

V. Mařík, R.W. Brennan, M. Pĕchouček (Eds.): HoloMAS 2005, LNAI 3593, pp. 11 – 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Fundamental Insights into Holonic Systems Design

Paul Valckenaers and Hendrik Van Brussel

K.U.Leuven, Department of Mechanical Engineering,
Celestijnenlaan 300 B, B-3001 Leuven, Belgium
Paul.Valckenaers@mech.kuleuven.be

Abstract. This paper goes back to the origins of the Holonic Systems concept, a
wording coined by Arthur Köstler [1] but actually based on fundamental in-
sights from Nobel Prize winner Herbert Simon [2]. Simon’s theme is limited ra-
tionality and its implications for the ability to create and sustain sophisticated
artifacts in the dynamic and demanding environments that are characteristic for
today’s society. Holonic and multi-agent systems are amongst the most com-
plex artifacts emanating from deliberate human design and development activi-
ties. Therefore, this paper presents these fundamental insights from Simon,
augmented with more recent research results on complex adaptive systems [3],
and discusses implications for the design of Holonic Multi-Agent Systems. In
particular, the development of subsystems (holons) suited for incorporation into
larger systems, at some later stage and without knowing these larger systems in
much detail, is at the center of the discussions in this paper.

1 Introduction

Holonic and multi-agent systems are amongst the most complex artifacts created
through deliberate human design and development activities. However, the human de-
signers and developers, involved in these activities, often perceive their results as
missed opportunities. This is especially true for the experts that thoroughly master and
understand the technologies and subsystems within these complicated and sophisticated
systems from the basic elementary building blocks up to the overall system itself.

This paper presents and discusses insights that reveal how this perception of
missed opportunities is partly an illusion, which is mainly the contribution from
Simon. Conversely, this paper shows how enhanced design principles and develop-
ment guidelines, based on these insights, open the perspective of creating and
maintaining superior systems.

The paper first presents the fundamental insights, revealed by research results on lim-
ited rationality [2] and on complex adaptive systems [3]. Next, design principles derived
from these insights are presented and illustrated. Finally, some conclusions are given.

2 Limited Rationality and Holonic Systems

Simon’s Watchmaker’s Parable in [2] demonstrates how, in dynamic and demanding
environments, the chances of emerging and surviving for systems composed of suit-

12 P. Valckenaers and H. Van Brussel

able subsystems are vastly superior to systems composed from basic elements without
stable intermediate states or subsystems. In Köstler’s words, holonic systems are more
likely to emerge and survive in dynamic environments than systems that would ulti-
mately be superior but take too much design effort and development time. The latter
systems simply are too expensive and, most importantly, obsolete long before they
become operational.

Limited rationality – finite brainpower, bounded information processing and com-
munication capacity – puts a ceiling on the speed at which elements can be integrated
to build a system. When these elements are small, more time and effort is required to
build a system of a given size. In combination with a dynamic environment, the
resulting system is completed too late to be effective or competitive. Systems build
from larger building blocks are superior in environments that emphasize adaptation
speed over the theoretical possibility of superior ultimate performance.

Implicitly, the above statements assume that integrating elementary building blocks
requires similar effort and time to the integration of larger subsystems. In practice,
this is largely true but exerts its toll through inferior performance relative to what is
theoretically possible. Simon’s main goal is to explain why our universe is dominated
by systems exhibiting hierarchical structure in a loose sense – which Köstler calls
holarchies to distinguish from strict hierarchies (typical for rigid manmade artifacts).

