

Lecture Notes in Computer Science 3639
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Patrice Godefroid (Ed.)

Model Checking
Software

12th International SPIN Workshop
San Francisco, CA, USA, August 22-24, 2005
Proceedings

13

Volume Editor

Patrice Godefroid
Bell Laboratories, Lucent Technologies
2701 Lucent Lane, Lisle, IL 60532, USA
E-mail: god@bell-labs.com

Library of Congress Control Number: 2005930636

CR Subject Classification (1998): F.3, D.2.4, D.3.1, D.2

ISSN 0302-9743
ISBN-10 3-540-28195-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28195-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11537328 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 12th International SPIN Work-
shop on Model Checking of Software, held in San Francisco, USA, on August
22–24, 2005. SPIN 2005 is a forum for practitioners and researchers interested in
model-checking based techniques for the validation and analysis of communica-
tion protocols and software systems. The workshop focuses on topics including
theoretical and algorithmic foundations and tools for software model checking,
model derivation from code and code derivation from models, techniques for deal-
ing with large and infinite state spaces, and applications. The workshop aims
to foster interactions and exchanges of ideas with all related areas in software
engineering. It has traditionally drawn contributions from both academia and
industry.

The SPIN workshop series started 10 years ago, in 1995. Since then, SPIN
workshops have been held on an annual basis at Montréal (1995), New Brunswick
(1996), Enschede (1997), Paris (1998), Trento (1999), Toulouse (1999), Stan-
ford (2000), Toronto (2001), Grenoble (2002), Portland (2003) and Barcelona
(2004). All but the first SPIN workshop were organized as satellite events of
larger conferences, in particular of CAV (1996), TACAS (1997), FORTE/PSTV
(1998), FLOC (1999), the World Congress on Formal Methods (1999), FMOODS
(2000), ICSE (2001, 2003) and ETAPS (2002, 2004). This year, SPIN was held
as a satellite event of CONCUR 2005. The co-location of SPIN workshops with
conferences has proven to be very successful and has helped to disseminate SPIN
model checking technology to wider audiences. Since 1999, the proceedings of
the SPIN workshops have appeared in Springer’s Lecture Notes in Computer
Science series.

The history of successful SPIN workshops is evidence for the maturing of soft-
ware model-checking technology. While in earlier years the focus of the workshop
series was algorithms and tool development around the SPIN model-checker, its
scope was widened several years ago to include other software model-checking
techniques, tools and applications.

This year, we received 45 regular paper submissions out of which 15 were se-
lected. In addition, the SPIN 2005 program contained 4 tool presentation papers
selected from 6 submissions. All submissions went through a rigorous reviewing
process, where each paper received a mimimum of 3 referee reviews.

In addition to the refereed papers, three invited talks were given, by
David Wagner (UC Berkeley) on Pushdown Model Checking for Security, Daw-
son Engler (Stanford University) on Static Analysis Versus Model Checking for
Bug Finding, and Rajeev Alur (University of Pennsylvania) on The Benefits
of Exposing Calls and Returns (invited talk of CONCUR/2005, and joint with
SPIN/2005). Dawson Engler also contributed an original paper entitled Execu-
tion Generated Test Cases: How to Make Systems Code Crash Itself (co-authored

VI Preface

with Cristian Cadar), which can be found in these proceedings. The program
also included three invited tutorials, by Gerard J. Holzmann (NASA JPL) and
Theo C. Ruys (University of Twente) on Effective Bug Hunting with Spin and
Modex, by Thomas A. Henzinger (EPFL), Ranjit Jhala (UCSD) and Rupak Ma-
jumdar (UCLA) on The BLAST Software Verification System, and by Willem
Visser (NASA Ames) on Model Checking Programs with Java PathFinder.

I would like to thank the Program Committee members, as well as all the
external reviewers who assisted them in their work. My thanks also go to the
Steering Committee members and last year’s organizers, Susanne Graf and Lau-
rent Mounier, for their helpful advice. I would also like to thank the invited
speakers and invited tutorial speakers, the authors of submitted papers, and
the workshop participants. Special thanks go to Springer for providing us with
the possibility of using a Conference Online Service free of charge and to the
METAFrame team for their support. Last but not least, I would like to thank
the organizers of CONCUR 2005, in particular Luca de Alfaro, for inviting us
to hold SPIN 2005 as a satellite event and for their support and flexibility in
accommodating the particular needs of the SPIN workshop.

June 2005 Patrice Godefroid

Organization

Program Committee

George Avrunin (U. Mass. Amherst, USA)
Dennis Dams (Bell Labs, USA)
Stefan Edelkamp (U. Dortmund, Germany)
Cormac Flanagan (UC Santa Cruz, USA)
Jaco Geldenhuys (Tampere U., Finland)
Patrice Godefroid (Bell Labs, USA; Chair)
Susanne Graf (Verimag, France)
Gerard Holzmann (NASA JPL, USA)
Sarfraz Khurshid (UT Austin, USA)
Stefan Leue (U. Konstanz, Germany)
Rupak Majumdar (UCLA, USA)
Laurent Mounier (Verimag, France)
Shaz Qadeer (Microsoft, USA)
Theo Ruys (U. Twente, Netherlands)
Willem Visser (NASA Ames, USA)
Pierre Wolper (U. Liège, Belgium)

Advisory Committee

Gerard Holzmann (NASA JPL, USA; Chair)
Amir Pnueli (Weizmann Inst., Israel)

Steering Committee

Thomas Ball (Microsoft, USA)
Susanne Graf (Verimag, France)
Stefan Leue (U. Konstanz, Germany)
Moshe Vardi (Rice U., USA)
Pierre Wolper (U. Liège, Belgium; Chair)

Additional Reviewers

Husain Aljazzar
Nina Amla
Dragan Boshnachki
Marius Bozga
Richard Chang

Pieter de Villiers
Paul Grisham
Henri Hansen
Klaus Havelund
Shahid Jabbar

Ranjit Jhala
Rajeev Joshi
Alberto Lluch-Lafuente
Oded Maler
Tilman Mehler

VIII Organization

Kedar Namjoshi
Iulian Ober
Corina Pasareanu
Michael Perin

Nicolas Rouquette
Hassen Säıdi
Danhua Shao
Natalia Sidorova

Evghenia Stegantova
Brink Van der Merwe
Wei Wei

Table of Contents

Invited Talks/Papers

Pushdown Model Checking for Security
David Wagner . 1

Execution Generated Test Cases: How to Make Systems Code Crash Itself
Cristian Cadar, Dawson Engler . 2

Invited Tutorials

Effective Bug Hunting with Spin and Modex
Gerard J. Holzmann, Theo C. Ruys . 24

The BLAST Software Verification System
Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar 25

Model Checking Programs with Java PathFinder
Willem Visser, Peter Mehlitz . 27

State Representation and Abstraction

An Incremental Heap Canonicalization Algorithm
Madanlal Musuvathi, David L. Dill . 28

Memory Efficient State Space Storage in Explicit Software Model
Checking

Sami Evangelista, Jean-François Pradat-Peyre . 43

Counterexample-Based Refinement for a Boundedness Test for CFSM
Languages

Stefan Leue, Wei Wei . 58

Dealing with Concurrency

Symbolic Model Checking for Asynchronous Boolean Programs
Byron Cook, Daniel Kroening, Natasha Sharygina 75

X Table of Contents

Improving Spin’s Partial-Order Reduction for Breadth-First Search
Dragan Bošnački, Gerard J. Holzmann . 91

Sound Transaction-Based Reduction Without Cycle Detection
Vladimir Levin, Robert Palmer, Shaz Qadeer,
Sriram K. Rajamani . 106

Dealing with Complex Data

Repairing Structurally Complex Data
Sarfraz Khurshid, Iván Garćıa, Yuk Lai Suen . 123

Crafting a Promela Front-End with Abstract Data Types to Mitigate
the Sensitivity of (Compositional) Analysis to Implementation Choices

Yung-Pin Cheng . 139

Behavioural Models for Hierarchical Components
Tomás Barros, Ludovic Henrio, Eric Madelaine 154

Checking Temporal Properties

On-the-Fly Emptiness Checks for Generalized Büchi Automata
Jean-Michel Couvreur, Alexandre Duret-Lutz, Denis Poitrenaud 169

Stuttering Congruence for χ
Bas Luttik, Nikola Trčka . 185

Verifying Pattern-Generated LTL Formulas: A Case Study
Salamah Salamah, Ann Gates, Steve Roach, Oscar Mondragon 200

Checking Security and Real-Time Properties

Generic Verification of Security Protocols
Abdul Sahid Khan, Madhavan Mukund, S.P. Suresh 221

Using SPIN and Eclipse for Optimized High-Level Modeling and
Analysis of Computer Network Attack Models

Gerrit Rothmaier, Tobias Kneiphoff, Heiko Krumm 236

Model Checking Machine Code with the GNU Debugger
Eric Mercer, Michael Jones . 251

Table of Contents XI

Tool Papers

Etch: An Enhanced Type Checking Tool for Promela
Alastair F. Donaldson, Simon J. Gay . 266

Enhanced Probabilistic Verification with 3Spin and 3Murphi
Peter C. Dillinger, Panagiotis Manolios . 272

SPLAT: A Tool for Model-Checking and Dynamically-Enforcing
Abstractions

Anil Madhavapeddy, David Scott, Richard Sharp 277

Learning-Based Assume-Guarantee Verification (Tool Paper)
Dimitra Giannakopoulou, Corina S. Păsăreanu . 282

Author Index . 289

Pushdown Model Checking for Security

David Wagner

U.C. Berkeley
daw@cs.berkeley.edu

Abstract. One of the key challenges for computer security is the prob-
lem of software security: how to build software that is free of implementa-
tion vulnerabilities. In this talk, I will present experience with pushdown
model checking for software security. First, I will survey simple methods
for pushdown model checking, and I will introduce MOPS, a tool for
pushdown model checking of C programs. Then, I will show many secu-
rity properties of interest may be encoded as temporal safety properties
that are well-suited to analysis with model checking. I will report on our
experience applying MOPS to tens of millions of lines of C code. Finally,
I will discuss some possible directions for future research.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computer Systems Laboratory,
Stanford University,

Stanford, CA 94305, U.S.A

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 2–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Execution Generated Test Cases: How to Make Systems Code Crash Itself 3

4 C. Cadar and D. Engler

Execution Generated Test Cases: How to Make Systems Code Crash Itself 5

Symbolic Execution

6 C. Cadar and D. Engler

Execution Generated Test Cases: How to Make Systems Code Crash Itself 7

What is Correctness?

8 C. Cadar and D. Engler

Mixed Symbolic and Concrete Execution

Execution Generated Test Cases: How to Make Systems Code Crash Itself 9

10 C. Cadar and D. Engler

Execution Generated Test Cases: How to Make Systems Code Crash Itself 11

Creating a Model for Speed

12 C. Cadar and D. Engler

Micro- ase Study: Mutt’s UTF8 Routinec

Execution Generated Test Cases: How to Make Systems Code Crash Itself 13

Case Study: Printf

14 C. Cadar and D. Engler

Execution Generated Test Cases: How to Make Systems Code Crash Itself 15

16 C. Cadar and D. Engler

Case Study: WsMp3

Setting Up WsMp3

Execution Generated Test Cases: How to Make Systems Code Crash Itself 17

Test Generation Measurements

18 C. Cadar and D. Engler

Execution Generated Test Cases: How to Make Systems Code Crash Itself 19

20 C. Cadar and D. Engler

Execution Generated Test Cases: How to Make Systems Code Crash Itself 21

22 C. Cadar and D. Engler

Execution Generated Test Cases: How to Make Systems Code Crash Itself 23

Effective Bug Hunting with Spin and Modex

Gerard J. Holzmann1 and Theo C. Ruys2

1 NASA/JPL, Laboratory for Reliable Software
http://spinroot.com/gerard/

2 University of Twente, The Netherlands
http://www.cs.utwente.nl/~ruys/

Abstract. This tutorial consists of two parts. In the first part we present
an advanced overview of Spin [1,4], and illustrate its practical application
to logic model checking problems. In the second part of the tutorial
we present an overview of a related tool called Modex [2,3]. Modex
can be used to extract Spin verification models directly from C source
code. It supports the definition of user-defined abstractions, and cleverly
exploits the capability in Spin version 4 to include embedded C code
inside abstract verification models. We will show how to use Spin and
Modex, separately and combined, in an effective way when searching for
design errors in distributed software applications. Both Spin and Modex
are written in ANSI-C and can freely be used on research projects.

The first part of this tutorial is meant for intermediate to advanced Spin users.
The objective is to illustrate the effective application of both Promela and Spin,
giving solutions to frequently encountered verification problems and discussing
some useful recipes for the use of logic model checkers. We will also take a
look ‘under the hood’ to briefly describe the architecture of Spin’s verification
engine, and then show how one can exploit this information in building Promela
verification models that include embedded C code constructs.

The second part of the tutorial shows how Modex can be used to extract
verification models from C code. This process relies on a user-definition of an
abstraction table to guide the model extraction process. We will show how this
methodology was first used for the exhaustive verification of a commercial tele-
phone switch, developed at Bell Labs between 1998 and 2001. The verification
procedure based on model extraction and model checking for multi-threaded
code proved to be significantly more effective in its bug finding capabilities than
the standard software testing process.

References

1. G. J. Holzmann. The Spin Model Checker – Primer and Reference Manual. Addison-
Wesley, Boston, Massachusetts, USA, 2004.

2. G. J. Holzmann and M. H. Smith. An Automated Verification Method for Distrib-
uted Systems Software Based on Model Extraction. IEEE Transactions on Software
Engineering, 28(4):364–377, April 2002.

3. Modex Homepage. URL: http://cm.bell-labs.com/cm/cs/what/modex/.
4. Spin Homepage. URL: http://spinroot.com/spin/.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, p. 24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The BLAST Software Verification System�

Thomas A. Henzinger1, Ranjit Jhala2, and Rupak Majumdar3

1EPFL
2UC San Diego

3UC Los Angeles

Blast is a verification system for checking safety properties of C programs.
Blast implements a lazy-abstraction algorithm, which integrates automatic ab-
straction refinement and model checking [8]. The input to Blast is a C program
and a safety monitor written in a specification language with C like syntax [1].
The lazy-abstraction algorithm returns either an error trace of the program to-
gether with a corresponding test case [2], or a proof that the program satisfies
the safety property [6] (or, since the problem is undecidable, the algorithm may
fail to terminate). Blast automatically constructs and refines a parsimonious
predicate abstraction of the input program, using an interpolation-based deci-
sion procedure to find, based on counterexample analysis, the relevant predicates
for each individual control location [5].

Blast has successfully verified and found violations of interface safety prop-
erties of large device driver programs [6,5], memory safety properties [3], race
conditions in nesC programs (using an extension for concurrent programs) [4],
and file handling properties of large open-source programs [9]. Extensions to
Blast support program testing [2] and incremental programming [7].

Blast is available from http://www.eecs.berkeley.edu/∼blast.

References

1. D. Beyer, A. Chlipala, T.A. Henzinger, R. Jhala, and R. Majumdar. The Blast
query language for software verification. In SAS 04, LNCS 3148, pp. 2–18. Springer,
2004.

2. D. Beyer, A. Chlipala, T.A. Henzinger, R. Jhala, and R. Majumdar. Generating
tests from counterexamples. In ICSE 04, pp. 326–335. ACM, 2004.

3. D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. Checking memory safety
with Blast. In FASE 05, LNCS 3442, pp. 2–18. Springer, 2005.

4. T.A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In PLDI 04, pp. 1–13. ACM, 2004.

5. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from
proofs. In POPL 04, pp. 232–244. ACM, 2004.

6. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In CAV 02, LNCS 2404, pp. 526–538.
Springer, 2002.

� This research was supported in part by the NSF grants CCR-0234690, CCR-0225610,
ITR-0326577, and CCR-0427202.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 25–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

26 T.A. Henzinger, R. Jhala, and R. Majumdar

7. T.A. Henzinger, R. Jhala, R. Majumdar, and M.A.A. Sanvido. Extreme model
checking. In Verification: Theory and Practice, LNCS 2772, pp. 332–358. Springer,
2003.

8. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL
02, pp. 58–70. ACM, 2002.

9. R. Jhala and R. Majumdar. Path slicing. In PLDI 05. ACM, 2005.

Model Checking Programs with Java PathFinder

Willem Visser1 and Peter Mehlitz2

1 Research Institute for Advanced Computer Science (RIACS)
2 Computer Sciences Corporation (CSC),

NASA Ames Research Center, Moffett Field, CA 94035, USA
{wvisser, pcmehlitz}@email.arc.nasa.gov

In recent years there has been an increasing move towards analyzing software
programs with the aid of model checking. In this tutorial we will focus on one
of the first model checkers developed specifically for analyzing programs - Java
PathFinder (JPF). JPF was awarded the 2003 Engineering Innovation award
from NASA’s Office of Aerospace Technology. JPF is freely available and the
development became an open-source project in April 20051. JPF has been used
on numerous NASA applications, including, Mars Rover control, Deep-Space 1
fault protection, and Shuttle ground control software as well as on software from
companies such as Fujitsu.

JPF is an explicit-state model checker that analyzes Java programs on the
bytecode level. Since it works on the bytecode level, it can deal with all Java’s
language features, including, concurrency, dynamic class loading, dynamic cre-
ation of threads and objects, garbage collection, exception handling, etc. The
tutorial will highlight the main capabilities of the tool and also its current weak-
nesses. One of the core design decisions was to create a modular tool that could
easily be understood and extended by others. A core component of the tutorial
will be an introduction to the tool architecture as well as the features making
it extensible (Listener interfaces and the Model Java interface). In addition we
will discuss the features of the tool that make model checking Java programs
tractable, these will include, state compression and storage, dynamic partial-
order reduction and using search heuristics.

To give an indication of the current research direction of JPF the last part of
the tutorial will focus on the tool’s new features, such as the symbolic execution
and test-case generation facilities. JPF supports symbolic execution of linear in-
teger arithmetic as well dynamically allocated structured data (e.g. linked lists,
red-black trees, etc.). We will show how a simple extension of JPF allows the
combination of symbolic execution, predicate abstraction and shape analysis for
efficient test-input generation.

We will conclude the tutorial with a discussion of our experiences of using
the tool for the past five years and where we believe the biggest challenges for
software model checking is in the future.

1 http://javapathfinder.sourceforge.net

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, p. 27, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Incremental Heap Canonicalization
Algorithm

Madanlal Musuvathi1 and David L. Dill2

1 Microsoft Research, Redmond
madanm@microsoft.com

2 Computer Systems Laboratory, Stanford University
dill@cs.stanford.edu

Abstract. The most expensive operation in explicit state model check-
ing is the hash computation required to store the explored states in a hash
table. One way to reduce this computation is to compute the hash incre-
mentally by only processing those portions of the state that are modified
in a transition. This paper presents an incremental heap canonicalization
algorithm that aids in such an incremental hash computation. Like exist-
ing heap canonicalization algorithms, the incremental algorithm reduces
the state space explored by detecting heap symmetries. On the other
hand, the algorithm ensures that for small changes in the heap the re-
sulting canonical representations differ only by relatively small amounts.
This reduces the amount of hash computation a model checker has to
perform after every transition, resulting in significant speedup of state
space exploration. This paper describes the algorithm and its implemen-
tation in two explicit state model checkers, CMC and Zing.

1 Introduction

There is a practical need to apply verification techniques to large software sys-
tems. In this vein, explicit state model checkers that systematically enumerate
the possible states of a given system have been successful in finding complex
errors, and sometimes proving their absence in software systems [1,2,3,4].

Apart from the well known state explosion problem, one challenge in scaling
explicit state model checkers to large systems is the sheer size of individual
system states. These model checkers store the explored states in a hash table
to avoid exploring them redundantly. The hash computation required in this
process is the most time consuming operation during model checking [5]. At the
minimum, computing a hash value requires a few arithmetic operations for every
byte of the state. This can be very expensive, especially for states that are tens
or hundreds of kilobytes.

One way to reduce the hash computation overhead is to compute the hash
incrementally. During model checking, a transition is very likely to modify only
small portions of the state. By accounting for these differences between the
initial and final state of a transition, and using a suitable hash function, a model
checker can generate the hash value of the final state by incrementally updating

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 28–42, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Incremental Heap Canonicalization Algorithm 29

the hash value of the initial state. (See §2.3 for details.) This amortization of hash
computation over the unmodified portion of the state can significantly improve
the speed of state space exploration.

Implementing such an incremental hashing scheme is complicated by the need
for software model checkers to perform heap canonicalization [6,7]. Almost all
non-trivial programs allocate memory in the heap. Heap canonicalization is a
state space reduction technique that enables model checkers to identify states
that are behaviorally equivalent but differ only in the memory locations of heap
objects. To identify such equivalent states, a model checker executes a heap
canonicalization algorithm to transform a state to a canonical representation
that is unique for all equivalent states. This canonical representation is then
inserted in the hash table.

Unfortunately, the only known heap canonicalization algorithm [7] does not
admit incremental processing. This algorithm performs a depth first traversal of
the heap, and the canonical representation of each object depends on its depth
first ordering. As a result, even small structural changes to the heap, such as
object additions or deletions can modify the canonicalization of a large number
of objects in the heap. Thus, even when a transition modifies small portions
of the state, the canonical representations of the initial and final states can be
significantly different. This forces the model checker to process large portions of
the state during hash computation.

This paper presents an improved, incremental heap canonicalization algo-
rithm. Like [7], this algorithm generates a unique canonical representation for
all equivalent heap states. However, this algorithm ensures that small changes to
the heap only result in relatively small changes in the canonical representation.
This allows the model checker to perform incremental hash computation. The
basic idea of the incremental algorithm is to determine the canonicalization of
a heap object from its shortest path to some global variable. When a transition
makes small changes to the heap structure, the shortest path of most objects
is likely to remain the same [8,9]. A model checker only needs to process those
objects whose shortest paths have changed in a transition.

We have implemented this incremental algorithm in two explicit state model
checkers, CMC [4] and Zing [10]. The algorithm is very easy to implement, and
can handle arbitrary data structures in the heap, including type-unsafe pointers.
We have applied the algorithm for several large models and have achieved an
improved performance in all of them (§5). For the examples we have tried the
model checker processes at most 5% of the objects in the heap during hash
computation using the incremental heap canonicalization algorithm. This results
in a model checking speedup of 2 to 9 times. While providing this speedup,
the incremental algorithm preserves the state space reduction provided by the
previous heap canonicalization algorithm [7].

2 Preliminaries

This section describes the necessary formalisms required to explain the main
ideas in the paper. Motivated by our efforts in checking C programs, we will

30 M. Musuvathi and D.L. Dill

not assume that the heap pointers are type-safe. Specifically, we will allow a
pointer variable to point to objects of different types at different instances in the
program. Also, we will allow these variables to point to arbitrary fields in the
object.

2.1 Heap Objects

At any instant, the program state includes a collection of heap objects occupying
memory addresses from a countably infinite set H . To allow arbitrary pointer
arithmetic, we define the normal arithmetic operations, such as +, ≤, over H in
the obvious way.

A heap object is identified by its start address ∈ H . For an object p, len(p)
represents the length of the object. The fields of an object p of length l occupy
memory locations in the range [p, p+ l). For simplicity, assume that a field of an
object p is named by its integer offset f in p, where 0 ≤ f < len(p). The term
p[f] denotes the value of a field f in p. For our purposes, we will assume that
p[f] is either an integer, a pointer value ∈ H , or the special null pointer. An
object p points to another object q exactly when there is a field f of p such that
q ≤ p[f] < q + len(q). In this case, p[f] is a pointer to q and p is said to contain
a pointer to q.

2.2 Program State

Apart from the heap, the state of a program at any instant consists of all the
global variables and the stacks of all the threads. We seek to capture the entire
state of the program in the heap as follows.

Conceptually, all the global variables in a program can be considered as fields
of a global root object that represents the statically allocated region in memory.
For ease of exposition, assume that the addresses of all global variables are in
H . Also, the stack of each thread is represented as a linked-list of stack frames,
where each stack frame is a heap object. We assume that for each thread there
is a field in root that points to its stack. 1

The program state S is a set of objects {root = p0, p1, p2, . . . , pn}. Given a
state S, we assume that all objects in S do not overlap in memory. In other
words, for any pi, pj ∈ S, pi �= pj ⇒ pi < pj ∨ pi ≥ pj + len(pj). Also, we assume
that all objects in a state are reachable from the root object. That is, for any
object p ∈ S, there is a sequence 〈root = p0, p1, . . . , pn = p〉 such that pi points
to pi+1 for 0 ≤ i < n. We assume that any object that is not reachable from the
root object is automatically removed from the state. 2

1 We also assume that each thread is statically identified by a unique identifier. De-
tecting thread-symmetries by permuting these identifiers is an interesting problem,
but beyond the scope of this paper.

2 Such memory-leak detection (or garbage collection) can be done during the canoni-
calization algorithm described in Section 4.

An Incremental Heap Canonicalization Algorithm 31

2.3 Incremental Hashing of State

The performance bottleneck in an explicit model checker is the hash computa-
tion required when storing the state in a hash table. One way to mitigate the
performance overhead is to compute the hash incrementally as follows.

For a given state, the model checker computes a partial hash value for each
object in the state. The hash value of the entire state is obtained from these
partial hash values. The goal is to cache these partial hash values with objects,
and recompute them only when a transition explored by the model checker
modifies the object. However, if an object remains unmodified in a transition, its
cached value can be used when computing the hash value of the final state. This
amortization of hash computation across states improves the model checking
performance.

Formally, we assume the existence of three hash functions ho, hS , and hu

defined as follows. For an object p of length l, there is a hash function ho that
takes l + 1 arguments. The partial hash value of p is given by

H(p) = ho(p, p[0], p[1], . . . , p[l − 1])

Note, to minimize hash collisions any good hash function should use values of
all the fields in an object. Also, to avoid collisions between objects whose values
are permutations of each other, the hash function should use the location of the
object in the state. For a state S = p0, p1, . . . , pn, there is a hash function hS

that generates the hash for the state using the partial hash values of the objects.

H(S) = hS(H(p0), H(p1), . . . , H(pn))

Finally, we assume that H(S) can be incrementally updated. Let S(p, p′) repre-
sent the state obtained from S by modifying the object p ∈ S by p′ and leaving
all other objects unmodified. One of p or p′ can be null to represent object al-
locations and deletions respectively. Given S′ = S(p, p′) assume there is a hash
update function hu to obtain the hash value of S′.

H(S(p, p′)) = hu(H(S), H(p), H(p′))

Typically, the update function hu is computationally much more efficient than
ho or hS . After a transition, a model checker applies ho on all object modified
in a transition and then uses hu once for each modified object to determine the
hash value of the final state. In effect, the cost of computing the hash value is
proportional to the total size of the objects modified in a transition.

In practice, it is very straightforward to design hash functions ho, hS, hu from
existing hash functions. See Appendix B for such an example. Also for simplicity,
the presentation above assumes that the incremental hashing is performed at the
granularity of individual heap objects. However, implementations might choose
to perform incremetnal hashing at finer granularities, especially when objects
are large. The results in this paper can be easily extended in such cases.

The main goal of this paper is to allow this incremental hash computation
when model checkers perform heap canonicalization.

32 M. Musuvathi and D.L. Dill

3 Heap Canonicalization

This section describes the need for heap canonicalization when model check-
ing software programs and presents an informal description of the Iosif’s algo-
rithm [7].

When a program dynamically allocates objects in the heap, the exact memory
location of these objects is arbitrary from the perspective of the program. The
memory location of an object is determined by some internal heap allocation
algorithm and typically depends on the order of all previous object allocations
and deletions.

When a model checker explores different event interleavings during state ex-
ploration, it can generate multiple representations of the heap that differ in the
memory locations of the objects, but are otherwise equivalent. For example, Fig-
ure 1 shows two representations of a linked list with three elements. The two
representations differ in the memory locations of the second and the third el-
ement in the list. As heap objects can be accessed only through pointers from
global variables or other heap objects, no program can differentiate between the
two different representations in Figure 1. 3 From the perspective of the model
checker, these two representations describe the same state, and thus should ex-
plore at most one of them.

Two Canonical Heap Structures Associated Heap Graph

a b c

a bc

null

null

1 1
a b c

Fig. 1. Two equivalent representations of a linked list, and their common heap graph.
This first element of the linked list is the global node.

3.1 The Heap Graph

To formalize the notion of the equivalence of heap states, one can introduce the
notion of a heap graph. Informally, a heap graph abstracts the memory locations
of the heap objects, while maintaining information about the pointers to these
objects.

Given a state S, the heap graph G(S) is defined as follows. For each object
p ∈ S, G(S) contains a vertex given by V (p). There is a directed edge in G(S)
from V (p) to V (q) if and only if p points to q in S. This edge is labeled by the
offset of the field in p that contains the pointer to q. For instance, the heap graph
3 Even in C programs, which are allowed to inspect the value contained in pointers,

any behavior that relies on absolute values of the pointers can be safely marked as
an error.

An Incremental Heap Canonicalization Algorithm 33

of the linked list is shown in Figure 1. Obviously, no two outgoing edges of an
object have the same label. Each node in the heap graph is labeled by the values
of all the non-pointer fields in the corresponding object as shown in Figure 1.

Propostion 1. A program cannot differentiate between two states S1 and S2 if
their heap graphs G(S1) and G(S2) are isomorphic.

Basically, a heap graph captures the entire state of the heap along with all the
global variables, but abstracts the memory addresses contained in the pointer
variables.

3.2 The Canonical Representation of a Heap

The aim of a heap canonicalization algorithm is to produce the same canoni-
cal representation for all heaps that have the same heap graph. By computing
the hash on this canonical representation, the model checker can ensure that it
explores at most one among the possible equivalent states.

The generation of a canonical representation can be considered as a relo-
cation of the objects in the heap. Conceptually, the canonicalization algorithm
relocates each object to a canonical location determined by the algorithm. After
relocation, the algorithm modifies all pointers to an object to reflect this new
location.

Formally, a canonicalization algorithm defines a relocation function reloc :
H → H such that reloc(p) determines the canonical location of an object p ∈ S.
We restrict the reloc function to have the following desirable properties. First,
it is not necessary to relocate the root object. Thus,

reloc(root) = r, for a constant r (1)

Second, it is desirable to relocate heap objects in their entirety. In other words,
the offset of fields in an object should be invariant during relocation.

reloc(p + f) = reloc(p) + f, ∀f : 0 ≤ f < len(p) (2)

Equations 1 and 2 imply that a particular heap canonicalization algorithm only
defines the relocation function for start addresses of heap objects. The two equa-
tions determine the relocation for other addresses ∈ H .

Finally, there is a constraint on the relocation function defined by any heap
canonicalization algorithm. The reloc function should not overlap objects in the
canonical heap. That is, for all p, q ∈ H

reloc(p) = reloc(q) ⇐⇒ p = q (3)

Given a relocation function that satisfies the above constraints, the canonical
representation of a state can be obtained as follows. First, relocate each object
p ∈ S to the location reloc(p). Also, if an object p points to q, modify the pointer
value to reflect the new location of q. The values of all non-pointer fields do not
change in this relocation. That is,

reloc(p)[f] .=
{

reloc(p[f]) if p[f] ∈ H
p[f] otherwise

34 M. Musuvathi and D.L. Dill

Abusing notation we will define reloc(S) as the state thus obtained from S.
The goal of a heap canonicalization algorithm is define a relocation function

such that reloc(S) = reloc(S′) whenever the heap graphs G(S) and G(S′) are
isomorphic. Given a state S, a model checker computes reloc(S′) and inserts
the latter in the hash table. Note, it is not necessary to physically relocate the
objects in the heap. The model checker merely applies the reloc function on all
pointer values in the heap when computing the hash.

3.3 Iosif ’s Algorithm

Iosif’s algorithm [7] involves a depth first traversal of the heap graph starting
from the root object. The traversal uses the edge labels in the heap graph to
deterministically order all outgoing edges of a node. 4 The algorithm relocates
the heap objects in the heap in the order visited by the traversal. Specifically, if
pi represents the object with depth first order number i, then

reloc(pi) =
i−1∑
j=0

len(pj) (4)

Note that the above relocation function satisfies the constraint in Equation 3.
Figure 2(a) shows an example. The heap consists of three objects in a binary

tree. The head node is the root object and contains pointers to a left node and a
right node. Assuming that the size of these nodes is 3 word lengths, the algorithm
relocates the head, left and right nodes at offsets 0, 3 and 6 respectively in the
canonical heap. Also, after relocating the objects, the algorithm modifies the left
and right pointers in the head node to point to the respective objects in their
new locations.

The correctness of the Iosif’s algorithm is as follows. If two heap states have
the same heap graph, then the algorithm will visit the heap objects in the same
order and relocate them at the same locations. This produces the same canonical
representation.

3.4 Need for an Incremental Algorithm

Now we can see why Iosif’s algorithm is not suitable for incremental hash com-
putation — it unnecessarily modifies the relocation of objects in the canonical
heap. To illustrate this, consider the heap in Figure 2(a) and a transition that
deletes the left node in the binary tree. Figure 2(b) shows the resulting heap and
the canonical representation generated by the Iosif’s algorithm. The algorithm
locates the right node at offset 3 in the canonical heap, while the node had an
offset 6 before the transition. This change in the location invalidates the pre-
computed hash value for the right node, even though the node was not modified
in the current transition.
4 Without such an ordering, the heap canonicalization problem is an instance of the

graph isomorphism problem, and so is intractable [11].

An Incremental Heap Canonicalization Algorithm 35

Head

Right

(b)

0 3 6

3 60

Left Right

Head

RightLeftHead

Right

Head

(c)

(a) Heap

Heap After Object Deletion

Canonical Heap by Incremental Algorithm

0 3 6

Head Right

Canonical Heap by Iosif’s Algorithm

Canonical Heap

Head

Right

Fig. 2. Demonstration of Heap Canonicalization before and after a transition that
deletes a node. The head node is global.

In general, Iosif’s algorithm determines reloc(p) from the depth first order
number of p in the heap graph (see Equation 4). Any change in the heap graph
can potentially modify the relocation of all objects after the change in the depth
first order. For instance, one can expect an object addition or deletion to modify
on average the relocation of half of all the heap objects. Moreover, whenever
reloc(p) changes, the algorithm needs to modify all the pointers to p. This in-
validates the precomputed hash for any object that contains such a pointer.
In practice, the Iosif’s algorithm requires recomputing the hash value for large
portions of the heap, drastically slowing the model checker performance.

4 Incremental Heap Canonicalization

This section describes an incremental heap canonicalization algorithm that im-
proves upon the Iosif’s algorithm.

The incremental algorithm has two requirements. First and foremost, the
algorithm should guarantee heap canonicalization, and thus generate the same
canonical heap for all equivalent heaps. Second, the algorithm should seek to
reduce unnecessary changes to the canonical representation for small changes in

36 M. Musuvathi and D.L. Dill

the heap. Ideally, after every transition the model checker should only need to
recompute the hash for objects that are modified in the transition.

To illustrate this, consider the example in Figure 2. When the transition
deletes the left node, the incremental algorithm generates a canonical heap as
shown in Figure 2(c). Note, the right node remains at offset 6 in the canoni-
cal heap both before and after the transition. This enables the model checker
to reuse the hash computed for the object before the transition. To guarantee
canonicalization, the incremental algorithm should produce the canonical heap
in Figure 2(c) for any heap equivalent to the state in Figure 2(c). It is important
to note once again that the canonical heap is a conceptual representation used
during hash computation – the heap itself is not physically modified. In partic-
ular, the empty space between the two objects in Figure 2(c) does not represent
unreclaimed space in the heap.

The basic idea behind the incremental algorithm is to determine the relo-
cation of an object from the bfs access chain of the object, which is a shortest
path between the object and the global object. For example, the right node in
Figure 2 always has the same bfs access chain that consists of the right pointer
from the head node. Thus, the incremental algorithm always relocates the right
node at the same offset in the canonical heap, irrespective of other objects in
the heap. On small changes to a graph, the shortest paths between most objects
are likely to remain the same [8,9]. This is specifically so for the heap graph
of programs, which typically use large number of data structures that are only
weakly related.

4.1 Access Chains

Heap objects can only be accessed through pointers from global variables. For in-
stance, a C program can access the right node in Figure 2(a) with an expression
head->right. In general, a heap object p can be accessed through a chain of point-
ers. This access can be represented by the sequence root = p0, f0, p1, f1, . . . , pn =
p, where fi is the offset of a field in pi that contains a pointer to pi+1, for 0 ≤ i < n.
In the heap graph, this chain forms a path starting from root. This path is uniquely
defined by the offset labels on the path edges.

Formally, an access chain of a heap object p is a path in the heap graph
from the root object to p and is denoted by 〈f0, f1, . . . , fn−1〉, the list of offset
labels on the path edges. For instance, the access chain of the third element in
the linked list of Figure 1 is 〈1, 1〉, assuming that the first element is the root
object. Also, the root object has an empty access chain 〈〉.

4.2 BFS Access Chain

A breadth first traversal of the heap graph naturally defines an access chain for
objects in the graph. During a breadth first traversal, the edges used to traverse
the graph form a spanning tree of the graph rooted at the global node. For any
object in the graph, this spanning tree provides a shortest path from the global
node to that object. Obviously, the access chain that corresponds to this path is

An Incremental Heap Canonicalization Algorithm 37

one of the shortest of all access chains for the object. Additionally, if the breadth
first traversal traverses the edges from an object in the increasing order of their
offset labels, then the access chain constructed above is guaranteed to be the
lexicographically smallest of all shortest access chains of the object.

Formally, a bfs access chain of an object p given by 〈p〉, is the access chain
〈f0, f1, . . . , fn〉 such that for any other access chain 〈g0, g1, . . . , gm〉 of the object
the following holds: either m > n; or m = n and there is an i < n such that
for all 0 ≤ j < i, fj = gj and fi < gi. The bfs access chain of all objects in
the heap graph can be constructed by performing a breadth first traversal of the
graph that traverses all outgoing edges of a node in the edge label order. Given
a heap graph, the bfs access chain of an object is unique. The incremental heap
canonicalization algorithm uses this chain to determine the location of objects
in the canonical heap.

4.3 Defining the reloc Function

A heap canonicalization algorithm is defined by the reloc function that deter-
mines the location of a heap object p in the canonical representation. The aim
of the incremental algorithm is to define reloc such that reloc(p) depends only
on 〈p〉.

Also, in a type unsafe language such as C, a single pointer field can point
to objects of multiple types, and hence multiple lengths. Accordingly, objects of
different lengths can have the same bfs access chain. To differentiate such objects
in the canonical representation, we also require that reloc(p) depends on len(p).
This, as will be explained below, is also crucial to satisfy Equation 3.

In summary, the incremental algorithm seeks for a function canon that takes
〈p〉 in a suitable encoding and len(p) as arguments, and returns reloc(p).

reloc(p) ≡ canon(〈p〉, len(p)) (5)

The next task is to obtain an encoding for 〈p〉. Let 〈p〉 = 〈f0, f1, . . . , fn〉.
If parent(p) is the parent of the object p in the breadth first traversal of the
heap graph, then 〈parent(p)〉 = 〈f0, f1, . . . , fn−1〉. This hints at an encoding
for 〈p〉 from the encoding for 〈parent(p)〉 and fn. Using Equation 5 recursively,
the following theorem shows that reloc(parent(p) + fn) provides the necessary
encoding for 〈p〉.
Theorem 1. For any arbitrary function canon : H × N → H and for a heap
object p, the relocation function defined by

reloc(p) .= canon(reloc(parent(p) + fn), len(p)) (6)

relocates two objects with the same bfs access chain and the same length to the
same location in the canonical heap.

Proof: The proof follows from a simple induction on the depth of the bfs access
chain of an object. Note, the theorem only specifies the relocation function for

38 M. Musuvathi and D.L. Dill

the start address of heap objects. The relocation of other addresses in H is
automatically given by Equations 1 and 2.

The global object has an empty bfs access chain and the base step trivially
follows from Equation 1. Assume the theorem holds for all objects with a bfs
access chain of length ≤ n. Consider two objects p1, p2 such that they have the
same length and the same bfs access chain. Let

〈p1〉 = 〈p2〉 = 〈f0, f1, . . . , fn〉
Obviously, parent(p1) and parent(p2) have the same bfs access chain of length n.

〈parent(p1)〉 = 〈parent(p2)〉 = 〈f0, f1, . . . , fn−1〉
By induction

reloc(parent(p1)) = reloc(parent(p2))

Using Equation 2,

reloc(parent(p1) + fn) = reloc(parent(p2) + fn)

This from Equation 6 and the fact that len(p1) = len(p2) implies that

reloc(p1) = reloc(p2)

�

Note that fn is the offset of the field in parent(p) that points to p, and thus
reloc(parent(p) + fn) represents the address of that field in the canonical heap.
Theorem 1 essentially shows that 〈p〉 can be captured by this address in the
canonical heap. This greatly simplifies the implementation of the incremental
canonicalization algorithm.

The following theorem follows.

Theorem 2. For an arbitrary function canon : H × N → H, the relocation
function defined by Equation 6 generates the same canonical representation for
two heaps with the same heap graph, provided Equation 3 holds.

Proof: The bfs access chain is an inherent property of an object in the heap graph.
Thus, given two heaps with the same heap graph, equivalent objects in the two
heaps have the same bfs access chain. The proof follows from Theorem 1. �

4.4 Designing the canon Function

By Theorem 2, heap canonicalization is guaranteed for any function canon :
H × N → H provided the resulting reloc function satisfies the constraint in
Equation 3. The final task is to design one such function.

Without apriori knowing the length of the objects with different bfs access
chains, a closed form for the canon function is not possible. The trick then, is to
define the canon function incrementally during model checking. The algorithm

An Incremental Heap Canonicalization Algorithm 39

is shown in Figure 3 and implements canon as a hash table. Initially, the hash
table is empty. When the value for canon(addr, len) is required for a new address
length pair, the algorithm allocates a new region in the canonical heap of the
required length. This region is never reused for other address length pairs. Thus
no overlap is possible in the canonical heap, satisfying Equation 3.

The canon hash table is a global table maintained by the model checker.
During state exploration, the model checker can add new entries to the ta-
ble, but can never modify an existing entry or delete it. This ensures that the
hash table implements a function which is essential from Theorem 2 for heap
canonicalization. Also, the size of the canon table grows as the model checker
discovers different bfs access chains in the program. However, the number of
such chains tends to stabilize once the data structures are initialized in the pro-
gram. In our experiments (§5), the canon table did not exceed ten thousand
entries.

As a demonstration of the algorithm, consider the example in Figure 2. After
processing the state in Figure 2(a), the canon table maintains the following
mapping: (0, 3) → 3 and (2, 3) → 6. In other words, the canon table remembers
that an object of length 3 pointed from the offset 2 (the right pointer) of the
head node should be relocated at offset 6 in the canonical heap. Now, when
the left node is deleted, the mapping maintained above produces a canonical
representation in Figure 2(c) as desired.

5 Experimental Results

We have evaluated the incremental heap canonicalization algorithm in two ex-
plicit model checkers, CMC [12] and Zing [10]. CMC is specifically designed
for checking network protocol implementations. It executes the implementation
directly without resorting to any intermediate representation. A transition in-
volves the entire processing of a protocol event, such as packet receives or timer
interrupts, and can typically involve more than tens of thousands of instruc-
tions. Zing focuses on detecting concurrency errors in large software programs.
The input language is designed for automatic translation of software programs
into Zing models, and provides support for dynamic object and thread creation.
Zing explores thread interleavings at much finer granularity than CMC, and a
transition in Zing typically involves few instructions.

CMC and Zing represent two fundamentally different model checkers, and
the incremental heap canonicalization algorithm performs well in both of them.
Table 1 shows the improvement achieved by the model checkers on three large
models. As the state sizes grow, the incremental algorithm fares much better than
the non-incremental version. In these examples, the model checker processes only
5% of the heap per transition. As a result, the model checker runs 2 to 9 times
faster.

40 M. Musuvathi and D.L. Dill

Table 1. Performance improvement of the Incremental Canonicalization Algorithm

Model State No. of Heap % Modified % Accessed Model Checker
Size (KB) Objects (avg) per Transition for Hashing Speedup

Tx. Manager (Zing) 1.3 46.0 0.16 4.25 x2.15
File System (Zing) 4.1 364.1 0.4 2.18 x3.59
Linux TCP (CMC) 255.7 102.7 4.96 5.06 x8.85

In the Linux TCP case, the incremental algorithm almost always processes
only the objects that are modified by the system. However, this is not the case
with the Zing models. We believe that this is due to a deficiency of the algorithm
implementation in Zing. Specifically, the algorithm does not process the thread
stack frames incrementally. We hope to rectify this very soon.

While running our experiments, we found that both CMC and Zing spend
their time in performing the breadth-first traversal of the heap required for
the incremental algorithm, and not on the hash computation. However, note
that such a full-heap traversal is required even to check for memory leaks (or
to perform garbage collection). One way to avoid this full-heap traversal is to
implement an incremental shortest path algorithm, such as [13], for computing
the bfs access chains and for detecting memory leaks. We hope to pursue this
approach in our future work.

6 Related Work

The work presented in this paper is related to, and in many ways relies on
the observations made in [6,7]. The need for heap canonicalization was first ob-
served by Lerda et.al. [6]. However, they only provide a heuristic algorithm that
does not guarantee uniqueness of the canonical representation for all equivalent
heaps. Iosif’s algorithm [7] is the only previously known heap canonicalization
algorithm to guarantee this uniqueness. This algorithm has been extended to
support thread symmetries [14]. Extending the incremental heap canonicaliza-
tion algorithm to recognize thread symmetries is interesting future work.

Other researchers have observed the expensiveness of state hashing in explicit
model checking [5]. In [15], Dillinger et.al. provide a method to reduce the number
of hash functions required for bitstate hashing. This approach is orthogonal to
the approach presented in the paper and can be used together.

7 Conclusions

This paper presents an incremental heap canonicalization algorithm that is nec-
essary when explicitly model checking large software programs. As demonstrated
by the experiments, the incremental algorithm scales well to large heaps by gen-
erating the canonical representation of a heap incrementally.

An Incremental Heap Canonicalization Algorithm 41

References

1. Holzmann, G.J.: From code to models, Newcastle upon Tyne, U.K. (2001) 3–10
2. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng,

H.: Bandera: Extracting finite-state models from java source code. In: ICSE 2000.
(2000)

3. Brat, G., Havelund, K., Park, S., Visser, W.: Model checking programs. In: IEEE
International Conference on Automated Software Engineering (ASE). (2000)

4. Musuvathi, M., Park, D., Chou, A., Engler, D.R., Dill, D.L.: CMC: A Pragmatic
Approach to Model Checking Real Code. In: Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation. (2002)

5. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison
Wesley, Boston, Massachusetts (2003)

6. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking.
Lecture Notes in Computer Science 2057 (2001) 80–102

7. Iosif, R.: Exploiting Heap Symmetries in Explicit-State Model Checking of Soft-
ware. In: Proceedings of 16th IEEE Conference on Automated Software Engineer-
ing. (2001)

8. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Incremental algorithms for
single-source shortest path trees. In: Proceedings of Foundations of Software Tech-
nology and Theoretical Computer Science. (1994) 112–224

9. Narvaez, P., Siu, K.Y., Tzeng, H.Y.: New dynamic SPT algorithm based on a
ball-and-string model. In: INFOCOM (2). (1999) 973–981

10. Andrews, T., Qadeer, S., Rehof, J., Rajamani, S.K., Xie, Y.: Zing: Exploiting
program structure for model checking concurrent software. In: Proceedings of the
15th International Conference on Concurrency Theory. (2004)

11. Gary, M.R., Johnson, D.S. In: Computers and Intractability. Freeman (1979)
12. Musuvathi, M., Park, D., Chou, A., Engler, D., Dill, D.: CMC: A pragmatic

approach to model checking real code. In: Proceedings of Operating Systems Design
and Implementation (OSDI). (2002)

13. Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of
the shortest-path problem. J. Algorithms 21 (1996) 267–305

14. Robby, Dwyer, M.B., Hatcliff, J., Iosif, R.: Space-reduction strategies for model
checking dynamic software. In: SoftMC03 Workshop on Software Model Checking,
Electronic Notes in Theoretical Computer Science. Volume 89. (2003)

15. Dillinger, P.C., Manolios, P.: Bloom filters in probabilistic verification. In: Formal
Methods in Computer-Aided Design (FMCAD). (2004)

16. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Journal of
Computing and System Sciences. (1979) 143–154

17. Cormen, T.H., Leiserson, C.L., Rivest, R.L. In: Introduction to Algorithms. MIT
Press (1990)

42 M. Musuvathi and D.L. Dill

A Implementation of the canon Function

See Figure 3

canon_table; //implemented as a hash table
unalloc_address = canonical_heap_address_start;

canon(parent_ptr, len){
if (canon_table[parent_ptr, len] is defined){

return canon_table[parent_ptr, len];
}
else{

// incrementally define canon for (parent_ptr, len)
canon_table[parent_ptr, len] = unalloc_address;
unalloc_address += len;
return canon_table[parent_ptr, len];

}
}

Fig. 3. The implementation of the canon function

B Example of an Incremental Hash Function

One example that is shown below is the universal hash function [16] described
in [17]. Given a state x consisting of n bytes x = {x1, . . . , xn}, a hash table of
size m where m is prime, and a random array r of n elements r = {r1, . . . , rn}
such that 0 ≤ ri ≤ m − 1, the hash function is given by

h(x) =
n∑

i=1

rixi (mod m)

An object p of length l in the state consists of the following bytes {xp, xp+1, . . . ,
xp+l−1}. Thus, its partial hash value is the following partial sum.

H(p) =
p+l−1∑

i=p

rixi (mod m)

The hash value of the entire state is the sum (modulo m) of the partial hash
valuse of all objects in the state. The hash update function is simply

H(S(p, p′)) = H(S) − H(p) + H(p′) (mod m)

Memory Efficient State Space Storage
in Explicit Software Model Checking

Abstract. The limited amount of memory is the major bottleneck in
model checking tools based on an explicit states enumeration. In this
context, techniques allowing an efficient representation of the states are
precious. We present in this paper a novel approach which enables to
store the state space in a compact way. Though it belongs to the family
of explicit storage methods, we qualify it as semi-explicit since all states
are not explicitly represented in the state space. Our experiments report
a memory reduction ratio up to 95% with only a tripling of the computing
time in the worst case.

1 Introduction

Model checking is a powerful and automatic technique for the verification of
finite state systems. It consists of enumerating all the possible configurations
(states) or actions of the system to track the ones which do not match the speci-
fication, usually expressed in a temporal logic, e.g. LTL. To preserve termination
and to improve efficiency, model checking algorithms have to keep track of the
visited states in a state space (or reachability set).

Algorithms based on an explicit state enumeration suffer from thewell-known
state explosion problem. Due to the concurrent execution of several components,
the number of possible configurations can be far too large to fit in memory or
even on a disk. In a first family of techniques designed to alleviate this problem,
we can put all those which aim at reducing the number of visited states while still
preserving the property to verify. Examples of such techniques include partial
order reductions and symmetry-based reductions. A second family of techniques
aim at representing the state space in an efficient way in order to limit the mem-
ory allocated to store the state space. State compression techniques and state
caching are examples of such techniques.

Methodswhich belong to the first familyusually achieve better reductionsof the
amount of memory required since, in most systems, the number of visited states
is an exponential function of the number of concurrent process. However, a wise
choice for the representation of the state space can still perform a significant
reduction of the memory requirement. Moreover, the use of such techniques is
especially needed when model checking is applied to software specification or

CEDRIC - CNAM Paris,
292, rue St Martin, 75003 Paris
{evangeli, peyre}@cnam.fr

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 43–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sami Evangelista and Jean-François Pradat-Peyre

models extracted from source code, since the state descriptor of these models
can grow very large as it may represent complex data such as heap allocated
objects.

This paper presents a compression method which falls into the second family.
We qualify our method as semi-explicit since states may not be explicitly rep-
resented in the state space. The underlying idea of the method is conceptually
simple but reveals to be very useful in practice. Moreover, it is not specific to the
formalism used in this paper (colored Petri nets) and it could easily be adapted
to other formalisms. Thus we formulate our ideas in general terms. Last but not
least, our technique can be further combined with the state collapsing method
[1, 2] to lead to better state representations.

The remainder of this work is organized as follows. Section 2 is a brief
overview of the methods proposed so far to represent the state space in explicit
state model checking. Section 3 recalls some basic concepts of colored Petri nets.
Our storage method is presented in Section 4. The results of some experiments
made with our model checker are presented in Section 5. Section 6 discusses
the compatibility of our method with other techniques used in explicit state
model checking and presents some directions for future research. Lastly, Section
7 presents our conclusions.

2

This section draws up an overview of the methods used to represent the state
space in explicit model checking. These methods can be classified in three cat-
egories: exhaustive storage, partial storage, and lossy storage. The method we
propose in this paper belongs to the first family.

Exhaustive storage methods build the complete state space of the system. Each
state met during the search is encoded by a reversible mapping into a state
vector and then stored in an adequate data structure, e.g., a hash table. In this
way, each state can be retrieved from its encoded form and checking whether
a state has already been visited becomes trivial. Compression techniques are
usually employed to optimize the encoding. Examples of compression techniques
are state collapsing [1], recursive indexing [2] (possibly improved by training runs
[2]), very tight hashing [3], sharing trees [4], difference compression [5], runtime
state compaction [6], or invariant-based compression methods for Petri nets as
it is done in [7] and [8]. Each method tries to provide efficient compression ratios
without introducing an unbearable increase in the running time.

Partial storage methods are based on the idea that it is not necessary to store all
the visited states to preserve the termination of the search algorithm, but rather
a portion of the state space. Perhaps the most famous method that follows this
paradigm is the state space caching method [9]. In state space caching, only the
states which belong to the search stack are stored in the state space in order to

State Space Representation in Explicit Model Checking

44 S. Evangelista and J.-F. Pradat-Peyre

avoid entering cycles which would endanger the termination of the algorithm.
Some other states may also be stored depending on the amount of memory still
available. The main limitation of state caching is the amount of redundant work
performed. Indeed, if only stack states are stored, each state s will be explored
once for every path leading from the initial state to s, causing an unacceptable
blowup in the execution time. It was observed in [9] that the use of partial order
methods greatly reduces this problem by limiting the exploration of redundant
paths. The main drawback of caching techniques is that the best replacement
strategy to adopt and the run time increase heavily depends on the structure of
the state space, and is thus hard to predict as observed in [10].

In [11], the authors proposed to improve reachability analysis via the use of
pseudo-root states. These states are characterized by the fact that all their pre-
decessors have already been visited during the search. This gives the possibility
to forget these states without endangering the termination of the search. Ex-
periments reported result in 2- to 16-fold improvement in space requirements.
This technique has the advantage of introducing little runtime overhead, since
any state is only visited once. Nevertheless, it relies on the ability to compute
predecessors of states which seems to us a strong requirement.

The sweep line method, another technique based on this observation, was re-
cently introduced in [12, 13]. It is inspired from the garbage collection mecha-
nism. It uses the notion of progress present in some systems, e.g., timed protocols,
to safely delete from the state space the states which cannot be reached again
from the set of unprocessed states. Preliminary results on this method are quite
promising. However, it suffers from the fact that a progress measure function
has to be supplied by the user. In [14] Schmidt gave a method to automatically
derive such a function from the incidence matrix of Petri nets, but it seems hard
to construct a “good” function for more complex formalisms.

More recently,Behrmann,LarsenandPelánek proposed in[15] several strategies
to decide whether or not a state has to be kept in the reachability set while still
preserving termination and efficiency.

Verisoft[16] is a software model checker that illustrates the partial storage strat-
egy to the extreme. Verisoft does not store any states at all. The termination is
guaranteed by limiting the search to a specified depth. It makes use of partial
order methods (sleep sets) to avoid multiple revisits of the same state.

Lossy storage In a lossy storage scheme, each state is mapped to a state vector
in a non-injective way before its insertion into the state space. Two different
states may thus share the same compressed representation. An example of tech-
nique that belongs to this family is the bitstate hashing technique of Holzmann
(or supertrace) [17]. Lossy storage methods greatly cut down the memory re-
quirement since an arbitrary small number of bits can be used to represent each
state, but suffer from an omission probability that a state may be erroneously
declared as already visited whereas it is new, leading to unexplored portions
of the state space. Wolper and Leroy showed in [18] that this probability can
be reduced by storing the whole hash signature in a hash table with conflict
resolution (the hashcompact method), or by using multiple hash functions (the

Memory Efficient State Space Storage in Explicit Software Model Checking 45

multihash method). However, this kind of technique cannot be used for verifi-
cation purposes, but rather at a debugging stage since the omission probability
cannot be reduced to 0.

3

We develop our method in the context of colored Petri nets [19]. Colored Petri
nets allow the modeling of complex systems in a compact way and support
numerous analysis techniques. In a colored Petri net, a place contains typed (or
colored) tokens instead of anonymous tokens of Petri nets, and a transition may
be fired in multiple ways, i.e., instantiated. To each place and each transition
is attached a type (or a color domain). Each arc of the net between a place
and a transition is labeled by a color mapping which specifies the type and the
number of tokens produced or consumed by the firing of the transition for a
given instantiation.

The definition of colored Petri nets is based on multi-sets. A multi-set over a set
S is a mapping from S to the set of positive integers. The set of multi-sets over a
set S is noted Bag(S). Addition, subtraction, and comparison of multi-sets are
defined as usual. States of colored Petri nets are also called markings.

Definition 1. A colored Petri net is a tuple N = 〈P, T, Σ, C, W−, W+, m0〉
where P is a finite set of places; T is a finite set of transitions, with P ∩T = ∅;
Σ, the colors set, is a finite set of finite and non empty sets; C, the color
domain application, is a mapping from P∪T to Σ; W− and W+, the backward
and forward incidence matrixes associate to each (p, t) ∈ P × T a color
mapping from C(t) to Bag(C(p)); and m0, an initial marking is an element of
MN , the set of mappings which associate each p ∈ P to an element of Bag(C(p)).

We now define the transition relation and the state space of colored Petri nets.

Definition 2. Let N = 〈P, T, Σ, C, W−, W+, m0〉 be a colored Petri net, t ∈
T, ct ∈ C(t) and m ∈ MN . The transition instance ct of t, noted (t, ct) is firable,
at m (noted m[(t, ct)〉) if and only if ∀p ∈ P, m(p) ≥ W−(p, t)(ct). The firing of
(t, ct) at m leads to a marking m′, (noted m[(t, ct)〉m′) defined by ∀p ∈ P, m′(p) =
m(p)−W−(p, t)(ct)+W+(p, t)(ct). The state space (or reachability set) of N ,
denoted by RN , is defined recursively as the set {m0} ∪ {m ∈ MN |∃m′ ∈ RN , t ∈
T, ct ∈ C(t)|m′[(t, ct)〉m}.

4

This section describes the Δ-markings method and is organized as follows.
Firstly, we present the general idea of the method. In a second step we give
a depth first search (DFS for short) algorithm based on it. Two direct opti-
mizations of the algorithm are then described. It is then shown how our method
can be combined with the state collapsing compression method to obtain very
compact representations. Lastly, we close the section with a short analysis of the
method.

Colored Petri Nets

The Δ-Markings Storage Method

46 S. Evangelista and J.-F. Pradat-Peyre

General idea In colored Petri nets, as in many other formalisms, the transi-
tion relation is a deterministic mechanism: the firing of a transition instance at a
marking leads to a single marking. On the basis of this determinism, we propose
to store some markings of the reachability set in a non explicit way: instead of
storing the actual value of a marking m, we only store a reference to one of its
predecessors m′ and a transition instance (t, ct) whose execution leads from m′

to m. Because of the determinism of the transition relation, this representation
of m′ is unambiguous although it is not canonical since a marking may have
several predecessors. Markings stored in this manner are called Δ-markings and
are said to be stored symbolically while markings stored in the usual way are
said to be stored explicitly.

Storing a reference to a marking and a transition instance should obviously lead
to better state representations, especially when the modeled system exhibits
large state vectors. However, this representation presents a drawback: the test
for checking whether or not a marking m is new or not can be significantly slowed.
This test usually entails comparing m to some marking(s) m′ stored in the state
space. In the classical scheme, m′ is stored as a vector of bits and so is encoded m

before its insertion into the state space. The comparison can then be efficiently
implemented by a bits vectors comparison. When the reachability set contains
Δ-markings, the operation is more complicated. Let us assume that we have a
sequence of markings m1, m2, . . . , mn = m′ such that m1 is stored explicitly and
each mi �= m1 is stored as a Δ-marking which points to mi−1 with the binding
(ti−1, ci−1) such that mi−1[(ti−1, ci−1)〉mi. The idea is then to backtrack to m1,
and to apply to it the firing of bindings sequence (t1, c1).(t2, c2) . . . (tn−1, cn−1)
to have an “explicit view” of m′. Once this operation realized, the comparison
of m and m′ becomes straightforward.

We will call a reconstitution the operation which consists in finding the actual
value from a Δ encoding, and the sequence of transition bindings which enables
to reconstitute a marking will be called a reconstituting sequence. The principle
of the reconstitution mechanism can be illustrated with the help of Figure 1.
Let us suppose, for instance, that we have to reconstitute marking m. To do so,
we will first have to backtrack to m′. Since it is not stored explicitly, we will
then have to backtrack to m0 and finally apply to it the reconstituting sequence
(t′, c′).(t, c). This operation allows us to retrieve the actual value of marking m.

The run time overhead caused by the method directly depends on the lengths
of the reconstituting sequences that are fired when the algorithm has to deter-
mine whether a marking is new or not. In order to place an upper bound on the
length of these sequences we use the underlying idea of the stratified caching
strategy [10]. We use a parameter kδ defined by the user which belongs to set of
positive integers. During the exploration of the state space, each marking met
at a depth d such that d mod kδ = 0 is stored explicitly. All other markings are
stored symbolically and point to one of their predecessors (by a doted arc on
the figure). By this way, we can guarantee that the length of each reconstituting
sequence is bounded by kδ − 1. This idea is illustrated by Figure 1.

Memory Efficient State Space Storage in Explicit Software Model Checking 47

.

Δ-marking pointer

Δ-marking

Explicit marking

Sequence firing

Transition firing

m0

m′

m

Depth = 0

Depth = kδ

Depth = 2.kδ

(t, c)

(t′, c′)

Fig. 1. A state space with Δ-markings

The algorithm We propose a search algorithm based on our method. Let us
point out that we arbitrarily choose to present here a depth first search algorithm
but that our method is not specific to this kind of search. The algorithm is given
in a pseudo code form in Figure 2. For the sake of simplicity, no distinction is
done between a transition and a transition instance.

Markings are stored in a hash table S using a hash function noted hash. To
manage collisions, each slot of the hash table contains a list of markings. When a
marking m is encountered we compare it to each marking m′ of the list contained
in the slot hash(m) to check whether it is new or not. To achieve this, the
function reconstitute is used to reconstitute a marking stored in the hash
table. It recursively backtracks to a marking stored explicitly and apply to it
the correct reconstituting sequence. Finally, if m is not in the hash table, it is
added to the list of slot hash(m). Depending on its depth, it is stored explicitly
or symbolically. If it is stored symbolically, it points to its predecessor in the
search stack. To achieve this, three additional parameters are passed to the dfs
procedure: the depth of the marking to explore, the predecessor of the marking
in the search stack, and the transition which leads from the predecessor to the
marking.

We can easily prove that the reconstitution functionreconstituteterminates,
i.e., it cannot enter in a cycle of Δ-markings, since each Δ-marking points to
its predecessor in the search stack and each kth

δ
marking in the search stack is

stored explicitly.

Speeding up the reconstitution process An efficient implementation of the
reconstitution process is crucial for the performances of our method. Moreover,
this makes usable the Δ-markings method with higher values of kδ, leading to
very condensed state spaces. We propose now two optimizations that aim at
reducing the reconstitution times. Several experiments, that are not reported in
this paper for space constraints, showed that the combination of both optimiza-
tions leads to an average reduction of the run time of 60%.

.

.

48 S. Evangelista and J.-F. Pradat-Peyre

procedure dfs (marking m, int depth, stored marking pred, transition t)
1 h ← hash(m)
2 for i ∈ [1..length(S[h])] do
3 if m = reconstitute(ith(S[h], i)) then return end if
4 end for
5 if depth = 0 then
6 new.type ← explicit

7 new.m ← m

8 else
9 new.type ← delta

10 new.pred ← pred

11 new.t ← t

12 end if
13 add(S[h], new)
14 for t ∈ enabled(m) do
15 let m′ be such that m[t〉m′

16 dfs(m′, (depth + 1) mod kδ, new, t)
17 end for
function reconstitute (stored marking sm)
1 if sm.type = explicit then r ← sm.m

2 else
3 m ← reconstitute(sm.pred)
4 let r be such that m[sm.t〉r
5 end if
6 return r

procedure explore state space ()
1 init(S)
2 dfs(m0, 0, nil,nil)

Fig. 2. A DFS algorithm based on the Δ-markings method

Updating the predecessors of Δ-markings The idea of this first optimization,
illustrated by Figure 3, is to update the predecessor of a Δ-marking when a
shorter path to an explicit marking is found. Let us suppose that the search
algorithm successively visits a sequence of markings m1[t1〉m2[t2〉 . . . [tn−1〉mn

and that m1 is its only marking stored explicitly by the algorithm. Each mi �= m1
points to mi−1. When mn has to be reconstituted, we have to backtrack to m1
and apply to it the reconstituting sequence t1.t2 . . . tn−1. Let us suppose that
the algorithm visits later a sequence of markings m[t〉 . . . [t′〉m′[t′′〉mn shorter
than the initial one and such that m is its only marking stored explicitly. We
can update the predecessor of mn and set it to m′. As a consequence, each time
the algorithm will reconstitute mn it will backtrack to m and apply a shorter
reconstituting sequence. Not only the reconstitutions of mn will be sped up, but
also the reconstitutions of all the Δ-markings which point to mn (the set S on
the figure).

Several experiments pointed out that the speed improvement is proportional
to the parameter kδ which is not surprising. Nevertheless, we expect that the

Memory Efficient State Space Storage in Explicit Software Model Checking 49

.

benefits obtained with this optimization decrease if some partial order technique
is used in combination with our storage method. Since the goal of partial order
methods is to reduce the exploration of redundant paths, the possibilities of
updating the predecessor of a Δ-marking should naturally be reduced.

Update

...

m1

m2

t1

t2

tn−1

mn

t

S

t′
t′′

m1

m2

t1

t2

tn−1

mnm′

m

Fig. 3. Updating the predecessor of mn

Backward firing of the reconstituting sequence This second optimization is more
an implementation trick, but it reveals to be very efficient in terms of reduction
of the execution time.

The reconstitution of a Δ-marking δ involves two costly operations: the decod-
ing of the explicit marking e which enables to reconstitute δ, and the firing of
the reconstituting sequence σ. In comparison, in a “classical” storage scheme,
checking that two markings are equal is simply done by comparing two vectors
of bits. However, this reconstitution can be avoided by performing a backward
firing, i.e. an “unfiring”, of sequence σ. Instead of backtracking to e and firing
σ, the idea is to start from m and to unfire σ on it, i.e., find the marking m′

which is such that m′[σ〉m. Finally, δ and m correspond to the same marking
if and only if m′ = e. If at some step of the unfiring of σ, let us say after the
unfiring of σ2 such that σ = σ1.σ2 we obtain a marking m′′ which is such that
m′′(p) < 0 for some place p of the net, then this means that the unfiring of σ is
not possible at m. We can therefore claim that the reconstitution of δ does not
produce the marking m. The full backtrack to e is thus avoided, as well as the
decoding of e and the unfiring of σ1.

The possibility to reverse the transition relation is a prerequisite for this opti-
mization. This one is met for colored Petri nets but it would be more problematic
to adapt this optimization to formalisms which do not provide such a facility.

The function reconstitute of Figure 2 can thus be replaced by function
unfire and check given below. The if-statement condition at line 3 of the dfs
procedure must naturally replaced by unfire and check(ith(S[h], i), m).

.

50 S. Evangelista and J.-F. Pradat-Peyre

function unfire and check (stored marking sm,marking m)
1 if sm.type = explicit then r ← sm.m = m

2 else
3 let m′ be such that m′[sm.t〉m
4 if m′(p) < 0 for some place p then r ← false

5 else r ← unfire and check(sm.pred,m′)
6 end if
7 end if
8 return r

A state collapsing compression scheme for colored Petri nets The state
collapsing method [1] and its improvement, the recursive indexing method [2]
are two state compression methods. Both are based on an assumption particu-
larly adapted to software model checking. Thus, this technique is implemented
in Bogor [20], JPF [21] and Spin [22]. This hypothesis is the following: even when
the number n of syntactically possible states for a process is huge, the number
m of states effectively reached by this process is usually much smaller. The idea
is then to represent local process states on log2(m) bits instead of log2(n) bits.
These log2(m) bits form an index of a table which is shared by all the global
states and in which the actual local states are stored on log2(n) bits. Such a
strategy allows to save a significant amount of memory when n >> m.

For colored Petri nets, we can adapt this principle on the basis of two obser-
vations:

1. Given a place, some token values within its domain may never be held in it.
2. Given a transition, some of its instances may never be firable.

This is so because the types, i.e., color domains, of the places and transitions of
the net are usually over-approximations made by the user of the possible values
really met during the search.

The first observation can help us to define an efficient compression function for
the markings which are stored explicitly. If we note m the number of bits used
to store a collapsed item of a color domain, each token value of a place p can be
represented with m bits instead of using log2(|C(p)|) bits.

The second observation is useful to compress Δ-markings. By using the same
parameter m, a collapsed Δ-marking will fit in

1 + log2(H) + log2(L) + log2(|T |) + m

bits. The first bit is used to indicate to the decoder the type of marking to decode.
The “pointer” to the predecessor of the Δ-marking in the hash table is a couple
(h, i) where h is the slot of the hash table which contains the predecessor, and i

is its position in the slot list. If we note H the size of the hash table and L the
maximal length of a slot list, log2(H) + log2(L) bits are sufficient to encode this
couple. At last, log2(|T |) + m is the number of bits used to encode a collapsed
transition instance (t, ct). Without collapsing the vector, log2(|T |)+ log2(|C(t)|)

Memory Efficient State Space Storage in Explicit Software Model Checking 51

bits are required to encode this couple.

.

Since mand L cannot be known before the search terminates, they mustbe fixed
by the user. When the supplied values are not sufficient, an error is reported at
the run time to the user who, in turn, can change these parameters and rerun
the search. On all the experimentations we made, L = 28 and m = 16 were
both sufficient to encode any Δ-marking. With these values each Δ-marking
can be represented with approximatively 64 bits, which is the number of bits
recommended in [18] to store a hash signature of a state descriptor. Thus, by
combining our method with a state collapsing compression scheme we obtain a
reliable storage method that performs a reduction similar to the one obtained
by an unreliable method such as hashcompact.

Analysis of the method We address now the following question: “what can we
expect from the method in terms of memory reduction ?”. If we note Ne the num-
ber of markings stored explicitly, Nδ the number of Δ-markings, N = Ne + Nδ,
Ve the average size of markings stored explicitly, and Vδ the average size of Δ-
markings, the total amount of memory required to store the state space will be
Ne × Ve + Nδ × Vδ.

Now if we suppose that the proportion of markings met at depths 0, kδ, . . . ,
n.kδ is N

kδ
, we can approximate it by (1

kδ
× N).Ve + (kδ−1

kδ
× N).Vδ.

By collapsing Δ-markings, we have seen that Vδ becomes aconstant value, typ-
ically between 8 and 12 bytes. So, for large values of kδ, e.g., ≥ 50, the memory
allocated weakly depends on the size of the state vector and can be approximated
by N × Vδ.

5

The storage method introduced in this paper, as well as the state collapsing
scheme presented in the previous section have both been implemented in Helena
[23], an explicit model checker for high level Petri nets. This section presents the
results of some experiments that have been made with Helena.

All the experiments described in this section have been made on a Pentium 4,
2.8 Ghz with 2 Gb of RAM. The search method used was a depth first search
and the two optimizations previously presented were both turned on.

