)” aA®B)" = f(A®B)T,A®B
f(A&B)™ = f(A)",f(B)” f(A&B)" =a(A&B)"
a(A&B)” = f(A&B) ,A&B a(A&B)T =a(A)T,a(B)"
f(A—B)” = f(A)", f(B)” f(A—B)" =a(A—-B)"
a(A—B)” = f(A—B) ,A—B a(A—-B)t =a(A)",a(B)"

Fig. 3. Calculating frontier propositions

the frontier, for the conclusions of rules such as TR and 1R are easy to predict, and can
be generated as needed. Similarly we do not count a negative focused atomic propo-
sition in the frontier as we know that the conclusion of the init rule needs to have the
form I';-; p < p; this restricts the collection of spurious initial sequents that are not
possible in a focused proof. The steps in the calculation are shown in figure 3; as a
simple example, f(p& qg—r& (s®1t))” = p,q,s,t.

Definition 15 (frontier). Given a goal T";A;- = Q (which is neutral), its frontier
contains:

i. all (top-level) propositions in I',A, Q;

ii. foranyA €T\A, the collection f(A)~; and
iii. the collection f(Q)™.

Property 16 (neutral subformula property). In any backward focused proof, all neu-
tral sequents consist only of frontier propositions of the goal sequent. a

In the preparatory phase for the inverse method, we calculate the frontier proposi-
tions of the goal sequent. There is no need to generate initial sequents separately, as
the executions of negative atoms in the frontier directly give us the necessary initial se-
quents. The general design of the main loop of the prover and the argument for its com-
pleteness are fairly standard [, 10]; we use a lazy refinement of this basic design [7]
that is ideal for multi-premiss rules.

5.2 Some Experimental Results

We have implemented an expanded version of the forward focusing calculus as a certi-
fying” inverse method prover for intuitionistic linear logic, including the missing con-
nectives @, 0, and the lax modality®. Table | contains a running-time comparison of
the focusing prover (F) against a non-focusing version (NF) of the prover (directly im-
plementing the calculus of sec. 3), and Tammet’s Gandalf “nonclassical” distribution

2 By certifying, we mean that it produces independently verifiable proof objects.
3 Available from the first author’s web page at http://www.cs.cmu.edu/ "kaustuv/

212 Kaustuv Chaudhuri and Frank Pfenning

Table 1. Some experimental results

Test NF F Gt Gr
blocks-world 0.02s <0.0Is 13.51 s 0.03s
change 3.20s <0.0ls —_ 0.63s
affinel 0.01s <0.01s 0.03 s <0.01s
affine2 ~12m 1.21s — —
gbfl 0.03 s <0.01s — 240s
gbf2 0.04 s <0.01s — 42.34 s
gbf3 ~35m 0.53 s — —

All measurements are wall-clock times on an unloaded computer with a 2.80GHz
Pentium 4 processor, 512KB L1 cache and 1GB of main memory; “—” denotes

unsuccessful proof within ~ ten hours.

that includes a pair of (non-certifying) provers for classical linear logic, one (Gr) us-
ing a refinement of Mints’ resolution system for classical linear logic [10, | 1], and the
other (Gt) using a backward Tableaux-based strategy. Neither of these provers incorpo-
rates focusing. The test problems ranged from simple stateful encodings such as blocks-
world or change-machines, to more complex problems such as encoding of affine logic
problems, and translations of various quantified Boolean formulas using the algorithm
in [16]. Focusing was faster in every case, with an average speedup of about three orders
of magnitude over the non-focusing version.

6 Embedding Non-linear Logics

6.1 Intuitionistic Logic

When we move from intuitionistic to intuitionistic linear logic, we gain a lot of expres-
sive power. Nonetheless, many problems, even if posed in linear logic, have significant
non-linear components or sub-problems. Standard translations into linear logic, how-
ever, have the problem that any focusing properties enjoyed by the source are lost in
the translation. In a focusing system for intuitionistic logic, as hinted to by Howe [3]
and briefly considered below, a quite deterministic proof with, say, one phase of fo-
cusing, will be decomposed into many small phases, leading to a large loss in ef-
ficiency. Fortunately, it is possible to translate intuitionistic logic in a way that pre-
serves focusing. To illustrate, consider a minimal intuitionistic propositional logic with
connectives {A,t,D}. The focusing system for this logic has three kinds of sequents,
I'>;A (right-focal), I';A <; Q (left-focal), and I ; QQ = C (active), with D treated as
right-synchronous, and A as both (right-) synchronous and asynchronous. The meta-
variables P, Q, L and R are used in the spirit of section 4; that is, P for left-synchronous
{A,t,D,p}, Q for right-synchronous {A,t, p}, L for left-asynchronous {A,t}, and R
for right-asynchronous {A,t,D>}. O* means that Q is not atomic, i.e., just containing

{A,t}.

