
On Approximating Real-World Halting Problems

Sven Köhler2, Christian Schindelhauer1, and Martin Ziegler3

1 Heinz Nixdorf Institute, University of Paderborn
schindel@uni-paderborn.de

2 University of Paderborn
skoehler@uni-paderborn.de

3 University of Southern Denmark
ziegler@imada.sdu.dk

Abstract. No algorithm can of course solve the Halting Problem, that is, decide
within finite time always correctly whether a given program halts on a certain
given input. It might however be able to give correct answers for ‘most’ instances
and thus solve it at least approximately. Whether and how well such approxima-
tions are feasible highly depends on the underlying encodings and in particular
the Gödelization (programming system) which in practice usually arises from
some programming language.

We consider BrainF*ck (BF), a simple yet Turing-complete real-world pro-
gramming language over an eight letter alphabet, and prove that the natural enu-
meration of its syntactically correct sources codes induces a both efficient and
dense Gödelization in the sense of [Jakoby&Schindelhauer’99]. It follows that
any algorithm M approximating the Halting Problem for BF errs on at least a
constant fraction εM > 0 of all instances of size n for infinitely many n.

Next we improve this result by showing that, in every dense Gödelization,
this constant lower bound ε to be independent of M; while, the other hand, the
Halting Problem does admit approximation up to arbitrary fraction δ > 0 by an
appropriate algorithm Mδ handling instances of size n for infinitely many n. The
last two results complement work by [Lynch’74].

1 Introduction

In 1931, the logician KURT GÖDEL constructed a mathematical predicate which could
neither be proven nor falsified. In 1936, ALAN TURING introduced and showed the
Halting Problem H to be undecidable by a Turing machine. This was considered a
strengthening of Gödel’s result regarding that, at this time and preceding AIKEN’s
Mark I and ZUSE’s Z3, the Turing machine was meant as an idealization of an aver-
age mathematician.

Nowadays the Halting Problem is usually seen from a quite different perspective.
Indeed with increasing reliance on high speed digital computers and huge software
systems running on them, source code verification or at least the detection of stalling
behaviour becomes even more important. In fact, by RICE’s Theorem, this is equiva-
lent to many other real-world problems arising from goals like automatized software
engineering, optimizing compilers, formal proof systems and so on. Thus, the Halting
problem is a very practical one which has to be dealt with some way or another.

M. Liśkiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 454–466, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Approximating Real-World Halting Problems 455

One direction of research considered and investigated the capabilities of extended
Turing machines equipped with some kind of external device solving the Halting prob-
lem. While the physical realizability of such kinds of super-Turing computers is ques-
tionable and in fact denied by the Church-Turing Hypothesis, the current field of Hy-
percomputation puts in turn this hypothesis into question. On the theoretical side, these
considerations led to the notion of relativized computability and the Arithmetical Hier-
archy which have become standard topics in Recursion Theory [Soar87].

1.1 Approximate Problem Solving

Another approach weakens the usual notion of algorithmic solution from strict to ap-
proximate or from worst-case to average case. The first arises from the fact that many
optimization problems are N P -complete only if requiring the solution to exactly attain
the, say, minimum whereas they become computationally much easier when asking for
a solution only within a certain factor of the optimum.

Regarding decision problems, a notion of approximate solution has been established
in Property Testing [Gold97]. Here for input x ∈ Σn, the answer “x ∈ L” is considered
acceptable even for x �∈ L provided that y ∈ L holds for some y ∈ Σn with (edit or Ham-
ming) distance d(x,y) ≤ εn. Observe that this notion of approximation strictly speaking
refers to the arguments x to the problem rather than the problem L itself. Also, any
program source x is within constant distance from the terminating one y obtained by
changing the first command(s) in x by a halt instruction.

Average case analysis is an approach based on the observation that the hard in-
stances which make a certain problem difficult might occur only rarely in practice
whereas most ‘typical’ instances might turn out as easy. So, although for example N P -
complete, an algorithm would be able to correctly and efficiently solve this problem in,
say, 99.9% of all cases while possibly failing on some few and unimportant others. In
this example, ε = 1/1000 is called the error rate of the problem under consideration
with respect to a certain probability distribution or encoding of its instances.

Such approaches have previously been mainly applied in order to deal with impor-
tant problems where the practitioner cannot be silenced by simply remarking that they
are N P -complete, that is, within complexity theory. However the same makes sense,
too, for important undecidable problems such as Halting: even when possibly erring
on, say, every 10th instance, detecting the other 90% of stalling programs would have
prevented many buggy versions of a certain operation system from being released pre-
maturely.

