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Abstract. Dimension reduction is a crucial step for pattern recognition
and information retrieval tasks to overcome the curse of dimensionality.
In this paper a novel unsupervised linear dimension reduction method,
Neighborhood Preserving Projections (NPP), is proposed. In contrast to
traditional linear dimension reduction method, such as principal com-
ponent analysis (PCA), the proposed method has good neighborhood-
preserving property. The main idea of NPP is to approximate the classi-
cal locally linear embedding (i.e. LLE) by introducing a linear transform
matrix. The transform matrix is obtained by optimizing a certain objec-
tive function. Preliminary experimental results on known manifold data
show the effectiveness of the proposed method.

1 Introduction

To deal with tasks such as pattern recognition and information retrieval, one is
often confronted with the curse of dimensionality [1]. The dimensionality problem
arises from the fact that there are usually few samples compared to the sample
dimension. Due to the curse of dimensionality, a robust classifier is hard to be
built and the computational cost is prohibitive. Dimension reduction is such
a technique that attempts to overcome the curse of the dimensionality and to
extract relevant features. For example, although the original dimensionality of
the space of all images of the same subject may be quite large, its intrinsic
dimensionality is usually very small [2].

Many dimension reduction methods have been proposed and can be catego-
rized into linear (e.g. PCA, MDS and LDA) and non-linear (e.g. LLE, ISOMAP,
Laplacian Eigenmap, KPCA and KDA) methods. The differences between these
methods lie in their different motivations and objective functions. Principal com-
ponent analysis (PCA) [3] may be the most frequently used dimension reduction
method. PCA seeks a subspace that best represents the data in a least-squares
sense. Multidimensional scaling (MDS) [3] finds an embedding that preserves
the interpoint distances, and is equivalent to PCA when those distances are
Euclidean. Linear discriminant analysis (LDA), a supervised learning algorithm,
selects a transformation matrix in such a way that the ratio of the between-class
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scatter and the within-class scatter is maximized [4]. By nonlinearly mapping
the input space to a high-dimensional feature space, PCA and LDA can be
evolved into KPCA (kernel PCA) [5] and KDA (kernel discriminant analysis)
[6]. Though, compared to their linear forms PCA and LDA, KPCA and KLDA
can deal with nonlinear problem to some extent, it is difficult to determine the
optimal kernels.

Recently, several nonlinear manifold-embedding-based approaches were pro-
posed such as locally linear embedding (LLE) [7], isometric feature mapping
(Isomap) [8] and Laplacian Eigenmaps [9]. They all utilize local neighborhood
relation to learn the global structure of nonlinear manifolds. But they have
quite different motivations and derivations. Limitations of such approaches in-
clude their demanding for sufficiently dense sampling and heavy computational
burden. Moreover, the original LLE, Isomap and Laplcacian Eigenmaps can not
directly deal with the out-of-sample problem [10] . Out-of-sample problem states
that only the low dimensional embedding map of training samples can be com-
puted but the samples out of the training set (i.e. testing samples) cannot be
calculated directly, analytically or even cannot be calculated at all.

Soon after the aforementioned nonlinear manifold embedding approaches
were developed, much endeavor is made to improve and extend them. More
recently, locality preserving projections (LPP) [11] was proposed based on Lapla-
cian Eigenmaps. When applied to face recognition, this method is called Lapla-
cianfaces [12]. LPP is a linear dimension reduction method which is derived by
finding the optimal linear approximations to the eigenfunctions of the Laplace
Beltrami operator on the manifold. Besides its capacity to resolve the out-of-
sample problem, LPP shares the locality preserving property. The locality pre-
serving property makes LPP distinct from conventional PCA, MDS and LDA.
Motivated by LPP, in this paper, we propose novel dimension reduction method
which we call Neighborhood Preserving Projections (NPP). While LPP is derived
from Laplacian Eigenmaps, ours is derived from LLE. Since the proposed method
is a linear form of the original nonlinear LLE, NPP inherits LLE’s neighborhood
property naturally.

The rest of this paper is organized as follows: Section 2 gives an overview
of the proposed method, NPP. Section 3 provides a brief description of LLE.
In section 4, the motivation and justification of NPP is presented. Preliminary
experimental results are shown in Section 5. Finally, conclusions are drawn in
section 6.

2 Overview of the Proposed Method: NPP

2.1 Dimension Reduction Problem

Given N points X=[x1,x2,. . . ,xN ] in D dimensional space, dimension reduction
is conducted such that these points are mapped to be new points Y=[y1,y2,. . . ,
yN ] in d dimensional space where d << D. Dimension reduction can be per-
formed either in linear way or in non-linear way. Original LLE is a non-linear
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dimension reduction technique while our proposed method NPP is a linear one.
For linear method, a linear transformation matrix is determined so that

yi = AT xi. (1)

The transformation matrix is not computed in an arbitrary way, it is obtained,
instead, according to a certain objective function. It is the objective function that
makes our proposed linear dimension reduction algorithm, NPP, distinct itself
from other algorithms. Before presenting a detailed derivation of NPP algorithm,
we will give an overview of it in next subsection.

