
Execution Generated Test Cases� How to Make

Systems Code Crash Itself

Cristian Cadar and Dawson Engler�

Abstract� This paper presents a technique that uses code to automat	
ically generate its own test cases at run	time by using a combination of
symbolic and concrete 
i�e�� regular� execution� The input values to a
program 
or software component� provide the standard interface of any
testing framework with the program it is testing� and generating input
values that will explore all the �interesting
 behavior in the tested pro	
gram remains an important open problem in software testing research�
Our approach works by turning the problem on its head� we lazily gener	
ate� from within the program itself� the input values to the program 
and
values derived from input values� as needed� We applied the technique
to real code and found numerous corner	case errors ranging from simple
memory over�ows and in�nite loops to subtle issues in the interpretation
of language standards�

� Introduction

Systems code is di�cult to test comprehensively� Externally� systems interfaces
tend towards the baroque� with many di�erent possible behaviors based on tricky
combinations of inputs� Internally� their implementations tend towards heavily
entangling nests of conditionals that are di�cult to enumerate� much less exhaust
with test cases� Both features conspire to make comprehensive� manual testing
an enormous undertaking� so enormous that empirically� many systems code test
suites consist only of a handful of simple cases or� perhaps even more commonly�
none at all�
Random testing can augment manual testing to some degree� A good example

is the fuzz ��� �	 tool� which automatically generates random inputs� which is
enough to 
nd errors in many applications� Random testing has the charm that
it requires no manual work� other than interfacing the generator to the tested
code� However� random test generation by itself has several severe drawbacks�
First� blind generation of values means that it misses errors triggered by narrow
ranges of inputs� A trivial example� if a function only has an error if its ��

bit integer argument is equal to ���������� then random will most likely have

� This paper is a shortened version of ���� which was in simultaneous submission with
similar but independent work by Patrice Godefroid et al ���� Our thanks to Patrice
for graciously accepting this version as an invited paper�

to generate billions of test cases before it hits this speci
c case� Second� and

Computer Systems Laboratory,
Stanford University,

Stanford, CA 94305, U.S.A

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 2–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



similarly� random testing has di�culty hitting errors that depend on several
di�erent inputs being within speci
c �even wide� ranges of values� Third� the
ability of random testing to e�ectively generate random noise is also its curse�
It is very poor at generating input that has structure� and as a result will miss
errors that require some amount of correct structure in input before they can
be hit� A clear example would be using random test generation to 
nd bugs
in a language parser� It will 
nd cases where the parser cannot handle garbage
inputs� However� because of the extreme improbability of random generation
constructing inputs that look anything like legal programs it will miss almost all
errors cases where the parser mishandles them�

Of course� random can be augmented with some amount of guidance to more
intelligently generate inputs� though this comes at the cost of manual inter

vention� A typical example would be writing a tool to take a manually
written
language grammar and use it to randomly generate legal and illegal programs
that are fed to the tested program� Another would be having a speci
cation or
model of what a function�s external behavior is and generate test cases using
this model to try to hit �interesting� combinations� However� all such hybrid
approaches require manual labor and� more importantly� a willingness of imple

mentors to provide this labor at all� The reluctance of systems builders to write
speci
cations� grammars� models of what their code does� or even assertions is
well known� As a result� very few real systems have used such approaches�

This paper�s 
rst contribution is the observation that code can be used to au�
tomatically generate its own potentially highly complex test cases� At a high level�
the basic idea is simple� Rather than running the code on manually
constructed
concrete input� we instead run it on symbolic input that is initially allowed to
be �anything�� As the code observes this input� these observations tell us what
legal values �or ranges of values� the input could be� Each time the code makes
a decision based on an observation we conceptually fork the execution� adding
on one branch the constraint that the input satis
es the observation� and on
the other that it does not� We can then generate test cases by solving these
constraints for concrete values� We call such tests execution generated testing

�EGT��

This process is most easily seen by example� Consider the following contrived
routine bad abs that incorrectly implements absolute value�

�� int bad abs�int x� f
�� if�x � ��
�� return �x�
�� if�x 		 ���
��
��

� return �x�
�� return x�
�� g

As mentioned before� even such a simple error will probably take billions
of random
generated test cases to hit� In contrast� 
nding it with execution
generated testing it is straightforward� Symbolic execution would proceed as
follows�

Execution Generated Test Cases: How to Make Systems Code Crash Itself 3



�� Initial state� set x to the symbolic value of �anything�� In this case� before
any observations at all� it can be any value between INT MIN and INT MAX�
Thus we have the constraints x � INT MIN � x � INT MAX �

�� Begin running the code�

�� At the 
rst conditional �line �� fork the execution� setting x to the symbolic
constraint x � � on the true path� and to x � � on the false path�

�� At the return �line �� solve the constraints on x for a concrete value �such
as x �� ���� This value is later used used as a test input to bad abs�

�� At the second conditional �line �� fork the execution� setting x to the con

straints x � ��������� x � � on the true path and x �� ��������� x � �
on the false path�

�� At the second return �line �� solve the symbolic constraints x � ���������
x � �� The value is �������� is our second test case�

�� Finally� at line �� solve x�s constraints for a concrete value �e�g�� x � ��� This
value is used as our third� 
nal case�

We can then test the code on the three generated values for x� Of course� this
sketch leaves many open questions � when to generate concrete values� how
to handle system calls� how to tell what is correct� etc� The rest of the paper
discusses these issues in more detail�

There are a couple of ways to look at the approach� From one point of view�
implementation code has a �grammar� of the legal inputs it accepts and acts on�
or rejects� EGT is an automatic method to extract this grammar �and the con

crete sentences it accepts and rejects� from the implementation rather than from
a hand
written speci
cation� From another viewpoint� it can be seen as a way to
turn code �inside out� so that instead of consuming inputs becomes a generator
of them� Finally� and perhaps only half
vacuously� it can be viewed as a crude
analogue of the Heisenberg e�ect in the sense that unlike observations perturb

ing experiments from a set of potential states into a variety of concrete ones�
observations in this case perturb a set of possible inputs into a set of increasingly
concrete ones� The more precise the observation the more de
nitively it perturbs
the input� The most precise observation� an equality comparison� 
xes the input
to a speci
c concrete value� The least precise� an inequality� simply disallows a
single value but leaves all others as possibilities�

This paper has three main contributions�

�� A simple conceptual approach to automatically generate test cases by run

ning code on symbolic inputs�

�� A working prototype EGT system�

�� Experimental results showing that the approach is e�ective on real code�

The paper is organized as follows� Section � gives an overview of the method�
Section � discusses concrete implementation issues� The next four sections give
four case studies of applying the approach to systems code� Finally� Section �
discusses related work and Section � concludes�

4 C. Cadar and D. Engler



� Overview

This section gives an overview of EGT� The next section discusses some of the
implementation details�
In order to generate test cases� EGT runs the code on symbolic rather than

real input� Whenever code reads from its environment �via network packets�
command line options� 
les� etc� we want to instead return a symbolic variable
that has no constraints on its actual value� As the program executes and uses
or observes this value �e�g�� through comparisons�� we add constraints based on
these observations� Then� to determine how to reach a given program path� we
solve these constraints and generate input that satis
es them�
At a high
level� the EGT system has three core activities�

�� Instrumentation to track symbolic constraints� Our prototype EGT sys

tem instruments the tested code using a source
to
source transformation�
This instrumentation inserts checks around every assignment� expression
and branch in the tested program and calls into our runtime system� It
also inserts code to fork a new process at each decision point at which the
associated boolean condition could return both true and false�

�� Constraint solving� We model our constraints using formulas of quanti
er

free 
rst
order logics as represented by CVCL� a state
of
the
art decision
procedure solver ��� �	� CVCL has been used in applications ranging hardware
veri
cation to program analysis to mathematical theorem proving�
We use CVCL in two ways� First� after every branch point we call it to
determine if the current set of constraints is satis
able� If not� we stop fol

lowing the code path� otherwise we continue� CVCL is sound� if it states
that no solution exists� it is correct� Second� at the end of a code path that
uses symbolic input� we use CVCL to generate concrete values to use as test
input�

�� Modeling� External functions that return or consume input can either be
modeled so that they work with symbolic variables� or not modeled� in which
case any value they take must be made concrete� In general� one can leave
most things unmodeled� with the downside that testing coverage will be
reduced� Models are not that hard to write� A four
line model for the Unix
recv system call is given in Section �� In addition� models can be used to
speed up the test generation� This optimization is discussed in Section ����

The mechanical act of instrumenting code is pretty easy� and there are a lot of
constraint solvers to pick from and use as black boxes� Thus� the main challenge
for the approach is how to run code symbolically� The next subsection talks
about this in more detail�

���

The basic idea behind our approach is that when we perform logical or arithmetic
operations� we generate constraints for these� and when we perform control �ow

Execution Generated Test Cases: How to Make Systems Code Crash Itself 5

Symbolic Execution



decisions� we fork execution and go down both paths� This section sketches how
we can symbolically execute code� For ease of exposition� we initially assume
that all the variables in a program are symbolic� Section ��� shows how we can
intermix symbolic and concrete execution in order to e�ciently process real code�

Assignment� v � e � We symbolically do an assignment of an expression e

to a variable v by generating the constraint that v � e� For example� v � x � y

generates the constraint that v � x � y� other arithmetic and logical operators
are similar�

The complication is that v may have been involved in previous constraints�
We must distinguish the newly assigned value of v from its use in any already
generated constraints� For example� assume we have two assignments� ��� x � y

and then ��� y � �� The 
rst assignment will generate the constraint that x � y�
The second will generate the constraint y � �� At this point� the constraints
imply x � �� which is obviously nonsensical� This new value for y after its
assignment y � � has nothing to do with any prior constraints involving y and
should have no impact on them� Thus� an assignment v � e must have two
parts� First� generate a new location for v and only then generate the constraint
that v � y� �

If�statements We symbolically execute an if
statement as follows� ��� fork
execution at the conditional� ��� on the true path add the constraint that the
conditional expression e is true �e � true� and continue� ��� on the false path
add the constraint that e is false �e � false� and continue� For example�

concrete j symbolic
if�e� j if�fork�� 		 child�

s�� j add constraint�e 		 true��
j s��

else j else
s�� j add constraint�e 		 false��

j s��

Loops� We transform loops into if
statements with goto�s so they are handled
as above� One danger is that iterating on a symbolic loop variable can continue
forever� forking a new execution on each evaluation of the loop condition� The
usual practical hack is to only iterate a 
xed number of times or for a 
xed
amount of time �we do the latter�� Neither solution is perfect� However� in our
context almost any solution is preferable to manual test generation�

Function calls� f�x�� There are three di�erences between a symbolic func

tion call and an imperative� call
by
value call� First� control can return multiple
times into the caller� once for each fork
branching that occurs� Second� con

straints placed on x in the body of f must propagate up to the caller� For
example� the concrete code�

� Alternatively� ignoring aliasing� we could have equivalently gone through all existing
constraints involving v and relabeled them to use a new� fresh name�

�

6 C. Cadar and D. Engler



int foo�int x� f
if�x 		 ��

return ��
else

return ��
g

will generate a symbolic execution that returns twice into the caller� since the
branch will cause a forked execution� On the true branch we want to propagate
the constraint that x � � back to the caller and on the false that x �� �� The

nal di�erence is that at the exit point from a function� we create a temporary
symbolic variable and return that as the function�s expression value� Figure �
gives a symbolic translation of bad abs based on the above rules�

�� initial constraints� x �	 INT MIN �n x �	 INT MAX
int symbolic bad abs�int x� f

ret 	 new symbol� �� holds the return expression�

if�fork�� 		 child� �� fork execution at each branch point�
add constraint�x � ��� add constraint�ret 	 �x��
�� �rst return� �nal constraints�
�� x �	 INT MIN �n x �	 INT MAX �n x � � �n ret 	 �x
return ret�

else

add constraint�x �	 ���

if�fork�� 		 child� �� fork execution
add constraint�x 	 ���
��
��� add constraint�ret 	 �x��
�� second return� �nal constraints� x �	 INT MIN �n x �	 INT MAX
�� �n x �	 � �n x 	 ���
��
� �n ret 	 �x
return ret�

else

add constraint�x �	 ���
��
���

add constraint�ret 	 x��
�� last return �nal constraints� x �	 INT MIN �n x �	 INT MAX
�� �n x �	 � �n x �	 ���
��
� �n ret 	 x
return ret�

g

Fig� �� A symbolic translation of bad abs

���

EGT� like all testing approaches� needs to have some notion of what �bad�
behavior is so that it can �ag it� We use three approaches to do so�

Execution Generated Test Cases: How to Make Systems Code Crash Itself 7

What is Correctness?



