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Abstract. We understand selection by intersection as distinguishing
a single element of a set by the uniqueness of its occurrence in some
other set. More precisely, given two sets A and B, if A ∩ B = {z},
then element z ∈ A is selected by set B. Selectors are such families
S of sets B of some domain that allow to select many elements from
sufficiently small subsets A of the domain. Selectors are used in com-
munication protocols for the multiple-access channel, in implementa-
tions of distributed-computing primitives in radio networks, and in algo-
rithms for group testing. We give new explicit (n, k, r)-selectors of size

O(min
[
n, k2

k−r+1
polylog n

]
), for any parameters r ≤ k ≤ n. We es-

tablish a lower bound Ω(min
[
n, k2

k−r+1
· log(n/k)

log(k/(k−r+1))

]
) on the length

of (n, k, r)-selectors, which demonstrates that our construction is within
a polylog n factor close to optimal. The new selectors are applied to
develop explicit implementations of selection resolution on the multiple-
access channel, gossiping in radio networks and an algorithm for group
testing with inhibitors.

1 Introduction

Selection by intersection means distinguishing a single element of a set as the
only element of some other set. More precisely, given a subset A ⊆ X of a finite
domain X , element z ∈ A is selected by a set B ⊆ X when A ∩ B = {z}.

The power of such a selection is often considered in quantitative terms, which
translate into efficiency in applications. A natural parameter to consider is the
size of sets A from which we select. A family S of subsets of X is called k-selective,
following Chlebus et al. [4], if we can select an element from any subset A ⊆ X
of size |A| ≤ k by a set in S. Families S that are useful in application, because
of their selection-related properties, are typically parametrized by the size n of
the domain X , and we want the number k to be close to n, while keeping the
size of S small. Additionally, we may want to have many elements z ∈ A to be
selected, for any A ⊆ X of size k.
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This is captured by the following definition. Let n, k and r be positive integers
so that r ≤ k ≤ n. Let S be a family of subsets of [n] = [1..n]. We say that S
is an (n, k, r)-selector if, for each set A ⊆ [n] of size |A| = k, there are at least
r elements in A that can be selected from A by sets in S.

The name “selectors” was coined by De Bonis, G ↪asieniec and Vaccaro [13]
in the context of their work on group testing. Their definition of selectors is
in terms of binary matrices and corresponds to certain generalized superim-
posed codes. The notion of a selector generalizes many popular combinato-
rial structures. Among them there are (n, k)-selective families, introduced by
Chlebus et al. [4], which are (n, k, 1)-selectors in selector terminology. Objects
called simply (n, k)-selectors by Chrobak, G ↪asieniec and Rytter [7] correspond
to (n, 2k, 3k/2)-selectors. Finally, (n, k)-strongly-selective families introduced by
Clementi, Monti and Silvestri [11] are nothing but (n, k, k)-selectors. Such
(n, k, k)-selectors are closely related to (k − 1)-cover-free families, in the hyper-
graph terminology [23], and to superimposed codes [17,24]. See Section 2 for an
overview of the related combinatorics and matrix representations.

Selection by intersection is a notion that occurs in many disguises in combina-
torial settings and in algorithmic and communication applications. Selectors can
be applied in deterministic conflict resolution in multiple-access channels [3,25],
in broadcasting and gossiping algorithms for ad-hoc radio networks [1,4,7,12,26]
and in deterministic algorithms for group testing [13,14,15,16]. Related combina-
torial structures called radio synchronizers are directly applicable in algorithms
for waking up radio networks [5,6,20] and to implement distributed-computing
primitives in radio networks [5,6], like leader election and synchronization of
local clocks.

Combinatorial structures used in implementations of algorithms as part of
their code are said to be explicit when there are algorithms that produce them
in time that is polynomial in the size of the output.

Our Results. The contributions are summarized as follows.