Focusing the Inverse Method for Linear Logic 213

F(p)"=p F(p)"=p Alp)"='p Alp)" =p
F(AAB)” =F(A)" &F(B)™ F(AAB)"=FA)ToF(B)"
A(AAB)” =A(A)” ®A(B)” A(AAB)T =AA)T &AB)t

Fit) =T F)t=1 A@x) =1 A@®)t=T

F(ADB) =F(A)" —F(B)” F(AD>B"™"=A(ADB)*"
A(ADB)" =!F(ADB)” AADB)T =A(A)” —A(B)"

Fig. 4. Embedding intuitionistic logic

'A< 0 ;B0 I'> A I'>A I'>/B
T;p<yp A NA <K QO I'; ADBK QO I'>/AAB I'>;t
I'Q-A-B=;0Q I'Q=—;A T';Q0=—;B IQ-A=—;B
I'Q-AANB=70Q I';Q=—;AAB rQ=;t I'Q=—;ADB
ILP,Q=0 ac > 0* I';P<0 I';-—;R T,L=,0
I,Q-P=;0Q I, —;0" I,P;-=—;0 I'>/R 'L« 0

The translation is modal with two phases: A (active) and F (focal). A positive focal A
is translated as ®, and the duals as &. For every use of the act rule, the corresponding
translation phase affixes an exponential; the phase-transitions in the image of the trans-
lation exactly mirror those in the source. The details of the translation are in figure 4.
It is easily shown that these translations preserve the focusing structure of proofs.

Property 17 (preservation of the structure of proofs).
1. IfT>>A, then F(T')™; >>F(A)

2. IfT A< Q, then F(I)™ ;- ()~ <<F()T
3. IfT;Q=>,Q, then F(T') SAQ)T = F(0)".
4. IfT;Q=R then F(T)";-;A(Q)” = A(R)™. 0

The reverse translation, written —¢, is trivial: simply erase all !s, rewrite & and ® as A,
Tand 1 as t, and — as =.

Property 18 (soundness).
1. IfT;->A, thenT? > A°.
2. IfT;AKQ, thenT? ;A< Q°.
3 IfT;;Q=C, thenT?;Q° —>; C°. O

An important feature of this translation is that only (certain) negative atoms and
implications are !-affixed; this is related to a similar observation by Dyckhoff that the
ordinary propositional intuitionistic logic has a contraction-free sequent calculus that
duplicates only negative atoms and implications [!7]. It is also important to note that
this translation extends easily to handle the disjunctions V and L (in the source) and
@ and 0 in the target logic; this naturality is not as obvious for Howe’s synchronicity-
aware translation [3].

214 Kaustuv Chaudhuri and Frank Pfenning

6.2 Classical Horn Formulas

A related issue arises with respect to (non-linear) Horn logic. In complex specifica-
tions that employ linearity, there are often significant sub-specifications that lie in the
Horn fragment. Unfortunately, the straightforward inverse method is quite inefficient
on Horn formulas, something already noticed by Tammet [10]. So his prover switches
between hyperresolution for Horn and near-Horn formulas and the inverse method for
other propositions.

With focusing, this becomes entirely unnecessary. Our focused inverse method for
intuitionistic linear logic, when applied to a classical, non-linear Horn formula, will
exactly behave as classical hyperresolution. This remarkable property gives further ev-
idence to the power of focusing as a technique for forward theorem proving.

A propositional Horn clause has the form p; O --- D p, D p where all p; and p are
atomic. A Horn theory P is just a set of Horn clauses. This can easily be generalized to
include conjunction and truth. The results in this section extend also to the first-order
case, where Horn formulas allow outermost universal quantification.

The hyperresolution strategy on this framework is p; p,
essentially just forward reasoning with rule set “hy-
per” for any p; D---Dp, D p€¥. Note that these
will be unit clauses if n=0. If we translate every clause p; D---Dp, D p as
I(p1 —o---—o p, —o p), it is easy to see that the derived rules associated with the re-
sults of the translation are exactly the hyperresolution rules.

P hyper

7 Conclusion

We have presented the design of an inverse method theorem prover for propositional
intuitionistic linear logic and have demonstrated through experimental results that fo-
cusing represents a highly significant improvement. Though elided here, the results
persist in the presence of a lax modality [7], and extend to the first-order case as shown
by the authors in a related paper [9], which also contains many more details on the
implementation and a more thorough empirical evaluation.