Experimentation on academic examples We first consider the six follow-
ing examples frequently used in benchmarks: the distributed database system,
the sieves of Eratosthene, the mutual exclusion algorithm of Peterson, a simple
mutual exclusion protocol, the leader election protocol of Chang and Roberts,
and lastly the dining philosophers. All these models can be found in the Helena
distribution available at http://helena.cnam.fr. The results of our experi-
mentations are reported in table 1. For each model, its name and its param-
eter are given in the first column. Four searches were done with kδ in the set
{5, 10, 20, 50}. For each of these runs, the relative performance in time and in

Experimental Results

.

.

52 S. Evangelista and J.-F. Pradat-Peyre

space with respect to a classical DFS without state compression are reported
respectively in columns T and S. The last row of the table contains the average
values observed. The collapse method was not helpful for these simple models
and therefore disabled.

Table 1. Results obtained for academic examples

kδ = 5 kδ = 10 kδ = 20 kδ = 50
States T S T S T S T S

Dbm, 12 2 125 765 109% 24% 119% 16% 171% 5% 173% 4%
Eratos, 70 3 177 699 123% 40% 148% 33% 198% 29% 340% 27%
Peterson, 4 3 407 946 131% 64% 151% 60% 191% 58% 316% 57%
Mutex, 17 5 701 632 130% 58% 148% 53% 176% 50% 249% 48%
Leader, 16 10 475 430 137% 46% 176% 39% 231% 37% 329% 32%
Dining, 13 14 741 195 137% 54% 155% 48% 181% 45% 218% 44%

128% 56% 150% 42% 191% 37% 271% 35%

We observe that the best compression ratio provided by our method are
obtained for the two models which exhibit the largest state vectors, namely the
distributed database system, and the sieves of Eratosthene. The best reduction
is obtained for the distributed database system with kδ = 50. In this case, the
average size of the state vector can be reduced from 148 bytes to 8 bytes. Let
us note that, for this model, the size of the search stack is bounded by 2 · N .
This explains why the results obtained for kδ = 20 and kδ = 50 are so close.
In the opposite, for models with small state vectors, the gains obtained are
quite smaller. For instance, for the Peterson model, the state vector of markings
stored explicitly hardly reaches 16 bytes. Thus, we cannot expect our method to
perform a reduction ratio better than 40%−60%. It appears that our method is
not quite adapted for the storage of state spaces with small state vectors (< 20
bytes). That is due to the fact that the overhead needed to store a Δ-marking as
well as extraneous data used to store markings, mainly pointers and additional
bits added to vectors to fit in a machine word, are too important to enable a
satisfactory reduction of the state space. Finally, the increase of the execution
time remains acceptable for low values of kδ but tends to grow with kδ.

Experimentation on models extracted from programs In a second step,
we made experiments on two colored Petri nets automatically translated from
concurrent Ada programs by the tool Quasar [24]. Both programs make use of
advanced features of Ada tasking such as dynamic task creation. The first one
is a client / server program with dynamic creation of servers to handle the re-
quests of the clients. The second one is an Ada implementation of the sieves of
Eratosthene to find all the prime numbers between 2 and N .

The results of our experimentations are reported in table 2. For both programs,
we made four series of tests: without any compression technique, i.e., no state
collapsing and no Δ encoding, (column No comp.), with the state collapsing

Memory Efficient State Space Storage in Explicit Software Model Checking 53

.

Table 2. Results obtained for programs

each run, row M reports the size in megabytes of the state space, row T reports
the execution time of the search in the form hh:mm:ss, and row V reports the
average size of the state vector in bytes. Some searches ran out of memory. This
is indicated by a “-” in the table.

The reduction of the size of the state space for these models is much more
impressive than for the simple models previously considered. Even for the lowest
value of kδ the reduction observed is significant. Without any compression tech-
nique enabled, the search is limited to state spaces with a few millions of states.
State collapsing provides good results for both examples for a slight increase of
the run time, but used without our method it is limited to state spaces with
107 states. For the Eratosthene program, our method clearly outperforms its
competitor in terms of memory usage, even for the lowest value of kδ. Finally,
we observe that the best results are naturally obtained when combining both
methods. For the more aggressive compression scheme (Δ + Collapse, kδ = 50),
the search only consumed 2% to 5% of the space required without any state

method enabled (column Collapse), with the Δ-markings method enabled (col-
umn Δ), and finally, with both methods enabled (column Δ + Collapse). For

54 S. Evangelista and J.-F. Pradat-Peyre

whatever the model is. Such a drastic reduction comes without an unbearable
cost: for the compression scheme mentioned, the execution time only tripled on
all the examples.

The results observed confirm the analysis made in the previous section: for high
values of kδ the average size of the state vector is no more related to the model,
and it tends to a limit which is the size of a collapsed vector (8 bytes in these
examples).

6

The two main techniques that are employed by model checkers to tackle the state
explosion problem are partial order methods, e.g., persistent sets, and symmetry
based reductions.

It is straight forwardto see thatthe Δ-markingsmethod is fully compatiblewith
the first ones. Indeed, partial order methods are based on a selective search al-
gorithm which only selects at each state a subset of the enabled transitions to
generate the immediate successors of the state. It is therefore fully independent
from the representation of the state space used.

Concerning symmetry reduction,the problem is more difficult.Computing sym-
metries often requires to permute threads or objects in the state vector. This
means that the difference between two states is no more as simple as a single
transition instance. Some other informations may thus also be saved in a Δ-
marking to represent symmetries. Consequently, the algorithm could need more
space, and also more time since the reconstitutions could be slowed. The prob-
lem of an efficient combination of the two methods is therefore an open problem
that we are currently addressing.

When model checking problems of industrial sizes, it is preferable to not keep
in memory all the visited states. Some techniques designed to achieve this have
been presented in section 2. At first glance, it seems hard to combine our method
with a “partial storage” method. This is so because Δ-markings point to some
other states of the state space, disallowing, a priori, the possibility to not store
every state in the reachability set. However, we see a possibility to combine our
method with Geldenhuys’s stratified caching [10]. The underlying idea of this
caching policy is to systematically store and keep in the cache all the states
met at given depths. Strata are thus classified as available and unavailable.
States belonging to available strata may be replaced by new ones during the
search, while the other ones must remain in the cache. The goal is to place an
upper bound on the extra work realized by limiting the lengths of redundant
exploration paths.

A solution to combine both methods is to allow the replacement of markings
for which we are sure that no other Δ-marking points to it. When the first
replacement occurs these markings are those who do not belong to the DFS
stack and which have been met at depths kδ − 1, 2.kδ − 1, . . . , n.kδ − 1. Indeed
all the successors of these markings are stored explicitly in the state space, or

compression, reducing the average size of the state vector to less than 10 bytes,

Discussion and Perspectives

Memory Efficient State Space Storage in Explicit Software Model Checking 55

point to another marking. Once all these states of this available strata have been
replaced, the next available strata are those at depths kδ −2, 2.kδ−2, . . . , n.kδ −2
and so on. By this way, we can guarantee that, at each step of the algorithm, each
Δ-marking points to a marking which has not been replaced. Figure 4 illustrates
our purpose. Parameter kδ is set to 3. In the configuration depicted, markings at
depth 2 have already been replaced by the algorithm. Markings at depth 1 are
now eligible for replacement. Markings m and m′ will become eligible as soon as
they leave the stack.

m’

m Delta−Marking pointer

Transition

Transition on the stack

Marking stored explicitely

Delta−Marking

Marking eligible for replacement

Delta−Marking previously replaced

Depth = 1

Depth = 2

Depth = 3

Depth = 0

Fig. 4. Combining stratified caching and the Δ-markings method

7 Conclusions

We have presented in this work the Δ-markings method to store the state space
of colored Petri nets. The basic idea of this method is to store a large set of states
of the system in a non explicit way by only storing references on other states.
Some optimizations which considerably reduce the run time penalty caused by
the method have also been presented. In addition, our method can be combined
with a state collapsing compression scheme to push the compression one step
further. This simple idea reveals to be very useful in practice. The results of our
experiments have shown the efficiency of our approach. On all examples, even for
models issued from the translation of concurrent Ada programs, our experiments
show that the average size of the state vector is close to 10 bytes. Furthermore,
our technique does not increase the execution time in an unacceptable way.

Another appreciable property of our method is that it gives to the user the
ability to specify the desired compression ratio, through the parameter kδ.

References

1. Visser W. Memory efficient state storage in spin. In SPIN’1996, pages 21–35.
2. Holzmann G.J. State compression in spin : Recursive indexing and compression

training runs. In SPIN’1997.
3. Geldenhuys J. and Valmari A. A nearly memory-optimal data structure for sets

and mappings. In Thomas Ball and Sriram K. Rajamani, editors, SPIN’2003,
volume 2648 of LNCS, pages 136–150. Springer.

4. Grègoire J.C. State space compression in spin with getss. In SPIN’1996, pages
90–108.

5. Parreaux B. Difference compression in spin. In SPIN’1998.

56 S. Evangelista and J.-F. Pradat-Peyre

6. Geldenhuys J. and de Villiers P.J.A. Runtime efficient state compaction in spin.
In Dennis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, editors, SPIN’1999,
volume 1680 of LNCS, pages 12–21. Springer.

7. Pastor E. and Cortadella J. Efficient encoding schemes for symbolic analysis of
petri nets. In Conference on Design, Automation and Test, pages 790–795. IEEE
Computer Society, 1998.

8. Schmidt K. Using petri net invariants in state space construction. In Hubert
Garavel and John Hatcliff, editors, TACAS’2003, volume 2619 of LNCS, pages
473–488. Springer.

9. Godefroid P., Holzmann G.J., and Pirottin D. State-space caching revisited. In
Gregor von Bochmann and David K. Probst, editors, CAV’1992, volume 663 of
LNCS, pages 178–191. Springer.

10. Geldenhuys J. State caching reconsidered. In Susanne Graf and Laurent Mounier,
editors, SPIN’2004, volume 2989 of LNCS, pages 23–38. Springer.

11. Parashkevov A.N. and Yantchev J. Space efficient reachability analysis through
use of pseudo-root states. In Ed Brinksma, editor, TACAS’1997, volume 1217 of
LNCS, pages 50–64. Springer.

12. Christensen S., Kristensen L.M., and Mailund T. A sweep-line method for state
space exploration. In Tiziana Margaria and Wang Yi, editors, TACAS’2001, vol-
ume 2031 of LNCS, pages 450–464. Springer.

13. Mailund T. and Westergaard M. Obtaining memory-efficient reachability graph
representations using the sweep-line method. In Kurt Jensen and Andreas Podelski,
editors, TACAS’2004, volume 2988 of LNCS, pages 177–191. Springer.

14. Schmidt K. Automated generation of a progress measure for the sweep-line method.
In Kurt Jensen and Andreas Podelski, editors, TACAS’2004, volume 2988 of LNCS,
pages 192–204. Springer.

15. Behrmann G., Larsen K.G., and Pelánek R. To store or not to store. In Warren
A. Hunt Jr. and Fabio Somenzi, editors, CAV’2003, volume 2725 of LNCS, pages
433–445. Springer.

16. Godefroid P. Model checking for programming languages using verisoft. In
POPL’1997, pages 174–186.

17. Holzmann G.J. Design and validation of computer protocols. Prentice Hall, 1991.
18. Leroy D. and Wolper P. Reliable hashing without collision detection. In Costas

Courcoubetis, editor, CAV’1993, volume 697 of LNCS, pages 59–70. Springer.
19. Jensen K. Coloured petri nets: A high level language for system design and analysis.

In Grzegorz Rozenberg, editor, ATPN’1989, volume 483 of LNCS, pages 342–416.
Springer.

20. Dwyer M.B., Hatcliff J., Iosif R., and Robby. Space-reduction strategies for model
checking dynamic software. Electronic Notes in Theoretical Computer Science,
89(3), 2003.

21. Lerda F. and Visser W. Addressing dynamic issues of program model checking.
In Dragan Bosnacki and Stefan Leue, editors, SPIN’2001, volume 2057 of LNCS,
pages 80–102. Springer.

22. Gerard J. Holzmann. The model checker spin. IEEE Transactions on Software

Engineering, 23(5):279–295, 1997.
23. Evangelista S. High level petri nets analysis with helena. In Gianfranco Ciardo and

Philippe Darondeau, editors, ATPN’2005, volume 3536 of LNCS, pages 455–464.
Springer.

24. Evangelista S., Kaiser C., Pradat-Peyre J.F., and Rousseau P. Quasar : a new tool
for analyzing concurrent programs. In Jean-Pierre Rosen and Alfred Strohmeier,
editors, Ada-Europe’2003, volume 2655 of LNCS, pages 168–181. Springer.

Memory Efficient State Space Storage in Explicit Software Model Checking 57

Counterexample-Based Refinement for a Boundedness
Test for CFSM Languages

Stefan Leue and Wei Wei

Department of Computer and Information Science,
University of Konstanz,

D-78457 Konstanz, Germany
{Stefan.Leue, wei}@inf.uni-konstanz.de

Abstract. In precursory work we suggested an abstraction-based highly scalable
semi-test for the boundedness of Communicating Finite State Machine (CFSM)
based modelling and programming languages. We illustrated its application to
Promela and UML-RT models. The test is sound with respect to determining
boundedness, but may return inconclusive ”counterexamples” when boundedness
cannot be established. In this paper we turn to the question how to effectively de-
termine the spuriousness of these counterexamples, and how to refine the abstrac-
tion based on the analysis. We employ methods from program analysis and illus-
trate the application of our refinement method to a number of Promela examples.

1 Introduction

For various reasons the unboundedness of the maximal filling of communication chan-
nels in Communicating Finite State Machine (CFSM) [3] based modelling and pro-
gramming languages at runtime is an undesirable property. First, unboundedness of
communication buffers per se is an undesirable system feature since it points at a de-
sign flaw. Second, the unboundedness of a channel leads to an infinite state space and
limits the applicability of finite state verification methods. Finally, in otherwise finite
state models the unboundedness of a communication channel may lead to a model that
reveals unpredictable behavior, for instance when a process attempts to write to a chan-
nel that has reached its specified capacity limit.

In precursory work [10,11] we have defined an incomplete semi-test for the bound-
edness of the message buffers in CFSM systems, which is an undecidable problem [3].
We have implemented the test in a tool named IBOC and applied it to CFSM models
given in UML RT [10] and in Promela [11], the input language of the model checker
SPIN [8]. We have also developed a method to estimate conservative upper bounds for
the runtime filling of individual communication buffers in that work.

The boundedness semi-test that we devised is sound with respect to the bounded-
ness of a given CFSM model. However, in case boundedness cannot be established, the
test will return a verdict of “UNKNOWN”. In that event the test also returns a “coun-
terexample” which consists of a collection of control flow cycles in the state machines
that collectively may lead to an unbounded flooding of at least one message buffer in
the system. Our test is also based on a gross abstraction of the original CFSMs – we ab-
stract from transition triggers, transition code, message orders, the activation conditions

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 58–74, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 59

of cycles, and cycle dependencies. As a consequence, the UNKNOWN verdict may be
based on false negatives, i.e., the combinations of cycles that the test believes to be pos-
sible candidates for an unbounded flooding of message buffers may not be executable
in the concrete model.

It is the objective of this paper to suggest methods that give the user automated
support to a) determine, whether a counterexample is spurious or not, and b) to refine
the abstraction in case a counterexample was found to be spurious. We will apply our
method to models given in Promela, which is a modelling language that is very often
used to model CFSM systems, in particular communication protocols. While Promela
was a convenient choice, the ideas and concepts that we develop have wider applicabil-
ity in the realm of concurrent, message based modeling and programming languages.

We employ methods from program analysis, in particular control flow and variable
analysis to determine executability conditions for the cycles included in a counterexam-
ple. We have implemented our refinement method in the IBOC boundedness analysis
tool and have applied our approach to various realistic and real-life Promela models.

Related Work. In our paper we follow the general idea of iterative counterexample
guided abstraction refinement that was proposed in [4] and later applied to software
model checking [1]. Since we use different code abstraction techniques the abstraction
refinements that we propose are not comparable to the refinements proposed in those
papers. In the context of linear programming based model checking the authors of [14]
propose abstraction refinements based on the analysis of structural characteristics of
control flow graphs. However, they do not address the imprecision that is caused by
the abstraction of program code in concrete models. There is some similarity of our
work to that on automating termination proofs using transition invariants [13,12,5,2].
The approaches presented in [12,5] only apply to program loops whose guarding con-
ditions are no more complex than conjunctions of linear inequalities, whereas we can
treat arbitrarily complex boolean conditions. The applicability of the approach in [2]
to our problem is limited by its high complexity and the fact that its termination is not
guaranteed.

Structure of the Paper. In Section 2 we review our previously published bounded-
ness test and illustrate its application to Promela. In Section 3 we discuss the different
sources of imprecision that lead to spurious counterexamples. Section 4 describes the
static program analysis that we perform in order to abstract Promela code and illustrates
how the abstraction can be refined in the presence of spurious counterexamples. We also
employ graph structural criteria on the control flow cycle graphs to determine spurious-
ness and derive abstraction refinements, which we discuss in Section 5. In Section 6 we
consider the complexities of the spuriousness detection and refinement method, and in
Section 7 we present our experimental results.

2 Overview of the Boundedness Test

We now review the boundedness test for CFSM models first published in [10] and [11]
and motivate the occurrence of spurious counterexamples. We review the test using
Promela encodings of the CFSMs.

60 S. Leue and W. Wei

The objective of the boundedness test is to reduce the message passing behavior of
a set of concurrent Promela processes to a number of control flow cycles. Each such
cycle is then mapped to an effect vector that captures the number of messages sent
minus the number of messages received for every message type in the system when
executing that particular control flow loop. Linear inequality solving is then used on the
resulting system of effect vectors to determine whether there is a linear combination of
the vectors that leads to an unbounded “blow-up” of the number of messages of at least
one message type in the system. If such a linear combination does not exist, we know
that the system is bounded (test outcome BOUNDED). If a linear combination can be
found, i.e., the linear inequality system has a solution, the system under consideration
may be bounded or not (test outcome UNKNOWN). In this case, a counterexample is
constructed from the particular solution to the linear inequality system.

mtype = {a, b};
chan ch1 = [1] of {mtype};
chan ch2 = [1] of {mtype};
active proctype Left(){

do
:: ch2 ? b -> ch1 ! a;
od

}

active proctype Right(){
byte x;
x = 0;
do
:: (x == 0) -> ch2 ! b; x = 1;
:: (x == 1) -> ch1 ? a; x = 0;
od

}

Fig. 1. A simple Promela model

ch2 ? b ch1 ! a

(x == 0) (x == 1)

ch2 ! b ch1 ? a

Process RightProcess Left

x = 1 x = 0

x = 0

Fig. 2. The state machines of the Promela model
in Figure 1

Process RightProcess Left

(0, 1) (−1, 0)
(1, −1)

Fig. 3. The state machines with effect vectors of
the Promela model in Figure 1

Consider the simple Promela model in Figure 1. The abstraction we perform in our
test will first produce an extended CFSM model as in Figure 2. By ignoring variables
and transition code this will be further abstracted into a system of state machines with
effect vectors as illustrated in Figure 3. The three cycles entail the effect vectors (1, -1),
(0, 1) and (-1, 0) which gives rise to the following system of integer linear inequalities:
(1) −x1 +x2 ≥ 0, (2) x1 −x3 ≥ 0, and (3) x2 −x3 > 0. Note that the third equation is
used to ensure that at least one component in the summary effect vector of each linear
combination of cycle effect vectors attains a truly positive value.

The test will return a solution, in fact a linear combination with the values x1 =
0, x2 = 1, and x3 = 0, and hence an outcome of UNKNOWN. Obviously, in the
abstraction the left cycle of the process Right alone can cause the message buffer to
blow up, and this is what the solution indicates. However, as it is easy to see, in the
original Promela model an unbounded execution of this cycle without intervention of

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 61

the other cycles is not possible, which is ensured by the use of the (abstracted) program
variable x.

Note that each cycle in the abstract system has a corresponding variable in the in-
teger linear programming (ILP) problem into which the above system of inequalities is
translated. This variable represents the number of executions of the respective cycle in
a solution of the ILP problem if the ILP problem has a solution, i.e., if boundedness
cannot be established. We call a set of cycles whose corresponding variables receive
positive values in a solution to the ILP problem a counterexample. A counterexample
represents a behavior of the system in which only the cycles in the counterexample
are repeated infinitely often. Any other cycle in the system is either repeated only a
finite number of times or not executed at all. A counterexample is said to be spurious
if the behavior that it denotes is not a valid execution of the original model. In the
above example, the test has found a spurious counterexample. It is the objective of the
work in this paper to automatically detect spurious counterexamples generated by the
boundedness test, and to refine the Promela model abstraction to exclude the spurious
counterexamples that have been detected.

3 Sources of Imprecision

In this section we study the causes for the introduction of spurious counterexamples in
our boundedness test. We also examine to what extent each cause affects the precision
of the boundedness test.

3.1 Counterexamples and Spuriousness

The introduction of spurious counterexamples is a consequence of the conservative ab-
straction steps that we perform in the course of our boundedness test. We reconsider
each of these abstraction steps to examine which information is removed from mod-
els during the step and how significant it affects the precision of the boundedness test.
Note that these abstraction steps are conceptual and do not correspond to the concrete
abstraction steps that the IBOC tool performs.

Step 1: Code Abstraction. In this step the program code in a model is abstracted away.
The resulting CFSM system retains only the finite control structure and the message
passing behavior of the model. We lose all the information about how the behavior
of the model is constrained by the conditions on variables that are imposed by the
program code. Losing such information is very significant because it often depends on
the runtime value of a variable whether to send or receive a message, which message
to send or receive, where messages are to be sent or from where messages are to be
received. We will therefore consider this source of imprecision in more detail.

Step 2: Abstraction from Message Orders. In this step we neglect all information re-
garding the order of messages in message buffers. In particular, we assume that a mes-
sage is always available to trigger a transition wherever it is in the buffer. This can be too
coarse an overapproximation for a model that employs strict first-in-first-out message

62 S. Leue and W. Wei

buffers. However, models in practice usually have a message deferral/recall mechanism
that stores an arriving message which cannot immediately be processed by the system
into a special buffer so that it can be recalled when it is later needed. This is consistent
with the semantics of our abstraction. In other words, this abstraction step does not in-
troduce imprecision in most practical situations and we will therefore not address it in
this paper.

Step 3: Abstraction from Activation Conditions. In this step the activation conditions
of control flow cycles are abstracted away. We assume that there are always enough
messages of the right type available for a cycle to be reachable from the initial config-
uration of the model. This assumption is reasonable in practice since an unreachable
cycle has no influence on the system behavior and usually indicates a design error. We
will therefore not consider this source of imprecision either.

Step 4: Abstraction from Cycle Dependencies. In this step we abstract from implicit de-
pendencies between control flow cycles. We consider different types of such dependen-
cies: exclusion dependencies or inclusion dependencies, global dependencies or local
dependencies. An exclusion dependency forbids a set of cycles to be jointly repeated
infinitely often, while an inclusion dependency stipulates the need of some cycles being
repeated infinitely often to enable other cycles to be repeated infinitely often. A global
dependency specifies a dependency among cycles in multiple processes, while a local
dependency relates cycles in one process. Cycle dependencies are imposed either by
the program code executed while the program goes through a cycle, or by structural
characteristics of the control flow graphs. Disregarding cycle dependencies means that
arbitrary cyclic executions can be combined to form a potentially spurious counterex-
ample, which is why we will further address this source of imprecision.

3.2 Boolean Conditions on Cycles

We now consider the impact of the abstraction of boolean executability conditions dur-
ing code abstraction. As an example, consider the cycle shown in Figure 41. The cycle
guard checks whether the runtime value of a local integer variable i is less than 4. If
the condition is satisfied, then a message msg is sent to the channel ch, and i is in-
cremented. After the code abstraction, the resulting abstract cycle in Figure 5 retains
only the message sending statement, and all the information about i has been removed.
The abstract cycle will inevitably by itself form a counterexample in which a message
msg is sent to ch without any constraint each time the cycle is executed. Apparently,
this counterexample is spurious since the cycle can be repeated without interruption at
most 4 times, if i is initialized to 0. If we want the cycle to be repeated later, then some
other cycle in the control flow graph of the same process in which the value of i will be
changed back to be less than 4 needs to be executed.

Figure 6 shows such a cycle in which the value of i is reset to 0. If this cycle is the
only other cycle that modifies i, then the boolean condition on the cycle in Figure 4
imposes an inclusion dependency between these two cycles. In other words, if the cycle

1 All program code in examples will be given in Promela syntax.

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 63

i++

ch!msg

(i < 4)

Fig. 4. A simple cycle

ch!msg

Fig. 5. The abstract cycle

...

i = 0

...

Fig. 6. A cycle resetting i

in Figure 4 appears in a counterexample, then the cycle in Figure 6 must be included in
the same counterexample.

3.3 Graph-Structural Dependencies

Graph-structural dependencies are another source of cycle dependencies that may help
to reveal spurious counterexamples. Consider two cycles in the control flow graph of
one same process that reside in two different strongly connected components. Since at
least one cycle is not reachable from the other, they cannot be jointly repeated infinitely
often. Strongly connected components induce exclusion dependencies.

C1 C2C3

Fig. 7. Three cycles

There is another kind of graph-structural cycle dependencies. Consider the control
flow graph of a process as shown in Figure 7. Assume that a counterexample contains
the cycles C1 and C2 and does not contain the cycle C3. Note that C1 and C2 do not
share a common state, which implies that it is impossible to repeat C1 and C2 infi-
nitely often without repeating C3 infinitely often. Since C3 is not included in the above
counterexample it is spurious. The resulting dependency is an inclusion dependency.

Summary. We recognize the following two types of information as being crucial to the
precision of our unboundedness test: (1) cycle dependencies imposed by the boolean
conditions on cycles, and (2) cycle dependencies imposed by structural characteristics
of control flow graphs. In the next two sections, we will propose several automated
refinement methods based on counterexample spuriousness analyses with respect to
these two types of information.

4 Cycle Code Analysis

It is generally impossible to precisely determine cycle inclusion dependencies. Our
method is therefore incomplete and it overapproximates the actual inclusion depen-
dencies. As a consequence, (1) a counterexample can still be spurious even if it does

64 S. Leue and W. Wei

not violate the determined dependency, and (2) some spurious counterexamples may
never be excluded.

A cycle in a control flow graph corresponds to a loop in the program code of the
respective process. The task of a loop is either to continuously react to stimuli from
the environment, or to perform some local information processing task. As mentioned
above, we also distinguish global and local dependencies. Local dependencies are deter-
mined by cycle conditions in which all the variables are locally modified. This excludes
the use of local variables to store the contents of messages since this would imply global
dependencies. In this paper we will focus solely on local dependencies and leave the
treatment of global dependencies for future work.

Our approximative method to determine inclusion dependencies is only applicable
to loop code that follows a certain syntactic pattern:

– There exists at least one branch statement or loop statement in the loop with a
guarding boolean expression in which all the variables are only locally modified
within the loop. We call a variable occurring in the guard of a branch statement or
a loop statement a control variable.

– The computation on control variables involves only linear expressions over inte-
gers, such as an incrementation or a decrementation. The guards of branch state-
ments and loop statements are boolean conditions that involve only comparisons of
linear expressions over control variables.

We notice that this is not overly constraining since code following this pattern is com-
monly used in real models. We further assume that all the program statements are side-
effect free, and that all function calls have been inlined.

4.1 Constraints on Repeated Cycle Executions

A condition statement in a cycle functions as the guard on the executability of a state-
ment within a loop. Since program code can have nested loops, a cycle can have several
condition statements that guard the loop statements at different depths. We study how
the repeated executions of a cycle are constrained by each of the condition statements
in the cycle.

We denote a condition statement by a boolean expression enclosed in a pair of
parentheses. Consider a condition statement (B) in a cycle C1. (B) is executable
if and only if B evaluates to true under the current valuation of variables. We are
interested in determining maxB , the maximal number of times that (B) can be repeat-
edly executed if all variables in B are only modified within C1. If maxB exists, then we
can draw the following conclusions: (1) C1 cannot be consecutively repeated more than
maxB times. (2) For every maxB times that C1 is repeated, at least one of the neigh-
boring cycles of C1 has to be executed. A cycle is a neighboring cycle of another cycle
if they share common states. (3) For every maxB times that C1 is repeated, at least
one of the supplementary cycles with respect to B has to be executed. A supplementary
cycle of C1 with respect to B is a cycle that modifies at least one of the variables in
B in a way that renders B satisfied. The conclusions (2) and (3) impose an inclusion
cycle dependency that can be used to determine counterexample spuriousness and to
refine the abstract system of the original model. However, it is generally impossible to

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 65

precisely determine maxB and we will hence resort to computing an upper bound for
maxB . It is easy to see that this is a safe approximation. For any number n, the restric-
tion that other cycles have to be executed every n times that C1 is executed does not
exclude the possibility that other cycles are executed every m times that C1 is repeated
for any m < n.

We notice that a boolean expression can be converted into its negation free disjunc-
tive normal form, where each disjunct is a conjunction of one or more positive atomic
propositions. Because the boolean conditions that we consider involve only compar-
isons of linear expressions, an atomic proposition is a linear (in)equality. In the sequel
we assume that any boolean expression is given in this type of normal form.

For each disjunct d of B, we denote by maxB,d the maximal number of times that d
is satisfied when (B) is repeatedly executed without the variables in B being modified
outside C1. If we can determine maxB,d values, then maxB is bounded by the sum of
all the maxB,d values. Note that maxB can be larger than any maxB,d value because
it is not always the case that two disjuncts d1 and d2 of B are satisfied at the same time.
For each (in)equality l of d, we denote by maxB,d,l the maximal number of times that l
is satisfied when (B) is repeatedly executed without the variables in B being modified
outside C1. We can further reduce the computation of maxB,d to the computations of
maxB,d,l values. maxB,d is the minimum of all the maxB,d,l values, because if any
(in)equality l of d is not satisfied then d is not satisfied.

x1 = 6 x2 = −1

((x1 > 2 − x2) || (x2 < 1))

x1 = x1 − 2
x2 = x2 + 1

ch!msg

Fig. 8. Cycle C

P1

P2

E1

E2

1

2X

X

Fig. 9. Convex polyhedra

Consider as an example the cycle C in Figure 8. x1 and x2 are integer variables.
Before C is entered, x1 is initialized with 6 and x2 is initialized with -1. During each
cycle execution, the value of x1 is decremented by 2 and the value of x2 is incremented
by 1. Let B = (x1 > 2 − x2) ∨ (x2 < 1), d1 = l1 = (x1 > 2 − x2), and d2 =
l2 = (x2 < 1). It can be manually determined that maxB,d1,l1 = 3, maxB,d1 = 3,
maxB,d2,l2 = 2, maxB,d2 = 2, and maxB = 3. An upper bound of maxB is 5 (3+2),
which is larger than 3 because d1 and d2 can be both satisfied at same time during cycle
executions. We conservatively take 5 to overapproximate the actual maxB value 3.

Before we explain the method to compute maxB,d,l, we give a geometric illustra-
tion of the problem. In the example from Figure 8 each of B’s disjuncts is a system
of linear (in)equalities that defines a convex polyhedron in the 2-dimensional Euclid-
ean space as shown in Figure 9. The polyhedron P1 is defined by the disjunct d1 and
the polyhedron P2 is defined by the disjunct d2. B is the union of all the polyhedra

66 S. Leue and W. Wei

defined by B’s disjuncts. The (in)equalities of a disjunct define the edges of the poly-
hedron defined by the disjunct. For instance, the edge E1 is defined by the inequality
l1 = (x1 > 2 − x2). E1 can be represented by the equation x1 + x2 = 2, in which no
variables occur in the right-hand side. We call x1 + x2 the control expression of l1, and
2 the boundary value of l1.

Let (x1, x2) denote the point defined by x1 and x2 in the Euclidean space. During
repeated executions of C, (x1, x2) moves in the space while x1 and x2 are modified.
For a disjunct d of B, maxB,d is the same value as the maximal number of computa-
tion steps that (x1, x2) can stay in the polyhedron defined by d. maxB,d is therefore
bounded if and only if the following exiting property is satisfied: at some point of time
(x1, x2) will exit the polyhedron and never return. In the sequel we show a sufficient
but not necessary condition of the exiting property.

During repeated execution of C we obtain a sequence of vectors (x0
1, x

0
2),(x

1
1, x

1
2),

... that denotes the values of x1 and x2 at the end of each execution of C. Given an edge
E of a polyhedron P, we assume that E is defined by an (in)equality l. Let ce(l) denote
the control expression of l and bv(l) denote the boundary value of l. Let ce(l)i denote
the value of ce(l) when x1 = xi

1 and x2 = xi
2, where i is a nonnegative integer. Assume

that the sequence ce(l)0, ce(l)1, ... is either strictly increasing or strictly decreasing, i.e.,
ce(l) is modified monotonically. Let di = |ce(l)i − bv(l)| denote the distance between
ce(l)i and the boundary value of l. If the sequence d0, d1, ... is strictly decreasing, then
the point (x1, x2) is always moving closer to the edge E. Furthermore, the sequence
d0, d1, ... must be finite. The sequence (x0

1, x
0
2), (x1

1, x
1
2), ... is then also finite, which

implies that (x1, x2) can only stay in P for a finite number of computation steps. Note
that maxB,d1,l1 is identical to the length of the sequence of distances di. We conclude
that under the above assumption the exiting property holds for P and we call E an exit
border of P. Obviously, both E1 and E2 are exit borders of the respective polyhedron.
The existence of an exit border is a sufficient condition for the exiting property to hold.

4.2 Computing maxB,d,l Values

Given a cycle C1, let (B) denote one of the condition statements in C1, d a disjunct of
B and l an (in)equality of d. We now address the question how to compute maxB,d,l.

Remember that l defines an edge E of the polyhedron that d defines. E can be
represented as the equation ce(l) = bv(l). In case that ce(l) = bv(l) is an exit border,
an upper bound of the maximal number of computation steps that are needed for the
value of ce(l) to reach bv(l) can be determined, (1) if we can determine the possible
differences of the runtime values of ce(l), i.e., the step values of ce(l), before and after
each execution of C1, and (2) if we can determine the initial values of ce(l) before C1 is
entered and therefore the longest distance to the boundary value. We determine whether
ce(l) = bv(l) is an exit border by determining and analyzing the step values of ce(l).

Determining Step Values. The cycle code imposes a relation constraining the values
of variables before and after an execution of the cycle. Determining bounds for the
step values of the control expression ce(l) can be seen as an optimization problem. We
generate a set of ILP problems from the cycle code, whose constraints reflect how the

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 67

runtime values of variables are changed and constrained by the cycle code. The objec-
tive functions of these ILP problems are either the maximum or the minimum of the
step values of ce(l). Note that both the maximum and the minimum of the step val-
ues must be computed in order to determine whether ce(l) is modified monotonically.
The generation of the constraints of an ILP problem for determining step values in-
volves the transformation of each program statement in the cycle code into one or more
(in)equations. Since not all the statements in the cycle code are relevant to the com-
putation on the control variables in l, we compute a slice [16] of the cycle code with
the slice criterion being < (B), x̄ >, where x̄ are all the variables in l. Since we have
the assumption that all the program statements are side-effect free, the transformation
of program statements is straightforward. As an example, the assignment statement x
:= x + 1 is transformed to the equation xi+1 = xi + 1. The variable xi denotes the
runtime value of the variable x before the execution of the assignment, and the variable
xi+1 denotes the runtime value of x after the execution. When a receive statement is
executed, a variable x in the statement receives a random value that depends on the
content of the received message. In the corresponding equation, we must represent the
new value of x by a newly introduced variable. Moreover, when an array member is
affected by an assignment statement or a receive statement, we take the conservative
assumption that any member of the array may be affected.

max: x1_1 + x2_1 - x1_0 - x2_0;

x1_0 > 2 - x2_0;
x1_1 = x1_0 - 2;
x2_1 = x2_0 + 1;

min: x1_1 + x2_1 - x1_0 - x2_0;

x1_0 > 2 - x2_0;
x1_1 = x1_0 - 2;
x2_1 = x2_0 + 1;

max: x1_1 + x2_1 - x1_0 - x2_0;

x2_0 < 1;
x1_1 = x1_0 - 2;
x2_1 = x2_0 + 1;

min: x1_1 + x2_1 - x1_0 - x2_0;

x2_0 < 1;
x1_1 = x1_0 - 2;
x2_1 = x2_0 + 1;

Fig. 10. The generated integer programming problems

Consider the example in Figure 8. The cycle code is abstracted into the four ILP
problems in Figure 10 for determining step values for the control expression x1 +x2 of
the inequality x1 > 2−x2. The top two ILP problems are used to determine the bounds
on step values under the condition (x1 > 2 − x2) as the first disjunct of the guard
(x1 > 2 − x2) ∨ (x2 < 1), while the other two ILP problems are used to determine the
bounds under the condition (x2 < 1) as the second disjunct of the same guard.

Analyzing Step Values. The solutions to the objective functions of the ILP problems
for determining the step values of ce(l) set an upper bound and a lower bound on the
actual step values. If the two bounds have different signs, then the value of ce(l) may
not be modified monotonically. If one of the two determined bounds is 0, then the value
of ce(l) may be unchanged forever. In these two cases, we fail to determine whether
ce(l) = bv(l) is an exit border, and conservatively set maxB,d,l to be unbounded. If the
upper bound and the lower bound are both positive, then the value of ce(l) is always

68 S. Leue and W. Wei

increased. We conservatively take the lower bound as the constant step value of ce(l)
that denotes the slowest move of ce(l). Similarly, if the upper bound and the lower
bound are both negative, then we take the upper bound to be the constant step value.
For the ILP problems in Figure 10, all the solutions are -1, which is then both the upper
bound and the lower bound determined for the step values of the control expression
x1 + x2. The constant step value determined for x1 + x2 is then -1.

Let op(l) denote the comparison operator in l. We determine whether ce(l) = bv(l)
is an exit border according to op(l) and the determined constant step value of ce(l).
If op(l) is =, then ce(l) = bv(l) is an exit border whatever the constant step value is,
because any nonzero step value annuls the satisfaction of l. In this case we directly set
maxB,d,l to 1. Let x̄ be the vector of the variables in B. If the constant step value of
ce(l) is positive, and if op is < or ≤, then in the polyhedron defined by d the point
defined by x̄ is moving closer to the edge ce(l) = bv(l). ce(l) = bv(l) is then an exit
border. Similarly, if the constant step value is negative, then ce(l) = bv(l) is an exit
border when op is > or ≥. In all other cases, ce(l) = bv(l) is not an exit border and
we set maxb,d,l to be unbounded. In the example in Figure 8, we have determined the
constant step value of x1 + x2 to be -1. The comparison operator of the corresponding
inequality is >. The edge x1 + x2 = 2 is therefore an exit border.

Determining Initial Values. If we determine ce(l) = bv(l) to be an exit border, and if
op(l) is not =, then we need to determine the initial values of ce(l) in order to know
the longest distance from the initial values of ce(l) to the boundary value. We use a
simple solution that employs backward depth first searches to check each acyclic path
leading to one of the entry locations of C1 whether ce(l) receives a constant value on
that path before C1 is entered. Our solution to determining initial values is certainly
incomplete, but also more efficient than other approaches, such as interval analysis [6].
This is because our solution does not require the analysis of the whole control flow
graph of the respective process. An interval analysis will cost even more when any
variable in ce(l) is affected somewhere outside C1 by a received message sent from
some other process. The sending process of that message has then to be analyzed even
if the receiving of the message will not affect the initial value of ce(l). On the other
hand, we will show later that, even in the absence of the determined initial values of
ce(l), we may still be able to determine an inclusion dependency.

Computing maxB,d,l. Let step denote the determined constant step value of ce(l) and
distance the longest distance between ce(l) and bv(l). �·� is the ceiling function that
returns the smallest integer greater than the input real number. �distance/step� sets an
upper bound on maxB,d,l that is used to safely approximate the actual maxB,d,l value.
In the example in Figure 8, we determine max(x1>2−x2)∨(x2<1),x1>2−x2,x1>2−x2 as
follows. The initial value of x1 + x2 is 5. step = −1 and distance = 2 − 5 = −3. The
determined upper bound is then 3 (−3 ÷ −1).

4.3 Abstraction Refinement

For a condition statement (B) in a cycle C1, if we can determine an approximative
maxB value, then we know that one of the neighboring cycles of C1 and one of the

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 69

supplementary cycles of C1 with respect to B have to be executed every maxB times
C1 is executed. A counterexample containing C1 is determined to be spurious, if (1) no
neighboring cycle of C1 is included in the counterexample, or if (2) no supplementary
cycle of C1 with respect to B is included in the counterexample.

However, it is generally impossible to determine the exact set of supplementary
cycles with respect to B, since it is generally impossible to determine whether the exe-
cution of a cycle has the effect to render B satisfied. A simple overapproximation is to
consider a cycle a supplementary cycle if it resides in the same process as C1 and if it
modifies at least one of the variables in B.

Refinement with maxB . We use maxB , the set of neighboring cycles, and the set
of supplementary cycles to refine the abstract system of the original model. We first
add to the boundedness test ILP problem one additional constraint which enforces
that every maxB times that C1 is executed least one of its neighbors will be exe-
cuted. Assume that the set of neighboring cycles of C1 is NC. The added constraint
is: c1 ≤ maxB × ∑

Ci∈NC ci, where c1 is the variable corresponding to C1 and ci

is the variable corresponding to Ci. A similar constraint is added to the boundedness
test ILP problem, which requires at least one supplementary cycle to be executed each
maxB times that C1 is executed.

Refinement without maxB . Let x̄ denote the vector of the variables in B. If all disjuncts
of B contain an (in)equality that defines an exit border, then we know that the number
of computation steps for which the point defined by x̄ can stay in the polyhedron of
each disjunct is always finite. In this case, even if maxB cannot be determined, we can
still determine an inclusion dependency. After a finite but unknown number of times C1
is executed, C1 will be exited, and one of its neighboring cycles as well as one of its
supplementary cycles have to be executed. Let SC be the set of supplementary cycles
of C1 with respect to B. In the refinement without maxB , the boundedness test ILP
problem is replaced by two ILP problems, each augmenting the original ILP problem
with one of the following constraints: (1) c1 = 0, or (2) c1 > 0 ∧ ∑

Ci∈NC ci >
0 ∧ ∑

Ci∈SC ci > 0, where c1 is the variable corresponding to C1 and ci is the variable
corresponding to Ci. These two constraints stipulate that (1) either C1 is not repeated
infinitely often, or (2) at least one of the neighboring cycles and at least one of the
supplementary cycles have to be repeated infinitely often. The two newly generated ILP
problems partition the behavior of the refined abstract system into two disjoint subsets.
The original model can be determined to be bounded if both of the two ILP problems
are infeasible.

During experiments we found that this approximative way of determining supple-
mentary cycles is rather coarse for some models in that it prevents many spurious coun-
terexamples from being excluded. Consider the cycle in Figure 8. After the condition
(x1 > 2 − x2) ∨ (x2 < 1) is not satisfied and C is exited, assume that some supple-
mentary cycles are going to be executed to make the condition satisfied again. Assume
a neighboring cycle C’ of C, in which no message is sent or received. If each execution
of C’ decreases the value of x1 and increases the value of x2, then C’ has the same
effect on x1 and x2 as C does. In particular, it cannot render (x1 > 2 − x2) ∨ (x2 < 1)
satisfied. However, C’ is regarded a supplementary cycle of C. The refinement of the

70 S. Leue and W. Wei

abstract system with the determined set of supplementary cycles including C’ does not
exclude the spurious counterexample consisting of C and C’.

We adopt a finer solution if, for every (in)equality l in B, ce(l) is modified monoton-
ically within C1. In this case, we regard a cycle C2 a supplementary cycle with respect
to B, if C2 satisfies the following condition. There exists an (in)equality l in B that
defines an exit border. The value of ce(l) is increased within C2 if it is decreased within
C1. The value of ce(l) is decreased within C2 if it is increased within C1. This solution
is more expensive since it involves code analysis for each cycle that modifies one or
more variables in B, but is more precise in determining spuriousness.

5 Graph-Structural Dependency Analysis

In this section we consider two types of cycle dependencies, namely those imposed by
strongly connected components and those imposed by direct connectedness of cycles,
and propose appropriate abstraction refinements.

Given a counterexample in which two cycles in one same process do not share com-
mon states, some other cycles in the same process have to be included in the counterex-
ample to “bridge” them. We introduce the concept of self-connected cycle set. A set of
cycles is self-connected if any two cycles in the set are reachable from each other by
traversing through only the cycles in the set. A counterexample is spurious if, for some
process P, the set of all the cycles of P in the counterexample is not self-connected.

We propose the following refinement. Given a counterexample, if there are two
cycles C1 and C2 of one same process P in the counterexample that are not reachable
from each other by traversing through only the cycles in the counterexample, then we
determine all the self-connected sets of cycles of P that contain both C1 and C2. If
no such set exists, then C1 and C2 are in different strongly connected components.
Let c1 be the variable corresponding to C1 and c2 be the variable corresponding to
C2. We replace the boundedness test ILP problem with three ILP problems, each of
which augments the original ILP problem with one of the following three constraints:
(1) c1 = 0 ∧ c2 = 0; (2) c1 = 0 ∧ c2 > 0; (3) c1 > 0 ∧ c2 = 0. These three constraints
prevent C1 and C2 from being both repeated infinitely often.

C3 C4

C5
C1 C2

Fig. 11. A control-flow graph

C1 C2

C3 C4

C5 C6

Fig. 12. A control-flow graph

If there exists at least one self-connected set of cycles containing both C1 and C2,
then C1 and C2 are in the same strongly connected component. Let n denote the number
of determined self-connected cycle sets. To refine the abstract system, we generate n+3
new ILP problems to replace the original boundedness test ILP problem. Three of them
are the same ILP problems as generated in case C1 and C2 belong to different strongly
connected components. The other n ILP problems stipulate that, if C1 and C2 are both

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 71

repeated infinitely often, then all the cycles in one of the determined self-connected
cycle sets have to be repeated infinitely often. For each determined self-connected cycle
set Si (1 ≤ i ≤ n), a new ILP problem is generated by augmenting the original ILP
problem with the following constraint: c1 > 0 ∧ c2 > 0 ∧ ∧

C∈Si
c > 0, where c is

the variable corresponding to the cycle C. As an example, we assume that the control-
flow graph of P is the same as shown in Figure 11. All the self-connected sets of cycles
containing C1 and C2 are S1 = {C1, C3, C4, C2} and S2 = {C1, C5, C2}. Let ci

(3 ≤ i ≤ 5) denote the variable corresponding to the cycle Ci. Each of the 5 newly
generated ILP problems has one of the following constraints: (1)c1 = 0 ∧ c2 = 0; (2)
c1 = 0 ∧ c2 > 0; (3) c1 > 0 ∧ c2 = 0; (4) c1 > 0 ∧ c2 > 0 ∧ c3 > 0 ∧ c4 > 0; (5)
c1 > 0 ∧ c2 > 0 ∧ c5 > 0.

A caveat of this method is that the number of newly generated ILP problems can be
exponential in the number of the cycles of P. We propose an alternative method that
only generates 4 ILP problems each time the abstract system is refined. Consider the
control-flow graph in Figure 11. To reach C2 from C1, one of the neighboring cycles of
C1 must be entered. Similarly, one of the neighboring cycles of C2 must be entered in
order to reach C1 from C2. Instead of generating the two ILP problems corresponding
to the two self-connected cycle sets containing C1 and C2, we can build only one ILP
problem by augmenting the original boundedness test ILP problem with the following
constraint: c1 > 0 ∧ c2 > 0 ∧ c3 + c5 > 0 ∧ c4 + c5 > 0. To generalize this idea
we assume that two cycles C and C’ in a counterexample are not reachable from each
other by traversing only the cycles in the counterexample. We compute a sequence of
pairs of cycle sets: < N0

C , N0
C′ >, < N1

C , N1
C′ >, ..., < Nn

C , Nn
C′ >. N0

C is the set
of neighboring cycles of C. N i+1

C contains all the cycles that neighbor some cycle in
N i

C and that are not in any N j
C if j ≤ i. N i

C′’s (0 ≤ i ≤ n) are defined likewise. The
computation of the sequence < N0

C , N0
C′ >, ..., < Nn

C , Nn
C′ > terminates if, for some

number n, either (1) Nn
C or Nn

C′ is empty, or (2) there is a cycle in Nn
C and a cycle in

Nn
C′ such that these two cycles are neighbors. If the first condition is true, then C and

C’ must be in different strongly connected components. The treatment in this case is
the same as in the previous refinement method. If the second condition is true, then we
know that, to reach C’ fromC, one cycle from each set in the sequence N0

C , N1
C , ..., Nn

C ,
Nn

C′ , Nn−1
C′ , ..., N0

C′ has to be entered. A similar requirement is for reaching C from
C’. To refine the abstract system, we replace the boundedness test ILP problem with 4
newly generated ILP problems. Three of them augment the original ILP problems with
the constraints that prevent C and C’ from being both repeated infinitely often. The last
ILP problem augments the original ILP problem with the constraint which stipulates
that, if C and C’ are both repeated infinitely often, then at least one cycle from each
set in the sequence N0

C , Nn
C , ..., N1

C′ , ..., Nn
C′ has to be also repeated infinitely often.

Note that, although this method generates fewer ILP problems, it is coarser in that
some spurious counterexample may not be excluded. Consider the control flow graph
in Figure 12. Let ci (1 ≤ i ≤ 6) be the variable corresponding to the cycle Ci. If a
counterexample contains C1 and C2 and does not contain any of other cycles in the
same control flow graph, then a constraint is added to one of the newly generated ILP
problems as following: c1 > 0 ∧ c2 > 0 ∧ c3 + c5 > 0 ∧ c4 + c6 > 0. This constraint

72 S. Leue and W. Wei

cannot exclude a potentially spurious counterexample that contains C1. C2, C3, C6,
and not others in the same control flow graph.

6 Complexity

It is an undecidable problem to determine whether a counterexample generated in the
boundedness test is spurious or not. The proposed refinement method in this paper is
incomplete, and inevitably has a high theoretical complexity due to the following facts.
(1) The number of generated ILP problems for determining the step values of a control
expression is exponential both in the size of the respective cycle and in the size of the
guard boolean expression of each condition statement in the cycle. (2) Solving an ILP
problem is NP-complete.

Despite a high theoretical complexity, the proposed refinement method is efficient
in practice. The reasons are the following. (1) A cycle usually has a small portion rel-
evant to the computation of the control variables. (2) A guard boolean expression of a
condition statement is usually not complex such that its negation free disjunctive nor-
mal form contains only a small number of disjuncts. (3) A generated ILP problem for
determining step values is usually very small.

7 Experimental Results

We implemented the spuriousness determination and counterexample-based refinement
methods that we propose in the IBOC system . We report the experimental results of
analyzing the following models using IBOC on a Pentium IV 3.20GHz machine with
2GB memory: the Sort model included in the SPIN [8] 4.22 distribution package, a
model of the General Inter-ORB Protocol (GIOP) [9], and a model of the Model View
and Concurrency Control Protocol (MVCC) [15].

The sort model consists of 8 running processes that collaboratively sort 7 numbers
by exchanging messages through 7 buffers. IBOC used 0.718 second to report a coun-
terexample. The counterexample consists of only one cycle from the Left process that
sends one of the 7 numbers to be sorted to the buffer q[0] in their initial order each
time the cycle is executed. The cycle is guarded by the condition counter < 7 in which
the variable counter receives the value 0 before the cycle is entered. Each execution
of the cycle increments counter by 1. IBOC used another 0.688 second to determine
that the cycle cannot be repeated consecutively more than 7 times, and that the cycle
has neither neighboring cycles nor supplementary cycles to modify counter. IBOC
therefore determined the counterexample to be spurious, and excluded the cycle from
the abstract system. IBOC found no more counterexamples. The sort model was deter-
mined to be bounded.

The GIOP protocol supports message exchange and server object migration between
object request brokers (ORBs) in the CORBA architecture. The Promela implementa-
tion [9] that we took is a real life model with considerable size and complexity. IBOC
reported 5 counterexamples within 14.015 seconds. The first counterexample was de-
termined to be spurious. IBOC failed to determine spuriousness for the second, the
third, and the fourth counterexample because there is a cycle in each of them guarded

Counterexample-Based Refinement for a Boundedness Test for CFSM Languages 73

by a boolean condition that involves a variable used to store the content of received
messages. These conditions induce global cycle dependencies, which the proposed re-
finement method in this paper cannot handle. The last reported counterexample was
manually determined to be spurious. The reason that IBOC failed on it is the follow-
ing. When IBOC determines a cycle to be supplementary to an analyzed cycle, it does
not consider how many times the supplementary cycle has to be executed in order to
enable the analyzed cycle. However, considering such information may lead to an ex-
ponential number of new boundedness test ILP problems to be generated with respect
to the number of supplementary cycles. Each of the ILP problems corresponds to one
potential combinatory effect of supplementary cycles.

The MVCC protocol is one of the underlying protocols of the Clock toolkit [7] for
the development of groupware applications. It supports multi-user server-client com-
munication and the synchronization of concurrent updates of information. We took the
Promela implementation in Appendix A of [15] that allows 2 clients. The model con-
sists of 8 concurrently running processes. IBOC visited 70 states and 83 transitions in
the state machines of the processes, and constructed 46 simple cycles and identified 16
types of messages. Within 4.281 seconds, IBOC found 4 counterexamples and deter-
mined the first 3 of them to be spurious. The last counterexample contains only one
cycle in a User process (as a client) that sends a message without any constraints. It is
a real counterexample.

8 Conclusion

In this paper we have presented abstraction refinement techniques for an incomplete
communication channel boundedness test for Promela. Our approach allows one a) to
determine spuriousness of counterexamples, and b) to refine the previous abstraction in
order to exclude these spurious counterexamples. In order to determine spuriousness,
we statically compute executability conditions for cycles and we analyse the cycles in
the control flow graphs of the system to determine inclusion and exclusion dependen-
cies. We implemented our spuriousness determination and the refinement method in
IBOC. We presented experimental results that show that our method scales to systems
of realistic size and is capable of returning meaningful results.

Further work includes the analysis of global cycle dependencies - the analysis of
the GIOP protocol showed that a number of spurious counterexamples can not yet be
detected due to the unavailability of this global analysis. A further goal is to apply
our method to UML RT and UML 2.0 models that include state machine transitons
attributed with Java code.

Acknowledgements. We thank Richard Mayr for initial discussions on the subject of
this paper.

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction refinement
for software model checking. In Proceedings of TACAS: Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 2280 of LNCS. Springer Verlag, 2002.

74 S. Leue and W. Wei

2. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polynomial programs.
Concurrency Theory (CONCUR), August 2005. To appear.

3. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
2(5):323–342, April 1983.

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Computer Aided Verification, pages 154–169, 2000.

5. Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant generation
using non-linear constraint solving. In CAV, pages 420–432, 2003.

6. P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Pro-
ceedings of the Second International Symposium on Programming, pages 106–130. Dunod,
Paris, France, 1976.

7. T. C. Nicholas Graham, Tore Urnes, and Roy Nejabi. Efficient distributed implementation of
semi-replicated synchronous groupware. In UIST ’96: Proceedings of the 9th annual ACM
symposium on User interface software and technology, pages 1–10, New York, NY, USA,
1996. ACM Press.

8. G.J. Holzmann. The Spin Model Checker - Primer and Reference Manual. Addison-Wesley,
2004.

9. M. Kamel and S. Leue. Formalization and validation of the General Inter-ORB Protocol
(GIOP) using Promela and Spin. Software Tools for Technology Transfer, 2:394–409, 2000.

10. S. Leue, R. Mayr, and W. Wei. A scalable incomplete boundedness test for UML RT models.
In Proc. of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems TACAS 2004, Lecture Notes in Computer Science. Springer Verlag, 2004.

11. S. Leue, R. Mayr, and W. Wei. A scalable incomplete test for buffer overflow of Promela
models. In Proc. of the International SPIN Workshop on Model Checking of Software SPIN
2004, volume 2989 of Lecture Notes in Computer Science. Springer Verlag, 2004.

12. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI, pages 239–251, 2004.

13. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In Proc. of LICS’2004:
Logic in Computer Science, pages 32–41. IEEE, 2004.

14. S. F. Siegel and G. S. Avrunin. Improving the precision of inca by eliminating solutions with
spurious cycles. IEEE Trans. Softw. Eng., 28(2):115–128, 2002.

15. M. H. ter Beek, M. Massink, D. Latella, and S. Gnesi. Model checking groupware protocols.
In COOP, pages 179–194, 2004.

16. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121–189, 1995.

Symbolic Model Checking
for Asynchronous Boolean Programs

Byron Cook1, Daniel Kroening2, and Natasha Sharygina3

1 Microsoft Research
2 ETH Zurich

3 Carnegie Mellon University

Abstract. Software model checking problems generally contain two dif-
ferent types of non-determinism: 1) non-deterministically chosen values;
2) the choice of interleaving among threads. Most modern software model
checkers can handle only one source of non-determinism efficiently, but
not both. This paper describes a SAT-based model checker for asyn-
chronous Boolean programs that handles both sources effectively. We ad-
dress the first type of non-determinism with a form of symbolic execution
and fix-point detection. We address the second source of non-determinism
using a symbolic and dynamic partial-order reduction, which is imple-
mented inside the SAT-solver’s case-splitting algorithm. The preliminary
experimental results show that the new algorithm outperforms the ex-
isting software model checkers on large benchmarks.

1 Introduction

Model checking [1] is a formal verification technique for detecting behavioral
anomalies in system descriptions. In recent years, a number of model checkers
have been built specifically for the analysis of software. These tools have uncov-
ered defects that would have otherwise gone undetected. However, they do not
scale gracefully when applied to software of substantial size. Thus, much of the
research on model checking has focused on improving scalability.

The size of the state space of a system is directly related to the amount of
non-determinism present in the model. Concurrent software with asynchronous
interleaving semantics has two sources of non-determinism: 1) Non-deterministic
choice of data values, given explicitly in the program, and 2) the non-deterministic
choice of the interleavings among the threads.

Powerful techniques have been developed to address both of these forms of
non-determinism. Partial-order reduction is specifically designed to mitigate the
concurrency among threads. Symbolic data structures concisely represent large
sets of states. Unfortunately, these two techniques are difficult to combine. For
this reason, with few exceptions, model checkers for software systems tend to
come in one of two flavors: Symbolic software model checkers are strong when
proving properties of programs with symbolic data but are not good at reasoning
about concurrent programs with many threads; Explicit-state model checkers
have powerful methods for the verification of programs with multiple threads,

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 75–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

76 B. Cook, D. Kroening, and N. Sharygina

but are not useful when applied to systems with significant amounts of symbolic
data.

In this paper, we propose a model checking algorithm that efficiently ana-
lyzes programs with both non-deterministic data values and multiple threads
of execution. The algorithm is limited to Boolean programs [2,3] extended with
asynchronous threads [4,5]. Boolean programs—which are like C programs, but
are limited to variables with type bool—have become a common model for tools
that implement counterexample-guided abstraction refinement for software ver-
ification. Boolean programs allow the programmer to choose data values non-
deterministically. We restrict ourselves to non-recursive programs, which we have
found to be acceptable when performing analysis on system-level code. We also
restrict the set of properties that can be verified to those that can be expressed
in terms of reachability.

The algorithm described in this paper can be used immediately from within
software model checkers such as Slam [6] or Blast [7]. These model check-
ers implement software predicate abstraction, i.e., they abstract a C program
into a Boolean program. Using Slam, we can now verify properties of device
drivers with an accurate representation of the threads together with abstract
representations of their environments.

The contribution of this paper is a method for combining SAT-based symbolic
model checking and the partial-order reduction. We represent the states symbol-
ically using a parametric representation [8,9]. The data structure grows linearly
in the number of execution steps, even in the presence of non-deterministically
chosen data values. As the parametric representation is not canonical, the fix-
point detection becomes harder. We use solvers for Quantified Boolean Formulae
(QBF) for this task. We leverage the recent remarkable improvements in this
technology [10,11].

We use a propositional logic SAT-solver as part of the symbolic simulation
algorithm. This allows us to implement a form of partial-order reduction as a
modification of the SAT-solver. The key idea behind this method is that the case-
splitting algorithm used within backtracking-based SAT-solvers can be modified
to eliminate undesired interleavings. This turns out to be much faster than al-
ternative combination methods, such as adding constraints to the query that is
passed to the SAT-solver. The resulting reduction is dynamic, as the choice of
interleaving depends on the particular set of states found during the reachability
analysis. We have implemented the algorithm proposed in this paper in a tool
called BoPPo.

The remainder of this paper is organized as follows. We provide some back-
ground on Boolean programs in Section 2. We then describe our algorithm in
the Sections 3 and 4. We describe the results for our experimental evaluations
in Section 5. In Section 6, we conclude and discuss some ideas for future work.

Related Work. Several model checkers support sequential Boolean programs.
Bebop [2] and Moped [3] are BDD-based symbolic model checkers, and both
handle recursive procedures. In principle, because BoPPo supports only a fixed
number of threads and non-recursive procedures, the threaded programs could

Symbolic Model Checking for Asynchronous Boolean Programs 77

be converted into sequential programs that Bebop and Moped could process.
This is not practical, however, because only a lightweight and static form of
partial-order reduction could be applied during the translation, rather then the
dynamic one that BoPPo employs.

Dizzy [12] uses SAT-based symbolic simulation. The fix-point detection is
done by computing BDDs representing the set of reachable states. Our work uses
a similar algorithm, but uses QBF for the fix-point detection. As Bebop and
Moped, Dizzy does not support multiple threads.

Several previous efforts have also applied model checking to Boolean pro-
grams with asynchronous threads. For example, Jain, Clarke and Kroening [5]
use the BDD-based model checker NuSMV [13] to verify concurrent Boolean
programs with only very limited success.

Forms of partial-order reduction for explicit-state model checking (examples
include [14,15]) have been a particularly effective for verifying programs and
protocols with many threads. For example, Ball, Chaki and Rajamani [4] describe
a partial-order reduction based explicit state model checker, called Beacon, for
asynchronous Boolean programs. Beacon, however, was overly sensitive to the
occurrence of symbolic data generated by Slam.

The idea of combining symbolic reasoning with partial-order reduction is not
new. Our proposal shares a great deal of motivation with Alur et al. [16], who
describe a method of combining partial-order reduction together with a BDD-
based symbolic model checker. Their algorithm first computes a constrained
transition relation, called an ample transition relation. This is then given to a
BDD-based model checker. Our experiments indicate that this technique does
not provide much benefit in the context of SAT-solvers. The overhead of adding
static constraints to the SAT-solver’s data structure seems to abate the potential
benefit of less state-space exploration. As it turns out, many of the constraints
that are added are actually never used, resulting in wasted effort. Our imple-
mentation, which simply limits the assignments from which the SAT-solver can
choose when case-splitting, requires less overhead when computing representative
paths. In [17], the reduction is applied before passing the model to a Bounded
Model Checker (BMC). In [18], interleavings are added incrementally to a BMC
instance. In contrast to our work, a fix-point is not detected, and thus, the
algorithm is incomplete.

In [19], Lerda, Sinha and Theobald integrate partial-order reduction into a
BDD-based model checker, as opposed to a pre-processing step. This approach
is similar to our proposal. The difference between this previous work and our
proposal is in the representations of data, the class of solvers used, and methods
of implementing the dynamic partial-order reduction. Whereas they use BDDs,
we use SAT and QBF solvers and must therefore implement the partial-order
reduction within the SAT-solver in a different manner.

Several methods address the problem of scalability in the presence of threads
and non-deterministically chosen data via forms of decomposition [20,21]. These
techniques usually either sacrifice some amount of completeness or require small
amounts of intervention from the user. The advantage of these approaches is that

78 B. Cook, D. Kroening, and N. Sharygina

the analysis is much more scalable. In the future, researchers interested in thread
modular approaches may be able to use our method of combining partial-order
reduction and symbolic reachability in a way that allows them to improve on
the completeness and user-interaction required.

Unsound approaches have also proved successful in finding bugs in concurrent
programs. For example, Qadeer & Rehof [22] note that many bugs can be found
when the analysis is limited to execution traces with only a small set of context-
switches. This analysis supports recursive programs. Our approach complements
these techniques because, while they are unsound, they are able to analyze a
larger set of programs.

2 Boolean Programs

2.1 Boolean Programs and Predicate Abstraction

Predicate abstraction [23,24] is a commonly used method for systematically con-
structing conservative abstractions of software. When combined with reachability
analysis and an automatic abstraction refinement mechanism, it forms an effec-
tive model checking strategy. Predicate abstraction constructs the abstraction
by tracking only certain predicates on the data. Each predicate is represented
by a Boolean variable in the abstract program, while the original data variables
are eliminated. Extra non-determinism is added into the abstraction in order to
maintain soundness of the sequential control-flow constructs in the abstraction.
When predicate abstraction is performed on software systems with threads, the
result is an abstraction that makes fundamental use of both non-deterministically
chosen values and non-deterministically scheduled threads. Therefore, we need
an efficient reachability analysis for these abstract models.

The following example shows code that is typical of a Windows device driver:

void DecrementIo(DEVICE_OBJECT * DeviceObject) {
EXT * ext = (EXT*)DeviceObject->DeviceExtension;
int IoIsPending = InterlockedDecrement (&ext->IoIsPending);
if (!IoIsPending){ KeSetEvent (&ext->event, IO_NO_INCREMENT, FALSE); }

}

An abstraction of this function is obtained by passing it to Slam [6]. In the
first iteration of the abstraction refinement loop, Slam computes the following
Boolean program fragment:

void DecrementIo_abstraction() {
InterlockedDecrement_abstraction();
goto L1,L2;
L1: KeSetEvent_abstraction();
L2: return;

}

This example demonstrates how predicate abstraction generates Boolean pro-
grams that make non-trivial use of both forms of non-determinism. This abstrac-

Symbolic Model Checking for Asynchronous Boolean Programs 79

tion is using a non-deterministic goto instruction to model the conditional op-
erator in the original function. This code fragment is also calling an abstraction
of the Windows kernel synchronization primitive KeSetEvent.

In further refinement iterations, Slam usually adds variables to the abstrac-
tion. Suppose the following predicates are used to refine the abstraction above:

{ b1 � ext == &envext, b2 � envext.IoIsPending == 1
, b3 � envext.IoIsPending == 2, b4 � IoIsPending == 2
, b5 � IoIsPending == 1, b6 � (∗ext).IoIsPending == 1

, b7 � (∗ext).IoIsPending == 2}
This results in the following new abstract model:

bool b1,b2,b3;
void DecrementIo_abstraction() {

bool b4,b5,b6,b7;
b1,b6,b7 = *,*,*
constrain((!(b1’ && b2) || b6’) && (!(b1’ && b3) || b7’));
b4,b5 = InterlockedDecrement_abstraction(b6,b7);
goto L1,L2;
L1: assume(!b4 && !b5);

KeSetEvent_abstraction();
L2: return;

}

Due to the imprecision of the abstraction, we cannot prove that ext==&envext,
nor can we prove that ext!=&envext. Therefore, a non-deterministically chosen
value has to be assigned to the variable b1, which represents this predicate. This
is necessary to preserve the soundness of the analysis.

Furthermore, using the constrain operator, this assignment statement re-
stricts the choice such that b6 must be true after the assignment if b1 is true
after the assignment and b2 is true before the assignment. Analogously, b7 must
be true after the assignment if b1 is true after the assignment and b7 is true
before the assignment. This abstraction also refines the non-deterministic goto
using an assume statement: the program declares that any transition passing
through the L1 location must ensure that b4 and b5 are false.

2.2 Formal Semantics of Boolean Programs

In this section, we provide a simple operational semantics for asynchronous,
concurrent Boolean programs. Later, in Section 3.2, we use the semantics to
construct an algorithm that transforms Boolean program reachability into a
propositional logic formula. The formalization is based on the description of
sequential Boolean programs in [2].

Definition 1. An explicit state η of a Boolean program is a tuple (i, Ω), with
i : T �→ L and Ω : V �→ B.

The first component of an explicit state η, called i, is a mapping from the
set of threads T into the set of program locations L. Thus, i(t) denotes the

80 B. Cook, D. Kroening, and N. Sharygina

instruction that is to be executed next by thread t ∈ T . The second component,
called Ω, is a mapping from the set of variables V into the set of the two Boolean
values, i.e., it assigns an explicit value to each state variable.

Notation. Given a valuation Ω and an expression e over the variables V , we
use Ω(e) in order to denote the evaluation of e. This is defined in the usual way.
In addition to that, we also allow expressions that refer to the values of variables
in two different states η1 and η2. Syntactically, the values of the two states
are distinguished by using primed versions of the variables. We use (η1, η2)(e)
in order to denote the evaluation of e in the states η1 and η2. The unprimed
variables in e are substituted by the values given in η1, while the primed variables
in e are substituted by the values given in η2. As an example, consider the
valuation Ω1 = {(x, 1), (y, 0)} and Ω2 = {(x, 0), (y, 0)}. For these valuations,
and an expression e = x ∨ x′, we have (η1, η2)(e) = 1 ∨ 0.

We also allow additional choice variables ι1, . . . , ιk inside the expressions. We
use ι to denote the vector of these variables. Given a particular non-deterministic
choice ι and a state η, we denote the evaluation of the expression e in η with
the choice ι as (η, ι)(e).

Given an explicit state η, we denote the first component by η.i, and the second
component by η.Ω. For any function f : D → T , we define f [d/r] : D → R as
f [d/r](x) = r if d = x, and f [d/r](x) = f(d) otherwise.

Execution Semantics. Assume the scheduler picks thread t ∈ T to execute
in state η. We use η1 →t η2 to denote the fact that a transition from state η1
is made to η2 by executing one statement of thread t. The statement that is
executed is P (η1.i(t)). The relation η1 →t η2 is defined by a case-split on this
instruction. The conditions for each statement are shown in Table 1. We explain
the formalization of each statement as follows:

– The skip statement increments the program counter of thread t. The values
of the variables and the program counters of the other threads do not change.

– The goto θ1, . . . , θk statement changes the program counter of thread t to
one of the program locations θ1, . . . , θk given as argument. The choice is
arbitrary, i.e., non-deterministic. The values of the variables and the program
counters of the other threads do not change.

– The assume e statement behaves like skip, but with the additional constraint
that the expression e must evaluate to true in state η1. If the expression
evaluates to false, η1 has no successor states.

– The constrained assignment statement x1, . . . , xk := e1, . . . , ek constrain e
changes the program counter like skip. It also updates the values of the vari-
ables using the expressions e1, . . . , ek. The expressions are evaluated in state
η1. The expressions may contain choice variables ι1, . . . , ιk. These variables
allow a non-deterministic choice on data, and are quantified existentially.
The transition also has an additional constraint e. The constraint e is a pred-
icate in terms of the current state η1 and the next state η2. It is evaluated in
both states accordingly, where the next state variables are primed. If there is
no choice for ι, which satisfies the constraint, state η1 has no successor states.

Symbolic Model Checking for Asynchronous Boolean Programs 81

Table 1. Conditions on the explicit state transition 〈i1, Ω1〉 →t 〈i2, Ω2〉, for each type
of statement P (i1)

P (i1) i2 Ω2

skip i2(x) = i1[t/i1(t) + 1] Ω2 = Ω1

goto θ1, . . . , θk
i2(x) = i1[t/θ1] ∨ . . . ∨
i2(x) = i1[t/θk] Ω2 = Ω1

assume e i2(x) = i1[t/i1(t) + 1]
Ω2 = Ω1 ∧

Ω1(e) = true

x1, . . . , xk := e1, . . . , ek

constrain e
i2(x) = i1[t/i1(t) + 1]

∃ι. Ω2 = (Ω1[x1/(Ω1, ι)(e1)]
. . . [xk/(Ω1, ι)(ek)] ∧

(η1, η2, ι)(e)

We do not define semantics for syntactic sugar such as if or while, as these
statements can be easily transformed using goto and assume, as illustrated in
section 2.1. Also, function calls can be inlined; we do not support unbounded
recursion, as the reachability problem for concurrent programs with unbounded
recursion is undecidable.

