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Abstract. There is a broad literature on distributed card games over
communications networks, collectively known as mental poker. Like in
any distributed protocol, avoiding the need for a Trusted Third Party
(TTP) in mental poker is highly desirable, because really trusted TTPs
are not always available and seldom free. This paper deals with the player
dropout problem in mental poker without a TTP. A solution based on
zero-knowledge proofs is proposed. While staying TTP-free, our proposal
allows the game to continue after player dropout.
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1 Introduction

According to Merryll Lynch, the online gambling business is expected to grow
to $48 billion by 2010 and $177 billion by 2015. This booming turnover must be
accompanied by enough security guarantees for online players; unfortunately, this
is not always the case, especially as far as e-poker (mental poker) is concerned.
Mental poker is played like a conventional card game with the difference that
players communicate over a network and do not need to be in the same physical
place. In this situation, cheating becomes especially tempting and must be
prevented. A mental poker solution must offer all protocols needed to complete
a game. These are: shuffling, drawing, discarding and opening.

The above protocols should offer the same security properties as conventional
physical poker, plus some security properties specific to electronic gaming. Such
properties were identified and enumerated by Crépeau in [4].

Dropout tolerance was not listed in [4] as a requirement, but it is nonetheless
a major challenge in remote gaming. In electronic gaming, no one can prevent a
player from quitting a game. Two kinds of dropout can be distinguished:

– Intentional: A player decides to quit the game. This may be attractive for
a player to whom the game is not being favorable.

– Accidental: A player cannot go on playing, for example due to a network
problem.

Whatever the reason for player dropout, the remaining players should be able
to continue the game. If a Trusted Third Party (TTP) is controlling the game,
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handling player dropout is greatly simplified. However, a TTP is not always
available or desirable: it may not be trusted by everybody, it may charge some
fee, etc. When no TTP is assumed, dropout becomes a nontrivial problem.

1.1 Contribution and Plan of This Paper

This paper proposes a solution for player dropout in mental poker without a
TTP. The solution is based on zero-knowledge proofs and allows the game to
continue after the dropout.

Section 2 reviews literature on TTP-free mental poker offering player
confidentiality. Our proposed protocol is described in Section 3. Security is
examined in Section 4. Finally, Section 5 is a conclusion. The Appendix contains
the security proofs.

2 Background on TTP-Free Mental Poker Offering
Player Confidentiality

All schemes mentioned in this section fulfill all security requirements identified
in [4], including the confidentiality of player strategy. We next review them by
focusing on their ability to handle player dropout.

Schemes [5,9] do not consider player dropout. In both proposals, each player
has some secret information needed to draw cards from the deck. Without this
information, the game cannot proceed.

In [1] it is proposed that players who quit the the game should disclose
their secret information. However, this solution is only applicable if dropout is
intentional and the player leaving the game is willing to collaborate. In case
of accidental dropout (e.g. due to a network problem) or malicious intentional
dropout, there is no guarantee that the remaining players can go on playing.

The schemes [7,10] represent each card in the deck by a different numerical
value. During card shuffling, those values are encrypted and permuted by each
player. The effect of encryption is analogous to reversing cards in a physical deck.
A secret-sharing scheme is used, so that at least t players are needed to decrypt
values. The goal is that the game can proceed if at least t players remain, which
allows for some dropouts. In [7] the secret sharing scheme is applied to cards.
Each value representing a card is divided into as many shares as there are players.
Then each share is encrypted under the public key of a different player. A card
cannot be decrypted unless at least t players co-operate. In [10], players create
a key pair using the procedure proposed in [8]. Players generate a public key so
that each player gets a share of the private key; thus, the private key cannot be
used unless at least t players co-operate. Even if those schemes based on secret
sharing do offer some dropout tolerance, the bad news is that secret sharing
makes it possible for a sufficiently large collusion of players to obtain all deck
information. Thus, dropout tolerance is traded off against collusion tolerance.
This is frustrating because collusion tolerance is a basic security property already
identified as relevant in [4].
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3 Our Proposal

There is a first round where cards are dealt as in the poker game, and each
player obtains five cards. If a player discards some cards from her hand, a new
dealing round is started so that the player can obtain as many cards as she has
discarded.