1.2 The Error Complexity

So instead of deciding some (e.g., hard or even non-recursive) problem L, one is sat-
isfied with solving some problem S which approximates L in the sense that the sym-
metric1 set difference A := L � S := (L \ S) ∪ (S \ L) is ‘small’. For L ⊆ Σ∗ (with
an at least two-letter alphabet Σ) this is formalized, analogously to the error com-
plexity from average analysis, [JaSc99, DEFINITION 1] as the asymptotic behavior of
µ{x̄ ∈ (L � S)|x̄ ∈ Σn} for a fixed probability measure µ : Σ∗ → [0,1]; if this quantity

1 The error to the Halting problem can in fact be made one-sided, see Corollary 22 below.

456 S. Köhler, C. Schindelhauer, and M. Ziegler

tends to 0 as n → ∞ it basically means that, for (µ-) average instances, S ultimately
equals L. In the case of µ denoting the counting measure, this amounts [Papa95, §14.2,
p.336],[RoUl63] to the following

Definition 1. For A ⊆ Σ∗, let density(A,=n) := #(A ∩Σn)/#Σn and
density(A,<n) := #(A ∩Σ<n)/#(Σ<n) where Σ<n =

⋃n−1
j=0 Σ j .

For A ⊆ N, let Density(A,N) := #(A ∩{0, . . . ,N − 1})/N.

The latter formalization has been considered independently in [RoUl63, Lync74]2 for
approximating decision problems L ⊆ N. The notions are related as follows:

Lemma 2. For x ∈ N, let x̄ denote the x-th string in Σ∗ ordered with respect to length
(ties broken arbitrarily). For A ⊆ N, Ã := {x̄ : x ∈ A}, and 0 ≤ ε ≤ 1 it holds:
a) density(Ã,=n) ≤ ε ∀n ⇒ density(Ã,<n) ≤ ε ∀n.
b) Density(A,N) ≤ ε ∀N ⇒ density(Ã,<n) ≤ ε ∀n.
c) density(Ã,<n) ≤ ε ∀n ⇒ Density(A,N) ≤ ε′ ∀N where ε′ := ε · (2 − ε).

Taking complements yields similar claims for reversed inequalities “≥ ε”.

Since 0 < ε′ < 1 whenever 0 < ε < 1 in b+c), both densities are essentially equivalent up
to constants in that one tends to 0/1 iff so does the other. This allows us to deliberately
switch in the sequel between A ⊆ Σ∗ encoded over one alphabet Σ (say, the decimals
{0,1, . . . ,9}) and its re-coding over some other (e.g., binary or hexadecimal) finite Σ′.

Proof (Lemma 2). a) is obvious; for b) observe density(Ã,<n) = Density
(
A,#(Σ<n)

)
.

This also establishes c) in case N = #(Σ<n) = #Σn−1
#Σ−1 with #(A ∩{0, . . . ,N − 1}) ≤ ε ·

#(Σ<n), whereas the worst-case occurs for N = #(Σ<n)+ ε ·#Σn with #(A∩{0, . . . ,N −
1}) = ε ·#(Σ<n)+ ε ·#Σn. Then and thus,

Density(A,N) ≤
ε · #Σn+1−1

#Σ−1
#Σn−1
#Σ−1 + ε ·#Σn

= ε ·
(

1 +(1 − ε) · #Σ− 1

#Σ− 1
#Σn

)

≤ ε ·
(
1 +(1 − ε)

)

��

For a good approximation S of L, one wants the density of A = L � S to eventually drop
below some prescribed ε; that is satisfy, e.g., ∃n0 ∀n ≥ n0 : density(A,n) ≤ ε.

Definition 3. An inequality “ f (n) ≤ g(n)” depending on n ∈ N holds almost ev-
erywhere, denoted by “f (n) ≤ae g(n)”, iff ∃n0∀n ≥ n0 : f (n) ≤ g(n).
It holds infinitely often (“f (n) ≤io g(n)”) iff ∀n0∃n ≥ n0 : f (n) ≤ g(n).

So if “density(A,n) ≤ae ε” fails, one may try for the weaker “density(A,n) ≤io ε”.

1.3 The Halting Problem

The halting problem is defined with respect to an (often implicitly chosen) program-
ming system. Here we follow the notation of [Roge67, Soar87, Smit94].

Definition 4. A Gödelization ϕ is a sequence of all partial recursive functions s.t.

– there exists a partial universal program u with ϕu(〈i,x〉) = ϕi(x) (UTM)

2 We are considerably grateful to an anonymous referee for pointing out the work of N. LYNCH.

On Approximating Real-World Halting Problems 457

– and a total program s with ϕs(〈i,x〉)(y) = ϕi(〈x,y〉) (SMN)
– for a bijective computable function 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ or 〈·, ·〉 : N×N → N.

called pairing function. The Halting problem for ϕ is Hϕ={〈i,x〉 : x ∈dom(ϕi)}.

The Halting problem is sometimes alternatively defined as the task H̃ϕ of deciding
whether a given program i terminates on the empty input, that is, whether λ ∈ dom(ϕi);
or the question whether i ∈ dom(ϕi). Based on RICE’s Theorem, all three versions can
be reduced to one another and are thus equivalent from the point of view of strict com-
putability but in generally not concerning approximations; see Example 24.