Finally, we write η1 → η2 if there exists a thread t ∈ T such that η1 →t η2.
We say that there is a transition from η1 to η2 in this case, or that η1 is reachable
from η2 with one transition.

A state η2 is reachable from a state η1 in k transitions if there exists a state
η′, η′ is reachable from η1 in k − 1 transitions, and η2 is reachable from η′ in
one transition. Given an initial state ηI , the set of reachable states is the set of
states that is reachable from ηI in any number of transitions. The property we
check is reachability of states with particular program locations.

3 SAT-Based Symbolic Simulation

In this section we describe how we represent a set of states symbolically using
formulae, and then how to transform Boolean programs into such formulae.

3.1 Representation of States

Definition 2. A symbolic formula is defined using the following syntax rules:

1. The Boolean constants true and false are formulae.
2. The non-deterministic choice variables ι1, . . . are formulae.
3. If f1 and f2 are formulae, then f1 ∧ f2, f1 ∨ f2, and ¬f1 are formulae.

The set of such formulae is denoted by F .

A symbolic formula may evaluate to multiple values due to the choice vari-
ables. As an example, the pair of formulae 〈ι1, ι2 ∧ ¬ι1〉 may evaluate to 〈0, 0〉,
〈1, 0〉, 〈0, 1〉, but not to 〈1, 1〉. We use these symbolic formulae in order to rep-
resent a set of states:

82 B. Cook, D. Kroening, and N. Sharygina

Definition 3. A symbolic state σ is a triple 〈i, ω, γ〉, with i : T �→ L, ω : V �→
F , and γ : F .

Given a particular valuation for the choice variables ι, we denote the value
of a symbolic formula f as ι(f).

The first component of a symbolic state σ, called i, is identical to the first
component of an explicit state (definition 1). The second component, called ω,
is a mapping from the set of variables V into the set of formulae. It denotes the
symbolic valuation of the state variables. The third component, called γ, is a
formula that represents the guard of the state symbolically.

Thus, we represent the program counters explicitly, while the program vari-
ables are represented symbolically. The set of explicit states represented by σ
are those states η that satisfy the following conditions:

– They have the same PC values given by i.

η.i = σ.i (1)

– There exists a non-deterministic choice ι, which satisfies the guard γ, and
assigns values to the variables that match the values given by Ω.

∃ι.ι(γ) ∧ ∀v ∈ V.Ω(v) = ι(ω(v)) (2)

Thus, the set of explicit states corresponding to a symbolic state is defined
using a predicate in the parameter ι. Thus, we have a parametric representation.
Parametric representations of sets of states have been used in formal verification
before [8,9], but mostly in the context of hardware verification.

Note that the problem of whether there exists an explicit state represented by
a given symbolic state is equivalent to the problem of propositional satisfiability.
A satisfying assignment contains concrete valuations for the state variables and
for the choice variables, and thus, a SAT-solver provides a witness.

3.2 Symbolic Execution

Assume that the scheduler picks thread t ∈ T to execute in the symbolic state σ.
In analogy to the explicit state model, we use σ1 →t σ2 to denote the fact that
a transition from state σ1 is made to σ2 by executing one statement of thread t.
Again, the statement that is executed is P (σ1.i(t)). The definition of the relation
σ1 →t σ2 is done using a case-split on this instruction. The conditions for each
statement are shown in Table 2. The column describing the constraints on the
program counters i1 and i2 is identical to the column in Table 1, and therefore
is not repeated here. We explain the formalization of each statement as follows:

– The definitions of the skip and goto statements follow the definitions for
the explicit state case. The formulae for the guards are not changed by these
statements.

– In the symbolic case, the assume e statement does not have the precondition
that e is true. Instead, the condition e is instantiated in the state σ1. This
results in a symbolic formula. The symbolic formula is conjoined with the
guard γ1, forming the formula γ2.

Symbolic Model Checking for Asynchronous Boolean Programs 83

Table 2. Conditions on the symbolic transition 〈i1, ω1, γ1〉 →t 〈i2, ω2, γ2〉, for each
type of statement P (i1). For the constraints on i1 and i2, see table 1.

P (i1) ω2 γ2

skip ω2 = ω1 γ2 = γ1

goto θ1, . . . , θk ω2 = ω1 γ2 = γ1

assume e ω2 = ω1 γ2 = (γ1 ∧ ω1(e))
x1, . . . , xk := e1, . . . , ek

constrain e
ω2 = (ω1[x1/ω1(e1)] . . . [xk/ω1(ek)] γ2 = (γ1 ∧ (ω1, ω2)(e))

– In the symbolic case, a constrained assignment statement x1, . . . , xk :=
e1, . . . , ek constrain e updates the values of the variables using the ex-
pressions e1, . . . , ek. The expressions are evaluated in state η1. It is no longer
necessary to instantiate the values of the non-deterministic choice variables
ι, as ω(v) is now a formula, and not a Boolean value. Thus, the choice vari-
ables become part of the formula. Also, the additional constraint e is added
to the guard, in analogy to an assume statement.

3.3 Reachability Algorithm

In order to check reachability of a particular program location b ∈ L using the
symbolic model, we implement an exhaustive search of the state space. This is
done by most explicit state model checkers as well, e.g., by Spin [25]. The basic
algorithm is shown in Figure 1. The main differences between our implementation
and an explicit state model checker are as follows:

1) We maintain a queue of symbolic states for the search. A search heuristic
picks the next state to explore from the queue.

2) Before reachability of a bad state σ can be concluded, we must run a SAT
solver (denoted by the function IsSatisfiable) in order to check that σ.γ is
satisfiable, and thus, the set of concrete states represented by σ is non-empty.
Note that the guards of the states on one path only get stronger, and never
weaker, and thus, it is sufficient to check the guards of the bad states only.

3) In order to conclude that no bad states are reachable, explicit state model
checkers maintain a history of the states that have been explored. This set of
states is typically organized using a hash table. Because of the symbolic represen-
tation, we cannot use this approach. Instead, we use a symbolic solver in order
to compare the symbolic state that is chosen next to explore with the states that
have been explored so far. This is implemented in the procedure IsHistory. The
details of this function are described in section 4.

3.4 Partial-Order Reduction

When computing the successors of a given symbolic state σ, we usually have to
consider the possibility that any of the threads t ∈ T can make a transition. The
choice is non-deterministic. Formally, we have to compute all states σ′ for which

84 B. Cook, D. Kroening, and N. Sharygina

// Input: Boolean Program P with locations L, bad location b ∈ L

// Output: true iff b is reachable in P

// Variables: Queue Q of symbolic states
SymbolicReachability(P, b)

1 Compute initial state σI

2 Q := {σI};
3 while (¬Q
= ∅)
4 σ := Element from Q;
5 if IsHistory(σ) then
6 Q := Q \ σ;
7 elseif ∃t ∈ T. σ.i(t) = b ∧ IsSatisfiable(σ.γ) then
8 return true;
9 else

10 Q := (Q \ σ)∪ GetSuccessors(P, σ);
11 endif
12 end
13 return false;

Fig. 1. High Level Description of the Symbolic Reachability Algorithm

a thread t ∈ T exists which can make a transition from σ to state′. A sequence of
choices for a particular thread t is called an interleaving. The problem is that the
number of states explored can grow dramatically with the number of threads.
Even with just two threads, the number of interleavings blows up in the number
of execution steps. In contrast to that, a sequential program only requires as
many symbolic states as there are execution steps.

The purpose of Partial-Order Reduction [15] is to reduce the number of paths
that have to be explored. This is done in a way that preserves the property, i.e.,
the property holds on the reduced model if and only if it holds on the full,
original model.

Symbolic Partial-Order Reduction Using SAT. The approach we take
is related to what many explicit state model checkers implement. We aim at
finding a thread t that makes an invisible transition, i.e., a transition which is
independent from a transition made by any other thread t′ �= t. We compute the
sets of variables written and read by each of the threads. Let Rt denote the set
of variables that are read, and Wt the set of variables that are written by thread
t in the current state. If thread t is not enabled, these sets are empty. If a thread
t is found with Wt ∩ (

⋃
i�=t Ri ∪ Wi) = ∅ and Rt ∩ ⋃

i�=t Wi = ∅, we only explore
the successors generated by executing t. All other transitions are discarded.

This reduction preserves the property we are checking, i.e., reachability of
program locations. The computation of the reduction requires knowledge of the
enabled transitions and of the dependencies between the transitions. This is
computationally inexpensive in case of an explicit state model checker, as all the

Symbolic Model Checking for Asynchronous Boolean Programs 85

values of the variables are known. In contrast, we use a symbolic representation.
The question of whether a particular transition is enabled or not corresponds
to a SAT instance. A syntactic over-approximation of the set of enabled transi-
tions and the dependencies is feasible, but often does not result in a significant
reduction. We therefore use a modified SAT solver in order to compute the set
of interleavings we explore.

SAT has been used in the context of asynchronous transition systems be-
fore. As in most existing approaches, we build a SAT instance that has non-
deterministically chosen variables for the thread selector and an encoding of the
transitions out of the given state. Typically, constraints on the thread selector
variables are added upfront in order to limit the possible choice of interleavings.
However, our initial experiments showed that most of these constraints are un-
necessary, as they eliminate transitions out of states that are unreachable, and
often make the instance much harder.

We therefore use the following, alternative approach: the SAT instance we
form uses a one-hot encoding for a thread about to make an invisible transition.
We implement the constraints on the variables that are read and written as part
of the case-splitting heuristic of ZChaff, and not by adding appropriate clauses,
as this information is known statically. The SAT-solver only needs to determine
which threads are enabled, i.e., have a satisfiable guard.

Once a local interleaving is found, it is explored. If no local interleaving is
found, the thread to be executed is chosen by the SAT-solver’s decision heuristic.
Once its successors are computed, we add a blocking clause to prevent the same
transition from being explored again and backtrack.
Cycle Detection. The method of removing interleavings that we described above
could lead to unsound results. In fact, there is a possibility that some transitions
will be delayed forever because of a cycle in the reduced model.

To prevent the loss of transitions, partial-order reduction techniques require
satisfaction of a cycle condition [26]. The cycle condition prohibits cycles that
contain a state in which some transition is enabled, but is never taken for any
state on the cycle. The intuitive reason for this condition is to avoid postponing
a transition indefinitely while generating the reduced model.

Algorithmically, we solve this issue in the same way as most explicit state
model checkers: when postponing a transition, we note this fact on the search
stack. If the IsHistory procedure detects that a state has been explored before,
we resume the evaluation of the postponed transitions.

4 Fix-Point Detection

In order to detect fix-points, we need to compare the new set of states to the set
of states that we have already explored. When using BDDs, two sets of states
can be compared by simply comparing the graphs of the BDDs. The drawback
of using BDDs is that already only very few steps of symbolic simulation may
result in prohibitively large BDDs.

86 B. Cook, D. Kroening, and N. Sharygina

As described in the previous section, we store the states using a non-canonical
symbolic representation. While this representation allows us to execute a state-
ment symbolically in linear time, we pay a price in form of a harder fix-point
detection problem.

The fix-point detection is implemented in the IsHistory procedure. It takes
a new symbolic state σn as input and returns true if it is subsumed by an old
symbolic state σo in a set H . The program counter part of the state is stored
explicitly. Thus, the first step of the algorithm is to obtain the set of old states
H ′ ⊆ H with program counter values that match those of state σn. This is
implemented using a hash table, as is done in most explicit state model checkers.
The number of entries in this table is limited by the partial-order reduction. We
therefore do not expect a blowup in this data structure.

The set H ′ corresponds to a disjunctive partitioning of the set of states.
Disjunctive partitionings are commonly used in symbolic model checkers for
asynchronous concurrent programs, e.g., in [13,27].

The second step is to check whether a symbolic state in σo ∈ H ′ subsumes the
symbolic state σn, i.e., if all explicit states represented by σn are also contained
in σo. Note that we will not detect the case that σn is not covered by any
single σo ∈ H ′, but rather by a combination of states in H ′. Comparing the new
state with the union of the symbolic states in H ′ would be too expensive. This
may delay the detection of the fix-point, but will neither affect soundness nor
termination.

A state σn is subsumed by a state σo if for all explicit states represented
by σn there exists an identical state represented by σo. As the program counter
components already match, we only need to compare the values of the state
variables. As given by Equation 2, the set of explicit states represented by a
symbolic state is defined using an existential quantification over the choice vari-
ables ι. Formally, for each choice of inputs ιn for the new state σn, there must
exist a (possibly different) choice of inputs ιo for the old state σo that results in
the same state:

∀ιn|ιn(γn). ∃ιo|ιo(γo). ιn(ωn) = ιo(ωo) (3)

Equation 3 can be transformed into a Quantified Boolean Formula (QBF)
and passed to a QBF solver such as Quantor [10] or Quaffle [11]. We have found
that modern QBF solvers, and especially Quantor, can handle surprisingly large
instances that we generate. If the QBF solver determines the formula to be true,
we can discard the state σn. Otherwise, we insert σn into H , and proceed with
the state space exploration using the successors of state σn.

Optimization. In Equation 3, the outermost quantification is done over the
non-deterministic choice variables used as parameter for the states represented
by σn. Given a deep symbolic simulation, the number of such variables may be
large.

Note that we only care about the values of the state variables in a state
represented by σn. Thus, we can re-write Equation 3 such that the outer quan-
tification is done over the state bits, and not over the non-deterministic choices.

Symbolic Model Checking for Asynchronous Boolean Programs 87

Table 3. Experimental results: n/a denotes that the model checker does not handle the
benchmark due to lacking features, * denotes that the time limit (1 hour) or memory
limit (2 GB) was exceeded

Benchmark Moped SPIN Bebop Zing BoPPo
1 0.1s * 0.1s n/a 0.6s
2 * 3.8s 120s n/a 27.0s
3 n/a n/a 0.17s n/a 0.43s
4 n/a * 2058s n/a 75.6s
5 n/a * n/a * 55.8s

∀xn. ∃ιn, ιo.xn = ιn(ωn) ∧ (ιn(γn) =⇒ (ιo(γo) ∧ ιn(ωn) = ιo(ωo)) (4)

The number of state-bits may be much smaller than the number of non-de-
terministic choices, and thus, the complexity of the formula is reduced.

Another simple optimization is to restrict the set of variables we consider to
V ′ ⊆ V , where V ′ is the set of variables that are active in any of the program
locations L′ ⊆ L given by any of the program counters.

A variable is active in a program location if its value is of relevance to any
instruction reachable from the location. E.g., local variables that are not yet in
scope can be disregarded when comparing the values of the state variables.

A third optimization is to partition the set of variables into groups C1, . . . , Ck

that share choice variables. Indirect sharing, through other variables, has to be
considered.

5 Experimental Results

We have implemented the algorithm described above in a tool called BoPPo.
We use Limmat as the SAT solver, and Quantor as the QBF solver.

In this section, we compare BoPPo with other model checkers. We use the
explicit state model checkers SPIN [25] and Zing [28]. We also compare our
BoPPo with Moped [3] and Bebop [2], which are BDD-based symbolic model
checkers. Neither Bebop nor Moped supports multiple threads, however. The
experimental results are summarized in Table 3.

Benchmarks 1-4 are sequential; the first two benchmarks are artificial and
contain about 30 Boolean variables. In the first benchmark, most states are
reachable. The symbolic model checkers Bebop, BoPPo, and Moped handle
this benchmark easily, while the explicit state model checkers run out of memory
even with such a small number of state bits. The second benchmark encodes a
multiplication over the Boolean variables. SPIN handles this benchmark easily,
while Moped exceeds the 2GB memory limit.

The benchmarks 3-5 are generated by Slam. The Slam model checker im-
plements counterexample guided abstraction refinement for C programs. Bench-
mark 3 is a summary of 572 individual, small sequential benchmarks; the times
given for the benchmark denote the average runtime. On the small benchmarks,
Bebop outperforms BoPPo. Benchmark 4 is a large sequential device driver.

88 B. Cook, D. Kroening, and N. Sharygina

An experimental version of Slam provides support for the verification of
concurrent programs4 In this mode, Zing is used as a replacement for Slam’s
sequential reachability engine, Bebop. Benchmark 5 is generated from a 4500
LOC Windows device driver with three threads in this manner.

As Zing is an explicit state model checker, it is not well-adapted to han-
dle the larger Boolean programs that are produced by predicate abstraction. As
discussed in Section 2, Slam generates abstractions that make frequent use of
non-deterministic choice. When Slam is used to verify the correctness of Win-
dows device drivers, we must also provide abstract representations of the kernel,
other device drivers, and user-level applications. This environment adds a large
amount of additional non-determinism. For this reason, Slam in combination
with Zing can process only relatively small model checking examples.

With BoPPo, Slam is now able to solve much larger problems. Zing is
unable to solve benchmark 6 after more than an hour of execution. BoPPo is
able to solve the benchmark within a minute. We attempted to run this same
benchmark using SPIN and NuSMV without any positive result.

Surprisingly, BoPPo appears to make a contribution for sequential programs
as well. As we try to apply Slam to more difficult properties and larger programs,
Bebop is sometimes the performance bottleneck. This problem is exacerbated by
experiments where we have used a theorem prover that is accurate with respect
to pointer arithmetic, bit-vectors, structures and unions [29] — this causes many
additional Boolean variables to be added to the abstraction and also causes the
logic used in the transition relation of the Boolean program to become more
complicated. This puts additional strain on Bebop.

In the worst case, the predicates can begin to resemble the arithmetic from
the original C program. BoPPo, because its symbolic representation is based
on SAT and QBF and not BDDs, is better able to scale to larger and more
complicated sequential Boolean programs.

6 Conclusion and Future Work

Symbolic model checking and partial-order reduction are hard to combine. For
this reason model checkers for software systems typically treat non-trivial amounts
of symbolic data, or non-trivial numbers of threads, but not both. We have pre-
sented a SAT-based model checking approach that can be used to efficiently
reason about the safety of Boolean programs with both symbolic data and mul-
tiple threads. This allows model checkers which abstract software into Boolean
programs to verify multi-threaded programs.

The algorithm presented in this paper implements partial-order reduction
using SAT. The reduction is based on a change to the case-splitting algorithm
used within the SAT-solver. This implementation strategy turns out to be better
than an approach in which constraints on the interleavings are encoded as part
of the input to the SAT-solver.

4 Thanks to Georg Weissenbacher and Jakob Lichtenberg.

Symbolic Model Checking for Asynchronous Boolean Programs 89

As future work, we want to experiment with other techniques for checking
state subsumption for parametric representations. In [30], the authors use a SAT
solver to compute a new parametric representation from a set of constraints. The
new parametric representation is canonical for a given variable ordering, and thus
allows an efficient fix-point detection. We would also like to try our techniques
for checking liveness properties and for checking equivalence of two programs.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
2. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.

In: SPIN 00: SPIN Workshop. LNCS 1885, Springer-Verlag (2000) 113–130
3. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:

CAV. LNCS 2102, Springer-Verlag (2001) 324–336
4. Ball, T., Chaki, S., Rajamani, S.K.: Parameterized verification of multithreaded

software libraries. In: TACAS, Springer-Verlag (2001)
5. Jain, H., Clarke, E., Kroening, D.: Verification of SpecC and Verilog using predicate

abstraction. In: Proceedings of MEMOCODE 2004, IEEE (2004) 7–16
6. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:

Technology transfer of formal methods inside Microsoft. In: IFM. (2004)
7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL

02: Symposium on Principles of Programming Languages, ACM Press (2002) 58–70
8. Coudert, O., Madre, J.: A unified framework for the formal verification of sequential

circuits. In: ICCAD, IEEE (1990) 78–82
9. Aagaard, M.D., Jones, R.B., Seger, C.J.H.: Formal verification using parametric

representations of boolean constraints. In: DAC, ACM Press (1999) 402–407
10. Biere, A.: Resolve and expand. In: Proc. SAT’04. LNCS, Springer (2004)
11. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability

solver. In: ICCAD. (2002)
12. Leino, K.R.M.: A SAT characterization of Boolean-program correctness. In: SPIN.

(2003)
13. A. Cimatti et al.: NuSMV 2: An opensource tool for symbolic model checking. In:

CAV. (2002) 359–364
14. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking

software. In: POPL 05: Symposium on Principles of Programming Languages,
ACM Press (2005)

15. Holzmann, G., Peled, D.: An improvement in formal verification. In: Proc. Formal
Description Techniques, FORTE94, Chapman & Hall (1994) 197–211

16. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state-space exploration. FMSD 18 (2001) 97–116

17. Jussila, T., Niemelä, I.: Parallel program verification using BMC. In: ECAI 2002
Workshop on Model Checking and Artificial Intelligence. (2002) 59–66

18. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided
underapproximation-widening for multi-process systems. In: POPL, ACM Press
(2005) 122–131

19. Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. In:
Software Model Checking (SoftMC). ENTCS (2003)

20. Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: Mocha:
Modularity in model checking. In: CAV. LNCS. Springer (1998) 521–525

90 B. Cook, D. Kroening, and N. Sharygina

21. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread modular abstraction
refinement. In: CAV, Springer (2003) 262–274

22. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: TACAS 05: Tools and Algorithms for Construction and Analysis of Systems,
Springer-Verlag (2005)

23. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In Grumberg,
O., ed.: CAV. Volume 1254 of LNCS., Springer (1997) 72–83

24. Colón, M., Uribe, T.: Generating finite-state abstractions of reactive systems using
decision procedures. In: CAV. Volume 1427 of LNCS., Springer (1998) 293–304

25. Holzmann, G.: The model checker SPIN. IEEE Trans. on Software Engineering
23 (1997) 279–295

26. Peled, D.: All from one, one for all: on model checking using representatives. In:
In Proc.of CAV. (1993)

27. Barner, S., Rabinovitz, I.: Effcient symbolic model checking of software using
partial disjunctive partitioning. In: CHARME. (2003) 35–50

28. T. Andrews et al.: Zing: Exploiting program structure for model checking concur-
rent software. In: CONCUR 2004. (2004)

29. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for
program verification. In Etessami, K., Rajamani, S.K., eds.: Proceedings of CAV
2005. Volume 3576 of Lecture Notes in Computer Science., Springer Verlag (2005)

30. Chauhan, P., Clarke, E., Kroening, D.: A SAT-based algorithm for reparameteri-
zation in symbolic simulation. In: DAC 2004, ACM Press (2004) 524–529

Improving Spin’s Partial-Order Reduction for
Breadth-First Search

Dragan Bošnački1 and Gerard J. Holzmann2

1 Eindhoven University of Technology,
Den Dolech 2, P.O. Box 513,

5612 MB Eindhoven, The Netherlands
2 NASA/JPL Laboratory for Reliable Software,

California Institute of Technology,
4800 Oak Grove Drive
Pasadena, CA 91006

Abstract. We describe an improvement of the partial-order reduction
algorithm for breadth-first search which was introduced in Spin version
4.0. Our improvement is based on the algorithm by Alur et al. for sym-
bolic state model checking for local safety properties [1]. The crux of the
improvement is an optimization in the context of explicit state model
checking of the condition that prevents action ignoring, also known as
the cycle proviso. There is an interesting duality between the cycle pro-
visos for the breadth-first search (BFS) and depth first search (DFS)
exploration of the state space, which is reflected in the role of the BFS
queue and the DFS stack, respectively. The improved version of the al-
gorithm is supported in the current version of Spin and can be shown to
perform significantly better than the initial version.

1 Introduction

Partial-Order Reduction (POR) [17,14,4,15,18,2] is one of Spin’s [6] primary
weapons against the state explosion problem. The standard POR algorithm in
Spin [7,8,9] assumes a depth-first search (DFS) exploration of the state space.
Starting with version 4.0.0, Spin also supports a breadth-first search (BFS)
exploration mode, which is enabled when the model checker is compiled with
optional compile-time directive -DBFS. It is therefore attractive to develop an
efficient version of the POR algorithm that can be compatible with BFS.

In this paper we describe an improvement of the initial BFS version of the
POR algorithm in Spin for the verification of safety properties, which achieves
a reduction of the state space that is comparable to the DFS case, while still
preserving the benefits of BFS exploration (e.g., finding the shortest counterex-
ample to a correctness property). The improvement we describe is inspired by
Alur et al.’s algorithm [1] for the application of POR in symbolic state space
exploration.

The crucial novelty is a new version of the so called cycle proviso which
prevents action ignoring. Unlike the full state space exploration, POR expands

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 91–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 D. Bošnački and G.J. Holzmann

only a subset of the enabled actions/transitions in a given state, called the ample
set. The actions outside the ample set are temporarily ignored. However, if one
is not careful, an action could be permanently ignored along some cycle in the
reduced state space. Consider a state s that appears in both the full and the
reduced state space. An action a is (permanently) ignored if it is executed in s
in the full state space, but it is ignored along all execution sequences starting at
s in the reduced state space.

To prevent this, the initial BFS POR algorithm in Spin required that each
ample set must satisfy a special version of the cycle proviso: at least one state
which is obtained as a result of an action from the ample set must appear outside
the set of previously visited states.

Based on the theory in [1] we show that this condition can be weakened
such that one does not forbid previously visited states that are still in the BFS
queue (i.e., whose successors have not been explored yet). The intuition is that
the ignoring problem is postponed until such states are revisited during the
BFS. From them the execution of some already postponed state could be fur-
ther postponed, but because of the finiteness of the state space all postponed
transitions will eventually be executed. Unlike states in the BFS queue, visited
states outside the queue will not be explored again. As a result, a cycle closed
back through such states can lead to indefinite postponement. Experimental re-
sults confirm that the new proviso gives much better reductions than the old
one, often comparable to and in some cases better than the reductions obtained
with the standard DFS POR.

Related work. The POR algorithm of Alur et al. [1] is for symbolic state space
exploration and as such it is based on BFS. However, as in the symbolic approach
one works with sets of states instead of with individual states, a direct translation
of the algorithm would result in a less efficient version than the one presented
here. In particular, it is not clear what the analogue would be in an explicit
(enumerative) state search of the set of most recently generated states (“front
states”) in [1].

For instance, in [12] a direct adaptation resulted in a proviso that forbids
all previously visited states, similar to Spin’s initial BFS cycle proviso discussed
above. The implementation described in [12] is not directly comparable with the
initial Spin implementation though, since the former works with a combination
of depth and breadth-first searches which are applied interchangeably.

In another work [11], the authors exploit the fact that the concurrent systems
we work with are defined by a parallel composition of sequential processes. This
leads to the formulation of a static version of the cycle proviso, i.e., one which is
enforced at compile time. The observation is that the existence of a cycle in the
global state space implies the existence of a local cycle in one of the component
processes. To break global cycles it suffices to break their local components. The
algorithm now marks at least one transition in each local cycle as “sticky” to
ensure that at least one state of a global cycle is fully expanded. This static
condition is in general much stronger, and should therefore be expected to be
less efficient, than our version of the proviso.

Improving Spin’s Partial-Order Reduction for Breadth-First Search 93

2 Preliminaries

This section introduces the concepts and terminology used in the paper. We also
discuss the standard (DFS) version of the partial-order algorithm in Spin.

2.1 Transition Systems

To formally reason about state spaces, we introduce the notion of a labeled
transition system.

Definition 1 (Labeled transition system). A labeled transition system
(LTS), is a 6-tuple (S, ŝ, A, τ, Π, L), where

– S is a finite set of states;
– ŝ ∈ S is the initial state;
– A is a finite set of actions;
– τ : S × A → S is a (partial) transition function;
– Π is a finite set of boolean propositions;
– L : S → 2Π is a state labeling function.

Let T = (S, ŝ, A, τ, Π, L) be an LTS. An action a ∈ A is said to be T -
enabled in state s ∈ S, denoted s

a→T iff τ(s, a) is defined. The set of all actions
a ∈ A enabled in state s ∈ S is denoted enabledT (s); that is, for any s ∈ S,
enabledT (s) = {a ∈ A | s

a→T }. When the LTS is clear from the context we omit
the T subscript. A state s ∈ S is a deadlock state iff enabled(s) = ∅.

Transition function τ of LTS T induces a set T ⊆ S × A × S of transitions
defined as T = {(s, a, s′) | s, s′ ∈ S∧a ∈ A∧s′ = τ(s, a)}. To improve readability,
we write s

a→ s′ for (s, a, s′) ∈ T .
An execution sequence of LTS T is a (finite) sequence of consecutive tran-

sitions in T . For any natural number n ∈ IN, states si ∈ S and actions ai ∈ A

with i ∈ IN and 0 ≤ i < n, s0
a0→ s1

a1→ . . . sn−1
an−1→ sn is called an execution

sequence of length n of T iff si
ai→ si+1 for all i ∈ IN with 0 ≤ i < n. State sn is

said to be reachable from state s0. A state is said to be reachable in T iff it is
reachable from ŝ.

2.2 Partial-Order Reduction - Theoretical Framework

The basic idea of state space reduction is to restrict the part of the state space
of a concurrent system that is explored during verification in such a way that all
properties of interest are preserved. Partial-order reduction exploits the indepen-
dence of properties from the many possible interleavings of the individual process
actions of a concurrent system. In our context, actions correspond to Promela
statements. Thus, partial-order reduction uses the fact that state-space explosion
is often caused by the many possible interleavings of independent statements (ac-
tions) of concurrently executing processes. (For more details about the relation
of the Promela models and their corresponding LTSs see, for instance, [8,6].)

94 D. Bošnački and G.J. Holzmann

To be practically useful, a reduction of the state space must be achieved
on-the-fly, during the construction and traversal of the state space. This means
that it must be decided per state which transitions, and hence which subsequent
states, must be considered. Let T = (S, ŝ, A, τ, Π, L) be some LTS.

Definition 2 (Reduction). For any so-called reduction function r : S → 2A,
we define the (partial-order) reduction of T with respect to r as the smallest LTS
Tr = (Sr, ŝr, A, τr, Π, Lr) satisfying the following conditions:

– Sr ⊆ S, ŝr = ŝ, τr ⊆ τ , and Lr = L ∩ (Sr × Π);
– for every s ∈ Sr and a ∈ r(s) such that τ(s, a) is defined, τr(s, a) is defined.

Note that these two requirements imply that, for every s ∈ Sr and a ∈ A, if
τr(s, a) is defined, then also τ(s, a) is defined and τr(s, a) = τ(s, a).

Formally, if the function r(s) is fixed in advance, the reduced LTS Tr is inde-
pendent of the particular algorithm with which it is generated. In practice r(s)
is computed on-the-fly during the generation of Tr, so the latter may depend on
the algorithm. Viewing the LTS as a graph, we consider two cases: a depth-first
and a breadth-first graph traversal algorithm.

It will be clear that not all reductions preserve all properties of interest.
Depending on the properties that a reduction must preserve, we have to define
additional restrictions on r. To this end, we need to formally capture the notion
of independence. Actions occurring in different processes can easily influence
each other, for example, when they access global variables.

The following notion of independence defines the absence of such mutual
influence.

Definition 3 (Independence of actions). Actions a, b ∈ A with a �= b are
independent in a given state s ∈ S iff the following holds:

– if a ∈ enabled(s) then b ∈ enabled(s) iff b ∈ enabled(τ(s, a)),
– if b ∈ enabled(s) then a ∈ enabled(s) iff a ∈ enabled(τ(s, b)), and
– τ(τ(s, a), b) = τ(τ(s, b), a)

Given a set S′ ⊆ S, we say that two actions a, b ∈ A are conditionally
independent (on S′) iff they are independent in all states s ∈ S′. If S′ = S, we
say that a, b are unconditionally (globally) independent.

A typical example of independent actions are actions that correspond to
assignments to or evaluations of local variables in distinct processes. Another
case is two i/o operations on the same channel q under certain conditions: send
and receive are independent provided that the channel q is neither empty nor full.
Actions that are not (conditionally or unconditionally) independent are called
(conditionally or unconditionally) dependent.

The first property we are interested in proving is absence of deadlock. In
order to preserve deadlock states in a reduced LTS, the reduction function r
must satisfy the following conditions:

Improving Spin’s Partial-Order Reduction for Breadth-First Search 95

– C0a: if a ∈ r(s) then a ∈ enabled(s)
– C0b: r(s) = ∅ iff enabled(s) = ∅.
– C1 (persistence): For any s ∈ S and execution sequence s0

a0→ s1
a1→ . . .

an−1→
sn of length n ∈ IN \ {0} such that s0 = s and ai �∈ r(s) for all i ∈ IN with
0 ≤ i < n, it holds: action an−1 is independent in sn−1 with all actions in
r(s).

The basic idea behind the persistence condition is that, during the state-space
traversal, transitions caused by actions that are independent of all the actions
chosen by the reduction function can be temporarily ignored, i.e., postponed. Ac-
tion sets which satisfy conditions C0a, C0b, and C1 are called persistent sets [4].
Similarly, the corresponding function r is called a persistent function.

Theorem 1 (Deadlock preservation [4, Theorem 4.3]). Let r be a reduction
function for LTS T that satisfies conditions C0a, C0b and C1. Any deadlock
state reachable in T is also reachable in the reduced LTS Tr and vice versa.

The above mentioned Theorem 4.3 in [4] does not state that any deadlock reach-
able in a reduced LTS is also reachable in the original LTS. However, this result
follows immediately from proviso C0b. Several authors have presented state-
space-reduction algorithms that preserve deadlocks [13,16,5].

The second class of properties we discuss is the class of safety properties
which includes Promela assertions [6]. The main obstacle in the verification of
safety properties is the so called action ignoring problem which was identified for
the first time in [17]. Informally, the ignoring problem occurs when a reduction
of a state space ignores the actions of an entire process. For instance, if there is
a cyclic process in the system which contains only globally independent actions,
i.e., does not interact with the rest of the system, the reduction algorithm could
ignore the rest of the system by choosing only actions of this process in r(s). An
action a is ignored in a state s ∈ Sr iff a ∈ enabledT (s) and for all s′ which are
reachable in Tr from s it holds a �∈ enabledTr (s′). An action is ignored in Tr iff
it is ignored in some state s ∈ Sr.

To avoid the ignoring problem we use a witness function W which enumerates
the states in Sr such that we are sure that the ignoring of an action will stop at
some point [1]. Let T be an LTS with a reduction function r. A mapping W :
Sr → IN (from the set of states of the reduction Tr to the set of natural numbers)
is a witness for r iff for all states s ∈ Sr the following holds: if r(s) �= enabled(s),
then there exists an action a ∈ r(s) and a state s′ ∈ Sr such that s

a→ s′ and
W (s′) < W (s). Thus, we introduce the following additional condition on r(s):

– C2w (avoiding action ignoring using witness): The function r has a witness
W .

By conditions C0a, C0b, and C1 an action a, which is enabled in T in some s
which is also in Tr, cannot be disabled by any action in r(s). Hence, by C2w, there
is always a descendant s′ of s, such that a ∈ enabledT (s′) and W (s′) < W (s).
Continuing this argument further on s′ and its descendants we can obtain a

96 D. Bošnački and G.J. Holzmann

strictly decreasing sequence of naturals W (s), W (s′), As we work with finite
state spaces, we will eventually arrive in some state s′′ in which we cannot
satisfy C2w, because W (s′′) < W (s′′′), for any immediate descendant s′′′ of s′′.
Obviously in such a state r(s′′) = enabled(s′′) contains all delayed actions which
(because of the persistence) remain enabled along the way and thus they are not
ignored in s′′.

The fact that any enabled transition in a given state s of the reduced state
space will be eventually executed in some state reachable from s implies that each
execution sequence σ starting in s has a representative in the reduced state space.
If we see the execution sequence as a sequence of actions, this representative
is a permutation of an action sequence obtained by extending σ with another
(possibly empty) action sequence σ′ from the original state space. More formally,
the claim is given by the following theorem:

Theorem 2. Given an LTS T and a reduction function r that satisfies C0a,
C0b, C1, and C2w, let s0

a0→ s1
a1→ . . . sn−1

an−1→ sn be a finite execution se-
quence of T , such that s0 ∈ Sr. Then there exists (in T) an execution se-
quence sn

an→ s1
an+1→ . . . sn+k−1

an+k−1→ sn+k, (k ≥ 0), such that in Tr there
exists an execution sequence s0

aπ(0)→ s′1
aπ(1)→ . . . s′n+k−1

aπ(n+k−1)→ sn+k, where
aπ(0), aπ(1), . . . , aπ(n+k−1) is a permutation of a0, a1, . . . , an+k−1.

Proof of the above theorem can be found in [1]. Analogous results were proven
previously using different versions of the condition that prevents action ignoring
(e.g. [17,4]).

Theorem 2 is a meeting point of almost all existing POR-like techniques. It
implies preservation of various classes of safety properties (for instance, see [18]
for an overview.) Among them are also Promela assertions that can be fitted
in a straightforward way in one of the existing approaches like assertions in the
sense of [4,7], fact transitions of [17], or local properties of [1].

2.3 The Standard Partial-Order-Reduction Algorithm of Spin

Given the theorems of the previous subsection, the challenge is to find interest-
ing reduction functions and efficient algorithms implementing the corresponding
reductions. The standard partial-order-reduction algorithm of Spin is described
in [8,14]. The most important aspects of the algorithm are the following: (1) it
is based on a depth-first search (DFS) of the state space of a concurrent system
and (2) it uses a reduction function based on the process structure of the sys-
tem. For the full details of the algorithm, the reader is referred to the original
references [8,14]. In this paper, we concentrate on the condition that prevents
action ignoring.

The latter is based on the fact that the DFS version of the algorithm in Fig. 1
uses a stack to store the unexpanded states. (Procedures that operate on the
state space and the stack have the usual semantics.)

We use that observation to formulate a simple locally checkable condition
that implies C2w and as such prevents action ignoring. Let stack(s′) be the set

Improving Spin’s Partial-Order Reduction for Breadth-First Search 97

1 Stack D = ∅
2 StateSpace V = ∅

3 Start() {
4 AddStatespace(V,ŝ)
5 PushStack(D,ŝ)
6 Search()
7 }

8 Search() {
9 s = TopStack(D)
10 for each s

a→ s′ ∈ r(s)
11 if InStateSpace(V,s’) == false {
12 AddStatespace(V,s’)
13 PushStack(D,s’)
14 Search()
15 }
16 /* cycle proviso C2 */
17 PopStack(D)
18 }

Fig. 1. Depth-First Search Partial-Order Reduction Algorithm

of states which are in the DFS stack D immediately before InStateSpace(V,s’) is
called at line 11. The new condition that is also given below is required to hold
at line 16 of the algorithm in Fig. 1 as a search invariant. (In an implementation
the proviso would be checked at the same place and if it is not satisfied then the
for loop at line 10 will be repeated with r(s) = enabled(s).)

– C2s: (stack proviso) For any s ∈ Sr, there exists at least one action a ∈ r(s)
and state s′ ∈ Sr such that s

a→ s′ and s′ is not on the DFS stack, i.e.,
s′ �∈ stack(s′). Otherwise, r(s) = enabledT (s).

Intuitively, the stack proviso C2s allows the execution in the reduced LTS
of an action a which is enabled in s, but it is outside r(s), to be postponed
as long as we are sure that the action will be executed in some downstream
state of the DFS. This is the case as long as not all transitions of r(s) lead to
states on the DFS stack, i.e., not all of them close a cycle along which a could
be ignored. As by persistence a is independent with any b ∈ r(s), a remains
enabled (in T) in all states obtained from s via actions/transitions from r(s).
If all the transitions of r(s) close a cycle, this is a potential danger that a
could be ignored. To prevent this we execute all enabled transitions in s, i.e.,
r(s) = enabled(s). Analogously with the discussion about the intuition behind
C2w, we can conclude that because we work with finite state spaces a transition
is not postponed forever, i.e., DFS will eventually hit a state in which r(s) =
enabled(s).

Formally, the correctness of the proviso C2s is implied by the following
lemma:

98 D. Bošnački and G.J. Holzmann

Lemma 1. Let T be an LTS and Tr its reduction obtained using the DFS POR
algorithm in Fig. 1 with a reduction function r that satisfies condition C2s. Then
r satisfies the ignoring prevention condition C2w, i.e., there exists for r a witness
function W : Sr → IN.

Proof. Let W : Sr → IN be a function that enumerates the states of the reduced
LTS Tr in the order they are removed from the DFS stack D at line 17: the state
which is removed first is mapped to 0, the one which is removed last to | Sr | −1.
If r(s) �= enabled(s), by proviso C2s, there exists an action a ∈ r(s) and a state
s′ ∈ Sr such that s

a→ s′ and s′ is not in stack(s′). Hence, as s′ is added to
D later than s, it will be removed before s. Thus, we get W (s′) < W (s) which
means that W is a witness for r. ��

3 A Breadth-First Search Partial-Order Reduction
Algorithm

In this section we describe Spin’s BFS algorithm with an emphasis on the new
version of the cycle proviso. The pseudo-code of the BFS POR algorithm is given
in Fig. 2. (Procedures that operate on the state space and the queue have the
usual semantics.) Note that the cycle provisos we give below are required to hold
before the recursive call of Search() in line 16 of this algorithm.

1 Queue D = ∅
2 StateSpace V = ∅

3 Start() {
4 AddStatespace(V,ŝ)
5 AddQueue(D,ŝ)
6 Search()
7 }

8 Search() {
9 s = DelQueue(D)
10 for each s

a→ s′ ∈ r(s)
11 if InStateSpace(V,s′) == false {
12 AddStatespace(V,s′)
13 AddQueue(D,s′)
14 }
15 /* cycle proviso C2 */
16 if D != ∅ Search()
17 }

Fig. 2. Breadth-First Search Partial-Order Reduction Algorithm

The conditions that ensure persistence of r, C0a, C0b and C1, do not depend
on the search order. Consequently, they may remain the same as in the DFS POR

Improving Spin’s Partial-Order Reduction for Breadth-First Search 99

algorithm. Only the condition for ignoring prevention should be changed because
in BFS we can no longer count on the DFS stack. Let visited(s′) be the value of
V immediately before the call of InStateSpace(V,s′) at line 11 of the algorithm
in Fig. 2. To avoid the ignoring problem in the initial BFS POR algorithm of
Spin the following condition (proviso) was used.

– C2v (visited proviso): For any state s ∈ Sr there exists at least one action
a ∈ r(s) and a state s′ ∈ Sr such that s

a→ s′ and s′ has not already been
visited by the BFS, i.e., s′ �∈ visited(s′). Otherwise, r(s) = enabledT (s).

Similarly as in the DFS case, because of the persistence of r(s), the enabled
transitions outside r(s) remain T -enabled in any state s′ generated from s via
an action in r(s). If s′ is a new state, it is placed in the BFS queue in order to
be expanded later by the BFS. As a consequence, the enabled actions of s which
are not in r(s) can be postponed to be executed later in that state or in some
of its descendants. If all the states generated by actions from r(s) have been
already visited, then we cannot guarantee anymore that some T -enabled actions
are ignored. In terms of cycles, we cannot be sure that not all actions/transitions
close a cycle along which an enabled transition is “forgotten”. Therefore, to be
on the safe side, for such states, we include all T -enabled actions in r(s). The
role of the visited states as a potentially “dangerous destination” for the actions
from r(s) is analogous to the one of the states on the DFS stack in the DFS
case. (The formal proof that C2v implies C2w is virtually the same as the proof
of Lemma 2 below.)

Inspired by [1] we give an improved version of C2v. Our algorithm can be
seen as an explicit state version of the BFS POR algorithm of [1] which targets
BFS in the context of symbolic model checking. Let queue(s′) be the value of D
before the call of InStateSpace(V,s′) at line 11 of the algorithm in Fig. 2. The
reduction function r(s), besides conditions C0a, C0b and C1, has to satisfy also
the condition below.

– C2vq (visited+queue proviso): For any state s ∈ Sr there exists at least one
action a ∈ r(s) and a state s′ ∈ Sr such that

• s
a→ s′ and s′ has not already been visited by the BFS, i.e., s′ �∈

visited(s′), or
• s′ is in the BFS queue, i.e., s′ ∈ queue(s′).

Otherwise, r(s) = enabledT (s).

C2vq is a refinement of C2v which excludes part of the visited states, more
precisely, the ones which are in the BFS queue. The crucial point in the intuition
behind C2v was that the new states (and conceptually, the T -enabled transitions
outside the ample set) were placed in the BFS queue in order to be dealt with
later. But the same reasoning applies also to all the states in the BFS queue. All
of them will be considered later by the BFS and one can postpone the problem
of the execution of the temporarily ignored actions until they are fetched from
the queue.

100 D. Bošnački and G.J. Holzmann

Thus, we can relax the requirement from C2v that the generated state must
be a new one by allowing that it is visited provided that it is still in the BFS
queue. The weaker proviso C2vq increases the chance to find an r(s) that is a
proper subset of the enabled transitions in s and to improve in this way the
efficiency of the reduction.

Taking into account that the newly generated state s′ (in the text of C2vq) is
added to the BFS queue (line 13 of the algorithm in Fig. 2) before the ignoring
proviso is checked (line 15), we define queue′(s) as the value of D at line 15, i.e.,
immediately before the check of the proviso. As a result we obtain the following
more compact version of the proviso:

– C2q (queue proviso): There exists at least one action a ∈ r(s) and a state
s′ ∈ S such that s

a→ s′ and s′ is in the BFS queue, i.e., s′ ∈ queue′(s).
Otherwise, r(s) = enabledT (s).

There is an intriguing duality between the DFS stack and the BFS queue in
C2s and C2q. In the DFS version it is required that the states are not on the
DFS stack, while in the BFS case they must be in the BFS queue. Considering
that there is nothing in the nature of the stack and the queue as data structures
that may indicate such a duality, this is a rather surprising observation. It might
be interesting to investigate if this kind of duality occurs also in other model
checking or graph search algorithms in general.

We show below that C2vq (C2q) implies that the prevention ignoring con-
dition C2 is satisfied too by the reduced state space, which further entails (via
Theorem 2) preservation of safety properties by the BFS algorithm.

Lemma 2. Let T be an LTS and Tr its reduction obtained using the BFS POR
algorithm with a reduction function r satisfying condition C2q (C2vq). Then r
satisfies the ignoring prevention condition C2w, i.e., there exists for r a witness
function W : Sr → IN.

Proof. Let W : Sr → IN be a function that enumerates the states of the reduced
state space in a reverse order they are added to the BFS queue D at line 13, i.e.,
the initial state ŝ which is added first is mapped to | Sr | −1, while the state
which is added last is mapped to 0. If during the BFS POR search in a given
state s ∈ Sr C2q holds for r(s), this implies that there exists at least one action
a ∈ r(s), such that s

a→ s′ and s′ is in the BFS queue. As s has already been
removed from the BFS queue at line 9, the first-in-first-out queue policy implies
that s has been added to the queue before s′ (which is still in the queue). Hence,
W (s′) < W (s) and therefore W is a witness for r. ��
The correctness of the BFS POR algorithm follows by Lemma 2 and further by
Theorem 2.

3.1 A BFS Queue Based Proviso for Liveness Properties

The proviso C2q can be adapted for preservation of liveness properties. It is well
known (e.g. [2]) that to preserve LTL−X (and with some additional restrictions
on r(s) also CTL∗

−X [3,15]) the following condition is sufficient:

Improving Spin’s Partial-Order Reduction for Breadth-First Search 101

– C2l (liveness cycle proviso): For any cycle s0
a0→ s1

a1→ . . .
an−1→ sn = s0 of

length n ∈ IN \ {0} in Tr, there is an i ∈ IN with 0 ≤ i < n such that
r(si) = enabled(si).

Unlike the safety cycle proviso C2q (which required that an action a is not
ignored by at least one cycle along which it is constantly enabled in the original
LTS), the liveness cycle proviso ensures that along each cycle of the reduced
LTS no action is ignored. This is because at least in one state of each cycle all
enabled actions are included in r(s). Thus, using similar arguments as in the
case of safety properties one can conclude that all actions that might have been
ignored along the cycle are executed in the reduced state space.

One can ensure the validity of C2l with the following strengthened version
of C2q

– C2ql: For all actions a ∈ ample(s) and states s′ ∈ S such that s
a→ s′, s′ is

in the BFS queue.

The intuition behind the liveness queue proviso C2ql is more or less the same
as for C2q - we do not have to worry about “losing” an ignored transition as long
as the problem is delegated to the states of the queue which will be explored
later. Only, unlike in the safety case, there is a stronger requirement that the
ignoring is avoided along every cycle. However, like in the safety case, there is a
duality between the stack based liveness proviso for DFS [14,8] and C2ql.

Lemma 3. Proviso C2ql implies the liveness cycle proviso C2l.

Proof. Let Tr be obtained using r(s) which satisfies C2ql. As in the proof of
Lemma 2, let us assume a witness function W which enumerates the states
of Sr in the reverse order they are entered in the BFS queue. It is obvious
that for each cycle s0

a0→ s1
a1→ . . .

an−1→ sn = s0 (n > 0) in Tr there exists
some 0 ≤ j < n such that W (sj) < W (sj+1). Before being expanded by the
BFS, the state sj is removed from the BFS queue. Thus, for any state s in the
BFS queue W (sj) > W (s). Therefore, sj+1 is not in the queue and by C2ql
r(sj) = enabled(sj), which proves our claim. ��

Unfortunately, efficient cycle detection with BFS remains an open problem.
Thus, presently the practical significance of the liveness queue proviso remains
to be shown.

Using the concept of state history function and Lemma 2.3 from [1] one can
generalize in a quite straightforward way C2ql beyond DFS and BFS - for an
arbitrary exploration order that satisfies certain conditions.

4 Experiments

We implemented the BFS POR algorithm with the queue proviso in Spin version
4.2.0. The prototype implementation was tested on examples from the Spin

102 D. Bošnački and G.J. Holzmann

Table 1. Experimental Results with Spin’s Test Suite

BFS POR with C2v BFS POR with C2q DFS POR with C2s
model states trans time [s] states trans time [s] states trans time [s]

eratosthenes 18799 42361 0.24 3205 3683 0.01 2093 2571 0.01
leader 109 109 < 0.01 109 109 < 0.01 97 97 < 0.01
leader2 16094 16332 0.23 16094 16332 0.19 14122 14241 0.09
mobile1 66389 123076 0.47 25894 36576 0.15 9971 20246 0.11
mobile2 13924 25719 0.07 6932 9819 0.03 3301 6531 0.06

petersonN (N=2) 164 290 < 0.01 135 180 < 0.01 133 171 < 0.01
petersonN (N=3) 26373 47398 0.09 13650 21135 0.03 16720 30322 0.03
petersonN (N=4) 7.16 M 27.4 M 46.12 3.65 M 7.42 M 14.0 3.19 M 6.85 M 9.63

pftp 137897 292283 0.99 61765 80416 0.35 47356 64970 0.21

distribution. The results of the experiments are shown in Table 1. The columns
correspond to the original BFS POR algorithm in Spin (with the C2v cycle
proviso) the new algorithm with the improved proviso C2q, and the standard
DFS algorithm (which uses the C2s proviso), respectively.

For all examples (except for the leader election protocol models leader and
leader2 where the results were the same) there was an improvement in the re-
duction compared to the old version of the algorithm with the C2v proviso. Most
of the time the improvement was significant. Often the algorithm with C2q pro-
duced a reduced state space which was two to three times smaller than the one
obtained with C2v. In the best case (eratosthenes) the factor was greater than
five. Besides, the verification times for the improved version were better except in
the cases when the space reduction was the same by both versions of BFS POR
(the leader election examples). Thus, one can conclude that the implementation
of condition C2q does not incur significant time overhead.

In general, the DFS and BFS reduction are incomparable regarding their
efficiency. There are examples when BFS shows better performance and vice
versa [1]. In our experiments though we found only one example, Peterson’s
mutual exclusion protocol with three processes, for which the BFS POR algo-
rithm produced a smaller LTS (fewer states and fewer transitions) than the DFS
version. In practice DFS tends to produce smaller state spaces than BFS. A
possible explanation could be that on average the set of states which are on the
DFS stack and which are “dangerous destination” for the cycle proviso for the
DFS case is smaller than its BFS analogue - the set of all visited states minus
the states in the BFS queue.

In our experiments the number of states and transitions, as well as the verifi-
cation times, obtained with the improved BFS and DFS were comparable. Mem-
ory use, which is not given in Table 1, tends to be lower for DFS than for BFS.

5 Conclusions

We presented an improvement of the BFS POR algorithm implemented in Spin.
The main idea behind the improvement was a modification of the so-called cycle

Improving Spin’s Partial-Order Reduction for Breadth-First Search 103

proviso which prevents action ignoring. Although our algorithm targets safety
properties (in particular, properties expressed as Promela assertions), we also
gave a strengthening of the proviso which preserves liveness properties expressed
in LTL−X and CTL∗

−X . The algorithm and proviso presented in the paper is
independent of Spin’s implementation and are compatible with any BFS explo-
ration algorithm, thus as such they can be used in other state space exploration
tools.

It would be interesting to check if our algorithm can be used in combined
searches, like the combination of DFS and BFS for directed model checking as
described in [12].

References

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani, Partial-
order reduction in symbolic state-space exploration, Formal Methods in System De-
sign, 18:97-116, 2001. A preliminary version appeared in Proc. of the 9th Inter-
national Conference on Computer-aided Verification, CAV ’97, LNCS 1254, pp.
340–351, Springer, 1997.

2. E. Clarke, O. Grumberg, D.A. Peled, Model Checking MIT Press, 2000.
3. R. Gerth, R. Kuiper, D. Peled, W. Penczek, A Partial Order Approach to Branching

Time Logic Model Checking, Information and Computation 150(2): 132-152, 1999.
4. P. Godefroid, Partial Order Methods for the Verification of Concurrent Systems:

An Approach to the State Space Explosion, LNCS 1032, Springer, 1996.
5. P. Godefroid, P. Wolper, Using Partial Orders for the Efficient Verification of

Deadlock Freedom and Safety Properties, Computer Added Verification, CAV ’91,
LNCS 575, pp. 332-342, Springer, 1991.

6. G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison
Wesley, 2003.

7. G.J. Holzmann, P. Godefroid, D. Pirottin, Coverage Preserving Reduction Strate-
gies for Reachability Analysis, in Proc. 12th IFIP WG 6.1. International Sym-
posium on Protocol Specification, Testing, and Validation, FORTE/PSTV ’92,
pp.349-363, North-Holland, 1992.

8. G. Holzmann, D. Peled, An Improvement in Formal Verification, FORTE 1994,
Bern, Switzerland, 1994.

9. G. Holzmann, D. Peled, M. Yannakakis, On Nested Depth First Search, Proc. of
the 2nd Spin Workshop, Rutgers University, New Jersay, USA, 1996.

10. S. Katz, D. Peled, Verification of Distributed Programs Using Representative In-
terleaving Sequences, Distributed Computing, 6:107-120, 1992.

11. R.P. Kurshan, V. Levin, M. Minea, D. Peled, H. Yenigün, Static Partial Order Re-
duction, in Tools and Algorithms for Construction and Analysis of Systems TACAS
’98, LNCS 1384, pp. 345-357, 1998.

12. A. Lluch-Lafuente, S. Edelkamp, S. Leue, Partial Order Reduction in Directed
Model Checking, In 9th Int. SPIN Workshop, SPIN 2002, LNCS 2318, pp. 112-127,
Springer, 2002.

13. W.T. Overman, Verification of Concurrent Systems: Function and Timing, Ph.D.
Thesis, UCLA, Los Angeles, California, 1981.

14. D.A. Peled, Combining Partial Order Reductions with On-the-Fly Model Checking,
Formal Methods on Systems Design, 8: 39-64, 1996. A previous version appeared
in Computer Aided Verification 1994, LCNS 818, pp. 377-390, 1994.

104 D. Bošnački and G.J. Holzmann

15. B. Willems, P. Wolper, Partial Order Models for Model Checking: From Linear to
Branching Time, Proc. of 11 Symposium of Logics in Computer Science, LICS 96,
New Brunswick, pp. 294-303, 1996.

16. A. Valmari, Eliminating Redundant Interleavings during Concurrent Program Ver-
ification, Proc. of Parallel Architectures and Languages Europe ’89, vol. 2, LNCS
366, pp. 89-103, Springer, 1989.

17. A. Valmari, A Stubborn Attack on State Explosion, in Advances in Petri Nets,
LNCS 531, pp. 156-165, Springer, 1991.

18. A. Valmari, The State Explosion Problem, Lectures on Petri Nets I: Basic Models,
LNCS Tutorials, LNCS 1491, pp. 429-528, Springer, 1998.

6 Appendix

6.1 Implementation of the BFS POR Algorithm in Spin

The pseudo-code of the BFS POR algorithm implementation in Spin is given
in Fig. 3. The algorithm is an extension of the iterative version of the BFS
POR algorithm in Fig. 2. It is obtained by removing in a standard way the
tail recursive call of Search() at line 16 in Fig. 2 and implementing the cycle
proviso of line 15 in Fig. 2. To implement the cycle proviso C2q boolean variable
ProvisoOK and procedure InQueue(D,s′), which checks if state s′ is in the queue
D, are introduced.

Another important difference with the algorithm in Fig. 2 is the while loop
between lines 6 and 17. In Spin r(s) is implemented via so-called ample sets.
Ample sets are actually persistent sets that satisfy the cycle proviso. They consist
of transitions of only one process P . This loop iterates until a candidate action set
which does not contain all enabled transitions is found (indicated by ProvisoOK
== true) or there are no more candidate processes that can produce an ample
set. In the implementation the choice of a candidate ample set is done such that
that all processes are scanned in order to find those that in its current location
contain only so-called safe actions. (The safe actions are defined such that they
ensure that the candidate ample set is persistent(c.f. [8])) The locations/actions
are labeled as safe statically, during the scanning of the Promela model. Thus,
they do not incur additional time overhead during the verification.

As it was mentioned above, the boolean variable ProvisoOK indicates if the
proviso is satisfied. Before expanding each state ProvisoOK is set to false (line
8). In case a state is generated which is in the queue, then it is set to true (lines
14 and 15). If the choice of a process for an ample set was not successful (which
is checked in line 18) then the ample set consists of all enabled transitions (from
all processes) in state s and consequently s is correspondingly expanded (lines
18-24).

Improving Spin’s Partial-Order Reduction for Breadth-First Search 105

1 Queue D = ∅
2 StateSpace V = ∅

3 while D != ∅ {
4 s = DelQueue(D)
5 ProvisoOK = false
6 while ProvisoOK == false && there are candidate processes {
7 choose a process P for the ample set, i.e., r(s)
8 ProvisoOK = false
9 for each s

a→ s′ ∈ r(s) {
10 if InStateSpace(V,s′) == false {
11 AddStatespace(V,s′)
12 AddQueue(D,s′)
13 }
14 if InQueue(D,s′) == true
15 ProvisoOK = true
16 } /* transitions */
17 } /* candidate processes */

18 if ProvisoOK == false {
19 for each s

a→ s′

20 if InStateSpace(V,s′) == false {
21 AddStatespace(V,s′)
22 AddQueue(D,s′)
23 }
24 }
25 }

Fig. 3. Pseudo-code of the implementation of BFS POR in Spin

Vladimir Levin1, Robert Palmer2, Shaz Qadeer3, and Sriram K. Rajamani3

1 Microsoft
vladlev@microsoft.com
2 University of Utah
rpalmer@cs.utah.edu

3 Microsoft Research
{qadeer, sriram}@microsoft.com

Abstract. Partial-order reduction is widely used to alleviate state-space
explosion in model checkers for concurrent programs. Traditional ap-
proaches to partial-order reduction are based on ample sets. Natural am-
ple sets can be computed for threads that communicate with each other
predominantly through message queues. For threads that communicate
with shared memory using locks for synchronization, Lipton’s theory
of reduction provides a promising way to aggregate several fine-grained
transitions into larger transactions. In traditional partial-order reduc-
tion, actions that are not in the ample set are delayed, thus avoiding the
redundant exploration of equivalent interleaving orders. Delaying the ex-
ecution of actions indefinitely can lead to loss of soundness. This is called
the ignoring problem. The usual solution to the ignoring problem is by
Cycle Detection. Explicit state model checkers usually use Depth First
Search, and when a cycle is detected, disallow using a reduced ample set
that closes the cycle.

The ignoring problem exists in transaction-based reduction as well.
We present a novel solution to the ignoring problem in the context
of transaction-based reduction. We designate certain states as commit

points and track the exploration to discover whether the reduced explo-
ration guarantees a path from each commit point to a state where the
transaction is completed. If such a path does not exist, we detect this
at the time a commit point is popped from the stack, and schedule all
threads at the commit point. This paper presents our algorithm, called
Commit Point Completion (CPC). We have implemented both CPC and
Cycle Detection in the Zing model checker, and find that the CPC algo-
rithm performs better.

1 Introduction

Partial-order methods have been widely used as an optimization in building
model checkers for concurrent software [1–6]. Traditional partial-order reduction
methods are based on the notion of independence between actions. Two actions
α and β are independent if (1) they do not disable one another and (2) if both
actions are enabled in a state s, then executing them in the order α followed by

Sound Transaction-Based Reduction Without
Cycle Detection

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 106–1 , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

22

in each state called the ample set. The set of all actions enabled in a state
s is denoted Enabled(s) and the ample set of actions in a state s is denoted
Ample(s). Obviously, Ample(s) ⊆ Enabled(s). For partial-order reduction to be
sound, ample sets need to be chosen in such a way that a transition that is
dependent on a transition in Ample(s) cannot execute without a transition in
Ample(s) occurring first (see condition C1 in [1] page 148). Choosing a minimal
ample set satisfying C1 is a very hard problem. In practice, ample sets are formed
from local actions, and from restricted versions of send and receive actions, such
as: sending to a queue, with the sender having exclusive rights of sending to the
queue, and receiving from a queue, with the receiver having exclusive rights of
receiving from the queue [3]. If the system consists of threads interacting via
shared memory, Lipton’s theory of reduction [7] provides an alternate way to do
partial-order reduction. Reduction views a transaction as a sequence of actions
a1, . . . , am, x, b1, . . . , bn such that each ai is a right mover and each bi is a left
mover. A right mover is an action that commutes to the right of every action
by another thread; a left mover is an action that commutes to the left of every
action by another thread. Thus, to detect transactions we need to detect right
and left movers. Most programs consistently use mutexes to protect accesses to
shared variables, we can exploit this programming discipline to infer left and
right movers:
– The action acquire(m), where m is a mutex, is a right mover.
– The action release(m) is a left mover.
– An action that accesses only a local variable or shared variable that is con-

sistently protected by a mutex is both a left mover and a right mover.
A transaction is a sequence of right movers, followed by a committing action
that is not a right mover, followed by a sequence of left movers. A transaction
can be in two states: pre-commit or post-commit. A transaction starts in the
pre-commit state and stays in the pre-commit state as long as right movers are
being executed. When the committing action is executed, the transaction moves
to the post-commit state. The transaction stays in the post-commit state as long
as left movers are being executed until the transaction completes. In addition to
being able to exploit programmer-imposed discipline such as protecting each
shared variable consistently with the same lock, transaction-based reduction
allows extra optimizations such as summarization [8].
Ignoring Problem. All partial-order reduction algorithms work by delaying
the execution of certain actions, thus avoiding the redundant exploration of
equivalent executions. For instance, if thread t1 executes an action from state
s1 that reads and writes only local variables, then thread t2 does not need to
be scheduled to execute in s1, and t2’s scheduling can be delayed without losing
soundness. For any interleaving that starts from s1 and ends in a state where
some thread t goes wrong, there exists an equivalent interleaving where the
execution of t2 is delayed at s1. However, unless we are careful, the scheduling of
thread t2 can be delayed indefinitely resulting in loss of soundness. This situation
is called the ignoring problem in partial-order reduction.

β from s, or in the order β followed by α from s, leads to the same resulting
state. Partial-order reduction algorithms explore a subset of enabled actions

Sound Transaction-Based Reduction Without Cycle Detection 107

int g = 0;

void T1() {

L0: g = 1;

L1: skip;

L2: while(true){

L3: skip;

}

L4: return;

}

void T2() {

M0: assert(g == 0);

M1: return;

}

P = { T1() } || { T2() }

Fig. 1. Ignoring problem

Consider the example in Figure 1. The initial state of this program has two
threads t1 and t2 starting to execute functions T1 and T2 respectively. The
program has one global variable g, which has an initial value 0. A typical model
checking algorithm first schedules t1 to execute the statement at line L0, which
updates the value of g to 1. Let us call this state s1. Since the next statement
executed by thread t1 from s1 reads and writes only local variables of t1 (namely
its program counter) and does not read or write the global variables, transaction-
based reduction algorithms delay execution of thread t2 at state s1. Continuing,
the while loop in lines L2 and L3 also reads and writes only the local variables of t1
and thus execution of t2 can be delayed during the execution of these statements
as well. However, since reached states are stored, and a newly generated state
is not re-explored if it is already present in the set of reached states, a fix-
point is reached after executing the loop in T1 once. Thus, the execution of t2 is
delayed indefinitely, and the reduction algorithm can be unsound, and say that
the assertion in line M0 is never violated.

Most partial-order reduction algorithms “fix” the ignoring problem by de-
tecting cycles, and disallowing the actions of a thread to be ample when a cycle
is “closed” (see condition C3, pages 150 and 158 in [1]). Since explicit-state
model checkers usually use depth first search (DFS), cycle detection can be per-
formed by detecting whether a newly generated state is already present in the
DFS stack. In the SPIN model checker this is implemented using a bit in the hash
table entry for reached states. This bit indicates whether the newly generated
successor state is currently also on the depth first search stack.

Cycle detection is neither necessary nor sufficient for transaction-based re-
duction. Consider the variant of our current example in Figure 2. Here, we have
introduced a nondeterministic choice in line L2 of procedure T1. In one branch of
the nondeterministic choice, we have a while-loop with statements reading and
writing only local variables of thread t1 (lines L3-L4). The other branch of the
nondeterministic choice just terminates the procedure. In this case, even with-
out doing any cycle detection, since one branch of the nondeterministic choice
terminates, a partial-order reduction algorithm can schedule thread t2 after pro-
cedure T1 terminates, and thus the assertion violation in line M0 can be detected.
If we consider a variant of this example, where the entire “if” statement (from

108 V. Levin et al.

int g = 0;

void T1() {

L0: g = 1;

L1: skip;

L2: if (*) {

L3: while(true){

L4: skip;

L5: }

}

L6: return;

}

void T2() {

M0: assert(g == 0);

M1: return;

}

P = { T1() } || { T2() }

Fig. 2. Cycle detection is not necessary for transaction-based reduction

line L2 to L6 is replaced by assume(false) (see Appendix C) at line L2, some
other mechanism in addition to cycle detection is needed to schedule the thread
t2 after t1 executes the statement L1.

In the current literature on transaction-based reduction, the ignoring prob-
lem is addressed indirectly by disallowing certain types of infinite executions,
such as those consisting of only internal hidden actions, within each thread (see
Condition C from Section 4.2 in [9] which forbids the transaction from having in-
finite executions after committing, but without completing, and well-formedness
assumption Wf-ifinite-invis from Section 4 in [10]). These assumptions do not
hold in practice. In particular, when we analyze models that arise from abstrac-
tions (such as predicate abstraction) of programs, it is common to have loops
with non-deterministic termination conditions, which violate the above assump-
tions. Thus, a more direct and computationally effective solution to the ignoring
problem is required for wide applicability of transaction-based reduction. This
paper presents a novel solution to this problem.
CPC Algorithm. We propose a new technique called Commit Point Com-
pletion (CPC) to solve the ignoring problem without cycle detection. We keep
track of the state immediately after the committing action is executed, called
the commit point. When a committed transaction completes, we simply mark
the commit point as completed. When an unmarked commit point is about to
be popped from the DFS stack, we schedule all threads from that state. Our
insight is that we can delay the decision to forcibly end a transaction up to the
time when commit point is about to be popped from the stack, avoiding taking
such a decision pre-maturely when cycles are closed.

In the example from Figure 1 the state immediately after t1 executes the
statement at line L0 is a commit point. Due to the non-terminating while loop,
the transaction that is committed here never completes. Thus, when this commit
point is about to the popped from the DFS stack, it is unmarked, and the
CPC algorithm schedules thread t2 from this state, and the assertion violation
in line M0 is detected. The example from Figure 2, has an identical commit
point. However, since one nondeterministic branch completes the transaction, the
commit point gets marked. Thus, when the commit point gets popped from the

Sound Transaction-Based Reduction Without Cycle Detection 109

Mutex m;

int x = 0; /* all accesses to x will be guarded by m*/

int y = 0; /* accesses to y are not guarded */

void T1() {

L0: acq(m);

L1: y := 42;

L2: x := 1;

L3: rel(m);

L4: while (true)

{ skip; }

}

void T2() {

M0: acq(m);

M1: assert(x == 0);

M2: rel(m);

}

void T3() {

N0: y = 10;

}

P = { T1() } || { T2() } || { T3() }

Fig. 3. CPC algorithm in the presence of left movers

DFS stack, the other thread t2 is not scheduled. Note that the assertion failure
at M0 is detected even without scheduling thread t2 from the commit point,
because t2 will be scheduled by the reduction algorithm after the transaction in
t1 completes on one of the nondeterministic branches.

The above description of the CPC algorithm is simplistic. In the presence of
left movers there may be more than one commit point for a transaction, and all
of these commit points need to reach a state where the transaction completes to
ensure sound reduction. For example, consider the example shown in Figure 3.
In this example, there are two global variables x and y and one mutex m. All
accesses to x are protected by mutex m, and are thus both movers. Accesses to
y are unprotected, and are hence non-movers. Acquires of mutex m are right
movers and releases are left movers as mentioned earlier. Thus, when thread
T1 executes the assignment to y at label L1, its transaction commits, since the
access to y is a non-mover. The resulting state, where y has just been assigned
42 and the program counter of the thread T1 is at L2 is a commit point. Due
to the infinite while-loop at at L4 this committed transaction never completes,
and the CPC algorithm can schedule threads at the above commit point when
it is about to be popped from the stack. However, for us to detect the assertion
violation at line M1 of thread T2, another commit point needs to be established in
T1 after the assignment to x at line L2. We handle this case by designating every
state in a committed-transaction obtained by executing a “pure” left mover (i.e,
a transaction that is a left mover but not a both-mover) as a commit point.
Thus, in T1, the state after executing the release at line L3 is also designated as
a commit point, and the algorithm schedules T2 when this state is about to be
popped, leading to the assertion violation.

We have implemented the CPC algorithm in the Zing model checker at MSR.
Section 5 presents experimental results that compare the CPC algorithm with a
Cycle Detection algorithm for various Zing programs. The results clearly demon-
strate that the CPC algorithm generally explores far fewer states than the Cycle
Detection algorithm.

110 V. Levin et al.

Outline. The rest of the paper is organized as follows. Section 2 introduces
notations for describing multithreaded programs precisely. Section 3 gives an
abstract framework for sound transaction-based reduction. Section 4 presents the
CPC algorithm and a statement of its correctness. This section contains the core
new technical results of the paper. Section 5 presents experimental results from
the implementation of the CPC algorithm in the Zing model checker. Section 6
compares the CPC algorithm with related work, and Section 7 concludes the
paper.

2

The store of a multithreaded program is partitioned into the global store Global
and the local store Local of each thread. We assume that the domains of Local
and Global are finite sets. The set Local of local stores has a special store called
wrong . The local store of a thread moves to wrong on failing an assertion and
thereafter the failed thread does not make any other transitions.

t, u ∈ Tid = {1, . . . , n}
i, j ∈ Choice = {1, 2, . . . , m}

g ∈ Global
l ∈ Local

ls ∈ Locals = Tid → Local
State = Global × Locals

A multithreaded program (g0, ls0,T) consists of three components. g0 is the
initial value of the global store. ls0 maps each thread id t ∈ Tid to the initial
local store ls0(t) of thread t. We model the behavior of the individual threads
using two transition relations:

TG ⊆ Tid × (Global × Local) × (Global × Local)
T

L
⊆ Tid × Local × Choice × Local

The relation TG models system visible thread steps. The relation
TG(t, g, l, g′, l′) holds if thread t can take a step from a state with global store
g and local store l, yielding (possibly modified) stores g′ and l′. The relation
TG has the property that for any t, g, l, there is at most one g′ and l′ such that
TG(t, g, l, g′, l′). We use functional notation and say that (g′, l′) = TG(t, g, l) if
TG(t, g, l, g′, l′). Note that in the functional notation, TG is a partial function
from Tid × (Global × Local) to (Global × Local). The relation TL models thread
local thread steps. The relation TL(t, l, i, l′) holds if thread t can move its local
store from l to l′ on choice i. The nondeterminism in the behavior of a thread
is captured by TL. This relation has the property that for any t, l, i, there is
a unique l′ such that TL(t, l, i, l′). In addition only TG or TL may be enabled
at any given state. Therefore TG(t, g, l, g′, l′) ⇒ ∀l′′ i.¬TL(t, l, i, l′′). Similarly
TL(t, l, i, l′) ⇒ ∀g′ l′′.¬TG(t, g, l, g′, l′′).