We use Protocol 1 to obtain a new deck of cards in each dealing round, in
a similar way as proposed in [12]. In the second and successive dealing rounds
each player vetoes (i.e. marks as unavailable) those cards that she has previously
drawn. Protocol 2 is used to veto drawn cards. If a player obtains a vetoed card,
she cannot use it and she does not know either the value of the vetoed card or
who vetoed it; what the player can do is to show that she obtained a vetoed card
and then draw a new card.

If a player leaves the game, the rest of players generate a new deck and use
it in the game. The new deck includes the cards that were drawn by the player
who left the game, because the latter is no longer there to veto her cards when
the new deck is generated.

We shall use the following notation in the subsequent protocols.

n : number of players (we assume some ordering among the n players);
Pi : the i-th player in the ordered set of n players;
λi : set of cards in Pi’s hand;
Λ : set of all cards in the hands of all players, i.e. Λ = ∪n

i=1λi;
δi : set of cards discarded by Pi.

3.1 System Set-Up

Before a game starts, players P1, . . . , Pn must set some parameters. They choose
a large prime p so that p = 2q+1 and q is also prime; they also pick one element
g ∈ Z

∗
p of order q.

Using the key generation protocol described in [6], players jointly generate a
public key y =

∏n
i=1 yi. Each player Pi keeps her corresponding share αi of the

private key and publishes yi = gαi .

3.2 Deck Generation

Each card is represented by a value jointly computed by all players in Protocol 1.
We first explain what Protocol 1 does and then describe the protocol in detail.

Let us assume that we are in the k-th dealing round. We can see in Step 1 of
Procotol 1 below that every player uses Procedure 1 to compute 52 new values.
These values are sent to the rest of players in Step 2 of Protocol 1. Once every
player gets the new values from the rest of players, the new deck Dk is computed
by all players at Step 3. We use the term face-up deck of cards because every
player can see the value of each card; the j-th value dk,j in Dk represents the
j-th card in the deck.

If dk,j is a face-up card, then we denote by ek,j the corresponding face-down
card. ek,j contains the encrypted version of the exponents that have been used
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to compute dk,j ∈ Dk from dk−1,j ∈ Dk−1. To prove ownership of a card dk,j ,
a player must prove knowledge of those exponents, i.e. prove knowledge of the
discrete logarithm logdk−1,j

(dk,j).
In the first round, all cards are available and E1 = C1,0 is the face-down

deck of cards without shuffling (see Step 4 of Protocol 1). In subsequent rounds,
each player vetoes the cards in her hand using Protocol 2 (called at Step 5a of
Protocol 1); the goal is that cards already drawn should become unavailable.
After using Protocol 2, a player gets one re-masking factor for each card in the
deck; a vetoed card is re-masked with a factor which does not allow decryption,
whereas a non-vetoed card is re-masked with a factor allowing decryption.

In Step 5b players re-mask the encrypted exponents with these factors, and
obtain the face-down deck of cards without shuffling, Ck,0.

We denote by Dl the deck of cards of the l-th round; we denote by D the
set of all decks that have been generated in all rounds, i.e. D = {D1, . . . , Dk}.
In order to run our protocol, we define D0 = {d0,1, . . . , d0,52}, where d0,j = g,
∀j ∈ {1, . . . , 52}.

Protocol 1 (k ≥ 1, Dk−1)

1. Each player Pi uses Procedure 1 on Dk−1 and obtains Dk,i =
{dk,i,1, . . . , dk,i,52} and Ek,i = {ek,i,1, . . . , ek,i,52}, where dk,i,j = d

mk,i,j

k−1,j and
ek,i,j = Ey(mk,i,j);

2. Each Pi publishes Dk,i and Ek,i;
3. All players compute the face-up deck of cards Dk = {dk,1, . . . , dk,52} and

Ek = {ek,1, . . . , ek,52}, where dk,j =
∏n

i=1 dk,i,j = d
mk,1,j+...+mk,n,j

k−1,j and
ek,j = {ek,1,j, . . . , ek,n,j};

4. If k = 1, players compute the face-down deck of cards C1,0 =
{c1,0,1, . . . , c1,0,52}, where c1,0,j = e1,j ∈ E1;

5. If k > 1 then players do the following

(a) Run the vetoing protocol (Protocol 2) and obtain Gk = {gk,1, . . . , gk,52},
where gk,j = {gk,1,j , . . . , gk,n,j};

(b) Compute the face-down deck of cards Ck,0 = {ck,0,1, . . . , ck,0,52}, where
ck,0,j = ek,j · gk,j = {ek,1,j · gk,1,j , . . . , ek,n,j · gk,n,j}. Drawn cards in this
face-down deck have been vetoed.