Similarly, strict undecidability of Hϕ holds independently of the underlying pro-
gramming system whereas a change in ϕ may sensitively affect its error complexity. In
fact one can artificially ‘blow up and pad’ any Gödelization to obtain one where already
a constant answer yields exponentially small error to the Halting problem [Lync74,
PROPOSITION 1]. While the Padding Lemma of Recursion Theory asserts any pro-
gramming system to repeat each computable function an infinite number of times, these
repetitions should occur in a ‘balanced’ way for the Gödelization to be reasonable.

Definition 5. Gödelization ϕ is dense iff ∀i ∃c > 0 : density
(
{ j : ϕi = ϕ j},n

)
≥ae c.

Another influence to the complexity of the Halting problem arises from the pairing func-
tion under consideration. Again, in order to avoid trivial approximations, we restrict
to pairing functions which are pair-fair in the sense of [JaSc99, DEFINITION 5] and
recall that for instance the standard pairing 〈x,y〉 = x+ (x+y)(x+y+1)

2 satisfies this condi-
tion. It has been proven that, under these natural restrictions, every heuristic claiming
to solve the Halting problem makes at least a constant fraction of errors:

Theorem 6 ([JaSc99, THEOREM 4]). Let R EC denote the class of recursive
languages and ϕ a dense Gödelization. Then ∀S ∈ R EC ∃ε > 0 : density(Hϕ � S,n)
≥ae ε.

1.4 Own and Related Contributions

Observe that the lower approximation bound ε in Theorem 6 may in general depend on
S; it seems thus still conceivable that Hϕ admits an approximation scheme in the sense
that better and better algorithms achieve smaller and smaller error densities. In fact the
question whether or not there exists a universal constant lower bound was open for half
a decade [JaSc99, bottom of p. 402].

The present paper gives both a positive and a negative answer to this question:

Theorem 7. For any dense Gödelization ϕ it holds
a) ∃ε > 0 ∀S ∈ R EC : density(Hϕ � S,n) ≥io ε.
b) ∀ε > 0 ∃S ∈ R EC : density(Hϕ � S,n) ≤io ε.

This complements [Lync74, PROPOSITION 6]5 where ae- rather than io-approximation
is considered. In addition, our work differs from [Lync74] in treating the Halting prob-
lem Hϕ with inputs as opposed to H̃ϕ; see the discussion following Definition 4. Thirdly,
we consider dense programming systems whereas [Lync74, p.147] requires them to be
optimal in the sense of [Schn75] — a strictly6 stronger condition:

458 S. Köhler, C. Schindelhauer, and M. Ziegler

Lemma 8. Any optimal Gödelization ϕ is dense according to Definition 5.

Proof. Start with some dense Gödelization ϕ′. In ϕ, fix an arbitrary index i ∈ N. Thus
ϕi = ϕ′

i′ for some i′ ∈ N. ϕ′ being dense, the set J′ := { j′ : ϕ′
i′ = ϕ′

j′ } has Density(J′,N)
≥ae c for some c > 0. By definition of optimality there exists C ∈ N and to each j′ some
j ≤ C · j′ such that ϕ j = ϕ′

j′ . Hence, Density({ j : ϕi = ϕ j},N) ≥ae c/C. ��

The above differences (Hϕ rather than H̃ϕ, dense rather than optimal Gödel numberings)
to [Lync74] are due to our interest in the Halting problem as arising in practice, that is,
for real programming languages; see Sections 1.5 and 2. We focus on mere computabil-
ity of according approximations; in particular our work is not related to the restricted
Halting problem — Given (i,t), does Turing machine #i terminate after ≤ t steps? —
considered in [Mach78, SECTION 6.1] for complexity purposes.

1.5 Omega Numbers

Approximations to the Halting problem have been treated by encoding H into a single
real r ∈ R and then considering computational approximations to this r. A first encoding
goes back to [Spec49] in terms of the number x[H] = ∑n∈H 2−n whose binary digits are
obviously not decidable but semi-decidable, i.e., any 1 can be verified within finite time.

CHAITIN’s Omega-Number [Chai87, LiVi97] gives another way of encoding the
entire Halting problem into a single real ΩU = ∑x̄∈dom(U) 2−|x̄| where U denotes
a universal Turing machine which is required to be self-delimiting. This implies by
KRAFT’s inequality that ΩU ≤ 1 can be interpreted as the probability for U to termi-
nate upon input of a random program. ΩU is considered ‘denser’ and more difficult
to approximate than x[H] because its binary digits are not even semi-decidable; see,
e.g., [LiVi97, CHKW01]. At first, it has therefore received noticable attention when
[CDS01] did succeed in determining the first 64 bits of ΩU .