Köstler makes a first attempt at characterizing these suitable subsystems, which
have to survive the dynamics of the environment better and longer than the overall
system (as illustrated in the watchmakers parable). Köstler calls this ability to survive
the autonomy of the subsystem or Holon, whereas the contribution of the subsystem
to the overall system is called the cooperativeness of the Holon. The autonomy gives
the Holon the capacity to cope with changes, uncertainty and disturbances in its envi-
ronment. In contrast, a subsystem developed in the context of a top-down develop-
ment activity often is highly constrained in its ability to function outside the specific
settings foreseen by its developers. In Köstler’s view, such subsystems lack autonomy
and therefore are unable to survive in a demanding and dynamic environment. More
recent insights in complex adaptive systems [3] reveal however that Köstler failed to
discover more insightful aspects of these stable subsystems from which almost every
large, complex system in our world is built. These aspects are discussed below.

3 Holonic Systems and Complex Adaptive Systems

In [3], Waldrop describes research activities and insights on complex adaptive sys-
tems mainly originating from the well-known Santa Fé Institute. Among the many
research results, two properties of complex adaptive systems are relevant for the
discussion in this paper: autocatalytic sets and lock-in.

3.1 Autocatalytic Sets

Autocatalysis is more important than autonomy for the emergence and survival of
systems, which eventually become subsystems in a larger system. Autonomy and
adaptability are only secondary properties of autocatalytic sets, needed to maintain
and increase autocatalysis in a dynamic and changing environment.

 Fundamental Insights into Holonic Systems Design 13

The concept of an autocatalytic set serves to enhance the probabilities in the stan-
dard biologist’s theory that life emerged by chance when energy pulses strike a pool
filled with organic molecules. Unfortunately for this standard theory, the smallest life
forms still are so big that combining its basic molecules by chance is as likely to happen
as ‘a group of monkeys typing Shakespeare’s oeuvre by pure coincidence.’ These
calculations change however drastically if combinations of molecules are formed into
sets that are catalysts for themselves. If energy pulses arrive at a sufficiently high
frequency, the autocatalysis implies that the pool rapidly becomes filled with members
of such autocatalytic sets (exponential growth until raw material becomes scarce).

The omnipresence of such set members also means that they become the building
blocks for larger molecular combinations, amongst which the autocatalytic set mem-
bers will dominate again. This can be repeated until life forms emerge. If this theory
is correct, the dominating life forms should be members of autocatalytic sets them-
selves. Mice, rabbits, weeds and insects all provide strong empirical evidence
supporting the theory. Autonomy, adaptability, manipulating the environment, etc. are
secondary properties of the more complex life forms (including humans) that mainly
increase the intensity of the autocatalysis in favor of the own set.

To translate the above to the domain of holonic and multi-agent systems, it is
necessary to identify the relevant autocatalytic sets for manmade artifacts and soft-
ware systems in particular. These sets are not situated in artificial worlds inside com-
puter platforms serving to investigate artificial life. The relevant autocatalytic sets
comprise both software and humans (i.e. software users and developers). Successful
software systems belong to two kinds of autocatalytic sets:

• The economic set. Successful software represents economic value to its users
and thus mobilizes the economic means for software developers to maintain,
adapt and enhance this software.

• The information feedback set. Successful software attracts users providing feed-
back on its shortcomings and merits. This information, in combination with the
economic means, allows the developers to maintain, adapt and enhance the soft-
ware such that it remains competitive.

The above implies that (software) system designers have to account for more than
just the technical dimension to be successful. Sufficient users (and their payments)
and sufficient diversity in the user community (and its feedback), relative to the
competitive pressures, are necessary for emergence and survival.

Most importantly, such successful members of autocatalytic sets are the (only) sys-
tems that may become the subsystems in larger more sophisticated systems. Ceteris
paribus, software systems with the intrinsic ability to serve more users or a more
diverse community of users will have an edge over the competition since their auto-
catalysis is stronger. Note that software quality and functionality levels are likely to
improve significantly through the above types of autocatalysis (personal experience
with systems experiencing low levels of autocatalysis has provided the authors with
strong empirical evidence supporting this statement).