I. We construct explicit (n, k, r)-selectors of size O(min
[
n, k2

k−r+1 polylog n
]
),

for any configuration of parameters r ≤ k ≤ n. The design involves explicit
dispersers. This result extends the ranges of two previously known explicit
constructions. One is that of explicit superimposed codes of n codewords
of length O(min[ n, k2 log2 n ] ) that are k-disjunct. This is the classical de-
sign by Kautz and Singleton [24]. The codes can be interpreted as (n, k, k)-
selectors of size given by the length of codewords. The other is that of
explicit (n, k, 3k/4)-selectors of size O(k polylog n) given by Indyk [22].

II. We show that the length of an (n, k, r)-selector has to be Ω(min
[
n, k2

k−r+1 ·
log(n/k)

log(k/(k−r+1))

]
). This demonstrates that the above mentioned explicit con-

struction is within a polylog n factor close to optimal.
III. The new selectors are applied to obtain the following specific applications:

(i) an explicit oblivious solution to a variant of a static selection problem
for the multiple-access channel, (ii) an explicit implementation of gossiping
in radio networks, and (iii) an algorithm for group testing with inhibitors.
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Previous Work. Selectors generalize many kinds of families of finite sets, and
the work on special cases of selectors has been motivated by either purely combi-
natorial interests, as in the case of cover-free families, or by applications of combi-
natorics, as in group testing and in communication in the multiple-access channel
and ad-hoc radio networks. We summarize briefly the known facts about upper
and lower bounds on the size of selectors, and on explicitness of known selectors.
Existence of small selectors: Komlós and Greenberg [25] showed that there are
(n, k, 1) selectors of size O(k log(n/k)). Dyachkov and Rykov [18] showed that
there exist (n, k, k)-selectors of size O(k2 log n); see [19,23] for a simple proof and
also [16] for a detailed account of existential upper bounds for superimposed
codes. De Bonis, G ↪asieniec and Vaccaro [13] showed that there exist (n, k, r)-
selectors of size O(

k2

k−r+1 log(n/k)
)
.

Lower bounds on size of selectors: Clementi, Monti and Silvestri [11] showed that
(n, k, 1)-selectors have to be of size Ω(k log(n/k)). Lower bounds on (n, k, r)-
selectors with r close to k are stronger. In particular, (n, k, k)-selectors obey a
lower bound Ω(min[ n, k2 log n/ log k ]) on their size. The first component n in
this bound follows from the observation that a family of all n singletons is an
(n, k, k)-selector for any k ≤ n. This lower bound was first showed by Dyachkov
and Rykov [17] in a slightly weaker form Ω(ck · n), where ck = Θ(k2/ log k). It
was rediscovered by Chaudhuri and Radhakrishnan [2] in a stronger form k2 ln n

100 ln k

for k ≤ n1/3, which was later improved by Clementi, Monti and Silvestri [11]
who showed that the constant 100 can be replaced by 16, for k ≤ √

2n. See
also [16] for a detailed account of lower bounds for superimposed codes. De
Bonis, G ↪asieniec and Vaccaro [13] gave a general lower bound Ω

(
min

[
n, (r−1)2

k−r+1 ·
log(n/(k−r+1))

log((r−1)/(k−r+1))

])
on the size of (n, k, r)-selectors.

Explicit constructions: Explicit (n, k, k)-selectors of size O(min[ n, k2 log2 n ]) were
given by Kautz and Singleton [24]. Indyk [22] was the first to observe a rela-
tion between selectors and dispersers. He gave explicit (n, k, 3k/4)-selectors of
size O(min[ n, k polylog n ]). Clementi et. al [10] explicitly constructed (n, k, 1)-
selectors of size O(min[ n, k log k log(n/k) ]).

Explicit graphs with good expansion properties, on which we rely in our
constructions, were given by Ta-Shma, Umans and Zuckerman [28].

Structure of This Document. Section 2 discusses interrelations between se-
lection, in the sense of obtaining singleton sets as intersections, and superimposed
coding. Section 3 describes the construction of explicit selectors with a matching
lower bound. Section 4 discusses applications in the areas of multiple-access chan-
nel, radio networks and group testing. We conclude with a discussion in Section 5.