In the k-th dealing round, each player Pi computes a new value dk,i,j for
each card j. This new value is obtained from dk−1,j (the value used in round
k − 1 to represent card j) raised to a random value mk,i,j . The exponent mk,i,j

is encrypted into Ey(mk,i,j) and sent along with the new value. Players use
Procedure 1 to compute these new values for each card.

Procedure 1 (y, p, D)

1. For each dj in D = {d1, . . . , d52} do:
(a) generate a random value mj, where 2 < mj < q;
(b) compute d

mj

j ;
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(c) encrypt mj into Ey(mj) under public key y;
(d) prove in zero-knowledge to the rest of players that Ey(mj) is the

encryption of logdj
(dmj

j ) using [11];
2. Return the sets D′ = {dm1

1 , . . . , dm52
52 } and E = {Ey(m1), . . . , Ey(m52)}.

Prior to describing Protocol 2 we define ξl,i as the number of cards that Pi

has drawn in the l-th dealing round; we also define ξi as the sum of all cards
drawn by Pi in all previous dealing rounds, that is, ξi =

∑k−1
l=1 ξi,l.

In Step 1a of Protocol 2 each player in turn computes a re-masking factor
for each card dk,j ∈ Dk. Using the construction of [3], Pi proves in Step 1b of
Protocol 2 that 52 − ξi factors have been properly computed (as many factors
as the number of cards Pi has not drawn); in this proof, Pi does not reveal
which subset of factors was properly computed. In Step 1c, Pi again uses the
construction of [3] to prove that she has computed ξi re-masking factors which
veto the cards Pi has drawn (see in Section 4 the lemma that a player vetoes
the cards she has drawn). The re-masking factors that veto all drawn cards by
any player are pooled together in Step 2.

Protocol 2 (Dk)

1. For each Pi (i = 1, . . . , n):
(a) Pi uses Procedure 2 with (Dk, λi, δi,D) and obtains Gi =

{(ui,1, vi,1), . . . , (ui,52, vi,52)}.
(b) Pi proves in zero-knowledge that at least 52−ξi values (ui,j , vi,j) properly

re-mask a card, i.e. they do not veto the card. This is done using the
construction of [3] in order to show that Pi can correctly perform at least
52−ξi executions of the set of zero-knowledge proofs {CPi,1, . . . , CPi,52},
where CPi,j = CP (g, y, ui,j, vi,j)1.

(c) For l = 1 to k, Pi proves in zero-knowledge that she has vetoed as many
cards as the number ξl,i of cards she obtained in the l-th dealing round.
This is done using the construction of [3] in order to prove that she can
perform at least ξl,i executions among the following set of zero-knowledge
proofs {CPl,i,1, . . . , CPl,i,52}, where CPl,i,j = CP (dl−1, ui,j , dl,j , dj);

2. Compute G = {g1, . . . , g52}, where gj = (uj , vj), and uj =
∏n

i=1 ui,j and
vj =

∏n
i=1 vi,j, with (ui,j , vi,j) ∈ Gi;

3. Let G0 = {(g0,1,1, . . . , g0,n,1), . . . , (g0,1,52, . . . , g0,n,52)} := G, that is, g0,ζ,j =
gj ∀ζ ∈ {1, . . . , n} and ∀j ∈ {1, . . . , 52}, and gj = (uj , vj) ∈ G;