14 P. Valckenaers and H. Van Brussel

3.2 Lock-In

The previous section depicts how positive feedback is instrumental in structuring
worlds such that larger and more complex systems emerge and survive. This section
introduces a negative aspect of such positive feedback: lock-in into early solutions.

Systems, in which autocatalysis can occur, may evolve along multiple trajectories
where the selection amongst these trajectories strongly depends on which autocata-
lytic process kicks in the earliest. Since it is an exponential process, the autocatalytic
set rapidly exhausts the available ‘raw material’ effectively eliminating the opportu-
nity for other autocatalytic processes sharing ‘material requirements’ to start at all.
The first process to start generally ends up dominating its world until it fails to sur-
vive the dynamics of its environment. At most, a short time window will be available
for competing and faster autocatalytic processes to overtake a competitor that started
earlier.

In the world of high-tech human-made artifacts, the first product to adequately
serve important user requirements typically captures the market and prevents superior
solutions from emerging. A well-known example is the VHS standard, being the most
inferior technology amongst the competitors at the time. Making the situation worse,
lock-in is actively used by commercial organizations to lock out competition. The
main mechanism counter-acting lock-in consists of the dynamics of the overall sys-
tem, making the dominating autocatalytic set obsolete (e.g. DVD overtaking VHS).

Relevant for holonic systems development is the poor level of suitability and
adaptability of the available systems (members of autocatalytic sets) from which lar-
ger systems have to be developed. Today’s systems are developed with specific user
requirements in mind, and the world locks into those early solutions. Those early
solutions incorporate many design choices that prevent the creation and maintenance
of other and larger systems at some later time. Alternative, the later usage for some-
what different purposes of those early systems is much less effective and has lower
performance than theoretically possible.

Examples of lock-in in industry are the CNC architecture of machine tools, offer-
ing virtually no responsiveness to sensor read-outs and the PLC architecture charac-
terized by poor scale-ability to larger applications. Among others, these early designs
consume the available training and support resources blocking out more advanced
alternatives. Mainstream computing architectures have comparable lock-in equally
reflecting their history (no hard real-time, query-and-answer functionality…). A ma-
jor difference is that mainstream computing enjoys a more dynamic environment that
breaks the lock-in more frequently in comparison to the industrial IT environment.
Multimedia en entertainment provide the resources and drive to make mainstream
computing escape from obsolete historical design choices whereas industrial IT typi-
cally has to work around its legacy. Mainstream computing is likely to conquer indus-
trial IT, which is virtually frozen in those locked-in states.

Overall, lock-in is desirable when it simplifies the world by reducing the options
and alternatives that have to be taken into account. Lock-in is undesirable when a
dominating system incorporates highly unfortunate design choices, which unfortu-
nately are commonplace since being first (and just good enough in the short run) is
more important than being well designed. However, if a developers community is
aware of this issue and knows methodologies to handle the lock-in problem better, the

 Fundamental Insights into Holonic Systems Design 15

expectation of increased returns from the better designs are likely to prevent really
poor designs for achieving autocatalysis to the point that are never developed at all.
Hence, the issue addressed in section 4 is how to develop and design systems, without
significantly more effort, that are better suited for later usage in other systems and/or
larger systems.

4 Designing for the Unforeseen and the Unknown Application

Köstler was overly flattering for the subsystems in Holonic systems. Autonomy is
neither omnipresent nor decisive. Autonomy helps a subsystem to adapt and be a
competitive candidate to become a cooperative subsystem (holon) within a larger
system (holon). Thus, autonomous subsystems probably are more common than oth-
ers but their autonomy is not the decisive element. Autocatalysis dominates to the
point where the larger systems are highly sub-optimal (e.g. incorporate rigid CNC
controls) or built from smaller subsystems (e.g. low-level single-axis actuator controls
and sensors) decreasing adaptation speed significantly and increasing maintenance
efforts.