2 Selection and Superimposed Coding

Given a finite domain of size �, or simply [1..�], a subset A can be uniquely
represented by its binary characteristic vector of length �: an occurrence of 1 in
position i means that number i belongs to A. This allows to represent families of



Almost Optimal Explicit Selectors 273

subsets of a finite domain as binary two-dimensional arrays. This may be defined
in two ways, depending on the role of rows and columns. A representation is
called primal when rows represent elements of the domain and columns represent
subsets. A representation is called dual when columns represent elements of the
domain and rows represent subsets. In the literature on selection in families of
sets and on superimposed codes, the primal representation is typically used.

2.1 Selection by Intersection

Selection of elements of a finite set can be defined in terms of binary matrices as
follows: for a subset A of the domain, represented as a set of rows, row z ∈ A is
selected by a column if there is exactly one occurrence of 1 in this column among
the rows in A and this occurrence is at row z.

Let B be an n × m binary array. It represents, in a primal way, m subsets
of set [1..n]. Array B is an (n, k, 1)-selector of size m if for any set A ⊆ [1..n]
of rows of B, where |A| = k, there is a column with exactly one occurrence of 1
among the rows in A. In general, array B is an (n, k, r)-selector of size m if for
any set A ⊆ [1..n] of rows of B, where |A| = k, there are at least r columns with
exactly one occurrence of 1 among the rows in A.

A dynamic adversarial component, in binary arrays representing families of
subsets of a finite domain, is added by a possibility to have rows shifted. By
this we mean that the distance of a shift is at most the original number of
columns and the obtained array has new entries filled with zeroes. We say that
an array B has good synchronization properties when, for any set A of rows of
a sufficiently small size, some column selects a single row among the rows in A
after these rows have been shifted by arbitrary distances. When we want to be
able to select against such adversaries from all sets A of size |A| = k, then B
could be called k-synchronizing, following [5,6,20].

This synchronization terminology is motivated by the application in the
multiple-access channel with collision detection we describe next. It was first
considered by G ↪asieniec, Pelc and Peleg [20]; see [3] for a detailed exposition of
this model of communication. The model has the following properties. A single
transmission by an attached station is heard by all stations. More than one si-
multaneous transmissions interfere with one another, and none can be heard by
the stations, but the stations receive a feedback notifying them of the interfer-
ence. Suppose there are n stations, some k of which wake up spontaneously and
immediately start attempts to broadcast a message to all. The first successful
transmission wakes up the whole network and allows to synchronize local clocks.
A schedule of transmissions, for a station, is specified as a binary sequence. An
occurrence of 1 as the i-th bit represents a transmission in the i-th step according
to the local clock.

We say that a binary n × m array B is a (n, k)-synchronizer of length m if
for any nonempty set A ⊆ [1..n] of rows of size at most k, and for any shifts of
rows in A, there is a column that selects exactly one (shifted) row in A. Such
synchronizers were defined by Chrobak, G ↪asieniec and Kowalski [6] in the context
of their work on the problems of wake-up, leader election and synchronization
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of local clocks in multi-hop radio networks. This notion was also implicitly used
by G ↪asieniec, Pelc and Peleg [20] in their work on waking up a multiple-access
channel. The fastest known algorithm to wake up a multi-hop radio networks,
given by Chlebus and Kowalski [5], uses universal synchronizers, which are arrays
with properties stronger than those of radio synchronizers.

A construction of a (n, n)-synchronizers of length O(n1+ε), for any constant
ε > 0, was given by Indyk [22]; it can be performed in a quasi-polynomial time
O(2polylog n). Chlebus and Kowalski [5] described explicit (n, k)-synchronizers of
a length O(k2 polylog n).

Radio synchronizers have the properties of selective families. It follows that
(n, k)-synchronizers have to be of lengths Ω(k log(n/k)). Using the probabilistic
method, G ↪asieniec, Pelc and Peleg [20] showed that there are (n, n)-synchronizers
of a length O(n log2 n), and Chrobak, G ↪asieniec and Kowalski [6] showed that
there are (n, k)-synchronizers of a length O(k2 log n).