2.2 Overview

The first two steps of NPP algorithm are the same as those of LLE. Our main
contribution lies in third step. The details will be given in section 3 and section 4.

Step 1. Assign neighbors to each data point xi (for example by using the K
nearest neighbors)

Step 2. Compute the weights W ij that best linearly reconstruct xi from its
neighbors, solving the constrained least-squares problem in equation (3).

Step 3. Compute the linear transform matrix A by solving the generalized
eigenvalue problem:

LAT = λCAT . (2)

Where
L = XMXT

C = XXT

M = (I − W)(I − W)T .

Note that we will explain step 3 in detail in section 4.
Step 4. Dimension reduction is performed simply by

Y = ATX.

Because the proposed method is closely related to LLE algorithm, we will give
a breif introduction of LLE before the detailed derivation of NPP.

3 Locally Linear Embedding (LLE)

To begin, suppose the data consist of N real-valued vectors xi, each of dimen-
sionality D, sampled from a smooth underlying manifold. Provided the manifold
is well-sampled, it is expected that each data point and its neighbors lie on or
close to a locally linear patch of the manifold. We characterize the local geom-
etry of these patches by linear coefficients Wij that reconstruct each data point
xi from its K neighbors xj . Choose Wij to minimize a cost function of squared
reconstruction errors:

J1(W) =
N∑

i=1

||xi −
K∑

j=1

Wijxj ||2. (3)
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The reconstruction error can be minimized analytically using a Lagrange multi-
plier to enforce the constraint that (see [13] for details).

A basic idea behind LLE is that the same weights Wij that reconstruct the ith
data in D dimensions should also reconstruct its embedded manifold coordinates
in d dimensions. Hence, each high-dimensional data xi can be mapped to a low-
dimensional vector yi by minimizing the embedding cost function:

J2(Y) =
N∑

i=1

||yi −
K∑

j=1

Wijyj ||2. (4)

= ||Y(I − W)||2

= trace(Y(I − W)(I − W)T YT )

= trace(YMYT .

where
M = (I − W)(I − W)T . (5)

W =
[
w1 w2 · · · wN

]
.

I represents an identity matrix.

To make the optimization problem well posed, two constrains can be imposed
to remove the translational and rotational degree of freedom:

N∑

i=1

yi = 0 or Y1 = 0. (6)

1
N − 1

N∑

i=1

yiyT
i = I or

1
N − 1

YYT = I. (7)

where 1 stands for a summing vector: 1=[1,1,. . . ,1]T

The constrained minimization can then be done using the method of La-
grange multipliers:

L(Y) = YMYT + λ((N − 1)I − YYT ). (8)

Setting the gradients with respect to Y to zero

∂L

∂Y
= 0 ⇒ 2MYT − 2λYT = 0. (9)

leads to a symmetric eigenvalue problem:

MYT = λYT . (10)



NPP: A Novel Linear Dimension Reduction Method 121

We can impose the first constraint above (for zero mean) by discarding the
eigenvectors associated with eigenvalue 0 (free translation), and keeping the
eigenvectors, ui, associated with the bottom d nonzero eigenvalues. These pro-
duce the d rows of the d-by-N output matrix Y [15]:

Y =
[
y1 y2 · · · yN

]
d×N

=

⎡

⎢⎢⎢⎣

u1
u2
...
ud

⎤

⎥⎥⎥⎦

d×N

. (11)

4 The Proposed Method (NPP)

4.1 Motivation

Though LLE possesses some favorable properties [13], its computational cost is
expensive than most linear dimension reduction methods. Moreover, it cannot
map a new testing point directly, which is referred to as out-of-sample problem
as stated in section 1. This problem arises from the fact that the embedding of
yi is obtained in a way that does not explicitly involve the input point xi. The
cost function J2 in equation (4) depends merely on the weights Wij . To establish
a bridge across this gap, we plug equation (1) into the cost function J2 and the
resultant cost function is optimized. The process of NPP has been presented in
section 2. In the next subsection its justification will be given. Because the first
two steps of NPP are the same as LLE, only justification related to step 3 is
presented.