4. For each Pi (i = 1, . . . , n):
(a) receive Gi−1 = {(gi−1,1,1, . . . , gi−1,n,1), . . . , (gi−1,1,52, . . . , gi−1,n,52)}

from Pi−1;
(b) compute Gi = {(gi,1,1, . . . , gi,n,1), . . . , (gi,1,52, . . . , gi,n,52)}, where gi,ζ,j =

g
ri,ζ,j

i−1,ζ,j = (uri,ζ,j

i−1,ζ,j , v
ri,ζ,j

i−1,ζ,j) and 1 < ri,ζ,j < q is a value obtained at
random;

1 We will denote by CP (g, y, u, v) the Chaum-Pedersen [2] zero-knowledge proof, i.e.
the proof that logg u = logy v.
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(c) for each gi,ζ,j = (ui,ζ,j , vi,ζ,j) in Gi run
CP (ui−1,ζ,j , vi−1,ζ,j , ui,ζ,j, vi,ζ,j);

(d) send Gi to the next player;
5. Return Gn.

Procedure 2 is used by every player to compute the values used in re-masking.
If card j is not vetoed then a pair (uj, vj) is computed such that logg uj = logy vj .
However, if card j must be vetoed, a pair (uj, vj) such that logg u �= logy v is
computed, in order to prevent a correct decryption.

As will be described in Section 3.4, when Pi obtains a card j at round k, Pi

obtains the discrete logarithm τk,j = logdk−1,j
dk,j . In subsequent rounds Pi uses

that logarithm to veto this card.

Procedure 2 (D, λ, δ,D)

1. For each dj in D = {d1, . . . , d52} do:
(a) if the card represented by dj is in λ ∪ δ do:

i. generate a random value Rj, where 1 < Rj < p;
ii. let us assume that the card represented by dj has been obtained in

round l. In this case τl,j = logdl−1,j
(dl,j) is known (where dl−1,j and

dl,j are in D), so gj = (uj, vj) is computed, where uj = d
τ−1

l,j

j and
vj = Rj;

(b) if the card represented by dj is not in λ ∪ δ do:
i. generate a random rj, where 1 < rj < q;
ii. compute gj = (uj , vj), where uj = grj and vj = yrj ;

2. Return G = {g1, . . . , g52} = {(u1, v1), . . . , (u52, v52)}.

3.3 Card Shuffling

This is done using the procedure described in [1]. The different players in turn
shuffle and re-mask the face-down deck C0 obtained with Protocol 1.

Protocol 3 (C0)

1. For each player Pi (i = 1, . . . , n) do:
(a) Generate a permutation σi of 52 elements;
(b) Permute the elements ci−1,j of the face-down deck Ci−1 with σi to obtain

C∗
i ;

(c) Re-mask the encrypted messages contained in each card of C∗
i without

modifying their content to obtain Ci; this is done by re-masking all
ciphertexts contained in each face-down card C∗

i = {c∗i,1, . . . , c
∗
i,52}, where

c∗i,j = {e∗i,j,1, . . . , e
∗
i,j,n}; specifically, Pi computes Ci = {ci,1, . . . , ci,52},

where ci,j = {e∗i,j,1 · Ey(1, ri,j,1), . . . , e∗i,j,n · Ey(1, ri,j,n)}; values
{ri,j,1, . . . , ri,j,n} are obtained at random;

(d) Use the proof in [1] to prove in zero-knowledge that Ci is a permuted and
re-masked version of Ci−1.

After running the shuffling protocol, players get the set Cn, that is, the
shuffled face-down deck of cards.
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3.4 Card Drawing

The card extraction procedure is as follows. Let us assume that extraction is
performed by player Pi:

Protocol 4

1. Pi randomly selects an element from Cn, namely, cj = (ej,1, . . . , ej,n);
2. Pi asks the rest of players to verifiably send her information to decrypt the

messages ej,ζ contained in cj using [6];
3. After decrypting these messages, Pi obtains {m1, . . . , mn}, where mζ =

D(ej,ζ);
4. Pi searches for an element dk,t ∈ Dk (the k-th dealing round deck) such that

dm1+...+mn

k−1,t ≡ dk,t;
5. If dk,t ∈ Dk then Pi stores τt = (m1 + . . . + mn);
6. If dk,t �∈ Dk then Pi has obtained a vetoed card. In this case, she shows that

the card was vetoed and requests a new one.