The program starts execution from the state (g0, ls0). At each step, any
thread may make a transition. The transition relation →t⊆ State × State of
thread t is the disjunct of the system visible and thread local transition relations
defined below. For any function h from A to B, a ∈ A and b ∈ B, we write

Sound Transaction-Based Reduction Without Cycle Detection

Multithreaded Programs

111

h[a := b] to denote a new function such that h[a := b](x) evaluates to h(x) if
x �= a, and to b if x = a.

TG(t, g, ls(t), g′, l′)
(g, ls) →t (g′, ls [t := l′])

TL(t, ls(t), i, l′)
(g, ls) →t (g, ls[t := l′])

The transition relation →⊆ State × State of the program is the disjunction
of the transition relations of the various threads:

→ = ∃t. →t

3 Transactions

Transactions occur in multithreaded programs because of the presence of right
and left movers. Inferring which actions of a program are right and left movers
is a problem that is important but orthogonal to the contribution of this paper.
In this section, we assume that right and left movers are available to us as the
result of a previous analysis (see, e.g. [11]).

Let RM ,LM ⊆ TG be subsets of the transition relation TG with the following
properties for all t �= u:

1. If RM (t, g1, l1, g2, l2) and TG(u, g2, l3, g3, l4), there is g4 such that
TG(u, g1, l3, g4, l4) and RM (t, g4, l1, g3, l2).

2. If TG(u, g1, l1, g2, l2) and RM (t, g2, l3, g3, l4), then for all g′, l′

(TG(t, g1, l3, g
′, l′) ⇒ RM (t, g1, l3, g

′, l′)).
3. If TG(u, g1, l1, g2, l2) and LM (t, g2, l3, g3, l4), there is g4 such that

LM (t, g1, l3, g4, l4) and TG(u, g4, l1, g3, l2).
4. If TG(u, g1, l1, g2, l2) and LM (t, g1, l3, g3, l4), there is g4 such that

LM (t, g2, l3, g4, l4).

The first property states that a right mover of thread t commutes to the
right of a transition of a different thread u. The second property states that if
a right mover of thread t is enabled in the post-state of a transition of another
thread u, and thread t is enabled in the pre-state, then the transition of thread
t is a right mover in the pre-state. The third property states that a left mover of
thread t commutes to the left of a transition of a different thread u. The fourth
property states that a left mover that is enabled in the pre-state of a transition
by another thread is also enabled in the post-state.

Our analysis is parameterized by the values of RM and LM and only requires
that they satisfy these four properties. The larger the relations RM and LM ,
the longer the transactions our analysis infers. Therefore, these relations should
be as large as possible in practice.

In order to minimize the number of explored interleaving orders and to max-
imize reuse, we would like to infer transactions that are as long as possible (i.e.,
they are maximal with respect to a given thread). To implement this inference,
we introduce in each thread a boolean local variable to keep track of the phase of
that thread’s transaction. Note that this instrumentation is done automatically

112 V. Levin et al.

by our analysis, and not by the programmer. The phase variable of thread t is
true if thread t is in the right mover (or pre-commit) part of the transaction; oth-
erwise the phase variable is false. We say that the transaction commits when the
phase variable moves from true to false. The initial value of the phase variable
for each thread is false.

p, p′ ∈ Boolean = {false, true}

�, �′ ∈ Local# = Local × Boolean

�s, �s′ ∈ Locals# = Tid → Local#

State# = Global × Locals#

Let Phase(t, (g, �s)), the phase of thread t in state (g, �s) be the second component
of �s(t).

The initial value of the global store of the instrumented program remains g0.
The initial value of the local stores changes to �s0, where �s0(t) = 〈ls0(t), false〉
for all t ∈ Tid . We instrument the transition relations TG and TL to generate a
new transition relation T #.

T # ⊆ Tid × (Global × Local#) × Choice × (Global × Local#)

T #(t, g, 〈l, p〉, i, g′, 〈l′, p′〉) def=

⎧⎨
⎩

∨ TG(t, g, l, g′, l′) ∧
p′ = (RM (t, g, l, g′, l′) ∧ (p ∨ ¬LM (t, g, l, g′, l′)))

∨ TL(t, l, i, l′) ∧ g = g′ ∧ p′ = p

In the definition of T #, the relation between p′ and p reflects the intuition
that if p is true, then p′ continues to be true as long as it executes right mover
transitions. The phase changes to false as soon as the thread executes a transition
that is not a right mover. Thereafter, it remains false as long as the thread
executes left movers. Then, it becomes true again as soon as the thread executes
a transition that is a right mover and not a left mover. A transition from TL does
not change the phase. We overload the transition relation →t defined in Section 2
to represent transitions in the instrumented transition relation. Similar to the
functional notation defined for TG in Section 2, we sometimes use functional
notation for T #.

Given an instrumented transition relation T #, we define three sets for each
thread t: R(t), L(t), N (t) ⊆ State#. These sets respectively define when a thread
is executing in the right mover part of a transaction, the left mover part of a
transaction, and outside any transaction. These three sets are a partition of
State# defined as follows:

– R(t) = { (g, �s) | ∃l. �s(t) = 〈l, true〉 ∧ l �∈ {ls0(t),wrong} }.

– L(t) =
{

(g, �s) ∃l. �s(t) = 〈l, false〉 ∧ l �∈ {ls0(t),wrong} ∧
(∃i, g′, l′. LM (t, g, l, g′, l′) ∨ TL(t, l, i, l′))

}
.

– N (t) = State# \ (R(t) ∪ L(t)).

The definition of R(t) says that thread t is in the right mover part of a
transaction if and only if the local store of t is neither its initial value nor wrong

Sound Transaction-Based Reduction Without Cycle Detection 113

and the phase variable is true. The definition of L(t) says that thread t is in
the left mover part of a transaction if and only if the local store of t is neither
its initial value nor wrong , the phase variable is false, and there is an enabled
transition that is either a left mover or thread-local. Note that since the global
transition relation is deterministic, the enabled left mover is the only enabled
transition that may access a global variable. Since (R(t), L(t), N (t)) is a partition
of State#, once R(t) and L(t) have been picked, the set N (t) is implicitly defined.

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1 = q1 →+

u(1) q2 →+
u(2) q3 · · · ql →

+
u(l) ql+1 = q

z }| {

(p2 = p2,1 →t(2) · · · →t(2) p2,x = p3)
z }| {

(q2 = q2,1 →u(2) · · · →u(2) q2,x = q3)

Fig. 4. A sequence of transactions.

A sequence of states from Figure 4 is called a sequence of transactions if

– for all 1 ≤ m ≤ k, if pm = pm,1 →t(m) · · · →t(m) pm,x = pm+1, then
(1) pm,1 ∈ N (t(m)), (2) pm,2, . . . , pm,x−1 ∈ R(t(m)) ∨ L(t(m)), and (3)
pm,x ∈ L(t(m)) ∨ N (t(m)).

– for all 1 ≤ m ≤ l, if qm = qm,1 →u(m) · · · →u(m) qm,x = qm+1, then (1)
qm,1 ∈ N (u(m)), and (2) qm,2, . . . , qm,x ∈ R(u(m)).

Intuitively, for every i, pi →+
t(i) pi+1 is a committed transaction and for every j,

qj →+
u(j) qj+1 is an uncommitted transaction.

The following theorem says that for any sequence in the state space that
reaches a state where some thread t goes wrong, there exists a corresponding
sequence of transactions that reaches a corresponding state at which thread t

goes wrong.

Theorem 1. Let P = (g0, �s0, T
#) be the instrumented multithreaded program.

For all t ∈ Tid, let W(t) = {(g, �s) | ∃p. �s(t) = 〈wrong, p〉}. For any state
(g′, �s′) ∈ W(t) that is reachable from (g0, �s0), there is another state (g′′, �s′′) ∈
W(t) that is reachable from (g0, �s0) by a sequence of transactions.

A detailed proof of this theorem can be found in our technical report [12]. As
a consequence of this theorem, it suffices to explore only transactions to find
errors. This is the basis for the our reduction algorithm. Using the values of
N (t) for all t ∈ Tid , we model check the multithreaded program by computing
the least fixpoint of the set of rules in Figure 5. This model checking algorithm
schedules a thread only when no other thread is executing inside a transaction.

This algorithm is potentially unsound for the following reason. If a transac-
tion in thread t commits but never finishes, the shared variables modified by this
transaction become visible to other threads. However, the algorithm does not ex-
plore transitions of other threads from any state after the transaction commits.
Section 4 presents a more sophisticated algorithm which ensures that all threads
are explored from some state in the post-commit phase of every transaction.

114 V. Levin et al.

(init)

Σ(g0, �s0)

(step)
∀u �= t. (g, �s) ∈ N (u) Σ(g, ls) T #(t, g, �s(t), i, g′, �′)

Σ(g′

, �s[t := �
′])

Fig. 5. Model checking with unsound reduction.

4 Commit Point Completion

This section presents the CPC algorithm and its soundness theorem, which
are the core new technical contributions of this paper. The algorithm uses
Depth First Search (DFS). Each state in the DFS stack is encapsulated using a
TraversalInfo record. In addition to the state, the TraversalInfo records the
following 7 fields:

1. tid, the id of the thread used to to reach the state,
2. numTids, the number of threads active in the state,
3. choice, the current index among the nondeterministic choices executable by

thread tid in this state,
4. LM, a boolean which is set to true iff the action used to reach this state is a

left mover,
5. RM, a boolean which is set to true iff the action used to reach this state is a

right mover,
6. Xend, a boolean which is set to true iff the algorithm decides to schedule

other threads at this state, and
7. CPC, a boolean which is relevant for only states with phase equal to false,

and is set to true by the algorithm if there exists a path of transitions of the
thread generating the state to a state where all threads are scheduled.

Figure 6 gives two variants of the CPC algorithm (with and without line
L19). The statement at L4 peeks at the TraversalInfo q on top of the stack and
explores all successors of the state using actions from thread q.tid. If the phase
of q is false, then for each such successor q′, if the action used to generate q′

is not a left-mover, then we update q.Xend to true at label L7. The invariant
associated with the CPC flag is the following: If q is about to be popped from
the stack and q.CPC is true and Phase(q.tid, q.state) is false then there exists
a path to a state where Xend is true. Thus, at label L8 we set q.CPC to true if
q.Xend is true. The Xend and CPC fields are also updated when a TraversalInfo is
popped from the stack. In particular, at label L18, when q is about to be popped
from the stack, if its phase is false and q.CPC is false, then we set q.Xend to
true and force scheduling of all threads at q. If q.Xend is true, then at label
L24 we ensure that all threads are scheduled from q. Figure 7 contains helper
procedures for the CPC algorithm.

Sound Transaction-Based Reduction Without Cycle Detection 115

Hashtable table;

Stack stack;

TraversalInfo q, q’, q’’, pred;

stack = new Stack

table = new Hashtable

L0: q’ = { state = (g0, �s0),
tid = 1,

numTids = 1,

choice = 1,

CPC = true,

Xend = true,

LM = false,

RM = false }

L1: table.Add(q’.state, q’)

L2: stack.Push(q’)

L3: while (stack.Count > 0)

L4: q = stack.Peek()

L5: if (Enabled(q))

L6: q’ = Execute(q)

L7: q.Xend = q.Xend || (¬Phase(q.tid, q.state) && ¬q’.LM)
L8: q.CPC = q.CPC || q.Xend

L9: if (IsMember(table, q’.state))

L10: q’’ = Lookup(table, q’.state)

L11: q.CPC = q.CPC || q’’.CPC

L12: else /* undiscovered state */

L13: table.Add(q’.state, q’)

L14: stack.Push(q’)

L15: end if

L16: q.choice = q.choice + 1

L17: else

L18: q.Xend = q.Xend || (¬Phase(q.tid, q.state) && ¬q.CPC
L19: (* && ¬q.RM *))

L20: q.CPC = q.CPC || q.Xend

L21: stack.Pop()

L22: pred = stack.Peek()

L23: pred.CPC = pred.CPC || q.CPC

L24: if (q.Xend && q.numTids < |Tid|)

L25: q’ = Update(q)

L26: stack.Push(q’)

L27: end if

L28: end if

L29:end while

Fig. 6. CPC algorithm for sound reduction

116 V. Levin et al.

A key invariant preserved by the algorithm is the following: Suppose a
TraversalInfo record q is about to be popped from the search stack and q.CPC
is true. Then there is a sequence of left mover transitions of thread q.tid to a
state represented in some TraversalInfo record q′ such that q′.Xend is true.
We can show this by induction on the order in which TraversalInfo records
are popped from the stack (See our technical report [12]).

Without the optimization in line L19, the CPC algorithm ensures that for
every TraversalInfo record q explored by the algorithm such that q.state is
in the post-commit part of the transaction, there exists a sequence of transitions
to some other state where all threads are scheduled. With the optimization in
line L19, the CPC algorithm guarantees this property only for a subset of states
in the post-commit part of the transaction that are reached by pure left movers
as stated below.

Theorem 2. Let q be a TraversalInfo constructed during the execution of the
CPC algorithm such that q.RM = false. Then at line L21 there exists a sequence
of left-mover transitions of thread q.tid from q.state to (g ′, �s′) and all threads
are explored from (g′, �s′).

Finally, Theorem 3 concludes that if there is a state in the multithreaded
program where a thread goes wrong that is reachable from the initial state the
CPC algorithm will find a state that is reachable from the initial state where
that thread goes wrong.

Theorem 3. If there is an execution of the multithreaded program from (g0, �s0)
to (g, �s) and a thread t such that �s(t) = wrong, then there is another state
(g′, �s′) where the CPC algorithm visits (g′, �s′) and �s′(t) = wrong.

The proof involves using Theorem 1 to first produce a sequence of transactions
that also reach a state where thread t goes wrong, and then using Theorem 2
to transform this latter sequence into another sequence that will be explored by
the CPC algorithm. Details can be found in [12].

5

We implemented the CPC algorithm in Zing, which is a software model checker
being developed in Microsoft Research. Table 1 gives the number of states ex-
plored by Zing on various example programs using three variants of the reduction
algorithm. The column labeled “Loc” gives the number of lines of code in the
Zing program. The column labeled “Unsound Reduction” gives the number of
states explored by a reduction algorithm which does not solve the ignoring prob-
lem. This gives a lower bound on the number of states that need to be explored
by any sound algorithm. The column labeled “CPC” gives the number of states
explored by the CPC algorithm. The column labeled “Cycle Detection” gives the
number of states explored by a sound algorithm which forcibly ends a transac-
tion whenever a cycle is encountered in the post-commit part of the transaction.

Sound Transaction-Based Reduction Without Cycle Detection

Experimental Results

117

Example Loc Unsound Reduction CPC Cycle Detection
AuctionHouse 798 108 108 108
FlowTest 485 4656 4656 4656
Shipping 1844 206 206 222
Conc 392 512 512 2063

Peterson 793 1080 1213 3427
Bluetooth 2768 48109 52092 116559

TransactionManager 6927 1220517 1264894 1268571
AlternatingBit 130 1180 1180 1349
Philosophers 76 87399 87399 428896

Bakery 104 10221 14935 14254

Table 1. Number of states visited by Unsound Reduction, CPC and Cycle Detection
algorithms

The number of states explored is a measure of the running time of the algorithm.
The smaller the number of states explored by a sound algorithm, the faster the
tool is.

The programs are classified into four groups. The first 3 programs,
AuctionHouse, FlowTest and Shipping programs were produced by translat-
ing to Zing from a process co-ordination language called BPEL. They represent
workflows for business processes, and have mostly acyclic state spaces. In these
examples, the number of states explored by the all three algorithm are almost
identical.

The next 3 programs Conc, Peterson and Bluetoothwere produced by auto-
matic abstraction refinement from concurrent C programs. We have adapted the
SLAM toolkit [13] to concurrent programs by using Zing as a back-end model
checker instead of Bebop. These examples all have loops that terminate non-
deterministically in the abstraction. Thus, the cycle detection algorithm forces
interleaving of all threads in these loops whereas the CPC algorithm avoids
interleaving all threads in the loops without losing soundness. The CPC algo-
rithm really shines in comparison with the Cycle Detection algorithm on these
examples.

The TransactionManager program was obtained from a product group in
Microsoft. It was automatically translated to Zing from C#, after a few man-
ual abstractions and manually closing the environment. It is one of the larger
Zing examples we currently have. Since the manual abstraction did not result
in non-deterministically terminating loops, the CPC algorithm performs only
marginally better than the Cycle Detection algorithm.

The final 3 programs, AlternatingBit, Philosophers and Bakery are stan-
dard toy examples used by the formal verification community. In the first two
examples, CPC performs better than Cycle Detection. In the Bakery example
we find that the Cycle Detection algorithm performs slightly better than the
CPC algorithm. This is possible, since the total number of states is counted over
all transactions, and the CPC algorithm gives optimality only within a single

118 V. Levin et al.

transaction. Heuristically, this should translate to smaller number of states ex-
plored over all the transactions, but this example shows that this is not always
the case.

Overall, the results clearly demonstrate that CPC is a good algorithm for
making reduction sound, without forcing the interleaving of other threads in all
loops. It generally explores fewer states than Cycle Detection, and out-performs
Cycle Detection in examples with nondeterministic loops. Such examples arise
commonly from automatic abstraction refinement.

6

Partial-order reduction has numerous variants. The most commonly used ones
are stubborn sets of Valmari [2], ample sets [4, 1], and sleep sets [5]. Most of these
approaches handle the ignoring problem by using some variant of cycle detection.
In another paper, Valmari proposes detecting Strongly Connected Components
(SCCs) to solve the ignoring problem [14]. This algorithm from [14] involves de-
tecting terminal strongly connected components, and forces scheduling of other
threads from at least one state in each of the terminal strongly connected com-
ponents (see Algorithm 1.28, Section 5 in [14]). In contrast, the CPC algorithm
does not directly compute any strongly connected components. Also the CPC
algorithm terminates transactions at fewer points than Valmari’s algorithm. See
Appendix B for am example.

Transaction based reduction was originally developed by Lipton [7]. Work
by Stoller and Cohen [10] uses a locking discipline to aggregate transitions into
a sequence of transitions that may be viewed atomically. Flanagan and Qadeer
augment this approach with right movers to get further reduction [9]. This idea
is combined with procedure summarization by Qadeer, Rajamani, and Rehof
in [8]. As mentioned earlier, all of these papers address the ignoring problem
only indirectly by disallowing certain types of infinite executions, such as those
consisting of only internal hidden actions, within each thread (see Condition C
from Section 4.2 in [9] which forbids the transaction from having infinite execu-
tions after committing, but without completing, and well-formedness assumption
Wf-ifinite-invis from Section 4 in [10]). It is not clear how these assumptions
are enforced. Two of the above papers [9, 8] do not have any accompanying
implementation, and it is unclear how the ignoring problem is solved in the im-
plementation associated with [10]. Our guess is that they use some form of cycle
detection.

The Verisoft [6] implementation does not use the detection of cycles or
strongly connected components, rather a timeout is used to detect an infinite
execution that is local to a particular process. Other cycles are broken by limit-
ing the search depth or using a driver that generates a finite number of external
events. Dwyer et al [15] use the notion of a locking discipline is used to increase
the number of transitions that can form an ample set for a process. The algo-
rithms presented use the standard cycle detection technique to insure soundness.

Sound Transaction-Based Reduction Without Cycle Detection

Related Work

119

7 Conclusion

Partial-order reduction methods with ample sets usually use Cycle Detection to
solve the ignoring problem. In the context of transaction based reduction, we
propose a new technique called Commit Point Completion (CPC) to solve the
ignoring problem. We have proved that this algorithm is correct, and have imple-
mented it in the Zing model checker. Our experimental results demonstrate that
with transaction based reduction, the CPC algorithm performs better than Cy-
cle Detection. Though the CPC algorithm was presented using the terminology
of Lipton’s transactions, we believe that the idea is applicable to other vari-
ants of partial-order reduction as well. Exploration of this idea is left to future
work. The ignoring problem also arises when we attempt to build summaries
for multithreaded programs[8]. Though not mentioned here, our implementation
of summaries in Zing also uses the core idea of the CPC algorithm to ensure
soundness.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
2. Valmari, A.: A stubborn attack on state explosion. In: CAV 91: Computer Aided

Verification, Springer-Verlag (1991) 156–165
3. Holzmann, G., Peled, D.: An improvement in formal verification. In: FORTE 94:

Formal Description Techniques, Chapman & Hall (1994) 197–211
4. Peled, D.: Partial order reduction: Model-checking using representatives. In: MFCS

96: Mathematical Foundations of Computer Science, Springer-Verlag (1996) 93–112
5. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:

An Approach to the State-Explosion Problem. LNCS 1032. Springer-Verlag (1996)
6. Godefroid, P.: Model checking for programming languages using Verisoft. In:

POPL 97: Principles of Programming Languages. (1997) 174–186
7. Lipton, R.J.: Reduction: A method of proving properties of parallel programs. In:

Communications of the ACM. Volume 18:12. (1975) 717–721
8. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent

programs. In: Principles of Programming Languages, ACM (2004) 245–255
9. Flanagan, C., Qadeer, S.: Transactions for software model checking. In: SoftMC

03: Software Model Checking Workshop. (2003)
10. Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction.

In: TACAS 03. LNCS 2619, Springer-Verlag (2003) 489–504
11. Flanagan, C., Qadeer, S.: Types for atomicity. In: TLDI 03: Types in Language

Design and Implementation, ACM (2003) 1–12
12. Levin, V., Palmer, R., Qadeer, S., Rajamani, S.K.: Sound transction-based re-

duction without cycle detection. Technical Report MSR-TR-2005-40, Microsoft
Research (2005) ftp://ftp.research.microsoft.com/pub/tr/TR-2005-40.pdf.

13. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: POPL 02: Principles of Programming Languages, ACM (2002) 1–3

14. Valmari, A.: Stubborn sets for reduced state space generation. In: Advances in
Petrinets. LNCS 483, Springer-Verlag (1990)

15. Dwyer, M.B., Hatcliff, J., Robby, Ranganath, V.P.: Exploiting object excape and
locking information in partial-order reducitons for concurrent object-oriented pro-
grams. Formal Methods in System Design 25 (2004) 199–240

120 V. Levin et al.

Boolean Enabled(TraversalInfo q) {
let (g,�s) = q.state in

return (∃ g′, �′. T#(q.tid, g, �s(q.tid), q.choice, g′, �′))

}

TraversalInfo Execute(TraversalInfo q) {
let (g, �s) = q.state in

let (g′, �′) = T#(q.tid, g, �s(q.tid), q.choice) in

State succ = (g′, �s[q.tid := �′])

return { state = succ,

tid = q.tid,

numTids = 1,

choice = 1,

CPC = false,

Xend= false,

LM = LM(q.tid, q.state, succ)

RM = RM(q.tid, q.state, succ) }
}

TraversalInfo Update(TraversalInfo q) {
Tid nextTid = ite((q.tid == |Tid|), 1, q.tid + 1)

return { state = q.state,

tid = nextTid,

numTids = q.numTids + 1,

choice = 1,

CPC = q.CPC,

Xend= q.Xend,

LM = q.LM,

RM = q.RM }
}

Fig. 7. Helper procedures for the CPC algorithm.

The helper functions for the CPC algorithm perform the following actions.
Enabled determines whether the current thread has a transition enabled at a
given state. Execute applies the transition relation T # to the current state.
Update schedules the next thread to run.

Consider the example from Figure 8. In this example, a transaction commits at
the state after executing line L0, followed by a non-deterministic branch at line

Sound Transaction-Based Reduction Without Cycle Detection

A Helper Functions for the CPC Algorithm

B Comparison with Valmari’s SCC Algorithm

121

int g = 0;

void T1() {

L0: g = 1;

L1: skip;

L2: if (*) {

L2: while(true){

L3: skip;

L4: }

}

else {

L5: while(true){

L6: skip;

L7: }

}

L8: return;

}

void T2() {

M0: assert(g == 0);

M1: return;

}

P = { T1() } || { T2() }

Fig. 8. Distinction between CPC algorithm and SCC-based algorithms

L2. Each of the branches produce terminal SCCs in the state space. Valmari’s
algorithm appears to force scheduling T2 at each of these terminal SCCs, whereas
the CPC algorithm forces scheduling T2 only once, at the commit-point (label
L1).

The assume(condition) construct is used in the Zing modeling language to
instruct the Zing runtime to silently ignore any execution path in which the con-
dition is found to be false. Unlike an assert statement, this is not considered
to be an error condition.

C ssume(False)A

122 V. Levin et al.

Repairing Structurally Complex Data

Sarfraz Khurshid, Iván Garcı́a, and Yuk Lai Suen

Department of Electrical and Computer Engineering,
The University of Texas at Austin,

1 University Station C5000,
Austin, TX 78712

{khurshid, igarcia, suen}@ece.utexas.edu

Abstract. We present a novel algorithm for repairing structurally complex data.
Given an assertion that represents desired structural integrity constraints and a
structure that violates them, the algorithm performs repair actions that mutate the
given structure to generate a new structure that satisfies the constraints. Assertions
are written as imperative predicates, which can express rich structural properties.
Since these properties can be arbitrarily complex, our algorithm is sound but not
complete, and it may not terminate in certain cases. Experimental results with
our prototype implementation, Juzi, show that it is feasible to efficiently repair a
variety of complex data structures that are routinely used in library code. Juzi can
often repair structures comprising of over a hundred objects (even when majority
of the objects have some corrupted field) in less than one second. Our algorithm
is based on systematic backtracking but does not require storing states and can
easily be implemented in a variety of software model checkers, such as the Java
PathFinder, SPIN, and VeriSoft.

1 Introduction

Assertions have long been used to state crucial properties of code. A variety of tools and
techniques make use of assertions to check program correctness statically at compile-
time or dynamically at run-time [10, 20, 3, 4, 23, 5, 7, 12, 14, 16, 29]. If an assertion
violation is detected at run-time, the program is deemed to have reached an inconsis-
tent state. The usual process then is to terminate the execution, debug the program (if
necessary and possible), and re-execute it.

In some cases, however, termination and re-execution is not feasible. And at times,
it is simply impossible to re-execute a program on a desired input since the input may
now represent (persistent) data that has been corrupted. Even correct programs can
have corrupt data due to errors in transmission, hardware, etc. In such cases, it may
be desirable to have a routine that can repair the corrupted data and bring the data in
a state that is consistent with the integrity constraints expressed in the assertion, which
would enable the program (to continue) to execute. A goal of such a routine is not to
bring the data in a state that a correct execution/environment would have resulted in, but
to bring it in a state that is acceptable to the user for continuing program execution [25].

We present a novel algorithm [27,11] for repairing structurally complex data, which
pervade modern software, in particular object-oriented programs. A defining character-
istic of such data is their structural integrity constraints, e.g., in a binary tree, there

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 123–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 S. Khurshid, I. Garcı́a, and Y.L. Suen

are no cycles. Examples of complex structures include textbook data structures, such
as circular linked lists and red-black trees, which are routinely used in library code to
implement a variety of abstract data types. Complex structures arise in various other
contexts, e.g., intentional naming systems [1] and fault-tree analyzers [28].

The integrity constraints of a structure can be written as a formula that evaluates to
true if and only if the input satisfies the desired constraints. Such formulas can be written
declaratively [15,23,17], e.g., using fist-order logic, or imperatively [4,22], e.g., using a
Java or C++ predicate (i.e., a method that returns a boolean). Declarative notations often
provide a more natural and succinct way of expressing constraints. However, these no-
tations are usually syntactically and semantically different from common programming
languages, which can impede their wide-spread adoption among practitioners.

Our repair algorithm uses imperative descriptions of constraints. In object-oriented
programs such constraints are often already present as class invariants (which are usu-
ally called repOk methods) [21]. Given a predicate that represents desired structural
integrity constraints and a structure that violates them, the algorithm performs repair
actions that mutate the given structure to generate a new structure that satisfies the con-
straints. Each repair action assigns some value to a field of an object in the structure.

The repair actions are governed by the (1) exploration of the set of field assign-
ments to reference variables and (2) evaluation of constraints on values of primitive
data fields. Due to the enormous number of combinations of field assignments, it is
not possible to simply enumerate all possible assignments (even for small structures)
and check whether any assignment represents a repaired structure. For efficient repair,
our algorithm employs (1) pruning techniques that are based on our previous work on
the Korat framework for specification-based testing of Java programs [4], and (2) deci-
sion procedures for primitive data, similar to our previous work on test input generation
using symbolic execution [18].

The algorithm executes the predicate on the corrupted structure and monitors the
execution to record the order in which fields are accessed before the execution returns
false. The algorithm then backtracks on the last field that was accessed and either as-
signs that field a different reference or assigns it a symbolic primitive value (which is
different from the original value), and re-executes the predicate using (forward) sym-
bolic execution [19] where needed. To determine the feasibility of path conditions, our
prototype implementation, Juzi, uses CVC Lite [2].

At its core, our algorithm performs a systematic search using backtracking based
on field accesses and on results of decision procedure invocations. Our algorithm does
not require storing states. These characteristics make it very easy to implement our
algorithm to work in conjunction with a variety of software model checkers, such as the
Java PathFinder [29], SPIN [14], and VeriSoft [12].

Imperative predicates enable formulation of rich structural properties. Since these
properties can be arbitrarily complex, our algorithm is sound but not complete: the re-
paired structures that the algorithm returns satisfy the constraints, but the algorithm may
not terminate in certain cases. Experimental results with our prototype implementation
show that it is feasible to efficiently repair a variety of complex data structures, which
are used routinely in library code. Juzi can repair structures with a hundred nodes—half
of which have some field that needs repair—in less than one second.

Repairing Structurally Complex Data 125

1.1 Background

Fault-tolerance and error recovery have been a part of software systems for a long time.
File system utilities, such as fsck, routinely check and correct the underlying file struc-
ture. Some commercially developed systems, such as IBM MVS operating system [24]
and the Lucent 5ESS telephone switch [13], have provided routines for monitoring and
maintaining data structure properties. These routines, however, typically focus on re-
pairing particular structures by performing specific repair actions that work only in the
contexts for which they are designed.

Checkpointing and roll-back are standard mechanisms in databases to recover data
to the last known good state. DIRA [26] adapts these mechanisms to detect buffer over-
flow attacks and repair the structures damaged by the attack.

Demsky and Rinard have recently proposed a generic model-based framework for
data structure repair [9]. Given consistency constraints in a declarative language, their
repair algorithm translates these constraints into a repair routine, which corrects the
given corrupt structure. A distinguishing feature of our work from previous work on
repair is that we provide a generic repair algorithm that does not require any input from
the user beyond a description of the desired constraints and does not require learning a
language different from the underlying programming language.

1.2 Contributions

This paper makes the following contributions:

– Imperative constraints in data structure repair. Our use of imperative con-
straints in the context of generic data structure repair is novel. It enables users
to write constraints in a familiar notation and eliminates the need for requiring
mappings between abstract models of data and concrete values; such mappings are
often required when the constraint language differs from the implementation lan-
guage [9].

– Forward symbolic execution in data structure repair. Forward symbolic exe-
cution has traditionally been used to check correctness of programs (via static or
dynamic analyses) and to debug the programs. We have developed an unconven-
tional application of symbolic execution: we use it to repair the data on which the
programs operate on.

– Data structure repair algorithm. We build on algorithms from our previous work
on specification-based test generation to develop a novel technique for performing
generic data structure repair.

– Repair as an application of a model checker. We have designed our algorithm
to work with off-the-shelf model checkers. To our knowledge this is the first in-
stance that shows how a standard model-checking tool can efficiently perform data
structure repair.

– Repair studies from library code. We perform repairs on a suite of complex struc-
tures used routinely in library code and evaluate the feasibility of structure repair.
Experiments show that moderately large structures, e.g., red-black trees with a few
hundred nodes, can often be repaired within a few seconds.

126 S. Khurshid, I. Garcı́a, and Y.L. Suen

2 Examples
We present two examples of repairing linked structures to illustrate the use of our algo-
rithm and prototype implementation. The first example illustrates an acyclic data struc-
ture that has been corrupted. The second example illustrates a structure that has cycles
and also shows how repair can sometimes even correct program behavior on-the-fly.

2.1 Binary Tree

Consider the following declaration of a binary tree:

class BinaryTree {
Node root;
int size;

static class Node {
Node left;
Node right;

}

boolean repOk() { ... }
}

Each tree has a root node and caches the number of nodes in the size field. Each node
has a left child and a right child. The method repOk checks the structural integrity
constraints for BinaryTree. It can be implemented as a simple graph traversal algo-
rithm that checks for acyclicity by keeping track of the set of visited nodes and checking
that it never encounters the same node twice. The method also checks for consistency
of the size field. (Appendix A gives an implementation of BinaryTree.repOk.)

As an illustration of the repair algorithm, consider the corrupted structure shown
in Figure 1(a). Incorrect values of fields left and right in some of the nodes result
in the structure having directed cycles, which violates acyclicity. Given a description
of this structure and the repOk method, our repair algorithm produces the repaired
structure shown in Figure 1(b). Note that the field assignments now satisfy the desired
constraints. To repair the corrupted structure shown in this example, Juzi takes a tenth
of a second.

rootsize: 7 rootsize: 7

(a) (b)

Fig. 1. Repairing a binary tree. (Solid arrows represent left fields; dashed arrows represent
right fields; and root field is labeled appropriately.) (a) A corrupted binary tree structure:
values of left and right fields of some nodes introduce directed cycles in the structure. (b) Tree
resulting after repair has been performed.

Repairing Structurally Complex Data 127

2.2 Doubly-Linked List

We illustrate how repair can potentially even correct program behavior on-the-fly. The
class LinkedList declares doubly-linked circular lists similar to those implemented
in java.util.LinkedList:

class LinkedList {
Entry header; // sentinel header entry
int size; // number of non-sentinel entries

static class Entry {
Object element;
Entry next;
Entry previous;

}
}

The inner class Entry models the entries in a list. Each list has a header entry, which
is treated as a sentinel. An empty list consists of just the header entry, whose next and
previous fields point to itself. The size field stores the number of non-sentinel entries
in the list.

Consider a method LinkedList.addFirst that given an object o, adds a new
entry with element o at the head of this list (i.e., it makes the new entry the first non-
sentinel entry in the list while preserving the original entries of the list). The following
code gives an erroneous implementation of the addFirst method:

void addFirst(Object o) {
Entry t = header.next;
Entry e = new Entry();
e.element = o;
header.next = e;
e.previous = header;
e.next = t;
t.previous = header;

}

(a)

header

6 4 3 2 1 05

size: 0

(b)

constraint: IL == 7

6 4 3 2 1 05

size: IL header

Fig. 2. Repairing a doubly-linked list. (Solid arrows represent next fields; dotted arrows rep-
resent previous fields; and header field that points to the sentinel node is appropriately
labeled.) (a) List generated as result of erroneous addFirst: all previous pointers incor-
rectly point to the header entry, and size is set to 0. (b) List resulting after repair has been
performed: all reference fields have correct values and size field is correctly constrained to 7.

128 S. Khurshid, I. Garcı́a, and Y.L. Suen

The above code contains two bugs:

– it does not maintain the correspondence between next and previous fields of an
entry as it erroneously sets t.previous to header instead of setting it to e

– it does not update the value of the size field.

Figure 2(a) illustrates the list that is generated by inserting integer objects with val-
ues [0, . . . , 6] in that order into an empty list using the erroneous addFirst. Notice the
incorrect values for previous pointers (dotted arrows) and size field. All previous
pointers incorrectly point to the header entry, and size is 0 even though there are 7
non-sentinel entries in the list.

Given this corrupted list and the LinkedList.repOk method, which we have not
given here due to brevity, Juzi generates the structure illustrated in Figure 2(b). Notice
how the previous pointers have been set to correct values and how the size field is
constrained to have the correct value 7. For this example, Juzi took a tenth of a second
to complete the repair.

3 Background: Symbolic Execution

Forward symbolic execution is a technique for executing a program on symbolic val-
ues [19]. There are two fundamental aspects of symbolic execution: (1) defining seman-
tics of operations that are originally defined for concrete values and (2) maintaining a
path condition for the current program path being executed—a path condition specifies
necessary constraints on input variables that must be satisfied to execute the correspond-
ing path.

As an example, consider the following program that returns the absolute value of its
input:

int abs(int i) {
L1. int result;
L2. if (i < 0)
L3. result = -1 * i;
L4. else result = i;
L5. return result;

}

To symbolically execute this program, we consider its behavior on a primitive integer
input, say I. We make no assumptions about the value of I (except what can be deduced
from the type declaration). So, when we encounter a conditional statement, we consider
both possible outcomes of the condition. To perform operations on symbols, we treat
them simply as variables, e.g., the statement on line 3 updates the value of result to be
-1 * I. Of course, a tool for symbolic execution needs to modify the type of result
to note updates involving symbols and to provide support for manipulating expressions,
such as -1 * I.

Symbolic execution of the above program explores the following two paths:

path 1:
[I < 0] L1 -> L2 -> L3 -> L5

path 2:
[I >= 0] L1 -> L2 -> L4 -> L5

Repairing Structurally Complex Data 129

Note that for each path that is explored, there is a corresponding path condition (shown
in square brackets). While execution on a concrete input would have followed exactly
one of these two paths, symbolic execution explores both.

4 Algorithm

This section describes our repair algorithm. Given a structure s that is to be repaired
and a predicate repOk that represents the structural constraints, the algorithm:

– invokes s.repOk();
– monitors execution of repOk to note the order in which fields of objects in s are

accessed;
– if repOk returns false

• backtracks and mutates s by toggling the value of the last field1 that was ac-
cessed by repOk (while maintaining the values of all other fields), and re-
executes repOk

– else
• if (pathCondition is feasible)

∗ outputs s (which now has been repaired)

The first execution of the algorithm is on the corrupted structure. Notice that all
fields of this structure have concrete values. Therefore, the first invocation of repOk
simply follows Java semantics. But when repOk returns false, the algorithm mutates
the given structure, and may introduce fields that have symbolic values for primitive
data; value updates to these field then follow standard forward symbolic execution [19].

To modify a field value when backtracking, the algorithm considers two primary
cases2:

– primitive field access: the field is assigned a symbolic value I and the current path-
condition is updated to reflect that I != v, where v is the original value of this
field in the corrupt structure;

– reference field access: the field is nondeterministically assigned
• null, if the original field value was not null;
• an object (of a compatible type) that was encountered during the last execution

of repOk on the corrupt structure, if the field was not originally pointing to this
object;

• a new object (of a compatible type), unless the object that the field originally
pointed to was different from all objects in the structure encountered during the
last execution of repOk.

It is tempting to think that a reference field of an object in a structure can potentially
point to any other object that has a compatible type in that structure and to explore all
such assignments. However, our algorithm does not explore them all. It turns out that it

1 If all values for the last field accessed have already been explored, reset the value of that field
to its initial value and backtrack further to modify the value of the second-last field accessed
and so on.

2 Our current prototype does not handle arrays.

130 S. Khurshid, I. Garcı́a, and Y.L. Suen

suffices to select the possible assignments from the part of the structure that has so far
been accessed, and only one object that is distinct from those previously encountered
during the last execution of repOk. In fact, trying more than one such object amounts
to making equivalent assignments since they result in isomorphic structures [4]. Indeed,
there is little reason to explore more than one structure from a set of isomorphic struc-
tures since they are either all valid or all invalid3.

Our repair algorithm builds on our previous work on test input generation using Ko-
rat [4] and generalized symbolic execution [18], and adapts those algorithms to perform
efficient data structure repair.

5 Implementation

Our prototype, Juzi, is written in Java and works for repairing structures that a Java
program manipulates. There are three key inputs to Juzi: (1) the name of the class to
which the structure belongs; (2) the name of the method that represents the desired
structural constraints; and (3) the name of a method which represents the corrupted
structure. To systematically modify field values and to perform symbolic execution,
Juzi performs instrumentation of Java bytecode and implements a simple backtracking
algorithm. Juzi uses CVC Lite [2] to determine feasibility of path conditions that it
builds during symbolic execution.

5.1 Bytecode Instrumentation

There are two basic functions that Juzi performs using bytecode instrumentation: (1)
systematic assignment of values to fields; (2) symbolic execution.

Recall that our repair algorithm uses a systematic assignment of values to fields,
where some values may be symbolic. How these assignments are made depends cru-
cially on the order in which fields are accessed. To record this order, Juzi transforms the
original code and replaces field accesses by invocations of methods that Juzi adds to the
given code4. The method invocations allow Juzi to record field accesses. For example,
for the doubly-linked list example (Section 2.2), the Java bytecode statement

6: getfield #18; //Field header:Ljuzi/examples/LinkedList$Entry;

which accesses the header field, transforms to

6: invokevirtual #252; //Method _get_header:()Ljuzi/examples/LinkedList$Entry;

which invokes the method get header—a method that Juzi adds to allow monitoring
repOk’s executions.

To enable symbolic execution, Juzi replaces primitive types by library types that it
provides to represent expressions on symbolic (and concrete) values. Juzi performs a
conservative reachability analysis to see what types need to be transformed and gen-
erates appropriate bytecodes. Juzi also transforms operations on primitive values into

3 We assume that repOk uses actual object identities only in comparison operations [4, 22].
4 We used a similar approach in previous work that used source-code instrumentation to perform

test generation [4, 18, 22].

Repairing Structurally Complex Data 131

appropriate method invocations. For example, when a primitive integer constant forms
a sub-expression in an expression on symbols and concrete values, Juzi wraps the in-
teger constant in an object. As an illustration, consider the following sequence of Java
bytecodes:

...
16: iconst_3
17: iadd
...

is transformed to

...
16: new #280; //class IntConstant
19: dup
20: iconst_3
21: invokespecial #283; //Method juzi/expr/literal/IntConstant."<init>":(I)V
24: invokevirtual #296; //Method juzi/expr/Expression.iadd:

// (Ljuzi/expr/Expression;)Ljuzi/expr/Expression;
...

which shows the wrapping of the integer constant 3 into an object of the library class
juzi.expr.literal.IntConstant, followed by an invocation of the library method
iadd, which is one of the methods Juzi implements to build expressions containing
symbols and concrete values.

To allow symbolic execution to explore different program paths, Juzi uses a non-
deterministic boolean choice whenever there’s a branch in bytecode that cannot be de-
terministically evaluated on-the-fly.

Juzi uses the Java Programming Assistant (Javaassist) [6] to perform bytecode in-
strumentation.

5.2 Backtracking

Juzi implements a simple backtracking algorithm to provide non-deterministic choice.
The class Explorer provides method choose which takes an integer input and repre-
sents a non-deterministic choice, for example the assignment

x = Explorer.choose(3);

non-deterministically assigns the values 0, 1, 2, 3 to x. Such non-deterministic choice
operators are an essential feature of software model checkers [14, 12, 29].

The Juzi backtracking algorithm performs stateless depth-first search (i.e., stores
no states but remembers the values it uses when making non-deterministic assignments
with choose). Non-deterministic code is thus re-executed from the beginning, and dur-
ing each execution one of the non-deterministic assignments is made differently from
that in the previous execution.

5.3 Satisfiability of Path Conditions

Juzi checks satisfiability of path conditions using the CVC Lite [2] automated theorem
prover. CVC Lite provides a C++ API for checking validity of formulas over several

132 S. Khurshid, I. Garcı́a, and Y.L. Suen

interpreted theories including linear arithmetic on integers and reals, arrays and un-
interpreted functions. Since CVC Lite is implemented in C++, it can be expensive to
make calls to it from a Java program. Juzi, therefore, implements some on-the-fly sim-
plifications of path conditions as it builds them. The simplifications not only allow Juzi
to generate smaller path conditions but also, in some cases, let it decide satisfiability
without having to call CVC Lite routines. Juzi’s simplifications include transforming
constraints in a path condition to a canonical form, performing subsumption checking
for simple cases, and propagating constants.

6 Case Study: Red-Black Trees

To illustrate the variety of constraints that our repair algorithm can handle, we next
present a case study on repairing red-black trees [8], which implement balanced bi-
nary search trees. Red-black trees are structurally among the most complex of the com-
monly used data structures and therefore present a challenging study for repair. The
experiments show that Juzi can efficiently repair red-black trees of moderately large
sizes, e.g., repairing a tree with over a hundred nodes—almost all of which had at least
one field with a corrupted value5—in less than a second. It is worth pointing out that
prior work [9] on repair has not addressed repair of structures as complex as red-black
trees.

All experiments reported in this paper were performed on a 1.6 GHz Pentium M
processor with 1 GB of RAM.

The following code declares a red-black tree in a fashion similar to the implemen-
tation in java.util.TreeMap:

class TreeMap {
Entry root;
int size;

static class Entry {
int key;
Entry left;
Entry right;;
Entry parent;
boolean color;

}

boolean repOk() { ... }
}

A tree has a root entry and stores the number of entries in the size field. An entry
stores a data element in the field key, has a left and a right child, and also has a
parent pointer. Furthermore, an entry has a color, which is either RED (false) or BLACK
(true).

Red-black trees are binary search trees. In addition to acyclicity and correct search
order on keys, there are two fundamental constraints that define red-black trees:

– red entries have black children;
– the number of black entries on any path from the root to a leaf is the same.

5 Less corrupt structures are repaired even more efficiently.

Repairing Structurally Complex Data 133

size: 0

3

9

11

1 5

4 6

13

7
root size: IL

3

1 5 13

7
root

11

4 6

9

constraint: IL == 9

(a) (b)

Fig. 3. Repairing a red-black tree. (Solid arrows represent left fields; dashed arrows represent
right fields; dotted arrows represent parent pointers; root field is labeled; key is written
inside the entry; entries drawn with thick circles are black and the others are red.) (a) A corrupted
red-black tree structure: has cycles; has variable number of black entries along different paths
from root; has a red entry with a red child; has incorrect size. (b) Tree resulting after repair has
been performed: field values have been modified to satisfy the structural constraints; the size
field is correctly constrained to be exactly 9.

Of course, the value of the size field needs to correctly reflect the number of entries.
Consider the corrupted structure shown in Figure 3 (a). Not only is it not acyclic,

but it also violates both the constraints on the coloring of entries, has an incorrect value
for the size field, and has all the parent pointers set incorrectly to null.

Given this structure and repOk for TreeMap (which we do not present here due to
brevity), Juzi produces the structure shown in Figure 3 (b). Notice that all fields now
have correct values; the value of size field is correctly constrained to equal 9. Juzi
completed the repair in a tenth of a second.

7 Discussion

We next discuss some characteristics and limitations of our approach and present some
promising future directions.

7.1 Structure Repair Versus Structure Generation

We view structure repair as being closely related to structure generation and therefore
closely related to test input generation from input constraints [17, 22]. Generation ad-
dresses the problem of generating structures that satisfy given structural constraints,
while repair addresses the problem of generating a structure that not only satisfies the
constraints but is also heuristically close to a given corrupt structure. Interestingly, on
the one hand, generation can aid repair since any structure that satisfies the constraints
is indeed a candidate for being the repaired structure, while on the other hand, repair can
aid generation since an arbitrarily selected corrupt structure may be repaired to generate
a desired structure.

134 S. Khurshid, I. Garcı́a, and Y.L. Suen

7.2 On-demand Symbolic Execution

Our use of symbolic execution is non-conventional not only in the sense of our appli-
cation to data structure repair, but also in the sense of how we perform it. Symbolic
execution is usually performed either by treating all program inputs as symbolic [19] or
by a priori determining which inputs to treat as symbolic and which to treat as concrete
(e.g., symbolic primitives and concrete references [18]).

Our repair algorithm takes a different approach. It starts by executing repOk (class
invariant) on a structure, all of whose fields have concrete values. During subsequent ex-
ecutions of repOk, the algorithm makes values of certain fields symbolic. However, the
values of these fields do not have to stay symbolic during all subsequent executions—a
field may regain a concrete value (since backtracking re-initializes field values). The al-
gorithm, thus, performs symbolic execution on an as-needed basis and whether it treats
a field as symbolic or concrete depends on the particular execution being considered.
This hybrid approach enables the algorithm to explore structures in a “neighborhood”
of the original structure and generate a new structure that is heuristically similar to the
original one.

7.3 Sensitivity of Repair to repOk

Repair actions performed by our algorithm intrinsically depend on how repOk is formu-
lated. Recall that the algorithm backtracks on the last field accessed by repOk and mod-
ifies this field. This means that for the same corrupted structure, two different repOk
implementations that access fields in different orders may cause our repair algorithm
to produce different structures. Even though this sensitivity to the way constraints are
written may be considered an inherent limitation of the algorithm, in fact, it allows the
user to control how the structure may be repaired. By ordering constraints appropriately
the user can ensure that the algorithm will not perturb the values of certain fields (that
the user’s deems unlikely to be corrupted) unless absolutely necessary.

7.4 Repairing Primitive Data Values in a Structure

The question of how to repair primitive data values in a structure is rather important
for any repair algorithm. For example, consider repairing a binary search tree whose
elements are not in the correct search order. One way to repair this structure is to replace
the elements with new elements that appear in the correct search order. However, this is
unlikely to be a good repair choice, e.g., consider the case when the tree is implementing
a set—it is the elements that define the set and are therefore of crucial significance.

Our approach is to allow the user to specify ranges of data values for primitive
fields and to use these ranges to constrain the repaired values of these fields. Juzi reads
these ranges from a configuration file. The user can choose not to provide any range, in
which case Juzi (by default) tries to preserve as many of the original values as possible.
We plan to allow the user to state specific relations between (values of) a corrupted
structure and a repaired structure akin to specifying post-conditions that relate pre-
state with post-state. A more sophisticated approach could define metrics of similarity
between corrupted and repaired structures; these metrics could then be used as a basis
of new algorithms that produce repaired structures that are maximally similar to the
given corrupted structures.

Repairing Structurally Complex Data 135

7.5 Converting Symbolic Values to Concrete Values

Our repair algorithm uses a decision procedure for evaluating feasibility of path con-
ditions. A caveat of using an automated theorem prover for this purpose is that such
tools typically report only the feasibility of constraints and not actual valuations of the
variables in feasible constraints. This implies that when we repair the value of a prim-
itive data field, we need to perform an additional step of selecting a concrete value. In
the benchmarks we have shown, selection of such values has just been a trivial step.
However, in other cases when constraints are more complex, it is non-trivial to select
these values.

7.6 Multi-threaded Programs

Corrupted data in multi-threaded programs can be repaired by suspending processes
that manipulate this data, repairing the data using the repair routine, and resuming the
processes. This requires, however, control over thread scheduling, which cannot easily
be achieved for arbitrary programs running under a standard virtual machine. Programs
where it is crucial to maintain essential structural integrity constraints can, however, be
run under environments that provide such suspend/resume mechanisms.

7.7 Structure Repair and Program Debugging

Repair of a structure can lend useful information about error localization in a faulty
program to aid its debugging. For example, if repair actions only set values of the fields
previous and size (as in Section 2.2), the user can start debugging by first looking at
those parts of the code that modify these fields.

7.8 Repairing Large Structures

Our repair examples so far have involved small structures. Repair can, however, be
performed feasibly for modestly large structures. For example, for doubly-linked list
and binary tree (Section 2), Juzi can repair structures with over 1000 nodes—of which
over a 100 have some field that needs repair—in under a minute. Structures with over
100 nodes—of which over 50 have some field that needs repair—are repaired in about a
second, even in the case of red-black trees (Section 6). These results are encouraging as
they point out that repair routines can efficiently be included in code where it is essential
to enforce structural integrity constraints at key control points. Whether a generic repair
approach can scale to repairing structures with millions of nodes—of which thousands
have some field that needs repair—well, that remains to be seen.

8 Conclusions

We have presented a novel algorithm for repairing structurally complex data. Given
an assertion that represents desired structural integrity constraints and a structure that
violates them, the algorithm performs repair actions that mutate the given structure to
generate a new structure that satisfies the constraints. Assertions are written as impera-
tive predicates that can express rich structural properties. Since these properties can be
arbitrarily complex, our algorithm is sound but not complete.

136 S. Khurshid, I. Garcı́a, and Y.L. Suen

Experimental results with our prototype, Juzi, show that it is feasible to efficiently
repair a variety of complex data structures that are used routinely in library code. Juzi
can often repair structures with over a hundred objects (where majority of the objects
have at least one field that has been corrupted) in less than one second.

Our algorithm is based on systematic backtracking but does not require storing
states and can easily be implemented in a variety of software model checkers, such
as the Java PathFinder, SPIN, and VeriSoft.

Acknowledgments

We would like to thank the anonymous reviewers and Darko Marinov for detailed com-
ments on a previous draft. This work was funded in part by NSF ITR-SoD award
#0438967 and in part by the GEM fellowship.

References

1. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming system. In Proc. 17th ACM Symposium on
Operating Systems Principles (SOSP), Kiawah Island, December 1999.

2. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Proceedings of the 16th International Conference On Computer Aided
Verification, Boston, MA, July 2004.

3. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and Yunshan Zhu.
Symbolic model checking using SAT procedures instead of BDDs. In Proc. 36thConference
on Design Automation (DAC), New Orleans, LA, 1999.

4. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated testing
based on Java predicates. In Proc. International Symposium on Software Testing and Analysis
(ISSTA), pages 123–133, July 2002.

5. Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit testing:
The JML and JUnit way. In Proc. European Conference on Object-Oriented Programming
(ECOOP), June 2002.

6. Shigeru Chiba. Javassist—a reflection-based programming wizard for Java. In Proceedings
of the ACM OOPSLA’98 Workshop on Reflective Programming in C++ and Java, October
1998.

7. James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach,
and Hongjun Zheng. Bandera: Extracting finite-state models from Java source code. In Proc.
22nd International Conference on Software Engineering (ICSE), June 2000.

8. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990.

9. Brian Demsky and Martin Rinard. Automatic detection and repair of errors in data structures.
In Proc. ACM SIGPLAN 2003 Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 78–95, 2003.

10. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proc. ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 234–245, 2002.

11. Iván Garcı́a. Enabling symbolic execution of Java programs using bytecode instrumenta-
tion. Master’s thesis, Department of Electrical and Computer Engineering, The University
of Texas at Austin, May 2005.

Repairing Structurally Complex Data 137

12. Patrice Godefroid. Model checking for programming languages using VeriSoft. In Proc.
24th Annual ACM Symposium on the Principles of Programming Languages (POPL), pages
174–186, Paris, France, January 1997.

13. G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM) switching system: Maintenance
capabilities. AT&T Technical Journal, 64(6 part 2):1385–1416, 1985.

14. Gerald Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5), May 1997.

15. Daniel Jackson. Micromodels of software: Modelling and analysis with Alloy, 2001.
http://sdg.lcs.mit.edu/alloy/book.pdf.

16. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In Proc. Inter-
national Symposium on Software Testing and Analysis (ISSTA), Portland, OR, August 2000.

17. Sarfraz Khurshid. Generating Structurally Complex Tests from Declarative Constraints. PhD
thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, December 2003.

18. Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. Generalized symbolic execution for
model checking and testing. In Proc. 9th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), Warsaw, Poland, April 2003.

19. James C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

20. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-
ioral interface specification language for Java. Technical Report TR 98-06i, Department of
Computer Science, Iowa State University, June 1998.

21. Barbara Liskov and John Guttag. Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. Addison-Wesley, 2000.

22. Darko Marinov. Automatic Testing of Software with Structurally Complex Inputs. PhD thesis,
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, 2004.

23. Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for automated testing
of Java programs. In Proc. 16th IEEE International Conference on Automated Software
Engineering (ASE), San Diego, CA, November 2001.

24. Samiha Mourad and Dorothy Andrews. On the reliability of the IBM MVS/XA operating
system. IEEE Transactions on Software Engineering, 13(10):1135–1139, 1987.

25. Martin Rinard. Resilient computing. Technical report, MIT Computer Science and Artificial
Intelligence Laboratory, 2003. (Research Abstract).

26. Alexey Smirnov and Tzi cker Chiueh. DIRA: Automatic detection, identification, and repair
of control-hijacking attacks. In The 12th Annual Network and Distributed System Security
Symposium, San Diego, CA, February 2005.

27. Yuk Lai Suen. Automatically repairing structurally complex data. Master’s thesis, Depart-
ment of Electrical and Computer Engineering, The University of Texas at Austin, May 2005.

28. United States Nuclear Regulatory Commission. Fault Tree Handbook, 1981. NUREG-0492.
29. Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model checking

programs. In Proc. 15th IEEE International Conference on Automated Software Engineering
(ASE), Grenoble, France, 2000.

138 S. Khurshid, I. Garcı́a, and Y.L. Suen

A Structural Invariants for Binary Tree

The following code gives the repOk method for BinaryTree (Section 2.1) [4, 22]:

boolean repOk() {
if (root == null) // check that empty tree has size zero

return size == 0;
Set visited = new HashSet();
visited.add(root);
java.util.LinkedList workList = new java.util.LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
if (current.left != null) {

// checks that tree has no cycle
if (!visited.add(current.left))

return false;
workList.add(current.left);

}
if (current.right != null) {

// checks that tree has no cycle
if (!visited.add(current.right))

return false;
workList.add(current.right);

}
}
if (visited.size != size) // check that size is consistent

return false;
return true;

}

Crafting a Promela Front-End with Abstract Data
Types to Mitigate the Sensitivity of (Compositional)

Analysis to Implementation Choices

Yung-Pin Cheng

Department of Information and Computer Education,
National Taiwan Normal University,

Taipei 106, Taiwan
ypc@ice.ntnu.edu.tw

Abstract. Recently, an active research topic in software verification is apply-
ing model checkers to programs, such as multi-threaded Java code. However, a
program typically consists of more behaviors, such as operations on complicated
data structures or implementation details which are typically made for some cri-
teria like performance. A brute-force model extraction may produce a poor model
for analysis engine. In this paper, we give examples to show how subtle changes
in implementation may result in considerable differences in analysis, particularly
to compositional analysis. Unfortunately, these implementation choices are made
by programmers – people who typically do not possess the knowledge of veri-
fication. To mitigate such sensitivity, we advocate that verification tools should
recognize and support abstract data types and, in the meantime, prohibit or sup-
press the use of array. Programming process behaviors with abstract data types
can hide and converge the implementation choices. More importantly, abstract
data types are informative. They provide essential information for tool automa-
tion to select a best implementation for analysis. In this paper, we describe the
design and implementation of such a prototype tool which can parse systems
written in Promela syntax.

1 Introduction

Automatic verification techniques such as model checking have been viewed as a promis-
ing method to ensure the quality of complicated systems. Many hard-to-detect errors,
such as deadlocks, can be manifested by these techniques. In past decades, consid-
erable progress has been made in these techniques. Several prototype tools, such as
SPIN[14][15], SMV[19], have been built and applied to many software or hardware
systems. In this paper, we focus on software verification.

Software typically has more states than hardware. The wide variety of software
designs make software verification a more difficult task than hardware. For example,
famous Ordered Binary Decision Diagram (OBDD) [3] which is widely used in hard-
ware verification has no obvious merits in software verification (see Corbett’s work in
[10]). Besides, modeling a software system requires much more efforts, experiences,
and human wisdom. In that work [10], Corbett also found subtle modeling differences
for the same system may produce obvious differences in the results of analysis in dif-
ferent tools. However, the objective of Corbett’s work is to compare performance of

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 139–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 Y.-P. Cheng

various verification tools, so, finding and eliminating these differences to have a fair
comparison of verification tools are his first priority.

Generally, most verification tools share the similar technology in exploring reach-
able states. They can be used for either software verification or hardware verification.
Nevertheless, software verification researchers often prefer one tool over another for its
capability of modeling software. For example, Spin [14] provides a model description
language (MDL) called Promela, which has syntax close to a high-level programming
language. Although it is originally designed for modeling communication protocols,
many researchers have chosen it to verify concurrent programs written in Ada, Java and
C. However, verifying systems written in these programming languages using Spin can
be subtle. The abstraction of programs into Promela models requires human wisdom
and experiences and is error-prone. In [16], Holzmann argued that a blindly derived
model (for example, either by a naive automatic/manual extraction) is unlikely to work
for verification in most cases. In other words, constructing an efficient and correct model
requires human wisdom from experienced personals.

Several years ago, some works rose to the challenge. Research tools such as Bandera
[11] and Pathfinder[13] have been developed to automatically extract models from Java
source code. Their goal is to model-check Java source code by smartly extracting a
model from Java code for analysis engines like SPIN. Bandera also introduces slicing
techniques to abstract away the program behaviors that do not concern the interested
properties (particularly liveness properties) so that the state explosion problem can be
alleviated. In our opinions, these progresses mark an important milestone for automatic
software verification.

Despite the progress described above, the fundamental barriers of software veri-
fication, however, still remain. Verification tools which analyze all processes at once
are inevitably limited by the PSPACE lower bound in worst case; that is, the number
of reachable states grows exponentially as the number of processes increases. In other
words, any attempt to alleviate the state explosion is bound to fail in general but may
work for some cases. For example, Bandera uses property to guide the program slicer to
slice away the behaviors that are not concerned by the property, particular the liveness
properties defined in linear-time temporal logic (LTL) formula. Such approach does not
work for property like freedom of deadlocks. Reachable deadlocks must be manifested
from all the possible behaviors.

To tackle the state explosion problem, a more promising approach is compositional
analysis[7,6,8,9,12]. Compositional analysis avoids state explosion by dividing a whole
system into many subsystems. Then, the techniques described above are used to analyze
these subsystems. Ideally, the analysis of each subsystem would produce manageable
and smaller state space and then each subsystem can be replaced by a simple inter-
face process. The process is continued by combining the analysis of subsystems into a
larger subsystems in a hierarchical fashion until the whole system is analyzed. Unfor-
tunately, this ideal scenario seldom happens in practical cases. Compositional analysis
is architecture sensitive. In many systems, no feasible hierarchies exist in their as-built
architecture; that is, The power of divide-and-conquer is often limited by the system
architecture.

Crafting a Promela Front-End with Abstract Data Types 141

In this paper, we describe the design and implementation of a Promela front-end.
This front-end is part of a compositional analysis tool suite which is under develop-
ing. The major feature of this front-end includes the new statements for refactoring1 a
process behaviors to overcome the problem of architecture sensitivity of compositional
analysis. Another new feature of this front-end is the support of abstract data types.
From our past experiences, we discovered a program (either written in Java, C, or Ada)
may be written in a way that is poor2 for analysis engine, particularly when abstract
data types are implemented by array. We show two functionally equivalent process be-
haviors with two implementation choices can produce significant differences in analy-
sis, particularly to compositional analysis with refactoring. To address the problem, we
propose an extension of Promela. In this extension, we add abstract data types such as
queue and set to its syntax. We show that encouraging the use of abstract data types and
prohibiting the use of array can limit the wild implementation choices a programmer
may make, therefore, mitigating the sensitivity of analysis. Furthermore, abstract data
types are informative, providing essential information for tools to determine the best
implementation for analysis without the need of code analysis.

Note that Spin is a sophisticated piece of software. Our objective is not to rework
its features. Our long term goal is the construction of a software verification tool suite
which is compositional-oriented. We select Promela as one of our input language be-
cause of its syntax simplicity and its popularity. This paper is organized as follows. In
section 2, we give an overview of compositional analysis and our refactoring technique.
In section 3, we give examples to explain why analysis is sensitive to implementation
choices. Section 4 describes our design and implementation of a prototype tool. Finally,
we end the paper with discussion, related work, and conclusions in section 5 and 6.

2 An Overview of Compositonal Analysis and Refactoring

In this section, we give an overview of two techniques, compositional analysis and
model refactoring, so that readers can have a brief idea on the problem we want to
address in this paper.

2.1 Compositional Analysis

In a compositional analysis, we often have to group a set of processes into a subsystem
(or a module). There are two basic criteria of a “good” subsystem. First, the processes
inside the subsystem must not generate excessive state space. Second, the subsystem’s
state space must be able to be replaced by a much simpler interface process to repre-
sent the subsystem’s state space. An interface process can be computed automatically
by hiding internal interactions, minimizing the state space, and exporting the state and
transitions (a.k.a interfaces) that will be used by its environment. Note that exporting
state and transitions as interfaces can aggregate the state explosion problem if the inter-
faces are not simple (see [12]). So, simple interface is the key to a “good” subsystem.

1 This technique will be explained later.
2 Note that a program may be written in a way that is poor for analysis but is good for perfor-

mance or other measuring criteria.

142 Y.-P. Cheng

In other words, an effective subsystem should be loosely coupled to its environment so
that the chance of having a simple interface process to replace it in compositional anal-
ysis is higher. At last, “good” subsystems and processes must produce another larger
“good” subsystem in the composition hierarchy until the whole system is analyzed. Un-
fortunately, this ideal scenario seldom occurs in the compositional analysis of large and
complicated systems.

2.2 Model Refactoring

In Fig. 1(a) and Fig. 1(b), we show the state graphs of three example processes X,Y, and
S in CCS semantics [20] (where synchronization actions are matched in pairs) and their
synchronization structure. Such kind of structure, a star-shape structure, appears very
often in practice, for example, a stateful server which communicates with clients via
separate (or private) channels. Many systems can even have structures of multiple stars.

We say S is tightly coupled to its environment (which consists of X and Y) because
it has complicated interfaces to its environment. Suppose S is a server and X,Y are
clients. Image the number of clients is increased to a larger number. Any attempt to
include S as a subsystem is bound to fail because of the complicated interfaces to its
environment. That is, no feasible subsystems and composing hierarchies exist in this
structure, particularly when client number is large.

x?a

w!b

x?c

x?d

y?a
z!b

y?c

y?d

S

x!a

x!d
x!c

y!a

y!cy!d

X

Y

X YS

x.a

z!b

x.c

x.d

y.a

w!b

y.c

y.d

(a)
(b)

Fig. 1. (a) A simple example with 3 processes X, Y, and S. (b) The synchronization structure of
the example.

In [4,5], we proposed an approach called model refactoring to enable compositional
analysis for systems which are originally prohibited by their as-built architecture. The
refactoring consists a set of transformations. Each transformation maintains the behav-
ioral equivalence (weak bisimulation) of the model. By applying a sequence of transfor-
mations, a model P is gradually transformed into a model P ′ with new structure which
is more amenable to compositional analysis. It consists in building a sequence of equiv-
alent models, each obtained by the preceding ones by means of the application of a rule.
The rules are aimed for restructuring the as-built structures which are not suitable for
compositional techniques. The goal is to obtain a transformed model whose structure
contains loosely coupled components, where processes in each component do not yield
state explosion.

Crafting a Promela Front-End with Abstract Data Types 143

The key transformations are to decompose centralized, complicated behaviors of a
process into several small new processes while behavioral equivalence is preserved. In
[5], we described the basic tool support3 for refactoring and showed that a refactored
elevator system can be analyzed up to hundreds of elevators but global analysis and
compositional analysis (without refactoring) can only analyze up to 4 elevators.

For instance, we show the refactored X,Y, and S in Fig. 2(a) and the new synchro-
nization structure in Fig. 2(b). In Fig. 2(a), the behaviors related to channel x (or to
process X) is removed and wrapped into a new process Sx. Similarly, the behaviors re-
lated to channel y is removed and wrapped into a new process Sy. So, the rendezvous of
x!a, x!c, and x!d are now redirected to Sx. However, Sx and Sy are now two individual
processes which can execute concurrently, but their original joint behaviors in S can
not. So, extra synchronizations (e!lock and e!release) are inserted to maintain behav-
ioral equivalence; that is, before invoking x!a and y!a, X and Y are forced to invoke
e!lock first. Then, at the end of Sx and Sy, e!release is used to free S.

The idea of refactoring equivalence is easy to explain. Let’s image the modified
processes (X,Y, and S) are contained in a black box. Image you are an external observer
of the black box. The external behaviors of the black box are defined by z!b and w!b.
In Fig. 1(b), the black box (which we call it B1) is implemented by 3 processes. The
black box (we call it B2) in Fig. 2(b), on the other hand, is implemented by 5 processes.
The external behaviors are also defined by x!b and y!b. Our refactoring must ensure
the external behaviors are equivalent before and after a transformation. Intuitively, B1’s
external behaviors can be viewed as an specification. Then, we choose to implement
the specification with 5 processes. Since we use 5 processes to do the same work which
was originally done by 3 processes, extra communications for process coordination are
inevitable. As long as the extra synchronizations are restricted inside the black box, the
two black boxes behave equivalently to an external observer.

x?a

z!b

x?cx?d
S

x!a

e!lock

x!d

x!c

y!a

y!c

y!d

X

Y
e!lock

Sx

e!release

y?a

w!b

y?cy?d

Sy

e!release

e?locke?release

X Y

S

z!b w!b

Sx Sy

x.a x.dx.c
y.a y.dy..c

e.lock

e.release

(a) (b)

Fig. 2. The refactored example system

2.3 Tool Support

From the above example, it may looks like identifying the behaviors and decomposing
them can be done at the finite-state representation. In practice, automatic refactoring
does not work at this level of representation. Some important information needed by

3 The tool support can successfully refactor many systems in an automated fashion, particularly
the behavioral patterns which do not involve complicated data structures.

144 Y.-P. Cheng

refactoring engine is lost at this level. The refactoring automation must be made when
a CCS state graph is created. So, a refactoring statement is added to Promela’s syntax.
We chose a subset of Promela syntax and built a parser to translate Promela code into
CCS [20] state graph. For example, S in Fig. 1 can be written in Promela as follows:

mtype = { a,b,c,d } ;
chan x = [0] of mtype ; chan y = [0] of mtype ;
chan z = [0] of mtype ; chan w = [0] of mtype ;
proctype S() {

do (0)

refactorby x, y {
:: x?a (1) ->

z!b (2); x?c (3); x?d (4);
:: y?a (5) ->

w!b (6); y?c (7); y?d (8);
}
od

}

Note that in the example, we mark a statement with “(addr)” as the address of each
statement. To translate a Promela code into a CCS state graph is trivial. First, we collect
the values of local variables and the address of current statement to make a tuple like
(v1, v2, ..vn, addr), where vi are values of local variables and addr is the current state-
ment address. In process S, there are no local variables, so the only element in the tuple
is statement address (addr). Since the process starts at statement address 0, so we use
(0) as initial state. We begin parsing the abstract syntax tree (AST) of the code. When
we parse a channel statement which sends or receives a message, we create a new out-
going transition to a new state. The new state has its addr updated to next statement
address and the outgoing transition has label in the form of “ch?msg” or “ch!msg.” The
traversal is continued until no more new states are explored.

To activate refactoring, tool users can add keyword refactorby to enclose a block of
statements they want to refactor. For example, to obtain the result in Fig. 2(a) and Fig.
2(b), we use refactorby to notify refactoring to separate the behaviors by channel name.
In general, process behaviors can be distinguished by channel name, variable’s values,
etc.

When refactoring mode is activated, we translate Promela code into segments of
behaviors. For example, the sequence of transitions beginning from x?a and ending
with x?d is called a segment. These segments are grouped according to group options,
the parameters behind keyword refactorby. Next, segments are wrapped into a new
process such as Sx in Fig. 2(a) by a unified transformation.

Note that, in principle, it is impossible for our transformation to decompose any pro-
cess behaviors and make compositional analysis work in general, otherwise, we would
have solved the notorious state explosion problem. So, it is easy for a malicious tool
user to write a peculiar process behaviors which makes refactoring fail. However, un-
der normal circumstances, most process behaviors are written in common patterns. Our
ultimate goal is to make refactoring work for most behavioral patterns.