Our methods derived from focusing can be applied directly and more easily to
classical linear logic and (non-linear) intuitionistic logic, also yielding focused inverse
method provers. While we do not have an empirical evaluation of such provers, the re-
duction in the complexity of the search space is significant. We therefore believe that
focusing is a nearly universal improvement to the inverse method and should be applied
as a matter of course, possibly excepting only (non-linear) classical logic.

In future work we plan to add higher-order and linear terms in order to obtain a theo-
rem prover for all of CLF [7]. The main obstacles will be to develop feasible algorithms
for unification and to integrate higher-order equational constraints. We are also inter-
ested in exploring if model-checking techniques could help to characterize the shape of
the linear zone that could arise in a backward proof in order to further restrict forward
inferences.

Finally, we plan a more detailed analysis of connections with a bottom-up logic
programming interpreter for the LO fragment of classical linear logic [1&]. This frag-
ment, which is in fact affine, has the property that the unrestricted context remains

Focusing the Inverse Method for Linear Logic 215

constant throughout a derivation, and incorporates focusing at least partially via a back-
chaining rule. It seems plausible that our prover might simulate their interpreter when
LO specifications are appropriately translated into intuitionistic linear logic, similar to
the translation of classical Horn clauses.

Acknowledgments

We thank Kevin Watkins for illuminating discussions on the topic of focused deriva-
tions, and the anonymous referees of this and an earlier version of this paper for numer-
ous helpful suggestions.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation 2 (1992) 297-347

Andreoli, J.M.: Focussing and proof construction. Annals of Pure and Applied Logic 107
(2001) 131-163

Howe, J.M.: Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of
St. Andrews (1998)

Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1-102

Barber, A.: Dual Intuitionistic Linear Logic. Technical Report ECS-LFCS-96-347, Univer-
sity of Edinburgh (1996)

Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic. Technical
Report CMU-CS-03-131R, Carnegie Mellon University (2003)

Cervesato, 1., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework I &
II. Technical Report CMU-CS-02-101 and 102, Department of Computer Science, Carnegie
Mellon University (2002) Revised May 2003.

Degtyarev, A., Voronkov, A.: The Inverse Method. In: Handbook of Automated Reasoning.
MIT Press (2001) 179-272

Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-order lin-
ear logic. In: Proceedings of the 20th International Conference on Automated Deduction
(CADE-20). (2005) To appear.

Tammet, T.: Resolution, inverse method and the sequent calculus. In: Proceedings of
KGC’97, Springer-Verlag LNCS 1289 (1997) 65-83

Mints, G.: Resolution calculus for the first order linear logic. Journal of Logic, Language and
Information 2 (1993) 59-83

Cervesato, 1., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof
search. Theoretical Computer Science 232 (2000) 133-163 Special issue on Proof Search in
Type-Theoretic Languages, D. Galmiche and D. Pym, editors.

Harland, J., Pym, D.J.: Resource-distribution via boolean constraints. In McCune, W., ed.:
Proceedings of CADE-14, Springer-Verlag LNAI 1249 (1997) 222-236

Girard, J.Y.: Locus solum: from the rules of logic to the logic of rules. Mathematical Struc-
tures in Computer Science 11 (2001) 301-506

Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. Technical Report
CMU-CS-05-106, Carnegie Mellon University (2005)

Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional
linear logic. Annals of Pure and Applied Logic 56 (1992) 239-311

Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic (1992) 795-807

Bozzano, M., Delzanno, G., Martelli, M.: Model checking linear logic specifications. TPLP
4 (2004) 573-619

Towards a Typed Geometry of Interaction

Esfandiar Haghverdi and Philip J. Scott?*

1 School of Informatics, Indiana University
Bloomington, IN 47406, USA
ehaghver@indiana.edu
http://xavier.informatics.indiana.edu/~ehaghver
2 Dept. of Mathematics & Statistics
University of Ottawa, Ottawa, Ontario
Canada K1N 6N5
phil@mathstat.uottawa.ca
http://www.uottawa.ca/site/ phil

Abstract. Girard’s Geometry of Interaction (Gol) develops a math-
ematical framework for modelling the dynamics of cut-elimination. We
introduce a typed version of Gol, called Multiobject Gol (MGol) for mul-
tiplicative linear logic without units in categories which include previous
(untyped) Gol models, as well as models not possible in the original
untyped version. The development of MGol depends on a new theory
of partial traces and trace classes, as well as an abstract notion of or-
thogonality (related to work of Hyland and Schalk) We develop Girard’s
original theory of types, data and algorithms in our setting, and show
his execution formula to be an invariant of Cut Elimination. We prove
Soundness and Completeness Theorems for the MGol interpretation in
partially traced categories with an orthogonality.