Systems that become subsystems at some later stage(s) are built with some particu-
lar usage in mind. In today’s society, virtually every system is developed for incorpo-
ration in a particular overall system. The issue addressed below is how to design and
develop such systems that they are also suitable subsystems in other systems and
better suited for future usage, especially when this extra comes virtually for free (i.e.
by replacing arbitrary design choices with purposeful ones).

This section first presents a formal framework, defining problems and their solu-
tions. Next, the reuse of earlier solutions is discussed within this framework. Then,
design principles and guidelines are revealed. Finally, sample robust designs for par-
tially unknown requirements are presented and discussed.

4.1 Problems and Solutions

This section formally addresses what constitutes a problem and its solution(s). The
purpose of the formal approach is to present ideas more precisely. The formal ap-
proach does not produce any calculus on problems and solutions, nor does it claim
completeness in a philosophical sense. The formalism mainly serves to avoid ambigu-
ity and to delineate the ideas more sharply than would be possible in natural language.

A problem P is defined as follows:

A problem P is a constraint on the state space U of the universe U,
defining a set P = { u ∈ U | u satisfies P } ⊆ U.

(1)

When U is the world in which we live, U is an infinite state space. Every state u ∈
U has a time coordinate tu ∈ ℜ. By definition, reachable states at a given time coor-
dinate are states that either have been or can become the actual state of the universe at
this given time coordinate. This universe is subject to the laws of nature (constraints),
which limit the number of states that are reachable. These laws of physics imply that
there is exactly one reachable state u for every tu ≤ tnow.

16 P. Valckenaers and H. Van Brussel

The universe U follows a trajectory through its state space as time progresses. This
trajectory is defined for states up to tnow. It consists of the states in which the universe
has been in the past. The future trajectory is only partially defined. This future trajec-
tory is constrained by physical laws, possibly including stochastic aspects, and is
affected by the actions of the human and other entities in this world. These actions
affect the choice of the successor states of the current state corresponding to tnow.
Normally, any significant impact on the trajectory requires sustained action during a
substantial amount of time. A problem P is solvable by an agent (human or otherwise)
if the agent is able to make this trajectory stay within the given subset P.

A solution S to a basic problem P is defined as follows:

Solution S of a problem P is a constraint on the state space U of universe U
defining a set S = { u ∈ U | u satisfies S }, where

S ⊆ P ⊆ U and ∀ t ∈ ℜ, ∃ s ∈ S: t = timeCoordinateOf(s).

(2)

Agents (human or otherwise, intentionally or unintentionally) solve a given prob-
lem P when they confine, through their actions, the trajectory of the universe U to the
corresponding subset P. Therefore, their actions – combined with the laws of the
universe – correspond to constraining the state of the universe to a subset S of P. S
cannot be empty; it must always have at least one state for every time coordinate. If S
fails to comply with this condition, the agents failed to solve the problem.

Typically, S and P will differ significantly concerning the states with a time coor-
dinate that is smaller than, equal to, or marginally larger than tnow. The problem P is
only concerned with what is needed/useful/… Therefore, it allows as many states as
possible as long as the choice amongst them does not matter – note that this discus-
sion only considers intrinsic aspects and makes abstraction of issues concerning the
explicit specification of constraints.

In contrast, the solution S is embedded in the universe, which allows only a single
state for every time coordinate in the past (including the present) and imposes severe
limitations on what states can be reached in the immediate future from the current
state. In other words, S will be significantly smaller than P, especially concerning
states close to the present time and older. Therefore, problem-solving agents have to
make choices whenever deadlines approach.

In real life, a problem solving activity consists of a sequence of actions over time.
Using the above definition, such sequence of actions corresponds to a sequence of
solutions S1, S2, … Send that solve P, where Send ⊂ … ⊂ S2 ⊂ S1 ⊂ P. This reflects
that the agents make more and more choices as time progresses in order to solve the
problem and comply with the laws of the universe.