Crafting a Promela Front-End with Abstract Data Types 145

3 Sensitivity of (Compositional) Analysis

In the past, we have successfully refactored several systems. Most of them appear as
examples in literatures, such as elevator system[21], furnace system[22], alternating
bit protocol[2], etc. The tool support described in the previous section is sufficient for
many systems whose process behaviors either have no presence of data values or only
have simple data values to enrich its behavioral patterns. On the other hand, we began
to encounter systems with behaviors complicated by array. When process behaviors are
complicated by array, segmented behaviors may be interwined and tangled and refac-
toring transformations are no longer feasible. We described some of the behaviors as
follows.

3.1 Chiron User Interface System

The first example is called Chiron user interface [17]. It has been analyzed by [1,23].
Chiron user interface system is originally written in Ada. Chiron’s design philosophy is
to separate application code from user interface code. So, there are user interface agents
called artists attached to selected data4 belonging to the applications. At runtime, each
artist can register events of interests to dispatcher. Whenever there is an operation call
on the data, the dispatcher intercepts the call and notifies each of the artists associated
with that data with the event.

Its Promela model is manually extracted from its Ada source code. The most com-
plicated process in Chiron is a task called dispatcher. Dispatcher is responsible for
accepting requests to register or unregister an event from an artist. The dispatcher use
an array e1_list

mtype e1_list[no_of_artists];

to keep track the artists which have registered on event e1. When an artist registers an
event e1 to dispatcher, the following code fragment is executed in dispatcher.

dispatcher_chan? register_event, artist_id, event ->
if
:: (event == e1) ->

i = 1 ;
do
:: if

:: (i> e1_size) ->
e1_size ++ ;
e1_list[i-1] = artist_id ;
break ;

:: else
fi;
if
:: (e1_list[i-1] == artist_id) ->

break ;
:: else
fi;
i++ ;

od

4 You can consider the data as an object and the object’s values (or attributes) is linked to a
visualization tool called artists. In other words, an artist can be viewed as a graphic drawing
unit for the data.

146 Y.-P. Cheng

The code first receives a command and two parameters from the channel. Two parame-
ters are artist_id and event. Next, it checks if the artist_id is already in the array, using
a loop index i. If not, the artist_id is appended to the tail of the array.

On the other hand, to unregister event e1 from dispatcher by an artist, the following
code is executed.

dispatcher_chan? unregister_event, artist_id, event ->
if
:: (event == e1) ->

if
:: (e1_size == 0) -> skip
:: else ->

i = 1 ;
do
:: (i> e1_size) -> break ;
:: else ->

if
:: (e1_list[i-1] == artist_id) ->

do
:: (i>= e1_size) -> break ;
:: else ->

e1_list[i-1] = e1_list[i] ;
i++ ;

od
e1_size -- ;

:: else
fi ;
i++ ;

od;
e1_size[e1_size] = 0 ;

fi;
fi;

The code first search the array to check if the artist_id is in the array. If yes, the el-
ement (pointed by i) is deleted and all the elements behind e1_list[i] is copied to fill
the deleted space. In other words, the elements in e1_list are shifted. To anyone who
know programming, such implementation is only one of many choices. Typically, if we
prefer such kind of implementation, we want to maintain the order of artists by their
registration time. That is, an artist which registers e1 earlier is stored in the front of
array. However, in dispatcher task, we found no clues where such order is concerned.

3.2 Implementation Alternative

Since the order of registration is not a concern to dispatcher, a better implementation
choice is using a bit array.

bit e1_list[no_of_artists];

In this implementation, if e1_list[i] = 0, it means artist ai does not register on event e1.
If e1_list[i] = 1, it means artist aihas registered on event e1.

3.3 Analysis of Implementation Choices

In programming, we are accustomed to make implementation choices for some rea-
sons, perhaps for performance or maintenance. Similarly, the above two implementa-
tion choices produce two functionally equivalent models but unfortunately, result in

Crafting a Promela Front-End with Abstract Data Types 147

great difference in analysis. Let the length of array e1_list be n, the number of artists.
We call the array of original dispatcher as queue array. The original dispatcher’s behav-
iors can produce states which have growing rate proportional to

1 +
n∑

i=1

(
n
i

)
i!.

On the other hand, using bit array has a growing rate proportional to 2n. Although the
two scales are both exponential, the first growing rate is much worse than the second
one for global analysis.

To compositional analysis, the implementation with queue array produce interwined
and tangled behaviors which cannot be refactored effectively. It can be only analyzed up
to 2 artists. On the other hand, the behaviors with bit array can be refactored effectively
into loosely coupled components. Its refactored structure can fully take the advantage of
divide-and-conquer. It can be analyzed up to 14 artists. Note that, in Chiron, increasing
an artist means adding a new process to the system.

In Fig.3(a), we show the tangled behaviors of the queue array implementation with
two artists. In the figure, a registration event is abbreviated into “?Rx” where x is the
type of event. An unregistration event is abbreviated into “?Ux.” Beside each state, we
print the contents of array e1_lst[]. On the other hand, Fig. 3(b) shows the behaviors
using bit array, which presents some form of symmetry. This behavior can be effectively
transformed by refactoring (It uses value processes to model value change for each array
element e1_lst[i]. Readers who are interested in these technical details, please refer to
[5]).

?R1 ?R2

?R2 ?R1

?U1 ?U2

?U1

?U2

?U2

?U1

?R1 ?R2

?R2 ?R1

?U1 ?U2

?U2
?U1

(0,0)

(1,0) (0,1)

(1,1)

(nil,nil)

(1,nil) (2,nil)

(1,2) (2,1)

(a) (b)

Fig. 3. The behavioral patterns of two implementations

This observation agrees with Holzmann’s statement [16] that naively translated or
blindly derived models are unlikely to work for analysis in most cases. The key points
of our observation are:

– Programmers often make implementation choices for performance or other
criteria, but not for analysis. A model which is directly extracted from a pro-
gram inherits the program’s implementation choices, which can be “poor” for
analysis but makes no significant difference in runtime execution.

– Subtle changes in implementation may produce significant differences in (com-
positional) analysis. Analysis tends to magnify small and slight implementa-
tion changes.

148 Y.-P. Cheng

So, with these observations and the state explosion problem, we believe model
checking programs is just a beginning. We should be cautious and conservative on the
the general applicability and practicability of these tools.

3.4 Gas Station

To convince that Chiron’s case is not unique, we give another example from a gas station
system. However, due to the limits of space, the content of this subsection is shown in
a long version of this paper which can be downloaded from URL link
http://www.ice.ntnu.edu.tw/~ypc/ArChat.htm

4 Using Abstract Data Types to Mitigate Sensitivity of Analysis

The problems described in the previous section can be the tip of the iceberg. Analysis
tools have always been geared towards being adopted by industry to assure high soft-
ware quality. However, if an analysis tool must depend on the virtue of the code or limit
itself to trained experts, the fruit of software verification research will always be limited
in research community.

To address the problem, the first approach we tried is attempting to analyze the array
usage in the code and gather useful informations for refactoring automation. Suppose
we can analyze and understand the semantics of Chiron’s dispatcher task mechanically,
we can replace it with bit array to produce best analysis results. Unfortunately, that is
hard and impractical. We re-analyze the essence of the problem and have three obser-
vations, which are:

1. Array is one of the very basic blocks for constructing many abstract data types
(ADTs). Most process behaviors with array operations can be summed up to some
kinds of ADT operations.

2. An ADT may have several implementation choices. However, these implementa-
tion choices can be hidden by ADT interfaces.

3. The process of using an ADT for a task encourages precise and high-level thinking.

These observations are the basis of this work. Image an extreme scenario where analy-
sis tools are integrated into a programming environment. A programmer is responsible
for a critical task which requires concurrent programming. Under this condition, array
is prohibited by the environment because the code must be analyzable. A programmer
would be forced to select appropriate ADTs to complete his work. In the case of Chi-
ron’s dispatcher, he would select set as the most appropriate ADT for the job.

In the scenario, the usage of set provides explicit directives for tool automation. Se-
lecting best implementation (i.e., bit array in this case) becomes straightforward. There
is no need to incorporate other static analysis techniques for program comprehension.
Consequently, sensitivity to implementation choices is controlled and mitigated. In this
paper, we implement two frequently used ADTs into Promela to demonstrate our idea.
They are:

Crafting a Promela Front-End with Abstract Data Types 149

QUEUE

DECLARATION SYNTAX:

queue qname = [n] of {enumtype}
METHODS:
void push(enumtype val); // to add a value val to the queue
enumtype pop(); // return and remove the frist element of queue
enumtype front(); // return the value of first element

SET

DECLARATION SYNTAX:

set sname = [n] of {enumtype};
METHODS:

insert(enumtype val); // add val to a set
erase(enumtype val); // remove val from a set
int find(enumtype val); // return the index of the value

Where enumtype is a type defined by enum keyword, another new function we add to
Promela to extend mtype of Promela. A user can use

enum clien_type = {c1, c2, c3};
to define an enumeration type in Promela. Both the ADTs are exclusive; that is, values
in these containers can not be duplicated. The implementation of containers which allow
duplicated elements can be quite different from the exclusive ones. Currently, exclusive
ones can satisfy our need.

Using the new ADTs, the dispatcher can be rewritten into
enum artist_type = {a1,a2};
set e1_lst = [2] of {artist_type};
.....
dispatcher_chan? register_event, artist_id, event ->
if
:: (event == e1) -> e1_lst.insert(artist_id);
:: (event == e2) -> e2_lst.insert(artist_id);
fi
.....

In this example, not only the process behaviors are concise and easy to understand,
but also process behaviors are forced to “converge” on this one. Our tool automatically
select the best implementation choice for (compositional) analysis, which is transparent
to tool users. With the prevalence of object-oriented programming languages nowadays,
the constraint (to prohibit or suppress the use of array) may not be strong as it looks but
the merits are manifold.

4.1 Object-Oriented Tool Design and Implementation

Crafting the experimental parser described in this paper requires a lot of work. This pilot
prototype5 has been worked towards to a new framework illustrated in Fig. 4. In the

5 The old prototype (without ADT) described in [5] has been torn apart and restructured towards
the structure in Fig. 4.

150 Y.-P. Cheng

figure, boxes colored in grey are tools which have been developed or under developing.
White boxes are tools which can be developed by other parties or will be developed
by us in the future. Finally, boxes decorated with grey stripes are tools constructed by
others. DOT is graph visualization tool from AT&T. Fc2tool [18] is a tool suite from
INRIA, France, which consists of tools to enumerate and minimize CCS state graphs.

ADT-Promela
Parser

Promela
files
(.la)

Control Flow
Graphs files

(.cfg)

CFG
Objects

state graph
translator
(with refactoring)

read in

CCS files (.ccs)

Compositional
Analysis
Engine (Fc2tool)

symbol table

read in

read in

read in

composing
hierarchy

Simulation
engine

read in

Java Parser

Java
files (.java)

CCS2DOT
DOT files
(.dot)

DOT graph
visualization
tool

Fig. 4. The framework of tool implementation

In the framework, our ADT-promela parser reads a Promela file and produces sev-
eral cfg (control flow state graph) files and a symbol table6, where each process has a
cfg file. A control flow state graph is like Fig.5(a). Each state can be interpreted as the
address of a statement in the program. Each edge is then attributed by a statement. The
statement is stored in the form AST (abstract syntax tree) which can be evaluated by a
postfix traversal algorithm. The cfg file format uses tags which can be parsed and read
easily. It can be modified to XML syntax if necessary.

The spirit of our design is to use files to communicate among tools. This design
avoids building a monolithic tool which can be harder to modify or evolve. The frame-
work also encourages cooperative work. Tools with a language front-end typically do
not use flow graph of a program for data exchange because it is language dependent.
However, we found that control flow state graph is where many tools start with. For
instance, our state graph translator traverses it to generate communicating finite state
machines (such as CCS or CSP state graphs). Simulation tools can use it to exercise
traces. Other tools such as program slicers can work on this representation as well.
These reasons make us to design it into a format which can be shared by language
front-ends and analysis back-ends.

To deal with control flow state graph, we design a set of object-oriented CFG classes
(shown in Fig. 5(b)), which can parse a cfg file to construct a control flow state graph.
We introduce an inheritance hierarchy to separate what is language dependent from
what is language independent. A language front-end can implement their own AST
to store a statement. Next, it should implement an overidden eval() method (see class
CFG_edge_promela). Other tools, such as a simulation engine, will only invoke eval()
to evaluate the AST of a statement and update variable values in the symbol table. The
details of AST (which is language dependent) are transparent to other tools. By this
design, we can implement a language-independent state graph translator or a simulation
engine.

6 Spin is capable of outputting control flow state graphs and symbol tables. However, that output
is not designed for the purpose like ours.

Crafting a Promela Front-End with Abstract Data Types 151

s.insert(val)

IF
val= =0else

val = val + 1s.erase()

(a) (b)

Fig. 5. (a) An example control flow state graph. (b) The inheritance structure.

The implementation of an ADT method is actually done in the overridden eval()
of class CFG_edge_promela. For example, when a set is defined, we create a bit array
in the symbol table. Later, when a statement s.insert(i) is evaluated, eval() sets the ith
element in the bit array. In our state graph translator, bit array will be included as a tuple
(see section 2.3) to traverse the control flow state graph to generate CCS state graphs.

The tools described in this paper will be gradually released at URL link
http://www.ice.ntnu.edu.tw/~ypc/ArCats.htm.

5 Related Works and Discussion

From the best of our knowledge, Java model extractor Pathfinder has not supported
abstract data types from Java standard library. In other words, it assumes the behavior
of a Java thread does not involve ADTs. Bandera can process code which uses vector.
However, vector is just another safe-to-use array. Supporting ADTs requires a great
amount of efforts and works. The reasons they do not support ADTs from standard
library are simply an issue of cost [13]. They do not address the sensitivity problem we
described in this work. Besides, they focus on global analysis, whereas compositional
analysis and refactoring are our major concerns.

Supporting abstract data types in Promela can be done in another way. For example,
we can use CPP’s macros to implement ADTs. This approach may be easier to maintain
and implement. There is no need to modify Promela’s grammar. However, it is more
difficult to cope with object-oriented syntax nowadays. For example, many ADT objects
may have methods all named add(). Solving naming conflicts in macro programming is
more difficult. It is also more difficult to cope with our design framework in previous
section.

6 Conlusions

In this paper, we describe a special phenomenon of software verification – analysis
(particularly compositional analysis) is sensitive to implementation choices when array

152 Y.-P. Cheng

is used to implement complicated data structures. We give examples to show that an
implementation choice which is the definite choice in the view of programming may be
a poor choice for analysis. On the other hand, a poor implementation choice from the
view of programming can be a good choice for analysis. We show that such sensitivity
can be mitigated if ADTs are supported and the usage of array are suppressed or prohib-
ited. Two ADTs SET and QUEUE are implemented in a prototype tool. Models rewritten
with ADTs have obvious advantages. First, using ADTs forces process behaviors to
converge. Programmers have less room to make their own implementation choices to
endanger analysis. Second, the ADTs provide useful automation information. Select-
ing the best implementations for ADTs behaviors becomes straightforward. There is no
need to incorporate any static analysis or program comprehension techniques.

References

1. G. S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S. Pasareanu, and S. F. Siegel. Comparing
finite-state verification techniques for concurrent software. Technical Report UM-CS-1999-
069, Dept. of CS, University of Massachusetts, November 1999. (in preparation).

2. K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex trans-
mission over half-duplex lines. Communications of ACM, 12(5):260–261, 1969.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulations. IEEE Transac-
tions on Computers, C-35(8):677–691, 1986.

4. Y. Cheng. Refactoring design models for inductive verification. In Proceedings of Inter-
national Symposium on Software Testing and Analysis (ISSTA2002), pages 164–168, Rome,
Italy, July 2002.

5. Y.-P. Cheng, M. Young, C.-L. Huang, and C.-Y. Pan. Towards scalable compositional analy-
sis by refactoring design models. In Proceedings of the ACM SIGSOFT 2003 Symposium on
the Foundations of Software Engineering, pages 247–256, 2003.

6. S. C. Cheung, D. Giannakopoulou, and J. Kramer. Verification of liveness properties using
compositional reachability analysis. In 5th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 227–243, Zurich, Switzerland, September 1997.

7. S. C. Cheung and J. Kramer. Context constraints for compositional reachability analysis.
ACM Transactions on Software Engineering and Methodology, 5(4):334–377, October 1996.

8. S. C. Cheung and J. Kramer. Checking safety properties using compositional reachability
analysis. ACM Transactions on Software Engineering and Methodology, 8:49–78, January
1999.

9. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In Pro-
ceedings of 4th IEEE Symposium on Logic in Computer Sciences, pages 353–362. IEEE
Computer Society Press, 1989.

10. J. C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE Trans-
actions on Software Engineering, 2(3):161–180, March 1996.

11. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and H. Zheng.
Bandera: extracting finite-state models from java source code. In International Conference
on Software Engineering, pages 439–448, 2000.

12. S. Graf and B. Steffen. Compositional minimization of finite state systems. In Proceedings
of the 2nd International Conference of Computer-Aided Verification, pages 186–204, 1990.

13. K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA pathfinder.
International Journal on Software Tools for Technology Transfer, 2(4):366–381, 2000.

14. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, Englewood
Cliffs, NJ 07632, 1991.

Crafting a Promela Front-End with Abstract Data Types 153

15. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295, 1997.
16. G. J. Holzmann. Designing executable abstractions. In Proceedings of the second workshop

on formal methods in software practice, pages 103–108, Clearwater Beach, Florida USA,
March 1998.

17. R. K. Keller, M. Cameron, R. N. Taylor, and D. B. Troup. User interface development and
software environments: The Chiron-1 system. In Proceedings of the Thirteenth International
Conference on Software Engineering, pages 208–218, Austin, TX, May 1991.

18. E. Madelaine and R. de Simone. The FC2 Reference Manual. Available by ftp from
cma.cma.fr:pub/verif as file fc2refman.ps, INRIA.

19. K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Massachusetts,
1993.

20. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, New York, 1980.

21. D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-based test oracles for reactive
systems. In Proceedings of the Fourteenth International Conference on Software Engineer-
ing, pages 105–118, Melbourne, Australia, May 1992.

22. W. J. Yeh and M. Young. Re-designing tasking structure of Ada programs for analysis:A
case study. Software Testing, Verification, and Reliability, 4:223–253, 1994.

23. M. Young, R. Taylor, D. Levine, K. A. Nies, and D. Brodbeck. A concurrency analysis tool
suite for Ada programs: Rationale, design, and preliminary experience. ACM Transactions
on Software Engineering and Methodology, 4(1):65–106, Jan 1995.

Behavioural Models for Hierarchical
Components�

Tomás Barros1, Ludovic Henrio2, and Eric Madelaine1

1 INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis,
2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex - France

2 Univ. of Wesminster, Watford Rd Northwick park, Harrow, HA1 3TP, UK
First.Last@sophia.inria.fr

Abstract. In this work, we focus on hierarchical component systems.
We describe both the functional behaviour and the non-functional fea-
tures (life-cycle management) of components in terms of synchronised
transition systems; functional behaviours are supposed to be specified by
the component developer, while management features can be built au-
tomatically for the architecture definition of a given component system.
We define a notion of correct component composition; then we show how
we can prove, using (compositional) model-checking techniques, tempo-
ral properties of a component system. Transformations of a system, for
example replacement of a sub-component, are expressed as transforma-
tions of its behavioural semantics, allowing to prove preservation of some
properties, or the validity of new properties after transformation.

1 Introduction

Components have emerged as a new programming paradigm in software de-
velopment. Beyond structuring concepts inherited from modules and objects,
component frameworks provide means for architecture and deployment descrip-
tion. Some frameworks define a number of non-functional features for controlling
the life-cycle of the components and the application, or allow for construction
of distributed components. In general words, a component is a self contained
entity that interacts with its environment through well-defined interfaces (pro-
vided services and required functionalities to be provided by other components).
Besides these interactions, a component does not reveal its internal structure.

In hierarchical component frameworks like Fractal [7], different components
can be assembled together creating a new self contained component which can be
itself assembled to other components in a upper level of hierarchy. Hierarchical
components hide, at each level, the complexity of the sub-entities. The composi-
tional aspect together with the separation between functional and non-functional
aspects helps the implementation and maintenance of complex software systems.

� This research work is carried out under the ACI Securité FIACRE funded by the
french government, and under the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265)

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 154–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Behavioural Models for Hierarchical Components 155

The challenge that we want to address in this work is to build a formal frame-
work to ensure that compositions are correct. Standard components systems have
typed interfaces, that ensure some level of static compatibility between the com-
ponents: interfaces are bound only if their operations have compatible types in
the classical sense (OO method typing). This does not prevent assembled com-
ponents from having non compatible behaviours, that could lead to deadlocks,
live-locks, or other kinds of safety problems. A number of recent works do try
to address better dynamic guaranties, e.g. research on behavioural typing or
contracts [8], as well as frameworks like Wright [1] or Sofa [14].

Our approach is to give behavioural specifications of the components in the
form of hierarchical synchronised transition systems. The semantics of a com-
posite is then computed as a product of the LTSs of its sub-components with
the controller of the composite. This system can be checked against require-
ments expressed as a set of temporal logic formulas, or again as an LTS. We
aim to provide the final user with tools to verify the behaviour at the design
phase (definition), the assembly phase (implementation), as well as the dynamic
reconfiguration (maintenance) of the component system. Therefore the intended
user of our framework is the application developer in charge of those tasks. In
this work, we choose to rely on the Fractal hierarchical component model.

The models for the functional behaviour of basic components may be derived
from automatic analysis of source code (involving adequate data abstraction),
as we have described in [4], or expressed by the developer in a dedicated specifi-
cation language, e.g. the graphical language for synchronised automata used in
this paper.

Our main contributions in this paper are:

– a methodology for building behavioural models of hierarchical components,
including non-structural reconfiguration operations (generated from the com-
ponent ADL),

– the modelling of the full behaviour of the application as a hierarchy of pa-
rameterized LTSs,

– a specification of structural reconfigurations as transformations of the LTS
expressing the component behaviour,

– a classification of correctness properties for a component system together
with tools allowing and easing their verification.

Our final target is distributed component systems communicating asyn-
chronously. We have shown in [3] how we build models for distributed objects
and verify their properties; in this paper we concentrate on the modelling of
the control and transformation operations of hierarchical components, and we
leave for further work the integration with the asynchronous communication
semantics. One example of distributed implementation of Fractal is given in [6].

In Section 2 we present the features of Fractal that will be useful for the
understanding of this paper, and we introduce a small example that will serve
as an illustration for the rest of the paper. Section 3 discusses the notion of
correct behaviour. In section 4 we recall the main features of the formal models
that we defined in [4]. Section 5 develops, step by step, the formalisation and

156 T. Barros, L. Henrio, and E. Madelaine

the behaviour computation of this example, starting with the specification of
base components, then building the composite controllers, computing the com-
posite behaviour, specifying errors, dealing with deployment and transformation
phases, and finally proving in Section 6 some properties of the assembly.

2 The Fractal Component Model

The Fractal component model provides an homogeneous vision of software sys-
tems architecture with a few but well defined concepts such as component, con-
troller, content, interface, binding. It is recursive – components structure is auto-
similar at any arbitrary level (hence the name ’Fractal’); it is completely reflex-
ive, i.e., it provides introspection and inter-cession capabilities on components
structure.

2.1 Guidelines to Fractal Components

A Fractal component is formed out of two parts: a controller and a content. The
content of a component is composed of (a finite number of) other components,
called sub-components, which are under the control of the controller. This allows
for hierarchic components, in the sense that components may be nested at any
arbitrary level. A component that exposes its content is called a composite com-
ponent. A component that does not expose its content, but at least one control
interface, is called a primitive component.

The controller of a component can have external and internal interfaces. A
component can interact with its environment through operations at its external
interfaces, while internal interfaces are accessible only from the component’s
sub-components.

Interfaces can be of two sorts: client and server. A server interface can receive
methods invocations while a client interface emits methods call. A functional
interface provides or requires functionalities of a component, while a control
interface is a server interface that corresponds to a “non functional aspect”,
such as introspection, configuration or reconfiguration.

A component controller encodes the control behaviour associated with a par-
ticular component. Fractal defines three basic (optional) levels of control capa-
bilities for a component: no control at all, introspection, and configuration. Only
the latter is of interest to us. At the configuration control level, Fractal proposes
four control interfaces for each component: Attribute (to set attributes), Bind-
ing (to bind/unbind client interfaces), Content (to add/remove sub-components)
and Life-Cycle (to stop/start the component).

The Fractal specification defines a number of constraints on the interplay
between functional and non-functional operations. In particular: (1) content and
binding control operations are only possible when and the component is stopped,
and (2) when stopped, a component do not emit invocations and must accept
invocations through control interfaces.

Other features are left unspecified in the Fractal definition, and may be set by
a particular Fractal implementation, or left to be specified at user level. For this

Behavioural Models for Hierarchical Components 157

paper, we make the following choices: (1) the start/stop operations are recursive,
i.e. they affect the component and each one of its sub-components; (2) functional
operations cannot fire control operations. (3) the controller (membrane) of com-
posites is only a forwarder between external and internal functional interfaces
without any other control capability; The last feature implies that there is ex-
actly one internal interface for each external interface of a composite.

2.2 Component System Example

In this section we introduce a particular component system as an example, which
we will use later to better explain our work. Fig. 1 is a graphical view for it.

Fig. 1. A simple component system

The example is built from three primitive components (A, B and Logger),
which are composed in two levels of hierarchy defined by two composite compo-
nents (C and System). Each component exposes the interfaces for the control
operations they support (in our example all the components support life-cycle
control operation through the interface Ilf and binding control operations through
the interface Ibc).

All the functional interfaces in the example are typed either by the type I,
the type L, or the type R. We define the type I having the operation foo(), the
type L having the operation log() and the type R having the operation reset().

The system is deployed in a bottom-up fashion from the innermost compo-
nents to the outer component (System in our example). At each level of hierarchy
a specific deployment is applied. For instance, at the C level of hierarchy in Fig.
1 the deployment includes, among others, the binding between the interface Ic
of A and the interface Ip of B.

3 Defining Correct Behaviour

Control (i.e., non-functional) operations can introduce changes on the component
behaviour. For instance, adding or replacing a sub-component may add features
(new actions) to the system. Since we made the assumption (this is a restriction

158 T. Barros, L. Henrio, and E. Madelaine

with respect to the Fractal specification) that no functional operation can fire
control operations, then we are interested in three phases in the components
behaviour:

1. Deployment: this is the building phase of a component. In this phase the
component’s content (its sub-components) is defined as well as the initial
transformation phase (sequence of control operations), as described usually
in the application ADL. The application deployment typically ends with a
recursive start operation.

2. Running phase: only functional operations occur here.
3. Reconfiguration: we distinguish between non-structural reconfigurations (life

cycle and binding controls) and structural transformations (adding, removing
or updating components).

From these definitions, we discuss the correctness of the component system:

1. Initial composition: “Is the deployed system behaving correctly?”. The con-
cept of “correct behaviour” covers the absence of dead-locks and in general
safety and liveness properties (common sense properties like not using an un-
bound required interface, or any user-requirement expressed as a temporal
logic property). Ultimately, it could be “Does this implementation respect a
pre-defined specification? (with respect to some implementation pre-order)”.

2. Reconfiguration : “After a transformation phase, does the system behave cor-
rectly?”. This covers both preservation of some properties valid before the
transformation, and the satisfaction of a new set of properties, corresponding
to features added by the transformation. These proofs must take into account
the intricate interplay between functional and non-functional actions during
transformation, like the management of the internal state of subcomponents.
For example, one can expect to be able to prove the safety and transparency
(from the user point of view) of the replacement of a components by another
one.

We want to provide the user with tools that help answer those questions before
deploying the application or applying a transformation, so he can be confident
about the reconfigurations he will apply and therefore, have a reliable system.

4 Formalism

In [4] we have defined a parameterized and hierarchical model for synchronised
networks of labelled transition systems. We have shown how this model can be
used as an intermediate format to represent the behaviour of distributed Java
applications, and check their temporal properties.

Our model is an adaptation of the symbolic transition graphs with assignment
of [13] into the synchronisation networks of [2]: we extend the general notion of
Labelled Transition Systems (LTS) and hierarchical networks of communicating
systems (synchronisation networks) by adding parameters to the communication
events in the spirit of [13].

Behavioural Models for Hierarchical Components 159

We model the behaviour of a process as a parameterized Labelled Transition
System (pLTS). We use parameters both for encoding data in value passing
messages and for manipulating indexed families of processes.

Then we use a parameterized Net to synchronise a finite number of processes.
A parameterized Synchronisation Network (pNet) is a form of generalised parallel
operator, where each of its arguments is typed by a Sort that is the set of its
possible observable actions.

The actions to be synchronised between the arguments of the Net are encoded
in a transducer automaton. A state in the transducer defines a particular set of
synchronisations, then a state change in the transducer introduces a new set of
synchronisations, i.e. it models a dynamic reconfiguration. A Net with a unique
state is called a static Net.

Given a finite instantiation of the parameters in the model, we have intro-
duced in [4] an automatic procedure producing a (hierarchical) finite instanti-
ation of the parameterized LTSs and Nets. Having done the instantiation, we
can generate the synchronisation product, which is an LTS encoding the full be-
haviour of the Net when synchronising the actions of its processes as defined in
the transducer. Since the synchronisation product is an LTS, it can be used as an
argument in a upper Net definition. In other words, we do support hierarchical
composition of processes.

Our formalism fits nicely in the components model. The behaviour of a prim-
itive component is a LTS, that can be specified by the developer, or derived from
code analysis. For a given composite, its content is the arguments of the Net and
its initial bindings are encoded in the initial state of the transducer. The LTS
of a composite encodes the functional behaviour of the component but also the
control operations that do not change the geometry of the composite, namely
start/stop, and bind/unbind operations. In the sequel, we define our transducers
using a set of small automata, that we call controllers. On this model, we can
check all properties during and after the “initial composition”, and involving
reconfigurations only relying on start, stop, bind, and unbind.

We deal with transformations that change the arity of the Net or the struc-
ture of the application (add/remove/update of components) as transformers of
the model: starting with a hierarchical model in a given state, we build a new
model after a sequence of transformations, in which we maintain the state of the
components that were not changed by the transformation. We can then check
for the properties (preserved or new) of the reconfigured system.

5 Building the Behaviour for the Example

We start building an automaton for each component encoding both its functional
and non-functional (control) behaviours. In this section, we show how we build
the controller automata, in a bottom-up fashion, for primitives and for composite
components.

To benefit from the compositional properties of our models, we define this
construction in the context of a given temporal logic formula, or more generally

160 T. Barros, L. Henrio, and E. Madelaine

for a given set of actions that the user wants to observe. Then we shall consider
abstract automata for a given family of hidden actions (renamed as τ actions), or
conversely for a given family of visible actions (all others are hidden), minimised
by weak bisimulation at each step of the construction.

In particular, specific models can be constructed to exhibit to check the
correct detection of some classes of errors.

5.1 Computing Controller Automata

We introduce a general purpose Controller expressed as a parameterized Network
(pNet). In this general purpose Controller we define a finite number k of sub-
component automata (SubCk), a life-cycle automaton (LF), a finite number np of
external (E PInp) and internal (I PInp) provides interface automata, and a finite
number nr of external (E RInr) and internal (I RInr) requires interface automata.
Synchronised actions are encoded by links between two or more processes.

To obtain the Controller for a component we instantiate the general controller
based on its sub-components and interfaces. For instance, for the component C,

Fig. 2. Controller for A

Behavioural Models for Hierarchical Components 161

the set {SubCk} becomes {A,B}. Since we build the controller automata in a
bottom-up fashion, the controllers of the sub-components have been already built
when we compose them. The automaton encoding the sub-component behaviour
is the controller of this sub-components, hiding the internal functional actions
that are not specified as visible.

Please remark that this instantiation fixes the set of sub-components and
internal/external interfaces. The resulting pNet is still parameterized, and its
actions contain variables for value-passing and for reference-passing.

For a primitive component, the set {SubCk} is reduced to a single automaton
which encodes its functional behaviour; the set of internal interfaces ({I PInp}
and {I RInr}) is empty. The functional behaviour automaton encodes calls and
receptions of methods on the component interfaces (in addition to internal ac-
tions). Whether it is obtained by source analysis or given by the user is outside
the scope of this paper.

Because of space restrictions we only present the controller for component A
which is the product of the 5 LTSs composing the pNet shown in Fig. 2 (we use
an ellipse when more than two actions are synchronised). In [5] we describe the
full example.

In Fig. 2, Iext∗ are variables encoding the set of external interfaces to which
the interfaces of A can potentially be bound. This set is instantiated at the next
level of hierarchy by type matching analysis. For instance when building the
controller of C, the variable Iext1 in the figure becomes the set {B.IP}.

In addition, the controller pieces in Fig. 2 include some of the constraints
introduced in Section 2, e.g. that the bindings of requires interfaces are only
possible when the component is stopped or that calls to requires interfaces are
only possible when these interfaces are bound.

5.2 Detecting Errors

We can introduce in our model the detection of common sense errors (un-
desired behaviours) introduced in Section 3. For instance, by triggering an
ERROR UNBOUND message upon a call to the operations of the interface Ilog

when it is unbound, we can detect the erroneous uses of the Ilog interface. This
is shown in Fig. 3.

Fig. 3. Zoom into the A controller detecting errors

162 T. Barros, L. Henrio, and E. Madelaine

In addition to common sense errors, others undesired behaviours are directly
or intrinsically defined in the Fractal specification. In order to keep simplicity
and clarity during our guided example, we will consider only the error consisting
in calling an operation on an unbound interface.

5.3 Species of Temporal Properties

All the temporal properties (that do not involve a structural transformation) can
be expressed and verified directly on the controller automaton of a component,
or of the whole application. Yet, it is possible to define classes of properties
that can be checked on smaller systems, avoiding to build the global state-space.
This section identifies abstractions and tools allowing to verify some specific
categories of properties.

For a component C (including the full application itself), let us call OF the
set of external functional operations, OE the set of observable errors, OI the set
of internal actions chosen to be observable. Then we define the set of deployment
action as OD = ¬(OF ∪OE ∪OI).

Deployment. As we mention in Section 2.2, a system is deployed in a bottom-
up fashion in the component hierarchy. At each node (composite component) of
the system a specific deployment is applied.

This deployment is defined by the user ; e.g. in Fractal, the bindings for the
sub-components of a composite, can be given using its ADL. The deployment is
a sequence of internal control operations of the composite, possibly interleaved
with functional operations, and terminating with a distinguished successful state√

. In our example (Fig. 1):

¬OD ¬OD
¬OD ¬OD

Fig. 4. Deployment automaton for C

The interplay between the building of all components of the application,
and their start operations (that are usually applied recursively after building)
may be quite complex and error-prone. So it may be useful for the developer
to check, independently, that the deployment (possibly without start) of each
component succeeds, and that the global deployment, including start operations,
is also successful. This will be checked on the synchronisation of the component
controllers with their respective deployment automata.

Functional behaviour. A functional property is a property concerning only
functional actions, or more precisely properties of a system after correct deploy-
ment, on a system in which we forbid any subsequent control action. This kind of
formulas can be model-checked on a controller automaton for which we already

Behavioural Models for Hierarchical Components 163

have proved correct deployment, and in which we build only the relevant part of
the behaviour, either by an had-hoc construction algorithm, or using on-the-fly
techniques.

Functional behaviour properties are useful for component systems that do not
perform any reconfiguration or for which non-functional actions have a transpar-
ent behaviour regarding functional aspects, i.e. non-functional actions commute
with functional ones.

Non-structural Reconfiguration. Non-structural reconfiguration, i.e. involv-
ing only bind, unbind, start and stop operations, can be dealt with directly on
the controller automaton. Indeed, the interleaving between functional and non-
functional actions may have consequences on the state of the system ; we cannot
provide any general abstraction fitting with this case that could reduce the com-
plexity of the model construction for this class of properties.

Structural Transformations. Remove, add and update are the main control
operations that modify the content of a composite. The first remark is that
there is no hope to encode all possible future transformations in the model.
Then, technically, add and remove operations change the arity of the enclosing
Net, so they cannot be modelled as transducer transitions. Instead we model
the structural transformation operations as functions transforming the whole
hierarchical model of the application ; each elementary structural change affects
a single Net or LTS in the model.

Update could be expressed as a sequence unbind*;remove;add;bind*, but this
would lead both to less efficient implementations and to more complex model
constructions and proofs: we are interested in expressing full sequences of trans-
formations, that preserve properties of the system, while elementary transfor-
mations usually don’t.

The main difficulty with structural reconfigurations is that one wants to
keep the rest of the system in the same state. A large application should not be
stopped when updating or adding a specific sub-component, and the state of a
replaced component itself should be preserved whenever possible. The framework
ensures minimum conditions before replacements (in terms of stopped/unbound
state), but we have to assume that the developer will specify which data from
the replaced components are to be saved, and how this data will be mapped in
the new component.

In our formalism, this tree transformation and state transfer is expressed on
the hierarchical pNets, as the following sequence of steps :

– build the new hierarchical pNet, by replacement of the transformed part;
call S′ the semantics of this new system;

– define a mapping between actions in the original and the new systems, based
on a user-defined mapping between the action names and parameters in the
replaced component;

– identify the set T of states on the initial system where the transformation
is possible;

164 T. Barros, L. Henrio, and E. Madelaine

– build a synchronised product of the old and new system, using the mapping
of old to new actions, and adding in each state of T a transition t−→ encoding
the transformation; we call T ′ the image of t−→ in this product;

– finally obtain the controller automaton of the transformed system, A′ defined
by: the set of initial states of A′ is T ′, the states and the transitions of A′

are those of S′ reachable from T ′.

The actions mapping will eventually be defined in terms of the source lan-
guage of the application, but this is out of the scope of this paper.

6 Proving Properties

In our tools, we use the modal μ-calculus as a powerful internal language for
logic formulas. For this paper, we prefer to use an Action-based Computation
Tree Logics (ACTL, see e.g. [9]), that may be more suitable for a human reader.

1. Deployment: We want at first to verify that the deployment for a
component is always successful. This is done by proving the ACTL formula

[true]
√

(1) (all paths lead to success)
in the synchronisation product between the component controller and its
deployment. This formula is true for the deployment in Fig. 4.
A second property we would like to verify is the absence of error during the
deployment. This is done by proving the formula

EF¬OE < OE > false (2)

in the synchronisation product between the component controller and its
deployment. This property is also true for the deployment in Fig. 4. However,
in a scenario very reasonable, let’s suppose the user starts the component
C at the end of the deploy (which means to add a !start transition before
the state

√
). Under this scenario the property is not true anymore (even

though the deployment is possible), and the model-checking tool give us the
counter-example shown in Fig. 5

√

Fig. 5. Diagnostic path

The error is because the required interface C.Ilog may be used before it is
bound, which in fact is true since the interface Ilog of C will be bound at the
next level of hierarchy (when deploying System). This example also shows
us the importance of the hierarchical behaviour of start and stop.

Behavioural Models for Hierarchical Components 165

2. Functional behaviour: We would like to verify the absence of errors dur-
ing a running phase, i.e. the absence of errors after the deploy until a new
reconfiguration phase. If OE is the set of observable errors and OD is set of
observable control operations, then we can verify the property in System by
proving the ACTL formula:

A[true]
√

AG¬OD [OE]false (3)

is true in its controller. The proof is successful for System.
3. Transformation: Suppose we do, during the application running-phase,

an update of the sub-component B in C by a component B2. B2 has a
similar behaviour than B, but in addition it logs the calls to its Ip inter-
face using its Ilog interface. When we prove formula (3), it becomes false
in this updated system, and the tool gives us a path containing the action
ERROR UNBOUND ERI(B2.log). This is because in the initial deployment
of the system, we did not bind the interface Ilog of B. Since B did not use
its interface Ilog, the composition did not produced an undesired behaviour.
However, the new B2 uses its Ilog interface, and so it produces the error. So
the update of B by B2 should be followed by a binding of its Ilog interface.
This example, likely to happen in real systems, shows the necessity of formal
tools of verification for checking reconfiguration requirements.
If after the update and before starting the system, we bind the interface Ilog

of B2 to the internal interface Ilog of C, then the property is preserved.

6.1 Tools

Figure 6 shows the ADL description file for the upper level of hierarchy. In line
17 and 18 we suggest a way to introduce functional behavioural specification of
primitive components.

System.fractal

1 <?xml version="1.0" encoding="ISO-8859-1" ?>
2 <!DOCTYPE >
3
4 <definition name="components.System">
5
6 <component name="C"
7 definition="components.C">
8 <interface name="log" role="client"
9 signature="components.LogInterface"/>

10 <interface name="l1" role="server"
11 signature="components.I1Interface"/>
12 </component>
13
14 <component name="Logger">
15 <interface name="log" role="server"
16 signature="components.LogInterface"/>
17 <content class="components.LoggerImpl">
18 <behaviour file="LoggerBehav"
19 format="Aldebaran"/>
20 </content>
21 </component>
22
23 <binding client="C.log"
24 server="Logger.log"/>
25 </definition>

Fig. 6. System ADL

Component Controller Static Aut.
A 24/99 24/91
B 16/98 16/90

Logger 4/16 4/14
C 432/2168 12/39

System 36/151 6/19
B2 24/107 24/99

C {update(B,B2)} 1786/7082 20/58

Fig. 7. Branching reduced automata sizes
(states/transitions) of the example

166 T. Barros, L. Henrio, and E. Madelaine

We developed a tool prototype in Java which takes as inputs the system ADL
and the functional behaviour of primitives to automatically generate the models
described in this paper. We use the CADP [10] tool-set to do the synchronisation
product and the model-checking of formulas. From the ADL description, our
tool prototype generates, once instanced, the synchronisation product in Exp-V2
format (and ASCII list of synchronisation vectors). The automaton describing
the functional behaviour of primitives is taken directly from its file (line 18
in Fig. 6). In our example the primitive automata are in Aldebaran format (a
simple ASCII representation of finite LTS). Our tool also generates a script to
build the system (svl script from CADP). Finally the proofs are verify using
evaluator, an on-the-fly model checking tool included in CADP. Figure 7 shows
some results for the generated automata in our example; the CADP tool-set
allows us to handle systems with as much as 100 millions states at each level of
the construction.

7 Related Work

Most component frameworks available today only have tools for checking the
static type compatibility of interfaces. Work on behaviour compatibility is quite
recent, and not yet available on industrial plate-forms. We mention here research
works and tools that may be the closest to our approach.

Wright [1] was an early proposal for specifying the behaviours of components
in an Architecture Description Language (ADL). They use connectors similar to
our Nets, that define the possible interactions between a set of roles (specification
of sub-components). The behaviours of roles is specified in CSP, and they have
a notion of compatibility based on a variant of CSP’s refinement pre-order that
ensures the absence of deadlock.

Darwin [11] is an Architecture Description Language, in which a distributed
program is represented as a hierarchical composition of subsystems, with inter-
acting processes at the leaves of the hierarchy. The behaviours are specified and
computed in a way similar to ours, including weak bisimulation minimisation
during the bottom-up construction. Verification of safety and liveness proper-
ties, specified in terms of finite-state automata, is done by the Tracta tool. The
main difference with our approach is that Darwin expresses only the functional
operations of the components, and does not support system reconfiguration.

Sofa [14] defines a hierarchical component system. At each level of hierar-
chy, a frame protocol specifies the external behaviour of the component, while
a architecture protocol describes an implementation capturing also the internal
synchronisation between its sub-components. The architecture protocol can be
automatically generated from the frame protocols of its sub-components. The
behaviours are expressed as regular expressions, and the substitutability of com-
ponents is based on trace language inclusion, though it is yet unclear how to
compare with our bisimulation-based semantics. One specificity of Sofa is its so-
phisticated mechanism for detecting and reporting errors. They also have a syn-

Behavioural Models for Hierarchical Components 167

tax for expressing asynchronous operations, for which the emission of a method
call and the return of its result may be interleaved with other events.

A quite different approach is advocated by Carrez, Fantechi and Najm in
[8]. They propose a (non-hierarchical) component model in which interfaces are
given a behavioural type expressed in a kind of modal process algebra. Then,
they define the sound assembly of components as the conjunction of compliance
of components to their interface (contracts), and compatibility between inter-
faces. The type language definition ensures that the compatibility is decidable
and can be computed efficiently. Unfortunately, the compliance relation is more
complex, and may even require theorem-proving techniques, but only needs to
be guarantied once for a given component.

Cadena [12] is a development and verification environment for building real
time systems using CORBA. They extend the Interface Definition Language to
add light-weight specification of component behaviour and dependencies using
a BIR-like language. Then they use Bogor, a specialised model-checking tool for
Cadena, to verify properties expressed using logical patterns. Cadena does not
work with hierarchical components, and the model-checking tool lacks composi-
tionality. They assume a correct deployment and do not support dynamicity.

8 Discussion and Conclusion

This paper provides methods and tools allowing the user to prove the correctness
of the behaviour of hierarchical components. One of our main contributions is
the specification of the behaviour of non-functional aspects, and the hierarchical
building of LTSs modelling the behaviour of the system of components. Our ap-
proach rely on the definition of a generic controller allowing (once instantiated)
to encode the whole behaviour of any component except non-structural recon-
figuration. Then a component behaviour is obtained by synchronisation product
of the LTSs expressing the behaviour of its content and the control behaviour
associated to its interfaces. Structural (dynamic) reconfiguration is handled by
a LTS transformation. The tools provided to the user include:

– a controller automaton allowing to prove general properties on the behaviour
of a component provided no structural reconfiguration is considered;

– an error detection: firing of error messages upon common sense errors can
automatically be added; then, for example, the user may prove the absence
of such messages in order to assert the correctness of the application;

– modelling of structural reconfigurations as transformations of the applica-
tion model, thus allowing to reason about the most general components
reconfigurations.

A promising perspective is to extend this framework in order to specify and
verify the behaviour of asynchronous distributed components. Such a work would
benefit from our previous experience in specification of asynchronous commu-
nicating objects [3], and consist in extending and adapting the notion of asyn-
chronous method calls, request queues, etc.

168 T. Barros, L. Henrio, and E. Madelaine

Finally, many approaches are being developed to cover the right composi-
tion of components considering their functional aspects. One of the strongest
advantage of using components is the separation of concerns from the user point
of view. However, when coming to behavioural verification, one still needs to
take into account the inter-play between functional and non-functional aspects,
at least for existing component models. The main contribution of this paper is
to encode the deployment and reconfigurations as part of the behaviour of the
system, and thus verify the behaviour of the whole component system.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, July 1997.

2. A. Arnold. Finite transition systems. Semantics of communicating sytems.
Prentice-Hall, 1994.

3. I. Attali, T. Barros, and E. Madelaine. Formalisation and proofs of the chilean
electronic invoices system. In XXIV International Conference of the Chilean Com-
puter Science Society (SCCC 2004), pages 14–25, Arica, Chili, November 2004.
IEEE Computer Society.

4. T. Barros, R. Boulifa, and E. Madelaine. Parameterized models for distributed
java objects. In Forte’04 conference, Madrid, 2004. LNCS 3235, Spinger Verlag.

5. T. Barros, Henrio Ludovic, and E. Madelaine. Behavioural models for hierarchical
components. Technical Report RR-5591, INRIA, June 2005.

6. Francoise Baude, Denis Caromel, and Matthieu Morel. From distributed objects to
hierarchical grid components. In International Symposium on Distributed Objects
and Applications (DOA), Catania, Sicily, Italy, 3-7 November. LNCS, 2003.

7. E. Bruneton, T. Coupaye, and J. Stefani. Recursive and dynamic software com-
position with sharing. Proceedings of the 7th ECOOP International Workshop on
Component-Oriented Programming (WCOP’02), June 2002.

8. A. Fantechi C. Carrez and E. Najm. Behavioural contracts for a sound assembly
of components. In Springer-Verlag, editor, in proceedings of FORTE’03, volume
LNCS 2767, November 2003.

9. R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition
systems. In I. Guessarian, editor, Semantics of Systems of Concurrent Processes,
volume 469 of LNCS, La Roche Posay, France, 1990. Springer.

10. H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter, 4:13–24,
August 2002.

11. D. Giannakopoulou, J. Kramer, and S. Chi Cheung. Behaviour analysis of dis-
tributed systems using the tracta approach. Automated Software Engg., 6(1):7–35,
1999.

12. J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath. Cadena: an in-
tegrated development, analysis, and verification environment for component-based
systems. In ICSE ’03 conference, pages 160–173, Washington, DC, USA, 2003.
IEEE Computer Society.

13. H. Lin. Symbolic transition graph with assignment. In U. Montanari and V. Sas-
sone, editors, CONCUR ’96, Pisa, Italy, 26–29 August 1996. LNCS 1119.

14. F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Transactions on Software Engineering, 28(11), nov 2002.

On-the-Fly Emptiness Checks for
Generalized Büchi Automata

Jean-Michel Couvreur1, Alexandre Duret-Lutz2, and Denis Poitrenaud2

1 LaBRI, Université de Bordeaux I, Talence, France
2 LIP6, Université de Paris 6, France

Abstract. Emptiness check is a key operation in the automata-theoretic approach
to LTL verification. However, it is usually done on Büchi automata with a single
acceptance condition. We review existing on-the-fly emptiness-check algorithms
for generalized Büchi automata (i.e., with multiple acceptance conditions) and
show how they compete favorably with emptiness-checks for degeneralized au-
tomata, especially in presence of weak fairness assumptions. We also introduce a
new emptiness-check algorithm, some heuristics to improve existing checks, and
propose algorithms to compute accepting runs in the case of multiple acceptance
conditions.

1 Introduction

The automata-theoretic approach to model-checking [22] uses automata on infinite
words to represent a system as well as a formula to check on this system. Both automata
are synchronized, and a key operation is to determine whether the resulting automaton
is empty (i.e., contains no accepting run). This operation is called emptiness check. An
on-the-fly emptiness check allows the synchronized automata to be constructed lazily
while it runs. This is a win if the emptiness check answers before the whole synchro-
nized product is completed.

We follow up on a paper by Schwoon and Esparza [17] who compared two classes
of on-the-fly emptiness checks: those based on nested depth-first searches (NDFSs)
versus those computing strongly connected components (SCCs). Their measures for
Büchi automata with single acceptance conditions led to the following conclusions:

– Couvreur [3]’s algorithm is the best at computing accepting SCCs,
– Schwoon and Esparza [17]’s algorithm is the best of NDFS-based checks,
– for weak Büchi automata [1], a simple DFS is enough; otherwise SCC-based algo-

rithms should be preferred to NDFSs unless bit-state hashing is used.

Here we explore these algorithms on Büchi automata with multiple acceptance condi-
tions (the so-called generalized Büchi automata) to stress the advantages of generalized
emptiness checks over traditional algorithms.

Section 2 introduces the emptiness-check problem and existing algorithms. Sec-
tion 3 describes our experimental workbench. The later two sections present some con-
tributions to each class of algorithms as well as algorithms for the computation of ac-
cepting runs.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 169–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

2 Emptiness Check

2.1 Transition-Based Generalized Büchi Automata

A Transition-based Generalized Büchi Automaton (TGBA) over the alphabet Σ is a
Büchi automaton with labels on transitions, and generalized acceptance conditions on
transitions too. It can be defined as a tuple A = 〈Σ,Q,F , q0, δ〉 where

– Σ is an alphabet,
– Q is a finite set of elements called states,
– F is a finite set of elements called acceptance conditions,
– q0 ∈ Q is a distinguished initial state,
– δ ⊆ Q × (2Σ \ {∅}) × 2F × Q is the transition relation, where each transition is

labeled by a nonempty set of letters of Σ and a set of acceptance conditions of F .

A run of A is an infinite sequence 〈q0, l0, f0, q1〉〈q1, l1, f1, q2〉···〈qj , lj , fj, qj+1〉··· of
transitions of δ, starting at q0 = q0. Such a run is said to be accepting if ∀f ∈ F , ∀i �
0, ∃j � i, such that f ∈ fj , i.e., if its transitions are labeled by each acceptance
condition infinitely often.

An emptiness check is an algorithm that tells whether at least one accepting run ex-
ists. On a TGBA, it amounts to testing whether there exists a circuit that (1) is accessible
from q0, and (2) is labeled by all acceptance conditions F .

The lis can be used to describe words recognized by a run, but for the purpose of
finding accepting runs we shall not be concerned by lis and Σ. Also note that we use
acceptance conditions as labels on transitions, rather than as the usual sets of transitions,
because that is how it is coded in practice.

Other Büchi automata in use for model-checking, have acceptance conditions on
states rather than transitions, and are often not generalized (i.e., |F| � 1). While the
benefit of TGBAs in the process of translating LTL formulæ is already quite clear [3,
10, 4], few people are actually using them for emptiness-check, because mainstream
algorithms work on non-generalized, state-based, Büchi automata.

A degeneralization is the transformation of an automaton with |F| > 1 into an au-
tomaton with |F| = 1 [10]. This operation may multiply the size of the automaton by
at most |F| to produce a transition-based automaton, and by at most |F|+ 1 to produce
a state-based automaton. Such a blowup is often disregarded when only the automaton
that represents the property needs to be degeneralized: such automata are usually small.
Acceptance conditions can also be used to express some class of fairness constraints
such as weak fairness. In Spin, weak fairness is handled using a degeneralization algo-
rithm [13, p. 182]. As we shall see in our measures, the degeneralization is much more
painful when applied to weak fairness.

2.2 Existing Algorithms

Two classes of on-the-fly emptiness-check algorithms exist: nested depth-first searches
(NDFSs), and algorithms that compute strongly connected components (SCCs). Fig. 1
shows how the algorithms we cite relate to each other.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 171

1972

1973

Depth−first search and
linear graph algorithms

Tarjan, 1972

[8] Tarjan’s Algorithm
Makes On−the−Fly LTL

Verification More Efficient
Geldenhuys & Valmari, 2004

[12] Truly On−The−Fly
LTL Model Checking
Hammer et al., 2005

1985

Finding the maximum
strong components in

a directed graph
Dijkstra, 1973

[3] On−the−fly Verification of
Linear Temporal Logic

Couvreur, 1999

1990

[16] Checking That Finite State
Concurrent Programs Satisfy

Their Linear Specification
Lichtenstein and Pnueli, 1985

1993

[2] Memory−Efficient Algorithms for the
Verification of Temporal Properties

Courcoubetis et al., 1990

[11] On the Verification of
Temporal Properties

Godefroid & Holzmann, 1993

An Improvement in Formal Verification
Holzmann & Peled, 1994

1994

[14] On Nested Depth First Search
Holzmann et al., 1996

1996

1999

[20] Nested Emptiness Search
for GBA

Tauriainen, 2003

[7] Minimization of
counterexamples in SPIN

Gastin et al., 2004

2003

[9] More Efficient On−the−fly
LTL Verification with

Tarjan’s Algorithm
Geldenhuys & Valmari, 2005

Cou99 shy

2004

[19] On Translating LTL
into Alternating and

Nondeterministic Automata
Tauriainen, 2003

Tau03 opt

2005

[17] A Note on On−The−Fly
Verification Algorithms

Schwoon & Esparza, 2004

This paper

Legend: Büchi automata with accepting states

Generalized Büchi automata with accepting states

Generalized Buchï automata with accepting transitions

Fig. 1. A family tree of emptiness-check algorithms

172 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

c1 // Let 〈Σ, Q, δ, q0, F〉 be the
c2 // input automaton to check.
c3 todo: stack of 〈state ∈ Q, succ ⊆ δ〉
c4 SCC: stack of 〈root ∈ N, la ⊆ F ,
c5 acc ⊆ F , rem ⊆ Q〉
c6 H: map of Q �→ N

c7 max ← 0
c8

c9 main():
c10 push(∅, q0)
c11 while ¬todo.empty()
c12 if todo.top().succ = ∅
c13 pop()
c14 else
c15 pick one 〈 , , a, d〉 off todo.top().succ
c16 if d
∈ H
c17 push(a, d)
c18 else if H [d] > 0
c19 if merge(a, H [d]) = F
c20 return ⊥
c21 return �

c23 push(a ⊆ F , q ∈ Q):
c24 max ← max + 1
c25 H [q] ← max
c26 SCC .push(〈max, a, ∅, ∅〉)
c27 todo.push(〈q, {〈s, l, a, d〉 ∈ δ | s = q}〉)
c28

c29 pop():
c30 〈q, 〉 ← todo.pop()
c31 SCC .top().rem.insert(q)
c32 if H [q] = SCC.top().root
c33 forall s ∈ SCC .top().rem
c34 H [s] ← 0
c35 SCC .pop()
c36

c37 merge(a ⊆ F , t ∈ N):
c38 r ← ∅
c39 while (t < SCC.top().root)
c40 a ← (a ∪ SCC .top().acc
c41 ∪ SCC .top().la)
c42 r ← r ∪ SCC .top().rem
c43 SCC .pop()
c44 SCC .top().acc ← SCC.top().acc ∪ a
c45 SCC .top().rem ← SCC .top().rem ∪ r
c46 return SCC.top().acc

Fig. 2. Another presentation of the algorithm of Couvreur [3] to check the emptiness of TGBAs

Nested Depth-First Searches. NDFSs were initially developed for Büchi automata with
only one acceptance condition for states [2]. Basically, a NDFS will perform a first DFS
rooted at q0 until it finds an accepting state s, and from there starts a second DFS to
check whether s is reachable from itself. This naive algorithm was then further refined
so that both DFSs could share the same hash table [11], to exit earlier and to support
partial order reductions [14].

Holzmann et al. [14]’s algorithm has been refined by Gastin et al. [7] and Schwoon
and Esparza [17]. In parallel, Tauriainen generalized it to support multiple acceptance
conditions on states [20], or transitions [19]. Switching from states to transitions is easy;
the real challenge was to devise a way to handle generalized acceptance conditions.
Tauriainen did this by repeating the inner DFS several times (at worst |F| times).

Strongly Connected Components. Another strategy is to compute the maximal strongly
connected components (MSCCs) of the automaton. Let us define a trivial SCC as a
single state without self-loop. If the union of all the acceptance conditions occurring
in a non-trivial SCC is F , and that SCC is accessible from q0, then one can assert the
existence of such an accepting run. This is the essence of the algorithms of Couvreur
[3], Geldenhuys and Valmari [8, 9], and Hammer et al. [12].

We present an iterative version of Couvreur [3]’s algorithm in Fig. 2 in order to
introduce two heuristics in Section 4.1. This algorithm is based on the fact that any

On-the-Fly Emptiness Checks for Generalized Büchi Automata 173

SCC[0].la���������	SCC[0].acc
SCC[1].la ���������	SCC[1].acc

SCC[2].la ���������	SCC[2].acc
SCC[3].la ���������	SCC[3].acc

a

��

Fig. 3. The meaning of la and acc in SCC

graph contains at least one MSCC without outgoing arc. To list all MSCCs, one should
find such a terminal MSCC, remove it from the graph, and then list all MSCCs of the
resulting graph [16]. It turns out this requires to visit each transition only once.

To do so the algorithm explores the graph in depth-first order. todo is a DFS stack,
on which each item contains a state and the set of its successors that have yet to be
visited. (In practice this set of successors may not need to be represented explicitly and
would be replaced by the necessary information to compute the next successor of the
state.) H maps each state to its rank in the depth-first order, and H [q] = 0 indicates that
q belongs to a removed MSCC.

During the DFS, a chain of SCCs is maintained as a stack, SCC, depicted on
Fig. 3. To each SCC is associated the rank of the first state of the SCC (root), the
union of acceptance conditions in the SCC (acc), the acceptance conditions labeling
the transition coming from the previous SCC (la), and the list of states of the SCC
that have been fully explored (rem). (SCC[0].la = ∅ by convention and is never
used.) Using this structure, two visited states q1 and q2 belong to the same SCC if
max{r |SCC[r].root � H [q1]} = max{r |SCC[r].root � H [q2]}.

Initially, each new state is pushed on the stack as a trivial SCC with an empty acc
(line c26). When the DFS reaches a successor q that has already been visited and has
not been removed (line c18), all SCCs between the SCC to which q belongs and the top
SCC (source of the transition) are merged into a single SCC. On the example of Fig. 3
where a back arc is found between SCC[3] and SCC[1], the last three SCCs would
be merged into a single one with acceptance conditions SCC[1].acc ∪ SCC[2].la ∪
SCC[2].acc ∪ SCC[3].la ∪ SCC[3].acc ∪ a. If that union is F , then an accessible,
non-trivial, and accepting SCC exists, and the algorithm reports ⊥ (the automaton is
not empty).

When the root of an SCC is popped (tested line c32), the SCC is known to be
maximal and not accepting, so it can be discarded. The use of rem line c31 to remove
the states of the MSCC line c33 could be avoided because when line c33 is reached,
rem contains all the states s accessible from q (ignoring those with H [s] = 0), as
the original algorithm did [3]. The current implementation favors run-time to memory
consumption, indeed a concern from Schwoon and Esparza [17] was that computing
transitions can be expensive. To be fair we will account for the size of rem in our
measures of the stack size. (Geldenhuys and Valmari [9] provide alternative structures
that address the same problem.)

Another SCC-based algorithm, Geldenhuys and Valmari [8]’s, has a similar han-
dling of its stack: it keeps all states of partial SCCs, so it can remove them easily.

174 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

However it also stores an additional integer for each state (lowlink) that we will not
account for in our measures. This algorithm works only on degeneralized automata.

Hammer et al. [12]’s algorithm is presented as an emptiness check for Linear Weak
Alternating Automata (LWAA). However their algorithm translates an LWAA into a
generalized Büchi automata on-the-fly during the emptiness check. The translation from
LWAA could be coupled with any other emptiness-check algorithm presented here. The
real part of their emptiness check follows the same logic as Couvreur’s algorithm except
it merges SCCs one by one while popping instead of immediately when a loop is found.
It will therefore find an accepting SCC later than the algorithm of Fig. 2, only when this
SCC is popped.

3 Experimentations

In this section we introduce the experimental framework in which we compare the
aforementioned algorithms, and comment on the results. All the algorithms we use
are implemented in the Spot library [4]. The random graph and random LTL formulæ
generation algorithms are comparable to those presented by Tauriainen [21]. Of the 8
emptiness-check algorithms we compare, the first 4 are SCC-based: Cou99, is the al-
gorithm of Fig. 2, Cou99 shy- and Cou99 shy are two variants of Cou99 described in
Section 4.1, and GV04 is the algorithm of Geldenhuys and Valmari [8]. The other 4 are
NDFS algorithms: CVWY90 [2], SE05 [17], Tau03 [19], and Tau03 opt (a variant
of Tau03 presented Section 4.2). In tables, “×” indicates new algorithms that will be
discussed in Section 4.

Because all our tests use TGBAs as input, we had to adjust CVWY90, GV04, and
SE05 to handle transition-based automata (this is straightforward) and because they
will not handle generalized acceptance conditions we also had to degeneralize the input
automata for these 3 algorithms. (Hence the input can be |F| times larger.)

We exercised these algorithms on random graphs and concrete models, following
a pattern similar to that of Geldenhuys and Valmari [8]. First we use them to check
random graphs against LTL formulæ. Then we try them on two real models (the first of
which also comes from Geldenhuys and Valmari [8]).

Table 1 presents our results when checking random graphs with all algorithms in
12 different setups. Each setup differs in how the graph and formulæ are generated.
The random graphs have 1024 states and are generated with 3 different densities d of
transitions (all 1024 states are accessible and the arity of each state follows a normal
distribution with mean 1+1023d and variance 1023d(1−d)). In columns headed “fair”,
transitions in the graph are additionally randomly labeled with 3 acceptance conditions
to mimic weak fairness constraints; in the other columns the acceptance conditions, if
any, will come only from the LTL formulæ.

The values presented for each experiment are means. They where computed by
running each emptiness check on a set of 1300–3000 products generated as follows.

For each setup we consider 15 random graphs. On setups with random formulæ,
each graph is checked against 200 LTL formulæ (converted to TGBAs using the al-
gorithm of Couvreur [3]), yielding 3000 different products. On setups with “Human-
generated formulæ”, each graph is checked against 94 formulæ (and their negation)
selected from the literature [5, 6, 18], yielding 2820 products.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 175

In this first test we discarded all products without accepting run (i.e., keeping those
where algorithms need not visit the whole automaton). For each setup the number of
non-empty products remaining is written in italics on the same line as the density. For
Tau03 we also discarded products with no acceptance conditions at all, because Tau03
is not designed to handle them; the resulting number of products is put in parentheses.

For each check of a non-empty product, we compute the ratios between (1) the
number of distinct states visited and the number of states in the product TGBA, (2) the
number of traversed transitions (a same transition can be accounted more than once) and
the number of transitions of the product TGBA, and (3) the maximal size of the stack
and the number of states of the product. For all algorithms, even if a degeneralization
is required, ratios are computed against the product before any degeneralization. The
table displays the means of each of these three ratios in %.

Our computation of the stack size deserves more explanations as not all algorithms
use similar stacks. For all NDFS algorithms, we simply counted the number of states in
the DFS stack. For Cou99, we counted the number of entries in todo (its DFS stack),
plus the size of rem for each of entry on SCC (this is because succ can be represented
as an iterator of constant size, and if you omit its rem field the size of SCC is bounded
by that of todo). For GV04 we counted all items on stack [8] (this is proportional to
all states that are in the current SCC chain).

The algorithms presented here have a runtime proportional to the number of tran-
sitions explored. So the second value of each triplet allows to compare the runtimes.
Also, for a fixed |F|, the memory consumption of the algorithm is a linear combination
of the number of states explored (first value) and of the size of the stack (second value).

A first remark concerns the results presented by Geldenhuys and Valmari [8], who
compared their implementations of GV04 and CVWY90 using the same procedure (at
the exception of the “fair” columns). We could not reproduce the important contrast they
show between these two algorithms (neither could Hammer et al. [12]). For example,
the 94 formulæ (and their negation) from the literature have been checked against 15
random graphs with a transition probability of 0.001. 2308 of the 2820 generated prod-
ucts are non-empty and GV04 has reported an accepting run after exploring an average
of 7.5% of the states when CVWY90 needs to visit 7.7%. Geldenhuys and Valmari [8]
report a rate of 8.99% for GV04 against 40.21% for CVWY90. These discrepancies are
likely due to different parameters of the random graph generator.

The results for setups with randomly-generated formulæ are comparable to those
with non-random formulæ; if anything, this only shows that random formulæ are not
biased. Similarly, the density d does not seem to affect the algorithms much. Therefore
it is much more interesting to compare the behaviors of the algorithms when acceptance
conditions comes only from the formulæ or when additional acceptance conditions have
been injected into the random graphs. In the former most TGBAs have few acceptance
conditions (e.g., for formulæ from the literature, 40% of TGBAs have 0 or 1 acceptance
condition, 40% have 2, and 20% have between 3 and 6), consequently the difference be-
tween CVWY90, GV04, SE05 (which require degeneralized automata) and the other
algorithms are not striking. However on the “fair” setups, SCC-based algorithms often
outrank NDFS ones. The poor results of Tau03 are mostly due to the logic of the origi-

176 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

Table 1. Comparison of algorithms for random graphs and random and real LTL formulæ

Random formulæ Human-generated formulæ
Algorithm formula’s cond. fair formula’s cond. fair
d = 0.001 2328 (1318) 2188 2308 (2127) 1951
Cou99 6.8 4.5 4.5 18.1 11.1 13.8 7.4 5.1 4.0 16.3 10.6 10.4

⎫⎪⎪⎬
⎪⎪⎭

SC
C

-b
as

ed

× Cou99 shy- 5.4 5.8 7.5 16.5 17.7 25.6 6.5 6.8 7.7 15.2 15.7 19.6

de
ge

ne
ra

li
ze

d × Cou99 shy 5.4 5.8 7.4 15.6 16.7 23.5 6.3 6.5 7.0 14.5 15.0 18.0⎧⎨
⎩

GV04 6.8 4.5 4.5 28.4 17.1 21.6 7.5 5.1 4.0 25.9 16.5 16.1
CVWY90 6.8 7.1 6.4 61.7 73.9 66.6 7.7 7.9 5.2 53.6 65.0 49.3

⎫⎪⎪⎬
⎪⎪⎭ N

D
F

SSE05 6.8 5.7 4.5 59.4 39.1 38.4 7.6 6.8 3.9 50.9 34.7 28.1
Tau03 9.9 16.1 10.8 64.7 295.9 49.6 9.5 17.4 8.1 53.9 265.5 36.2

× Tau03 opt 6.8 5.2 4.5 18.5 27.1 15.4 7.4 8.1 3.8 16.4 31.8 11.3
d = 0.002 2716 (1488) 2695 2569 (2304) 2548
Cou99 4.8 2.2 3.1 17.5 8.5 11.4 4.5 2.6 2.4 13.7 7.4 7.6

× Cou99 shy- 3.4 3.4 6.9 15.4 15.8 30.1 3.6 3.8 6.1 12.5 12.1 19.8
× Cou99 shy 3.4 3.4 6.8 14.3 14.6 26.5 3.4 3.6 5.4 11.9 11.4 17.3

GV04 4.8 2.2 3.1 29.1 14.1 18.5 4.6 2.8 2.4 23.2 12.8 11.9
CVWY90 4.9 3.6 4.5 60.3 58.0 59.5 4.8 4.2 3.4 45.1 43.9 35.6
SE05 4.8 2.8 3.1 56.8 30.2 32.9 4.7 3.5 2.4 42.0 24.3 19.8
Tau03 8.5 12.5 9.1 61.3 265.5 46.5 7.1 12.5 6.3 40.9 185.4 27.3

× Tau03 opt 4.8 2.7 3.1 17.8 23.9 12.7 4.5 4.5 2.4 13.9 26.3 8.3
d = 0.01 2978 (1569) 2979 2766 (2441) 2765
Cou99 3.5 0.7 2.4 12.3 1.9 8.1 2.6 0.7 1.4 7.8 1.5 4.8

× Cou99 shy- 1.7 1.5 11.7 8.2 8.3 66.6 1.6 1.6 10.6 5.6 5.4 39.2
× Cou99 shy 1.6 1.5 10.7 6.9 7.0 53.0 1.4 1.3 7.7 4.8 4.4 29.9

GV04 3.5 0.7 2.4 20.7 3.5 13.2 2.6 0.8 1.4 13.5 2.8 7.7
CVWY90 3.6 1.1 3.3 44.7 15.6 49.8 2.7 1.0 2.1 30.8 13.0 30.9
SE05 3.6 0.9 2.3 39.8 7.0 25.4 2.6 0.9 1.5 26.4 5.7 15.5
Tau03 16.9 20.6 19.7 58.1 221.8 57.8 11.2 14.9 12.7 35.5 140.2 32.3

× Tau03 opt 3.5 1.0 2.3 12.4 11.0 9.6 2.6 1.6 1.4 7.8 10.2 5.7

nal algorithm [19]; informally, it visits all the successors of a state even if it could have
answered after having visited the first.

Experiments based only on random graphs can be misleading. To emphasize the
advantage of TGBAs and SCC-based emptiness checks, we have verified concrete for-
mulæ against concrete models. For this purpose, we have treated one example pre-
sented by Geldenhuys and Valmari [8] modeling an algorithm of election in an arbitrary
network (this model is also experimented by Schwoon and Esparza [17]). Among the
three variations they presented [8], Table 2 collects our results only for the second one,
checked against their 9 formulæ (labeled from A to I). Values for the other, less signifi-
cant variations can be computed using the benchmark scripts distributed with Spot.