2.2 Superimposed Coding

Superimposed codes are typically represented as binary arrays, with columns
used as binary codewords. Take an a× b binary array with the property that no
boolean sum of columns in any set D of d = |D| columns can cover a column not
in D. This is a superimposed code of b binary codewords of length a each that is
d-disjunct. When columns are representing sets, then d-disjunctness means that
no union of up to d sets in any family of sets D could cover a set outside D.

A book by Du and Hwang [16] provides a contemporary exposition of super-
imposed coding and its relevance to nonadaptive group testing. There is a natu-
ral correspondence between such codes and strongly selective families, which we
give for completeness sake. Using this correspondence, the explicit superimposed
codes given by Kautz and Singleton [24] can be interpreted as (n, k, k)-selectors
of size O(k2 log2 n).

The correspondence is obtained by using the representations, primal and
dual, of families of sets as boolean arrays. Take a (n, k)-strongly-selective fam-
ily S, that is, an (n, k, k)-selector, of some length m. This means there are m sets
in S, and the domain is of size n. A dual boolean representation of S is an m×n
binary array A. Let us interpret this array in the primal way. This representation
yields a superimposed code: it consists of n codewords of length m each. Observe
that this code is (k − 1)-disjunct. To show this, suppose, to the contrary, that
some (k − 1) columns of a set C of columns can cover column x of A. Then the
columns in C ∪ {x} represent a subset of [1..n] of size k. By the property of S
being a strongly selective family, there is a row in A with an occurrence of 1 in
column x and only occurrences of 0 in columns in C. This means that column x
is not covered by the columns in C, which is a contradiction. A reasoning in the
opposite direction is similar.

Generalizations of superimposed codes can be proposed, which correspond to
(n, k, r)-selectors being a generalization of (n, k)-strongly-selective families. This
was already done by Dyachkov and Rykov [17]. De Bonis and Vaccaro [14,15]
considered such generalizations in the context of their work on group testing.
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Similar, but more restricted, generalized superimposed codes were considered by
Chu, Colbourn and Syrotiuk [8,9] in their work on distributed communication
in ad-hoc multi-hop radio networks.

3 Explicit Selectors

We show how to construct (n, k, r)-selectors of size O(min
[
n, k2

k−r+1 polylog n
]
),

for any configuration of parameters r ≤ k ≤ n, in time polynomial in n. The
construction is by combining strongly selective families with dispersers. Strongly
selective families are (n, k, k)-selectors. We show how to use dispersers to decrease
the third parameter r in (n, k, r)-selectors while also gracefully decreasing the
size of the family of sets.

If r ≤ 3k/4 then we can use the construction of an (n, k, 3k/4)-selector given
by Indyk [22]. Assume that r > 3k/4. Let 0 < ε < 1/2 be a constant.

A bipartite graph H = (V, W, E), with set V of inputs and set W of outputs
and set E of edges, is a (�, d, ε)-disperser if it has the following two properties:

Dispersion: for each A ⊆ V such that |A| ≥ �, the set of neighbors of A
is of size at least (1 − ε)|W |.

Regularity: H is d-left-regular.

Let graph G = (V, W, E), where |V | = n, |W | = Θ((k − r + 1)d/δ), be a
(k− r + 1, d, ε)-disperser, for some numbers d and δ. (The amount log δ is called
the entropy loss of this disperser.) An explicit construction of such graphs, that
is, in time polynomial in n, was given by Ta-Shma, Umans and Zuckerman [28],
for any n ≥ k ≥ r, and some δ = O(log3 n), where d = O(polylog n) is a bound
on the left-degrees.

Let M = {M1, . . . , Mm} be an explicit (n, cδ k
k−r+1 )-strongly-selective family,

for a sufficiently large constant c > 0 that will be fixed later, of size m =
O(min

[
n, δ2( k

k−r+1 )2 log2 n
]
), as constructed by Kautz and Singleton [24].