However this approximation had been significantly simplified by the observation
that, for the specific U considered in [CDS01], an overwhelming fraction of all in-
stances do not contain a halt instruction at all and thus stall trivially. In other words,
those program sources arising in practice form only a very sparse subset within the
programming system treated there. In order to avoid such trivialities and instead ob-
tain meaningful results about the possibility or impossibility of approximations to the
Halting problem, we now present:

2 A Particularly Compact, Practical Dense Programming System

Concerning the applicability of Theorem 6, its prerequisite is satisfied by every Turing-
complete programming language over alphabet Σ with some kind of end-of-string (eof)
indicator. More generally it holds:

Example 9. Let ϕ = (ϕx̄)x̄∈Σ∗ denote a Gödelization which is self-delimiting in the sense
that, whenever ϕx̄ does not identically diverge, it holds ϕx̄ = ϕx̄◦ȳ for all ȳ. Then, ϕ
is dense. This includes, for arbitary Gödelization ψ = (ψn)n∈N

, the ‘tally’3 re-coding

3 See [Book74]. Also, this dense Gödelization is obviously non-optimal in the sense of
[Schn75].

On Approximating Real-World Halting Problems 459

ϕ1n0 := ψn, ϕ1n0x̄ := ψn for x̄ ∈ {0,1}∗, ϕx̄ :≡ ⊥ for x̄ ∈ {1}∗ .

While a special symbol 〈eof〉 may always be added to Σ, we consider this cheating.
Also from the practical side, compilers for programming languages nowadays rely on
the end-of-file being indicated by the operating system (e.g., via feof) as opposed to the
out-dated detection of characters like nul, ˆD, or ˆZ. In the present section we analyze
and establish a practical, non-self delimiting programming language to be dense.

2.1 The BF Programming Language

BF (‘BrainF*ck’) was designed in 1993 by URBAN MÜLLER and has since then spread
the Internet for its shrewd simplicity [Wiki05]. It is a Turing-complete programming
language over the eight letter alphabet ΣBF = { < , > , + , - , , , . , [,] }. The
first six characters represent commands, the remaining two brackets are used to con-
struct simple loops.

A BF-program stores data on a tape similar to that of a Turing-Machine. Each cell
of the tape may contain an integer between 0 and 255, that is, one byte. The current
cell may be incremented using + and decremented with - ; (incrementing 255 will
result in 0, decrementing 0 will result in 255). Other cells can be accessed by moving
the read/write-head either to the left < or to the right > . Initially, all cells are set to
0. The two commands , and . are for input and output: , will fetch a byte from
the input stream and store it into the current cell; . appends the byte in the current
cell to the output stream.

Loops are formed by putting commands inbetween the two bracket symbols [

and] . Each time the loop is about to be executed, the current cell is checked whether
it contains a value other than 0. If so, the loop is executed again. The commands in
the loop are skipped, if the current cell was 0. Note, that after each round of the loop,
another cell could have been made current by the commands within the loop.

Definition 10. Let BFn ⊆ Σn
BF denote the set of strings p̄ of length n representing a

syntactically correct BF source code and BF =
⋃

n BFn.

Observe that the syntax of this programming language is quite simple, the only require-
ment being that opening and closing brackets are nested correctly.

Remark 11. BF is sometimes refered to with a fixed tape of 30.000 cells size. How-
ever the level of standardization is not very advanced yet. In order to obtain a Turing-
complete system, we shall assume an unbounded tape.

2.2 Naive Encoding of BF

This straight-forward idea takes BF source codes as Gödel indices:

Definition 12. For p̄ ∈ Σ∗
BF, let ψ p̄ denote the function obtained by interpreting p̄ as

source code for some BF program; ψ p̄ :≡ ⊥ in case p̄ lacks syntactical correctness.

However, closer analysis reveals that this programming system is not dense:

460 S. Köhler, C. Schindelhauer, and M. Ziegler

Theorem 13. Let BFn := |BFn| denote the number of correct BF-sources of length n.

a) BFn+1 = 6 ·BFn + ∑n−1
i=0 BFi ·BFn−1−i.

b) BFn = ∑n/2
k=0 Ck ·

(n
2k

)
·6n−2k, where Ck = 1

k+1 ·
(2k

k

)
denotes CATALAN’s number.

c) (n + 3) ·BFn+1 = (12n + 18) ·BFn − 32n ·BFn−1.

d) BFn+1 ≤ 8 ·BFn.

e) BFn ≤ O(8n/
√

n).

Thus among all 8n strings p̄ ∈ Σn
BF, the fraction of syntactically correct sources tends to

zero, permitting for Hψ a trivial O(1√
n)-approximation.

Proof. a) A syntactically correct BF program of length n + 1 either consists of one
(out of 6 possible) non-loop character followed by an, again syntactically correct,
program of length n; or, in case it begins with the loop character [, it consists of
a loop (whose body is a syntactically correct program of length i for some i < n)
followed by some other syntactically correct source of length n − 1 − i.

b) Consider the collection BFn,k ⊆ BFn of BF programs p̄ ∈ Σn
BF of length n with

0 ≤ k ≤ n/2 occurrences of [or, equivalently, of] . Then,Ck equals the number
of correct ways of nesting 2k brackets [Bail96]. Any p̄ ∈ BFn,k can be obtained in
a unique way by choosing 2k out of n positions in p̄ for placing these brackets and
by filling each of the remaining n − 2k positions independently with one out of the
6 non-bracket characters in ΣBF.