Each square corresponds to a given formula. At the top of a square is indicated the
label of the formula as well as the product size (in terms of number of states, transitions
and acceptance conditions). Moreover, a symbol indicates if the product is empty (∅) or
if an accepting run exists (�). For each algorithm we give the number of distinct states

On-the-Fly Emptiness Checks for Generalized Büchi Automata 177

Table 2. Leader election algorithm in an arbitrary network

A(287922, 1221437, 1)� B(287922, 1222805, 1)� C (47887, 134916, 0) ∅

Cou99 365 365 365 365 365 365 47887 134916 115
× Cou99 shy- 365 1356 1358 365 1356 1358 47887 134916 226
× Cou99 shy 365 1356 1358 365 1356 1358 47887 134916 226

GV04 365 365 365 365 365 365 47887 134916 115
CVWY90 17693 91145 902 448 789 787 47887 269831 115
SE05 17693 90803 564 448 449 449 47887 269831 115
Tau03 17702 187964 911 448 1876 787

× Tau03 opt 365 365 366 365 365 366 47887 134916 115
D(289812, 1232783, 1)∅ E (145400, 413351, 0) � F(289812, 1225799, 1)∅

Cou99 289812 1232783 145172 365 365 365 289812 1225799 145172
× Cou99 shy- 289812 1232783 145666 365 706 708 289812 1225799 145666
× Cou99 shy 289812 1232783 145304 365 706 708 289812 1225799 145304

GV04 289812 1232783 145172 365 365 365 289812 1225799 145172
CVWY90 289812 1642497 1145 365 703 704 289812 1635513 1145
SE05 289812 1642497 1145 365 365 366 289812 1635513 1145
Tau03 289812 2875280 1145 289812 2861312 1145

× Tau03 opt 289812 1642497 1145 365 365 366 289812 1635513 1145
G (241808, 687630, 1) � H(728132, 2080615, 4)� I (728132, 2076619, 4) ∅

Cou99 557 557 557 145847 413799 145172 728132 2076619 145172
× Cou99 shy- 557 1087 1089 145847 414229 145303 728132 2076619 145307
× Cou99 shy 557 1087 1089 145847 414229 145257 728132 2076619 145257

GV04 557 557 557 145847 413799 145172 728132 2076619 145172
CVWY90 557 895 896 178543 511930 1388 728132 2489217 1172
SE05 557 557 558 178543 504468 1145 728132 2489217 1172
Tau03 566 1249 905 178551 1604336 1454 728132 6631906 1454

× Tau03 opt 557 557 558 145847 827149 1454 728132 4555287 1454

visited, traversed transitions, and the maximal size of the stack. No measures have been
done for Tau03 on TGBAs without acceptance condition.

The complete reachability graph (i.e., without partial order reduction—the conclu-
sion for the reduced graphs are similar, only with smaller figures) of the model has
been generated from its Promela specification using Spin [13]. Then the corresponding
TGBA has been introduced in Spot and the formulæ translated into TGBAs using also
Spot. Though this is not generally the case, on this example the sizes of the degeneral-
ized product and of the generalized one are identical. This is why Cou99 and GV04
perform equally well. The original implementation of Cou99 [3] would have used far
less stack, but visited twice as many transitions (for instance on formula F the results
for the implementation of Cou99 without rem are 〈289812, 2451598, 1145〉).

These runs confirm the conclusions of Schwoon and Esparza [17]. SE05 always
performs better than CVWY90 (formulæ A, B, E, G and H); and SCC-based algorithms
Cou99 and GV04 perform better than NDFS ones (formulæ A and H).

To conclude our experimentation and focus on multiple acceptance conditions, we
present complementary measures for a simple client-server example where c clients
communicate with s servers via a duplex channel. Any client can send a request, then

178 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

Table 3. Client-server algorithm

3 cl., 1 serv. ∅ 3 cl., 1 serv., fair ∅

Cou99 a 783 2371 511 b 783 2371 511
× Cou99 shy- a 783 2371 710 b 783 2371 710
× Cou99 shy a 783 2371 519 b 783 2371 519

GV04 a 783 2371 511 b’ 2005 6627 550
CVWY90 a 783 2897 237 b’ 2005 7771 251
SE05 a 783 2897 237 b’ 2005 7771 251
Tau03 a 783 5268 238 b 783 10143 264

× Tau03 opt a 783 2897 237 b 783 8200 264
3 cl., 3 serv. � 3 cl., 3 serv., fair ∅

Cou99 c 631 839 159 d 21394 85387 11465
× Cou99 shy- c 631 1153 487 d 21394 85387 17133
× Cou99 shy c 1170 1914 401 d 21394 85387 11469

GV04 c 631 839 159 d’ 77979 339876 11521
CVWY90 c 631 1513 159 d’ 77979 410877 5632
SE05 c 631 1499 159 d’ 77979 410877 5632
Tau03 c 899 3373 191 d 21394 415551 5099

× Tau03 opt c 631 1499 159 d 21394 331587 5060

sizes of products
ref. # st. # tr. # cond.
a 783 2371 1
b 783 2371 5
b’ 2005 6627 1
c 21394 85387 1
d 21394 85387 7
d’ 77979 339876 1

some server will answer that client. The property we check is that if the first client sends
a request it will get an answer. This property is only satisfied for 1 client and is otherwise
false unless weak fairness is assumed. Table 3 shows the measures. One can indeed see
that the property is not satisfied in the case of 3 clients without fairness. The interesting
point is that the additional acceptance conditions used for fairness constraints comes at
no cost for Cou99 while the cost is high for other algorithms. This is obvious on the
cases with 1 client (and can be generalized), however we cannot directly compare the
product sizes for 3 clients as the fair case is empty while the unfair case is not.

4 Heuristics and Optimizations

4.1 Heuristics for SCC-Based Algorithms

The two shy variants of Cou99 measured in these tables use the fact that line c15 in
Fig. 2 does not enforce any order on the successors. Cou99 will simply use the physical
order of the successors in memory, so the succ member of todo items can be efficiently
represented as an iterator. The Cou99 shy- variant orders successors to visit those
that are already in H first before visiting new states. Doing so sounds natural because
it favors merges of SCCs upon pushs. Cou99 shy works similarly, but it considers
the successors of the whole top SCC instead of selecting a successor only among the
successors of the state at the top of todo (in practice todo is merged like SCC).

Because Cou99 shy- and Cou99 shy have to reorder the successors before execut-
ing line c15, the succ field of todo entries cannot be represented as an iterator. To be
fair our measures of the stack size of these two variants also account for the number of
states of each succ field. Also, while Cou99 makes it possible to compute successors
of a state one by one on-the-fly, this is not possible for shy variants who need all suc-

On-the-Fly Emptiness Checks for Generalized Büchi Automata 179

������q7�� 1 ��
��������������q8
2 ��
������q9��

��

3

��

Large subgraph 4

Fig. 4. Problematic case for SE05

•c0

•
c3
��

��
��

��
��

��

•
��

��� t2

•c2
��

��
��

��

•��
���
t1

•
c1

��
��

��
��

•�����
t0

��
��

��
��

•q0 �� �� �� �� �� �� ��

Fig. 5. Computing an accepting run for a TGBA

cessors to reorder them. This difference is apparent in the number of transitions visited:
shy variants compute more transitions than plain Cou99.

These heuristics have a controversial effect on performance. Often, they will indeed
visit less states, but in counterpart they compute more transitions and require more stack
space. On non-empty automata, it is possible to find cases (e.g., bottom left of Table 3)
where the variants visit more states. One issue with measuring on-the-fly emptiness
checks is that they exit as soon as they can: a more complex algorithm may exit before
an efficient one if it luckily picks successors in the right order. (Apart from these two
shy variants, all the other algorithms implemented here visit states in the same DFS
order; this ensures equitable measurements.) This confirms observations of Geldenhuys
and Valmari [8] who tested other heuristics, none of which appeared better either.

4.2 A New Nested DFS Algorithm

Fig. 4 illustrates a case where SE05 could be improved. Arcs are labeled by their depth-
first order. SE05 is defined on Büchi automata with accepting states. In its first DFS, if
either q9 or q7 are accepting, then SE05 can report a violation. If q8 is accepting, the
accepting cycle (q8, q9, q7, q8) cannot be detected by the first DFS: it will only be found
by the second DFS performed after the large subgraph have been explored.

The first DFS could detect an accepting cycle when visiting the third arc if it knew
whether an accepting state exists between q7 and q9. We propose to associate each state
q in the DFS stack with the number W [q] of accepting states in the DFS path from q0 to
q. Therefore checking the existence of an accepting state between q7 and q9, amounts
to testing whether W [q9] − W [q7] > 0.

This technique can be generalized to multiple acceptance conditions using a vector
of counters. We implemented it in Tau03 opt. Its effect can be observed on TGBAs
with a single acceptance condition, where SE05 and Tau03 opt differ only on this last
optimization. For instance see formulæ A and B in Table 2.

Fig. 6 presents Tau03 opt. This new algorithm uses the technique of Tau03 to
handle multiple acceptance conditions, but simplifies its logic and also implements all
the optimizations introduced by SE05.

On Table 1 the reason why Tau03 opt outperforms GV04 in terms of visited states
is that the latter works on a degeneralized automaton (this is confirmed when comparing
Cou99 with Tau03 opt); however the way Tau03 opt nests multiple DFSs to handle
multiple acceptance conditions causes more transitions to be visited than GV04.

180 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

t1 // Let 〈Σ, Q, δ, q0, F〉 be the
t2 // input automaton to check.
t3 H: map of Q �→ 〈color ∈ {cyan, blue},
t4 acc ⊆ F〉
t5 W : map of Q �→ map of F �→ N

t6 weight: map of F �→ N

t7

t8 main():
t9 forall f ∈ F , weight[f] ← 0

t10 return dfs blue(q0)
t11

t12 propagate(s ∈ Q, Acc ⊆ F , t ∈ Q):
t13 〈tcol, tacc〉 ← H [t]
t14 if tcol = cyan ∧ F = (H [s].acc ∪ Acc ∪
t15 tacc ∪ {f ∈ F | weight[f] > W [t][f]})
t16 return ⊥
t17 else if Acc
⊆ tacc
t18 H [t].acc ← tacc ∪ Acc
t19 if dfs red(t, Acc) = ⊥
t20 return ⊥
t21 return �

t23 dfs blue(s ∈ Q):
t24 H [s] ← 〈cyan, ∅〉
t25 W [s] ← weight
t26 forall 〈l, a, t〉 such that 〈s, l, a, t〉 ∈ δ
t27 if t
∈ H
t28 forall f ∈ a
t29 weight[f] ← weight[f] + 1
t30 if dfs blue(t) = ⊥
t31 return ⊥
t32 forall f ∈ a
t33 weight[f] ← weight[f] − 1
t34 if propagate(s, H [s].acc ∪ a, t) = ⊥
t35 return ⊥
t36 H [s].color ← blue
t37 delete W [s]
t38 return �
t39

t40 dfs red(s ∈ Q, Acc ⊆ F):
t41 forall 〈l, a, t〉 such that 〈s, l, a, t〉 ∈ δ
t42 if t ∈ H ∧ propagate(s, Acc, t) = ⊥
t43 return ⊥
t44 return �

Fig. 6. A variation on the emptiness-check algorithm of Tauriainen [19]

5 Computing Accepting Runs for Generalized Automata

When a product space is found not to be empty, it means the system does not verify the
formula it is checked against. An important step is to provide the user with a counterex-
ample, showing an actual faulty execution of the system. Such a counterexample is an
accepting run of the product automata. It can often be produced as a side-effect of the
emptiness check, or afterwards by reusing some data of the check.

In emptiness-check algorithms that work on degeneralized automata, exhibiting an
accepting run if one exists is straightforward. In NDFS-based algorithms (CVWY90,
SE05) that run is the contents of the stack. For GV04, Geldenhuys and Valmari [9]
showed how to use an extra integer per stack state to produce an accepting run.

In this section we present two techniques to extract accepting runs from the data
structures of the algorithms that work on generalized automata: Cou99, Tau03, and
their variants. Both techniques try to compute a short accepting cycle using successive
breadth-first searches (BFSs) and then construct the shortest prefix leading to this cycle.

Accepting runs with Cou99. When Cou99 returns ⊥ it means an accepting SCC is
reachable from q0. Fig. 5 shows this SCC as a dotted circle. A state s can easily be told
to belong to this SCC by checking whether H [s] � SCC.top().root.

Because the SCC is accepting, from any of its states there exists a circuit labeled
by all acceptance conditions. This circuit may cross the same transitions several times.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 181

Table 4. Comparison of algorithms for computing accepting cycles

Random formulæ Human-generated formulæ
Algorithm formula’s cond. fair formula’s cond. fair
d = 0.001 2328 (1318) 2188 2308 (2127) 1951
Cou99 1.9 2.0 17.1 12.7 1.3 1.3 12.3 9.0
Cou99 shy- 1.5 1.5 15.7 11.7 1.0 1.0 11.6 8.4
Cou99 shy 1.5 1.5 15.0 11.0 1.0 1.0 11.0 7.9
Tau03 10.9 9.9 237.6 64.7 8.7 9.5 205.9 53.9
Tau03 opt 2.8 6.8 64.5 18.5 2.2 7.4 53.4 16.4
d = 0.002 2716 (1488) 2695 2569 (2304) 2548
Cou99 1.3 1.5 15.2 10.6 0.9 1.0 9.7 6.6
Cou99 shy- 0.9 0.9 14.0 9.4 0.6 0.7 8.8 5.9
Cou99 shy 0.9 0.9 13.3 8.6 0.6 0.6 8.5 5.6
Tau03 10.8 8.5 225.1 61.3 7.7 7.1 153.5 40.9
Tau03 opt 2.6 4.8 61.9 17.8 1.8 4.5 43.6 13.9
d = 0.01 2978 (1569) 2979 2766 (2441) 2765
Cou99 0.8 1.0 12.5 7.4 0.5 0.6 7.1 4.2
Cou99 shy- 0.4 0.4 9.8 4.9 0.2 0.2 5.5 2.9
Cou99 shy 0.4 0.4 9.2 4.1 0.2 0.2 5.1 2.5
Tau03 18.1 16.9 210.0 58.1 12.6 11.2 139.4 35.5
Tau03 opt 1.7 3.5 43.0 12.4 1.1 2.6 25.6 7.8

Therefore, it is easier to construct an accepting cycle as a series of independent parts that
can each visit a transition at most once, and that each brings new acceptance conditions.

The algorithm thus works as follows. Let F0 be the set of all acceptance conditions.
From a state c0 of the SCC, start a BFS (restricted to the SCC) to construct a path to
the closest transition t0 that has some acceptance conditions F0 so that F0 ∩ F0 �= ∅.
Let F1 = F0 \ F0 be the set of remaining acceptance conditions. Repeat the BFS
from c1 (the output of t0) until a transition t1 is found with acceptance conditions F1
that intersect F1. Iterate until Fn = ∅. Finally use a last BFS to compute the shortest
path from cn back to c0, closing the cycle. This algorithm was presented by Latvala
and Heljanko [15] using the root of the SCC as c0. However the choice of c0 can be
arbitrary because we are in a SCC. Since we know that the transition that caused Cou99
to exit (the one corresponding to the last execution of line c15) is necessarily part of the
acceptance cycle, it seems wiser to use either its source or its destination as c0.

As far as the prefix is concerned, a list of states from q0 to c0 can be easily con-
structed while unwinding the todo stack. However this prefix may not be the shortest
possible prefix leading to the accepting cycle, so a similar idea would be to use a BFS
to construct the shortest path between q0 and any state of the cycle, this path can be
constrained to visit the SCCs in increasing order to limit the scope of the BFS.

Accepting runs with Tau03. Computing accepting runs for generalized NDFS algo-
rithms such as Tau03 or Tau03 opt is more embarrassing, because the resulting data do
not provide structural information as useful as a SCC that would restrict our search.We
know that the last s for which line t34 was executed belongs to an accepting cycle. From

182 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

this state c0 = s we first perform a nested DFS to collect a set of transitions T that (1)
are each on a cycle back to c0, and (2) will, together, cover F .

This collection of cycles could be used to construct an accepting cycle, but since we
are trying to create short runs we decided to connect these collected transitions directly.
Therefore we perform a BFS to compute the shortest path from c0 to a transition t0 of
T , and from there another BFS to find the shortest path to another t1 of T , etc. Closing
the cycle and computing the prefix can be done like for SCC-based algorithms.

Table 4 uses the layout of Table 1. For each setup, the two values are the number of
states visited to construct the cycle part of the accepting run, and the size of the search
space for this cycle. They are expressed as a percentage of the number of states of the
input TGBA. For Cou99 the cycle’s search space is the top SCC, and for Tau03 the
search space contains all states in H . (A state is counted as many times as it is visited.)

As the table shows, the absence of structural information in Tau03 makes the com-
putation more costly, since the search space is larger. For Cou99, the search is contained
in a small subgraph (the top SCC), which justifies the use of BFSs. The “fair” columns
show that with more acceptance conditions in the system the algorithms need to traverse
the search space more times. Surprisingly, the size of the search space for Cou99 shy
and Cou99 shy- is smaller than that of Cou99; this is counter-intuitive because our
heuristics aim at favoring merges of SCCs.

During our experiments we observed that the size of accepting runs produced by
such BFS-based algorithms were significantly smaller than those obtained directly from
the stack of NDFS algorithms. A deeper study of existing algorithms, weighting mini-
mization against computational complexity still has to be done (Gastin et al. [7] provide
some initial clues).

6 Conclusion

In this paper we have stressed the importance of dealing with generalized Büchi au-
tomata in emptiness-check algorithms. Our experiments on existing algorithms showed
that SCC-based ones clearly outrank NDFSs; this completes the results of Schwoon and
Esparza [17], who studied emptiness checks of standard Büchi automata.

Although we have not implemented it, the generalized algorithms presented here
can be used in conjunction with the bit-state hashing technique [13, p. 206] if done care-
fully. The bit-state hashing should not be applied to states that belong to the first-level
DFS: those states need to be perfectly hashed. The application to Tau03 is discussed
by Tauriainen [20]. In SCC-based algorithms the restriction extends to all states that
belong to SCCs in the SCC stack. In other words, bit-state hashing can only be applied
to states from removed MSCCs; this limits its usefulness.

To give NDFS-based algorithms a chance to compete with SCC-based ones, we
introduced (1) a new optimization to detect some accepting cycles earlier, and (2) a
new algorithm (Tau03 opt) that mixes all the optimizations of SE05 with the multiple
acceptance condition capability of Tau03. Although Tau03 opt surpasses other NDFS
algorithms, our experiments still show that SCC-based algorithms perform better.

To complete our TGBA verification framework, we finally introduced algorithms to
extract accepting runs. Here again, our results are in favor of Cou99.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 183

All the algorithms presented and measured here are implemented in our model-
checking library, Spot [4], available at http://spot.lip6.fr. The distribution of
Spot includes the scripts we used for our experiments. They can be adjusted to different
configurations, and can output more statistics than we could present in these pages. For
instance they also verify the reduced state spaces generated from the examples using
Spin’s partial-order reduction [13, p. 192].

References

[1] I. Černá and R. Pelánek. Relating hierarchy of temporal properties to model checking. In
Proc. of MFCS’03, volume 2747 of LNCS, pages 318–327. Springer-Verlag, Aug. 2003.

[2] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithm
for the verification of temporal properties. In Proc. of CAV’90, volume 531 of LNCS, pages
233–242. Springer-Verlag, 1991.

[3] J.-M. Couvreur. On-the-fly verification of temporal logic. In Proc. of FM’99, volume 1708
of LNCS, pages 253–271. Springer-Verlag, Sept. 1999.

[4] A. Duret-Lutz and D. Poitrenaud. Spot: an extensible model checking library using
transition-based generalized Büchi automata. In Proc. of MASCOTS’04, pages 76–83. IEEE
Computer Society, Oct. 2004.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for finite-
state verification. In Proc. of FMSP’98, pages 7–15. ACM, Mar. 1998.

[6] K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Proc. of Concur’00,
volume 1877 of LNCS, pages 153–167. Springer-Verlag, 2000.

[7] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN. In Proc. of
SPIN’04, volume 2989 of LNCS, pages 92–108. Springer-Verlag, 2004.

[8] J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes on-the-fly LTL verification more
efficient. In Proc. of TACAS’04, volume 2988 of LNCS, pages 205–219. Springer-Verlag,
2004.

[9] J. Geldenhuys and A. Valmari. More efficient on-the-fly LTL verification with Tarjan’s
algorithm. Theoretical Computer Science, 2005. To appear: conference paper selected for
journal publication.

[10] D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulæ to Büchi automata. In Proc. of FORTE’02, volume 2529 of LNCS, pages 308–326.
Springer-Verlag, Nov. 2002.

[11] P. Godefroid and G. J. Holzmann. On the verification of temporal properties. In Proc. of
PSTV’93, volume C-16 of IFIP Transactions, pages 109–124. North-Holland, May 1993.

[12] M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly LTL model checking. In Proc. of
TACAS’05, LNCS. Springer-Verlag, Apr. 2005.

[13] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,
2003. ISBN 0-321-22862-6.

[14] G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search. In Proc. of
SPIN’96, volume 32 of DIMACS. AMS, May 1996.

[15] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Informaticae, 43
(1–4):1–19, 2000.

[16] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. of POPL’85, pages 97–107. ACM, 1985.

[17] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In Proc. of
TACAS’05, LNCS. Springer-Verlag, Apr. 2005. To appear.

184 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

[18] F. Somenzi and R. Bloem. Efficient Büchi automata for LTL formulæ. In Proc. of CAV’00,
volume 1855 of LNCS, pages 247–263. Springer-Verlag, 2000.

[19] H. Tauriainen. On translating linear temporal logic into alternating and nondeterministic
automata. Research Report A83, Helsinki University of Technology, Laboratory for Theo-
retical Computer Science, Espoo, Finland, Dec. 2003.

[20] H. Tauriainen. Nested emptiness search for generalized Büchi automata. In Proc. of
ACSD’04, pages 165–174. IEEE Computer Society, June 2004.

[21] H. Tauriainen. A randomized testbench for algorithms translating linear temporal logic
formulæ into Büchi automata. In Proc. of CS&P’99, pages 251–262, Sept. 1999.

[22] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of Banff’94,
volume 1043 of LNCS, pages 238–266. Springer-Verlag, 1996.

Stuttering Congruence for χ

Bas Luttik1,2 and Nikola Trčka1,�

1 Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
2 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

Abstract. The language χ is a modeling and simulation language which
is currently mainly used to analyse and optimize the performance of in-
dustrial systems. To be able to also verify functional properties of a
system using a χ model, part of the language has been given a formal
semantics. Rather than implementing a new model checker for χ, the
philosophy is to provide automatic translations from χ into the specifi-
cation languages of existing state-of-the-art model checkers such as, e.g.,
spin and uppaal.

In this paper, we propose for χ a notion of stuttering congruence,
which is an adaptation of the notion of stuttering equivalence. We prove
that our notion preserves the validity of ctl∗−x formulas, that it pre-
serves deadlock, and that it is indeed a congruence with respect to the
constructs of χ. We also indicate how our notion is to be used to establish
confidence in the correctness of a translation from χ into promela.

1 Introduction

The language χ [19] is a modeling language developed for detecting design flaws
and for optimizing performance of industrial systems (machines, manufacturing
lines, warehouses, factories, etc.) by simulation. Quite a few case studies have
shown the usefulness of χ in an industrial context [12,6,10,21]; simulation turns
out to be a powerful technique for doing performance analysis such as approx-
imating throughput and cycle time. However, for the verification of functional
properties such as, e.g., deadlock freedom, simulation is less suitable. To be able
to also do verification with χ, either verification tools have to be developed
especially for χ, or existing verification tools and techniques have to be made
available for use with χ. Currently, the latter approach is pursued.

The idea is to extend χ with facilities for doing formal verification by estab-
lishing a connection with other verification tools on the level of the specification
language. That is, formal verification of a χ model is done by first translating it
into the input language of some model checker and then performing the actual
verification. Preferably, the translation closely resembles the original, so that
a counterexamples produced by the model checker can be related to the orig-
inal specification. The suitability of this approach was shown in [2,3], where a
� Research supported by the Netherlands Organization for Scientific Research (NWO)

under project number 612.064.205.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 185–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 B. Luttik and N. Trčka

χ model of a turntable machine was translated to promela [14], μcrl [1] and
uppaal timed automata [15], and then verified in spin, cadp [9] and uppaal,
respectively.

In [20], the translation of χ specifications into promela is discussed in more
generality. The translation proceeds in two phases. The first phase, which we
call the preprocessing phase, consists of a transformation of the χ model in
an attempt to eliminate all constructs that do not directly map to promela
constructs. For instance, χ has an explicit construct for parallel composition
which facilitates nested parallelism, whereas promela only allows the (implicit)
parallel composition of sequential promela processes; so in the preprocessing
phase the nested parallelism in the χ model is eliminated. If the result after
the preprocessing phase is a χ model that only has constructions with a direct
translation into promela, then it can be translated to a promela model; this
phase is called the translation phase.

The main difficulty for establishing the correctness of the whole translation
is that usually the two languages do not have a formal semantics in common.
An advantage of the two-phase approach sketched above then is that the pre-
processing phase of the translation, which is usually the most involved part,
takes place entirely within the realm of χ. Therefore, a correctness proof for this
phase only involves the formal semantics of χ. An additional advantage of the
two-phase approach is that the preprocessing phase (and its correctness proof)
is potentially reusable, e.g., when defining a translation from χ to some other
language.

The appropriate correctness criterion for a translation depends of course on
the application. If the purpose is to establish that a χ model is deadlock-free,
then the translation should preserve deadlock. If the purpose is to do ltl/ctl
model checking, then the translation should preserve the validity of ltl/ctl
formulas. In all cases, establishing the desired preservation of properties directly
is usually cumbersome. It is often more convenient to relate the χ model and
its transformation by establishing that they are related according to some be-
havioral equivalence pertaining to the operational semantics of χ. The purpose
of this paper is to define a behavioral equivalence that can be used to establish
the correctness of the preprocessing phase of translations of χ models into the
language of state-based model checkers such as, e.g., spin or uppaal.

Of course, such an equivalence should then preserve the relevant properties;
in our case it will preserve deadlock and the validity of (state-based) ctl∗−x for-
mulas. (We do not require that the validity of formulas containing the next time
operator x be preserved, in order to achieve sufficient flexibility for translations.)
Its intended application for establishing the correctness of syntactic translations
puts some further requirements on the notion. For instance, since the trans-
formations are generally defined in a compositional manner, it is particularly
convenient if the equivalence is a congruence with respect to the syntactic con-
structs of χ. Also, it is desirable that it is defined on the operational semantics
of χ as directly as possible, i.e., it should be bisimulation-like. We propose a
notion of stuttering congruence that meets these requirements. We present it in

Stuttering Congruence for χ 187

the context of the language χ, but since the constructs of χ are fairly standard,
we think that our notion can be of use for other languages too.

The paper is organized as follows. In Section 2 we present the syntax and the
operational semantics of the discrete-event and untimed part of the language χ.
We use the operational semantics to define when a χ-process has a deadlock,
and we give the semantics of ctl∗−x formulas with respect to χ processes. In
Section 3, we propose an adaptation of divergence blind stuttering bisimilarity
[18]. We add to it a termination condition, which takes care of the distinction
between successful and unsuccessful termination present in χ, and a divergence
condition, which is needed both for the preservation of deadlock and preservation
of ctl∗−x. We prove that our version of stuttering bisimilarity is an equivalence
relation and that it indeed preserves deadlock and the validity of (state-based)
ctl∗−x formulas. In Section 4 we argue that stuttering bisimilarity as defined
in Section 3 is not a congruence. So we adapt it further by excluding send and
receive transitions as stuttering steps and by adding a root condition. The re-
sulting notion we call stuttering congruence and we prove that it is indeed a
congruence with respect to the syntactic constructs of the discrete-event, un-
timed part of χ. In Section 5 we briefly indicate how our notion of stuttering
congruence can be used to establish part of the correctness of the translation
proposed in [20]. The paper ends with a conclusion. For detailed proofs of the
results in this paper we refer to the full version [16].

2 The language χ

In this section we present the syntax and operational semantics of χ. We also
define the notion of deadlock and the semantics of ctl∗−x for χ processes. We
use the formalization of χ proposed in [4], but without the time support and
with a few minor differences that we shall mention on the fly.

2.1 Syntax and semantics

There are several predefined data types in χ, but they are not relevant for the
present paper. For our purposes, it is enough to presuppose a set of variables V ,
a set of data values D, a set of data expressions E that includes D and V , and a
set of boolean expressions B that includes the set of truth values {true, false}.

Definition 1. A partial mapping σ : V ⇀ D with a finite domain (denoted
dom(σ)) is called a state. The set of all states is denoted Σ.

To correctly override global variables by local ones of the same name, we use
the function γ : Σ × Σ → Σ defined as:

dom(γ(σ1, σ2)) = dom(σ1) ∪ dom(σ2)

γ(σ1, σ2)(x) =
{

σ1(x), if x ∈ dom(σ1)
σ2(x), if x ∈ dom(σ2)\dom(σ1).

188 B. Luttik and N. Trčka

We assume that σ also extends to data expressions (σ : E ⇀ D) and to
boolean expressions (σ : B → {true, false}). In the latter case we require σ to
be total.

We now give the syntax of χ. The set of atomic processes A, and the set of
all χ process terms P , are generated by the following grammar:

a ::= ε | δ | skip | x := e | m!e | m?x
p ::= a | b :→ p | p ; p | p � p | p∗ | p ‖ p | |[s | p]| | ∂(p) .

Here a ∈ A, p ∈ P , x ∈ V , e ∈ E, b ∈ B, s ∈ Σ and m ∈ M , where M is a set
of channel names.

Elements of the set C = P × Σ we call configurations. They represent pro-
cesses together with their context. If c = 〈p, σ〉, then σ is the state of c. The
semantics of χ is given in terms of configurations.

We make a distinction between successful and unsuccessful termination. The
statement c↓ denotes that c ∈ C successfully terminates. The statement c

a−→ c′

denotes that c ∈ C can execute the action a and transform into the configuration
c′. The set of actions that can be performed (denoted A) consists of the internal
action τ , the assignment action aa(x, d), the send action sa(m, d), the receive
action ra(m, d) and the communication action ca(m, d), where x ∈ V , m ∈ M
and d ∈ D.

Atomic processes We explain each atomic process informally; the operational
rules are given in Table 1.

The constant δ stands for the deadlock process. It cannot execute an action
nor terminate successfully. The empty process ε cannot do an action either, but
it is considered successfully terminated. The skip process performs the internal
action τ (and terminates successfully). The assignment process x := e assigns to
x the value of the expression e according to the current state. The send process
m!e outputs the value of e (in the current state) along channel m. The receive
process m?x inputs a value along channel m and assigns it to x.

Table 1. Operational semantics for atomic processes

〈ε, σ〉↓ 1
〈skip, σ〉 τ−→ 〈ε, σ〉

2
σ(e) = d

〈x := e, σ〉 aa(x,d)−−−−−→ 〈ε, γ({x �→ d}, σ)〉
3

σ(e) = d

〈m!e, σ〉 sa(m,d)−−−−−→ 〈ε, σ〉
4

〈m?x, σ〉 ra(m,d)−−−−−→ 〈ε, γ({x �→ d}, σ)〉
5

Compound processes Here we give an informal explanation for each of the seven
operators; the operational rules are given in Table 2.

The guarded process b :→ p behaves as p when the value of the guard b ∈ B
is true (in the current state). The sequential composition p ; q behaves as p

Stuttering Congruence for χ 189

followed by the process q. The alternative composition p � q stands for a non-
deterministic choice between p and q. The process p∗ behaves as p, executed
zero (successful termination), or more times. The parallel composition operator
‖ executes p and q concurrently in an interleaved fashion. In addition, if one of
the processes can execute a send action and the other one can execute a receive
action on the same channel, then they can also communicate, i.e. p ‖ q can also
execute the communication action on this channel. The scope operator is used
for declarations of local variables. The process |[s | p]| behaves as p in a local state
s. In contrast to [4] and [19], channel declarations are not allowed, i.e. channels
are global. Finally, the encapsulation operator ∂ disables all send and receive
actions of a process. This is slightly more restrictive than in [4] and [19] where
∂ is parameterized by a set of actions that should be blocked, but corresponds
to current practice.

Table 2. Operational semantics for composed processes

σ(b) = true , 〈p, σ〉↓
〈b :→ p, σ〉↓ 6

σ(b) = true , 〈p, σ〉 a−→ 〈p′, σ′〉
〈b :→ p, σ〉 a−→ 〈p′, σ′〉

7

〈p, σ〉↓, 〈q, σ〉↓
〈p ; q, σ〉↓ 8

〈p, σ〉↓, 〈q, σ〉 a−→ 〈q′, σ′〉
〈p ; q, σ〉 a−→ 〈q′, σ′〉

9
〈p, σ〉 a−→ 〈p′, σ′〉

〈p ; q, σ〉 a−→ 〈p′ ; q, σ′〉
10

〈p, σ〉↓
〈p � q, σ〉↓, 〈q � p, σ〉↓ 11

〈p, σ〉 a−→ 〈p′, σ′〉
〈p � q, σ〉 a−→ 〈p′, σ′〉, 〈q � p, σ〉 a−→ 〈p′, σ′〉

12

〈p∗, σ〉↓ 13
〈p, σ〉 a−→ 〈p′, σ′〉

〈p∗, σ〉 a−→ 〈p′ ; p∗, σ′〉
14

〈p, σ〉↓, 〈q, σ〉↓
〈p ‖ q, σ〉↓, 〈q ‖ p, σ〉↓ 15

〈p, σ〉 a−→ 〈p′, σ′〉
〈p ‖ q, σ〉 a−→ 〈p′ ‖ q, σ′〉, 〈q ‖ p, σ〉 a−→ 〈q ‖ p′, σ′〉

16

〈p, σ〉 sa(m,d)−−−−−→ 〈p′, σ〉, 〈q, σ〉 ra(m,d)−−−−−→ 〈q′, σ′〉
〈p ‖ q, σ〉 ca(m,d)−−−−−→ 〈p′ ‖ q′, σ′〉, 〈q ‖ p, σ〉 ca(m,d)−−−−−→ 〈q′ ‖ p′, σ′〉

17

〈p, γ(s, σ)〉↓
〈|[s | p]|, σ〉↓ 18

〈p, γ(s, σ)〉 a−→ 〈p′, σ′〉
〈|[s | p]|, σ〉 a−→ 〈|[σ′ � dom(s) | p′]|, γ(σ, σ′ � dom(σ)\dom(s))〉,

19

〈p, σ〉↓
〈∂(p), σ〉↓ 20

〈p, σ〉 a−→ 〈p′, σ′〉, a
∈ {sa(m,d), ra(m,d)}
〈∂(p), σ〉 a−→ 〈∂(p′), σ′〉

21

2.2 Deadlock and CTL∗
−x in χ

First we give some abbreviations: c −→ c′ denotes that there exists a ∈ A such
that c

a−→ c′; c �−→ denotes that there does not exist a c′ such that c −→ c′.
Now we define when a configuration has a deadlock.

190 B. Luttik and N. Trčka

Definition 2. A configuration c has a deadlock iff there exist c0, . . . , cn ∈ C
such that

c0 =c, c0 −→ · · · −→ cn, cn �−→ and cn �↓.

Next, we recall the formulas of the logic ctl∗−x [7] and give their semantics.
Let AP be a set that we call the set of atomic propositions.

Definition 3. The formulas of the logic ctl∗−x are defined as follows:

1. every atomic proposition is a state formula;
2. if ϕ is a state formula, then ¬ϕ is a state formula;
3. if ϕ1 and ϕ2 are state formulas, then ϕ1 ∧ ϕ2 is a state formula;
4. if ψ is a path formula, then ∃ψ is a state formula;
5. if ϕ is a state formula, then ϕ is a path formula;
6. if ψ is a path formula, then ¬ψ is a path formula;
7. if ψ1 and ψ2 are path formulas, then ψ1 ∧ ψ2 is a path formula;
8. if ψ1 and ψ2 are path formulas, then ψ1Uψ2 is a path formula.

For the satisfaction relation we need the notion of a path.

Definition 4. A path (from a configuration c0) is an infinite sequence of con-
figurations c0, c1, c2, . . . such that either:

– c0 −→ c1 −→ c2 −→ · · · or
– c0 −→ · · · −→ cn, cn �−→ and ci+1 = ci for all i ≥ n.

If π is a path c0, c1, c2, . . . then πi denotes the path ci, ci+1, ci+2,

We require that two configurations with the same state satisfy the same
atomic propositions by assuming that for each state σ ∈ Σ there is a mapping
valσ : AP → {true, false}.

Definition 5. We simultaneously define the satisfaction of a state formula ϕ
by a configuration c (notation: c � ϕ) and the satisfaction of a path formula ψ
by a path π (notation: π � ψ) as follows:

1. c � α ∈ AP iff valc(α) = true

2. c � ¬ϕ iff c � ϕ,
3. c � ϕ1 ∧ ϕ2 iff c � ϕ1 and c � ϕ2,
4. π � ϕ iff c � ϕ where c is the first configuration in path π,
5. c � ∃ψ iff there is a path π from c such that π � ψ,
6. π � ¬ψ iff π � ψ,
7. π � ψ1 ∧ ψ2 iff π � ψ1 and π � ψ2,
8. π � ψ1Uψ2 iff there exists j ≥ 0 such that πj � ψ2 and πi � ψ1 for all i < j.

Stuttering Congruence for χ 191

3 Stuttering Bisimilarity

Stuttering equivalence was originally proposed and proved to preserve the va-
lidity of ctl∗−x formulas by Browne, Clarke and Grumberg [5]. They define the
notion on maximal paths associated with total Kripke structures, i.e., Kripke
structures without deadlocked states. De Nicola and Vaandrager [18] drop the re-
quirement that Kripke structures are total, and provide a definition of stuttering
equivalence that proceeds via a notion of divergence blind stuttering bisimilarity
defined on the Kripke structures themselves. Groote and Vaandrager [13] give
an efficient algorithm for deciding this equivalence. For alternative definitions of
stuttering equivalence see also [8,17].

We take divergence blind stuttering bisimilarity of [18] as a starting point,
and add to it two conditions:

1. a termination condition that ensures a proper handling of the distinction
between successful and unsuccessful termination as it is present in χ; and

2. a divergence condition similar to one that appears in [11] to ensure the
preservation of deadlock and the preservation of ctl∗−x.

Remark 1. To obtain a notion that coincides with the notion of [5], instead of
adding a divergence condition, de Nicola and Vaandrager define a divergence
sensitive version of stuttering bisimilarity by extending Kripke structures with
a fresh state that serves as a sink-state for deadlocked or divergent states. This
approach is not suitable in our case, because it identifies deadlock and livelock,
and because it is in conflict with our requirement, mentioned in the introduction,
that the equivalence is defined directly on the operational semantics of χ.

Definition 6. A symmetric relation R ⊆ C×C is a stuttering bisimulation iff,
for all (c, d) ∈ R, c and d have the same state and:

1. if c↓, then there exist d0, . . . , dn ∈ C such that

d0 =d, d0 −→ · · · −→ dn, dn↓ and cRdi for all i ≤ n,

2. if c −→ c′ for some c′ ∈ C, then there exist d0, . . . , dn ∈ C such that

d0 =d, d0 −→ · · · −→ dn, cRdi for all i ≤ n − 1, and c′Rdn,

3. if there exists an infinite sequence c0, c1, c2, . . . ∈ C such that

c0 =c, c0 −→ c1 −→ c2 −→ · · · and ciRd for all i ≥ 0,

then there exist d′ ∈ C and j > 0 such that

d −→ d′ and cjRd′.

We refer to condition 1 as the termination condition, to condition 2 as the
transfer condition, and to condition 3 as the divergence condition.

192 B. Luttik and N. Trčka

A non-empty and finite sequence of configurations we call a block. If B =
c0, . . . , cn and C = d0, . . . , dm are blocks and R is a stuttering bisimulation, we
write BRC when c0Rd0, cnRdm and when, for all i < n, j < m, ciRdj implies
ci+1Rdj or ciRdj+1. Note that, BRC implies CRB.

Definition 7. Let R be a stuttering bisimulation. Two sequences of configura-
tions Ω1 and Ω2 are R-corresponding if:

– they are both finite and can be partitioned as Ω1 = B0, . . . , BK and Ω2 =
C0, . . . , CK where BkRCk for all 0 ≤ k ≤ K; or

– they are both infinite and can be partitioned as Ω1 = B0, B1, B2 . . . and
Ω2 = C0, C1, C2, . . . where BkRCk for all k ≥ 0.

It is clear that R-correspondence is a symmetric relation. Also note that,
if c0, . . . , cn and d0, . . . , dm (similarly for the infinite case) are R-corresponding
then for all i ≤ n there exists j ≤ m and for all j ≤ m there exists i ≤ n such
that ciRdj .

We now present some properties of a stuttering bisimulation R.

Lemma 1. If cRd, then for every sequence of configurations c0, . . . , cn such that
c0 = c and c0 −→ · · · −→ cn there exists an R-corresponding sequence d0, . . . , dm

such that d0 =d and d0 −→ · · · −→ dm.

Proof. By induction on n. ��

Lemma 2. If cRd, then

a. for every sequence of configurations c0, . . . , cn such that c0 =c, c0 −→ · · · −→ cn

and cn↓ there exists an R-corresponding sequence d0, . . . , dm such that

d0 =d, d0 −→ · · · −→ dm and dm↓; and

b. for every sequence of configurations c0, . . . , cn such that c0 =c, c0 −→ · · · −→ cn

and cn �−→ there exists an R-corresponding sequence d0, . . . , dm such that

d0 =d, d0 −→ · · · −→ dm, and dm �−→.

Proof. For both cases, use Lemma 1 to obtain a sequence d0, . . . , dl that R-
corresponds to c0, . . . , cn and then extend it to d0, . . . , dl, . . . , dm by using Defi-
nition 6. (Use the termination condition for the first case, and the transfer and
the divergence condition for the second case.) ��

Lemma 3. If cRd, then for every infinite sequence of configurations c0, c1, c2, . . .
such that c0 = c and c0 −→ c1 −→ c2 −→ · · · , there exists an R-corresponding
sequence of configurations d0, d1, d2, . . . such that d0 =d, d0 −→ d1 −→ d2 −→ · · · .

Proof. Construct infinite sequences of blocks C0, C1, C2, . . . and D0, D1, D2, . . .
such that CkRDk for all k ≥ 0, with C0, C1, C2, . . . a partitioning of c0, c1, c2, . . .
and D0, D1, D2, . . . a partitioning of d0, d1, d2, . . . such that d0 = d and d0 −→
d1 −→ d2 −→ · · · . The construction is by induction on k, where each step delivers
the blocks Ck and Dk and the first configurations of Ck+1 and Dk+1. ��

Stuttering Congruence for χ 193

Definition 8. Two configurations c and d are stuttering bisimilar, denoted c ∼st

d, if there exists a stuttering bisimulation R such that cRd.

We now prove that stuttering bisimilarity is an equivalence relation. The
usual way to prove that a bisimulation-like equivalence ∼ is transitive, is to
suppose that c ∼ d and d ∼ e are witnessed by bisimulation relations R1 and R2
respectively, and then show that R1◦R2 is again a bisimulation relation. However,
this method fails here, due to the nature of the divergence condition. We prove
transitivity by showing that the transitive closure of a stuttering bisimulation is
a stuttering bisimulation.

Lemma 4. If R is a stuttering bisimulation, then so is R+ =
⋃

n∈ω Rn.

Proof. The transitive closure of any symmetric relation is symmetric so R+ is
symmetric. Prove first that for all n and all (c, d) ∈ Rn, c and d have the same
state, (c, d) satisfies the termination and transfer condition and if c0 = c, c0 −→
c1 −→ c2 −→ · · · then there exist d0, d1, d2, . . . ∈ C such that d0 = d, d0 −→
d1 −→ d2 −→ · · · and for all j ≥ 0 there is i ≥ 0 such that ci Rn dj . Since
R+ =

⋃
n∈ω Rn, it now follows immediately that R+ satisfies the termination

and transfer condition and that, for all (c, d) ∈ R+, c and d have the same
state. Prove that R+ also satisfies the divergence condition by using that R+ is
symmetric and transitive. ��
Theorem 1. Stuttering bisimilarity on configurations is an equivalence relation.

Proof. The set {(c, c) | c ∈ C} is clearly a stuttering bisimulation, so ∼st is
reflexive. Furthermore, that ∼st is symmetric follows directly from the required
symmetry of a stuttering bisimulation. It remains to prove transitivity.

Suppose c ∼st d and d ∼st e. Then, there exist stuttering bisimulations R1
and R2 such that cR1 d and dR2 e. Let R = R1 ∪R2. It is not hard to show that
R is also a stuttering bisimulation. By Lemma 4, so is R+. Since R ⊆ R+, cR+ d
and dR+ e. By the transitivity of R+, we conclude cR+ e, and hence c ∼st e. ��
Corollary 1. ∼st-correspondence is an equivalence relation.

In the remainder of this section we establish that stuttering bisimilarity pre-
serves deadlock and the validity of ctl∗−x formulas.

Theorem 2. If c ∼st d then c has a deadlock iff d has a deadlock.

Proof. Suppose c has a deadlock (when d has a deadlock the proof is similar).
This means that there exist c0, . . . , cn ∈ C such that

c0 =c, c0 −→ · · · −→ cn, cn �−→ and cn �↓.

By Lemma 2b, there exist d0, . . . , dm ∈ C such that

d0 =d, d0 −→ · · · −→ dm, dm �−→ and cnRdm.

Suppose dm↓. Then, there exist c0
n, . . . , ck

n ∈ C such that

c0
n −→ · · · −→ ck

n, and ck
n↓.

This is however not possible (even when k = 0) because cn �−→ and cn �↓. ��

194 B. Luttik and N. Trčka

The following lemma plays a crucial role in the proof that stuttering bisimi-
larity preserves the validity of ctl∗−x formulas.

Lemma 5. If c ∼st d, then for every path from c there is a ∼st-corresponding
path from d.

Proof. Let c0, c1, c2, . . . be a path from c. There are two cases:

– if c0 −→ · · · −→ cn, cn �−→ and ci+1 = ci for all i ≥ n, then the statement follows
directly from Lemma 2b;

– if c0 −→ c1 −→ c2 −→ · · · , then the statement follows directly from Lemma 3.
��

Now we present the main theorem.

Theorem 3. If c ∼st d then for all ctl∗−x formulas ϕ, c � ϕ iff d � ϕ.

Proof. The proof is a straightforward adaptation of the one of Theorem 3.2.3 in
[18], replacing the calls to Lemma 3.2.2 in that proof by calls to Lemma 5. ��

4 Stuttering Congruence

First we extend the definition of stuttering bisimilarity to the level of χ processes.

Definition 9. Two processes p and q are stuttering bisimilar, denoted p ∼st q,
if for all σ ∈ Σ, 〈p, σ〉 ∼st 〈q, σ〉.

To see that stuttering bisimilarity is not a congruence on χ processes, consider
the following example.

Example 1. Note that the execution of a send action does not affect the state
(see Rule 4 in Table 1), so a!0 ∼st b!0. However, a!0 ‖ a?x �∼st b!0 ‖ a?x, for the
process on the left can do a communication action and change the value of x,
whereas the process on the right cannot. It follows that ∼st is not a congruence
for parallel composition. Also note that a!0 ∼st skip, whereas ∂(a!0) �∼st ∂(skip)
(∂(a!0) is deadlocked; ∂(skip) does a τ -transition and terminates successfully).
So ∼st is not a congruence for encapsulation either.

The example shows that for an equivalence on χ processes to be a congru-
ence, it should not be completely action insensitive. We adapt the definition of
stuttering bisimilarity in such a way that it distinguishes the send and receive
actions from the other actions.

Let Acom be the set of all send and receive actions. Let c ↪→ c′ mean that
there is an a ∈ A\Acom such that c

a−→ c′. Furthermore, let c
(a)−−→ c′ denote

c
a−→ c′ when a ∈ Acom, and c ↪→ c′ when a ∈ A\Acom.

Definition 10. A symmetric relation R ⊆ C × C is an interaction sensitive
stuttering bisimulation iff, for all (c, d) ∈ R, c and d have the same state and:

Stuttering Congruence for χ 195

1. if c↓, then there exist d0, . . . , dn ∈ C such that

d0 =d, d0 ↪→ · · · ↪→ dn, dn↓ and cRdi for all i ≤ n,

2. if c
a−→ c′, then there exist d0, . . . , dn ∈ C such that

d0 =d, d0 ↪→ · · · ↪→ dn−1
(a)−−→ dn, cRdi for all i ≤ n − 1, and c′Rdn

(we allow n to be 0 only if a ∈ A\Acom and c and c′ have the same state),
3. if there exists an infinite sequence c0, c1, c2, . . . ∈ C such that

c0 =c, c0 ↪→ c1 ↪→ c2 ↪→ · · · and ciRd for all i ≥ 0,

then there exist d′ ∈ C and j > 0 such that d ↪→ d′ and cjRd′.

Two configurations c and d are interaction sensitive stuttering bisimilar, denoted
c ∼isst d, if there exists an interaction sensitive stuttering bisimulation R such
that cRd.

Theorem 4. Interaction sensitive stuttering bisimilarity is an equivalence.

Proof. Reflexivity and symmetry are proved as before. For the transitivity proof,
it can be easily seen that Lemmas 1, 2a, and 3 hold when −→ is replaced by ↪→.
Then, the proof goes similarly as for Theorem 1. ��

To show that all the previous results hold, we prove the following theorem.

Theorem 5. Interaction sensitive stuttering bisimilarity is a stuttering bisimu-
lation.

Proof. Suppose that c ∼isst d. To show that the termination and transfer con-
dition hold is trivial since c ↪→ c′ implies c −→ c′ for all c, c′ ∈ C. We verify the
divergence condition in detail.

Suppose c0 −→ c1 −→ c2 −→ · · · and ci ∼isst d for all i ≥ 0.
If every arrow in this sequence is a ’↪→’ arrow, we have that there exist d′

and i > 0 such that d ↪→ d′ and ci ∼isst d′. In this case we are done because
d ↪→ d′ implies d −→ d′.

Suppose now c0 ↪→ · · · ↪→ cn
a−→ cn+1 and a ∈ Acom.

Since cn ∼isst d, there exist d0, . . . , dm ∈ C such that d0 =d,

d0 ↪→ · · · ↪→ dm−1
a−→ dm, cn ∼isst di for all i ≤ m − 1 and cn+1 ∼isst dm.

Because a ∈ Acom, m > 0. Then, cn ∼isst d1 or cn+1 ∼isst d1. If cn ∼isst d1 and
n = 0 then, since c0 ∼isst d0, c1 ∼isst d0 and ∼isst is symmetric and transitive,
we conclude that c1 ∼isst d1. ��

The following example shows that interaction sensitive stuttering bisimula-
tion is still not a congruence.

196 B. Luttik and N. Trčka

Example 2. Note that skip ∼isst skip and δ ∼isst skip ; δ. However, skip � δ �∼isst

skip � skip ; δ, for the right-hand side process can execute skip and then dead-
lock, while the left-hand side process never deadlocks. So, interaction sensitive
stuttering bisimulation is not a congruence for alternative composition.

Both the problem illustrated in the above example, and its solution are well
known; we need to add a root condition.

Definition 11. Two configurations c and d are rooted interaction sensitive stut-
tering bisimilar (notation: c ∼riss d) iff

1. c↓ iff d↓
2. if c

a−→ c′, then there exists d′ ∈ C such that d
(a)−−→ d′ and c′ ∼isst d′,

3. if d
a−→ d′, then there exists c′ ∈ C such that c

(a)−−→ c′ and c′ ∼isst d′,

It is clear that c ∼riss d implies c ∼isst d. Also, that rooted interaction
sensitive stuttering bisimilarity is an equivalence relation is easily proved. The
notion induces a congruence on χ processes.

Definition 12. Two processes p and q are stuttering congruent, denoted p ∼=st

q, if 〈p, σ〉 ∼riss 〈q, σ〉 for all σ ∈ Σ.

Clearly, ∼=st is an equivalence relation and p ∼=st q implies p ∼st q. We show
that it is a congruence for the constructs of χ.

Theorem 6. For all p, q, p, q ∈ P , if p ∼=st q and p ∼=st q, then:

1. b :→ p ∼=st b :→ q,
2. p ; p ∼=st q ; q,
3. p � p ∼=st q � q,
4. p∗ ∼=st q∗,
5. p ‖ p ∼=st q ‖ q,
6. |[s | p]| ∼=st |[s | q]| for all states s,
7. ∂(p) ∼=st ∂(q).

5 Application

In [20], the translation from χ to promela is discussed in detail. It is pointed
out that the translation is straightforward for some constructs of χ (e.g., for
assignments and alternative composition), since they also exist in promela.
However, the translation of guards, nested scopes and nested parallelism is less
straightforward, since they have no direct equivalents in promela. In the prepro-
cessing phase of the proposed translation, nested scopes and certain occurrences
of nested parallelism are eliminated, and guards are pushed down to the level of
atomic processes. In this section we indicate how this preprocessing phase can
be proved correct using the notion of stuttering congruence.

Stuttering Congruence for χ 197

To be able to state some of the results pertaining to the scope operator, we
first need to define the notion of free occurrence of a variable x in a process p.
An occurrence of a variable x in a process p is called free if there is no subprocess
of p of the form |[s | q]| with x ∈ dom(s) and q containing the occurrence of x.
We denote by free(p) the set of all variables with a free occurrence in p.

The following theorem explains how scope operators can be pulled out.

Theorem 7. Let p, q ∈ P , let s, s1, s2 ∈ Σ and let b ∈ B such that dom(b) ∩
dom(s) = free(p) ∩ dom(s) = free(q) ∩ dom(s) = ∅. Then:

1. b :→ |[s | p]| ∼=st |[s | b :→ p]| ,
2. |[s | p]| ; q ∼=st |[s | p ; q]|,
3. p ; |[s | q]| ∼=st |[s | p ; q]|,
4. |[s | p]| � q ∼=st |[s | p � q]|,
5. |[s | p]| ‖ q ∼=st |[s | p ‖ q]|,
6. |[s1 | |[s2 | p]|]| ∼=st |[γ(s1, s2) | p]| ,
7. |[s | ∂(p)]| ∼=st ∂(|[s | p]|).

In case of a repetition, we need to be careful: |[s | p]|∗ is not stuttering con-
gruent with |[s | p∗]|, for in |[s | p]|∗ the state s is applied before each repetition
of p, while in |[s | p∗]| it is only applied before the first repetition. The solution
is to incorporate in |[s | p∗]| the effect of the state s after each repetition of p
by a sequential composition of assignments of the form x := s(x), one for ev-
ery x ∈ dom(s). That is, if dom(s) = {x1, . . . , xn}, then we propose to replace
|[s | p]|∗ by |[s | (p ; x1 := s(x1) ; . . . ; xn := s(xn))∗]|. Note, however, that this only
works if p does not have the option to terminate immediately (i.e., if 〈p, σ〉�↓ for
all states σ). For, if 〈p, γ(s, σ)〉↓, then 〈|[s | (p ; x := c)∗]|, σ〉 can do the action
aa(x, c), whereas 〈|[s | p]|∗, σ〉 cannot do the same action (unless p can do it), and
thus the root condition is violated.

Let P be the set of processes that do not contain ε and in which every
occurrence of the star operator is immediately followed by the sequential com-
position operator. Then 〈p, σ〉�↓ for all σ ∈ Σ and all p ∈ P , as is easily proved
by structural induction on p.

Theorem 8. Let p ∈ P , let x ∈ V , and let c ∈ C. If s is a state such that
dom(s) = {x1, . . . , xn}, then

|[s | p]|∗ ∼=st |[s | (p ; x1 := s(x1) ; · · · ; xn := s(xn))∗]|.

The next theorem explains how guards can be distributed over all operators
except parallel composition.

Theorem 9. Let p, q ∈ P , let s ∈ Σ and let b, b1, b2 ∈ B, then:

1. true :→ p ∼=st p
2. b1 :→ b2 :→ p ∼=st (b1 ∧ b2) :→ p
3. b :→ (p ; q) ∼=st (b :→ p) ; q
4. b :→ (p � q) ∼=st (b :→ p) � (b :→ q)

198 B. Luttik and N. Trčka

5. b :→ p∗ ∼=st (b :→ p) ; p∗ � b :→ ε
6. b :→ ∂(p) ∼=st ∂(b :→ p)

Note that the process b :→ (p‖q) is not stuttering congruent with the process
(b :→ p) ‖ (b :→ q). For suppose the processes are executed in a state in which b
is true and an action from p changes the state in such a way that the value of b
becomes false. Then the process b :→ (p ‖ q) proceeds as p′ ‖ q and the process
(b :→p)‖ (b :→q) as p′ ‖ (b :→q), and in the latter process the option q is blocked.

We finish this section with a theorem that allows us to simplify nested par-
allelism in the context of sequential composition. For similar reasons as before
it is formulated in terms of the set P .

Theorem 10. Let p, q, r ∈ P , and let w ∈ V such that w �∈ free(p) ∪ free(q) ∪
free(r) . Then,

1. (p ‖ q) ; r ∼=st |[w �→ 0 | p ; w := w + 1 ‖ q ; w := w + 1 ‖ (w = 2) :→ r]|,
2. p ; (q ‖ r) ∼=st |[w �→ 0 | p ; w := w + 1 ‖ (w = 1) :→ q ‖ (w = 1) :→ r]|.

6 Conclusion

In this paper we have proposed the notion of stuttering congruence for the mod-
eling and simulation language χ. We have proved that if two χ processes are
stuttering congruent, then, with respect to any state σ, they satisfy the same
ctl∗−x formulas and either both have a deadlock or neither of them. Stuttering
congruence is a behavioral congruence for the constructs of discrete-event, un-
timed part of χ, i.e., it is defined directly on the operational semantics of the
language and it is a congruence for its constructions. Therefore, it is suitable for
establishing the correctness of syntactic transformations on χ models.

We have illustrated the use of stuttering congruence in correctness proofs of
syntactic transformations by indicating how (a part of) the preprocessing phase
of the translation from χ to promela can be proved correct. It is explained
in detail in [20] that if a χ model satisfies a few general restrictions, then the
preprocessing phase yields a χ model that can be straightforwardly translated
into promela. The resulting promela specification can then be verified with
spin. Incidentally, note that for Theorems 8 and 10 it is essential that stuttering
congruence allows ‘stuttering’; the transformations in these theorems do not
preserve the validity of full ctl∗.

Currently, a translation from χ to uppaal is being developed, and it also
involves a preprocessing phase. We think that stuttering congruence will be
suitable for proving the correctness of that preprocessing phase too.

As future work, we mention the extension of the results obtained in this paper
to full timed χ [19], proving the preservation of the validity of a timed variant
of ctl∗−x.

Acknowledgements. The authors would like to thank Jos Baeten for commenting
on a draft of this paper, and the members of the TIPSy project for discussions.

Stuttering Congruence for χ 199

References

1. S. Blom, W. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de
Pol. μCRL: A toolset for analysing algebraic specifications. In Proceedings of
CAV2001, LNCS 2102, pages 250–254, 2001.

2. E. Bortnik, N. Trčka, A. J. Wijs, S. P. Luttik, J. M. van de Mortel-Fronczak,
J. C. M. Baeten, W. J. Fokkink, and J. E. Rooda. Analyzing a χ model of a
turntable system using spin, CADP and uppaal. Journal of Logic and Algebraic
Programming, 2005. To appear.

3. V. Bos and J. J. T. Kleijn. Automatic verification of a manufacturing system.
Robotics and Computer Integrated Manufacturing, 17:185–198, 2001.

4. V. Bos and J.J.T. Klein. Formal specification and analysis of industrial systems.
PhD thesis, Eindhoven University of Technology, 2002.

5. M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theor. Comput. Sci., 59:115–131, 1988.

6. E.J.J. van Campen. Design of a multi-process multi-product wafer fab. PhD thesis,
Eindhoven University of Technology, 2000.

7. E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT Press, Cam-
bridge, Massachusetts, 1999.

8. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, 1996.

9. J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighire-
anu. CADP - a protocol validation and verification toolbox. In Proceedings 8th of
CAV’96, LNCS 1102, pages 437–440, 1996.

10. J.J.H. Fey. Design of a fruit juice blending and packaging plant. PhD thesis,
Eindhoven University of Technology, 2000.

11. R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to
branching time logic model checking. Information and Computation, 150(2):132–
152, 1999.

12. J. A. Govaarts. Efficiency in a lean assembly line: a case study at NedCar born.
Master Thesis, 1997.

13. J. F. Groote and F. W. Vaandrager. An efficient algorithm for branching bisim-
ulation and stuttering equivalence. In M. S. Paterson, editor, Proceedings of 17th
ICALP, LNCS 443, pages 626–638, 1990.

14. G.J. Holzmann. The SPIN model checker. Addison-Wesley, 2003.
15. K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int. Journal on

Software Tools for Technology Transfer, 1(1-2):134–152, 1997.
16. B. Luttik and N. Trčka. Stuttering congruence for χ. Computer Science Report

05/13, Eindhoven University of Technology, 2005.
17. K. S. Namjoshi. A simple characterization of stuttering bisimulation. In Proceedings

of 17th FST & TCS, LNCS 1346, pages 284–296, 1997.
18. R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation. J.

ACM, 42(2):458–487, 1995.
19. R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E. Rooda. Syn-

tax and semantics of timed Chi. Computer Science Report 05/09, Eindhoven
University of Technology, 2005.

20. N. Trčka. Verifying χ models of industrial systems with Spin. Computer Science
Report 05/12, Eindhoven University of Technology, 2005.

21. D. A. van Beek, A. van der Ham, and J. E. Rooda. Modelling and control of
process industry batch production systems. In Proceedings of 15th Triennial World
Congress of the International Federation of Automatic Control, Barcelona, 2002.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 200–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verifying Pattern-Generated LTL Formulas: A Case Study 201

202 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 203

204 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 205

206 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 207

208 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 209

210 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 211

212 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 213

214 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 215

216 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 217

218 S. Salamah et al.

Verifying Pattern-Generated LTL Formulas: A Case Study 219

220 S. Salamah et al.

Generic Verification of Security Protocols

Abdul Sahid Khan, Madhavan Mukund, and S. P. Suresh

Chennai Mathematical Institute,
92 G.N. Chetty Road, T.Nagar, Chennai 600 017, India

{sahid, madhavan, spsuresh}@cmi.ac.in

Abstract. Security protocols are notoriously difficult to debug. One ap-
proach to the automatic verification of security protocols with a bounded
set of agents uses logic programming with analysis and synthesis rules
to describe how the attacker gains information and constructs new mes-
sages.

We propose a generic approach to verifying security protocols in Spin.
The dynamic process creation mechanism of Spin is used to nondeter-
ministically create different combinations of role instantiations. We in-
corporate the synthesis and analysis features of the logic programming
approach to describe how the intruder learns information and replays it
back into the system. We formulate a generic “loss of secrecy” property
that is flagged whenever the intruder learns private information from an
intercepted message. We also describe a simplification of the Dolev-Yao
attacker model that suffices to analyze secrecy properties.

1 Introduction

1.1 Background

Security protocols are specifications of communication patterns which are in-
tended to let agents share secrets over a public network. They are required to
perform correctly even in the presence of malicious intruders who listen to the
message exchanges that happen over the network and also manipulate the system
(by blocking or forging messages, for instance). Obvious correctness requirements
include secrecy: an intruder cannot read the contents of a message intended for
others, and authenticity: if B receives a message that appears to be from agent
A and intended for B, then A indeed sent the same message intended for B in
the recent past.

The presence of intruders necessitates the use of encrypted communication. A
wide variety of cryptographic primitives – some of whose development involves
quite sophisticated number theory – is an essential part of the protocol designer’s
toolkit. But it has been widely acknowledged that even the use of the most
perfect cryptographic tools does not always ensure the desired security goals.
(See [AN95] for an illuminating account.) This situation arises primarily because
of logical flaws in the design of protocols.

Quite often, protocols are designed with features like ease of use, efficiency
etc. in mind, in addition to some notion of security. For instance, if every message

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 221–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 A.S. Khan, M.Mukund, and S.P. Suresh

of a protocol were signed in the sender’s name and then encrypted with the
receiver’s public key, it appears as if a lot of the known security flaws do not
occur. But it is not usual for every message of a protocol to be signed. This could
either be for reasons of efficiency or because frequent use of certain long-term
keys might increase the chance of their being broken using cryptanalysis. Great
care needs to be exercised in such situations. The following example protocol
highlights some of the important issues nicely. It is based on a protocol designed
by Needham and Schroeder [NS78] and is aimed at allowing two agents A and
B to exchange two independent, secret numbers. It uses public-key encryption
but does not require agents to sign their messages.

Msg 1. A → B : {x, A}pubkB

Msg 2. B → A : {x, y}pubkA

Msg 3. A → B : {y}pubkB

Here pubkA and pubkB are the public keys of A and B, respectively, and {x}k is
the notation used to denote x encrypted using key k. In the protocol, x and y are
assumed to be newly generated, unguessable (with high probability, of course!),
previously unused numbers, also called nonces (nonce stands for “number once
used”). In message 2, B includes A’s nonce. On seeing it A is assured that B
has received message 1, since only B can decrypt the first message and use x in
a later message. Similarly on receipt of the third message, B is assured of A’s
receipt of y.

At the end of a session of the protocol, both A and B share the secrets x
and y and both also know that the other agent knows x and y. But it has been
shown [Low96] that x and y are not necessarily known only to A and B. (Such
a property needs to be satisfied if we want to use a combination of x and y as a
key shared between A and B, for example.) The attack (called Lowe’s attack) is
given below:

Msg α.1. A → I : {x, A}pubkI

Msg β.1. (I)A → B : {x, A}pubkB

Msg β.2. B → (I)A : {x, y}pubkA

Msg α.2. I → A : {x, y}pubkA

Msg α.3. A → I : {y}pubkI

Msg β.3. (I)A → B : {y}pubkB

In the above attack, (I)A→B :m means that the intruder is sending message
m to B in A’s name, whereas A→(I)B :m means that the intruder is blocking
a message sent by A intended for B. The above attack consists of two parallel
sessions of the protocol, one (whose messages are labelled with α) involving A as
the initiator and I as responder, and the other (whose messages are labelled with
β) involving I (in A’s name) as the initiator and B as the responder. (This shows
that the names A, B, x and y mentioned in the protocol specification are just
placeholders or abstract names, which can be concretely instantiated in different
ways when the protocol is run. So according to A and B, they have just had a
normal protocol session with I and A, respectively. But I knows better!) After

Generic Verification of Security Protocols 223

the fifth message above, the intruder gets to know y which is the secret generated
by B in a session with someone whom B believes to be A. This shows that the
protocol does not satisfy the following property: whenever an agent B engages
in a session of the protocol as a responder and B believes that the initiator is
A, then the secret generated by B is known only to A and B. The seriousness of
this flaw depends on the kinds of use the protocol is put to. It is worth noting
that this attack does not depend on weaknesses of the underlying encryption
mechanism (nor even on some keys being guessed by chance). It is also worth
noting that this attack on the (simple enough) Needham-Schroeder protocol was
discovered seventeen years after the original protocol was proposed. [Low96] also
suggests a fix for the protocol:

Msg 1. A → B : {x, A}pubkB

Msg 2. B → A : {x, y, B}pubkA

Msg 3. A → B : {y}pubkB

It is easy to see that the above attack does not happen anymore, but that
still doesn’t prove that the protocol does not have any vulnerabilities.

The above discussion illustrates the pitfalls in security protocol design, and
also highlights the need for a systematic approach to protocol design and anal-
ysis. There are two possible approaches:

– Development of a design methodology following which we can always gen-
erate provably correct protocols. The work in [AN96], which gives a flavour
of the kinds of useful heuristics which improve protocol design, is a step in
this direction.

– Development of systematic means of analysing protocols for possible design
flaws. The bulk of the work in formal methods for security protocols focuses
on this approach. Here again, there are two possibilities:
• Development of methods for proving the correctness of certain aspects

of protocols.
• Development of systematic methods for finding flaws of those protocols

which are actually flawed.

There has been much work in applying automated theorem proving ([Pau98]
and [Bol97] are some representative papers) and specialised belief logics ([BAN90],
[AT91], [GNY90], [SC01] is a sampling of the literature) to prove properties of
protocols.

In this paper, we describe our experiments with applying the Spin model-
checking tool to verify security protocols. The outline of the paper is as follows.
In the rest of this section, we discuss the issues which arise in model checking
security protocols, and also set our work in the context of other research in
this area. In Section 2, we develop a formal model for security protocols. In the
next section, we give a high-level description of how we verify security proto-
cols in Spin, using the Needham-Schroeder protocol as a running example. Our
approach makes use of some new observations about the properties required of
the intruder. We formally justify our assumptions in Section 4. The final section

224 A.S. Khan, M.Mukund, and S.P. Suresh

summarizes the work and discusses future directions. The full Promela code for
modelling the Needham-Schroeder protocol is provided in the technical report
[KMS05].

1.2 Model Checking Security Protocols

Much of the literature in formal methods for security protocols is devoted to
methods for detecting flaws in protocols using the model checking approach –
[Low96], [LR97], [MMS97], [Sch96], and [Sch97] is a representative sample. This
approach has enjoyed great success in unearthing bugs in many protocols – long
after the protocols had been put into use, in some cases. [CJ97] is a good reference
for the many attacks which have been uncovered by formal verification tools.

Model checking security protocols is particular challenging. Unlike many
other communication protocols, the actual data which is transferred in the mes-
sage exchanges is also of importance in security protocols. For instance, in the
Needham-Schroeder protocol, the nonce which B receives in the third message
should be the same as the one it sent in the second message. But that is not all.
The names A, B, n which occur in the protocol descriptions are placeholders.
During a run of the protocol, they will be instantiated with concrete agent names
like sahid, madhavan, spsuresh, etc., and concrete nonces – like a random 128-
bit string, for instance. Further there may be many instantiations of the same
roles occurring in one run of a protocol.

Technically speaking, we are dealing with infinite state systems and even
simple problems like reachability are undecidable in various general settings.
(See [DLMS99], [ALV02], [Sur03], among others, for more details.) Therefore we
impose various external bounds, mainly on the number of different sessions or
plays (instantiations of roles) that occur in each run of the protocol. But even
then, there is a nontrivial amount of data manipulation involved, and the state
space can be huge even when we consider a small number of sessions in each run.
We attempt to master this complexity by looking at a generic secrecy property,
and by observing the intruder structure can be considerably simplified when we
search for a violation of this property.

Spin has been successfully used in model checking security protocols [MS02].
There are also reports of the use of other general purpose model checkers like
Murϕ to verify security protocols [MMS97]. Many attacks have been successfully
discovered and rediscovered by these tools. But the reports in the literature either
do not elaborate much on the details of the intruder model, or present an intruder
which is designed with a particular attack in mind. Our work is characterised by
a very simple, yet general intruder model, which helps us discover all breaches
of a particular simple kind of generic secrecy property efficiently.

In particular, we allow our intruder to listen in on all the messages commu-
nicated over all the channels in the network, construct arbitrary messages out
of learnt messages (using the message analysis and synthesis rules which are de-
scribed in a later section), and at any point of time, send a constructed message
to the appropriate agent under anyone’s identity. But unlike the general Dolev-

Generic Verification of Security Protocols 225

Yao intruder, we do not allow our intruder to decrypt messages seen earlier using
keys learnt later. This considerably simplifies the Promela code for the intruder.

There has been a lot of work based on logic programming that has been
reported in the literature ([BP03], [MS01] and [DMTY97], for instance). To
each protocol specification is associated a set of Horn clauses whose variables
correspond to the variables occurring in the protocol specification. The negation
of the desired security property is encoded as a goal formula, and one attempts to
derive the formula using the clauses. In the course of a derivation, the variables
are instantiated with concrete terms. These roughly correspond to spawning
different sessions of the roles of the protocols, with different instantiations for
the nonces and other secrets. It is proved that there is a proof of the goal if and
only if there is a run of the protocol which constitutes a breach of the security
property.

We feel that the model checking approach offers two advantages over the logic
programming approach. Firstly, in the logic programming approach, extracting
the counterexample run from a proof of the goal is not always a straightforward
matter, whereas the Spin model checker readily provides us with the counterex-
ample run when it detects a violation of the desired property. Secondly, if the
model checker doesn’t report an error, we know that there is no attack on the
protocol within the bounds set on the parameters. On the other hand, with
the logic programming approach, there is no easy way of directly bounding the
number of sessions in each run of the protocol.