4.2 Justification

Here we rewrite equation (1)

yi = AT xi or Y = AT X. (12)

where
A = [a0, a1, · · · , ad]

We plug equation (12) into the cost function J2:

J2(Y) =
N∑

i=1

||yi −
K∑

j=1

Wijyj ||. (13)

= trace(YMYT )

= trace((AT X)M(AT X)T )

= trace(AT (XMXT )A).
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The two constrains of equation (6) and (7) now becomes:

Y1 = 0 ⇒ (AT X)1 = 0. (14)

1
N − 1

YYT = I ⇒ 1
N − 1

AT X(AT X)T =
1

N − 1
AT (XXT )A = I. (15)

The constrained minimization can then be done using the method of La-
grange multipliers:

L(A) = AT (XMXT )A + λ((N − 1)I − AT XXT A). (16)

Setting the gradients with respect to A to zero we have

∂L
∂A

= 0 ⇒ 2(XMXT )AT − 2λXXT AT .

By defining

L = XMXT . (17)

C = XXT . (18)

we can rewrite equation (17) in the form of a generalized eigenvalue problem:

LAT = λCAT . (19)

If C is invertible, equation (20) can be transformed to a standard eigenvlaue
problem:

(C−1L)AT = λAT . (20)

Once A is obtained by solving equation (20) or (21), X can be mapped to a low
dimensional space by

Y = ATX.

The constraint (14) can be imposed on by subtracting the mean vector of
training set from a training vector or testing vector:

yi = AT(x − x). (21)

where

x =
N∑

i=1

xi (22)
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5 Experimental Results

To demonstrate the effectiveness of the proposed method, NPP, experiments were
conducted on data of the famous ”swiss roll” and ”s-curve” to compare with PCA.

The data set of 2000 points which are randomly chosen from the ”swiss
roll” (Fig.1 (a)) and ”s-curve” (Fig.2 (a)) are shown in Fig. 1(b) and Fig. 2(b)
respectively, which are used as training data. PCA seeks a direction onto which
projected data has the maximum variance. Therefore, by PCA, data is projected
onto a plane perpendicular to the paper plane and parallel to the vertical margin
of the paper for our ”swiss roll” and ”s-curve” experiments. Examining Fig.1(d)
and Fig.2 (d), one can find that projected points by PCA are blended. For
example, in Fig.1(d) red points overlap largely with blue points and green points.
In Fig.2(d) blue points overlap largely with yellow points.

Fig. 1. (a) 3-D ”swiss roll”; (b) 2000 points sampled from (a); (c) NPP representation;
(d) PCA representationo

In contrast to PCA, our proposed NPP is able to search a direction projected
onto which neighborhood relations are preserved along the curve of the manifold
as possible. Therefore, by NPP, data are projected onto a plane parallel to the
paper plane. Consequently, the projected data is show in fig 1(c) and fig 2(c).

Fig. 1(e) and fig. 2(e) show the results of LPP. From fig. 1(e), it is observed
that LPP performs better than PCA. However, in fig. 1(e) blue points nearly
connect to red points which is unfavorable. Fig. 2(e) is the result of LPP on “S-
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Fig. 2. (a) 3-D ”s-curve”; (b) 2000 points sampled from (a); (c) NPP representation;
(d) PCA representation

curve” data. We find that red points overlap with both blue and yellow points.
Therefore, it is concluded that NPP outperforms LPP.

From fig. 1(c) and fig. 2(c), we can see that NPP can not always unfold the
manifold as LLE (Fig. 1(f) and Fig. 2(f))can. Furthermore, many neighbors are
collapsed into a single point in the low dimensional space.The reason is that NPP
is a linear transform instead of nonlinear one like LLE. Nevertheless, the NPP
has favorable properties against other linear transform methods such as PCA.

6 Conclusions and Future Work

By introducing a linear transform matrix into LLE algorithm, a novel unsuper-
vised linear dimension reduction method , Neighborhood Preserving Projections
(NPP),has been proposed in this paper. The linear transform matrix is obtained
by optimizing a certain objective function which is similar to that of LLE. Hence,
NPP inherits LLE’s neighborhood property naturally. In contrast to traditional
linear dimension reduction method, such as principal component analysis (PCA),
the proposed method has good neighborhood-preserving property along the di-
rection of the manifold.

Note that equation (20) is similar to equation (2) in [14] in some sense where
another linear dimension reduction method, LPP was proposed. We will com-
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pare NPP with LPP both in theory and in applications. Moreover, additional
experiments will be conducted on real data.

Though NPP as well as LPP, LDA and PCA, because of their linear nature,
might not outperform nonlinear LLE, Isomap and Laplacian Eigenmaps, NPP
is a novel and useful linear dimension reduction method.

As future work, we will perform NPP in a large high-dimensional space by
introducing a kernel [16-17]. It is believed that kernel NPP ,which is a nonlinear
dimension reduction method, can outperform NPP.
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