We define an (n, k, r)-selector S(n, k, r) of size min[ n, m|W | ], which consists
of sets F (i), for 1 ≤ i ≤ min[ n, m|W | ]. There are two cases to consider, depend-
ing on the relation between n and m|W |. The case of n ≤ m|W | is simple: take
the singleton containing only the i-th element of V as F (i). Consider a more
interesting case when n > m|W |. For i = am + b ≤ m|W |, where a and b are
non-negative integers satisfying a + b > 0, let F (i) contain all the nodes v ∈ V
such that v is a neighbor of the a-th node in W and v ∈ Mb.

Theorem 1. The family S(n, k, r) is an (n, k, r)-selector of size

O(min
[
n,

k2

k − r + 1
polylog n

]
) .

Proof. First we show that S(n, k, r) is an (n, k, r)-selector. The case n ≤ m|W | is
clear, since each node in a set A of size k occurs as a singleton in some set F (i).
Consider the case n > m|W |. Let set A ⊆ V be of size k. Suppose, to the
contrary, that there is a set C ⊆ A of size k − r + 1 so that none among the
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elements in C is selected by sets from S(n, k, r), that is, F (i)∩A �= {v}, for each
v ∈ C and 1 ≤ i ≤ m|W |.
Claim: Every w ∈ NG(C) has more than cδ k

k−r+1 neighbors in A.
The proof is by contradiction. Assume, for simplicity of notation, that w ∈ W

is the w-th element of set W . Suppose, to the contrary, that there is w ∈ NG(C)
which has at most cδ k

k−r+1 neighbors in A, that is, |NG(w) ∩ A| ≤ cδ k
k−r+1 .

By the fact that M is a (n, cδ k
k−r+1 )-strongly-selective family we have that, for

every v ∈ NG(w) ∩ A, the equalities

F (w · m + b) ∩ A = (Mb ∩ NG(w)) ∩ A = Mb ∩ (NG(w) ∩ A) = {v}

hold, for some 1 ≤ b ≤ m. This holds in particular for every v ∈ C ∩ NG(w) ∩
A. There is at least one such v ∈ C ∩ NG(w) ∩ A because set C ∩ NG(w) ∩
A is nonempty since w ∈ NG(C) and C ⊆ A. The existence of such v is in
contradiction with the choice of C. Namely, C contains only elements which are
not selected by sets from S(n, k, r) but v ∈ C ∩ NG(w) ∩ A is selected by some
set F (w · m + b). This makes the proof of Claim complete.

Recall that |C| = k − r + 1. By dispersion, the set NG(C) is of size larger
than (1 − ε)|W |, hence, by the Claim above, the total number of edges between
the nodes in A and NG(C) in graph G is larger than

(1 − ε)|W | · cδ k

k − r + 1
= (1 − ε)Θ((k − r + 1)d/δ) · cδ k

k − r + 1
> kd ,

for a sufficiently large constant c. This is a contradiction, since the total number
of edges incident to nodes in A is at most |A|d = kd. It follows that S(n, k, r) is
an (n, k, r)-selector.

The size of this selector is

min[ n, m|W | ] = O(min
[
n, δ2(

k

k − r + 1
)2 log2 n · (k − r + 1)d/δ

]
)

= O(min
[
n, dδ

k2

k − r + 1
log2 n

]
)

= O(min
[
n,

k2

k − r + 1
polylog n

]
) ,

since d = O( polylog n) and δ = O(log3 n).

Indyk [22] gave an explicit construction of (n, k, 3k/4 + 1)-selectors of size
O(k polylog n). His method does not appear to be directly adaptable to produce
(n, k, r)-selectors in the case when k − r is significantly smaller than k.