2 A Formal Model for Security Potocols

In this section we present a formal model for security protocols, which includes
a description of the Dolev-Yao intruder [DY83]. Our presentation is necessarily
brief. A more detailed presentation can be found in [RS05].

We start with a (potentially infinite) set of agents Ag, which includes the in-
truder I and the others, who are called honest agents. We also start with a set of
keys K which includes long-term public, private, and shared keys, as well as tem-
porary session keys. For every key k, we denote by k its inverse. Public keys and
their corresponding private keys are inverses of each other, while shared keys are
their own inverses. We also assume an initial distribution of long-term keys (for ex-
ample, A has his private key, everyone’s public key, and a shared key with everyone
else) which is common knowledge. The set of keys known to A initially is denoted
KA. We also assume a countable set of nonces N . T0, the set of basic terms, is
defined to be K ∪ N ∪ Ag. The set of information terms is defined to be

T ::= m | (t1, t2) | {t}k

where m ranges over T0 and k ranges over K. These are the terms used in
the message exchanges below. We use the standard notion of subterms of a term
to define ST (t) for every term t.

We model communication between agents by actions. An action is either a
send action of the form A!B: (M)t or a receive action of the form A?B:t. Here A

226 A.S. Khan, M.Mukund, and S.P. Suresh

and B are distinct agents, A is honest; and M denotes the set of nonces and keys
occurring in t which have been freshly generated during this (send) action. We
define term(A!B: (M)t) and term(A?B:t) to be t. The agent B is (merely) the
intended receiver in A!B: (M)t and the purported sender in A?B:t. As we will see
later, every send action is an instantaneous receive by the intruder, and similarly,
every receive action is an instantaneous send by the intruder.

Definition 1. A protocol is a pair Pr = (C, R) where C ⊆ T0 is the set of con-
stants of Pr (intended to have a fixed interpretation in all runs of Pr, unlike fresh
nonces and keys); and R, the set of roles of Pr, is a finite nonempty subset of
Ac+ each of whose elements is a sequence of A-actions for some honest agent A.

The semantics of a protocol is given by the set of all its runs. A run is
got by instantiating each role of the protocol in an appropriate manner, and
forming admissible interleavings of such instantiations. We present the relevant
definitions below.

An information state s is a tuple (sA)A∈Ag where sA ⊆ T for each agent A.
S denotes the set of all information states. Given a protocol Pr = (C, R), init(Pr),
the initial state of Pr is defined to be (C ∪ KA)A∈Ag .

A substitution σ is a partial map from T0 to T such that for all A ∈ Ag, if
σ(A) is defined then it belongs to Ag, for all n ∈ N , if σ(n) is defined then it
belongs to N , and for all k ∈ K, if σ(k) is defined then it belongs to K. The
definition is generalised to arbitrary terms and actions in the usual manner.

The notion of information state that we use is very rudimentary. In general,
a control state would include more detail like the number of current sessions
each agent is involved in, how far it has progressed in each of them, and so on.
For technical ease, we code up these details in the form of events. An event of
a protocol Pr is a triple (η, σ, lp) such that η is a role of Pr, σ is a substitution,
and 1 ≤ lp ≤ |η|. The set of all events of Pr is denoted Events(Pr). For an event
e = (η, σ, lp) with η = a1 · · · a�, act(e) def= σ(alp) and term(e) = term(act(e)).
If lp < |η| then (η, σ, lp) →� (η, σ, lp + 1). For any event e, LP(e), the local past
of e, is defined to be the set of all events e′ such that e′ +→�e.

We intend a run of a protocol to be an admissible sequence of events. A very
important ingredient of the admissibility criterion is the enabling of events given
a particular information state. To treat this formally, we need to define how
the agents (particularly the intruder) can build new messages from old. This is
formalised by the notion synth and analz derivations.

Definition 2. A sequent is of the form T � t where T ⊆ T and t ∈ T .
An analz-proof (synth-proof) π of T � t is an inverted tree whose nodes

are labelled by sequents and connected by one of the analz-rules (synth-rules) in
Figure 1, whose root is labelled T � t, and whose leaves are labelled by instances
of the Axa rule (Axs rule). For a set of terms T , analz(T) (synth(T)) is the set
of terms t such that there is an analz-proof (synth-proof) of T � t. For ease of
notation, synth(analz(T)) is denoted by T .

Generic Verification of Security Protocols 227

Axa
T ∪ {t} � t

T � (t1, t2)
spliti(i = 1, 2)

T � ti

T � {t}k T � k
decrypt

T � t

analz-rules

Axs
T ∪ {t} � t

T � t1 T � t2 pair
T � (t1, t2)

T � t T � k encrypt
T � {t}k

synth-rules

Fig. 1. analz and synth rules

Definition 3. The notions of an action enabled at a state and update of a state
on an action are defined as follows:

– A!B: (M)t is enabled at s iff t ∈ sA ∪ M .
– A?B:t is enabled at s iff t ∈ sI .
– update(s, A!B: (M)t) def= s′ where s′A = sA ∪ M , s′I = sI ∪ {t}, and for all

agents C distinct from A and I, s′C = sC .

– update(s, A?B:t) def= s′ where s′A = sA ∪ {t} and for all agents C distinct
from A, s′C = sC .

Definition 4. Given a protocol Pr and a sequence ξ = e1 · · · ek of events of Pr,
infstate(ξ) is defined to be update(init(Pr), act(e1) · · · act(ek)). An event e is said
to be enabled at ξ iff LP(e) ⊆ {e1, . . . , ek} and act(e) is enabled at infstate(ξ).

Definition 5. Given a protocol Pr, a sequence ξ = e1 · · · ek of events of Pr is
said to be a run of Pr iff:

– for all i : 1 ≤ i ≤ k, ei is enabled at e1 · · · ei−1,
– for all i : 1 ≤ i ≤ k, NT (ei) ∩ ST (init(Pr)) = ∅, and for all i < j ≤ k,

NT (ei) ∩ NT (ej) = ∅. (This is the unique origination property of runs.)

We denote the set of runs of Pr by R(Pr).

In using the model checker, we typically consider runs of Pr which involve a
bounded number of instantiations of roles.

Definition 6. An atomic term m is secret at a state s if m ∈ analz(sA) \
analz(sI) for some A ∈ Ag – it is known to some honest agent but not to the
intruder. Given a protocol Pr, and a run ξ of Pr, m is secret at ξ if it is secret
at infstate(ξ). A run is said to be leaky if some atomic term m is secret at a
prefix of ξ but not secret at ξ.

The secrecy problem is the problem of verifying whether a given protocol Pr
has a leaky run.

228 A.S. Khan, M.Mukund, and S.P. Suresh

3 Protocol Verification Using Spin

In this section, we discuss our Promela modelling of the Needham-Schroeder
protocol, as a means of illustrating our approach. The full code can be found
in the technical report [KMS05]. The general approach to verifying security
protocols in model-checking tools is by now standard, and amounts to two major
steps.

– Formalize the protocol.
– Formalize the behaviour of the intruder.

Our aim is to propose a methodology to achieve these two steps in a manner
that can be automated, given a reasonable description of the protocol.

3.1 Formalization of the Protocol

As we have seen, a protocol can be described as a pattern of messages exchanged
between participants playing specified roles. Each role is easily described as a
proctype in Spin. What is difficult to formalize is the choice in the way these
roles are instantiated in order to find flaws in the protocol.

In our approach, each role instantiation corresponds to a fresh instance of the
given proctype. To account for the fact that the same agent may play multiple
roles, when a proctype is instantiated we also provide it with an integer identity.
The intruder has a fixed identity, 1.

In the init process, we construct at least one instance of each proctype. We
then, nondeterministically, construct multiple instances of proctypes to model
arbitrary configurations. For instance, in our model of the Needham-Schroeder
protocol, procI, procA and procB are the proctypes for the roles intruder, role
A and role B, respectively. The code in Figure 2 constructs one instance of each
proctype and then upto KEY_MAX more instances, each of which is either procA
or procB.

We also have to model nonces. Rather than deal with them symbolically, as
in done, for example, in [MS02], we use a shared global integer used_nonce.
Whenever a process requires a nonce, it increments this global variable and uses
the corresponding value. Since protocols are usually very short and we only use
a limited number of instantiations of each role, we can safely define used_nonce
as byte without running out of fresh nonces.

Public keys are implicitly identified with the identity of the agent. Thus, the
public key of agent i is just i. Similarly, shared keys can be encoded using a pair
of agent identities.

We use an array of proc_chan of synchronous Spin channels to model the
actual channels in the system. Each instance of a role with identity i reads
messages on channel proc_chan[i]. As we shall see, we allow the intruder to
read messages on every channel proc_chan[i]. We could also use a model in
which messages are always routed via the intruder, in which case we need to
include the identity of the recipient in each message.

Generic Verification of Security Protocols 229

init {
byte j = 3;

run procI(1); run procA(2); run procB(3);

do /* create more processes nondeterministically */
:: break;
:: j++;

if
:: (j >= KEY_MAX) -> break;
:: else -> if

:: run procA(j);
:: run procB(j);

fi;
fi;

od;
}

Fig. 2. Nondeterministic instantiation of roles

3.2 Formalization of the Intruder

The Dolev-Yao intruder model can be modelled by a process that repeatedly
performs the following steps:

– Nondeterministically intercept a message on some channel and update its
information.

– Nondeterministically generate a message on some channel using known in-
formation.

The intruder updates its information using analz rules and generates fresh
messages using synth rules. In general, analz rules involve breaking up a mes-
sage into its constituent parts, storing all the parts and decrypting previously
stored messages using newly acquired keys. In the context of the secrecy prob-
lem described in the previous section, it suffices to use a simplified version of
the Dolev-Yao intruder model in which the intruder never needs to use newly
learned keys to decrypt previously stored messages. In effect, the analz phase
consists of just breaking up the current message into its constituent parts and
decrypting any encrypted component for which the intruder already possesses
the decryption key.

Recall that we model nonces and keys using integers. We can thus model the
information that the intruder knows using a boolean array indexed by integers
(or pairs of integers). Whenever the intruder intercepts a message, the analz rules
determine how these arrays are updated.

We also need to record stored messages. One approach would be to have a
boolean array indexed by all combinations of message contents, where an entry
is true whenever the corresponding message has been seen by the intruder.
However, since we are looking at a limited number of interleavings of relatively

230 A.S. Khan, M.Mukund, and S.P. Suresh

short sequences of messages, it is more efficient to just maintain a list of stored
messages in an array.

Generating a message amounts to nondeterministically choosing a recipient,
a message type and populating each field in the corresponding message with
some known information of the appropriate type. Alternatively, the intruder
could simply replay an entire stored message.

3.3 Formalization of the Secrecy Property

Recall that a secret is formally defined as information that is introduced during
the run of the protocol by an honest agent but which is not known to the intruder
at the time of its introduction. A secret leaks if it is intercepted by the intruder
after having been sent by its originator to some other honest agent in the system.

We could also consider situations in which the secret leaks directly to the
intruder. For instance, A could generate a nonce nA that is sent unencrypted
and is intercepted by the intruder. We do not consider this to be an unintended
leakage of a secret. It is not difficult to modify our approach to consider such
situations also as leakage of secrets.

Since we keep track of the information that the intruder knows, it is quite
straightforward to flag an error when the intruder learns new information. To
ensure that this meets our definition of when a secret leaks, for each secret
nonce (respectively, key) i, we set the boolean nonce_introduced[i] (respec-
tively, key_introduced[i]) to true when i is first received by any agent. In
the Needham-Schroeder protocol, we are only interested in loss of secrecy for
nonces, so we have the following code to flag loss of secrecy. This code is invoked
whenever the intruder sets known_nonce[k] to true.

inline modifyFlawStatus(k) {
if
:: (nonce_introduced[k] == true) ->

flaw = true;
:: else -> skip;

fi;
}

We can then write a generic verification condition for loss of secrecy in LTL
as [](!flaw).

3.4 Some Experimental Results

When we ran our Promela code for the Needham-Schroeder protocol through
Spin, it discovered Lowe’s attack, as shown in Figure 3. Notice that this coun-
terexample only uses the basic 3 processes created initially, even though the
Promela code permits the creation of additional role instantiations.

We also ran a modified version of this code in which the system necessarily
generated 3 instantiations each of roles A and B. Interestingly, the counterex-
ample reported by Spin corresponds to Lowe’s attack involving the intruder and

Generic Verification of Security Protocols 231

Fig. 3. Lowe’s attack on the Needham-Schroeder protocol, discovered by Spin

Fig. 4. Lowe’s attack with 6 processes

the last two copies of A and B, with some irrelevant intervening messages be-
tween the other instances of A and B, as shown in Figure 4. When Spin was
asked to find the shortest counterexample, it found the version of Lowe’s attack
involving just the first three processes.

232 A.S. Khan, M.Mukund, and S.P. Suresh

3.5 Comparison with earlier approaches

Ours is not the first attempt to use Spin to verify protocols. Another attempt
is described in [MS02]. In the earlier approach, instead of using synth and analz
rules to describe the behaviour of the intruder, the intruder is allowed to generate
arbitrary messages. Static analysis is used to limit the intruder’s choices to “use-
ful” messages. Nonces and other data are handled using symbolic names. Finally,
the security property is formulated explicitly, keeping in mind the nature of the
protocol. Though the authors claim that their approach can be automated, all
of these factors appear to indicate the need for manual analysis before invoking
Spin.

In contrast, our approach formulates the intruder and the security property
in a sufficiently generic manner that the Promela code for verifying a protocol
can, in principle, be synthesized automatically from a suitable description of the
protocol, using a system such as CAPSL [DMR00] or Casper [Low98].

4 A Simpler Intruder Model for Secrecy Properties

We now formalize the simplified intruder used in our Promela model and prove
that it is as powerful as the Dolev-Yao intruder, as far as violating the secrecy
property of Definition 6 is concerned.

In what follows, for ease of notation, we fix a protocol Pr which has a leaky
run, and fix a leaky run ξ = e1 · · · ek of Pr of shortest length. For all i : 1 ≤ i ≤ k,
we let ti, ξi and Ti denote term(ei), e1 · · · ei and (infstate(ξi))I , respectively. We
let T0 denote C ∪ KI . For all i ≤ k, define T ′

i and Ni by induction as follows:
T ′

0 = N0 = C ∪ KI , T ′
i+1 = T ′

i ∪ analz({ti+1} ∪ Ni) and Ni+1 = T ′
i+1 ∩ T0. In

other words, after every event ei, the intruder stores the nonces and keys known
till now in Ni. As soon as ei+1 is seen, the keys from Ni are used to decrypt ti+1
and learn more nonces and keys.

Lemma 7. There is some atomic term n0 which is secret at ξk−1 and which
belongs to Nk. Further, for all i ≤ k, if ei is a receive event then ti ∈ synth(T ′

i).

Proof. Since ξ is a leaky run of shortest length, none of its proper prefixes is a
leaky run and hence it is clear that for all i < k, ξi is not leaky, which means that
none of the terms known to the intruder at the end of ξi is a secret at ξj for any
j < i. In other words, for all i : 1 ≤ i < k and for all m ∈ analz(Ti) \ analz(Ti−1),
m �∈ C, m �∈ KA for any A ∈ Ag, and m �∈ ST (tj) for any j < i.

Let m0 be a secret at ξk−1 which belongs to analz(Tk) (and, of course, does
not belong to analz(Tk−1)). Let π be an analz-proof of Tk � m0, such that for all
subproofs π1 of π, if Tk � t labels the root of π1 and t ∈ analz(Ti) \ analz(Ti−1)
for some i ≤ k, then all the leaves of π1 are labelled only by terms tj for j ≤ i.
Let � be a subproof of π whose root is labelled Ti � n0 for some n0 which is
secret at ξk−1, and such that none of the terms labelling the nonroot nodes of
� is a secret at ξk−1.

Generic Verification of Security Protocols 233

We now prove by induction on the structure of � the claim that for all terms
t labelling a node of �, t ∈ T ′

i for the least i such that t ∈ analz(Ti). Once
we prove this claim, it immediately follows that n0 ∈ T ′

k and, since n0 ∈ T0,
n0 ∈ Nk. Further let ei be a receive event for some i ≤ k. Then from the
admissibility conditions it is clear that ti ∈ Ti−1 = synth(analz(Ti−1)). But it
is an easy consequence of the claim that analz(Tj) ⊆ T ′

j for all j < k, and it
immediately follows from this that ti ∈ synth(T ′

i−1).
We now turn to the proof of the claim. There are three cases to consider.

– The base case is when t labels a leaf node of �. But this means that there
is some i ≤ k such that t = ti. By our assumption on π, it is clear that
t �∈ analz(Ti−1). Therefore i is the least number such that t ∈ analz(Ti).
Clearly enough, t ∈ T ′

i as well.
– The other case is when t labels the conclusion of a split rule. Let i be the

least number such that t ∈ analz(Ti). Let t′ label the premise of the rule. Let
i′ be the least number such that t′ ∈ analz(Ti′). By our assumptions on π,
it is clear that i′ ≤ i. By the induction hypothesis t′ ∈ T ′

i′ ⊆ T ′
i . From this

another application of the split rule tells us that t ∈ T ′
i .

– The most interesting case is when t labels a conclusion of a decrypt rule. Let
i be the least number such that t ∈ analz(Ti). Clearly {t}k and k label the
premises of the rule, for some key k. Let i′ and i′′ be the least numbers such
that {t}k ∈ analz(Ti′) and k ∈ analz(Ti′′). By our assumptions on π, it is
clear that i′ ≤ i and i′′ ≤ i.
Now it cannot be the case that i′ < i′′. This is because, letting j be the least
number such that k occurs as a subterm of tj , it is easy to see that j ≤ i′,
and {k, k} ⊆ analz((infstate(ξj))A) for some A ∈ Ho. Now, since i′′ is the
least number such that k ∈ analz(Ti′′), this means that k is a secret at ξj ,
which is a contradiction because it labels a nonroot node of �. Therefore
i′′ ≤ i′.
By the induction hypothesis {t}k ∈ T ′

i′ and k ∈ T ′
i′′ . If i′′ < i′, then k

would belong to T ′
i′−1 and hence to Ni′−1 (since k ∈ T0). Then it is easy

to see that t ∈ T ′
i′ ⊆ T ′

i , as desired. On the other hand, if i′ = i′′ then
{{t}k, k} ⊆ analz({ti′}∪Ni′−1), and hence t ∈ analz({ti′}∪Ni′−1) ⊆ T ′

i′ ⊆ T ′
i ,

as desired.

The above lemma shows that whenever a Dolev-Yao intruder captures a
secret, so does an intruder that does not decrypt earlier messages using keys it
has learnt later. This justifies the intruder model of Section 3.

5 Conclusion

We have described an approach for generic verification of secrecy properties
of security protocols using Spin. For some protocols, correctness is described
in terms of authentication rather than secrecy. We do not yet have a uniform
method for describing authentication properities in our framework. We have
also not yet embarked on the ambitious programme of writing a compiler from

234 A.S. Khan, M.Mukund, and S.P. Suresh

a specification language such as CAPSL into Spin to automatically generate
verification models for arbitrary protocols.

References

[ALV02] Roberto M. Amadio, Denis Lugiez, and Vincent Vanackère. On the sym-
bolic reduction of processes with cryptographic functions. Theoretical
Computer Science, 290(1):695–740, 2002.

[AN95] Ross Anderson and Roger M. Needham. Programming Satan’s computer.
In Computer Science Today, volume 1000 of Lecture Notes in Computer
Science, pages 426–441, 1995.

[AN96] Martin Abadi and Roger M. Needham. Prudent engineering practices
for cryptographic protocols. IEEE Transactions on Software Engineering,
22:6–15, 1996.

[AT91] Martin Abadi and Mark Tuttle. A Semantics fo a Logic of Authentica-
tion. In Proceedings of the 10th ACM Annual Symposium on Principles
of Distributed Computing, pages 201–216, Aug 1991.

[BAN90] Michael Burrows, Martin Abadi, and Roger M. Needham. A logic of
authentication. ACM Transactions on Computer Systems, 8(1):18–36,
Feb 1990.

[Bol97] Dominique Bolignano. Towards a mechanization of cryptographic protocol
verification. In Proceedings of CAV’97, volume 1254 of Lecture Notes in
Computer Science, pages 131–142, 1997.

[BP03] Bruno Blanchet and Andreas Podelski. Verification of Cryptographic Pro-
tocols: Tagging Enforces Termination. In Andrew D. Gordon, editor, Pro-
ceedings of FoSSaCS’03, volume 2620 of Lecture Notes in Computer Sci-
ence, pages 136–152, 2003.

[CJ97] John Clark and Jeremy Jacob. A survey of authentication protocol litera-
ture. Electronic version available at http://www.cs.york.ac.uk./∼jac,
1997.

[DLMS99] Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre Sce-
drov. The undecidability of bounded security protocols. In Proceedings
of the Workshop on Formal Methods and Security Protocols (FMSP’99),
1999.

[DMR00] G. Denker, J. Millen, and H. Ruess. The CAPSL Integrated Protocol
Environment. Technical Report SRI-CSL-2000-02, SRI, October 2000.
Available at http://www.csl.sri.com/users/millen/capsl.

[DMTY97] Mourad Debbabi, Mohamed Mejri, Nadia Tawbi, and Imed Yahmadi. For-
mal automatic verification of authentication protocols. In Proceedings of
the First IEEE International Conference on Formal Engineering Methods
(ICFEM97). IEEE Press, 1997.

[DY83] Danny Dolev and Andrew Yao. On the Security of public-key protocols.
IEEE Transactions on Information Theory, 29:198–208, 1983.

[GNY90] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning About Belief
in Cryptographic Protocols. In Deborah Cooper and Teresa Lunt, editors,
Proceedings 1990 IEEE Symposium on Research in Security and Privacy,
pages 234–248. IEEE Computer Society, 1990.

[KMS05] Abdul Sahid Khan, Madhavan Mukund, and S.P. Suresh. Generic verifi-
cation of security protocols. Technical report, CMI, May 2005. Electronic
version available at http://www.cmi.ac.in/∼spsuresh.

Generic Verification of Security Protocols 235

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public key pro-
tocol using FDR. In Proceedings of TACAS’96, volume 1055 of Lecture
Notes in Computer Science, pages 147–166, 1996.

[Low98] Gavin Lowe. Casper: A compiler for the analysis of security protocols.
Journal of computer security, 6:53–84, 1998.

[LR97] Gavin Lowe and Bill Roscoe. Using CSP to detect errors in the TMN
protocol. IEEE Transactions of Software Engineering, 23(10):659–669,
1997.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analy-
sis of cryptographic protocols using Murϕ. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 141–153, 1997.

[MS01] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In ACM Conference
on Computer and Communications Security, pages 166–175, 2001.

[MS02] P. Maggi and R. Sisto. Using SPIN to Verify Security Protocols. In
Proceedings of the 9th International SPIN Workshop on Model Checking
of Software, number 2318 in Lecture Notes in Computer Science, pages
187–204, 2002.

[NS78] Roger M. Needham and Michael D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Communications of the
ACM, 21(12):993–999, 1978.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of computer security, 6:85–128, 1998.

[RS05] R. Ramanujam and S.P.Suresh. Decidability of context-explicit security
protocols. Journal of Computer Security, 13(1):135–165, 2005.

[SC01] Paul F. Syverson and Iliano Cervesato. The logic of authentication pro-
tocols. In Ricardo Focardi and Roberto Gorrieri, editors, Foundations of
Security Analysis and Design, volume 2171 of Lecture Notes in Computer
Science, pages 63–106, 2001.

[Sch96] Steve Schneider. Security properties and CSP. In Proceedings of the IEEE
Computer Society Symposium on Security and Privacy, 1996.

[Sch97] Steve Schneider. Verifying authentication protocols with CSP. In Proceed-
ings of the 10th IEEE Computer Security Foundations Workshop, 1997.

[Sur03] S.P. Suresh. Foundations of Security Protocol Analysis. PhD thesis,
The Institute of Mathematical Sciences, Chennai, India, November 2003.
Madras University. Available at http://www.cmi.ac.in/∼spsuresh.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 236 – 250, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using SPIN and Eclipse for Optimized High-Level
Modeling and Analysis of Computer Network Attack

Models

Gerrit Rothmaier1, Tobias Kneiphoff2, and Heiko Krumm3

1 Materna GmbH, Dortmund, Germany
gerrit.rothmaier@materna.de
2 Bosch Rexroth AG, Witten, Germany

tobias@kneiphoff.com
3 Universität Dortmund, Dortmund, Germany

krumm@cs.uni-dortmund.de

Abstract. Advanced attack sequences combine different kinds of steps (e.g.
attacker, protocol, and administration steps) on multiple networked systems.
We propose a SPIN based approach for formal modeling and analysis of such
scenarios. Our approach is especially suited for scenarios were protocol and
network level aspects matter simultaneously. Typical attack sequences and not
yet considered variants can be automatically found. The development of
scenario models is supported by a modeling framework and the use of the high-
level process specification language cTLA. A compiler translates the high-level
cTLA models to Promela. This allows the powerful model-checking tool SPIN
to be employed for analysis. Through integration of the compiler and SPIN into
the Eclipse platform both model development and analysis are facilitated.

1 Introduction

Since security became an issue in computing, the objective of automatically analyzing
system models and thus completely revealing immanent vulnerabilities and potential
attack patterns exists. This objective is very ambitious, as we had to learn early, and
may be reachable only under certain restrictions. Mainly there are two reasons why
attempts for automated security analysis fail in practice. First, the development of
suitable models is very expensive, since the model design is error-prone and tedious
even if performed by well-educated and well-experienced designers. Second, analysis
runs tend to exceed given time and memory limitations, since the analysis procedures
have a high algorithmic complexity. These problems, by the way, are not restricted to
automated security analysis but are already well-known in the general field of
automated verification. Nevertheless, because security analysis of computer networks
has to reason about unknown vulnerabilities, malfunctions and attack effects in
comparably large systems, the search space is more complex and the problems
therefore occur in an increased form.

Thus currently, a more realistic but still ambitious objective is to concentrate on a
narrower field of interest and to lower the grade of automation by some forms of user

 Using SPIN and Eclipse for Optimized High-Level Modeling 237

guidance. One recognizes that formal modeling and analysis have a certain value,
even if they are only employed for the representation and precise description of
known attacks, since they can lead to a better understanding and insight into the
phenomena and so probably indirectly contribute to future enhancements. In fact, the
current status already provides some enhancements. Still, the costs of model
development demand for the specialization to closer fields of interest and the analysis
tool limitations demand for user guidance and restricted analysis scopes. Experience,
however, showed that analysis runs which concentrate on a certain known and
predefined class of attacks can find new unexpected variants.

Advanced network attacks combine different aspects like carefully crafted attack
steps, normal protocol execution steps and administrator actions on different hosts
instead of plain vulnerability exploitations [Ver04]. Network level aspects, e.g.
topology and connectivity, and protocol level aspects have to be considered
simultaneously. Existing approaches concentrate on either protocol or network level
aspects (cf. section 2).

We resort to formal modeling and analysis techniques for the functional aspects of
concurrent process systems. Considering the problems of formal analysis which result
from the expensive model design and the limitations of automated analysis tools, we
follow up a combined approach which is mainly based on two elements. First, the
system verification tool SPIN [Hol03] is applied for automated analysis in order to
profit from its powerful analysis procedures. Second, the development of models is
supported by a high-level modeling framework which provides model architecture
guidelines and re-usable model definition components. The framework is based on the
process specification language cTLA [HK00]. cTLA is a variant of Leslie Lamport’s
Temporal Logic of Actions TLA [Lam94] and provides for the modular definition of
process types and the derivation of new process types by refinement and composition.
Therefore, cTLA facilitates the efficient re-use and adaptation of framework elements.
In comparison to SPIN’s model description language Promela more abstract and
compositional model definitions are supported. The link to SPIN is provided by a
compiler translating cTLA model definitions into Promela. Besides just translating
models the compiler applies model optimizations. Moreover, the practical application
of our approach is supported by means of a model development environment, which
is implemented by extensions to the well-known software development tool Eclipse
[Ecl05].

The approach has already been applied successfully to the modeling and analysis
of different scenarios. [RPK04] presents the modeling and SPIN-based analysis of
ARP spoofing like attacks respectively erroneous network management actions in a
small LAN. Furthermore, we researched the modeling and analysis of RIP routing
attacks.

This paper focuses on the compositional structure of our models, the optimized
translation of our models to Promela and the integration of SPIN and related tools
into the Eclipse universal tool platform. As a next step, after addressing related work,
we give an outline of the modeling framework and the model definition language
cTLA. Two example models clarify the framework’s application and highlight the
compositional structure of our cTLA modeling. Then we discuss the principles of
translating cTLA models to Promela. Model optimizations are outlined in the next

238 G. Rothmaier, T. Kneiphoff, and H. Krumm

section. Finally we describe how model editing, model translation, and SPIN-based
analysis are integrated into Eclipse.

2 Related Work

Formal analysis and verification of security properties can be generally structured into
program and protocol verification. Program verification shall enhance the
trustworthiness of software systems (e.g. [BR00]). In protocol verification security
weaknesses of protocols shall be found. Basic and cryptographic protocols (e.g.
[MS02]) are particularly interesting. In both fields a variety of methods is applied,
including classic logic and algebraic calculi (e.g. [KK03]), special calculi (e.g.
[BAN89]), and process system modeling techniques (e.g. [LBL99]). Different kinds
of analysis tools are used, including logic programming environments like Prolog,
expert system shells, theorem provers, algebraic term rewriting systems, and
especially model checkers. Some approaches even combine several analysis
techniques [Mea96].

The formal modeling and analysis of complex, intertwined attack types in
computer network scenarios is a relatively new field. Existing approaches either focus
abstractly on protocols and disregard network level aspects like topology,
connectivity, and routing or the other way around. For example, in [RS02] the
analysis of attack sequences resulting from the combined behavior of system
components is described for a single host. A process model is used which is specified
in a Prolog variant. Security properties are expressed by labeling states safe and
unsafe. Execution sequences which lead to unsafe states and correspond to
vulnerability executions are searched using a Prolog based programming
environment.

In [AR00, NBR02] an approach called topological vulnerability analysis is
presented. A network of hosts is checked for attack sequences consisting of
combining predefined vulnerabilities. The host modeling consists of two sets
representing existing vulnerabilities and attacker access level. Network topology is
modeled using a multi-valued connectivity matrix. Protocols are represented very
simply through fixed values in the connectivity matrix; no sending, receiving, or
processing of protocol elements is modeled. Exploit definitions have to be given with
the model. Using SMV possible combinations of the given vulnerabilities leading to
the violation of a property (e.g. attacker has root access level on a specified host) are
analyzed.

Our approach supports modeling and analysis of network and protocol level
aspects simultaneously in a single model. With respect to efficient modeling, the
framework makes use of techniques invented for high-performance implementation of
protocols. In particular we learned from the activity thread implementation model
which schedules activities of different protocol layers in common sequential control
threads [Svo89], and from integrated layer processing which combines operations of
different layers [AP93]. Partial order reductions, proposed in [ABH97], have a
strong relationship to the partial order reduction implementation model providing the
basis for the elimination of nondeterministic execution sequences. Furthermore,

 Using SPIN and Eclipse for Optimized High-Level Modeling 239

approaches for Promela level model optimizations have to be mentioned. Many
interesting low-level optimizations are described in [Ruy01].

3 Modeling Framework

In order to foster re-use and reduce the effort needed for modeling, we looked into the
possibility of creating a framework for formal modeling of computer networks.
Because frameworks usually make heavy use of object-oriented mechanisms for
composing elements and describing their relationships, we have to use a specification
language that can express such concepts as well.

cTLA 2003 Specification Language

cTLA is based on TLA [Lam94], but supports explicit notions of process instances,
process types, and process type composition [HK00]. Furthermore, cTLA 2003 adds
object-oriented process composition types. Here we only give a conceptual overview
of cTLA 2003. A language oriented description can be found in the technical report
[RK03].

A cTLA specification describes a state-transition system which is composed of
subsystems. These subsystems may be composed of further subsystems but are finally
sets of process instances. Thus, after resolving subsystems, a cTLA system is always a
composition of process instances.

Process instances belong to processes, which are typed. Each process type
describes its own, self-contained state-transition system. In the simplest case, a
process type does not use composition, but is completely self-contained. The state
space of such a simple process type is completely defined through the set of local
variables. Its transitions consist just of the process’s actions. Actions are
parameterized and describe atomic transitions consisting of guards and effects.
Guards define conditions that must be met to make the action executable, effects
describe the state changes triggered by the action’s execution.

Fig. 1. Action Coupling in a Simple cTLA System

240 G. Rothmaier, T. Kneiphoff, and H. Krumm

Object oriented mechanisms are introduced with the cTLA process composition
type EXTENDS and CONTAINS. These composition types allow new process types to
be derived from other process types. The state space and the transitions of such
process types depend not only on the locally defined variables and actions, but also on
the state and transitions of the inherited process types.

Synchronization and communication between process instances is done via joint
actions. Joint actions couple 1..n actions of process instances, i.e. their guards and
effects are conjugated. All process instances not taking part in a joint action perform a
stuttering step. On the system level, system actions have to be given to define the
possible state transitions.

As an example, consider Figure 1. A simple cTLA System Sys1 contains three
process instances NodeA, NodeB and PhysMedia which are instances of types
Node respectively Media. Each instance has it’s own variables and actions. Four
system actions, na_rcv(pkt), na_snd(pkt), nb_snd(pkt) and
nb_rcv(pkt) are defined through coupling of instances’ actions. For example,
action na_rcv(pkt) couples NodeA’s rcv action with PhysMedia’s out action
and NodeB performs a stuttering step.

Computer Network Modeling Framework

Frameworks as known from the world of object oriented programming consist of
classes and their relationships. With process types and process composition types we
have similar mechanisms available in cTLA 2003. We aim to transfer qualities known
from object oriented frameworks like “natural modeling”, broad level re-use of
proven elements and architectures to formal modeling, especially of computer
network related scenarios. Thus, we developed a modeling framework for TCP/IP
based computer networks in cTLA 2003. We only give an overview of the framework
here, a structure diagram and element-by-element description can be retrieved via our
web site [Rot04].

The framework is structured into layers horizontally. The first layer, Enumerations
& Functions, is used to define the network topology, initial address assignment and
protocols desired for a model. For example, the enumeration ZoneIdT contains the
model’s zones (usually matching Ethernet segments), the function fSrcToIa is used
to assign initial addresses and the enumeration ProtocolT symbolically lists
protocols required in the model.

The second layer, Data Types, contains common data types for interfaces, packets
and buffers used by other elements of the framework. For instance, the type
InterfaceT combines attributes of an interface; PacketT is a record used to
represent a packet and PacketBufT defines a buffer for such a packet.

Finally, the third layer, Process Types, provides core process types. For example,
process type RouterIpNode models the basic behavior of a forwarding IP node and
HostIpNode represents a passive IP host node. Through inheritance behavior is
specialized. For example, ActiveHostIpNode adds behavior for the processing
and sending of packets to HostIpNode.

Usually, all layers of the framework collaborate to model a conception. For
example, a scenario’s network topology is modeled by several functions (e.g.

 Using SPIN and Eclipse for Optimized High-Level Modeling 241

fSrcToZone) and enumerations (e.g. ZoneIdT), together with appropriate
handling by processes (e.g. Media, HostIpNode, RouterIpNode) and their
actions (e.g. out, rcv) which are parameterized with data types (e.g. PacketT).

During the design of the core process types we realized the usefulness of ideas
known from efficient protocol implementation techniques. Especially the activity
thread [Svo89] approach, which schedules activities of different protocol layers in
common sequential control threads, and integrated layer processing [AP93], which
combines operations of different layers, were helpful. Thus the number of concurrent
execution paths (for packet processing) is smaller. This resembles partial order
reduction techniques but is contained in framework derived models already. Fewer
actions and buffers in the cTLA model lead to a reduced SPIN state-vector size and
less possible transitions in the Promela model.

Example models use the basic structure and node types given by the framework. Of
course, they usually have to add their own specific node types, e.g.
RipRouterIpNode. These node types are derived from the framework’s basic
nodes and add data structures and behavior e.g. for processing additional protocols
like RIP routing.

4 Example Models

Our approach has already been successfully used for the modeling and analysis of two
example scenarios, the IP-ARP [RPK04] and RIP models. We focus on the structure
of the models and the relationship to the framework here.

IP-ARP Model

In the IP-ARP scenario, a small LAN with three hosts running a basic TCP/IP stack is
modeled. This scenario is analyzed for confidentiality violations, i.e. packets received
by non-intended recipients.

The IP-ARP cTLA model structure is based on a preliminary version of the current
framework. For the hosts, instances of the IpArpNode process type, which extends
HostIpNode from the framework, are used. The IpArpNode process type adds
support for a low-level ARP protocol layer. ARP queries are broadcasted for
resolving yet unknown IP to hardware address mappings. ARP replies are processed
and a local ARP cache is managed. On the IP level, changing of assigned IP addresses
through management actions is added. Furthermore, packets to destination IP
addresses with hardware addresses not yet in the ARP cache are buffered and the
ARP layer is signaled. The LAN itself is modeled by a one zone Media instance with
appropriate supporting enumerations (ZoneIdT, NodeIdT) and topology functions
(fSrcToZone). Finally, the system is defined as an instance of the
IpArpExample process type which is in turn a composition of one Media and
three IpArpNode instances.

After translation, depending on the inserted assertions modeling confidentiality
properties, various violating sequences can be found. Interestingly, these sequences
can be triggered by both ARP attacks and certain IP change management actions.

242 G. Rothmaier, T. Kneiphoff, and H. Krumm

RIP Model

The RIP scenario consists of three LANs, connected by three routers R1, R2, R3 in a
triangle-like fashion. Representative hosts H1, H2, HA are chosen from the LANs.
The hosts are TCP/IP nodes, the routers additionally run the RIP protocol. In this
scenario, man-in-the-middle attacks through forged RIP updates by host HA on
communication between hosts H1 and H2 are analyzed.

Fig. 2. Compositional Structure of the RIP Model

In the RIP model, all routers are instances of RipRouterIpNode (cf. Figure 2),
which is based on RouterIpNode from the framework. The RipRouterIpNode
type adds functionality for processing and sending RIP update messages and updating
its routing table accordingly. The hosts are modeled by different process types
ultimately based on HostIpNode according to their role in the scenario (attacker,
active or passive communication partner). The LANs are modeled by a six zones
Media instance with appropriate helper enumerations and functions. The system is
an instance of the composed process type IpRipExample containing Media, three
RipRouterIpNode, and three HostIpNode derived instances.

Again, depending on the exact property modeling, various attack sequences can be
found. Figure 3 shows an example sequence. The sequences resemble typical routing
attack ideas mentioned in [BHE01].

5 Translating cTLA Specifications to Promela

To be able to leverage both a high level cTLA based framework and SPIN’s powerful
capabilities for checking Promela specifications, we engineered the cTLA2PC tool. It
takes a cTLA specification as input and transforms it to an equivalent, optimized
Promela specification. Alternatively, the output of a simplified, “flat” cTLA

 Using SPIN and Eclipse for Optimized High-Level Modeling 243

specification is possible as well. cTLA2PC is based on the ANTLR parser
construction kit. In the following section, we give a short description of the most
current version cTLA2PC version (“cTLA2PC 2”).

Fig. 3. Simplified Attack Sequence in the RIP scenario

The translation process starts with the scanner and parser components of cTLA2PC.
If syntax errors are encountered, cTLA2PC prints an error message and the translation
halts right after the parsing phase. After scanning and parsing, the semantic analysis is
applied. Semantic analysis includes type checking of action parameters, function
return values and assignments. Again, errors are flagged and stop the translation
process.

Fig. 4. Transforming a Compositional cTLA System to Promela

The key phase for the translation of cTLA specifications to Promela is the
expansion (cf. Figure 4). It transforms a compositional cTLA system to an expanded

244 G. Rothmaier, T. Kneiphoff, and H. Krumm

cTLA system. A compositional cTLA system (CompSystemInstance) is an
instance of a process type (CompSystemType) containing process type instances
(e.g. pt1i1, pt2i1, …). Each process type (PT1, PT2, …) may contain or extend
further process types.

Because such a model structure is not possible with Promela’s process types
(proctype), extended and contained process types must be resolved prior to
building the Promela system. This is done during the expansion phase. As an
example, consider the expansion of an action from the IP-ARP model (cf. Listing 1).
The compositional form of the action is given by the coupling of actions from the
contained process type instances bnA (of process type IpArpNode) and med
(Media). The expanded form of the action contains no process type instances.
Instead, init code and variables from the instances have been merged directly into the
generated expanded or flat system type (ExpSystemType). This allows the actions
to be flat as well, i.e. to directly consist of the merged action code of the previously
coupled instances.

// Original Action as defined in the Compositional System
snd_A(pkt: PacketT) ::= bnA.snd(pkt) AND med.in(pkt);

// Action after Expansion (Flat System)
snd_A(pkt: PacketT) ::=
 pValidIf(pkt.sci, NA_MII) // guards
 AND pkt = bnA_ifs[pkt.sci - 1].spa.pkt
 AND bnA_ifs[pkt.sci - 1].usd = TRUE
 ...
 AND bnA_ifs[pkt.sci - 1].spa.usd' = FALSE // effects
 ...

Listing 1. Compositional and Expanded Form of an Action

Starting from the flat system, code optimizations can be applied. Section 6
describes a few optimizations optionally done by cTLA2PC during this phase.

Depending on the chosen output, either the cTLA code generation or the Promela
code generation phase follows. The key step in the Promela code generation phase is
the handling of actions and their parameters. Because of the expansion phase only a
single, simple process instance is left in the system. This instance, however, still
contains multiple, parameterized actions. Thus, all actions are embedded into a
Promela non-deterministic do selection loop. The translation of the actions
themselves, which are structured into guard and effect statements, can be done quite
easily. Quantified guards (cTLA keywords FORALL, EXISTS) and effects
(UPDATEALL) are special cases which have to be handled through the introduction of
local loop blocks and corresponding temporary variables (Promela keyword
hidden) in the code.

Still, action parameters have to be handled. They are implicitly existentially
quantified in cTLA, i.e. if parameter values exist that satisfy the action’s guards, the
action is executable with this parameter setting. Action parameters are handled
through the introduction of shared global variables and input generator processes. At
first, we tried using Promela channels instead of shared variables, but simple global

 Using SPIN and Eclipse for Optimized High-Level Modeling 245

variables proved to be more efficient. The actions’ parameters are replaced by these
variables. Input generator processes are used to allow the global variables to reach all
possible values. The processes use the randomness non-deterministic if approach
described in [Ruy01]. Different actions may (re-)use the same global variables and
input generator processes, thus reducing the number of additional variables and
processes. The described approach works fine and was successfully used in [RPK04],
but is relatively costly in terms of possible transitions and – to a lesser extent – state
space. In Section 6 we discuss a more efficient approach to the handling of
parameterized actions.

Finally, the Promela code generation follows. Thanks to the previously generated
intermediate code, the Promela code is derived in a straightforward way. This
concludes the translation process. Additional translation options, which are useful for
special cases, are recognized by cTLA2PC. For example, the --simulation switch
includes a control flow generator and symbolic action names into the Promela code.
This allows scripted testing of partial execution sequences and symbolic choice of
actions in SPIN’s interactive simulation mode. Furthermore, the --trace-points
switch helps in mapping SPIN’s verification results back to the cTLA model. It inserts
extra trace statements for cTLA actions and parameters into the Promela model.

6 Optimizations

Our current tool version, cTLA2PC 2, supports several switches for applying different
optimizations to the Promela code. Some of the low-level optimizations are inspired
from [Ruy01]. Ruys describes the bitvector optimization. SPIN internally stores each
element of a bit array as a byte. This may lead to an eightfold increase in the size of
the state vector. The bitvector optimization maps up to eight elements of a bit array
into a single byte and replaces element accesses with appropriate macros. With
cTLA2PCs --optbitarrays and --opt-bool2byte switches, we implement
a generalized bitvector optimization. Arrays of records with multi bit fields – possibly
of different size – are mapped into arrays of byte. Furthermore, bools are mapped
into bytes as well, because SPIN internally stores each bool as a byte. Using this
generalized bitvector optimization we were able to significantly reduce the state
vector for both the IP-ARP and the RIP model (cf. Table 1).

Table 1. Effects of Different Optimizations for both the IP-ARP and RIP Models

Model Optimization State Vector
Standard 250 Bytes
Paramodulation 210 Bytes

IP-ARP

Generalized Bitvector 168 Bytes
Standard 448 Bytes
Paramodulation 424 Bytes

RIP

Generalized Bitvector 344 Bytes

246 G. Rothmaier, T. Kneiphoff, and H. Krumm

Higher level optimizations can lead to even better results. Our models have a
special structure because of their cTLA origin. This of course leads to particular
optimization possibilities. A rewarding area for optimizations is the transformation of
actions. During this transformation several new processes and variables for handling
action parameters are created (cf. Section 5).

The paramodulation optimization makes use of coupling between parameters in
cTLA system actions. Typically, some action parameters serve as output parameters of
constituting process actions. Thus, value determining equalities exist. Using these
equalities, parameters occurrences in the action can be substituted and the parameters
can be removed from the action’s parameter list. As an example of a slightly more
complicated case, reconsider action snd_A(pkt: PacketT) from Listing 1,
where PacketT is a record and an equality pkt = bnA_ifs[pkt.sci-1
].spa.pkt exists. Substituting pkt using this equality does not work, because the
right hand side depends on the field sci of pkt. However, after a parameter
refinement of snd_A, i.e. splitting its parameter pkt into its fields scn, sci,
sha, dha, dat and transforming all guards and effects containing pkt accordingly
partial paramodulation becomes possible. Now, equalities without dependencies exist
for all fields of pkt except sci. Accordingly, all parameters but x_pkt_sci can be
substituted in snd_A, leading to the final version snd_A(x_pkt_sci) with just
one simple parameter.

Paramodulation optimizes a model with respect to two aspects. First, the number of
shared global variables is reduced, inducing a smaller state space. Second,
corresponding input generator processes are saved as well. This leads to fewer
possible transitions and accordingly smaller search depths for checking action
sequences. In both the IP-ARP and the RIP model, the state vector is clearly smaller
after applying the paramodulation optimization (cf. Table 1).

Even with paramodulation, however, the larger RIP based scenario could not be
analyzed by SPIN. Input generator processes for setting parameter values substantially
increase the complexity of the Promela model. The state vector is only enlarged by a
small amount (about 4 bytes per process), but the number of possible transitions is
expanded greatly. For example, each setting of a parameter value requires at least one
step. If an action requires several parameters, usually a separate setting step is
required for each parameter. Furthermore, because all input generators run freely as
separate processes, two types of useless sequences are possible. First, sequences
setting parameters not used by (and not defined for) an action may occur. Second, the
same parameter may be set in several consecutive steps, each time overwriting the
previous value. Only the last step of such a sequence before an action execution
determines the parameter value. Because SPIN must consider all possible sequences
for model checking, however, it has to follow the useless sequence types as well.

To prevent these useless sequence types, we evaluated making input generators and
actions more intelligent. For that purpose, we enhanced cTLA2PC to add code to the
beginning of an action that sets enable flags only for the input generators associated
with the used parameters. Each input generator resets its enable flag after setting a
parameter value. This approach prevents both useless sequence types mentioned
above. Unfortunately, this approach proved to be counterproductive anyway. The
additional flags and their management overhead usually add more complexity to the
model than is saved through the prevention of the useless sequences.

 Using SPIN and Eclipse for Optimized High-Level Modeling 247

Consequently, we developed a radically different approach for handling
parameterized actions: unrolling input generators. Following this approach, no input
generators are created by cTLA2PC. Instead, parameters are unrolled by copying the
actions and replacing the parameters with fixed values. For example, an action with
two parameters p1, p2 has to be copied |p1|⋅|p2| times, where |pi|, i=1, 2 is the
cardinality of the type associated with parameter pi. In the copies, the parameters are
successively replaced with fixed values for all possible values. Because all variable
types in cTLA (and Promela) are finite, the number of fixed actions replacing a
parameterized action is finite as well.

Of course, the unroll optimization may lead to very large Promela specifications,
but this only increases translation time1. We evaluated the effects of the unroll
optimization with the afore-mentioned RIP scenario. For benchmark purposes a
simple assertion was added to the rcv action of host H2. This assertion was analyzed
using SPIN in breadth-first search mode. As Table 2 shows, SPIN performs
remarkably better with the Promela model generated using the unroll approach than
with standard input generators.

Table 2. Effects of the unroll optimization in the RIP model

Optimization State Vector Stored States Transitions Depth Memory
Standard 332 Bytes 1.19E+06 2.3E+08 14 203 Bytes
Unroll 316 Bytes 1.99E+04 1.8E+06 11 11 Bytes

As input generator steps are no longer needed, the search depth required for finding
a violating path is reduced as is the number of possible transitions at each level.
Furthermore, the state vector is decreased as well. The unroll optimization was the
critical last step for the successful automated analysis of the RIP model with SPIN.

Finally, efficiency should be kept in mind right from the design phase of a model.
There, the framework helps again. Derived models inherit ideas from efficient protocol
implementation (cf. Section 3), thus saving buffers and actions right from the start.

7 Eclipse Integration

We aim to ease the application of our modeling and analysis approach through
appropriate tool support and integration. The Eclipse workbench is a well-known,
widely adopted “universal tool platform” [Ecl05]. It defines only a core set of
services. A modern plug-in architecture [Bol03] allows extending and customizing
Eclipse’s functionality. Current web directories contain over 700 Eclipse plug-ins,
even if many are of an experimental nature. We engineered a prototypical integration
of the SPIN and cTLA2PC tools into Eclipse.

Our integration is comprised of 8 Eclipse plug-ins (cf. Figure 5) implemented by
70 Java classes, totaling about 12,000 lines of code.

1 We experienced some problems with very large models during SPIN or gcc translation (yacc

stack overflow errors with the SPIN Windows port and gcc hangs during verifier translation)
but could work around them.

248 G. Rothmaier, T. Kneiphoff, and H. Krumm

Fig. 5. Plug-in Architecture (UML Component Diagramm)

Except for the promelaeditor and ctlaeditor plug-ins, all plug-ins are
separated into a .ui and .core component. User interface elements are implemented
by the .ui component, the corresponding non-graphical functionality is implemented
by the .core component. The underlying architectural pattern of the Eclipse
framework is that different UI implementations can be used to present the same core
functionality. Communication between UI and core components is handled via events.

Taken together, our plug-ins provide editing, translation, simulation, debugging
and verification of specifications. Thanks to core services inherited from Eclipse, our
integration covers further aspects, e.g. aggregation of files related to a specification
into a project as well. For space reasons, we only describe the simulation and
debugging of specifications in more detail.

To support simulation of Promela specifications from within Eclipse SPIN’s output
is captured and transferred to Eclipse’s console window. Additionally, for interactive
simulations, the output is parsed and an interactive selection dialog is displayed for
each non-deterministic choice (cf. Figure 6). Choices marked by SPIN as
“unexecuteable” are not displayed in the selection dialog. Furthermore, “debugging”
of Promela specifications is supported as well. Breakpoints can be set in the Promela
editor. If the corresponding line of the specification is hit, the simulation will be
stopped. The user can then resume the specification simulation or step through it.
Additionally, variables can be added to the watch window. That means that the
current value of such a variable is always displayed by Eclipse.

The plug-in spin.core implements the functionality to run the SPIN tool in the
background based on Eclipse’s Launching architecture. For SPIN simulation a new
LaunchConfigurationsType is defined. The spin.ui plug-in contains a
dialog for setting additional SPIN options based on Eclipse’s
LaunchConfigurationDialog and the selection dialog for interactive
simulation. The spin.debug.core plug-in parses SPIN output and detects
changes of watched variables, hit breakpoints etc. If breakpoints are defined, a
CodeModifier is applied to the Promela file prior to starting the simulation. Its
purpose is to add special marker printf statements at the appropriate lines. The
plug-in captures SPIN’s output using a limiting buffer and scans it for the marker. If
the marker is found, a breakpoint has been hit. The breakpoint’s file and line number
can be extracted from additional information after the marker. This implementation of
breakpoints resembles XSpin.

 Using SPIN and Eclipse for Optimized High-Level Modeling 249

Fig. 6. Simulating a cTLA2PC generated Promela Specification in Eclipse

8 Concluding Remarks

The presented modeling framework and tool support facilitates the experimentation
with small to medium size formal computer network models substantially and – as our
experience showed – can be used not only for the precise description of known
scenarios and attack processes but also for the automated detection of unknown attack
variants. The development of models, however, is still a demanding task, since each
model design decision about whether at all and how a certain detail of the real
scenario is to be represented in the model, may yield either too strong an increase of
the set of reachable states or the loss of relevant analysis results. Therefore, our
current work continues to investigate approaches of efficient protocol implementation
in order to achieve further enhancements of the modeling framework. Moreover, we
study the integration of symbolic reasoning into the approach. Particularly
symbolically proven state invariants shall help to justify model simplifications.

Another interesting idea - raised by the reviewers - is the application of our
approach to areas not related to network attacks. The framework is specific for
network modeling but otherwise our approach – high level cTLA and framework
based modeling, optimized translation to Promela, model checking with SPIN – is
generic. It would be interesting to apply it to other problems in the modeling,
simulation, and analysis area.

250 G. Rothmaier, T. Kneiphoff, and H. Krumm

References

[ABH97] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, S.K. Rajamani: Partial order
reduction in symbolic state space exploration. In Proc. of CAV 97: Computer-Aided
Verification, LNCS 1254, pp. 340-351. Springer-Verlag, 1997.

[AP93] M. Abbott, L. Peterson: Increasing network throughput by integrating protocol
layers. IEEE/ACM Transactions on Networking, pp. 600–610, 1, 1993.

[AR00] P. Ammann, R. Ritchey: Using Model Checking to Analyze Network Vulnerabilities.
IEEE Symposium on Security and Privacy, May 2000.

[BAN89] M. Burrows, M. Abadi, R. Needham: A Logic of Authentication. In: Proceedings of
the Royal Society, Volume 426, Number 1871, 1989.

[BHE01] Blackhat Europe Conference: Routing and Tunneling Protocol Attacks, URL:
http://www.blackhat.com/html/bh-europe-01/bh-europe-01-speakers.html#FX, 2001.

[Bol03] A. Bolour: Notes on the Eclipse Plug-in architecture. URL: http://www.eclipse.org/
articles/Article-Plug-in-architecture/plugin_architecture.html

[BR00] M. Balser, W. Reif et al.: Formal System Development with KIV. In: T. Maibaum
(ed.), Fundamental Approaches to Software Engineering. Springer LNCS 1783, 2000.

[Ecl05] Eclipse.org: Main Page. URL: http://www.eclipse.org, 2005.
[HK00] P. Herrmann, H. Krumm: A Framework for Modeling Transfer Protocols. Computer

Networks, vol. 34, pp. 317-337, 2000.
[Hol03] G. J. Holzmann: The SPIN Model Checker: Primer and Reference Manual. Addison

Wesley, 2003.
[KK03] K. Kawauchi, S. Kitazawa et al.: A Vulnerability Assessment Tool Using First-Order

Predicate Logic. IPSJ SIGNotes Computer SECurity No.019 (2003)
[Lam94] L. Lamport: The Temporal Logic of Actions, ACM Transactions on Programming

Languages and Systems, vol. 16(3), pp. 872-923, 1994.
[LBL99] G. Leduc, O. Bonaventure, L. Leonard et al: Model-based Verification of a Security

Protocol for Conditional Access to Services. Formal Methods in System Design, Kluwer
Academic Publishers, vol. 14(2), pp. 171-191, 1999.

[Mea96] C. Meadows: The NRL Protocol Analyzer: An Overview. Journal of Logic
Programming, vol. 26(2), pp. 113-131, 1996.

[MS02] Paolo Maggi, Riccardo Sisto: Using SPIN to Verify Security Properties of
Cryptographic Protocols. Proc. 9th Int. SPIN Workshop on Model Checking of Software,
LNCS 2318, Springer-Verlag, pp. 187-204, 2002.

[NB02] S. Noel, B. O' Berry, R. Ritchey: Representing TCP/IP connectivity for topological
analysis of network security. Computer Society, IEEE (ed.), Proc. of the 18th Annual
Computer Security Applications Conference, pp. 25-31, 2002.

[RS02] C. Ramakrishnan, R. Sekar: Model-Based Analysis of Configuration Vulnerabilities.
Journal of Computer Security, Vol. 10(1), pp. 189-209, 2002.

[RK03] G. Rothmaier, H. Krumm: cTLA 2003 Description. Technical Report, URL:
http://ls4-www.cs.uni-dortmund.de/RVS/MA/hk/cTLA2003description.pdf, 2003.

[RPK04] G. Rothmaier, A. Pohl, H. Krumm: Analyzing Network Management Effects with
SPIN and cTLA. Proc. of IFIP 18th WCC/SEC 2004, pp. 65-81, 2004.

[Rot04] G. Rothmaier: cTLA Computer Network Specification Framework. Online Document.
URL: http://www4.cs.uni-dortmund.de/RVS/MA/hk/framework.html

[Ruy01] T. C. Ruys: Towards Effective Model Checking. PhD Thesis, University of Twente,
2001.

[Svo89] L. Svobodova: Implementing OSI Systems. IEEE Journal on Selected Areas in
Communications 7, pp.1115–1130, 1989.

[Ver04] Verisign: Internet Security Intelligence Briefing / November 2004 / Vol. 2 / Issue II.

Model Checking Machine Code with
the GNU Debugger

Eric Mercer and Michael Jones

Department of Computer Science,
Brigham Young University,

Provo, Utah, USA

Abstract. Embedded software verification is an important verification
problem that requires the ability to reason about the timed semantics
of concurrent behaviors at a low level of atomicity. Combining a cycle-
accurate debugger with model checking algorithms provides an accurate
model of software execution at the machine-code level while supporting
concurrency and allowing abstractions to manage state explosion. We
report on the design and implementation of such a model checker using
the GNU debugger (gdb) with different processor backends. A significant
feature of the resulting tool is that we can adjust the level of atomicity
during the model checking run to reduce state explosion while focusing
on behaviors that are likely to generate an error.

1 Introduction

Embedded software for small devices forms an important and unique verifica-
tion problem. Embedded systems pervade many aspects of society, and their
complexity is growing quickly with processing power. If processor design con-
tinues to follow Moore’s law, then current test strategies will not be able to
sufficiently validate safety and capital critical embedded systems.

Concurrency is a significant challenge to embedded software verification.
Without fine-grain control of scheduling decisions in the operating system, it
is not possible to explore the behaviors of concurrent interactions with typical
debugging tools. A debugger is a familiar framework for software testing that
faithfully reflects the behavior of the actual system because it is either run-
ning directly on the target hardware or on a high-fidelity back-end simulator.
When running on native hardware, the debugger often uses hardware registers
and traps, when necessary, to control program flow without significantly altering
run-time behavior. Although a debugger provides several mechanisms to control
program execution and alter program state, it does not provide mechanisms to
adequately explore concurrent interactions. As such, a debugger is not sufficient
to validate embedded software with concurrency due to threads, processes, or
interrupts.

A model checker is well suited to the systematic exploration of concurrent
behaviors. Several techniques for software model checking are actively being pur-
sued. The most common approach applies conservative abstractions to the high-
level programming language [9,1]. If no errors are found, then the program under

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 251–265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 E. Mercer and M. Jones

test is error-free (relative to the given specification, of course). Counterexamples
may be either infeasible or feasible. Infeasible counterexamples are used to iter-
atively refine the abstraction and feasible counterexamples are returned to the
user. This approach is particularly successful in verifying control intensive code
in which conditional expressions do not depend on extensively manipulated data
values. Another approach applies bounded model checking to C programs and
can verify buffer overflows, pointer safety, user defined assertions, and language
consistencies [4,5]. Other approaches translate the software under test into the
formally defined input language of an existing model checker [15,17,2,6]. Lan-
guage extensions are sometimes needed to facilitate the translation since the
language semantics are not always supported by the existing framework [11].

With the exception of Bogor and Java PathFinder, each of the preceding
approaches assume that the high-level language constructs are atomic opera-
tions. This assumption is adequate for properties that do not depend on machine
instruction interleaving. In this work, we are interested in detecting errors that
depend on a concurrency model that more accurately matches the behavior of
programs running on a given target processor. This kind of concurrency model
is particularly important for interrupt driven software. In most instruction set
architectures, interrupts, due to concurrency or external inputs, can be taken
between machine instructions, and many C instructions are often implemented
with more than one machine instruction.

There are two approaches to software model checking that are directly per-
tinent to reasoning at a finer-grained level of concurrency. The first approach
model checks the actual software implementation by instrumenting either a sim-
ulator or the virtual machine for the target architecture [20,13]. This approach re-
tains a high-fidelity model of the target execution platform and low-level control
of scheduling decisions. A second approach works directly with the machine-code
of the program to run at-speed analysis on the native hardware. Valgrind instru-
ments the actual machine code [14], and Verisoft runs the code in a scheduling
environment as a process it manages [7]. Testing at speed boosts performance in
state generation but can force processor, process, and OS specific specialization
in the tool.

This paper proposes an approach to machine-code verification that uses a
debugger to model check software compiled from various high-level languages.
The approach is based on Java PathFinder, StEAM, and Verisoft but seeks
to improve the processes by interfacing with a standard debugger rather than
working through a virtual machine or interprocess communication mechanism. In
other words, we use a debugger interface to control the program under test rather
than a virtual machine for language and processor independence. And rather
than manage the program under test in a scheduling processes, we manage the
program under test in a debugger to have finer control of scheduling decisions and
step levels. In essence, model checking with a cycle-accurate debugger provides
a layer of abstraction that decouples the verification infrastructure from both
the high-level source language and the processor simulation infrastructure.

Model Checking Machine Code with the GNU Debugger 253

Fig. 1. The SSE example expressed in both C and machine code. The guard in the
if statement is actually implemented with three machine-code instructions. Machine
code generated by the GNU C compiler for the Motorola 68hc11 processor.

The central contribution of this paper is a better understanding of the chal-
lenges and opportunities of model checking machine code using a debugger. This
understanding is based on our extension of the GNU debugger (gdb) which sup-
ports model checking for a variety of target processors at a variety of dynamically
tunable atomicity levels. A debugger provides an accurate model of software ex-
ecution at the machine-code level while allowing abstractions to manage state
explosion. Furthermore, working at the machine-code level through a modular
debugger decouples the model checker from a particular high-level language and
target architecture. Note that the debugger does not solve the state explosion
problem directly; rather, it provides mechanisms that can be used to mitigate
state explosion by altering the atomic step level of the model checker. The
combination of an accurate model with variable atomicity allows easy switching
between less efficient model checking for error prone code sections and efficient
model checking for less interesting code sections.

2 An Example

We illustrate the kinds of errors that can only be found at the machine-code
level with a program, called SSE, that contains a simple serialization error.
The error is manifested by a data inconsistency. Although the SSE program
is somewhat naive, it illustrates the kinds of errors that can only be found
when reasoning about concurrency at the machine-code level. In practice, more
complex errors similar to the one in SSE arise when provably correct mutual
exclusion techniques are either used or implemented incorrectly.

Figure 1 contains the C and machine-code versions of SSE. The machine code
is a simplified version of the code generated by the GNU C compiler (gcc) for the
Motorola 68hc11 processor. Simplifications are made strictly for readability in
the figure. The analyzed code is the unmodified gcc output. The while loop in the
C program contains an if statement that compares the readings of two sensors.
If the readings are not equal, then an alarm is activated. The sensor readings are
updated periodically by an interrupt handler (not shown) that copies readings
from two input ports into the variables reading[0] and reading[1].

In the assembly code for SSE, which is shown on the right side of Figure 1,
the guard in the if statement is implemented with three instructions. The first
instruction loads reading[0] (located at address 0x108e) into register D. The
second instruction compares the contents of register D with reading[1] (located

254 E. Mercer and M. Jones

at address 0x1090). The third instruction branches past the alarm activation code
if the values are equal. If the interrupt to update reading[0] and reading[1]
happens between the load and compare instructions, then the alarm may be in-
correctly activated. The alarm may be incorrectly activated because one reading
is stored in a register and the other in memory when the interrupt updates the
contents of both in memory. Even if both readings are changed to the same value
in memory, the now stale value in the register will be different. This particular
interleaving is unreachable if the comparison in the guard in the if statement
is modeled as an atomic comparison.

Of course, the serialization error in SSE can be eliminated by providing
mutually exclusive access to the reading variables or by performing the check
in the interrupt handler rather than in the busy-wait loop. If a lock is used
to resolve the issue, then the lock can be implemented using any of a number
of mutual exclusion algorithms that commonly appear as case studies in the
model checking literature. The central verification issue addressed in this paper
is not the correctness of mutual exclusion algorithms in general but the issue of
whether or not a mutual exclusion algorithm is correctly implemented and used.

The SSE example can also be used to demonstrate the utility of including
time in the processor execution model. The data inconsistency error in SSE
can be eliminated by carefully scheduling the interrupts to occur only at safe
locations between specific pairs of instructions. A fragment of machine code that
preserves mutual exclusion using timing is shown in Figure 2. In the 68hc11,
periodic interrupts are scheduled by writing a 16-bit value to a special timer
“register” (two bytes stored at memory location 0x101c in this case) and setting
a bit in a control register to enable the real-time interrupt. The interrupt is
triggered when the free running counter is equal to the value written in the timer
register. The free running counter is incremented by one in every clock cycle. The
interrupt is serviced at the next instruction boundary after its corresponding
interrupt flag is raised. The interrupt service routine clears the interrupt flag
and schedules the next interrupt by writing a new value into the timer register.
The new value is typically calculated by adding a fixed offset to the present
value of the free running counter. Later, we compare the model checking results
for the timed version of SSE with the behavior of the same program on the
target hardware. In all cases, the predicted behavior precisely matches the actual
behavior.

The execution of the guard and body of the while loop in SSE requires
22 clock cycles. Starting at the instruction on line 0x8053, which sets the next
time-out value, the interrupt handler requires another 115 clock cycles before
it returns control back to the interrupt point in the while loop. This timing
relationship is shown in Figure 2. If the interrupt that updates reading[0] and
reading[1] occurs with a period of d = 22x + 115 cycles (for values of x such
that d is less than 216 − 1), then the update interrupt will alternate between the
instructions at 0x80bf and 0x80cf. These are “safe” locations in which to update
the reading variables. Another important aspect of this example is the amount
of time that passes between the scheduling of the first interrupt and entry in the

Model Checking Machine Code with the GNU Debugger 255

Fig. 2. Code that uses timing to avoid the serialization error in the SSE example

while loop. This delay fixes the location of the first interrupt in the while loop
but is omitted from Figure 2 for clarity.

In practice, resolving mutual exclusion with time is advantageous because it
does not require locking protocols (which can degrade important performance
metrics such as response time). This approach is difficult to implement without
automated verification support because it is conceptually difficult to correctly
reason about timed concurrent behavior. A model checker that allows reason-
ing about timed concurrent behavior may extend design capacity by providing
automated support for mutual exclusion that depends on timing. The goal of
this work is to develop models and techniques to verify these types of systems
and properties. Rather than create a processor model in an existing input lan-
guage for a model checking tool, however, we are going to use the actual target
processor hardware through a debugger.

3 State Enumeration by a Debugger

The state enumeration process is inspired by, and closely resembles, state gener-
ation in the Java PathFinder and StEAM tools in that they instrument virtual
machines to perform model checking tasks [20,13]. In this case, the machine is
real, not virtual, and the interface to the machine (or simulator) is a debug-
ger. There are two principle tasks in state enumeration for explicit state model
checking that the debugger needs to support: backtracking and resolving nonde-
terminism. In this section, we discuss the architecture of the resulting tools and
how we deal with each of these tasks.

The general architecture for the model checker is shown in Figure 3(a).
Roughly speaking, there are five major components to the architecture: the state,
hash-table, processor, environment, and search models. We use the term “model”
to indicate a generic representation of a particular component. The interface to
each model is designed to allow flexibility in a manner similar to that of the
Bogor framework [17].

256 E. Mercer and M. Jones

Processor Model

Search Model

vgdb Interface

Environment Model

gdb
Hashtable

State Model

Algorithm: bfs(so, PM, EM)
1: init(Q, so)
2: HT = {linearize(so)}
3: while |Q|
= 0 do
4: s = dequeue(Q)
5: for all s′ ∈ EM(s) do
6: s′ = PM(s′)
7: if linearize(s′)
∈ HT then
8: if isViolation(s′) then
9: reportTrace(s′)

10: return false
11: HT = HT ∪ {linearize(s′)}
12: enqueue(Q, s′)
13: return true

(a) (b)

Fig. 3. The general architecture for model checking with a debugger and a search
algorithm. (a) The general architecture showing the model checker interface to the
debugger. (b) The breadth-first search algorithm using the processor model (PM),
environment model (EM) and hash-table (HT).

3.1 State and Hash-Table Models

The state model represents the complete state of the processor and environment.
It interfaces with the hash-table model using a linearize function that converts
the state into an array of bytes. The state model is processor dependent; al-
though, a generic configurable state model is provided that includes features
commonly found in microprocessors such as general purpose registers, control
registers, counters and memory. The interface exported by this model can be
redefined to meet the verification requirements of a given program or target
processor.

The hash-table model interfaces with the state model through the one-way
linearize function which, as mentioned previously, converts the state into an ar-
ray of bytes for storage. This split between the state model and the hash-table
model decouples the representation of the state vector in state generation and
storage for duplicate detection. Such a split simplifies the implementation of dif-
ferent hash-table architectures and storage disciplines. For example, super-trace
(bit-state hashing) and hash-compaction can be implemented in the hash-table
model without affecting the state model. The current implementation supports
a collapse compression option [10].

Although the state and hash-table models simplify the implementation of
symmetry and partial order reductions, the implementation of certain symme-
try and partial order reductions are more difficult because these reductions re-
quire knowledge of the operating system data and how the data are structured
in memory. For example, thread symmetry reduction would need to access op-
erating system thread data to create the canonical state representation in the
reduction. Note that this assumes two things: first, unfettered access through

Model Checking Machine Code with the GNU Debugger 257

the debugger to operating system data; and second, the ability to completely
reload the state of the operating system in memory. An alternative approach
bypasses the operating system and directly manages control structures for soft-
ware artifacts [20,13,17]. This is done in our approach through the environment.
Operating system calls to create threads and allocate memory can be tracked, or
bypassed and rewritten, in the environment to make symmetry and partial order
reductions easier to implement. Directly modeling, tracking, or abstracting the
operating system are all possible in our approach using the debugger. The key
to our approach is to be able to completely reload the machine state through the
debugger interface which may only be possible when connected to a back-end
simulator or remote target.

3.2 Processor Model

The processor model is the execution framework for the target architecture. In
the current implementation, we use version 6.1 of the GNU debugger (gdb) for
the execution framework. This version of the debugger is reconfigurable for cross-
platform development using a collection of freely available back-end simulators.
The actual input to the simulator, and hence the model checker, is a raw binary
file in either an elf or a.out format. The binary file may or may not include
debugging hooks to relate the machine-code to the high-level language from
which it was compiled. The debugger can relate properly annotated machine
code to a variety of high-level languages such as C, objective-C, C++, Pascal,
Modula-2, Fortran and Ada.

The creation of a processor model is a pivotal point in the decision to create a
new model checker rather than write processor models for use in another model
checker, such as SPIN or Bogor. The central issue is the amount of work required
to both create an accurate model of a processor architecture and implement the
debugging features found in a debugger but not in any model checker.

The key feature found in a debugger, but not in existing model checkers, is
the ability to change levels of atomicity during state generation. For example,
state generation for a single code section might use C-instruction level atomicity
for certain contexts and machine instruction level atomicity for others. Doing so
in an existing model checker would require a significant rewrite. Currently, the
actual steps the machine takes to update counters, process interrupts, etc. are
invisible to the model checker. Moreover, we only record states at debugger break
points, and these points can be defined in a variety of ways. The step level can
be machine-code, high-level language, branch-point [3]1, or a mixed mode level,
and all steps can be made conditional on run-time data values. Stepping at the
branch-point level stops the debugger at points of nondeterminism that require
an environment response. The mixed mode operates in any of the three levels
and can be used to force the debugger to continue program execution until the
program state satisfies a break point. This is useful in executing the program
1 Branch-point refers to branches in the transition graph and not to branches in the

program under test. In a deterministic environment, program branches do not pro-
duces branches in the transition graph.