3.5 Card Opening

A player must prove to the rest of players that she is the owner of her cards.
The card opening protocol is used to that end.

Let us assume that a player Pi has drawn a card cj ∈ Cn. Pi has received
the partial decryption from the rest of players, and she has verified that each
partial decryption is correct.

Pi opens a card when she publishes the remaining part of the decryption of cj .
With this information, all players can know the value of cj , that is, the decrypted
card exponents D(ej,1), · · · , D(ej,n). The decryption is verifiably performed as
detailed in [6].

3.6 Card Discarding

A player discards a card when she commits herself to not using it. Let us assume
that player Pi has drawn a card cj ∈ Cn using Protocol 4.

Pi discards cj by sending a message discard with cj to the rest of players. cj

is added to the set λi. If Pi wants to open a discarded card, the rest of players
can detect the cheating because the card is in λi.

3.7 Player Dropout

In case one of the players leaves the game, the rest of players can go on playing.
Assuming that player Pi with public key yi leaves the game, the game public
key is updated as y := y/yi. Next, the rest of players continue as if player Pi

had never joined the game. This implies that cards once extracted by Pi will be
back in the deck.
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4 Security

Security results in this section basically state that: i) vetoed cards cannot be
opened; and ii) the set of vetoed cards is the set of drawn cards. Proofs are given
in the Appendix.

Lemma 1. If Pi succeeds in performing CPi,j = CP (g, y, ui,j, vi,j) at Step 1b
of Protocol 2, then (ui,j , vi,j) will not veto the face-down card ck,0,j at Step 5b
of Protocol 1.

The Corollary below follows from the above lemma and from Step 1b of
Protocol 2.

Corollary 1. Let 52 be the total number of cards. Let ξi be the cards drawn by a
player Pi. Then the number of cards xi not vetoed by Pi is such that xi ≥ 52−ξi.

Lemma 2. If, at round k, Pi succeeds in performing CPl,i,j =
CP (dl−1, ui,j , dl,j , dj), l < k, at Step 1c of Protocol 2, then (ui,j , vi,j) vetoes
the face-down card ck,0,j at Step 5b of Protocol 1.

Lemma 3. A player can only veto a card she has drawn.

Lemma 4. The number of cards vetoed by a player is at least the number of
cards drawn by the player.

Theorem 1. The set of cards vetoed by a player is the same as the set of cards
drawn by the player.

Theorem 2. A vetoed card cannot be opened.

5 Conclusions

We have presented a mental poker protocol which, to our best knowledge, is
the first TTP-free proposal tolerating both intentional and accidental player
dropout. Future research will explore applications of the protocol in this paper
to secure multi-party computation problems other than mental poker.
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Appendix

Proof (Lemma 1). A face-down card ck,0,j is formed by a set of ciphertexts
(ek,1,j , · · · , ek,n,j). When a card is not vetoed in Protocol 2, a re-masking factor
(ui,j , vi,j) is used which still allows recovery of the cleartexts from the card
ciphertexts. To allow correct decryption, the re-masking factor must satisfy
logg ui,j = logy vi,j . This is exactly the property proven by CP (g, y, ui,j, vi,j). �

Proof (Lemma 2). Let us assume a card drawn in a dealing round l previous
to the current round k (i.e. l < k). Let the face-up value of that card be dk,j .
CP (dl−1, ui,j , dl,j , dk,j) proves that:

τ = logdl−1,j
(dl,j) = logui,j

dk,j (1)

From Equation 1 we have
ui,j = (dk,j)τ−1

(2)

Now if (ui,j , vi,j) does not actually veto dk,j , the following holds:

logg(ui,j) = logy(vi,j) = loggα(vi,j) =
1
α

logg(vi,j)

The above is equivalent to

α · logg(ui,j) = logg(vi,j) (3)

Combining Equations (2) and (3) yields

logg((dk,j)τ−1
)α = logg vi,j (4)
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If logarithms are removed, we get vi,j = ((dk,j)τ−1
)α. Thus, re-masking factor

(ui,j , vi,j) will pass CP (dl−1, ui,j, dl,j , dk,j) without actually vetoing dk,j only if
it has the form

(ui,j , vi,j) = (dτ−1

k,j , ((dk,j)τ−1
)α) (5)