An example of the introduction of constraints can be observed in the design of a
railway system to solve transportation problems: when the moment of actual usage
approaches, the designers have to make more and more choices. For instance, they
must select a specific value for the space in between the rails. In fact, the whole prob-
lem solving activity can be seen as a sequence of design choices, starting from the

 Fundamental Insights into Holonic Systems Design 17

selection of a rail-based system over other possibilities. This introduction of con-
straints by the solution is the key issue.

4.2 Reuse of Solutions for Unknown Problems

As explained above, complex artifacts (solutions) are constructed using members of
autocatalytic sets, which are solutions originally developed to solve other problems.
In other words, a solution to an overall problem must be realized by integrating existing
candidate sub-solutions (a holonic system is created through aggregation of suitable
smaller holons) where these candidates have been developed without knowledge about
this overall problem. This section formally addresses this solution reuse process.

Formally, agent x solves problem P through solution Sp. Other agents solve prob-
lem Q through solution Sq. This results in the state sets Sp ⊆ P ⊆ U and Sq ⊆ Q ⊆
U. For instance, agent x has constructed the railway system in France to answer the
need for transportation. The other agents implemented similar railway systems in the
remainder of Europe. These systems are defined as to include the human organization
that operates, maintains and adapts/expands the hardware therein. In this example, the
overall problem of providing transportation all over Europe – i.e. problem T – is to be
solved by integration of the national railway systems – i.e. integration of Sp and Sq
into solution St. Intrinsically, agents must solve problem T, where T ⊆ P and T ⊆ Q.
Practically, agents must integrate the existing sub-solutions into their overall solution;
formally: T ⊆ Sp ∩ Sq. Indeed, society is unable to duplicate the effort of developing
their national railway systems to provide an international one. Instead, it must reuse
the existing systems, including their ability to adapt, to create the international con-
nections amongst the national systems and obtain a system that transports goods and
passengers across the borders in Europe.

The main problem with the creation of such solutions is that the integration fails to
deliver good performance. In the example, it is relatively easy to provide international
transport at a much-reduced level of service; goods and passengers need to change
trains at almost every border. Higher levels of service require significant efforts: lo-
comotives that support multiple power supply systems, railway equipment supporting
variable width of the railway tracks... The sub-solutions, which were developed inde-
pendently, have made mutually incompatible design decisions and these decisions
have accumulated significant inertia (i.e. it has become costly to undo these deci-
sions). Formally and with an ambitious overall problem TA, “∃ t ∈ ℜ, ∀ s ∈ Sp ∩ Sq

∩ TA: t ≠ timeCoordinateOf(s)” expresses that, in practice, reuse of sub-solutions
cannot be reconciled with an ambitious overall problem TA that requires a high-
performance solution, as if the sub-solutions were redeveloped with problem TA in
mind.

In practice, a solution for TA cannot readily reuse the available (partial) solutions
offered without undoing a lot of design choices. Typically, society only receives a
reduced level of service (i.e. solutions to easier problems), and will only gradually
outgrow the old designs when technology progresses sufficiently to introduce a new
solution from scratch (e.g. high-speed trains). The key issue is the introduction of

18 P. Valckenaers and H. Van Brussel

constraints that are absent in the corresponding problem and that may cause future
integration problems. More precisely, it is the accumulated inertia – i.e. the effort
necessary to undo such harmful design decisions – that constitutes the problem.

4.3 Designing for Unknown Problems

From the above, it becomes clear that the problem-solving agents must design a solu-
tion Sp capable of surviving in an uncertain environment concerning its future. For-
mally, such uncertain environment corresponds to℘, a set of subsets of the state
space U. The actual future will offer an intersection of members of ℘as the space that
is available for Sp to contribute its part to the overall solution. Some members of ℘
correspond to the constraints imposed by the future problems for which solution Sp
may be part of the overall solution. Alternatively, members of ℘ correspond to the
constraints imposed by other candidate sub-solutions that may contribute to solving
the bigger problem at hand. A designer of solution Sp does not know which members
of ℘ will be present, and must try to avoid conflicts with any constraints that might
be presented by members of ℘.