258 E. Mercer and M. Jones

across system calls or program states that are of no interest to the property
being verified. Stepping through library calls allows one to accurately determine
the effect of a library call on the property under test.

Modeling the processor in an existing framework is itself a challenge be-
cause some processor behaviors are neither simply described nor simply im-
plemented. Presumably, leveraging the effort expended to create an accurate
simulator rather than writing a new one from scratch frees one to focus on other
issues. Some of the more difficult processor functions include interrupt priority
resolution, interrupt register-stacking and control register updates. Other aspects
of processor execution, such as instruction interpretation are straightforward if
not monotonous.

The vgdb debugger component in Figure 3(a) defines the interface to gdb used
by the model checker for explicit state enumeration. The interface takes a state
model and loads it into the processor through the debugger. The debugger then
turns control over to the target program which starts execution at the program
counter in the loaded state. The debugger either steps at the machine-code
level, the high-level language level, or until it runs to a breakpoint depending on
the search model and user configuration. When the debugger stops, the model
checker reads the resulting state from the debugger into the state model. Only
modified parts of the state are updated in the state model. This saves time
but still requires scanning the entire contents of memory in the debugger. This
process can be further optimized with a map that identifies portions of memory
that are either read-only, unaffected by the program under test, or simply out
of bounds. This information is given to the model checker at runtime along with
the program to verify and its properties.

The management of read-only and clear-on-write registers is a challenge in
model checking with a debugger. The free running counter, used to track the
passage of time in the 68hc11 processor, is an example of a read-only register.
This register can only be set at boot time or when the processor is in test mode.
The register that marks interrupt arrivals in the 68hc11 is an example of a
clear-on-write register. It can only be cleared, not set, by a program.

When using a simulator, read-only and special control registers can be made
writable by modifying the simulator. GNU gdb is well suited to this because
it provides call-backs to implement all of the debugger functions in a simulator
including a special interface to send commands directly to a simulator. For ex-
ample, we modify the back-end simulator for the 68hc11 to include a command
that puts the simulator in a mode that bypasses the write logic for special control
registers such as those used for interrupt flags. When writing to these registers,
rather than clearing the flags to acknowledge the interrupts, the simulator sets
the flags.

Writing to read-only and special control registers can be simulated in hard-
ware by carefully manipulating the state model. For example, as mentioned
previously, the free running counter in the 68hc11 is read-only, but we need to
control this register because it affects the firing of real-time interrupts. To ad-
dress this issue, the state model is specialized to store the difference between

Model Checking Machine Code with the GNU Debugger 259

the current value of a timer register and the free running counter rather than
the actual value of the timer register. When a state is loaded in and out of the
debugger, the real-time interrupts are set to the current value of the real-time
counter plus the difference stored in the state model. Similarly, when we read a
state out of the debugger, we store the difference between the scheduled inter-
rupt time and the current value of the real-time counter. Using this method, we
are able to match real-time hardware interrupt behavior for the 68hc11. Another
example relates to backtracking to states that have pending interrupts. Inter-
rupt flags on the 68hc11 cannot be set. They can only be cleared. As mentioned
earlier, we modify the simulator to let us set the flags, only this does not work
when running on the native hardware. To accommodate this, we create a state
that causes the actual interrupt to fire on the next machine instruction. This
can be accomplished by carefully setting the real-time interrupts or toggling the
external interrupt pin from the model checker through the serial or parallel port.
Using this interface, the debugger can start execution from any arbitrary state
in the program.

3.3 Environment Model

The environment model in Figure 3(a) closes the program under test by handling
nondeterminism in a systematic way, checking invariants and configuring pro-
gram dependent properties of the state. The environment model is implemented
in C++ by the user and must be compiled into the model checker to create an
executable that is specific to the program being verified.2 More specifically, the
environment provides a set of points to the model checker that represent either
locations where an environment response is needed or locations where a prop-
erty invariant needs to be checked. It is important to note that doing so does not
require the source code for the program under test because these locations are
instruction addresses. Although the environment model is implemented in C++,
it can interface with code compiled from other high-level languages because the
environment interfaces with the machine code emitted by the compiler rater than
the original high-level source. Aside from the controls used by the debugger, the
program runs unaltered in the model checker. Each environment response trans-
forms the state model appropriately and returns the updated state to the model
checker. The invariant checks are predicates defined over the variables in the
state model which can include information specific to the environment.

Environment specific state information can be (and often must be) stored in
the state model. For example, modeling thread scheduling in the environment
requires environment specific state. When model checking a multithreaded pro-
gram, it is possible to model check directly with the operating system, or it is
also possible to abstract the operating system into the environment. If the oper-
ating system is abstracted, then the environment adds data to the state model
to represent thread information. Instruction indices where we want to consider
a possible scheduling operation are listed as points of nondeterminism in the
2 Most of the model checker options are configured at run time on the command line

in a manner very similar to that used in SPIN and Mur-φ.

260 E. Mercer and M. Jones

environment model. The debugger stops at these indices, and the environment
systematically generates states which explore the effects of different schedul-
ing choices. Rather than providing a list of scheduling points, one could also use
real-time interrupts in the target processor to implement round-robin scheduling.
The interrupt handler can either implement a deterministic scheduling scheme
or allow nondeterminism as before. Finally, the environment sets program spe-
cific state model properties. These properties might include read-only memory
locations, track locations, match locations, and data abstractions.

3.4 Search Model

The final component for state enumeration is the search model that directs the
traversal of the state space. Figure 3(b) shows pseudo-code for a breadth-first
search model. The search model itself is an interface to the debugger which facil-
itates other search strategies. The breadth-first search example illustrates both
the basic sequence of operations that might occur in a state enumeration strat-
egy, and the interactions which might occur between various components of the
system. In Figure 3(b), HT is the hash-table, EM is the environment model, and
PM is the processor model. The breadth-first search does not use undo informa-
tion to backtrack. Instead, the search maintains a queue, Q, of frontier states to
be expanded. After a state is dequeued on line 4, it is sent to the environment
for possible invariants checking and nondeterministic responses. If the environ-
ment does not have a response for the given state, then it is returned unaltered.
Each environment response is sent to the processor model where it is loaded into
the debugger, and the debugger begins execution. When the debugger stops, the
new state is read, linearized, and sent to the hash-table for a membership check.
If the new state is not a member of the hash table, then default properties are
checked in line 8. These properties include stack overflow, read-only violations,
and any properties general to most software programs.

The remainder of the pseudo-code in Figure 3(b) proceeds by updating the
hash-table and adding the new state to the queue. The tool currently includes
implementations of depth-first and guided-search in addition to breadth-first
search. The tool implements the FSM distance heuristic and an extended FSM
distance heuristic that is context sensitive for the guided-search [?,19].

4 Modeling Software

Model checking software requires extra care to properly handle functions, point-
ers, interrupts and external libraries. Model checking at the machine-code level
simplifies the inclusion of functions, pointers, interrupts and libraries. This is
primarily because the machine-code model must include all information needed
to handle each of these unique properties of software. This is both good and bad
because including such information further intensifies the state explosion prob-
lem. On the other hand, software model checking at the source-language level
is somewhat more complicated because it must preserve the variables, function

Model Checking Machine Code with the GNU Debugger 261

calls and program flow abstractions provided to the programmer in a high-level
language. These abstractions include the notions that variables range over all of
the naturals (or reals) and that call stacks can be arbitrarily deep. Although rea-
soning about variables with infinite ranges is often simpler than reasoning about
finitely ranged models, doing so can compromise the accuracy of the resulting
analysis. The challenge is to retain accuracy while approaching the efficiency of
infinite domain techniques.

Function calls are simplified because the calling context of every function is
stored in the stack, which is part of the state model. There is a problem with
recursive functions in which the depth of the stack is, theoretically, unbounded.
In practice though, the stack is not unbounded and excessive recursive function
calls eventually lead to stack overflow. In some verification settings, particularly
for embedded software, determining a bound for the stack size and detecting
such stack overflows is itself a significant problem [16]. The depth bound on
function calls and recursion using a debugger is the same as it is in hardware.

Pointers can be handled in machine-code models because the state model
is simply the contents of memory rather than a logical model of memory that
requires alias analysis. The problem with pointers, for high-level language mod-
els, is that they can reference arbitrary memory locations, and this is difficult
to model with a state vector that contains variables and their values (because
the value of a pointer variable is an address of the value of interest rather than
the value itself). A symptom of this problem is that when updating one vari-
able’s value, its not clear if any other pointer variables alias the same location
and should also be updated. Working at the machine-code level eliminates this
problem because there are no variables. There are only addresses and values in
a large array. Essentially, we have the whole contents of memory in the state
vector, so dereferencing a pointer and resolving aliasing issues is trivial during
model checking. The new problem is that the state vector contains all of the
memory locations, and this model may become large and difficult to update.

It should be mentioned that dynamic memory allocation, using a C-command
like malloc, is also trivially modeled at the machine-code level. If the operating
system is part of the state model, then the new memory is deterministically allo-
cated according to the scheme implemented by the operating system. Otherwise,
the environment model implements a possibly nondeterministic memory alloca-
tion scheme that mimics or approximates the actual memory allocation scheme.
If the memory allocation scheme is deterministic, then pointers pointing to allo-
cated memory can be compared across model checking runs. As with symmetry
or partial order reductions, the implementation of symmetry reductions related
to dynamic memory allocation, such as topological sorting in Bogor, can be
implemented if care is taken to extract the appropriate information from either
the environment or state model [18].

Interrupts allow program flow to transfer to an interrupt handler between
any two instructions for which interrupts are enabled. Modeling interrupts in
high-level language execution is somewhat awkward because an interrupt may
appear during multiple machine instructions that implement a single high-level

262 E. Mercer and M. Jones

instruction. In addition, modeling interrupts requires an accurate model of the
interrupt timing and priority scheme of the target processor. This is impossible
to do in the definition of a high-level language like C. At the machine-code
level, an interrupt simply looks like another function call that is governed by
the processor model rather than the program control flow. Using an accurate
simulator, or even the target processor itself, provides a good model of interrupt
behavior with no additional effort.

Library functions must be handled by either abstracting their behavior in
the environment model or executing them directly as part of the state model. If
library functions are included in the state model, then the environment model
can be written to note the library calls and then step over them so that the effects
are computed but the states reached in them are not stored or checked. Some
library calls in some situations may be of interest. In these cases, conditional
breakpoints can be set to step into the library calls and include their behavior
in the verification run when needed.

5 Results

We have implemented the model checking architecture described in Section 3 in
a tool called Estes. Estes is implemented in C++ as an extension of gdb. The im-
plementation required approximately 8 man months of effort. The development
effort thus far is focused on correctness and has yet to consider performance in
terms of raw state generation per unit time. We believe state generation can
be improved through profiling and appropriate code optimizations to the point
where the principle performance penalty is that imposed by the debugger itself.

The first results use the SSE program to validate the accuracy of the model
checker relative to the actual hardware. The program in Figure 1 does not spec-
ify when interrupts may or may not fire so we conservatively assume that they
can fire between any pair of C or machine code instructions depending on the
verification step level. As expected, if the verification is performed at the C lan-
guage level, then the alarm is always correctly activated because we do not allow
interrupts inside the guard of the if statement. If the verification is performed
at the machine-code level, then the alarm is incorrectly activated.

The SSE program in Figure 2 uses real-time interrupts to remove the incorrect
activation of the alarm. The verification is configured to step-over functions that
update the LCD register. Doing so results in a significant savings in time and
space because the code to write to the LCD implements delays using while-
loops that require 216 iterations to complete. We also instrument the SSE code
to count the number and location of the interrupts, as well as the interrupt
sequence. The results from the debugger tool and the actual hardware match
exactly on all points.

The next set of results simply demonstrate some applications of Estes to C
programs and an Ada program. The results are from implementations of a serial
IO program, the Hyman [12] and Peterson mutual exclusion algorithms and a
classic dining philosophers. The serial IO program reads from the serial IO port

Model Checking Machine Code with the GNU Debugger 263
Table 1. Results for the Motorola 68hc11 processor

High-level language Mixed Assembly language
Program (language) lines time states time states lines time states
Serial IO (Ada) 25 0.03s 15 - - 116 3.7s 17441
Hyman (C) 80 0.5s 387 2.2s 2005 255 5.9s 6948
Peterson (C) 80 1.2s 655 48s 19423 4443 45s 31772
Dining Philosopher 2 Interrupts (C) 295 0.8s 1520 - - 595 2.8s 7722
Dining Philosopher 3 Threads (C) 150 - - 2.93s 10667 468 108s 382359

and writes the input back to the serial IO port. The environment model for the
Serial IO program, which is written in C++ and references the machine code
created from the Ada source, allows the input values to range over 256 values.
The Hyman and dining philosopher algorithms both have errors that can be
detected at the high-language level while the Serial IO and Peterson programs
do not contain errors. There are two versions of dining philosophers using either
interrupts or threads.

The results from a Pentium III 1.8 GHz processor with 1 GB of RAM are
shown in Table 1. The machine code is again compiled for a 68hc11 chip with
the debugger connected to a back-end simulator. We show results for high-level,
assembly code, and mixed levels. The high-level results allow interrupts only
at Ada or C instruction boundaries. The mixed level steps over unimportant
code, such as the LCD output in the Petersons example, but allows interrupts
at the machine-code instruction boundaries. For the results at the high-level and
assembly language, the lines columns are the total number of lines of code from
either the high-level language file or the file created from an object dump of
the binary executable as indicated by the top-level column division. The time
columns contain the wall-clock time measured using the Unix time program
which includes actual start up and shutdown overhead for the model checker
and debugger. The states columns give the total number of states found using
a depth-first search when the search either finds an error or exhausts the state
space.

The results for the Hyman and Peterson programs in Table 1 are generated
with the ideal switchings between the assembly and C step-levels. The switching
points are statically defined by the user but can be easily configured from run
to run without recompilation. It is not always easy or feasible to construct
the switching protocol by hand. Future work explores heuristic methods for
switching between step-levels during model checking depending on the property
under test.

6 Conclusion

Model checking at the machine-code level using a debugger results in an accurate,
timed model of the software under test. As expected, allowing concurrency at
the machine-code level allows the detection of errors that are missed at the C-

264 E. Mercer and M. Jones

instruction level and further compounds the state explosion problem. Switching
between levels of atomicity on-the-fly based on conditions evaluated at run-time
allows one to focus verification effort on (and to contain state explosion within)
specific regions of specific execution paths in the software under test. Modeling
software at the machine-code level simplifies handling some problems unique to
software model checking such as pointers, function calls, interrupts and library
functions because all of the information needed to resolve such issues is included
in the state model. This also exacerbates the state explosion problem.

Future work on model checking machine code with a debugger focuses on
methods for containing the state explosion problem. A variety of state analysis
techniques can be applied to machine code to simplify model checking. Static
analysis of machine code is difficult because variables do not always have well
defined types and scopes. Since we have a fully executable state vector during
model checking, we can pause a model checking run to redo the parts of the
initial static analysis using the concrete information in the state vector. The
updated static information can be used for guided search heuristics and dead
variable analysis to reduce the size of the state vector. Finally, the incorporation
of symbolic techniques using BDD or SAT algorithms using a variant of the
track and match methodology may provide a further increase in model checking
capacity.

References

1. T. Ball and S. Rajamani. The SLAM toolkit. In G. Berry, H. Comon, and A. Finkel,
editors, 13th Annual Conference on Computer Aided Verification (CAV 2001), vol-
ume 2102 of Lecture Notes in Computer Science, pages 260–264, Paris, France, July
2001. Springer-Verlag.

2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In Klaus Havelund, John Penix, and Willem Visser, editors, 7th Interna-
tional SPIN Workshop, volume 1885 of Lecture Notes in Computer Science, pages
113–130. Springer, August 2000.

3. G. Behrmann, K.G. Larsen, and R. Pelánek. To store or not to store. In War-
ren A. Hunt Jr. and Fabio Somenzi, editors, Proc. Computer Aided Verification
(CAV’03), volume 2725 of Lecture Notes in Computer Science, pages 433–445,
Boulder, CO, USA, July 2003. Springer.

4. E. Clarke and D. Kroening. Hardware verification using ANSI-C programs as
a reference. In Proceedings of ASP-DAC 2003, pages 308–311, Yokohama City,
Japan, January 2003. IEEE Computer Society Press.

5. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes
in Computer Science, pages 168–176, Barcelona, Spain, April 2004. Springer.

6. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, R. Zheng,
and H. Zheng. Bandera: extracting finite-state models from java source code. In
International Conference on Software Engineering, pages 439–448, 2000.

7. P. Godefroid. Software model checking: The VeriSoft approach. Technical report,
Bell Laboratories, Lucent Technologies, 2003.

Model Checking Machine Code with the GNU Debugger 265

8. S. Graf and L. Mounier, editors. Model Checking Software: 11th International SPIN
Workshop, volume 2989 of Lecture Notes in Computer Science, Barcelona, Spain,
April 2004. Springer.

9. T. A. Henzinger, R. Jhala, R. Majumdar, , and G. Sutre. Software verification with
Blast. In T. Ball and S.K. Rajamani, editors, Proceedings of the Tenth International
Workshop on Model Checking of Software (SPIN), volume 2648 of Lecture Notes
in Computer Science, pages 235–239, Portland, OR, May 2003.

10. G. J. Holzmann. State compression in Spin. In Proceedings of the Third Spin
Workshop, Twente University, The Netherlands, April 1997.

11. G. J. Holzmann and R. Joshi. Model-driven software verification. In Graf and
Mounier [8], pages 76–91.

12. H. Hyman. Comments on a problem in concurrent programming control. Commu-
nications of the ACM, 9(1):45, 1966.

13. T. Mehler and S. Edelkamp. Directed error detection in C++ with the assembley-
level model checker StEAM. In Graf and Mounier [8], pages 39–56.

14. N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD thesis, Com-
puter Laboratory, University of Cambridge, United Kingdom, September 2004.

15. J. Penix, W. Visser, C. Pasaranu, E. Engstrom, A. Larson, and N. Weininger.
Verifying time partitioning in the DEOS scheduling kernel. In 22nd International
Conference on Software Engineering (ICSE00), pages 488–497, Limerick, Ireland,
June 2000. ACM.

16. J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by abstract inter-
pretation. In R. Alur and I. Lee, editors, Proceedings of the Third International
Conference on Embedded Software (EMSOFT), volume 2855 of Lecture Notes in
Computer Science, pages 306–322, Philadelphia, PA, USA, October 2003. Springer.

17. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-
modular model checking framework. ACM SIGSOFT Software Engineering Notes,
28(5):267–276, September 2003.

18. Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies for model
checking dynamic software. Electronic Notes in Theorical Computer Science, 89(3),
2003.

19. N. Rungta and E. G. Mercer. A context-sensitive structural heuristic for guided
search model checking.
http://vv.cs.byu.edu/publications/papers/guided-search.pdf, 2005.

20. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2), April 2003.

ETCH: An Enhanced Type Checking Tool for
Promela

Alastair F. Donaldson� and Simon J. Gay

Department of Computing Science,
University of Glasgow,

Glasgow, Scotland
{ally, simon}@dcs.gla.ac.uk

Abstract. We present ETCH, an enhanced type checking tool for the
Promela language. This tool uses standard type checking in conjunction
with constraint-based type inference to detect type errors in Promela
models which cannot currently be detected by SPIN before verification
or simulation. ETCH allows for more rapid development of Promela code,
and increased confidence in verification models used with SPIN. Since the
utility of model checking depends heavily on the correctness of the model
being verified, our tool is a significant contribution.

1 Introduction

Model checkers and type checkers have both been classed as light weight for-
mal methods [9]. Type checkers for high level languages have been widely used
in everyday software development for many years, and model checkers are in-
creasingly being used in the development of reliable hardware and software.
Verification models for use with a model checker are usually written in a high
level language, and if this language includes type information, type checking can
be used to aid the development of sensible models. The Promela language [6]
includes a rich set of data types, including numeric types, enumerated message
types, and types for communication channels. Before simulation or verification of
a Promela model, the SPIN model checker performs some type checking to detect
errors in the model. However, the type checking performed by SPIN is limited.
Certain kinds of type errors which are not currently detected by SPIN could
be detected in a straightforward manner using the type information included
in a Promela model. More subtle errors involving dynamic channel passing (an
attractive feature of the language) cannot be detected directly from this type
information, since channel types in Promela are not fully specified. To be de-
tected statically, such errors require additional type information to be inferred
from the model.

We present ETCH (Enhanced Type CHecker), a type checking tool for Promela.
This tool uses standard type checking in conjunction with constraint-based type
inference to detect type errors in Promela models which cannot currently be
� Supported by the Carnegie Trust for the Universities of Scotland.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 266–271, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ETCH: An Enhanced Type Checking Tool for Promela 267

detected by SPIN. ETCH allows for more rapid development of reliable Promela
code, and increased confidence in verification models used with SPIN. Our ap-
proach requires no modification to the syntax of Promela, and no extra type
declarations are necessary—type checking is performed by type inference based
on the existing type information in a Promela specification. Programmers in any
language know that type errors are a frequent kind of mistake, and that compile-
time type checking is very useful. Promela is no exception. For example, in an
informal survey of Promela code produced for a student assignment, ETCH was
used to detect numerous type errors which were not detected by SPIN. Since the
utility of model checking depends heavily on the correctness of the model being
verified, our tool is a significant contribution.

In Section 2 we give some examples of type errors in Promela code which
are not detected by SPIN until verification time. In Section 3 we outline the
design of ETCH. We discuss two interesting features of the tool—constraint-based
type inference, and recursive channel types—in Sections 4 and 5 respectively.
Conclusions and plans for future work are given in Section 6. ETCH can be
downloaded from our website [3].

2 Example

To illustrate the kind of type errors which currently are not detected by SPIN

before verification time, we consider a generic client-server model adapted from
[6, Chapter 15]. The Promela code for this model is given below, annotated with
asterisks which are for discussion purposes, and should otherwise be ignored.

mtype = {request,deny,hold,grant,return}
chan server = [0] of {mtype,chan}
chan null = [0] of {mtype,chan}

proctype Agent(chan listen, talk) active proctype Server()
{ do {

:: talk!hold(listen) (**) chan agents[2] = [0] of {mtype,chan};
:: talk!deny(listen) -> break chan pool = [2] of {chan};
:: talk!grant(listen) -> (***) chan client, agent;

wait: listen?return(null); break byte i;
od; do
server!return(listen) } :: i < 2 -> pool!agents[i]; i++

:: else -> break
active[2] proctype Client() od;
{ chan me = [0] of {mtype,chan}; end:
chan agent; do

end: do :: server?request(client) ->
:: timeout -> if

server!request(me); :: empty(pool) -> client!deny(null)
do :: nempty(pool) -> pool?agent;
:: me?hold(agent) run Agent(agent,client) (*)
:: me?deny(agent) -> break fi
:: me?grant(agent) -> :: server?return(agent) -> pool!agent

agent!return(null); break od
od }

od }

We now suggest three changes to the above model which introduce type errors.

Error 1. The statement run Agent(agent,client) at (*) is replaced with
the statement run Agent(agent). This is clearly a type error since the Agent

268 A.F. Donaldson and S.J. Gay

proctype requires two parameters and only one has been supplied. The SPIN

syntax checker does not detect this error. If this statement is executed during
simulation then the message Error: missing actual parameters: ’Agent’
is given, and simulation halts. During verification, an Agent process will be in-
stantiated on execution of this statement, but the talk parameter of the Agent
will be an uninitialised channel, resulting in an error from SPIN when this chan-
nel is used. ETCH detects this error without needing to use type inference.

Error 2. The statement talk!hold(listen) at (**) is replaced with the
statement talk!listen(hold).From the model, we can see that Agent processes
are instantiated only by the Server process. The talk parameter of an Agent cor-
responds to the client variable of the Server process, and this is in turn received
on the channel server, from a Client process. The channel which the Client
process sends is me, which accepts messages of the form {mtype, chan}. Thus
the talk parameter of an Agent accepts messages of the form {mtype, chan}.
Our modification introduces a type error since an attempt is made to send a
message of the form {chan, mtype} on the channel talk. This error is not picked
up by the SPIN syntax checker. During simulation, SPIN reports a type-clash if
this statement is executed. An invalid end state is reported during verification
of the model with this error, and the corresponding counterexample contains a
warning of a type-clash. In Section 4, we describe how ETCH detects this error
using constraint-based type inference.

Error 3. The statement talk!grant(listen) at (***) is replaced with the
statement talk!grant. By the same argument presented for Error 2, this mod-
ification causes an error since only a single field has been sent on the channel
talk. This error is not detected by the syntax checker. Since the argument grant
has type mtype—the correct type for the first message field—SPIN does not flag
up an error when this statement is executed, even though a field is missing from
the message (during simulation a warning is given). The message is received by a
client process via the statement me?grant(agent). However, the received chan-
nel agent is uninitialised since no channel was actually sent by the Agent process.
The Client process then attempts to execute the statement agent!return, which
causes an error since agent is not initialised. This error is less easy to isolate than
Errors 1 and 2 since it has effect at a later stage in system execution. In Section 4
we describe how ETCH detects this error using constraint-based type inference.

ETCH detects each of these errors statically, before simulation or verification
of the model, making it easier to eliminate them.

3 Overview of ETCH

We have implemented ETCH in Java, using the compiler generation framework
SableCC [5] to generate a parser for Promela based on the grammar provided in
[6]. The type system used by ETCH is based on type systems for the π-calculus

ETCH: An Enhanced Type Checking Tool for Promela 269

[10, Chapter 6]. The core grammar which ETCH uses to represent types is as
follows:

T ::= numeric type | pid | mtype | bool basic types
| chanC channels
| μX.T recursive types

C ::= X type variables
| {T1, . . . , Tn} tuples

Array and record types are also supported, with the same restrictions as
are imposed by SPIN. In themselves they do not generate any complications
for type checking. Type checking of Promela code is performed by ETCH using
the type information included with variable declarations. Each time a channel
declaration is encountered, ETCH chooses a fresh type variable to represent the
type of messages which may be sent on the channel. Constraints on the form of
type variables are generated based on applied occurrences of channel identifiers.
A standard constraint-based type inference algorithm [1, Chapter 6] is used
to solve these constraints in order to determine values for the type variables.
Recursive channel types are introduced in order to solve constraints of the form
X = chan C where X occurs in C. We discuss constraint-based type inference
and recursive channel types in Sections 4 and 5 respectively.

Promela has a variety of numeric types representing different numeric ranges,
including a type of unsigned integers which is parameterised by the word length.
ETCH implements the natural subtyping relations, e.g. byte <: unsigned(12) <:
short <: int. For programming convenience, bit <: bool, although bool is not
related to other numeric types. By default, ETCH (like SPIN) treats the types
pid and byte as equivalent, but there is an option to regard them as different
types. This is useful in e.g. work by the first author on symmetry detection [4].

Since ETCH is not part of SPIN, any errors reported by ETCH are really just
warnings. Therefore we have taken a strict approach in deciding what constitutes
a type error. SPIN treats enumerated mtype variables and values as if they were
numeric, and thus allows mtype variables and values to be used in any context
in which numeric variables and values can be used. For example, if a, b and c
are mtype variables, SPIN allows a statement such as a = b + c. This use of
message types in an arithmetic context is usually bad practice—arithmetic on
mtype values is also disallowed in [7]—and so ETCH will report a type error in
such cases. Running ETCH on the client-server model, modified to include Error
1, results in the following error message:

Line 47: Error - the proctype "Agent" expects 2 arguments but
1 has been supplied

The message corresponding to Error 3 is:

Line 9: Error - arguments of different lengths have been used
for the same channel. Unable to unify "{mtype,chan X7}"
and "{mtype}"

270 A.F. Donaldson and S.J. Gay

Here X7 is the name of a type variable used by the type inference algorithm (see
Section 4). Error 2 generates a similar warning.

4 Constraint-Based Type Inference

Channel types are only partially specified in Promela. For example, the dec-
laration chan server = [0] of {mtype,chan}, in the client-server model of
Section 2, specifies that the second field of a message to be sent on server
should be a channel, but does not specify the type of this channel. ETCH rep-
resents channel types fully, using type-variables for types which are not known
(see the grammar for types presented in Section 3). To illustrate the approach
of constraint-based type inference used by ETCH, consider the client-server ex-
ample, modified to include Error 2. The listen and talk parameters of the
Agent proctype are assigned types chan X and chan Y respectively, since the
types of messages which they accept are not specified. The (modified) state-
ment talk!listen(hold) causes the constraint chan Y = chan{chan X, mtype}
to be stored, while the statement talk!deny(listen) causes the constraint
chan Y = chan{mtype, chan X} to be stored. Attempting to unify these con-
straints results in the constraint chan X = mtype, which cannot be unified, thus
a type error is generated.

Now consider the client-server example modified to include Error 3. Again,
listen and talk are assigned types chan X and chan Y respectively. The state-
ments talk!hold(listen) and talk!deny(listen) both result in the con-
straint chan Y = chan{mtype, chan X}. However, the (modified) statement
talk!grant results in the constraint chan Y = chan{mtype}. Unification of
these constraints fails since the tuples {mtype, chan X} and {mtype} cannot be
unified, being of different lengths.

For a more general description of constraint-based type inference, see [9,
Chapter 22]. Our implementation is based on an algorithm described by Aho et
al. [1, Chapter 6].

5 Recursive Channel Types

Consider the following Promela code: chan A = [1] of {chan,bit}; A!A,0.
The channel A accepts messages with two fields. The second field should be of
type bit, and the first must be a channel of the same type as A. This because
the channel A is sent on itself by the statement A!A,0. Thus the type of channel
A is recursive, and using standard notation, we can express the type of A as
μX.chan{X, bit}. The above Promela code fragment is legitimate, and this kind
of channel usage has been employed in realistic Promela models, e.g. a model of
a telephone system [2]. We have incorporated recursive types into ETCH. A re-
cursive type expression has infinitely many equivalent syntactic representations,
depending on where the recursive μ construct appears in the expression, and on
how far the type expression has been unfolded. A recursive type expression re-
sulting from the unification of a set of constraints may look very complex, even

ETCH: An Enhanced Type Checking Tool for Promela 271

though it is equivalent to a much shorter expression. When presenting types
to the user in type errors, it is desirable to convert recursive types into their
simplest forms. ETCH incorporates a minimisation algorithm for recursive types.
This algorithm is based on an algorithm for minimising a deterministic finite au-
tomaton [8, Chapter 2], and involves finding the largest bisimulation on a type
expression. For example, the types

μX.chan{chan{X, bit}, bit} and chan μX.{chan X, bit}
are the same, and are equivalent to the type μX.chan{X, bit}, which is the
minimal form to which ETCH converts both type expressions.

6 Conclusions and Future Work

We have presented ETCH, an enhanced type checker for Promela. ETCH extends
the capabilities of SPIN by detecting type errors in a model before simulation or
verification. Eliminating errors using ETCH results in more reliable verification
models for use with SPIN, and thus increased confidence in SPIN verifications. The
standard Promela language is handled in full by ETCH. Inline macros, not part
of the language grammar given in [6], cannot be handled at present. Extending
ETCH to handle inline macros should be straightforward. We also intend to
improve the quality of error messages arising due to errors detected by the type
inference algorithm.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers—Principles, Techniques and
Tools. Addison-Wesley, 1986.

2. M. Calder and A. Miller. Using SPIN for Feature Interaction Analysis - a Case
Study. In Proceedings of the 8th International SPIN Workshop on Model Checking
Software, LNCS 2057, pages 143–162. Springer, 2001.

3. A. F. Donaldson and S. J. Gay. ETCH Website:
http://www.dcs.gla.ac.uk/people/personal/ally/etch/.

4. A. F. Donaldson and A. Miller. Automatic Symmetry Detection for Model Check-
ing Using Computational Group Theory. In Proceedings of the 13th International
Symposium on Formal Methods, LNCS 3582, pages 418–496. Springer, 2005.

5. E. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework. In
26th Technology of Object-Oriented Languages and Systems, pages 140–154. IEEE
Computer Society Press, 1998.

6. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

7. S. Leue, R. Mayr, and W. Wei. A Scalable Incomplete Test for Message Buffer
Overflow in Promela Models. In Proceedings of the 11th International SPIN Work-
shop on Model Checking Software, LNCS 2989, pages 216–233. Springer, 2004.

8. P. Linz. An Introduction to Formal Languages and Automata. Jones and Bartlett,
1986.

9. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
10. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

Enhanced Probabilistic Verification with 3Spin and
3Murphi

Peter C. Dillinger and Panagiotis Manolios

College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30332-0280
{peterd, manolios}@cc.gatech.edu

Abstract. 3Spin and 3Murphi are modified versions of the Spin model checker
and the Murϕ verifier. Our modifications enhance the probabilistic algorithms
and data structures for storing visited states, making them more effective and
more usable for verifying huge transition systems. The tools also support a veri-
fication methodology designed to minimize time to finding errors, or to reaching
desired certainty of error-freedom. This methodology calls for bitstate hashing,
hash compaction, and integrated analyses of both to provide feedback and advice
to the user. 3Spin and 3Murphi are the only tools to offer this support, and do so
with the most powerful and flexible currently-available implementations of the
underlying algorithms and data structures.

1 Introduction

Explicit-state model checking is a popular and effective verification technique em-
ployed by numerous tools, including Murϕ, TLC, Java PathFinder, and Spin. To ame-
liorate the memory demands of state explosion, most of these tools include algorithms
that have a small probability of overlooking errors. One such probabilistic algorithm
is bitstate hashing, developed in Spin [6]. The other major probabilistic technique is
hash compaction, which was mostly developed in Murϕ [8,9] (building on previous
work [10]). We have modified these two tools into releases called 3Spin [3] and 3Mur-
phi [2] that each incorporate a set of features designed to maximize the effectiveness
and efficiency of probabilistic verification (see Table 1). This novel set of features is
utilized by our probabilistic verification methodology, which was introduced in [4] but

Table 1. This table shows the capabilities of four probabilistic explicit-state verification tools,
Murϕ 3.1, Spin 4.2.2, 3Murphi 3.2, and 3Spin 3.2

Tool Bitstate Hash Memory Hashing Feedback
hashing compaction sizes

Murϕ no yes, with any univ.+diff. H.C. omission analysis
wasted bit (probability only)

Spin enhanced yes, but powers of Jenkins B.H. recommendations
(≥ 4.2.0) inflexible 2 only (≥ 4.2.0)

3Spin, enhanced yes any Jenkins; recommendations (both algs);
3Murphi univ.+diff. omission analysis (both algs)

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 272 – 276, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Enhanced Probabilistic Verification with 3Spin and 3Murphi 273

we review here in Section 2. Sections 3 and 4 then discuss how the features of 3Spin or
3Murphi and our methodology enable the user to more efficiently reach her verification
goal while preserving all existing functionality of Spin and Murphi (respectively).

2 Methodology

In previous work [4] we describe a methodology for utilizing both bitstate hashing and
hash compaction that attempts to minimize the time to finding errors (if present) or to
reaching whatever certainty the user considers adequate to concluding that the model
satisfies the desired properties.

Bitstate hashing and hash compaction are probabilistic data structures used to repre-
sent sets. They support the standard add and query operations, but a query on an element
that is not in the set may return true, yielding a false positive. Their probabilistic na-
ture allows for memory-efficient representations of large sets, a crucial requirement for
model checkers which have to keep track of very large sets of visited states. Bitstate
hashing identifies states with a chosen number of addresses of a bit-vector; when a state
is visited the corresponding bits are set. Hash compaction stores hashed states in a table
with a fixed number of cells. Figure 1 emphasizes the key difference between the data
structures, which we expand upon in our methodology description below.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3.16228e+07 1e+08 3.16228e+08pr
ob

ab
ili

ty
 o

f a
ny

 o
m

is
si

on
s

(lo
g

sc
al

e)

Actual size of state space (log scale)

Hash compaction
Bitstate (k=24)

Supertrace (k=3) 0

 20

 40

 60

 80

 100

 3.16228e+07 1e+08 3.16228e+08

%
 o

f s
ta

te
s

om
itt

ed

Actual size of state space (log scale)

Hash compaction
Bitstate (k=24)
Supertrace (k=3)

Fig. 1. These graphs show the accuracy of three probabilistic verification tech-
niques/configurations for various state space sizes. In both graphs, lower is better. The
data points for “Hash compaction” and “Bitstate (k=24)” are obtained with data structures
optimized for a state space size of 108, using 400MB of memory. The graphs show the accuracy
of the data structures as the size of the state space varies. In both graphs, lower is better according
to the respective criterion. The left graph shows the probability that any omissions occur,
while the right graphs shows the expected percentage of states omitted. “Bitstate (k=24)” and
“Supertrace (k=3)” are instances of bitstate hashing setting 24 and 3 bits per state respectively.
“Hash compaction” shows the expected results of using 32-bit hash compaction, which in this
case has a maximum visitable size of about 105 million states. The results are obtained mostly
analytically, as in [4].

When the state space size is completely unknown, as when first attempting to ver-
ify a model, use supertrace, which is bitstate hashing configured to set a small number

274 P.C. Dillinger and P. Manolios

of bits per state, such as Holzmann’s recommendation of three. In such cases, supertrace
is the best choice because of its low percentage of omitted states over a wide range of
state space sizes (see right graph in Figure 1). Supertrace tends to find errors quickly if
they exist, but is not the most productive technique for demonstrating error-freedom [5].

When we know the size of the state space rather accurately, as when iteratively
building confidence of error-freedom in a model, use hash compaction, because of its
superior accuracy when tuned for a known state space size. The left graph of Figure 1
shows that when the actual state space size is 80–100% of the maximum size, hash
compaction is the most accurate. The graphs also show that if the table ends up far
from full (left 1/3rd of left graph) or if it overflows (right half of right graph), hash
compaction is not the best choice.

When we have a rough estimate of the state space size, as when verifying a
modified version of a previously-verified model, use bitstate hashing configured to set
a number of bits per state optimized for that estimate (shown in [4]). When that number
is significantly larger than supertrace’s 3 bits, this approach is likely to be much more
accurate. Furthermore, it can tolerate much more deviation from the estimate than hash
compaction can, because hash compaction becomes pretty useless if its table fills up.
Making a small change to a model can easily change its state space size by a factor of
2 or more, which bitstate hashing tolerates much better than hash compaction.

In the following sections, we explain how among currently-available tools, 3Spin
and 3Murphi best support this unified approach in terms of features, performance, and
ease of use.

3 Feedback

3Spin/3Murphi’s most notable feature that supports our methodology is feedback after a
verification run fails to find an error. These two are the only tools to report both omission
analysis and recommendations, and do so in both bitstate mode and hash compaction
mode.

The omission analysis uses formulas and algorithms described in previous [4] and
related work [8] to compute either a probability of omitting any states or an expected
number of states omitted [4]. In the latter case, the estimate is rough, but looking at the
connectivity of the graph allows us to report the reliability of that result. Overall, the
omission analysis helps the user understand the degree to which he can be certain the
model satisfies the desired properties.

Because the configuration of the algorithms can make a big impact on accuracy,
3Spin and 3Murphi also incorporate analyses for predicting the best settings for rever-
ifying the same (or a similar) model [4]. Pursuant to our methodology, the tools give
advice on whether to follow-up with hash compaction or with bitstate hashing, along
with recommended settings for each. The latest versions of these tools return the rec-
ommendations not in terms of low-level settings, but in terms of visitable state space
size estimates. Perhaps the greatest benefit from this new form of recommendations is
that they are not closely tied to a particular memory setting, enabling users to easily
benefit from the recommendations even if they change the memory settings.

Enhanced Probabilistic Verification with 3Spin and 3Murphi 275

As Table 1 shows, only 3Spin and 3Murphi support this rich set of feedback fea-
tures. In fact, Spin’s support for recommendations in bitstate mode is derived from
earlier versions of 3Spin.

4 Other Improvements or Features

This section discusses the rest of 3Spin/3Murphi’s core features, following Table 1 from
left to right.

Bitstate hashing. The first release of 3Spin focused on improvements to bitstate hash-
ing that have since been integrated into Spin, starting with version 4.2.0. Prior to our
work, it was believed that if memory was not terribly constrained (say 8 or more bits per
state) the bitstate hashing configuration with the best accuracy was inherently slow—too
slow to be more productive than iteratively using a suboptimal but fast configuration [6].
Our improvement [5,4] eliminates most of that overhead by reusing hash information
in an intelligent, accuracy-preserving way.

This improvement has allowed our methodology to utilize fast and accurate bitstate
hashing configurations, when one has a rough estimate of the state space size.

Hash compaction. Spin’s implementation of hash compaction is very limited. It only
supports compacted state sizes of 32 to 64 bits per state in 8 bit increments, and the
size of the table must be a power of 2 (discussed in Memory sizes below). Both limi-
tations inhibit Spin’s ability to take advantage of available memory in minimizing the
possibility of overlooking an error.

As of version 2.0, 3Spin has its own implementation of hash compaction, which has
also been put in to 3Murphi. Our implementation and Murϕ’s support all compacted
state sizes from 4 bits to 64 bits. The extent of this range is justified as follows: when
fewer than about 10 bits per state are available, bitstate hashing is superior to hash
compaction; 3Spin/3Murphi makes recommendations accordingly. On the high end,
using a compacted state size of 64 bits is so accurate that, even if the table is almost
full, the probability of any omissions is on the order of one in trillions. At this level
of accuracy, random hardware errors are probably more likely to cause error omission
than algorithmic losses.

Our implementation actually improves upon Murϕ’s (which is better than Spin’s) in
the way it determines whether a cell in the table is occupied. In addition to the memory
dedicated to the compacted state, Murϕ allocates a single-bit flag with each cell of the
compacted table to indicate whether the cell has a state stored in it. We instead reserve
the compacted state “0” to indicate that a cell is not used. As a result, we can use the
bit saved to increase the compacted state size and nearly cut in half the probability of
omitting an error when using the same amount of memory as Murϕ.

Memory sizes. An informed choice to use a probabilistic technique is motivated by
memory constraints with respect to state space size, but Spin limits the user to only
power-of-2 sizes for its probabilistic data structures. 3Spin and 3Murphi allows their
data structures to be of any size addressable on a 32-bit machine. Keep in mind that
allocating more memory to either data structure always makes it more accurate—and
the impact is significant. For example, when using 1024MB of memory for k = 21

276 P.C. Dillinger and P. Manolios

bitstate hashing on 300 million states, the search expects to omit about 20 states. Using
3Spin with 1750MB instead leads to less than a 1% chance of omitting any states. If
you also increase k to 35, there is less than 1 in 1000 chance of omitting any states.

Hashing. In the first release of 3Spin, we showed how to get more hash information
from the hash function used by Spin, the Jenkins LOOKUP2 hash function [7], with
no observable impact on coverage/accuracy. Incorporating this improvement into Spin
reduced its execution time by about 25% [5] in common scenarios, because it could
make just one call to Jenkins where it used to make two. 3Murphi adds support for this
hash function, which can be faster than Murϕ’s.

Murϕ uses a different hash function that enables an optimization called differen-
tial hashing [1]. The hash function, H3, also has the advantage of being a universal
hash function. Since version 3.0, 3Spin has included this hash function and similar
optimizations as an alternative to Jenkins, and in many cases, the differential hashing
optimization makes the universal hash function faster than Jenkins.

We include both hash functions as options in both tools because they are fundamen-
tally different: Jenkins is always competitively fast but only heuristically accurate; H3

is only heuristically fast but provably accurate.

5 Conclusion

Earlier versions of 3Spin have already made an impact by introducing features that
eventually made their way into Spin itself, and here we have introduced version 3.2
of 3Spin and its new cousin 3Murphi. These tools offer a more effective verification
environment to users of Spin and Murphi.

References

1. B. Cousin and J. Hélary. Performance improvement of state space exploration by regular and
differential hashing functions. In 6th CAV, pages 364–376, 1994.

2. P. C. Dillinger. 3Murphi Home Page. http://www.cc.gatech.edu/~peterd/3murphi/.
3. P. C. Dillinger. 3Spin Home Page. http://www.cc.gatech.edu/~peterd/3spin/.
4. P. C. Dillinger and P. Manolios. Bloom filters in probabilistic verification. In Formal Methods

in Computer-Aided Design, volume 3312 of LNCS. Springer-Verlag, November 2004.
5. P. C. Dillinger and P. Manolios. Fast and accurate bitstate verification for SPIN. In 11th

SPIN Workshop, volume 2989 of LNCS. Springer-Verlag, April 2004.
6. G. J. Holzmann. An analysis of bitstate hashing. In Proc. 15th Int. Conf on Protocol Speci-

fication, Testing, and Verification, INWG/IFIP, pages 301–314. Chapman & Hall, 1995.
7. B. Jenkins. Algorithm alley: Hash functions. Dr. Dobb’s Journal, September 1997.
8. U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction. In

CHARME, volume 987 of LNCS, pages 206–224. Springer-Verlag, 1995.
9. U. Stern and D. L. Dill. A new scheme for memory-efficient probabilistic verification. In

FORTE/PSTV, pages 333–348, 1996.
10. P. Wolper and D. Leroy. Reliable hashing without collision detection. In 5th International

Conference on Computer Aided Verification, pages 59–70, 1993.

SPLAT: A Tool for Model-Checking and
Dynamically-Enforcing Abstractions

Anil Madhavapeddy1, David Scott2, and Richard Sharp3

1 Computer Laboratory, University of Cambridge
2 Fraser Research

3 Intel Research Cambridge
avsm2@cl.cam.ac.uk, djs@fraserresearch.org, richard.sharp@intel.com

1 Introduction

Conventional software model-checking involves (i) creating an abstract model
of a complex application; (ii) validating this model against the application; and
(iii) checking safety properties against the abstract model. To non-experts, steps
(i) and (ii) are often the most daunting. Firstly how does one decide which as-
pects of the application to include in the abstract model? Secondly, how does
one determine whether the abstraction inadvertently “hides” critical bugs? Sim-
ilarly, if a counter-example is found, how does one determine whether this is a
genuine bug or just a modelling artifact?

Splat attempts to simplify the model specification and validation tasks with
a view to making model checking more accessible to regular programmers. We
provide a high-level modelling language, SPL, which enables developers to spec-
ify models in terms of allowable program events (e.g. valid sequences of received
network packets). We have implemented a compiler that translates SPL into
both Promela and a number of general purpose programming languages (e.g.
C, OCaml, Java). The generated Promela can be used with SPIN [4] in order
to check static properties of the model. The generated code provides an exe-
cutable model in the form of a safety monitor : a program which dynamically
checks whether the application’s behaviour deviates from the specified model.
A developer can link this safety monitor against their application in order to
dynamically ensure that the application’s behaviour does not deviate from the
model. If the safety monitor detects that the application has violated the model
then it logs this event and terminates the application.

Although this technique simplifies model specification and validation it is, of
course, not appropriate for all systems. For example, dynamically shutting down
a fly-by-wire control system when a model violation is detected is not an option.
However, we observe that there are a large class of applications where dynamic
termination, while not desirable, is preferable to (say) a security breach. It is
these areas in which we believe Splat can deliver real benefits.

Our work currently focusses on implementing servers for common Internet
protocols securely and correctly. None of the major industrial implementations of
protocols such as HTTP (Apache), SMTP (Sendmail/Postfix), or DNS (BIND)

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 277–281, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 A. Madhavapeddy, D. Scott, and R. Sharp

are model-checked by their development teams. All of them regularly suffer from
serious security flaws ranging from low-level buffer overflows to subtle high-level
protocol errors [2]. In this paper we describe how we used Splat in the develop-
ment of mlssh: a complex, high-performance SSH2-compliant server written in
OCaml. Our experiences in implementing mlssh lead us to believe that Splat is
accessible to regular programmers without extensive model-checking experience.

2 Discussion

To demonstrate the benefits of Splat we chose to use it in the development of
mlssh: an Objective Caml [1] SSHv2 server. SSH, currently being standardized
by the IETF [6], is a complex protocol combining transport-level encryption,
user authentication, multiplexed data channels and remote shells. We chose to
implement mlssh in Objective Caml, since the strong static-type safety, good
UNIX syscall interface, and fast native-code output were all essential to our goals
of high performance and portability.

We used the SPL language to specify sequences of network messages allowed
by the SSH protocol. SPL policies, which are written using a familiar ’C’-like
syntax, represent non-deterministic finite state automata. An SPL automaton’s
inputs are referred to as statecalls. In the case of mlssh, statecalls are generated
when certain packets are received or transmitted, or some significant computa-
tion is performed by the server (e.g. deriving a shared secret via Diffie-Hellman
key exchange). A simplified fragment of the mlssh SPL policy for the transport
layer and authentication is shown in Figure 1.

Statecalls are represented by capitalized identifiers, and SPL functions use
lower-case identifiers. Semicolons are used to specify sequencing (e.g. S1; S2
specifies that state call, S1, must occur before state call, S2). Non-deterministic
choice is represented by using the either/or construct. The always allow block
specifies out-of-band messages which are expected at any time but do not cause

automaton transport (encrypted, s_auth) {
 always_allow (Recv_ignore, Recv_debug) {
 multiple (1..) {
 either {
 Recv_kexinit; Xmit_kexinit;
 either {
 Expect_dh; (... etc)
 } or {
 Expect_gex; (... etc)
 }
 Recv_newkeys; Xmit_newkeys;
 encrypted = true;
 } or (encrypted && !s_auth) {
 Recv_serv_auth;
 Xmit_serv_auth_ok;
 service_auth = true;
 }
 }
 }
}

automaton auth (success, failed) {
 do {
 either {
 optional { Xmit_auth_banner; }
 either {
 Recv_auth_req_none;
 Xmit_auth_failure;
 } or
 Recv_auth_req_password;
 auth_decision (success);
 } or {
 Recv_auth_req_publickey;
 auth_decision (success);
 } or {
 Notify_auth_permanent_failure;
 failed = true;
 }
 } until (success || failed);
}

Fig. 1. Sample SPL fragment for an SSHv2 server

SPLAT: A Tool for Model-Checking 279

state transitions. The multiple (1..) block specifies that its body may occur
one or more times, and optional allows a block to occur at most once. Although
not in this example, SPL also supports a during/handle construct that models
asynchronous message handling (particularly useful for UNIX signal handling).
General recursion is prohibited, allowing us to statically allocate space for func-
tion arguments and return values. Internally, the Splat compiler transforms
SPL into a Control Flow Automaton (CFA) [3] representation.

There are two automata specified in Figure 1: transport and auth. The
transport automaton is parameterised over two variables: encrypted (repre-
senting that the channel has completed an initial key exchange and is encrypted)
and s auth (to indicate that the server has enabled the authentication service
to the client). The auth automaton maintains two state variables to indicate
either a successful authentication (success) or a permanent failure (failed).
The auth decision function call has been omitted for brevity.

Informally, the meaning of an SPL program is as follows. Each automaton
executes in parallel and sees every statecall. If an automaton receives a statecall
it was not expecting it reports an error. If any of the parallel automata report
an error then the SPL model has been violated.

To make the SPL more readable, each automaton, A, is surrounded by an
implicit always allow block that allows all statecalls not explicitly referenced
in A. More precisely, let Sall be the set of all statecalls referenced in the entire
SPL policy. Let S(A) be the set of all statecalls referenced in the definition of
automata A. Then A’s implicit always allow block allows statecalls in the set
Sall \ S(A).

2.1 Executable Model

In order to actually use and enforce this model in the target application, the
Splat compiler outputs a safety monitor designed to be linked directly against
the source code of the server. The safety monitor requires that the rest of the
server program cannot compromise its internal state. If this were not the case
then an attacker could (say) exploit a buffer overflow to manipulate the control-
flow of the safety monitor. In the case of mlssh, the Splat compiler generates
OCaml code with the following interface:

module Automaton = struct
exception Bad_statecall
type statecall =

|Xmit_ignore |Xmit_debug |Recv_kexinit |Xmit_kexinit (... etc)
type state
val init : unit -> state
val tick : statecall -> state -> state
val debug: string -> bool

end

This interface allows mlssh to initialize the safety monitor (via Automaton.
state), and to drive it by calling tick. If the safety monitor ever receives

280 A. Madhavapeddy, D. Scott, and R. Sharp

an invalid sequence of statecalls (passed via tick calls) then it generates the
Bad statecall exception, terminating the program.

Although we specifically describe an OCaml interface here, the compiler can
also be easily extended to other language’s type systems (e.g. Java objects),
allowing server authors to write programs in their language of choice and still
use the Splat tool-chain. In the case where languages do not make strong enough
memory-safety guarantees to protect the safety monitor from the main program
(e.g. C), the compiler outputs an automaton which runs in a separate UNIX
process [5] and stub code which allows the server to communicate with the
monitor via IPC. However, this approach is slower for more fine-grained SPL
policies, as there is significantly more overhead in performing IPC than simply
calling a function (as is the case with OCaml).

It is important to note that we do not enforce mechanisms for insertion of
tick calls in server applications. In recent years, there have been a proliferation
of languages being used for authoring Internet services (Python, Perl, Ruby,
Erlang, Java, Eiffel, C/C++, Objective C etc.). Since different languages present
such different mechanisms for writing servers, any such technique would be either
too language-specific or too general to be of use. Instead, we allow SPL automata
to be embedded into any of these languages and allow server authors to insert
ticks as they see fit. In our implementation of mlssh we used a combination
of: (i) manual tick-insertion within the server source; (ii) meta-programming
techniques to automatically introduce ticks into generated code used for low-
level packet parsing; and (iii) program slicing to automatically tick across API
boundaries (e.g. call statecalls for every function call into the crypto library).

The executable automaton is also useful for providing high-level debugging
facilities. The debug function in the OCaml interface above connects the automa-
ton to a local UNIX domain socket to which a debugger process is listening, and
transmits details about its internal states in real-time. Since the SPL specifica-
tion typically captures higher-level information about the program’s state, this
complements the native language’s debugging facilities with application-specific
data (e.g. “what SSH packets is mlssh allowed to send immediately after au-
thentication is completed?”). The automaton can also keep statistics of state
transitions between program runs, aiding optimization efforts by highlighting
“hotspots” in the server.

2.2 Promela Output

The SPL compiler transforms the SPL policy directly into Promela code, suit-
able for machine-checking using SPIN. In addition, message producer processes
are created which continuously transmit statecalls to each automata. Model-
checking this output is not very interesting beyond exhaustiveness testing to
check that all the states are reachable. However, the programmer can specify
additional LTL assertions which must hold for the SPL policy as a whole. These
LTL assertions are checked by SPIN, and any counter-examples are translated by
the compiler back into SPL line numbers (which were added to each state in the
CFA by the compiler). In the code snippet shown previously, some LTL asser-

SPLAT: A Tool for Model-Checking 281

tions used are: (i) encrypted ⇒ �encrypted and (ii) s auth ⇒ �encrypted.
These indicate that when encryption is enabled, it must remain enabled for the
lifetime of the session. Similarly, when the authentication service is activated,
encryption must always be enabled from then on.

Although the LTL assertions are currently specified outside of the SPL spec-
ification, we are currently integrating support for the assertions into the SPL
grammar, thus allowing them to be dynamically enforced in the executable au-
tomaton in the event that a model-checker is not available in the local build
environment.

The LTL assertions provide the programmer with a very useful mechanism
for determining whether the often informal intuitions about their server actually
hold true in their SPL model. For instance, UNIX signal handlers are a common
source of errors due to their extremely asynchronous nature; since they can easily
be expressed in SPL via a during/handle clause, the programmer can include
them in LTL assertions and more formally check those intuitions.

3 Tool Demonstration

In our tool demonstration, we intend to show the Splat tool-chain as used in the
mlssh SSHv2 protocol server, along with a simple debugger which demonstrates
the state transitions graphically in real-time. In addition, we will show how LTL
assertions help the programmer enforce invariants that are currently informally
mandated by the SSH specification. Finally, we hope to gather feedback from
the model-checking community, as we plan to release Splat under a BSD-style
license to encourage broader open-source adoption of model-checking techniques
across multiple languages and coding styles.

References

1. X. Leroy at al. Objective Caml. http://caml.inria.fr/.
2. CERT Coordination Center (CERT/CC). CERT knowledgebase.

http://www.cert.org/kb/.
3. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C. Necula, Gregoire

Sutre, and Westley Weimer. Temporal-safety proofs for systems code. In Proceedings
of the 14th International Conference on Computer-Aided Verification, pages pp.
526–538. Lecture Notes in Computer Science 2404, Springer-Verlag, 2002.

4. Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual
title. Pearson Educational, 2003.

5. Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation.
In Proceedings of the 12th USENIX Security Symposium, August 2003.

6. Bill Sommerfeld. IETF Secure Shell Working Group (secsh).
http://ietf.org/html.charters/secsh-charter.html.

Learning-Based Assume-Guarantee Verification
(Tool Paper)

Dimitra Giannakopoulou1 and Corina S. Păsăreanu2

1 RIACS
2 QSS, NASA Ames, Moffett Field, CA 94035-1000, USA

{dimitra, pcorina}@email.arc.nasa.gov

1 Introduction

Despite significant advances in the development of model checking, it remains
a difficult task in the hands of experts to make it scale to the size of industrial
systems. A key step in achieving scalability is to “divide-and-conquer”, that is,
to break up the verification of a system into smaller tasks that involve the ver-
ification of its components. Assume-guarantee reasoning [9, 11] is a widespread
“divide-and-conquer” approach that uses assumptions when checking individual
components of a system. Assumptions essentially encode expectations that each
component has from the rest the system in order to operate correctly. Coming
up with the right assumptions is typically a non-trivial manual process, which
limits the applicability of this type of reasoning in practice.

Over the last few years, we have developed a collection of techniques and
a supporting toolset, for performing assume-guarantee reasoning of software in
an automated fashion. Our techniques are applicable both at the level of design
models, and at the level of actual source code. In the heart of these techniques lies
a framework that uses an off-the-shelf learning algorithm for regular languages,
namely L* [1], to compute assumptions automatically.

The rest of the paper is organized as follows. Section 2 is a high-level descrip-
tion of our techniques for learning-based assume-guarantee reasoning of software.
Section 3 discusses the tool support for our techniques and experimental results
obtained from the application of our approach to some industrial size case stud-
ies, and we conclude the paper with Section 4.

2 Learning-Based Assume-Guarantee Reasoning

Analysis of Finite State Models. At the design level, our techniques target
models described as labeled transition systems (LTSs) with blocking communi-
cation. We check safety properties expressed as finite state machines that de-
scribe the legal sequences of actions that a system can perform. We reason about
assume-guarantee formulas 〈A〉M〈P 〉, where M is a component, P is a property
and A is an assumption on M ’s environment. The formula is true if whenever
M is part of a system that satisfies A, then the system must also guarantee P .

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 282–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning-Based Assume-Guarantee Verification 283

1 : 〈A1〉M1〈P 〉
2 : 〈true〉M2〈A1〉

〈true〉M1 ‖ M2〈P 〉

1 : 〈A1〉M1〈P 〉
2 : 〈A2〉M2〈P 〉
3 : C(A1, A2, P)

M1 ‖ M2 |= P

1..n : 〈Ai〉Mi〈P 〉
n + 1 : C(A1, · · · An, P)

〈true〉M1 ‖ · · · ‖ Mn〈P 〉
(a) (b) (c)

Fig. 1. Assume-guarantee rules

Our framework is equipped with a collection of assume-guarantee rules which
are sound and complete [2]. Incomplete rules can also be incorporated. The
simplest (non-symmetric) assume guarantee rule (see Figure 1 (a)) establishes
that property P holds for the composition of two models M1 and M2. In [6], we
present an approach that uses this rule to perform assume-guarantee reasoning
in an incremental and fully automatic fashion. The approach iterates a process
based on gradually learning an assumption that is strong enough for M1 to
satisfy P but weak enough to be an abstraction of M2’s behavior.

The framework also handles symmetric rules [2]. These rules are instances of
the rule pattern presented in Figure 1 (b). C(A1, A2, P) represents some logical
condition that involves the two assumptions and the property. For example, an
instance of this rule states as the third premise that A1 ‖ A2 |= P . Here A1
and A2 denote the complement automata. Intuitively, this premise ensures that
the possible common traces of M1 and M2, which are ruled out by the two
assumptions, satisfy the property.

The approach extends to reasoning about n components. For the
non-symmetric rule, we can decompose the system into two parts M1 and M ′

2 =
M2 ‖ · · · ‖ Mn, and apply the approach recursively for checking Premise 2. The
generalization for symmetric rules follows the pattern of Figure 1 (c); its use
in the context of learning-based assume-guarantee verification is illustrated in
Figure 2.

The input models M1, ..., Mn are created by the user or extracted from
source code, using automated abstraction techniques, as discussed later in this
section. At each iteration, L* generates approximate assumptions A1, ... An.
Model checking is then used to determine whether 〈Ai〉Mi〈P 〉 holds for each
i = 1..n. If the result of any of these checks is false, then L* uses the returned
counterexample to refine the corresponding assumption. The refinement process
iterates until we obtain assumptions that are appropriate for showing that the
first n premises hold. The last premise is then checked to discharge the assump-
tions; if it holds, then, according to the compositional rule, M1 ‖ · · · ‖ Mn |= P .
Otherwise, the obtained counterexample is analyzed to see if it corresponds to
a real error, or it is spurious, in which case it is used to refine the assumptions.
The counterexample analysis is performed component wise.

For finite state systems, the iterative learning process terminates and it yields
minimal assumptions [6]. In our experience, the generated assumptions are usu-
ally orders of magnitude smaller than the analyzed components, and the cost
of learning-based assume-guarantee verification is small as compared to non-
compositional model checking. This is often the case for well designed software,

284 D. Giannakopoulou and C.S. Păsăreanu

LTSA Editor

source code:
C ... C1 n

Assumption
Learning

M ... M 1 n

M ... M 1 n

Assumption
Learning

Assumption
Learning

A1 2A A n

> M1A1 <P>< A2 <P>> M2< An > M <P>n<

true true true

true
M || ... || Mn1

P holds in
1 2 nC(A , A , ..., A , P)

M || ... || M1 n

P does not hold in
Analysis

Counterexample

false

...

Extraction
Model

models:

models:

false falsefalse

Learning−based Assume−guarantee Verification

refine models

refine assumptions

refine

Fig. 2. Learning based assume-guarantee verification

where the interfaces between components are usually small. However, there may
be cases where no single rule or no particular system decomposition yields small
assumptions. Our framework partially alleviates this problem, by providing a col-
lection of rules that the user can select and experiment with. The decomposition
is still a manual process.

Analysis of Source Code. Assume first a top-down software development
process, where one creates and debugs design models, which are then used to
guide the development of source code (possibly in a (semi-) automatic way by
code synthesis). In such a setting, the assumptions created at the design level
can be used to check source code in an assume guarantee style, as presented
in [8].

For cases where design models are not available, we have recently extended
our framework with a component for model extraction from source code (see
Figure 2). The framework is iterative: extracted models are analyzed in an
assume-guarantee style, and when the analysis detects spurious errors due to
the abstraction of the source code, the models are refined automatically. The
extended framework advocates a clear separation between model extraction and
model analysis, which facilitates the incorporation of existing well-engineered
tools into it. For example, we have integrated our framework with the Magic
tool that extracts finite-state models from C code using automated predicate
abstraction and refinement [4]. Other tools that build finite-state models of soft-
ware could also be used (e.g. Bandera for Java [7]).

3 Tool Support

Implementation. The techniques presented in the previous section have been
implemented in the context of the LTSA tool [10]. The LTSA supports model
checking of a system based on its architecture. It features graphical display,
animation and simulation of LTSs (see Figure 3). Its input language “FSP” is

Learning-Based Assume-Guarantee Verification 285

Fig. 3. LTSA GUI including Assume-Guarantee Plugin

a process-algebra style notation with LTS semantics. The LTSA has an extensible
architecture which allows extra features to be added by means of plugins [5].

Our initial learning framework [6] was implemented within the core of the
LTSA tool. This implementation is efficient because it can directly manipulate
the internal data structures of the LTSA. However, such a solution is not sus-
tainable, because it is hard to synchronize our code development with that of
the LTSA. For this reason, we proceeded by implementing our extensions to the
LTSA as the Assume-Guarantee plugin.

The Assume-Guarantee plugin extends the LTSA with a menu and a tab
(see Figure 3). The menu provides options for analyzing Design Models and
Source Code (uses Magic to extract models), and for selecting assume-guarantee
rules. For the case of design models, all the processes in the specification are
displayed in the tab, so that the user may select which components and properties
participate in an assume-guarantee proof. For source code, these choices are
currently hard-coded, but we intend to improve on this in the future.

Note that, at the design level, there is a significant performance overhead
incurred by the plug-in implementation, which is not present in the original,
non plug-in implementation. This is due to the fact that plug-ins communicate
with the LTSA by placing FSP descriptions of LTSs in the Edit tab. In the
future, we expect the LTSA developers to expose LTSs as objects which will
enable us to do a more efficient implementation.

Experience. Within a project at NASA Ames, we have applied our techniques
to the design and code of the K9 Rover Executive. The design models consist of
approximately 700 lines of FSP code. The code we analyzed is about 7K lines
of Java, translated from 10K lines of C++ code. Some results are shown in the
tables below (monolithic refers to non-compositional verification).

We have also applied our integrated tool-set with the Magic model extractor
to the verification of various safety properties of OpenSSL version 0.9.6c which
has about 74,000 lines of C code. Our approach achieved two orders of magnitude
space reduction when compared to Magic’s non-compositional analysis [3]. Sym-
metric rules did consistently better than the non-symmetric one in this example.

286 D. Giannakopoulou and C.S. Păsăreanu

Iteration |Ai| States Transitions

1 1 294 1,548
2 2 269 1,560
3 3 541 3,066
4 5 12 69
5 6 474 2,706

Application of learning to the design of the K9
Rover Executive. Global state space: 3,630 states
and 34,653 transitions. Largest state space com-
puted by our approach: 541 states and 3,066 tran-
sitions (iteration 3). We achieve an order of mag-
nitude space reduction.

System States Transitions Memory Time

Monolithic 183,132 425,641 952.85Mb 12m,24
Premise 1 53,215 117,756 255.96Mb 4m,49
Premise 2 13,884 20,601 118.97Mb 1m,16

Checking K9 code with JPF
[12]. Use of design assumptions
with the rule in Fig. 1 (a) yields
a 3-fold space reduction.

4 Conclusions and Future Work

We presented a framework and its associated tool for learning-based assume-
guarantee verification of software models and implementations. Our experience
so far indicates that the approach has the potential of scaling to industrial size
applications, especially when combined with abstraction.

Our tool is extensible: new assume-guarantee rules can be easily incorporated,
and alternative tools for model extraction can be interfaced with it. Moreover,
our framework is general; it relies on standard features of model checking, and
could therefore be introduced in other model checking tools. For example, Magic
has recently been extended to directly support learning-based assume guarantee
reasoning [3]. We are also planning an implementation of our framework for the
Spin model checker, in the context of a new NASA project.

Acknowledgements

We thank Howard Barringer and Jamieson Cobleigh for their contributions to
our techniques and Sagar Chaki for helping with the Magic integration.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, Nov. 1987.

2. H. Barringer, D. Giannakopoulou, and C. S. Păsăreanu. Proof rules for automated
compositional verification through learning. In Proc. SAVCBS Workshop, 2003.

3. S. Chaki, E. Clarke, D. Giannakopoulou, and C. Păsăreanu. Abstraction and
assume-guarantee reasoning for automated software verification. RIACS TR 05.02,
October 2004.

4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE TSE, 30(6):388–402, June 2004.

5. R. Chatley, S. Eisenbach, and J. Magee. Magicbeans: a Platform for Deploying
Plugin Components. In Proc. of Component Deployment (CD 2004).

Learning-Based Assume-Guarantee Verification 287

6. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions
for compositional verification. In Proc. of 9th TACAS, pages 331–346, Apr. 2003.

7. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Păsăreanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In ICSE’00.

8. D. Giannakopoulou, C. S. Păsăreanu, and J. M. Cobleigh. Assume-guarantee ver-
ification of source code with design-level assumptions. In Proc. of ICSE 2004.

9. C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. on Prog. Lang. and Sys., 5(4):596–619, Oct. 1983.

10. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. John Wiley
& Sons, 1999.

11. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and models of concurrent systems, pages 123–144, 1985.

12. W. Visser, K. Havelund, G. Brat, and S.-J. Park. Model checking programs. In
Proc. of the Fifteenth IEEE Int. Conf. on Auto. Soft. Eng., pages 3–12, Sept. 2000.

Author Index

Barros, Tomás 154
Bošnački, Dragan 91

Cadar, Cristian 2
Cheng, Yung-Pin 139
Cook, Byron 75
Couvreur, Jean-Michel 169

Dill, David L. 28
Dillinger, Peter C. 272
Donaldson, Alastair F. 266
Duret-Lutz, Alexandre 169

Engler, Dawson 2
Evangelista, Sami 43

Garćıa, Iván 123
Gates, Ann 200
Gay, Simon J. 266
Giannakopoulou, Dimitra 282

Henrio, Ludovic 154
Henzinger, Thomas A. 25
Holzmann, Gerard J. 24, 91

Jhala, Ranjit 25
Jones, Michael 251

Khan, Abdul Sahid 221
Khurshid, Sarfraz 123
Kneiphoff, Tobias 236
Kroening, Daniel 75
Krumm, Heiko 236

Leue, Stefan 58
Levin, Vladimir 106
Luttik, Bas 185

Madelaine, Eric 154
Madhavapeddy, Anil 277
Majumdar, Rupak 25
Manolios, Panagiotis 272
Mehlitz, Peter 27
Mercer, Eric 251
Mondragon, Oscar 200
Mukund, Madhavan 221
Musuvathi, Madanlal 28

Palmer, Robert 106
Poitrenaud, Denis 169
Pradat-Peyre, Jean-François 43
Păsăreanu, Corina S. 282

Qadeer, Shaz 106

Rajamani, Sriram K. 106
Roach, Steve 200
Rothmaier, Gerrit 236
Ruys, Theo C. 24

Salamah, Salamah 200
Scott, David 277
Sharp, Richard 277
Sharygina, Natasha 75
Suen, Yuk Lai 123
Suresh, S.P. 221

Trčka, Nikola 185

Visser, Willem 27

Wagner, David 1
Wei, Wei 58

	Frontmatter
	Invited Talks/Papers
	Pushdown Model Checking for Security
	Execution Generated Test Cases: How to Make Systems Code Crash Itself

	Invited Tutorials
	Effective Bug Hunting with Spin and Modex
	The BLAST Software Verification System
	Model Checking Programs with Java PathFinder

	State Representation and Abstraction
	An Incremental Heap Canonicalization Algorithm
	Memory Efficient State Space Storage in Explicit Software Model Checking
	Counterexample-Based Refinement for a Boundedness Test for CFSM Languages

	Dealing with Concurrency
	Symbolic Model Checking for Asynchronous Boolean Programs
	Improving Spin's Partial-Order Reduction for Breadth-First Search
	Sound Transaction-Based Reduction Without Cycle Detection

	Dealing with Complex Data
	Repairing Structurally Complex Data
	Crafting a Promela Front-End with Abstract Data Types to Mitigate the Sensitivity of (Compositional) Analysis to Implementation Choices
	Behavioural Models for Hierarchical Components

	Checking Temporal Properties
	On-the-Fly Emptiness Checks for Generalized B\"{u}chi Automata
	Stuttering Congruence for χ
	Verifying Pattern-Generated LTL Formulas: A Case Study

	Checking Security and Real-Time Properties
	Generic Verification of Security Protocols
	Using SPIN and Eclipse for Optimized High-Level Modeling and Analysis of Computer Network Attack Models
	Model Checking Machine Code with the GNU Debugger

	Tool Papers
	E{\sc tch}: An Enhanced Type Checking Tool for Promela
	Enhanced Probabilistic Verification with 3Spin and 3Murphi
	SPLAT: A Tool for Model-Checking and Dynamically-Enforcing Abstractions
	Learning-Based Assume-Guarantee Verification (Tool Paper)

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