However, computing vi,j in Expression (5) without knowledge of α nor (dk,j)α is
as hard as the Diffie-Hellman problem. Obtaining α from the public key y is as
hard as the discrete logarithm problem. Thus, passing the verification at Step 1c
of Protocol 2 implies that card dk,j is actually vetoed. ��

Proof (Lemma 3). Assume that the current dealing round is round k; let
{d1,j, · · · , dl,j , · · · , dk,j} be the expressions for the j-th card at each dealing
round l, where τl,j = logdl−1,j dl,j for 1 ≤ l < k. Assume now that Pi wants
to construct a proof of veto for dt,j , for some t < k. Then Pi needs to construct
(ui,j , vi,j) so that she can perform CPt,i,j = CP (dt−1, ui,j, dt,j , dk,j). This means

logdt−1,j
dt,j = logui,j

dk,j , which requires ui,j = d
τ−1

t,j

k,j so that Pi needs to know
τt,j = logdt−1,j

(dt,j) But this logarithm is only known to Pi if she drew the card
at round t (see Protocol 4). ��

Proof (Lemma 4). Let us assume that Pi has extracted ξi cards in previous
dealing rounds. At Step 1c of Protocol 2 Pi uses the proof by Cramer et al. [3]
for the ξi re-masking factors corresponding to the ξi drawn cards. According to
Lemma 2, this guarantees that the ξi drawn cards are vetoed. ��

Proof (Theorem 1). If a re-masking factor (ui,j , vi,j) passes the proof that it is
a vetoing factor for card j, then by Lemma 2 it vetoes card j. On the other hand,
if a re-masking factor (ui,j , vi,j) passes the proof that it is a non-vetoing factor
for card j, then by Lemma 1, it does not veto card j. Now, a re-masking factor
(ui,j , vi,j) cannot at the same time veto and not veto card j. Thus, (ui,j , vi,j)
cannot pass both the proof that it is a vetoing factor and the proof that it is a
non-vetoing factor.

Let us assume that player Pi has drawn ξi cards. By Lemma 1, the number
of cards not vetoed by Pi is at least 52 − ξi. By Lemma 4, the number of cards
vetoed by Pi is at least ξi. Therefore, Pi vetoes exactly ξi cards. Finally, by
Lemma 3, a player can only veto cards she has drawn. Therefore the set of
drawn cards is the same as the set of vetoed cards. ��

Proof (Theorem 2). Without loss of generality we assume n = 2 players P1
and P2. Assume that a round k card dk,j is computed from dk−1,j by raising
a round k − 1 card dk−1,j to exponents m1 and m2, i.e. dk,j = dm1+m2

k−1,j . Note
that mi is secret and only known to Pi, for i = 1, 2, whereas dk,j is public and
obtained at Step 3 of Protocol 1.

At Step 5a of Protocol 1 the vetoing protocol is called to compute re-masking
factors gk,1,j = (u1, v1) and gk,2,j = (u2, v2); at Step 5b these factors are applied
to the encrypted card exponents ek,j = (ek,1,j , ek,2,j) to veto card dk,j . Now,
(u1, v1) and (u2, v2) have been computed by the vetoing protocol (Protocol 2),
so they satisfy
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logg ui �= logy vi for i = 1, 2 (6)

The computations for vetoing dk,j at Step 5b of Protocol 1 are:

ek,j · gk,j = {ek,1,j · gk,1,j, ek,2,j · gk,2,j} = {Ey(m1) · (u1, v1), Ey(m2) · (u2, v2)}

= {(gr1 · u1, m1 · yr1 · v1), (gr2 · u2, m2 · yr2 · v2)} (7)

Opening card dk,j means extracting the secret exponents m1 and m2 from the
face-down card expression ek,j · gk,j . From Expression (7), we have that

m1 =
m1 · yr1 · v1

(gr1 · u1)α
, m2 =

m2 · yr2 · v2

(gr2 · u2)α
(8)

Some algebraic manipulation of Equations (8) leads to

logg u1 = logy v1 , logg u2 = logy v2 (9)

Equations (9) contradict Equations (6). Thus, the card cannot be opened. ��
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