First� and unsurprisingly� check for program independent properties� such as
segmentation faults� storage leaks� memory over�ows� division by zero� dead

locks� uses of freed memory� etc�
Second� do cross
checking� If a piece of code implements an important inter


face� then there are likely to be several implementations of it� These implementa

tions can be cross
checked against each other by running the test cases generated
from one implementation �or both� on both implementations and �agging di�er

ences� One important usage model� after modifying a new version of a system�
cross
check it against the old version to make sure any change was intended�
This approach works especially well for complex interfaces�
Third� speci
cation
by
example� While writing speci
cations to state what

exactly code must do in general is hard� it is often much easier to take the speci
c
test cases our tool generates and specify what the right answers are just for these
cases� For example� for the bad abs routine� the EGT system generates the three
concrete values� 
�� ��������� ��������� Thus� for testing we would just do�

assert�bad abs���� 		 ���
assert�bad abs����
��

� 		 ���
��

��
assert�bad abs����
��
�� 		 ���
��
���

� Implementation Issues

This section discusses implementation aspects of our EGT tool�

���

Ignoring memory and solver
limitations� we can run any code entirely symboli

cally until it interacts with the outside� concrete world� For example� if it calls
external code� or sends a packet on a real network to a machine running concrete
code� or prints output to be read by a real person� At this point you must either
make the inputs to the external code concrete �e�g� you must send data rather
than a symbolic constraint in a network packet�� or� alternatively� make a model
of the world to pull it into the simulation�
In practice� constraint solvers are not as robust as one might hope and so

without care overzealous constraint generation will blow them up� sometimes
for good theoretic reasons� sometimes for unimpressive practical ones� Further�
symbolic
only execution is expensive in both speed and space� Thus� we do a
hybrid approach that intermixes concrete and symbolic execution� The basic
approach is that before every operation we dynamically check if the values are
all concrete� If so� we do the operation concretely� Otherwise� if at least one
value is symbolic we do the operation symbolically �using the logic described in
Section ����
We use the CIL tool ��	 to instrument the code of tested programs� Below�

we sketch how to conceptually rewrite source constructs for a C
like language so
that they can run on either concrete or symbolic values� mentioning some of the
more important practical details�

8 C. Cadar and D. Engler

Mixed Symbolic and Concrete Execution



Our 
rst transformation conceptually changes each variable or expression v

to have two instances� a concrete one �denoted v	concrete� and a symbolic one
�denoted v	symbolic�� If v is concrete� v	concrete holds its concrete value and
v	symbolic contains the special token hinvalidi� Conversely� if v is symbolic�
v	symbolic holds its symbolic value and v	concrete is set to hinvalidi�

In practice� we track the v	symbolic 
eld using a table lookup that takes
the address of a the variable v �which gives it a unique name� and returns v�s
associated �shadow� symbolic variable v	symbolic �if it is symbolic� or null
�if it is concrete�� In the latter case� the variable v contains the concrete value
�v	concrete� and can just be used directly� The following examples assume
explicit concrete and symbolic 
elds for clarity�

assign rule�T �v� T e� f
if�e is concrete�

�� equivalent to v�concrete 	 e�concrete�
�� v�symbolic 	 �invalid��
v 	 �concrete	e�concrete� symbolic	�invalid���

else

�� equivalent� v�symbolic 	 e�symbolic
v 	 �concrete	�invalid�� symbolic	new symbolic var T��
constraint�v�symbolic 	 e�symbolic��

g

Fig� �� Rewrite rule for assignment v � e for any variable v and expression e of type T

The most basic operation is assignment� Figure � gives the basic assignment
rule� If the right hand variable e is a concrete expression or variable� just assign
its concrete value to the left
hand side v and mark v�s symbolic component as
invalid� If e is symbolic� then as explained in the previous section� we must
allocate a fresh symbolic variable to be used in any new constraints that are
generated� After that� we 
rst set v	concrete to be invalid and then add the
constraint that v	symbolic equals e	symbolic�

Roughly as simple are basic binary arithmetic operators� Figure � gives the
rewrite rule for binary addition� other binary arithmetic operators are similar� If
both x and y are concrete� we just return an expression whose concrete part is
just their addition and symbolic part is invalid� Otherwise we build a symbolic
constraint s and then return an expression that has s as its symbolic component
and invalid for its concrete�

The rewrite rule for if
statements is a straight
forward combination of the
purely symbolic rule for if
statements with the similar type of concrete
symbolic
checking that occurs in binary relations� There are two practical issues� First�
our current system will happily loop on symbolic values � the parent process
of a child doing such looping will terminate it after a timeout period expires�
Second� we use the Unix fork system call to clone the execution at every symbolic

Execution Generated Test Cases: How to Make Systems Code Crash Itself 9



�� rule for x � y
T plus rule�T x� T y� f

if�x and y are concrete�
return �concrete	x�concrete � y�concrete� �invalid���

s 	 new symbolic var T�
if�x is concrete�

constraint�s 	 x�concrete � y�symbolic��
else if y is concrete

constraint�s 	 x�symbolic � y�concrete��
else

constraint�s 	 x�symbolic � y�symbolic��
return �concrete	�invalid�� symbolic	s��

g

Fig� �� Rewrite rule for �x � y
 where variables x and y are of type T

branch point� Naively this will quickly lead to an exponential number of processes
executing� Instead we have the parent process wait for the child to 
nish before
continuing to execute on its branch of the conditional� This means we essentially
do depth

rst search where there will only be one active process and a chain of
its predecessors who are sleeping waiting for the active process to complete�

�� rule for �p
T deref rule�T� p� f

if��p is concrete�
return �concrete	�p� symbolic	�invalid���

else

s 	 new symbolic var T�
if�p is concrete�

constraint�s 	 ��p��symbolic��
else

�� symbolic dereference of p
constraint�s 	 deref�p�symbolic���

return �concrete	�invalid�� symbolic	s��
g

Fig� �� Rewrite rule for dereference ��p
 of any pointer p of type T� The main com	
plication occurs when we dereference a symbolic pointer� in this case we must add a
symbolic constraint on the dereferenced value�

Because dereference deals with storage locations� it is one of the least intuitive
rewrite rules� Figure � gives the rewrite rule for dereferencing 
p� A concrete
dereference works as expected� A dereference of a concrete pointer p that points
to a symbolic value also works as expected �i�e�� just like assignment� except
that the rvalue is dereferenced�� However� if p itself is symbolic� then we cannot

10 C. Cadar and D. Engler



actually dereference it to get what it points to but instead must generate a funny
constraint that says that the result of doing so equals the symbolic dereference
of p�

At an implementation level� CVCL currently does not handle symbolic deref

erences so we do not either� Further� in the short term we do not really do the
right thing with any pointer dereference that involves a symbolic value �such as
a symbolic o�set o� of a concrete pointer or a symbolic index into a symbolic
array�� In such cases we will generate a concrete value� which may be illegal�

One happy result of this limitation is that� when combined with the the
way the implementation uses a lookup table to map variables to their shadow
symbolic values� it makes handling address
of trivial� For example� given the
assignment p � �v we simply do the assignment� always� no matter if v is a
symbolic or concrete� A lookup of p will return the same symbolic variable �if
any� that lookup of �v does� Thus any constraints on it are implicitly shared
by both� Alternatively� if there is no symbolic� then p will point directly at the
concrete variable and dereference will work as we want with no help�

Function calls are rewritten similarly to the previous section�

One implementation detail is that to isolate the e�ects of the constraint solver
we run it in its own child Unix process so that ��� we can kill it if it does not
terminate and ��� any problems it runs into in terms of memory or exceptions
are isolated�

���

Not all the code in the program under testing should be given the same level
of attention� For example� many of our benchmarks make intensive use of the
string library� but we don�t want to generate test cases that exercise the code in
these string routines�

More precisely� imagine a program which uses strcmp to compare two of
its symbolic strings� Most implementations of strcmp would traverse one of the
strings� and would compare each character in the 
rst string with the corre

sponding character in the second string and would return a value when the two
characters di�er or when the end of a string has been reached� Thus� the routine
would return to the caller approximately �n times� each time with a di�erent
set of constraints� However� most applications use a routine such as strcmp as
a black box� which could return only one of the following three values� �� when
the strings are equal� 
� when the 
rst string is lexicographically smaller than
the second one� and � otherwise� Returning the same value multiple times does
not make any di�erence for the caller of the black box�

Instead of instrumenting routines such as those in the string library� we could
instead provide models for them� A model for strcmp would return three times�
once for each possible return value� After each fork� the model would add a series
of constraints which would make the outcome of that branch symbolically true�
for example� on the branch which returns �� the model would add constraints
setting the two strings equal� Of course� certain branches may be invalid� e�g� if

Execution Generated Test Cases: How to Make Systems Code Crash Itself 11

Creating a Model for Speed



the two string have di�erent lengths� strcmp could not return �� In this case�
the corresponding branch is simply terminated�
We implemented models for the routines in the string library� and used them

in generating tests for our benchmarks� Adding these speci
cations has two main
bene
ts� On the one hand� it removes useless test cases from the generated test
suites �by removing tests which would only improve code coverage in the string
routines�� and on the other hand it signi
cantly improves performance� For the
WsMp� benchmark that we evaluate in Section �� the test suites are generated
approximately seven times faster�

��� Discussion

Currently we do lazy evaluation of constraints� deferring solving them until the
last possible moment� We could instead do eager evaluation� where as soon as
we use a symbolic value we make up a concrete one� This eliminates the need to
execute code symbolically� However� by committing to a concrete value imme

diately� it precludes the ability to change it later� which will often be necessary
to execute both paths of any subsequent branch based on that variable�s value
�since the concrete value will either satisfy the true or the false branch� but not
both�� A hybrid approach might be best� where we make up concrete values
immediately and then only do full symbolic execution on code paths that this
misses�

�

As the 
rst micro
benchmark to evaluate EGT� we applied it to a routine used by
the popular Mutt email client to convert strings from the UTF
� to the UTF
�
format� As reported by Securiteam� this routine in Mutt versions up to version
��� have a bu�er over�ow vulnerability which may allow a malicious IMAP server
to execute arbitrary commands on the client machine ��	�
We selected this paper in part because it has been one of the examples in a

recent reliability paper ��	� which used a carefully hand
crafted input to exploit
it�
We extracted the UTF� to UTF� conversion routine from Mutt version ����

ran the code through our tool� and generated test cases for di�erent lengths of
the UTF
� input string� Running these generated tests immediately found the
error�
The paper we took the code from suggested a 
x of increasing the memory

allocation ratio from n
� to n

��� We applied this change to the code� and reran
the EGT generated test cases� which immediately �agged that the code still has
an over�ow� The fact that the adjusted ratio was still incorrect highlights the
need for �and lack of� automated� comprehensive testing�
Table � presents our results� For each input size� we report the size of the

generated test suite and the time it took to generate it� the cumulative statement
coverage achieved up to and including that test suite� and the largest output size

12 C. Cadar and D. Engler

Micro- ase Study: Mutt’s UTF8 Routinec



that we generated for that input size� These results �and all our later results��
were generated on a Intel Pentium � Mobile CPU at ����GHz� with ���MB
RAM�

Input Generation Test Suite Statement Largest
Size Time Size Coverage Output

� ��s �� ����� �
� �m��s �� ����� �
� �m��s ��� ����� ��
� ��m��s ��� ����� ��
� �h��m ���� ����� ��

Table �� Test suites generated for utf� to utf�

	

This section applies EGT to three di�erent printf implementations� The printf
routine is a good example of real systems code� a highly complex� tricky interface
that necessitates an implementation with thickets of corner cases� Its main source
of complexity is the output format string it takes as its 
rst argument� The
semantics of this single string absorb the bulk of the ��� lines the ANSI C��
standard devotes to de
ning printf� these semantics de
ne an exceptionally ugly
and startling programming language �which even manages to include iteration���

Thus� printf is a best
case scenario for EGT� The standard and code com

plexity create many opportunities for bugs� Yet the inputs to test this complexity
can be readily derived from printf�s parsing code� which devolves to fairly sim

ple� easily solved equality checks� Further� the importance of printfmeans there
are many di�erent implementations� which we can use to 
nesse the need for a
speci
cation by cross
checking against each other�

We checked the following three printf implementations� all of them �inten

tionally� implemented only a subset of the ANSI C�� standard�

�� The Pintos instructional operating systems printf� the implementation in

tentionally elides �oating point� This implementation is a stern test of EGT�
since the developer �the co
author of a widely
read C book� had intimate
knowledge of the standard�

�� The gccfast printf� which implements a version of printf in terms of
fprintf� �

�� A reduced
functionality printf implementation for embedded devices� �

� http���www�opensource�apple�com�darwinsource�WWDC�		
�gccfast��
�
�
� http���www�menie�org�georges�embedded�index�html

We used EGT to generate test suites by making the format string the single
symbolic argument to printf� We set the size of this symbolic string to a 
xed

Execution Generated Test Cases: How to Make Systems Code Crash Itself 13

Case Study: Printf



Format Pintos� Embedded GCCfast
Length printf printf printf

� �� �� ��
��s �s ��s

� ��� �� ���
�m�s �m��s �m��s

� ���� ��� ����
��m��s ��m�s ��m��s

��� ��� �� ���
���m��s ���m��s ���m��s

Table �� Test suites generated for printf� the �rst row of each size gives the number
of generated tests� the second row the time required to do so

Pintos� Embedded GCCfast
printf printf printf

Mismatches ��� ��� �
self tests of ���� of ��� of ����

Mismatches ��� ���� ��
all tests of ���� of ���� of ����

Statement ��� ��� ���
Coverage 
��� lines� 
��� lines� 
�� lines�

Table �� Mismatches found in the printf implementations

length and generated test cases from the resultant constraints� We describe our
measurements below and then discuss the bugs and di�erences found�

Measurements� We generated test cases for format strings of length �� ��
�� and ���� Table � shows the test suite size that we generated for each format
length and the time it took to generate the test suite� We allowed a maximum
of �� seconds per CVCL query� there were only two queries killed after spending
more than �� seconds� For format lengths of ��� long� we terminated the test
generation after approximately two hours�

Below are a representative fraction of EGT
generated format strings of length
��

� �lle� � ��	f� � �G��� � � �l� � ��he� � �		�� � ��jf�

� ��lf� � ��hf� � ��f � ���E� � ��� � � ��c � � �
� � �c� � ����� � �c��� � �c�j� � �� p� � ����� � ���u�

� �llc� � �	g � � ����� � �	 u� � ��s��

Note that while almost all look fairly bizarre� because they are synthesized from
actual comparisons in the code� many are legal �and at some level �expected�
by the code��

Results� After generating test suites� we checked the output for each printf

in two ways� First� we took the tests each implementation generated and cross

checked its output on these tests against the output of glibc�s printf� Each

14 C. Cadar and D. Engler



of of the three implementations attempts to implement a subset of the ANSI
C�� standard� while glibc intends to fully implement it� Thus� any di�erence
is a potential bug� EGT discovered lots of such di�erences automatically� ���
in Pintos� ��� in the Embedded printf and � in GCCfast�s printf �which was
surprising since it only does minimal parsing and then just calls fprintf� which
then calls glibc�s printf�� Since we had access to the implementor of Pintos
we focused on these� we discuss these below�
Second� we took the tests generated by all implementations and cross
checked

their output against each other� Since they intentionally implement di�erent sub

sets of the standard� we expect them to have di�erent behavior� This experiment
tests whether EGT can 
nd such di�erences automatically� It can� ��� in Pintos�
���� in Embedded and �� in GCCfast�
Note that in both experiments� the Pintos and the GCCfast printf routines

print an error message and abort when they receive a format string that they
cannot handle� Since they only intend to handle a subset of the standard� this is
correct behavior� and we do not report a mismatch in this case� In contrast� the
Embedded printf instead fails silently when it receives a format string which
it cannot handle� This means that we cannot di�erentiate between an incorrect
output of a handled case and an unhandled case� and thus we report all these
cases as mismatches�
Table � also shows the statement coverage achieved by these test suites� all

printf�s achieve more than �� coverage� Most of the lines that were not covered
are unreachable� For example� Pintos� printf has a NOT REACHED statement
which should never be reached as long as Pintos treats all possible format strings�
Similarly� for the Embedded printf� we don�t reach the lines which redirect the
output to a string bu�er instead of stdout� these lines are used by sprintf�
and never by printf� Some lines however where not reached because our system
treats only the format string as symbolic� while the rest of the arguments are
concrete� Finally� two of the three printf implementations use non
standard
implementations for determining whether a character is a digit� which our system
does currently not handle correctly� The number of lines reported in Table � are
real lines of code� that is lines which have at least one instruction�
We reported all mismatches from Pintos to its developer� Ben Pfa�� We got

con
rmation and 
xes of the following bugs�

Incorrect grouping of integers into groups of thousands

�Dammit� I thought I 
xed that��� Its quite obviously incorrect in that
case�� � Ben Pfa�� unsolicited exclamation� �!��!��� ����pm�

The code mishandled the ��� speci
er that says to comma
separate integer digits
into groups of three� The exact test case was�

�� correct� ���������
��
�� pintos � ���������
��
printf����d�� �������
����

Amusingly enough� the bug had been 
xed in the developer�s tree� but he
had forgotten to push this out to the released version �which we were testing��

�

Execution Generated Test Cases: How to Make Systems Code Crash Itself 15



Incorrect handling of the space and plus �ags

�That case is so obscure I never would have thought of it�� � Ben Pfa��
unsolicited exclamation� �!��!��� ����pm�

The character ��� can be followed by a space �ag� which means that �a blank
should be left before a positive number �or empty string� produced by a signed
conversion� �man printf����� Pinto incorrectly leaves a blank before an un

signed conversion too� We found a similar bug for the plus �ag�
This bug and the previous error both occurred in the same routine�

format integer� which deals with formating integers� The complexity of the
speci
cation of even this one small helper function is representative of the
minutia
laden constraints placed onmany systems interfaces and their internals�
We now give a more cursory description of the remaining errors�

Incorrect alignment of strings Pintos incorrectly handles width 
elds
with strings� although this feature works correctly for integers �which got better
testing��

Incorrect handling of the t and z �ags When the �ag t is used� the
unsigned type corresponding to ptrdiff t should be used� This is a detail of
the standard which was overseen by the developer� We found a similar bug for
the z �ag� which speci
es that the signed type corresponding to size t should
be used�

No support for wide strings and chars Pintos does not support wide
string and wide chars� but fails silently in this case with no error message�

Unde�ned behavior We found several bugs which are caused by under

speci
ed features� An example of such a case is �printf����hi��� v�� whose
output is unde
ned if v cannot be represented as a short�




This section applies our technique to the WsMp� web server designed for trans

ferring MP� 
les ���	� We use WsMp� version ����� which� uninstrumented con

tains about ����� lines of C code� instrumented about ������� This version con

tains a security vulnerability that allows attackers to execute arbitrary com

mands on the host machine ���� ��	� Our technique automatically generated test
cases that found this security hole� In addition� it found three other memory
over�ows and an in
nite loop caused by bad network input �which could be
used for a DoS attack��
We 
rst discuss how we set up test generation� coverage results� and then the

most direct method of e�ectiveness� bugs found�

	��

WsMp� has the typical web server core� a main loop that listens for connec

tions using accept� reads packet from the connection using recv� and then does

�

�

�

�

�

16 C. Cadar and D. Engler

Case Study: WsMp3

Setting Up WsMp3



operations based on the packet value� It also has a reasonably rich interaction
with the operating system� As a 
rst cut we only made the network packet�s
returned by recv be symbolic� but made the packet size be concrete� We did
so by replacing calls to recv with calls to a model of it �recv model� that just
�returned� a symbolic array of bytes of a speci
c length�

�� �model does not generate failures� msg len is �xed�
ssize t recv model�int s� char �buf� size t len� int �ags� f
make bytes symbolic�buf� msg len��
return msg len�

g

It �reads in� a message of length msg len by telling the system the address range
between buf and buf�msg len should be treated as symbolic� We then generated
test cases for one byte packet� two bytes� and so forth by changing msg len to
the desired length�
After the web server 
nishes processing a message� we inserted a call into the

system to emit concrete values associated with the message�s constraints� We
then emit these into a test 
le and run the web server on it�
One subtlety is that after the web server processes a single message we exit it�

Recall that at every conditional on a symbolic value �roughly� we fork execution�
Thus� the web server will actually create many di�erent children� one for each
branch point� Thus� even processing a �single� message will generate many many
test messages� In the context of this server� one message has little to do explicitly
with another and thus we would not get any more test cases by doing additional
ones� However� for a more stateful server� we could of course do more than one
message�
Finally� it was not entirely unheard of for even the symbolic input to cause the

code to crash during test generation� We handle segmentation faults by installing
a handler for the SIGSEGV signal and� if it is invoked� generate a concrete test
case for the current constraints and then exit the process�
Since WsMp� makes intensive use of the standard string library� we used our

own string	h library described in Section ���� In our tests� using this library
improves performance by roughly seven
fold�

	��

We used EGT testing to generate tests for packets of size �� �� �� �� �� ��� and
���� Table � gives ��� the number of tests generated for each size� ��� the time it
took �user time�� and ��� the number of times the CVCL constraint solver failed
to generate a concrete test from a set of constraints within �� seconds�
Given our naive implementation� the test generation time was non
trivial�

For packets of size �� and ��� we stopped it after �� hours �they were running
on a laptop that we wanted to write this paper on�� However� note that in some
sense high test generation cost is actually not so important� First� test generation
happens infrequently� The frequent case� running the generated tests� takes less
than a minute� Second� test generation is automatic� The time to manually

Execution Generated Test Cases: How to Make Systems Code Crash Itself 17

Test Generation Measurements



Packet Un�nished Execution Test Suite
Size Queries Time 
s� Size

� � �s �
� � �s �
� � ��s ��
� � ��m��s ��
� � ��m��s ��
�� ��� ��h��m ����
��� �� ��h��m ���

Table �� Test suites generated for WsMp�� We stopped test generation for size �� and
��� after roughly �� hours

be enormous� Further� manual generation easily misses cases silently� Finally� as
far as we know� there was no test suite for WsMp�� Clearly the EGT alternative
is much better�

We compare coverage from EGT to random testing� We use statement cov

erage generated using gcc and gcov� We would have preferred a more insightful
metric than line coverage� but were not able to 
nd adequate tools� We gener

ated random tests by modifying the recv routine to request messages 
lled with
random data of a given size� For each packet size ��� �� �� �� �� ���� ���� and ���
bytes long�� we generate ��� ����� and ������� random tests� and then measured
the cumulative statement coverage achieved by all these tests� We recorded a
statement coverage of ���� � as opposed to ���� for EGT�

However� the roughly � more lines of code hit by EGT is almost certainly
a dramatic underreporting of the number of distinct paths it hits� More impor

tantly� these lines appear out of reach of random testing no matter how many
more random tests we do� In addition� note that it takes about two hours and
a half to execute all the random test cases� while it takes less than a minute to
execute all the EGT test cases�

We manually examined the code to see why EGT missed the other state

ments� Many of the lines of code that were not hit consisted of debugging and
logging code �which was disabled during testing�� error reporting code �such as
printing an error message and aborting when a call to malloc fails�� and code
for processing the command
line arguments �which wasn�t all reached because
we didn�t treat the arguments as symbolic inputs��

However� a very large portion of the code was not reached because the request
messages that we fabricate do not refer to valid 
les on the disk� or because we
fail to capture several timing constraints� As an example from the 
rst category�
when a GET request is received� the web server extracts the 
le name from the
request packet� and then it checks if the 
le exists by using fopen� If the 
le does
not exist� WsMp� sends a corresponding error message to the client� If the 
le is
valid� the 
le name is passed through various procedures for further processing�
Since we don�t have any 
les on our server� and since almost all the 
les being
fabricated by our system would be invalid anyway� the code which process 
les

generate tests that would get similar amounts types of path coverage would

18 C. Cadar and D. Engler



and 
le names is never invoked� The right way to solve this problem is to provide
models for functions such as fopen� fread� and stat� However� even without
these models� we 
nd interesting errors� as the next subsection describes�

	�� Errors Found

We have identi
ed 
ve errors in the code which parses the request messages
received by WsMp�� All were caused by a series of incorrect assumptions that
WsMp� makes about the request being processed� We describe three illustrative
bugs below�

�� �buf holds network message�
char� get op�char �buf� f

char� op�
int i�

if��op	�char ��malloc�����		NULL� f
printf��Not enough memory��n���
exit����

g
�� �note� buf is �	� terminated�
if�buf�	NULL �� strlen�buf��	�� f

��strncpy�op�buf����
i	��
while�buf�i��	� �� f

op�i�	buf�i��
i���

g
op�i�	��	��

g
else op	NULL�

return op�
g

Fig� �� WsMp� bu�er over�ow bug� occurs if received message 
held in buf� has more
than �� characters before the �rst space