Theorem 2. The length of an (n, k, r)-selector has to be

Ω(min
[
n,

k2

k − r + 1
· log(n/k)
log(k/(k − r + 1))

]
) .
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Proof. We show that this fact follows from the lower bounds given in [11] and
[13]. We may assume that k2

k−r+1 · log(n/k)
log(k/(k−r+1)) = o(n), because otherwise it is

sufficient to take a family of n singletons to obtain a selector of size n.
A bound on the size of (n, k, 1)-selectors given in [11] is Ω(k log(n/k)); we

call it CMS.
A bound on the size of (n, k, r)-selectors given in [13] is Ω(min

[
n, (r−1)2

k−r+1 ·
log(n/(k−r+1))

log((r−1)/(k−r+1))

]
); we call it DGV.

Suppose the parameters k and r are functions of n. If k = O(1), then the
size of an (n, k, r)-selector is Ω(log n), which is consistent with the three bounds
mentioned. Suppose k = ω(1). We consider two cases.
Case 1 ≤ r ≤ k/2:

Apply the CMS bound. Observe that k2

k−r+1 = Θ(k) since k/(k − r + 1)
is Θ(1).
Case k/2 < r ≤ k:

Apply the DGV bound. Observe that (r−1) = Θ(k) and log(n/(k−r+1)) =
Ω(log(n/k)).

This completes the proof.

4 Applications

Theorem 2 demonstrates that the construction of Theorem 1 is close to optimal
within a polylog n factor. It follows that any algorithmic application of selectors
can be made explicitly instantiated with only an additional poly-logarithmic
overhead factor in performance. We describe three such applications.

4.1 Multiple Access Channel

There are n stations attached to a multiple-access channel. A transmission per-
formed by exactly one station is heard by every station, while more simultane-
ous transmissions interfere with one another, which prevents hearing any of the
transmitted messages. The channel is said to be with collision detection if each
station receives a feedback notifying about an interference of many messages
sent simultaneously. We consider the weaker channel without collision detection.

The problem of k-selection is defined as follows. Suppose each among some
k of the stations stores its own input value, and the goal is to make at least one
such a value heard on the channel. This problem can be solved deterministically
in time O(log n) applying the binary-search paradigm. It requires expected time
Ω(log n), as was shown by Kushilevitz and Mansour [27]. This selection problem
can be generalized to (k, r)-selection as follows: we want to hear at least r values
from among k held by the stations.

Corollary 1. The (k, r)-selection problem for n stations, where r ≤ k ≤ n, can
be solved deterministically by an explicitly instantiated oblivious algorithm in the
multiple-access channel without collision detection in time

O(min
[
n,

k2

k − r + 1
polylog n

]
) .
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Proof. An (n, k, r)-selector S can be used to provide an oblivious deterministic
solution to the selection problem as follows. The sets in S are ordered, and
station i performs a transmission if i is in the i-th set of S. The performance
bound follows from Theorem 1.

4.2 Gossiping in Radio Networks

The fastest known distributed algorithm for gossiping in directed ad-hoc multi-
hop radio networks, given by G ↪asieniec, Radzik and Xin [21], employs general
(n, k, r)-selectors. The bound O(n4/3 log4 n) on time obtained in [21] relies on
existence of (n, k, r)-selectors of size O(

k2

k−r+1 log(n/k)
)

shown in [13].

Corollary 2. Gossiping in directed ad-hoc radio networks of n nodes can be
performed in time O(n4/3 polylog n) by an explicitly instantiated distributed al-
gorithm.

Proof. Use our explicit selectors in the algorithm of [21], instead of those known
to exist only, to make the algorithm explicit. The performance bound follows
from the estimates in [21] and Theorem 1. The additional overhead is of order
polylog n.

4.3 Group Testing with Inhibitors

There is a set of n objects, some k of which are categorized as positive. The
task of group testing it to determine all positive elements by asking queries of
the following form: does the given subset of objects contain at least one positive
element? The efficiency is measured by the number of queries.

The c-stage group testing consists of partitioning all objects c times into dis-
joint pools and testing the pools separately in parallel in each among c stages.
Groups testing with inhibitors allows a category of some r objects, called in-
hibitors, so that a presence of such an element in a query hides the presence of
a positive item. De Bonis, G ↪asieniec and Vaccaro [13] showed how to implement
4-stage group testing with inhibitors relying on (n, k, r)-selectors.