c) follows from a) and b) by induction.
d) Claim c) immediately yields BFn+1 ≤ c0 · BFn by induction, where c0 := 12. Re-

peated application of c) establishes a sequence of improved bounds BFn+1 ≤ ck ·
BFn ∀n with (ck) decreasing down to 8.

e) Combining c+d), obtain BFn+1 ≤ 8 ·
n + 9

4

n + 3
· BFn ≤ 8n ·

n

∏
i=1

i+ 9
4

i+ 3
,

n
∏

i=−2

i+ 9
4

i+3 =
n+3
∏
j=1

j− 3
4

j ≤
n+3
∏
j=1

j− 1
2

j ,
(n

∏
j=1

2 j−1
2 j

)2 ≤
(n

∏
j=1

2 j−1
2 j

)
·
(n

∏
j=1

2 j
2 j+1

)
= 1

2n+1

��

2.3 Compact Encoding of BF

Regarding Theorem 13, a dense programming system based on BF better avoids enu-
merating syntactically incorrect sources. This leads to the following

Definition 14. Define ϕN to denote the function computed by the N-th syntactically
correct BF program p̄N. More formally, let BF be ordered primarily with respect to
length n and secondarily according to the enumeration given by recursive application
of Theorem 13a), that is, by first listing the 6 ·BFn programs starting with no loop and
then listing, recursively and for each i = 0 . . .n−1, the loop bodies and loop tails as BF
sources of length i and n − 1 − i, respectively.

Although this programming system is not self-delimiting, it holds:

Theorem 15. The Gödelization ϕ from Definition 14 is dense.

We emphasize that this is by no means a consequence of syntactical correctness alone!

On Approximating Real-World Halting Problems 461

Proof. Fix a partial recursive function computed by some BF source p̄ ∈ BF m of length
m = |p̄|. For n ≥ m+ 2, we construct BFn−m−2 equivalent programs p̄′ ∈ BFn. To this
end preced p̄ with a loop, i.e., let p̄′ := [◦ q̄ ◦] ◦ p̄ for an arbitrary syntactically
correct source q̄ of length n − m − 2. Since, upon start of execution, the current cell is
initialized to 0, this loop gets skipped anyway and p̄′ thus behaves like p̄, indeed. The
thus obtained sources p̄′ constitute, in relation to BFn and by Theorem 13d), a fraction

BFn−m−2

BFn
≥ BFn−m−2

8m+2 ·BFn−m−2
= 8−m−2 =: c > 0

among all programs of length n ≥ n0 := m+ 2. Now proceed as in Lemma 2c). ��

Conversion between BF sources and Gödel indices is a central part of efficient (rather
than merely computable) SMN- and UTM-properties according to Definition 4. A naive
approach enumerates all strings p̄ ∈ Σn

BF and counts the syntactically correct ones in
order to obtain p̄N . This, however, gives rise to exponential time in logN. The following
result improves to running time polynomial in the input size, that is, |p̄| or logN:

Theorem 16. Given a program p̄ = p̄N ∈ BFn of length n, one can calculate its index
N ∈ N according to Definition 14 within time O(n3 · logn · loglogn). Conversely, from
N, the according p̄N is computable using O(n3 · logn · loglogn) steps where n = logN.
Both algorithms use memory of size O(n2). See also http://www.upb.de/cs/bf

To conclude, the Gödelization introduced in this section is practical, efficient, and
dense. It even seems plausible to satisfy the stronger condition of optimality; recall
Lemma 8. To this end one might establish a sparse SMN-property for BF as required in

Lemma 17. Let ϕ = (ϕ p̄)p̄∈Σ∗ denote a Gödelization and SMN-function s : Σ∗ × Σ∗ →
Σ∗ according to Definition 4 satisfying |s(p̄, x̄)| ≤ c(p̄) + |x̄| for all p̄, x̄ ∈ Σ∗ with
arbitrary c : Σ∗ → N. Then, ϕ is optimal in the sense of [Schn75].

Proof. Fix some other Gödelization Φ. Consider its UTM-function ΦU and let u′ denote
the index of ΦU in ϕ; i.e., ∀x̄ ∈ Σ∗ : ΦP̄(x̄) = ΦU (〈P̄, x̄〉) = ϕu′(〈P̄, x̄〉) = ϕ p̄(x̄)
where p̄ := s(u′, P̄) has by prerequisite length |p̄| ≤ c(u′)+ |P̄| = c0 + |P̄|. ��

3 The Error Complexity of Dense Programming Systems

In the last section we showed that a natural encoding of BF is dense. From Theorem 6
it follows that every algorithm A trying to solve the Halting problem of such a dense
programming system errs on at least a constant fraction εA > 0. This constant fraction
εA > 0 may depend on the algorithm A and can be arbitrarily small. In this section we
will show that there is a universal constant ε0 > 0 lower bounds the error made by any
heuristic trying to approximate the Halting problem for a dense Gödelization.

3.1 Halting Ratio

A straight-forward implication of Theorem 6 is that neither nearly all programs halt nor
do nearly all of them stall. This is formalized as follows:

462 S. Köhler, C. Schindelhauer, and M. Ziegler

Definition 18. Call hϕ : N �→ Density
(
{〈i,x〉 : x ∈ dom(ϕi)},N

)
the halting ratio.