Figure � gives the 
rst bug� Here WsMp� assumes that the 
rst part of the
request message �held in buf� holds the type of the client request� such as GET
or POST� separated from the rest of the message by a space� After a request is
received� WsMp� copies this action type in an auxiliary bu�er by copying all the
characters from the original request� until a space is encountered� Unfortunately�
it assumes the request is legal rather than potentially malicious and allocates
only ten bytes for this bu�er� Thus� if it receives an invalid request which does
not contain a space in the 
rst ten characters� the bu�er over�ows and WsMp�

Execution Generated Test Cases: How to Make Systems Code Crash Itself 19



usually terminates with a segmentation fault� Amusingly� there is a �commented
out� attempt to instead do some sort of copy using the safe strncpy routine
which will only up to a pre
speci
ed length�
This routine is involved in a second bug� As part of the checking it does do� it

will return NULL if the input is NULL or if the size of the incoming message is less
than three characters� However� the caller of this routine does not check for a
NULL return and always passes the bu�er to strcmp� causing a remote
triggered
segmentation fault�
The third 
nal bug was interesting� for certain rare request messages �where

the sixth character is either a period or a slash� and is followed by zero or more
periods or slashes� which are immediately followed by a zero�� WsMp� goes
into an in
nite loop� Our EGT system automatically generates the very unusual
message required to hit this bug� The problematic code is shown below�

while �cp��� 		 ��� j j cp��� 		 ����
for �i	�� cp�i� �	 ��	�� i��� f

cp�i��� 	 cp�i��
if �cp�i��� 		 ��	��

cp�i� 	 ��	��
g

� Related Work

To the best of our knowledge� while there has been work related to test generation
and synthesis of program inputs to reach a given program point� there is no
previous approach that e�ectively generates comprehensive tests automatically
from a real program� There certainly exists no tool that can handle systems
code� We compare EGT to past test generation work and then to bug 
nding
methods�

Static test and input generation� There has been a long stream of re

search that attempts to use static techniques to generate inputs that will cause
execution to reach a speci
c program point or path�
One of the 
rst papers to attack this problem� Boyer at al� ���	� proposes the

use of symbolic execution to follow a given path was in the context of a system�
SELECT� intended to assist in debugging programs written in a subset of LISP�
The usage model was that the programmer would manually mark each decision
point in the path that they wanted executed and the system would incrementally
attempt to satisfy each predicate� More recently� researchers have tended to use
static analysis to extract constraints which then they try to solve using various
methods� One example is Gotlieb et al ���	� who statically extracted constraints
which they tried to solve using �naturally� a constraint solver� More recently�
Ball ���	 statically extracted predicates �i�e�� constraints� using �predicate ab

straction� ���	 and then used a model checker to try to solve these predicates
for concrete values� There are many other similar static e�orts� In general� static
techniques are vastly weaker than dynamic at gathering the type of information
needed to generate real test cases� They can deal with limited amounts of fairly

20 C. Cadar and D. Engler



straightforward code that does not interact much �or at all� with the heap or
complex expressions� but run into intractable problems fairly promptly�

Dynamic techniques test and input generation� Much of the test gen

eration work relies on the use of a non
trivial manually
written speci
cation
of some kind� This speci
cation is used to guide the generation of testing val

ues ignoring the details of a given implementation� One of the most interesting
examples of such an approach is Korat ���	� which takes a speci
cation of a
data
structure �such as a linked list or binary tree� and exhaustively generates
all non
isomorphic data structures up to a given size� with the intention of testing
a program using them� They use several optimizations to prune data structure
possibilities� such as ignoring any data structure 
eld not read by a program�
EGT di�ers from this work by attempting to avoid any manual speci
cation and
targeting a much broader class of tested code�

Past automatic input generation techniques appear to focus primarily on
generating an input that will reach a given path� typically motivated by the
�somewhat contrived� problem of answering programmer queries as to whether
control can reach a statement or not� Ferguson and Korel���	 iteratively generate
tests cases with the goal of hitting a speci
ed statement� They start with an
initial random guess� and then iteratively re
ne the guess to discover a path
likely to hit the desired statement� Gupta et al� ���	 use a combination of static
analysis and generated test cases to hit a speci
ed path� They de
ne a loss
function consisting of �predicate residuals� which roughly measures by �how
much� the branch conditions for that path were not satis
ed� By generating a
series of test cases� they use a numerical solver to 
nd test case values that can
trigger the given path� Gupta�s technique combines some symbolic reasoning with
dynamic execution� mitigating some of the problems inherit in either approach
but not in both� Unfortunately� the scalability of the technique has more recently
been called into question� where small systems can require the method to take
an unbounded amount of time to generate a test case ���	�

In EGT di�ers from this work by focusing on the problem of comprehensively
generating tests on all paths controlled by input� This prior work appears to be
much more limited in this regard�

Software Model Checking� Model checkers have been previously used to

nd errors in both the design and the implementation of software systems ���"���
��	� These approaches tend to require signi
cant manual e�ort to build testing
harnesses� However� to some degree the approaches are complementary� the tests
our approach generates could be used to drive the model checked code�

Generic bug �nding� There has been much recent work on bug 
nding ����
��� ��� ��	� Roughly speaking because dynamic checking runs code� it is limited
to just executed paths� but can more e�ectively check deeper properties implied
by code� For example that the code will in
nite loop on bad inputs� that a for

matting command is not obeyed correctly� Many of the errors in this paper would
be di�cult to get statically� However� we view static analysis as complementary

Execution Generated Test Cases: How to Make Systems Code Crash Itself 21



� Conclusion

This paper has proposed a simple method of automatically generating test cases
by executing code on symbolic inputs called execution generated testing� We
build a prototype EGT system and applied it to real code� We found numerous
corner
case errors ranging from simple memory over�ows and in
nite loops to
subtle issues in the interpretation of language standards�
These results� and our experience dealing with and building systems suggests

that EGT will work well on systems code� with its often complex requirements
and tangled logic�

Acknowledgements

The authors thank Ted Kremenek for his help with writing and related work and
David Dill for writing comments� The authors especially thank Ben Pfa� for his
extensive help with the code and results in Section �� This research was supported
by NSF ITR grant CCR
�������� NSF CAREER award CNS
�������
���� and
a Junglee Corporation Stanford Graduate Fellowship�

References

�� Cadar� C�� Engler� D�� Execution generated test cases� How to make systems code
crash itself� Technical Report CSTR ����	�� �� Stanford University 
�����

�� Godefroid� P�� Klarlund� N�� Sen� K�� Dart� Directed automated random testing�
In� Proceedings of the Conference on Programming Language Design and Imple	
mentation 
PLDI�� Chicago� IL USA� ACM Press 
�����

�� Miller� B�P�� Fredriksen� L�� So� B�� An empirical study of the reliability of UNIX
utilities� Communications of the Association for Computing Machinery �� 
�����
�����

�� Miller� B�� Koski� D�� Lee� C�P�� Maganty� V�� Murthy� R�� Natarajan� A�� Steidl� J��
Fuzz revisited� A re	examination of the reliability of UNIX utilities and services�
Technical report� University of Wisconsin 	 Madison 
�����

�� Barrett� C�� Berezin� S�� CVC Lite� A new implementation of the cooperating
valid ity checker� In Alur� R�� Peled� D�A�� eds�� CAV� Lecture Notes in Computer
Science� Springer 
�����

�� Ganesh� V�� Berezin� S�� Dill� D�L�� A decision procedure for �xed	width bit	vectors�
Unpublished Manuscript 
�����

�� Necula� G�C�� McPeak� S�� Rahul� S�� Weimer� W�� Cil� Intermediate language and
tools for analysis and transformation of c programs� In� International Conference
on Compiler Construction� 
�����

�� Securiteam� Mutt exploit� http���www�securiteam�com�unixfocus��FP	T	U�FU�
html 
�����

�� Rinard� M�� Cadar� C�� Dumitran� D�� Roy� D�M�� Leu� T�� William S� Beebee� J��
Enhancing server availability and security through failure	oblivious computing� In�
Symposium on Operating Systems Design and Implementation� 
�����

to EGT testing � it is lightweight enough that there is no reason not to apply
it and then use EGT�

22 C. Cadar and D. Engler



��� Associates� C�� Wsmp� exploit� http���www��ca�com�securityadvisor�

vulninfo�Vuln�aspx�ID���
	� 
�����
��� Secunia� Wsmp� exploit� http���secunia�com�product��	�� 
�����
��� Boyer� R�S�� Elspas� B�� Levitt� K�N�� Select � a formal system for testing and

debugging programs by symbolic execution� ACM SIGPLAN Notices �� 
�����
������

��� Gotlieb� A�� Botella� B�� Rueher� M�� Automatic test data generation using con	
straint solving techniques� In� ISSTA ���� Proceedings of the ���� ACM SIGSOFT
international symposium on Software testing and analysis� ACM Press 
����� ���
��

��� Ball� T�� A theory of predicate	complete test coverage and generation� In�
FMCO������ Symp� on Formal Methods for Components and Objects� Springer	
Press 
�����

��� Ball� T�� Majumdar� R�� Millstein� T�� Rajamani� S�K�� Automatic predicate ab	
straction of c programs� In� PLDI ���� Proceedings of the ACM SIGPLAN ���� con	
ference on Programming language design and implementation� ACM Press 
�����
�������

��� Boyapati� C�� Khurshid� S�� Marinov� D�� Korat� Automated testing based on Java
predicates� In� Proceedings of the International Symposium on Software Testing
and Analysis 
ISSTA�� 
����� �������

��� Ferguson� R�� Korel� B�� The chaining approach for software test data generation�
ACM Trans� Softw� Eng� Methodol� � 
����� �����

��� Gupta� N�� Mathur� A�P�� So�a� M�L�� Automated test data generation using an
iterative relaxation method� In� SIGSOFT ����FSE	�� Proceedings of the �th ACM
SIGSOFT international symposium on Foundations of software engineering� ACM
Press 
����� �������

��� Edvardsson� J�� Kamkar� M�� Analysis of the constraint solver in una based test
data generation� In� ESEC�FSE	�� Proceedings of the �th European software engi	
neering conference held jointly with �th ACM SIGSOFT international symposium
on Foundations of software engineering� ACM Press 
����� �������

��� Holzmann� G�J�� The model checker SPIN� Software Engineering �� 
������������
��� Godefroid� P�� Model Checking for Programming Languages using VeriSoft� In�

Proceedings of the ��th ACM Symposium on Principles of Programming Lan	
guages� 
�����

��� Holzmann� G�J�� From code to models� In� Proc� �nd Int� Conf� on Applications
of Concurrency to System Design� Newcastle upon Tyne� U�K� 
����� ����

��� Brat� G�� Havelund� K�� Park� S�� Visser� W�� Model checking programs� In� IEEE
International Conference on Automated Software Engineering 
ASE�� 
�����

��� Corbett� J�� Dwyer� M�� Hatcli�� J�� Laubach� S�� Pasareanu� C�� Robby� Zheng�
H�� Bandera� Extracting �nite	state models from java source code� In� ICSE �����

�����

��� Ball� T�� Rajamani� S�� Automatically validating temporal safety properties of
interfaces� In� SPIN ���� Workshop on Model Checking of Software� 
�����

��� Das� M�� Lerner� S�� Seigle� M�� Path	sensitive program veri�cation in polynomial
time� In� Proceedings of the ACM SIGPLAN ���� Conference on Programming
Language Design and Implementation� Berlin� Germany 
�����

��� Coverity� SWAT� the Coverity software analysis toolset� http���coverity�com


�����
��� Bush� W�� Pincus� J�� Siela�� D�� A static analyzer for �nding dynamic program	

ming errors� Software� Practice and Experience �� 
����� �������

��� � Wsmp� webpage� http���wsmp��sourceforge�net� 
�����

Execution Generated Test Cases: How to Make Systems Code Crash Itself 23


	Introduction
	Overview
	Symbolic Execution
	What is Correctness?

	Implementation Issues
	Mixed Symbolic and Concrete Execution
	Creating a Model for Speed
	Discussion

	Micro- ase Study: Mutt’s UTF8 Routine
	Case Study: Printf
	Case Study: WsMp3
	Setting Up WsMp3
	Test Generation Measurements
	Errors Found

	Related Work
	Conclusion
	Acknowledgements
	References