Corollary 3. There is an explicit implementation of a 4-stage group testing
on a set of n objects with k positive items and r inhibitors, which consist of
O(min

[
n, k2

k−r+1 polylog n
]
) queries, if only k < n − 2r.

Proof. Instantiate the scheme of tests developed in [13] with our explicit selec-
tors. The bound on the number of tests follows from the estimates given in [13]
and from Theorem 1. The additional overhead for explicitness is of order poly-
log n.

5 Conclusion

We showed how to construct (n, k, r)-selectors in time that is polynomial in n,
for any configuration r ≤ k ≤ n of parameters. The obtained selectors are close
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to optimal, in terms of size, within a polylog n factor. Our construction is by
way of combining explicit dispersers with explicit superimposed codes to obtain
a family of a prescribed size with the desired degree of selectiveness.

This construction has a number of applications, as exemplified in Section 4.
Such applications are fairly direct in the case of selection in multiple-access
channel. A general scheme of application works by using any algorithm relying
on selectors and making it explicit by plugging in the explicit selectors given in
Theorem 1. We presented this for gossiping in radio networks and group testing
with inhibitors. Since our construction is within a polylog-n factor from optimal,
the additional overhead factor in efficiency is always of order polylog n.

Synchronizers are closely related to selectors. They are more robust, in that
they exhibit selection-related properties even if rows of arrays representing them
are shifted arbitrarily. The best know explicit (n, k)-synchronizers of a length
O(k2 polylog n) were given in [5]. It is an open problem if explicit synchronizers
of length O(k polylog n) can be developed.

Known explicit constructions of dispersers, of a quality we need in construc-
tion of almost optimal selectors, are fairly complex. Simpler explicit dispersers
applicable to obtain close to optimal selectors would be interesting to construct.

Exploring further a connection between selectors and graphs with expansion
properties is an interesting topic of research.
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19. Z. Füredi, On r-cover free families, Journal of Combinatorial Theory (A), 73 (1996)
172 - 173.

20. L. Ga̧sieniec, A. Pelc, and D. Peleg, The wakeup problem in synchronous broadcast
systems, SIAM Journal on Discrete Mathematics, 14 (2001) 207 - 222.

21. L. G ↪asieniec, T. Radzik, and Q. Xin, Faster deterministic gossiping in directed
ad-hoc radio networks, in Proc., 9th Scandinavian Workshop on Algorithm Theory
(SWAT), 2004, LNCS 3111, pp. 397 - 407.

22. P. Indyk, Explicit constructions of selectors and related combinatorial structures,
with applications, in Proc., 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2002, pp. 697 - 704.

23. S. Jukna, “Extremal Combinatorics,” Springer-Verlag, 2001.
24. W.H. Kautz, and R.R.C. Singleton, Nonrandom binary superimposed codes, IEEE

Transactions on Information Theory, 10 (1964) 363 - 377.
25. J. Komlós, and A.G. Greenberg, An asymptotically nonadaptive algorithm for

conflict resolution in multiple-access channels, IEEE Transactions on Information
Theory, 31 (1985) 303 - 306.

26. D.R. Kowalski, and A. Pelc, Time of deterministic broadcasting in radio networks
with local knowledge, SIAM Journal on Computing, 33 (2004) 870 - 891.

27. E. Kushilevitz and Y. Mansour, An Ω(D log(N/D)) lower bound for broadcast in
radio networks, SIAM Journal on Computing, 27 (1998) 702 - 712.

28. A. Ta-Shma, C. Umans, and D. Zuckerman, Loss-less condensers, unbalanced ex-
panders, and extractors, in Proc., 33rd ACM Symposium on Theory of Computing
(STOC), 2001, pp. 143 - 152.


	Introduction
	Selection and Superimposed Coding
	Selection by Intersection
	Superimposed Coding

	Explicit Selectors 
	Applications
	Multiple Access Channel
	Gossiping in Radio Networks
	Group Testing with Inhibitors

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