Like ΩU (see Section 1.5), hϕ describes a probability for a random instance to halt.

Corollary 19. For every dense Gödelization ϕ, ∃c > 0 : c ≤ae hϕ ≤ae 1 − c.

Proof. Consider two indices i, j with dom(ϕi) = Σ∗ and dom(ϕ j) = /0. Because of the
dense programming system and the pair-fair pairing, these indices alone induce a con-
stant fraction of halting and non-halting indices. ��

It seems desirable, again similarly to Section 1.5, to investigate the real number rϕ :=
limn→∞ hϕ(n). However in many cases hϕ fails to converge:

Example 20. Take any programming system ψ = (ψi)i∈N
and define ϕ = (ϕI)I∈N

by

ϕ = (ψ1, ψ2,ψ2,ψ2,ψ2, , ψi,ψi,ψi, . . . ,ψi,ψi,
︸ ︷︷ ︸

ii times

.) .

Obviously ϕI behaves identically for all I within a block arising from the same ψi. Since
the size ii of such a block dominates by far those of all previous blocks together, namely

Ni = 1+4+ . . .+(i−1)i−1 ≤ (i−1)0+(i−1)1+ . . .+(i−1)i−1 = (i−1)i−1
i−2 ≤ 1

i−2 · ii,
a) termination of ψi determines whether hϕ(Ni) is (arbitarily close to) 1 or 0.

In particular, hϕ is an oscillating function and fails to converge for N → ∞.
b) As infinitely many instances of Hψ are undecidable, so is almost every entire block

of Hϕ. In particular, ∀ε > 0 ∀S ∈ R EC : Density(Hϕ � S,N) ≥io 1 − ε.
c) On the other hand, S := /0 ∈ R EC satisfies ∀ε > 0 : Density(Hϕ � S,N) ≤io ε.

Indeed, each of the infinitely many i corresponding to stalling instances of Hψ yields
an entire block of them in Hϕ, dominating Density(Hϕ,Ni + ii) ≤ 1

i−2 as above. ��

With the last two properties, this specific Gödelization concretizes the REMARK on top
of p.147 in [Lync74]. Compare them to io-approximations of arbitrary dense program-
ming systems according to Theorem 7.

3.2 Relation Between Two Approximations

Consider the question of approximating the function hϕ : N → Q. This is related to the
approximation of the Halting problem in the sense of Section 1.2 as follows:

Lemma 21. Fix Gödelization ϕ with Halting problem H = Hϕ and halting ratio h = hϕ.

a) Given N ∈ N, ε ∈ Q, and b ∈ Q with |b − h(N)| ≤ ε, one can compute a list H ′
N ⊆

H ∩{0,1, . . . ,N − 1} of halting instances satisfying Density(H � H ′
N ,N) ≤ ε.

b) Let S ⊆ N be arbitrary. Given N ∈ N and ε ∈ Q such that Density(H � S,N) ≤ ε,
an S-oracle machine can compute b ∈ Q with |b − h(N)| ≤ ε.

In particular for this ϕ and any ε>0, the Halting problem Hϕ can ae be ε-approximated
iff the halting ratio hϕ can ae be ε-approximated; analogously for approximating io.

Proof. a) Recursively enumerate elements x ∈ H ∩{0,1, . . . ,N − 1} until having ob-
tained a collection H ′

N ⊆ H of cardinality #H ′
N ≥ (b − ε) ·N.

On Approximating Real-World Halting Problems 463

b) By repeatedly quering the oracle S for all finitely many x ∈ {0,1, . . . ,N − 1}, cal-
culate the number b := #(S ∩{0,1, . . . ,N − 1})/N. ��

Corollary 22. Fix computable f : N → Q and recursively enumerable L ⊆ N admit-
ting (ae/io) an f (N)-approximation with two-sided error. Then L can (ae/io) be f (N)-
approximated with one-sided error.

Proof. W.l.o.g. L = Hϕ = H for some ϕ. Let S ⊆ N denote a recursive two-sided f (N)-
approximation of H. Upon input of x, compute ε := f (N), N ≥ |x|; then obtain an
approximation b ∈ Q for h(N) by virtue of Lemma 21b), observing that oracle queries
to S can be decided by presumption. Then apply Lemma 21a) to get a some H ′

N ⊆
H ∩{0, . . . ,N −1} with Density(H � H ′

N ,N) ≤ ε, i.e., one-sided ε-approximation. ��

3.3 Approximating the Halting Ratio

We now reveal that the Halting ratio of a dense programming system infinitely often
admits a well approximation and infinitely often it does not.

Lemma 23. Fix a dense programming system ϕ.
a) For all ε > 0, there exists a TM M such that |M(n)− hϕ(n)| ≤io ε .

b) There exists ε > 0 such that all TMs M have |M(n)− hϕ(n)| ≥io ε .