1 Introduction

Geometry of Interaction (Gol) is a novel interpretation of linear logic, introduced
by Girard in a fundamental series of papers beginning in the late 80’s [1-13] and
continued recently in [11]. One striking feature of this work is that it provides
a mathematical framework for modelling cut-elimination (normalization) as a
dynamical process of information flow, independent of logical syntax. To these
ends, Girard introduces methods from functional analysis and operator algebras
to model proofs and their dynamical behaviour. At the same time, these methods
allow Gol to provide new foundational insights into the theory of algorithms.

Girard’s original framework, based on C*-algebras, was studied in detail in
several works of Danos and Regnier (for example in [3]) and by Malacaria and
Regnier [26]. The Gol program itself has been applied to the analysis of optimal
reduction by Gonthier, Abadi, and Lévy [9], to complexity theory [0], to game
semantics and token machines [5, 21], etc.

Let us briefly recall some aspects of Girard’s original Gol. Traditional deno-
tational semantics models normalization of proofs (or lambda terms) by static

* P. J. Scott’s research is supported in part by an NSERC Discovery grant.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 216-231, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards a Typed Geometry of Interaction 217

equalities: if IT, II’' are proofs and if IT reduces to II’ by cut-elimination, then
in any appropriate model, II = II’ . Instead, in his Gol program, Girard
considers proofs (or algorithms) as operators, pictured as I/O boxes: a proof of
a sequent = I is interpreted as a box with input and output wires labelled by
I'. The formulas or types in I" form the I/O-interface of the proof. Girard works
in an untyped setting, so in fact the labels of the wires range over a space U
satisfying various domain equations (see below). Now consider a proof IT of a
sequent b [A], I', where A is a list of all the cut-formulas used. Girard associates
to such a proof a pair of operators (u,), where u is a hermitian of norm at most
1, and o is a partial symmetry representing the cuts A. The dynamics of cut-
elimination may now be captured in a solution of a system of feedback equations,
summarized in an operator EX (u, o) (the Ezecution Formula). We remark that
our general categorical framework (based on partial traces) permits a structured
approach to solving such feedback equations and deriving properties of the Exe-
cution formula. Finally, it can be shown ([12, 17]) that for denotations of proofs
(u = II) of appropriate types in System F, EX(II ,o0) is an invariant of
cut-elimination.

Categorical foundations of Gol were initiated in the 90’s in lectures by M.
Hyland and by S. Abramsky. An early categorical framework was given in [1].
Recent work has stressed the role of Joyal-Street-Verity’s traced monoidal cate-
gories [23] (with additional structure). For example, Abramsky’s Gol situations
[1, 3, 15] provide a basic algebraic foundation for Gol for multiplicative, exponen-
tial linear logic (MELL). Recently, we used a special kind of Gol situation (with
traced unique decomposition categories) to axiomatize the details of Girard’s
original Gol 1 paper [17].

In our previous papers, we emphasized several important aspects of Girard’s
seminal work (at least in Gol 1 and 2).

1. The original Girard framework is essentially untyped: there is a reflexive
object U in the underlying model (with various retractions and/or domain
isomorphisms, e.g. U @ U < U).

2. Cut-elimination is interpreted by feedback, naturally represented in traced
monoidal categories. The execution formula, defined via trace, provides an
invariant for cut-elimination.

3. Girard introduced an orthogonality operation 1 on endomaps of U together
with the notion of types (as sets of endomaps equal to their biorthogonal).

4. There are notions of data and algorithm encoded into this dynamical setting,
with fundamental theorems connecting types, algorithms, and the conver-
gence of the execution formula.

Points (1) and (2) above were already emphasized in the Abramsky program, as

well as in the work of Danos and Regnier [1, 3, 8, 17]. Orthogonalities have been
studied abstractly by Hyland and Schalk [21]. The points (1)—(4) are critical to
our view of Gol in [17, 18] and to the technical developments in this paper.

Alas, Girard’s original Gol is not without its own share of syntactical bu-
reaucracy: there are domain isomorphisms (of the reflexive object U) and an

218 Esfandiar Haghverdi and Philip J. Scott

associated *-algebra of codings and uncodings. On the one hand, this means
the original Gol interpretation of proofs is essentially untyped (i.e. categorically,
proofs are interpreted in the monoid Hom (U, U), using the above-mentioned al-
gebra) (see [3, 17, 18]). On the other hand, this led Danos and Regnier ([3]) to
study this algebra in detail in certain concrete models, leading to their extensive
analysis of reduction paths in untyped lambda calculus.

Our aim in this paper is to move away from “uni-object Gol” to a typed ver-
sion. This permits us to both generalize Gol and axiomatize its essential features.
For example, by removing reflexive objects U, we also unlock the possibilities of
generalizing Girard-style Gol to more general tensor categories including cases
where the tensor is “product-like” in addition to “sum-like”. We shall illustrate
both of these styles in the examples