In this context, design decisions can introduce two types of constraints: stable and
unstable. Stable constraints will be present in all conceivable future situations within
the scope of Sp. For instance, an agent may assume that power supply will be
240V/50Hz or 130V/60Hz when designing an electrical appliance. Formally, no
member of ℘ will be in conflict with the stable constraint. In contrast, unstable con-
straints represent conflicts with some members of ℘. Design decisions that introduce
unstable constraints reduce the future capability of the solution. For instance, the
designer of a rocket inertial navigation program may choose to limit the range of the
acceleration supported to the limits of the current rocket, causing the crash of the first
rocket of the next generation when the constraint remains undetected.

Based on the above, design principles P1 and P2 emerge. Note that these principles
apply when designing lasting artifacts, like infrastructures, and not for the short-time
solutions for the immediate future.

P1: Problem solvers must avoid introducing potentially harmful constraints. This
guideline is twofold. First, it advises against the introduction of (any) constraints. As
seen in section 4.1, this cannot be avoided for the immediate future. However, con-
cerning problem solving in a slightly more distant future, systems implementing low
and late commitment strategies avoid the introduction of constraints. This is a rela-
tively well-known fact, and it is widely adhered to. Unfortunately, cost and complex-
ity of such solutions seriously restrict the applicability of this design principle. For
instance, building locomotives and railway wagons for variable-width tracks is pro-
hibitively expensive/complex. Software related to the railway system has less diffi-
culty to avoid commitment to a specific track width; it simply becomes a system pa-
rameter to which the remainder of the software must consistently adapt.

Second, the guideline encourages introducing constraints unlikely to cause future
conflicts; these are called stable constraints or decisions in this manuscript. In short,
the introduction of stable constraints simply reflects the fact that the constraint is

 Fundamental Insights into Holonic Systems Design 19

already present in the environment; a stable design decision preserves and reflects the
scope of the problem domain. In a way, these stable constraints can be seen as an
extension of the laws of nature for the application domain at hand.

P2: Problem solvers must avoid/reduce the inertia build-up for potentially harm-
ful constraints. Again, this guideline is twofold. First, designers are encouraged to
implement low-inertia versions of their solutions first and only to implement the real
system when, hopefully, most conflicts among design choices have been undone in
this low-inertia version of the design. This is a well-known principle and specific
technologies have been developed to support this: CAD, CAE, … Indeed, it is signifi-
cantly less costly to undo a design choice on a CAD drawing of a bridge than to do
the same modification on the bridge itself at a later stage. Likewise, virtual reality
technology is used on a regular base to discover and undo conflicting constraints in
factory designs. Similarly, in the research on multi-agent manufacturing control, con-
trol software prototypes will be connected to emulations of the underlying manufac-
turing system first, allowing adaptation of both the control system and the underlying
system in the virtual world before committing in the real world.

Second, designers must avoid reinforcing unstable constraints introduced by earlier
unstable design decisions. Designers cannot avoid introducing unstable constraints,
e.g. selecting a width for the railway track, when the time for implementing the solu-
tion approaches. However, the fact that this width needs to be fixed before the first
locomotive can be build does not imply that this width needs to be fixed in other
situations, e.g. being hard-coded in a piece of embedded software, where the cost of
keeping your options open is negligible. Whereas stable constraints can be reinforced
without problems – the environment or general scope of the problem domain already
imposes such constraints – an earlier unstable constraint gains inertia every time an-
other design decision introduces it again. For instance, it is a known problem that
highly automated production facilities are hard to adapt because their control systems
(= software) reinforce the existing way of operating and require significant mainte-
nance for every change in the system. If the software for a control system expects a
tree-shaped bill-of-materials, the introduction of disassembly operations will be prob-
lematic, especially when the software has a functional decomposition design. Ironi-
cally, the technology that is seen to be extremely flexible causes the rigidity (because
of its poor design).