Proof. a) For fixed ε > 0 consider k := �1/ε� and the k + 1 constant (trivially com-
putable) functions 0, 1

k , 2
k , 3

k , . . . ,1. For every input length n, at least one of these val-
ues differs from hϕ(n) ∈ [0,1] by at most ε. A second application of pidgeon-hole’s
principle yields that some of these constant functions is close to hϕ for infinitely
many n.

b) For a fixed rational ε > 0 (whose actual value we determine later) we assume ϕi(n)
for some i ∈ N is a candidate for computing hϕ(n).
Now an algorithm A computes on input z ∈ Σn the following. First it computes
b = ϕn(n) as an approximation to hϕ(n) on input z = 〈i,x〉 ∈ Σn. Let f1(z) = i
and f2(z) = x be the decoding functions of z = 〈i,x〉. Let i∗ be an index of A.
According to the Recursion Theorem, A may know its own index and ε ∈ Q. Then
the algorithm simulates all inputs to Hϕ of length n in parallel step by step until
(b−ε)|Σ|n strings y ∈ Σn have been found with f2(y) ∈ dom(ϕ f1(y)) and f1(y) �= i∗.
Let s denote this number of halting inputs 〈i,x〉 ∈ Σn with i �= i∗ found by A. If
s ≥ (b − ε)|Σ|n then the algorithm halts, else the algorithm does not halt.
There is a chance that the algorithm does not halt before this last condition, which
means that n �∈ dom(ϕn) or less than (b − ε)|Σ|n strings of length n corresponding
to halting instances exist. In both cases ϕn was proven not to compute hϕ within the
error margin ε.
Recall that i∗ is an index for algorithm A and that the repetition rate of i∗ is con-
stant. The diagonalization argument is that all inputs 〈i∗,x〉 will result in a(i∗,n) :=
|{〈i∗,x〉 ∈ Σn}| additional halting inputs of length n compared to (b− ε)|Σ|n where
ϕn predicted at most (b + ε)|Σ|n halting instances. For large enough n, this number
a(i∗,n) is lower bounded by Ω(|Σ|n), i.e. ∃c > 0 : ∀aen : a(i∗,n) > c|Σ|n, because
of the pair-fair property of 〈·, ·〉.

464 S. Köhler, C. Schindelhauer, and M. Ziegler

Now if s ≥ (b − ε)|Σ|n then there are at least (b − ε + c)|Σ|n halting instances for
almost all input lengths n where ϕn(n) is a candidate for hϕ(n). Note that there
are infinite many equivalent machines n1,n2, . . . , with ϕni = ϕn. For ε < c/2 this
implies that ϕn errs infinitely often on these inputs of length ni with an error margin
of at least ε (which can be determined independent from n).
Therefore for all machines M = ϕn there are infinitely many input lengths n such
that M(n) does not approximate hϕ(n) by an additional error term of ε. ��

3.4 The Halting Problem is ae-hard and io-easy

Combining Lemma 21 and Lemma 23 establishes the already announced

Theorem 7. For any dense Gödelization ϕ it holds
a) ∃ε > 0 ∀S ∈ R EC : density(Hϕ � S,n) ≥io ε.
b) ∀ε > 0 ∃S ∈ R EC : density(Hϕ � S,n) ≤io ε.

This solves the open problem stated in [JaSc99] for the case of dense programming
system. In particular, it shows that the dense encoding of BF from Section 2.3 provides
a natural hard problem which cannot be approximated better than up to a constant factor.

Furthermore, Theorem 7 nicely complements [Lync74, PROPOSITION 6]. Observe
that Claim b) there only seems to be stronger than our Theorem 7a) because of the
more restrictive presumption that the Gödelization ϕ under consideration be optimal in
the sense of [Schn75] rather just dense.

In addition, [Lync74] refers to the Halting problem as termination of ϕi on the spe-
cial input i (that is, in our notation, to H̃ϕ; see Definition 4) whereas we treat the more
general and practically relevant Hϕ, i.e., termination of ϕi on given input x. Although
both problems are equivalent with respect to exact computability, their behaviour con-
cerning approximations differs significantly. This can be observed already in the proof
of Lemma 23b) which heavily relies on the described algorithm A’s behaviour to depend
on (the length of) its input. More explicitly, we have the following

Example 24. Consider the dense tally Gödelization ϕ in Example 9. There, any ψn

gives rise to an asymptotic 2−n−1-fraction of equivalent instances ϕx̄. Thus, storing the
solutions to Hψ for the first N inputs ψ1, . . . ,ψN allows for ae answering correctly a
fraction εN = ∑N

n=1 n ·2−n−1 of instances to H̃ϕ with εN → 1 as N → ∞.

4 Conclusion

Since the Halting problem is of practical importance yet cannot be solved in the strict
sense, we considered the possibility of approximating it. Similarly to the average-case
theory of complexity, this depends crucially on the encoding of the problem, that is
here, the programming system under consideration.