In summary, the novel principles for the designers are: (1) designers must prefer
stable design decisions and (2) earlier unstable design decisions are no justification
for later decisions imposing the same constraint(s). The first design principle avoids
the introduction of new constraints. The second avoids the build-up of inertia for
unstable constraints that were introduced earlier; every unstable design decision must
be justifiable by itself. Earlier unstable design decisions only affect which later unsta-
ble design decisions are taken (i.e. compatible with these earlier ones), not whether a
later unstable decision will be taken at all. Next to these two items, some better-
known principles – low and late commitment, autonomous systems, and low inertia
implementations – remain valid. Note that low commitment includes the ability to fall
back on interim designs at stages before unstable constraints are introduced.

20 P. Valckenaers and H. Van Brussel

4.4 Sample Robust Designs for Unknown Problems

Although the scientific and engineering communities are largely unaware of this, our
society has successfully created and developed subsystems that are well prepared for
the unknown, or perhaps more precisely, are usable in a wide range of applications.
This section discusses examples with varying degrees of success (or compliance with
the above design principles), the key being not to rely on the wrong assumptions for a
subsystem to be a valid (part of a) solution.

Physics
Physical science is an extreme example of compliance with the above design rules. At
a first glance, it does not make any choices at all – apart from representa-
tion/language/symbol aspects. Looking more closely, it is possible to distinguish an
applicability range. For instance, Newton’s classical mechanics become invalid when
velocities approach the speed of light or when dimensions become extremely small.

Science uses the ultimate source of stable constraints: the world itself. A collection
of artifacts – in this case scientific theories – reflecting parts or aspects of the real
world will not conflict within the scope in which they are valid. If conflicts occur,
these conflicts are caused by flaws in the artifact, not by unstable design choices.
Indeed, it suffice to look at the world – by means of suitable experiments – to know
which theory is correct (or to discover that all are flawed).

Navigation and Transportation
Consider the following types of artifacts: route descriptions, traffic regulations and
maps. Maps clearly comply with the design principles, assuming they reflect rela-
tively long-lived aspects of some part of the world. Note that they benefit from the
same source of stable constraints as scientific theories – the real world. When two
maps contradict each other, at least one map contains a mistake and verifying against
reality suffices to solve the conflict. Notice how maps covering overlapping sections
of the world and representing overlapping aspects (e.g. tourist maps, traffic maps,
military maps) can be used inside a single larger system/application. Maps augmented
by an organization (including humans) to keep these maps up-to-date at adequate
frequencies represent an even better solution in line with the design principles.

Route descriptions are less robust artifacts in two ways. First, route descriptions are
exposed to highly unstable user requirements (origin, destination, route attributes),
whose number of possible combinations is practically unlimited. Second, route de-
scriptions are fragile with respect to sensing accuracy, disturbances and changes.
When its user confuses an exit of a parking lot with a side street, route descriptions
often provide a poor level of service. An even worse problem occurs when the route,
indicated in the description, is temporarily blocked by road works. Traffic regulations
are possibly even worse. Resolving arbitrary choices is a main reason for their exis-
tence, and it should be no surprise that combining two regulations, which came inde-
pendently into existence, more or less results in undoing half of the design choices.

Software Design
Today, two major paradigms for software development exist in practice. Historically,
top-down functional decomposition preceded object-oriented design. Functional de-
sign starts from functional user requirements and decomposes these in a top-down
fashion. User requirements are notoriously unstable. As a consequence, subsystems

 Fundamental Insights into Holonic Systems Design 21

developed by functional approaches are likely to incorporate a multitude of unstable
design choices. They are the analogue of the route descriptions above. Remark that
they do not only share the presence of many unstable design choices (a negative as-
pect) but also require roughly the least effort possible to answer their original user
requirements (a positive aspect).