Many practical programming languages lacking density in fact do admit such an
approximation with asymptotically vanishing relative error for the simple reason that
the fraction of syntactically incorrect instances tends to 1. This was exemplified by a
combinatorial analysis of the Turing-complete formal language BF. Here and in similar

On Approximating Real-World Halting Problems 465

cases, the question for approximation the Halting problem is equivalent to a mere syntax
check and thus becomes trivial and vain.

On the other hand, considering only syntactically correct sources was established to
yield an efficient and dense programming system in the case of BF. For any such system,
we proved a universal constant lower bound on relative approximations to the Halting
problem even in the weak io-sense. Our third contribution establishes that, conversely,
any constant relative error ε > 0 is io feasible by an appropriate machine M.

Question 25. Is there some optimal (but necessarily non-dense) programming system
ϕ whose Halting problem Hϕ satisfies the following even stronger inapproximability
property similar to [Lync74, PROPOSITION 2]

∀S ∈ R EC ∀ε > 0 : density(Hϕ � S,n) ≥io 1 − ε or even ≥ae 1 − ε ?

Observe that [Lync74, PROPOSITION 6] reveals the answer to be negative concerning
the Halting problem H̃ϕ without input which, regarding Example 24, tends to be strictly
easier to approximate than Hϕ anyway.

Another open problem, it remains whether BF leads in Section 2.3 to an even opti-
mal (rather than just dense) Gödelization; cf. Lemma 8. Furthermore it is conceivable —
although by no means obvious — that the programming system Jot by C. BARKER is
dense as well; see http://ling.ucsd.edu/˜barker/Iota/#Goedel.

References

[Bail96] D.F. BAILEY: “Counting Arrangements of 1’s and -1’s”, pp.128–131 in Mathemat-
ics Magazine vol.69 (1996).

[Book74] R.V. BOOK: “Telly languages and complexity classes”, pp.186–193 in Information
and Control vol.26:2 (1974).

[CDS01] C.S. CALUDE, M.J. DINNEEN, C.-K. SHU: “Computing a Glimpse of Random-
ness”, pp.361–370 in Experimental Mathematics vol.11:3 (2001).

[CHKW01] C.S. CALUDE, P. HERTLING, B. KHOUSSAINOV, Y. WANG: “Recursively enumer-
able reals and Chaitin Ω numbers”, pp.125–149 in Theoretical Computer Science
vol.255 (2001).

[Chai87] G.J. CHAITIN: Algorithmic Information Theory, Cambridge University Press
(1987).

[Gold97] O. GOLDREICH: “Combinatorial property testing (a survey)”, pp.45–59 in Proc.
DIMACS Workshop in Randomized Methods in Algorithm Design (1997).

[JaSc99] A. JAKOBY, C. SCHINDELHAUER: “The Non-Recursive Power of Erroneous Com-
putation”, pp.394–406 in Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 1999), Springer LNCS vol.1738.

[Koeh04] S. KÖHLER: “Zur Approximierbarkeit des Halteproblems in einer praktischen
Gödelisierung”, Bachelor’s Thesis, University of Paderborn (2004).

[LiVi97] M. LI, P. VITÁNI: An Introduction to Kolmogorov Complexity and its Application,
2nd Edition, Springer (1997).

[Lync74] N. LYNCH: Approximations to the Halting Problem, pp.143–150 in J. Computer and
System Sciences vol.9 (1974).

[Mach78] M. MACHTEY, P. YOUNG: An Introduction to the General Theory of Algorithms,
The Computer Science Library (1978).

466 S. Köhler, C. Schindelhauer, and M. Ziegler

[Papa95] C.H. PAPADIMITRIOU: Computational Complexity, Addison-Wesley (1995).
[Roge67] H. ROGERS JR: Theory of Recursive Functions and Effective Computability, Mc-

Graw Hill (1967).
[RoUl63] G.F. ROSE, J.S. ULLIAN: “Approximation of Functions on the Integers”, pp.693–

701 in Pacific Journal of Mathematics vol.13:2 (1963).
[Schn75] C.P. SCHNORR: “Optimal Enumerations and Optimal Gödel Numberings”, pp.182–

191 in Mathematical Systems Theory vol.8:2 (1975).
[Smit94] C. SMITH: A Recursive Introduction to the Theory of Computation, Springer (1994).
[Soar87] R.I. SOARE: Recursively Enumerable Sets and Degrees, Springer (1987).
[Spec49] E. SPECKER: “Nicht konstruktiv beweisbare Sätze der Analysis”, pp.145–158 in

J. Symbolic Logic vol.14:3 (1949).
[Wiki05] http://wikipedia.org/wiki/BrainFuck; Wikipedia, the free encyclopedia

(2005)

	Introduction
	Approximate Problem Solving
	The Error Complexity
	The Halting Problem
	Own and Related Contributions
	Omega Numbers

	A Particularly Compact, Practical Dense Programming System
	The BF Programming Language
	Naive Encoding of BF
	Compact Encoding of BF

	The Error Complexity of Dense Programming Systems
	Halting Ratio
	Relation Between Two Approximations
	Approximating the Halting Ratio
	The Halting Problem is ae-hard and io-easy

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