In contrast, object-oriented design includes the elaboration of an essential or con-
ceptual model of the area of interest [4][5]. In an object-oriented design of a naviga-
tion application, this essential model would comprise a map of the area in which the
navigation occurs. In personnel administration applications, the essential model would
reflect the possible life cycles of personnel. Again, the real world serves as a source of
stable constraints. As with maps in navigation, the elaboration and implementation of
such essential models often requires too much effort for single-use applications.
However, the object-oriented approach rapidly becomes superior when user require-
ments are partially uncertain and the application needs to survive beyond the immedi-
ate future.

Multi-agent Systems
Often, the analytical minds of DAI researchers have been attracted to ‘consolidated
user requirements addressed by a MAS solution’. As a consequence, much MAS
research starts from the top-down functional decomposition paradigm and fails to
develop suitable subsystems from which larger systems can be composed. Sympto-
matic for this phenomenon are researchers calling out for solutions that are as small as
possible, focusing on decision-making, automatic generation of MAS, methodologies
to keep development efforts small and short.

In contrast, a number of researchers are investigating agent systems in which
agents reflect part of the relevant reality: “agents must be things” [6]. This is espe-
cially true for the MAS designs that are bio-inspired [7] and/or searching for emergent
functionality and self-organizing applications. When selecting these parts of the world
that are to be reflected by the agents in a MAS, it is important to safeguard the possi-
bility for strong autocatalysis (i.e. user community must be able to support and main-
tain the software artifact). The PROSA architecture is an example of a design aimed
at maximizing the user communities of the agents therein [8].

5 Conclusion

This paper discusses the fundamental nature of holonic systems. Limited rationality
implies that sophisticated systems in a dynamic and demanding environment mainly
consist of large subsystems [2]. Candidate systems, available to become such subsys-
tems, belong to two types of autocatalytic sets [3], and therefore are predetermined to
a significant extent. This limitation often results in poor performance for large sys-
tems when judged against the performance that is theoretically achievable with cus-
tom-made subsystems. The latter would be obsolete by the time they are available or
fail to achieve adequate autocatalysis because the existing systems have drained the
world of the suitable resources. This paper analyses the root cause of this sub-optimal
performance and derives design principles and guidelines to remedy this situation.

22 P. Valckenaers and H. Van Brussel

Acknowledgements

This paper presents work funded by the Research Council of the K.U.Leuven – Con-
certed Research Action on Agents for Coordination and Control.

References

1. Köstler, A.: The Ghost in the Machine. ARKANA S. (1990).
2. Simon, H. A.: The Sciences of the Artificial. MIT Press, Cambridge Mass. (1990).
3. Waldrop, M.: Complexity, the Emerging Science at the Edge of Order and Chaos. VIKING,

Penguin group, London.(1992).
4. Cook S., Daniels J.: Designing Object Systems. Prentice Hall, London. (1994).
5. Jackson, M.: Software requirements and specifications. Addison-Wesley, (1995).
6. Parunak, H.V.D.: “Go to the Ant: Engineering Principles from Natural Agent Systems”,

Annals of Operations Research, 75:69-101, (1997).
7. Grassé, P.P.: La theorie de la stigmergie: essai d’interpretation du comportement des

termites constructeurs, Insectes Sociaux 6, (1959).
8. Van Brussel, H., J. Wyns, P. Valckenaers, L. Bongaerts, P. Peeters: Reference architecture

for holonic manufacturing systems: PROSA. Computers In Industry 37, 255-274, (1998).

	Introduction
	Limited Rationality and Holonic Systems
	Holonic Systems and Complex Adaptive Systems
	Autocatalytic Sets
	Lock-In

	Designing for the Unforeseen and the Unknown Application
	Problems and Solutions
	Reuse of Solutions for Unknown Problems
	Designing for Unknown Problems
	Sample Robust Designs for Unknown Problems

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

